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Résumeé

Dans quelle mesure peut-on lire les propriétés dynamiques (quand le temps tend
vers l'infini) d’un systéme sur des simulations numériques ? Pour tenter de répondre
a cette question, on étudie dans cette these un modele rendant compte de ce qui se
passe lorsqu’on calcule numériquement les orbites d’un systéme a temps discret f (par
exemple un homéomorphisme). L'ordinateur travaillant a précision numérique finie, il
va remplacer f par une discrétisation spatiale de f, notée fy (ou l'ordre de la discrétisa-
tion N rend compte de la précision numérique). On s’intéresse en particulier au com-
portement dynamique des applications finies fy pour un systeme f générique et pour
l'ordre N tendant vers l'infini, ou générique sera a prendre dans le sens de Baire (prin-
cipalement parmi des ensembles d’homéomorphismes ou de C!-difféomorphismes).

La premiére partie de cette these est consacrée a I’étude de la dynamique des discré-
tisations fy lorsque f est un homéomorphisme conservatif/dissipatif générique d’une
variété compacte. L'étude montre qu’il est illusoire de vouloir retrouver la dynamique
du systeme de départ f a partir de celle d'une seule discrétisation fy : la dynamique
de fy dépend fortement de 'ordre N. Pour détecter certaines dynamiques de f il faut
considérer ’ensemble des discrétisations fy, lorsque N parcourt N.

La seconde partie traite du cas linéaire, qui joue un role important dans 1’étude
du cas des C!-difféomorphismes génériques, abordée dans la troisiéme partie de cette
these. Sous ces hypotheses, on obtient des résultats similaires a ceux établis dans la
premiere partie, bien que plus faibles et de preuves plus difficiles.



Abstract

How is it possible to read the dynamical properties (ie when the time goes to infi-
nity) of a system on numerical simulations ? To try to answer this question, we study in
this thesis a model reflecting what happens when the orbits of a discrete time system f
(for example an homeomorphism) are computed numerically . The computer working
in finite numerical precision, it will replace f by a spacial discretization of f, denoted
by fn (where the order N of discretization stands for the numerical accuracy). In par-
ticular, we will be interested in the dynamical behaviour of the finite maps fy for a
generic system f and N going to infinity, where generic will be taken in the sense of
Baire (mainly among sets of homeomorphisms or C!-diffeomorphisms).

The first part of this manuscript is devoted to the study of the dynamics of the
discretizations fy, when f is a generic conservative/dissipative homeomorphism of a
compact manifold. We show that it would be mistaken to try to recover the dynamics
of f from that of a single discretization fy : its dynamics strongly depends on the order
N. To detect some dynamical features of f, we have to consider all the discretizations
fn when N goes through N.

The second part deals with the linear case, which plays an important role in the
study of C!'-generic diffeomorphisms, discussed in the third part of this manuscript.
Under these assumptions, we obtain results similar to those established in the first part,
though weaker and harder to prove.



Avant-propos

Voila, c’est fini. Quatre ans de travail, résumés dans ces quelques 300 pages. C’est
beaucoup, diront certains, mais cela ne fait qu'une page pour quatre jours de tra-
vail ; pour le profane, cette productivité pourrait passer pour indécente. Si les matheux
écrivent si lentement, c’est parce qu’ils passent la plus grande partie de leur temps a
apprendre, discuter, expliquer, lire, tatonner, dire n’importe quoi, tout recommencer
depuis le début, se désespérer, enseigner, oublier, réapprendre, recommencer, etc. Je
n’ai malheureusement pas encore le talent de certains !, et j’aurais bien aimé que dans
ce manuscrit, il reste un peu plus les échafaudages qui ont aidé a sa construction : je
vais essayer de réparer un peu ¢a ici.

Ce manuscrit ne raconte pas qu’en fait, je n’ai commencé a travailler sur mon sujet
de these qu’en janvier 2012. Le début de ma thése, je I’ai passé a reprendre mon rapport
de stage de M2 pour en faire un survol sur les propriétés génériques des homéomor-
phismes conservatifs. Une trés bonne idée de Frangois : j’ai été ravi d’explorer un peu
plus ce sujet passionnant; ravi aussi de pouvoir, quelques mois plus tard, avoir entre
les mains un exemplaire édité par la SBM. Une autre des excellentes idées de Francois
fut de me proposer le sujet des discrétisations apres que j’ai fini de travailler sur le sujet
de M2 : je retrouvai le théoreme I de Tomasz Miernowski en quelques jours seulement,
d’autres résultats suivirent assez vite. Je n‘aurais pas pu réver mieux comme initiation a
la recherche : Francois, tu as eu beaucoup de nez . Ce sujet était essentiellement vierge
il y a quatre ans, et aprés m’avoir guidé parmi les homéomorphismes conservatifs, tu
m’as laissé explorer le cas différentiable et le cas linéaire, malgré presque deux ans sans
résultat réellement satisfaisant. Tu n’as pas compté les heures passées a discuter sans
trop savoir ou ¢a nous menerait; durant cette thése, j’ai appris que bien souvent, les
idées viennent en discutant de tout et de rien. Merci enfin pour tes innombrables relec-
tures de ce que j’ai pu produire, parfois a I’état de brouillon, truffé de fautes. Sans elles,
ce manuscrit n‘aurait certainement pas pu étre bouclé a temps!!

Durant cette these, j’ai aussi eu la chance d’avoir, dans le bureau d’en face, un des
plus grands spécialistes de la théorie des difféomorphismes génériques. J’ai exploré avec
bonheur une partie de ce sujet a la faune exotique : lemme de fermeture, classe homo-
cline, cycle hétérodimensionel, décomposition dominée... Sylvain a toujours été tres
disponible pour répondre a mes questions — souvent naives, parfois stupides — avec
beaucoup de gentillesse et de pédagogie. S’il l'avait été, il n‘aurait certainement pas
usurpé le titre de directeur adjoint, et sans ses références précises, la rédaction de la
partie 3 m’aurait pris un temps infini.

1. Voir par exemple [Ber09], qui m’a par ailleurs beaucoup inspiré lors de mes recherches sur les dis-
crétisations d’applications linéaires.
2. En particulier concernant les références [Lax71] et [AA13].



Une autre rencontre décisive a été celle d’Yves Meyer. C’est lui qui m’a fait découvrir
la théorie des ensembles modeéle. Sans cet outil, je ne serais sans doute jamais venu a
bout du cas linéaire. J’ai été frappé par son enthousiasme constant, qui pour certains
s’effrite un peu avec les années de pratique : il est resté chez lui intact. Les discussions
avec Yves sont toujours peuplées de souvenirs de lieux, de gens : les mathématiques,
souvent vues comme froides et mécaniques, deviennent avec lui chaleureuses et hu-
maines.

Justement, cette question du taux d’injectivité dans le cas linéaire m’a occupé une
grande partie du temps de cette these. Parfois un peu désespéré, j’ai été glaner des idées
un peu partout; cela m’a donné l'occasion de faire la connaissance de matheux d’hori-
zons tres variés, comme Frédéric Le Roux (une des trois tétes du trio Béguin-Crovisier-
Le Roux), Emmanuel Militon, Yves Benoist, Yuri Lima, Pierre Pansu, Sébastien Gouézel,
Nicolas Gourmelon, Nalini Anantharaman, Raphaél Cerf, Pierre Arnoux, Michele Tries-
tino, Nicolas Curien. .. Merci a tous, le théoreme Q doit un peu a chacun de vous.

Enfin, je dois I'idée de la preuve du théoréme 7.29 a Emilien. Sans ses capacités
calculatoires hors normes, je n‘aurais jamais réussi a trouver comment démontrer ce
fichu énoncé! Merci a lui, a Lucie et a son chat.

Les maths auraient beaucoup moins d’intérét si une fois écrites, elles n’étaient pas
partagées. Etienne Ghys et Enrique Pujals m’ont fait I’honneur d’accepter de relire ce
manuscrit “un peu enveloppé”. J’espére que le premier aura pris autant de plaisir a lire
que moi a travailler sur les questions qu’il avait soulevées il y a presque vingt ans. J’es-
pére aussi que le second n'aura pas trop souffert de la lecture des parties en frangais. Un
grand merci a eux, ainsi qu’a Valérie Berthé, Jérome Buzzi et Sylvain Crovisier, d’avoir
accepté de faire partie de mon jury de these.

J’ai aussi eu la chance, tout au long de cette these, de pouvoir assister a des confé-
rences un peu partout dans le monde, a Gdynia, Rio, Bordeaux, Marseille, et Sao Paulo.
Cela n’aurait pas été possible sans les financements de 1’école doctorale et de I’équipe
topologie et dynamique. Je tiens aussi a remercier le GDR Platon (en particulier Fran-
coise Dal’Bo et Frédéric Paulin), pour 'organisation des superbes paroles aux jeunes cher-
cheurs, ainsi que les participants a la conférence surfaces in Sao Paulo, pour les discus-
sions sur I’ensemble de rotation qui ont abouti a la rédaction du chapitre 6 de ce manus-
crit. ]’y ai découvert de jeunes chercheurs passionnés par la dynamique, ainsi que les
caipirinhas. Merci a tous ceux que j’ai rencontré durant ces conférence, en particulier
Samuel Roth, Martyna Ktos, Lenka Sivakova, Lenka Rucka, Maria Sorokina, Alejandro
Passeggi, Juliana Xavier, Juliette Bavard, Gabriel Fuhrmann et Pablo Davalos.

Dés la premiére année de mon contrat doctoral, I’équipe d’enseignants de I'IUT de
Cachan m’a proposé la charge d’un cours/TD en autonomie. Méme si j’ai passé un cer-
tain temps a la préparation des séances, j’ai beaucoup appris de cette expérience : loin
des lecons un peu formatées de ’agreg’, il a fallu adapter le cours et les exercices au fur
et a mesure, pour donner envie a des éléves qui congoivent les maths comme un outil
plutdét que comme une fin en soi. J’ai aussi eu la chance d’avoir carte blanche lors des
deux derniéres années de mon contrat. L'équipe de I'IUT m’a fait confiance lorsque je
leur ai proposé de remplacer ’habituelle préparation des concours par des projets de
modélisation et simulation : un grand merci a eux, j'espere que le bilan de ce cours est
positif. Enfin, j’ai passé une formidable semaine au ski avec une partie des enseignants
et des éleves de Cachan, merci a tous pour cette super ambiance!



Le labo d’Orsay voit passer beaucoup de doctorants. J’ai eu la chance, pendant ces
quatre ans, d’en cotoyer quelques uns. Tout d’abord, dans le bureau 108, avec Sébas-
tien, Jérémie et Schweta, puis Caroline, Emilie, Céline A., Gabriele et Céline K. En
particulier, je tire mon chapeau aux deux Mme Mout’ qui, depuis bientot trois ans,
supportent mes ronchonnages quotidiens, intermedes musicaux immondes et crapau-
series diverses. Sans cette ambiance au bureau 108, j’aurais peut-étre fini ma these un
peu plus rapidement, mais je me serais certainement beaucoup moins amusé ! Dans le
bureau d’a-coté, il y avait les connexes : Olivier (et Cyrielle), Vincent, Valérie Robert 3,
Solenne, Arthur, Aurélien, Carolina, Ramon, Ramla, Adrien. .. Dans le reste du couloir,
c’étaient Igor, Laure, Thierry, Lionel, Lucie, Cagri... Enfin, au rez-de-chaussée, Elodie,
Pierre, Bernardo, Thomas (Morzy), Alba, Ilia 4 Lison, Joseph... Et ne l'oublions pas, il y
a des doctorants a Orsay dans les batiments 425 et 430 : Loic °, Nina, Vincent, Mélina. ..
J’ai passé beaucoup de bons moments en votre compagnie : les pauses café avaient ten-
dance a manger un peu du temps de travail légal, occupées par les discussions a propos
des tickets de CESFO et du principe du sas.

L’administration francaise n'est pas forcément connue pour sa simplicité. Valérie
Lavigne guide avec beaucoup de gentillesse les doctorants d’Orsay dans le moments les
plus stressants de la these; elle n’est certainement pas étrangere a la bonne ambiance
qui régne dans le couloir du premier étage du batiment 430. L’école doctorale doit aussi
beaucoup a l'implication de ses deux directeurs successifs, David Harari et Frédéric
Paulin, merci a eux.

Pendant ces quatre ans, j’ai pu partager la vie de I’équipe topologie et dynamique
d’Orsay. Elle m’a accueilli les bras ouverts, en particulier Jérome Buzzi et son succes-
seur Frédéric Bourgeois, ainsi que sa secrétaire Fabienne Jacquemin, et Rémi Leclercq,
Anne Vaugon, Sylvie Ruette, Hans-Henrik Rugh, Romain Tessera... J’ai énormément
apprécié le principe du café culturel, qui m’a bien aidé a comprendre ce que font les
non-dynamiciens de I’équipe (et il y en a beaucoup!). Merci aussi a tous les participants
du groupe de travail “ergodique et dynamique”, un vrai succés quand on pense qu’il a
lieu le lundi matin!

Je tiens a remercier les numériciens d’Orsay qui m’ont autorisé a utiliser le cluster
du labo. La plupart des simulations de ce manuscrit ont tourné de longues heures sur
« Cinaps », utilisant une quantité affolante de mémoire vive.

Un grand bravo a toute 1’équipe d’organisation du TIFJIM?, en premier lieu Mat-
thieu, ainsi que David, Igor, Giancarlo, Martin. .. pour le travail incroyable qu’ils font
en faveur des lycéens férus de mathématiques. J’ai pris un plaisir immense a encadrer
les équipes de I’Essonne deux années de suite (Alain, Alexandre, Clara, Colin, Cyril,
Florent, Hector, Nicolas) : quelques heures par semaine, jai un peu eu l'impression
d’étre a la place de mon directeur de these! J’ai aussi eu la chance de pouvoir partir
une semaine en Allemagne pour coacher une des deux équipes nationales qualifiées
pour I'ITYM, en compagnie d’Ambroise, Thomas et Guillaume (avec en plus Cécile et
Alexandre parmi les éleves). Je pense que j’ai autant appris a encadrer ces compétitions
que les éléves a y participer. On a aussi pu constater que les biélorusses ne congoivent
pas du tout les mathématiques comme les francais !

Et il n’y a pas que les maths dans la vie! J’ai passé de nombreuses heures a “faire

3. Son réve est qu’on cite son nom de famille.
4. Dans la méme classe en sixiéme, soutenance la méme année dans le méme labo!
5. Qui a repris 'organisation du séminaire des doctorants avec Emilie et avec brio.

N’oublions

pas ce petit
capybara qui
m’a bien aidé
lors de la
rédaction!



de la varappe” un peu partout, a Bleau °, Céiise, Siurana ’/, Bercy 8, Chateauvert, Massy,
Terradets, St-Léger °, Finale Ligure, en compétition aux quatre coins de la France, dans
le Tarn, la Jonte, le Verdon, etc., en compagnie de grimpeurs aux surnoms évocateurs :
Goret 19, Barnouze (le créteux) et sa compagne Roca, Marca 11 Mme la présidente 12
Petite So, Rox '3, Bristov (le créteux n°2), Coquille, Ludo 14 Yann et Vaness 1>, Fuego,
Simon, Tristoon, Mél, Le Contellec, Grand Chef, ’Anglais et son gite, Gus, Shortwood,
Yo, Nina, Céline, Marco, Alice, Tonton, Toinou, Bonito, Coco, Panpan, Poupou, Zaza,
Pascal, La Caze, Jérome, Pascal, Cécile. .. L'escalade est un sport hautement social : grim-
per, c’est aussi un prétexte pour passer du temps avec vous tous; sans ¢a je serais sans
doute devenu un peu autiste. En particulier, un grand merci a La coloc de Perthes-en-
Gatinais qui m’a hébergé tant de dimanches matins, et a tout le club de Massy (et ¢a
fait du monde!), ou j’ai passé un nombre incalculable de soirées a me faire exploser les
avant-bras.

Etje n'oublie pas la bande de Rennais (ou plutot d’ex-rennais et associés) : Rominou,
toujours aussi enthousiaste a I’'idée de grimper ou de se goinfrer de Nutella, Popoff,
toujours aussi jovialement insupportable, Julie Connor qui est maintenant bien loin de
sa Bretagne natale, Pierrot (le Guignolo), Marine et sa maison qui m’aura vu trainer
la patte pendant une semaine, Christophe (le PU aux biceps gonflables), KRon (grand
spécialiste de 'aménagement de piscines), Elise, Mama. Sans vous, je n‘aurais jamais pu
connaitre Kraftwerk, TNGHT, Graou ou mon orthopédiste.

Je pense aussi a une partie de la bande de cachanais que je n’ai pas encore cité :
Rémi, co-bureau par alliance, Kevin et Guillaume, toujours préts a “coincher la chauffe”,
Bruno, qui m’a hébergé maintes fois a Bordeaux avec une hospitalité déconcertante,
Antoine. ..

Un énorme merci a tous ceux qui m’ont dépanné d’une lessive de temps en temps,
en particulier Ben et Maud ! Merci aussi au RER B, dans lequel j’ai passé beaucoup de
temps, et ou j’ai eu une partie non négligeable des idées présentées dans ce manuscrit.

Enfin, une petite pensée pour ceux qui suivront : je laisse ma place au Kinou, la
petite jeune qui commence bientot sa these dans le sud, et a Tom, qui me succeéde en
tant qu’éleve de Francois. Vous verrez, ¢a vaut le coup !

En quatre ans, il peut s’en passer des choses : un déces, deux déménagements, une
maladie, des travaux, des pattes cassées... Ma famille — en particulier ma mere, ma
sceur %, mon pére, ma tante, mes grands parents — a toujours été la pour me soutenir,
malgré quelques moments difficiles. Elle a aussi compris quand j’ai eu besoin d’un peu
plus de distance !”. La fin de cette thése signe aussi la fin du statut d’éternel étudiant :

est-ce que ¢a veut dire que je vais devenir adulte ?

. J'ai pu y perfectionner mon anglais : il y avait du boulot !

. Minimal Techno, un grand souvenir !

. Ou j’ai été sacré double champion du monde de 'assurage !
9. Etlarencontre du “Prince du lactique”.

10. Avec qui j’ai passé des nuits de folie dans son camion jaune. Merci pour cet accueil chaleureux!

11. Le roi des traits.

12. Mais il faut aussi que je cite Marion, sinon elle ne sera pas contente.

13. Bravo pour la coupe de cheveux, une vraie pro!

14. Merci pour tout ce que j’ai appris pendant ces stages d’ouverture ; gérer 'ouverture d’une compéti-
tion, c’est finalement un peu comme gérer la rédaction d’une these : on a I'impression que ¢a n’avance pas,
qu’on fait n'importe quoi, on fait des modifications de derniére minute alors qu’on s’était promis de ne pas
le faire, et finalement ca ne se passe pas si mal!

15. Et Maél!

16. Qui passe le bac cette année !

17. J'ai parfois été assez insupportable. ..

[o BN @)}



Je vais bient6t rejoindre le labo de maths de Niteroi, pres de Rio. Une aventure se
termine ici, j’ai la chance de pouvoir en commencer une nouvelle bientot. Les maths
présentées dans ce manuscrit seront peut-étre oubliées dans dix ans, mais ce nest fi-
nalement pas si important : je me souviendrai longtemps de ce que j’ai appris pendant
cette these. Bonne lecture!
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CHAPITRE 1

INTRODUCTION

1.1 Presentation du probleme

Le but de cette theése est d’étudier la dynamique des discrétisations spatiales de
systemes a temps discret. Ce probléme est motivé par des questions d’approximation
numérique : considérons une dynamique (X, f), ou X est un espaces des configurations
« gentil » (a ce stade, on peut penser a un domaine borné de R” ou au tore T"), et f :
X — X une application continue, donnée par une formule explicite. On veut essayer de
comprendre la dynamique de f, c’est-a-dire le comportement asymptotique des itérés
f¥ de f, al'aide de simulations numériques. Pour ce faire, I'idée la plus naive consiste
a prendre un point x € X, et a demander a 'ordinateur de calculer successivement ses
images f'(x), pour un temps t « assez grand ».

Analysons ce qui se passe alors : 'ordinateur travaille a précision numérique fixée,
disons qu’il considére 10 chiffres aprés la virgule !. 1l ne calcule donc pas réellement
dans l'espace des phases X, mais dans un espace discret E;(, qui est I'ensemble des
points de X dont les coordonnées sont décimales avec au plus 10 chiffres apres la vir-
gule. Il remplace aussi I'application f par une discrétisation fio: E{g — Eqo de f, qui
est une approximation de la dynamique f sur I’ensemble discret E;. Cet espace fini est
une assez bonne approximation ? de l’espace continu X, mais il se peut que les petites
erreurs d’arrondi faites a chaque itération de f;y s"accumulent au fil du temps, si bien
qu’a partir d’un certain moment, les orbites de x par l'application f et par sa discrétisa-
tion f;( n‘ont plus grand chose a voir. Si on ne sait rien de plus sur la dynamique f, on
ne peut par conséquent rien dire du comportement asymptotique de l'orbite de x par
f en regardant son orbite par la discrétisation fi(, et cela méme si a premiére vue une
précision de 10 chiffres apres la virgule est relativement bonne.

Néanmoins, cette orbite discrete (flto(x)) est proche d’une vraie orbite de f sur

tout intervalle de temps de longueur raisontrelgble. On peut donc espérer que le com-
portement collectif des orbites calculées numériquement — ou par collectif on entend
que 'on considere beaucoup de points de départ x — refléte la dynamique globale de
I’application f.

L'objet principal de cette these n’est pas d’essayer de trouver le meilleur algorithme
qui permette de retrouver la dynamique de f, ni de mener des études numériques sur

1. Ce n’est pas exactement ce qui se passe en général, étant donné que le format de nombre le plus
répandu est le flottant, ou ce n’est pas le nombre de chiffres aprés la virgule qui est fixé mais le nombre de
chiffres significatifs. Au cours de cette these, on négligera cet aspect.

2. Par exemple au sens de la distance de Hausdorff.

13
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des exemples particuliers, visant a constater si oui ou non on observe en pratique la
dynamique du systeme initial f. Le but ici est d’analyser 1’algorithme naif évoqué plus
haut, qui décrit ce qui se passe quand on fait des calculs numériques sans aucune pré-
caution ; autrement dit, on veut comprendre les phénomenes qui apparaissent lorsqu’on
discrétise en espace un systeme dynamique. En d’autres termes, on aimerait relier la dy-
namique asymptotique (quand le temps tend vers I'infini) de I'application de départ f
avec celle de l'application discréete fi.

I1 faut bien noter que cette problématique est bien différente de celle de I’analyse
numérique classique : en quelque sorte, étant donnés un temps f; et une précision 9,
les numériciens déterminent une méthode, en particulier une grille, qui permet d’ap-
procher la solution réelle pendant un temps t; et avec une précision d’au moins d. Dans
notre cas, on se fixe une grille assez fine, et on compare les comportements asympto-
tiques du systeme réel et du systeme discrétisé sur cette grille.

Dans cette theése, on considérera des systemes dynamiques a temps discret f : X —
X, ou X est une variété compacte (avec ou sans bord) munie d’'une métrique d, et f une
application continue de X dans lui-méme. L'opération de discrétisation qui transforme
X en l'espace discret et f en sa discrétisation sera modélisée de la fagcon suivante. On
se donne une suite de grilles (En)nen, qui sont donc des sous-ensembles finis de X, et
dont la maille tend vers 3 0. On définit une projection Py : X — Ey qui envoie chaque
point de X sur le point de Ey le plus proche 4. La discrétisation d’un point x € X est alors
définie comme étant le point Py(x), et la discrétisation de f comme étant 'application

fN:EN —> EN

x — Py(f():

pour calculer I'image fy(x) de x € Ey, on calcule I'image de x par f puis on projette sur
Eyn via l'application Py. Remarquons que cette modélisation de l'erreur d’arrondi est
imparfaite : en pratique, l'ordinateur travaille aussi en précision numérique finie lors-
qu’il fait des calculs intermédiaires nécessaires pour calculer f(x), il fait donc plusieurs
discrétisations successives. Nous ne tiendrons pas compte de cet aspect par la suite.

Le cadre de notre étude étant mieux fixé, on peut préciser un peu plus la question
qui nous intéresse.

Question. Quelles propriétés dynamiques de f peuvent étre lues sur la dynamique (globale)
des discrétisations (fx)neN ¢

Pour tenter de répondre a cette question, le premier réflexe est d’observer ce qui se
passe pour une dynamique simple et bien connue. C’est ce que fait E. Ghys dans un ar-
ticle paru au journal des éléves de 'ENS de Lyon [Ghy94], ou il étudie les discrétisations
de 'automorphisme d’Anosov du tore, dit du « chat d’Arnold »,

A:R?/72?2 — R2%/Z?
(xy) +— (p,x+),

sur les grilles

i ] 272
En={(x %) € R*/2
NTUN'N
3. Par «la maille de la grille tend vers 0 », on entend « pour tout ¢ > 0 et tout N assez grand, la grille
EN est e-dense dans I'espace X ».
4. On fait une fois pour toutes un choix raisonnable lorsqu’il y a plusieurs points de Ex qui sont les
plus proches.

1SLjSN} (1.1)
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/i

Ficure 1.1: Images d’'une image de chat par la discrétisation du chat d’Arnold, sur une
grille de taille 610 x 610. De gauche a droite et de bas en haut, temps égaux a0, 2, 4, 8,
14, 20, 26, 30 et 60.

La figure 1.1 montre ce qu’on obtient en prenant les itérés par A d’'une image numé-
rique : une telle image est constituée de pixels — ici I'image fait 610x 610 pixels —, elle
correspond donc formellement a une application ¢ : Bg;9 — [[1,256])°, dont on consi-
deére les poussées en avant successifs par I'application A4y (rappelons que I'on note
Ay la discrétisation de A suivant la grille Ey). On observe alors deux phénomenes tres
particuliers.

— Premierement, lorsqu’on itere I'image, on obtient encore des images; autrement
dit la couleur de chaque pixel des itérés est bien définie. Ce n'est a priori pas
évident : il n’y a aucune raison pour que les discrétisations d’un homéomor-
phisme 5 quelconque du tore dans lui-méme soient bijectives. Ici, c’est la forme
particuliere de A, a savoir le fait que c’est un automorphisme linéaire a coefficients

5. Ou plus généralement d’'une application continue.
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entiers, qui fait que pour tout ordre N € N, I'application Ay est une permutation
de la grille Ey. En fait, dans le cas de A, on n’a méme pas besoin de projeter : pour
tout point x € Ey, on a automatiquement Ax € Ey.

— Ensuite, on retrouve I'image de départ aprés un nombre extrémement court d’ité-
rations (60 dans I’'exemple de la figure 1.1). Or, on sait que 'ordre global d’une
permutation typique d’un ensemble a N? éléments est équivalente a N2!"N (voir
par exemple [Bol01]); appliquée a N = 610, cette asymptotique donne un ordre
d’environ 5.10% : si I'application A4 était une permutation quelconque, il fau-
drait itérer a peu prés 1035 fois avant de revoir apparaitre notre pauvre chat, ce
qui est notoirement supérieur a 60 fois ! De fait, on a le résultat suivant, démontré
par E. Dyson et H. Falk dans [DF92] : pour tout N € N, l'ordre de la permutation Ay
est inférieur ou égal a 3N. De plus, il existe une suite d’entiers (Ny)xen, tendant vers
Iinfini a vitesse exponentielle, telle que l'ordre de la permutation Ay, vaut 2k.

Ce comportement des discrétisations contraste fortement avec la dynamique réelle
de l'automorphisme linéaire A : cette application est un paradigme de systéeme expo-
nentiellement mélangeant. Si la dynamique des discrétisations devait refléter celle de
A, les images obtenues devraient rapidement devenir uniformément grises (ce qu’on
observe au centre de la figure 1.1, a la 14°™¢ jtération) et le rester a tout jamais (au
contraire de ce qu'on observe sur les derniéres images de la figure 1.1).

Il ressort de ces observations que ’exemple de I’automorphisme linéaire A est tres
particulier : en quelque sorte, les grilles Ey entrent en résonance avec la dynamique A ;
ceci parce que les grilles Ey sont régulierement espacées, et parce que A possede des
propriétés arithmétiques particulieres.

Pour éviter ce type de phénoménes « exceptionnels », E. Ghys propose (toujours dans
[Ghy94]) d’étudier les discrétisations d’homéomorphismes génériques du tore préser-
vant l'aire. C’est ce que nous ferons dans cette these : nous étudierons les discrétisations
de systémes dynamiques génériques.

On peut donner un sens formel tres précis au mot « générique ». La plupart des es-
paces de fonctions raisonnables sont complets (ce sera toujours le cas ici) ; en particulier,
on peut y appliquer le théoréme de Baire : toute intersection dénombrable d’ouverts denses,
est elle-méme dense. On dit alors qu’'une propriété (P) portant sur la classe de fonctions
considérée est générique si elle est vérifiée sur au moins une intersection dénombrable
d’ouverts denses de telles fonctions. Notons que cette notion de généricité possede deux
propriétés agréables :

— une propriété générique est satisfaite sur un ensemble dense;

— si (P) et (Q) sont génériques, alors la propriété « vérifier a la fois (P) et (Q) » est
elle-méme générique ; ceci reste méme vrai pour une famille dénombrable de pro-
priétés.

Ainsi, nous étudierons la dynamique des discrétisations d’homéomorphismes ou de C'-
difféomorphismes génériques, tant conservatifs (c’est-a-dire sous ’hypothése de préser-
vation d’une bonne mesure sur X, fixée une fois pour toutes) que dissipatifs (c’est-a-dire
sans hypothese de préservation de mesure).

Par abus de langage, on parlera souvent d’« homéomorphisme générique », et on
listera ses propriétés. Il faudra avoir a l'esprit qu’'un tel homéomorphisme générique
n’existe pas : un peu comme en mécanique quantique, ou le fait d’effectuer une mesure
perturbe inévitablement le systeme étudié; essayez de choisir un élément générique
d’un espace, de ce fait il cessera de 1’étre. Cet abus de langage est donc trés mauvais, et
lorsqu’il la rencontrera, le lecteur devra remplacer mentalement la phrase «soit f un
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élément générique de tel espace, alors il a la propriété (P) » par la phrase plus correcte
«la propriété (P) est générique dans tel espace ».

Précisons maintenant ce qu'on entend par «la dynamique des discrétisations ».
Toute discrétisation fy : Ey — Ey est une application d’un ensemble fini dans lui-
méme. En particulier, chacune de ses orbites est pré-périodique, c’est-a-dire que pour
tout point x € Ey, l'orbite de x sous fy est périodique a partir d’un certain rang : il
existe deux entiers C et T tels que pour tout k > C, on ait ka+T(x) = fll}(x). Ainsi, on
peut partitionner I’ensemble Ey en deux sous-ensembles : I’ensemble récurrent ((fy) de
fn, qui est égal a I'union des orbites périodiques de fy, et son complémentaire, appelé
ensemble errant de fy. Notons que I'ensemble récurrent ()(fy) est stable par fy, et que
la restriction de fy a cet ensemble est bijective. De plus, chaque x € Ey « tombe » dans
Q(fn), c’est-a-dire qu’il existe t € N tel que fl\’}(x) € Q(fn); Q(fn) est d7ailleurs le plus
petit sous-ensemble de Ey vérifiant cette propriété.

Ainsi, d’un point de vue purement combinatoire, la dynamique de fy est caractéri-
sée par un petit nombre de quantités, comme par exemple le nombre d’orbites pério-
diques de fy et la répartition de leurs longueurs, les tailles de leurs bassins d’attrac-
tion ©, le temps de stabilisation de fy (i.e le plus petit t € N tel que fI\tI(EN) =Q(fn)), etc.
Nous nous intéresserons plus particuliérement au degré de récurrence D(fy) de fy, qui
est égal au rapport entre le cardinal de I'ensemble récurrent )(fy) et celui de la grille
EN.

Ces propriétés dynamiques combinatoires de fy ne tiennent pas compte de la géo-
métrie des grilles Ey. Or, on a supposé que ces grilles sont de bonnes approximations
de 'espace X au sens métrique, autrement dit que pour tout ¢ > 0 et tout N assez grand,
la grille Ey est e-dense dans 'espace X. On peut aussi munir X d’'une bonne mesure A,
et supposer que les mesures uniformes sur les grilles Ey tendent vers A. Ces hypothéses
permettent d’étudier des propriétés dynamiques géométriques ou ergodiques des dis-
crétisations : on peut par exemple se demander si les orbites périodiques de fy tendent
vers les orbites périodiques de f. Plus généralement, on peut se demander si les com-
pacts invariants par les discrétisations tendent (pour la distance de Hausdorff) vers les
compacts invariants par f. Le méme type de questions peut étre posé pour les mesures
invariantes, munies de la topologie faible-*.

Il est assez étonnant que ce probléme n’ait été que trés peu étudié. A ma connais-
sance, si on met de coté des travaux analysant des exemples numériques bien choisis,
ou expliquant des phénomeénes par des arguments heuristiques (voir la section 2.2), il
existe tres peu de travaux théoriques sur ce probleme. En fait,

En fait, seuls P.P. Flockermann et T. Miernowski ont vraiment entrepris une étude
théorique systématique pour une large classe de systémes dynamiques ’. Dans sa thése
sous la direction de O. E. Lanford, P.P. Flockermann s’est intéressé aux discrétisations
des applications dilatantes du cercle. Au cours de sa thése [Mie05], effectuée sous la
direction d’E. Ghys, T. Miernowski a quant a lui étudié le cas des homéomorphismes
du cercle (voir aussi [Mie06]). Il montre essentiellement que les propriétés dynamiques
d’un homéomorphisme/difféomorphisme du cercle typique (générique ou prévalent)
peuvent étre lues sur la dynamique de ses discrétisations. Les preuves de ces résultats
utilisent de maniere cruciale I’existence d’un ordre cyclique préservé par la dynamique;

6. C’est-a-dire le cardinal du nombre de points dont l'orbite positive tombe dans cette orbite pério-
dique.
7. Voir le chapitre 2 pour un historique complet.
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en particulier, les comportement dynamiques des discrétisations dépendent fortement
du nombre de rotation de ’'homéomorphisme. Cette étude est donc assez spécifique et
ne saurait étre généralisée a d’autres types de systémes.

Durant sa these [Mie05], T. Miernowski s’est aussi briévement intéressé au cas des
homéomorphismes conservatifs génériques du tore : on munit le tore T? = R?/Z? de
la mesure de Lebesgue et des grilles de discrétisation canoniques (définies par 1’équa-
tion (1.1)), et on note Homeo(T?,Leb) I'ensemble des homéomorphismes du tore qui
préservent la mesure de Lebesgue. T. Miernowski démontre alors le résultat suivant.

Theoreme I (Miernowski). Pour un homéomorphisme conservatif générique f €
Homeo(T?,Leb), il existe une sous-suite fx, de discrétisations de f dont les éléments sont
des permutations de I'ensemble By, .

Ce théoréeme est en quelque sorte le point de départ de cette thése : on aimerait
montrer d’autres résultats de ce type, pour mieux comprendre la dynamique des dis-
crétisations d’'un homéomorphisme ou d’un difféomorphisme générique.

1.2 Quelques résultats que 'on pourra trouver dans cette
these

Ce manuscrit contient un grand nombre d’énoncés, concernant les propriétés com-
binatoires, topologiques, ou ergodiques, des discrétisations de systemes dynamiques
différentiables ou seulement continus, conservatifs ou dissipatifs. Dans cette section,
jai voulu en isoler quelques-uns, qui me semblent les plus représentatifs et intéres-
sants. Pour une présentation plus systématique et exhaustive de nos résultats, on ren-
voie aux introductions des différentes parties du manuscrit. Enfin, dans le chapitre 13,
nous discuterons et comparerons les résultats obtenus dans différents contextes.

Dans cette section, pour plus de simplicité, nous nous plagons dans le cas ou X est le
tore T? = R?/Z?, muni s’il y a lieu de la mesure de Lebesgue notée Leb, et ou les grilles
sont les grilles uniformes sur le tore, définies par

EN:{(%,é)‘lsi,jsN}. (1.1)

Les résultats présentés sont en réalité vrais dans divers contextes plus généraux; on
se référera aux parties du manuscrit concernées pour les définitions précises de ces
contextes.

1.2.1 Degre de récurrence

Commencons par deux théoremes relatifs a la dynamique combinatoire des discréti-
sations, plus précisément une des quantités les plus simples a étudier, le degré de récur-
rence. Rappelons que le degré de récurrence D(fy) d’une discrétisation fy de f est défini
comme étant le rapport entre le cardinal de 'ensemble récurrent de fy (qui est 'union
des orbites périodiques de fy, voir page 19) et celui de la grille Ey. Etant donné que
l'orbite positive de tout point de Ey par la discrétisation fy tombe dans cet ensemble
récurrent, le degré de récurrence est aussi égal au rapport Card (fIfI(EN))/Card(EN) pour
tout t assez grand.
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Le premier résultat concerne le comportement de D(fy) pour un homéomorphisme
conservatif ® générique du tore : dans le chapitre 5, on démontre le résultat suivant
(corollaire 5.24 page 83).

Theoréme I1. Pour un homéomorphisme conservatif générique f € Homeo(T?,Leb), la suite
(D(fn))Nso s‘accumule sur tout le segment [0, 1].

Le fait que ce degré de récurrence s’accumule sur 1 est un corollaire trivial du théo-
reme I de T. Miernowski. Pris indépendamment, ce théoréeme I peut étre vu comme tres
positif : il exprime qu’une infinité de discrétisations d’'un homéomorphisme conservatif
générique se comporte de la méme maniere que cet homéomorphisme, a savoir que c’est
une bijection qui préserve la mesure. Ce phénomeéne n’est en fait qu'un cas particulier

d’un comportement tres irrégulier de la suite (D(fN)) : le théoreme II affirme qu’elle

N>0
s’accumule en fait sur le plus gros ensemble sur lequel elle a le droit de s’accumuler.

Nous étudions ensuite le cas des C!-difféomorphismes conservatifs génériques. On
démontre le théoreme suivant dans le chapitre 11 (théoréme 11.15 page 235).

Theoréme IIl. Pour un difféomorphisme de classe C' conservatif générique f €
Diff' (T2, Leb), on a
N—+o0

Ce théoreme est a mettre en paralléle avec le théoréeme II : il exprime que le compor-
tement global des discrétisations évolue moins irrégulierement avec 'ordre N que dans
le cas des homéomorphismes. Néanmoins, le fait que le degré de récurrence tende vers
0 signifie qu’il y a une perte d’information arbitrairement grande lorsque N est assez
grand.

Pour démontrer ce théoreme, on fait le lien entre les comportements macroscopique
et mésoscopique des discrétisations d’un difféomorphisme générique. Pour commencer,
on définit les taux d’injectivité de f

NVZ™ 0 Card(Ey)

par définition, leur limite pour t tendant vers +oco est le degré de récurrence D(fy).
On est donc ramené a I’étude de ces taux d’injectivité; en particulier on démontre un
résultat les reliant a des quantités similaires pour les différentielles de f (théoreme 11.3
page 229, voir aussi le théoreme 11.26 page 247).

Theoreme IV. Pour tout r > 1, et pour un difféomorphisme de classe C" conservatif géné-
rique f € Diff (T?,Leb), pour tout t e N*, on a

lim i (f) :J- UDfrr1(x), -+, Dfy) dx,
N—+o0 T2

ou le taux d’injectivité d’une suite de matrices est défini de maniere similaire da celui d’un
difféomorphisme (voir la définition 7.19 page 152).

Ce résultat permet de ramener I’étude du degré de récurrence d’un difféomorphisme
générique a celle du taux d’injectivité d’une suite de matrices générique ; cela fait l'objet
de la partie 2 du présent manuscrit.

8. Rappelons que par « conservatif » on entend « qui préserve la mesure de Lebesgue ».
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1.2.2 Mesures physiques

Nous nous intéressons maintenant a la dynamique ergodique des discrétisations.
Commencons par définir la notion de mesure physique. On pose p, 1 la mesure de pro-

babilité uniforme sur le segment d’orbite (x,f(x),---,fT‘l(x)). Cela permet de définir
le bassin d’attraction d’une mesure de probabilité p comme étant I’ensemble des points

f

x € T? tels que les mesures p, 1 tendent vers p (au sens de la topologie faible-*) lorsque T
tend vers +oo. On dit alors que la mesure p est physique pour f si son bassin d’attraction
est de mesure de Lebesgue strictement positive. Une mesure physique est une mesure
que l'on devrait pouvoir détecter lors d’expérience physiques car elle est « vue » par un
ensemble de points x de mesure de Lebesgue positive. La question est de savoir s’il est
aussi possible de repérer de telles mesures sur des expériences numeériques.

Signalons que dans cet esprit, il y a de nombreux résultats sur la stabilité stochastique
des mesures physiques, pour tenir compte du fait que, dans une expérience physique, il
y a toujours du bruit (voir par exemple les notes de cours [Via97] de M. Viana). Dans un
grand nombre de cas, il s’avere que malgré le bruit, on retrouve les mesures physiques
de la dynamique de départ. Ces travaux supposent toujours le bruit aléatoire, et surtout
indépendant a chaque itération, ce qui est loin d’étre le cas des troncatures numériques.
La question est donc de savoir si ce type de résultats perdure pour les discrétisations.

Comme les applications fy sont finies, les mesures yﬁNT convergent vers la mesure uni-
forme sur l'orbite périodique dans laquelle tombe 'orbite positive de xy par fy; on

h

note py' cette mesure. Le but est de caractériser le comportement de ces mesures pour
«la plupart » des points x € Ey. Dans cette optique, on démontre le théoréme suivant
(théoréeme 5.43 page 90).

Theoréme V. Pour un homéomorphisme conservatif générique f € Homeo(T?,Leb), pour
toute mesure de probabilité p invariante par f, il existe une sous-suite de discrétisations
(fn, )i telle que fy, posséde une unique mesure invariante wy, qui tend vers p. Autrement dit,
pour toute mesure de probabilité f-invariante y, il existe une suite d’entiers (N x>0 telle que,

pour tout x € T, on a

Iy
Px° —> W

k—+o00

Précisons que le théoréeme d’Oxtoby-Ulam (un des tout premiers résultats de gé-
néricité, voir [OU41]) implique qu'un homéomorphisme conservatif générique f €
Homeo(T?,Leb) ne posséde qu’une seule mesure physique, a savoir la mesure de Le-
besgue. Le théoreme V exprime donc que d’une certaine maniere, toute mesure f-
invariante est « physique du point de vue d’une infinité de discrétisations ». Ce résultat
peut étre considéré comme positif ou négatif selon le point de vue : si on est content de
pouvoir retrouver toutes les mesures invariantes par f, rien ne nous permet a I’heure
actuelle de détecter la mesure physique de f a partir des discrétisations, alors que la
définition méme de mesure physique est censée exprimer que ce sont les mesures ob-
servables en pratique.

Ce phénomene apparait méme sur des simulations numériques d’exemples d’ho-
méomorphismes conservatifs : sur la figure 1.2, on a représenté les résultats des simu-

lations numériques des mesures yéNz, ou ]141\; est la limite au sens de Cesaro des poussées

en avant par fy de la mesure uniforme sur Ey. On observe que sur cet exemple, que

N

non seulement les mesures pr, ne convergent pas du tout vers la mesure de Lebesgue,
mais qu’en plus elles n‘ont rien a voir les unes avec les autres, et cela méme si les ordres
de discrétisation sont tres proches.
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FiGure 1.2: Densité de la mesure invariante canonique p;, de fy, obtenue comme limite
au sens de Cesaro des poussés en avant par fy de la mesure uniforme sur Ey. La densité
est représentée en échelle logarithmique : un pixel orange porte une mesure d’environ
1072. homéomorphisme f est une petite perturbation C° de I'identité (voir page 99).
De gauche a droite, N = 20000, 20001, 20002.

Ficure 1.3: Densité de la mesure invariante canonique ]/Lx de fy, obtenue comme limite
au sens de Cesaro des poussés en avant par fy de la mesure o,, avec x = (1/2,1/2). La
densité est représentée en échelle logarithmique : un pixel orange porte une mesure
d’environ 1072, Lhoméomorphisme f est une petite perturbation C! de l'identité (voir
la section 12.3). De gauche a droite, N = 2204 1,220 42 2204 3

Dans le chapitre 12 de cette these, on obtient un théoreme similaire pour les dif-

féomorphismes de classe C'. Ce résultat n’est malheureusement pas assez fort pour

expliquer le comportement des mesures ny pour tous les points x € T?; il se contente

de le décrire pour un ensemble générique de points (théoréme 12.1 page 251).

Theoréme VI. Pour un difféomorphisme de classe C! conservatif générique f €
Diff! (T2, Leb), pour un point générique x € T?, tout mesure y invariante par f, il existe
une sous-suite (fx, )x de discrétisations telles que

fny
Px -

k4>+oo

Par rapport au Théoréme V, on notera aussi que la suite (N ), dépend maintenant du
point x choisi. Toujours est-il que si on choisit un difféfomorphisme conservatif f, ainsi
qu’un point x € T2, et que 1'on calcule numériquement la mesure uniforme sur l'orbite
x, f(x),--, fT(x), avec T trés grand, alors le théoréme VI exprime qu’il se peut que I'on
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ne tombe pas du tout sur une mesure physique de f, mais plutdt sur une mesure inva-
riante par f quelconque. Ce phénomene peut s’observer en pratique, et de maniére tres
prononcée, comme le montrent les résultats de simulations numériques des mesures

prIN (voir la figure 1.3).

La preuve de ce résultat est assez longue et technique. Elle utilise de manieére cru-
ciale un énoncé linéaire (démontré a la fin de la partie 2) assez proche de celui utilisé
pour démontrer le théoreme III. Elle utilise aussi deux lemmes de fermeture, classiques
en dynamique C! générique : le lemme de connexion de pseudo-orbites de C. Bonatti et
S. Crovisier [BC04], et une amélioration du lemme de fermeture ergodique de F. Abde-
nur, C. Bonatti et S. Crovisier [ABC11].

1.2.3 Détection de dynamiques rares vis-a-vis de la mesure

Dans le chapitre 6 de cette these, on s’intéresse au calcul numérique de I'ensemble
de rotation d’un homéomorphisme conservatif générique du tore T2. On y tire parti
d’un phénomeéne illustré par le théoréme V : les discrétisations d’'un homéomorphisme
conservatif générique permettent de retrouver toutes les mesures invariantes de 1’ho-
méomorphisme de départ, et pas seulement sa mesure physique. Ainsi, on montre que
paradoxalement, les erreurs numériques sont utiles, voire nécessaires, pour calculer
I’ensemble de rotation d’'un homéomorphisme conservatif générique.

L'ensemble de rotation d’'un homéomorphisme du tore est un sous-ensemble com-
pact et convexe de R?, défini modulo Z? (voir la définition page 6.1.1). C’est une géné-
ralisation a la dimension 2 de la notion de nombre de rotation d’'un homéomorphisme
du cercle : cet ensemble décrit a quelle vitesse les orbites de points s’enroulent autour
du tore T?. Pour un homéomorphisme conservatif générique, ainsi que pour un dif-
féomorphisme de classe C! conservatif générique, il est d’intérieur non vide (voir les
propositions 6.2 et 10.13 pages 115 et 224).

Dans ce manuscrit, on définit ’ensemble de rotation observable : un vecteur v est dans
I’ensemble de rotation observable si, pour tout € > 0, il existe un ensemble de mesure de
Lebesgue positive de points x dont l'orbite a un vecteur de rotation e-proche de v (voir la
définition 6.9 page 117). Cette définition est censée représenter I’ensemble de rotation
que l'on obtiendrait en faisant des mesures exactes, mais en n’étant autorisé a faire
qu’un nombre fini d’expériences. On démontre alors le théoréme suivant (théoreme 6.23
page 122).

Theoréme VIIL. Pour un homéomorphisme conservatif générique f € Homeo(T?,Leb),
— Pensemble de rotation observable est réduit a un point;
— la limite supérieure des ensembles de rotation des discrétisations coincide avec l'en-
semble de rotation de f.

La seconde assertion du théoréme reste vraie pour un difféomorphisme conservatif
générique de classe C! si on considére les enveloppes convexes des ensembles de ro-
tation des discrétisations (voir le théoréeme 10.15 page 224). La premiére assertion est
aussi vraie des lors que la mesure de Lebesgue est ergodique pour f; on conjecture
que c’est le cas pour un difféomorphisme conservatif générique de classe C! (en tous
cas, il existe des ouverts de tels difféfomorphismes dans lesquels un difféeomorphisme
générique est ergodique, voir page 250).

Ce théoréeme nous donne un algorithme d’approximation de I’ensemble de rotation,
qui consiste a calculer les ensembles de rotations des discretisations. Sur la Figure 1.4,
on voit que l'algorithme « naturel » ne réussit a détecter qu’une toute petite partie de
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Ficure 1.4: Comparaison des méthodes de calcul de ’ensemble de rotation sur un méme
homéomorphisme f « quelconque » (voir sa définitionsection 6.4). A gauche, ensemble
obtenu a l’aide de 'algorithme naturel, qui consiste a calculer des vecteurs de rotation
d’orbites trés longues. A droite, ensemble obtenu en accumulant les ensembles de rota-
tion de discrétisation sur différentes grilles. Les temps de calcul sont similaires (environ
4h).

I’ensemble rotation, contrairement a l'algorithme utilisant des discrétisations (comme
prédit par le théoreme VII). Dans le chapitre 6, on verra sur d’autre exemples que cet
algorithme est assez efficace. C’est une application inattendue de la notion de discréti-
sation : la troncature, qui semble a priori étre un phénomene génant, peut en fait étre
mise a profit pour détecter certaines dynamiques ; paradoxalement, pour retrouver ces
dynamiques, il peut étre utile de faire volontairement des erreurs d’arrondi grossieéres.

Ce phénomene de stabilisation de chaque invariant dynamique de f par une in-
finité de discrétisations peut étre expliqué de la maniére suivante. Chaque invariant
dynamique de f que l'on étudie peut étre approché par une orbite périodique w (ou
une union finie de telles orbites). Génériquement, les points de w sont de type Liouville
par rapport a la suite de grilles, c’est-a-dire qu’il va exister une sous-suite d’ordres pour
lesquels chaque point de  est trés proche d’un point de la grille °, en tous cas assez
proche pour qu’a certains ordres N, si x € w, alors fy(xn) = (f(x))x : on aura une or-
bite discrétisée proche de l'orbite w. Pour un systeme pratique (qui ne vérifie donc pas
forcément les conclusions des théoréemes, qui supposent que les systemes sont géné-
riques), on peut espérer qu'un phénomene similaire ait lieu : si l'orbite w n’est pas pas
trop longue, on a de grandes chances pour qu’en considérant un nombre raisonnable de
discrétisations sur des grilles différentes, on retrouve l'orbite w sur au moins une de ces
grilles.

1.3 Guide de lecture

Le présent manuscrit est divisé en quatre parties. La partie 1 concerne les discrétisa-
tions d’homéomorphismes génériques. La partie 2 s’intéresse aux discrétisations d’ap-

9. Le «trés proche » étant ajusté a la maille de la grille et a des quantités telles que le module de
continuité de f.
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plications linéaires. Dans la partie 3, on étudie les discrétisations de difféomorphismes
de classe C! génériques. Enfin, la partie 4 fait office de conclusion.

Dans la partie 1, le chapitre 3 est un chapitre de notations et préliminaires, qui
serviront tout au long de la partie 1. Le lecteur pressé trouvera un index des notations
a la fin du mémoire. Les chapitres 4 et 5 sont largement indépendants, tandis que le
chapitre 6 utilise des notions développées dans les chapitres 4 et 5.

La partie 2 est complétement indépendante des parties 1 et 3. Plus précisément, le
chapitre 7 est en quelque sorte un chapitre introductif au chapitre 8, ou on trouvera
la plupart des résultats originaux de cette partie. Le chapitre 9, trés court, utilise le
formalisme mis en place dans les deux chapitres précédents.

Enfin, la partie 3 utilise les résultats de la partie 2. Dans le détail, le chapitre 10 est
indépendant du reste du manuscrit, mais on y comparera réguliérement les résultats
obtenus a ceux de la partie 1. Le chapitre 11 utilise de maniere cruciale I’analyse du
cas linéaire menée dans la partie 2. Pour finir, dans le chapitre 12, on combine des
techniques développées dans la partie 2 avec des énoncés du chapitre 10.

Enfin, la partie 4 fait office de conclusion. Dans le premier chapitre (chapitre 13),
on confronte suivant divers points de vue les résultats obtenus durant cette these. Le
second chapitre (chapitre 14), quant a lui, donne des exemples de questions ouvertes qui
me sembles pertinentes au sujet des discrétisations spatiales de systemes dynamiques.

Les chapitres 4 et 5 reprennent largement le contenu de [Guil5a]. Par rapport a cet
article, certains énoncés ont été améliorés, d’autres ont été ajoutés, quelques coquilles
ont été corrigées, des simulations supplémentaires ont été insérées. ..

Le chapitre 6 est lui quasiment identique a l'article [Guil5b].



CHAPITRE 2

HI1STORIQUE DU SUJET

2.1 (Tres) bref survol des résultats classiques de dynamique
générique

Avant de s’intéresser a la dynamique des discrétisations d’applications génériques, il
est bon de connaitre la dynamique réelle de ces applications (c’est-a-dire sans discrétisa-
tion de l’espace). De plus, les techniques développées pour comprendre la dynamiques
des homéomorphismes (ou difféomorphismes) génériques nous seront tres utiles pour
étudier leurs discrétisations.

L’'un des tout premiers résultats de dynamique générique est le théoréeme d’Oxtoby-
Ulam (datant de 1941, voir [OU41]), qui affirme qu'un homéomorphisme conservatif
générique d’une variété compacte de dimension au moins deux est ergodique. Depuis
lors, de nombreux travaux ont permis de bien comprendre la dynamique d’un homéo-
morphisme conservatif générique. On notera que cette dynamique n’est ni complete-
ment triviale, ni extrémement chaotique : par exemple, un homéomorphisme conser-
vatif générique est topologiquement mélangeant, mais pas fortement mélangeant (au
sens de la mesure). On notera aussi que les techniques mises en ceuvre pour démontrer
les énoncés sont variées et jolies : on a en particulier un théoréme de transfert des pro-
priétés ergodiques génériques de l'espace des automorphismes a celui des homéomor-
phismes conservatifs (d a S. Alpern, voir [Alp79]), ou une loi du 0-1 pour la généricité
des propriétés dynamiques ergodiques (due a E. Glasner et J. King, voir [GK98]). Le
lecteur intéressé pourra consulter le survol [Guil2]. Donnons quelques éléments de la
preuve de la généricité de la transitivité (sans doute 1’'une des plus simples) : considé-
rant un homéomorphisme conservatif f,

— on commence par casser la dynamique f en discrétisant l’espace et en appliquant
le théoreme de Lax (voir [Lax71] et le théoréme 5.5 page 76), qui affirme qu’un ho-
méomorphisme conservatif est arbitrairement proche d’une permutation cyclique
d’une grille de la variété ayant de bonnes propriétés;

— on reconstruit ensuite un homéomorphisme conservatif a partir de cette permu-
tation cyclique, a I’'aide d’un lemme de perturbation C° (voir la proposition 3.3
page 50).

Cette technique de preuve peut étre utilisée pour obtenir des résultats concernant les
discrétisations d’homéomorphismes conservatifs génériques; c’est ce que nous faisons
dans le chapitre 5.

25
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Le cas des homéomorphismes dissipatifs génériques n’a été étudié que beaucoup plus
tard. En fait, I’étude systématique menée par E. Akin, M. Hurley et J. Kennedy dans leur
survol [AHKO03] s’avere relativement décevante, dans la mesure ou les résultats vont
tous dans la méme direction et procedent d’'une méme heuristique : la dynamique d’un
homéomorphisme dissipatif générique « contient » simultanément tous les comporte-
ments sauvages que l’'on peut imaginer.

Ce survol ne concerne que la dynamique topologique des homéomorphismes; tres
récemment, F. Abdenur et M. Anderson se sont intéressés aux propriétés ergodiques des
homéomorphismes dissipatifs génériques : il s’agit de considérer le comportement des
sommes de Birkhoff le long de l'orbite d’un point typique pour la mesure de Lebesgue
(voir [AA13]). A cette fin, ils établissent un résultat technique qu’ils appellent le shred-
ding lemma, qui leur permet de montrer qu'un homéomorphisme générique est weird
(voir la définition 4.1 page 58). C’est ce lemme technique que nous utiliserons pour
établir la dynamique des discrétisations d’un homéomorphisme dissipatif générique.

L’étude des propriétés génériques des difféomorphismes de classe C! est un su-
jet treés actif — aussi bien dans le cadre conservatif que dans le cadre dissipatif —;
il est devenu de ce fait extrémement touffu. Dans le cas conservatif, I’absence d’ana-
logue C!' au lemme de reconstruction C° oblige a établir des lemmes de fermeture et
de connexion d’orbites. On a notamment le lemme de fermeture de C. Pugh [Pugé67],
qui implique qu’un C!-difféomorphisme conservatif générique posséde un ensemble
dense de points périodiques. On a aussi le lemme de connexion de pseudo-orbites de
C. Bonatti et S. Crovisier [BC04], qui permet de montrer qu'un C!'-difféomorphisme
conservatif générique est transitif. La question de savoir si I'ergodicité est générique ou
non parmi les C!-difféomorphismes conservatifs génériques reste toujours ouverte ; on
notera l’avancée récente d’A. Avila, S. Crovisier et A. Wilkinson [ACW14], qui établit
une dichotomie générique : pour un difféomorphisme conservatif générique f, soit tous
les exposants de Lyapunov de f sont nuls, soit f est Anosov et ergodique. Il existe bien
d’autres résultats sur ce sujet, on pourra notamment consulter le survol [Cro06b] de
S. Crovisier, ou l'introduction de [ACW14].

Dans le cadre dissipatif, les travaux sont guidés par un ensemble de conjectures
dues a J. Palis qui décrivent ce que pourrait étre la dynamique — d’un point de vue
topologique comme d’un point de vue ergodique — d’un difféomorphisme dissipatif
générique de classe C!. On pourra se faire une idée de la richesse de ce sujet en consul-
tant le séminaire Bourbaki [Bon03] ou le compte-rendu de conférence de I'ICM [Bon02]
de C. Bonatti, le mémoire d’habilitation [Cro13] ou le survol récent [Crol14] de S. Cro-
visier.

Si on la compare a la situation pour les difféomorphismes de classe C!, 1’étude des
propriétés dynamiques génériques des difféeomorphismes de classe C" avec r > 1 est
bloquée par I'absence d’un lemme de fermeture en topologie C" pour r > 1 (concernant
le lemme de fermeture en topologie C!, voir le livre [Arn98] de M.-C. Arnaud). A ma
connaissance, le seul cas dans lequel on ait des résultats autres qu’anecdotiques, outre le
cas trivial de la dimension 1, est celui des difféomorphismes conservatifs des surfaces;
on consultera a ce sujet 'article [FLC03] de J. Franks et P. Le Calvez. Notons qu’en régu-
larité assez grande (r > 4), le théoreme KAM implique que, sur toute surface compacte,
il existe des ouverts de difféfomorphismes conservatifs de classe C" (pour la topologie
C’) sur lesquels les éléments ne sont pas transitifs (voir par exemple la section 4 de
[Her98]).
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2.2 Survol général des travaux sur les discrétisations spatiales
de systemes dynamiques

Les premieres simulations numériques de systéemes dynamiques apparaissent deés
les années 1960, avec par exemple les célebres travaux de E. Lorenz et M. Hénon. Ce
dernier conduit entre autres une étude numérique poussée de ce qui est désormais ap-
pelé «application de Hénon conservative » (voir [Hén69]) :

folx,p) = (xcosa— (y—xz)sinoc , xsina + (v —xz)cosoc).

M. Hénon constate que les phénomeénes que 'on voit apparaitre numériquement (en
particulier, « des ilots elliptiques dans une mer chaotique ») sont en accord avec ce
qu’on sait déja de ces applications d’un point de vue théorique; il ne semble pas réelle-
ment se préoccuper d’éventuels effets indésirables induits par la troncature numérique.

Quelques années plus tard, P. Lax, dans [Lax71], fait remarquer que le fait de dis-
crétiser ces applications de Hénon conservatives fait perdre le caractere bijectif de la
dynamique. Pour pallier ce probléme, P. Lax démontre qu’un homéomorphisme conser-
vatif du tore est arbitrairement bien approché par des permutations des grilles « natu-
relles » sur le tore ; dans un certain sens, si la discrétisation d’'un homéomorphisme n’est
pas bijective, on sait qu’il existe au moins une application finie proche de cet homéo-
morphisme qui l'est. Ce théoréme est a ma connaissance le premier résultat théorique
concernant la dynamique des discrétisations; sa jolie preuve, essentiellement combina-
toire, repose sur le lemme des mariages (voir page 76). Une amélioration de ce résultat
est démontrée par S. Alpern [Alp78] : dans I’énoncé du théoreme de Lax (théoreme 5.5
page 76), on peut remplacer le terme « permutation » par le terme « permutation cy-
clique ». Ce résultat indique que la dynamique de tout homéomorphisme conservatif est
proche d’une application finie transitive. Dans les années 1990, dans [DKP93, KM97],
le théoreme de Lax est généralisé au cas des des applications préservant la mesure de
Lebesgue (sans hypotheése de bijectivité, ni de continuité); les auteurs y donnent aussi
des exemples d’obtention effective de la permutation approchante en dimension 1.

A partir de la fin des années 1970, des physiciens et des mathématiciens s’inté-
ressent aux discrétisations de systemes dynamiques particuliers, dont le comportement
est bien connu. Certains effectuent des simulations numériques, et évaluent la cohé-
rence entre les résultats de ces simulations et la vraie dynamique du systeme ; d’autres
encore étudient cette cohérence d’un point de vue théorique. Par exemple, en 1978, G.
Benettin ef al. s’intéressent a I'obtention numérique des mesures physiques de certains
difféomorphismes d’Anosov [BCG*78, BCG*79], dont 'application du chat d’Arnold et
quelques unes de ses perturbations.

En 1983, dans [GT83], J].-M. Gambaudo et C. Tresser montrent, a I’aide de simula-
tions numériques bien choisies, qu’il arrive que les puits d’'un homéomorphisme soient
difficiles a détecter sur les simulations, simplement parce que la taille de leurs bas-
sins peut étre minuscule, méme pour des homéomorphismes ayant une définition assez
simple.

Toujours dans les années 80, on voit apparaitre des travaux théoriques sur la dy-
namique des discrétisations de systémes dynamiques classiques, comme dans [HYG88],
ou les auteurs s’intéressent a la propriété de pistage pour certains parametres de I’appli-
cation de Hénon, dans [HYG87], ou ils étudient cette méme propriété pour 'application
logistique, dans [NY88], ou les auteurs s’intéressent a la propriété de pistage pour l'ap-
plication tente et I'application quadratique, ou encore dans [SB86], ou les auteurs étu-
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dient les caractéristiques des orbites des discrétisations de I'application tente, a savoir
leurs nombre, leurs longueurs et leurs répartition.

Aussi, dans [Bin92], 'lauteur étudie numériquement le nombre de cycles limites et la
longueur du plus grand de ces cycles pour les discrétisations de ’application logistique.

Dans [DKPV95, DSKP96, DKKP96, DP96, DKKP97], les auteurs remarquent que
certaines quantités relatives aux discrétisations de systéemes dynamiques de dimension
1, comme la proportion de points des discrétisations dans le bassin d’attraction du point
fixe 0, la distribution des longueurs des cycles, le temps de stabilisation, etc., sont simi-
laires aux mémes quantités que pour des applications aléatoires avec un centre attractif,
notamment lorsqu’on fait la moyenne de ces quantités sur plusieurs discrétisations suc-
cessives. Leur étude est principalement basée sur des hypotheses de convergence de
la dynamique des discrétisations vers celle de I'application de départ, vérifiées expéri-
mentalement sur des exemples bien choisis.

Enfin, dans I'un de ses tout derniers papiers [Lan98], O.E. Lanford étudie des si-
mulations de discrétisations de systemes dynamiques en dimension 1, en s’intéressant
entres autres aux périodes et aux tailles des bassins des orbites périodiques des dis-
crétisations. Il fait la remarque que pour retrouver la dynamique de l'application de
départ, il faudrait dans I’idéal adapter le temps jusqu’auquel on observe les itérés des
discrétisations aux tailles des grilles de ces discrétisations. Ce point de vue, bien que
trés intéressant, est tres différent de celui adopté dans ce manuscrit.

Tous ces résultats concernent des exemples tres particuliers de systemes ; ils seraient
difficilement généralisables a des classes plus larges de dynamiques.

L'idée de O.E. Lanford consistant a s’intéresser a la longueur des segments d’orbites
avait en fait déja été développée a la fin des années 1980 par A. Boyarsky. Dans [Boy86],
celui-ci explique de maniere heuristique pourquoi, en général, on retrouve sur les si-
mulations les mesures absolument continues par rapport a la mesure de Lebesgue. Ses
arguments sont basés sur le pistage de longs segments d’orbites ; le seul obstacle a 1’'ob-
tention d’une preuve rigoureuse est I’'absence d’uniformité dans le théoreme ergodique
de Birkhoff !

Dans [GB88], A. Boyarsky et P. Gora établissent le résultat suivant, qui concerne en-
core 'obtention de mesures absolument continues par rapport a la mesure de Lebesgue
a partir des discrétisations.

Theoreme VIII. Si f admet une unique mesure invariante absolument continue par rapport
a Lebesgue p, et si o > 0 est tel qu’il existe une sous-suite fy admettant un segment d’orbite
de longueur supérieure a aq, (ou q, est le cardinal de la grille Ey), si on pose vy la mesure
uniforme sur ce segment d’orbite, alors vy — .

Si le fait de posséder une mesure invariante absolument continue est établi pour
certaines classes assez larges de systemes (applications dilatantes du cercle de classe
Ccl+e difféomorphismes d’Anosov de classe Cl+a | .), I'existence d’un segment d’orbite
de longueur proportionnelle a celle de la grille semble n’étre presque jamais vérifiée
(par exemple, elle n’est pas vraie pour une application dilatante générique du cercle,
simplement parce que le degré de récurrence est nul). Malgré cela, si on met de coté
le théoreme de Lax, ce théoreme constitue I'un des tout premiers résultats théoriques
concernant les discrétisations de systémes dynamiques.

1. De fait, I'intuition de A. Boyarski se révele correcte pour un homéomorphisme uniquement ergo-
dique (proposition IX de T. Miernowski), mais faux dans des situations plus générales (théoréme V pour
les homéorphismes conservatifs génériques, et théoréme VI pour les difféomorphismes conservatifs C!-
génériques).
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Parallelement, des recherches sont effectuées par des chercheurs soviétiques, no-
tamment M. Blank dans [Bla84, Bla86, Bla89, Bla94], qui s’intéresse entre autres a la
question suivante : comment retrouver sur les discrétisations les orbites périodiques du
systeme dynamique de départ, aussi bien attractives que répulsives ? Il présente le phé-
nomene de multiplication de la période : sur les discrétisations, il peut apparaitre une
orbite dont la longueur est un multiple non trivial de l'orbite réelle qu’elle est censée
représenter.

Dans les années 90 un groupe de chercheurs comprenant entre autres P. Diamond,
P. Kloeden, V. Kozyakin, J. Mustard et A. Pokrovskii publie toute une série d’articles
sur la détection de propriétés dynamiques a partir des discrétisations. Par exemple,
en 1993, dans [DK93], les auteurs font remarquer que tout attracteur est détecté par
les discrétisations. L’étude des discrétisations amene les auteurs a définir quelques va-
riantes de propriétés dynamiques stables, adaptées a ’étude des discrétisations. Par
exemple, dans [DKP94], ils définissent une notion de transitivité par chaines adaptée
aux applications finies, la propriété de « récurrence faible par chaines ». Ils établissent
ensuite bon nombre de propriétés de manipulation de cette notion; ils vérifient notam-
ment qu’elle est stable par passage aux discrétisations. Dans le méme ordre d’idées,
dans [DKKP95a, DKKP95b], les auteurs définissent ce qu’ils nomment les applica-
tions semi-hyperboliques (qui incluent les applications hyperboliques); ils établissent
ensuite que applications semi-hyperboliques possedent la propriété de pistage, ainsi
que divers résultats tels que la stabilité structurelle de la semi-hyperbolicité ou bien la
semi-continuité de 'entropie. Enfin, les auteurs définissent ce qu’est le centre minimal
d’attraction de Birkhoff, un ensemble comprenant I’ensemble non errant [DKP96]; de par
sa définition, cet ensemble est stabilisé par passage aux discrétisations.

Ces travaux ont le mérite de démontrer formellement que certaines propriétés dy-
namiques peuvent étre détectés sur des discrétisations spatiales. On notera cependant
qu’ils ne concernent que des propriétés qui sont par définition robustes (existence d’or-
bites attractives, récurrence faible par chaines, etc.), et donc passent naturellement aux
discrétisations.

Un des exemples les plus simples de systemes dynamiques chaotiques est celui des
automorphismes d’Anosov linéaires du tore T?. En 1992, F. Dyson et H. Falk [DF92]
font une étude théorique assez compleéte de la période globale des discrétisations de
;) En particulier, la dynamique des discrétisations
est completement différente de celle de 'automorphisme d’Anosov linéaire (voir le dé-
but de cette introduction, page 16). Ce travail est repris et généralisé a tous les auto-
morphismes d’Anosov linaires de T? par E. Ghys dans [Ghy94]. Ce dernier note que la
période des discrétisations est tres faible comparativement a 1’'ordre d’une application
aléatoire sur un ensemble ayant le méme nombre d’éléments que la grille; il attribue ce
phénomene aux tres fortes propriétés arithmétiques des automorphismes linéaires, ce
qui peut laisser penser qu’il est en un certain sens exceptionnel. Cela ’amene a proposer
d’étudier le comportement des discrétisations d’homéomorphismes génériques.

Cette question a été résolue en partie par T. Miernowski dans le cas des homéomor-
phismes génériques du cercle (voir [Mie06] et [Mie05]). Nous survolerons ces résultats
intéressants dans la section 2.3. Dans [Mie06], T. Miernowski établit aussi un théoreme
de convergence de la dynamique des discrétisations vers celle de I'application de départ
d’un point de vue ergodique, sous I’hypothese cependant assez restrictive que I’homéo-
morphisme considéré est uniquement ergodique :

I'application du chat d’Arnold (1



30 Chapitre 2. Historique du sujet

Proposition IX. Soit f : M — M un homéomorphisme ayant une unique mesure de probabi-
lité f-invariante u. Pour tout N € N, soit yn un cycle périodique de la N-iéme discrétisation
fn de f. Soit vy la mesure de probabilité uniforme sur le cycle yN. Alors on a la convergence
faible vy — p quand N tend vers l'infini, indépendamment du choix de chaque cycle yy.

Cette convergence de la dynamique discrete vers la dynamique continue est a nou-
veau mise en valeur dans le cas des homéomorphismes conservatifs génériques du tore
par le théoreme 2.2.2 de [Mie05] (que nous avons déja rencontré, au début de cette
introduction, voir le théoréme I) : Pour un homéomorphisme conservatif générique, il
existe une sous-suite de discrétisations de qui sont des permutations des grilles. L'au-
teur conjecture néanmoins que ce phénomene n’est plus typique dans le cas des difféo-
morphismes hyperboliques génériques du tore de classe C’, r > 1 : selon lui, le compor-
tement des discrétisations de telles applications devrait se rapprocher de celui d’une
application aléatoire d'un ensemble ayant le méme nombre d’éléments que la grille de
discrétisation.

La question du comportement des discrétisations d’un systéme générique a aussi été
abordée par P.P. Flockermann dans sa these [Flo02] sous la direction de O.E. Lanford.
P.P. Flockermann s’intéresse aux applications dilatantes du cercle de régularité au moins
C?; il montre principalement qu’en temps fini, les discrétisations de telles applications
se comportent de la méme maniere que des perturbations aléatoires (voir la section 2.4).
Ces résultats, bien qu’a mon avis intéressants et non triviaux, ne concernent que le
comportement des discrétisations en temps fini et ne disent rien de la dynamique des
discrétisations.

I1 existe plusieurs autres point de vues sur la modélisation des simulations numé-
riques. On peut par exemple se demander si, étant données une famille d’applications
et une propriété dynamique, une machine peut décider en temps fini si un élément de
cette famille vérifie cette propriété. Par exemple, dans [AMO04], A. Arbieto et C. Matheus
montrent que les propriétés « avoir des exposants de Lyapunov positifs » et « posséder
une mesure SRB » sont indécidables parmi la famille quadratique et la famille d’appli-
cations de Hénon, et que la propriété « étre d’entropie topologique strictement positive »
est décidable parmi la famille quadratique.

Une étude concernant la modélisation d’une discrétisation d’'un homéomorphisme
par une application multivaluée a été faite dans [LP11] (voir aussi [Mro96] et [DKP96)).
On y trouve une discussion trés intéressante sur le passage du continu au discret : a
priori, on ne peut retrouver les propriétés du systéme initial a partir d’'un nombre fini
de discrétisations que lorsque ces propriétés sont robustes. Cela ameéne les auteurs a
définir ce qu’est une propriété a résolution finie : en particulier ce sont des propriétés
dynamiques qui peuvent étre vérifiables en temps fini par des méthodes calculatoires.

Pour un point de vue différent sur I’histoire des discrétisations, voir le court survol
de J. Buzzi [Buzl5], ou le survol plus complet [GHR12] de S. Galatolo, M. Hoyrup et
C. Rojas.

Dans un tout autre registre, les discrétisations d’applications linéaires ont déja été
étudiées, en vue d’applications au traitement de I'image. Le but est par exemple de ré-
pondre a la question suivante : comment effectuer une rotation d’une image numérique
sans trop diminuer sa qualité ? On veut en particulier estimer la perte d’information
causée par la non bijectivité des discrétisations de rotations, ou bien essayer d’éviter des
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phénomenes d’aliasing (l’apparition de résonances entre un motif régulier sur I'image
et la grille de I'image elle-méme). Les travaux existants se concentrent principalement
sur 1’étude des itérations de discrétisations d’applications linéaires en temps court; en
particulier ils s’intéressent au comportent local des images de Z? par ces discrétisations.
De plus, les applications linéaires considérées sont systématiquement supposées a coef-
ficients rationnels. On pourra se faire une idée du sujet en consultant les theses [Nou06]
et [Thil0] (voir aussi page 140 pour une bibliographie plus détaillée).

2.3 Travaux de T. Miernowski sur les discrétisations
d’homéomorphismes du cercle

Dans cette sous-section, nous donnons les principaux résultats concernant la dy-
namique des discrétisations uniformes d’homéomorphismes génériques du cercle R/Z,
obtenus par de T. Miernowski dans [Mie06]. Par « uniforme », on entend que ces discré-
tisations sont prises selon les grilles Exy = {i/N |0 <i <N -1}.

La préservation de l'ordre cyclique sur le cercle implique que si f est un homéo-
morphisme croissant, alors les orbites périodiques d’une discrétisation fy ont toutes la
méme longueur, que l'on note gy ; c’est sur cette quantité que nous nous concentrons
principalement. Il existe alors un entier py, qui est tel que si f est un relevé de f a R,
et fy une discrétisation de f sur la grille uniforme Z/N, alors pour t tout point x € Z/N
dont le projeté sur S! est dans une orbite périodique de fy, on a N N(X) =% = pN- On
montre alors tres facilement que la fraction py/gqN converge vers le nombre de rotation

p(f) de f.

L'exemple le plus simple d’homéomorphisme du cercle est celui de la rotation (on
a méme de célebres énoncés de conjugaison a une rotation dans le cas irrationnel, voir
par exemple [Her79]). T. Miernowski fait remarquer que la discrétisation d’une rotation
est elle-méme une rotation, en particulier qu’elle est bijective. Si on note ry le nombre
de cycles périodiques de la rotation d’angle «, on a bien str N = rygy : la dynamique
de fy est donc completement déterminée par ce nombre ry. Dans le cas ou « € R\ Q,
le comportement de ry se déduit facilement d’un résultat connu de comptage de points
rationnels dans une région du plan (voir par exemple [Wat53], voir aussi [DKKP96]);
on obtient alors :
. Card{N <M|ry=k} 6
lim = .
M—+o0 M T2k?
La proposition 3.2 de [Mie06] étend ce résultat au cas rationnel. Avec ces résultats, on
peut en déduire que la longueur gy des orbites périodiques converge au sens de Cesaro.

Proposition X. Si a« € R\ Q, alors

1 v 3
5 24~ N3,
i=1

Si en revanche a = % € Q, avec p et q premiers entre eux, on a deux cas :

L =L
2 2c
N N% iz (—) si q impair,
1Z 9° == T
. gi ~ c=1 r=1
NS ¢ 1 o) N(g-12q+ )
i=1 q- Q(r q-1)“(q+ . .
N e 2 ts p @(q/2) siq pair.



32 Chapitre 2. Historique du sujet

Par conséquent, en un certain sens, on a une convergence de la dynamique des dis-
crétisations au sens de Cesaro. Ce phénomene est completement opposé a celui ap-
paraissant dans la cas des homéomorphismes conservatifs génériques, ou méme si on
essaie de moyenner sur les discrétisations successives, la dynamique combinatoire des
discrétisations continue a étre fortement erratique (voir le théoreme XXXII page 302).

T. Miernowski s’intéresse ensuite au cas des homéomorphismes génériques du
cercle. Le résultat décrivant le comportement de la longueur des orbites périodiques
des discrétisations est le suivant.

Proposition XI (Miernowski). Un homéomorphisme croissant générique f du cercle posséde
un point périodique stable. En particulier, son nombre de rotation est rationnel, noté p(f) =
p/q. Dans ce cas, il existe un entier Ny € N tel que pour tout N > Ny, on a py =p et qn = 4.

Ce résultat facile est quelque peu décevant : le comportement dynamique des discré-
tisations est le méme pour toutes les discrétisations assez fines, et découle en réalité du
fait que la dynamique de ’homéomorphisme de départ est une dynamique de puits (ou
de Morse-Smale). C’est pourquoi on cherche a éviter ce type de dynamiques : T. Mier-
nowski étudie ensuite le cas plus difficile des dynamiques génériques parmi celles qui
ont un nombre de rotation rationnel mais aucune orbite attractive, ou bien celles ayant
un nombre de rotation irrationnel.

Dans le premier cas, T. Miernowski montre le théoréme suivant.

Theoréme XII (Miernowski). Dans lensemble des homéomorphismes semi-stables? de
nombre de rotation p/q, il existe un ouvert dense d’homéomorphismes pour lesquels il existe
une sous-suite (Ny)ren de discrétisations vérifiant qy, (f) = g.

Comme on peut I'imaginer, la preuve de ce résultat utilise de maniere cruciale
l'ordre naturel sur le cercle.

Dans le cas du nombre de rotation irrationnel, T. Miernowski propose deux ap-
proches. La premiere concerne les difféomorphismes génériques.

Theoreme XIII (Miernowski). Soit W : N — R, une fonction croissante tendant vers +oo en
+00. Soit r € NU {00, w} (en particulier, on peut avoir r = 0). Alors pour un difféomorphisme
irrationnel de classe C" générique f, on a

‘m an(f) _
R S

Autrement dit, la suite qn(f) tend vers +oo0, mais possede une sous-suite qui le fait
arbitrairement lentement. La preuve de ce résultat est assez jolie, car elle repose es-
sentiellement sur I’étude menée dans le cas semi-stable et sur I’approximation de tout
difféomorphisme irrationnel par des difféomorphismes rationnels semi-stables.

Dans la seconde approche, T. Miernowski s’intéresse au cas des difféomorphismes
prévalents. Le résultat obtenu est alors bien différent de ce qui se passe pour des difféo-
morphismes génériques : la suite gy (f) tend vers +oco presque aussi vite que VN.

Theoreme XIV (Miernowski). Soit f un difféomorphisme prévalent parmi les difféeomor-
phismes irrationnels de classe C", 3 < r < w. Alors pour tout € > 0, il existe K > 0 tel que
qN(f) > KNl/(2+s)_

2. Clest-a-dire que le relevé de f7 a R est soit toujours supérieur a la translation de vecteur p, soit
toujours inférieur a la translation de vecteur p.
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La preuve de ce théoréme est principalement basée sur un théoreme classique de
dynamique prévalente sur le cercle, a savoir le théoreme de conjugaison différentiable
a une rotation, da a M. Herman (voir [Her77]).

2.4 Travaux de P.P. Flockermann et O.E. Lanford sur les
discrétisations d’applications dilatantes génériques du
cercle

Dans sa thése [Flo02], P.P. Flockermann étudie le comportement des discrétisations 3

des applications dilatantes du cercle de classe (au moins) C?. Outre des études numé-
riques assez poussées, P.P. Flockermann y démontre deux résultats principaux ; ceux-ci
expriment qu’en temps k fixé et sous des hypotheses d’indépendance linéaire des dé-
rivées, l'opération de discrétisation d’une application dilatante du cercle typique agit
essentiellement comme une perturbation aléatoire.

Tout d’abord, on peut faire des statistiques sur les erreurs d’arrondi faites a chaque
itération : pour x € Ey;, on note ¢ (x,N) = N(ka(x) — f( Nk_l(x))) I’erreur normalisée faite
a la k-iéme itération ; a priori, cette erreur est comprise entre —1/2 et 1/2. Le théoréme
que démontre P.P. Flockermann est alors le suivant (théoreme 9 de [Flo02]).

Theoréme XV (Flockermann). Soit f une application dilatante de degré 2 de S' telle que
— soit f est générique parmi les applications dilatantes de classe C', r > 2;
— soit f est analytique, mais différente de x — 2x.
Soit aussi ® : N — R une fonction telle que 1/N < 9(N) < 1. Alors il existe un ensemble
dénombrable D C 8! tel que pour tout xy, € S' \ D, et pour tout ky € N, les distributions des
ko-uplets (Ek(x, N))k<k0 € [-1/2,1/2]%, pour x € ExyN[xg = (N), xg + 3(N)], convergent vers

la distribution uniforme sur [-1/2,1/2].

