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Abstract

Autonomous navigation of car-like robots is a large domain with several techniques

and applications working in cooperation. It ranges from low-level control to global nav-

igation, passing by environment perception, robot localization, and many others in a

sensor-based approach. Although there are very advanced works, they still presenting

problems and limitations related to the environment where the car is inserted and the

sensors used. This work addresses the navigation problem of car-like robots based on

low cost sensors in urban environments. For this purpose, an intelligent electric ve-

hicle was equipped with vision cameras and other sensors to be applied in three big

areas of robot navigation: the Environment Perception, Local Navigation Control, and

Global Navigation Management. In the environment perception, a 2D and 3D image

processing approach was proposed to segment the road area and detect the obstacles.

This segmentation approach also provides some image features to local navigation con-

trol. Based on the previous detected information, a hybrid control approach for vision

based navigation with obstacle avoidance was applied to road lane following. It is com-

posed by the validation of a Visual Servoing methodology (deliberative controller) in a

new Image-based Dynamic Window Approach (reactive controller). To assure the car’s

global navigation, we proposed the association of the data from digital maps in order to

manage the local navigation at critical points, like road intersections. Experiments in a

challenging scenario with both simulated and real experimental car show the viability

of the proposed methodology.

Keywords: Car-like robot navigation; Road segmentation; Visual Servoing; Dynamic

Window Approach; Global navigation management.
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Résumé

La navigation autonome des voitures robotisées est un domaine largement étudié

avec plusieurs techniques et applications dans une démarche coopérative. Elle intègre

du contrôle de bas niveau jusqu’à la navigation globale, en passant par la perception de

l’environnement, localisation du robot, et autres aspects dans une approche référencée

capteurs. Bien qu’il existe des travaux très avancés, ils présentent encore des problèmes

et limitations liés aux capteurs utilisés et à l’environnement où la voiture est insérée.

Ce travail aborde le problème de navigation des voitures robotisées en utilisant des

capteurs à faible coût dans des milieux urbains. Dans cette thèse, nous avons traité le

problème concernant le développement d’un système global de navigation autonome

référencée capteur appliqué à un véhicule électrique intelligent, équipé avec des camé-

ras et d’autres capteurs. La problématique traitée se décline en trois grands domaines de

la navigation robotique : la perception de l’environnement, le contrôle de la navigation

locale et la gestion de la navigation globale. Dans la perception de l’environnement,

une approche de traitement d’image 2D et 3D a été proposé pour la segmentation de la

route et des obstacles. Cette méthode est appliquée pour extraire aussi des caractéris-

tiques visuelles, associées au milieu de la route, pour le contrôle de la navigation locale

du véhicule. Avec les données perçues, une nouvelle méthode hybride de navigation

référencée capteur et d’évitement d’obstacle a été appliquée pour le suivi de la route.

Cette méthode est caractérisée par la validation d’une stratégie d’asservissement visuel

(contrôleur délibératif) dans une nouvelle formulation de la méthode “fenêtre dyna-

mique référencée image" (Dynamic Window Approach - DWA, en anglais) (contrôleur

réactif). Pour assurer la navigation globale de la voiture, nous proposons l’association

des données de cartes numériques afin de gérer la navigation locale dans les points

critiques du chemin, comme les intersections de routes. Des essais dans les scénarios

difficiles, avec une voiture expérimentale, et aussi en environnement simulé, montrent

v
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la viabilité de la méthode proposée.

Mots-clés : Navigation d’une voiture robotisée ; Segmentation de la route ; Asservisse-

ment visuel ; Approche de la fenêtre dynamique ; Navigation globale.
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Chapter 1

Introduction

1.1 Motivation

The world is dynamic and in constant evolution. The current technologies belong

to this evolution, which improve the daily activities of human beings, reducing acci-

dents and enhancing their quality of life. Robotics is one between many technological

resources used for this end. Industrial robotics, e.g., perform repetitive tasks in danger-

ous scenarios with considerable productivity gains.

Similar to industrial robotics, autonomous vehicles have been increasingly in evi-

dence in the last few decades, once several gains for the security, power consumption,

efficiency, etc. are involved (Broggi et al., 1999). Although there were important contri-

butions before, it is after the DARPA Grand Challenges, held by the American’s Defense

Advanced Research Projects Agency (DARPA) between 2004 and 2007 (Thrun et al.,

2006; Buehler et al., 2008), that the potentiality of these vehicles have been put on

test. Nowadays, there are vehicles able to drive in different situations, for long dis-

tances and respecting the traffic laws (Luettel et al., 2012; Wei et al., 2013; Ziegler

et al., 2014) (see Figure 1.1).

However, these vehicles use high cost sensors, some of them impractical for final

commercial cars. In addition, they must deal with some problems caused by the en-

vironment where the car is inserted, like the localization problems common related to

GPS signal losses, as described by many DARPA participants (Thrun et al., 2006; Buehler

et al., 2008). Even with differential corrections, the GPS information fails when the

urban environment has structures like tall buildings, overpasses and tunnels (von Hun-

delshausen et al., 2008). Hence, this leaves us several possibilities for new navigation

1



2 Chapter 1. Introduction

Figure 1.1 – Examples of car-like robots, where on the left is the Boss (Urmson
et al., 2008), winner of the DARPA Urban Challenge and on the right is the Google
Car (Guizzo, 2011).

approaches based on low cost sensors, which do not depend on accurate localization

information and are better suited for the environment where the vehicle is inserted.

Sensor-based control is a useful strategy based on exteroceptive sensors data (like

sonar, radar, LIDAR, and vision systems) to guide the robot during navigation tasks. This

can be extended for car-like robots, once their workspace, mainly in the urban environ-

ments, are rich of perceptible information. Commercially, some manufacturers have

already been used exteroceptive sensors in their Advanced Driver Assistance Systems

(ADAS) for parking assistance, lane keeping, collision alert, Adaptive Cruise Control

(ACC), etc. (Soualmi et al., 2014). In full autonomous applications, an industrial truck

has been successfully applied in mining environments (Jamasmie, 2009).

The navigation tasks can be divided in local and global approaches. Local navigation

strategies are those related to static or moving objects in the environment surrounding

the robot. In urban environments they can be exemplified by road following, vehicle

platooning, lane keeping, etc. For these applications, vision systems are a reliable low

cost alternative which concentrate a large number of environment data in a single im-

age (Bonin-Font et al., 2008). The viability of implementing many computer vision

algorithms in hardware also increases the processing speed and reduces the power con-

sumption, common problem in intelligent electric vehicles (IEVs). Visual Servoing (VS)

is one of the many ways to deal with this guidance problem using visual features in a

sensor-based navigation (Chaumette and Hutchinson, 2006). However, the approaches

based on VS do not directly change the velocities of the vehicle to perform the obstacle

avoidance, essential in urban environments navigation.
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Apart from that, global navigation strategies are those responsible to guide the robot

to a final destination. This requires a previous knowledge of the environment and

a localization system in a global frame, which lead us to the localization problems

mentioned before. Therefore, it is important to reduce the localization dependency

during the robot navigation to minimize those problems.

In this context, we propose a new sensor-based navigation approach for IEVs, com-

bining vision cameras for local navigation and digital map for global navigation man-

agement. The local navigation is based on a hybrid controller named (VS+IDWA),

which uses a VS approach as deliberative control and a new reactive control derived

from the Dynamic Window Approach (DWA) for obstacle avoidance (Fox et al., 1997).

For this purpose, a complete environment perception using only cameras is proposed

for road and obstacles detection. The global navigation management uses the semantic

and geometric information from a digital map to assure the car navigation even in road

intersections. The entire system performance is validated experimentally in simulation

and in a real electric car. The objectives behind this method are detailed next.

1.2 Objectives

The present work addresses the sensor-based navigation problem for intelligent elec-

tric vehicles in urban environments. Focusing on approaches for low cost sensors, the

following steps will be considered:

— The environment perception using vision systems, with the required information

to navigate the vehicle, like the road area and obstacles;

— The local navigation control for road following and obstacle avoidance, based

only on visual information of the environment;

— The global navigation management to ensure the vehicle motion in local tasks;

— The adjustment of an existing fully actuated IEV, an Renault Zoé, for sensor-

based navigation, which includes the installation of sensors for perception of the

environment, the definition of its motion model, the development of a global

localization, and the implementation of a low-level velocity control;

— The development of a simulation environment for fast validation of the proposed

navigation approach.
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We expect to provide, with these previous resources, a complete navigation solution

for our electric car, which can be improved with more sensors and local navigation

strategies for future users.

The overall aim of this thesis is to provide original contributions to the existing

methods and techniques in the development of a complete navigation solution for an

electric vehicle that moves autonomously in urban areas, performing a preselected route

defined by the user.

1.3 Contributions

This work presents a new sensor-based navigation strategy for autonomous robotic

automobiles. Although the robot navigation area involves several important domains,

here we considered three big areas during the development of the work: the Environ-

ment Perception, the Local Navigation Control, and the Global Navigation Management.

In the environment perception, the road and obstacles detection problem was con-

sidered for stereo vision cameras in urban scenarios. This brought us many troubles

in the stereo image processing (using disparity maps) caused by shadows, light reflec-

tions, and low texture variations. Thus, we developed a methodology which improves

the stereo information for road segmentation and disparity map refinement (Vitor et al.,

2013; Lima et al., 2013). Building on these works, the current perception solution was

implemented to allow the fast detection of road, obstacles, and the features required

for the local navigation control. A quantitative evaluation compared the performance

of these approaches for road segmentation on challenging scenarios.

For the local navigation control, we proposed a new reactive controller named Im-

age-Based Dynamic Window Approach (IDWA) (Lima and Victorino, 2014c), integrat-

ing the VS control methodology for road lane following in the DWA for obstacle avoid-

ance (Fox et al., 1997). However, following the desired road lane and avoiding obsta-

cles are opposite tasks for the Image-Based Dynamic Window Approach (IDWA), which

means that one of these tasks will not be realized with the best performance. Taking

advantage of the VS (as deliberative) and the IDWA (as reactive) controllers, we pre-

sented a hybrid control solution (Lima and Victorino, 2014b), where the IDWA works as

a validation method for the VS control outputs. In this approach, if the VS velocities are
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not safe to be applied as control inputs in the car, the IDWA will perform the required

reactive correction. This hybrid controller (VS+IDWA) takes into account the obsta-

cles and the vehicle dynamic/kinematic constraints to perform the road lane following.

Furthermore, the proposed reactive controller IDWA has been successfully applied for

human driving behavior correction by another PhD. student (Kang et al., 2014a,b).

Considering only low cost sensors, the global navigation management focused on

approaches which were less dependent on localization system, in this the GPS systems.

Thus, we proposed a global navigation strategy (Pereira et al., 2014), combining digital

maps with the previous local navigation control. In this strategy, the robot tasks were

divided in road following (corridors) and road intersection maneuvers (critical points),

where the car localization is required only when arriving at a critical point and with-

out high precision. However, this approach presented limitations dealing with some

intersections and was validated only in simulation environments. By means of the pre-

vious VS+IDWA controller, here we generalized this global navigation in a complete

sensor-based approach.

In addition, all these presented contributions were experimented and validated in a

real IEV, a full electric ZOE Renault from the Heudiasyc UMR CNRS 7253 Laboratory

at the Université de Technologie de Compiègne. This zero emission vehicle was trans-

formed by Renault with full actuation (throttle, brake and steering). In complement to

our thesis work, we developed low level controllers for linear and steering velocities,

that were useful to other developments on the Heudiasyc Lab (Vitor, 2014).

1.4 Organization

The Chapter 1 presented the motivations for the present work, the objectives in

mind, and the proposed contributions. In the Chapter 2, a short overview about the

autonomous robotic automobiles development will guide the reader about some impor-

tant contributions in this domain. It also presents the related work in the environment

perception, sensor-based navigation, and global navigation for car-like robots; with a

special attention to those based on vision systems and low cost sensors. Then, in the

Chapter 3 the IEV, used in the experimental results of this work, is shown in details,

with the complete system design. A simulation environment, created to mimic the real
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vehicle scenario, is also depicted in this chapter. The proposed solution implementation

starts in effect in the Chapter 4, where the environment perception using vision cameras

is detailed. Experiments in real urban scenarios show the robustness of this approach.

Next, the Chapter 5 introduces the hybrid controller VS+IDWA, which integrates the

deliberative control VS with the reactive control IDWA. The results and performance of

these controllers were validated in both simulated and real car-like robot. Thus, this

hybrid controller was combined with a global navigation management at Chapter 6,

to afford the complete sensor-based autonomous navigation solution. The conclusions

and perspectives for future works are discussed in the Chapter 7. The Appendix A brings

further details about the distance to collision implementation for the reactive controller.



Introduction

1.1 Motivation

Le monde est dynamique et en constante évolution. Les technologies actuelles appar-

tiennent à cette évolution, ce qui améliore les activités quotidiennes des êtres humains,

avec la réduction des accidents et l’amélioration de leur qualité de vie. La robotique

est un parmi d’autres nombreuses ressources technologiques utilisées à cette fin. La ro-

botique industrielle, par exemple, effectue des tâches répétitives, dans des scénarios

dangereux, et avec plusieurs gains de productivité considérables.