Autrement dit, si on se place a une échelle d’espace ¥(N) intermédiaire, ou « mé-
soscopique », autour d’un point x, générique, alors les erreurs d’arrondi que l'on fait
a chaque itération lorsqu’on discrétise sont indépendantes du temps et suivent une
loi uniforme sur [-1/2,1/2]. La preuve de ce résultat se décompose en 2 parties in-
dépendantes. La premiére est un résultat conduisant aux conclusions du théoreme sous
des hypotheses d’indépendance des dérivées successives des applications dilatantes. On
montre ensuite que ces hypotheses sont vérifiées par une application dilatante C" géné-
rique, ou analytique différente de x — 2x.

A l'aide du formalisme des ensembles modéle, nous donnerons une généralisation
de ce théoréme au cas de la dimension quelconque dans le chapitre 9 du présent ma-
nuscrit (voir la proposition 9.1).

Dans un second temps, P.P. Flockermann étudie la répartition de Card(fl\}k(x)), avec
k fixé et pour un grand nombre de points x dans une petite région de S'. Pour plus
de simplicité, nous n’énoncons le théoreme que dans le cas ou le temps k vaut 1; on
imaginera sans peine un énoncé en toute généralité (cet énoncé est néanmoins assez
délicat a formuler, voir le théoreme 12 et le corollaire 3 de [Flo02]).

Theoréme XVI (Flockermann). Soit f une application dilatante de degré 2 de S, générique
parmi les applications dilatantes de classe C, r > 2. Soit aussi S : N — R une fonction telle

3. Toujours par rapport aux grilles Ex = [0,1[NZ/N.
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que 1/N < 3(N) < 1. Alors il existe un ensemble dénombrable D C S! tel que pour tout
xo € S\ D, si on note {y1,v,} = f 1 (xg), lorsque N tend vers +co,
— la proportion de points x € Ex N [xg—Y(N), xo+O(N)] qui n'ont pas d’image réciproque

par fy tend vers
1 1
(1_f’(y1))(1_f’(yz))'

— la proportion de points x € Ex N [xg — Y(N), xg + O(N)] qui ont exactement une image
réciproque par fy tend vers

[ 7o) 7o 7o )
fo) f'@) o)\ f@))
— la proportion de points x € Ex N [xg—9(N), xo +d(N)] qui ont deux images réciproques

par fy tend vers
1 1

') f(v2)

Ce théoréme exprime lui aussi qu’en temps court, l'opération de discrétisation se
comporte comme une perturbation aléatoire : si on se donne une dilatation /) de R de
rapport A > 1, alors la proportion de points dans I'image de la discrétisation de h, vaut
1/)\. Or, le graphe de f au voisinage de f~'(x;) posséde exactement deux branches; la
premiere est bien approchée par la dilatation hy/(y,) et la seconde par la dilatation h ().
Si la famille (1, f’(y1), f'(v2)) est libre, alors les événements « posséder une image réci-
proque par fy dans la premiere branche » et « posséder une image réciproque par fy
dans la seconde branche » deviennent indépendants, ce qui permet d’obtenir le théo-
reme. Celui-ci implique le résultat dynamique suivant.

Theoreme XVII (Flockermann, Lanford, non publié). Soit f une application dilatante de
degré 2 de S, générique parmi les applications dilatantes de classe C', r > 2. Alors le degré
de récurrence de f est égal a 0.

Nous démontrerons des résultats similaires dans la section 11.5 du présent manus-
crit. On y énoncera notemment un résultat reliant le comportemnt local au comporte-
ment global d’une application dilatante générique (théoréeme 11.19).
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Introduction

In this part, we consider the dynamics of discretizations of generic homeomor-
phisms, i.e. we tackle the following question:

Question. Which dynamical properties of a generic homeomorphism f can be read on the
dynamics of its discretizations (fn)Ns>0?

We will establish properties for both dissipative, i.e. arbitrary homeomorphisms of
X, and conservative homeomorphisms, i.e. homeomorphisms of X that preserve a given
good probability measure. In this part, our results concern generic homeomorphisms
of a compact manifold (with boundary) of dimension n > 2.

We will prove many results, concerning various aspects of the dynamics of the dis-
cretizations, adapting some classical tools of study of the generic dynamics of home-
omorphisms. Morally, our results express that in the dissipative generic case, the dy-
namics of the discretizations tends to the “physical” dynamics of the initial homeomor-
phism % whereas in the conservative generic setting, the dynamics of the discretizations
accumulates on all the possible dynamics of the initial homeomorphism, and moreover
the physical dynamics cannot be detected on discretizations. In the rest of this intro-
duction, we try to organize our results according to some “lessons”:

1) The dynamics of discretizations of a generic dissipative homeomorphism tends to
the “physical dynamics” of the initial homeomorphism.

We first study properties of discretizations of generic dissipative homeomorphisms °.

The ergodic behaviour of such a generic homeomorphism is deduced from the shred-
ding lemma of F. Abdenur and M. Andersson [AA13] (Lemma 4.2), which implies that a
generic homeomorphism has a “attractor dynamics” (see Corollaries 4.5 and 4.8):

Theorem A. For a generic homeomorphism f, the closure Ay of the set of Lyapunov-stable
periodic points is a Cantor set of dimension 0 which attracts almost every point of X. More-

over, the measure }/l>f( (see Definition 3.10 page 52) is well defined, atomless and is supported
b}) A().

This behaviour easily transmits to discretizations, for example every attractor of the
homeomorphism can be seen on all the fine enough discretizations (Proposition 4.13).

Theorem B. For a generic homeomorphism f, the recurrent set of its discretization Q(fy)
tends to Ag in the following weak sense: for all € > 0, there exists Ng € N such that for

4. That is, the dynamics that occur for almost every point with respect to Lebesgue measure.
5. Without assumption of preservation of a given measure.

39
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all N > Ny, there exists a subset Ey of EN, stabilized by fy, such that, noting ﬁ(fN) the

corresponding recurrent set, we have %ﬁgﬁ; >1—eand dyg(Ag, Q(fN)) < &

Moreover, the Cesaro limit of the pushforwards of the uniform measures on the
grid by the discretizations tend to the Cesaro limit of the pushforwards of A by the
homeomorphism. Indeed, we will prove the following (Theorem 4.16).

1 -1

. . m 1
Theorem C. For a generic homeomorphism f, the measures .-} " f! A converge to a mea-

sure that we denote by }4{( (see Definition 3.10).

Concerning the discretizations, for a generic homeomorphism f, the measures }A{(N tend to

f

the measure p, when N goes to infinity, where u{(N is the measure on the periodic orbits of fn
such that the global measure of each periodic orbit is proportional to the size of its basin of
attraction (see Definition 3.10).

Moreover, there is shadowing of the dynamics of f by that of its discretizations fy
(Corollary 4.12).

Theorem D. For a generic homeomorphism f, for all € > 0 and all & > 0, there is a full
measure dense open subset O of X such that for all x € O, all 8> 0 and all N large enough,
the orbit of xn under fy d-shadows ® the orbit of x under f.

Thus, it is possible to detect on discretizations the “physical” dynamics of a generic
dissipative homeomorphism, that is the dynamics that can be seen by almost every
point of X. This dynamics is mainly characterized by the position of the attractors and
of the corresponding basins of attraction.

2) The dynamics of a single discretization of a generic conservative homeomorphism
cannot be inferred from the dynamics of the initial homeomorphism.

We then turn to the study of the conservative case. The starting point of our study
is a question from E. Ghys (see [Ghy94, Section 6]): for a generic conservative homeo-
morphism of the torus, what is the asymptotical behaviour of the sequence of degrees
of recurrence of f\? A partial answer to this question was obtained by T. Miernowski in
the second chapter of his thesis (see Corollary 5.9).

Theorem E (Miernowski). For a generic conservative homeomorphism?’ f, there are in-
finitely many integers N such that the discretization fy is a cyclic permutation.

To prove this theorem, T. Miernowski combines a genericity argument with a quite
classical technique in generic dynamics: Lax’s theorem [Lax71] (Theorem 5.5), which
states that any conservative homeomorphism can be approximated by cyclic permuta-
tions of the discretization grids. In fact this proof can be generalized to obtain many
results about discretizations. We will establish some variants of Lax theorem; each
of them, combined with a genericity argument, leads to a result for discretizations of
generic homeomorphisms. For instance, we will prove the following (Corollary 5.36).

Theorem F. For a generic conservative homeomorphism f, there exists infinitely many inte-
gers N such that the cardinality of ()(fx) is equal to the smallest period of periodic points of

f.

6. That is, for all k € N, d(ff (xn), f¥(x)) <.
7. That is, there is a Gy dense subset of the set of conservative homeomorphisms of the torus on which
the conclusion of the theorem holds.
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Note that the combination of these two theorems answer E. Ghys’s question: for a
generic homeomorphism f, the sequence of the degrees of recurrence of fy accumulates
on both 0 and 1; we can even show that it accumulates on the whole segment [0,1]
(Corollary 5.24).

Another variation of Lax’s theorem leads to a theorem that throws light on the be-
haviour of the discretizations on their recurrent set (Corollary 5.22).

Theorem G. For a generic conservative homeomorphism f and for all M € N, there are
infinitely many integers N such that f\ is a permutation of EN having at least M periodic
orbits.

To summarize, generically, infinitely many discretizations are cyclic permutations,
but also infinitely many discretizations are highly non-injective or else permutations
with many cycles. In particular, it implies that for all x € X, there exists infinitely many
integers N such that the orbit of x5 under fy does not shadow the orbit of x under f:
in this sense, generically, the dynamics of discretizations does not reflect that of the
homeomorphism. Note that this behaviour is in the opposite of the dissipative case,
here the individual behaviour of discretizations does not indicate anything about the
actual dynamics of the homeomorphism.

3) A dynamical property of a generic conservative homeomorphism cannot be deduced
from the frequency it appears on discretizations either.

The previous theorems express that the dynamics of a single discretization does not
reflect the actual dynamics of the homeomorphism. However, we might reasonably ex-
pect that the properties of the homeomorphism are transmitted to many discretizations.
More precisely, we may hope that given a property (P) about discretizations, if there are
many integers N such that the discretization fy satisfies (P), then the homeomorphism
satisfies a similar property. It is not so, for instance, we will prove the following result
(Theorem 5.31).

Theorem H. For a generic conservative homeomorphism f, when M goes to infinity, the
proportion of integers N between 1 and M such that fy is a cyclic permutation accumulates
on both 0 and 1.

In fact, for all the properties considered in the previous paragraph, the frequency
with which they appear on discretizations of orders smaller than M accumulates on
both 0 and 1 when M goes to infinity. Remark that these result imply that, even by
looking at the frequency at which some properties occur, the discretizations of a generic
conservative homeomorphism do not behave like typical random maps, as for a random
map of a set with g elements, the average number of periodic orbits is asymptotically
log g (see for example [Bol01, XIV.5]).

4) Many dynamical properties of a generic conservative homeomorphism can be de-
tected by looking at the dynamics of all the discretizations.

We have observed that we cannot detect the dynamics of a generic homeomorphism
when looking at the dynamics of its discretizations, or even at the frequency with which
some dynamics appears on discretizations. Nevertheless, the dynamical properties of
a generic conservative homeomorphism can be deduced from the analogous dynamical
properties of all the discretizations. More precisely, we have a shadowing property of
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the dynamical properties of the homeomorphism: for each dynamical property of the
homeomorphism, its discrete analogue can be seen on an infinite number of discretiza-
tions. It is worthwhile to note the intriguing fact that this shadowing property occurs
for all the dynamical properties of a generic conservative homeomorphism, indepen-
dently of the measure A, while for a generic dissipative homeomorphism the dynam-
ics of the discretizations converges to the “physical” dynamics of the homeomorphism
(that is, the dynamics depending of A).

This idea of convergence of the dynamics when looking at arbitrary large precisions
can be related to the work of P. Diamond et al (see page 31). For instance, we will prove
that the periodic orbits of a homeomorphism can be detected by looking at the periodic
orbits of its discretizations (Theorem 5.36).

Theorem 1. For a generic homeomorphism f, for every e > 0 and every periodic orbit of f,
this periodic orbit is e-shadowed by an infinite number of periodic orbits of the same period
of the discretizations

We will also prove a theorem in the same vein for invariant measures (respectively
invariant compact sets), which expresses that the set of invariant measures (respectively
compact sets) of the homeomorphism can be deduced from the sets of invariant mea-
sures (respectively invariant sets) of its discretizations. More precisely, we will prove
the following result (Theorems 5.45 and 5.51, see Theorems 5.49 and 5.55 for the com-
pact versions).

Theorem J. For a generic conservative homeomorphism f and for every convex closed set (for
Hausdorff topology) M of f-invariant Borel probability measures there exists an increasing
sequence of integers Ny such that the set of fy -invariant probability measures tends to M
(for Hausdorff topology).

Moreover, if M is reduced to a single measure, then fy, can be supposed to bear a unique
invariant measure.

In the third chapter of this part, we will present an application of the notion of
discretization to the practical problem of computing numerically the rotation set of
a torus homeomorphism. In particular, we will prove a theorem which expresses the
shadowing property of the rotation set of a generic conservative torus homeomorphism
by the rotation sets of its discretizations (Corollary 6.23).

Theorem K. If f is a generic conservative homeomorphism, then there exists a subsequence
I, of discretizations such that pn. (F) tends to p(F) for Hausdorff topology (where F is a lift
of f to R?).

This will give us a convenient way to compute the rotation set in practice, as we
will prove that if we compute the rotation set corresponding to a starting point x € T2
without roundoff error, then for almost every x € T2, the obtained rotation set is reduced
to a single vector, that is the mean rotation vector of f (Proposition 6.19).

Theorem L. Let f be a generic conservative homeomorphism of the torus T? and F a lift of
f to R%. Then for almost every % € R?, the corresponding rotation set

o= () {75

MeNm>M

is reduced to the mean rotation vector with respect to the measure \.
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This shows that if we try to compute the rotation set by calculating segments of or-
bits without making any roundoff error, we will only find the mean rotation vector of
the homeomorphism. In Chapter 6, we will introduce the notion of observable rotation
set, which expresses which rotation vectors can be found by looking at almost every pe-
riodic orbit. We will compute this set for some examples, in particular for both generic
conservative (that is, Theorem L) and dissipative (Proposition 6.15) homeomorphisms.

5) The “physical dynamics” of a generic conservative homeomorphism plays no partic-
ular role for discretizations.

The heuristic idea underlying the concept of physical measure is that these mea-
sures are the invariant ones which can be detected “experimentally” (since many initial
conditions lead to these measures). Indeed, some experimental results on specific ex-
amples of dynamical systems show that they are actually the measures that are detected
in practice for these examples (see for example [BCG*78, BCG*79] or [Boy86, GB88]).
Moreover, if the dynamical system is uniquely ergodic, then the invariant measure ap-
pears naturally on discretizations (see [Mie06, Proposition 8.1] and Proposition 5.42).

According to this heuristic and these results, we could expect from physical mea-
sures to be the only invariant measures that can be detected on discretizations of generic
conservative homeomorphisms. This is not the case: for a generic conservative homeo-
morphism, there exists a unique physical measure, namely A (that follows directly from
the celebrated Oxtoby-Ulam’s theorem [OU41]). According to the previous theorem,
invariant measures of the discretizations accumulate on all the invariant measures of
the homeomorphism and not only on Lebesgue measure.

However, we could still hope to distinguish the physical measure from other invari-

ant measures. For this purpose, we define the canonical physical measure p{(N associated

to a discretization fy: it is the limit in the sense of Cesaro of the images of the uniform
measure on Ey by the iterates of fy: if Ay is the uniform measure on Ey;, then

5 1 m—1
N _ 1: - i
px = lim — Z(fN)*}‘N-

=0
This measure is supported by the recurrent set ()(fy); it is uniform on every periodic
orbit and the total weight of a periodic orbit is proportional to the size of its basin of
attraction. The following theorem expresses that these measures accumulate on the
whole set of f-invariant measures: physical measures cannot be distinguished from
other invariant measures on discretizations, at least for generic homeomorphisms (see
Theorems 5.51 and 5.53).

Theorem M. For a generic conservative homeomorphism f, the set of limit points of the

sequence (V{(N)NEN is the set of all f-invariant measures. Also, for every f-invariant measure
W, there exists a subsequence fy, of discretizations such that for every x € X, the sequence of

measures ® ]/L£Nk tends to p.
The same phenomenon appears for compact invariant subsets: the the recurrent

subsets of the discretizations fy accumulate on the whole set of invariant compact sub-
sets for f (Proposition 5.55).

8. Recall that by Definition 3.10, }/L,]:N is the Cesaro limit of the pushforwards of the Dirac measure 9y,
by the discretization fy.
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6) On the numerical experiments we performed, the dynamics of a dissipative home-
omorphism can be detected on discretizations, and a lot of different dynamical be-
haviours can be observed on discretizations of a conservative homeomorphism.

We will compare our theoretical results with the reality of numerical simulations.
Indeed, it is not clear that the behaviour predicted by our results can be observed on
computable discretizations of a homeomorphism defined by a simple formula. On the
one hand, all our results are valid “for generichomeomorphisms”; nothing indicates that
these results apply to actual examples of homeomorphisms defined by simple formulas.
On the other hand, results such as “there are infinitely many integers N such that the
discretization of order N...” provide no control over the integers N involved; they may
be so large that the associated discretizations are not computable in practice.

We first carried out simulations of dissipative homeomorphisms. The results of dis-
cretizations of a small perturbation of identity (in C° topology) may seem disappointing
at first sight: the trapping regions of the initial homeomorphisms cannot be detected,
and there is little difference with the conservative case. This behaviour is similar to
that highlighted by J.-M. Gambaudo and C. Tresser in [GT83] (see page 2.2). That is
why it seemed to us useful to test a homeomorphism which is C° close to the identity,
but whose basins are large enough. In this case the simulations point to a behaviour
that is very similar to that described by theoretical results, namely that the dynamics
converges to the dynamics of the initial homeomorphism. In fact, we have actually
observed behaviours as described by theorems only for examples of homeomorphisms
with a very small number of attractors.

For conservative homeomorphisms, our numerical simulations produce mixed re-
sults. From a quantitative viewpoint, the behaviour predicted by our theoretical result
cannot be observed on our numerical simulations. For example, we do not observe any
discretization whose degree of recurrence is equal to 1 (i.e. which is a permutation).
This is nothing but surprising: the events pointed out by the theorems are a priori very
rare. For instance, there is a very little proportion of bijective maps among maps from
a given finite set into itself. From a more qualitative viewpoint, the behaviour of the
simulations is quite in accordance with the predictions of the theoretical results. For
example, for a given conservative homeomorphism, the degree of recurrence of a dis-
cretization depends a lot on the size of the grid used for the discretization. Similarly,
the canonical invariant measure associated with a discretization of a homeomorphism
f does depend a lot on the size of the grid used for the discretization.

7) Discretizations can actually be very useful and efficient to compute some dynamical
invariants like the rotation set of a torus homeomorphism.

We have also performed numerical simulations of rotation sets. To obtain numeri-
cally an approximation of the observable rotation set, we have calculated rotation vec-
tors of long segments of orbits for a lot of starting points, these points being chosen
randomly fore some simulations and being all the points of a grid on the torus for other
simulations. For the numerical approximation of the asymptotic discretized rotation
set we chosed a fine enough grid on the torus and have calculated the rotation vectors
of periodic orbits of the discretization of the homeomorphism on this grid.

We made these simulations on an example where the rotation set is known to be
the square [0,1]%. It makes us sure of the shape of the rotation set we should obtain
numerically, however it limits a bit the “genericity” of the examples we can produce.
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In the dissipative case we made attractive the periodic points which realize the ver-
tex of the rotation set [0,1]%. It is obvious that these rotation vectors, which are realized
by attractive periodic points with basin of attraction of reasonable size, will be detected
by the simulations of both observable and asymptotic discretized rotation sets; that is
we observe in practice: we can recover quickly the rotation set in both cases.

In the conservative setting we observe the surprising behaviour predicted by the
theory: when we compute the rotation vectors of long segments of orbits we obtain
mainly rotation vectors which are quite close to the mean rotation vector, in particular
we do not recover the initial rotation set. More precisely, when we perform simulations
with less than one hour of calculation we only obtain rotation vectors close to the mean
rotation vector, and when we let three hours to the computer we only recover one vertex
of the rotation set [0,1]2. On the other hand, the rotation set is detected very quickly
by the convex hulls of discretized rotation sets (less than one second of calculation).
Moreover, when we calculate the union of the discretized rotation sets over several grids
to obtain a simulation of the asymptotic discretized rotation set, we obtain a set which
is quite close to [0,1]? for Hausdorff distance. As for theoretical results, this suggests
the following lesson:

When we compute segments of orbits with very good precision it is very difficult to recover
the rotation set. However, when we decrease the number of digits used in computations we
can obtain quickly a very good approximation of the rotation set. In fact, we have to adapt
the precision of the calculation to the number of orbits we can obtain numerically.

This phenomenon can be explained by the fact that each grid of the torus is stabi-
lized by the corresponding discretization of the homeomorphism. Thus, there exists
an infinite number of grids such that every periodic point of the homeomorphism is
shadowed by some periodic orbits of the discretizations on these grids.






CHAPTER 3

GRIDS, DISCRETIZATIONS, MEASURES

3.1 The manifold X and the measure \

The results stated in the introduction for the torus T" and the Lebesgue measure Leb
actually extend to any smooth connected manifold X with dimension n > 2, compact
and possibly with boundary, endowed with a Riemannian metric d. We fix once and for
all such a manifold X endowed with the metric d. In the general case, Lebesgue measure
on T" can be replaced by a good measure A on X:

Definition 3.1. A Borel probability measure A on X is called a good measure, or an
Oxtoby-Ulam measure, if it is non-atomic, it has total support (it is positive on every
non-empty open sets) and it is zero on the boundary of X.

These restrictions are supported by Oxtoby-Ulam theorem (Theorem 3.14). We fix
once and for all a good measure A on X.

Notation 3.2. We denote by Homeo(X) the set of homeomorphisms of X, endowed by
the metric d defined by:

d(f,8) = supd(f(x),g(x)).

xeX

We denote by Homeo(X, A) the subset of Homeo(X) made of the homeomorphisms that
preserve the measure A (i.e. for every Borel set A, A(f"1(A)) = A(A)), endowed with the
same metric d. Elements of Homeo(X) will be called dissipative homeomorphisms, and
elements of Homeo(X, A) conservative homeomorphisms.

3.2 Generic properties

All the functional spaces we will use are Baire spaces, i.e. the intersection of every
countable collection of dense open sets is dense. In particular, the topological spaces
Homeo(X) and Homeo(X, A) are Baire spaces. Indeed, we easily check that the map

5(f,8)=d(f,g)+d(f g™
defines a distance on Homeo(X) and Homeo(X, A\) which defines the same topology as
d, and is complete in Homeo(X) and Homeo(X, A) (see for example [Guil2, Appendice
A.1]).
We will sometimes abusively use the phrase “for a generic element of &, we have the
property (P)”. By that we will mean that “the property (P) is generic in &”, i.e. “there
exists Gy dense subset G of &, such that every f € G satisfy the property (P)”.

47
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3.3 (' extension of finite maps

The basic tool we will use to perturb a homeomorphism in the C° topology is the
finite map extension proposition. It asserts that if we have given a (conservative) home-
omorphism and a pseudo-orbit of this homeomorphism, we can perturb this homeo-
morphism such that this pseudo-orbit becomes a real orbit.

Proposition 3.3 (Finite map extension). Let E C X\ dX be a finite set and o : E — X\ dX be
an injective map. Then there exists an homeomorphism g € Homeo(X, \) such that g = o.
Moreover, if d(o,1dg) < 9, then the homeomorphism g can be chosen such that d(g,1dyx) < o.

The last condition ensures that if the finite map o is close to a given homeomorphism
g — in other words ¢ is a good approximation of g —, then the extension of this finite
map can be chosen close to the map g.

The idea of the proof is quite simple: it suffices to compose correctly homeomor-
phisms whose support’s size is smaller than € and which are central symmetries within
this support. We denote E = {x1,---,x,} and o(x;) = ;. For each i, we construct a se-
quence (zj)1<j<k such that z; = x;, y; = zx and d(zj,zj,1) < &/10. Composing k — 1 home-
omorphisms as above, such that each one sends z; on z;,;, we obtain a conservative
homeomorphism which sends x; on ;. Implementing these remarks is then essentially
technical and boring. A detailed proof can be found in [Guil 2, Section 2.2]. This propo-
sition is valid in the neighbourhood of the identity; to have a result concerning the
neighbourhood of any homeomorphism f it suffices to compose by the inverse of f.
The following corollary also includes the case where the map o is not injective (as a non
injective map is arbitrarily close to an injective one).

Corollary 3.4. Let E C X\ dX be a finite set, 6 : E — X\ dX, f € Homeo(X) (respectively f €
Homeo(X,\)) and 6 > 0. If d(f,0) < ¢, then there exists an homeomorphism g € Homeo(X)
(respectively Homeo(X, A)) such that d(gg,0) <0 and d(f,g) < e. Moreover, if o is injective,
we can suppose that gg = 0.

3.4 Discretization grids, discretizations of a homeomorphism

We now define a more general notion of discretization grid than in the introduction.
Depending on the case, some additional assumptions about these grids will be needed
(see also the next section).

Definition 3.5 (Discretization grids). A sequence of discretization grids on X is a sequence
(En)nen of discrete subsets of X\0dX, called grids, such that the mesh of these grids tends
to 0: for all € > 0, there exists Ny € N such that for all N > N, the grid Ey is e-dense !
We denote by gy the cardinality of Ey.

We fix once and for all a sequence (Ex)nen of discretization grids on X.
To each grid is associated a discretization map in the following way.

Definition 3.6 (Discretizations). Let Py be a projection of X on Ey (the projection of
xo € X on Ey is some y, € Eyy minimizing the distance d(x(,y) when y runs through Ey).
Such a projection is uniquely defined out of the set E{ consisting of the points x € X for
which there exists at least two points minimizing the distance between x and Ey. On
E\ the map Py is chosen arbitrarily (nevertheless measurably). For x € X we denote by

1. That is, for every point x € X there exists a point y € Ey such that d(x,y) <e.
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xn the discretization of order N of x, defined by xy = Py(x). For f € Homeo(X) we denote
by fn : Ex — En the discretization of order N of f, defined by fy = Py o f. We denote by
9\ be the set of homeomorphisms f such that f(Ey)NE} = 0.

If 0 : Ey — Ey and f € Homeo(X), we denote by dy(f, o) the distance between fg
and o, considered as maps from Ey into X.

Remark 3.7. We might wonder why the points of the discretization grids are supposed
to be inside X. The reason is simple: a homeomorphism f sends dX on JX. Putting
points of some grids on the edge could perturb the dynamics of discretizations fy. In
particular, it would introduce at least one orbit with length smaller than Card(Ex NdX).

Remark 3.8. As the exponential map is a local diffeomorphism, the sets Ey; are closed
and have empty interior for every N large enough. Subsequently, we will implicitly
suppose that the union (JyenEy is an F; with empty interior. It is not a limiting as-
sumption as we will focus only on the behaviour of the discretizations for N going to
+oo. It will allow us to restrict the study to the Gy dense set [\yony DN, Which is the set
of homeomorphisms whose N-th discretization is uniquely defined for all N € N.

3.5 Probability measures on X

In the sequel, we will study some ergodic properties of discretizations of f. Denote
by & the set of Borel probability measures on X endowed with the weak-star topology:
a sequence (V) men of P tends to v e P (denoted by v,, — v) if for every continuous
function ¢ : X - R,

lim (pdvm:j(pdv.
X X

m—-00

It is well known that under these conditions, the space 9 is metrizable and compact,
therefore separable (Prohorov, Banach-Alaoglu-Bourbaki theorem); we equip this space
with a distance dist which is compatible with this topology.

Let f € Homeo(X). For x € T?, we denote by pw(x) the set of limit points of the

sequence
1 n—1
{;zaﬂm}
k=0

It is a compact subset of the set .#/ of f-invariant Borel probability measures.

neN*

We will pay a particular attention to physical measures

Definition 3.9. A Borel probability measure p is called physical (sometimes called SRB,
see [YouO02]) for the map f if its basin of attraction has positive A\-measure, where the
basin of attraction of u for f is the set

1 M-1
m=0

of points whose Birkhoft’s limit coincides with p.

Heuristically, the basin of a measure is the set of points that can see the measure,
and physical measures are the ones that can be seen in practice.

To study ergodic properties of homeomorphisms and their discretizations, we define
natural invariant probability measures associated with these maps:
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Definition 3.10. For any non-empty open subset U of X, we denote by Ay the nor-
malized restriction of A on U, i.e. Ay = ﬁXIU’ We also denote by Ay y the uniform
probability measure on Exy N U.

For x € X we denote by }/li’m the uniform measure on the segment of orbit

X, f (%), f7 7 (x):
1 ~— _.
P‘i,m = E Zf*léx-
i=0

When the limit exists, we denote by pfz the Birkhoff limit of x by:
f

o= im

Similarly, for fy and x € X (recall that xy is the projection of x on the grid Ey):
f 1 m=1 _
Wom = - ;(fN)iéxN;
i=
in this case the Birkhoff limit is always well defined: it is the uniform measure on the
periodic orbit on which the positive orbit of x)y under fy falls:

N N

= lim
Kx e Wx,m»

We also define a similar quantity for sets of points. We set

f 1 m—1 '
”U,m = a Zotﬁ(f }‘Ux
1=

and when it is well defined,
f : f
U = Hm R

0

Likewise,
m—1

N _ l i
Pum = ZO‘(fN)y)‘N,UI
1=
and in this case the Birkhoff limit always exists: it is a measure supported by the pe-
riodic orbits of fy, such that the measure of each periodic orbit is proportional to the
number of points of Exy N U whose orbit under fy eventually belongs to this periodic

orbit:

KO = lim ),

m—-o00

We have defined two types of invariant measures: one from a point x, the other from
the uniform measure A. The link between them is done by the following remark which
easily follows from the dominated convergence theorem.

Remark 3.11. When U is an open set almost every point (for Ay) in which admits a

f

Birkhoff limit, the measure py; is well defined and satisfies, for every continuous map

@:X—R,
dpf = dpf)dA
¢ duy ¢ dpx u-
X U \JX
J P d}*{? :J (f P dPlgcCN)d}\N,U-
X U X

Similarly,
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3.6 Hypothesis on discretization grids

Previously, we have given a very general definition of the concept of sequence of
discretization grids. In some cases, we will need additional technical assumptions about
these sequences of grids; of course all of them will be satisfied by good sequences of
uniform discretization grids on the torus (as defined in the introduction).

The first assumption is useful for proving Lax’s theorem (Theorem 5.5), and there-
fore necessary only in the part concerning conservative homeomorphisms.

Definition 3.12 (Well distributed and well ordered grids). We say that a sequence of
discretization grids (En)nen is well distributed if we can associate to each x € Ey a subset
Cn x of X, which will be called a cube of order N, such that:

— for all N and all x € Ey;, x € Cy x5
for all N, {Cy x}xeE, is @ measurable partition of X: [,cg, Cn,x has full measure
and for two distinct points x,y of Ey;, the intersection Cy , N Cy, is null measure;
for a fixed N, the cubes {Cy +}1cE, have all the same measure;
— the diameter of the cubes of order N tends to 0: max,eg, diam(Cy ) N 0.

If (En)nen is well distributed and if {Cy x}nen xek,, 18 @ family of cubes as above, we
will say that (En)nen is well ordered if, for a fixed N, the cubes {Cy 4} e, can be indexed
by Z/qNZ (recall that gy = Card(Ey)) such that two consecutive cubes (in Z/qNZ) are
close to each other:

max_ diam(CLUC!) — 0
i€Z/qnZ N—+oco

(in particular, it is true when the boundaries of two consecutive cubes overlap).

At first glance, it can seem surprising that there is no link between the cubes and
the projections. In fact, the existence of such cubes expresses that the grids “fit” the
measure A.

The following definition describe assumptions on grids that will be useful for ob-
taining properties on average.

Definition 3.13 (self similar grids). We say that a sequence of discretization grids
(En)Nen is sometimes self similar if for all € > 0 and all Ny € N, there exists two inte-
gers Ny and N, satisfying N, > N; > Ny, such that the set Ey, contains disjoint subsets

EII\I ,e E‘)‘2 whose union fills a proportion greater than 1 —¢ of Ey:
= —
Card (E}, U UEY )
Card(Ey;,)

>1-—¢,

and such that for all 7, the set Ei\] is the image of the grid Ey, by a bijection h; which is
e-close to identity.

We say that a sequence of discretization grids (Ex)nen is sometimes strongly self sim-
ilar if it is sometimes self similar for the parameter € = 0 (that is, the sets E’ form a
partition of Ey,).

We say that a sequence of discretization grids (En)nen is always self similar if for all
€>0and all Ny € N, there exists N; > Nj such that for all N, > Ny, the set Ey, contains

. = =a N .
disjoint subsets EII\IZ, R ENIEZ whose union fills a proportion greater than 1 —¢ of Ey,:

Card (Ellxlz U--- UETEQ )

1-¢
Card(Ey,) e




52 Chapter 3. Grids, discretizations, measures

Figure 3.1: Uniform discretization grids of order 5 on the torus T? (Ey, left) and on the
cube 1% (E, middle, and E},, right) and their associated cubes

and such that for all 7, Ei\l is the image of the grid Ey, by a bijection h; which is e-close to
identity, and such that for all 7,j and all N, Né > N, either E&Z OE{V =0, or FFji\Iz = E{\I
2 2

We say that a sequence of discretization grids (Ex)nen is always strongly self similar

if it is always self similar for the parameter ¢ = 0 (that is, the sets Ei\lz form a partition
of EN2 )

3.7 Some examples of discretization grids

In the previous section we set properties about discretizations — being well dis-
tributed, being well ordered, being sometimes/always (strongly) self similar — for a
later use. In this section, we study these properties for some natural examples of grids.

Uniform discretization grids on the torus

The simplest example of grid of discretization, which will be used for the simula-
tions, is that of the torus T" = R"/Z" of dimension n > 1 endowed with discretizations
called uniform discretizations, defined from the fundamental domain I" = [0,1]" of T™:
take an increasing sequence of integers (ky)nen and set (see Figure 3.1, left)

i o
EN:{(E,...,ﬁ)eTﬂ Vi, 0<i skN—l},

lii—-1/2 ij+1/2
CN(i0/N i/ N) = ﬂ[ . P . fn ]

We easily verify that this sequence of grids is well distributed, well ordered and
always self similar. If we assume that for for every Ny € N, there exists N, > N; > Nj
such that ky, divides ky,, then the sequence is sometimes strongly self similar. If we
further assume that for any N € N, ky divides ky,; (which is true when ky = pN with
p > 2), then the sequence is always strongly self similar. When ky = pN with p = 2
(respectively, p = 10) the discretization performs what we can expect from a numerical
simulation: doing a binary (respectively, decimal) discretization at order N is the same
as truncating each binary (respectively decimal) coordinate of the point x € I" to the

N-th digit, i.e. working with a fixed digital precision 2.

2. In practice, the computer works in floating point format, so that the number of decimal places is not
the same when the number is close to 0 or not.
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Figure 3.2: Self similarity of grids EJ,

Uniform discretization grids on the cube

In the case of the cube I" =[0,1]", there are two natural types of grids of discretiza-
tion. In the first one the grids are obtained by taking the same definition as the grids
En (but avoiding taking points on the boundary of the cube):

i i
N {kN kn Vit <<ty

with an increasing sequence (ky)nen Of integers. To these grids are associated the
cubes ? (see Figure 3.1, middle)

L l] -1 l]
CN,(il/N:""iH/N) - ]—l kN -1’ kN -1

j=1

As before, we easily verify that this sequence of grids is well distributed, well ordered
and always self similar (see Figure 3.2). If we assume that for every N € N, there exists
N; > N; > Nj such that ky, — 1 divides ky, — 1, then the sequence is sometimes strongly
self similar. If we further assume that for any N € N, ky — 1 divides ky,; —1 (that is, for
every N, there exists an integer ¢y > 1 such that ky,1 = ky + Onkn(kn + 1)), and either
kyn always divides kyyq or ky never divides ky, 1, then the sequence is always strongly
self similar.
We can also take discretizations according to the centres of the cubes:

Bl _ i1+1/2 in+1/2
N — kN ’ ’ kN

)e1”|Vj,osijskN—1}.

This time, the cubes are much more natural (see Figure 3.1, right):

"ri ii+1
] ]
CN,(il/N,~--,z‘n/N>=| |[—ka |

=1

Again, we easily verify that this sequence of grids is well distributed, well ordered and
always self similar. Moreover, it is sometimes strongly self similar if for every Ny € N,
there exists N, > Ny > Ny such that ky,/k,, is an odd integer, and always strongly self
similar if ky,1/ky is an odd integer for all N € N.

3. Be careful, these cubes have their vertices on the grid of order ky — 1.
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Discretization grids on an arbitrary manifold

In fact, discretizations on arbitrary manifolds can be easily obtained from discretiza-
tion grids on the cube I" (for example the grids E;) by applying the Oxtoby-Ulam the-
orem (see [OU41] or [Guil2, Corollaire 1.4]). This theorem asserts that every smooth
connected compact manifold of dimension 7, possibly with boundary, equipped with a
good measure J, is obtained from the unit cube I" by gluing together some parts of the
boundary of the cube. Moreover, this gluing map can be chosen such that the image of
Lebesgue measure on the cube is A.

Theorem 3.14 (Oxtoby, Ulam). Under the assumptions that have been made on X and A,
there exists a map ¢ : 1" — X such that:

1. ¢ is surjective;

- Gy is a homeomorphism on its image;

. &(91") is a closed subset of X with empty interior and disjoint from G(I");

L A($@) = 0;

¢*(A) = Leb, where Leb is Lebesgue measure.

Gl L N

This theorem allows to define discretization grids on X from discretizations on the
cube; this is outlined by the following informal proposition.

Proposition 3.15. If there is a sequence (Ex)N of grids on 1" whose elements are not on the
edge of the cube, then its image by ¢ defines a sequence of grids on X which satisfy the same
properties as the initial grid on the cube.

Remark 3.16. The example also includes the case where X = I", A = Leb and where
the grids are the images of the grids Ey by a unique homeomorphism of X preserving
Lebesgue measure.



CHAPTER 4

DISCRETIZATIONS OF A GENERIC DISSIPATIVE
HOMEOMORPHISM

In this chapter, we study the dynamical behaviour of the discretizations of generic
dissipative homeomorphisms, i.e. without the assumption of preservation of a given
measure.

The dynamics of a generic dissipative homeomorphism is very stable: the shredding
lemma of F. Abdenur and M. Andersson (Lemma 4.2) implies that for a generic homeo-
morphism, there exists a Cantor set of dimension 0 which attracts almost every point of
X (see Corollary 4.5). From that we will deduce easily the dynamics of the discretiza-
tions of a generic homeomorphism from that of the homeomorphism itself.

This study of the dynamics of a generic homeomorphism suggests that in the generic
dissipative setting, “the physical dynamics of the discretizations of a homeomorphism
f converges to the physical dynamics of f”, both from topological and measurable view-
points. Indeed, we will prove that for a generic homeomorphism and for almost every
point x € X, the orbit of xy by the discretization fy shadows the orbit of x by f (Corol-
lary 4.12). Moreover, we will prove that the recurrent set Q(fy) tends to the closure
of the set of Lyapunov stable periodic points of f in a weak sense defined in Propo-
sition 4.13; from a combinatorial viewpoint, the cardinality of this recurrent set is as

small as possible (Corollary 4.14) and the length of the longest periodic orbit tends to

+co when N goes to +co (Corollary 4.15). Finally, we will prove that the measures ]/L{(N

tend to the measure p{(, which is the Cesaro limit of the sequence of pushforwards of A
by f (Theorem 4.16).

The end of this chapter will be dedicated to the results of the numerical simulations.

Throughout this chapter, we fix a compact manifold X of dimension n > 2. Here, home-
omorphisms are not supposed to be conservative; more formally, we recall that we denote by
Homeo(X) the set of all dissipative homeomorphisms of X (without assumption of conserva-
tion of a given measure). The manifold X is equipped with a sequence (Ex)nen of discretiza-
tion grids and a good measure X as defined in Section 3.1 (we will use this measure to look
at the physical dynamics, that is the dynamics of almost every point), we xsuppose that the
sequence of grids of discretization satisfy }_,cp, Ox N A. We are interested in properties

of discretizations of generic elements of Homeo(X) with respect to the sequence of grids (Ey).

55
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4.1 Dynamics of a generic dissipative homeomorphism

In their article [AA13], F. Abdenur and M. Andersson try to identify the generic
ergodic properties of continuous maps and homeomorphisms of compact manifolds.

More precisely, they study the behaviour of Birkhoff limits ! }/L£ for a generic homeo-
morphism f € Homeo(X) and almost every point x for A. To do this, they define some
interesting behaviours of homeomorphisms related to Birkhoff limits, including one

they call weird.

Definition 4.1. A homeomorphism f is said weird if almost every point x € X (for A)

has a Birkhoff’s limit ],tf:, and if f is totally singular (i.e. there exists a Borel set with total
measure whose image by f is null measure) and does not admit any physical measure.

This definition is supported by their proof, based on the shredding lemma, that
a generic homeomorphism is weird. We state an improvement of this lemma, whose
main consequence is that a generic homeomorphism has many open attractive sets, all
of small measure, and decomposable into a small number of small diameter open sets:

Lemma 4.2 (Shredding lemma, F. Abdenur, M. Andersson, [AA13]). For every homeo-
morphism f € Homeo(X), for all €,0 > 0, there exists integers € and €y,---,;, bigger than
1/¢, and a family of regular pairwise disjoints open sets> Uy,---, Uy such that for all ¢ > 0,
there exists ¢ € Homeo(X) such that d(f,g) < 6 and:

(i) g(Uj) c U,
(i) MUj) <¢,
(i) AU, Uj)>1-¢
(iv) Mg(Uj)) <&’ MUj),
(v) forall j <{, there exists open sets V\/j’l, .. ,W;g}_ such that:

]
a) diam(W'j,-) <¢ forallie {1,---,€j},

b) g(Wj;i) CW; i1, foreveryie{l,---,{;—1} and g(Wj,g],) C W1,

c)
e Ug™(Jwii)

d) The sets W; ; have disjoints attractive sets, i.e. for all j # j’, we have 3

[ﬂ | gm,(Wm)]”[ﬂ U g'”'(Wj,i»)]:w.

m>0 m’'>m m>0 m’>m
e) We can further assume that each set W; ; contains a Lyapunov stable periodic point
(see Lemma 4.4).

Moreover, these properties remain true on a neighbourhood of the homeomorphism g.

We outline the proof of this lemma: by using arguments such as the Oxtoby-Ulam
theorem (Theorem 3.14) or the concept of uniform grid on the cube I", it is possible to
shorten a little the arguments of [AA13].

1. We recall that the Birkhoff limit y£ is the limit in the Cesaro sense of the pushforwards of the Dirac
measure O, by the homeomorphism f.

2. An open set is said regular if it is equal to the interior of its closure.

3. These two sets are decreasing intersections of compact sets, thus compact and non-empty.
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e || E

Figure 4.1: Local perturbation for Lemma 4.2

Proof of Lemma 4.2. Let f € Homeo(X) and 9, > 0. To begin with, we endow X with
a collection of “cubes”: for N large enough, the images of the cubes associated to the
the grid Ell\I on the cube I" (see page 55) by the map given by Oxtoby-Ulam theorem
(Theorem 3.14) give us a collection of cubes (C;) such that their union has full measure,
their boundaries have null measure, they all have the same measure and their diameters
are smaller than 6. To each cube C; we associate its centre e;. These properties assert
that this collection of cubes behaves like the collection of cubes on I" endowed with
Lebesgue measure. Thus, in the sequel, we will only treat the case of I" endowed with
Leb.

We define a finite map o : {¢;} — {¢;} such that f(e;) € Cy(,,). Making a perturbation if
necessary, we can suppose that ¢ does not contain any periodic orbit of length smaller
than 1/¢ (simply because if N is large enough, then for all e; there exists at least 1/¢
other points e; such that d(e;, ;) < d). We then use Corollary 3.4 to move the points f (e;)

closer to the points ¢;, in other words we build a homeomorphism g; which is d-close to
f and such that max; (min]- d(g:(e;), ej)) < min; diam(C;)/10.

We then set g, = gy o h, where h is a homeomorphism close to the identity whose
restriction to every cube is a huge contraction (see Figure 4.1): such a contraction can be
easily expressed on the cube [-1,1]": let a be a “big” number (determined by min(e, ¢’))
and
llxllcox if [Ix]le <1
X otherwise.

¢a(x) = {

We then build easily h by composing such contractions on each cube, each of them being
obtained by conjugating by a translation and a homothety.

The “physical” dynamics of the map g, is then close to that of the finite map o
which maps e; on the unique centre ¢; such that g(e;) € C;. In particular, the periodic
sets Wj,---, Wj ¢ are obtained as neighbourhoods of a given periodic orbit of ¢, and the

corresponding basins of attraction U; are unions of subsets of the cubes % whose centres
have some iterates by o which fall in this periodic orbit. We then easily check that these
sets satisfy the conclusions of the lemma, apart from the point (ii).

Thus, we have to prove that the basins of attraction can be supposed to have small
measure. To do that, we consider the cubes of order M = kN with k > 1/¢, and partition
this set of cubes into k" sets of cubes in the way defined by the fact that these grids are
strongly self similar (see page 55). We then use this self similarity to perturb f such that
o stabilizes each one of these subgrids, and apply the same technique as previously. [

4. More precisely, for every cube Cj, the sets U; contain {x € C | d(xBCj) > diam(C)(1 —¢)}.
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Definition 4.3. For a homeomorphism f € Homeo(X), we denote by A, the set of Lya-
punov stable periodic points of f, i.e. the set of periodic points x such that for all >0,
there exists 11 > 0 such that if d(x,v) <1, then d(f™(x), f"(y)) < 6 for all m € N.

For two compact sets K and K’, by K’ cC K we mean that there exists an open set O
such that K’ c O c K. In the sequel the set K will be called strictly periodic if there exists
an integer i > 0 such that f#(K) cc K.

The following lemma ensures that for a generic homeomorphism, every set W, ; of
the shredding lemma contains at least one (in fact an infinite number of) Lyapunov
stable periodic point.

Lemma 4.4. For a generic homeomorphism f € Homeo(X), for every strictly periodic topo-
logical ball O (i.e. there exists i > 0 such that f'(O) cc O), there exists a Lyapunov stable
periodic point x € O.

Proof of Lemma 4.4. We begin by choosing a countable basis of closed sets of X: for
example we can take Z) the set of unions of the closures of the cubes of order N. We
also denote by % the set of all closed topological balls of X. We define % N as the
set of homeomorphisms such that each large enough strictly periodic ball contains a
smaller strictly periodic ball with the same period °:

VYKe NN s.t. i <ks.t.

fi(K) cc K and diam;,,;(K) > ¢,
K’ c K, K’ € & s.t. diam(K’) < ¢/2
and f/(K’) cc K’

%N =1 f € Homeo(X)

Then for every k,¢ N, it is straightforward that the set % . is an open subset of
Homeo(X). To show that it is dense it suffices to apply Brouwer’s theorem to each K
such that f(K) cc K and to make the obtained periodic point attractive.

We now prove that every f € (. %N satisfies the conclusions of the lemma.
First of all, remark that for every topological ball K with non-empty interior which
is strictly i-periodic, there exits N € N and a smaller topological ball K ¢ K which is
strictly i periodic such that K € #y. It implies that if f belongs to the Gs dense set
Mk.e.N %k,e,N, then for every topological ball K with non-empty interior which is strictly
i-periodic, there exits N € N and a topological ball K’ ¢ K ¢ K which is strictly i periodic
and at least twice smaller. Taking the intersection of such balls, we obtain a periodic
point with period i which is Lyapunov stable by construction. O]

The shredding lemma tells us a lot about the dynamics of a generic homeomor-
phism, which becomes quite clear: there are many attractors whose basins of attraction
are small and attract almost all the manifold X. Moreover there is convergence of the
attractive sets of the shredding lemma to the closure of the set of Lyapunov stable peri-
odic points of f.

Corollary 4.5. Let f € Homeo(X) verifying the conclusions of the shredding lemma for all
e=¢ >0, and W;; . be the corresponding open sets. Such homeomorphisms form a Gg dense
subset of Homeo(X). Then the sets

A= U Wj,i,e
ji

5. For a compact set K, diam;,,;(K) denotes the diameter of the biggest euclidean ball included in K.
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converge for Hausdorff distance when ¢ tends to 0 to a closed set which coincides generically
with the set A_O (see Definition 4.3).

Moreover, generically, the set A is a Cantor set (that is, it is compact, without any iso-
lated point and totally disconnected) whose Hausdorff dimension © is 0.

Remark 4.6. Thus, for a generic homeomorphism f € Homeo(X), the w-limit set of al-
most every point x € X is included in A,.

Proof of Corollary 4.5. Let f verifying the hypothesis of the corollary. We want to show
that the sets A, tend to A, for Hausdorff distance when ¢ goes to 0. This is equivalent
to show that for all 6 > 0, there exists ¢y > 0 such that for all € < gy, Ag C B(A,0) and
A, C B(Ay,d) (where B(A, d) denotes the set of points of X whose distance to A is smaller
than §). Subsequently we will denote by U; . and by W; ;. the open sets given by the
shredding lemma for the parameters ¢ = €.

Let 0 > 0. We start by taking x € X whose orbit is periodic with period p and Lya-
punov stable. Then there exists 1§ > 0 such that if d(x,y) <1, then d(f"(x), f"(v)) < /2
for all m € N; we note O = B(x,1). As A(O) > 0 there exists ¢y > 0 such that for all
€ €]0, &, there exists j € N such that the intersection between O and Uj . is non-empty.
Let v be an element of this intersection. By compactness, there exists a subsequence
of (fP"(y))men which tends to a point xp; moreover f™(y) € [J; W;; eventually and
a(fP™(x), fP™(y)) < /2, thus at the limit m — +oco, d(x,xy) < 8/2. We deduce that
X € B(U]-,i Wj,i,go,6/2) for all &, small enough. Since A, is compact, it is covered by a
finite number of balls of radius §/2 centred at some points x; whose orbits attract non-
empty open sets. Taking ¢; the minimum of all the & associated to the x;, the inclusion
Ay CB(A, ) occurs for all € < ).

Conversely, let 8> 0, ¢ <0 and focus on the set W, ; .. By Lemma 4.4, we can suppose
that there exists x € W; ; - whose orbit is periodic and Lyapunov stable. Thus x € Ay and
since the diameter of W; ; . is smaller than 6, W; ; . C B(A, 9).

We now prove that the set A, has no isolated point. Let x € Ay and & > 0, we want
to find another point y € A such that d(x,y) < &. If x € Ay \ A then it is trivial that x
is an accumulation point of Ag; thus we suppose that x € Ay. As x is a Lyapunov-stable
periodic point, there exists a neighbourhood O of x whose diameter is smaller than o
and which is periodic (i.e. there exists t > 0 such that f*(0) c O). For € small enough, the
open set O meets at least two sets U; . and U . of the shredding lemma. Thus, applying
the shredding lemma, we deduce that O contains at least two different strictly periodic
sets W; ; - and Wy, i .; by Lemma 4.4 they both contain a Lyapunov-stable periodic point,
and by construction their distance to x is smaller than 6.

Finally we prove that generically, the set Ay has 0 Hausdorff dimension. Let s > 0.
We consider the set of homeomorphisms verifying the conclusions of the shredding
lemma for ¢" such that } ; ¢;¢” < 1. This equality implies that for all ¢ > 0, the s-
Hausdorff measure of the set (5¢jo,¢[ As is smaller than 1. As we have

m=U ] &
k>06€]0,1/k[

the set A is a countable union of sets of Hausdorff dimension smaller than s for every
s> 0. Thus, Ay has zero Hausdorff dimension; this also proves that A is perfect. O

6. And better, if we are given a countable family (A;,;);,eN of good measures, generically the Hausdorff
dimension of this set with respect to these measures is zero.
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Remark 4.7. We can also prove that for every © > 0, the set of periodic points with period
T of a generic homeomorphism is either empty, either a Cantor set with zero Hausdorff
dimension.

From the shredding lemma, we can easily deduce that the sequence of pushforwards
of the uniform measure on an open set U is Cauchy. Thus, it converges to a measure }A{J,
which is supported by Ag and is atomless (because the M{J—measure of each set ;W ; ¢
is between ¢ and 2¢).

Corollary 4.8. For a generic homeomorphism f € Homeo(X), for every open subset U of X,
the measure V{I is well defined, atomless and is supported by A,.

4.2 Dynamics of discretizations of a generic homeomorphism

We now establish a discrete counterpart of the shredding lemma. Since having
basins of attraction is stable by perturbation, we have a similar statement for discretiza-
tions of a generic homeomorphism. In what follows these arguments are developed.

To each point xy € Ey, we associate a closed set Pﬁl({xN}), made of the points in

X one of whose projections on Ey is xN. The closed sets Pﬁl({xN}) form a basis of the
topology of X when N runs through N and xy runs through Ey. Let f € Homeo(X),
N e N and 9: N — R} be a function that tends to +co at +co. Let §,¢ > 0 and U; be the
sets obtained by the shredding lemma for f, 6 and e.

For all j < ¢ we denote by G]N the union over xy € Ey of the closed sets Pﬁl({xN})
whose intersection with U; are non-trivial. Then I~J]I-\I tends to U; for the metric
d(A, B) = AM(AAB), and for the Hausdorff metric; the shredding lemma states that these
convergences are independent from the choice of ¢’. Thus, for all k big enough, prop-
erties (i) to (iii) of the shredding lemma remain true for the discretizations gy (for
arbitrary g satisfying the properties of the lemma). Taking ¢’ small enough and modi-
fying a little g if necessary, there exists sets W; ; and ¢ € Homeo(X) such that d(f, g) <3,

W;ic Pﬁl ({xn}) and Cal‘d(U]‘,i W; iNEN) < ¥(N). The others estimations over the sizes of
the sets involved in the lemma are obtained similarly. Finally, we obtain the following
lemma:

Lemma 4.9 (Discrete shredding lemma). For all f € Homeo(X), for all €,6 > 0 and all
function S : N — R’} that tends to +oo at +oco, there exists integers Ng, € and €1, ---, €, bigger
than 1/¢, and a homeomorphism g € Homeo(X) such that d(f,g) < 6 and for all N > Ny,
there exists a family of subsets UY, .- ,U? of En such that:

(i) gn(U})  UT,
(ii) Card(UY) <eqn,
(iii) Card (U, UN)> (1-e)qn,
(iv) Card(gN(U]N)) < Card(U]N)/(€S(N0)),
(v) for all j, there exists subsets W]-I’\Il,---,W]% of Ex such that
a) Card(U;; W}Y) < qn/3(No),
b) gn(WY) Cc W}

ji+l’

foreveryiefl,---,{;—1} and gN(WjI}]_) C W].II\II,
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c)

(vi) for all j and all i, there exists sets U; and W;; satisfying properties (i) to (v) of the
shredding lemma such that U; C PI:II(U]N) and W ; C Pﬁl(WjIj).

(vii) if N > Ny, then for all j and all i, we have
ZdH )<e and ZdH i P )) <e

(where dy is the Hausdorff metric), and

ZAUAPN(UN <e and ZA AP (W) <e.
j

Remark 4.10. Properties (i) to (v) are discrete counterparts of properties (i) to (v) of the
continuous shredding lemma, but the properties (vi) and (vii) reflect the convergence
of the dynamics of discretizations to that of the original homeomorphism.

This lemma implies that we can theoretically deduce the behaviour of a generic
homeomorphism from the dynamics of its discretizations. The next section details this
remark.

To begin with, we deduce from the shredding lemma that the dynamics of discretiza-
tions fy tends to that of the homeomorphism f. More precisely almost all orbits of the
homeomorphism are 6-shadowed by the orbits of the corresponding discretizations.

Definition 4.11. Let f and g be two maps from a metric space X into itself, x,y € X
and o > 0. We say that the orbit of x by f 6-shadows the orbit of y by g if for all m e N,
acf™( ) <o.

Corollary 4.12. For a generic homeomorphism f € Homeo(X), for all ¢ > 0 and all 6 > 0,
there exists an open set A such that AM(A) > 1—¢eand Ny € N, such that for all N > Ng and all
x € A, the orbit of xy = Pn(x) by fn O-shadows the orbit of x by f.

Therefore, for a generic homeomorphism f, there exists a full measure dense open set O
such that for all x € O, all 8> 0 and all N large enough, the orbit of xy by fn 0-shadows that

of xby f.

Proof of Corollary 4.12. This easily follows from the discrete shredding lemma, and es-
pecially from the fact that the sets W]If tend to the sets W;; for Hausdorff metric, in
particular O = Uj,s Ui O

This statement is a bit different from the genericity of shadowing (see [PP99]): here
the starting point is not a pseudo-orbit but a point x € X; Corollary 4.12 expresses that
we can “see” the dynamics of f on that of fy, with arbitrarily high precision, provided
that N is large enough. Among other things, this allows us to observe the basins of
attraction of the neighbourhoods of the Lyapunov stable periodic points of f on dis-
cretizations. Better yet, to each family of attractors (W ;); of the basin U; of the home-
omorphism corresponds a unique family of sets (W]-Ij),- that are permuted cyclically by
fx and attract a neighbourhood of U;. Thus, attractors are shadowed by cyclic orbits
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of fy and we can detect the “period” of the attractor (i.e. the integer ¢;) on discretiza-
tions: when N = Ny, the sets \N]If each contain only one point; a phenomenon of period
multiplication might appear for N bigger [Bla89, Bla86, Bla84, Bla94, AHKO03]. This
behaviour is the opposite of what happens in the conservative case, where discretized
orbits and true orbits are very different for most points.

Again, in order to show that the dynamics of discretizations converges to that of the
initial homeomorphism, we establish the convergence of attractive sets of fy to that of
f. Recall that A is the closure of the set of Lyapunov stable periodic points of f (see
Definition 4.3).

Proposition 4.13. For a generic homeomorphism f € Homeo(X), the recurrent sets Q(fx)
tend weakly to Ag in the following sense: for all € > 0, there exists No € N such that for
all N > Ny, there exists a subset Ey of EN, stabilized by fy, such that, notzng Q(fN ) the

Card(Ey)
Card(EE) >1—¢and diy(Agy, Q (fn))

corresponding recurrent set, we have

Proof of Proposition 4.13. Let e > 0. For all N € N, let Ey be the union of the sets U]N of

Lemma 4.9 for the parameter ¢. This lemma ensures that Ey is stable by fy and fills a
proportion greater than 1 — ¢ of Ey. We also denote by Q(fy) the associated recurrent

set: _
A= | wgl.

XEU?:] G]N

Property (viii) of Lemma 4.9 ensures that

lim dyy(A, Q(fn)) <€

N—+o0

To conclude, it suffices to apply Corollary 4.5 which asserts that A, — A, for Hausdorff
distance. O]

We now set a final consequence of Lemma 4.9, which reflects that the ratio between
the cardinality of the image of discretizations and which of the grid is smaller and
smaller:

Corollary 4.14. Let 9 : R, — R} be a function that tends to +oo at +oo. Then for a generic
homeomorphism f € Homeo(X),

, Card(fn(En))
lim (N)——————=0;
o SN rd (B )
more precisely, for every M € N, there existsNy > M such that for every N > Ny, we have

Card(fn(En)) _ 1
Card(Eyn) ~ 9(Np)

In particular, the degree of recurrence satisfies limy_, o, D(fn) =0

Remark that as Q(fy) C fn(En), the same estimation holds for the recurrent set. This
corollary can be seen as a discrete analogue of the fact that a generic homeomorphism
is totally singular, i.e. that there exists a Borel set of full measure whose image under f
is zero measure. Again, it reflects the regularity of the behaviour of the discretizations
of a dissipative homeomorphism: generically, the behaviour of all (sufficiently fine)
discretizations is the same as the physical behaviour of the initial homeomorphism.
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This is very different from the conservative case, where sometimes fy(Ey) = En and
sometimes Card(fy(En)) < 9(N) where 9 : R, — R} is a given map that tends to +oo at
+00.

The discrete shredding lemma also allows us to have an estimation about the com-
binatorial behaviour of fyq s ): fn has alot of periodic orbits, and along these periodic
orbits a lot have long lengths.

Corollary 4.15. For a generic homeomorphism f € Homeo(X) and for every M € N, there

exists Ng € N such that for every N > Ny, there exists a subset Ey of Ey, stabilized by fy,
Card(EN)
Card(Ey)
IN(E, have length bigger than M, and such that the number of such orbits is bigger than M.

such that we have > 1—¢ (as in Proposition 4.13), such that all the periodic orbits of

It remains to study the behaviour of measures poN (see Definition 3.10). To do that,
we have to suppose that the sequence of grids well behaves with respect to the measure

A. Again, the results are very different from the conservative case: for any open set U,
N f

the measures py; tend to a single measure, say py;.

Theorem 4.16. For a generic homeomorphism f € Homeo(X) and an open subset U of X,

f

the measure py; is well defined” and is supported by the set Ag. Moreover the measures M[f}“

tend weakly to P‘{J-

Sketch of proof of Theorem 4.16. The proof of this theorem is based on the shredding
lemma: the set of homeomorphisms which satisfy the conclusions of the lemma is a
G; dense, so it suffices to prove that such homeomorphisms f satisfy the conclusion of
the proposition. Let U be an open subset of X and ¢ : X — R be a continuous function.

We want to show that on the one hand the integral IX ) dy{J is well defined, i.e. that

the Birkhoff limits for the function ¢

Jim Z(P

are well defined for almost every x € U; and on the other hand we have the convergence

L@ dpf) N f o duy

For the first step, the idea of the proof is that most of the points (for A) eventually
belong to a set W, ;. Since the iterates of the sets W;; have small diameter, by uniform
continuity, the functlon ¢ is almost constant on the sets f™(W;;). Thus the measure

fs

px is well defined and almost constant on the set of points whose iterates eventually
belong to W; ;. And by the same construction, since the dynamics of fy converge to that

of f, and in particular that the sets UJN and {wﬁ\l} converge to the sets U; and W ;, the
measures }A{}I tend to the measures PL{J- O

7. In other words, a generic homeomorphism is weird, see Definition 4.1, see also [AA13].
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4.3 Numerical simulations

We now present some numerical simulations of dissipative homeomorphisms.
Again, our aim is to compare the theoretical results with the reality of numerical sim-
ulations: for simple homeomorphisms and reasonable orders of discretization, do we
have convergence of the dynamics of the discretizations to that of the homeomorphism,
as suggested by the above theorems?

We simulate homeomorphisms of the form

f(xy)=(RoQoP)(x,),

where P and Q are two homeomorphisms of the torus that modify only one coordinate:

P(x,y) = (x,y +p(x)) and Q(x,p) = (x+ q(y),y),

so that the homeomorphism Q o P preserves Lebesgue measure. We discretize these
examples according to the uniform grids on the torus

({1 iy . )
En = {(N;...,ﬁ)eTq V], 0< ¥ <N- 1}.
We have tested two homeomorphisms:

— To begin with we studied f; = Ry 0 Q o P, with

1 1 1
p(x) = === cos(21 x 187x) + ——sin(271 x 253x) — —— cos(2m x 775x),
209 271 703

1 . |
q(y) = ﬁcos(Zn x241y) + msm&n x197y) - Esm@n x811y)

and

(Rl(x,y))x = x—0.00227 sin(27 x 95(x + a))

+0.000224cos(2m x 197(y + @)
—0.00111sin(2m x 343(x + a))

(Ri(x,3)), = =0.00376sin(2m x 107(y + )

—0.000231cos(2m x 211(x +B))
+0.00107 cos(2m x 331(y + B)),

with a = 0.00137 and p = 0.00159. This dissipative homeomorphism is a small
C? perturbation of the identity, whose derivative has many oscillations whose
amplitudes are close to 1. That creates many fixed points which are attractors,
sources or saddles.

— It has also seemed to us useful to simulate a homeomorphism close to the iden-
tity in C° topology, but with a small number of attractors. Indeed, as explained
heuristically by J].-M. Gambaudo and C. Tresser in [GT83], a homeomorphism like
f1 can have a large number of attractors whose basins of attraction are small. It
turns out that the dissipative behaviour of f; cannot be detected for reasonable
orders discretization. We therefore defined another homeomorphism close to the
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identity in C° topology, but with much less attractors, say f, = R, 0 Q o P, with P
and Q identical to those used for f;, and R, defined by

(x) B (x —0.00227sin(21t x 14(x + o)) + 0.000324 cos(2m x 33(y + )
2

v] ~ \»—0.00376cos(2m x 15(y + B)) — 0.000231 sin(271 x 41(x + B)) |’

with a =0.00137 and f = 0.00159.
Remark that we have chosen to define the homeomorphisms we compute with lacu-
nary trigonometric series, to “mimic” the action of Baire theorem.

4.3.1 Algorithm used for the calculus of invariant measures

The algorithm we used to conduct simulations is quite fast (in fact, it is linear in the
number of points of the grid). It detects all the periodic orbits of the discretizations fy
in the following way. It takes a first point x; € Ey and iterates it until the orbit meets
a point that has ever been visited by the orbit. The points belonging to the orbit of
x; are labelled as falling into the periodic orbit number 1. The algorithm also notes
the number of points that have been attracted by this orbit, and the coordinates of the
points of the periodic orbit. It then takes another point x, € Ex which does not belong to
the orbit of x;. There are two cases: either an iterate of x, is equal to an iterate of x;, and
in this case it updates the number of points which fall into the periodic orbit number 1;
or an iterate of x, meets another iterate of x,, and in this case it creates a periodic orbit
number 2, which attracts all the orbit of x,. This procedure is iterated until there is no
more points of Ey that have not been visited. Remark that this algorithm computes the
image of a point at most twice.

This algorithm allows to compute quantities like the cardinality of the recurrent set
Q(fn), the number of periodic orbits of fy, the maximal size of a periodic orbit of fy,

etc. It also allows to represent the invariant measure p{? of fy. Recall that this measure
is defined as the limit in the Cesaro sense of the push forward of the uniform measures
on Ey by the discretizations fy. It is supported by the union Q( fy) of the periodic orbits
of fn; the measure of each of these periodic orbits is proportional to the size of its basin
of attraction.

We present images of sizes 128 x 128 pixels representing in logarithmic scale the

h

density of the measures iy : each pixel is coloured according to the measure carried by
the set of points of Ey it covers. Blue corresponds to a pixel with very small measure
and red to a pixel with very high measure. Scales on the right of each image corre-

sponds to the measure of one pixel on the log10 scale: if green corresponds to —3, then

a green pixel will have measure 1073 for M{(N. For information, when Lebesgue measure

is represented, all the pixels have a value about —4.2.

h

We also compute the distance between the measure py' and Lebesgue measure. The

distance we have chosen is given by the formula

2k_1

M=) o Y WG~ (Cijl €10,2],
k=0 i,j=0

where —_— i
[P+ joj+
Cuos= 30 5 e e |
This distance spans the weak-* topology, which makes compact the set of probability
measures on T2. In practice, we have computed an approximation of this quantity by
summing only on the k € [0, 7]
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From a practical point of view, we have restricted ourselves to grids of sizes smaller
than 2!° x 213: the initial data become quickly very large, and the algorithm creates
temporary variables that are of size of the order of five times the size of the initial data.
For example, for a grid 25 x 215, the algorithm needs between 25 and 30 Go of RAM,
and takes about two days of calculus for a single order of discretization.

4.3.2 Combinatorial behaviour

We simulated some quantities related to the combinatorial behaviour of discretiza-
tions of homeomorphisms, namely:

— the cardinality of the recurrent set Q(fy),

— the number of periodic orbits of fy,

— the maximal size of a periodic orbit of fy.

We calculated these quantities for discretizations of orders 128k for k from 1 to 150,
and represented it graphically (see Figure 4.2). For information, if N = 128 x 150, then
gn = 3.6.108.

Theoretically, the degree of recurrence, that is, the ratio between the cardinality of
Q(fn) and gy, should tend to 0 (see Corollary 4.14); this is what we observe on simula-
tions. This is not really surprising: we will even see it for discretizations of conservative
homeomorphisms (see Figure 5.7). In this context, it is interesting to compare the be-
haviour of ()(fy) in the conservative and the dissipative case. The result is a little dis-
appointing: the graphic for f, the dissipative homeomorphism, is very similar to that
of f3, the corresponding conservative homeomorphism, while in theory they should be
very different. This is quite different for f,, where the cardinality of Q((f,)y) is more
or less linear in N. We have no explanation to the linear shape of this function; if the
maps fy were typical random maps, their degree of recurrence would be linear in N,
with a value would close to 2.4.10% for N = 150x 128 (here the value is about three times
bigger).

The theoretical results assert that the number of periodic orbits of fy should tend
to +oo (as a generic dissipative homeomorphism has an infinite number of attractors).
We can hope that this quantity reflects the fact that the dynamics converges to that
of the initial homeomorphism: among others, we can test if it is of the same order as
the number of attractors of the homeomorphism. In practice, this number of periodic
orbits of fy first increases rather quickly, to stabilize to around a value of 1.5.10%* for
fi and 9.103 for f,. We could be tempted to interpret this phenomenon by the fact
that after a while, the discretization has detected all the attractors of f and thus, the
number of periodic of the discretizations reflects the number of attractors of f. This
idea may be reasonable for f, (as we will see in observing the invariant measures of
(f2)n in Figure 4.5), but if we compare these graphs in the dissipative case with that of
the conservative case (Figure 5.7), we see that they are as alike as two peas in a pod.
Thus, this is not clear at all that this behaviour is due to the dissipative character of the
homeomorphism or not.

Since the dynamics of discretizations is assumed to converge to that of the initial
homeomorphism, we could expect that the length of the longest periodic orbit of dis-
cretizations (f;)n is almost always a multiple of that of an attractive periodic orbit of
fi. The graphic of this length for f; looks like the conservative case (see Figure 5.7),
so we can say that the dissipative behaviour of this homeomorphism is not detected in
practical by this quantity. For f,, the length of the longest orbit is much smaller than
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Figure 4.2: Size of the recurrent set Q((f;)n) (top), number of periodic orbits of (f;)n
(middle) and length of the largest periodic orbit of (f;)y (bottom) depending on N, for
f1 (left) and f, (right), on the grids Eyy with N =128k, k=1,---,150.

for f; (up to a factor 10), and seem to increase linearly in N. This may be imputed to
the fact that f, is “almost conservative” around its attractive periodic points; thus it has
a conservative behaviour, but at a smaller scale than f;.

4.3.3 Behaviour of invariant measures
fi

We have computed the invariant measures pL(TQ)N of dissipative homeomorphisms f;
and f, as defined on page 66. Our aim is to test whether Theorem 4.16 applies in prac-
tice or if there are technical constraints such that this behaviour cannot be observed on

these examples. For a presentation of the representations of the measures, see page 67.

(fin

r2 and

On Figure 4.3, we have represented the distance between the measure p
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0.8

h

Figure 4.3: Distance between Lebesgue measure and the measure p.; depending on N
for f; (left) and f, (right), on the grids Ex with N =128k, k=1,---,150.

Lebesgue measure. Theorem 4.16 says that for a generic dissipative homeomorphism,

this quantity converges to the distance between y{z and Lebesgue measure. Clearly,
this is not what happens in practice for f;: the distance between both measures globally

increases when N increases. Locally, the behaviour of the map N — dist(p{fg,Leb) is
quite erratic: there is no sign of convergence to any measure. When we compare this
with the conservative case (Figure 5.8), we see that both behaviours are very similar. In

other words, we do not see the dissipative nature of f; on simulations. The behaviour

of the distance between the measure },L(szz) N and Lebesgue measure is much more inter-

esting. First of all, we observe that this distance is smaller than for f;. Moreover, it is

globally slightly decreasing in N, and it seem to converge to a value close to 0.2. So it

suggests that the measures ]/L(Tffm converge to a given measure whose distance to Leb is

close to 0.2, as predicted by the theory. In the view of these graphics, we can say that
the behaviour of f, is much more close to that of a generic dissipative homeomorphism
that that of f;. This can be interpreted in the view of the article of ].-M. Gambaudo and
C. Tresser [GT83]: for f, the attractors are much too small to be observed in practice
for reasonable orders of discretization.

The behaviour of invariant measures for f; (see Figure 4.4), which is a small C° dis-
sipative perturbation of identity, is relatively similar to that of invariant measures for f3

i.e. the corresponding conservative case (see Figure 5.9): when the order discretization
(f1)

is large enough, there is a strong variation of the measure p.p, " . Moreover, this measure
has a significant absolutely continuous component with respect to Lebesgue measure.
This is very different from what is expected from the theoretical results (in particular

Theorem 4.16), which say that for a generic dissipative homeomorphism, the measures
N

. must converge to the measure }/‘42- Thus, we can say that it is impossible to detect
the dissipative character of f; on these simulations. Again, as noted by ]J.-M. Gambaudo
and C. Tresser in [GT83], the size of the attractors of f; can be very small compared to
the numbers involved in the definition of f;. So even in orders discretization such as 215,
the dissipative nature of the homeomorphism is undetectable on discretizations. This
is why the discretizations of f; are very similar to those of its conservative counterpart
5

Recall that what happens for the dissipative homeomorphism f; is rather close to
what happens for the conservative homeomorphism f;. For their part, simulations of
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Figure 4.4: Simulations of yL(TfZI)N on grids Ey, with N = 2K, k = 7,---, 15 (from left to right

and top to bottom).

invariant measures for f, on grids of size 2€x 2 (see Figure 4.5) highlight that we expect

from a generic dissipative homeomorphism: the measures yt(]f;)N seem to tend to a single
measure (that is also observed on a series of simulations), which is carried by the attrac-
tors of f,. The fact that f, has few attractors allows the discretizations of reasonable
orders (typically 2!1) to find the actual attractors of the initial homeomorphism, con-

trary to what we observed for f;. We also present a zoom of the density of the measures

y(Tff)N (Figure 4.6). On these simulations, we can see that the attracting regions that we

observe on the simulations of Figure 4.5 are in fact crumbled, it particular they are not
connected. This is what is predicted by the theory: the set of Lyapunov periodic points
of a generic dissipative homeomorphism is a Cantor set. On these zoomed simulations,

we also observe that the dynamics of the discretizations has not completely converged

at the order N = 21: locally, the measures M;E)N are quite different for different orders

N; locally, the homeomorphism still behaves like in the conservative one.
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Figure 4.5: Simulations of M({;)N on grids Ey, with N

and top to bottom).
Figure 4.6: Zoom on the density of the measures p.

Figure 4.5



CHAPTER 5

DISCRETIZATIONS OF A GENERIC
CONSERVATIVE HOMEOMORPHISM

We now study the conservative case, i.e. we study the dynamical behaviour of dis-
cretizations of homeomorphisms of X which are generic among those which preserve
a given good measure A. In the previous chapter, we proved that the dynamics of the
discretizations of a generic dissipative homeomorphism f converges to the dynamics of
f. This was due to the fact that such a generic homeomorphism possesses attractors
whose basins cover almost all the phase space X. Now, the hypothesis of preservation
of a measure A precludes this kind of behaviours, as conservative maps do not have
attractors and thus are chain transitive.
We will begin by introducing the concept of dense type of discrete approximation (Def-
inition 5.1), which expresses that a given set of finite maps on the grids can approach
any conservative homeomorphism. Then, using the proposition of finite maps exten-
sion (Proposition 3.3), we prove that any dense type of approximation occurs infinitely
many times in the discretizations of a generic homeomorphism (Theorem 5.2). Those
dense types of approximations will be obtained by using Lax’s theorem (Theorem 5.5).
This strategy of proof will lead us to many results concerning the dynamical proper-
ties of discretizations of generic conservative homeomorphisms. In particular, for a
generic conservative homeomorphism f, under the assumptions that the grids are well
distributed and well ordered:
— there are infinitely many discretizations fy such that fy is a cyclic permutation
(Corollary 5.9);

— for every € > 0, there are infinitely many discretizations fy such that fy is e-
topologically weakly mixing (Corollary 5.13, see Definition 5.11);

— for every period p of a periodic orbit of f, there are infinitely many discretizations
fn such that fy has a unique injective orbit whose corresponding periodic orbit
has length p (Corollary 5.36);

71
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— for every map 9 : N — R’ which tends to +oo0 at +co, there are infinitely many
discretizations fy such that Card(fx(Eyn)) < S(N) (Corollary 5.20);

— if we further assume that the grids are self similar, for every map 9: N — R such
that 9(N) = o(qn), there are infinitely many discretizations fy such that fy has at
least 9(N) cycles which are pairwise conjugated (Corollary 5.22).

Moreover, we prove that we can not hope to observe the actual dynamics of a generic
homeomorphism by looking at the frequency with which some properties appear on
discretizations. For example, if the sequence of grids is strongly self similar, we will
prove that for a generic conservative homeomorphism, for every € > 0, there are in-
finitely many M € N such that the proportion of discretizations fy, with 1 <N <M,
such that fy is a cyclic permutation, is greater than 1 —¢ (Theorem 5.31). We also prove
that under the assumption that the sequence of grids is self similar, the same property
holds when we replace “fy is a cyclic permutation” by “Card(Q(fx)) = 0(qn)” (Corollary

«Card(fu(En)) o o» (Corol-

5.27), “fn is e-topologically weakly mixing” (Corollary 5.28), Card(Ex)

lary 5.29) or “fy has at least M periodic orbits” (Corollary 5.30).

However, we will prove that it is possible to recover the dynamics of the initial
homeomorphism by looking at the dynamics of all its discretizations. For example, it is
possible to detect the periodic orbits of f and their periods (Theorem 5.36), to recover
the set of invariant measures of f (Theorem 5.45), or to recover the set of compact
subsets of X that are invariant under f (Theorem 5.49).

From this point of view of the shadowing property of the dynamics of the homeo-
morphism by that of all its discretizations, the “physical dynamics”, that is the dynam-
ical properties that depend on the good measure A, plays non important role among
all the dynamical properties of f. For instance, we will prove that if the sequence of
grids is self similar, then for a generic homeomorphism f, the sequence of fy-physical !

measures (M{(N )nen accumulates on the the whole set of f-invariant measures (Theorem
5.51). And with the same techniques of proof we will show a similar result for invariant
compact sets (Proposition 5.55).

The end of this chapter is dedicated to the results of the numerical simulations.

Recall that we have fixed once and for all a manifold X, a good measure A on X and a
sequence of discretization grids (En)nen (see Definition 3.5). We further assume that this
sequence of grids is well distributed and well ordered (see Chapter 3). In this chapter, we
will focus on discretizations of elements of Homeo(X, A), so homeomorphisms will always be
supposed conservative.

5.1 Dense types of approximation
To begin with, we define the notion of type of approximation.

Definition 5.1. A type of approximation 7 = (Jy)nen 1S @ sequence of subsets of the set
 (En, En) of applications from Ey into itself.

Let % be an open subset of Homeo(X, A) (therefore % is a set of homeomorphisms).
A type of approximation 7 is said to be dense in % if for all f € %Z, all € > 0 and all
Ny € N, there exists N > N and oy € Iy such that dy(f,on) < € (recall that dy is the
distance between fjg and oy considered as maps from Ey into X).

1. Recall that u{(N is the limit in the sense of Cesaro of the pushforwards of the uniform measure on En
by the iterates of fiy
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The goal of this paragraph is to obtain the following result: every dense type of
approximation appears on infinitely many discretizations of a generic homeomorphism.
This will lead us to a systematic study of dense types of approximation.

Theorem 5.2. Let I be a type of approximation which is dense in Homeo(X, \). Then for a
generic homeomorphism f € Homeo(X, X) and for all Ny € N, there exists N > N such that

N € AN

Thus, we have decomposed the obtaining of generic properties of discretizations
into two steps.

1. The first step consists in proving that a given type of approximation is dense. This
part will be done in Section 5.3, the systematic use of Lax’s theorem (see Section 5.2)
will reduce the proof of density of types of approximation to combinatorial problems.

2. The second step is always the same, it simply consists in applying Theorem 5.2.

Remark 5.3. However, some properties can be proved in different ways: for instance
Corollary 5.20 can be proved by inserting horseshoes in the dynamics of a given home-
omorphism, using the local modification theorem (Theorem 5.40, for a presentation of
the technique in another context see [Guil2, Section 3.3]); also a variation of Corollary
5.15 can be shown in perturbing any given homeomorphism such that it has a periodic
orbit whose distance to the grid Ey is smaller than the modulus of continuity of f, so
that the actual periodic orbit and the discrete orbit fit together.

To prove Theorem 5.2, we start from a dense type of approximation — in other
words a sequence of discrete applications — and we want to get properties of home-
omorphisms. The tool that allows us to restore a homeomorphism from a finite map
on : Ey — Ey is the finite map extension proposition (Proposition 3.3).

Lemma 5.4. Let % be an open subset? of Homeo(X,\) and 7 = (J)nen be a type of
approximation which is dense in %. Then for all Ny € N, there exists an open and dense
subset of % on which every homeomorphism f satisfies: there exists N > Ny such that the
discretization fy belongs to Iy.

Proof of Lemma 5.4. Let f € %, Ny € N and ¢ > 0. Since I is a type of approximation
which is dense in %, there exists N > N and oy € J4 such that dy(f,on) < &. Let
X1,++*,Xg, be the elements of Ex. Then for all ¢, d(f(x;),on(x¢)) < €. Now, the problem
is that oy is not injective. To solve this problem, we take advantage of the fact that Py
is highly non injective to modify oy into a injection o} : Ey — X whose discretization
on Ey equals to oy: set o(x1) = oN(x1), oy is defined by induction by choosing oy (x¢)
such that o] (x,) is different from o) (x;) for i <¢, such that Py(o{(x¢)) = Px(on(x)) and
that d(f(x,), 04 (x¢)) < e

Since oy is a bijection, Proposition 3.3 can be applied to f(x,) and oy (x,); this gives
a measure-preserving homeomorphism ¢ such that ¢@(f(x)) = oy (x,) for all £ and such
that d(¢,Id) < e. Set f' = @o f, we have d(f, f’) < e and f’'(x¢) = o{(x¢) for all £, and
therefore fy = oy O

Now, proof of Theorem 5.2 is straightforward.