Comme pour la robotique industrielle, au cours des dernières décennies, les voitures

robotisées ont été de plus en plus en évidence, une fois que plusieurs gains pour la sé-

curité, la consommation d’énergie, l’efficacité, etc. sont impliqués (Broggi et al., 1999).

Bien qu’il y ait d’importantes contributions avant, c’est après les DARPA Grand Chal-

lenges, réalisés pour l’agence de la recherche du ministère de la Défense des États-Unis

(DARPA) entre 2004 et 2007 (Thrun et al., 2006; Buehler et al., 2008), que la poten-

tialité de ces véhicules a été testée. Actuellement, il y a des véhicules capables de se

conduire en différentes situations, pendant des longues distances et en respectant les

lois de circulation (Luettel et al., 2012; Wei et al., 2013; Ziegler et al., 2014) (voir la

Figure 1.2).

Cependant, ces véhicules utilisent des capteurs de coût élevé, beaucoup d’entre eux

impraticables pour les voitures commerciales. De plus, ils doivent faire face à quelques

problèmes liés à l’interaction avec l’environnement où la voiture est insérée, comme les

problèmes de localisation liés à la perte de signal GPS, décrits par plusieurs participants

des chalenges DARPA (Thrun et al., 2006; Buehler et al., 2008). Même avec des cor-

rections différentielles, les données GPS échouent lorsque l’environnement urbain a des

structures comme des gros bâtiments, des viaducs et tunnels (von Hundelshausen et al.,

7
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FIGURE 1.2 – Des exemples de voiture robotisées, où sur la gauche est le Boss (Urmson
et al., 2008), vainqueur de la DARPA Urban Challenge, et sur la droite est la voiture de
Google (Guizzo, 2011).

2008). Il est important donc de rechercher des nouvelles approches pour la navigation

basées sûr des capteurs à faible coût, mieux adaptés à l’environnement dans lequel le

véhicule est inséré.

La commande référencée capteurs est une stratégie utile pour guider le robot lors

de tâches de navigation, en utilisant les données des capteurs extéroceptifs (comme le

sonar, radar, lidar et les systèmes de vision). Ceci peut être étendu pour les voitures

robotisées, une fois que leur espace de travail, principalement dans les milieux urbains,

sont riches d’informations perceptible. Commercialement, certains fabricants ont déjà

utilisé des capteurs extéroceptifs dans leurs systèmes d’aide à la conduite (ADAS) pour

l’aide au stationnement, maintien sur la voie, alerte de collision, régulateur de vitesse

adaptatif (ACC), etc. (Soualmi et al., 2014). Parmis les applications autonomes com-

plètes, il y a celle où un véhicule de service robotisé a réalisé des tâches de navigation

avec succès dans des environnements miniers (Jamasmie, 2009).

Les tâches de navigation peuvent être divisées dans les approches locales et globales.

Les stratégies de navigation locale sont celles liées aux objets statiques ou dynamiques

dans l’environnement autour du robot. En milieu urbain, elles peuvent être illustrées

par les approches de suivie de route, platooning de véhicules, maintien sur la voie, etc.

Pour ces applications, les systèmes de vision sont une alternative fiable à faible coût qui

concentre un grand nombre de données sur l’environnement en une seule image (Bonin-

Font et al., 2008). La viabilité de la mise en œuvre de nombreux algorithmes de vision

par ordinateur au niveau du matériel augmente également la vitesse de traitement et

réduit la consommation d’énergie, problème courant dans les véhicules électriques in-

telligents (IEVs). L’asservissement visuel (VS) est une des nombreuses façons de traiter
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ce problème de guidage en utilisant des caractéristiques visuelles dans une navigation

référencée capteurs (Chaumette and Hutchinson, 2006). Cependant, l’asservissement

visuel est une méthode de commande délibérative qui n’effectue pas directement les

changements de vitesse nécessaires pour l’évitement d’obstacles, essentiels dans les en-

vironnements urbains.

D’autre côté, les stratégies de navigation globale concernent le problème de gui-

der le robot vers une destination finale. Cela demande une connaissance préalable de

l’environnement et un système de localisation du robot dans un environnement urbain

global, ce qui nous conduit aux problèmes de localisation mentionnés auparavant. Pour

cela, il est important de réduire la dépendance sur la localisation pendant la navigation

du robot et minimiser ces problèmes.

Dans ce contexte, nous avons proposé une nouvelle approche de navigation référen-

cée capteurs pour les IEVs, en utilisant des caméras de vision pour la navigation locale

et la carte numérique pour la gestion globale de la navigation. La navigation locale est

basée sur un contrôleur hybride nommée (VS+IDWA), qui combine un contrôleur dé-

libératif par le VS et un nouveau contrôleur réactif dérivé de l’approche de la fenêtre

dynamique (DWA) pour l’évitement d’obstacles (Fox et al., 1997). Pour cela, une métho-

dologie complète de perception de l’environnement, en utilisant seulement des caméras,

a été proposée pour la détection de la route et les obstacles. La gestion globale de la

navigation utilise les informations sémantiques et géométriques d’une carte numérique

pour assurer la navigation de la voiture, même dans les intersections. Les performances

du système tout entier est validé expérimentalement embarqué dans une vraie voiture

électrique, mais aussi dans un environnement de simulation. Les objectifs derrière cette

méthode sont détaillés comme suit.

1.2 Objectifs

Le présent travail aborde le problème de navigation référencée capteurs pour les

véhicules électriques intelligents dans des milieux urbains, en se concentrant sur les

capteurs à faible coût pour la perception de l’environnement et localisation du robot,

comme les systèmes de vision et GPS. Les étapes suivantes seront considérées :
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— La perception de l’environnement en milieu urbain à l’aide de systèmes de vision,

avec toutes les informations nécessaires pour faire naviguer le véhicule, comme

la détection de la route et des obstacles ;

— Le contrôle de navigation locale pour le suivi de route et l’évitement d’obstacles,

basée uniquement sur l’information visuelle de l’environnement ;

— La gestion globale de la navigation pour assurer la bonne voie à suivre pendant

la navigation locale, les limitations de vitesse, etc ;

— L’adaptation d’un IEV, une Zoé Renault, d’actionnement complet, déjà existant,

à la navigation autonome. Ce qui comprend l’installation des capteurs extérocep-

tifs pour la perception de l’environnement, la définition de son modèle de mou-

vement, et la mise en œuvre d’un système de localisation globale et un contrôle

de vitesse de bas niveau ;

— Le développement d’un environnement de simulation pour la validation rapide

de l’approche de navigation proposée.