2. In most cases we will take % = Homeo(X, A).
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Proof of Theorem 5.2. Let (xn,¢)1<¢<q, be the elements of Ey and consider the set (where
pN is the minimal distance between two distinct points of Ey;)

{f € Homeo(X, \) | V¢, dN(f(xN,g), GN(XN’g)) < PTN}

NoeN N3N,
OoN E%

This set is clearly a Gy set and its density follows directly from Lemma 5.4. Moreover
we can easily see that its elements satisfy the conclusions of the theorem. O]

5.2 Lax’s theorem

Now that we have shown Theorem 5.2, it remains to obtain dense types of approx-
imation. Systematic use will be made of Lax’s theorem [Lax71], more precisely its im-
provement as stated by S. Alpern [Alp76], which allows to approach any conservative
homeomorphism by a cyclic permutation of the elements of a discretization grid.

Theorem 5.5 (Lax, Alpern). Let f € Homeo(X, A) and ¢ > 0. Then there exists Ny € N such
that for all N > Ny, there exists a cyclic permutation oy of Ey such that dy(f,on) <e.

It is worthwhile to note that this theorem was initially stated in the view of nu-
merical approximation of conservative homeomorphisms: P. Lax noticed that in some
pioneering works showing numerical simulations of chaotic dynamical systems (e.g.
[Hén69]), the discretizations of conservative maps were only approximately measure-
preserving. His theorem states that among all possible approximations of a conservative
homeomorphism, some of them are bijective, which is a discrete counterpart of mea-
sure preservation. This theorem was later improved by S. Alpern in [Alp76, Alp78] to
establish generic properties of conservative homeomorphisms (see also [DKP93, KM97]
for a generalisation and some simulations in dimension 1). This theorem is now one
of the keystones of the theory of generic properties of homeomorphisms (see [Guil2]),
together with other theorems of approximation by permutations .

As a compact metric set can be seen as a “finite set up to £”, Lax’s theorem allows us
to see a homeomorphism as a “cyclic permutation up to £”. Genericity of transitivity in
Homeo(X, A) follows easily from Lax’s theorem together with the finite map extension
proposition (see [AP00] or part 2.4 of [Guil2]). In our case, applying Theorem 5.2,
we deduce that infinitely many discretizations of a generic homeomorphism are cyclic
permutations. The purpose of Section 5.3 is to find variations of Lax’s theorem (which
are at the same time corollaries of it) concerning other properties of discretizations.

We give briefly the beautiful proof of Lax’s theorem, which is essentially combina-
torial and based on marriage lemma and on a lemma of approximation of permutations
by cyclic permutations due to S. Alpern. Readers wishing to find proofs of these lem-
mas may consult [Guil2, Section 2.1]. It is here that we use the fact that discretizations
grids Ey are well distributed and well ordered (see Section 3.6).

Lemma 5.6 (Marriage lemma). Let E and F be two finite sets and ~ a relation between
elements of E and F. Suppose that the number of any subset E' C E is smaller than the
number of elements in F that are associated with an element of E’, i.e.:

VE'CE, Card(E)<Card{f e€F|decE e~ f},

3. See also [KS67, KS70] for approximations in weak topology or [Hal56, page 65] for approximations
of conservative automorphisms.
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then there exists an injection @ : E — F such that for all e € E, e ~ D(e).

Lemma 5.7 (Cyclic approximations in S, [Alp76]). Let q € N* and 0 € S, (S, is seen as
the permutation group of Z/qZ). Then there exists T € S, such that |t(k) - k| < 2 for all k
(where |.| is the distance in Z/qZ) and such that the permutation o is cyclic.

Proof of Theorem 5.5. Let f € Homeo(X,)) and € > 0. Consider Ny € N such that for
all N > Ny, the diameter of the cubes of order N (given by the hypothesis “Ey is well
distributed”) and their images by f is smaller than e. We define a relation =~ between
cubes of order N—-1: C~ C’if and only if f(C)NC’" #0. Since f preserves A, the image
of the union of ¢ cubes intersects at least ¢ cubes, so the marriage lemma (Lemma 5.6)
applies: there exists an injection @y from the set of cubes of order N into itself (then
a bijection) such that for all cube C, f(C) N Dy (C) = 0. Let oy be the application that
maps the centre of any cube C to the centre of the cube ®y(C), we obtain:

dn(f,on) < sup ( diam(C)) + sup(diam(f(C))) < 2e.
C C

It remains to show that oy can be chosen as a cyclic permutation. Increasing N
if necessary, and using the hypothesis that the grids are well ordered, we number the
cubes such that the diameter of the union of two consecutive cubes is smaller than
e. Then we use Lemma 5.7 to obtain a cyclic permutation oy, whose distance to oy is
smaller than e. Thus we have found Ny € N and for all N > Nj a cyclic permutation oy
of Ey whose distance to f is smaller than 3e. O

Remark 5.8. In this proof, the marriage lemma can be replaced by Birkhoff’s theorem
about bistochastic matrices: we define the transition matrix M for the partition of X by
the cubes by m; ; = )\(Ci N f(C]-))/X(Ci); the hypothesis of preservation of A implies that
M is bistochastic *. Then, Birkhoff’s theorem ensures that bistochastic matrices form
a convex set whose extremal points are permutation matrices; thus M can be written
as a convex combination of permutation matrices and each one of the corresponding
permutation provides an approximating permutation for f.

5.3 Individual behaviour of discretizations

Now we have set the technical Theorems 5.2 and 5.5, we can establish results con-
cerning the behaviour of discretizations of a generic conservative homeomorphism.
Here we study individual behaviour of discretizations, i.e. properties about only one
order of discretization. As has already been said, applying Theorem 5.2, it suffices to
find dense types of approximation to obtain properties about discretizations. In prac-
tice, these dense types of approximations are obtained from variations of Lax’s theorem
(Theorem 5.5).

Recall that the sequence (Ey),en of discretization grids is well distributed and well
ordered (see Definition 3.12), we denote by fy the discretization of a homeomorphism
f and by Q( fy) the recurrent set of fy (i.e. the union of periodic orbits of fy).

We will show that for a lot of simple dynamical properties (P) about finite maps
and for a generic conservative homeomorphism f, infinitely many discretizations fy
satisfy (P) as well as infinitely many discretizations satisfy its contrary. For instance, for

4. That is, its entries are nonnegative and the sum of the elements of each of its columns and rows is
equal to 1.
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a generic homeomorphism f, the recurrent set ((fy) is sometimes as large as possible,
i.e. QQ(fn) = En (Corollary 5.9), sometimes very small (Corollary 5.15) and even bet-
ter sometimes the number of elements of the image of Ey is small (Corollary 5.20). In
the same way stabilization time ° is sometimes zero (Corollary 5.9, for example), some-
times around Card(Ey) (Corollary 5.36). Finally, concerning the dynamics of leQ( o)
sometimes it is a cyclic permutation (Corollary 5.9) or a bicyclic permutation (Corollary
5.13), sometimes it has many orbits (Corollary 5.22)...

Firstly, we deduce directly from Lax’s theorem that cyclic permutations of the sets
Eyn form a dense type of approximation in Homeo(X, A). Combining this with Theorem
5.2, we obtain directly:

Corollary 5.9 (Miernowski, [Mie05]). For a generic homeomorphism f € Homeo(X, A), for
every Ny € N, there exists N > Ny such that fy is a cyclic permutation °,

This theorem states that for every generic conservative homeomorphism, there ex-
ists a subsequence of discretizations which are “transitive”. Recall that generic homeo-
morphism are transitive (see [Oxt37]). So, in a certain sense, transitivity can be detected
on discretizations. Remark that this result implies that the discretizations of a generic
conservative homeomorphism do not behave like typical random maps, as for a random
map of a set with g elements the average number of periodic orbits is asymptotically
log g (see for example [Bol01, XIV.5]).

There exists a variation of Lax’s Theorem for bicyclic permutations, which are per-
mutations having exactly two orbits whose lengths are relatively prime (see [Guil2,
lemme 2.9 page 28]); this variation leads to a proof of genericity in Homeo(X,\) of
topological weak mixing (see for example [AP00] or [Guil 2, Part 2.4]). In the following
we define a discrete analogue to topological weak mixing and state that this property
occurs infinitely often on discretizations of a generic homeomorphism.

Definition 5.10. A homeomorphism f is said to be topologically weakly mixing if for all
non-empty open sets (U;);<y and (U/);<y, there exists m € N such that f"(U;) N U/ is
non-empty for all i <M.

The proof of the genericity of topological weak mixing starts by an approximation
of every conservative homeomorphism by another having e-dense periodic orbits whose
lengths are relatively prime. The end of the proof primarily involves the use of Baire’s
theorem and Bézout’s identity. In the discrete case, the notion of weak mixing is re-
placed by the following.

Definition 5.11. Let € > 0. A finite map oy is said e-topologically weakly mixing if for all
M e N and all balls (B;);<m and (B?);<ym with diameter ¢, there exists m € N such that for
alli

oy (B; NEN) N (B, NEy) = 0.

The first step of the proof is replaced by the following variation of Lax’s theorem:

5. That is, the smallest integer k such that flﬁ(EN) =Q(fn)-
6. In fact, T. Miernowski proves “permutation” but his arguments, combined with S. Alpern’s improve-
ment of the Lax’s theorem, show “cyclic permutation”.
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Figure 5.1: Construction of the sequence (v,,)1<m<¢

Proposition 5.12 (First variation of Lax’s theorem). Let f € Homeo(X, A) be a homeomor-
phism such that all the iterates of f are topologically transitive. Then for all € > 0 and all
M e N, there exists Ny € N such that for all N > Ny, there exists on : Exy — En which
has M e-dense periodic orbits whose lengths are pairwise relatively prime, and such that

dn(f on) <e

Proof of Proposition 5.12. We prove the proposition in the case where M = 2, the other
cases being easily obtained by an induction. Let ¢ > 0 and f be a homeomorphism whose
all iterates are topologically transitive. Then there exists xy € X and p € N* such that
{x0,--+, fP71(xq)} is e-dense and d(xg, fP(x;)) < &/2. Since transitive points of fP form a
dense Gy subset of X, while the orbit of x; form a F; set with empty interior, the set of
points whose orbit under f? is dense and disjoint from that of x( is dense. So we can
pick such a transitive point }’0 Set y; = f(vg). Then there exists a multiple g; of p such
that the orbit {y;,---, f1"(y;)} is e-dense and d(y;, f7'(y;)) < /2. Again, by density,
we can choose a transitive point y, whose orbit is disjoint from that of xy and y;, with
d(v1,v2) <&/2 and d(yg, v1)—d(vo,v2) > /4. Then there exists a multiple g, of p such that
d(v2, f2(v2)) < €/2. And so on, we construct a sequence (,,)1<m<¢ such that (see figure
5.1):
(i) for all m, there exists g,, > 0 such that plq,, and d(y,,, f1"(vy,,)) < /2,
(ii) the orbits {xq,--, fP"(x)} and {y,, -, f9" " (p,,)} (m going from 0 to £ — 1) are
pairwise disjoints,
(iii) for all m, d(y, Y1) < &/2 and d(yo,Yim) — d(Y0, Y1) > /4,
(iv) v = 0.
Let oy be a finite map given by Lax’s theorem. For all N large enough oy satisfies

the same properties (i) to (iii) than f. Changing oy at the points qu ((ym)N) and

Gﬁ_l((XO)N), we obtain a finite map oy such that o™ ((9,,)N) = (V1) and GKI((X())N) =
(xo)n- Thus the orbit of (x)y under oy is 2e-dense and has period p and the orbit of
(vo)n under oy is 2e-dense, disjoint from which of (xo)y and has period 1+ +--+4q,_4
relatively prime to p. O]

Corollary 5.13. For a generic homeomorphism f € Homeo(X, ), for all e > 0 and all Ny € N,
there exists N > N such that fy is e-topologically weakly mixing.



78 Chapter 5. Discretizations of a generic conservative homeomorphism

Proof of Corollary 5.13. Again, we prove the corollary in the case where M = 2, other
cases being easily obtained by induction. Let ¢ > 0 and Ny € N. All iterates of a generic
homeomorphism f are topologically transitive: it is an easy consequence of the generic-
ity of transitivity (see for example Corollary 5.9 or [Guil 2, Theorem 2.11]); we pick such
a homeomorphism. Combining Theorem 5.2 and Proposition 5.12, we obtain N > N
such that fy has two ¢/3-dense periodic orbits whose lengths p et g are coprime. We
now have to prove that fy is e-topologically weakly mixing. Let By, B,, B} and B} be
balls with diameter e. Since each one of these orbits is ¢/3-dense, there exists xy € X
which is in the intersection of the orbit whose length is p and By, and yy € X which
is in the intersection of the orbit whose length is g and B,. Similarly, there exists two
integers a and b such that f{(xy) € B} and fI\bI(yN) € B).

Recall that we want to find a power of fy which sends both xy in B} and yy in BJ.
It suffices to pick m € N such that m = a+ ap = b+ pq. Bézout’s identity states that there
exists two integers o and f such ap —pg = b—a. Set m = a+ ap, adding a multiple of pgq
if necessary, we can suppose that m is positive. Thus f{'(xy) € B] and f'(yn) € B;. O

For now, the two approximation types we studied concern analogues of properties
that are generic among Homeo(X,\). We now show that some discrete analogues of
properties that are not generic among conservative homeomorphisms also occur in-
finitely often in the discretizations of generic homeomorphisms. The second variation
of Lax’s theorem concerns the approximation of applications whose recurrent set is
small.

Proposition 5.14 (Second variation of Lax’s theorem). Let f € Homeo(X, X). Then for all
g,& > 0, there exists Ny € N such that for all N > N, there exists a map oy : Ey — Ey such
that dy(f,oN) < € and
Card(Q (o)) _ Card(Q(oy)) <
Card(Ey) N '

and such that Ey is made of a unique (pre-periodic) orbit of oy.

Proof of Proposition 5.14. Let f € Homeo(X, ), ¢ > 0 and a recurrent point x of f. There
exists T € N* such that d(x, f*(x)) < g; this inequality remains true for fine enough dis-
cretizations: there exists N; € N such that if N > Ny, then

dlran) <50 d(F7E, ) < g

£ oand L<v

8 N

Using the modulus of continuity of f* and Lax’s theorem (Theorem 5.5), we obtain an
integer Ny > Nj such that for all N > N, there exists a cyclic permutation oy of Ey
such that dy(f,on) < 5 and dn(f", oY) < §. Then

d(xn, o8 (xn)) <d(xn, %) +d(x, £(x)) +d( £ (%), f¥(xn)

+d(f*(xn), o () )
e

<—.
2

We compose oy by the (non bijective) application mapping oy ' (xy) on xy and being
identity anywhere else (see Figure 5.2), in other words we consider the application
PN 9N, if x = o7 (xn)
on(%) _{ on(x) otherwise.
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Figure 5.2: Modification of a cyclic permutation in the proof of Proposition 5.14

The map oy has a unique injective orbit whose associated periodic orbit Q(oy) has
length T (it is (xn,0n(XN), -+, 057 (xn))). Since d(f,oy) < & the map o}, verifies the
conclusions of the proposition. O

A direct application of Theorem 5.2 leads to the following corollary.
Corollary 5.15. For a generic homeomorphism f € Homeo(X, ),

 Cad©@(f)
hﬁN_»mW(EN) =0.

Specifically for all ¢ > 0 and all Ny € N, there exists N > Ny such that
Card(Q(fn))/Card(Ey) < € and such that Ey is made of a unique (pre-periodic) orbit of

fn-

We now improve this corollary in stating that for a generic homeomorphism, there
exists C > 0 such that we have Card(Q)(fy)) < C for an infinite number of orders N;
in particular these discretizations are highly non transitive, which is the opposite be-
haviour to the dynamics of a generic homeomorphism.

The same kind of idea than in the proof of Proposition 5.14 leads to the following
variation of Lax’s theorem.

Proposition 5.16. Let f € Homeo(X, ) having at least one periodic point x of period p.
Then for all € > 0, there exists Ny € N such that for all N > N, there exists an application
on : En — En with dy(f,on) < & such that Ey is made of a unique (pre-periodic) orbit of
on and such that the unique periodic orbit of fy is of length p and e-shadows the f-orbit of
X.

Proof of proposition 5.16. Simply replace the recurrent point by a periodic point of pe-
riod p in the proof of Proposition 5.14. O

We will use this proposition in Section 5.5 to obtain Theorem 5.36. In particular, it
will imply the following statement.
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Corollary 5.17. For a generic homeomorphism f € Homeo(X,\), for every period p of a
periodic point of f and for infinitely many integers N, fy has a unique periodic orbit, whose
length is p, and such that Ey is covered by a single (pre-periodic) orbit of fy.

Remark 5.18. In particular, if py denotes the minimal period of the periodic points of f,
then there are infinitely many discretizations such that the cardinality of their recurrent
set is equal to py. Note that however, the shortest period of periodic points of generic
homeomorphisms has no global upper bound in Homeo(X, A): for example, for all p € N,
there is an open set of homeomorphisms of the torus without periodic point of period
less than p (e.g. the neighbourhood of an irrational rotation) and this property remains
true for discretizations.

Corollary 5.17 states that for a generic homeomorphism, Card(Q(fy))/Card(Ey) is
as small as possible for an infinite number of orders N. The next result states that this
loss of injectivity can even occur from the first iteration of fy.

Proposition 5.19 (Third variation of Lax’s theorem). Let f € Homeo(X,X) and 9 : N —
R’ a map which tends to +co at +co. Then for all € > 0, there exists Ny € N such that for all
N > Ny, there exists a map oy : Eny — Ey such that Card(on(En)) < 3(N) and dy(f,on) < &

Proof of Proposition 5.19. Let f € Homeo(X,)), ¥ : N — R’ a map which tends to +co
at +oo and € > 0. By Lax’s theorem (Theorem 5.5) there exists N; € N such that for all
N > Ny, there exists a cyclic permutation oy : ENy — Eyn whose distance to f is smaller
than ¢/2. For N > Ny, set o) = Py, o on. Increasing Ny if necessary we have d(f,oy) <,
regardless of N. Moreover Card(oy(Ex)) < qn;,; if we choose Nj large enough such that
for all N > N we have gy, < 9(N), then Card(c{;(Ey)) < 9(N). We have shown that the
map oy satisfies the conclusions of proposition for all N > N,. O]

Corollary 5.20. Let 9 : N — RY a map which tends to +oco at +oo. Then for a generic
homeomorphism f € Homeo(X, )),

lim 0.
N—+0c0

Card(fn(En))
S(N B

Card(fn(En)) _ 0
Card(Ey)

In particular, generically, lim
Proof of Corollary 5.20. Remark that if we replace 9(N) by /9(N), it suffices to prove

Card(fy(En))
3(N)
bining Theorem 5.2 and Proposition 5.19. ]

that for a generic homeomorphism, lim < 1. This is easily obtained by com-

So far all variations of Lax’s theorem have constructed finite maps with a small num-
ber of cycles. With the additional assumption that the sequence of grids is sometimes
self similar, we show a final variation of Lax’s theorem, approaching every homeomor-
phism by a finite map with a large number of orbits.

Proposition 5.21 (Fourth variation of Lax’s theorem). Assume that the sequence of grids
(Ex)nen is sometimes self similar. Let f € Homeo(X,A) and S : N — R such that 3(N) =
o(qn). Then for all € > 0, there exists Ny € N such that for all N > Ny, there exists a
permutation oy of Ex such that dn(f,on) < € and that the number of cycles of oy is greater
than 3(N). Moreover, 3(N) of these cycles of oy are conjugated to a cyclic permutation of Ey,
by bijections whose distance to identity is smaller than e.
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Proof of Proposition 5.21. Let € > 0, for all Ny € N large enough, Lax’s theorem gives
us a cyclic permutation GI’\IO of Ey, whose distance to f is smaller than &. Since the
grids are sometimes self similar, there exists N; € N such that for all N > Ny, the set

En contains gn/qn, = 3(N) disjoint subsets E,, each one conjugated to a grid Eyn, by a

bijection h; whose distance to identity is smaller than e. On each El,, we define oy as
the conjugation of GI’\IO by hj; outside these sets we just pick oy such that dy(f,on) <e.
Since the distance between h; and identity is smaller than ¢, we have dy(f,on) < 2e.
Moreover, oy has at least 9(N) cycles which are conjugated to a cyclic permutation of
EN, by the maps h;j; this completes the proof. O]

The application of Theorem 5.2 leads to the following corollary, which ensures that
an infinite number of discretizations fy have a lot of periodic orbits.

Corollary 5.22. We still assume that the sequence of grids (En)nen IS sometimes self similar.
Let 9 :N — R such that 9(N) = o(qn). Then for a generic homeomorphism f € Homeo(X, )
and for infinitely many integers N, the discretization fy of f has at least 9(N) periodic orbits
(which all have the same period).

If we compose the map obtained by Proposition 5.21 by an appropriate map of the
finite set {h;(x()}; into itself (x, being fixed), we can prove the following result.

Proposition 5.23. Let f € Homeo(X,X), e > 0 and |a,b[C [0,1]. Then there exists N; € N
such that for all N > Ny, there exists a permutation on of Ex such that dy(f,on) < € and
that the degree of recurrence of oy (that is, the ratio between the cardinality of the recurrent
set of o and the cardinality of Ex) belongs to |a, b|.

This proposition implies trivially the following corollary.

Corollary 5.24. For a generic conservative homeomorphism f € Homeo(X, A), the sequence
D(fn) of the degrees of recurrence of the discretizations accumulates on the whole segment
[0,1].

5.4 Average behaviour of discretizations

We now want to study the average behaviour of discretizations of a generic homeo-
morphism. For example, we could imagine that even if for a generic homeomorphism
f, the event “fy is a cyclic permutation” appears for infinitely many orders N, it is
statistically quite rare.

More precisely, we study the frequency of occurrence of properties related to the
discretizations of generic homeomorphisms: given a property (P) concerning discretiza-
tions, we are interested in the behaviour of the proportion between 1 and M of dis-
cretizations satisfying the property (P), when M goes to infinity. For this study, we
assume that the sequence of discretization grids is always self similar (which is true
for example for the torus equipped with discretizations upon uniform grids of orders
powers of an integer, see Section 3.7). This prevents us from having to deal with tricky
arithmetic problems about overlay of grids.

Definition 5.25. Let f € Homeo(X, ). We say that a property (P) concerning discretiza-
tions is satisfied in average if for all Ny € N and all € > 0, there exists N > N such that
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the proportion of integers M € {0,---,N} such that fy; satisfies (P) is greater than 1 —¢,
ie.

— 1
lim

Jim ———Card{Me {0, N}| fyy satisfies (P)} = 1.

We will show that most of the dynamical properties studied in the previous section
are actually satisfied on average for generic homeomorphisms. To start with, we set out
a technical lemma:

Lemma 5.26. Let I be a dense type of approximation in Homeo(X, X). Then for a generic
homeomorphism f € Homeo(X, A), for all € > 0 and all o> 0, the property (P): “Ey contains
at least o disjoints subsets which fills a proportion greater than 1 — e of Ey, each of them
stabilized by fy and such that the restriction of fy to each one is conjugated to a map of I
by a bijection whose distance to identity is smaller than €” is satisfied in average.

In practice, this lemma provides many properties satisfied on average, for instance:

— quantitative properties on discretizations, such as possessing at least M periodic
orbits;

— properties of existence of sub-dynamics on discretizations, such as possessing at
least one dense periodic orbit.

Proof of Lemma 5.26. Let us consider the set

f € Homeo(X, )
¢ = ﬂ U { LCard{Me {0,---,N}| f; satilsﬁes (P)}> 1-¢ [
e>0 N>N, { N+I v M
NoeN

We want to show that € contains a dense Gs of Homeo(X, A). The set € is a Gy of the
generic set [ \yeny DN, it suffices to prove that it is dense in (N D Let f € Homeo(X, )),
Ng €N, 8> 0and ¢ > 0. To prove it we want to find a homeomorphism g whose distance
to f is smaller than 6 and an integer N > N, such that

N+l Card{M €{0,---,N} | gu satisfies (P)} >1-¢

It is simply obtained in combining the density of the type of approximation " and the
fact that the sequence of grids is always self similar. O]

This lemma allows us to obtain some properties about the average behaviour of
discretizations. For instance here is an improvement of Corollary 5.36.

Corollary 5.27. For a generic homeomorphism f € Homeo(X, X), the property “fy has a e-
dense periodic orbit and the cardinality of Q(fn) satisfies Card(Q(fx)) = o(qn)” is satisfied
in average.

Or an improvement of Corollary 5.13.

Corollary 5.28. For a generic homeomorphism f € Homeo(X, \) and for all € > 0, the prop-
erty “fy is e-topologically weakly mixing” (see Definition 5.11) is satisfied in average.

Or even an improvement of Corollary 5.20.

Corollary 5.29. For a generic homeomorphism f € Homeo(X, ) and for all € > 0, the prop-

« Card(fn(En)) ” isfied 1
erty == qigy <€ is satisfied in average.
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And an improvement of Corollary 5.22.

Corollary 5.30. For a generic homeomorphism f € Homeo(X, A) and for all M € N, property
“fx has at least M periodic orbits” is satisfied in average.

However, note that the most simple property about discretizations, i.e. being a cyclic
permutation, cannot be proved by using Lemma 5.26. To do this, we need a slightly
more precise result, that requires the hypothesis that the grids are always strongly self
similar.

Theorem 5.31. For a generic homeomorphism f € Homeo(X, ), the property “fy is a cyclic
permutation” is satisfied in average.

Note that this implies that most of the discretizations of f does not behave like a
random map of a set of cardinality qy;, as a random map of a set with g elements has in
average logq periodic orbits (see for example [Bol01, XIV.5]).

Lemma 5.32. Let f € Homeo(X,\) and ¢ > 0. The sequence of grids is supposed to be
always strongly self similar. Then there exists Ny € N such that for all N > N, there exists a
permutation oy of Ey, such that dy(f,on) <e, ON[Ey, is a cyclic permutation of By, and for
all M € {Ny,---,N =1}, oy is a cyclic permutation of Enpiq \ Enm.

[) ° ° ° ° ° [)
® ) [ ] ) [} ° [ ] / / ° . [}
[) ° ° ° ° ° [] ‘:

\
[ ] ° ° [ ) [ [ ) \ ° T ™ e
[) ° ° ° ° ° []

Figure 5.3: Construction’ of Lemma 5.32 for two grids of orders 3 and 6 and zoom
around a point of a grid of order 3

Proof of Lemma 5.32. Applying Lax’s theorem (Theorem 5.5), we can find an integer N
and a cyclic permutation oy, of Ey, such that dy (f,on,) <& As the sequence of grids
is always strongly self similar, we can suppose that Ny is big enough to verify the con-
clusions of Definition 3.13.

Let us observe what happens for the order Ny + 1. We will define an application
GI,\IO+1 on Ey, 41, which will be close to the homeomorphism f. On Ey,, we define GI’\IO+1
as being equal to oy,. The idea is to repeat the proof of Lax’s theorem for the elements
of Exy+1 \ Ex,- To do that, we have to find a partition of X into sets with the same
measure, such that every element A, of this partition is one to one associated to a point
x of Ex 41 \ Ex,, and has “small” diameter. So it suffices to split equitably the mass of
the cubes Ey, to the other cubes.

7. Do not forget that we identify some points of the boundary!
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For this purpose, we cut each cube of Ey .1 corresponding to a point xy, of the grid
En into ay — 1 subsets of the same measure 1/(qn,+1(an — 1)) (see Figure 5.3). Each
of these subsets is assigned to the cube corresponding to the point h;(xy,). For each
x € Exy+1 \ En,, we define A, as the union of the cube C, with the subset that is asso-
ciated to it. Then all the sets A, have the same measure and have a diameter smaller
than twice the diameter of a cube of Ey ;1 plus ¢. We can now apply Lax’s theorem to
the homeomorphism f and the partition {A,},cg, of X, this partition being numbered
the same way as the partition Ey ,; (some numbers are skipped); this gives a cyclic
permutation of Ey ,; \ Ex, which is close to f. This cyclic permutation defines the per-
mutation GI’\IOH where it was not yet. This GI’\IO+1 is close to f and permutes cyclically
the elements of Ey, and these of Ey ;1 \ Exj,-

We finish the proof by an induction, iterating N — N times. O]

Corollary 5.33. Let f € Homeo(X,\) and € > 0 (we recall that the sequence of grids is
supposed to be always strongly self similar). Then there exists Ny € N such that for all
N > Ny, there exists a homeomorphism g whose distance to f is smaller than € such that
for all M € {N,---, Ny}, the discretization g\ is a cyclic permutation of Ey;. Moreover, this
property can be supposed to be verified on a neighbourhood of g.

Proof of Corollary 5.33. Let f € Homeo(X, ) and € > 0. Lemma 5.32 gives us an integer
Nj € N such that for all N > N, there exists a permutation oy of Ey, whose distance
to f is smaller than ¢/2, such that oy is a cyclic permutation of Ey, and for all M €
{No+1,---,N}, oy is a cyclic permutation of Eyg\ Ey_1. Set N > Ny, the idea is to modify
slightly the orbits of oy such that oy becomes a cyclic permutation on all the sets Ey;.

We begin by choosing two points xy, € Ey, and xl’\Io+1 € Ex,+1 such that xl’\10+1 be-
longs to the cube corresponding to the point xy,. Then, we modify oy in interchanging
the points xy, et xl’\10+1' in other words we set

N GN(xf\IOH) if x = x,
: 7
on'(x) =4 on(xyn,) ifx= XNy+1
on(x) otherwise.

Thus, Ggo is a cyclic permutation of Ey .1 and the discretization of order Ny +1 of GII\\IIO is

also cyclic. We build the same way some maps 0§0+1, e, GII}I in interchanging the images

of two adjacent points lying in the grids Ey; et Eyg,1. Then, for all M € {Ny,---,N}, the
discretization of 011\‘14‘1 on Eys is a cyclic permutation. Moreover, the distance between
the map GII\\II and oy is smaller than &/2. Combined with Proposition 3.3, this allows
us to interpolate Gg to a homeomorphism g whose distance to f is smaller than ¢ such
that for all M € {Nj,---,N}, the discretization of order M of g is a cyclic permutation
of Ey. A careful reader would notice that it may happen that in this construction, the
discretizations of g are not uniquely defined; depending on the choices made during
the definition of Py on E{, these discretizations may not be cyclic permutations. If we
want to avoid this problem, it suffices to modify slightly the map oX'; moreover this
ensures that the conclusions of the corollary are verified on a whole neighbourhood of
g O

Proof of Theorem 5.31. Let the set

& - ﬂ U f € Homeo(T",Leb) | )

B0 NNy ﬁ Card[M €{0,---,N}| fiy cyclic permutation} >1-¢
0€
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we want to show that & contains a Gs dense subset of Homeo(X,)A). Let f €
Homeo(X,A), Ny € N, 0 > 0 and ¢ > 0. This is equivalent to find a homeomorphism
g whose distance to f is smaller than 9, and an integer N > N, such that for all homeo-
morphism g’ close enough to g, we have

1
N+1

Card{Me{O,---,N}lgf\,IeP}>1—8.

Such a homeomorphism g is simply given by Corollary 5.33 for N > N, such that eky >
kn, - O

0

Remark 5.34. However, the property of approximation by bicyclic permutations in av-
erage cannot be proven directly with this technique.

Remark 5.35. A simple calculation shows that everything that has been done in this
section also applies to the behaviour of discretizations in average of Cesaro average, in
average of average of Cesaro average etc., i.e. when studying quantities

Card{M €{0,---,Ny}| fm satisfies (P)},

1 1 1 .
Z N, _ 1 Card{M €{0,---,Ny}| fm satisfies (P)}

5.5 Behaviour of all the discretizations

In the previous sections, we showed that the dynamical behaviour of discretizations
depends drastically on the order of discretization: even when looking at the frequency a
property appears on discretizations, a lot of different behaviours can occur. In contrast,
the dynamics of a generic homeomorphism is well known (see for example [Guil2])
and “independent from the homeomorphism”. We even have a 0-1 law on Homeo(X, X)
(see [GK98] or the final chapter of [Guil2]) which states that either a given ergodic
property is generic among conservative homeomorphisms, or its contrary is generic.
Thus, the dynamics of a generic homeomorphism and that of its discretizations seem
quite of independent. In this chapter, we will see that the variations of the dynamics
of the discretizations are as large as possible. Indeed, in general, from the convergence
dn(f, fn) — 0, it can be deduced by a compactness argument that the accumulation
set of the dynamical invariants (for example, invariant measures) of fy is included in
that of f. We will see that in the generic case, the inverse inclusion is also true: every
dynamical invariant of f is an accumulation point of the corresponding dynamical in-
variants of fy. Thus, in a certain sense, it is possible to deduce some dynamical features
of a generic homeomorphism from the corresponding dynamical features of all its dis-
cretizations. In other words, there is a shadowing property of the dynamical features
of the homeomorphism by that of its discretizations: for each dynamical feature of the
homeomorphism, its discrete analogues appear on an infinite number of discretizations.

For example, we will show that every periodic orbit of f is shadowed by a peri-
odic orbit of an infinite number of fy (Theorem 5.36). We will also show that every
f-invariant measure is the limit of a subsequence of fy-invariant measures (Theorem
5.43), and every f-invariant chain transitive compact set is the limit of a subsequence of
fn-invariant sets (Theorem 5.47). Moreover, in Chapter 6, we will give an application
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of this convergence of all the dynamics of the discretizations to that of the homeomor-
phism. This will give an algorithm to obtain numerically the rotation set of a generic
conservative homeomorphism: the upper limit (for the inclusion) of the rotation sets
of the discretizations of a generic conservative homeomorphism of the torus is equal to
the rotation set of the homeomorphism itself (see Corollary 6.23).

5.5.1 Periodic orbits

Firstly, we deduce from Proposition 5.16 that every periodic orbit of a generic home-
omorphism is shadowed by a periodic orbit with the same period of an infinite number
of discretizations. We will see later that this property of shadowing is true for a larger
class of compact sets (namely the chain transitive invariant compact sets, see Theorem
5.47), but the following theorem is also concerned with the period of the periodic orbits
of the discretizations. Moreover, the case of periodic orbits seems natural enough to be
handled separately.

Theorem 5.36. Let f € Homeo(X, A) be a generic homeomorphism. Then, for every periodic
point x of period p for f, for every 6 > 0 and for every Ny € N, there exists N > N such that
fn has a unique periodic orbit, whose length is p, which 6-shadows the f-orbit of x, and such
that Ey is covered by a single (pre-periodic) orbit of fy (in particular, this implies that this
periodic orbit attracts the whole set Ey).

In particular, this theorem implies that it is possible to detect the periods of the
periodic orbits of a generic homeomorphism from that of its discretizations.

Corollary 5.37. Let f be a generic homeomorphism of Homeo(X,\) and p be an integer.
Then f has a periodic orbit of period p if and only if there exists infinitely many integers N
such that fy has a periodic orbit with period p.

Proof of Corollary 5.37. The first implication is Corollary 5.36, and the other follows
easily from a compactness argument. O

F. Daalderop and R. Fokkink have proved in [DF00] (see also [Guil2, Part 3.2], the
proof is similar to that of Theorem 5.36) that for a generic element of f € Homeo(X, }),
the set of f-periodic points is dense in X.

To prove Theorem 5.36, the concept of persistent point will allow us to define open
properties about periodic points.

Definition 5.38. Let f € Homeo(X). A periodic point x of f with period p is said persis-
tent if for all neighbourhood U of x, there exists a neighbourhood 7" of f in Homeo(X)
such that every f € 7" has a periodic point X € U with period p.

Example 5.39. The endomorphism h = Diag(Aq,---,A,) of R”, with [[A; =1 and A; =1
for all 7, is measure-preserving and has a persistent fixed point at the origin (see for
example [KH95, page 319]). Let s be a reflection of R”, the application h o s is also
measure-preserving and has a persistent fixed point at the origin.

To create persistent periodic points, we use the theorem of local modification of
conservative homeomorphisms, which allows to replace locally a homeomorphism by
another. Although it seems “obvious” and has an elementary proof in dimension two,
the proof in higher dimensions uses the (difficult) annulus theorem. For more details we
may refer to [DF00] or [Guil2, Part 3.1].
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A,
B,

fi T

02

Figure 5.4: Technique of local modification

Theorem 5.40 (Local modification). Let 6y, 0, T; and T, be four bicollared embeddings ®
of "1 in R", such that o is in the bounded connected component® of o, and T, is in
the bounded connected component of 1,. Let Ay be the bounded connected component of
R"\ 0y and By the bounded connected component of R" \ 1; ¥ be the connected component
of R"\ (01 U0y) having 61 U 6, as boundary and A the connected component of R" \ (1, U tp)
having t; U, as boundary; A, be the unbounded connected component of R\ 6, and B, the
unbounded connected component of R" \ 1, (see Figure 5.4).

Suppose that Leb(A1) = Leb(B;) and Leb(X) = Leb(A). Let f; : A; — B; be two measure-
preserving homeomorphisms such that either each one preserves the orientation, or each one
reverses it. Then there exists a measure-preserving homeomorphism f : R" — R" whose
restriction to Ay equals f, and restriction to A, equals f,.

Since this theorem is local, it can be applied to an open space O instead of R" or,
even better, together with the Oxtoby-Ulam theorem (Theorem 3.14), to any domain of
chart of a manifold X instead of R” and measure ) instead of Lebesgue measure.

By perturbing a homeomorphism, we can make every periodic point persistent, as
stated by the following lemma.

Lemma 5.41. Let f € Homeo(X,A), € > 0, 0 > 0 and P € N. Then there exists g €
Homeo(X, A) such that d(f, g) < 6 and such that for every f-periodic point x of period smaller
than P, there exists a persistent periodic point of ¢ with the same period which e-shadows the

f-orbit of x.

Proof of Lemma 5.41. Indeed, by compactness of the set of compact subsets of X en-
dowed with Hausdorff topology, it suffices to prove it only for a finite number of f-
periodic orbits. If for each of these periodic orbits, we perform the perturbation of f
outside of a neighbourhood of the other periodic orbits, we reduce the proof to the case
of a single periodic orbit. More formally, we choose a neighbourhood D of x such that
the sets D, f(D),---, fP~}(D) are pairwise disjoints (and disjoint from a neighbourhood
of the others periodic orbits) and we locally replace f by the map ho f~P~1) (where &
is one of the two maps of Example 5.39, depending of whether f~(P~1) preserves orien-
tation or not) in the neighbourhood of f~!(x), using the theorem of local modification
(Theorem 5.40), such that f do not change outside the union of the sets (D). O

8. An embedding i of a manifold M in R" is said bicollared if there exists an embedding j : Mx[-1,1] —
R" such that jyixo) = i-

9. By the Jordan-Brouwer theorem the complement of a set which is homeomorphic to $”~! has exactly
two connected components: one bounded and one unbounded.
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Proof of Theorem 5.36. We choose a basis {Cy} of the topology of X. Now, for p,N,k €N,
we define the set %, n « as the set of f € Homeo(X, A) such that if f possesses a persistent
periodic point of period p which intersects Ci, then fy has a unique injective orbit
whose periodic orbit intersects C; and has length p. Note that the fact that we consider
persistent periodic points ensures that these sets are open.

Then, the combination of Proposition 5.16, Lemma 5.4 and Lemma 5.41 implies that

the set
() U #%x

peEN* MENN>M

is a dense Gy of Homeo(X, A), consisting of the homeomorphisms that verify the conclu-
sions of the theorem. O

5.5.2 Invariant measures

We now try to obtain information about invariant measures of a generic homeomor-
phism from invariant measures of its discretizations. More precisely, given all the in-
variant measures of discretizations of a generic homeomorphism, what can be deduced
about invariant measures of the initial homeomorphism? A first step in this study was
taken in 2006 by T. Miernowski in [Mie06, Part 8]:

Proposition 5.42. Let f € Homeo(X). For all N € N let yy C EN be a periodic cycle of
fn and vy the uniform probability measure on yN. Then, any limit point of the sequence of
measures (V)N 1S f-invariant.

In particular, if f is uniquely ergodic, whose unique invariant probability measure is
denoted by w, then the sequence of measures (vn)N tends to p.

The proof of this proposition essentially consists in an appropriate use of the com-
pactness of the set of probability measures on X. We now state the same kind of result
for generic homeomorphisms.

Theorem 5.43. Let f € Homeo(X,\) be a generic homeomorphism and suppose that the
sequence of grids (Ex)nen s sometimes strongly self similar. Then for every f-invariant
measure W, there exists a subsequence vy, of fn, -invariant periodic measures such that (vy, )i
tends to p.

This result is a particular case of the more general Theorem 5.45, for which we will
need the following notation.

Notation 5.44. For f € Homeo(X), we denote by ./ the set of Borel probability mea-

sures on X which are invariant under f, and by %If; the set of Borel probability measures
on Ey which are invariant under fy

Theorem 5.45. Let f € Homeo(X,\) be a generic homeomorphism and suppose that the
sequence of grids (Ex)nen is sometimes strongly self similar. Let My be the set of probability
measures on Ey that are invariant under fy. Then for every closed and convex subset M of
f-invariant measures, there exists a subsequence of { My} which tends to M for Hausdorff

topology.

Proposition 5.42 asserts that the upper limit of the sets of measures that are in-
variant under fy is included in the set of f-invariant measures. As the set of fy-
invariant measures is always convex, Theorem 5.45 asserts that generically, the sets
of fy-invariant measures accumulate on all the possible sets of measures.
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Before giving a detailed proof of Theorem 5.45, let us give its main arguments. An
ad hoc application of Baire’s theorem, together with compactness arguments, reduces
the proof to that of the following variation of Lax’s theorem, which asserts that for
every finite collection ./ of measures that are invariant under f, there exists a homeo-
morphism g which is close to f and a big order of discretization N such that the set of
periodic measures that are invariant under gy is close to ./ for Hausdorff distance.

Lemma 5.46 (Ergodic variation of Lax’s theorem). Suppose that the sequence of grids
(En)Nen is sometimes strongly self similar. Then, for all f € Homeo(X, A), for all collection of
f-invariant measures vq,---, vy, for all € > 0 and all kg, No € N, there exists g € Homeo(X, \)
and N > Ng such that d(f,g) < ¢, and that g\ possesses exactly € periodic orbits, and the

the invariant periodic measures {vlgN,~-~,v§N} supported by these periodic orbits satisfy

dist(vi,va) < kl—o for all i. Moreover, we can suppose that these properties are still true

on a whole neighbourhood of g.

For the proof of Theorem 5.45, we will need a slightly weaker result; however this
lemma will also be useful in the next part concerning the physical dynamics.

Before giving the formal proof of Lemma 5.46, we sketch its main arguments. Sup-
pose first that £ = 1 and that v; is ergodic. For this purpose we apply Birkhoff’s theorem
to f, v; and a recurrent point x: for all M large enough,

g

1
M éfk(x) =~ V1.
0

o~
Il

Since x is recurrent we can choose an integer M large enough such that x ~ fM(x). First
we approximate f by a cyclic permutation oy given by Lax’s theorem, then we slightly

modify oy into a map o}, by choosing GI’\I(GII\\I/I(XN)) = xN, as in Proposition 5.14. The

measure VEIN is the uniform measure on the orbit xy,---, O‘%{_l (xN), so it is close to vy; we
then just have to apply the proposition of extension of finite maps to finish the proof in
the case where ¢ =1 and v; ergodic. The proof of the lemma when v; is not ergodic but
only invariant is obtained by approximating the invariant measure by a finite convex
combination of ergodic measures. We use the hypothesis of self similarity of the grids
to apply the previous process on each subgrid; we approximate each ergodic measure of
the convex combination on a number of subgrids proportional to the coefficient of this
measure in the convex combination. We then make a final perturbation to merge the
periodic orbits of the different subgrids and apply the proposition of extension of finite
maps; this proves the case £ = 1. Finally, the general case (when there are several mea-
sures to approximate) is obtained is using (again) the fact that the grids are sometimes
strongly self similar.

Proof of Theorem 5.45. Recall that we denote by 9 the set of all Borel probability mea-
sures on X and that & is equipped with a distance dist compatible with the weak-*
topology. The set of compact sets of Borel probability measures on X is equipped with
the Hausdorff distance disty which makes this set compact; we consider a sequence
{M}¢ of compact sets of Borel probability measures which is dense for this topology.
Thereafter homeomorphisms will be taken in the generic set

N

NeN
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made of homeomorphisms whose N-th discretization is uniquely defined for all N.
Consider
t= () Ok
(g NO ko €N3

where @\, k, is the set of homeomorphisms f € ey PN such that if there exists a
closed convex set 4/ of f-invariant measures such that disty (4, #/) < k_' then there
exists N > Nj such that the set //I\f] of fy-invariant measures satisfies disty (.4, /Iﬁ;) <
2
k() ’

We easily check that if f € &, then it satisfies the conclusions of the theorem.

The fact that the sets @ n, «, are open follows from the upper semi-continuity of
f > M7 and the fact that in the set (yey P, the map g +> S is locally constant.

It remains to show that the sets @\, i, are dense, it follows from Lemma 5.46 in
the following way. Let f € Nnen @n and ¢, Ny and k. If disty (4, #F) > kl—o, there is
nothing to prove. So we suppose that disty (/4 #7) < kl_o By compactness, there exists
a finite collection of f-invariant measures vi,---, v such that #/ c |J; (vi, ki) (where

B(v,, % ) denotes the set of measures whose distance to v; is smaller than 1/ky). So it
suffices to find g close to f such that the set of gy-invariant measures is included in
U; B(vl, % ) but this fact is implied by Lemma 5.46. O

Proof of Lemma 5.46. To begin with, we prove the lemma for only one measure v = v;
which is ergodic. We want to show that there exists a homeomorphism g whose distance
to f is smaller than ¢, and an integer N > N, such that dist(v, M§(N) < k_zo

Since v is ergodic, for all continuous map ¢, by Birkhoft’s theorem,

Zafm )oY (5.1)

for v-almost every x. Let x € X be a recurrent point for f satisfying equation (5.1) (such
points form v-full measure set). There exists M € N such that for all M > M we have

1 &= 1
diSt[M Zéfm(x), V] < 2_k0 (52)

Since x is recurrent, there exists T > My such that d(x, f*(x)) < /4. Let o be a map
from Ey into itself given by Lax’s theorem: it is a cyclic permutation and its distance
to f is smaller than /2. For all N large enough the orbit (o{(xn))o<m<r shadows the
orbit (f™(x))o<m<r, thus d(xn, oy (xn)) < €/2. Then, we “close” the orbit of xy between
the points xy and o (xy), i.e. we set (as in Proposition 5.14, see also Figure 5.2)

, BES if yn =o' (xn)
on(¥N) _{ on(yn) otherwise.

Then dy(oy, f) < e and (xn,---, 08 Y(xN)) is a periodic orbit for o whose basin of at-

traction is the whole set Ey. If ¢ is small enough, then

1 1
dlst[— Zéfm E Zéc'ﬁ(xN)) < 2_k0 (5.3)

m
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Since the periodic orbit (o{"(x))g<m<r attracts Ey;, for all M’ large enough and yy €

En we have
1

1 1

M Z 60{\?1(?1\1) Mt)oo ; 60{\?!()(1\]). (54)
m=0 m=0

With Proposition 3.3, the same way as in Lemma 5.4, we construct a homeomorphism

g’ from the map oy such that the discretization gy and oy fit together, and such that

g’ and the restriction of gy to the orbit of xy fit together. Since dy(f,0)) < &, we can

furthermore assume that d(f,g’) < e. Thus, Equation (5.4) implies that

, 1 -1
8
VXN = T 60{5”(xN)' (5.5)
m=0
We now have all the necessary estimations to compute the distance between pfg\; and
v: applying Equations (5.2), (5.3), (5.5) and triangle inequality, we obtain:

¢ 1
dist(ps, v) < —.
ko

In the general case the measure v is only invariant (and not ergodic). So in the
second step of the proof we treat the case where there is only one measure that is not
ergodic. It reduces to the ergodic case by the fact that the set of invariant measures is
a compact convex set whose extremal points are exactly the ergodic measures: by the
Krein-Milman theorem, for all M > 1 there exists an f-invariant measure v’ which is a
finite convex combination of ergodic measures:

r
’_ e
v = E )\]vj,
j=1

and whose distance to v is smaller than kl_o To simplify the proof, we treat the case

where r = 2, the other cases being treated the same way. So v/ = A;v{ + A,v5. We use
the hypothesis of self similarity of the grids to build a permutation of a grid Ey which
is close to f and has a unique periodic orbit whose associated measure is close to v in
the way described by Figure 5.5. More precisely, the self similarity of the grids imply
that for all € > 0, there exists Ny € N such that for all N > N, the set Ey is partitioned

by disjoint subsets El\l, ,E}; such that for all 7, E\I is the image of the grid Ey, by a

Figure 5.5: Construction of Lemma 5.46: the measure carried by the blue cycle is close
to a convex combination of the measures carried by the black cycles
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Figure 5.6: Construction of Lemma 5.46: before the perturbation, the red (crosses) sub-
grids carry a measure close to v{, the blue (points) subgrids carry a measure close to v{
and the green (stars) subgrid carries a cyclic permutation; we compose oy by two cyclic
permutations (red and blue arrows) to create a long periodic orbit which attracts the
whole grid Ey and carries a measure close to v’

bijection h; which is e-close to identity; in particular we have P = qn/qy,. Then, Lax’s
theorem (Theorem 5.5) imply that there exists a permutation oy whose distance to f is
smaller than € and which is a cyclic permutation on each set Ei\f We denote by P the
number of such cycles and approximate the A; by multiples of 1/P:

/_L)‘IPJ
AL = P
and
N =1-A -+
2= 1 P

Then we have [A; — A{| < % and [A; - A)| < % Increasing Ny if necessary, we make two
different modifications of the map oy on the sets E}; to obtain a map of:

1. on the sets Ey; with 1 <i <P)/, we do the previous construction concerning ergodic
measures: on each of these sets, 01’\”@- carries an unique invariant probability mea-
N

e’ ; ; ; e e 1 .
sure v;" satisfying dist(v{, v{) < 15
2. on the sets Ei\l with 2+ PA] < i < P, we do the previous construction concerning
ergodic measures: on each of these sets, oy [ carries an unique invariant probability
N
e/ ; : : e \e 1
measure v; satisfying dist(v{,v5) < .
i ymg ( i 2)— 10kq

It remains to merge the periodic orbits on the sets Ei\] to create a periodic orbit
which carries a measure which is close to v’ (see Figure 5.6). We first consider a point
x1 € Ey such that x; belongs to the periodic orbit of GI’\IIEI , and compose oy by a cyclic

N

permutation of the set {hi(h;l(xl))}lsisp()\i+1). Then, we consider a point x, € Ey such
that x, belongs to the periodic orbit of GI’\”E«I& , and compose oy by a cyclic permutation
of the set {I;(hy" (x2))}p(x; +1)<i<p-

Thus, by construction, the obtained map oy carries a single periodic orbit (thus
this orbit attracts the whole grid Ey); we denote by u°N. Moreover, if we consider a
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point xy belonging to this orbit, its orbit distributes like the measure v; during a time
proportional to A}, like the measure v, during a time proportional to A}, whereas it
covers the rest of the orbit during a (small) time proportional to 1/P. Thus, increasing
N (therefore P) if necessary, it means that the distance between the measures ”0{6 and v’
is smaller than 1/ky. To finish the proof of the lemma when there is only one measure
to approximate, it suffices to interpolate the map o{; by a homeomorphism close to f in
applying the proposition of extension of finite maps (Proposition 3.3).

To treat the case where there are several measures to approximate, we use once more
the fact that the grids are sometimes strongly self similar. On each of the subgrids, (and
considering sub-subgrids if necessary), we apply the process of the previous part of the
proof, and apply the proposition of extension of finite maps to find a homeomorphism
which satisfies the conclusions of the lemma. O

5.5.3 Invariant compact sets

There is a similarity between invariant measures and invariant compact sets, thus
the previous theorem is also true for invariant compact sets. As in the previous section,
we begin by a particular case of the main theorem of this section (Theorem 5.49).

Theorem 5.47. Let f € Homeo(X,\) be a generic homeomorphism and suppose that the
sequence of grids (Ex)nen 1s sometimes strongly self similar. Then for every f-invariant
chain transitive compact set K C X, there exists a subsequence Ky, of fn,-periodic orbits
which tends to K for Hausdorff topology.

In the ergodic case, the set of invariant measures of a given map had to be closed and
convex; concerning compact sets, there are also conditions for a collection of compact
sets to be the set of compact invariant sets of a map. This motivates the following
definition.

Definition 5.48. Let f € Homeo(X). We say that a set # of compact subsets of X that
are invariant under f is admissible for f if there exists % C # such that:

(i) every Ky € % is chain transitive;

(ii) every K € # is a finite union of elements of %.

Theorem 5.49. Let f € Homeo(X, ) be a generic homeomorphism and suppose that the
sequence of grids (Ex)nen is sometimes strongly self similar. Let Ky be the set of compact
subsets of Ey that are invariant under fy. Then for every collection # of compact subsets of
X that is admissible for f, there exists a subsequence of F which tends to % for Hausdorff
topology 1°.

Like in the ergodic case, this theorem expresses that the sets of invariant compact
sets for fy accumulate on all the admissible sets of invariant sets for f.

The proof of Theorem 5.49 is very similar to that of Theorem 5.45. An appropriate
application of Baire’s theorem reduces the proof to that of the following variation of
Lax’s theorem.

Lemma 5.50 (Compact variation of Lax’s theorem). Suppose that the sequence of grids
(En)Nen is sometimes strongly self similar. For all f € Homeo(X, X), for all collection #
of compact subsets of X that is admissible for f, for all € > 0 and ko, Ny € N, there exists
g € Homeo(X, \) and N > N such that d(f,g) < ¢, and that the set of gy-invariant sets 1! on

10. That is, Hausdorff topology on the sets of compacts subsets of X endowed with Hausdorff distance.
11. Which consists of unions of periodic orbits of gy.
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Ey is 1/ko-close to F for Hausdorff distance. Moreover, we can suppose that these properties
are satisfied on a whole neighbourhood of g.

Sketch of proof of Lemma 5.50. The proof is very similar to that of Lemma 5.46. We take
a collection # of compact subsets of X which is admissible for f. By compactness of %/,
it is close for Hausdorff topology to a finite set {K;}U---U{K,}. Then, every compact set

K is close to a finite union Kll U-- ~UKfi of chain transitive compact sets that are invariant
under f. As each set KZ is chain transitive, there exists a f-pseudo orbit (I)Z which is close
to Kf for Hausdorff distance. We then apply the same proof strategy as for Lemma 5.46

to the pseudo orbits (I)f to obtain directly the conclusions of Lemma 5.50. O]

5.6 Physical dynamics

In the previous section, we proved that generically, the upper limit of the sets of in-
variant measures of discretizations is the set of invariant measures of the initial home-
omorphism. This expresses that the sets of invariant measures of discretizations accu-
mulate on “the biggest possible set”. However, we might expect that physical measures
— that is, Borel measures which attracts a lot of points with respect to A (see Definition
3.9 page 51) — play a specific part: their definition expresses that they are the mea-
sures that can be observed in practice on numerical experiments, because they governs
the ergodic behaviour of A almost every point !?; in the case of a generic conservative
homeomorphism, Oxtoby-Ulam theorem [OU41] implies that A is the unique physical
measure. Moreover, results of stochastic stability are known to be true in various con-
texts (for example, expanding maps [Kif86a],[Kif86b], [Kel82], uniformly hyperbolic
attractors [Kif86b], [You86]...). These theorems suggest that the physical measures can

always be observed in practice, even if the system is noisy. Given this background, we
N

are tempted to think that the natural invariant measures py of fy, which can be seen

as the physical measures of fy, converge to the physical measures of f.

Recall that p{(N is the limit in the sense of Cesaro of the pushforwards by iterates of

fn of uniform measure Ay on Ey (see Definition 3.10 page 52):

The measure }/L{é\] is supported by the recurrent set of fy; it is uniform on every periodic

orbit and the total weight of a periodic orbit is proportional to the size of its basin of
attraction.
The expectation that the measure A plays a specific part is supported by the fol-

lowing variation of Proposition 5.42, obtained by replacing vy by }A{(NI if f is uniquely
N

ergodic, then the measures py converge weakly to the only measure w that is invariant under

f.

Unfortunately, we show that this is not at all the case: the sequence of measures
(M{(N ) accumulates of the whole set of f-invariant measures. More precisely we have the
following theorem:

12. Recall that A is a good measure, in particular it is positive on every non-empty open set.
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Theorem 5.51. If the sequence of grids (Ex)Nen is sometimes strongly self similar, then for

a generic homeomorphism f € Homeo(X, \), the set of limit points of the sequence (V{(N)NEN
is exactly the set of f-invariant measures.

This theorem can be seen as a discretized version of the following conjecture.

Conjecture 5.52 (F. Abdenur, M. Andersson, [AA13]). A homeomorphism f which is
generic in the set of homeomorphisms of X (without measure preserving hypothesis) that
do not have any open trapping set is wicked, i.e. it is not uniquely ergodic and the measures

m—1

Y f(Leb)

m
k=0
accumulate on the whole set of invariant measures under f.

The behaviour described in this conjecture is the opposite of that consisting of pos-
sessing a physical measure.

Sketch of proof of theorem 5.51. The proof is similar to which of theorem 5.45: the set &/
is replaced by
%, = m @g,No,k()’

(Z,No,ko)eN?’

where
(3vf—inv. sdist(v, ¥p) < kl—o) =

s

ONeko =3f €[ | DN
orko 1\@ (3NZNO ZdiSt(\?g,}AQ\l)< %)

and {v/} is a countable set of Borel probability measures that is dense in the whole set
of Borel probability measures. A direct application of Lemma 5.46 leads to the fact that
every set O\, k, is open and dense. O

We have also another corollary of Lemma 5.46 about physical dynamics, which can
be seen as a combination of Theorem 5.51 and of a discrete Birkhoff’s theorem.

Theorem 5.53. If the sequence of grids (Ex)nen is sometimes strongly self similar, then for a
generic homeomorphism f € Homeo(X, ) and for every f-invariant measure |, there exists
a subsequence fy, of discretizations such that for every x € X, the sequence of measures 13

}Af:Nk tends to p.

In particular, this theorem asserts that it is impossible to detect the physical measure
of a generic conservative homeomorphism by looking at the physical measures of its
discretizations:

Remark 5.54. This seems to contradict the empirical observations made by A. Boyarsky
in 1986 (see [Boy86] or [GB88]): when a homeomorphism f has only one ergodic mea-
sure p which is absolutely continuous with respect to Lebesgue measure, “most of” the

h

measures py tend to measure p. However, the author does not specify in what sense he
means “most of the points”, or if his remark is based on a tacit assumption of regularity
for f.

13. Recall that by Definition 3.10, }/L,]:N is the Cesaro limit of the pushforwards of the Dirac measure 9y,
by the discretization fy.
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Note that as in the previous section, we have a compact counterpart of Theo-
rem 5.51:

Theorem 5.55. If the sequence of grids (Ex)nen is sometimes strongly self similar, then for a
generic homeomorphism f € Homeo(X, X), the set of limit points of the sequence (Q(fn))NeN
is exactly the set of limit points of finite unions of f-invariant chain transitive compact sets.

5.7 Addendum: generic conjugates and generic grids

In this addendum we want to adapt the proofs of this chapter to the case of dis-
cretizations of conjugated generic homeomorphisms. More precisely, we fix a conser-
vative homeomorphism f and we look at the dynamics of the discretizations of hfh~!,
where h is a generic conservative homeomorphism. This is equivalent to fix a dynamics
f and to wonder what is the dynamics of the discretizations of generic realizations of f.
Another point of view is to see these discretizations as discretizations of a fixed home-
omorphism on a generic sequence of grids, where by definition a generic sequence of
grids is the image of a good sequence of grids by a generic homeomorphism.

The following property is a finite maps extension result for conjugations of a given
homeomorphism. It implies that under some weak hypothesis, the results are the same
for generic conjugations of a fixed homeomorphism and for generic conservative home-
omorphisms.

Proposition 5.56. Let f be a conservative homeomorphism whose set of fixed points has
empty interior, and ¢ : ENy — Ey be such that dy(f,o) < e. Then there exists a conservative
homeomorphism h such that d(h,1d) < e and such that the homeomorphism g = hf h™'satisfies
gn = 0 (and these properties remain true on a whole neighbourhood of h).

Proof of Proposition 5.56. Let & = min{1/(2N),e —d(h,1d)}. Let x,---,x, be the points
of EN. It may happen that some of these points are fixed points of f, thus we de-
fine an alternative sequence of points (x{,y{,--- ,x;IN,yéN) by induction, which is close
to the sequence (xy, f(x1), -, x4, f (x4,)) and contains no fixed points. Suppose that
we have constructed the sequence until x, , and, y, ;. Then there exists x, € X o-
close to x;, which is not a fixed point of f and which is different from all the points
X3, fx) fN ), x) o f(xp ), fH(x, ). Similarly, there exists a point y, -close to
o(x¢) and different from all the points y;,---,y,1 and xq,--- ) Xgy- So on, we define a set
(X191 Xgu Vi)

We can now build the homeomorphism h with the proposition of extension of finite
maps (Proposition 3.3): we choose a conservative homeomorphism h such that for all ¢,
we have h(x,) = x¢ and h(f(x;)) = v,. As for all £, the point x, is e-close to x,, the point
o(x¢) is e—d(h,Id)-close to y, and the point f(x;) is d(h,1d)-close to 5(x;), we can choose
h such that d(h,Id) < e. Moreover, if we set ¢ = hfh~!, then by construction we have
8(xe) = h(f(x;)) = v;. As v, is 1/(2N)-close to o(x,), we obtain gn(x,) = o(x¢) forall £. [

As in this chapter, the only perturbation result we used was the proposition of finite
maps extension (Proposition 3.3), this proposition implies the following corollary.

Corollary 5.57. All the results stated in this chapter concerning the dynamical behaviour
of the discretizations of generic conservative homeomorphisms remain true for the dynamical
behaviour of the discretizations of conservative homeomorphisms which are generic among
those conjugated to a given conservative homeomorphism whose set of fixed points has empty
interior.
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5.8 Numerical simulations

We now present the results of numerical simulations of conservative homeomor-
phisms. We are interested in whether it is possible to observe the behaviours described
by our theoretical results on actual simulations. It is not clear that the orders of dis-
cretization involved in these results can be reached in practice, or if simple examples
of homeomorphisms behave the same way as generic homeomorphisms. For instance,
can we observe a lot of discretizations that are cyclic permutations of the grid, or that
have a small degree of recurrence? Given a homeomorphism f, is it possible to see the
invariant measures of the discretizations accumulating on the set of invariant measures
of f? Is it possible to recover the periodic points of the homeomorphism?

We simulate homeomorphisms f(x,y) = (Q o P)(x,y), where both P and Q are home-
omorphisms of the torus that modify only one coordinate:

P(x,9)=(xy+p(x)) and Q(xp)=(x+4(1).p)

so that P and Q both preserve Lebesgue measure. We discretize these examples accord-
ing to the uniform grids on the torus

(TN et2lo<i
En={(x &) e o<ijsN-1}.
We perform simulations of two conservative homeomorphisms which are small pertur-
bations of identity or of the standard Anosov automorphism A : (x,y) — (x + v, x + 2p).
— To begin with we study f; = Q o P, with

(x) ! (2Tt x 187x) + L (21 x 253x) ! (21 x 775x)
X) = ——COS X — S1n X)— —COS X),
P 209 271 703

1 1 1
q(y) = 287 cos(2m x 241y) + 203 sin(21t x 197y) — FYTI sin(2mt x 811y).

This conservative homeomorphism is a small C° perturbation of identity. Expe-
rience shows that even dynamical systems with fairly simple definitions behave
quite chaotically (see for example [GT83]). We can expect that a homeomorphism
such as f; has a complex dynamical behaviour and even more, behaves essen-
tially as a generic homeomorphism, at least for orders of discretization that can
be reached in practice. Note that we choose coefficients that have (virtually) no
common divisors to avoid arithmetical phenomena such as periodicity or reso-
nance. Also, we have chosen to simulate a homeomorphism close to the identity
to avoid phenomenons like “every orbit of the discretization fy is e-dense for all
N large enough”: in this case it would be difficult to see something interesting in
the images of the invariant measures.

— We also simulate f; the composition of f; with the standard Anosov automor-

phism
2 1
A_(l 1)'

say f3 = Qo Po A. This makes it a small C’-perturbation of A. Thus f; is semi-
conjugated to A but not conjugated: to each periodic orbit of A corresponds many
periodic orbits of f;. As for f;, we define f; in the hope that the behaviour of
its discretizations is fairly close to that of discretizations of a generic homeomor-
phism.
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We have chosen to define the homeomorphisms we compute with lacunary trigono-
metric series, to “mimic” the action of Baire theorem.

Note that the homeomorphisms f; and f; have at least one fixed point (for f3, simply
make simultaneously p(x) and q(v) vanish; for f4, note that 0 is a persistent fixed point of
A). Theoretical results indicate that for a generic homeomorphism f which has a fixed
point, infinitely many discretizations has a unique fixed point; moreover a subsequence

of (]AZI[,I\;)NeN tends to an invariant measure under f supported by a fixed point; we can
test if these properties are true on simulations or not.

We refer to the page 67 for a presentation of the algorithm we used for the simula-
tions.

5.8.1 Combinatorial behaviour

As a first step, we are interested in some quantities related to the combinatorial
behaviour of discretizations of homeomorphisms. These quantities are:

— the cardinality of the recurrent set Q(fy);

— the number of periodic orbits of the map fy;

— the maximal size of a periodic orbit of fy.

Recall that according to the theoretical results we obtained, for a generic homeomor-

phism, the degree of recurrence M should accumulate on the whole segment

[0,1] (Corollary 5.24), the number of orblts of fy should be 1 for some N and should
be bigger than (for example) /N for other orders N (Corollaries 5.9 and 5.22) and the
maximal size of a periodic orbit of fy should be sometimes 1, and sometimes equal to
gn (Corollaries 5.9 and 5.22).

We have calculated these quantities for discretizations of orders 128k, for k from
1 to 150 and have represented them graphically (see Figure 5.7). For information, if
N =128 x 150, then gy ~ 3.7 x 108.

We begin with the cardinality of the recurrent set Q)(fy) (Figure 5.7, top). Contrary

to what the theoretical results provide for a generic homeomorphism, for all simula-

CardQUn)) tonds clearly to 0 as N increases. More specif-

tions, the degree of recurrence
ically, the cardinality of Q(fy) evolves much more regularly for f; than for f;: for f3
the value of this cardinality seems to be the sum of a smooth increasing function and
a random noise, but for f; this value seems to be the product of a smooth increasing
function with a random noise. We have no explanation for the parabolic shape of the
curve for f3: it reflects the fact that the cardinality of ()((f;)n) evolves in the same way
as VN = g~ (whereas for a random map of a finite set with g elements into itself, it
evolves as 4/g). Finally, it is interesting to note that for f;, the size of the recurrent set
is distributed more or less around the size of the recurrent set of a random map of a set
with gy elements into itself, which depends (asymptotically) linearly of N (because it is
of the order of 1/gy) and is worth about 24000 for N = 128 x 150 (see [Bol01, XIV.5] or
the Theorem 2.3.1 of [Mie05]).

According to the results of the previous sections, for a generic conservative homeo-
morphism f, the number of periodic orbits of fy should be sometimes equal to 1 and
sometimes bigger than (for example) /gn. It is clearly not the case for these simula-
tions. In addition, its behaviour is clearly not the same for f; and for f; (Figure 5.7,
middle): for f; the number of orbits reaches quickly a value around 1.5x10* to stagnate
thereafter, while for f; it oscillates between 1 and 16, regardless the order of discretiza-
tion. Note that contrary to what we have observed for the cardinality of the recurrent
set, this seem to contradict the fact that the discretizations of f; behave like random
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Figure 5.7: Size of the recurrent set Q((f;)n) (top), number of periodic orbits of (f;)n
(middle) and length of the largest periodic orbit of (f;)y (bottom) depending on N, for
f3 (left) and f (right), on the grids Eyy with N =128k, k=1,---,150.

maps: if this were the case, the behaviour of this quantity should be proportional to
log N, with a value close to 25 for N = 128 x 150. These graphics can be compared with
those representing the size of the recurrent set Q((f;)n): the number of periodic orbits
and the size of the recurrent set are of the same order of magnitude for f; (up to a fac-
tor 5), which means that the average period of a periodic orbit is small (which is not
surprising, since f3 is a small perturbation of identity). They differ by a factor roughly
equal to 103 for f;, which means that this time the average period of a periodic orbit is
very large. This can be explained partly by the fact that the standard Anosov automor-
phism tends to mix what happens in the neighbourhood of identity. The fact remains
that these simulations (such as the size of the recurrent set (((f;)n)) suggest that the
behaviour in the neighbourhood of identity and of the standard Anosov automorphism
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are quite different, at least for reasonable orders of discretization.

Regarding the maximum size of a periodic orbit of fy (Figure 5.7, bottom), again its
behaviour does not correspond to that of a generic homeomorphism: it should oscillate
between 1 and gy, and this is not the case. However, it varies widely depending on N,
especially when N is large. The qualitative behaviours are quite similar for the three
simulations, but there are some quantitative differences: the maximum of the maximal
length of a periodic orbit is twice greater for f; than for f;. For these simulations, there
is no significant difference between the behaviours of the discretizations of f3: if we
remove the very big value that is attained by the maximal length of the periodic orbit
of f3 (for N close to 145), the graphics are very similar.

5.8.2 Behaviour of invariant measures

Figure 5.8: Distance between Lebesgue measure and the measure M(TQ)N depending on N

for f5 (left) and f; (right), on the grids Ex with N =128k, k=1,---,150.

We have simulated the measure ytflf;)N for the two examples of conservative home-

omorphisms f; and f; as defined page 99. Our purpose is to test whether phenomena

as described by Theorem 5.51 can be observed in practice or not. We obviously cannot
fidn

expect to see the sequence (M(Té) )Nen accumulating on all the invariant probability mea-

sures of f, since these measures generally form an infinite-dimensional convex set !4,
but we can still test if it seems to converge or not. In particular, we can try to detect
whether Lebesgue measure (which is the unique physical measure by Oxtoby-Ulam
theorem [OU41]) play a particular role for these invariant measures or not.

We present images of sizes 128 x 128 pixels representing in logarithmic scale the

density of the measures }AJ;I\;: each pixel is coloured according to the measure carried by

the set of points of Ey it covers. Blue corresponds to a pixel with very small measure
and red to a pixel with very high measure. Scales on the right of each image corre-
sponds to the measure of one pixel on the log 10 scale: if green corresponds to —3, then

a green pixel will have measure 1073 for }AJ;NZ For information, when Lebesgue measure
is represented, all the pixels have a value about —4.2.

14. To see that, simply observe that the set of periodic points is a union of Cantor sets; the uniform
measures on these periodic orbits form an uncountable free family.
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h

Firstly, we have computed the distance between the measure i, and Lebesgue mea-
sure. The distance we have chosen is given by the formula

oo 2k—1

d(u,v) = Z% Z |1(Cij ) —v(Cijx)| €10,2],

where i1 S
[P+ joj+
s =30 5 e e |
In practice, we have computed an approximation of this quantity by summing only on

the k € [[0,7]. Theoretically, the distance between the measure p@ and Leb (Figure 5.8)
should oscillate asymptotically between 0 and the supremum over the set of f-invariant
measures p of the distance between Lebesgue measure and p. For f; (left of Figure 5.8),

wee see that the distance between pr

T2
p{(N is close to Lebesgue measure for small values of N, and then is more and more far

away from Lebesgue measure. It can be explained by the fact that for a small N, the
discretization fy does not see the irregularities of f and is more or less close to the

discretization of identity. The behaviour for f; is very different: overall, the distance
N

and Leb seem to increase with N: the measure

and Leb is much smaller and decreasing, but we observe peaks of this

T2
distance: there are a few values of N for which péNz is far away from Leb.

The results of simulations of invariant measures of discretizations of f; (which is a
C? conservative perturbation of identity) are fairly positive: they agree with theoreti-
cal results about discretizations of generic conservative homeomorphisms, in particular

with Theorem 5.51. Indeed, when we compute discretizations of the homeomorphism

f3 on the grids of size 2k x 2F (Figure 5.9), we first observe that yL]TCNZ is fairly well dis-

tributed, say for 2k = 128,256,512. When the order of the discretization increases, we
can observe places where the measure accumulates; moreover these places changes a

lot when the order of discretization varies (see Figure 5.10): for the orders N we tested,

the measures y{l\i and péNz“

in common with Lebesgue measure. This agrees fairly with what happens in the C°

between p

are always completely different, and do not have anything

generic case, where we have proved that the measure u{(N depends very much on the
order of discretization, rather than on the homeomorphism itself. There is also an other
phenomenon: when the size of the grid is large enough (around 10'? x 10!?), some

areas uniformly charged by the measure py; appear; their sizes seem to be inversely
proportional to the common mass of the pixels of the area; we do not know why this
phenomenon appears. ..

For the discretizations of f;, which is a C? conservative perturbation of the linear

Anosov automorphism A, the simulations on grids of size 25 x 2k might suggest that

the measures }/L(I%)N tend to Lebesgue measure (Figure 5.11). In fact, making a large

number of simulations, we realize that there are also strong variations of the behaviour
of the measures (Figure 5.12): the measure is often well distributed in the torus, and
sometimes quite singular with respect to Lebesgue measure (as it can be seen in Figure
5.8). For example, when we discretize on the grid of size 22400 x 22400 (middle right
of Figure 5.12), we observe an orbit of length 369 which mass 84% of the total mea-
sure.In fact the behaviour of discretizations looks the same that in the neighbourhood
of identity, modulo the fact that the linear Anosov automorphism A tends to spread the
attractive periodic orbits of the discretizations on the entire torus: for many values of
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Figure 5.9: Simulations of invariant measures },L(lff)N on the grids Ey, with N = 2%, k =

7,---,15 (from left to right and top to bottom).

(fa)

N, composing by A spreads the behaviour of the measure .y, ", but sometimes (in fact,
seldom) a fixed point of (f3)n which attracts a large part of Ey is located around one of

the few periodic points of small period for A. This then creates a periodic orbit for (f;)n

(f4)N .

with a big measure for py,
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(f3)n
TZ
20000,---,20008 (from left to right and top to bottom).

Figure 5.10: Simulations of invariant measures p. on the grids Ey, with
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(fa)n
T2

Figure 5.11: Simulations of invariant measures p on the grids Ey, with N = 2K,

k=7,---,15 (from left to right and top to bottom).
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(fa)n
TZ
22395,---,22403 (from left to right and top to bottom).

Figure 5.12: Simulations of invariant measures p on the grids Ey, with
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5.8.3 Periodic points
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Figure 5.13: Unions of the sets of periodic points of period smaller than 5 of all the
discretizations on grids Ey with 1000 < N < 2000 for A (left), a small C! perturbation
of A (middle) and a small C° perturbation of A (right); period 1: purple circle, period
2: red diamond, period 3: green square, period 4: blue triangle pointing right, period
5: yellow triangle pointing up.

We have also conducted simulations of the periodic orbits of period smaller than 5
of the discretizations for three conservative homeomorphisms:

— the linear map
2 1
a=(i 1)

— asmall C! perturbation of A, say g; = Q; o P 0 A, with

1 1
Pi(x,y) = (x— 0.01975, vy + Ecos(Zn X X) + ﬁsin(%( X 7x)+ 0.02478),

1 1
Qi(x,p) = (x+ Ecos(2n Xy)+ 31—15in(2n x59)+0.01237 , vy + 0.00975);

— and a small C° perturbation of A, say g, = Q, o P, 0 A, with

1 1
Py(x,p) = (x -0.01975, vy + 31 cos(2mtx 17x) + Tl sin(27 x 233x) + 0.02478),

1 1
Qa(x,y) = (x+ ECOS(ZT( X 23p) + ﬁsin(%( x217y)+0.01237, y + 0.00975).

We represent the accumulation of the periodic points of period smaller than 5 of the
discretizations fy, for 1000 <N <2000.

It can be easily seen that the periodic points of A are rational points; it is also easy
to compute by hand the coordinates of the periodic points of period smaller than 5. As
A is Anosov and as Anosov maps are structurally stable (see [KH95], Theorem 2.6.3
for the linear maps of the torus and Corollary 18.2.2 for the general case), a small C!
perturbation of A is (C°) conjugated to A: if dci(A, g) is small enough, then there exists
a homeomorphism h € Homeo(T?) which maps bijectively each set of periodic points
of a given period of A to the set of periodic points with the same period of g. If the
perturbation of A is only CY, then if dco(A, g) is small enough but dci(A, g) is big, then it
can happen that the homeomorphism g is only semi-conjugated to A. But for a generic
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homeomorphism, the set of periodic points of a given period is either empty, either a
Cantor set with zero Hausdorff dimension. Thus, to any periodic point of the linear
map A will correspond a Cantor set of periodic points of g (in other words, a generic
small C? perturbation blows up each periodic point).

The theoretical results about discretizations assert that any periodic point of a
generic homeomorphism is shadowed by a periodic orbit with the same period of an in-
finite number of discretizations (see Theorem 5.36); the same result holds for a generic
C!-diffeomorphism (see Lemma 10.2). Thus, on the simulations, we should recover all
the periodic points of the initial map for both a small C! and C° generic perturbation.

On the left of Figure 5.13, we see that we recover all the periodic points of pe-
riod < 5 of the linear Anosov map A. It is logical: these periodic points have rational
coordinates with small denominators, thus they are located on a lot of grids of order
N € [1000,2000].

In the case of a small C! perturbation g; of A (middle of Figure 5.13), we also recover
all the periodic points of period < 5 of the map: we can see that we detect one (and
almost always only one) periodic point of g; in the neighbourhood of each periodic
point af A. In a certain sense, the simulation detects the conjugation between A and g;.

For the small C° perturbation g, of A (right of Figure 5.13), we observe the phe-
nomenon of blow up of the periodic points of A: to each periodic point of A corresponds
a lot of periodic points of the discretizations of g,. Thus, this simulation show two phe-
nomenon. Firstly, the fact that the set of periodic points of a generic homeomorphism is
a Cantor set is illustrated by some simple examples of homeomorphisms. Secondly, the
behaviour predicted by Theorem 5.36 can be observed on practice: we recover (all) the
periodic points of the homeomorphism with small period by looking at all the periodic
points of the discretizations on grids of reasonable orders.






CHAPTER 6

How ROUNDOFF ERRORS HELP TO COMPUTE
THE ROTATION SET OF TORUS
HOMEOMORPHISMS

Introduction

We now present a practical application of the concept of discretization to the nu-
merical computation of rotation set of torus homeomorphisms.

In this chapter, to be able to talk about the rotation set of the homeomorphisms,
we will only consider homeomorphisms of the torus T? which are homotopic to the
identity. In other words, the space phase will always be X = T?. We fix once for all a
good measure ) on T? (see Definition 3.1), and a sequence of grids Ey on T?, which
is sometimes strongly self-similar (see Definition 3.13). As an example of such grids,
when A = Leb, the reader can think about the canonical grids

E&:{(é,é)eﬂ 1 Si,jsN}
(see Section 3.7 for other examples of grids).

We begin with the presentation of the concept of rotation set of a torus homeomor-
phism.

The concept of rotation number for circle homeomorphisms was introduced by H.
Poincaré in 1885. In [Poi85], he states the theorem of classification of orientation-
preserving circle homeomorphisms: if a homeomorphism has a rational rotation num-
ber, then it posses a periodic point and all its periodic points have the same period;
moreover the w-limit set of every point is a periodic orbit (the dynamics is asymptoti-
cally periodic). On the contrary, if a homeomorphism has an irrational rotation number
a, then it is semi-conjugated to the rigid rotation of angle « (the dynamics contains that
of the irrational rotation). Ever since, the rotation number has been the fundamental
tool in the study of the dynamics of circle homeomorphisms (see for example [Her79]).

About a century after was introduced a generalisation to dimension 2 of this rotation
number, the rotation set for homeomorphisms of the torus which are homotopic to the
identity. Due to the loss of natural cyclic order on the phase space, there is no longer
a single speed of rotation for orbits; informally the rotation set is defined as the set of
all possible rotation speeds of all possible orbits. Like in dimension 1, this topological
invariant gives precious informations about the dynamics of the homeomorphism; for
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example, depending of the shape of this set, we can ensure the existence of periodic
points of a given period ([Fra88], [Fra89]). Moreover, the size of this convex set gives
lower bounds on the topological entropy of the homeomorphism ([LM91] and [Kwa93]
for an explicit estimation)... See the course [Bég07] of F. Béguin for a quite complete
survey of the results about the rotation sets.

The aim of this chapter is to tackle the question of numerical approximation of
the rotation set: given a homeomorphism of the torus homotopic to the identity, is it
possible to compute numerically its rotation set? In particular, is it possible to detect its
dimension? Is it possible to approximate it in Hausdorff topology? And what algorithm
shall we use to compute it?

First of all, we build a theoretical model of what happens when we try to calculate
the rotation set of a homeomorphism with a computer. To do that, we first take into
account the fact that the computer can calculate only a finite number of orbits; in par-
ticular it will detect only phenomenon that occur on A-positive measure sets. This leads
us to the notion of observable rotation set: a rotation vector is called observable if it is
the rotation vector of an observable measure in the sense given by E. Catsigeras and H.
Enrich in [CE11]; more precisely, a measure p is observable if for every ¢ > 0, the set of
points which have a Birkhoff limit whose distance to p is smaller than € has A-positive
measure (see Definition 6.4).

However, this notion of observable measure does not take into account the fact
that the computer uses finite precision numbers and can calculate only finite length
orbits; this observation leads to the definition leads to the definition of the asymptotic
discretized rotation set in the following way. We fix a sequence of finite grids on the torus
with precision going to 0; the discretized rotation set on one of these grids is the collec-
tion of rotation vectors of periodic orbits of the discretization of the homeomorphism
on this grid (see section 6.1); the asymptotic discretized rotation set is then the upper
limit of these discretized rotation sets on the grids.

We focus mainly on the generic behaviour of both observable and asymptotic dis-
cretized rotation sets. We recall that a result of A. Passeggi states that for a generic
dissipative homeomorphism of the torus the rotation set is a polygon with rational ver-
tices, possibly degenerated ! [Pas14]. In this chapter we will prove the following result
about generic dissipative homeomorphisms.

Theorem N. For a generic dissipative homeomorphism,

1. the observable rotation set is the closure of the set of rotation vectors corresponding to
Lyapunov stable periodic points (Lemma 6.16);

2. the convex hull of the observable rotation set, the convex hull of the asymptotic discretized
rotation set and the rotation set are equal;

3. if the rotation set has non-empty interior, there is no need to take convex hulls, i.e. both
observable and asymptotic discretized rotation sets coincide with the rotation set (Proposi-
tions 6.15 and 6.21).

Thus, it is possible to obtain the rotation set of a generic dissipative homeomorphism
from the observable or the asymptotic discretized rotation set. In other words, from
the theoretical point of view, it is possible to recover numerically the rotation set of a
generic homeomorphism. The generic conservative setting is quite different.

1. Namely it can be a segment or a singleton. However there are open sets of homeomorphisms where
the rotation set has non-empty interior.
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Theorem O. For a generic conservative homeomorphism,
1. the rotation set has non-empty interior (Proposition 6.2);

2. the observable rotation set consists in a single point: the mean rotation vector (Proposition
6.19). On the other hand, the asymptotic discretized rotation set coincides with the rotation
set (Corollary 6.23).

These results suggest the quite surprising moral that to recover the rotation set of a
conservative homeomorphisms, it is better to do coarse roundoff errors at each iteration.
More precisely, if we compute a finite number of orbits with arbitrarily good precision
and long length, we will find only the mean rotation vector of the homeomorphism;
but if we make roundoff errors while computing, we will be able to retrieve the whole
rotation set.

We have performed numerical simulations to see whether these behaviours can be
observed in practice or not. To obtain numerically an approximation of the observable
rotation set, we have calculated rotation vectors of long segments of orbits for a lot
of starting points with high precision (these points being chosen randomly). For the
numerical approximation of the asymptotic discretized rotation set we have chosen a
fine enough grid on the torus and have calculated the rotation vectors of periodic orbits
of the discretization of the homeomorphism on this grid.

We have chosen to make these simulations on some examples where the rotation set
is known to be the square [0,1]%. It makes us sure of the shape of the rotation set we
should obtain numerically, however it limits a bit the “genericity” of the examples we
can produce. We also produced simulations for a homeomorphism for which we do not
know the shape of the rotation set.

In the dissipative case, we made attractive the periodic points which realize the
vertex of the rotation set [0,1]%. It is obvious that these rotation vectors, which are
realized by attractive periodic points with basin of attraction of reasonable size, will
be detected by the simulations of both observable and asymptotic discretized rotation
sets; that is we observe in practice: we can recover quickly the rotation set in both cases
(Figures 6.1 and 6.2).

In the conservative setting, we observe the surprising behaviour predicted by the
theory: when we compute the rotation vectors of long segments of orbits we obtain
mainly rotation vectors which are quite close to the mean rotation vector, in particular
we do not recover the initial rotation set. More precisely, when we perform simula-
tions with three hours of calculation we only obtain rotation vectors close to the mean
rotation vector (Figure 6.7). On the other hand, when we calculate the union of the
discretized rotation sets over several grids to obtain a simulation of the asymptotic dis-
cretized rotation set, the rotation set is detected very quickly by the convex hulls of
discretized rotation sets (less than one minute of calculation) and when we compute
more orders of discretizations, we obtain a set which is quite close to [0,1]* for Haus-
dorff distance (Figure 6.9). Moreover, when we compute the observable rotation set of
a homeomorphism whose rotation set is unknown, we obtain a single rotation vector
(Figure 6.10); but when we simulate the asymptotic discretized rotation set, then we
obtain a sequence of “thick” sets whose convex hulls seem to converge (Figure 6.12). As
for theoretical results, this suggests the following lesson:

When we compute segments of orbits with very good precision it is very difficult to recover
the rotation set. However, when we decrease the number of digits used in computations we
can obtain quickly a very good approximation of the rotation set.
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This phenomenon can be explained by the fact that each grid of the torus is stabi-
lized by the corresponding discretization of the homeomorphism. Thus, there exists
an infinite number of grids such that every periodic point of the homeomorphism is
shadowed by some periodic orbits of the discretizations on these grids.

6.1 Notations and preliminaries

6.1.1 Rotation sets

The definition of the rotation set is made to mimic the rotation number for homeo-
morphisms of the circle. At first sight the natural generalisation to dimension 2 of this
notion is the point rotation set, defined as follows. For every homeomorphism f of the
torus T2 homotopic to the identity > we take a lift F : R> — R? of f to the universal cover
R? of T2. The difference with the one dimensional case is that as we lose the existence
of a total order on our space, the sequence % no longer need to converge. Thus, we
have to consider all the possible limits of such sequences, called rotation vectors; the set
of rotation vectors associated to € R? will be denoted by p(%):

wo- ) U5

NoeNn>N,

Then, the point rotation set is defined as p,s5(F) = Uszer2 p(%). Unfortunately this
definition is not very convenient and it turns out that when we interchange the limits
in the previous definition, we obtain the rotation set

o(F)= ) U{%)”ZlfeW}

MeNm>M

which has much better properties and is easier to manipulate. In particular, it is com-
pact and convex (see [MZ89]), and it is the convex hull of p,(F). Moreover, it coincides
with the measure rotation set: if we denote by D(F) the displacement function, defined on
T? by D(F)(x) = F(%) — X, where £ is a lift of x to R? (we easily check that this quantity
does not depend of the lift), then (recall that .#/ is the set of f-invariant probability
measures)

p(F)z{Lsz)(x) dplpe.s! }

Finally, for a homeomorphism f preserving A, we denote by .., (F) the mean rota-
tion vector of F:

PeanF) = [ DFI0) A,

The geometry of the rotation set of a generic dissipative homeomorphism is given
by a recent result published by A. Passeggi:

Theorem 6.1 (Passeggi, [Pasl4]). On an open and dense set of homeomorphisms f €
Homeo(T?), the rotation set is locally constant around f and is equal to a rational polygon.

We end this paragraph by giving a proof that if f is a generic conservative homeo-
morphism of the torus, then p(F) has non-empty interior.

2. In this chapter every homeomorphism will be supposed homotopic to the identity.
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3

Proposition 6.2. If f is generic > among Homeo(T?,\), then p(F) has non-empty interior.

Remark 6.3. We do not know the shape of the boundary of the rotation set of a generic
conservative homeomorphism. In particular we do not know if it is a polygon or not.

Proof of Proposition 6.2. We use an argument due to S. Crovisier. If p(F) consists in a sin-
gle point, we use classical perturbation techniques for conservative homeomorphisms
to create a persistent periodic point x for f. Then, by composing by a small rotation of
the torus, we can move a little the mean rotation vector; in particular as the rotation
set still contains the rotation vector of the periodic point x, it is not reduced to a single
point. Now if the rotation set is a segment, by a C? ergodic closing lemma we can create
a persistent periodic point whose rotation vector is close to the mean rotation vector in
the following way. A small perturbation allows us to suppose that the homeomorphism
we obtained, still denoted by f, is ergodic (it is the Oxtoby-Ulam theorem, see [OU41]).
We then choose a recurrent point y € T2 which verifies the conclusion of Birkhoff’s the-
orem: for N large enough, the measure ﬁ ZkN:_Ol Ofk(y) is close to the measure A. As this
point is recurrent, by making a little perturbation, we can make it periodic (like in the
proof of Lemma 5.46) and even persistent (see Definition 5.38 and Theorem 5.40 page
89); by construction p(p) is close to the mean rotation vector. We now have two persis-
tent periodic points, say x and y, whose rotation vectors are different. It then suffices to
compose by an appropriate rotation such that the mean rotation vector goes outside of
the line generated by these two rotation vectors, and to repeat the construction to find
a persistent periodic point whose rotation vector is close to this new mean rotation vec-
tor. Thus, we obtain a homeomorphism g which is arbitrarily close to f and possesses
three periodic points x, y and z whose rotation vectors are non-aligned; therefore the
rotation set of this homeomorphism has nonempty interior. Moreover, as the periodic
points x, y and z are persistent, this property remains true on a neighbourhood of g,
which concludes the proof for Homeo(T2, Leb). O

6.1.2 Observable measures

From the ergodic point of view, we could be tempted to define the observable rota-
tion set to be the set of rotation vectors associated to physical measures (see Definition
3.9), which are defined to express which measures can be observed in practice. How-
ever, such measures do not need to exist for every dynamical system, in this case the
associated observable rotation set would be empty. To solve this problem of non ex-
istence of physical measures, E. Catsigeras and H. Enrich have defined in [CE11] the
weaker notion of observable measure:

Definition 6.4. A probability measure y is observable for f if, for every € > 0, the set
A(p)={xe T?|3ve pw(x) : dist(v, p) < g} (6.1)

has A-positive measure (recall that pw(x) is the set of Birkhoff limits of x, see page 51).
The set of observable measures is denoted by Obs(f).

The interesting property of these measures is that, unlike physical measures, they
always exist. More precisely, the set Obs(f) is a non-empty compact subset of the set of
invariant measures of f containing the set of physical measures (see [CE11]).

3. In fact on a open dense subset of Homeo(T2, ).
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Remark 6.5. The behaviour of observable measures is compatible with topological con-
jugacy in the following sense: if p is observable for f and h is a homeomorphism which
preserves null sets, then h*p is observable for hfh~!.

Example 6.6. 1. If f =1d, then Obs(f) = {0, | x € X}, but f has no physical measure.

2. If a dynamical system possesses a collection of physical measures whose basins of
attraction cover almost all the phase space X (for example if it is ergodic with respect
to a smooth measure), then the set of physical measures coincides with the set of
observable measures.

Proposition 6.7. If f is generic among Homeo(T?), then
Obs(f) = Cl{d,, | w is a Lyapunov stable periodic orbit},
where Cl denotes the closure.

Thus, a generic homeomorphism f has a lot of observable measures 4, but no physi-
cal measure (it is a direct consequence of the shredding lemma 4.2, see [AA13]).

Proof of Proposition 6.7. The first inclusion is easy: it suffices to remark that every stable
measure supported by a Lyapunov stable periodic orbit is observable.

For the other inclusion , let f be a generic dissipative homeomorphism, p € Obs(f)
and & > 0. By hypothesis MA¢(p)) > 0 (see Equation (6.1)), then &’ = %min(e, MAe(p)) >
0. As f is generic, it satisfies the conclusions of the shredding lemma (see Section 4.1)
applied to f and ¢/, in particular there exists a Borel set B C A.(y) and an open set
O C T? such that:

- A(B)>0;

— Ois strictly periodic: 3i > 0: f1(0) cc O;

- diam(O) < ¢,

— every orbit of every point of B belongs to O eventually.

By Lemma 4.4 page 60, O contains a Lyapunov stable periodic point whose orbit is
denoted by w; thus for every x € B and every v € pw(x), we have dist(v,9,) < ¢’. But
by hypothesis dist(v,p) < ¢, then dist(p, 0,) < 2¢, with w a Lyapunov stable periodic
orbit. O]

Lemma 6.8. If f is generic among Homeo(T?, \), then Obs(f) = {\} coincide with the set of
physical measures.

Proof of Lemma 6.8. A classical theorem of J. Oxtoby and S. Ulam [OU41] states that
a generic conservative homeomorphism f € Homeo(T?,\) is ergodic with respect to

the measure A. But Remark 1.8 of [CE11] states that if the measure ) is ergodic, then
Obs(f) = {A}. O

6.2 Observable rotation sets

6.2.1 Definitions

As said before, from the notion of observable measure, it is easy to define a notion of
observable ergodic rotation set. Another definition, more topologic, seemed reasonable
to us for observable rotation sets:

4. The set of Lyapunov stable periodic orbits is a Cantor set.
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Definition 6.9.

p"bs(F) = {v eR?|Ve>0, X{xlflu €p(x):d(u,v) <£] > 0}.

Ornes(F) = {J. D(F)(x) d p(x) [ p € ObS(f)}.
T2

These two sets are non-empty compact subsets of the classical rotation set, and the
first one is even a subset of p,;(F). The next lemma states that these two definitions
coincide:

Lemma 6.10. p25(F) = p°(F).

Proof of Lemma 6.10. We first prove that p"nf’gs(F) C p"bs(F). Let v € p%’;s(F) and e > 0.
Then there exists u € Obs(f) such that v = sz D(F) dp, in particular A(A./»(p)) > 0. But
if x € Ag/n(p), then there exists a strictly increasing sequence of integers (1;(x)); such

that for every i > 0,
1 n;(x)-1
dist Ofk(x)r .
1S [ni(x) Z F(x) ]/l] <&

k=0
Thus,
1 n;(x)-1
. D(F)(f¥(x)) - f D(F) dp| <,
nl (x) k=0 T2
in other words the inequality
Fi()(x) — x
—— —v|<¢
n;(x)

holds for every i and on a A-positive measure set of points x.

For the other inclusion, let v € p“bs(F) and set
A(v)={xeT?|Juep(x): d(u,v)<e.

By hypothesis, A(A.(v)) > 0 for every ¢ > 0. To each x € A.(v) we associate the set pw?(x)
of limit points of the sequence of measures

1 n;(x)-1

n;(x)

Ofk(x),
k=0

where (n;(x)); is a strictly increasing sequence such that

F”i(x)(x) —-X

ni(x) <E&.

-V

By compactness of 2, the set pw{(x) is non-empty and compact. In the sequel we will
use the following easy remark: if 0 <e<¢’and x € A,, then pw{(x) C pw{ ().
By contradiction, suppose that for every p € %, there exists ¢, > 0 such that

)\lx € Aey(v) [Jve pw;’”(x) s dist(v, p) < SMI =0.
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By compactness, 9 is covered by a finite number of balls B(;, ¢, ). Taking & = mine
for every j we have

W7

)\{x € A(v) | Iv € pw(x) : dist(v, p) < EW} =0,
thus, as balls B(y]-,ew) cover P,
A{x € A(v)| pwl(x)NDP = (Z)} =0,

which is a contradiction.
Therefore, there exists py € P such that for every ¢ > 0,

X{x € Ay(v) | v € pwl(x) : dist(v, ug) < e} >0,

in particular pg € Obs(f). Furthermore, for & > 0, there exists x € A.(v) and p, € pw?(x)
such that dist(p,, pg) < &. As p, € pw{(x), there exists a sequence (1,(x)); such that

n;(x)—1

1
dist[px, o) 6fk(x)] <e and
1

k=0
Thus,
n;(x)—1

) 1
dist [Mo ) Ofk(x)
! k=0

< 2e.

Integrating this estimation according to the function D(F), we obtain:

Fi()(x) — x
D(F)duy— ————| < 2¢,
e B
SO
J D(F)dpg—v| < 3e,
T2

for every € > 0, in other words,

= d up.
v= [ DF)dug

6.2.2 Properties of the observable rotation set

We begin by giving two lemmas which state the dynamical behaviour of the observ-
able rotation sets.

Lemma 6.11. For every g € N, p°¥*(F4) = qp°"s(F).

Proof of Lemma 6.11. It suffices to remark that pg,(x) = qpp(x) (one inclusion is trivial
and the other is easily obtained by Euclidean division). O]

Remark 6.12. In general p°?*(F~!) # —p°PS(F): see for instance the point 3. of Example
6.14.
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Lemma 6.13. If H is a homeomorphism of R? commuting with integral translations and
preserving null sets, then p"bS(H oFoH )= p"bS(F).

Proof of Lemma 6.13. It follows easily from the fact that the notion of observable mea-
sure is stable by conjugacy (see Remark 6.5). O

We now give a few simple examples of calculation of observable rotation sets.
Example 6.14. 1. If f =1d, then p"bs(F) =1{(0,0)}.
2. If
F(x,v) = (x + cos(2my), v),
then p,5(F) = p°PS(F) = [-1,1] x {0}.
3. If
F(x,y) = (x +cos(2my), v + 11% sin(2ny)),

then pp;s(F) = {(0,-1),(0,1)}, but p°%5(F) = {(0,~1)} and p°bs(F~1) = {(0,1)}.

4. Let ,
x\ _ [x+5cos(2my)+1 x\ x
P(?)_( 2 y ) and Q(y)_(y+%cos(2nx)+1)'

Then the rotation set of the (conservative) homeomorphism F = P o Q is equal to
[0,1]%. Moreover, we can perturb F into a (conservative) homeomorphism F such that
F is the identity on the neighbourhoods of the points whose coordinates belong to
1/2Z (applying for example Theorem 5.40). Then, the vertices of the square [0,1]?
belong to the observable rotation set of F.

5. Let P be a convex polygon with rational vertices. In [Kwa92], J. Kwapisz has con-
structed an axiom A diffeomorphism f of T? whose rotation set is the polygon P. It is
possible to modify slightly Kwapisz’s construction so that all the sinks of f are fixed
points, and so that the union of the basins of these sinks have A-full measure. Hence,
the observable rotation set of fp is reduced to {(0,0)}.

We now give the results about the link between the rotation set and the observable
rotation set in the generic setting. We begin by the dissipative case.

Proposition 6.15. If f is generic among Homeo(T?), then p(F) = conv(p"bs(F)). If moreover
f is generic with a non-empty interior rotation set, then p(F) = p”bs(F).

To prove this proposition, we will use the following lemma, which is a direct conse-
quence of Proposition 6.7.

Lemma 6.16. If f is generic among Homeo(T?), then
pObs(F) = CH{p(%) | x is a Lyapunov stable periodic point}.
We will also need a theorem of realization of rotation vectors by periodic points.

Theorem 6.17 (J. Franks, [Fra89]). For every f € Homeo(T?), every rational point of the
interior of p(F) is realized as the rotation vector of a periodic point of the homeomorphism f.
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Proof of Proposition 6.15. Theorem 6.1 states that for an open dense set of homeomor-
phisms, the rotation set is a rational polygon. Then, a theorem of realization of J. Franks
[Fra88, Theorem 3.5] implies that every vertex of this polygon is realized as the rotation
vector of a periodic point of the homeomorphism, which can be made attractive by a
little perturbation of the homeomorphism. Then generically we can find a Lyapunov
stable periodic point which shadows the previous periodic point (by Lemma 4.4), in
particular it has the same rotation vector. Thus every vertex of p(F) belongs to p"bs (F)
and p(F) = conv(p”bS(F)).

For € > 0, we can find a finite e-dense subset R, of p(F) made of rational points.
Thus, Theorem 6.17 associates to each of these rational vectors a periodic point of the
homeomorphism which realizes this rotation vector; we can even make these periodic
points of the homeomorphism attractive. Thus, for every ¢ > 0, the set O, made of the
homeomorphisms such that every vector of R, is realized by a strictly periodic open
subset of T? is open and dense in the set of homeomorphisms with non-empty interior
rotation set. Applying Lemma 4.4 we find a G5 dense subset of O, on which every
strictly periodic open subset of T? contains a Lyapunov stable periodic point; on this
set the Hausdorff distance between p(F) = p”bs(F) is smaller than &. The conclusion of
the proposition then easily follows from Baire theorem. O

Remark 6.18. It is not true that p(F) = p"bs(F) holds for a generic homeomorphism: see
for instance the point 3 of Example 6.14, where on a neighbourhood of f the set p°% is
contained in a neighbourhood of the points (0,-1) and (0, 1).

For the conservative case, we recall the result of Proposition 6.2: the rotation set of
a generic conservative homeomorphism has non-empty interior. The following result
states that in this case the observable rotation set is much smaller, more precisely it
consists in a single vector, namely the mean rotation vector.

Proposition 6.19. If f is generic among Homeo(T?,\), then pObS(F) = {paA(F)}, where p)(F)
is the mean rotation vector with respect to the measure \.

Thus, for almost every x € T? (with respect to the measure ), the set p(x) is reduced
to a single point which is the mean rotation vector.

Proof of Proposition 6.19. It is easily implied by the fact that the measure X is the only
observable measure (Lemma 6.8, which easily follows from Oxtoby-Ulam theorem). [

6.3 Discretized rotation sets

We now take into account the fact that the computer has a finite digital precision. It
will be the occasion to apply the techniques of proof explained in Chapter 5.

The discretized rotation set is defined as follows. Consider a lift F: R?> — R? of f and
a lift Ey of the grid Ey to R%. Then

o(Bx)= () | {@lfew}.

MeNm>M

Remark that this set coincides with the set of rotation vectors of the periodic orbits of
fn- Then the asymptotic discretized rotation set is the upper limit of the sets p(Fy):

ot (B)= () | o(Bw)

MeNN>M
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The first result is that for every homeomorphism f, the discretized rotation set p(Fy)
is almost included in the rotation set p(F) when N is large enough. This property fol-
lows easily with a compactness argument from the convergence of the sequence fy to
the homeomorphism f (for example for the Hausdorff distance on the graphs of these
maps).

Proposition 6.20. For every homeomorphism f and every € > 0, it exists Ny € N such that
for every N > Ny, we have p(Fy) C B(p(F), €), where B(p(F), €) denotes the set of points whose
distance to p(F) is smaller than . In particular pdl“r(F) C p(F).

Proof of Proposition 6.20. By definition of the rotation set, for ¢ > 0 there exists m € N

such that o
{W |%e RZ} c B(p(F), e).

Then there exists Ny € N such that for every N > N,

F(%)-%  EJ(An) - %N

<&

m m

This allows us to handle the case of long periodic orbits of the discretizations: by eu-
clidean division, each periodic orbit of fy of length bigger than m/e will be in the ¢
neighbourhood of the convex hull of the set

EJ (An) — %N
-
so in the 3e-neighbourhood of the rotation set p(f).

For short orbits we argue by contradiction: suppose that there exists € > 0 such that
for every Ny € N there exists N > Ny and x5 € Ey which is periodic under fy with
period smaller than m/e and whose associated rotation vector is not in B(p(F),¢). Then
up to take subsequences these periodic points x5 have the same period and converge to
a periodic point x € T? whose associated rotation vector (for F) is not in B(p(F), ), which
is impossible. O

The other inclusion depends on the properties of the map f. We begin by the dissi-
pative case.

Proposition 6.21. If f is generic among Homeo(T?), then conv(p(FN)) tends to p(F) for the

Hausdorff topology. In particular conv(pdiscr(F)) = p(F). Moreover, if p(F) has nonempty
interior, then there is no need to take convex hulls.

Proof of Proposition 6.21. The fact that the upper limit of p(Fy) is included in p(F) fol-
lows directly from Lemma 6.20.

It remains to prove that the lower limit of conv(p(FN)) contains p(F). To do that,

we prove that p(Fy) converges to pObS(F). First of all the rotation set is the closure of
the convex hull of the rotation vectors of Lyapunov stable periodic points (Propositions
6.7 and 6.15). To each one of these points we can associate a periodic closed set K
with non-empty interior and with period Tt which has the same rotation vector. Then
there exists an open set O C K such that for N large enough and x € K we also have
fu(xn) € O C K. Thus there exists i € N* such that fIfIi(xN) = I\zf"(xN) and fNTi(xN) has
the same rotation vector as K, thus the same rotation vector as the initial Lyapunov
stable periodic point. O]
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For the conservative case, with the same techniques as in Chapter 5, we can prove
the following result:

Lemma 6.22. If f is generic among Homeo(T?, \), then for every finite collection of rotation
vectors {vy,--+,v,}, each one realized by a periodic orbit of f, there exists a subsequence fy,
of discretizations such that for every i, on.(f) = {vi, -+, vy}

Proof of Lemma 6.22. We denote by &, the set of subsets of Q? made of elements whose
coordinates are of the type p’/q’, with 0 < ¢’ < g and —¢* < p’ < g%. Consider the set

m ﬂ U { f € Homeo(T?,)\) | (Yv € D, v is realised by a }

4:No Dez;, N3N, persistent perlodlc point of f) - P(FN) =D

To prove the lemma it suffices to prove that this set contains a Gy dense. This is obtained
with the same kind of proof as for Proposition 5.14.

Let f € Homeo(T? 1), € >0, Ny € Nand D € Z,;. We suppose that for all v € D,
v is realizable by a persistent periodic orbit w; of f. For all of these orbits wy,---,wy,
we denote by p; the length of the orbit w; and choose a point x; belonging to w;. We
then apply Lax’s theorem (Theorem 5.5): if N is large enough, then there exists a cyclic
permutation oy of Ey such that dy(f,on) <e. If N is large enough, then the families

(e R () - ook (ko))

are disjoint and satisfy d((xi)N, G{ifﬁl((xi)N)) < ¢ for all i. We then use the same tech-

nique as in the proof of Proposition 5.14 (see also Figure 5.2) to close each orbit
{(Xi)N,-'~,GIIin71((Xi)N)}. The discrete map of; we obtain has then exactly ¢ periodic or-
bits, and each of them has the same rotation vector as the corresponding real periodic
orbit of f. As in the proof of Lemma 5.4, we then use the proposition of finite maps ex-
tension (Proposition 3.3) to build a homeomorphism g which is e-close to f and whose
discretization gy satisfies p(Gy) = D, and moreover we can suppose that this occurs on

a whole neighbourhood of g. ]

The combination of the realisation theorem of J. Franks [Fra89, Theorem 3.2] and
the fact that for a generic conservative homeomorphism the rotation set has non-empty
interior (Proposition 6.2) leads to the following corollary.

Corollary 6.23. If f is generic among Homeo(T?, \), then for every compact subset K of the
rotation set of F there exists a subsequence fy, of discretizations such that py,(F) tends to K

for the Hausdorff topology. In particular g5 (F) = p(F).

6.4 Numerical simulations

We have conducted numerical simulations of the rotation sets associated to both dis-
sipative and conservative homeomorphisms. For the first examples we treated, we have
made the deliberate choice to choose homeomorphisms whose rotation set is known to
be the square [0,1]%. Of course these homeomorphisms are not the best candidates for
“generic” homeomorphisms, but at least we are sure of what is the shape of the rotation
set we want to obtain.
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As an example of dissipative homeomorphism we have taken f; = R; 0 Q; o P}, and
for the conservative homeomorphism we have chosen the very similar expression g; =
Q; o P;, where

P (x,v) :(x , Y+ %(cos(2n(x+ o))+ 1)

+0.0234sin?(47(x + oc))( sin(67t(x + o)) + 0.3754 cos(26T(x + oc)))),

Q1(x,v) :(x + %(cos(2n(y +p))+ 1)

+0.0213sin’(47(y + B))( sin(67(y + B)) + 0.4243 cos(22m(y + B)) ) y),

Ri(x,p) :(x —0.0127sin(87(x + a)) + 0.000324 sin(33m(x + «)) ,
y - 0.0176sin(127(y + ) + 0.000231 sin(417y)),

with a = 0.00137 and f = 0.00159.
The homeomorphisms P; and Q; are close to the homeomorphisms

P(x,p) = (x , Y+ %(cos(2n(x +a))+ 1))

and

Q(x,y) = (x+ %(cos(2n(y +B))+ 1) , y);

it can easily be seen that the rotation set of the homeomorphism Q o P is the square
[0,1]%, whose vertices are realized by the points (0,0), (0,1/2), (1/2,0) and (1/2,1/2).
The perturbations P; and Q; of P and Q are small enough (in C? topology) to ensure
that the rotation set remains the square [0,1]%; these perturbations are made in order
to make f; “more generic” (in particular, the periodic orbits whose rotation vectors
realize the vertices of the square do not belong to the grids). The key property of the
homeomorphism R; is that is has the fixed points of f; which realize the vertices of
[0,1]? as fixed attractive points; this creates fixed attractive points which realize the
vertices of the rotation set.

We have chosen R; to be very close to the identity in C!-topology to ensure that
the basins of the sinks and sources are large enough. Indeed, J.-M. Gambaudo and C.
Tresser have shown in [GT83] that, even for dissipative diffeomorphisms defined by
very simple formulas, sinks and sources are often undetectable in practice because the
size of the their basins are too small.

We have conducted other series of simulations for two other examples of conserva-
tive homeomorphisms. The first one has an expression which is very similar to that
of g1, but the cosines are replaced by a piecewise affine map with the same following
properties: s is 1-periodic, s(0) = 1, s(1/2) = 0 and s is affine between 0 and 1/2 and
between 1/2 and 1. More precisely, we set g, = Q; o P,, with

Py(x,p) = (x , P+ 25(x+a)+0.0234s(2(x + )

+0.0167s(10(x + oc));
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Qa(x,p) = (x +25(y+p)+0.0213s(2(y + B))

£0.01015(6(y +B)), y).

The properties of s imply that the rotation set of g, is also the square [0,1]% the
difference with g; is that the vertices of this rotation set are no longer realized by elliptic
periodic points, which makes them harder to detect.

For the last conservative homeomorphism we tested, we made “random” choices of
the coefficients; we do not know a priori what is its rotation set. More precisely, we took
g3 = Q3 o P53, with

Ps3(x,y) = (x , ¥+ 0.3sin(27(x + 0.34137))
+0.2sin(37(x + 0.21346)) + 0.578675));

Q3(x,p) = (x +0.25sin(27(y + 0.9734))
+0.35sin(37(y - 0.20159)) + 0.551256 , ).

We will test on simulations whether the computed rotation sets seem to converge or
not. If so, it could be a good indication that the rotation set we obtained is close to the
actual rotation set.

We have made two kinds of simulations of the rotation set.
— In the first one we have computed the rotation vectors of segments of orbits of
length 1000 with good precision (52 binary digits); in other words for N random

1000 () _
starting points x € T?, we have computed FT(O’CO)X. We have made these tests for

N = 100, which takes around 1s of calculation, N = 10000, which takes about
2min of calculation, and N = 1000000, which takes about 4h of calculation. This
is maybe the most simple process that can be used to find numerically the rotation
set. It should lead to a good approximation of the observable rotation set; in
particular, Proposition 6.15 suggests that, for the dissipative homeomorphism f;,
we should obtain a set which is close (for Hausdorff distance) to the square [0,1]?,
and if not at least a set whose convex hull is this square. On the other hand, for
the conservative homeomorphisms g;, Proposition 6.19 suggests that we should
only obtain the mean rotation vector, which is close to (1/2,1/2).

— In the second kind of simulations we have computed the rotation vectors of the
periodic orbits of the discretization (f;)y on a grid N x N; these simulations calcu-
late the discretized rotation sets. For each homeomorphism we have represented
these sets for N = 499, N = 500 and N = 501, each calculation taking about 2s of
calculation. We have also computed the union of the discretized rotation sets for
100 < N <M, which represents the asymptotic discretized rotation set. We repre-
sent these sets for M = 100 (=~ 0.5s of calculation), M = 150 (=~ 15s of calculation),
M = 200 (=~ 45s of calculation), M = 500 (=~ 13min of calculation), M = 1000 (=~
1h 45min of calculation), M = 2000 (~ 14h of calculation) and for g3, M = 3950
(=~ 100h of calculation). The theory tells us that in both conservative and dissipa-
tive cases, for some N, the discretized rotation set should be close (for Hausdorff
distance) to the square [0,1]%; a weaker property would be that its convex hull
should be close to this square. Moreover this should also be true for the asymp-
totic discretized rotation sets.
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We shall notice that these two methods are formally the same: making simulations
on a grid N x N is equivalent to calculate with —log, N binary digits (for example about
10 for N =1000). The only difference is that for the second method we use deliberately
a very bad numerical precision, which allows us to detect the actual dynamics of the
discretizations.

Moreover, in practice, for a given calculation time, the calculation of the rotation set
by discretization (i.e. by the second method) allows to compute much more orbits than
the other method. More precisely, the algorithm we have used to compute the asymp-
totic discretized rotation set visits each point of the grid N x N once. Thus, for N?
starting points we only have to compute N? images of the discretization of the homeo-
morphism on the grid; the number of rotation vectors we obtain is simply the number of
periodic orbits of the discretization. So in a certain sense this second algorithm is much
faster than the naive algorithm consisting in computing long segments of orbits. All the
simulations have been performed on a computer equipped with a processor Intel Core
15 2.40GHz.

We shall notice that the calculated rotation sets we obtained for f;, g; and g, are
always contained inside of the square [0,1]? (see the figures below). Indeed, the very
definition of the rotation set ensures that if T is large enough, then the rotation vector of
every segment of orbit of length T belongs to a neighbourhood of the rotation set; there-
fore the computed observable rotation set should be included in a small neighbourhood
of the rotation set provided we have chosen a large enough length of orbit. Concerning
the discretized rotation set, Proposition 6.20 ensures that if the order of discretization
is large enough, then the discretized rotation set is included in a neighbourhood of the
actual rotation set. However, there is no global estimation of these integers, as can be
seen in the following example. Set f : T> — T2 defined by

flx,y)= (x +o,y+ sin(2nx)),

with « an irrational number close to (say) 1/(2T). As a € R\ Q, we easily obtain that
the rotation set of f is equal to (a, 0); but if we compute the rotation numbers of all
the segment of orbit of length T, they will form a set which is close to the segment

[(e=2/7), (o, 2/70)|-

In the dissipative case, a lot of the obtained rotation vectors are close to one of the
vertices of the real rotation set [0,1]? of f;, the others being located around (1/2,1/2)
(see Figure 6.1). This is what is predicted by the theory, in particular by Lemma 6.16:
we detect rotation vectors realized by Lyapunov stable periodic points. The fact that
the rotation vectors are not located exactly on the vertices of [0,1]? can be explained
by the slow convergence of the orbits to the attractive points: it may take a while un-
til the orbit become close to one of the Lyapunov stable periodic points. We will see
that this behaviour is very different from the one in the conservative case, even if the
homeomorphism f; is very close to g, (approximately 1072 close).

For the discretized rotation set for f;, the vertices of [0,1]* are also detected, and
we only have a few points in the interior of the square (see Figure 6.2). However, when
we compute the asymptotic discretized rotation set (see Figure 6.3), we observe that the
computed rotation vectors fill a great proportion of the square [0,1]2, as predicted by
the theory.

In the conservative case, the rotation vectors of the observable rotation set are
mainly quite close to the mean rotation vector of gy, as predicted by Proposition 6.19.



124 Chapter 6. How roundoff errors help to compute the rotation set

In particular in Figure 6.4, left, all the 100 rotation vectors of the computed observable
rotation set are in the neighbourhood of (1/2,1/2). Thus, the behaviour of these vec-
tors is governed by Birkhoff’s ergodic theorem with respect to the ergodic measure Leb;
a priori this behaviour is quite chaotic and converges slowly: a typical orbit will visit
every measurable subset with a frequency proportional to the measure of this set, so
the rotation vectors will take time to converge. When the number of computed orbits
increases (Figure 6.4, middle and rignt), we observe that a few rotation vectors are not
close to the mean rotation vector; for 10° different orbits we even detect three of the
vertices of the actual rotation set. Anyway, even after 4 hours of calculation, we are
unable to recover completely the initial rotation set of the homeomorphism.

On the other hand, the convex hull of the discretized rotation set gives quickly a
very good approximation of the rotation set. For example on a grid 500 x 500 (Figure
6.5), with 2s of calculation (and even on a grid 100 x 100 and 0.2s of calculation), we
obtain a rotation set whose convex hull is already very close to [0,1]?. However, for
a single size of grid, we do not obtain exactly the conclusions of Corollary 6.23 which
states that for some integers N the discretized rotation set should be close to the rotation
set for Hausdorff distance; here for each N we only have a few points in the interior of
[0,1]?. That is why we represented the union of the discretized rotation sets on grids
N x N with 100 < N <1000 (Figure 6.6). In this case we recover almost all the rotation
set of g, except from the points which are close to one edge of the square but far from
its vertices. The fact that we can obtain very easily the vertices of the rotation set can
be due to the fact that in our example f; these vertices are realized by elliptic periodic
points of the homeomorphism (in fact the derivative on this points is the identity). That
is why we also conducted simulations of the homeomorphism g, which rotation set is
also the square [0, 1]*> whose vertices are realized by non-elliptic periodic points.

In fact, when we compute the observable rotation set for g, (Figure 6.7), we only find
rotation vectors which are close to the mean rotation vector, even after 4h of calculation.
As the periodic points which realize the vertices of the rotation set are no longer elliptic,
they are much more unstable and thus they are not detected by these simulations.

The sets detected by the discretized rotation sets of order 499, 500 and 501 (Figure
6.8) are quite bigger than those detected by the simulations of the observable rotation
set, even if the time of calculation is much smaller. However, we do not recover the
whole rotation set of the homeomorphism (we conducted simulations for higher orders
around N = 1000 and N = 2000 and the behaviour is similar). By contrast, the simula-
tions of the asymptotic discretized rotation set (Figure 6.9) allows us to see the actual
rotation set of the homeomorphism: when we represent all the rotation vectors of the
discretizations of order 100 < N < M with M = 200 (which takes about 45s of calcula-
tion) we obtain a set which is very close to the square [0,1]%; for M = 100 (~ 1h 45min
of calculation) we recover almost exactly the initial rotation set.

Finally, the behaviour of the observable rotation set of g3 is very similar to that of
9> (see Figure 6.10): even when we compute 1000000 different orbits with random
starting points, we only obtain rotation vectors which are close to (0.55,0.5), which
should be a good approximation of the mean rotation vector.

Like for g,, the simulations of the discretized rotation sets for the grids Ex with N €
{499,500,501} (Figure 6.11) are not very convincing: the sets do not seem to converge to
anything. We have to compute the asymptotic discretized rotation sets (Figure 6.11) to
see something that looks like a convergence for the Hausdorff topology of the computed
rotation sets. However, this convergence in practical is just an indication that the set we
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compute is close to the actual rotation set of g3. To our knowledge, it is impossible to
ensure that for a given order of discretization, the asymptotic rotation set computed to

this order is close to the rotation set of g3.
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Figure 6.1: Observable rotation set of f;, k orbits of length 1000 with random starting
points with k = 100 (left), 10000 (middle) and 1000000 (right)
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Figure 6.2: Discretized rotation set of f; on grids Ey, with N = 499 (left), N = 500
(middle) and N = 501 (right)
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Figure 6.3: Asymptotic discretized rotation set of f; as the union of the discretized
rotation sets on grids Ex with 100 < N < M with M = 100 (top left), M = 150 (top
middle), M = 200 (top right), M = 500 (bottom left), M = 1000 (bottom middle) and
M = 2000 (bottom right)
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Figure 6.4: Observable rotation set of g;, k orbits of length 1000 with random starting
points with k = 100 (left), 10000 (middle) and 1000000 (right)
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Figure 6.5: Discretized rotation set of g; on grids Ey, with N = 499 (left), N = 500
(middle) and N = 501 (right)
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Figure 6.6: Asymptotic discretized rotation set of g; as the union of the discretized
rotation sets on grids Ey with 100 < N < M with M = 100 (top left), M = 150 (top
middle), M = 200 (top right), M = 500 (bottom left), M = 1000 (bottom middle) and
M = 2000 (bottom right)
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Figure 6.7: Observable rotation set of g,, k orbits of length 1000 with random starting
points with k = 100 (left), 10000 (middle) and 1000000 (right)
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Figure 6.8: Discretized rotation set of g, on grids Ey, with N = 499 (left), N = 500
(middle) and N = 501 (right)
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Figure 6.9: Asymptotic discretized rotation set of g, as the union of the discretized
rotation sets on grids Eyx with 100 < N < M with M = 100 (top left), M = 150 (top
middle), M = 200 (top right), M = 500 (bottom left), M = 1000 (bottom middle) and

M = 2000 (bottom right)
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Figure 6.10: Observable rotation set of g3, k orbits of length 1000 with random starting

points with k = 100 (left), 10000 (middle) and 1000000 (right)
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Figure 6.11: Discretized rotation set of g3 on grids Ey, with N = 499 (left), N = 500
(middle) and N = 501 (right)
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Figure 6.12: Asymptotic discretized rotation set of g5 as the union of the discretized
rotation sets on grids Ey with 100 < N < M with M = 150 (top left), M = 200 (top
middle), M = 500 (top right), M = 1000 (bottom left), M = 2000 (bottom middle) and
M = 3950 (bottom right)
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Introduction

In the second part of this manuscript, we will consider the dynamical behaviour
of the discretizations of linear maps. We were led to this question by the study of the
dynamics of the discretizations of generic C!-diffeomorphisms; for exmaple, we will see
in the next part that the study of the degree of recurrence of a generic conservative C!-
diffeomorphism requires a good understanding of the dynamics of the discretizations
of linear maps. However, it seemed to us that the study of the linear case could form a
whole part. Indeed, it appeared that this subject is itself quite interesting and does not
use the tools developed in the other parts of this manuscript. Moreover, the techniques
involved in this second part of the thesis are very different from that used in the oth-
ers: we will use tools like almost periodic patterns, model sets or lattice tilings of the
Euclidean space by unit cubes.

The definition of the discretization of a linear map of R” (n > 2) is made to mimic
that of the discretization of a map of a compact space. The idea underlying this def-
inition is to take the grid %Z” N [-1,1]" for a large N, and to consider the images of
this grid by the discretization of linear maps on the grid %Z”. As the action of a linear
map is invariant under homothety, it is equivalent to look at the grids Z"N[-N, N]" and
to consider the images of these grids by the discretization of linear maps on the grid
Z". Thus, we define a projection m of R” onto Z", which maps any point of R" onto
(one of) the closest point of the lattice Z" (see Definition 7.11); given A € GL,,(R), the
discretization of A is the map

A=ToA:Z" 27"

Given a sequence (Ag)x>; of matrices of GL,(R), we want to study the dynamics of the
sequence (Ag)x>1, and in particular, the density of the set I} = (A o---0Ay)(Z"). This
density is defined in the following way, where By denotes the infinite ball B.,(0,R) :

R—>+ooCard(Z” ﬂBR) (62)

First of all, we study the structure of the image sets I}.. It appears that there is a kind
of “regularity at infinity” of the behaviour of Iy. More precisely, this set is an almost
periodic pattern: for every & > 0 there exists a relatively dense ° set of e-translations of I},
where a vector v € Z" is an e-translation of [} if D*((l’k - v)AFk) < ¢ (see Definition 7.3).
Roughly speaking, for R large enough, the set I} N By determines the whole set I}, up to
an error of density smaller than e. We prove that the image of an almost periodic pattern
by the discretization of a linear map is still an almost periodic pattern (Theorem 7.12);

5. A set /I is relatively dense if there exists R > 0 such that every ball of radius R contains at least one
point of /.
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thus, given a sequence (Ay);>1 of invertible matrices, the sets (7&;0- . ~0E)(Z”) are almost
periodic patterns. In particular, these sets possess a uniform density: the superior limit
in Equation (6.2) is in fact a limit (Corollary 7.7). This allows us to define the rate of
injectivity: given a sequence (Ag)x>; of linear maps, the rate of injectivity in time k of
this sequence is the quantity (see Definition 7.19)

Card((Ago---0A;)(BRNZ")
(A, Ar) = lim (A R )

0,1],
R—+00 Card(BgNZ") €l0.1]

where B = B,,(0,R). As these quantities are decreasing in k, we can also define the
asymptotic rate of injectivity

((Adks1) = lim (AL, Ap) €[0,1]
k—+o0
These rates on injectivity can be seen as the quantity of information we lose when we
apply a sequence of discretizations of matrices.
The link between the rate of injectivity and the density of the images sets is made
by the following formula (Proposition 7.20):

(A, Ay) = det(A) -+ det(A)D* (A o0 A)(Z")).

The goal of the second chapter of this part is to study the behaviour of the asymp-
totic rate of injectivity of a generic sequence of matrices of SL,(R) (in fact, the same
holds for matrices with determinant +1). It is given by the main theorem of this chapter
(Theorem 8.24).

Theorem P. For a generic sequence (Ay)x>1 of matrices of SL,(R), we have T°°((Ak)k) =0.

If this result can seem quite natural, its proof is far from being trivial. First of all,
the sets [} = (KZ ) ---E)(Z”) are “more and more complex” when k increases: a priori,
the radius R, for which I} N Bg, determines almost all T} is more and more large when
k increases; it is very difficult to have an idea of the local geometry of these sets, thus
to decide which is the best possible perturbation of the matrices (especially since we
have to get practical estimates on the loss of injectivity). Moreover, once the set I} has a
density smaller than 1/2, it may be impossible to make the rate decrease in one step of
time. For example, if we set

4 1/2
Al :( 1/4) and A2:( 2);

then (an)(zz) =(2Z)?, and for every Bj; close to the identity, we have T3(A, A;,B3) =
T2(A1,A,) = 1/4. In such cases, it seems difficult to have a long term strategy to make
the rate decrease. ..

The idea of the proof of Theorem P is to take advantage of the fact that for a generic
sequence of matrices, the coefficients of all the matrices are rationally independent (in
fact, we will only need a weaker assumption about he independence). For example, for
a generic matrix A € SL,(R), the set A(Z") is uniformly distributed modulo Z". We then
remark that the local pattern of the image set A(Z") around A(x) is only determined by
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A and the the remainder of Ax modulo Z": the global behaviour of A(Z") is coded by
the quotient R"/Z". This somehow reduces the study to a local problem.

As a first application of this remark, we state that the rate of injectivity in time 1
can be seen as the area of an intersection of cubes (Proposition 8.11). This observation,
combined with considerations about the frequency of differences pr, (v) = D((Fk—v)ﬁfk ),
allows to prove a weak version of Theorem P: the asymptotic rate of injectivity of a
generic sequence of matrices of SL,,(R) is smaller than 1/2 (Theorem 8.30). It also leads
to a proof of the following result.

Theorem Q. Let (Py)x>1 be a generic sequence of matrices of O, (R). Then t((Py)x) = 0.

In particular, for a generic sequence of rotations of the plane, we have a total loss
of information when we apply successively the discretizations of these rotations (see
Figure 6.17).

At the end of the second chapter of this part, we make a full use of the equidistri-
bution property to see the rate of a sequence Ay,---, A of matrices of SL,(R) in terms
of areas of intersections of cubes in R"* (Proposition 8.40). The proof of this formula
is based on the notion of model set® (Definition 7.32), which is a particular class of
almost periodic patterns. Using this formula, we replace the iteration by a passage
in high dimension. These considerations allow to prove Theorem P, without having
to make “clever” perturbations of the sequence of matrices (that is, the perturbations
made a each iteration are chosen independently from that made in the past or in the
future).

Finally, the last chapter of this part is devoted to the study of the statistics of the
roundoff errors induced by the discretization process. The main result is the following
(Proposition 9.1).

Proposition R. For a generic sequence (Ay)x>1 of matrices of GL,(R), or SL,,(R), or O,,(R),

for every fixed integer k, the finite sequence of errors &, = (e}c,--- ,&'fc) is equidistributed in

(R"/Z")* when x ranges over Z".

This chapter presents a work in progress; the goal of these considerations is to study
in more depth a conjecture of O.E. Lanford (Conjecture 12.13) concerning the physical
measures of expanding maps of the circle.

Throughout this part, we will use several notions of almost periodicity: Delone sets,
almost periodic patterns, weakly almost periodic sets (which is, to our knowledge, an
original concept), model sets, Bohr and Besicovitch almost periodic functions. We now
give a quick overview of the history of these different concepts. The history of almost
periodic sets is made of many independent rediscoveries, made in different areas of
mathematics and physics. The first traces of studies of some notions of almost peri-
odicity date back to 1893 with the master’s thesis of P. Bohl “Uber die Darstellung von
Funktionen einer Variabeln durch trigonometrische Reihen mit mehreren einer Variabeln pro-
portionalen Argumenten”, where the author introduces quasi-periodic functions. This
class of functions were rediscovered about ten years later by E. Esclangon, in the view
of the study of celestial mechanic. Almost periodic functions have been studied in more
depth by H. Bohr in 1924. In the paper [Boh24], he proves in particular the fundamen-
tal theorem stating that any uniform almost periodic function (now called Bohr almost

6. Sometimes called “cut-and-project” set.
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Figure 6.14: A Penrose tiling.

Figure 6.13: Some drawings of
J. Kepler (1619).

periodic function) is the limit of generalized trigonometric series (and reciprocally).
Two years later, A. Besicovitch defined a weaker notion of almost periodicity [Bes26];
the results of these papers were summarized later in the books [Boh47] and [Bes55]. In
the early seventies, Y. Meyer [Mey72] introduced model sets in the context of harmonic
analysis (more precisely, he wanted to study Pisot and Salem numbers). These sets
were rediscovered independently in 1981 by N. G. de Bruijn (see [dB81]) to study Pen-
rose aperiodic tilings. These aperiodic tilings we introduced in 1974 by the physicist R.
Penrose [Pen74] (see Figure 6.14), inspired by the work of J. Kepler (see Figure 6.13). In
1984 was made the fundamental discovery of quasicrystals [SBGC84] (see Figure 6.15),
that is, solids that are ordered but not periodic. Quickly, the link was made with the
previous works of H. Bohr and A. Besicovitch. Since then, the various notions of almost
periodicity play an important role in the study of quasicrystals and aperiodic tilings,
but also in many other parts of mathematics (see for example the survey [Moo00]). Var-
ious mathematical formulations of quasicrystals have been proposed, such as Meyer sets
(see [Mey95]), and the harmonic study of these sets has been investigated (see [Mey12]).
Quite recently, P. Lu, an American physicist, discovered that some very old Uzbek mo-
saics have the same structure than the Penrose tiling (see Figure 6.16). It is amusing to
note that in our case, the study of almost periodic sets arises from a branch of math-
ematics which is still different: the discretizations of generic diffeomorphisms of the
torus.

The particular problem of the discretization of linear maps has been only little stud-
ied. To our knowledge, what has been made in this direction has been initiated by image
processing. The goal of these studies is to try to answer to the question: what is the best



Figure 6.15: The figure of
diffraction behind the dis-
covery of quasicrystals; this
figure possesses a symmetry
of order 5, which is impossi-
ble for regular crystals.

Figure 6.16: Mosaic in a madrassa of Boukhara
(Ouzbekistan, 15th century). In 2007, P. Lu discov-
ered that it has the same structure as a Penrose tiling.

way to define the action of a linear map on the lattice Z?? In particular, how can we
compute the image of a numerical image by a linear map? More precisely, we want to
avoid phenomenons like loss of information (due to the fact that discretizations of lin-
ear maps are not injective) or aliasing (the apparition of undesirable periodic patterns
in the image, due for example to a resonance between a periodic pattern in the image
and the discretized map). For example, in Figure 6.17, we have applied 40 successive
random rotations to a 500 x 684 pixels picture, using a consumer software. These dis-
cretized rotations induce a very strong blur in the resulting image, thus a big loss of
information. To our knowledge, the existing studies are mostly interested in the linear
maps with rational coefficients (see for example [Jac95], [Neh96] or [JDCO01]), and also in
the specific case of rotations (see for example [And96], [Nou06], [Thil0], [BV0O]). These
works mainly focus on the local behaviour of the images of Z2 by discretizations of lin-
ear maps: given a radius R, what pattern can follow the intersection of this set with any
ball of radius R? What is the number of such patterns, what are their frequencies? Are
they complex (in a sense to define) or not? Are these maps bijections? In particular, the
thesis [Nou06] of B. Nouvel gives a characterization of the angles for which the discrete
rotation is a bijection (such angles are countable and accumulate only on 0).

Here, our point of view is quite different: we want to determine the dynamical
behaviour of discretizations of generic linear maps; in particular generic matrices are
totally irrational (by this, we mean that the image of the lattice Z" by the matrix is
equidistributed modulo Z"). We will see that the behaviour of discretizations of generic
linear maps is in a certain sense smoother than that of rational linear maps: for ex-
ample the rate of injectivity is continuous when restricted to totally irrational matrices
(Proposition 8.4), while it is not on some rational matrices (Proposition 8.1). However,
we study the rate of injectivity of a sequence of matrices, which measures the loss of
information we have when we apply several discretized linear maps to an image; The-
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Figure 6.17: Original image (left) and 40 successive random rotations of this image,
obtained with a consumer software.

orem P expresses that in the general case, when we apply a lot of linear maps, then we
lose most of the information contained in the image, and Theorem Q states that this
phenomenon also appears for a generic sequence of rotations.



CHAPTER 7

ALMOST PERIODIC SETS

In this chapter, we introduce the basic notions that we will use during the study of
discretizations of linear maps of R”, n > 1. First of all, we introduce the notion of almost
periodic pattern: roughly speaking, a set I' C Z" is an almost periodic pattern if for R
large enough, the set I' N [-R,R]" determines the whole set I up to an error of density
smaller than ¢ (see Definition 7.3). It can be easily seen that an almost periodic pattern
I' possesses a uniform density, that is, that the limit

3 Card(I' n[-R,R]")
~ Revteo Card(Z" N [—R, R]")

D(T)

is well defined (Corollary 7.7).

Recall that the discretization of a linear map A € GL,(R) is the map A=ToA: Z" —
Z", where T is a projection from R" to the nearest element of Z" (see Definition 7.11).
The definition of an almost periodic pattern is supported by Theorem 7.12, which states
that the image of an almost periodic pattern by the discretization of a linear map is still
an almost periodic pattern. In particular, the successive images of the integer lattice
Z" by the discretizations of linear maps are almost periodic patterns, and possess a
uniform density.

We then study the frequency of any difference v in the almost periodic pattern I', de-
fined by pr(v) = D((F—v) OF) (Definition 7.24); in particular we prove a Minkowski-like
theorem for these differences (Theorem 7.29, obtained in collaboration with E. Joly): if
S is a centrally symmetric convex body, then the sum of the frequency of the differences
v € S is bigger than a quantity which depends linearly on the measure of S.

Finally, we introduce the notion of model set (Definition 7.32): the model set mod-
elled on a lattice A of R”*" and on a “regular” set W C R" is the projection on the n last
coordinates of the points of A whose projection on the m first coordinates belongs to W.
We state that the images sets (Kz 0-+-0 E)(Z”) are model sets, and prove that these sets
are almost periodic patterns (Theorem 7.36, obtained in collaboration with Y. Meyer).

We fix once for all an integer n > 1. We will denote by [[a,b] the integer segment
[a,b] N Z. In this part, every ball will be taken with respect to the infinite norm; in
particular, for x = (xq,---,x,), we will have

B(x,R) = B (%, R) = {y = (ylf"'lyn) eR” |Vie IIlanI'xi_yi' < R}-
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We will also denote Bg = B(0, R). Finally, we will denote by | x| the biggest integer that
is smaller than x and [x] the smallest integer that is bigger than x. For a set BCR", we
will denote [B] = BN Z".

7.1 Almost periodic patterns: definitions and first properties

In this section, we define the notion of almost periodic pattern and prove that these
sets possess a uniform density.

Definition 7.1. Let I be a subset of R".
— Wessay that I' is relatively dense if there exists R > 0 such that each ball with radius
at least Ry contains at least one point of I'.
— We say that I' is a uniformly discrete if there exists rp > 0 such that each ball with
radius at most rp contains at most one point of I'.
The set I' is called a Delone set if it is both relatively dense and uniformly discrete.

Definition 7.2. For a discrete set ' C R” and R > 1, we define the uniform R-density:

Card (B(x,R)NT)
Di(I) = sup ,
xer» Card (B(x,R) N Z")

and the uniform upper density:

Remark that if I' € R" is Delone for the parameters rr and Ry, then its upper density

satisfies:
; < D+(I‘) < ;
(2Rr+ 1)” (27’I‘+ 1)”
We can now define the notion of almost periodic pattern that we will use throughout
this chapter. Roughly speaking, an almost periodic pattern I is a set for which there
exists a relatively dense set of translations of I', where a vector v is a translation of T if
I' -v is equal to I' up to a set of upper density smaller than . More precisely, we state

the following definition.

Definition 7.3. A Delone set I' is an almost periodic pattern if for every € > 0, there exists
R, > 0 and a relatively dense set /¥, called the set of e-translations of I, such that

VR R, Vv €/, DE((T+v)AT) <e. (7.1)

Remark that if I is a subset of Z" with positive upper density and which satisfies the
condition of this definition, then it is a Delone set. In the sequel, we will only use this
definition for subsets of the lattice Z". Remark that by [Fav12, Theorem 3], an almost
periodic pattern which is also a Meyer set ! is “almost included” in a finite union of
lattices.

Of course, every lattice, or every finite union of translates of a given lattice, is an
almost periodic pattern. We will see in next section a large class of examples of almost
periodic patterns: images of Z" by discretizations of linear maps.

This definition is stronger than the following one, that we initially used for this
study.

1. A setT is called a Meyer set if I' T is a Delone set. It is equivalent to ask that there exists a finite set
FsuchthatI' =T cT +F (see [Lag96)).



7.1. Almost periodic patterns 143

Figure 7.1: Covering the set B(y, R)AB(v,, R) by cubes of radius rr.

Definition 7.4. We say that a Delone set I is weakly almost periodic if for every ¢ > 0,
there exists R > 0 such that for every x,y € R”, there exists v € R” such that

Card((B(x,R) n F)A((B(y, R)NT) —v))
Card(BgNnZ")

<e. (7.2)

Remark that a priori, the vector v is different from y — x.

We had defined this concept because it seemed to us that it was the weakest to imply
the existence of a uniform density. Unfortunately, this notion is not very convenient to
manipulate and we have not succeeded to prove that it is stable under the action of
discretization of linear maps. Of course, we have the following result (see also the
addendum [GM14] of [Mey12] for more details on the subject).

Proposition 7.5. Every almost periodic pattern is weakly almost periodic.

We do not know if the converse is true or not (that is, if there exists weakly almost
periodic sets that are not almost periodic patterns).

Proof of Proposition 7.5. We prove that an almost periodic pattern satisfies Equation
(7.2) for x = 0, the general case being obtained by applying this result twice.

Let I be an almost periodic pattern and € > 0. Then by definition, there exists R, > 0
and a relatively dense set // (for a parameter R 4, > 0) such that

VR2R,, Yv e f, Di((T+v)AT)<e (7.3)

Moreover, as I is Delone, there exists 1 > 0 such that each ball with radius smaller than
rr contains at most one point of I'.

As /I is relatively dense, for every y € R”, there exists v, € -/ such that d.,(y,v,) <
R 4. This v, is the vector v we look for to have the property of Definition 7.4. Indeed,
by triangle inequality, for every R > R., we have

Card ((B(O, R)NT)A((B(y,R)NT) - vy))
sCard((B(O,R)ﬂF)A((B(vy,R)ﬂl")—vy)) (7.4)

+Card ((B(vy, R) NT)A(B(3,R) N r)).
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By Equation (7.3), the first term of the right side of the inequality is smaller than
eCard (B(O, R)N Z”). It remains to bound the second one.
For every y € R", as d.,(y,vy) <Ry, the set B(y, R)AB(vy, R) is covered by

2n(R+rp)* ! (R, +1r)

n
T

disjoint cubes of radius 1 (see Figure 7.1). Thus, as each one of these cubes contains at
most one point of I, this implies that

(R + Tr)n_l(R/K + Tr)
Card((B(y, R)AB(v,, R)) mr) <2n - .

Increasing R, if necessary, for every R > R,, we have

R+7)" LRy +7
211( )" ( He r) SgCard(B(O,R)mZn),

n
Uy

SO,

Card((B(y, R)AB(v,,R)) N r) < ¢Card (B(0,R) N Z").
This bounds the second term of Equation (7.4). We finally get
Card((B(O, R)NT)A(B(y, R) N T - vy)) < Ze:Card(B(O, R) N z"),
which proves the proposition. O

Weakly almost periodic sets — and in particular almost-periodic patterns — have a
regular enough behaviour at the infinity to possess a density.

Proposition 7.6. Let I be a weakly almost periodic set. Then the uniform upper density of T

is a limit, more precisely:

Moreover, we have uniformity of the convergence of the density with respect to the base point,
that is: for every x € R", we have

Card (B(x,R)NT)
D(I')= lim .
R—+oco Card(B(x, R)N Z”)

In this case, we say that D(I') is the uniform density of I.

Combined with Proposition 7.5, this proposition directly implies the following
corollary.

Corollary 7.7. Let I be an almost periodic pattern. Then the uniform upper density of I' is a
limit; in other words T possesses a uniform density.
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Remark 7.8. The same proof also shows that the same property holds if instead of con-
sidering the density D*, we take a Jordan-measurable® set ] and consider the density
Dj(I') of a set I' C Z" defined by

_ Card (]R N F)
Dfr(l") = lim sup ———,
R—+ooyern Card (]R N Z”)

where Jr denotes the set of points x € R” such that x/R €].

Proof of Proposition 7.6. LetT be a weakly almost periodic set and € > 0. Then, by defini-
tion, there exists R > 0 such that for all x,y € R”, there exists v € R"” such that Equation
(7.2) holds. We take a “big” M € R, x € R” and R’ > MR. We use the tiling of R” by
the collection of squares {B(Ru, R)},¢(z)» and the Equation (7.2) (applied to the radius
R’ and the points 0 and Ru) to find the number of points of I' that belong to B(x,R’):
as B(x,R’) contains at least [M " disjoint cubes B(Ru,R) and is covered by at most [M]"
such cubes, we get (recall that Bg = B(0,R))

|M]"( Card(Bg NT) - 2¢Card(Bg N Z"))
[M]" Card(Bg N Z")

Card(B(x, RN F)
~ Card (B(x, RN Z”) -

[M1"(Card(Bg NT) + 2¢Card(Bg N Z"))
M ]" Card(Bg N Z") ’

thus

[M]" [ Card(BgrNT) 5
M7" \ Card(Bg N Z") e)

Card(B(x, RN F)
B Card(B(x, R')mZ”) B

|'M'|”( Card(BrNT) o

[M|"\ Card(Bg NnZ")

For M large enough, this ensures that for every R’ > MR and every x € R”, the density

Card(B(x, R) mr) ' Card(Bg NT)
iscloseto ——————=;
Card (B(x,R’) N Z") Card(Br NZ")
this finishes the proof of the proposition. O

We end this section by an easy lemma which asserts that for ¢ small enough, the set
of translations /; is “stable under additions with a small number of terms”.

2. We say taht a set ] is Jordan-measurable if for every € > 0, there exists 1 > 0 such that there exists two
disjoint unions € and %’ of cubes of radius 1, such that € C ] C 6, and that Leb(%¢’\ ¥) < «.



146 Chapter 7. Almost periodic sets

Lemma 7.9. Let T be an almost periodic pattern, € > 0 and € € N. Then if we set €' = ¢/¢
and denote by N the set of translations of I and Ry > 0 the corresponding radius for the
parameter €, then for every k € [1,€]| and every vq,---,vp € Ny, we have

14
VR >R, Dg((r ¥ Zvi)AF) <.

i=1

Proof of Lemma 7.9. Let T be an almost periodic pattern, e >0, £ € N, Ryg > 0 and ¢’ = ¢/(.
Then there exists R, > 0 such that

YR >Ry, Yv €, DE((C+v)AT) <€

We then take 1 <k <{, vy,---, v, € # and compute

Dj((r+ iv,)Ar) < iDﬁ((r + ivl JA(T+ 3 v))
i=1 m=1 i=1 i=1
< ing(((F+vm)AF) ; m_lvl)
m=1 i=1

w)
=+
—_—
=
+
™1~

Nﬁ
>
=
S —
IA
] gl
W)
=+
=
+
<
s
>
=
N—

As k < ¢, this ends the proof. ]

Remark 7.10. In particular, this lemma implies that each set /#; contains arbitrarily large
arithmetical progressions. More precisely, for every almost periodic pattern T, ¢ > 0 and
C eN, if we set ¢’ = ¢/¢, then for every k € [1,¢] and every v € /,, we have

VR > Ry, DE((T +kv)AT) <e.

It also implies that the set //; contains arbitrarily large patches of lattices of R": for
every almost periodic pattern I', ¢ > 0 and ¢ € N, there exists ¢’ > 0 such that for every
k; € [-¢,¢] and every vy,---,v, € ¥, we have

VR>R,, D;{((r ; ikivi )AF) <e.
i=1

7.2 Almost periodic patterns and linear maps

In this section, we prove that the notion of almost periodic pattern is invariant under
discretizations of linear maps: the image of an almost periodic pattern by the discretiza-
tion of a linear map is still an almost periodic pattern. First of all, we define precisely
what we mean by discretization of a linear map.
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i T ] 3
ek -,ﬁ',;,.“':f‘?im'
'3'-. "'-'-.5'1-'."':"'-'3'?",’:‘"

Figure 7.2: Successive images of Z? by discretizations of random matrices in SL,(R), a
point is black if it belongs to (K; 00 A\l)(Zz). The A; are chosen randomly, using the
singular value decomposition: they are chosen among the matrices of the form RgD;Rg/,
with Ry the rotation of angle 6 and D; the diagonal matrix Diag(e’,e™"), the 6, 6’ being
chosen uniformly in [0, 27| and ¢ uniformly in [-1/2,1/2]. From left to right and top to
bottom, k =1, 2, 3, 5, 10, 20.

Definition 7.11. The map P : R — Z is defined as a projection from R onto Z. More
precisely, for x € R, P(x) is the unique ® integer k € Z such that k—1/2 < x < k+1/2. This
projection induces the map

! R" +— Z7"
(xi)i<i<n (P(xi))

1<i<n

which is an Euclidean projection on the lattice Z". Let A € M,,(R). We denote by A the
discretization of the linear map A, defined by

A: 2" — Z"
x +— T(Ax).

The main result of this section is the following theorem.

Theorem 7.12. Let I C Z" be an almost periodic pattern and A € GL,,(R). Then the set K(F)
is an almost periodic pattern.

In particular, for every lattice A of R", the set ™(A) is an almost periodic pattern.
More generally, given a sequence (Ay)x>; of invertible matrices of R”, the successive
images (KE 00 1/3;\1)(2”) are almost periodic patterns. See Figure 7.2 for an example of
the successive images of Z? by a random sequence of bounded matrices of SL,(R).

Notation 7.13. For A € GL,(R), we denote A = (4, ;); ;. We denote by Io(A) the set of
indices i such that a; ; € Q for every j € [1,n]

3. Remark that the choice of where the inequality is strict and where it is not is arbitrary.
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The proof of Theorem 7.12 relies on the following remark:

Remark 7.14. If a € Q, then there exists g € N* such that {ax | x € Z} C %Z. On the
contrary, if a € R\ Q, then the set {ax | x € Z} is equidistributed in R/Z.

Thus, in the rational case, the proof will lie in an argument of periodicity. On the
contrary, in the irrational case, the image A(Z") is equidistributed modulo Z": on every
large enough domain, the density does not move a lot when we perturb the image set
A(Z") by small translations. This reasoning is formalized by Lemmas 7.15 and 7.16.

More precisely, for R large enough, we would like to find vectors w such that
DE((T{(AF) + w)An(AF)) is small. We know that there exists vectors v such that

DE((FH})AI‘) is small; this implies that DE((AF+A1/)AAI‘) is small, thus that DE(K(AF+

Av)An(AT)) is small. The problem is that in general, we do not have (A + Av) =
(AT') + t(Av). However, this is true if we have Av € Z". Lemma 7.15 shows that in fact,
it is possible to suppose that Av “almost” belongs to Z", and Lemma 7.16 asserts that
this property is sufficient to conclude.

The first lemma is a consequence of the pigeonhole principle.

Lemma 7.15. Let I' C Z" be an almost periodic pattern, e >0, 0 > 0 and A € GL,,(R). Then
we can suppose that the elements of A(/;) are d-close to Z". More precisely, there exists

Re s > 0 and a relatively dense set /7;5 such that
VR >R, Vv € M5 DE((T+v)AT) <,

and that for every v € .;I};é, we have d,,(Av,Z") < d. Moreover, we can suppose that for every
i € Ig(A) and every v € N5, we have (Av); € Z.

The second lemma states that in the irrational case, we have continuity of the density
under perturbations by translations.

Lemma 7.16. Let ¢ > 0 and A € GL,,(R). Then there exists &> 0 and Ry > 0 such that for all
w € B,(0,0) (such that for every i € Ig(A), w; = 0), and for all R > Ry, we have

D (T(AZ")AT(AZ" +w)) < &.

Remark 7.17. In Section 8.1 of Chapter 8, we will present an example which shows that
the assumption “for every i € Ig(A), v; = 0” is necessary to obtain the conclusion of the
lemma.

Remark 7.18. When Ig(A) =0, and in particular when A is totally irrational (see Defini-
tion 8.3), the map v > t(A + v) is continuous in 0; the same proof as that of this lemma
implies that this function is globally continuous.

We begin by the proofs of both lemmas, and prove Theorem 7.12 thereafter.

Proof of Lemma 7.15. Let us begin by giving the main ideas of the proof of this lemma.
For Ry large enough, the set of remainders modulo Z" of vectors Av, where v is a -
translation of I belonging to By, is close to the set of remainders modulo Z" of vectors
Av, where v is any e-translation of I'. Moreover (by the pigeonhole principle), there
exists an integer kq such that for each e-translation v € By, there exists k < ko such
that A(kv) is close to Z". Thus, for every e-translation v of T, there exists a (kg — 1)e-
translation v” = (k — 1)v, belonging to By r, such that A(v +v’) is close to Z". The vector
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v+ v’ is then a kge-translation of I' (by additivity of the translations) whose distance to
v is smaller than kyR,.

We now formalize these remarks. Let I' be an almost periodic pattern, € > 0 and
A € GL,(R). First of all, we apply the pigeonhole principle. We partition the torus
R"/Z" into squares whose sides are smaller than o; we can suppose that there are at
most [1/6]" such squares. For v € R", we consider the family of vectors {A(kv)}o<k<r1/57"
modulo Z". By the pigeonhole principle, at least two of these vectors, say A(k;v) and
A(kyv), with ky < ky, lie in the same small square of R"/Z". Thus, if we set k, = k, — k;
and € =[1/067", we have

1<k, <C and dy(A(k),Z") <. (7.5)

To obtain the conclusion in the rational case, we suppose in addition that v € gZ", where
g € N is such that for every i € Ig(A) and every 1 < j < n, we have qa;; € Z (which is
possible by Remark 7.10).

We set ¢’ = ¢/¢. By the definition of an almost periodic pattern, there exists Ry > 0
and a relatively dense set ./, such that Equation (7.1) holds for the parameter ¢":

VR 2Ry, Yv € M, DE((T+v)AT)<¢, (7.1)
We now set
P= {Avmodz” |ve /VE,} and Pg= {AvmodZ” lve SN BR}.

We have (g, Pr =P, so there exists Ry > Ry such that dy(P, Pg ) < d (where dy denotes
Hausdorff distance). Thus, for every v € /, there exists v" € /#;, N Bg, such that

d(Av—Av',Z") < 6. (7.6)

We then remark that for every v’ € 4, N By, if we set v”” = (k,, — 1)v/, then by
Equation (7.5), we have

deo(AV' + Av”, 2") = doo( Ak, '), 2") < .
Combining this with Equation (7.6), we get
do(Av+Av”,Z") < 25,

with v” € BZRO-
On the other hand, k,» < ¢ and Equation (7.1’) holds, so Lemma 7.9 (more precisely,
the first point of Remark 7.10) implies that v” € /,, that is

YR >Ry, D((T+v")AT) <e.

In other words, for every v € /;,, there exists v”” € #. N By, (with £ and R indepen-
dent from v) such that doo(A(v + v”),Z”) < 24. The set /772;25 we look for is then the set
of such sums v +v”. O

Proof of Lemma 7.16. Under the hypothesis of the lemma, for every i € Io(A), the sets

n

Zai,jx]- | (X]) S 7" ,

=1
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are equidistributed modulo Z. Thus, for all € > 0, there exists Ry > 0 such that for every
R >Ry,

DE{U €Z"|dielg(A): d((Av);, Z+ %) < e} <2(n+1)e

As a consequence, for all w € R" such that ||w||,, < &/(2(n+ 1)) and that w; = 0 for every
i € Ig(A), we have

Di(T(AZ")AT(A(Z" +w))) <.

Then, the lemma follows from the fact that there exists 6 > 0 such that ||A(w)]|, <
¢/(2(n+1)) as soon as ||w|| < o. O

Proof of Theorem 7.12. Let € > 0. Lemma 7.16 gives us a corresponding 6 > 0, that we
use to apply Lemma 7.15 and get a set of translations /T/;g). Then, for every v € /Zé' we
write T(Av) = Av + (n(Av) - Av) = Av +w. The conclusions of Lemma 7.15 imply that
lw|ls <0, and that w; = 0 for every i € Io(A).

We now explain why Av = ®(Av) is a e-translation for the set K(I‘). Indeed, for
every R > max(R.s, MRy), where M is the maximum of the greatest modulus of the
eigenvalues of A and of the greatest modulus of the eigenvalues of A~!, we have

DE(N(AF)A(R(AF) ; Xv)) < Dg(n(Ar)A(n(Ar) ; w))
+ DE((T((AT) + w)A(n(AI‘) + Kv))

(where w = m(Av) — Av). By Lemma 7.16, the first term is smaller than e. For its part,
the second term is smaller than

Df;((AT + Av)AAT) < M*Dfy (T +v)AT),
which is smaller than ¢ because v € /. O

Theorem 7.12 motivates the following definition.

Definition 7.19. Let A € GL,(R). The rate of injectivity of A is the quantity *

(A = Tim Card(AlBg)

= , 1.
R—+o0 Card[BR] E]O ]

More generally, for Ay,---, A, € GL,,(R), we set

Card((Ago---oA;)[Bg]
(A, ,A) = lim (& 1IBe))

R, Card[By] €lo. 1),

and for an infinite sequence (Ay)x>; of invertible matrices, as the previous quantity is
decreasing, we can define the asymptotic rate of injectivity

((Aker) = Jim (A, Ay €[0,1]

An easy calculation shows that the rate of injectivity can be deduced from the uni-
form density of the image A(Z") (in particular, it uses the fact that for every A € GL,(R)
and every R > 0, the set A(Bg) is Jordan-measurable, see Remark 7.8).

4. For the definition of the discretization A, see Definition 7.11. By definition, [B,] = B,,(0,R) N Z".
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Figure 7.3: Expectation of the rate of injectivity of random sequences of matrices: the
graphic represents the mean of the rate of injectivity (A, --,A;) depending on k,
1 <k <20, for 50 random draws of matrices A;. The A; are chosen randomly using the
singular value decomposition: they are chosen among the matrices of the form RgD;Rg/,
with Rg the rotation of angle 6 and D; the diagonal matrix Diag(e’,e™"), and 6, 6’ chosen
uniformly in [0,27] and t chosen uniformly in [-1/2,1/2]. Note that the behaviour is
experimentally not exponential. Also note that contrary to what happens in the case of
isometries (see Figure 8.14), some hyperbolic-like phenomenons can occur in a random
sequences of matrices of SL,(R); so that in practical, it becomes difficult to plot a graph
up to a long time (20 iterations for SL,(R) versus 200 iterations for O,(R)) for reasons
of memory constraints.

Proposition 7.20. For every matrix A € GL,,(R), we have
T(A) = |det(A)[D(A(Z")). (7.7)
More generally, for every Ay,---, Ay € GL,(R), we have
T(Ap-, Ap) = [det(Ay)]-- | det(ApID((Ag o -+~ 0 A)(Z"))

The same convergence holds for every affine map, thus we will also use the notion
of rate of injectivity (and the notation 7) in this more general context.

The quantity t(A) does not change when we multiply A on his right by an element of
SL,(Z). Similarly, (A, -+, Ay) in invariant under the multiplication of A; on his right
by an element of SL,(Z). It is difficult to detect more simple invariants for the rate t
(or even ¥), for example it has no obvious good behaviour with respect to the geodesic
flow (or horocyclic flow) on the modular surface SL,(R)/SL,(Z) (see Figure 8.4)

The goal of Chapter 8 will be to study in detail this quantity t, and in particular to
prove that the behaviour of the rate suggested by Figure 7.3 actually holds, namely that
the asymptotic rate of injectivity of a generic sequence of SL,,(R) is zero (Theorem 8.24).

We end this section by a technical lemma that we will use a lot in next chapter. It
expresses that given an almost periodic pattern I', a generic matrix A € GL,(R) is non
resonant with respect to I'.
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vﬂ

Figure 7.4: “Almost tiling” of Bsr, by cubes B(}_\_, k;v;, R), with =€ < k; <¢.

Lemma 7.21. Let I' C Z" be an almost periodic pattern with positive uniform density. Then
the set of A € GL,,(R) (respectively SL,(R), O,(R)) such that A(T') is equidistributed modulo
Z" is generic. More precisely, for every € > 0, there exists an open and dense set of A € GL,(R)
(respectively SL,(R), O,(R)) such that there exists Ry > 0 such that for every R > R, the
projection on R"/Z" of the uniform measure on A(I' N BR) is e-close to Lebesgue measure on
R"/Z".

Remark 7.22. The proof also allows to suppose that the radius R is uniform in a whole
neighbourhood of every matrix A of this open set of matrices.

Proof of Lemma 7.21. During this proof, we consider a distance dist on ?(R"/Z") which
is invariant under translations. We also suppose that this distance satisfies the following
convexity inequality: if p,vq,---, vy € P(R"/Z"), then

d d
1 1
dist[y,g E Vi SE > dist(p,v;).
i=1 i=1

For the simplicity of the notations, when p and v have not total mass 1, we will denote
by dist(p, v) the distance between the normalizations of p and v.
We consider the set %, of matrices A € GL,,(R) satisfying: there exists Ry > 0 such

that for all R > Ry,
dist[LebRn/Zn, Z SAX] <g,
XEBRmF

where 8, is the Dirac measure of the projection of x on R"/Z". We show that for every
€ >0, %, contains an open dense set. Then, the set (..o % will be a G5 dense set made
of matrices A € GL,(R) such that A(T) is well distributed.

Lete>0,0>0,¢>0and A € GL,(R). We apply the second part of Remark 7.10
to obtain a parameter Ry > 0 and a family vy,---,v,, of e-translations of I' such that
the family of cubes (B(Z?:1 kivi’RO))—éskig
each v; is close to the vector having 2R in the i-th coordinate and 0 in the others, see
Figure 7.4):

(1) this collection of cubes fills almost all By,

is an “almost tiling” of By (in particular,

Card(F A (U—pzio=e BIZL kivi,Ro)ABeRo))
Card(I' N Byg,) -
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(2) the overlaps of the cubes are not too big: for all collections (k;) and (k;) such that
_g S ki; kl, S gl
Card(F N (B(XL, ki Ry)AB(XL ki’vi,RO)))

<g
Card(I' N Byg,)

(3) the vectors ) !, k;v; are translations for I': for every collection (k;) such that - <
ki <¢,

Card((FA(F —Y I k)0 BRO)
<e
Card(T N Byg,) =€

Increasing Ry and ¢ if necessary, there exists A’ € GL,(R) (respectively SL,(R),
0,,(R)) such that ||A — A’|| < 6 and that we have

<e (7.8)

dist [LebRn/Zn, Z SA'(Z?:l kiv;)
—{<k;<l
Indeed, if we denote by A the lattice spanned by the vectors vy,---,v,, then the set of
matrices A’ such that A’A is equidistributed modulo Z" is dense in GL,,(R) (respectively
SL,(R) and O,(R)).
Then, we have,
dlSt ( LebRu/Zn, SA’X) S
—(<k; <l
XEFQB(ZL] k,‘V,‘,Ro)

diSt(LebRn/Zn, Z SA’(Z?:l k,‘Vz')‘FA’X]

—0<k;<t
xel'NB(0,Ry)

D MR VSR N

—(<k,<t —(<k; <t
XErmB(O,Ro) xefﬂB(Z:’zl kivi’RO)

By the property of convexity of dist, the first term is smaller than

1 -
dist[LebRn/Zn, 6A/(Z?_1:1 k,-v,-)+A’x);
Card (T N B(0,Ry)) xeTNB(0,R,) —ésZk,v'sé

by Equation (7.8) and the fact that dist is invariant under translation, this term is
smaller than e. As by hypothesis, the vectors ) i_, k;v; are e-translations of I' (hypothesis
(3)), the second term is also smaller than . Thus, we get

dlSt [ LebRn/Zn, SA'x] < 2¢

—(<k;<t
xelNB(LI, kivi,Ro)

By the fact that the family of cubes (B(Z?:l k;v;, RO))—€<k.<€ is an almost tiling of By,
(hypotheses (1) and (2)), we get, for every v € R”, o

dist| Lebgu/zn, Z SA’x < A4e.

XErﬂB[RO
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Remark that we can suppose that this remains true on a whole neighbourhood of A’.
We use the fact that I' is an almost periodic pattern to deduce that A’ belongs to the
interior of %,. O

7.3 Differences in almost periodic patterns

From now, we suppose that the almost periodic patterns we consider are subsets of
VAS

In the sequel, we will use the concept of difference in an almost periodic pattern.
The following lemma, whose proof is straightforward, states that the occurrences of a
given difference in an almost periodic pattern form an almost periodic pattern.

Lemma 7.23. Let v € R" and I be an almost periodic pattern. Then the set
xeT|x+vel}=I'n(l-v)
is an almost periodic pattern.

Then Proposition 7.6 allows to associate to each translation of Z" the frequency it
appears in the almost periodic pattern.

Definition 7.24. For v € Z", we set

DixeT|x+vel} D(FO(P—v))
D(T) - D(T)

pr(v) = €[0,1]

the frequency of the difference v in the almost periodic pattern I'.
The function pr is itself almost periodic in the sense given by H. Bohr (see [Boh24]).

Definition 7.25. Let f : Z" — R. Denoting by T, the translation of vector v, we say that
f is Bohr almost periodic (also called uniformly almost periodic) if for every € > 0, the set

He={vezZ"If -foTllw <e}

is relatively dense.

If f:Z" — R is a Bohr almost periodic function, then it possesses a mean /(f) (see
for example the historical paper of H. Bohr [Boh24, Satz VIII]), which satisfies: for every
€ > 0, there exists Ry > 0 such that for every R > Ry and every x € R", we have

A(f)- Card[B (x,R)] Z f

The fact that pr is Bohr almost periodic is straightforward.
Lemma 7.26. If T is an almost periodic pattern, then the function pr is Bohr almost periodic.
In fact, we can compute precisely the mean of p(I').

Proposition 7.27. If I is an almost periodic pattern, then we have

A (pr) = D(T).



7.3. Differences in almost periodic patterns 155

Proof of Proposition 7.27. This proof lies primarily in an inversion of limits.
Let € > 0. As I is an almost periodic pattern, there exists Ry > 0 such that for every
R >Ry and every x € R", we have

_rm[B(x,R)]' L

‘D(I‘) Card[Bg]

(7.9)

So, we choose R > Ry, x € Z" and compute

D((T-v)NT)

1 1
Card[Bg] e[;rm]pr(v) ~ Card[Bg] ve[;'R)] D(T)

1 1 Lyer—y1yer

- li

Card|[Bg] ) R0 Card[By ] ) D)
v€[B(x,R)] V€[Br/]

1 1
li 1, r————— 1
D(T) R 1o Card[Bg ] ) Y<l Card[Bg] ) Ly
y€[Bg’] ve[B(x,R)]

1 1
li lyer ———— 1,cr.
D(T) R/ oo Card[Bg/] Z yel Card[Bg] Z v'el
y€(Br/] v'E[B(y+x,R)]

first term second term

By Equation (7.9), the second term is e-close to D(I'). Considered independently, the
first term is equal to D(T') (still by Equation (7.9)). Thus, we have

1
Card[B(x,R)] velBER)]
that we wanted to prove. O

We now state a Minkowski-type theorem for the map pr. To begin with, we recall the
classical Minkowski theorem (see for example [Ber09, IX.3] or the whole book [GL87]).