L’objectif global de la thèse concerne à proposer des contributions originales aux mé-

thodes et aux techniques existantes dans le développement d’une solution complète de

navigation pour une voiture électrique qui se déplace de manière autonome en milieux

urbains, en effectuant un itinéraire préalablement choisi par l’utilisateur.

1.3 Contributions

La navigation de robots comprend normalement plusieurs domaines importants,

comme la localisation, la perception de l’environnement, le contrôle de mouvement

et planification de la trajectoire, etc. Ce travail présente une nouvelle stratégie de na-

vigation référencée capteurs pour les voitures autonomes. Par conséquent, nous avons

étudié trois grands domaines au cours du développement de ce travail : la perception de

l’environnement, le contrôle de navigation locale, et la gestion globale de la navigation

(y compris localisation du robot et la planification de la trajectoire).

Dans la perception de l’environnement nous avons examiné les problèmes sur la dé-

tection de la route et des obstacles à l’aide des caméras de vision stéréo en milieu urbain.

Cela nous a amené plusieurs problèmes dans le traitement de l’image stéréo (comme la

carte de disparité) causés par des ombres, des reflets de lumière, et des faibles variations
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de texture. Ainsi, nous avons développé une méthodologie qui améliore l’information

stéréo pour la détection de la route et le raffinement de la carte de disparité (Vitor et al.,

2013; Lima et al., 2013). Poursuivant les concepts présentés dans ces travaux, la solu-

tion de perception actuelle a été mise en œuvre pour permettre la détection de la route,

des obstacles, et fournir des primitives visuelles utilisées dans la boucle de commande

de la navigation locale. Tous les résultats ont été comparés quantitativement.

Pour le contrôle de navigation locale, nous avons proposé un nouveau contrôleur ré-

actif nommé “approche de la fenêtre dynamique référencée image" (IDWA) (Lima and

Victorino, 2014c), avec l’intégration d’une méthodologie de VS pour le suivi de la voie

routière dans la DWA pour l’évitement d’obstacles (Fox et al., 1997). Cependant, suivre

la voie routière désirée et éviter les obstacles sont des tâches opposées pour l’IDWA, ce

qui cause une baisse de performance. Profitant des deux contrôleurs délibératif (VS)

et réactif (IDWA), nous avons présenté une solution de contrôle hybride (Lima and

Victorino, 2014b), où l’IDWA fait la validation des vitesses calculées par le VS. Dans

cette approche, si les vitesses fournies par le VS ne sont pas applicables comme entrées

de commande (dû aux limitations dynamiques et spaciales de la configuration du ro-

bot), l’IDWA effectuera la correction réactif. Ce contrôleur hybride (VS+IDWA) prend

en compte les obstacles et les contraintes cinématiques/dynamiques du véhicule pour

effectuer le suivi de la route en toute sécurité. En outre, le contrôleur IDWA réactive

proposée a été appliquée avec succès dans la correction du comportement de conduite

humaine par un autre doctorat (Kang et al., 2014a,b).

La méthodologie proposé ne considère que des capteurs à faible coût, de ce fait la

gestion globale de la navigation doit être moins dépendante du système de localisation,

dans ce cas basé sur le GPS. Ainsi, nous avons proposé une stratégie globale de naviga-

tion (Pereira et al., 2014), combinant des cartes numériques avec le contrôle de naviga-

tion locale décrite dans le paragraphe précédent. Dans cette stratégie, les tâches de na-

vigation du robot peuvent être divisées en suivi de la route (couloirs) et les manœuvres

dans les intersections (points critiques). La localisation de la voiture est nécessaire uni-

quement en arrivant à un point critique, sans précision exacte. Cette méthodologie a été

validé dans des environnements simulées, en présentant certaines limitations aux croi-

sements des certaines intersections de routes. Afin d’améliorer et enlever certaines de
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ces limitations, nous avons développé une approche référencée capteurs pour effectuer

des manœuvres dans les intersections de routes de manières plus robustes.

En plus, toutes ces contributions ont été testés et validés dans un vrai IEV, une ZOE

Renault complètement électrique propriété du laboratoire Heudiasyc UMR CNRS 7253

à l’Université de Technologie de Compiègne. Ce véhicule zéro émission a été transformé

par Renault avec un actionnement complet (accélération, freinage et direction). Paral-

lèlement aux travaux développés dans la thèse, nous avons développé des régulateurs

bas niveau pour la commande de la vitesse linéaire et de braquage du véhicule, qui a

été profitable à d’autres développements au laboratoire Heudiasyc (Vitor, 2014).

1.4 Organization

Le Chapitre 1 a présenté les motivations pour ce travail, les objectifs envisagés, et

les contributions proposées. Dans le Chapitre 2, un bref aperçu sur le développement

des voitures autonomes guidera le lecteur sur des contributions importantes dans ce

domaine. Il présente également les travaux liés à la perception de l’environnement, à la

navigation référencée capteurs, et à la navigation globale pour les voitures robotisées ;

en donnant priorité aux approches fondées sur les systèmes de vision. Puis, dans le Cha-

pitre 3 l’IEV, utilisé lors des expérimentations de ce travail, est montré en détails, avec

sa conception et les dépendances du système. Un environnement de simulation et ses

capacités sont également illustrés dans ce chapitre. La mise en œuvre de la solution pro-

posée commence en effet dans le Chapitre 4, où la perception de l’environnement basé

sur des capteurs de vision est détaillée. Des expérimentations dans les scénarios réels

urbains montrent la robustesse de cette approche. En suite, le Chapitre 5 présente le

contrôleur hybride VS+IDWA, qui intègre les contrôleurs délibératif VS et réactif IDWA.

Les résultats et les performances de tous les contrôleurs ont été validés dans le véhicule

expérimental et en simulation. Ce contrôleur hybride a était combinée avec la gestion

globale de la navigation dans le Chapitre 6, pour fournir la solution référencée capteurs

complète. Les conclusions et les perspectives pour les travaux futurs sont indiqués dans

le chapitre 8. L’Annexe A présente plus en détails le calcule de la distance de collision

sur le contrôleur réactif.
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Related Work

In the last feel decades, several works have been developed for autonomous robotics

automobiles, also known as driverless cars. The first step was given in the Tsukuba

Mechanical Engineering Lab, Japan, at late 1970s, with a driverless car conceived with

heavy and slow computers. It was able to track white street marks with computer vision

at speeds up to 30 km/h. However, the first car-like robots in Europe were created 10

years after in the Bundeswehr University Munich (UniBW), in Germany, under supervi-

sion of professor Ernst Dickmanns (Dickmanns and Zapp, 1987; Dickmanns et al., 1990,

1994). Some American authors compare Dickmanns to the Wright brothers 1, due to his

importance in the development of autonomous cars. The vehicles created were part of

the project PROMETHEUS 2 (from 1987 to 1995) and covered thousands of kilometers

in traffic at velocities up to 175 km/h, where about 95% was completely autonomous

driving. They were based on vision cameras with saccadic movements.