Theorem 7.28 (Minkowski). Let A be a lattice of R", k € N and S C R" be a centrally
symmetric convex body. If Leb(S/2) > kcovol(A), then S contains at least 2k distinct points

of A\ {0).

In particular, if Leb(S/2) > covol(A), then S contains at least one point of A \ {0}.
This theorem is optimal in the following sense: for every lattice A and for every k € N,
there exists a centrally symmetric convex body S such that Leb(S/2) = kcovol(A) and
that S contains less than 2k distinct points of A \ {0}. In Chapter 8, we will make use of
Hajos theorem (Theorem 8.21), which specify what can happen in the case where S is
an infinite ball satisfying Leb(S/2) = covol(A).

Proof of Theorem 7.28. We consider the function
¢ = ZIX+S/2'
AEA

The hypothesis about the covolume of A and the volume of S/2 imply that the mean of
the periodic function ¢ satisfies /() > k. In particular, there exists x; € R"” such that
@(xg) > k+1 (note that this argument is similar to the pigeonhole principle). Then, there
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Figure 7.5: Example 7.31 of equality case in Theorem 7.29 for k = 3

exists Ag, -+, Ay € A, with the A; sorted in lexicographical order (for a chosen basis), such
that the points xy — A; belong to S/2. As S/2 is centrally symmetric, A; — x; belongs to
S/2 and as S/2 is convex, ((xo —Ag)+ (N — xo))/Z (A; — Ag)/2 also belongs to S/2. Then,
Ai—Xp € A\{0}NS for every i € [1,k]. By hypothesis, these k vectors are all different.
To obtain 2k different points of SN A \ {0} (instead of k different points), it suffices to
consider the points Ay —A;; this collection is disjoint from the collection of A; — Ay by the
fact that the A; are sorted in lexicographical order. This proves the theorem. O]

With the definitions we introduced, Minkowski theorem can be seen as a result
about the function pr: Let A be a lattice of R", and S C R" be a centrally symmetric convex
body, then

ZpA ) > 2[D(A)Leb(S/2)] -

uesS

We now state a similar statement in the more general case of almost periodic patterns.

Theorem 7.29 (in collaboration with E. Joly). Let I C Z" be an almost periodic pattern,
and S C R" be a centrally symmetric convex body. Then (recall that [S]=SNZ")

Z pr(u I')Card[S/2].

Remark that by Theorem 7.28, we have Card[S/2] > 2[Leb(S/4)]—1. Thus,

Z or(u I)(2[Leb(S/4)]-1).

Remark 7.30. It is possible to prove in an easier way a weak version of Theorem 7.29
which is sufficient for the use we will make (Theorem 8.36). However, it seemed nicer
to us to state a more optimal property.

The case of equality in the theorem is attained even in the non trivial case where
Card[S/2] > 1, as shown by the following example.

Example 7.31. If k is an odd number, if T is the lattice kZ x Z, and if S is a centrally
symmetric convex set such that (see Figure 7.5)

SNZ?={(i,0)|ie[-(k-1),k-1]}U{x(,1)|ie[1,k-1]),

then Y ,.cs p(1) = 1, D(T) = 1/k and Card(S/2NZ") = k.
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The strategy of proof of this theorem is similar to that of the classical Minkowski
theorem: we consider the set I' + S/2 and define a suitable auxiliary function based on
this set.

Proof of Theorem 7.29. We first define
R Z 1 Z Lyerlyver
pa Card BR ve S/2+a] D(l—v) .
ve([Bg] ue(s]
We use this function to apply an argument of double counting. Firstly, we have

Zpa = Card[BR] Z Z —lvell"jl(;;vel“ Z lae[S/2+v]

ve[Bgr]ue[S] agzZ"

1yerlyver
Card[BR Z Z D) Card[S/2 +v]
ve [BR]ue[S]

_ 1v€F1u+v€F
= Card[S/2] Z Card[BR] Z DI)
ue(S] v€[BRr]

Thus, by the definition of pr, we get

lim Zpa = Card[S/2] Z or(u (7.10)

R—+00
A ue(S]

The conclusion of the theorem is an estimate on the right side of this equality; to prove
it we compute the left side in another way.

First of all, we remark that as S is a centrally symmetric convex body, v,w € S/2
implies that w—v € S, so (applying this property to w = u +v)

1veS/2+a1ueS 2 1veS/2+a1u+veS/2+w
and thus
1ve[S/2+a]lue[S]lveF1u+veF 2 1veFﬂ[S/2+a]1u+veFm[S/2+a]-
We now sum this inequality over u € Z":
Z 1ve[S/2+a]1veF1u+veF 2 1veFﬂ[S/2+a] Z 1u+veFﬂ[S/2+a]
u€elS] uezZ"

2 1v€Fﬂ[S/2+u] Z 1u’€Fﬂ[S/2+a]
u/ezn

> 1yern(s/2+a] Card(F N[S/2+ a]);

SO

1
0n = DT )m Z Lyern(s/a+a) Card(I' N [S/2 + a]).
vE[BR]

We denote by BIS{ the S-interior of By, that is

B%:(B%+S)C ={xeBr|VseS,x+s€Bg}
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In particular, a € [B] implies that [S/2 + a] C [B,], then

PITESs ZCard[BR D Liernis/zea Card (T N[S/2+ al)

aczZ" ve[Bg]
1 1
> TW{B] Z Z lyerm[s/z_,,a] Card (F N[S/2 + a])
R aelBy velBe]
1 1

\%

Z Card Fﬂ[S/2+a]) .

ag[B}]

D(T) Card[BgR]
We then use the fact that the family {Bg}r- is van Hove when R goes to infinity (see for
example [Mo0002, Equation 4]), that is

Card[Bgr] - Card[BIS{]
im =0;
R—+c0 Card[BR]

thus,

1 — 2
: Ry L I
RliTwaZezn Pa = H e, Card [Bg] Z[B ]Card (Tis/2+a))
R

2

Using the convexity of x — x“, we deduce that

2
1

RlleZp“ZRllTwD 0 | CardBy] ZB]Card Fn[S/2+a]) . (7.11)
R

Now, it remains to compute

m Z Card rﬂ[S/2+a]) %{BR] Z Z 15+a€r

a€[Bg] BR]5€[5/2]
= Z Z 1yer.
se[S/2] a €[Bg]-s

But for every s € R”, we have

1
lim —— 1,r = D(I),
R—+00 Card[BR] a,e;j_s @€l

thus
m ZB]Cafd (TN [S/2+a]) = Card[S/2]D(T).
Applied to Equation (7.11), this gives

. R 2
Jim EZZ oR > Card[S/2]2D(T)
a n

To finish the proof, we combine it with the first estimate in Equation (7.10) and get:
Card[S/2] Zpr(u) > Card[S/2]*D(T),

uesS
SO

Zpr(u) > Card[S/2]D(T)

ues
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Figure 7.6: Construction of a model set.

7.4 Model sets

We now turn to a more precise notion about almost periodicity: model sets. We
begin this section by motivating the introduction of these sets: we give an alternative
construction of the sets K(Z”) in terms of model sets.

A point x € Z" belongs to X(Z”) if and only if there exists y € Z" such that ||[x—Ayp||,, <
%. In other words, if we set

A -1d
Ma = ( Id ) € M, (R),
if we note p; and p, the projections of R?" on respectively the  firsts and the n last

coordinates, and if we set W =] — %, %]”, then

A(Z") = {pa(Mav) [v € 27", p; (Myv) € W).

This notion is close to that of model set introduced by Y. Meyer in the early seventies
[Mey72], but in our case the projection p, is not injective. Model sets are sometimes
called “cut and project” sets in the literature.

Definition 7.32. Let A be a lattice of R”*", p; and p, the projections of R”*" on respec-
tively R™ x {O}g» and {O}g» x R", and W a Riemann integrable subset of R™. The model
set modelled on the lattice A and the window W is (see Figure 7.6)

I={p(V[AeA, pi(})eW}

Here, we will call model set every set of this type, even if the projection p, is not
injective. Indeed, this phenomenon is what is interesting for us, if it did not occur there
would be no loss of injectivity when applying discretizations of linear maps. Notice that
this definition, which could seem very restrictive for the set I', is in fact quite general: as
stated by Y. Meyer in [Mey72], every Meyer set ° is a subset of a model set. Conversely,
model sets are Meyer sets (see [Mey95]).

Returning to our problem of images of the lattice Z" by discretizations of linear
maps, we have the following (trivial) result.

5. AsetT is a Meyer set if I —T is a Delone set. It is equivalent to ask that there exists a finite set F such
that T =T cT +F (see [Lag96]).
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Proposition 7.33. Let Ay,---,A; € GL,(R) be k invertible maps, then the k-th image I} =
Apo---0A{(Z") of Z" by the discretizations is the model set modelled on the window W =
—1,31"8 and the lattice My, .. 5, Z"F*V), where
A; -Id
A, -1d
Ma, A, = € My(k+1)(R).

A -Id

Id
Remark 7.34. This notion has the advantage that it builds the k-th image directly: the
concept of time disappears, so we will be able “anticipate” the behaviour of successive

images. The downside is the increasing of the dimension; thus it will be more difficult
to have a geometric intuition. ..

In the sequel, we will only consider model sets whose window is regular.

Definition 7.35. Let W be a subset of R". We say that W is regular if for every affine
subspace V C R”, we have

Leby (Bv(a(V nw), q)) v 0,

where Leby denotes the Lebesgue measure on V, and Bv(a(V N W),v]) the set of points
of V whose distance to d(V N W) is smaller than 1 (of course, the boundary is also take
in restriction to V).

The link with the previous sections is made by the following theorem.

Theorem 7.36 (in collaboration with Y. Meyer). A model set modelled on a regular window
is an almost periodic pattern.

In other words, for every € > 0, there exists Ry > 0 and a relatively dense set /" such
that for every v € /" and every R > R, most of the points (i.e. a proportion greater than
¢) of the model set I also belong to v + I (see Definition 7.3).

We begin by proving a weak version of this theorem.

Lemma 7.37. A model set modelled on a window with nonempty interior is relatively dense.

Proof of Lemma 7.37. We prove this lemma in the specific case where the window is B,
(recall that B, is the infinite ball of radius 1 centred at 0). We will use this lemma only
in this case (and the general case can be treated the same way).

Let I be a model set modelled on a lattice A and a window B,. We will use the
fact that for any centrally symmetric convex set S C R”, if there exists a basis eq,---, e,
of A such that for each i, [n/27e; € S, then S contains a fundamental domain of R"/A,
that is to say, for every v € R”, we have (S+v)NA = (. This is due to the fact that the
parallelepiped spanned by the vectors e; is included into the simplex spanned by the
vectors [n/2]e;.

We set

V= ﬂ span(p{l(Bn/) ﬂA) = ﬂ span{ke Ald(Nkerpy) < r]'},
n’>0 1n’>0
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and remark that imp, = kerp; C V, simply because for every vectorial line D ¢ R" (and
in particular for D C kerp,), there exists some points of A\ {0} arbitrarily close to D. We
also take R > 0 such that

V c V' =span(p; ! (Byru21) VA NPy (Br)).

We then use the remark made in the beginning of this proof and apply it to the linear
space V’, the set S = (pgl(BR) X pl_l(Bﬂ)) NV’, and the module V' N A. This leads to

Vvev, ((p;l(Bn) npy'(Br))+ v) NA =0,
and as imp, C V, we get
Yv' e R", (pl_l(Bn) Np5!(Bg + v')) NA =0;
this proves that the model set is relatively dense for the radius R. O

Proof of Theorem 7.36. Let I be a model set modelled on a lattice A and a window W.
First of all, we decompose A into three supplementary modules: A = A1 @A, ® Aj,
such that (see [Bou98, Chap. VII, §1, 2]):

1. Ay =kerpiNA;

2. p1(A,) is discrete;

3. p1(A3) is dense in the vector space V it spans (and such a vector space is unique), and
VNpi(Az) =1{0}.

As Ay =kerp; NA =imp, N A, we have Ay = p(Ay). Thus, for every A; € Ay and every

vyeTl, wehave A\ + y€I'. So A; is a set of periods for I'. Therefore, considering the

quotients R"/spanA; and A/A; if necessary, we can suppose that p;|, is injective (in

other words, A; = {0}).

Under this assumption, the set p,(Ajz) spans the whole space imp,. Indeed, as
kerp; N A = {0}, we have the decomposition

R"™" = ker p; ®@span (pl(AQ))EBspan (pl(Ag,)). (7.12)
~——
=imp> =imp,

Remark that as p(A,) is discrete, we have dimspan (pl(Az)) = dim A,; thus, consider-
ing the dimensions in the decomposition (7.12), we get

dimspan(Aj) = dim(kerpl ®span (p1(A3))). (7.13)

The following matrix represents a basis of A = A, ®Aj in a basis adapted to the decom-
position (7.12).

A, As
—_—
kerp; =imp, " "
span (p1(A,)) : 0

span (p;(A3)) 0 .
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We can see that the projection of the basis of A3 on imp, @span (p1 (A3)) form a free
family; by Equation (7.13), this is in fact a basis. Thus, span(A3) D kerp; = imp,, so

span (Pz(/\3)) = im(pa).
For 11> 0, let /(1) be the model set modelled on A and B(0, 17), that is

A (M) =1{p2(A3) | A3 € A3, [Ip1(A3)lleo < 1)

Lemma 7.37 asserts that /(1) is relatively dense in the space it spans, and the previous
paragraph asserts that this space is imp,. The next lemma, which obviously implies
Theorem 7.36, expresses that if 1] is small enough, then /(1) is the set of translations
we look for.

Lemma 7.38. For every ¢ > 0, there exists 1| > 0 and a regular model set Q(v) such that
D*(Q(1)) < ¢ and
veN(n)=T+v)AI CQ(n).

We have now reduced the proof of Theorem 7.36 to that of Lemma 7.38. O]
Proof of Lemma 7.38. We begin by proving that (I' +v)\T € Q(1) when v € /' (1). As
v € /' (n), there exists Ay € Az such that p;(Ag) = v and |[p;(A)lleo < 1.

If xeTl +v, then x = pz(}\z + }\3) + pz()\o) = pz(}\z + A3+ )\0) where A, € A, Az € Aj

and p;(A; + A3) € W. If moreover x ¢ I, it implies that p;(A; + A3 + Ag) € W. Thus,
p1(A2+ A3+ Xg) € W,, where (recall that V = span(p;(A3)))

W, :{k+w|ke&W,weVﬂBn}.
We have proved that I' + v \I' € Q(1]), where

Q) = {p2(V [ A€ A, p1(A) € W)

Let us stress that the model set Q(1) does not depend on v. We now observe that as W
is regular, we have

Z Leby ., (1) (Wy N (V +p1(22))) — 0.
1n—0
}\zeAz

As p1(Aj) is dense in V (thus, it is equidistributed), the uniform upper density of the
model set Q(1) defined by the window W, can be made smaller than ¢ by taking 1 small
enough.

The treatment of I' \ (I + v) is similar; this ends the proof of Lemma 7.38. O



CHAPTER 8

RATE OF INJECTIVITY OF LINEAR MAPS

In this chapter, we focus in more detail on the rate of injectivity of a sequence of
linear maps (see Definition 7.19).

To begin with, study the easier case of the rate of injectivity in time 1. First of all,
we study the continuity of the map t = t'. Unfortunately, this map is not continuous
(Proposition 8.1). However, T is continuous at every totally irrational matrix ' (Propo-
sition 8.4). More precisely, we define the mean rate of injectivity T(A) of a matrix A:
it is the mean of the rates of injectivity of the affine maps A + v, for v € R"/Z" (see
Definition 8.3). It turns out that this quantity is much more convenient to use: by an
argument of equirepartition, it coincides with the rate of injectivity when A is totally
irrational, and it is continuous on the whole set GL,(R) (Proposition 8.4). We finish
this study by estimating the lack of continuity of T — that is, the difference between
T and t© — at the matrices which are not totally irrational: this difference is arbitrarily
small out of a topologically small set, that is, out of a locally finite union of hyperplanes
(Proposition 8.7).

These considerations allow us to focus on the mean rate of injectivity. The equidistri-
bution property we gain by using the mean rate of injectivity allows to have a formula to
compute it directly: for A € GL,(R), we have (Proposition 8.11, see also Proposition 8.18
and Figures 8.2 and 8.9)

T(A) = det(A)D

U By (), 1/2)).

AeAZ"

As the set AZ" is a lattice, this quantity is equal to the area of the intersection between
a fundamental domain of AZ" and the union of cubes [ Jycpz: Boo(A, 1/2): this reduces
the computation of the mean rate of injectivity to that of the area of a finite union of
cubes. This formula proves that the mean rate of injectivity is continuous and piecewise
polynomial (Corollary 8.13). It also allows to compute the mean rate of injectivity of
some practical examples (see Applications 8.14 and 8.15), and gives a quick method to
compute numerically the mean rate of injectivity (see Figure 8.3).

To characterize the matrices for which the mean rate of injectivity is equal to 1, we
combine this formula with the classical Hajos theorem (Theorem 8.21) and get directly
Corollary 8.22: a matrix A € SL,(R) has a mean rate of injectivity equal to 1 if and
only if there exists B € SL,(Z) such that in a canonical basis of R” (that is, permuting

1. We say that a matrix A € GL,(R) is totally irrational when the set A(Z") is equidistributed modulo
z".

163



164 Chapter 8. Rate of injectivity of linear maps

coordinates if necessary), the matrix AB is upper triangular with ones on the diago-
nal. Thus, the set of such matrices forms a locally finite union of manifolds of positive
codimension.

We then study the behaviour of the asymptotic rate of injectivity of a generic se-
quence of matrices of SL,(R). It is given by the main theorem of this chapter (Theo-
rem P, see also Theorem 8.24): for a generic sequence (Ay)x>; of matrices of SL,(R), we
have T“((Ak)k) =0.

The end of the chapter is devoted to the study of this theorem and some variations
on it. The first variant is given in the (easy) case where all the matrices are diago-
nal (Proposition 8.27): for a generic sequence (Ay)x>1 of diagonal matrices, we have
T°((Ag)k) = 0.

In the general case, we give a proof of the following weak version of Theorem 8.24
(Theorem 8.30): if (Ag)r>1 is a generic sequence of matrices of SL,(R), then T ((Ay)x) <
1/2. This proof involves the study of the differences in an almost periodic pattern:
the frequency of the difference v € Z" in the almost periodic pattern I' is the quantity
pr(v) = D((F —v)NT) (see Definition 7.24). To start the proof, we remark that if ' € Z" is
an almost periodic pattern whose density is bigger than 1/2+9, then for every v € Z", the
frequency of the difference v in I satisfies pr(v) > 20 (Lemma 8.29). The theorem results
from this remark and from the fact that matrices with a rate of injectivity equal to 1 are
very rare (Corollary 8.22). The proof also uses crucially the geometric construction used
to compute the mean rate of injectivity T (Proposition 8.11).

We then state a variation of Theorem P in the case of isometries (Theorem 8.36) : if

(P¢)x>1 is a generic sequence of matrices of O, (R), then t*((Py)x) = 0.
To prove this result, we study in more detail the action of the discretizations of lin-
ear maps on the frequencies of the differences of an almost periodic pattern (Propo-
sition 8.33). We show that the discretization Aof Ace GL,(R) acts smoothly on the
frequency of differences: when we want to compute A(T), we apply A and then make
a projection, whereas when we want to compute PAr)y We apply A and then make
a weighted projection. To prove Theorem Q, we combine this computation with the
Minkowski-like theorem for the differences in an almost periodic pattern we obtained
in the previous chapter (Theorem 7.29).

Finally, we use the notion of model set > (Definition 7.32) to improve Theorem 8.30.
It is defined as follows: given a lattice A of R”*" and a “regular” set W Cc R", we select
the points of the lattice whose projection on the m first coordinates belongs to W; the
projection on the n last coordinates of these points is called the model set modelled on
A and W. Model sets form a subclass of almost periodic patterns (Theorem 7.36). The
introduction of this notion is supported by the fact that for every sequence (Ag)g»; of
invertible linear maps, the set (Ay o--- 0 A;)(Z") is a model set (Proposition 7.33). This
fact gives us a more precise information about the structure of the successive images
of Z" by discretizations of linear maps, as the definition of model set is stronger than
that of almost periodic pattern. This viewpoint is fruitful to study the question raised
in Theorem P: first of all, an argument of equidistribution leads to a generalization
of the geometric construction to compute the mean rate of injectivity in time 1 to the
rate of injectivity in arbitrary time k (Propositions 8.40 and 8.46). Moreover, these
constructions allows us to give an alternative proof of Theorem 8.30, and to finally
prove Theorem P.

2. Sometimes called “cut-and-project” set.
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Figure 8.1: Sets fy(Z")+v for v =(0,0), v = (0.2, -0.1) and v = (0.2, 0.1)

8.1 Study of the continuity of the rate of injectivity

In this section, we study the properties of continuity of the function t. We first show
that there exists some matrices in which t is not continuous (Proposition 8.1). However,
we show in Proposition 8.4 that T is continuous at every totally irrational matrix; more
precisely, the map T coincides with the mean rate of injectivity T (Definition 8.3) on the
set of totally irrational matrices, and the map T is continuous on the whole set GL,,(R).
We finish this section in estimating the lack of continuity of t at the matrices which are
not totally irrational (Proposition 8.7).

In the following example, we show that on some rational matrices, the rate of injec-
tivity is not continuous. In particular, it will give us an example where Lemma 7.16 is
not true when there is no restriction about the value of v on Ig(A) (the set of indices
corresponding to rational coefficients, see Notation 7.13).

Our counterexample is given by irrational perturbations of the matrix

1
1
fo= (% )
5 1
It can be easily seen that the rate of injectivity of f; is 1/2 (see Figure 8.1). Remark
that it depends on the choice made for the projection of R? on Z?: if we make the same

choice for both directions (that is what we have chosen in Definition 7.11) then the rate
of injectivity is 1/2, otherwise this rate of injectivity is 1. For ¢ “small”, we consider the

linear map
1+e 0
Je :( 0 L)fOr

1+e

which is close to fy when ¢ is small.
Proposition 8.1. The rate of injectivity of f. tends % when € € Q tends to 0.
In particular, the rate of injectivity T is not continuous in f,.

Lemma 8.2. — For all v €]0, 3[>U]3,1[2 modulo Z", the rate of injectivity of fo+v is 5.
— For all v €]0, %[x]%,l[u]%, 1[x]o0, %[ modulo Z", the rate of injectivity of fy+v is 1.

Proof of Lemma 8.2. We want to know when it is possible to find two different vectors
x,y € Z" such that 1t(fox +v) = ©(foy + v). This implies that d,(fox, foy) < 1, a simple
calculation (see Figure 8.1) shows that in this case, x =y +(1,0). As fy(2Z x Z) C Z?, we
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can suppose that x = 0 ; we want to know if for y = +(1,0), we have 1(fox+v) = (foy+v),
that is t(v) = m(v £ (1/2,1/2)). Again, a simple calculation shows that this occurs if and
only if v €]0, 3[>U] - 3, 0[%. O

Thus, for half of the vectors v (for Lebesgue measure), the rate of injectivity of fy+v
is 1 and for the other half of the vectors v, the rate of injectivity of fy + v is % Propo-
sition 8.1 then follows from an argument of equirepartition. To make it rigorous, we
define the mean rate of injectivity.

Definition 8.3. For A € GL,(R), the quantity

Al

(A):JHT(A+v)dv

is called the mean rate of injectivity of A.

We say that a matrix A € GL,,(R) is totally irrational if the image A(Z") is equidis-
tributed > modulo Z%; in particular, this is true when the coefficients of A form a Q-free
family.

The motivation of this definition is that the mean rate of injectivity is continuous
and coincides with the rate of injectivity on totally irrational matrices.

Proposition 8.4. The mean rate of injectivity T is continuous on GL,(R). Moreover, if A is
totally irrational, then T(A) = t(A); and even more, T(A) = T(A+v) for every v € T".

Thus, the restriction of the rate of injectivity to totally irrational matrices is a con-
tinuous function, which extends to GL,(R) into a continuous function. In particular, the
restriction of this function to any bounded subset of SL,,(R) is uniformly continuous.

Proposition 8.4, combined with Lemma 8.2, obviously implies Proposition 8.1 (as
for e ¢ Q, the map f, is totally irrational).

Proof of Proposition 8.4. The continuity of T will be obtained later as a direct conse-
quence of Corollary 8.13.

Let A € GL,(R) be a totally irrational matrix. We want to prove that t(A) = T(A). To
do that, we show that ©(A) = t(A+v) for every v € T". As {Ax | x € Z"} is equidistributed
modulo Z", for every v € T", there exists x € Z" such that d (v - Ax,Z") < e. But as the
density is a limit independent from the choice of the centre of the ball (Corollary 7.7
and Theorem 7.12), we have

Card (m(A(Z")) N Bg) Card (m(A(Z") + Ax) N B(Ax,R))
lim = lim

R—+0c0 Card[BR] R—+0c0 Card[BR]

This proves that T(A) = (A + Ax). We then use Remark 7.18, which states that as A is
totally irrational, the function v — t(A+v) is continuous. As the vector Ax is arbitrarily
close to the vector v, we get T(A) = T(A+v). O

Remark 8.5. The same proof shows that if I' € Z" is an almost periodic pattern, and
A € GL,(R) is such that A(T) is equidistributed modulo Z" (which is true for a generic
A, see Lemma 7.21), then B — D(E(F)) is continuous in B = A.

3. It is equivalent to require that it is dense instead of equidistributed; it is also equivalent to ask that
Z" is equidistributed modulo A(Z").
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We now study the behaviour of T at the matrices where it is not continuous. In
particular, we prove that the set of matrices on which the rate of injectivity makes “big
jumps” is small. More precisely, we define the oscillation of a map.

Definition 8.6. For A € GL,(R), the oscillation of T at A is the quantity
wc(A) = Tim sup {[e(By) - t(By)] | A~ Byl < r}.

Proposition 8.7. For every ¢ > 0, the set {A € GL,(R) | w(A) > e} is locally contained in a
finite union of hyperplanes.

To prove this proposition, we will need a technical lemma which requires the fol-
lowing definition.

Definition 8.8. Let A be a lattice of R”. Then [Bou98, Chap. VII, §1, 2] implies that the
Z-module A +Z" can be decomposed into two complementary modules

A+Z" = Acont ® Adiscrs
such that Ay, is dense in the vector space it spans and A gjs, is discrete.

During the proof of Proposition 8.7, we will make use of the following lemma, that
we will not prove.

Lemma 8.9. For every € > 0, the set of matrices A € GL,(R) such that (AZ")is, has a
fundamental domain of diameter smaller than € contains the complement of a locally finite
union of hyperplanes.

Remark that if A is totally irrational, then (AZ")g4jscr = {0}

Proof of Proposition 8.7. Let € > 0. We consider a matrix A € GL,,(R) such that (AZ")4jscr
has a fundamental domain & of diameter smaller than ¢; Lemma 8.9 asserts that such
matrices contains the complement of a locally finite union of hyperplanes. We denote
A = AZ". We use Proposition 8.4, which states that T is continuous and coincides with
T on totally irrational matrices, to estimate the oscillation of T in A : it is smaller than
the maximal value of |D(n(A +v))—D(1t(A +7v’))|, when the vectors v and v’ run through
T".
First of all, we remark that the map

v D(T(A + 7))

is A+Z"-periodic. Thus, we only have to estimate |D(n(A+v))—D(Tc(A+v’))| for v and v’
in Z. We denote by (Z")’ the set of points in R” whose discretization is not canonically
defined, more precisely,

(2" ={(xi)1<i<n €R" [Ti: x; € Z+1/2}.
Then, for every v,v’ € R”, we have
ID(M(A+v))-D(r(A+2"))| <D{xe A|Fwe P :x+we (2"},
and as diam(Z) is smaller than ¢, we get
Card{x € Agiser N[0,1]" | d(x,(2")) < ¢}
Card(Agjser N[0,1]7)

The proposition then follows from the fact that this last quantity is small (uniformly in
€). O

ID(T(A +v)) - D(r(A +v))| <
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° \L
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Figure 8.2: First geometric construction: the green points are the elements of A, the
blue parallelogram is a fundamental domain of A and the grey squares are centred on
the points of A and have radii 1/2; their union form the set U. A point x € Z" belongs
to (A) if and only if it belongs to at least one grey square.

8.2 A geometric viewpoint on the mean rate

In this section, we present two geometric constructions to compute the rate of injec-
tivity of a matrix.

First construction Let A € GL,(R) and A = A(Z"). The density of 1(A) is the pro-
portion of x € Z" belonging to 1(A); in other words the proportion of x € Z" such that
there exists A € A whose distance to x (for ||-||,) is smaller than 1/2. This property only
depends on the value of x modulo A. If we consider the union

U= U B(), 1/2)

AeA

of balls of radius 1/2 centred on the points of A (see Figure 8.2), then x € (A) if and
only if x e UNZ". So, if we set v the measure of repartition of the x € Z" modulo A, that
is

1

= lim o Y % ,

V'~ RSt Card(Bg N Z7) P/ (%)
xeBRﬂZ”

then we obtain the following formula (using also Equation (7.7), which links t(A) and
D(A)).

Proposition 8.10. For every A € GL,(R) (we identify U with its projection of R"/A),
(A) = | det(A)D(r(A)) = |det(A)|v( prgsa (V)

In particular, when the matrix A is totally irrational, the measure v is the uniform
measure; thus if & is a fundamental domain of R"/A, then t(A) is the area of ' N U.
The same holds for the mean rate of injectivity and any matrix (not necessarily totally
irrational).

Proposition 8.11. For every A € GL,(R),
T(A) = |det(A)|Leb( prra/, (U)) = |det(A)| Leb(UN D).

Thus, the mean rate of injectivity can be seen as the area of an intersection of parallelepipeds
(see Figure 8.2).
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Figure 8.3: Mean rate of injectivity on SL,(R) on the fundamental domain & (more
precisely, & ={ze€ C||z| > 1,Imz > 0, -1/2 < Rez < 1/2}) of the modular surface, for
various angles in T'Z (0, /10, /5, 311/10, 21/5, 1/2).

With the same kind of arguments, we easily obtain a formula for pg(zn)(v) (the fre-

quency of the difference v in K(Z”), see Definition 7.24).

Proposition 8.12. If A € GL,(R) is totally irrational, then for every v € Z",
P&z (v) =Leb(B(v,1/2)n )

Sketch of proof of Proposition 8.12. We want to know which proportion of points x € I' =
A(Z") are such that x + v also belongs to I'. But modulo A = A(Z"), x belongs to I' if and
only if x € B(0,1/2). Similarly, x + v belongs to I if and only if x € B(-v,1/2). Thus, by

equirepartition, PK(zn>(”) is equal to the area of B(v,1/2)N U. O
From Proposition 8.11, we deduce the continuity of T.

Corollary 8.13. The mean rate of injectivity is a continuous function on GL,(R), which is
locally polynomial with degree smaller than n in the coefficients of the matrix.

Moreover, this construction gives a quick algorithm to compute numerically the
mean rate of injectivity of some matrices: this algorithm is much more efficient than
the naive one consisting in computing the cardinality of the image of a large ball by the
discretization, see Figure 8.3 and Figure 8.4.

It also allows to compute simply the mean rate of injectivity of some examples of
matrices.

Application 8.14. For 0 € [0,7/2], the mean rate of injectivity of a rotation of R? of angle
0 is (see Figure 8.5).
T(Rg) = 1 — (cos(B) +sin(0) — 1)°.
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Figure 8.4: Action of the geodesic flow on the mean rate of injectivity: the red corre-
sponds to a rate of injectivity close to 1 and the blue to a rate of injectivity close to 0.
The figure represents the rate of injectivity on geodesics of the space SL,(R)/SL,(Z),
identified with the unitary tangent space T'S of the modular surface S starting from
the point i, depending on the time (on the vertical axis) and on the starting angle of the
geodesic (on the horizontal axis). The mean rate of injectivity of each lattice has been
computed in using Proposition 8.18

< \ / /
\/e> // /

Figure 8.5: Computation of the mean Figure 8.6: Computation of the mean
rate of injectivity of a rotation of R?: it is rate of injectivity of a lattice having one
equal to 1 minus the area of the interior vector parallel with the horizontal axis

of the red square. with length £ < 1.
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/ / / /
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Figure 8.7: Computation of the mean Figure 8.8: Computation of the mean
rate of injectivity of a lattice having one rate of injectivity of a lattice having one
vector parallel with the horizontal axis vector parallel with the horizontal axis
with length ¢ €]1,2[ for a parameter x > with length ¢ €]1,2[ for a parameter x <
{-1. ¢—-1.

Application 8.15. We consider a lattice of R? of covolume 1 with one basis vector parallel

with the horizontal axis. We have several cases:

1. If the length ¢ of the vector parallel with the horizontal axis is smaller than 1, then
the mean rate of injectivity is equal to ¢, independently from the choice of the second
basis vector (see Figure 8.6).

2. If the length ¢ is bigger than 1 but smaller than 2, we choose v = (x, 1/¢) another basis
vector of the lattice. We can suppose that —£/2 < x < {/2; by symmetry we only treat
the case x € [0,£/2]. The mean rate of injectivity is then a piecewise affine map with
respect to x:

— if £ -1 < x <{/2, then the mean rate of injectivity is constant and equal to 1 — (£ —
1)(2/€—-1) =€ —-2+2/€ (see Figure 8.7);
— if 0 <x < ¢ -1, then the mean rate of injectivity is equal to 1 — (€ —-1)(2/¢-1)—(1 -
1/0)(¢ —1—-x)=1/€ + x — x/C (see Figure 8.8).
We do not treat the other cases where £ > 2.

1 PSS

Figure 8.9: Second geometric construction: the green points are the elements of A, the
blue square is a fundamental domain of Z" and the grey squares are centred on the
points of A and have radii 1/2. The rate of injectivity is equal to the integral on the blue
square of the inverse of the number of different squares the point belongs to.

Second construction Here, we take another viewpoint to compute the rate of injec-
tivity of A. To begin with, we remark that for every map f defined on a finite set E, the
cardinality of f(E) can be computed by the formula

Card (f(E)) = Z L

L Card (f1(1f (1))
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in particular,

Card (A([Bg))) L
A)= lim —————— = lim ———— '
TA) = lim Card|[Bg] R->rc0 Card[Bg] XE[ZB;{]Card(K‘l({A(X)}))

(8.1)

Thus, we are reduced to compute Card (X‘l({A(x)})) for x € Z". This cardinality only
depends on the class of Ax modulo Z", thus we can suppose that Ax € By, (in other
words, Ax = 0).

Lemma 8.16. .
Card (A~ ({A(x)))) = b(Ax),

where  is the function (different from the function 1y used previously; recall that A = AZ")

p= Zha(m/z)

AeA

which is the sum of the indicator functions of the balls of radius 1/2 centred on the points of
A (see Figure 8.9).

Proof of Lemma 8.16. We denote by % the projection of Ax on the fundamental domain
By, of Z". We want to prove that there exists k different vectors y € Z" such that
Alx) = A(y) if and only if {(%) = k. Indeed, if A € A is such that ¥ € B(A,1/2), then
X — A € By/» and thus Ax + A projects on the same point of Z" as Ax; the number of such
vectors A determines the number of points y € Z" such that Ax = Ay. O

If we set v’ the measure of repartition of the A € A modulo Z", that is

1

"= 1 - o )

VT r2Ne Card(Bg N A) ) Oprumy
AeANBg

then, by combining Equation (8.1) with Lemma 8.16, we obtain

Proposition 8.17.

1
T(A) = 5, DA )d V(M)

And we have a similar statement for the mean rate of injectivity.

Proposition 8.18.

f —_— dLeb()\)
Bl/z

These properties can be also directly deduced from the first geometric construction
by applying a double counting argument. We state it in more general context because
we will need a more precise statement in the sequel (here, we only need the case m =0,
thus B; = B); this lemma allows to compute the area of the projection of a set on a
quotient by a lattice.

Lemma 8.19. Let Ay be a subgroup of R™ which is a lattice in the vector space it spans, A,
be such that Ay & A, is a lattice of covolume 1 of R™, and B be a compact subset of R™. Let
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By be the projection of B on the quotient R™/A4, and B, the projection of B on the quotient
R"/(A1 ®A,). We denote by

a; = Leb{xe By |Card{\, e Ay |x€B; + Ay} = i}.

Then,
Leb(B,) = “T
i>1
In particular, the area of B, (the projection on the quotient by the direct sum of both
lattices) is smaller than (or equal to) that of B; (the projection on the quotient by the
first lattice). The loss of area is given by the following corollary.

Corollary 8.20. With the same notations as for Lemma 8.19, if we denote by
D; = Leb{x e B | Card{)\Q S A2 | x€B;+ )\2} > 2},

then,
D
Leb(B,) < Leb(B,) - 71
Proof of Lemma 8.19. Consider the function

é: R"A, —N*

-1
(Card{A;€ Ay |xeBy+)y})  ifxeB
0 if x ¢ B,.

X

Obviously, it satisfies JB ¢ =Y i>1 % Moreover, if we set
. >

O RY/(A ®A) — N
x ) en, P(X—22),

then we easily see that on the one hand, ® = 1, ,p,, thus I(ID = Leb(B,), and on the
other hand, I(D = covol(/\z)fB2 d=Y s+ O

8.3 When is the rate close to 1?

Obviously, the rate of injectivity t(A) of any matrix of A € SL,(Z) is equal to 1. In
Section 8.1, we have found other examples of affine maps with determinant 1 whose
rate of injectivity is also 1. Also, in Application 8.15, taking ¢ = 1, this gives another
class of examples where the rate of injectivity is one. In this section, we investigate more
in detail this question: what are the matrices with determinant 1 whose mean rate of
injectivity is 1?2 With Proposition 8.11, we can reformulate this question in terms of
intersection of cubes: if det(A) = 1, T(A) = 1 if and only if the cubes B(A,1/2), with
A € AZ", tile the space R". This is a classical problem raised by H. Minkowski in 1896
(see [Min10]), and answered by G. Hajos in 1941.

Theorem 8.21 (Hajos, [Haj41]). Let A be a lattice of R". Then the collection of squares
{B(A, 1/2)})en tiles the plane if and only if in a canonical basis of R" (that is, permuting
coordinates if necessary), A admits a generating matrix which is upper triangular with ones
on the diagonal.



174 Chapter 8. Rate of injectivity of linear maps

This theorem can be stated geometrically: if the collection of squares tiles the space
R", then at least two of these squares have a face in common. The conclusion of The-
orem 8.21 can then be inferred by induction, quotienting in the direction which is or-
thogonal to this face and iterating the argument. The proof of this theorem involves
fine results of group theory; we will not prove it here in the general case (see for exam-
ple the excellent book [SS94] for a complete investigation on the subject). Remark that
Hajos theorem studies a particular case of the case of equality in Minkowski’s theorem
(Theorem 7.28): it states a necessary and sufficient condition for a lattice with covol-
ume 1 to possess a non-trivial point in the boundary of the unit square centred at 0,
but no non-trivial point in its interior. We give an elementary proof of Haj6s theorem
in dimension 2 (for dimension 3, there is also an elementary proof, see for example the
book of H. Minkowski [Min07]).

Proof of Theorem 8.21 in dimension 2. Let A be a lattice of R? such that the family
{B(XA,1/2)})en tiles the plane. We consider the point x; = (1/2,0). By the hypothesis
of tiling, there exists A; € A\ {0} such that x; € B(Aq,1/2). Remark that this implies that
A1 has the form A; = (1,y). We have two cases.

1. If Ay =(1,0), then we consider the point x, = (0,1/2) and again, there exists A, € A\{0}
such that x € B(\,,1/2). The vector A, has the form A, = (x,1), thus the basis (A;, A,)
of A has the desired form.

2. If Ay = (1,p) = (1,0), we suppose that y > 0 (doing a symmetry if necessary). Con-
sidering the point x, = (1/2,1/2), this implies that A, = (0,1) belongs to A (in other
words, x, € B(A,,1/2)). The basis (A;, ;) of A has the desired form.

O]

Combined with the results of the previous section (more precisely, Proposition 8.18),
Hajos theorem (Theorem 8.21) leads to the following corollary.

Corollary 8.22. A matrix A € SL,(R) has a mean rate of injectivity equal to 1 if and only if
there exists B € SL,(Z) such that in a canonical basis of R" (that is, permuting coordinates if
necessary), the matrix AB is upper triangular with ones on the diagonal (equivalently, if and
only if there exists a permutation matrix P and a matrix B € SL,,(Z) such that PAB is upper
triangular with ones on the diagonal). Remark that the set of such matrices is a locally finite
union of manifolds of positive codimension.

8.4 Rate of injectivity of a sequence of matrices

The aim of the end of this chapter is to study the asymptotic rate of injectivity of se-
quences of matrices with determinant 1. More precisely, we want to estimate the rate of
injectivity T ((Ay)x) (that is, the limit of the densities of the sets (K; 0.0 E)(Z”) when
k goes to infinity, see Definition 7.19) when (Ay)x>; is a generic sequence of matrices of
SL,(R) in the following sense.

Definition 8.23. We fix once for all a norm || - || on M,(R). For a bounded sequence
(Ag)k>1 of matrices of SL, (R), we set

(ARl = sup [|Agll.
k>1

In other words, we consider the space ¢*°(SL,(R)) of uniformly bounded sequences of
matrices of determinant 1.
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This metric is complete, thus there is a good notion of genericity on the set of
bounded sequences of matrices of determinant 1 (see page 18). We give the main theo-
rem of this chapter, which states the behaviour of the asymptotic rate of injectivity of a
sequence of matrices (stated in the introduction as Theorem P).

Theorem 8.24. For a generic* sequence of matrices (Ag)is1 of SL,(R), we have>
(A1) =0,

This statement was motivated by some numerical simulations (see Figure 7.3
page 153). In Part 3, we will deduce from this theorem a similar statement for generic
diffeomorphisms of the torus (Theorem 11.15).

Remark 8.25. This statement remain true if we replace “for a generic sequence of matri-
ces (Ag)k>1 of SL,(R)” by “for a generic sequence of matrices (Ag)x>; among matrices of
determinant +1”: the property we will need in the proofs is that the matrices preserve
the volume of R".

Remark 8.26. Remark 8.5 implies that for a generic sequence (A;);>; of matrices of
SL,(R) and for every k € N*, the map (B;)i»; — T(By,---,By) is continuous in Ay, ---, Ay.
Thus, as the asymptotic rate of injectivity is the infimum of the rates of injectivity in
times k for k € N7, it is upper semi continuous on every generic sequence of matrices. In
particular, for every generic sequence (A;);>; of matrices of SL,,(R), and every € > 0 there
exists a neighbourhood of this sequence on which the asymptotic rate of injectivity is
smaller than e.

We begin the study of Theorem 8.24 by handling the easiest case: the result is true
when we restrict to diagonal matrices (in the canonical basis). More precisely, the set of
diagonal matrices is a Baire space, so we can talk about generic diagonal matrices, and
we have the following property.

Proposition 8.27. Let (Ay)x>1 be a generic sequence of diagonal matrices of SL,(R). Then
™ ((Ak) = 0.

Proof of Proposition 8.27. We denote Ay = Diag(Ax,1,---,Ak,). Since Ax € SL,(R) for ev-
ery k, there exists iy € [1, n]] and an infinite number of integers ¢ such that ni:o Aip < 1.
We then use the following lemma.

Lemma 8.28. Let &g > 0, and (Ay,---, A¢) be a collection of real numbers such that A; > 9,
for every i and ]—Iiz1 Ak < 1. Then, for every 6 €]0,d¢[, we have

<
T1+0(+1)

I~

(A —9)
k=1

4. Generic for the topology £*° on (SL,,(R))N, see Definition 8.23.
5. For a definition of t*°, see Definition 7.19.
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Proof of Lemma 8.28. We decompose the difference ]_[iz1 Ak — ]—Iiz1 (A —0) to have a tele-
scopic sum:

14 14 14 i—1 14
[ -] [x-00=) ka |_[ (A=) - kaw—é)]
k=1 k=1 i=1 k=1 k=i+1 k=1 k=i
¢ (i-1 4
=; ﬂxkkﬂl<xk—6>](xi—<xi—é>)
(i ¢ ;
3 ([T [ Tow-o)3
i=1 \k=1  k=i+l !

As a consequence, using the inequality of arithmetic and geometric means,
¢ Y, ¢ . 1/¢
A—0)=(€+1) A — ,
[T oo 173

¢
k=1 k=1 k=1 i=1

and as [T¢_; \; < 1, we get

ﬁ)\k— Z€+1 [ﬁkk— ]
k= k=1 k=1

_jm

This implies that

¢ ¢
[ Jow-0< S S
: T(+1)o+1 T 140(£+1)

O]

Proposition 8.27 easily follows from Lemma 8.28 and the following property, which
is specific to the case where the matrices are diagonal: the rate of injectivity of Ay, .-+, Ay
is smaller than the smallest eigenvalue of Ajo---0Ay. Indeed, the eigenspace associated
to this eigenvalue A is stable by discretization, and on this eigenspace the image of a big
ball of radius R is included in a ball of radius AR + o(R). O

8.5 Frequency of differences and a first result: the asymptotic
rate of injectivity is generically smaller than 1/2

In this section, we prove a weak version of Theorem 8.24, which states that the rate
of injectivity of a generic sequence of matrices is smaller than one half. It is based on
the following lemma, which asserts that if a difference appears rarely in I’, then the rate
of injectivity of I is small.

Lemma 8.29. Let I' C Z" be an almost periodic pattern, and py €]0,1[. If D(T') > 5=
for every v € Z", we have pr(v) > po.
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Proof of Lemma 8.29. We argue by contraposition and suppose that there exists vq € Z"
such that pr(vg) < po. We set I, = {x € I'| x + v € ['}, thus we have D(I}, ) > (1 - po)D(T).
But I'N (L, +vg) =0, so D(T') + D(I,) +vy) < 1, which implies that D(T)(1+1-pg) < 1. O

Theorem 8.30. Let (Ag)r>1 be a generic sequence of matrices of SL,(R). Then there exists
a parameter A €]0,1[ such that for every k > 1, we have ™ (A,---,Ar) < (\F +1)/2. In
particular, T ((Ag)x) < 1/2.

The proof of this theorem is based on an argument of equirepartition, which trans-
lates the problem in terms of areas of intersections of cubes.

Lemma 8.31. Let 6> 0 and M > 0. Then there exists Vg > 0 such that for all A € SL,,(R) with
Al < M, there exists B € SL,(R) totally irrational, with ||B— Al| < o, there exist a polygon
P c T" whose volume is bigger than Vy, and some vy € Z" \ {0}, such that if Bx € P mod Z",
then T(Bx) = (B(x + vg)).

Proof of Lemma 8.31. Hajos theorem (Theorem 8.21, see also Corollary 8.22) proves that
for € > 0 small enough, the set of matrices B € SL,(R) such that for every v € Z" \ {0},
|IBv||o > 1 —¢ is a small neighbourhood of a locally finite union of manifolds. Thus,
there exists € = €(6, M) > 0 such that for all A € SL,(R) with ||[A|| < M, there exists B €
SL,(R) and vy € Z" \ {0} such that ||B— Al < 6 and ||Bvyl|l,, < 1 —&. As totally irrational
matrices are dense among SL,,(R), we can moreover suppose that B is totally irrational.
We now set P = B(0,1/2) N B(-vy, 1/2) C R"/Z" (we identify R"/Z" with its fundamental
domain B(0,1/2)). The volume of P is bigger than V;, = €. Reasoning as in the proof of
Proposition 8.17, we get that if Bx € P mod Z", then m(Bx) = (B(x + vy)). O

Proof of Theorem 8.30. We prove the theorem by induction. Suppose that the theorem
is proved for a rank k € N. We set

I} =(Byo--oB))(Z") and pg=2-

D(Ty)

By Theorem 7.12, I} is an almost periodic pattern.

Lemma 8.31 applied to A = Ay, 0 and M = [|(A;);]| + 0 gives us a parameter Vy > 0
(depending only on 6 and M), a polygon P C T" of volume greater than V;, a matrix B =
Bi,1 and a vector vy € Z" \ {0}. Lemma 8.29 implies that pr, (vg) > po. But Lemma 7.21
asserts that for a generic set of matrices B, the set B(I}) is equidistributed modulo Z";
perturbing a little B if necessary, we suppose that it is true. These facts imply that

D{x €I} | Bx e P mod Z",x + vg € I}.} > Vypo D(I}),

— —

and thus, as Bx € P mod Z" implies B(x) = B(x + v(), we get
D(By.41(I})) < D(Ix) = VopoD(T) = D(Ti)(1 ~ Vopo)-

But pg=2-— ﬁ, thus (we can suppose that V; <1/2)

D(Tis1) = D(By 1 (It)) < D(rk>(1 —V0(2— #)) = Vp + D(L)(1 - 2Vj).
D(Iy)

Setting A = 1 —2V,, we obtain the general term of an arithmetico-geometric sequence,
this proves the theorem for the rank k + 1. O]
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v+(0,1) v+(L,1) ' (0,1) 1 (1,1)

: [ ] : [ ] :

u N |

U !

\\+ [ [ 3

v v+(1,0) (0,0) (1,0) |

Figure 8.10: The function ¢, in di-

mension 2: its value on one vertex  Figure 8.11: The red vector is equal to that of
of the square is equal to the area of =~ Figure 8.10 for u = Av. If Ax belongs to the bot-
the opposite rectangle; in particu- tom left rectangle, then T(Ax + Av) = y € Z?;

lar, @, (v) is the area of the rectan- if Ax belongs to the top left rectangle, then
gle with the vertices u and v+(1,1). T(Ax+Av) =y +(0,1) etc.

8.6 Diffusion process and the case of isometries

Unfortunately, problems arise when we try to perturb a sequence of matrices to
make its asymptotic rate smaller than 1/2. First of all, if the density of an almost peri-
odic pattern I is smaller than 1/2, then the set of differences may not be the full set Z".
Even worse, it might happen that this set of differences has big holes, as shown by the
following example. We take the almost periodic pattern

39
= U 100Z + 1.
i=0

For every x e I'and v € [40,60]], x+v ¢ I'. In other words, for every v € [40,60]], we have
pr(v) = 0, whereas D(I') = 0.4. However, the things are not too bad for the frequencies of
differences when we are close to 0, as shown by the Minkowski-like theorem for almost
periodic patterns (Theorem 7.29).

Diffusion process In this paragraph, we study the action of a discretization of a ma-
trix on the set of differences of an almost periodic pattern I'; more precisely, we study
the link between the functions pr and pg .

For u € R", we define the function ¢,, which is a “weighted projection” of u on Z".

Definition 8.32. Given u € R", the function ¢, =Z" — [0,1] is defined by

() :{ 0 if doo(u,v)>1

[T (1 =lu;+v;]) ifdeo(u,v) <1

In particular, the function ¢, satisfies } ,.z.¢,(v) = 1, and is supported by the
vertices of the integral unit cube © that contains 7 u. Figure 8.10 gives a geometric inter-
pretation of this function ¢,,.

6. By definition, an integral cube has its faces parallel to the canonical hyperplanes.
7. More precisely, the support of ¢, is the smallest integral unit cube of dimension n” < n which con-
tains u.
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The following property asserts that A acts “smoothly” on the frequency of differ-
ences. In particular, when D(T') = D(KI‘), the function py is obtained from the function
pr by applying a linear operator &, acting on each Dirac function o, in the following
way: consider the Dirac function 04, and spread it on the vertices of the integer cube
in which Av belongs to. More precisely, &0, is supported by these vertices and its inte-
gral is equal to 1, the value assigned to each vertex V is proportional to absolute value
of the product of the coordinates of V — Av. Roughly speaking, to compute &/0,, we
take 05, and apply a diffusion process. In the other case where D(AT) < D(T), we only
have inequalities involving the operator & to compute the function pgp.

Proposition 8.33. Let I' C Z" be an almost periodic pattern and A € SL,(R) be a generic
matrix.

(i) IfD(K(I‘)) = D(T'), then for every u € Z",

Pam () = ) @aw(pr(v).

veZ"

(ii) In the general case, for every u € Z", we have

D(r D(T
D(A(\(r))) SSZP Paw)(m)er(v) < pxir)(u) < D(K((F))) V; Qaw)(u)pr(v).

Remark 8.34. This proposition expresses that the action of the discretization of a linear
map A on the differences is more or less that of a multivalued map.

Proof of Proposition 8.33. We begin by proving the first point of the proposition. We
suppose that A € SL,(R) is generic and that D(X(F)) =DI). LetxeI'n(I'-v). We
consider the projection x” of Ax, and the projection u” of —u = —Av, on the fundamental
domain |- 1/2,1/2]" of R"/Z". If x’ belongs to the parallelepiped whose vertices are
(-1/2,---,-1/2) and u’ (see Figure 8.11), then we obtain m(A(x + v)) = T(Ax + |Av]) =
T(Ax)+|Av]. The same kind of results holds for the other parallelepipeds whose vertices
are u’ and one vertex of [-1/2,1/2[".

We set I' = A(Z"). The genericity of A ensures that for every v € Z", the set TN (I'—v),
which has density D(I')pr(v) (by definition of pr), is equidistributed modulo Z" (by
Lemma 7.21). Thus, the points x” are equidistributed modulo Z". In particular, the
difference v will spread into the differences which are the support of the function ¢4,
and each of them will occur with a frequency given by @4, (x)pr(v). The hypothesis
about the fact that the density of the sets does not decrease imply that the contributions
of each difference of T to the differences of K(F) add.

In the general case, the contributions to each difference of I' may overlap. However,
applying the argument of the previous case, we can easily prove the second part of the
proposition. O

Remark 8.35. We also remark that:

(i) the density strictly decreases (that is, D(A(I')) < D(I')) if and only if there exists
v € Z" such that pr(vy) > 0 and [|Avgl| < 1;

(ii) if there exists vy € Z" such that

Z @aw)(vo)pr(vo) > 1,

veZ"

then the density strictly decreases by at least }_,czn Pa()(vo)pr(vo) — 1;
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(iii) we can compute which differences will go to the difference 0, that is, the dif-
ferences u € Z" such that there exists x € I' N (I' — u) such that K(x) = K(x +u)
(that will make the rate of injectivity decrease). The set of such differences u is
A71(B(0,1)) N Z" (recall that B(0,1) is an infinite ball). By Hajés theorem (The-
orem 8.21, see also Corollary 8.22), this set contains a non zero vector when
A is generic. More generally, the set of differences u € I' N (I' — u) such that
Alx)+v = K(x +u) is A7Y(B(v,1)) N Z". Tterating this process, it is possible to
compute which differences will go to 0 in time .

Rate of injectivity of a generic sequence of isometries Proposition 8.33 allows to
give an alternative proof of Theorem 8.24 for isometries.

Theorem 8.36. Let (Py)x>1 be a generic sequence of matrices of O, (R). Then t*((Py)x) = 0.

Figure 8.12: Images of Z? by discretizations of rotations, a point is black if it belongs
to the image of Z? by the discretization of the rotation. From left to right and top to
bottom, angles 1/4, /5, /6, 7/7, /8 and /9.

In the previous section, the starting point of the proof was Lemma 8.29, which
ensures that when the rate of injectivity is bigger than 1/2, the frequency of any dif-
ference is bigger than a constant depending on the rate. Here, the starting point is
the Minkowski theorem for almost periodic patterns (Theorem 7.29), which gives one
nonzero difference whose frequency is positive. The rest of the proof of Theorem 8.36
consists in using again an argument of equidistribution. More precisely, we apply suc-
cessively the following lemma, which asserts that given an almost periodic pattern I
of density Dy, a sequence of isometries and 6 > 0, then, perturbing each isometry of at
most 0 if necessary, we can make the density of the ky-th image of I' smaller than A¢Dy,
with ky and Ay depending only on Dy and 6. The proof of this lemma involves the study
of the action of the discretizations on differences made in Proposition 8.33

Lemma 8.37. Let (Py)x>1 be a sequence of matrices of O, (R) and I C Z" an almost periodic
pattern. Given & > 0 and D > 0 such that D(T') > D, there exists ky = ko(D) (decreasing in
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Figure 8.13: Successive images of Z? by discretizations of random rotations, a point is
black if it belongs to (Rg, o---0Rg, )(Z?), where the 0; are chosen uniformly randomly in
[0, 21t]. From left to right and top to bottom, k =1, 2, 3, 5, 10, 50.

D), Ag = Ag(D,0) < 1 (decreasing in D and in d), and a sequence (Qy)x>1 of totally irrational
matrices of O, (R), such that ||P, — Q|| < b for every k > 1 and

D((Qg, 0+ 0 Q1)(T)) < AgD.
We begin by proving that this lemma implies Theorem 8.36.

Proof of Theorem 8.36. Suppose that Lemma 8.37 is true. Let 1y €]0,1[ and 6 > 0. We
want to prove that we can perturb the sequence (Py); into a sequence (Qg ) of isometries,
which is d-close to (P); and is such that its asymptotic rate is smaller than tj (and that
this remains true on a whole neighbourhood of these matrices).

Thus, we can suppose that T ((P;)) > 19. We apply Lemma 8.37 to obtain the pa-
rameters ko = ko(to/2) (because ky(D) is decreasing in D) and Ay = Ay(T9/2,0) (because
Ao(D, 0) is decreasing in D). Applying the lemma ¢ times, this gives a sequence (Qg)x
of isometries, which is o-close to (Py), such that, as long as TgkO(QO,---,ngO) > 1y/2,
we have T‘;kO(Ql,---,ngO) < )\gD(Z”). But for ¢ large enough, )\g < 1p, which proves the
theorem. O

Proof of Lemma 8.37. The idea of the proof is the following. Firstly, we apply the
Minkowski-type theorem for almost periodic patterns (Theorem 7.29) to find a uni-
form constant C > 0 and a point uy € Z" \ {0} whose norm is “not too big”, such that
pr(ug) > CD(I'). Then, we apply Proposition 8.33 to prove that the difference uj in T
eventually goes to 0; that is, that there exists ky € N* and an almost periodic pattern
T of positive density (that we can compute) such that there exists a sequence (Qg)x of
isometries, with ||Q; — P;|| < 9, such that for every x € T,

—_—

(Qg, 00 Qp)(x) = (Qg, 0+ 0 Qy)(x + 1g).
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Figure 8.14: Expectation of the rate of injectivity of a random sequences of rotations:
the graphic represents the mean of the rate of injectivity Tk(Rek -,Rp,) depending on
k, 1 <k <200, for 50 random draws of sequences of angles (0;);, with each 0; chosen
independently and uniformly in [0, 27t]. Note that the behaviour is not exponential.

We begin by applying the Minkowsky-like theorem for almost periodic patterns
(Theorem 7.29) to a Euclidean ball By with radius R (recall that [B] denotes the set of
integer points inside B):

Card[Bg, ]

I >D(l)————=+.
Card([Bg] u;}}@r(u)_ @) Card([Bg]
R

(8.2)

An easy estimation of the number of integer points inside of the balls B, and By, leads

to8:

Card[Bg ,] g (\/— Vii/2 )2n
Card[Bg] VR + \/n/2

in particular, if R > 1, we obtain

Card[Bgy,] (\/_ 1)

Card[By] ~\ 3 = 53"
thus Equation (8.2) becomes
: (u) > D(I') ! (8.3)
Card[B] ) or(u) =D '
RE ey

We now want that pr(0) = 1 plays only a little role in Equation (8.3), that is

1 _ D)
Card[Bg] = 2x53"

8. See for example [Fri82, page 5], this book also performs a complete investigation on the subject of
finding the number of integer points in a Euclidean ball.
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using the same estimate as previously for Card[Bg], that is true if

1 . b
(VR /2 = 2x53"

a direct calculation shows that it is true for example if

212
R=Ry=n+ . (8.4)
vD(I)
In this case, Equation (8.3) implies
1 1 pr(0) D(I)
S >D(T - > ,
Card[B] L er(u) 2 D) =5 Card[B}] = 2x 53"
u€[B;\{0}

thus there exists uy € [B;]\ {0} such that

D(T)
2 x 53"

or(1g) > (8.5)

We now take R > R, and perturb each matrix Py into a totally irrational matrix Qy
such that for every point x € [B]\ {0}, the point Q(x) is far away from the lattice Z".
More precisely, as the set of matrices Q € O,(R) such that Q([B;]) N Z" = {0} is finite,
there exists a constant dy(R, d) such that for every P € O, (R), there exists Q € O,(R) such
that ||[P — Q|| < & and for every x € [B;]\ {0}, we have d,(Q(x),Z") > dy(R,d). Applying
Lemma 7.21 (which states that if the sequence (Qy)x is generic, then the matrices Qy
are “non resonant”), we build a sequence (Qy )~ of totally irrational matrices of O, (R)
such that for every k € N*, we have:

— 1P = Qell < 5

— for every x € [B;]\ {0}, we have d,(Q(x),Z") > dy(R,d);

— theset Qo Gk—\l 0---0 6\1(1") is equidistributed modulo Z".

We then consider the difference u, (given by Equation (8.5)). We denote by [P |(u)
the point of the smallest integer cube of dimension n” < n that contains P(u) which has
the smallest Euclidean norm (that is, the point of the support of ¢p(,) with the smallest
Euclidean norm). In particular, if P(u) ¢ Z", then [|[P](u)|l, <||/P(u)||, (where ||- ||, is the
Euclidean norm). Then, the point (ii) of Proposition 8.33 shows that

_ D(T)
g r)(LQ1l(1o)) 2 —D(@(r))<PQ1<LQ1J<uo>>(uo)pr(uo)
N (do(R,5))"

2 x 53"

and so on, for every k € N*,

n\k
do(R,9)
p(é;o..-oé\l)(r)((l.QkJ 0-:0 LQIJ)(uo)) 2 [(20><T”)] D(I).

We then remark that the Euclidean norm of |Q; |(1#() can only take a finite number
of values (it lies in VZ). Then, there exists ky < R? such that

(LQk,J o+ 0 1Q11)(0) = 0;
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in particular, by Equation (8.4), we have

, 89888
ko <2n®+ ——— .
(D(I))"2

Then, point (ii) of Remark 8.35 implies that the density of the image set satisfies

n\k
D((Qr o0 Q) <|1 ® OV 17y
koo = 2% 53" '
N) )77 k
We obtain the conclusions of the lemma by setting Ay =1 — (%) ’ ]

Remark 8.38. We could be tempted to try to apply this strategy of proof to any sequence
of matrices in SL,(R). However, this does not work in the general case, because if we
consider a non-Euclidean norm N, there could be some x € R” such that for every vertex
v of the cube containing x, we have N(y) > N(x).

We now set out a conjecture which states a generic dichotomy for the behaviour of
the frequency of differences for discretizations of generic sequences of matrices, in the
same vein as [Boc02] (for dimension 2) or [ACW14] (in the general case).

Conjecture 8.39. Let (Ag)x>1 be a generic sequence of matrices of SL,(R). Then, if we note
[y = (Ag o0 A1 )(Z"), the standard deviation of o, is either very small, either as big as
possible. More precisely, the standard deviation of

1
JP)(1-D(1y)

OT;

either tends to 0 as k goes to infinity (which corresponds to the case of zero Lyapunov expo-
nent), or tends to 1 as k goes to infinity (which corresponds to the hyperbolic case).

The idea underlying the conjecture is that for for every ¢ > 0, for every generic se-
quence (Ag)x>1 of matrices and every k big enough, we have two cases.

— Either
> e} <g,

which means that pr, (v) is very close to its mean on a set of density almost 1. This
corresponds to the zero Lyapunov exponent case, and the idea is that diffusion
process wins on the hyperbolicity of the sequence of matrices.

- Or

pr(v)—1

D{v ezZ" ‘D(Fk)

D{v eZ"

pr,(v) € e 1 —s]} <e,

which means that pr, (v) is very close to 0 or 1 on a set of density almost 1. This
corresponds to the hyperbolic case and the idea is that the hyperbolicity of the
sequence of matrices wins on the diffusion process.
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8.7 Applications of the notion of model set

This section is devoted to the application of the notion of model set to the computa-
tion of the rate of injectivity of a finite number of matrices.

We take advantage of the rational independence between the matrices of a generic
sequence to generalize to arbitrary times the geometric formulas of Section 8.2. The
end of the present section is devoted to the proof of the main theorem of this chapter
(Theorem 8.24).

Let us summarize the different notations we will use throughout this section. We
will denote by 0F the origin of the space R¥, and W* =] —1/2,1/2]"% (unless otherwise
stated). In this section, we will denote D (E) the density of a “continuous” set E Cc R",
defined as (when the limit exists)

_ Leb(BR N E)
De(B) = lim = o (Br)

while for a discrete set E C R”, the notation D,;(E) will indicate the discrete density of
E, defined as (when the limit exists)

Card(Bg NE)
Dy(E) = lim ——SOROY)
a(B) = m e rd(Bg N Z")

We will consider (Ag)x>1 a sequence of matrices of SL,(R), and denote
L = (Ag o0 Ap)(Z").

Also, Ay will be the lattice MAI,...,AkZ”(k“), with

A; -1d
A, -Id
Ma, A, = € M,,k+1)(R),
A -1d
Id
and Kk will be the lattice 1\~/IA1,...,AkZ”k, with
A, -1d
A, -Id
MAlr'"Ak = € Mnk(R)'
A, -1d
Ay

Finally, we will denote
T (Ag, o, Ag) = D (WH + Ay).

These quantities will be related during this section.
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8.7.1 A geometric viewpoint to compute the rate of injectivity in arbitrary
times

We recall the (trivial) equality stated in Proposition 7.33: let Ay,---, Ay € GL,(R),
then

T = (Ag o+ 0 A7)(Z")
{ (M) | Ak € A, pr () € WH

= p (Am(m (Wk)))

with
A, -1d
A, -Id
My, A, = € Myk+1)(R), (8.6)
Ay —1d
1d

Ay = MAl,...,AkZ”(k*l), p1 the projection on the nk first coordinates, p, the projection on
the n last coordinates and W =] —1/2,1/2]"k.

Here, we suppose that the set p;(Ay) is dense (thus, equidistributed) in the image
set imp; (note that this condition is generic among the sequences of invertible linear
maps). In particular, the set {p,(y) |y € Ag) is equidistributed in the window W*.

The following property makes the link between the density of [, — that is, the rate
of injectivity of Ay,---, Ay — and the density of the union of unit cubes centred on the
points of the lattice Ay.

Proposition 8.40. For a generic sequence of matrices (Ay); of SL,(R), we have
Dd(I‘k) =D, (Wk + Xk)

Equivalently, we have
Dy(T) = De (W + Ay).

Of course, this proposition generalizes Proposition 8.11 to an arbitrary number of
matrices Ay, , Ag.

Remark 8.41. The density on the left of the equality is the density of a discrete set (that
is, with respect to counting measure), whereas the density on the right of the equality
is that of a continuous set (that is, with respect to Lebesgue measure). The two notions
coincide when we consider discrete sets as sums of Dirac masses.

This proposition leads to the definition of the mean rate of injectivity in time k.

Definition 8.42. Let (Ay)x>1 be a sequence of matrices of SL,(R). The mean rate of
injectivity in time k of this sequence is defined by

T (Ag, o, Ag) = D (WH+ Ay).

Remark 8.43. As in Section 8.2 for the rate of injectivity in time 1, Proposition 8.40 as-
serts that for a generic sequence of matrices, the rate of injectivity t* in time k coincides
with the mean rate of injectivity 7, which is continuous and piecewise polynomial of
degree < nk in the coefficients of the matrix.
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Remark 8.44. The formula of Proposition 8.40 could be used to compute numerically
the mean rate of injectivity in time k of a sequence of matrices: it is much faster to
compute the area of a finite number of intersections of cubes (in fact, a small number)
than to compute the cardinalities of the images of a big set [-R,R]" x Z".

Proof of Proposition 8.40. We want to determine the proportion of integral points x €
Z" such that there exists A € Ay such that p,(A) = x and p;(\) € WX, This condition
is equivalent to p;(Ax N pgl(x)) € Wk, which depends only on the position of the set
1A N pgl (x)). More precisely, if we set

A, -Id
A, -1d
MAp'"yAk = € Mnk(R) (8'7)
A, -1d
Ak

and A; = MAI,.,,,AkZ"k (which is a lattice of covolume 1), then we have
p1(Acnpy! (1) = A+ (01", —x) cR™, (8.8)

Thus, the two sets p; (p;1 (0)N Ag) and p;y (pg1 (x) N A) only differ by a translation of the
form (0F~1", _x) (see Figure 8.15). Recall that our aim is to decide whether there exists
a point in the set Ay + (0k=1n _x) c R™ (see Equation (8.8)) belonging to WK or not.
But (Kk + (O(k_l)”,—x)) NWk = 0 if and only if (05D x) € A; + WK. The proposition
follows directly from the fact that the points of the form (0%~1" x), with x € Z", are
equidistributed in R /A.

To prove this equidistribution, we compute the inverse matrix of I\7IA1,...,Ak:

-1 -1 A-1 —1A-1A-1 -1 -1
A1 A1 _A;2 A1 ﬁ2 _A13 All...Ali1
N A, AS'AS e A "'Ak
Mgl A = * ‘. .
Al AalAl

-1
Ak

Thus, the set of points of the form (0%~1" x) in R”k//~\k corresponds to the image of the
action
-1 -1
A e A ‘
Ayl A
Z">5x+— : X
-1 A-1
Ak—l_‘?k
Ak
of Z" on the canonical torus R"/Z"*. But this action is trivially ergodic (even in restric-
tion to the first coordinate) when the sequence of matrices is generic. O

As in the case of the time 1 (Proposition 8.12), there is also a geometric method to
compute the frequency of a difference in I}.
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P> (0)NA, Pyt (x)NAg Pyt (x)NAL Pyt (x+v)NAL
Figure 8.15: Construction of Proposi- Figure 8.16: Construction of Proposi-
tion 8.40. tion 8.45

Proposition 8.45. For a generic sequence of matrices (Ay)x, we have
or,(v) = Leb((wk+1 + AN (W (Ok”,v))).

Proof of Proposition 8.45. To compute pr, (v), we want to know for which proportion of
x € Z" such that x € [}, we have x+v € [}, that is, knowing that pl(pgl(x) ﬂAk) NWK =0,
we have pl(pgl(x +v)N Ak) NWkK = 0. But

pl(pgl(erv) mAk) NWEz20 (Xk + (O(k‘””,—x—v)) NWKE=£0

— (0% V" x+v)e Ay + WK

As the sets p; (p;1 (x)NAy) are equidistributed in WK (see the proof of Proposition 8.40),
the proportion of such points x is equal to the area of the intersection (WK L AN
(WKL 4 (05, v)). O

As in the case of time 1 (see Section 8.2), an argument of equidistribution combined
with Proposition 7.27 allows to deduce Proposition 8.40 from Proposition 8.45.
There is also a dual method to compute the rate of injectivity of a sequence of ma-

trices: we define ¢ : R”* — R by
P= Z Tywkyn

}\EAk

and obtain the following formula (which is a generalization of Proposition 8.18).

Proposition 8.46. For a generic sequence of matrices (Ay)y, we have

1
Dd(l“k) = — dLeb()\)
Bi/a b(A)
The proof of this proposition is similar to that of Proposition 8.18 page 174 (see in
particular Lemma 8.19).

Recall the problem raised by Theorem 8.24: we want to make ¢ as small as possi-
ble. By an argument of equidistribution, generically, it is equivalent to make the mean
rate of injectivity T as small as possible when k goes to infinity, by perturbing every
matrix in SL,,(R) of at most 6 > 0 (fixed once for all). In the framework of model sets,
Theorem 8.24 is motivated by the phenomenon of concentration of the measure on a
neighbourhood of the boundary of the cubes in high dimension.
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Proposition 8.47. Let W* be the infinite ball of radius 1/2 in RK and v* the vector (1,---,1) €
R, Then, for every e,6 > 0, there exists ko € N* such that for every k > ko, we have Leb (Wk N

(WE+ k) <e.

Applying Hajos theorem (Theorem 8.21), it is easy to see when the density of I} is
equal to 1: combining this theorem with Proposition 8.40, we obtain that this occurs
if and only if the lattice given by the matrix My, .. o, satisfies the conclusions of Hajos
theorem °. The heuristic suggested by the phenomenon of concentration of the measure
is that if we perturb “randomly” any sequence of matrices, we will go “far away” from
the lattices satisfying Hajos theorem and then the rate of injectivity will be close to 0.

Remark 8.48. The kind of questions addressed by Hajos theorem are in general quite
delicate. For example, we can wonder what happens if we do not suppose that the
centres of the cubes form a lattice of R”. O. H. Keller conjectured in [Kel30] that the
conclusion of Hajos theorem is still true under this weaker hypothesis. This conjecture
was proven to be true for n < 6 by O. Perron in [Per40a, Per40b], but remained open in
higher dimension until 1992, when J. C. Lagarias and P. W. Shor proved in [LS92] that
Keller’s conjecture is false for n > 10 (this result was later improved by [Mac02] which
shows that it is false as soon as n > 8; the case n =7 is still open).

8.7.2 New proof that the asymptotic rate of injectivity is generically
smaller than 1/2

As a first application of the concept of model set, we give a new proof of the fact that
rate of injectivity of a generic sequence of SL,(R) is smaller than 1/2. To begin with, we
give a lemma estimating the sizes of intersections of cubes when the rate is bigger than
1/2 (which is the geometric counterpart of Lemma 8.29).

Lemma 8.49. Let WK =] —1/2,1/2]F and A c R¥ be a lattice with covolume 1 such that
D, (WX + A) > 1/2. Then, for every v € RK, we have

D((WK+A+v) N (WF+A)) 2 2D (WK +A) - 1.

Proof of Lemma 8.49. We first remark that D.(A + W) is equal to the volume of the pro-
jection of WX on the quotient space R¥/A. For every v € Rk, the projection of WX +v on
R¥/A has the same volume; as this volume is greater than 1/2, and as the covolume of
A is 1, the projections of Wk and Wk + v overlap, and the volume of the intersection is
bigger than 2D.(W* + A) — 1. Returning to the whole space R¥, we get the conclusion of
the lemma. O

Remark 8.50. In the case where A is the lattice spanned by My .. o,, where Ay,---, Arisa
generic family, Lemma 8.49 can be deduced directly from Lemma 8.29 (more precisely,
improves its conclusion of a factor 2).

This lemma allows us to give another proof of Theorem 8.30 (page 179), which im-
plies in particular that the asymptotic rate of injectivity of a generic sequence of ma-
trices of SL,(R) is smaller than 1/2 (and even is smaller than a sequence converging
exponentially fast to 1/2).

9. Of course, this property can be obtained directly by saying that the density is equal to 1 if and only
if the rate of injectivity of every matrix of the sequence is equal to 1.
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How to read these figures : The top of the figure represents the set WX + A, by the 1-
dimensional set [-1/2,1/2]+ vZ (in dark blue), for a number v > 1. The bottom of the
figure represents the set Wk+1 4 A by the set [-1/2,1/2]> + A, where A is the lattice
spanned by the vectors (0,v) and (1,1 — ¢) for a parameter € > 0 close to 0. The dark
blue cubes represent the “old” cubes, that is, the thickening in dimension 2 of the set
Wk 4+ Kk, and the light blue cubes represent the “added” cubes, that is, the rest of the
set WEHL L A

] a I /I T —

[ [ A

Figure 8.17: In the case where the rate  Figure 8.18: In the case where the rate is
is bigger than 1/2, some intersections smaller than 1/2, there is not necessarily
of cubes appear automatically between new intersections between times k and k +
times k and k + 1. 1.

Alternative proof of Theorem 8.30. Let (Ag)x>; be a bounded sequence of matrices of
SL,(R) and 6> 0. As in the previous proof of Theorem 8.30, we proceed by induction on
k and suppose that the theorem is proved for a rank k € N*. Let A be the lattice spanned
by the matrix 1\~/IBl,...,Bk (defined by Equation (8.7) page 189) and Wk =]—1/2,1/2]"% be
the window corresponding to the model set I} modelled on Ay (the lattice spanned by
the matrix Mg, ... 3., see Equation (8.6)). By Proposition 8.40, we have

(B, -+, By) = D (WF+ Ay).

We now choose a matrix By, satisfying ||Ax;q — Bx,1]| < 0, such that there exists
x1 € Z" \ {0} such that ||Bg,1x1]lee < 1 —¢, with € > 0 depending only on 6 and |[[(Ag)«ll
(and n): indeed, for every matrix B € SL,(R), Minkowski theorem implies that there
exists x; € Z" \ {0} such that ||Bx;||, < 1; it then suffices to modify slightly B to decrease
|IBx1]|oo- We can also suppose that the sequence of matrices By, ---, By, is generic. Again,
Proposition 8.40 reduces the calculation of the rate on injectivity ™+ (By, -+, Biyq) to
that of the density of wk+ 4 Kk_',l. By the form of the matrix Mg, .. g,, this set can be
decomposed into

. On(kfl)
WL A = WH Ly (/3,11‘)+ -1d |z".
Bii1

In particular, as |det(By,1)| = 1, this easily implies that D, (Wk+l + Agir ) <D, (Wk + /~\k)
What we need is a more precise bound. We apply Corollary 8.20 to
onlk=1)
Ay =(Ap0"),  Ap=| -Id 2" and B=WH
Bii1
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Then, the decreasing of the rate of injectivity between times k and k + 1 is bigger than
the D; defined in Corollary 8.20: using Lemma 8.49, we have

DC((W" +/~\k) N (Wk + Ay + (On(k_l)x—ﬁ))) > 2Dy(Ik) -

thus, as [|x1]|o <1-¢
Dy > €"(2Dg(Tx) ~ 1).

From Corollary 8.20 we deduce that
D(Ts1) = Do (W + Ay

<D, (WF+A)- %Dl

1
< Da(li) - 5¢" (2D4(T) - 1).
This proves the theorem for the rank k + 1. O]

8.7.3 Proof of Theorem 8.24: generically, the asymptotic rate is zero

We now come to the proof of Theorem 8.24. The strategy of proof is identical to
that we used in the previous section to state that generically, the asymptotic rate is
smaller than 1/2: we will use an induction to decrease the rate step by step. Recall that
Tk(Al, ,Ay) indicates the density of the set WX*1 + A (see Definition 8.42).

Unfortunately, if the den51ty of WK+ A, — which is generically equal to the density
of the k-th image (Ak o---0A, )(Z”) — is smaller than 1/2, then we can not apply exactly
the strategy of proof of the previous section (see Figure 8.18). For example, if we take

4 1/2
Alz( 1/4) and AZZ( 2),

then (A}ofx\l)(z?) =(2Z)?, and for every Bj close to the identity, we have T3(A;, A,, B3) =
(A, Ay) = 1/4.

To overcome this difficulty, we prove that for a generic sequence (Ag)rs>1, if
(AL, -+, Ap) > 1/€, then T (A, -+, App ) is strictly smaller than T€(Ay, -, Ag).
An argument of equirepartition (in fact, Propostion 8.40) allows to see this problem in
terms of area of intersections of cubes. More precisely, we consider the maximal num-
ber of disjoint translates of WX + A in R"%: we easily see that if the density of WX + A,
is bigger than 1/¢, then there can not be more than ¢ disjoint translates of WX + Ay in
R"¥(Lemma 8.51). Then, Lemma 8.52 states that if the sequence of matrices is generic,
either the density of Wx+! 4 Aks1 is smaller than that of WK + Ay (see Figure 8.19), or
there can not be more than ¢ -1 disjoint translates of wk+l 4 Kk_',l in R™k+1)(see Fig-
ure 8.20). Applying this reasoning (at most) £ — 1 times, we obtain that the density of
WkH=1 L AL, is smaller than that of WK+ A. For example if DC(Wk +Kk) >1/3, then

DC(W"Jr2 + Xk+2) < D(Wk + Kk) (see Figure 8.21). To apply this strategy in practice, we
have to obtain quantitative estimates about the loss of density we get between times k
and k+¢-1.

Remark that with this strategy, we do not need to make “clever” perturbations of the
matrices: provided that the coefficients of the matrices are rationally independent, the
perturbation of each matrix is made independently from that of the others. However,
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this reasoning does not tell when exactly the rate of injectivity decreases (likely, in most
of cases, the speed of decreasing of the rate of injectivity is much faster than the one
obtained by this method), and does not say either where exactly the loss of injectivity
occurs in the image sets.

Firstly, we give a more precise the statement of Theorem 8.24.

Theorem 8.24. For a generic sequence of matrices (Ag)x>1 of SL,(R), for every € € N, there
exists Ay €]0, 1{ such that for every k € N,
1
Ték(Al,---,Agk)S)\lg-i-z. (8.9)
Also, for every v < 1, we have

™Ay, Ap) = o In(k) ™). (8.10)

In particular, the asymptotic rate of injectivity T""((Ak)kzl) is equal to zero.

The following lemma is a generalization of Lemma 8.49. It expresses that if the den-
sity of Wk + Ay is bigger than 1/¢, then there can not be more than ¢ disjoint translates
of Wk + Ay, and gives an estimation on the size of these intersections.

Lemma 8.51. Let WX =] - 1/2,1/2]F and A c RF be a lattice with covolume 1 such that
D (WK + A) > 1/€. Then, for every collection vy,---,vy € RK, there exists i = i’ € [1,£] such
that
{D (WK +A)-1

0(€-1)

DC((Wk +A+v;)N (Wk +A +vi/)) >2

Proof of Lemma 8.51. For every v € R¥, the density D.(W* + A +v) is equal to the volume
of the projection of WX on the quotient space R¥/A. As this volume is greater than 1/¢,
and as the covolume of A is 1, the projections of the WX + v; overlap, and the volume of
the points belonging to at least two different sets is bigger than £D,(WX+A)—1. As there
are ¢({ —1)/2 possibilities of intersection, there exists i # i’ such that the volume of the
intersection between the projections of WX+v; and WX+v;, is bigger than 2(¢D.(W*+A)—
1)/(€(€ —1)). Returning to the whole space RK, we get the conclusion of the lemma. [

Recall that we denote Ay the lattice spanned by the matrix

A, -Id
A, -1d
IF\V/IAII...,A]( = € M,x(R),
A -1d
Ak

and W the cube |-1/2,1/2]"*.