Along with the project PROMETHEUS, during the 1990s more autonomous vehicles

had emerged, following the advancement of sensors and portable computers. The first

U.S. contribution, e.g., came in this period with the project called “No hands across

America" from the Carnegie Mellon University (CMU). They developed a car named

Navlab 5 (Pomerleau and Jochem, 1996), performing autonomous navigation from

Washington DC to San Diego with 98% automated steering and manual longitudinal

control. Another important contribution came from the Italian project ARGO proposed

by (Broggi et al., 1999), an offshoot from the project PROMETHEUS with similar results.

1. The brothers Orville and Wilbur Wrigth are considered by the North-Americans the “Fathers of
Modern Aviation".

2. PROMETHEUS stands for PROgraMme for a European Traffic of Highest Efficiency and Unprecedented

Safety.

13
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Nevertheless, a large number of contributions have appeared in the 21th century,

coinciding with several public challenges. The most significant were carried out by the

American’s DARPA, with the first Grand Challenge proposed in 2004 for off-road au-

tonomous vehicles. However, the effective one was the second challenge proposed for

2005, which had a winner (Thrun et al., 2006). These competitions bring several new

sensors, like the 360◦ laser scanners (Halterman and Bruch, 2010) (shown in the Fig-

ure 2.1c). The third competition, the Urban Challenge (Buehler et al., 2008), was held

in November 2007 in a fake urban environment. Differently from the previous ones,

the Urban Challenge had demanded some interaction with others vehicles and urban

features from the participants. However, important interactions between pedestrian,

bicyclists, or traffic lights, still not required. Almost all produced vehicles used very

expensive sensors, like high-end laser scanners coupled with radars and high-precision

GPS/INS, impractical for final commercial purposes. For the cooperative scenarios was

proposed the Grand Cooperative Driving Challenge. The first one was performed at the

Netherlands highways in 2011 (Ploeg et al., 2012), focusing on the ability to carry out

longitudinal control (platooning). The next will be hold in 2016, adding the lateral

control (steering) problem.

Nowadays, many teams worldwide have continued the development of autonomous

cars. In U.S., it is impressive the results presented by the Google car (Guizzo, 2011),

based on the expertise extension gained in the DARPA Urban Challenge. Its main com-

ponents are a high-end laser scanner on the car’s roof and a prerecorded map (con-

structed during a manual drive). In Europe, the group supervised by Alberto Broggi

has performed an impressive long term autonomous navigation from Parma, Italy, to

Shanghai, China, by applying cooperative driving (Broggi et al., 2012). Recently, they

presented a full autonomous result in the public traffic area around the streets of Parma.

Another group, based in Germany, has presented some contributions in autonomous

driving, with the vehicle Bertha Benz (Ziegler et al., 2014), and validation of computer

vision algorithms, with the KITTI Vision Benchmark (Geiger et al., 2012). Comparing

with the Google’s car, these European projects focus on the sensor setup regarding ro-

bustness, availability and redundancy for final commercial terms. It is also important

to mention that there are other groups working with driverless cars around the world.
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In Brazil, e.g., the projects CADU 3 (Lima and Pereira, 2013) and CaRINA 4 (Fernandes

et al., 2014), deal with several problems related to unstructured urban environments,

different from those normally seen in Europe and U.S.

In the present work, we focused our efforts on: environment perception, sensor-

based control for autonomous navigation, and global navigation management; all based

on vision systems and low cost sensors. The following sections will detail the related

work on these areas and how they were embedded in the some vehicles.

2.1 Environment perception

Environment perception is a large domain in mobile robotics which involves differ-

ent sensors, detection techniques, sensors fusion, and final data representation. Several

authors say that the contribution of the perception layer for the robot navigation is

around 70% of the entire system, since it provides all the environment information for

the robot motion. Here, we present the most commonly used sensors in intelligent vehi-

cles, some detection applications for vision cameras, and the possibilities for data fusion

and final representation, as detailed in the next subsections.

Perception sensors

Considering the sensors applied on intelligent vehicles, the most common are the

sonars, lidars, and vision systems, illustrated in the Figure 2.1. They are divided in

active and passive ones, depending on the origin of the signal detected. Active sensors

emit their own signal and passive sensors only detect the signals from the environment.

Sonar is an acronym for sound navigation and ranging, using the sound propagation

for distance estimation. They are the cheapest active sensors present on the intelligent

vehicles, used basically on parking applications (Park et al., 2008). However, they are

limited to one direction and short distances. An example of sonar sensor for commercial

vehicles is depicted in the Figure 2.1a.

3. Portuguese acronym for Autonomous Car Developed at Federal University of Minas Gerais.
4. Portuguese acronym for Intelligent Robotic Car for Autonomous Navigation.
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Figure 2.1 – Examples of perception sensors for intelligent vehicles, with a sonar (a),
radar (b), multilayer laser scanner (c), and vision systems (d).

Lidar stands for light and radar, combining in the same definition the laser scan-

ners and the radar systems (presented in the Figures 2.1b-c). They are related to light

and radio emissions respectively. These are the sensors with most increasing applica-

tions, once they can deal with big distances with higher precision and light variations.

These sensors were largely used in the DARPA Gran Challenges (Thrun et al., 2006;

Buehler et al., 2008) and several projects after that (Guizzo, 2011; Ziegler et al., 2014).

Comparing laser scanners with radars, the first ones have exhibit much better lateral

resolution and accuracy for static and moving objects, but limited to planar measure-

ments; the second ones are robust to different weather situations and more reliable

in large-scale production, but it is restrict to mobile objects detection and return only

the object center instead of the collision point in its surface. In a direct relation, the

laser price increases considerably if increasing the number of available planes, as in the

case of the Velodyne (Figure 2.1c) for point cloud applications (Halterman and Bruch,

2010). At present, radars are commercially applied in ACC applications, once they deal

better with moving obstacles in higher speeds (Ploeg et al., 2012).
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Vision systems are normally passive 5, depending on the visible light on the envi-

ronment or infra-red in darkness situations. They produce a large amount of data in

just one image frame 6, which, if combined with other cameras, can produces dense

3D information of the environment by stereo matching. Due to their large amount of

data and a reasonable price, these are the most largely used sensors in intelligent vehi-

cles (Bonin-Font et al., 2008). Despite that, they must deal with several problems like:

light variations, low-texture surface, shadow areas, light reflection, range resolution,

etc. Thus, the images must be worked by pre- and post-processing algorithms in the

image frame (2D information) or in the stereo matching (3D information).