Lemma 8.52. For every 6 > 0 and every M > 0, there exists € > 0 and an open set of matrices
@ C SL,(R) which is d-dense in the set of matrices of norm <M, such that if € > 2 and Dy > 0
are such that for every collection of vectors vy,---, vy € R", there exists j,j’ € [1,€]| such that

DC((W" + A+ (o(k—1>”,vj)) N (Wk + A+ (O(k‘l)”,v]»))) >D,,

then for every B € @, if we denote by Xkﬂ the lattice spanned by the matrix I\7IA1,...,Ak,B,
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(1) either D.(WK1 + Ay, 1) < D (WK + A}) — eDy/(40);

(2) or for every collection of vectors wy,---,wp_1 € R", there exists i # i’ € [1,£—1]| such that
DC((W"” + Ay + (Ok”,wi)) N (Wk+1 + Apyq + (07 wi'))) > eDp/C>.

Remark 8.53. If € = 2, then we have automatically the conclusion (1) of the lemma.

In a certain sense, the conclusion (1) corresponds to the hyperbolic case, and the
conclusion (2) expresses that there is a diffusion between times k and k + 1.

Proof of Lemma 8.52. Let @, be the set of the matrices B € SL,(R) satisfying: for any
collection of vectors wy,---,wp_1 € R", there exists a set U C R"/BZ" of measure > € such
that every point of U belongs to at least ¢ different cubes of the collection (Bv + w; +
Wl)vezn’lsl‘sg_l. In other words %, every x € R" whose projection X on R"/BZ" belongs

to U satisfies
(-1
Z Z 1xer+wi+Wl > L. (8.11)

i=1 veZ"
We easily see that the sets @, are open and that the union of these sets over € > 0 is dense
(it contains the set of matrices B whose entries are all irrational). Thus, if we are given
0> 0and M > 0, there exists € > 0 such that @ = @, is 6-dense in the set of matrices of
SL,,(R) whose norm is smaller than M.

We then choose B € @ and a collection of vectors wy,---,wy_; € R". Let x € R" be
such that x € U. By hypothesis on the matrix B, x satisfies Equation (8.11), so there
exists £ + 1 integer vectors vy,---,v¢ and ¢ indices iy,---, iy such that the couples (v}, ;)
are pairwise distinct and that

Vie[1,€+1], xerj+wi].+W1. (8.12)

The following formula makes the link between what happens in the n last and in
the n penultimates coordinates of R™k+1):

WL Ay + (057, 0%, w; ) = W 4 Ay + (057D, —vj,w; + Buj), (8.13)

(we add a vector belonging to Xk_',l ).
We now apply the hypothesis of the lemma to the vectors —vy,---,—vp,: there exists
j#j €[1,¢] such that

DC((Wk +Kk + (O(k—l)?’l’ _v]_)) N (Wk +Kk + (O(k—l)n, —'V]'/))) Z DO- (8.14)

Let y be a point belonging to this intersection. Applying Equations (8.12) and (8.14),
we get that

(9,%) € W4 (A, 0") + (051", v, w; + Buj) (8.15)

and the same for j’.
Two different cases can occur.

10. Matrices that does not possess this property are such that the union of cubes form a k-fold tiling.
This was the subject of Furtwingler conjecture, see [Fur36], proved false by G. Hajos. R. Robinson gave a
characterization of such k-fold tilings in some cases, see [Rob79] or [SS94, p. 29].
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Figure 8.19: First case of Lemma 8.52,in  Figure 8.20: Second case of Lemma 8.52,

the case ¢ = 3: the set Wk*! +Kk+1 auto- in the case ¢ = 3: two distinct verti-

intersects. cal translates of WK+l 4+ Kkﬂ intersect
(the first translate contains the dark blue
thickening of WX + Ay, the second is rep-
resented in grey).

(i) Either i; = i; (that is, the translation vectors w;, and w;, are equal). As a conse-
quence, applying Equation (8.15), we have

(y, X) + (O(k_l)n, Vj,—BV]' - w,-]_) G(Wk+1 + (ka On))ﬂ
(W"+1 + (Kk,on)+v’),

with

v = (O(k_l)n,—(”l/j/ - v]'),B(V]'/ - V])) € Kk+1 \Xk

This implies that the set W<*1 + Kk+1 auto-intersects (see Figure 8.19).
(ii) Or i; = ij (that is, w;, # wij,). Combining Equations (8.15) and (8.13) (note that
(Xk, 0”) C Kk+1), we get

(v,x) € (W"Jrl + A + (Ok”,wi], )) N (W"Jrl + Ay + (Ok”, wi, ))

This implies that two distinct vertical translates of Wk+! + Xk+1 intersect (see Fig-
ure 8.20).
We now look at the global behaviour of all the x such that X € U. Again, we have two
cases.

(1) Either for more than the half of such x (for Lebesgue measure), we are in the case
(i). To each of such x corresponds a translation vector w;. We choose w; such that
the set of corresponding x has the biggest measure; this measure is bigger than
e/(2(€ - 1)) > ¢/(2€). Reasoning as in the second proof of Theorem 8.30 (page 192),
and in particular applying Corollary 8.20, we get that the density D; of the auto-
intersection of W51 + Ay 1 + (0, w;) is bigger than Dye/(2¢). This leads to

~ ~ D
D(WH + Rp.y) < D(WH + A - -

In this case, we get the conclusion (1) of the lemma.
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Figure 8.21: Intersection of cubes in the case where the rate is bigger than 1/3. The
thickening of the cubes of WX + Ay is represented in dark blue and the thickening of the
rest of the cubes of WK1 + Kk+1 is represented in light blue; we have also represented
another cube of WX*2 + A}, in yellow. We see that if the projection on the z-axis of the
centre of the yellow cube is smaller than 1, then there is automatically an intersection
between this cube and one of the blue cubes.

(2) Or for more than the half of such x, we are in the case (ii). Choosing the couple
(wj, w;) such that the measure of the set of corresponding x is the greatest, we get

D()S

DC((WkH+Kk+1+(0kn’wi))n(wk+l+Kk+1 +(0knlwi,)))2 T3

In this case, we get the conclusion (2) of the lemma.

We can now prove Theorem 8.24.

Proof of Theorem 8.24. As in the previous proofs of such results, we proceed by induc-
tion on k. Suppose that Ak is such that D.(WK + Ak) >1/C. Then, Lemma 8.51 ensures
that it is not possible to have ¢ disjoint translates of WK+ Ar. Applying Lemma 8.52,
we obtain that either D (Wk+1 + Aks1) < Do(WK + Ay), or it is not possible to have £ — 1
disjoint translates of W"Jrl +Ajs1. And so on, applying Lemma 8.52 at most {1 times,
there exists k’ € [k + 1,k + £ — 1] such that WX + A}, has additional auto-intersections.
Quantitatively, combining Lemmas 8.51 and 8.52, we get

€ 1 (D.(WFK+A;) -
ilz)

D (Wk“’ Uy A 1)<D(W"+Ak) i -y

thus .
DC(Wk+€—1 n Kw_l) 1/¢ < (1 -= (g%) )(Dc(wk + Xk) - 1/5),

l
in other words, if we denote T* = Tk(Bl,-- ,By)and Ay =1- (%) ,

T 10 < xg(%k - 1/@). (8.16)



196 Chapter 8. Rate of injectivity of linear maps

This implies that for every ¢ > 0, the sequence of rates 7" is smaller than a sequence con-

verging exponentially fast to 1/{: we get Equation (8.9). In particular, the asymptotic
rate of injectivity is generically equal to zero.

We now prove the estimation of Equation (8.10). Suppose that e [1/(€-2),1/(£-
1)], we compute how long it takes for the rate to be smaller than 1/(¢ —1). We apply
Equation (8.16) j times to ¢ and get

170 < M(T -1/0),

A\ _ . .
withA=1- (é,%) . In the worst case, we have ™ = 1/(€ - 2), thus if j satisfies

:xfé;'(#—l), (8.17)

then j =[j’]is such that Tl <1/(0-1). Equation (8.17) is equivalent to

v o1 1
]_log)\g(logz log(l €—1))'

14
And for ¢ very big, we have the equivalent (recall that A, =1 — % (g—i) )

2\ ¢
i~ (%) 2log2.

Thus, when ¢ is large enough, the time it takes for the rate to decrease from 1/(¢ - 2) to
1/(€—1) is smaller than £2((+1) = p2(¢+1)logl

On the other hand, if we set f (k) = (logk)™", the time it takes for f to go from 1/(¢-2)
to 1/(¢—1) is equal to

e(gil)l/v _ e(eiz)l/v _ e(gil)l/v (1 _ 6(672)1/‘/7(671)1/‘)) N e(gil)l/v

(-1)"+

when [ goes to infinity, thus smaller than e ! when ¢ is large enough. But we have

2(¢+1)logl = 0((5— DYV 41 ) So, when ¢ is large enough, it takes arbitrarily much more

time for T to decrease from 1/(€—-2) to 1/(£—1) than for f to decrease from 1/(¢ - 2) to
1/(€—1). As a consequence, T(k) = o(f (k)). O

In the next part, we will need another technical statement, whose proof is similar to
that of Theorem 8.24.

Lemma 8.54. There exists an open dense set @ of the set {°(SL,(R)) of infinite sequences
of matrices of SL,(R) such that for every Ry > 0, there exists ko € N such that for every
(Ax)k>1 € O, there exists a sequence (Wi )x>1 of translation vectors belonging to [-1/2,1/2]",
and a vector yy € Z", with norm bigger than R, such that (where (A + w) denotes the
discretization of the affine map A+ w)

(m(Ax, +wr) 0+ 0o T(Ay +w1))(Fo) = (Ag, +wk, 0+ 0 Af +wy)(0) = 0.

Moreover, the point Y, being fixed, this property can be supposed to remain true on a whole
neighbourhood of the sequence (Ay)r>1 €.



8.7. Applications of model sets 197

Proof of Lemma 8.54. In fact, we will prove the following statement.

There exists an open dense set @ of the set {*°(SL,,(R)) of infinite sequences of matrices of
SL,(R) such that for every m € N, there exists ky € N such that for every (Ag)x>1 € @, there
exists a vector vy € Z" such that

Card (Kgo -0 Yx\l)_l(yo) > m.

The lemma is deduced from this statement by remarking that on the one hand, for
every Ry > 0, there exists m € N such that every subset of Z" with cardinality bigger than
m contains at least one point with norm bigger than Ry, and that on the other hand, if
we choose wy € [-1/2,1/2]" such that

—_— _—\—1
wy = A;l((AkO o--- OAkfl) (}/0)) mod Z",

then the properties of the cardinality of the inverse image of y, are transferred to the
point 0.

To prove the statement of the beginning of the proof, we remark that if a loss of
injectivity created by the proof of Theorem 8.24 occurs at a time k, then the intersections
of cubes that are created are of the form (Wk + vl) N (Wk +v1+ 7, ), with the vector v,
having nonzero values only in the 2 lasts coordinates. Thus, if the proof of the theorem
creates m intersections of cubes (in times differing of at least 2), there is a point which
belongs simultaneously to at least m cubes. To a point which belongs to this intersection
will correspond a point y, as desired by the statement. And the perturbation we have
made to do that is arbitrarily small, moreover the property remains true on a whole
neighbourhood of the perturbed sequence.

The only thing it remains to prove is that the choice of the time k; is independent
from the choice of the sequence of matrices. In fact, we can choose kj = m?. We have two
cases. Either in time k, the rate is smaller than 1/m, thus automatically the conclusion
of the statement will be satisfied by at least one point yy. Or in time ko, the rate is
bigger than 1/m, thus applying the reasoning above m times we get the conclusion of
the statement. O






CHAPTER 9

STATISTICS OF ROUNDOFF ERRORS

In this (very) short chapter, we use the formalism of model sets to study the statistics
of the errors made when we compute the images of a point of Z" by the discretizations
of a generic sequence of linear maps. Here, the main result is that when we consider
all the points of Z", the roundoff errors made at each iteration are equidistributed in
[-1/2,1/2]" (Proposition 9.1). This result had already been obtained by P.P. Flocker-
mann in [Flo02, Theorem 10 page 44] in dimension 1 (see Proposition 9.2), with quite
different techniques. From this result, we deduce the statistics of the cumulative errors
made after k iterations. In particular, in dimension n = 1, it allows us to compute the
discrepancy (see Definition 9.3) between the appropriate uniform measure on R and the
image sets (Proposition 9.4).

Ultimately, we hope that these notions can be used to tackle a conjecture of O.E.
Lanford (Conjecture 12.13) concerning the physical measures of expanding maps of
the circle.

9.1 Roundoff errors

Given x € Z" and a sequence (A,,),,>1 of invertible matrices of R”, we want to com-

pute the sequence (€}'),, of roundoff errors made at each iteration. They are defined

by
ey = (A — A )((Apy 0+ 0 A)(x)) € [-1/2,1/2]"

We also set

V" = (A, 0A,_10-0A])(x)€Z".

We fix k > 0 and set v, = (vl - ,v,lg), € = (e}c,---,sﬁ), uy = (Ayx,00"~VK) e R™ and

xr°

Ny o A = Aj € Mnk(R)-

199
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—| Azvi-
NAl""rAkvx_ 3Vx —Vx |,

the vector u, can be decomposed into
ux = NA]""rAkvx - Ex,

with v, € Z™ and e, € WK (recall that WK =] —1/2,1/2]"%). The vector u, being fixed,
this condition characterizes completely ¢, and v,, as WX is a fundamental domain of
NA1,~~-,Aank (remark that we are in the case of the conclusion of Hajos theorem, see
Theorem 8.21). Thus, &, is equal to the projection of u, on WK modulo NAI,---,Aank§
equivalently, NK},...,Ak g, is equal to the projection of NK},.”,Ak U, on Ng},...,Aka modulo
YA

This implies that the sequences of errors ¢, are equidistributed in (R"/Z")* when x

ranges over Z" if and only if the vectors (NA} Ak”x) g AT€ equidistributed modulo
PP xeZ

Z"k. For this purpose, the matrix Ng}’m’ A, can be easily computed:

-1
A, -1
-1 ..
Ny oa, = —AsA, —Ajz : ,
: : .-l
A A, —ApAs o —Ap -1
thus
Ay
Ay,
NZ},N.,Ak”x = | A3ARAq |y, (9.1)
Ap-- Ay

As a consequence, the sequences of errors ¢, are equidistributed in (R"/Z")¥ if and only
if the action of Z" on (R"/Z") given by Equation (9.1) is ergodic. This leads to the
following proposition.

Proposition 9.1. For a generic sequence (Ay)x>1 of matrices of GL,(R), or SL,(R), or O,,(R),

for every fixed integer k, the finite sequence of errors &, = (e}c,m ,sﬁ) is equidistributed in

(R"/Z")* when x ranges over Z".

In particular, this proposition implies that the errors ¢ are globally independent.

If we take n = 1, we obtain an alternative proof of the following statement, which
was already observed in the thesis [Flo02] of P.P. Flockermann (Theorem 10 page 44).

—k .
Proposition 9.2. If n = 1, we denote A,, = A, and for m <k, set X, = A\ Ag_1 -+ X, with the

.=k . . ~k . .
convention A\, = 1. If the coefficients (A,,)1<m<k+1 are linearly independent over Q, then

for every fixed integer k, the sequence (e}c,---,sﬁ‘c) is equidistributed in R¥/ZF when x ranges

over Z.
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9.2 Cumulative errors and discrepancy

From the previous study, it is possible to deduce the statistics of the global error
%,f = (KkoKk_l o---oXl)(x)—(Ak oAr_q o---oAl)(x)
made after k iterations. Indeed, we have
%)gwl = Ak+lg)§ + Eiccﬂ'

From this recurrence relation, we deduce that

where B, = AyA;_1---A;;1. As the €' are independent and equidistributed, this gives
the law of the global error &;. In particular, the covariance of &; is equal to

k
1
Var(&F) = = ZBmBnZ,
m=1

where BT denotes the transpose of the matrix B.

We assume n = 1, and that the linear maps A; are expanding. In this case, if we
denote A; = \; > 1, the variance of & is equal to

k
1
Var(&F) = = Z M1 A)2 (9.2)
m=1

In particular, if there exists a > 1 such that Ay > «a for every k, then

k
1 a?(a?k - 1)
k 2m _
Var(%x)z—lzmg_la = 1)

__ These considerations allow us to compute the discrepancy of the image set (Ago---o
Ap)(x)-

Definition 9.3. Let E C Z and p a Borel measure on R. We call discrepancy of E with
respect to the measure p the quantity (when it is well defined)

1/2

R
Disc(E, p) = E}TM(%I (Card([ x]NE) = p([-x,x ]))2 dx)

For a complete investigation of the subject of geometric discrepancy and an exten-
sive bibliography, see the excellent book [Mat10] of J. Matousek.

In dimension 1, the discrepancy of the set (Xk 00 Xl)(Z) can be easily computed:
the following proposition is a direct consequence of Equation (9.2).

Proposition 9.4. The discrepancy of the set (Apo---0A;)(Z) is equal to the standard deviation

of (&5)x

k 1/2
o _ P 1

Disc((Ay o0 A1 )(Z), det(A7! A7) Leb ) = Var(&)? = | - Z Mkt

m=1
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In particular, if there exists a > 1 such that Ay > « for every k, then

1/2
a2(a?k —1) / ok+1
k—+00

. “ n -1 -1
DlsC((AkO"’OAl)(Z)r det(Ag"--- A )Leb)Z(m m

As has already been said, we hope that these kind of considerations about the statis-
tics of the deviation of the uniform measure on the image set with respect to Lebesgue
measure can help to understand the behaviour of the image measures (fl\*l)k(AN) for
k > logN (but not too big either). In particular, we would like to use discrepancy to
improve the results of Section 12.2 and possibly explain the behaviour observed in Fig-
ure 12.18.
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Introduction

In this third part of the manuscript, we will study the dynamics of the discretiza-
tions of generic C"-maps, namely both conservative and dissipative diffeomorphisms,
and expanding maps. We conducted this study for several reasons.

First of all, it is commonly accepted that the generic C' dynamics represents some
physical systems better than the C° generic dynamics: a lot of these concrete systems
are smooth, and the generic C° dynamics contains “wild” behaviours (for example, for
both generic conservative and dissipative homeomorphisms, whether the set of periodic
points of a given period is empty, whether it forms a Cantor set, thus it is uncountable).
Moreover, in the C! generic case, a wider class of behaviours can occur, as there are
“generic dichotomy theorems” (see for example [ACW14]).

Furthermore, some aspects of the behaviour of the discretizations of generic conser-
vative homeomorphisms are a bit disappointing. The combinatorics of the discretiza-
tions varies a lot depending on the order of discretization, and does not tell anything
about the actual dynamics of the continuous system. In addition, nothing in the results
we have proved in the first part gives a method to to detect the “physical” behaviour of
the homeomorphism on the discretizations. We would like to know if in the C! case, it
is possible to obtain a method to recover the physical measures from some dynamical
features of the discretizations.

In this part, we will consider a compact boundaryless manifold X of dimension n > 2
(we will also study the specific case of the circle), equipped with a measure A derived
froma volume form. We will use the following notations.

Notation 9.5. We denote by Diff!(X) the set of C!-diffeomorphisms of X, endowed by
the metric dc1 defined by:

de(f,g) = supd(f(x), g(x)) + sup |Df. - Dg:||

xeX

We denote by Diff! (X, \) the subset of Diff!(X) made of the diffeomorphisms that pre-
serve the measure A, endowed with the same metric d¢:.

The metric dc: on Diff!(X) and Diff' (X, A) makes them Baire spaces. In this intro-
duction, we will state all the results for the phase space X = T”, the measure A = Leb
and the uniform grids

(i iy o
EN_{(E,.--,E)eTﬂV],OSZJ-SN—I},

However, these results are true in a more general setting (see the concerned chapters
for precisions on these settings).
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The first chapter of this part will be devoted to the direct application of classical
perturbation lemmas for C!-diffeomorphism:s.

These perturbations lemmas are in general much more difficult to obtain than in
the case of homeomorphisms (proposition of finite maps extension, see Proposition 3.3):
when we perturb a diffeomorphism, we have to take care of the norm of the differentials
of the perturbation. This is a crucial difference. Indeed, in the CO case, if we want to
perturb the image of a point of ¢, we only have to make a perturbation on a ball of size
e. If we want to do the same in topology C!, the support of the perturbation has to
contain a ball whose size is way bigger than . Thus, for homeomorphisms, and for N
large enough, we are able to move independently each point of a grid Ey, while for C!
diffeomorphisms we are only authorized to move a small proportion ! of the points of
EN.

Thus, if the C! generic dynamics is mainly considered as more interesting than the
C% dynamics, the price to pay is that our results are in general weaker: they only concern
a small proportion of the points of the grids. Note that the case of the regularity C! is
somehow the “limit case”: to our knowledge, there is no general statement of interesting
perturbation result in regularity C’, with r > 1.

As a consequence, the results we obtain in this chapter — by applying directly clas-
sical perturbation lemmas — only concern a sub-dynamics of the discretizations. More
precisely, in Part 1, we were able to determine the dynamics of all the points of the dis-
cretizations of generic conservative homeomorphisms. Here, we will only control the
dynamics of a few points of the grid. For example, even if the dynamical property we
are interested in concern a e-dense subset of X, it may happen that the mesh of the grids
which satisfies the conclusions of the theorems is very small compared to ¢; in this case
we only know the dynamics (for the discretizations) of a small proportion of points of
these grids.

The results of this first chapter of Part 3 will be based on the following statement
(Corollary 10.2).

Proposition S. Let f € Diff'(T") (or f € Diff'(T",Leb)) be a generic diffeomorphism. Then,
for every T € N, every Ny € N and every € > 0, there exists N > Ny such that every periodic
orbit of f of period smaller than t is e-shadowed by a periodic orbit of fiy with the same
period.

This proposition states that every periodic orbit of a generic diffeomorphism is de-
tected by an infinite number of discretizations. It will also allow us to deduce a lot
of results about the dynamics of the discretizations of generic diffeomorphisms by ap-
plying classical perturbation lemmas. For example, applying the connecting lemma of
C. Bonatti and S. Crovisier, [BC04], we get the following result (Corollary 10.4).

Proposition T. Let f be a generic diffeomorphism of Diff' (T",Leb). Then, for any ¢ > 0 and
any N > 0, there exists N > Ny such that f\ has a periodic orbit which is e-dense.

The statement is still true in the dissipative generic case if we restrict to a maximal in-
variant chain-transitive set.

This statement can be seen as a weak version of Corollary 5.9, which states that for a
generic conservative homeomorphism, there exists an infinite number of discretizations

1. This proportion is asymptotically independent from the order N of the discretization, and depends
on the size of the C! perturbation.
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which are cyclic permutations of the grids. We can also apply an ergodic closing lemma
(due to R. Mané [Man82] and F. Abdenur, C. Bonatti and S. Crovisier [ABC11]); we then
get the following result for discretizations (Corollary 10.9).

Proposition U. Let f be a generic diffeomorphism of Diff' (T",Leb). Then, for any f-
invariant measure p, any € > 0 and any Ny > 0, there exists N > N such that fy supports a
periodic measure which is e-close to .

The statement is still true in the dissipative generic case for every measure p supported by
a maximal invariant chain-transitive set.

Again, this result can be seen as a weak version of Theorem 5.51 for homeomor-
phisms.

Finally, we can say that all these results of Chapter 10 go in the direction of the
following heuristic.

For a generic diffeomorphism f € Diff!(T",Leb), each “sub-dynamics” of f (periodic
orbits, chain-transitive invariant compact sets, invariant measure, rotation set...) can be
detected by some discretizations fy. However, we have no control over the orders of dis-
cretization N for which it is true, and no control over the global dynamics of fn. In the
dissipative case, the same holds on each chain-recurrent class of f.

Remark that for diffeomorphisms, the behaviours in the dissipative case are quite
close to those in the conservative case, which was not true for generic homeomorphisms.
Indeed, for a generic dissipative homeomorphism, the chain recurrent classes are totally
disconnected, while for generic dissipative diffeomorphisms they can contain nonempty
open sets (for example, there are open sets of transitive Anosov diffeomorphisms). On
each of these chain recurrent classes, the dynamics generically resembles to that of a
conservative diffeomorphism.

Recall that the class of C!-diffeomorphisms bears open sets of Anosov maps. One
of the important properties of such systems is that they satisfy the shadowing lemma:
if f is Anosov, then for every ¢ > 0, there exists 6 > 0 such that every 6-pseudo-orbit
of f is e-shadowed by a true orbit of f. As orbits of discretizations are in particular
pseudo-orbits, orbits of discretizations of Anosov maps are shadowed by real orbits of
the initial map. However, we do not control the dynamics of the shadowing orbit: for
example, if the Anosov map is ergodic, we can not impose to the shadowing orbit to
be typical with respect to Lebesgue measure. This phenomenon could seem anecdotic,
but its consequences are in fact quite bad. Recall, for example, the behaviour of the
discretizations of the linear automorphisms of the torus on the canonical grids (see
Figure 1.1): in this case, the discretizations are permutations with a very small global
period; thus the dynamics of the discretizations does not reflect the mixing properties
of the initial dynamics. Thus, we can say that the shadowing lemma does not imply
that the dynamics of fy looks like that of f.

In a certain sense, the statements we prove in this first chapter express that for
a generic diffeomorphism f, any dynamical behaviour of f is shadowed by a similar
dynamical behaviour of the discretizations of f. More precisely, by a sub-dynamics
of the discretizations; the dynamics of the rest of the grid is not totally random, as
by the shadowing lemma it is close to some dynamics of the initial system. The bad
news is that in the theorems we prove, we have no explicit control on the orders of
discretization for which we detect this or that dynamical feature of f, whereas in the
shadowing lemma the dependence of the parameter o to ¢ is explicit.
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The second chapter of this part is devoted to the study of the degree of recurrence
of a generic C!'-diffeomorphism, in both conservative and dissipative cases, and of a
generic expanding map.

Indeed, in Chapter 10, we do not say anything about the global dynamics of the
discretizations; we obtain results about sub-dynamics of the discretizations. In Chap-
ter 11, we will study the simplest global combinatorial quantity for the discretizations:
the degree of recurrence. We say that this invariant is the simplest to study because it
is obtained as a decreasing limit in time. Thus, the study of the degree of recurrence
reduces to that of finite time quantities. This study will also be the occasion to observe
that the local behaviour of the discretizations in small time is governed by the behaviour
of the differentials of the diffeomorphism; in particular we will use crucially the study
of the discretizations of linear maps we have conducted in Part 2 of this manuscript.

Recall that the degree of recurrence D(fy) of a homeomorphism f is defined as the
ratio between the cardinality of the recurrent set of the discretization fy and that of the
grid EN (Definition 11.1). This degree of recurrence somehow represents the amount
of information we lose when we iterate the discretization. The study of the degree of
recurrence of a generic diffeomorphism easily reduces to that of the rates of injectivity
(see Definition 11.2)

__ Card((fn)"(En))

t —
)= im  Card(Ey)

We first show a local-global formula for this rate of injectivity: the rate of injectivity
of a generic diffeomorphism is linked with the rates of injectivity of its differentials. To
do that, we define the discretization of a linear map A : R” — R" as the map A = Tto A :
Z" — Z", where  : R" — Z" is a projection on (one of) the nearest integer point for
the euclidean distance (see Definition 7.11). Then, the rate of injectivity of a sequence
(Ag)k>0 of matrices is defined as (see Definition 7.19)

Card((Ago---oA;)[Bg]
™Ay, Ar) = lim (A 1[Bx))

R—+00 Card[BR] E]OI 1]

The local-global formula is the following (Theorem 11.8, see also Theorem 11.26).

Theorem V. Let r > 1 and f € Diff" (T") (or f € Diff'(T",Leb)) be a generic diffeomorphism.
Then t'(f) is well defined (that is, the limit exists) and satisfies:

Tt(f) = jn ’lflL (Dfx; cee ,fof—l(x)) dLeb(x).

Moreover, the function t' is continuous in f.

Remark that the hypothesis of genericity is necessary to get this theorem (see Exam-
ple 11.4). The proof of this result involves the local linearization of a diffeomorphism
(Lemma 11.5), which is a difficult result in the conservative case (it uses the smoothing
of a conservative C!-diffeomorphism of A. Avila, see [Avil0]). It also uses crucially the
study of the continuity of the rate we have conducted in Part 2 of this manuscript.

In the last section of Chapter 11, we give a variation of Theorem V for expanding
maps. This statement links the rate of injectivity of a generic C"-expanding map with
the probability of percolation D of a random graph associated to the derivatives of this
map (Theorem 11.19).
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Theorem W. For every r > 1, and every generic C'-expanding map f on S!, the rate of
injectivity T (f) satisfies

()= | DldetDf hepss ) dLebiy)

xef™"(y)
(see Definition 11.18 for the definition of D).

The techniques developed to prove this statement also lead to the proof of Theo-
rem V in the C’ regularity, for every r > 1. Notice that even if theorem V is true for
generic C’-diffeomorphisms for every r > 1, it is not sufficient to get that the degree of
recurrence is generically equal to 0 in the C” topology: to prove Theorem X, we need to
perturb the derivative of a diffeomorphism on a big subset of T". However, there is a
hope that in the case of expanding maps, Theorem W leads to the fact that the degree
of recurrence is generically equal to 0 in any topology of C" convergence.

The behaviour described by Theorem V is very different from the C° case.
For a generic dissipative homeomorphism f, we have t!(f) = 0 (Corollary 4.14),
while for a generic conservative homeomorphism f, for every t > 0, the quantity
Card((fN)t(EN))/Card(EN) accumulates on both 0 and 1 when N goes to +oo (Corol-
laries 5.9 and 5.20). The behaviour for generic diffeomorphisms does not depend on
the assumption of preservation of a measure or not, and is in a certain sense smoother.

In short, the rate of injectivity of a diffeomorphism can be computed by integrating
the rates of injectivity of its differentials. This allows us to use the study of the rate of
injectivity of linear maps we have conducted in the second part of this thesis, and in
particular Theorem 8.24. Applying classical techniques of C! dynamics (in particular
Rokhlin tower lemma), the application of this theorem is quite straightforward and
leads to the following theorem.

Theorem X. For a generic conservative diffeomorphism f € Diff'(T", Leb), we have

lim t'(f) = 0.

t—o0
This implies in particular that limy_,,. D(fx) = 0.

This theorem must be compared with the case of homeomorphisms (see Corol-
lary 5.24): for a generic conservative homeomorphism f, the sequence D(fy) accumu-
lates on the whole segment [0,1]. Thus, in the case of diffeomorphisms, the behaviour
of the rate of injectivity is less irregular than for homeomorphisms; despite this, the
theorem shows that when we iterate the discretizations of a generic conservative dif-
feomorphism, we lose a great amount of information. Moreover, although f is conser-
vative, its discretizations tend to behave like dissipative maps. This can be compared
with the work of P. Lax [Lax71]: for any conservative homeomorphism f, there is a bi-
jective finite map arbitrarily close to f (see Theorem 5.5). The previous theorem states
that for a generic conservative C! diffeomorphism, the discretizations never possess this
property.

To summarize, for a generic conservative Cl-diffeomorphism, the recurrent sets
Q(fn) are such that their limit superior is T" (see Proposition T), and their cardinal-
ity behaves as o(Card(Ey)).

The same behaviour of the rate of injectivity holds in the generic dissipative case
(Corollary 11.13): for a generic dissipative diffeomorphism f e Diff'(T"), we have



212 Introduction

limn 0 D(fn) = 0. This result is an easy consequence of a theorem of A. Avila and
J. Bochi (Theorem 11.11, see also [AB06]).

Finally, in Chapter 12, we tackle the question of the physical behaviour of the dis-

cretizations. In section 12.1, we study the measures ]/lxNk for “a lot” of points x. Recall
that for every x, the orbit of xy under fy falls in a periodic orbit of fy; we denote by

pﬁN" the uniform measure on this periodic orbit. In the third chapter of this part, we
will prove the following statement (Theorem 12.1).

Theorem Y. For a generic diffeomorphism f € Diff! (T",Leb), for a generic point x € X, and
for any f-invariant probability measure p, there exists a subsequence (Ny )i of discretizations

such that
Iy
Px = —

k—+oc0
Again, the study of the linear case (more precisely, Lemma 8.54) plays a pivotal
role in the proof of this theorem. It also uses an ergodic closing lemma adapted from
[ABC11] (Lemma 12.6), and the connecting lemma for pseudo-orbits of [BC04] (see also
Theorem 10.3).
Recall that in the case of homeomorphisms, we have proved that for a generic con-
servative homeomorphism f, and for any f-invariant measure y, there exists a subse-

quence (fx, ) of discretizations such that for every x € T", we have }/LiNk o The
—+00

result we have for diffeomorphisms — even if it is much more difficult to prove — is
much weaker: it not only concerns the behaviour of a generic subset of the torus in-
stead of all the points, but the orders of discretization for which the conclusions of the
theorem are true strongly depend on the point x.

Despite this, this theorem says that in practice, we must be very careful when we
want to find a physical measure. Suppose that we want to find the unique physical
measure pg of a generic C!-diffeomorphism f. We could think that it is sufficient to

f

compute the measures py for a certain number of points x; since y is the unique phys-

ical measure, }A,J; should be close to pg for most of the points x. In practice, of course,
we will consider a finite number of such points x, and we will compute with a given
precision, that is we will iterate a discretization fy. The result says that for some N, we

observe a measure }/lﬁNk that has nothing to do with the physical measure .

Section 12.2 is devoted to the study of the measures (f{)"An for “small” times m
(recall that Ay is the uniform measure on the grid Ey), in the case where f is a C!*®
expanding map of the circle. In this setting, a classical result asserts that f has a single
physical measure py, which coincides with the SRB measure of f, and is also the unique
invariant probability measure with a C* density (see Theorem 12.17). Our theorem
asserts that if N goes to infinity much faster than m, the measures (f)" AN converge to
o (Theorem 12.15).

Theorem Z. For every 0 < a < 1 and every C'*® expanding map f € %d““(sl), there exists
a constant ¢y = co(f) > 0 such that if (N,,),, is a sequence of integers going to infinity and
satisfying log N,,, > com, then the convergence (f )" (An,) — po holds.

This result answers partially to a conjecture of O.E. Lanford (see Conjecture 12.13).
Its proof consists in a calculus of the difference of action on measures between the
Ruelle-Perron-Frobenius operator and the pushforwards by the discretization fy.
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N

In Section 12.3, we first present numerical experiments simulating the measures px

and p@ for some examples of conservative C!-diffeomorphisms of the torus. The results

of these simulations are quite striking: for all the diffeomorphisms we have tested (even
a diffeomorphism C!-close to a linear Anosov map, thus C° conjugated to it), for some

large orders of discretization N, the measures }A£N do not look like Lebesgue measure
(see for instance Figures 12.7, 12.8 and 12.9). Thus, in practice, we have to be very

careful when we compute numerically some measures pf}, it may happen that they do
not reflect the physical behaviour of the initial diffeomorphism at all.

The end of this section is devoted to numerical simulations of invariant measures
of expanding maps; in particular we observe on Figure 12.18 that as predicted by The-
orem Z, the distance dist(y, (fI\*Im)m()\Nm)) is very close to 0 for small values of m, but
then increases with m to a significant value.

To summarize, we take stock about what we have proved to answer the question: is
is possible to observe physical measures on discretizations? In practice, this question
can be formalized in many ways 2.

h

— First, we can wonder if the measures py' tend to a physical measure of f for
“many” points x. The answer is no, when by “many points x” we mean “generic
points x € X”, for generic conservative and dissipative C!-diffeomorphisms (The-
orems 12.1 and 12.3) and generic expanding maps (Proposition 12.4). The be-
haviours described by these statements can even be observed in practice (see Sec-
tion 12.3) However, we do not know what happens when we consider a set of
points x which is typical for Lebesgue measure.

— Second, we can ask whether the measures 3 }4{? converge to a physical measure

of f or not. We have no theoretical statement about this question, even for ex-
panding maps of the circle. Moreover, the results of numerical simulations are
not clear, as they suggest that the answer to this question could be “yes, if we

consider averages among a wide range of orders N” (see Figures 12.21 and 12.22).

— As we do not understand the behaviours of the measures * }A{é\], as suggested by

O.E. Lanford (see Conjecture 12.13), we can ask if the measures (f3)" An converge
to a physical measure for both m and N going to infinity, with m not too big with
respect to N. Theorem Z answers this question for some m satisfying m = O(logN)
and for a C* expanding map on the circle: in this case, the measures (f{)" AN
converge exponentially fast to the unique physical measure of the map. For now,
we do not know what happens for bigger times m. The numerical experiments
suggest a quite surprising evolution of the measures (fg)"An: for a fixed order
of discretization N, these measures converge very fast towards the SRB measure,
and then moves away from it slowly. This phenomenon is maybe due to the fact
that the numerical errors due to the discretization process are equidistributed (see
Proposition 9.4; this phenomenon could be specific to the dimension 1).

— Finally, we can investigate whether the two first questions are connected or not.
More precisely, we wonder if there exits a discrete Birkhoff’s theorem, which

2. Here, we consider only the case of the regularity C”, r > 1; the case of homeomorphisms has been
treated in Part 1.

3. Recall that the measures u{(N are supported by the union of periodic orbits of fy, such that the total

measure of each periodic orbit is proportional to the cardinality of its basin of attraction.

4. Note that the measures p{(N are obtained by averaging the measures (f{;)" AN over m1.
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h

would state that if the measures py' converge to a measure y, then the measures

N

px tend to p for “a lot” of points x (in a sense to define).



CHAPTER 10

APPLICATIONS OF PERTURBATION LEMMAS

In this chapter, we apply classical perturbation lemmas of C!-diffeomorphisms to
deduce statements about the dynamics of the discretizations of C! generic conservative
and dissipative diffeomorphisms.

In this chapter, X will be a smooth compact boundaryless Riemannian manifold
of dimension n > 2. It will be equipped with a measure A, derived from a volume
form (independent from the metric on X). We will be interested in the dynamics of
the discretizations of generic C!-diffeomorphisms, in both dissipative and conservative
cases; i.e. generic elements of Diff! (X) and Diff' (X, A).

We will also fix a sequence (Ey)nso of discretizations grids on X. Recall that the very
definition of discretization grid (Definition 3.5) supposes that the mesh of these discrete
sets tends to 0, that is: for every € > 0, there exists N such that for every N > Ny, the
grid Ey is e-dense in X. In this chapter, this is the only assumption we will make on
the grids. Given a diffeomorphism f € Diff(X, A), we denote by fy the discretization of
f with respect to the grid Ey.

We will begin this chapter by stating that the periodic orbits of a generic diffeomor-
phism are shadowed by periodic orbits of its discretizations (Corollary 10.2). This will
allow us to apply classical closing lemmas, which state that some dynamical invariants
of a generic diffeomorphism are shadowed by periodic orbits.

We first apply the connecting lemma for pseudo-orbits of C. Bonatti and S. Crovisier
[BCO4], to prove that for a generic diffeomorphism f € Diff! (X, A) and for every e > 0, an
infinite number of discretizations fy have a periodic orbit which is e-dense in X (Corol-
lary 10.4). We also apply a closing lemma of F. Abdenur and S. Crovisier [AC12] to
obtain that an infinite number of discretizations fy are “e-topologically mixing” (Corol-
lary 10.7). The same results holds in the dissipative case for every chain-recurrent class.

We then apply an ergodic closing lemma of R. Mané [Man82] and F. Abdenur,
C. Bonatti and S. Crovisier [ABC11] to state that if f € Diff' (X, \) is a generic conserva-
tive diffeomorphism, then every f-invariant measure is shadowed by periodic measures
of the discretizations fy (Corollary 10.9). The same kind of results holds for chain-
transitive invariant compact sets (Corollary 10.11), by applying a connecting lemma
of S. Crovisier [Cro06a]. Again, the same results holds in the dissipative case when
restricted to a chain-recurrent class.

Finally, we will use a theorem of J. Franks [Fra89] of realization of rotation vectors
by periodic points to prove that the rotation set of a generic conservative diffeomor-
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phism f € Diff!(X, ) is well approximated by rotation sets of discretizations (Proposi-
tion 10.15). The same holds for generic dissipative C!-diffeomorphisms, provided that
we take convex hulls of the rotation sets of the discretizations (Proposition 10.16).

10.1 Shadowing of periodic orbits

First of all, we give the statement of an elementary perturbation lemma that we will
use all along this chapter. This is a C! counterpart of the proposition of extension of
finite maps for the C° topology (Proposition 3.3).

Lemma 10.1 (Elementary perturbation lemma in C! topology). For every diffeomorphism
f € Diff!(X) and every & > 0, there exists v > 0 and ro > 0 such that the following property
holds: for every x,v € X such that d(x,v) < ro, there exists a diffeomorphism g € Diff'(X)
satisfying dci(f,g) < O, such that g(x) = f(y) and that f and g are equal out of the ball

1
B(*3, 3d(x,))
Moreover, if f € Diff!(X, \), then we can also suppose that g € Diff!(X, \).

Before discussing the consequences of this lemma, let us underline the differences
with the C? case. A priori, we will apply the lemma to a small neighbourhood of f,
thus a small parameter 6 > 0. In facts, the number 1 > 0 tends to +co when 0 goes to

0; thus the ball B(%, 1%d(x,y)) in which lies the support of the perturbation is large
with respect to the distance between x and y. This phenomenon does not happen in the
C? topology, where the proposition of extension of finite maps (Proposition 3.3) states
that the size of the support of the perturbation is almost equal to the distance between
x and p (in fact, it can be supposed to be included in the neighbourhood of a given path
joining x to y). Remark that the situation would be even worse in the C” topology, for
r > 1: in this case, the C’ size of the perturbation 6 > 0 being fixed, the ratio between
the size of the support of the perturbation and d(x,y) would go to infinity when d(x,p)
goes to 0.

Thus, the difference between the statements we get for homeomorphisms and for
C!-diffeomorphisms lies in this difference between the elementary perturbation lem-
mas: in the C! case, perturbations are less local than in the CO case. In the view of ob-
taining generic properties of discretizations, the impossibility of making perturbations
of all the points of the discretization grids has the effect that we can not obtain global
properties of discretizations of generic diffeomorphisms with this strategy of proof.

Sketch of proof of Lemma 10.1. We sketch the proof in the conservative case; the dissipa-
tive case being obtained by the same arguments (and even, by simpler arguments).

The idea of the proof of this lemma is to apply “local rotations”, as in the proof of
the proposition of extension of finite maps in the C° topology.

More precisely, in dimension 2, g is obtained by composing f by the time 1 of a
Hamiltonian flow whose orbits are circles with a common centre, such that one of these
circles meets both x and y (see Figure 10.1). As the time 1 of this Hamiltonian maps
x into p, its C° norm is bigger than d(x,y). But as we also want that the norm of its
differential is smaller than 9, its support should contain a ball or radius (1 + 1/9)d(x,v).
This explains why when 0 is small, the size of the perturbation has to be big with respect
to d(x,p).

A precise proof can be found for example in [Arn98, Proposition 5.1.1]. O]



10.1. Shadowing of periodic orbits 217

<
\

\\

A
\

Figure 10.1: Flow of the Hamiltonian used to prove Lemma 10.1 (“local rotation”).

From Lemma 10.1, we now deduce another perturbation result which will be at the
basis of the rest of the chapter. It states that every periodic orbit of a generic conserva-
tive diffeomorphism is shadowed by periodic orbits of its discretizations.

Corollary 10.2. Let f € Diff'(X) (or f € Diff' (X, \)) be a generic diffeomorphism. Then, for
every T € N, every Ny € N and every € > 0, there exists N > Ny such that every periodic orbit
of f of period smaller than t is e-shadowed by a periodic orbit of fy with the same period.

Proof of Corollary 10.2. We prove the corollary in the dissipative case, the conservative
case being identical.

We set . v the set of f € Diff'(X) such that for every periodic orbit w of f of period
smaller than 7, there exists a periodic orbit of fy with the same period which is e-close
to w. Then, the set of diffeomorphisms satisfying the conclusion of the lemma is the set

ﬂ U %,E,N'

7,6,Ng N>N,

Thus, it suffices to prove that for every T,& Ny, the set [Unsn, F7,eN contains an open
and dense subset of Diff!(X).

Lett>0,e>0,NpeN, f e Diff' (X, A) and & > 0; we want to find g€ Diff! (X) such
that d(f,g) <dand g € Unsn, H

We first use a classical result of C. Robinson, which asserts that that for a generic
diffeomorphism f € Diff! (X), the set of periodic points of period smaller than 7 is finite,
and moreover is continuous in the diffeomorphism f: if g € Diff'(X) is C!-close to f,
then its set of periodic points of period smaller than 7 is close to that of f for Hausdorff
topology (see [Rob70a, Rob70b], [Rob73], see also [Cro06b]). Thus, perturbing a little
f if necessary, we can suppose that this property actually holds; taking a smaller o
if necessary, we can also suppose that there is no creation of periodic orbit when we
perturb f into the 6-neighbourhood of f.

So we can enumerate wy,---,wy the periodic orbits of f of period smaller than t. For
each i we denote w; = {x;1,--, %}, with f(x;;) = x; j;1 (j belonging to Z/v;Z). Using
Lemma 10.1, there exists a radius r, €]0,¢[ (which depends on 8, on the C!-norm of f
and on the minimal distance between two distinct points of the union of these orbits)
such that for every collection of points y; ; satisfying d(y; ;,x; ;) < r for every i € [1,{]]



218 Chapter 10. Applications of perturbation lemmas

and j € [1,7;]], there exists a diffeomorphism g € Diff! (X) such that dc1(f,g) < 6 and that
8(ij) = Vijs1-

By the hypothesis on the grids Ey, there exists N; > Ny such that if N > Ny, then
every ball of radius r; contains at least one point of Ey. We can apply the property
stated in the last paragraph to the discretizations (x; j)x of the points x; ; on the grid
En, and get a diffeomorphism g which belongs to the interior of |, FieN- This
completes the proof of the lemma. O

Corollary 10.2 states that for a generic conservative diffeomorphism, any periodic
orbit is shadowed by periodic orbits of the same period of an infinite number of dis-
cretizations. In particular, if we denote by Ord(f) the set of orders of periodic orbits
of f, for a generic diffeomorphism f € Diff!(X,\) and for any M € N, the supremum
limit over N of [0, M] N Ord(fy) is equal [0,M] N Ord(f). Moreover, Corollary 10.2 in-
dicates that it is theoretically possible to recover the set of periodic points of a generic
conservative C!-diffeomorphism by looking at the corresponding periodic points of its
discretizations (see Figure 5.13 for numerical simulations corresponding to this prop-

erty).

10.2 Discrete counterparts of transitivity and topological
mixing

As a first application of Corollary 10.2, we apply the connecting lemma of C. Bonatti
and S. Crovisier [BC04] to get a C! counterpart of Corollary 5.9.

Theorem 10.3 (Bonatti-Crovisier). A generic diffeomorphism f € Diff!(X,\) is transitive.
More precisely, for any generic diffeomorphism f € Diff' (X, ) and any e > 0, there exists a
periodic orbit of f which is e-dense.

In the dissipative case, for a generic diffeomorphism f € Diff!(X), every maximal in-
variant chain-transitive set is transitive. More precisely, for every maximal invariant chain-
transitive set K and every € > 0, there exists a periodic orbit of f which is e-dense in K.

In the conservative case, this difficult theorem is somehow a weak answer to the
question asking whether a generic conservative C!-diffeomorphism is ergodic or not.

Combining this theorem with Corollary 10.2, we obtain directly the following corol-
lary.

Corollary 10.4. Let f be a generic diffeomorphism of Diff' (X, ). Then, for any € > 0 and
any No > 0, there exists N > Ny such that fy has a periodic orbit which is e-dense.

Let f be a generic diffeomorphism of Diff' (X). Then, for every maximal invariant chain-
transitive set K, for every € > 0 and every Ny > 0, there exists N > Ny such that fy has a
periodic orbit which is e-dense in K.

In the conservative case, this corollary expresses that for every ¢ > 0, an infinite
number of discretizations are “e-topologically transitive”, thus contain a sub-dynamics
which is similar to that of the initial diffeomorphism.

In the dissipative case, it implies that it is possible to recover the chain transitive
set Z(f) of a generic dissipative diffeomorphism f, by using the recurrent sets of the
discretizations: F(f) = limy_ 400 Q(f)-
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More recently, F. Abdenur and S. Crovisier have obtained in [AC12] a more sophis-
ticated closing lemma, which allows to prove that a generic diffeomorphism is topolog-
ically mixing !.

Theorem 10.5 (Closing lemma with time control, Abdenur-Crovisier). Let f € Diff!(X),
¢ > 2 be an integer, x be either a non-periodic point or a non-resonant periodic point?.
Assume that each neighbourhood V of x intersects some iterate f"(V) such that m is not a
multiple of €. Then, there exists diffeomorphisms g € Diff' (X), arbitrarily C'-close to f, such
that x is periodic under g whose period is not a multiple of €.

Moreover, if f € Diff'(X, \), then g can be supposed to be conservative too.

This perturbation lemma can be seen as a weak version of Proposition 5.12, which
implies that under the same conditions, but in the C! topology, the period of x can
be supposed to be coprime with ¢. However, combining this lemma with arguments
that are specific to diffeomorphisms, we get a stronger result of genericity, that is that a
generic diffeomorphism is topologically strongly mixing.

From this theorem, it is possible to deduce the following statement.

Corollary 10.6. For a generic f € Diff'(X,\) and for any € > 0, f has two e-dense periodic
points, whose periods are not multiples on to the other. The same property holds for a generic
dissipative diffeomorphism on every maximal invariant chain-transitive set K.

Proof of Corollary 10.6. Let & > 0; we show that the set of f € Diff'(X, ) satisfying the
conclusions of the corollary for ¢ is open and dense. By the connecting lemma of C. Bon-
atti and S. Crovisier (Theorem 10.3), for a generic f € Diff' (X, ) and for any & > 0, f
has a e-dense periodic point, that we denote by p, whose period is ¢; we can further-
more assume that the periodic point p is persistent. Then, by Proposition 2.3 of [AC12],
the map f¢ is transitive on the pointwise homoclinic class > of p. Thus, for any neigh-
bourhood V of p, there exists k € N such that fkg(f(V)) NV = 0; this allows us to apply
Theorem 10.5 to perturb the diffeomorphism f to a diffeomorphism g. Making both of
the obtained periodic points of g persistent (if necessary), a whole neighbourhood of g
satisfies the conclusions of the corollary.

The dissipative case is identical: it suffices to apply the dissipative version of Theo-
rem 10.3. Ul

From Corollary 10.6, and using Corollary 10.2, we deduce directly a statement about
discretizations, which is somehow a C! counterpart of Corollary 5.13.

Corollary 10.7. For a generic f € Diff' (X, \), for any e > 0 and any Ny > 0, there exists
N > Ny such that f\ has two e-dense periodic points, whose periods are not multiples on to
the other. The same property holds for a generic dissipative diffeomorphism on every maximal
invariant chain-transitive set K.

Thus, in a certain sense, for every € > 0, an infinite number of discretizations are
e-topologically mixing on every maximal invariant chain-transitive set.

1. Recall that a continuous map f : X — X is topologically mixing if for any non-empty open sets U,V C
X, there exists M € N such that f"(U)NV =0 for every m > M.

2. All the periodic points of a generic conservative diffeomorphism are non resonant, see Definition 3.1
of [AC12].

3. The pointwise homoclinic class is the closure of the set of transverse intersection points between the
manifolds W*(p) and W¥(p)
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10.3 Shadowing of invariant measures

We now come to the ergodic properties of the discretizations of a generic diffeomor-
phism. We make use of an ergodic closing lemma, which allows to approximate every
invariant measure by periodic invariant measures

Theorem 10.8 (Mané, Abdenur-Bonatti-Crovisier). Let f € Diff'(X, \) be a generic diffeo-
morphism. Then, every f-invariant measure y is the weak limit of periodic measures.

Let f € Diff'(X) be a generic diffeomorphism. Then, every f-invariant measure w which
is supported by an invariant chain-transitive set is the weak limit of periodic measures.

The case where the invariant measure is ergodic has been obtained by R. Mané
in [Man82], the general case has been treated by F. Abdenur, C. Bonatti and S. Cro-
visier in [ABC11, Theorem 3.5] (the theorem also holds for generic conservative C!-
diffeomorphisms).

Applying Corollary 10.2, we get the following corollary, which is a C! counterpart
of Theorems 5.51 and 5.45.

Corollary 10.9. Let f be a generic conservative diffeomorphism of Diff' (X, \). Then, for any
f-invariant measure y, any € > 0 and any Ny > 0, there exists N > N such that fy supports
a periodic measure which is e-close to p.

More generally, for a generic diffeomorphism f € Diff' (X, \), for any € > 0 and N > 0,
there exists N > Ny such that the set of fy-invariant measures is e-close to the set of f-
invariant measures (for the Hausdorff distance on the space of compact sets of probability
measures on X).

The statement is still true for a generic dissipative diffeomorphism f € Diff'(X), if the
measure W is supported by an invariant chain-transitive set.

Roughly speaking, every invariant measure supported by a maximal invariant
chain-transitive set is “seen” by an infinite number of discretizations.

In Chapter 12, we will obtain an improvement of this corollary (Theorem 12.1),
which will describe the basin of attraction of the periodic measure of the discretization.

10.4 Shadowing of chain-transitive invariant sets

We now treat the case of the shadowing of invariant sets of a generic diffeomor-
phism. In [Cro06a, Theorem 4], S. Crovisier stated the following result, which asserts
that for a generic diffeomorphism, it is possible to recover the chain-transitive invariant
sets by looking only at the periodic points.

Theorem 10.10 (Crovisier). Any chain-transitive compact invariant set of a generic dif-
feomorphism f € Diff' (X) of f € Diff'(X,\) is approximated in the Hausdorff topology by
periodic orbits.

Obviously, the converse is always true: any point of accumulation of periodic orbits
is a chain-transitive compact invariant set.

Combined with Corollary 10.2, Theorem 10.10 leads to the following corollary,
which is a C! counterpart of Theorem 5.47, or Theorem 5.49.

Corollary 10.11. Let f be a generic diffeomorphism of Diff' (X) or Diff! (X, \). Then, for any
f-invariant chain-transitive compact set K, any € > 0 and any Ny > 0, there exists N > N
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such that f\ has an invariant compact set which is e-close to K for Hausdorff distance on the
set of compact subsets of X.

More generally, for a generic diffeomorphism f € Diff' (X) (or f € Diff' (X, A)), for any
e >0 and Ny > 0, there exists N > Ny such that the set of fy-invariant sets is e-close to the
set of f-invariant chain-transitive compact sets (for Hausdorff distance on the set of compact
sets of compact subsets of X).

10.5 Rotation sets

In this section, we are interested in the approximation of the rotation set of a generic
diffeomorphism by the rotation sets of its discretizations (see Chapter 6). Thus, we will
take X = T" and consider only diffeomorphisms in the connected component of the
identity. We also take the same notations as in Chapter 6.

We will see that in the C!-case, applying the elementary perturbation lemma (Corol-
lary 10.2), it is possible to obtain a weaker result about discretized rotation sets (in this
case, we can not control what happens on the whole grid Ey, but only on a subgrid
of Ey): for a generic conservative diffeomorphism, the upper limit of the discretized
rotation sets is equal to the rotation set of the diffeomorphism itself.

To begin with, we state an approximation lemma we will use in this section; this
lemma is a quite direct consequence of Lemma 10.1.

Lemma 10.12. If f is generic among Diff' (T") or Diff' (T", Leb), then for every finite col-
lection of rotation vectors {vy,---,v,}, each one realized by a periodic orbit of f, there exists a
subsequence fy, of discretizations such that for every i, {vy,--,v,} C pN;, (f)-

Proof of Lemma 10.12. The proof of this lemma is very similar to that of Lemma 6.22;
we take the same notations (in particular, D, C Q is the set of fractions whose numerator
is smaller than g? and whose denominator is smaller than g). We prove this lemma in
the conservative setting, the dissipative case being identical.

Consider the set

ﬂ ﬂ U { f € Diff'(T", Leb) | (Yv € D, v is realised by a } (10.1)

9.No De, N3N, persistent periodic point of f) = D C p(Ky)

To prove the lemma, it suffices to prove that this set contains a Gs dense subset of
Diff! (T", Leb).

Let f € Homeo(T", Leb), ¢ >0, g,Ng € Nand D € &,. We suppose that forall v e D, v
is realizable by a persistent periodic orbit w; of f. Then, by the elementary perturbation
lemma (Lemma 10.1), it is possible to perturb f into a diffeomorphism g such that
dci(f,g) < € and that there exists N > Ny such that for every i, there exists a periodic
orbit w; of g which is close to w; (in particular, it has the same rotation vector) and such
that w; C EN. Moreover, perturbing a little g if necessary (as in the proof of Proposition
6.2), we can suppose that the periodic orbits w; are persistent. This proves that the set
of (10.1) contains a Gg dense subset of Diff!(T”, Leb). O

To begin with, we treat the conservative case. We will combine Lemma 10.12 with
a realization theorem of rotation vectors by periodic orbits; but to use this realization
theorem we need to prove that the rotation set of a generic conservative diffeomorphism
is nonempty. It is a C! counterpart of Proposition 6.2.
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Proposition 10.13. On a open dense * subset of Diff! (T", Leb), o(F) has non-empty interior.

Remark 10.14. We do not know the shape of the boundary of the rotation set of a generic
conservative C!-diffeomorphism. In particular we do not know if it is a polygon or not.

Proof of Proposition 10.13. It suffices to resume the proof of Proposition 6.2, and to re-
place the C? ergodic closing lemma is replaced by the C!-ergodic closing lemma which
is stated in Theorem 10.8. To make the obtained periodic point persistent, we just have
to apply Franks lemma [Fra71] to perturb the differential of g on the periodic orbit to
avoid having the eigenvalue 1, so that the periodic point becomes persistent (see [KH95,
page 319]). The rest of the proof is identical to the C case. O

Combined with the realisation theorem of J. Franks (Theorem 6.17, see also [Fra89,
Theorem 3.2]) and the approximation lemma (Lemma 10.12), this proposition directly
implies the following result on the discretizations.

Proposition 10.15. If f is generic among Diff' (T", Leb), then there exists a subsequence N,
of discretizations such that py, (F) tends to p(F) for the Hausdorff topology; in particular, the
asymptotic discretized rotation set tends to the rotation set of f.

In particular, when f is a generic conservative C!-diffeomorphism, the asymptotic

discretized rotation set ‘
pdlscr(F): ﬂ U P(FN)
MeNN>M

coincides with the rotation set.

For a generic C!'-diffeomorphism, we do not know if the observable rotation set is
reduced to a singleton or not. This is true when the diffeomorphism is ergodic, which
is conjectured to be a generic property (see also page 250).

Remark that the behaviour described by Proposition 10.15 can actually be observed
on actual examples of conservative C*-diffeomorphisms, see Section 6.4.

The dissipative case is less straightforward, as Proposition 10.13 is false for generic
dissipative C'-diffeomorphisms (there are open sets of diffeomorphisms whose rotation
set has empty interior). However, the connected component of Id in Diff' (T?), includes
three disjoint open subsets, whose union is dense.

1. The first one is the open subset @ of diffeomorphisms f such that p(F) has a
nonempty interior (this set is open by the continuity > of F + p(F) on every home-
omorphism whose rotation set has nonempty interior, see [LM91]). On @;, the same
arguments than in the conservative case can be applied, thus if f is generic among
Oy, then there exists a subsequence fy, of discretizations such that py, (F) tends to
p(F).

2. The second one is the open subset @, of diffeomorphisms f such that p(F) is stably
a segment. By the ergodic closing lemma of R. Mané (Theorem 10.8), for a generic
f € 0,, every rotation vector of an ergodic measure (in particular, the vertices of the
segment) is arbitrarily approximated by a sequence of rotation vectors of (persistent)
periodic points. In particular, on an open and dense subset of @, the rotation set is
a segment with rational slope, which coincides with the closure of the convex hull of

4. In particular, if f is generic.
5. With the C? topology on the domain of p and the Hausdorff distance on compact subsets of R? on
its image.
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rotation vectors of (persistent) periodic points ®. Thus, applying Lemma 10.12, we get
that if f is generic among @, then there exists a subsequence ( N, )i of discretizations
such that conv(py, (F)) tends to p(F).

3. The third one is the open subset @5 of diffeomorphisms f such that p(F) is stably
a singleton. Then, as on an open dense subset of Diff!(T?), every diffeomorphism
possesses a periodic point, on an open and dense subset of @3, the rotation vector is
realized by a periodic point. Then, trivially, we get that for f belonging to an open
and dense subset of @5, the rotation sets of fy converge globally to the rotation set of
f.

To summarize, we have proved the following property.

Proposition 10.16. If f € Diff'(T") is a generic dissipative diffeomorphism, then there exists
a subsequence (le_)i of discretizations such that conv(pNi(F)) tends to p(F) for the Hausdorff
topology; in particular, the convex hull of the asymptotic discretized rotation set tends to the
rotation set of f. Moreover, if p(F) has nonempty interior, or is reduced to a singleton, then
there is no need to take convex hulls.

Remark that even if the techniques of proof are quite different, this behaviour is
identical to what happens for generic dissipative homeomorphisms (Proposition 6.21).

6. Remark that in general, as the slope of the rotation set is rational, we can not hope to get a (for
instance) dense subset of the rotation set on which each vector is realized by a periodic point, see for
example [Bég07, Section 3.3]






CHAPTER 11

DEGREE OF RECURRENCE OF A GENERIC
DIFFEOMORPHISM

In this chapter, we begin the study of the the global dynamics of the discretizations
of a generic C!-diffeomorphism (both conservative and dissipative) by focusing on the
degree of recurrence of the discretizations.

We will consider that the space phase is the torus T", the measure is Lebesgue mea-
sure and the grids are the uniform grids

TR P
En=1{[2,--, 2 )eRY/Z
N {(N N) /

lsil,---,insN}.

We will see in Section 11.4 that this quite restrictive framework can be generalized to
arbitrary manifolds, provided that the discretizations grids behave locally (and almost
everywhere) like the canonical grids on the torus.

Let us recall the definition of the degree of recurrence.

Definition 11.1. Let E be a finite set and ¢ : E — E be a finite map on E. The recurrent
set of o is the union Q(o) of the periodic orbits of o; it is also equal to the set o/(E) for
every t large enough.

The degree of recurrence of the finite map o is the ratio D(o) between the cardinality
of the recurrent set and the cardinality of E, that is

Card(Q(c))
D)= —d®

The goal of this chapter is to study the behaviour of the degree of recurrence D(fy)
as N goes to infinity and for a generic conservative/dissipative diffeomorphism. This
degree of recurrence somehow represents the amount of information we lose when we
iterate the discretization.

As it can be obtained as the decreasing limit of finite time quantities, the degree of
recurrence is maybe the easiest combinatorial invariant to study: we will deduce the
behaviour of the degree of recurrence from that of the rate of injectivity.

Definition 11.2. Let f € End(T") be an endomorphism of the torus and t € N. The rate
of injectivity in time t and for the order N is the quantity

_ Card((f0)'(B)
G TN
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Then, the upper rate of injectivity of f in time t is defined as

() = Jim t(f).

The link between the degree of recurrence and the rates of injectivity is made by the
following formula:

D(f) = lim ().

The study of the rates of injectivity will be the opportunity to understand the lo-
cal behaviour of the discretizations of diffeomorphisms: Theorem 11.8 asserts that that
these rates of injectivity are obtained by averaging the corresponding quantities for
the differentials of the diffeomorphism. The proof of this result involves the local lin-
earization of a diffeomorphism (Lemma 11.6), together with estimates of the lack of
continuity of the rate of injectivity in the linear case (Proposition 8.7). We generalize
later this result to the C" topology, for generic diffeomorphisms (Theorem 11.26) and
for generic expanding maps (Theorem 11.19).

In the conservative case, we will use the study of the rate of injectivity of matri-
ces with determinant 1 in Part 2 of this manuscript (see Theorem 8.24). It will lead
to the proof of the fact that the sequence D(fy) of degrees of recurrence of a generic
conservative C!-diffeomorphism tends to 0 (Theorem 11.15).

For a generic dissipative C!-diffeomorphism, the sequence D(fy) also converges to
0 (Corollary 11.13); it is an easy consequence of a theorem of A. Avila and ]. Bochi
(Theorem 11.11, see also [AB06]).

Note that the fact that the local-global formula is true for C"-generic diffeomor-
phisms does not help to conclude about the degree of recurrence of such maps: a priori,
we need to perturs the derivative of such maps on a large subset of the torus. However,
we can hope that

We now explain in more detail why the behaviour of D(fy) can be deduced from
that of t’. When N is fixed, the sequence (t}/(f)); is decreasing in t, so D(fy) < t(f)
for every t € N. Taking the upper limit in N, we get

lim D(fy) < ©'(f)

N—o+o00

for every t €N, so
lim D(fy) < lim (f) (11.1)
—+00

N—+o0

(as the sequence (t/(f)); is decreasing, the limit is well defined). In particular, if we
have an upper bound on lim;_,_,, t'(f), this will give a bound on Nlim D(fn)- Thus, the
—+00

proof of Theorem 11.15 is reduced to the study of the quantity lim,_, ., t'(f).

At the end of this chapter, we recall the results of the simulations we have conducted
about the degree of recurrence of C!-diffeomorphisms; it shows that in practice, the
degree of recurrence tends to 0, at least for the examples of diffeomorphisms we have
tested.

11.1 Local-global formula

In this section, we state a local-global formula which links the rate of injectivity of
a generic diffeomorphism f and the rates of injectivity of its differentials. The fact that
the map f is C! — then possesses differentials — introduces a mesoscopic scale for the
study of the action of the discretizations in small time:
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— at the macroscopic scale, the discretization of f acts as f;

— at the intermediate mesoscopic scale, the discretization of f acts as a linear map;

— at the microscopic scale, we are able to see that the discretization is a finite map

and we see that the phase space is discrete.

Recall that the discretization of a linear map A : R” — R” is the map A : Z" — Z"
defined by X(x) = m(Ax), where 1 : R" — Z" is a projection on (one of) the nearest
integer point for the euclidean distance (see Definition 7.11).

The rate of injectivity in time k of the matrices Ay,---, A € GL,(R) is then defined as
(see Definition 7.19; see also Corollary 7.7 and Theorem 7.12 for the fact that this limit
is well defined)

e Ay = 1 SRk o 0 AIBy])
AL Ay = lim Card|[Bg]

€]0,1];

and for an infinite sequence (Ag)x>; of invertible matrices, as the previous quantity is
decreasing, we define the asymptotic rate of injectivity

((Akker) = lim (A, Ay €[0,1]

So, the link between local and global behaviours of the rates of injectivity is given
by the following theorem.

Theorem 11.3. Let f € Diff! (T") (or f € Diff! (T",Leb)) be a generic diffeomorphism. Then
t'(f) is well defined (that is, the superior limit is actually a limit) and satisfies:

W)= | ofdx (L-G)

Moreover, the function T is continuous in f.

Example 11.4. Theorem 11.3 becomes false if we do not suppose that the diffeomor-
phism is generic. For example, take a diffeomorphism f € Diff!(T", Leb), which is equal
to

|

fotv= ( 1 ) + 0.

5 1
in a ball of radius r > 0, with a vector v such that v = (0.2/N, -0.1/N) modulo Z?/N, and
“generic” where it does not coincide with this affine map. To construct this example
more rigorously, we can for example apply Lemma 11.6 to have a C!-diffeomorphism
which is equal equal to fy + v in a ball of radius r > 0, and apply the process of proof
of Theorem 11.3 outside of this ball, such that outside of this ball, a formula similar to
Equation L-G holds.

Then, by Lemma 8.2, the rate of injectivity of f, is equal to 1/2 and that of fy + v is

equal to 1. Because f is generic anywhere else, both sides of Equation (L-G) are different.
Moreover, the rate of injectivity t! is not continuous in f.

To show Theorem 11.3, we have to show that Equation (L-G) holds on a dense Gg set
of diffeomorphisms. The “density” part is easily deduced from the following lemma.

Lemma 11.5. Let f; € Diff' (T", Leb) (respectively f| € Diff'(T")). Then there exists
f> € Diff! (T", Leb) (respectively f, € Diff' (T")) arbitrarily close to f,, and a subset € € T"
(which is a finite union of cubes, see Figure 11.1) of measure arbitrarily close to 1, such that
the differential of f, is piecewise constant and totally irrational ' on €.

1. A matrix A € GL,(R) is totally irrational if AZ" is equidistributed modulo Z", see Definition 8.3.
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Figure 11.1: The set € (in blue) in the torus.

This lemma follows from the following result of A. Avila, S. Crovisier and A. Wilkin-
son.

Lemma 11.6 (Avila, Crovisier, Wilkinson). Let C be the unit ball of R" for || ||, and € > 0.
Then, there exists 0 > 0 such that for every g, € Diff(R") such that dc: (gllC,IdK;) <0, there
exists g, € Diff(R") such that:

(i) dci (8210 811c) <&
(i) 82)1-¢c = Idj1-9c;
(iii) &t = 81jcC-

Moreover, if ) preserves Lebesgue measure, then g, can be chosen to preserve it as well.

The dissipative case of this lemma is easily obtained by interpolating the diffeomor-
phism with identity, using a smooth bump function. The proof in the conservative case
is more difficult and involves a result of J. Moser [Mos65]. The reader may refer to

[ACW14, Corollary 6.9] for a complete proof of this lemma 2.

Proof of Lemma 11.5. First of all, we regularize the diffeomorphism f; to get a C* dif-
feomorphism f; which is close to f; in the C! topology. In the dissipative case, this
is easily obtained (for example) by convolving it by an approximation of the identity.
The conservative case is much more difficult; this result has been obtained recently by
A. Avila [AvilO0].

We then obtain the lemma by applying Lemma 11.6 to the restriction of f; on each
cube of a fine enough cubulation of T" (see Figure 11.1). O

The proof of Theorem 11.3 will primarily consist in applying Lemma 11.5 together
with the following lemma.

Lemma 11.7. Let C be a cube of T". Then, for every totally irrational matrix A € GL,(R),
every v € T" and every € > 0, there exists & > 0 such that for every C! map f : C — T"
satisfying sup,.c||Dfy — All < o, there exists Ny € N such that for every N > Ny,

Card ((A+v)n(ExnNC)A fu(Ex N C))

<e
Card(EnyNC)

Before proving Lemma 11.7, we explain how it implies Theorem 11.3.

2. Le 24/02/2015, cette version n’est pas encore en ligne. ..
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Proof of Theorem 11.3. We perform the proof in the dissipative setting, the conservative
case being identical. Let f € Diff'(T"). The idea is to cut the torus T" into small pieces
on which f is very close to its Taylor expansion at order 1.

Let %, (¢ € N*) be the set of diffeomorphisms f such that the set of accumula-
tion points of the sequence (Tll\l(f))N is included in the ball of radius 1/¢ and centre

j , T (Df,) dx (that is, the right side of Equation (L-G)). We want to show that %, con-

tains a dense open subset of Diff' (T"). In other words, we pick a diffeomorphism f, an
integer £ and 6 > 0, and we want to find another diffeomorphism g which is 6-close to
f, and which belongs to the interior of %,.

To do that, we first use Lemma 11.5, which gives a diffeomorphism g which is d-close
to f and whose differential is piecewise constant and irrational on a finite union of cubes
‘¢ whose measure is bigger than 1 —1/(10¢). Then by construction, g € %,,. Indeed, as
the differentials of g are irrational on C, the rates of injectivity of the translates of the
differentials are all equal to that of the differential itself (see Proposition 8.4), thus

Card (gn(En NE)) 1
Card(ENNE)  Noieo Lg T (Dfy)dx.

Moreover, as the measure of € is bigger than 1 —1/(10£), what happens on the comple-
ment of € can be neglected, more precisely,

Card(gN(EN)) Card(gN(EN))
Card(Ey)  Card(ExNNE)

Card (gN(EN)) Card (gN(EN ﬂ%))‘

Card (gN(EN N %))
w8 Card(ENNE)

" Card(ENNE) Card(ENyNE)

< ‘1 _ Card(EN) ’ N Card(EN ﬁ(g)
Card(ExnZ)| ™ Card(En)
1 1 1
- —— 1+ —<—,
Noreo T=1/(100) T 106 =3¢

and as for every x, 0 < t'(Df,) < 1, we also have

: 1

| ofadx- | <mfds

&

To show that a whole neighbourhood of g belongs to %, it suffices to apply
Lemma 11.7 to each cube of €; as the measure of € is bigger than 1 —/(10¢) (again,
what happens on %C does not count), we get the conclusion of the theorem. O]

Thus, it remains to prove Lemma 11.7.

Proof of Lemma 11.7. Let A € GL,(R) be a totally irrational matrix. Then, there exists
a parameter 0 > 0 and a radius Ry > 0 such that every matrix B € GI,(R) such that
||[A—B|| < 0is “almost totally irrational”, so that:

(H1) the rates of injectivity of the translates of B are close one to each other and can be
seen on every ball of radius bigger than R: there exists Ry > 0 such that for every
R > R, every B satisfying ||A — B|| < 6 and every v € R”, we have

©' (B) - det(B)Dy(n(B(Z") + v))| <1/(100);
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(H2) the image sets of the differentials are well distributed on every ball of radius bigger
than Rg: if we note (Z")’ the set of points of R"” at least one coordinate of which
belongs to Z +1/2, then for every R > R and every B satisfying ||A — B|| < 6, we have

det(B)Di{y € 2" | d(B(y), (2")) < 1/(40¢n)} < 1/(100).

In other words, everything about the rate of injectivity is uniform. The fact that Prop-
erty (HI) is true on an open dense set of matrices is obtained by applying Proposi-
tion 8.4 and Proposition 8.7, and that Property (H2) is true on an open dense set is a
direct consequence of Lemma 7.21. Remark that the uniformity of the Ry comes from
Remark 7.22.

Let f : C — T" be a C! map satisfying sup,.c|IDf, — All < 6. We write the Taylor
expansion of order 1 of f at the neighbourhood of x € C; by compactness we obtain

xeC,heB(O,s)} — 0.

e—0

1
sup{ [ G+ 1) = £ ()~ DA
Thus, for every 1 > 0, there exists € > 0 such that for all x € C and all h € B(0,¢), we have

|Gt = (£ G0+ D) | <l < e (11.2)

We now take R > R (given by hypotheses (H1) and (H2)). We want to find an
order of discretization N such that the error made by linearizing f on B(x, R/N) is small
compared to N, that is, for every h € B(0,R/N), we have

6+ 1= (700 + DA < g7

To do that, we take 1 = 1/(40¢nR), then get a ¢ > 0 given by Equation (11.2) (we can take
€ as small as we want), and set N = [R/e] (thus, we can take N as big as we want). By
Equation 11.2, for every y € B(0,R), we obtain

1
40¢(nN’

Combining this result with Hypothesis (H2), we obtain that the proportion of points of
En N B(x,R/N) whose images by the discretizations of f and that of the linearization of
f in x is smaller than 1/(10¢). By Hypothesis (H1), the density of the discretization of
the linearization of f in x is close to t!(Dfy), that is (recall that Py is the projection of X
on Ey)

|9 = (£ + DA | <

[ (Dfy) - det(DF)DR(PN(DA(Z") +))| < 1/(106).

These two facts lead to

N 1
- Di(Df)| < 57 (11.3)

Card(PN(f(x+B(O, R/N) N EN)))

Card (B(0,R/N) N Ey)

We then tile C by smaller cubes of size of the order of ¢ =~ R/N. On each of these
squares, by Equation (11.3), the rate of injectivity of f and that of its differential are
1/2¢-close. More precisely, using ||f||c1, we can find 6 > 0 arbitrarily small so that the
images by fy of the o-interiors of the cubes of the tiling are disjoint; so that the rates of
injectivity on the cubes add. This proves the lemma. O]
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With the same kind of proof, we get the same result for arbitrary times t.

Theorem 11.8. Let f € Diff! (T") (or f € Diff! (T",Leb)) be a generic diffeomorphism. Then
(f) is well defined (that is, the limit exists) and satisfies:

*(f) = J ™ (Dfy, - ,Dffici(z) dLeb(x).

k

Moreover, the function T° is continuous in f.

Corollary 11.9. The mean rate of injectivity in time t (see also Definition 8.3)
—k/ o\ —k
T(f)= J T(Dfy -, Dffir(x)) d Leb(x)

is continuous (and even locally Lipschitz) on Diff! (T"), and coincides with the rate of injec-
tivity when the diffeomorphism f is generic.

Corollary 11.10. As the asymptotic rate of injectivity lim_, o, T(f) is upper semi contin-
uous at every generic diffeomorphism f, that is, for every € > 0 and every g close enough to
f, we have

lim *(g) < lim (f)+e.

k—+o0 k—+o00

11.2 Asymptotic rate of injectivity for a generic dissipative
diffeomorphism

First of all, we tackle the issue of the asymptotic rate of injectivity of generic dissipa-
tive diffeomorphisms. We will deduce it from a theorem of A. Avila and J. Bochi. Again,
we will consider the torus T" equipped with Lebesgue measure Leb and the canonical
measures Ey;, see Section 11.4 for a more general setting where the result is still true.
The study of the rate of injectivity for generic dissipative diffeomorphisms is based on
the following theorem of A. Avila and J. Bochi.

Theorem 11.11 (Avila, Bochi). Let f be a generic C! maps of T". Then for every ¢ > 0, there
exists a compact set K C T" and an integer m € N such that

Leb(K)>1-¢ and  Leb(f"(K)) <e.

This statement is obtained by combining Lemma 1 and Theorem 1 of [ABO06].

Remark 11.12. As C' expanding maps of T" and C' diffeomorphisms of T" are open
subsets of the set of C! maps of T", the same theorem holds for generic Cl expanding
maps and C! diffeomorphisms of T" (this had already been proved in the case of C!-
expanding maps by A. Quas in [Qua99)).

This theorem can be used to compute the asymptotic rate of injectivity of a generic
diffeomorphism.

Corollary 11.13. The asymptotic rate of injectivity of a generic dissipative diffeomorphism
f € Diff!(T",Leb) is equal to 0. In particular, the degree of recurrence D(fy) of a generic
dissipative diffeomorphism tends to 0 when N goes to infinity.
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Proof of Corollary 11.13. The proof of this corollary mainly consists in stating which
good properties can be supposed to possess the compact set K of Theorem 11.11. Thus,
for f a generic diffeomorphism and ¢ > 0, there exists m > 0 and a compact set K such
that Leb(K) > 1 —e and Leb(f™(K)) <e.

First of all, it can be easily seen that Theorem 11.11 is still true when the compact
set K is replaced by an open set O: simply consider an open set O’ D f™(K) such that
Leb(O’) < ¢ (by regularity of the measure Leb) and set O = f~"(0O’) > K. We then ap-
proach the set O by unions of dyadic cubes of T": we define the cubes of order 2M on

Tn
Pl ii+1]
_| | ] 7
CM,i— | |:2M' 2M ’

j=1

and set

~

UM:Int[ U CM,i
CMJCO

where Int denotes the interior. Then, the union Jy;en Upm is increasing in M and we
have (Jpen Um = O. In particular, there exists M € N such that Leb(Uy,) > 1 —¢, and
as Uy, C O, we also have Leb(f™(Uyy,)) < €. We denote U = Uy, . Finally, as U is a finite
union of cubes, and as f is a diffeomorphism, there exists 6 > 0 such that the measure
of the 6-neighbourhood of f"(U) is smaller than . We call V this 6-neighbourhood.

As U is a finite union of cubes, there exists Ny € N such that if N > N, then the
proportion of points of Ey which belong to U is bigger than 1 — 2¢, and the proportion
of points of Ey which belong to V is smaller than 2e. Moreover, if Ny is large enough,
then for every N > N, and for every x5 € ENNU, we have f{'(xy) € V. This implies that

Card(RY(E)) _
Card(By) ~

which proves the corollary. O]

11.3 Asymptotic rate of injectivity for a generic conservative
diffeomorphism

The goal of this section is to prove that the degree of recurrence of a generic conser-
vative C!-diffeomorphism is equal to 0. It will be obtained by using the local-global for-
mula (Theorem 11.8) and the result about the asymptotic rate of injectivity of a generic
sequence of matrices (Theorem 8.24). As a warm-up, we begin by a weak and very easy
version of this statement, which already shows that the discretizations of generic con-
servative C!-diffeomorphism do not behave in the same fashion as discretization of a
generic conservative homeomorphism.

Proposition 11.14. For a generic conservative diffeomorphism f € Diff' (T", Leb), we have
B0 e

lim < <1, in particular lim D <1.

im () < 1, i particular Jim D(fy)

Proof of Proposition 11.14. To prove this proposition, we prove that on an open and

dense set of diffeomorphisms f, we have Nlim Tll\l(f) < 1. This is easily obtained
—+00

by perturbing locally any diffeomorphism. Indeed, we take a diffeomorphism f €
Diff! (T", Leb) and a point x € T". Then, we perturb the differential of f at x such that
THDf,) < 1 (the set of matrices satisfying this property is locally included in a finite
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union of submanifolds of codimension at least 1, see Corollary 8.22). We then apply the
local linearization theorem to get a diffeomorphism which is linear in a neighbourhood
of x. Thus, T'(f) < 1 by the local-global formula Theorem 11.8, and this remains true
on a whole neighbourhood of f by the continuity of ' (Corollary 11.9). O]

Theorem 11.15. For a generic conservative diffeomorphism f € Diff'(T", Leb), we have

lim (f) = 0;

t—o0

more precisely, for every € > 0, the set of diffeomorphisms f € Diff'(T”,Leb) such that
lim,_, .o T°(f) < € is open and dense.

In particular 3, we have limy_, .o, D(fx) = 0.

Proof of theorem 11.15. We show that for every ¢ € N and every ¢ > 0, the set of conser-
vative diffeomorphisms such that lim,_,,t’, < 1/€ + € contains an open dense subset of
Diff! (T", Leb). To begin with, we fix f € Diff'(T”,Leb) and 6 > 0 (which will be a size
of perturbation of f). By Theorem 8.24, and in particular Equation (8.9), there exists
a parameter A €]0,1[ (depending only on o, € and ||f]|c1), such that for every sequence
(Ag)k>1 of linear maps in SL,,(R), there exists a sequence (By)x>1 of (generic) linear maps
in SL,,(R) such that for each k, we have ||A;—By|| < d and ¥ (By, -, Bg) < Ak +1/€ (as the
sequence is generic, this property remains true on a whole neighbourhood of (By)i>1,
see Remark 8.43). From that parameter A, we deduce a time ky > 0 such that

kO k
1, Al-ak
L W < ¢/100.
kO; ko 1ox

Applying a classical technique in this context (see for example [Boc02]), we use a
Rokhlin tower of height ky with an open basis U:
— The sets U, f(U),--, ffo~1(U) are pairwise disjoint;
— the measure of the union of the “floors” UU f(U)U---U fR=1(U) is bigger than
1-¢/100

For the existence of such towers, see for example [Guil2, Lemme 6.8] or [Hal56, Chapter
“Uniform topology”].

We then approach the basis U by a union of cubes of a dyadic subdivision of T"
(as in page 234, from now we suppose that U is a union of such cubes). If that dyadic
subdivision is fine enough, on each cube C, it is possible to perturb f into a diffeomor-
phism g such that on each set (1 -¢/100)C, g is affine and irrational, using Lemma 11.6
and Franks lemma (see [Fra71] or [Cro06b]), which is valid only in the C! topology.
We do the same thing on the ky — 1 first images of each cube and perturb g such that
on each set g€((1 —&/100)C), the perturbed diffeomorphism  is linear and equal to By.
By what we have said at the beginning of the proof, we can moreover suppose that the
sequence By,---, By, of linear maps is generic, and satisfies ™(By, -+, By) < Ak + 1/¢ for

3. Using Equation (11.1) page 228.
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0.4

0.35

0.3

0.25¢
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Figure 11.2: Simulation of the degree of recurrence D((f5)n) depending on N, on the
grids Ey with N =128k, k=1,---,150.

every k < ko — 1. By the choice of ky we have made, this implies that

ko—1
() < ZLeb(hk(U))Tko(hlh"(U))
k=0

+Leb ((U u---uk )L )Tko (h(UU~~~Uhko*1 (U))C )

ko1
< ZLeb(hk(U))TkO_k(h|hk(U)) +Leb((UU---URk1(U))C)
k=0

1
ko—k , 1
<Leb(U) Z(x + €)+€/100
k=0
1 &
- k
<t Y (F+1)/2+€/100
k=1
<1/€+¢/2.
Moreover, the differentials of i form generic sequences on a set of measure at least
1-¢/10. This implies that the rate of injectivity os continuous in 4 when restricted to this

subset of T". Thus, the inequality T (/) < 1/£ + € still holds on a whole neighbourhood
of h. This proves the theorem. O]

Numerical simulation

We recall the results of numerical simulations we have presented in Part 1 (Fig-
ure 5.7). We have computed numerically the degree of recurrence of the diffeomor-
phism f5, which is C!-close to Id. Recall that f5 = Q o P, with

P(x,9) = (x,v+p(x)) and Q(x,p)=(x+4q(v),p)

(x) 1 (2Tt x 17x) + L (21t x 27x) 1 (21 x 35x)
X) = ——=COS|2TC X — Sin X)— —— COS(ZTT X),
P 209 271 703
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1 1 1
=— 2 1 ——sin(2 2 — ——sin(2 .
q(v) 87 cos(2m x 15y) + 203 sin(2m x 27y) g4l sin(27 x 38y)

On Figure 11.2, we have represented graphically the quantity D((f5);,8x) for k from
1 to 150. It appears that, as predicted by Theorem 11.15, this degree of recurrence goes

to 0. In fact, it is even decreasing, and converges quite fast to 0: as soon as N = 128, the
degree of recurrence is smaller than 1/2, and if N > 1000, then D((f5)N) < 1/10.

11.4 A more general setting where the theorems are still true

Here, we give weaker assumptions under which the theorems of Sections 11.1, 11.2,
11.3and 12.1.1 (thatis, Theorems 11.3,11.8, 11.15 and 12.1, and Corollaries 11.9, 11.13
and 11.10) are still true: the framework “torus T" with grids Ey and Lebesgue measure”
could be seen as a little too restrictive.

So, we take a compact smooth manifold M (possibly with boundary) and choose a
partition My, ---, M of M into closed sets 4 with smooth boundaries, such that for every
i, there exists a chart ¢; : M; — R"”. We endow R" with the euclidean distance, which
defines a distance on M via the charts ¢; (this distance is not necessarily continuous).
From now, we study what happens on a single chart, as what happens on the neigh-
bourhoods of the boundaries of these charts “counts for nothing” from the Lebesgue
measure viewpoint.

Finally, we suppose that the uniform measures on the grids Ey = [J; En; converge
to a smooth measure A on M when N goes to infinity.

This can be easily seen that these conditions are sufficient for Corollary 11.13 to be
still true.

For the rest of the statements of this chapter, we need that the grids behave locally
as the canonical grids on the torus.

For every i, we choose a sequence (xy,;)N of positive real numbers such that
KN T 0. This defines a sequence Ey ; of grids on the set M; by Ey; = (pi‘l(KN,iZ”).

—+00
Also, the canonical projection 1t : R” — Z" (see Definition 7.11) allows to define the

projection my ;, defined as the projection on ky ;Z" in the coordinates given by ;:

T(N,i : Mi —> EN,i
X (pi_l(KN’iT((KI_\Il’i(pi(X))).
We easily check that under these conditions, Theorems 11.3, 11.8 and 11.15 are still

true, that is if we replace the torus T" by M, the uniform grids by the grids Ey, the
canonical projections by the projections 1y ;, and Lebesgue measure by the measure A.

11.5 A local-global formula for C"-generic expanding maps
and C’-generic diffeomorphisms

The goal of this section is to study the rate of injectivity of generic C"-expanding
maps of the torus T". Here, the term expanding map is taken from the point of view
of discretizations: we say that a linear map A is expanding if there does not exist two
distinct integer points x,y € Z" such that X(x) = X(y). The main result of this section

4. Thatis, |J;M; =M, and for i # j, the intersection between the interiors of M; and Mj are empty.
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is that, as for generic C!-diffeomorphisms of the torus (see Theorem 11.8), the rate of
injectivity of a generic C"-expanding map of the torus T" is obtained from a local-global
formula (Theorem 11.19).

Here, the definition of the linear analogue of the rate of injectivity of an expanding
map in time k is more complicated than for diffeomorphisms: in this case, the set of
preimages has a structure of d-ary tree. We define the rate of injectivity of a tree —
with edges decorated by linear expanding maps — as the probability of percolation of
a random graph associated to this decorated tree (see Definition 11.18). In particular,
if all the expanding maps are equal, then the connected component of the root of this
random graph is a Galton-Watson tree.

From the local-global formula for expanding maps, we can easily deduce that for
every d > 2, there exists a map {; tending to 0 in 1/d, such that if f is a generic
C’-expanding map of the torus T”, then its asymptotic degree of recurrence satisfies
(f) < Uy(1/|lflls) (Corollary 11.20); in particular on the circle, if f is C!-close to
x — dx, then its asymptotic degree of recurrence is close to 0. In dimension 1, this
result is a weak version of a theorem of P.P. Flockermann (Corollary 2 page 69 and
Corollary 3 page 71 of [Flo02]), stating that for a generic C!** expanding map f of the
circle, the asymptotic rate of injectivity t°(f) is equal to 0. We hope that more sophis-
ticated techniques can be used to deduce from Theorem 11.19 a similar result for any
dimension.

The proof of the local-global formula can be reduced to a linear lemma
(Lemma 11.21) by a suitable application of Taylor’s formula. To prove this linear
lemma, we use crucially the formalism of model sets, and an improvement of Weyl’s
criterion.

The strategy of proof of Theorem 11.19 can be used to generalize the local-global for-
mula for generic C!-diffeomorphisms (Theorem 11.8) to generic C’-diffeomorphisms,
with 7 > 1, see Theorem 11.26.

We begin by the definition of the set of expanding maps.

Definition 11.16. For r > 1 and d > 2, we denote by Z"(T") the set of C" “Z"-expanding
maps” of T" for the infinite norm. More precisely, &7 (T") is the set of maps f : T" —
T", which are local diffeomorphisms, such that the derivative f (L) is well defined and
belongs to C""l"J(T") and such that for every x € T" and every v € Z" \ {0}, we have
IDfvlle > 1.

In particular, for f € Z7(T"), the number of preimages of any point of T" is equal to
a constant, that we denote by d.

Remark that in dimension n = 1, the set 27(S') coincides with the classical set of
expanding maps: f € Z7(S!) if and only if it belongs to C"(S!) and f’(x) > 1 for every
xeSh

First of all, we define the linear setting corresponding to a map f € Z(T").

Definition 11.17. We set (see also Figure 11.3)

k

=] |(vap”

m=1

the set of m-tuples of integers of [1,d]], for 1 <m <k.
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For i = (iy,---,i,) € [1,d]", we set length(i) = m and father(i) = (i1, -+ ,i,_1) €
[1,d]"! (with the convention father(i;) = 0).

The set I is the linear counterpart of the set | | _, 7~ (y). Its cardinal is equal to
d(1-d*/1-4d).

Definition 11.18. Let k € N. The complete tree of order k is the rooted d-ary tree Ty whose
vertices are the elements of I} together with the root, denoted by 0, and whose edges are
of the form (father(i), i);c, (see Figure 11.3).

Let (p;j)ie1, be a family of numbers belonging to [0,1]. These probabilities will be
seen as decorations of the edges of the tree Ty. We will call random graph associated to
(Pi)ie1, the random subgraph Gy, of Ty, such that the laws of appearance the edges
(father(i), i) of G(p,), are independent Bernoulli laws of parameter p;. In other words,
G(p,); is obtained from Ty by erasing independently each vertex of T; with probability
1- Pi-

We define the mean density D((p;);) of (Pi)icr, as the probability that in Gy,,),, there
is at least one path linking the root to a leaf.

Remark that if the probabilities p; are constant equal to p, the random graph Gpy);
is a Galton-Watson tree, where the probability for a vertex to have i children is equal to
(Dp(1-p)y-.

By the notation D((det Dfx_l)xef"”(y),lsmsk)l we will mean that the mean density is
taken with respect to the decorated tree whose edges are the f~"(y) for 0 < m <k, and
whose vertices are of the form (f(x),x) for x € f7"(y) with 1 < m < k, each one being
decorated by the number det Df, ! (see Figure 11.4).

Recall that the rates of injectivity are defined by(see also Definition 11.2)

Card ((fx)*(Ex) _
w(f) = ce(lrdN(EN)N) and  (f ):NliTmTk ()

Theorem 11.19. Let r > 1, f a generic element of @' (T") and k € N. Then, T (f) is a limit

(that is, the sequence (TI’iI(f))N converges), and we have

Tk(f):f D((detDf; ")1<msk ) dLeb(y). (11.4)
" xef ()

-1
dethxu,n X(1,1)

Dz T
(1) — (1;1) y detD]SCZI X(l'z)
—_— ,2)
_ (1,2) Y
Q) -1
DJxan
T B = N
I (2,2) Y X(2)

det D/;(;]Z) X(2,2)

Figure 11.3: The tree T, for d =

2.
Figure 11.4: The probability tree associated to the

preimages of y, for k = 2 and d = 2. We have
f(x(l,l)) = f(x(1,2)) = X(1), etc.
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Moreover, the map f v t°(f) is continuous in f.

Note that in dimension 1, P.P. Flockermann has proved that for a generic C!** ex-
panding map f of the circle, the asymptotic rate of injectivity t*(f) is equal to 0 (Corol-
lary 2 page 69 and Corollary 3 page 71 of [Flo02]). Note also that in C! regularity, the
equality t(f) = 0 for a generic f is a consequence of Theorem 11.11 of A. Avila and
J. Bochi (see also Corollary 11.13); the same theorem even proves that the asymptotic
rate of injectivity of a generic C' endomorphism of the circle is equal to 0. We hope to
recover these results as corollaries of Theorem 11.19. For now, we can only deduce the
following result.

Corollary 11.20. Let r > 1 and f a generic element of Z7(T"). If every point of T" has d
preimages by f, then ©(f) < U (1/||f|leo), where Py(p) denotes the unique fixed point of the
map
Qupl01] — 101]
x — 1-(1-px)

Moreover, the function \, satisfies

p-1/d p-1/d
2—=—+< ,
prdn - S
in particular ¥4(p) ijd 0.

For example, if d = 2, then {y(p) = (2p — 1)/p?. Also, if f is a generic C"-expanding
map of the circle C'-close to x > dx, then Corollary 11.20 implies that its asymptotic
rate of injectivity is close to 0.

Proof of Corollary 11.20. By the definition of D, and the inclusion-exclusion principle,

we see that
d

j
RGEYNCY ( ) <)) = Qap(T(f)
j=1
The existence and uniqueness of the fixed point of Qg ,, and also the estimation on
Y4(p) = 0, are easily deduced from Taylor’s theorem, and the fact that Qg , is increasing
and concave on ]0,1]. O

We now begin the proof of Theorem 11.19. It is mainly based on the following
lemma, which treats the linear corresponding case. Its statement is divides into two
parts, the second one being a quantitative version of the first.

Lemma 11.21. Let k € N, and a family (A;);c1, of invertible matrices, such that for any i € I
and any v € Z" \ {0}, we have ||A;v]|, > 1.
If the image of the map
ZHBXH@AlA_ AL X

father(i fatherle“gth( (i)
IGIk

projects on a dense subset of the torus R"C2rdle/znCardle then we have

D U (Atather1(5) 0+ 0 A )(2") | = D((det A7');).
ie[[1,d]*
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More precisely, for every {’,c € N, there exists a locally finite union of positive codimen-
sion submanifolds V,, of(GLn(R))CardIk such that for every ' > 0, there exists a radius Ry > 0
such that if (Aj)ie1, satisfies d((A;);,Vy) > 1 for every q, then for every R > Ry, and every
family (v;);e1, of vectors of R", we have >

Di| | (7(Apunerts) + Vsatner-1(s) © -+ 0 T(A; +v:))(2") |- D((det A7), )| < %
ief[1,d]x
(11.5)
(the density of the image set is “almost invariant” under perturbations by translations), and
for every m < k and every i € [[l,d]]k, we have ©

) 1 1
Dy {x € (Atather”(i) + Veather(i) )(Z2") | d(x,(2")') < —} (11.6)

cl’'(2n+1) < ct’
(there is only a small proportion of the points of the image sets which are obtained by dis-
cretizing points close to (Z")’).

The local-global formula (11.4) will later follow from this lemma and an appropriate
application of Taylor’s theorem.

The next lemma uses the strategy of proof of Weyl’s criterion to get a uniform con-
vergence in Birkhoff’s theorem for rotations in the torus T" whose rotation vectors are
outside of a neighbourhood of a finite union of hyperplanes.

Lemma 11.22 (Weyl). Let dist be a distance generating the weak-* topology on P. Then,
for every € > 0, there exists a locally finite family of affine hyperplanes H; C R", such that for
every 1> 0, there exists Mg € N, such that for every A € R" satisfying d(A, Hy) > 1 for every
q, and for every M > My, we have

1 M-1
diSt[M Z 6m}u LebRn/Zn] <g,

m=0
where &, is the Dirac measure of the projection of x on R"/Z".

Proof of Lemma 11.22. As dist generates the weak-* topology on 2, it can be replaced
by any other distance also generating the weak-* topology on 9. So we consider the
distance disty defined by:

1

distw(w )= ) ey
keN"

2

[ e
R”/Zn

there exists K> 0 and ¢ > 0 such that if a measure p € P satisfies

VkeN": 0<k +-+k, <K J/ e 2% 4 y(x)
RnZn

<e, (11.7)

then dist(p,Leb) <e.
For every k e N" \ {0} and j € Z, we set

H) = (AeR"|k-A=j).

5. The map (A + v) is the discretization of the affine map A +v.
6. Recall that (Z")’ stands for the set of points of R” at least one coordinate of which belongs to Z+1/2.



240 Chapter 11. Degree of recurrence of a generic diffeomorphism

Remark that the family {H;(}, with j € Z and k such that 0 < k; +---+k,, <K, is locally
finite. We denote by {H,}, this family, and choose A € R" such that d(A,H,) > 1 for every
q. We also take

2
My> ———. 11.8
O_E/|1_612Tm| ( )
Thus, for every k € N” such that k; +---+ k, <K, and every M > M,), the measure
=
H= 5 ) S
m=0
satisfies M
) _ ,i2nMk-
J\ ezZT(kdel(x) _i l-e T Si—l .
R"/Z" M| 1 -ei2mk M, |1 — ei2mk-A
By (11.8) and the fact that d(k-A,Z) > 1, we deduce that
J. ei2nkx dpt(x) <¢.
Rn/Zn
Thus, the measure p satisfies the criterion (11.7), which proves the lemma. O

Proof of Lemma 11.21. To begin with, let us treat the case d = 1. Let Ay,---,A; be k

—

invertible matrices. We want to compute the rate of injectivity of Apo---oA;. Recall
that we set

A, -1d
A, -Id
MAl,u-,Ak = € Mk (R),
Ay, -Id
A
Ay = l\ﬁ/d[)‘l’_._,)‘kZ”k and WF =] - 1/2,1/2]". Resuming the proof of Proposition 8.40, we
see that x € (Xk 0.0 Kl)(Z”) if and only if (0"*~1),x) € WK + Ax. This implies the
following statement.

Lemma 11.23. We have

det(Ay-+ A)D(Ag o+ 0 A1 )(Z") = v(prgu 5, (WH)), (11.9)

where v is the uniform measure on the submodule ernk/Kk(O”(k‘l),Z”) of R"™/A.

In particular, if the image of the map
k
Z"5 x> @(Am)-l (A x
m=1

projects on a dense subset of the torus R"X/Z"¥, then the quantity (11.9) is equal to the
volume of the intersection between the projection of WX on R"/A and a fundamental
domain of A. By the hypothesis made on the matrices A,,, that is, for any v € Z" \ {0},
|A;v]lee = 1, this volume is equal to 1 (simply because the restriction to WFK of the
projection R - R"™/Ay is injective). Thus, the density of the set (Xk 00 Xl)(Z”) is
equal to 1/(det(Ag---Ay)) .



11.5. A local-global formula in C" topology 241

N D U (Xfatherk’z(i) 0---0 Xi)(Zn)

SO ie[Ld]*
I father*! (i)=1
D U (Kfather"’l(i) 0 o/A\,-)(Z")
ie[Ld]F
%,:1\
@/

D U (Kfatherk’z(i)°"'°/A\i)(zn)
ie[1,d]*
father* 1 (i)=2

Figure 11.5: Calculus of the density of the image set at the level k according to the
density of its sons.

We now consider a family (A;);eg, of invertible matrices, such that for any i € [ and
any v € Z" \ {0}, we have ||A;v||, > 1. A point x € Z" belongs to

U (Xfatherk—l(i) 0--0 K,-)(Z”)

ie[[1,d]k

if and only if there exists i € [1,d]* such that (0"~!,x) € WX + A;. Equivalently, a point
x € Z" does not belong to the set

— —

Afathert1(5) " O Ai

if and only if for every i € [[1,d]¥, we have (0"*-1),x) ¢ Wk + A;. Thus, if the image of
the map
2"3 x> (DA Aoy A )X

father(i father'*n8th() )
lEIk

projects on a dense subset of the torus R"2rdl/z"Cardli then the events x € S;, with

Si= | (B0 0 A )(2")
ie[L,dJ*
father*™' (i)=i

are independent (see Figure 11.5), meaning that for every F C [1,d]], we have

D ﬂSi]:]—[D(Si). (11.10)

ieF ieF

Thus, by the inclusion-exclusion principle, we get

U Si]: Z (_1)Card(F)+1]—[D(Sl

ie[1,d] 0=Fc[[1,d] ieF

D
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Moreover, the fact that for any i € Iy and any v € Z" \ {0}, we have ||A;v||, > 1 leads to

_ -1 N —~
D(Si) = det Afatherk’l(i) D U (Afatherk’z(i) 0:-:+0 Ai)(zn) .
ie[1,d]*
father®™! (i)=i

These facts imply that the density we look for follows the same recurrence relation
as 5((det Ai‘1 )i ), thus

D U (Apathert-1s) © - 0 A7 )(Z") | = D((det A7), ).
ie[[1,d]k

The second part of the lemma is an effective improvement of the first one. To ob-
tain the bound (11.5), we combine Lemma 11.22 with Lemma 11.23 to get that for
every ¢ > 0, there exists a locally finite collection of submanifolds V, of (GL,,(R))Card
with positive codimension, such that for every 1’ > 0, there exists Ry > 0 such that if
d((A;)i, Vy) > 1’ for every q, then Equation (11.10) is true up to &.

The other bound (11.6) is obtained independently from the rest of the proof by a
direct application of Lemma 11.22 and of Lemma 11.23 applied to k = 1. O

Lemma 11.24 (Perturbations in C" topology). Let r > 1 and f a generic element of 2" (T").
Then, for every k € N, every ¢’ € N and every finite collection (V) of submanifolds of positive

codimension of(GLn(R))dm, there exists n > 0 such that the set

Vg, d((Dfx)lsmsk ) Vq) > Yl}

T, = {y eT" :
xef™(y)

contains a finite union of cubes, whose union has measure bigger than 1 —1/C’.

Proof of Lemma 11.24. By Thom’s transversality theorem, for a generic map f € Z"(T"),
Vg, (Dfx)lsmsk € Vq}

the set
{y eT"
xef"(y)

if finite. Thus, the sets T}f are compact sets and their (decreasing) intersection over 1

is a finite set. So, there exists 1 > 0 such that TnC is close enough to this finite set for
Hausdorff topology to have the conclusions of the lemma. O]

We can now begin the proof of Theorem 11.19.

Proof of Theorem 11.19. Let f € D" (T"). The idea is to cut the torus T" into small pieces
on which f is very close to its Taylor expansion at order 1.

Let m € N, and %, (¢ € N*) be the set of maps f € Z"(T") such that the set of ac-
cumulation points of the sequence (t{{(f))y is included in the ball of radius 1/¢ and
centre

| BlDfrgpss Jdrebip)
" xef"(y)
(that is, the right side of Equation (11.4)). We want to show that %, contains an open
and dense subset of Z"(T"). In other words, we pick a map f, an integer £ and 0 > 0,
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and we want to find another map g € Z"(T") which is o-close to f for the C" distance,
and which belongs to the interior of %;.

To do that, we first set £’ = 3¢ and ¢ = d(1 — d*)/(1 - d) = Card(I;), and use
Lemma 11.21 to get a locally finite union of positive codimension submanifolds V, of
(GL,,(R))Card(t)  We then apply Lemma 11.24 to these submanifolds, to the o we have
fixed at the beginning of the proof and to ¢’ = 4(; this gives us a parameter 1> 0 and a
map g € Z7(T") such that dcr(f,g) <, and such that the set

{yeT”

is contained in a finite union % of cubes, whose union has measure bigger than 1 —
1/(4¢). Finally, we apply Lemma 11.21 to 1" = 1/2; this gives us a radius Ry > 0 such
that if (A;);e, is a family of matrices of GL,(R) satisfying d((A;);, V,) > /2 for every g,
then for every R > Ry, and every family (v;);e, of vectors of R", we have

Vq’ d((Dgx)ISmsk ’ Vq) < }1}
xeg " (y)

— _ 1
D;; U (T Agagher1, i)+ Vather-1 (1)) © O (A + v;))(Z") |- D((det A; i)l < 5

3¢
ief[1,d]k
(11.11)
and for every i, j,
D 4 x € (Ajugi) + vjup) J(2") | d(x,(2")) < ! PR S (11.12)
R jm) T 3¢(2n+ 1)Cardl; [ ~ 3¢Card];

We now take a map h € Z7(T") such that dci(g,h) < o', and prove that if o is small
enough, then h belongs to the interior of %,. First of all, we remark that if & is small
enough, then the set

{yGT" Vq, d((th)ISmSk ,Vq)>1’]/2}

xeh™(y)

contains a set ¢, which is a finite union of cubes whose union has measure bigger than
1-1/(30).

Let C be a cube of €/, y € C and x € f™(y), with 1 < m < k. We write the Taylor
expansion of order 1 of h at the neighbourhood of x; by compactness we obtain

1
sup {m”h(x +2z)—h(x)- th(z)”

xeC,ze€ B(O,p)} —60.
p—)

Thus, for every € > 0, there exists p > 0 such that for all x € C and all z € B(0, p), we have
||h(x+z)—(h(x)+th(z))|| < ¢gllz|| < ep. (11.13)

We now take R > Ry;. We want to find an order of discretization N such that the
error made by linearizing h on B(x,R/N) is small compared to N, that is, for every
z € B(0,R/N), we have

1 1
3¢(2n+1)Cardl; N’

Hh(x+ 2) - (h(x)+ th(z))” <
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To do that, we apply Equation (11.13) to

1

©T 3RC(2n+ 1)Card 1}’

to get a radius p > 0 (we can take p as small as we want), and we set N = [R/p] (thus, we
can take N as big as we want). By (11.13), for every z € B(0,R), we obtain the desired

bound:
1 1

3¢(2n+1)Cardl; N’

Hh(x +2/N) - (h(x) + th(z/N))H <

Combined with (11.12), this leads to
Card(hN(B(x, R/N)) A Py ((x) + Dh(B(0, R/N)))) .
Card (B(x,R/N) N Ey) = 3¢Cardl,’

(11.14)

in other words, on every ball of radius R/N, the image of Ey by hy and the discretization
of the linearization of / are almost the same (that is, up to a proportion 1/(3¢Card ;) of
points).

We now set Ry = Ryl|f’||IZZ, and choose R > Ry, to which is associated a number p > 0
and an order N = [R/p], that we can choose large enough so that 2R/N <||f||... We also
choose y € C. As

s

Card (h(Ex) N B(y,R/N)) = Card U H%(B(x, R/N) N Ex ) N B(y, R/N)
xeh=(y)

and using the estimations (11.11) and (11.14), we get

Card ({(Ex) N B(y, R/N)) D{detns ) )
Card (B(y, R/N) N Ey) )

ﬁ;

and as such an estimation holds on a subset of T" of measure bigger than 1 —1/(3¢), we
get the conclusion of the theorem. O

We can easily adapt the proof of Lemma 11.21 to the case of sequences of matrices,
without the hypothesis of expansivity.

Lemma 11.25. For every k € N and every {’,c € N, there exists a locally finite union of
positive codimension submanifolds V, of (GL,(R))¥ (respectively (SL,(R))¥) such that for
every 1 > 0, there exists a radius Ry > 0 such that if (A,)1<m<k is a finite sequence of
matrices of (GL,(R)) (respectively (SL,(R))¥) satisfying d((Ay)m, Vy) > 1’ for every q, then
for every R > Ry, and every family (v,,;)1 <<k of vectors of R", we have

1

DR ((Bx o0 Ay )(2)) - det(Ar - ATV (A, AY)| <

(the density of the image set is “almost invariant” under perturbations by translations), and
for every m < k, we have”

Dy {x € (Am + vm)(Z”)

v 1 1
d(x (2" < c€’(2n+1)} S

(there is only a small proportion of the points of the image sets which are obtained by dis-
cretizing points close to (Z")’).

7. Recall that (Z")’ stands for the set of points of R” at least one coordinate of which belongs to Z+1/2.
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With the same proof as Theorem 11.19, Lemma 11.25 leads to the following im-
provement of Theorem 11.8, for higher regularity.

Theorem 11.26. Let r > 1, and f € Diff'(T") (or f € Diff"(T",Leb)) be a generic diffeomor-
phism. Then T¢(f) is well defined (that is, the limit exists) and satisfies:

*(f) = J ™ (Dfy++, Dfir(x)) dLeb(x).

k

Moreover, the function T° is continuous in f.

Numerical simulation

We present the results of the numerical simulation we have conducted for the degree
of recurrence of the expanding map of the circle f, defines dy

f(x)=2x+¢; cos(2mx) + &, sin(6Tx),

with €, =0.12794356372 and ¢, = 0.008 247 35961.

On Figure 11.6, we have represented the quantity D((f);,gx) for k from 1 to 1 000. It
appears that, as predicted by the theorem of P.P. Flockermann (Corollary 2 page 69 and
Corollary 3 page 71 of [Flo02]), this degree of recurrence seems to tend to 0. In fact,
it is even decreasing, and converges quite fast to 0: as soon as N = 128, the degree of
recurrence is smaller than 1/5, and if N > 25000, then D((f)y) < 1/50.

0.14
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0.04

0.02r

0 200 400 600 800 1000

Figure 11.6: Simulation of the degree of recurrence D((fs)N) of the expanding map N,
depending on N, on the grids Exy with N =128k, k=1,---,1000.






CHAPTER 12

PHYSICAL MEASURES OF DISCRETIZATIONS OF
GENERIC DIFFEOMORPHISMS AND EXPANDING
MAPS

12.1 Physical measures of discretizations of generic
diffeomorphisms
In this section, we will consider the torus T", equipped with Lebesgue measure Leb

and the uniform grids

i P\
En=1{[2,--, 2 )eRY/Z
N «N N) /

1g@~,msN}

Fore a more general setting where the theorems of this section are still true, see Sec-
tion 11.4.

This chapter is devoted to the study of the physical measures of the discretizations
of a generic conservative diffeomorphism. Recall the classical definition of a physical
measure for a map f: a Borel probability measure p is called physical for the map f if
its basin of attraction has positive Lebesgue measure, where the basin of attraction of p

is the set
! M-1
{X c T" M n;f)fm(x) M:oo }/l}

(see also Definition 3.9). Heuristically, the physical measures are the ones that can be
observed in practical experiments, because they are “seen” by a set of points x of pos-
itive Lebesgue measure. Here, our aim is to study similar concepts in the view of dis-
cretizations: which measures can be seen by the discretizations of generic conservative
C!-diffeomorphisms?

Remember that we denote by ygN the limit of the Birkhoff sums

1 M-1
N D oK
m=0
5

More concretely, py" is the fy-invariant probability measure supported by the periodic
orbit on which the positive orbit of xy = Py(x) falls after a while (see also Definition 3.10

247
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page 52). We would like to know the answer the following question: for a generic

conservative C!-diffeomorphism f, does the sequence of measure p;" tend to a physical
measure of f for most of the points x as N goes to infinity?

Recall that in the C° case, we have proved Theorem 5.51, which implies in particular
that for a generic homeomorphism f € Homeo(T", Leb) and every x € T", the measures

N

px accumulate on the whole set of f-invariant measures when N goes to infinity (more-

over, given an f-invariant measure y, the sequence (Nj);so such that py * tends to Jcan
be chosen independently of x). In a certain sense, this theorem in the case of homeomor-
phisms expresses that from the point of view of the discretizations, all the f-invariant
measures are physical.

In the C!-case, we have already proved Corollary 10.9 (in Chapter 10), which states
that for a generic conservative C!'-diffeomorphism f, any f-invariant measure is the
limit of a sequence of fy-invariant measures. This corollary has been obtained as a
simple consequence of an ergodic closing lemma of R. Mané and F. Abdenur, C. Bonatti
and S. Crovisier (Theorem 10.8); however it does not say anything about the basin of
attraction of these discrete measures.

In the theorem we prove in this chapter (Theorem 12.1), we improve the previous
statement for generic conservative C!-diffeomorphisms, in order to describe the basin
of attraction of the discrete measures. In particular, we prove that for points x belonging

to a generic subset of points of the torus, the measures prIN accumulate on the whole set
of f-invariant measure (Theorem 12.1). Notice that given an f-invariant measure y, the

sequence (Ni); such that MﬁN"

happens in the C° case.

converges to p depends on the point x, contrary to what

Moreover, if we fix a countable subset D C T", then for a generic conservative Ccl-

diffeomorphism f and for any x € D, the measures MﬁN accumulate on the whole set
of f-invariant measures (Addendum 12.2). This is a process that is usually applied in
practice to detect the f-invariant measures: fix a finite set D C T" and compute the

measure ],tf:N for x € D and for a large order of discretization N. The theoretical result
expresses that it is possible that the measure that we observe on numerical experiments
is very far away from the physical measure.

Note that in the space Diff'(T”,Leb), there are open sets where generic diffeomor-
phisms are ergodic: the set of Anosov diffeomorphisms is open in Diff! (T",Leb), and a
generic Anosov conservative C!-diffeomorphism is ergodic (it is a consequence of the
fact that any C? Anosov conservative diffeomorphism is ergodic, together with the the-
orem of regularization of conservative diffeomorphisms of A. Avila [Avil0]). More gen-
erally, A. Avila, S. Crovisier and A. Wilkinson have set recently in [ACW14] a generic
dichotomy for a conservative diffeomorphism f: either f is ergodic, either all the Lya-
punov exponents of f vanish. In short, there are open sets where generic conservative
diffeomorphisms have only one physical measure; in this case, our result asserts that

this physical measure is not detected on discretizations by computing the measures
N

Px -

Recall that results of stochastic stability are known to be true in various contexts (for
example, expanding maps [Kif86a],[Kif86b], [Kel82], uniformly hyperbolic attractors
[Kif86b], [You86], etc.). These theorems suggest that the physical measures can always
be observed in practice, even if the system is noisy. Our Theorem 12.1 indicates that the
effects of discretizations (i.e. numerical truncation) might be quite different from those
of a random noise.
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However, we shall remark that the same proof as for Theorem 12.1 implies that for
a generic diffeomorphism f € Diff'(T”,Leb) and a generic point x € T" (or equivalently,
for any x € T" and for a generic f € Diff' (T", Leb)), the measures

f 1 m—1 )
Wx,m = E Zﬁ:éx
i=0

accumulate on the whole set of f-invariant measures.

The proof of Theorem 12.1 uses crucially the results of Part 2 on the fact that the
asymptotic rate is null (in particular Lemma 8.54); it also uses two connecting lemmas
(Theorem 10.3 of [BC04] and an improvement of Theorem 10.8 of [ABC11]).

At the end of this chapter, we present numerical experiments simulating the mea-
N

sures py' for some examples of conservative C!-diffeomorphisms f of the torus. The
results of these simulations are quite striking for an example of f C!-close to Id (see Fig-

ure 12.7): even for very large orders N, the measures }A,J;N do not converge to Lebesgue
measure at all, and are very different ones from the others. This illustrates perfectly

Theorem 12.1 (more precisely, Addendum 12.2), which states that if x is fixed, then for
j

a generic f € Diff' (T2, Leb), the measures ) accumulate on the whole set of f-invariant

measures, but do not say anything about, for instance, the frequency of orders N such
N

that py" is not close to Lebesgue measure. Moreover, the same phenomenon (although
less pronounced) occurs for diffeomorphisms close to a translation of T2 (Figure 12.8)
or a linear Anosov automorphism (Figure 12.9).

12.1.1 Statement of the theorem

Theorem 12.1. For a generic diffeomorphism f € Diff'(T",Leb), for a generic point x € X,
for any f-invariant probability measure w, there exists a subsequence (N )x of discretizations

such that
N
Px = —

k—+o0
Remark that the theorem in the C° case is almost the same, except that here, the
starting point x € T" is no longer arbitrary but has to be chosen in a generic subset of
the torus, and that the sequence (Ny ), depends on the starting point x. The proof of this
theorem will also lead to the two following statements.

Addendum 12.2. For a generic diffeomorphism f € Diff' (T", Leb), for any & > 0 there exists
a e-dense subset (x1,---,x,,) such that for any f-invariant probability measure p, there exists
a subsequence (N )i of discretizations such that for every j,

fae
”xj k:)oo B
Also, for any countable subset D C T", for a generic diffeomorphism f € Diff'(T", Leb),
for any f-invariant probability measure y, and for any finite subset E C D, there exists a
subsequence (Ny)y of discretizations such that for every x € E, we have
N
P k—+o0
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The first statement asserts that if f is a generic conservative C!-diffeomorphism,
then for any f-invariant measure y, there exists an infinite number of discretizations fy
which possess an invariant measure which is close tu p, and whose basin of attraction
is e-dense. Basically, for an infinite number of N any f-invariant will be seen from any
region of the torus.

In the second statement, a countable set of starting points of the experiment is cho-
sen “by the user”. This is quite close to what happens in practice: we take a finite

number of points xq,---,x,, and compute the measures }AxNkT for all m, for a big N e N

and for “large” times T (we can expect that T is large enough to have yfi"’T ~ M,{I:f ). In

this case, the result expresses that it may happen (in fact, for arbitrarily large N) that

the measures piNkT are not close to the physical measure of f but are rather chosen “at
random” among the set of f-invariant measures.

We also have a dissipative counterpart of Theorem 12.1, whose proof is easier.

Theorem 12.3. For a generic dissipative diffeomorphism f € Diff' (T"), for any f-invariant
probability measure p such that the sum of the Lyapunov exponents of y is negative (or equal
to 0), for a generic point x belonging to the same chain recurrent class as y, there exists a
subsequence (Ng)y of discretizations such that

fu
W' =

k—+o0

Remark that if we also consider the inverse f~! of a generic diffeomorphism f €

Diff' (T"), we can recover any invariant measure p of f by looking at the measures iy *
for generic points x in the chain recurrent class of p.

The proof of this result is obtained by applying Lemma 12.12 during the proof of
Theorem 12.1.

We also have the same statement as Theorem 12.1 but for expanding maps of the
circle. We denote %dl (S1) the set of C!-expanding maps of the circle of degree d.

Proposition 12.4. For a generic expanding map f € %dl (SY), for any f-invariant probability
measure y, for a generic point x € 81, there exists a subsequence (Ny)y. of discretizations such

that
i
Px = — P

k—+oo

The proof of this statement is far easier than that of Theorem 12.1 , as it can be
obtained by coding any expanding map of class C! (that is, any f € %dl (S!) is homeo-
morphic to a full shift on a set with d elements).

We will use the connecting lemma for pseudo-orbits (see [BC04], see also Theo-
rem 10.3), together with an ergodic closing lemma (adapted from [ABC11]) and the
results of Part 2 on the fact that the asymptotic rate is null (in particular Lemma 8.54),
to prove that any invariant measure of the diffeomorphism can be observed by starting
at any point of a generic subset of T".

By Baire theorem and the fact that for a generic conservative diffeomorphism, a
generic invariant measure is ergodic, non periodic and has no zero Lyapunov exponent
(see Theorem 3.5 of [ABC11]), the proof of Theorem 12.1 can be reduced easily to that
of the following approximation lemma.
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Lemma 12.5. For every f € Diff! (T",Leb), for every f -invariant measure p which is ergodic,
not periodic and has no zero Lyapunov exponent, for every open subset U C T", for every C!-
neighbourhood % of f, for every € > 0 and every Ny € N, there exists g € Diff' (T", Leb) such
that g € 7, there exists y € U and N > Ny such that dist(p, poN) < &. Moreover, we can
suppose that this property remains true on a whole neighbourhood of g.

First of all, we explain how to deduce Theorem 12.1 from Lemma 12.5.

Proof of Theorem 12.1. We consider a sequence (v)s>o of Borel probability measures,
which is dense in the whole set of probability measures. We also consider a sequence
(Uj)iso of open subsets of T" which spans the topology of T". This allows us to set
dp f-inv. : dist(p, v¢) < 1/ky =
HRurors = f € Diff! (17, Lepy | 1S distlove) £1/ko .
ornor ElNZNo,yEUiZd(}Ay ,Vg)<2/k0

We easily see that the set

Ao kobri
No,ko,&izo

in contained in the set of diffeomorphisms satisfying the conclusions of the theorem.

It remains to prove that each set A k¢ contains an open and dense subset of
Diff' (T",Leb). Actually the interior of each set Ak, ¢, is dense. This follows from !'the
upper semi-continuity of the set of f-invariant measures with respect to f and from the
combination of Lemma 12.5 with the fact that for a generic diffeomorphism, a generic
invariant measure is ergodic, non periodic and has no zero Lyapunov exponent (see
Theorem 3.5 of [ABC11]). O

The rest of this chapter is devoted to the proof of Lemma 12.5. We now outline the
main arguments of this quite long and technical proof.

Sketch of proof of Lemma 12.5. First of all, we take a point x € T" which is typical
for the measure p. In particular, by an ergodic closing lemma derived from that of
F. Abdenur, C. Bonatti and S. Crovisier [ABC11] (Lemma 12.6), there is a perturbation
of f (still denoted by f) so that the orbit w of x is periodic of period t;; moreover,
w can be supposed to bear an invariant measure close to y, to have an arbitrary large
length, and to have Lyapunov exponents and Lyapunov subspaces close to that of p
under f. Applying the (difficult) connecting lemma for pseudo-orbits of C. Bonatti and
S. Crovisier [BC04], we get another perturbation of the diffeomorphism (still denoted
by f), such that the stable manifold of x under f meets the open set U at a point that
we denote by p.

So, we need to perturb the diffeomorphism f so that:

— the periodic orbit x is stabilized by fy. This can be easily made by a small pertur-
bation of f;

— the positive orbit of y under fy falls on the periodic orbit of x under fy. This is
the difficult part of the proof: we can apply the previous strategy to put every
point of the positive orbit of y on the grid only during a finite time. It becomes
impossible to perform perturbations to put the orbit of y on the grid — without
perturbing the orbit of x — as soon as this orbit comes into a C/N- neighbourhood
of the orbit of x (where C is a constant depending on 7).

1. See the proof of Theorem 5.45 for more details on the same kind of arguments.
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Figure 12.1: During the proof of Lemma 12.5, it is easy to perturb the first points of
the orbit of y (small disks) until the orbit meets the neighbourhoods of the orbits of x
where the diffeomorphism is linear (inside of the circles). The difficulty of the proof is
to make appropriate perturbations in these small neighbourhoods.

To solve this problem, we need the results about the linear case we have proved in
Chapter 8. They allow us to find a point z whose distance to the orbit of x is bigger than
C/N, and such that for t large enough, f{;(z) belongs to the orbit of x under fy.

In more detail, we use Lemma 11.6 to linearize locally the diffeomorphism in the
neighbourhood of the periodic orbit of w. In particular, the positive orbit of y eventually
belongs to this linearizing neighbourhood, from a time T;. We denote 3’ = f11(y). To
summarize, the periodic orbit w bears a measure close to y, its Lyapunov exponents are
close to that of y, its Lyapunov linear subspaces are close to that of y (maybe not all
along the periodic orbit, but at least for the first iterates of x). The diffeomorphism f
is linear around each point of w. Finally, the stable manifold of w meets U at y, and
the positive orbit of y is included in the neighbourhood of w where f is linear from the
point y’ = fTi(p).

We then choose an integer N large enough, and perturb the orbit of x such that it
is stabilized by the discretization fy. We want to make another perturbation of f such
that the backward orbit of x by fy also contains yp’ (recall that fy is not necessarily one-
to-one). This is done by a perturbation supported in the neighbourhood of w where
f is linear. First of all, during a time t; > 0, we apply Lemma 8.54 of Chapter 8 to
find a point z in the neighbourhood of f~"(x) where f is linear, but far enough from
f~'(x) compared to 1/N, such that the t4-th image of z by the discretization fy is equal
to x. Next, we perturb the orbit of z under f~! during a time #3 > 0 such that f~3(z)
belongs to the stable subspace of f~473(x). Note that the support of this perturbation
must be disjoint from w; this is the reason why z must be “far enough from x”. Finally,
we find another time t, such that the negative orbit {f~*(z’)};5¢ of z’ = f~37"2(z) has an
hyperbolic behaviour. We then perturb each point of the negative orbit of z’ (within
the stable manifold of w), so that it contains an arbitrary point of the stable manifold of
w, far enough from w. This allows us to meet the point y’, provided that the order of
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discretizations N is large enough.

To complete the proof, we we consider the segment of f-orbit joining y to z; we
perturb each one of these points to put them on the grid Ey (with a perturbation whose
supports size is proportional to 1/N).

Notice that we shall have chosen carefully the parameters of the first perturbations
in order to make this final perturbation possible. Also, remark that the length of the
periodic orbit w must be very large compared to the times ¢;, t3 and t4. This is why we
will perform the proof in the opposite direction : we will begin by choosing the times t;
and make the perturbation of the dynamics afterwards.

Note that the Addendum 12.2 can be proved by using a small variation on
Lemma 12.5, that we will explain at the end of Section 12.1.3.

12.1.2 An improved ergodic closing lemma

The proof of Theorem 12.1 begins by the approximation of any invariant measure
p of any conservative C!-diffeomorphism by a periodic measure of a diffeomorphism g
close to f. This is done by R. Mané’s ergodic closing lemma, but we will need the fact
that the obtained periodic measure inherits some of the properties of the measure p.
More precisely, given a C!-diffeomorphism f, we will have to approach any non peri-
odic ergodic measure of f with nonzero Lyapunov exponent by a periodic measure of
a diffeomorphism g close to f, such that the Lyapunov exponents and the Lyapunov
subspaces of the measure are close to that of f by p. We will obtain this result by modi-
fying slightly the proof of a lemma obtained by F. Abdenur, C. Bonatti and S. Crovisier
in [ABC11] (Proposition 6.1).

Lemma 12.6 (Ergodic closing lemma). Let f € Diff' (T", Leb). We consider
— anumber £ > 0;
a Cl-neighbourhood 7 of f;
a time 1y € N;
— an ergodic measure p without zero Lyapunov exponent;
a point x € X which is typical for p (see the beginning of the paragraph 6.1 of [ABC11]);
moreover, we denote by X the smallest absolute value of the Lyapunov exponents of p, by

F,{ the stable subspace at x and by G£ the unstable subspace® at x. Then, there exists a
diffeomorphism g € Diff'(T", Leb) and a time ty > 0 (depending only in f, w and x) such
that:

1. g€7;
2. the point x is periodic for g of period T > Ty;
3. forany t <, we have d(ft(x),gt(x)) <g

4. x has no zero Lyapunov exponent for g and the smallest absolute value of the Lyapunov
exponents of x is bigger than \/2, we denote by FS the stable subspace and G the unstable
subspace;

5. the angles between F,{ and FS, and between Gf; and GE, are smaller than ¢

6. for any t > ty, for any vectors of unit norm vy € B and vg € GS, we have

NP

1 _ A 1
Slog(IIDg ' well) =7 and S log(IDgiwel) >

2. Stable and unstable in the sense of Oseledets splitting.
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Remark that the proof of Proposition 6.1 of [ABC11] yields a similar lemma but with
the weaker conclusion

5. “the angle between G£ and GE, is smaller than ¢”.
Indeed, the authors obtain the linear space G§ by a fixed point argument: Lemma 6.5
of [ABC11] states that the cone C;’ 4c is invariant by D £, and thus contains both G£

and G$. Taking C as big as desired, the cone C;,4C is as thin as desired and thus the

angle between G,{ and G$, is as small as desired. Unfortunately, in the original proof of
Proposition 6.1 of [ABC11], the linear space F{ is not defined in the same way ; it is an
invariant subspace which belongs to C}" 4c» Which is an arbitrarily thick cone. Thus, the

angle between F,{ and F{, is not bounded by this method of proof. Our goal here is to
modify the proof of Proposition 6.1 of [ABC11] to have simultaneously two thin cones
C;'ZLC and C;, 4c Which are invariant under respectively D firand D f,ft"
We begin by modifying the Lemma 6.2 of [ABC11]: we replace its forth point
— a sequence of linear isometries P, € O4(R) such that ||P, —1d|| <e,
by the point
— two sequences of linear isometries P,,Q,, € O4(R) such that ||P,, —1d|| < e and ||Q,, —
Id|| <e,
and its forth conclusion
d) Foreveryi<je€({l,--- k) the inclination of Df,f“.El-,]- with respect to E; ; is less than
C.
by the conclusion
d) For everyi <je{l,---,k} the inclination of Dfnt”.EiJ with respect to E; ; is less than
C, and the inclination of ny,_t”.Ei,j with respect to E; ; is less than C.

These replacements in the lemma are directly obtained by replacing Claim 6.4 of
[ABC11] by the following lemma.

Lemma 12.7. For any 1 > 0, there exists a constant C > 0 such that for any matrix A €
GL,(R) and any linear subspace E C R", there exists two orthogonal matrices P,Q € O,(R)
satisfying ||P —Id|| < 1 and ||Q —Id|| < 1, such that the inclinations of (PAQ)(E) and
(PAQ)~'(E) with respect to E are smaller than C.

Proof of Lemma 12.7. Given 1> 0, there exists a constant C > 0 and a matrix Py € O,(R)
such that [|Py —Id|| < 1, satisfying: for any linear subspace E’ C R”, one of the two
inclinations of E” and of Py(E’) with respect to E is smaller then C.

We then choose an orthogonal matrix Q € O,(R) such that [|Q —Id|| < 1 and that
(taking a bigger C if necessary) both inclinations of Q‘I(A‘l(E)) and Q‘l((A‘lPO‘1 )(E))
with respect to E are smaller than C. There are two cases: either the inclination of
(AQ)(E) with respect to E is smaller than C, and in this case we choose P =Id, or the
inclination of (AQ)(E) with respect to E is bigger than C, and in this case we can choose
P =Py. In both cases, the lemma is proved. O]

The rest of the proof of Lemma 12.6 can be easily adapted from the proof of Propo-
sition 6.1 of [ABC11].

3. The inclination of a linear subspace E C R” with respect to another subspace E’ C R"” with the same
dimension is the minimal norm of the linear maps f : E — E+ whose graph are equal to E.
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Figure 12.2: Flow of the Hamiltonian used to prove Lemma 12.9 (“staduim”).

12.1.3 Proof of the perturbation lemma (Lemma 12.5)

We now come to the proof of Lemma 12.5. We first do this proof in dimension 2, to
simplify some arguments and to be able to make pictures.

Proof of Lemma 12.5. Let f be a conservative C!-diffeomorphism, % a C!-
neighbourhood of f, € > 0 and Ny € N. We denote M = max(llDflIoo,llDf‘IHOo).
We also choose an f-invariant measure p which is ergodic, not periodic and has no zero
Lyapunov exponent, and an open set U C T2. We will make several successive approx-
imations of f in 77; during the proof we will need to decompose this neighbourhood:
we choose 0 > 0 such that the open o-interior 7’ of 7 is non-empty.

Step 0: elementary perturbation lemmas. During the proof of Lemma 12.5, we will
use three different elementary perturbation lemmas.
The first one is the elementary perturbation lemma in C! topology we stated in
Chapter 10 (Lemma 10.1). It allows to perturb locally the orbit of a diffeomorphism.
The second one is an easy corollary of the first one. We will use it to perturb a
segment of orbit such that for any N large enough, each point of this segment of orbit
belongs to the grid Ey.

Lemma 12.8 (Perturbation of a point such that it belongs to the grid). For every open set
"’ of Diff! (T", Leb), there exists v|' > 0 such that for N large enough an every x € T", there
exists g € Diff' (T", Leb) such that

-g9€e7’;

- glen) = (f(0)

- f =g outside ofB(x,(l + q’)/N).

Applying this lemma to several points x; € T" which are far enough one from the
others (for i # j, d(x;, xj) > 2(1 + 1’)/N), it is possible to perturb f into a diffeomorphism

g such that for every 7, g((xi)N) = (f(xi))N.

These two perturbations will be applied locally.

The third perturbation lemma is an improvement of Lemma 10.1; it states that the
perturbation can be supposed to be a translation in a small neighbourhood of the per-
turbed point.
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Lemma 12.9 (Elementary perturbation with local translation). For every open set 7’ of
Diff! (T", Leb), and every r > 0, there exists Ny > 0 such that for every N > Ny and every
[[V|leo < 1/(2N), there exists g € Diff' (R", Leb) such that:

- g€7’;

— Supp(g) € B(0,107);

— for every x € B(0,r), g(x) = x+v.

Proof of Lemma 12.9. Take an appropriate Hamiltonian, see Figure 12.2. O

Step 1: choice of the starting point x of the orbit. Let A be the smallest absolute value
of the Lyapunov exponents of p (in particular, A > 0).

We choose a point x which is regular for the measure pu: we suppose that it sat-
isfies the conclusions of Oseledets and Birkhoff theorems, and Mané’s ergodic closing
lemma (see Paragraph 6.1 of [ABC11]). We denote by F,{ the stable subspace and sz
the unstable subspace for the Oseledets splitting at the point x. By Oseledets theorem,

the growth of the angles Z(Ffi(x)’
subexponential (in both positive and negative times).

G;,.(X)) between the stable and unstable subspaces is

Step 2: choice of the parameters we use to apply the ergodic closing lemma. In this
second step, we determine the time during which we need an estimation of the angle
between the stable and unstable subspaces of f and its perturbations, and the minimal
length of the approximating periodic orbit.

We first use the “hyperbolic-like” behaviour of f near the orbit of x: for well chosen

times t; and t,, each vector which is not too close to G;tl ) is mapped by Df % into a

vector which is close to F;,l,,z(x ?:1 (x)

f into g such that an iterate of v under Dg~! belongs to F;tl_,z(x).

- Given a vector v € TT , it will allow us to perturb

Lemma 12.10. For every o > 0, there exists two times t| and t, > 0 such that if v € TT;ﬁ,1 )

is such that the angle between v and Gy (y) is bigger than o, then the angle between fojltz(x)v
and Fftrzz(x) is smaller than « (see Figure 12.4).

Proof of Lemma 12.10. It easily follows from Oseledets theorem, and more precisely
from the fact that the function exp(tA)/ Z(Fs:(x), Gf(x)) goes to +oo when t goes to +oo. [

So, we fix two times t; and t, > 0, obtained by applying Lemma 12.10 to a =
arcsin(l/(l + q)), where 1] is the parameter obtained by applying the elementary per-
turbation lemma (Lemma 10.1) to 6/2 (see Figure 12.3).

We also choose a time t3 > %, (f; being given by Lemma 12.6) such that

Mis+)/4 S (it

This estimation will be applied to point 6. of Lemma 12.6. It will imply that for every

f
vE Fft1 )

and for every t > t, + t3, we have
- ~t
D7 (@M 2 D72 )2 ol (12.1)
We then apply Lemma 8.54 of Chapter 8 to

Ro = M2*5(1 + 1), (12.2)
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where 1)’ is given by Lemma 12.8 applied to the parameter o/2. This gives us a parameter
ko = t4. Note that Rq is chosen so that if v € Tyt (,yT" is such that |[v|| > R¢/N, then for
any t € [[0,t, + t3]], we have

IDf7 @) = (1+'WN. (12.3)

Thus, we will be able to apply Lemma 12.8 to the points f‘t(ft1 (x)+ v), with t € [0, ¢, +
t3]], without perturbing the points of the orbit of x.

Step 3: global perturbation of the dynamics. We can now apply the ergodic closing
lemma we have stated in the previous subsection (Lemma 12.6) to the neighbourhood
7, the measure p, the point x; = f17275(x) and 1y > t, + t3 + t4 large enough so that
ToA/4 > 3. We also need that the expansion of vectors F& along the segment of orbit
(xz,gz(x2),--- ,g;"_tz_trt‘*(xz)) is bigger than 3, but it can be supposed true by taking
a bigger 1, if necessary. This gives us a first perturbation g; of the diffeomorphism
f, such that the point x; is periodic under g; with period t; > 1), and such that the
Lyapunov exponents of x; for g; are close to that of x; under f, and the stable and
unstable subspaces of g; at the point gf (x1) are close to that of f at the point gf (x;) for
every t € [[0,t5 + t,].

Remark that by the hypothesis on Ty, the Lyapunov exponent of g;' at x; is bigger
than 3, thus we will be able to apply Lemma 12.8 to every point of the orbit belonging
to Ffll , even when the orbit returns several times near x;. Also note that these properties
are stable under C! perturbation.

We then use the connecting lemma for pseudo-orbits of C. Bonatti and S. Crovisier
(Theorem 10.3, see [BC04]), which implies that the stable manifolds of the periodic
orbits of a generic conservative C!-diffeomorphism are dense. This allows us to perturb
the diffeomorphism g; into a diffeomorphism g, € 7’ such that there exists a point x,
close to x; such that:

(1) x, is periodic for g, with the same period than that of x; under g;, and moreover
the periodic orbit of x, under g, shadows that of x; under g;;

(2) the Lyapunov exponents and the Lyapunov subspaces of x, for g, are very close to
that of x; for g; (see the conclusions of Lemma 12.6, in particular the Lyapunov
subspaces are close during a time 3 + t;);

(3) the stable manifold of x, under g, meets the set U, at a point denoted by v,.

Step 4: linearization near the periodic orbit. We then use Franks lemma (see [Fra71])
to perturb slightly the differentials of g, at the points g£2+t3(x2), ,g£2+t3+t4(x2), such
that these differentials belong to the open set of matrices defined by Lemma 8.54 of
Chapter 8. This gives us another diffeomorphism g3 € 7’ close to g, such that the
point x, still satisfies the nice properties (1), (2) and (3).

By Lemma 11.6, there exists a parameter r > 0 such that it is possible to linearize g3
in the r-neighbourhood of the periodic orbit of x,, without changing the nice properties
(1), (2) and (3) of the periodic orbit of x,. We can choose r small enough so that the 107-
neighbourhoods of the points of the periodic orbit of x, are pairwise disjoint. This
gives us a diffeomorphism g4, to which are associated two points x4 and y,4, such that x4
satisfies the properties (1), (2) and (3), and such that:

(4) the differentials of f at the points g22+t3(x4), fee ,g£2+t3+t4(x4) lie in the open dense set

of matrices of Lemma 8.54 of Chapter 8;

(5) g4 is linear in the r-neighbourhood of each point of the periodic orbit of xy.
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Step 5: choice of the order of discretization. We choose a neighbourhood 7" c 7’
of g4 such that properties (1) to (3) are still true for every diffeomorphism g € 77”. We
denote by wy, the periodic orbit of x4 under g4, and by B(w,,, ) the r-neighbourhood of
this periodic orbit. We also denote T; the smallest integer such that gi(y4) € B(wy,,1/2)

for every t > Ty, and set y,; = g}' (v4). Thus, the positive orbit of y,; will stay forever in

the linearizing neighbourhood of w,,. Taking T; bigger if necessary, we can suppose

that y; belongs to the linearizing neighbourhood of the point x4. We can also suppose
that for every t € [0, (],

T,- - . Tyt

3d(g,' " (v4) 85" (x4)) < min_d(g,'™" (

T <t'<Ty

v4), 85" (x4)) (12.4)
We can now choose the order N of the discretization, such that

(i) N > Nj (N has been chosen at the very beginning of the proof);

(ii) applying Lemma 12.9 to the parameter r and the neighbourhood 7" to get an
integer N1, we have N > Ny, so that it is possible to choose the value of the points
of w,, modulo Ey without changing the properties (1) to (5);

(iii) the distance between two distinct points of the segment of orbit vy,
g4(y4),---,gzl (v4) = v, is bigger than 2(1 + #’)/N + 2/N, so that it will be possi-
ble to apply Lemma 12.8 simultaneously to each of these points, even after the
perturbation made during the point (ii), such that these points belong to Ey;

(iv) every V2/N-pseudo-orbit 4 starting at a point of the periodic orbit wy, stays during
a time T't; in the d(y}, wy,)-neighbourhood of the periodic orbit, where T’ the
smallest integer such that

1\
(1 + ) > v, (12.5)

3(1+n)

and v is the maximal modulus of the eigenvalues of (Dgy)y.. A simple calculus
shows that this condition is true if for example

2yn(MT —1)
N>—"-1

This condition will be used to apply the process described by Lemma 12.11.

Step 6: application of the linear theorem. By the hypothesis (ii) on N, we are able to

use Lemma 12.9 (elementary perturbation with local translation) to perturb each point

of the periodic orbit w,, such that we obtain a diffeomorphism g5 € 7" and points xs,

s and ¢ satisfying properties (1) to (5) and moreover:

(6) for every t € [t; + t3, 1) + t3 + t4]], the value of gi(x5) modulo Ey is equal to wy/N,
where wy is given by Lemma 8.54 of Chapter 8;

(7) for any other t, gé(xg,) belongs to Ey.

In particular, the periodic orbit of x5 under g5 is stabilized by the discretization (gs)yN
(indeed, recall that wy € [-1/2,1/2]F).

By construction of the diffeomorphism g5 (more precisely, the hypotheses (4), (5),
(6) and (7)), it satisfies the conclusions of Lemma 8.54 of Chapter 8; thus there exists
a point z € B(g;2+t3(x5),r) such that (g5)1t\41(z) = (g5)§+t3+t4(x5) and that ||z —g;2+t3(xs)|| >
RO/Nt(where Ry is defined by Equation (12.2)). Remark that hypothesis (iv) implies that
Iz - 85" (xs)l << -

4. The constant y/n/N comes from the fact that an orbit of the discretization is a V2/N-pseudo-orbit.
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Figure 12.3: Perturbation we make to apply Lemma 12.10 (see also Figure 12.4):
we make an elementary perturbation in a neighbourhood of z mapping z into z,
such that the angle between the lines (g;2+t3(x5) z) and (g;2+t3(x5) 7) is bigger than

a= arcsin( 1/(1 + r])), and such that the support of the perturbation does not contain

g2 (xs).

Step 7: perturbations in the linear world. In this step, our aim is to perturb the
negative orbit of z under gs such that it meets the point .. Remark that by hypothesis
(iv), every point of z, ggl (2),--- ,g;tz(z) is in the linearizing neighbourhood of w..

From now, all the perturbations we will make will be local, and we will only care
of the positions of a finite number of points. Thus, it will not be a problem if these
perturbations make hypotheses (3) and (5) become false, provided that they have a
suitable behaviour on this finite set of points.

First, if necessary, we make a perturbation in the way of Figure 12.3, so that the

angle between the lines (g;2+t3(x5) z) and G§f2+t3

feomorphism g4. More precisely, the supporié5 of the perturbation we apply is contained

in a ball centred at z and with radius d(z, x¢), so that this perturbation does not change
the orbit of x4. Under these conditions, we satisfy the hypotheses of Lemma 12.10, thus

) is bigger than «; this gives us a dif-
X5

the angle between ( gé3(x6) A tz(z)) and Fgg:tS(xé) is smaller than a. Another perturbation,

described by Figure 12.3, allows us to suppose that gﬁ_tz(z) belongs to F§,3<x6). This gives
us a diffeomorphism that we still denote by gs. Remark that it was possible to make
these perturbations independently because the segment of negative orbit of the point z
we considered does not enter twice in the neighbourhood of a point of w,, where the
diffeomorphism is linear.

Thus, the points z’ = ggtz(z) and y; = yi both belong to the local stable manifold of
the point x4 = x5 for g¢ (which coincides with the Oseledets linear subspace Fff since gg

is linear near x¢).

The next perturbation takes place in the neighbourhood of the point x4 (and not in
all the linearizing neighbourhoods of the points of w ).

Lemma 12.11. For every y’ € Ff: such that d(y’,x¢) > d(z’,x¢)vT @ (T’ being defined
by Equation (12.5)), there exists a diffeomorphism g; close to g¢ and T” € N such that
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f
Bf Fpn-iy
11 (x)
P
Df."
: £11(x)
G T~ G

fh(x) fr2(x)

Figure 12.4: Proof of Lemma 12.10: make a small perturbation at times #; and t; — ¢, (in
red), the hyperbolic-like behaviour of f does the rest of the work for you. In red: the
perturbation that we will make during step 7.

ES

Figure 12.5: Perturbation such that the point y; belongs to the negative orbit of z": the
initial orbit is drawn in blue (below) and the perturbed orbit in red (above). From a
certain time, the red orbit overtakes the blue orbit.

g;TIT (z") = v’. Moreover, the perturbations made to obtain g; are contained in the lineariz-

ing neighbourhood of wy,_, do not modify the images of w_, nor these of the negative orbit of
z" by the discretization or these of the positive orbit of y’ in the linearizing neighbourhood of

Q)x6

Proof of Lemma 12.11. During this proof, if r and s are two points of W*(x4), we will
denote by [r,s] the segment of W*(x4) between r and s. Remark that if r and s lie in
the neighbourhood of x4 where g is linear, then [r,s] is a real segment, included in Ff:
moreover, we will denore [r,+oo[ the connected component of W¥(x¢) \ {r} which does

not contain xg.
Consider the point z’ € F;?:, and choose a point

-1 ) 1 -1 )
Pe[gé (z ),(1+2(1—+'1))g6 (z )]-

By applying an elementary perturbation (Lemma 10.1) whose support is contained into
B(gé_Tl (2)), d(xé,ggTl (z’))/2), it is possible to perturb g¢ into a diffeomorphism g; such
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that g;'(z') = p (see Figure 12.5). Applying this process t times, for every

t
pe [ggT‘t(Z’)y(l + ﬁ) gg‘“(z’)l,

it is possible to perturb g4 into a diffeomorphism g; such that g;Tlt(z’) = p (the supports
of the perturbations are disjoint because the expansion of gl;;é is bigger than 3). But as
X6

T’ satisfies Equation (12.5), the union

at, L\ e
U[gé @ )'(1+2(1+11))g6 @ )]

t>0

covers all the interval [gé_T‘T,(z’),+oo[. By the hypothesis made on y’, we also have y’ €

[gngT/(z’), +oo[; this proves the lemma. =

Thus, by hypothesis (iv), it is possible to apply Lemma 12.11 to our setting. This
gives us a diffeomorphism g.

Step 8: final perturbation to put the segment of orbit on the grid. To summarize, we
have a diffeomorphism g; € 7/, and periodic orbit w,, of g7, stabilized by (g7)n, which
bears a measure close to p. We also have a segment of real orbit of g; which links the
points y; € U and z, where z is such that (g7);41(z) € (wy,)n- To finish the proof of the
lemma, it remains to perturb g; so that the segment of orbit which links the points y;
and z is stabilized by the discretization (g;)n-

We now observe that by the construction we have made, the distance between two
different points of the segment of orbit under g; between y; and z is bigger than 2(1 +
1')/N, and the distance between one point of this segment of orbit and a points of wy,
is bigger than (1 +1)/N.

Indeed, if we take one point of the segment of forward orbit z,g;'(z),--- ,g;tz_t3(z),
and one point in the periodic orbit w,, this is due to the hypothesis ||z —x7|| > Ro/N (R,
being defined by Equation (12.2)) combined with Equation (12.3). If we take one point
in this segment z,¢;'(z), - ,g;tz_t3(z), and one among the rest of the points (that is, the
segment of orbit between y; and z), this is due to the fact that the Lyapunov exponent
of g;l in x7 is bigger than 3, and to Equation (12.4).

If we take one point of the form g;’(z), with ¢ > t, + 3, but belonging to the neigh-
bourhood of w,, where g7 is linear, and one point of w,., this follows from the estimation
given by Equation (12.1) applied to [[v|| > Ro/N. If for the second point, instead of con-
sidering a point of w,_, we take an element of the segment of orbit between y; and z,
this follows from the fact that the Lyapunov exponent of g;‘ in x7 is bigger than 3.

Finally, for the points of the orbit that are not in the neighbourhood of w,, where g;
is linear, the property arises from hypothesis (iii) made on N.

Thus, by Lemma 12.8, we are able to perturb each of the points of the segment of
orbit under g; between y; and z, such that each of these points belongs to the grid. This
gives us a diffeomorphism gg € 7.

To conclude, we have a point yg € U whose orbit under (gg)y falls on the periodic
orbit (wy,)n, which bears a measure ¢-close to p. The lemma is proved.
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The proof in higher dimensions is almost identical. The perturbation lemmas are
still true®, and the arguments easily adapts by considering the “super-stable” mani-
fold of the orbit w,, that is the set of points y € T" whose positive orbit is tangent to
the Oseledets subspace corresponding to the maximal Lyapunov exponent. In particu-
lar, Lemma 12.6 is still true in this setting, and the connecting lemma (Theorem 10.3)
implies that generically, this “super-stable” manifold is dense in T". O]

The proofs of the two statements of the addendum are almost identical.

For the first statement (the fact that for every ¢ > 0, the basin of attraction of the
discrete measure can be supposed to contain a e-dense subset of the torus), we apply
exactly the same proof than that of Lemma 12.5: making smaller perturbations of the
diffeomorphism if necessary, we can suppose that the stable manifold of yg is e-dense.
Thus, there exists a segment of backward orbit of yg which is e-dense, and we apply the
same strategy of proof consisting in putting this segment of orbit on the grid.

For the second statement, it suffices to apply the strategy of the first statement, and
to conjugate the obtained diffeomorphism gy by an appropriate conservative diffeomor-
phism with small norm (this norm can be supposed to be as small as desired by taking
¢ small), so that the image of the e-dense subset of T? by the conjugation contains the
set E.

To obtain Theorem 12.3 (dealing with the dissipative case) it suffices to replace the
use of Lemmas 12.10 and 8.54 by the following easier statement.

Lemma 12.12. For every o > 0 and every R > 0, there exists three times ty, t, > 0 and t; > 0
such that:

— there exists v € TT"

Frm N Z" such that ||v|| = Rg and

(57ff1+t4(x) 00 BTffH (x))(v) =0;

—ifve TT}’L1 ) is such that the angle between v and Gy (y) is bigger than a, then the
angle between fo_,ltz(x)v and Fgn-u (y) is smaller than o (see Figure 12.4).

Proof of Lemma 12.12. This comes from Oseledets theorem and the hypotheses made on
the Lyapunov exponents of x, and in particular that their sum is strictly negative. ~ [

12.2 Transfer operators and physical measures

The aim of this section is to study the behaviour of the measures (fy)" Ay for “small”
times m (recall that Ay is the uniform measure on the grid Ey). We will focus on the
case where f is a C!™® expanding map of the circle: a classical theorem asserts that in
this case, the map f has a single physical measure (which is also the SRB measure), that
we will denote by p (see Theorem 12.17). In this setting, O.E. Lanford has stated the
following conjecture.

Conjecture 12.13 (Lanford). Let f : S' — S! be a generic C? expanding map. Then the
convergence (f)"(AN) — Wo holds for N, m both going to +oco, with logN < m < VN.

5. In particular, Lemma 12.9 can be obtained by considering a plane (P) containing both x and y and
taking a foliation of R” by planes parallel to (P). The desired diffeomorphism is then defined on each
leave by the time-{)(¢) of the Hamiltonian given in the proof of the lemma, with 1 is a smooth compactly
supported map on the space R"/(P), equal to 1 in 0 and with small C! norm.
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In this section, we will prove a kind of weak version of this conjecture (Theo-
rem 12.15). We begin by some notations.

Definition 12.14. For 0 <« <1 and d > 2, the set %d““(sl) is the set of maps f : S! — S!
of degree d, whose derivative f’ belongs to C%(S!) and satisfies f’(x) > 1 for every x € S'.

Here, we will only consider parameters a < 1. In particular, the set & dz will denote
the set of maps f : S! — S! of degree d, whose derivative f’ is Lipschitz and satisfies
f’(x) > 1 for every x € S.

The main result of this section is the following.

Theorem 12.15. For every 0 < a < 1 and every C'** expanding map f € %;”(Sl), there
exists a constant cy = co(f) > 0 such that if (N,,),, is a sequence of integers going to infinity
and satisfying logN,, > com, then the convergence (fg )" (AN, ) — wo holds.

This theorem will be obtained by combining the classical result of convergence
of the pushforwards of any smooth measure towards the SRB measure pj (Theo-
rem 12.17), together with the convergence of the discrete operators f to the Ruelle-
Perron-Frobenius operator (Theorem 12.19). Both of these theorems are effective: the
constant ¢y of Theorem 12.15 can be computed in practical.

We fix once for all an expanding map f € %dl“"(sl), with 0 < a < 1. In the sequel, we will
freely identify a measure with its density.

First of all, we recall an effective result about the convergence of the pushforwards
of any smooth measure towards the SRB measure.

The transfer operator associated to the map f (usually called Ruelle-Perron-Frobe-
nius operator), which acts on densities of probability measures, will be denoted by Z;.
It is defined by
$(x)
frx)

o= )

xef~Hy)

Then, for every map ¢ € C*(S!) which is the density of a probability measure on S?,

the sequence ,?}mq) converges exponentially fast towards a map ¢ € C*(S!); this map is

the density of the unique f-invariant probability measure yy having a C* density. This

measure is also the unique SRB measure of f. More precisely, we have Theorem 12.17.
To state it, we will need the following notation.

Definition 12.16. For 0 < a < 1 and g € C*(S!), we denote by [g], the Holder norm of
g, le.
8(x) g
=sup ————~2—
[8a x¢5 x —y[*

Theorem 12.17 ([FJ03], see also Theorem 2.5 of [Liv95] for the C? case). Let ¢ € C*(S!)
be a positive function whose integral is equal to 1. Then, there exists an integer M = M(¢p) > 0
such that for every m > M,

17" () = dolleo < CoA" Ml bllcos
where ¢ denotes the density of the measure p,

2

— A Min. <t balx)
Co = e llpollo {ibolleo + minegt Po(x)

J
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and A = tanh(A/4), with
A<2log( i )+2(3 T+ 2|f’ ||oo) [ng] =

where A = min,eg1 f'(x), and t=(1+1"%)/2.
Moreover, if ¢ is the constant function equal to 1, then M(¢) = 0.

This theorem is obtained by taking K = 2Ky/(A* — 1) in the Theorem 10.1 of [FJ03]
(where K is defined at the beginning of section 10 of [FJ03]).

We now come to the original part of the proof of Theorem 12.15, and compare the
actions of the transfer operator and of its discrete counterpart on smooth densities of
measures. The discrete operator will be denoted by f\; it acts on the probability mea-
sures supported by Ey:

(KW@ = ) .

xef' (v)

We will show that in a certain sense, we have

fN—>3?

N—+o0

Thus, for a fixed time m € N, the measures (fy)"(Ay) tend to the measure py when N
goes to +oo. The problem is to have precise estimates about the speed of this conver-
gence. This speed will be measured by the following distance on measures.

Definition 12.18. For p and v two probability Borel measures, we define dy;,(p, v) the
distance

gt =supd [ v atu-v|1petipysh},

where Lip,(S!) is the space of Lipschitz functions whose Lipschitz constant is smaller
than 1.

This distance di;, spans the weak-* topology on 9. Remark that by a theorem of
L. Kantorovich and G. Rubinstein, this distance coincides with Wasserstein distance
W, (see [KR58]). Note that the distance between Lebesgue measure and the uniform
measure Ay on By is dpjp(Leb, Ay) = 1/(4N).

Theorem 12.19. Let m € N. To every map ¢ € C*(S!) which is the density of a probability
measure, we associate the measure @y supported by En: QN (A jP q> (where Py is the

projection on Ey). Then, for every map f € gdlm( ),

N (on)  — Z7P).

N—+o0

More precisely, we have
dLlp( fN (PN C-Zf q)) "

as soon as

(4/n)1+1/a(2+”f ”w) m(1+1/a) (d(l . [f']a)([¢]a+ %))m/a.
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Corollary 12.20. For example, we have (recall that Ay is the uniform measure on Ey)

dLlp( fN XN ,(Zj; Leb) < 4|
as soon as

N>(%)1+1/“((2+”f,”m)nl/a( S )l/a)

In particular, if f is C?, this gives

duip((R)"Ow), " Leb ) <

as soon as

N> ;—S((z FIF ) (14 177%))

Notice that this theorem is only a partial answer to the Conjecture 12.13 of O.E. Lan-
ford. In particular, it does not answer to the following question.

Question. Let f : S — S! be a generic C'** expanding map. What is the best function
m(N) such that the convergence (f\)"(An) — po holds for N,m both going to +oco, with
logN < m < m(N)?

It is reasonable to think (see Conjecture 12.13) that m(N) < VN. Indeed, if 6: E - E
is a typical random map of a set E with g elements, and x is a typical point of E, then the
smallest integer m such that 6"(x) € (O(o) (recall that ()(c) is the union of the periodic
orbits of o) is of order /g (see [Bol01, XIV.5] or the Theorem 2.3.1 of [Mie05]).

Notice that in Theorem 12.19, there is no hypothesis of genericity. We can hope that
the uniform distribution of the roundoff errors of a generic map (see Proposition 9.2)
allows to have finer results about the best function m(N).

We do not know what happens in the C! generic case. It is possible that the be-
haviour is very different from the C'** case. Indeed, a theorem of J. Campbell and
A. Quas (see [CQO1]) asserts that a generic C! expanding map of the circle has a single
physical measure, but that this measure is singular with respect to Lebesgue measure.

We could also imagine similar studies in more general settings. For example, we can
expect that the results on the circle generalize to C!*® expanding maps of the torus T",
with n > 1. It could be less straightforward to have generalizations to Anosov diffeo-
morphisms of T": in this case, the transfer operator is quite different from that used in
the case of expanding maps.

We now begin the proof of Theorem 12.19 by the easier case where the time m is
equal to 1.

Lemma 12.21. For e < 1/5 and
N> eV omax(1, (917 [F1/°),

we have

duip( f2(on), L) < e(5+ 211 llo -



266 Chapter 12. Physical measures

Proof of Lemma 12.21. Let ¢ be the C%(S!) density of a probability measure on S!, i.e.
¢ >0 and Jsl ¢=1.Lete>0and f €&, As f € C*%(S!), we can estimate its lack
of linearity on an interval depending on its length. This will allow us to estimate the
difference between Z and fy on every interval based on the length of this interval. The
global difference between £ and fy will be obtained by a summation on a partition of

8! of intervals of appropriate length.

Lemma 12.22. Let I be an interval of S with length smaller than

1/a
€
([f’]a) '
and xo € I. Then

Card(INEy) Card(f(I)NEy) 2 fl(xg) 1l-¢
Card(En)  f/(x)Card(Ey) N Leb(f(I)) 1-2¢)

Proof of Lemma 12.22. The hypothesis on the length of I implies that if x,y € I, then
|f’(x) — f’(y)| < e. Using the mean value inequality, we get

‘ < Leb(I)(s +

‘Leb(l) - %’ <g
we deduce the bound Leb(£(I)) Leb(1)
e eLe
Lo - < o (126)
This implies that
Leb(f(I)) e/f’(x0)
Leb(I) — o) ‘s 1_€/f,(xO)Leb(f(I)),
thus (because f’(xy) > 1)
Leb(f(I)) €
b(I) - b ;
Leb(t) - =) < ot Leb(r )
in particular, Leb(£(I)) 12
Leb(I) > ;,go) ) — :. (12.7)
Moreover, for every interval J,
Card(JNEy) 1
‘Leb(]) - W(EN) < ﬁy

as a result, using Equation (12.6),

Card(INEy) Card(f(I)ﬂEN)'<1 eLeb(I) 1

Card(Ey) f’(x¢)Card(Ey)
We deduce that (still because f’(xg) > 1)

Card(INEyN) Card(f(I)NEy)
Card(Ey) _f’(xO)Card(EN)

"N fl(xo) " Nf’(xg)

2
‘ < Leb(I)(“’ N Leb(I) )'

using Equation (12.7), this leads to

Card(INEy) Card(f(I)NEy)
Card(En)  f'(x)Card(Ey)

L2 fllxg) 1-¢
‘SLeb(I)(H-ﬁLeb(f(I))1—25)'
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Let { € Lip,(S') be a test function. We want to compute the difference

[R(on), ) —(Z %, ).

So, we compute:

[(AS (on), D~ Z b, )|

- f ) (filon) - Z50)(v) dy
ynEEy ¥ N (9N)
b(x)
= b(yn) N (xN) — () - dy]||.
ngE’N[ xNe%yN) J;Nl(yN) xe;y)f (x) ]

We remark that by preservation of the total mass (the operators f and # map proba-
bility measures to probability measures), this expression is independent from the mean
of . We can therefore freely add or remove a constant to the function 1.
We introduce an intermediate scale between that of the grid Ey and that of the circle

S!: the grid Ey;. When M is large enough, we have:

(C1) [¥(v) - ¥(v’)| < € for every points y, 7’ such that [y —y’| <1/M,

(C2) |f'(x) = f/(x")] < € et |d(x)— d(x')| < € for every points x,x” in the same connected

component of f‘l(Pl\‘/[1 (yM)),
(C3) /M < (¢/[f]a)M™
(C4) M/N <.

In particular, for every points x, x” in the same connected component of the preimage
f‘1 (PI\’,[1 (ym)), we have

(PN(XN)_éq)(x,) < % (12.8)
and

o) o) 1 1 o
f’(x) f/(x’) Sq)(x) f/(x) f’(X’) + f/(x/) |q)(x) q)(x )|

COW |- f )|, e fl

T X)) f(x) f(x')

< d(x) e 3 €

~ f/(x) min f’ f’(X)( minf’)

b(x 1+¢
= E(f’(x) ' f’(x)) (12.9)

(we want to have a f’(x) at the denominator to be able to integrate properly and keep
working with L! norms instead of L norm:s).

We begin by cutting out the distance we want to compute by using the intermediate
scale Ey:

[ (on) 0)~(Zr b, )|

< Z Z b(yn) Z (PN(xN)_J V() Z ;),((z)) dy

ImEEM |ynEENNPY (9234) xnefy () Py (vn)
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Using condition (C1) and the fact that (f{(¢n), 1) =(Z$*, 1) =1, we get:

[CAS (on), D~ Z b, )|

<2e

e Y| Y | Y e[ Y B,

YMEEM |yn€eENNPY (93 | xSt (0n) Pl (vn) xef1(y)

For yy; € Ey, we denote by (I,; r)1<k<q the connected components of f‘l(Pl\’,[1 (yl’v[)).

For every k, we also denote by x,/ \ the unique point of I,y x N f~1(»{;)- Using the
bound (12.8), we get:

KR (on) 1) = (Fr b, 1))
<e(2+[[Wlloo)

d ’
e Y [Y Cardityg B Py [ ¥ %)) 4|

1 €EM | k=1 yNGENﬂP{/[l (}7{\4) Pﬁl () xef~(y)
Combined with a change of variables, the bound (12.9) leads to:
[ (on) ) = (Zr )
§€(2 +lloo(1+ 1+ (1+ e)))
vl d Card(I,; ;NE b ey, k) 1y Plye)
Y €EM | k=1 YNEENNPY (93,) k=1 M

<e(2 + [Wllo(3 + )

d ! 1/,
e ) ZW(Card(leknEN)_M)l

’ ’
yI(/IEEM k=1 f (xyM,k)

<e(2 + [Wllw(3 + €))

d
ol ) bl

V€EM k=1

Card(l s NEx) Card(f(L; 1) N Ex)
N f’(xy{\,[,k)N

Using Lemma 12.22 (which is valid by Condition (C3)), we deduce that:

[ (on) )~ Zr b, ¥)]
<e(2 + [Wllo(3 + €))
d /( . B
Wl T 3 gtnatebtg e e ).