Although these previous sensors are able to detect different kind of obstacles as well

as the road surface, they have a restricted working region. This means that, one element

detected with one sensor will not be necessarily perceived by the other one or vice-

versa. Real vehicles must combine and add more sensors to improve their perception

capabilities. In the literature, e.g., it is hard to find autonomous vehicles using only

one of these sensors. Normally, they combine cameras information and lidar data (Ji

and Prokhorov, 2008; Flórez et al., 2014; Ziegler et al., 2014), using the best of these

sensors in a fusion strategy.

With the sensors limitation in mind, this work will be concentrated in vision systems

for road and obstacles detection only to validate our navigation approach, based on fea-

tures detected in the image frame. Nevertheless, a recent work from AdasWork (Adas-

Works, 2015), a research team from the Kishonti Informatics, showed a feasible self-

driving car approach using only cameras applications and low-cost systems. It is also

important to know that there are many other techniques to accomplish the road and

obstacles detection (Nedevschi et al., 2007; Moras et al., 2012) with different sensors.

Their integration in the present work as well as the addition of more sensors will be left

for future works.

5. There are considerable works for active cameras based on Time-of-Flight (ToF), but their usage still
limited due to problems related the low resolution and noise if compared to the passive cameras (Wei
et al., 2011).

6. The amount of data available depends on the camera field of view (FOV) and resolution.
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Vision based road and obstacle detection

Considering the mono and stereo color vision systems, there are several approaches

where these cameras can be applied for urban environment perception. Usually, the

mono vision is applied in image segmentation (to detect roads, vehicles and pedestri-

ans) and primitives’ extraction (like traffic signs and land marks). In the domain of im-

age segmentation, the regions are defined accordingly to some similarity or discontinu-

ity. For road detection the most common segmentations are based on color (Alvarez and

Lopez, 2011; Rahman et al., 2012), texture (Shinzato and Wolf, 2011), and intensity

(Bilodeau et al., 1990; Yu et al., 1992). In the case of stereo vision applications, the 3D

information of the environment is typically used to estimate free spaces and obstacles

position in the world with specific techniques, like the U/V-Disparity Maps (Labayrade

et al., 2002; Broggi et al., 2005; Hu and Uchimura, 2005; Gao et al., 2011) for example.

However, to classify a road profile and potential obstacles from only 2D image seg-

mentation data is a hard task. Mainly due to the high complexity of the urban en-

vironments and presence of many different elements like cars, pedestrians, trees, etc.

In addition, the monocular vision cannot estimate the object position on the 3D world

without a geometric approximation between the camera and the environment, resulting

errors in long-distance. On the other hand, the stereo vision must deal with different

noise sources, as shadows, weakly-textured surfaces, light variations, etc., which hin-

ders the stereo matching and, consequently, the construction of disparity maps.

As a solution for these problems, some works enhance the 2D image data with 3D

information from stereo cameras, improving the classification and detection of road

segments (Soquet et al., 2007; Dornaika et al., 2011) and other environments ob-

jects (Sengupta et al., 2012). In this context, we proposed in (Vitor et al., 2013) an

road surface detection with 94% of accuracy in urban environments. Based on the Wa-

tershed transformation for 2D image segmentation (Audigier and de Alencar Lotufo,

2010), V-Disparity maps to extract 3D information (Labayrade et al., 2002), and an

artificial neural networks (ANN) for final classification (Haykin, 1998), several image

features were tested in order to better classify the road surface. Furthermore, the usage

of ANN helped to reduce the effects of the environment variations on the classification

results.
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Other works improve directly the disparity map pre- or post-processing, reducing its

underestimation. The preprocessing aims to provide dense disparity maps, but resulting

in high computational cost, as the Global Matching techniques (Kolmogorov and Zabih,

2001). There are also the intermediate solutions based on Semi-Global Matching tech-

niques (Hirschmuller, 2005), which presents satisfactory results with fast embedded

solutions (Banz et al., 2010), very important in ADAS. The post-processing, otherwise,

refines the underestimation of the disparity map by grouping neighbors’ similarities in

clusters or superpixels. These clusters are formed by segmenting local features (e.g.,

corners, edges, colors, etc.) in the 2D reference image. Then geometrical forms are

fitted in the clustered data, like planes (Gupta and Cho, 2010; Xu et al., 2012). In

the post-processing domain, we presented in (Lima et al., 2013) a disparity map re-

finement, combining the same watershed based 2D segmentation of (Vitor et al., 2013)

with a plane estimation in the formed clusters. The result enhanced the disparity map

even in problematic areas.

Although our previous contributions had dealt with some problems associated with

the vision systems, they had high computational costs and would require a long pro-

gramming effort to become more time acceptable for our navigation approach. Instead

of that, in this work the main ideas presented in (Vitor et al., 2013) were adapted to

respect the entire system time while performing the road segmentation and obstacle

detection.

Sensor fusion and final data representation

Once detected, the road and obstacles must be stored for the navigation purposes.

They also need some processing to reduce false detection from the previous steps. More-

over, if more than one sensor is used, their detected data need to be merged by some

fusion strategy. Occupancy Grids is an important solution proposed by (Elfes, 1989), ap-

plied since for data fusion, robot navigation, localization and obstacle avoidance (Thrun

et al., 2005). It is one of the most largely used techniques on mobile robotics which

divides the workspace in cells. These cells present fixed or variable size with some

value associated to each one. Originally proposed for 2D representations of the envi-

ronment, without any assumption of geometrical forms, it has been expanded to other
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dimensions like 2.5D and 3D (Souza and Goncalves, 2012), also applied in dynamic

conditions (Mitsou and Tzafestas, 2007; Moras et al., 2014), etc.

The occupancy grids can be divided in probabilistic, using Bayes filters (Thrun et al.,

2005), or evidential, based on the Dempster-Shafer Theory (Dempster, 1967; Shafer,

1976). They differs on the fusion result, information metrics, and final decision (Moras

et al., 2014). In the representation, whereas probabilistic occupancy grids deal only

with occupied and free cell states, the evidential ones can deal with several different

states in a semantic representation of environment (Vitor, 2014). However, more states

means more computational cost associated. Considering only road (free) and obstacles

(occupied) states, the probabilistic occupancy grid was enough for this initial perception

application.