Y €Em k=1
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As a result, using Condition (C2) and the fact that ||$||1 =1, we get
[ (on), )~ Z b, )|
<e(2+[[¥lloo(3 + ©))

F (1 €) (e 235 1 T

finally, condition (C4) gives
[ (on), D)~ Z7 0, )

(2 Il (426420 oy 5 )

We now use the fact that ¥ € Lip;(S!). In this case (recall that we are allowed to add
any constant to 1), we can suppose that |||/, < 1/2. We have a bound on the minimal
order M to have Conditions (C1) to (C3) :

ﬁmm{a’ ([cps]a)l/a’ ([f%h)w}'

So, for € < 1, Condition (C4) gives

l<el+1/°‘min{1 1 1 }
N (1% (1™

and in this case,

ol Fi o), Zro) <e(4+ e 1f s ).

If moreover, we suppose that € < 1/5, we get the conclusion of the lemma:

duip( R3(on), L) < e(5+ 211 llo -

We now focus on the general case m > 1. It follows from two easy lemmas.

Lemma 12.23. Let @1, ¢, : Ey — R,. Then, for every j € N, we have

nV
dLlp( Yol (Ve ) (2+||f ||oo) drip(@', @)
Proof of Lemma 12.23. For { € Lip;(S!), we compute

(Fo' - Ro2by= ) (K9 Oz - Ko @n))oon)

yn€EEN

=) Z % (xn)J o ().

INEEN xnefT ()

But, for xy;, x € En, we have (remark that either xy = x{, or |xNy — x| > 1/N)
| A = A ()] < (24 1 Moo )lens = x4
As a result, the map xy — {(fn(xyN)) is (2 + ||f’||oo)—Lipschitz, SO

duip( 30" /190%) < (2+ 1 oo )Lip (", 7).

The lemma easily follows from an induction. O]
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Lemma 12.24. ]

[£70], < d/(1+11) (191 + 5 )
Proof of lemma 12.24. We have

(ZP)@) - (L)) <
xef1(y)

We write f~1(y) = {x1,---,x4} and f71(y’) = {x],--+,x}}, so that for every k, we have
Ixx — x| <y —’|. Thus

(ZD)w) - (F )| <

1
f'(xe) - f(x)

1, this leads to

L1
f(x)

| (xp)l Glxe) — dlap)]-

Using the fact that min,cg: f'(x

(ZO)») = (ZP))| < ) (bl |[f/(xx) = /()| + | lx) — ey

»
u ||[\/]:..
—_

< ) Il f Talxic = 241" + [ labe = i1
k=1
< d(lIdlloalf Ta + [Pl )l = 1%

Moreover, as ¢ > 0 and as there exists x € S! such that ¢(x) < 1, we have [|d|| < 1+[d]q
So

[£6], < d(i0la(1+1F 1)+ 111e)

By iterating, we get

[Z70] <di(1+17) [[qﬂa . L]

d(1+[f])-1
<di(1+1£1) (10da+ )
OJ

Proof of Theorem 12.19. To begin with, we decompose the distance between (f)"(¢N)
and 5;/}’”4):

dLlp( fN (on) a?jz )Sidhp((flil)j( (t)) fN] 1( m+1 ](([)))N)
i=1

We then use Lemma 12.23:

dLip((fﬁ)m(q) ipfmcl))

[\/]3

> (240 e) ” duip (R(F"0) o ZH(Z (@)

-
I
—_
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Applying Lemma 12.21 to € < 1/5 and N such that for every j,

1/«

04

N>a_1_1/°‘max{1, EZRITS) [f']},/a}, (12.10)

we deduce that

duip( Ri(on), Z50) < e(5+2I1f oo )

i R (o), 2770 ) < i2+||f )™ (5+ 21 o)
j=

(2+11f )"~ 1 ,
<ty )

As ||f 'l = 2, we get

duip( )" (on) 21" < 3e(2+1f o)

By Lemma 12.24, (12.10) is satisfied if

N>£11/“max{1, (d(l +[f’]a)([([)]a+%))m/a, [f’ ](lx/a},

ie.
N> eV a1+ (1) (6las5))

Thus, for every 1 < 2, we have

(R (on) 27" <

as soon as

m(l+1/«x m/a
N > i Veg (o 7)) (1+1/ )(d(1+[f/](x)([q)]a+§)) .

12.3 Numerical simulations

In this section, we present the results of the numerical simulations we have con-
ducted in connection with Theorems 12.1 and 12.15.

N

12.3.1 Simulations of the measures y;" for conservative torus
diffeomorphisms

We have computed numerically the measures }A{;N for conservative diffeomorphisms
f € Diff'(T?,Leb), for the uniform grids
EN:{(i,i)eT2| 0<ij<N-1f,
N'N T
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and for starting points x either equal to (1/2,1/2), or chosen at random. We present im-
ages of sizes 128 x 128 pixels representing in logarithmic scale the density of the mea-

sures ],szN: each pixel is coloured according to the measure carried by the set of points

of Ey it covers. Blue corresponds to a pixel with very small measure and red to a pixel
with very high measure. Scales on the right of each image corresponds to the measure
of one pixel on the log 10 scale: if green corresponds to —3, then a green pixel will have

N

measure 1072 for ;. For information, when Lebesgue measure is represented, all the
pixels have a value about —4.2.
We have carried out the simulations on three different diffeomorphisms.
— The first conservative diffeomorphism h; is of the form hy = Q o P, where both P
and Q are homeomorphisms of the torus that modify only one coordinate:

P(x,y) = (x,y +p(x)) and Q(x,y)= (x + q(y),y),

with

(%) = —— cos(270 x 17x) + —— sin(27 x 29x) — —— cos (21t x 39x)
X) = ——COS(£TT X — SIN( £TC X)— —— COS(ZTT X),
p 209 471 703

1 1 . 1 .
q(y) = ﬁcos(Zn x 15p) + 103 sin(2mtx 31y) — @SID(Z‘K x 41y).

This C*®-diffeomorphism is in fact C!-close to the identity. This allows /; to admit
periodic orbits with not too large periods. Note that h; is also chosen so that it is
not C?-close to the identity.

— The second conservative diffeomorphism h, is the composition h, = hy o R, with
the translation of the torus

R(x,p) = (x+1/10,9+1/15).

Again, for R, we have chosen a translation with a relatively small order (here 30)
to ensure that the discretizations can have periodic orbits with small periods.
— The third conservative diffeomorphism hj is the composition h, = h; o A, with A
the linear Anosov map
2 1
)

As hy is C!-close to Id, the diffeomorphism h3 is C°-conjugated to the linear auto-
morphism A, which is in particular ergodic.

To compute these measures, we used Floyd’s Algorithm (or the “tortoise and the hare
algorithm”). It has appeared that on the examples of diffeomorphisms we have tested,

we were able to test orders of discretization N ~ 229, Thus, the first figures represent

the measures }Ai(N for N € [220+1,22% + 9]]. We have also computed the distance between

the measure pli(N and Lebesgue measure (see Figure 12.6). The distance we have chosen

is given by the formula

duv =) o ) WG~ v(Cijp| €10,2],

where



12.3. Numerical simulations 273
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Figure 12.6: Distance between Lebesgue measure and the measure VEI;;)le/z) depending

on N for hy (left), h, (middle) and h3 (right), on the grids Ey with N = 220 + k, k =
1,---,100.

In practice, we have computed an approximation of this quantity by summing only on
the k € [[0,7]).

In the case of the diffeomorphism h;, which is close to the identity, we observe a

strong variation of the measure }/L;hl)N depending on N (left of Figure 12.6 and Fig-
ure 12.7). More precisely, for 7 on the 9 orders of discretization represented, these
measures seems to be supported by a small curve; for N = 220 + 3, this measure seems

to be supported by a figure-8 curve, and for N = 220 + 5, the support of the measure is

quite complicated and looks like an interlaced curve. The fact that the measures pﬁc’“)N

strongly depend on N reflects the behaviour predicted by Theorem 12.1: in theory, for a

generic C! diffeomorphism, the measures yiN should accumulate on the whole set of f-
invariant measures; here we see that these measures strongly depend on N (moreover,
we can see on Figure 12.6 that on the orders of discretization we have tested, these mea-
sures are never close to Lebesgue measure). We have no satisfying explanation to the

specific shape of the supports of the measures. When we fix the order of discretization

. . . . o h
and make vary the starting point x, the behaviour is very similar: the measures }AEC i

widely depend on the point x (see Figure 12.10). We also remark that increasing the

order of discretizations does not make the measures pﬁc N evolve more smoothly.

The measures pﬁfz’N vary less than the measures yﬁf”’N (recall that h, is a small per-
turbation of a rotation of order 30). For the 8 first measures of the Figure 12.8, we obtain
a measure which is very close to Lebesgue measure. The fact that we obtain measures
closer to Lebesgue measures was predictable: the dynamics h, is close to the rotation
R, whose orbits are better distributed in the torus than that of the identity. But for the
order N = 22949, the measure we obtain is very different from the previous one: its sup-
port seems quite close to a real orbit of R (of order 30), in particular this support covers
a very small proportion of T?. This is what is predicted by Theorem 12.1: at least some-
times, the measures p&hZ)N should not be close to Lebesgue measure. We observe exactly
this behaviour when we make simulations for more different orders of discretization N
(middle of Figure 12.6): for two orders N between 22° + 1 and 22° + 100, the measure
is far away from Lebesgue measure. Remark that the same behaviour holds when we
fix the order of discretization and make the point x vary (Figure 12.11); however, we
observe that the frequency of occurrence of the event “"the measure ]/L;hz)N is close to a
periodic measure with small period” is smaller in the case of Figure 12.11 than in the
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Flgure 12.7: Simulations of invariant measures px N on the grids Ey, with N =
i=1,---,9and x = (1/2,1/2) (from left to right and top to bottom).

220 4

case of Figure 12.8. We think that it is more due to the fact that the order of discretiza-
tion is bigger in the first case, than to a fundamental difference of the processes used to
produce these simulations.

The behaviour of the measures yLLhS)N, where h3 is a small C!-perturbation of the

linear Anosov map A, is quite close to that of the the measures VﬁchZ)N (see Figure 12.9):
most of the time, these measures are close to Lebesgue measure, but for one order of
discretization N (here, N = 220 + 4), the measure becomes very different from Lebesgue
measure (we can see on the right of Figure 12.6 that this phenomenon appears twice
when N e [22° + 1,220 + 100])). The difference with the case of h, is that here, the
“exceptional” measure is much better distributed than for &, (the maximal measure of
aregion of size 1/128x1/128 is close to 1073 for h3 and close to 107! for h,). The same
phenomenon holds when we fix the order of discretization but change the starting point
x (see Figure 12.12), except that (as for f,) the number of apparition of measures that
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N on the grids Ey;, with N = 220 4,

Figure 12.8: Simulations of invariant measures pﬁf’z
i=1,---,9and x = (1/2,1/2) (from left to right and top to bottom).

are singular with respect to Lebesgue measure is smaller than in Figure 12.9. Again,
we think that this follows from the fact that the orders of discretizations tested are
bigger. In this case, the simulations suggest the following behaviour: when the order of
discretization N increases, the frequency of apparition of measures ygchS)N far away from
Lebesgue measures tends to 0.

Recall that Addendum 12.2 states that if x is fixed, then for a generic f €
Diff! (TZ,Leb), the measures M;N accumulate on the whole set of f-invariant measures,

but do not say anything about, for instance, the frequency of orders N such that yﬁN

is not close to Lebesgue measure. It is natural to think that this frequency depends a
lot on f; for example that such N are very rare close to an Anosov diffeomorphism and
more frequent close to an “elliptic” dynamics like the identity. The results of numerical
simulations seem to confirm this heuristic.
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Figure 12.9: Simulations of invariant measures yihﬁN on the grids Ey, with N = 220 + 1,

i=1,---,9and x = (1/2,1/2) (from left to right and top to bottom).
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]
|

Figure 12.10: Simulations of invariant measures px N on the grid Ey, with N = 223,
and x a random point of T?, represented by the black and white box. The behaviour
observed on the top left picture is the most frequent, but we also observe other kind of
measures: for example, the measures has a very small support like on the bottom left
picture on about 10 of the 100 random draws we have made; we even see appearing the
strange behaviour of the last picture once.

. . . ﬂ45
5

Figure 12.11: Simulations of invariant measures }Ax N on the grid Ey;, with N = 223 + 5,
and x a random point of T2, represented by the black and white box. The behaviour
observed on the two firsts pictures is the most frequent, but sometimes (in fact, twice
on 1000 random draws), we also observe a measure whose support is very close to a
periodic point with small period, like on the right picture.
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.

-

"u.;'l-r;'-_.\_ = u_l\l e e
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-

Figure 12.12: Simulations of invariant measures pﬁf”’N on the grid Ey, with N = 223 41
(top) and N = 223 + 17 (bottom), and x a random point of T?, represented by the black
and white box. The behaviour observed on the three top pictures is the most frequent
(for 17 over the 20 orders N = 22344,i=0,---,19, all the 100 random draws we have
made gave a measure very close to Leb), but seldom we also observe measures further
from Lebesgue measure, like what happens for N = 223 + 17 (bottom), where 99 over
the 100 random draws of x produce a measure identical to the two first pictures, and
the other random draw gives a measure a bit more singular with respect to Lebesgue
measure (bottom right).
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h

12.3.2 Simulations of the measures ji., for conservative torus
diffeomorphisms

We now present the results of numerical simulations of the measures }/Lé\; Recall

that the measure },1412 is supported by the union of periodic orbits of fy, and is such

that the total measure of each periodic orbit is equal to the cardinality of its basin of
attraction.

First, we simulate a conservative diffeomorphism f5 which is close to the identity in
the C! topology. We have chosen f5 = Q o P, with

1 1 1
p(x) = 305 cos(2m x 17x) + 571 sin(2m x 27x) — =03 cos(2m x 35x),

(v) = L (2t x 15y) + 1 in(2m x 27y) L in(2m x 38y)
q(y) = g7 cos(2m V) + 553 Sin(2m Y) = gy Sin(2m V).

We have also simulated the conservative diffeomorphism f; = f5 0 A, with A the
standard Anosov automorphism
2 1
S

thus f; is a small C! perturbation of A; in particular the theory asserts that it is topologi-
cally conjugated to A. We can test whether this property can be observed on simulations
or not.

First of all, we present the results of the simulations of the size of the recurrent set
Q((f;)n), the number of periodic orbits of (f;)n (middle) and the length of the largest
periodic orbit of (f;)n, for N = 128k and k going from 1 to 150 (Figure 12.13).

For fs, the cardinality of the recurrent set is clearly increasing; it looks as if it be-
haves like NInN. Fact remains that this behaviour is very different from the one we
observe for the simulations of the homeomorphisms f; and f; (which are conservative
homeomorphisms, which are respectively small C° perturbations of Id and A, see Sec-
tion 5.8, and more precisely Figure 5.7). For its part, the evolution of the cardinality of
the recurrent set of f4 is much more erratic, and is quite similar to that observed in the
corresponding CP case (top right of Figure 5.7). Anyway, the behaviours are completely
different at the neighbourhood of the identity and of the linear automorphism A.

As for the cardinality of the recurrent set, the number of periodic orbits of (f5)y
is very smooth and seems to evolve linearly in N. Obviously, this behaviour is very
different from the case of homeomorphisms; however, we have no explanation to this
“smooth” behaviour. In the neighbourhood of A, the number of periodic orbits (middle
right of Figure 12.13) seems to be uniformly bounded in N by 18. Again, this behaviour
is very similar to what happens to f;, which is a small C° perturbation of A (Figure 5.7).
For now, we do not have explanation to this behaviour.

The maximal period of a periodic orbit of (f5)y evolves less smoothly then the num-
ber of periodic orbits. It is even quite similar to the corresponding C° case (Figure 5.7).
The same holds in the neighbourhood of A for the diffeomorphism f4;. Seemingly, the
maximal period of a periodic orbit of fy does not give a good criterion to test if a map
behaves like a C! system or not.

For fs, the distance d(péNz,Leb) is quite quickly smaller than 0.1, and oscillates be-
tween 0.05 and 0.1 from N = 128 x 30. It is not clear if in this case, the sequence of
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Figure 12.13: Size of the recurrent set Q((f;)n) (top), number of periodic orbits of (f;)n
(middle) and length of the largest periodic orbit of (f;)y (bottom) depending on N, for
f5 (left) and fg (right), on the grids Eyy with N =128k, k=1,---,150.

measures (V@)N converge towards Lebesgue measure or not (while for the C° pertur-
bation of the identity we have tested, it is clear that these measures do not converge

to anything, see Figure 5.8). The distance d(p{i,Leb) even seem to increase slowly (in
average — there are a lot of oscillations) from N = 50 x 128. We have the same kind
of conclusion for f4: by looking at Figure 12.14, we can not decide if the sequence of

measures (pé@) seem to tend to Lebesgue measure or not.

f5)

The behaviour of the computed invariant measures }A(Tf N, where f5 is a small C!

perturbation of the identity, is way smoother than in the C° case (compare Figure 12.15

(f5)

1> has quickly a big component which is close

with Figure 5.9). Indeed, the measure p
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Figure 12.14: Distance between Lebesgue measure and the measure M(Tf;)N depending on

N for f5 (left) and f4 (right), on the grids Eyy with N =128k, k=1,---,150.

to Lebesgue measure: the images contain a lot of light blue. Thus, we could be tempted
to conclude that these measures converge to Lebesgue measure. However, there are still
little regions that have a big measure: in the example of Figure 12.15, it seems that there
are invariant curves that attract a lot of the points of the grid (as can also be observed
on Figure 12.7). We have no explanation to this phenomenon, and we do not know if it
still occurs when the order of discretization is very large.

For the discretizations of f;, the simulations on grids of size 2X x 2K might suggest

that the measures pL(Tf;")N tend to Lebesgue measure (Figure 12.16). Actually, when we

perform a lot of simulations, we realize that there are also big variations of the be-
haviour of the measures (Figure 12.17): the measure is often well distributed in the
torus, and sometimes quite singular with respect to Lebesgue measure (as it can be
seen in Figure 12.14). This behaviour is almost identical to that observed in the C°
case in the neighbourhood of A (see Figures 5.11 and 5.12, and also the corresponding
discussion).
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Figure 12.15: Simulations of invariant measures p.
k=7,---,15 (from left to right and top to bottom).
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Figure 12.16: Simulations of invariant measures p. on the grids Ey, with N = 2k,

k=7,---,15 (from left to right and top to bottom).
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Figure 12.17: Simulations of invariant measures p. on the grids Ey, with N =
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12.3.3 The case of expanding maps

We now present the results of the numerical simulations we have conducted for
expanding maps of the circle. We have tested the following expanding map of degree 2:

f(x) =2x+ €y cos(2mx) + &, sin(6mx),

with €, =0.12794356372 and ¢, = 0.008 247 35961.

We focus on the simulations of both measures ( fIfI)k)\N and pg\{ Recall that the
former is simply the push-forward of the uniform measure on Ey by the iterate ffl of
the discretization. The latter is the measure supported by the union of periodic orbits
of fy, such that the total measure of a periodic orbit is equal to the size of its basin of

attraction.

Recall that as f is expanding and belongs to C?(S!), it has a single SRB measure,
that we denote by pj. This measure can be computed quite easily using the Ruelle-
Perron-Frobenius transfer operator. In Figure 12.18, we have represented the distance
d(po, (fli})kXN) depending on the time k, for various orders of discretization N. The
distance d is defined by

2k_

dpn)=) 2

1
k=0 =0

55 o

This distance spans the weak-* topology, which makes compact the set of probability
measures on T2, In practice, we have computed an approximation of this quantity by
summing only on the k € [[0,7]).

On Figure 12.18, we observe that for N being fixed, the distance between the SRB
measure i and the image measure (f)*Ay reaches quite quickly a value quite close
to 0, to increase thereafter. We shall notice that for the smaller values of N (N = 27
and N = 2%), the distance d (o, (fIfI)k)\N) looks eventually periodic: it seems that the
stabilization time of the discretization is attained, or at least that for almost all the
points x € Ey, we have fI\IIOM(x) € Q(fn)-

The fact that the image measure (fI\*I)k}\N is very close to the SRB measure for short
times k is not surprising, as it was predicted by Theorem 12.15. For example, in Fig-
ure 12.19, we can see that for N = 2!%, the distance between pg and (£)®Ay is approxi-
matively 1074

We think that growth of the distance d(p, (fI\*I)k)\N) is increasing from a certain point
is due to the fact that the roundoff errors arising from the discretization process imply
that locally, the discrepancy between the image measure and the appropriate uniform
measure grows exponentially with k (see Proposition 9.4). However, for now, we have
neither made the precise study of the discrepancy of a union of “independent” image
sets (what happens for maps of degree d > 2), nor the application of the discrepancy to
the non-linear case.

Figures 12.20 and 12.21display the density of the measure pth

Sl
of N. Observe that even when N is quite large (for N = 2!° on Figure 12.20 and for

for various values

N > 228 on Figure 12.21), the measure Mé‘f is quite far away from the SRB measure

po- Thus, there is no evidence (at least on this example) that the measures }A]s(lf (or the



286

Chapter 12. Physical measures

0.25 { m T |’ 0.25 0.25
T Th TR
0.2 ’J'U 4 V\)\ J\j \ ( W] 0.2 0.2
f
0.15 \M‘M 0.15 1 0.15
0.1 ( 0.1 ij\/\m JV\/V \)‘\% /V V\/"U\ ﬂ Wi 0.1 M ‘/NJWNV
\Wlw VWU\ I\f\/\f I\ Y,
M e
0.05 0.05 0.05
I / N
° 50 100 150 200 250 ° 50 100 150 200 250 ° 50 100 150 200 250
0.25 0.25 0.25
0.2 0.2 0.2
0.15 0.15 0.15
0.1 ,\\ 0.1 0.1
/\/M W v& A S
0.05 wa// 0.05 0.05
e A SV N
M/WW,JJ JN/\M\_WA/M
° 50 100 150 200 250 0 50 100 150 200 250 ° 50 100 150 200 250

Figure 12.18: Distance between the SRB measure of f and the measure (fIfI)kXN depend-
ing on the time k (1 <k <1024), for N = 2/, with (from left to right and top to bottom)
j=9,11,13,15,17 and 19.

Figure 12.19: Logarithm in base 10 of the minimum over k of d(p,, (fI\*I)k)\N) depending
on N (in blue, left axis), and time k realizing this minimal distance (in green, right axis),
for N =2/, with j € [7,19].

measures ( fI\*I)k AN for “large” times k) converge towards the SRB measure when N goes
to infinity.

However, we can see on Figure 12.22 that when we take the average of these mea-
sures on a large number of different grids, the measure we obtain is very close to the
SRB measure. This suggests that on this example, the averages

M
1 fu
M L'
N=0

might converge towards the measure .
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Figure 12.21: Density of the measure }AJS(T, for N =5.108 +j, j = 1,2,3. The red curves
represent the density of the SRB measure py.
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CHAPITRE 13

DIFFERENTS FACTEURS DONT DEPENDENT LES
RESULTATS

Cette these est consacrée a I’étude des discrétisations dans plusieurs contextes (dy-
namiques conservatives ou dissipatives, continues ou différentiables, etc.) et selon plu-
sieurs point de vue (combinatoire, topologique, ergodique ; étude d’une seule discréti-
sation ou de toutes les discrétisations, etc.). Dans ce chapitre, on discute de I'influence
de ces divers facteurs sur la dynamique des discrétisations. Cela semble d’autant plus
nécessaire que certains énoncés concernant des questions similaires se retrouvent éloi-
gnés de presque 150 pages dans ce manuscrit, simplement parce qu’ils concernent des
dynamiques de départ différentes (c’est le cas par exemple des corollaires 5.9 et 10.4).

Comme dans l'introduction, nous nous plagons pour simplifier dans le cas ou X est
le tore T? = R?/Z?, muni sl y a lieu de la mesure de Lebesgue notée Leb, et ou les
grilles sont les grilles uniformes sur le tore, définies par

(1 TN _p2m2
EN_“N”N)ER/Z

1sLjSN}

Les résultats présentés sont en réalité vrais dans divers contextes plus généraux; on
se référera aux parties du manuscrit concernées pour les définitions précises de ces
contextes.

13.1 Systeme particulier versus systeme générique

Au début de I'introduction (page 17), on a vu que la dynamique des discrétisations
d’un systéme particulier — par exemple un difféomorphisme d’Anosov linéaire du tore
— peut étre assez singuliere. Plus précisément, dans le cas de 'exemple donné (voir la
figure 1.1 et [Ghy94]), on observe que d’une part les discrétisations sont toutes bijec-
tives, et que d’autre part on a une récurrence tres rapide. Nous avons interprété cela
comme étant di a un phénomene de résonance entre I’automorphisme linéaire, qui est
une dynamique trés particuliére, et les grilles !

1. On a un phénomeéne similaire pour le doublement de I’angle sur le cercle, défini sur R/Z par x — 2x;
avec R/Z muni des grilles Exy = Z/N. Si N est une puissance de 2, alors la discrétisation fyy posséde un
unique point fixe, qui attire tous les points de la grille. Si, en revanche, N est premier avec 2, alors fy est
une permutation cyclique de la grille. Dans aucun de ces deux cas la dynamique de la discrétisation ne
reflete la vraie dynamique de x — 2x.

293
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Ce phénomeéne contraste avec les résultats concernant les discrétisations d’homéo-
morphismes conservatifs génériques obtenus au cours de cette these. Par exemple, rap-
pelons le théoréme II de I'introduction (corollaire 5.24 page 83).

Theoréme XVIIL. Pour un homéomorphisme conservatif générique f € Homeo(T?,Leb), la
suite (D(fx))nso $accumule sur tout le segment [0, 1].

En particulier, il existe une sous-suite de discrétisations dont le cardinal de 1’en-
semble récurrent ? est arbitrairement petit par rapport au cardinal de la grille : une
infinité de discrétisations sont trés peu injectives. Le comportement dynamique géné-
rique des discrétisations est donc bien différent de celui des discrétisations de certains
systemes particuliers.

On remarquera tout de méme que le fait de considérer des homéomorphismes géné-
riques une fois la suite de grilles fixée induit une certaine résonance, certes moins mar-
quée que dans 'exemple ci-dessus, entre la dynamique et certaines grilles de la suite :
les résultats que 'on obtient expriment que pour un homéomorphisme conservatif gé-
nérique f, chaque partie de la dynamique de f entre en résonance avec une infinité de
grilles. Par exemple, ceci est illustré par le théoreme V de l'introduction (théoreme 5.43
page 90).

Theoréme XIX. Pour un homéomorphisme conservatif générique f € Homeo(T?,Leb), pour
toute mesure de probabilité p invariante par f, il existe une sous-suite de discrétisations
(fn, )k telle que f, posséde une unique mesure invariante wy, qui tend vers w. Autrement dit,
pour toute mesure de probabilité f-invariante p, il existe une suite d’entiers (Ng )i telle que,
pour tout x € T?, on a
P‘ka .
* k—+o0

Le méme phénomeéne se produit — en un sens plus faible — pour les difféomor-
phismes de classe C! conservatifs génériques : voir par exemple le théoréme VI de I'in-
troduction (théoreme 12.1 page 251).

Theoréme XX. Pour un difffomorphisme de classe C! conservatif générique f €
Diff! (T2, Leb), pour un point générique x € T? (dépendant de f), toute mesure p invariante
par f, il existe une sous-suite (fn, )i de discrétisations telles que

fai
Kx >
k—+o0
Signalons aussi que certains des résultats de généricité, qui concernent a priori des
dynamiques abstraites, s’observent sur des exemples concrets (voir la section 13.8 pour
une discussion plus détaillée).

13.2 Conservatif versus dissipatif
Lorsqu’on observe les discrétisations d’'une dynamique dissipative f, on arrive bien

évidemment a détecter les ouverts attractifs de f : c’est une propriété bien connue,
vérifiée plus généralement par les pseudo-orbites.

2. Rappelons que I’ensemble récurrent est I’'union des orbites périodiques.
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Dans le cas d’'un homéomorphisme dissipatif générique, cette convergence de la
dynamique des discrétisations vers celle de ’lhoméomorphisme s’observe plus géné-
ralement sur bon nombre de propriétés. Par exemple, lorsqu’on s’intéresse a la dyna-
mique combinatoire des discrétisations d’un homéomorphisme dissipatif générique, on
observe un comportement assez régulier; on démontre par exemple I’énoncé suivant
(corollaire 4.14 page 64).

Proposition XXI. Pour un homéomorphisme dissipatif générique f € Homeo(T?), le taux
d’injectivité Card (fN(EN))/Card(EN) de fx tend vers 0 lorsque N tend vers I'infini.

A fortiori, le degré de récurrence D(fy) = Card(Q(fN))/Card(EN) tend vers 0. Ce
résultat se déduit directement d’une propriété similaire pour la dynamique initiale : un
homéomorphisme dissipatif générique f est totalement singulier, c’est-a-dire que pour
tout € > 0, il existe un ouvert de mesure de Lebesgue supérieure a 1 —e dont I'image par
f est de mesure de Lebesgue inférieure a € (voir [AA13] et la définition 4.1 page 58 du
présent manuscrit).

Du point de vue ergodique aussi, la dynamique des discrétisations converge vers
celle de f. Plus précisément, nous démontrons le résultat suivant (théoreme 4.16
page 65).

Theoréeme XXII. Pour un homéomorphisme dissipatif générique f, les mesures p@, qui sont
les limites au sens de Cesaro des poussés en avant de la mesure uniforme sur Ex par les itérés

f

de fx, tendent vers la mesure pr,, qui est la limite au sens de Cesaro des poussés en avant de
la mesure de Lebesgue par les itérés de f.

Ainsi, pour un homéomorphisme dissipatif générique, la dynamique « physique »
des discrétisations, i.e. la dynamique d’une proportion arbitrairement grande des points
de la grille, converge vers la dynamique « physique » de ’homéomorphisme, i.e. la dy-
namique de presque tous les points relativement a la mesure de Lebesgue. C’est un
phénomene qui était prévisible, vu qu’a une échelle donnée, la dynamique d’un ho-
méomorphisme dissipatif générique est essentiellement une dynamique de « puits ».

Dans le cas conservatif, le comportement des discrétisations est bien moins régulier.
Par exemple, le théoreme XVIII affirme que, contrairement au cas dissipatif générique,
le degré de récurrence des discrétisations d’'un homéomorphisme conservatif générique
s’accumule sur tout le segment [0,1]. D’un point de vue ergodique, le théoreme XIX
affirme que toute mesure invariante (et pas seulement la mesure physique) d’un ho-
méomorphisme conservatif générique est « vue » par une infinité de discrétisations.

Concernant la dichotomie conservatif/dissipatif pour les homéomorphismes, la mo-
rale que 'on peut retenir est la suivante. Si on ne suppose pas que I’homéomorphisme
préserve la mesure de Lebesgue, alors la dynamique des discrétisations converge vers la
dynamique de I’homéomorphisme relative a la mesure de Lebesgue. Si, en revanche, on
suppose que ’homéomorphisme préserve la mesure de Lebesgue, alors I'ensemble des
dynamiques des discrétisations refléte toutes les dynamiques possibles de ’homéomor-
phisme (orbite périodique, compact invariant, mesure invariante, vecteur de rotation,
etc.), et pas seulement celles de presque tout point pour la mesure de Lebesgue.

Cette grande différence entre les comportements des discrétisations dans le cas
conservatif et le cas dissipatif semble assez spécifique aux homéomorphismes : le cas des
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C!-difféomorphismes génériques parait moins contrasté. Cela s’explique par le fait que
les classes de récurrence par chaines d’'un homéomorphisme dissipatif générique sont
toutes totalement discontinues, alors que pour un C!-difféomorphisme elles peuvent
étre stablement d’intérieur non vide. Globalement, les résultats concernant la dyna-
mique des discrétisations qui sont valables pour les C!-difféomorphismes conservatifs
génériques le sont aussi pour les C!-difféomorphismes dissipatifs génériques, pour peu
que l'on se restreigne a une classe de récurrence par chaines. On démontre par exemple
le résultat suivant (Corollaire 10.4 page 220).

Proposition XXIII. Si f € Diff!(T? Leb) est un difféomorphisme conservatif générique,
alors pour tout € > 0 et tout Ny € N, il existe N > N tel que fy ait une orbite périodique qui
est e-dense dans T?.

Si f e Diff'(T?) est un difffomorphisme dissipatif générique, alors pour toute classe de
récurrence par chaines K, pour tout € > 0 et tout Ny € N, il existe N > N tel que fy ait une
orbite périodique qui est e-dense dans K.

Ainsi, le comportement des discrétisations sur une classe de récurrence par chaines
d’un difféomorphisme dissipatif générique semble tres proche de celui observé sur les
discrétisations d’un difféomorphisme conservatif générique; cela est da au fait que les
dynamiques réelles sont elles-mémes relativement proches dans ce cas.

13.3 Dimension 1 versus dimension > 2

Comme on peut I'imaginer, les dynamiques des discrétisations d’homéomorphismes
en dimension 1 d’une part, et en dimension supérieure a deux d’autre part, sont bien
distinctes. Cela reflete le fait que les dynamiques elles-mémes de tels systémes sont tres
différentes.

En dimension 1, la longueur des cycles périodiques des discrétisations a un com-
portement uniforme en +co. Pour un homéomorphisme générique du cercle, donc de
nombre de rotation rationnel p(f) = p/q, la longueur de ces cycles périodiques est
constante égale a g a partir d’un certain ordre de discrétisation (proposition XI page 34,
due a T. Miernowski). En revanche, en dimension supérieure a 2, une application du
théoréme de Baire donne le résultat suivant.

Proposition XXIV. Pour un homéomorphisme dissipatif générique f € Homeo(T?), pour
tout entier m, il existe une sous-suite (fx, k>0 de discrétisations de f telle que pour tout k,
IN, possede au moins m orbites périodiques, de périodes deux a deux distinctes.

Dans le cas des C"-difféomorphismes du cercle, génériques parmi ceux de nombre
de rotation irrationnel, ce qui correspond plus ou moins au cas conservatif 3> en dimen-
sion supérieure, le théoreme XIII (page 34) de T. Miernowski affirme que la longueur
commune gy(f) des orbites périodiques de fy tend vers +oo quand N tend vers +oo,
mais arbitrairement lentement. En dimension supérieure, on a le résultat suivant sur
les longueurs possibles des orbites périodiques (obtenu en combinant les preuves des
théorémes 5.36 et 5.47 pages 88 et 95).

3. Dans le sens ot1 en régularité C1*®, le théoréme de Denjoy affirme que la dynamique est transitive.
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Theoréme XXV. Soit f € Homeo(T? Leb) un homéomorphisme conservatif générique.
Alors pour tout entier m, il existe des entiers py,---,p,, deux a deux distincts, et une sous-
suite (f, k=0 de discrétisations de f tels que I'ensemble des périodes des orbites périodiques
de fn, est exactement {py,---,pp}.

En particulier, pour un homéomorphisme conservatif générique, on a une sous-suite
des discrétisations dont le nombre d’orbites périodiques tend vers +oo, ainsi qu'une
sous-suite de discrétisations dont les orbites périodiques sont de longueurs uniformé-
ment bornées. Ces phénomenes s’opposent fortement a ce qui se passe sur le cercle.

Le comportement dynamique des discrétisations d’une application dilatante géné-
rique sur le cercle se rapproche assez de celui d’'un homéomorphisme/difféomorphisme
d’une variété de dimension supérieure. En effet, comme pour les difféomorphismes gé-
nériques (voir le théoreme IV page 21 de I'introduction), on a dans ce cas un résultat
reliant les comportements local et global des discrétisations, et plus précisément le taux
d’injectivité des discrétisations a l'intégrale des taux d’injectivité des dérivées (théo-
reme 11.19 page 239).

Theoréme XXVI. Pour tout r > 1, et toute application dilatante générique f de classe C"
sur le cercle, le taux d’injectivité t°(f) vérifie

()= | Dl(detDf hepss )dLebiy)

xef™"(y)
(voir la définition 11.18 page 239 pour la définition de D).

De méme, le comportement ergodique des applications C!-génériques dilatantes sur
le cercle ressemble fortement a celui d’un C!-difféomorphisme conservatif générique du
tore de dimension n > 2, comme on peut le voir en comparant le théoreme 12.1 page 251
avec la proposition 12.4 page 252.

13.4 Régularité C° versus régularité C’, r > 1

Le comportement des homéomorphismes génériques est bien souvent considéré
comme n’étant pas tres pertinent d’un point de vue physique : il est localement bien
trop compliqué pour représenter une grande classe de systemes concrets. Malgré cela,
I’étude de telles dynamiques n’est pas sans intérét.

— D’une part, on obtient des résultats concernant ce qui peut arriver lorsque le sys-

téme considéré n’est pas tres régulier en pratique (par exemple une dynamique
C! dont les dérivées sont trés grandes). C’est en partie ce qui se passe dans notre
cas : on voit apparaitre des phénomenes soulignés par la théorie sur des exemples
relativement simples de difféomorphismes de classe C* avec de grandes dérivées
(voir la figure 1.2 page 23).

— D’autre part, les dynamiques C° génériques sont en quelque sorte des « modéles-
jouets » ; leur étude constitue une premiere étape dans la compréhension de phé-
nomenes apparaissant en plus grande régularité.

Cette thése ne déroge pas a la régle : les résultats obtenus en régularité C! sont
bien plus faibles que ceux obtenus en régularité C°. En effet, pour démontrer des résul-
tats de généricité, la difficulté est bien souvent d’obtenir des énoncés de densité. Or, le
lemme de perturbation que I'on utilise en régularité C° (proposition 3.3 page 50), dont
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la preuve est relativement simple, permet de perturber indépendamment un nombre
fini arbitraire de points de notre espace. Un tel résultat n’existe pas en topologie C’,
pour r > 1; on a seulement des résultats partiels pour le cas r = 1, appelés « lemmes de
fermeture » ou de « connexion ». Ces lemmes classiques, de preuves bien plus difficiles
que dans le cas C°, permettent de transférer gratuitement les résultats que l’on a concer-
nant le comportement global des discrétisations d’homéomorphismes génériques, vers
des résultats concernant le comportement d’une sous-dynamique des discrétisations de
C!- difféomorphismes génériques.

Par exemple, on a 1’énoncé suivant (corollaire 5.9 page 78) pour les homéomor-
phismes conservatifs génériques, qui est une petite amélioration du théoreme I page 20
de T. Miernowski.

Proposition XXVII. Pour un homéomorphisme conservatif générique du tore, il existe une
sous-suite de discrétisations qui sont des permutations cycliques des grilles.

Ce théoréeme exprime que pour un homéomorphisme conservatif générique, pour
tout € > 0, une infinité de discrétisations est topologiquement transitive a € pres.

Dans le cas des difféfomorphismes, en appliquant le lemme de connexion de C. Bo-
natti et S. Crovisier [BC04], ce théoreme devient ’énoncé suivant (corollaire 10.4
page 220), qui ne concerne qu’'une partie des points de la grille.

Proposition XXVIII. Pour un C!-difffomorphisme conservatif générique du tore et pour
tout € > 0, il existe une sous-suite de discrétisations ayant au moins une orbite e-dense dans
le tore.

Remarquons que la différence entre les théoremes XXVII et XXVIII est de méme
nature que la différence entre les théoremes XIX et XX.

Le comportement global des difféomorphismes conservatifs génériques est bien plus
difficile a capter. On obtient tout de méme un résultat (non sans peine!) en considérant
une quantité « semi-dynamique », puisque décroissante au cours du temps : le degré de
récurrence. Si celui-ci s’accumule sur tout le segment [0, 1] pour un homéomorphisme
conservatif générique (théoreme XVIII), il tend vers 0 pour un difféomorphisme conser-
vatif générique : rappelons le théoreme III de I'introduction (théoréme 11.15 page 235).

Theoréeme XXIX. Pour un difféomorphisme de classe C! conservatif générique f €
Diff! (T2, Leb), on a
lim D(fy)=0.
N—+oo

La preuve de ce résultat concernant les difféomorphismes utilise de maniere cru-
ciale le fait que ceux-ci possedent des différentielles, puisqu’elle s’appuie sur une étude
poussée du cas linéaire (partie 2) et la formule suivante, reliant les comportements local
et global des discrétisations (théoréme 11.3 page 229, déja énoncé dans l'introduction
en tant que théoreme IV).

Theoreme XXX. Pour tout r > 1, et pour un difféomorphisme de classe C" conservatif géné-
rique f € Diff" (T2, Leb), pour tout t e N*, on a
N—o+co

lim T{\T(f) = J.Tz T(fot—l(x),--~ ,Dfx) dx,

ou le taux d’injectivité d’une suite de matrices est défini de maniére similaire a celui d’un
difféeomorphisme (voir la définition 7.19 page 152).
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Remarquons qu’il existe des ouverts de difféomorphismes de classe C! constitués
de difféfomorphismes d’Anosov, qui satisfont ainsi le lemme de pistage : si f est un tel
difféomorphisme, alors pour tout € > 0, il existe 6 > 0 tel que toute d-pseudo-orbite est
e-pistée par une vraie orbite de f. En particulier, ce lemme est vérifié par les orbites
de toute discrétisation sur une grille assez fine. On pourrait espérer que cette propriété
tres forte implique que la dynamique des discrétisations reflete bien celle du difféo-
morphisme de départ. La réalité est un peu plus complexe. Par exemple, on a vu que
les discrétisations de I’application du chat d’Arnold, qui est un exemple de difféomor-
phisme d’Anosov bien connu, ne rendent pas du tout compte du caractéere mélangeant
de la dynamique : les discrétisations attrapent uniquement la dynamique des points
périodiques de petites périodes (voir la figure 1.1 page 17). Cela est di au fait qu'on ne
sait a priori rien de 'orbite qui piste la pseudo-orbite; il se peut qu’elle ne soit pas du
tout représentative de la dynamique globale de I'application.

En quelque sorte, les énoncés que l'on démontre concernant la dynamique des dis-
crétisations d’un difféomorphisme générique f de classe C' expriment que chaque
comportement dynamique de f est pisté par un comportement similaire d’une sous-
dynamique de certaines discrétisations fy, (voir par exemple la proposition XXVIII).
Le souci est que ces résultats ne disent rien du reste de la dynamique de fy, . La bonne
nouvelle est que si f vérifie le lemme de pistage, celui-ci assure que le reste de la dy-
namique n’est pas du tout arbitraire : cette dynamique est en fait pistée par de vraies
orbites de f.

Enfin, on montre qu’en temps court, les poussées en avant de la mesure uniforme
sur les grilles par les discrétisations d’une application dilatante du cercle suffisament
réguliére convergent vers une unique mesure, qui est la mesure SRB y( de 'application
dilatante (mesure SRB qui est par ailleurs I’'unique mesure physique du systeme). Plus
précisément, on a le théoréme suivant (théoreme 12.15).

Theoreme XXXI. Pour tout a €]0,1[ et pour toute fonction dilatante du cercle f de classe
C'*® il existe une constante cy = co(f) > 0 telle que si (N,,),, est une suite d’entiers tendant
vers +oo mais telle que InN,, > com, alors on a la convergence (f3 )" (An, ) — Ho-

Remarquons que ce résultat ne fait pas du tout intervenir de notion de généricité.
Remarquons aussi que ce théoréme ne dit rien sur ce qui se passe pour les applications
dilatantes génériques de classe C! : dans ce cas, les techniques utilisées lors de la preuve
(a savoir 'opérateur de transfert de Ruelle-Perron-Frobenius) ne fonctionnent plus du
tout.

13.5 Une discrétisation versus la plupart des discrétisations
versus toutes les discrétisations

Pour les homéomorphismes conservatifs génériques, la philosophie des résultats
n’est pas du tout la méme selon que 'on considere une seule discrétisation ou bien
toutes les discrétisations %. Si on regarde la dynamique d’une seule discrétisation, le
comportement observé dépend sauvagement de 'ordre de discrétisation; c’est en tous
cas ce qu’expriment les résultats de la section 5.3 du chapitre 5. Par exemple, pour un
homéomorphisme conservatif générique, il existe une constante P > 0 telle que les pro-
priétés suivantes sont toutes vérifiées par une infinité d’ordres de discrétisation N :

4. Dans ce paragraphe, nous ne traiterons pas le cas dissipatif, puisque la dynamique des discrétisations
converge uniformément vers la dynamique de ’homéomorphisme de départ.
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— fn est une permutation cyclique (corollaire 5.9 page 78);

— fn possede un seul cycle, qui est de longueur inférieure a P, et qui attire tous les
points de la grille Ey (corollaire 5.36 page 88);

— fn possede au moins /Card(Ey) cycles différents (corollaire 5.22 page 83).

Pire encore, cette variabilité des comportements des discrétisations perdure lors-
qu’on tente de faire des statistiques sur les fréquences d’apparition des propriétés parmi
les discrétisations; (voir la section 5.4 du chapitre 5). Par exemple, on démontre le ré-
sultat suivant (théoréme 5.31 page 85 et corollaire 5.27 page 84).

Theoreme XXXII. On pose C l'ensemble des N € N tels que fy soit une permutation
cyclique. Pour un homéomorphisme conservatif générique f € Homeo(T?, Leb), la suite
Card(CN[1,M])/M s’accumule a la fois sur 0 et 1.

Néanmoins, les choses se passent bien mieux lorsqu’on considére la dynamique de
toutes les discrétisations de ’'homéomorphisme : dans ce cas, ce qui ressort des résul-
tats que nous démontrons dans la section 5.5 est qu’il est possible de détecter sur les
discrétisations un grand nombre de propriétés dynamiques de ’homéomorphisme. Par
exemple, on peut détecter les orbites périodiques de f, ainsi que leurs périodes (théo-
reme 5.36 page 88).

Theoréme XXXIII. Soit f € Homeo(T?, Leb) un homéomorphisme conservatif générique.
Alors, pour toute orbite périodique w de période p pour f, et tout d > 0, il existe une sous-
suite de discrétisations fy, telle que pour tout k, fy, posséde une unique orbite périodique>,
de longueur p, qui de plus d-piste l'orbite w.

De méme, le théoreme XIX sur les mesures invariantes affirme qu’il est possible
de retrouver I'ensemble des mesures invariantes de ’homéomorphisme initial en re-
gardant les mesures invariantes de toutes les discrétisations de cet homéomorphisme.
En quelque sorte, ces énoncés expriment que la dynamique de ’homéomorphisme est
pistée par celle de ses discrétisations.

Concernant les difféomorphismes conservatifs de classe C! génériques, les résultats
sont pour l'instant trop partiels pour pouvoir conclure a une convergence ou non de la
dynamique des discrétisations.

D’une part, on sait qu'un certain nombre d’invariants dynamiques du difféomor-
phisme peuvent étre détectés sur une sous-dynamique d’une infinité de discrétisations.
Par exemple, on peut récupérer les orbites périodiques a partir des discrétisations (voir
le lemme 10.2 page 219).

Proposition XXXIV. Soit f € Diff' (T2, Leb) un difféomorphisme de classe C' conservatif
générique. Alors, pour toute orbite périodique w de période p pour f, et tout & > 0, il existe
une sous-suite de discrétisations fy, telle que pour tout k, fy, posséde au moins une orbite
périodique ® de longueur p, qui de plus d-piste 'orbite w.

De méme, le théoréeme XX indique qu'’il est possible de retrouver les mesures inva-
riantes d’un difféomorphisme conservatif générique (voir aussi le corollaire 10.9 pour
une preuve d’'un énoncé plus simple).

5. Cette orbite périodique attire donc tous les points de la grille.
6. Remarquons que la différence avec le cas C¥ réside dans le fait que cette orbite nest pas unique.
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D’autre part on a tout de méme un comportement global plus régulier de ’ensemble
des discrétisations que dans le cas C°, comme le souligne le fait que le degré de récur-
rence tend vers 0 pour un difféfomorphisme conservatif générique (théoreme XXIX).
Malheureusement, a I’heure actuelle, on ne sait pas décrire mieux la nature de la dy-
namique globale des discrétisations. Par exemple, on n’a pour I'instant aucune idée du

comportement asymptotique de la suite de mesures’ (péNz )NeN'

13.6 Propriétés combinatoires versus propriétés topologiques
et ergodiques

Comme on l'a déja vu, certaines quantités combinatoires associées aux discrétisa-
tions d’'un homéomorphisme conservatif générique évoluent de maniere tres erratique
en fonction de l'ordre de discrétisation N. Par exemple, le degré de récurrence s’ac-
cumule sur tout le segment [0,1] (théoreme XVIII), la limite inférieure du nombre
d’orbites périodiques vaut 1 (théoreme XXVII) et sa limite supérieure vaut +oo (théo-
reme XXV, voir aussi le corollaire 5.22 page 83), etc. On démontre méme un théoreme
général dans ce sens : on dit qu'une propriété portant sur les applications finies des
grilles Ey est dense si tout homéomorphisme conservatif est arbitrairement bien appro-
ché par des applications finies ayant cette propriété; le théoreme 5.2 page 75 affirme
que si une propriété est dense, alors elle se retrouve sur une infinité de discrétisations
d’un homéomorphisme générique.

On peut donc dire que ces quantités combinatoires sont tres peu utiles pour détec-
ter la dynamique de l'application de départ. De plus, ces résultats impliquent que les
discrétisations ne se comportent pas du tout comme une application aléatoire typique
d’un ensemble fini : par exemple, une telle application ¢ : E — E, ou E est un ensemble
fini a g éléments, est telle que le cardinal de son ensemble récurrent est de l'ordre de
VN (voir [Bol01, XIV.5] ou le théoréme 2.3.1 de [Mie05]). Pire encore, cela n’est tou-
jours pas vrai lorsqu’on considere par exemple la moyenne des degrés de récurrence
des discrétisations sur de longs segments d’ordres de discrétisation (voir le théoreme
XXXII).

En ce qui concerne les difféomorphismes, on ne sait que trés peu de choses sur le
comportement combinatoire global des discrétisations. Pour ce probleme, le théoreme
principal que nous obtenons est le théoreme XXIX, qui illustre le fait que les discrétisa-
tions d’un difféomorphisme de classe C! conservatif générique se comportent différem-
ment de celles d’'un homéomorphisme conservatif générique.

Pour retrouver la dynamique initiale, il faut utiliser la géométrie des grilles Ey,
et s’intéresser aux propriétés topologiques ou ergodiques de I'ensemble des discrétisa-
tions. Comme on 1’a déja dit, aussi bien en topologie C° qu’en topologie C!, on peut
de cette maniére retrouver par exemple I'ensemble des mesures invariantes par la dy-
namique de départ (théoremes XIX et XX), ou bien I’ensemble des points périodiques
(théoreme XXXIII et proposition XXXIV), ou encore I’'ensemble de rotation, comme le
montre le théoreme VII de I'introduction (théoreme 6.23 page 122).

Theoréeme XXXV. Pour un homéomorphisme conservatif générique f € Homeo(T?,Leb),
— P’ensemble de rotation observable est réduit a un point;

7. Rappelons qu’étant donnée une discrétisation fy;, la mesure ptflg est définie comme la limite au sens
de Cesaro des poussées en avant par fn de la mesure uniforme sur le grille En
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— la limite supérieure des ensembles de rotation des discrétisations coincide avec l'en-
semble de rotation de f.

13.7 Microscopique versus mésoscopique versus
macroscopique

Un homéomorphisme générique (tant conservatif que dissipatif) a un comportement
local tres chaotique. Par exemple, des qu’il posséde un point périodique de période p,
alors 'ensemble de ses points périodiques de période p est un ensemble de Cantor (il
est donc indénombrable) ; de plus pour tout multiple g de p, 'ensemble des points pé-
riodiques de période g est alors non vide, et tout point périodique de période p est dans
I'adhérence des points périodiques de période g. Ce manque de régularité du comporte-
ment local de I'application de départ fait que le comportement local des discrétisations
d’un homéomorphisme générique est lui-méme tres chaotique, et dépend fortement de
l'ordre de la discrétisation. Par exemple, une discrétisation sera tantot localement bi-
jective (proposition XXVII), tantot localement trés peu injective, comme le montre le
résultat suivant (corollaire 5.20 page 82).

Theoreme XXXVI. Soit 9 : N — R une fonction tendant vers +oo en +oo. Alors, pour un
homéomorphisme conservatif générique f € Homeo(T?,Leb), on a®

. Card(fu(Ex))
lim ————

=0.
N—o+o0 S(N)

Par conséquent, le comportement local des discrétisations d’un homéomorphisme
conservatif générique est assez sauvage, et donc relativement peu pertinent. Ce phéno-
mene se traduit au niveau temporel : par exemple, en comparant les théoremes XXVII et
XXXVI, on voit que des discrétisations de deux ordres distincts (arbitrairement grands)
peuvent avoir des comportements opposés des la premiere itération.

Pour les difféomorphismes, les choses sont bien différentes. L'existence de différen-
tielles — qui plus est continues — pour un difféomorphisme f, dicte le comportement
local des discrétisations de f. Cela est illustré par le théoreme XXX, qui exprime que
génériquement, pour un temps t fixé, et pour des ordres de discrétisation assez grands,
le cardinal des images de la grille par les discrétisations en temps inférieur a t est dé-
terminé par les différentielles de f. On a donc trois échelles d’espace différentes :

— tout d’abord, I’échelle du tore, I’échelle macroscopique, pour laquelle en temps
fini, et pour des ordres de grilles assez grands, la dynamique des discrétisations
ressemble a celle du difféomorphisme initial ;

— ensuite, I’échelle des différentielles de f, 1’échelle mésoscopique; c’est 1’échelle
a laquelle on percoit I’action des dérivées de f; autrement dit pour laquelle en
temps fini, et pour des ordres de grilles assez grands, la dynamique des discréti-
sations ressemble a celle d’une suite de matrices;

— enfin, I’échelle de la grille, I’échelle microscopique, ou on voit de toute facon les
points de la grille, les « atomes ».

Comme dans le cas des homéomorphismes, ces échelles spatiales se transposent au

niveau temporel : le fait d’avoir une échelle mésoscopique induit un régime transitoire

8. Remarquons que ce résultat est une amélioration du fait que le degré de récurrence d’'un homéomor-
phisme conservatif générique s’accumule sur 0.
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FiGure 13.1: Images successives de Z? par les discrétisations de k matrices de SL,(R)
choisies aléatoirement parmi un compact de SL,(R) (voir la figure 7.2 pour une expli-
cation précise). Un point de Z? est noir s’il appartient a I'image. De gauche a droite et
de haut en bas, k =1, 2, 3, 5, 10, 20.

pour le comportement local des discrétisations, c’est d’ailleurs ce qu’exprime le théo-
reme XXX, qui n'est de ce fait pas vraiment un énoncé purement « dynamique », car il
ne concerne qu'un nombre fini d’itérés. Pour en déduire un résultat asymptotique, on
triche en quelque sorte, puisque la quantité étudiée, a savoir le degré de récurrence,
décroit au cours du temps.

On est donc amenés a considérer, pour étudier la dynamique des difféomorphismes,
la dynamique des discrétisations de suites d’applications linéaires. Plus précisément, la
discrétisation d’une matrice A € GL,(R) est I'application A = P o Ajz2, ou P est une pro-
jection de R? sur le point de Z? le plus proche. On cherche alors a étudier les ensembles
(A\ko e oE)(Z”), pour une suite générique ? (Ay)is; de matrices (éventuellement de dé-
terminant 1). On trouvera dans la figure 13.1 des images typiques des ensembles images
que 'on obtient. On observe notamment — et c’est sur la premiére image que cela est
le plus flagrant — un phénomene de presque-périodicité de I’ensemble obtenu. On dé-
montre en effet un résultat dans ce sens pour toutes les itérations '* (théoréme 7.12) :
de maniere informelle, un ensemble I est presque périodique si pour R assez grand, I’en-
semble B(0,R) NI détermine I'ensemble I' a un ensemble de densité inférieure a € pres
(voir la définition 7.3 page 144).

Theoreme XXXVII. Pour toute suite (Ag)x>1 de matrices inversibles, les ensembles (Kz o
---0 A )(Z") sont presque périodiques.

En observant la figure 13.1, on remarque aussi que la densité des ensembles images
semble décroitre au cours du temps. Nous démontrons effectivement un résultat dans

9. Générique au sens de la topologie de la norme infinie de la suite, relativement a une norme sur
M;(R) fixée une fois pour toutes.
10. Méme si cela ne se voit pas du premier coup d’ceil sur les derniéres images de la figure...
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Ficure 13.2: Cardinal de I’ensemble récurrent ()(fy) en fonction de N, pour N = 128k,
k=1,---,150, et f un exemple d’homéomorphisme conservatif proche de I'identité (voir
page 99 pour la définition de cet homéomorphisme).

ce sens (théoreme 8.24 page 177).

Theoreme XXXVIII. Pour une suite générique (Ay)r>1 de matrices de déterminant 1, la
densité des ensembles (Ay o --- o Ay)(Z") tend vers 0 lorsque k tend vers +oo.

Ce théoreme est le résultat principal de la partie 2 de cette thése. Sa preuve, as-
sez longue et délicate, repose essentiellement sur des arguments d’équirépartition, qui
permettent de ramener le calcul de la densité des ensembles images (qui n’est pas tres
pratique a manipuler) a celui de l’aire d’une intersection de cubes en grande dimension.

13.8 En théorie versus en pratique

Pour chaque contexte étudié dans ce manuscrit (homéomorphismes et C!-
diffeomorphismes, tant dissipatifs que conservatifs), nous confrontons les énoncés ob-
tenus aux résultats de simulations numériques menées sur des exemples censés repré-
senter le mieux possible le cas « générique ».

Commengons par le cas des homéomorphismes conservatifs. A premiére vue, les
simulations de quantités telles que le degré de récurrence peuvent passer pour dé-
cevantes : en pratique, le degré de récurrence ne s’accumule pas du tout sur tout le
segment [0, 1], mais tend relativement vite vers 0 (voir la figure 13.2, voir aussi la sec-
tion 5.8). Ceci contredit les conclusions du théoreme XVIII : en pratique, on peut ne pas
observer les comportements décrits par les énoncés concernant le cas générique, méme
lorsque la définition de la dynamique est faite pour mimer ce cas générique.

Pour observer effectivement les phénomeénes prédits par résultats théoriques, il faut
cesser de s’intéresser a la dynamique combinatoire des discrétisations. Par exemple,

nous simulons les mesures p@, obtenues rappelons-le en poussant en avant par fy la
mesure uniforme sur Ey, et en prenant la limite au sens de Cesaro de ces mesures. En

h

pratique, on ne peut pas vraiment s’attendre a voir converger les mesures p.p; vers 'en-
semble des mesures invariantes par f, puisque cet ensemble est un convexe de dimen-
sion infinie ; on peut néanmoins déterminer si cette suite de mesures semble converger

h

ou non. Sur la figure 1.2 page 23, on observe que non seulement les mesures p.p; ne
convergent pas du tout vers la mesure de Lebesgue, mais qu’en plus elles n‘ont rien
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Figure 13.3: Densité de la mesure pg;,
pour f un exemple d’homéomorphisme
dissipatif proche de I’identité avec de pe-
tits ensembles attractifs, et N = 32768
(voir page 66 pour la définition de cet ho-
méomorphisme).

FiGure 13.4: Densité de la mesure pg;,
pour f un exemple d’homéomorphisme
dissipatif proche de I'identité avec de gros
ensembles attractifs, et N = 32768 (voir
page 66 pour la définition de cet homéo-
morphisme).

a voir les unes avec les autres, et cela méme si les ordres de discrétisation sont trés
proches. Comme prévu par le théoreme XIX, on ne retrouve pas la mesure physique de
I’homéomorphisme de départ sur les discrétisations.

Concernant les homéomorphismes dissipatifs, nous avons aussi simulé les mesures

pt@, sur deux exemples différents. Le premier est un homéomorphisme dissipatif proche

de l'identité, mais avec de petits puits (voir la figure 13.3, voir aussi la section 4.3). Il
s’avere que le comportement de ces mesures est identique a celui observé dans le cas
conservatif : on ne détecte pas du tout le caractere dissipatif de la dynamique. Ce phé-
nomeéne avait déja été souligné par J.-M. Gambaudo et C. Tresser dans [GT83] : si les
puits sont trop petits — et cela se produit assez facilement, méme si la définition de
l'application est relativement simple —, alors ils ne sont pas observés sur des simula-
tions.

Pour éviter ce phénomene, nous avons aussi testé un exemple d’homéomorphisme
dissipatif proche de I'identité, mais ayant des puits volontairement beaucoup plus gros

(voir la figure 13.4, voir aussi la section 4.3). Dans ce cas, comme prédit par le théo-
In

reme XXII, les mesures p, semblent converger assez rapidement vers une mesure por-
tée par les ensembles attractifs de ’homéomorphisme.

Remarquons aussi que la fréquence d’apparition des phénomenes prédits par les
théorémes peut changer radicalement selon le type de dynamique considérée. Par
exemple, la figure 13.5 illustre le théoreme XX, qui exprime que dans certains cas (en

fait, la plupart des cas au sens topologique), si on se fixe x € T? et f € Diff'(T?,Leb),

alors les mesures ' }Af:N s’accumulent sur ’ensemble des mesures invariantes par f. La

N

figure 13.5 représente la distance dist(py ,Leb) en fonction de N pour trois difféomor-
phismes conservatifs différents (voir la section 12.3 pour des définitions précises). Pour

11. }4£N est rappelons-le la mesure uniforme sur l'orbite périodique dans laquelle tombe I'orbite positive
de xy sous fn.
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Ficure 13.5: Distance entre la mesure de Lebesgue et les mesures ML")N en fonction de
N, for f; une petite perturbation de Id en topologie C! (gauche), f, une petite perturba-
tion d’une translation d’ordre 30 en topologie C! (milieu) et f3 une petite perturbation
d’un automorphisme d’Anosov linéaire en topologie C' (droite), sur les grilles Ey, avec
N =220+k, k=1,---,100 (voir page 274 pour une définition précise de ces difféomor-
phismes).

le premier difffomorphisme, qui est proche d’'une dynamique « elliptique », a savoir
I'identité, cette distance est toujours assez élevée : la mesure obtenue est systématique-
ment loin de la mesure de Lebesgue (voir aussi la figure 1.3 page 23). Le deuxieme
difféomorphisme testé est une petite perturbation (en topologie C!) d’une translation
d’ordre 30 sur le tore. Dans ce cas, la mesure est presque toujours tres proche de la
mesure de Lebesgue, sauf pour de rares ordres N ou elle en est assez loin. Enfin, le troi-
siéme difféomorphisme est une petite C!-perturbation d’un automorphisme d’Anosov
linéaire. La encore, la mesure calculée est presque systématiquement tres proche de la
mesure de Lebesgue, sauf pour de rares ordres N (mais ce phénomeéne est moins mar-
qué que pour le second difféomorphisme). Il semble donc (et cela parait naturel) qu’en
pratique, plus la dynamique initiale est chaotique, plus les ordres de discrétisation pour
lesquels les conclusions des énoncés qu’on obtient sont vraies deviennent rares.



CHAPITRE 14

P1STES DE RECHERCHE

14.1 Dynamique combinatoire des discrétisations de
difféeomorphismes génériques

A ce jour, on ne sait que trés peu de choses sur la dynamique combinatoire des
discrétisations de difféomorphismes conservatifs génériques. Comme on I’a déja dit, on
sait que le degré de récurrence tend vers 0 (théoreme XXIX), mais c’est en fait le seul
résultat qu’on ait sur le comportement global des discrétisations. On ne sait toujours
pas répondre a des questions simples telles que la suivante.

Question. Est-ce que le cardinal de I'ensemble récurrent des discrétisations fy d’un difféo-
morphisme conservatif générique f tend vers l'infini lorsque N tend vers I'infini ? Si oui,
est-ce que la longueur de la plus longue orbite périodique de fy, ou bien le nombre d’orbites
périodiques de f\, tendent vers Uinfini ?

L'étape suivante serait de déterminer si les discrétisations de difféomorphismes gé-
nériques ont tendance a se comporter comme des applications aléatoires (voir la sec-
tion 14.8). Ce type de questions me semble pour I'instant hors de portée.

14.2 Convergence des mesures invariantes canoniques

On ne connait toujours pas le comportement des mesures invariantes « canoniques »

M,J;I\i de fy lorsque f est un C!-difféomorphisme conservatif générique. Rappelons que

chacune de ces mesures }Aé}\i est portée par ’ensemble récurrent de fy ; la mesure totale
de chaque orbite périodique est proportionnelle a la taille de son bassin d’attraction.
Dans le cas des homéomorphismes conservatifs génériques, ces mesures s’accumulent
sur ’'ensemble des mesures invariantes par f (théoreme XIX); au contraire, dans le cas
des homéomorphismes dissipatifs génériques, celles-ci convergent vers une unique me-
sure (théoreme XXII). Dans le cas des difféomorphismes conservatifs génériques, leur
comportement n’est a ce jour pas connu.

Question. Pour un difféomorphisme conservatif générique f € Diff' (T2, Leb), est-ce que les

h

mesures ., tendent vers la mesure de Lebesgue ? Est-ce qu'elles s’accumulent sur 'ensemble
des mesures invariantes par f ?

307
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Les simulations numériques que nous présentons ne permettent pas clairement
d’intuiter une réponse a cette question (voir la figure 12.15) : si ces mesures sont beau-
coup plus proches de la mesure de Lebesgue que dans le cas C%, on observe tout de
méme de petites régions du tore qui portent une mesure assez grande.

On peut aussi se demander, toujours dans le cas des difféomorphismes conservatifs
génériques, ce qu’il advient des mesures pd:N. Rappelons que la mesure plf;N est la me-
sure uniforme sur 'orbite périodique de fy dans laquelle tombe l'orbite de x par fy.
Le théoréme XX affirme que pour un ensemble générique de points x, ces mesures s’ac-
cumulent sur I'ensemble des mesures invariantes par f, mais les questions suivantes
restent ouvertes.

Question. Pour un diffeomorphisme conservatif générique f € Diff' (T2, Leb), quel est le

comportement des mesures pﬁN pour un ensemble de points x de mesure totale? Du point

de vue des grilles, quel est le comportement des mesures MﬁN pour «la plupart » des points

XNEEN.?

14.3 Détection de certaines propriétés dynamiques

Dans cette these, nous ne traiterons pas du tout de la détection d’un certain nombre
d’invariants dynamiques. Par exemple, on ne donne aucun moyen de déterminer si une
dynamique est transitive ou non. De fait, les systemes étudiés ont par essence des dyna-
miques bien spécifiques : un homéomorphisme dissipatif générique n’est jamais transi-
tif, alors qu'un homéomorphisme — ou un difféomorphisme de classe C! — conservatif
générique l’est toujours. On pourrait aussi chercher a détecter la conservativité d’une
dynamique. Nous n’avons malheureusement pas d’algorithme permettant de répondre
a ce type de question. Nous ne savons pas non plus répondre a des questions comme la
suivante.

Question. Est-ce que si pour tout € > 0, une infinité de discrétisations posséde une orbite
e-dense, alors la dynamique de départ est transitive ?

Une problématique classique en dynamique est aussi le calcul effectif de I’entropie
ou des exposants de Lyapunov d’un systeme. Les résultats obtenus au cours de cette
theése ne permettent pas non plus de répondre a ce type de questions, qui ne sont
d’ailleurs pertinentes que dans le cas des difféeomorphismes génériques (pour un ho-
méomorphisme conservatif générique, ’entropie métrique est nulle et I'entropie topo-
logique est infinie). Tout juste peut-on avoir une minoration (éventuellement tres mau-
vaise) de I'entropie topologique d’un difféomorphisme conservatif du tore a I'aide du
calcul de son ensemble de rotation, et des bornes sur ’entropie en fonction de la taille
de I'ensemble de rotation obtenues par J. Kwapisz dans [Kwa93].

Question. Connaissant seulement la dynamique des discrétisations, est-il possible de calcu-
ler entropie de I'application de départ ?

Pour traiter ce type de probléme, la bonne méthode est sans doute de ne pas regar-
der la dynamique des discrétisations, c’est-a-dire d’attendre un temps « infini », mais
plutot de regarder le comportement des discrétisations pour un temps bien choisi, vrai-
semblablement logarithmique (voir la section suivante).
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14.4 Estimations explicites de la convergence de la dynamique

Un des défauts des résultats qui sont présentés dans ce manuscrit est qu’ils ne sont
pas du tout explicites (on utilise le théoreme de Baire, donc I’'axiome du choix dénom-
brable). Par exemple, lorsqu’on obtient des résultats de simulation d’ensembles de ro-
tation a l'aide de discrétisations grossiéres (voir par exemple la figure 1.4 page 25), on
n’a aucun moyen de savoir si les ensembles obtenus sont proches du vrai ensemble de
rotation ou non. Il serait sans doute assez facile d’avoir des estimations pratiques telles
que « étant donné & > 0, alors il existe Ny > 0 explicite tel que si l'ordre de la grille est su-
périeur a Ny, alors I'ensemble de rotation de la discrétisation est contenu dans le d-voisinage
du vrai ensemble de rotation ». Par contre, on n’a pour I'instant aucun moyen de savoir
a partir de quel moment I’ensemble de rotation de la discrétisation « remplit bien » le
vrai ensemble de rotation. On peut seulement avoir une indication de la convergence
lorsque la suite des ensembles obtenus semble se stabiliser, mais cela n’assure en aucun
cas que I’ensemble de rotation simulé est effectivement proche de ’ensemble de rotation
de ’homéomorphisme de départ. Il serait donc trés intéressant de pouvoir apporter des
éléments de réponse a la question suivante.

Question. Peut-on trouver un algorithme raisonnablement rapide d’approximation de 'en-
semble de rotation tel qu’on ait des estimations rigoureuses sur la distance entre I'ensemble
de rotation calculé et le vrai ensemble de rotation, en fonction des paramétres du probléme ?

14.5 Différentes notions de genéricité

Dans cette these, nous n’abordons les résultats de généricité que dans deux cas spé-
cifiques, celui de la topologie C° et celui de la topologie C! ; on peut trés bien imaginer
des études dans des contextes différents. On pourrait bien sur s’intéresser a ce qui se
passe dans le cas intermédiaire des applications Holder génériques. Il serait aussi na-
turel de regarder ce qui se passe pour des applications C" génériques, avec r > 1, voire
r = o0 ou r = w (applications analytiques réelles), mais les résultats obtenus sont déja
assez partiels en topologie C!; il se peut qu’il soit trés difficile d’avoir des énoncés sa-
tisfaisants dans ces cadres plus rigides.

Dans ce manuscrit, on fait la distinction entre les comportement des discrétisations
de systemes génériques conservatifs et dissipatifs. On pourrait tres bien imaginer étu-
dier ce qui se passe pour d’autres types de dynamiques, par exemple pour les homéo-
morphismes transitifs par chaines génériques '.

I1 existe aussi d’autres notions de généricité que celle au sens de Baire. Citons par
exemple celle de prévalence, qui est censée se rapprocher de la notion d’ensemble de
mesure totale dans un espace mesuré. C’est d’ailleurs aux difféomorphismes prévalents
que s’intéresse une partie de l'article [Mie06] de T. Miernowski sur les discrétisations
des difféomorphismes du cercle. La notion la plus plus naturelle pour 1’étude des dis-
crétisations est peut-étre celle de généricité au sens de Kolmogorov : étant donnée une
fonction f donnée par une formule explicite, la complexité au sens de Kolmogorov dé-
crit le nombre d’opérations élémentaires nécessaires pour calculer les images f(x). En
effet, pour faire des simulations numériques, on a forcément une expression explicite

1. On trouvera une étude de la dynamique des applications continues transitives par chaines géné-
riques (attention, ce ne sont pas nécessairement des homéomorphismes) dans le livre de E. Akin [Aki99].
Il est possible que les techniques présentées puissent étre mises a profit pour ’étude des discrétisations de
telles applications.
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de la loi d’évolution; on veut donc une notion de « généricité » pour les applications
définissables par une formule. On peut alors se poser la question suivante.

Question. Quelles sont les propriétés des discrétisations de la plupart des fonctions ayant
une complexité inférieure a une borne donnée ?

Ce probleme semble pour le moment bien trop complexe pour qu'on puisse y ap-
porter des réponses satisfaisantes.

Remarquons que certaines propriétés sont vraies sur des ouverts denses d’applica-
tions, par exemple, pour tout 1y > 0, la propriété « lim,_,, ., T (f) < 1 » est vérifiée sur
un ouvert dense de difféomorphismes conservatifs de classe C!. Dans ce cas, les notions
de généricité et de prévalence coincident plus ou moins.

14.6 Comportements génériques parmi les conjugués a un
homéomorphisme donné

Enfin, on peut se demander ce qui se passe lorsqu’on fixe une dynamique f, et que
I’on considere ses discrétisations par rapport a une suite de grilles générique. Une par-
tie de la réponse a cette question est donnée dans la section 5.7 du chapitre 5 : si on
considére un homéomorphisme conservatif f, et si par «suite de grilles générique » on
entend «image par un homéomorphisme conservatif générique d’une suite de grilles
fixée », alors il se passe exactement la méme chose que pour les homéomorphismes
conservatifs génériques suivant une suite de grilles fixée, pour peu que I'ensemble des
points fixes de f soit d’intérieur vide. Il serait intéressant de savoir ce qui se passe dans
d’autres cas, en particulier d’avoir des réponses a la question suivante.

Question. Sion fixe un homéomorphisme quelconque f et si on considere les discrétisations
de f par rapport a l'image d’une suite de grilles par un homéomorphisme conservatif géné-
rique, peut-on retrouver les classes de récurrence par chaines de f, voire mieux, le graphe
de transition entre ces classes de récurrence ? Que dire d’un point de vue pratique ? Que se
passe-t-il sur chaque classe de récurrence ?

14.7 Temps caractéristique

En général, lorsqu’on demande a un ordinateur de calculer I'orbite d’un point x par
une application f, celui-ci travaille en précision double, avec 52 chiffres binaires signi-
ficatifs. Si on itere numériquement f un nombre raisonnable ¢ de fois, il est donc tres
peu probable que l'orbite discréete en temps t de x tombe dans une orbite périodique
de la discrétisation, c’est-a-dire qu'il existe un temps t’ < t tel que £ (xn) = fij(xn)- En
effet, pour une application aléatoire d’un ensemble a 2°? éléments, ce temps t’ est typi-
quement de l'ordre de 84 millions (voir par exemple le théoréme 2.3.1 de [Mie05]). Or,
les résultats que l'on obtient dans cette theése concernent précisément ce cas récurrent;
a priori ils ne peuvent donc pas expliquer ce qui se passe en pratique.

les orbites de f et dynamique de la
fx sont proches 2272 discrétisation

|
I

t=0 tr tr 00
petit temps de stabilisation
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La ligne du temps ci-dessus concerne le comportement temporel d’une discrétisa-
tion fy donnée. On a représenté un temps f; qui correspond au temps jusqu’auquel
l'orbite de n'importe quel point de départ x sous fy piste celle de x sous f. Les estima-
tions théoriques qu’on a pour ce temps jusqu’auquel on a un « pistage fort » sont assez
mauvaises. Par exemple, si I'application f est lipschitzienne, ce temps t; est logarith-
mique en la taille de la grille. En pratique, lorsqu’on effectue des simulations, on itere
bien au-dela de ce temps généralement assez court. Le temps t,, lui, est le temps de
stabilisation de fy, c’est-a-dire le temps a partir duquel 'orbite de tout point de la grille
est tombée dans ’ensemble récurrent de fy. A partir de ce temps-ci, la dynamique de
fn est strictement périodique ; on peut considérer que ce n’est qu’a partir de ¢, que l'on
voit apparaitre la dynamique de la discrétisation.

I1 reste donc tout un intervalle de temps — a savoir [t1,t;] — sur lequel on ne sait
pas vraiment comment évoluent les discrétisations.

Dans cette these, on s’intéresse principalement a la dynamique des discrétisations
de systémes. Le comportement en temps fini des discrétisations a déja été étudié par
P.P. Flockermann (voir la section 2.4). Il serait extrémement intéressant de déterminer
un temps caractéristique « intermédiaire » t; < t] < t, jusqu’auquel on voit a coup
sur la dynamique de l'application de départ, sans pour autant subir les phénomenes
de récurrence induits par le fait de discrétiser. A ce sujet, O.E. Lanford a émis une
conjecture.

Conjecture (Lanford). Soit f : S' — S! une application dilatante de classe C* générique. Si
on note Leby la mesure uniforme sur la grille Ey, et p 'unique mesure physique de f, alors
fIG(LebN) — , lorsque N, k tendent vers +oo, avec InN « k <« VN.

Dans ce manuscrit, nous démontrons un théoreme allant dans le sens de la conjec-
ture (voir le théoreme XXXI), mais qui ne concerne malheureusement que des temps
InN = O(k). J'espere que les techniques présentées dans le chapitre 9 permettront
d’avancer un peu plus dans le sens de cette conjecture.

14.8 Comparaison avec les applications aléatoires

Dans cette these, nous ne comparons (presque) pas la dynamique des discrétisa-
tions avec celle d’une application aléatoire typique d’un ensemble a g éléments. Par
typique, on entend la chose suivante. On se fixe un entier g et on considere I’ensemble
des applications d’un ensemble a q éléments dans lui-méme; on munit cet ensemble
fini d’applications de la probabilité uniforme. On se demande alors quelles propriétés
sont satisfaites par la plupart de ces applications. Ce type de questions a entre autres
été étudié par P. ErdGs et P. Turan (voir par exemple [ET65] et [ET67]), on trouvera un
survol des résultats dans [Bol01]. Par exemple, le degré de récurrence de telles applica-
tions (qui est rappelons le le rapport entre le cardinal de I'ensemble récurrent et g) est
de l'ordre de g~1/2. Bien sfir, ’étude que nous menons dans le cas des homéomorphismes
conservatifs génériques montre que les discrétisations de telles applications ne se com-
portent pas du tout comme des applications aléatoires, et cela méme d’un point de vue
expérimental. Par contre, ce qui se passe pour les discrétisations de difféomorphismes
de classe C’, avec r > 1, n’est pas clair du tout. Malheureusement, 1’étude précise de
la combinatoire des discrétisations de telles applications semble pour I'instant hors de
portée.
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14.9 Discrétisations spatiales versus perturbations
stochastiques versus applications multivaluées

Dans cette these, nous n‘abordons pas du tout les problemes des perturbations sto-
chastiques de dynamiques ou de discrétisations multivaluées.

Le premier probleme est le suivant : on considére une dynamique f, et on s’intéresse
non pas aux orbites de f, mais aux suites (xg)g>g, OU X1 est obtenu en prenant une
petite perturbation aléatoire de I'image f(xx). On peut formaliser de plusieurs maniéres
I'idée de « petite perturbation », on peut par exemple choisir de prendre I'image de
xx par une fonction choisie aléatoirement parmi celles qui sont proches de f, ou bien
prendre un point aléatoirement dans un voisinage de f(xy), etc. On pourra consulter les
notes de cours [Via97] de M. Viana pour se faire une idée de la richesse des résultats
obtenus (par exemple, dans le cas des applications dilatantes [Kif86a],[Kif86b], [Kel82],
ou des applications uniformément hyperboliques [Kif86b], [You86], etc.).

En regle générale, ces résultats supposent que la dynamique soit assez réguliere (ty-
piquement au moins C'*%); une méthode classique pour les obtenir est de passer par
certains opérateurs de transfert liés a la dynamique. Ils suggerent tous que la dyna-
mique physique des perturbations stochastiques converge vers la dynamique physique
de l'application de départ. Comme on l’a déja dit, ce qu'on obtient pour les discréti-
sations de systemes génériques va dans un sens bien différent : au bout d’'un moment,
l'orbite de chaque point de la grille tombe dans une orbite périodique. Ce phénomene
de récurrence détruit tout espoir de voir les discrétisations se comporter comme des
perturbations stochastiques sur des échelles de temps assez longues ; cela peut influer
sur la dynamique ergodique des discrétisations, vue I’absence de convergence uniforme
dans le théoréeme de Birkhoff. Cela n'empéche que les discrétisations de certaines dyna-
miques peuvent étres proches de perturbations stochastiques pendant un certain temps,
c’est par exemple ce que démontre P.P Flockermann dans sa these [Flo02] dans le cas
des applications dilatantes du cercle. Toutefois, il n‘obtient pas d’estimation effective
sur le temps pendant lequel ce comportement reste vrai.

Question. Pendant combien de temps les discrétisations d’une application dilatante sur le
cercle générique, ou d’un difféomorphisme générique, se comportent comme des perturbations
stochastiques ?

Dans ce manuscrit, nous ne parlons pas non plus d’approximation de la dynamique
par des applications multivaluées. Ce point de vue peut étre assez intéressant pour dé-
terminer quelles propriétés dynamiques d’une application peuvent étre retrouvées en
considérant des approximations discretes de la dynamique, voir par exemple [LP11]
(voir aussi [Mro96] et [DKP96]). En approchant une dynamique par une application
multivaluée, on perd a priori beaucoup moins d’information qu’en l'approchant par
une application finie. Malgré cela, dans le cas des homéomorphismes conservatifs géné-
riques, on montre qu’en fait, on peut retrouver « tous » les invariant dynamiques de I’ap-
plication de départ en considérant I'ensemble de ses discrétisations (voir par exemple le
théoreme XIX). Par conséquent, en théorie, on ne perd pas plus d’information en discré-
tisant qu’en considérant des approximations multivaluées. De fait, dans le chapitre 5,
on utilise implicitement des applications multivaluées : la preuve du théoréme de Lax
consiste a extraire une vraie application d’une application multivaluée. La suite du cha-
pitre 5 utilise le méme type d’arguments : les candidats a étre des discrétisations sont
contenus dans une application multivaluée; le théoréeme de Baire nous autorise alors
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a choisir, parmi toutes les extractions possibles, celles qui ont des propriétés que 'on
veut voir apparaitre une infinité de fois sur la suite des discrétisations.

Néanmoins, dans le cas des applications multivaluées, il est peut-étre possible d’ob-
tenir des estimations effectives de l'ordre de la discrétisation jusqu’auquel il faut aller
pour pouvoir retrouver les invariants dynamiques avec une précision donnée. Cela n’est
clairement pas le cas pour les discrétisations de systemes génériques, en tous cas avec
les méthodes utilisées dans cette these. Il faut noter que le fait de considérer des ap-
plications multivaluées pose des contraintes pratiques supplémentaires : par exemple,
il est beaucoup plus cotiteux de détecter numériquement les cycles d’une application
multivaluée que ceux d’une application classique.
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