2.2 Sensor-based control for autonomous navigation

Sensor-based control is an important robot navigation strategy using external data.

In this control approach, the error regulation is done on the sensor frame. For instance,

the sensors used can be those from environment perception (like sonars, lidars, vision

systems) (Victorino et al., 2003a), localization (as GPS) (Yang et al., 2013), contact

(with the force sensors) (Ohishi et al., 1992), etc. The most common sensors for car-

like robots are associated with perception of the environment and localization, once it

must move safely from an initial configuration to a final goal state, and without any

interaction contact with the environment objects.

As detailed in the previous section, vision systems play an important role in au-

tonomous vehicle applications, due to the richness and versatility of the information

that they supply (Bonin-Font et al., 2008). These applications include monovision (Dick-

manns and Zapp, 1987; Kosecka et al., 1998; Thrun et al., 2006; Courbon et al., 2009)

and stereovision (Broggi et al., 1999; Chen et al., 2009; Broggi et al., 2012; Ziegler

et al., 2014) cameras. Focusing on the navigation control area, Visual Servoing (VS) is

a robust way to deal with the vehicle guidance in urban environments, once it avoids car

localization problems, like those from (Thrun et al., 2006) and (Buehler et al., 2008).

VS can be divided in two main approaches: the Position-Based Visual Servoing (PBVS)

and the Image-Based Visual Servoing (IBVS) (Chaumette and Hutchinson, 2006). In
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the PBVS the control objective is expressed in the robot’s Cartesian Space and requires

3D information of the scene, which can be estimated by monovision and stereovision

cameras. In the IBVS, otherwise, the control objective is expressed in the image frame

directly. Whereas PBVS better deals with large errors in the features set, IBVS is more

robust against errors in the camera calibration (Chaumette, 1998).

Beyond these techniques, several control laws can be defined to allow a vehicle to

converge and follow perceived features and primitives in the image, like points, lines,

and ellipses (Espiau et al., 1992). These are called model-based approaches, which

require some geometrical knowledge of the environment. Normally, these controllers

combine a features tracking with the robot forward movement by means of task func-

tions. These approaches can also be adapted for pose stabilization orientated by land-

marks (Jurie et al., 1994; Lee et al., 1998; Usher et al., 2003) and path reach and

following (Cherubini et al., 2011). Conversely, the appearance-based approaches use

a topological graph of the environment represented by key images, which define the

positions where the robot must pass (Courbon et al., 2009; Cherubini and Chaumette,

2013). It is important to mention that there are many others VS approaches for non-

holonomic robots, as: the hybrids approaches that combine the both IBVS and PBVS

information in a 2 1/2D visual servoing (Malis et al., 1999), and the methods where no

previous knowledge about the scene are required (Rives, 2000; Silveira et al., 2006).

Although these visual navigation methodologies can guide the vehicle, they do not

directly change their velocities to perform the obstacle avoidance. This is essential

in urban environments navigation, where the road boundaries and other obstacles re-

strict the movement of the car. Considering the obstacle avoidance problem, some ap-

proaches define control laws combining the VS task with some reactive obstacle avoid-

ance methodology (e.g., potential fields and tentacles) (Cadenat et al., 1999; Folio and

Cadenat, 2006; Cherubini and Chaumette, 2013). These tasks are often merged in the

control level by some switching strategy which changes the task weight in the pres-

ence of obstacles, consequently changes the control law. Moving obstacles can also be

considered in this kind of approach, as presented in (Cherubini et al., 2014).

Instead of just switching or changing the gain between the deliberative and reac-

tive strategies, we focused on a hybrid strategy that could work directly in the robot

velocity space. The obstacle avoidance methodology must validate the VS control input
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or choose an alternative which will result in less VS error. In this context, in (Lima

and Pereira, 2013) was presented a method for car-like robot navigation based on the

validation of a Velocity Vector Field (Pereira et al., 2009) based on a Dynamic Window

Approach (DWA) (Fox et al., 1997). This hybrid controller follows the vector field when

it is valid, and it avoids obstacles prioritizing the final orientation of the vector field.

Comparing with other reactive techniques, like the tentacles (von Hundelshausen et al.,

2008; Cherubini and Chaumette, 2013), whereas the tentacles approach uses prede-

fined paths (or tentacles) to choose the best one (regarding some conditions) and then

calculates the velocities to follow this path, the DWA calculates the reachable velocities

around the current ones, to choose among then the best one related to some conditions

(which can be similar to those from the tentacles).

In the present work, we will address the local navigation problem of an autonomous

car using the VS methodology for road lane following with obstacle avoidance. The VS

control will act as a deliberative controller and its velocities will be validated in a reac-

tive controller based on the DWA. The VS uses an image-based approach (IBVS) with a

reduced features set, similar to the one presented in (Cherubini et al., 2008), to calcu-

late a robot control input to track the road lane center. The DWA defines a dynamic win-

dow considering the obstacles, the current vehicle state, and some dynamic/kinematic

constraints to validate the current VS control input. When not valid, an alternative

for the control input must be selected to perform the reactive obstacle avoidance with

less VS error as possible. To do so, the VS equations were integrated in the DWA,

compounding a new Image-Based Dynamic Window Approach (IDWA) 7 (Lima and Vic-

torino, 2014c). This combination results in a hybrid controller (VS+IDWA) indepen-

dent of the vehicle localization, diverging from the methodology presented in (Lima

and Pereira, 2013), which required a global path planning and a localization system.

This work also diverges from the previous ones (Cadenat et al., 1999; Folio and Cade-

nat, 2006; Cherubini and Chaumette, 2013) based on VS, once the obstacle avoidance

proposed with the DWA incorporates in an intrinsic way path following and velocity

control behavior in its calculation, without changing the control law. Just like (Cheru-

7. Once the IDWA uses image-based features and the 3D information of the obstacles, this controller
can also be classified as a hybrid controller in the visual servoing context.
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bini et al., 2014), the usage of the DWA also enable us to deal with moving obstacles,

as described in (Seder and Petrovic, 2007), which will be left for future works.

2.3 Global navigation applied to car-like robots

The complete navigation of self-driving cars is the ability to go from an initial posi-

tion (qinit) to a final destination (qgoal) in the world, considering that these points are not

connected in the robot workspace. To achieve that, motion planning is fundamental to

define a feasible path connecting these points. In this context, several approaches were

proposed in the past years for nonholonomic car-like robots path planning (Svestka

et al., 1995; Frazzoli et al., 2000; Lamiraux and Laumond, 2001), defined in the car’s

configuration space (Choset et al., 2005). They require the previous knowledge of the

map structure with precision, the robot dimensions, and some movement constraints.

However, the path planned with these strategies normally presents a high computa-

tional cost associated with the size of the urban environment. In addition, the robots

have required accurate localization system while performing the path following tasks,

impracticable for commercial cars.

To deal with these problems, it is common to consider the vehicle as a punctual

holonomic robot during the path planning and simplify the environment in geometric

forms and segments. These elements edges define the points where the robot must pass

(waypoints). Then, managing the waypoints, the robot locally performs the navigation

considering the environment information. Waypoints can be seen as a simplification

of the entire robot path, recovered by connecting each consecutive waypoint. This

approach was applied by several participants in the DARPA Grand Challenge of 2005

for off-road autonomous vehicles, based on the route definition data format (RDDF).

The RDDF provided a list of longitudes and latitudes (waypoints), corridor widths that

define the course boundary, and a list of associated speed limits. With the RDDF, the

teams were able to accomplish the challenge globally, by connecting the waypoints and

managing their information with GPS data, and locally, by navigating in the desert roads

respecting the detected boundaries and speed limits (Thrun et al., 2006; Braid et al.,

2006). Although the waypoints were able to guide the vehicles, they were previously

defined by the organizers of the challenge with high precision.
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In urban environments, one way to define waypoints is using road network maps,

also known as digital maps. Digital maps provide rich information about streets, tracks,

railways, waterways, points of interest, also detailing the number of lanes and speed

limits. There are many approaches using digital maps to improve the global naviga-

tion problem, like enhancing the vehicle localization (Mattern et al., 2010; Irie and

Tomono, 2012; Schindler, 2013) and the difficulties of autonomous vehicles naviga-

tion as a whole (Urmson et al., 2008). Based on digital maps, the DARPA Urban Chal-

lenge (Buehler et al., 2008) organizers provided the road network definition file (RNDF)

to the participants. The RNDF contained the checkpoints where the vehicles must pass

and the geometric information on lanes, lane markings, stop signs, parking lots, and

special checkpoints. However, the RNDF was inaccurate and could add further errors

if the vehicle blindly follows the road using that information. Thus, the participants

locally planned paths between the checkpoints, defining waypoints to guide the robot

navigation and correct the robot lateral position by means of a high precision localiza-

tion system and the RNDF information.

The OpenStreetMap (OSM) (Haklay and Weber, 2008) is a user-generated street

map interface, with the same benefits of several commercial digital maps, with the ad-

vantage of being completely open access. Nowadays, several applications have emerged

using OSM data (Hentschel and Wagner, 2010; Tao et al., 2013; Kurdej et al., 2015),

due to its friendly edition interface which enables to incorporate very specific elements

to the robot task, like buildings, lane marks, and pedestrian crossing in the map. Re-

cently, Ziegler et al. (2014) performed the autonomous navigation in urban environ-

ments using a prerecorded reference trajectory (waypoints) for the vehicle and OSM

data. They use a DGPS-aided inertial navigation system during the recording process,

adding more environment information to the digital map from the OSM (like lanes

number, speed limits, stop signs, etc.) in a post-processing step. Thus, during the real

car navigation, map based localization was performed with a less costly system.

Although all these previous methods were able to guide globally the robot, locally

they were highly dependent on the localization system. Victorino et al. (2003b) pro-

posed a new navigation approach for indoor environments with a topological represen-

tation of the robot path. In this case, each corridor was connected by nodes representing

the relations of accessibility in the environment (doors and crossing corridors). Once at
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the corridor, the robot can navigate only to the next node, i.e. by means of a sensor-

based control strategy with no localization requirements. At the node, the robot must

localize itself with relation to the node and take the next direction described in the

topology.

Generalizing the topological representation from (Victorino et al., 2003b) to urban

environments, corridors are roads, without any-other way to go, and nodes are points

where some action must be taken (like turn to a next road in the intersection or stop

in a traffic light). Nodes were also called by critical points, where, in comparison to

waypoints, they are sparsely defined and do not represent the path’s form if connected.

Thus, the robot localization is not required for the road following navigation (due to

the absence of waypoints), and some sensor-based approach (like those presented in

the Section 2.2) is enough to guide it to the next critical point. At the critical point,

the vehicle localization can be performed by low cost systems, which can be less de-

pendent on GPS sensors (Comport et al., 2011; Hassan et al., 2013). This navigation

principle mimics the one performed by the personal vehicular GPS when guiding the

human driver to the desired destination by giving instructions only on some specifics

points. A topological segmentation was also applied in (Regele, 2008), helping to de-

fine a high-level abstract world model which supports the decision-making process of

an autonomous car.

In this work, the goal is to enable techniques like (Victorino et al., 2003a; Lima

and Victorino, 2014b) to accomplish their navigation task when there is more than one

possibility to go. For that, it is fundamental to provide information associated to the

critical points, as their connections and approximated geometrical form. Thus, digital

maps (like the OSM) are important tools for this purpose.
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Chapter 3

System Design

To implement and validate the proposed navigation solution, this work was divided

in: Environment Perception, Local Navigation Control, and Global Navigation Manage-

ment. However, to implement a final workable solution, the robotic system must be

considered when proposing any additional functionality. This is required by the final

application, which must respect the robot system specifications and the available re-

sources. Thus, the environment perception, e.g., must consider the available sensors

(cameras, lidar, sonars, etc.) and the process time (in accordance to the robot speed);

the same is applicable to the local navigation control and the global navigation man-

agement. In addition, we consider that it is not possible developing robust autonomous

navigation methodologies without experimentation means. In this sense, a great ef-

fort was made, in parallel to the thesis scientific and methodological developments, to

prepare and putting in operation an experimental car, in order to validate in real situa-

tions all the proposed methodology. In this chapter, the robotic vehicle and its available

resources are described, as follows.

3.1 The experimental car-like robot

The experimental car is an electric Renault Zoé, hereby appointed APACHE and pre-

sented in the Figure 3.1. It was modified for computer actuation of the throttle, brake,

and steering, receiving commands over the CAN bus. Although these are important

modifications, the vehicle preserves the original human driver conduction capabilities,

allowing e.g. a cooperative working mode between the human driver and the computa-

tional system. The electric vehicle also aggregates some benefits for the linear velocity

27
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control, once the nonlinear dynamics caused by the transmission system are not pre-

sented in this electric car (Dias et al., 2014). Besides the low-level control (steering,

throttle, and brake), several proprioceptive information can be retrieved from the CAN

bus. Some of them are illustrated in the Figure 3.1, like the ABS and odometry from

the wheels, the linear and steering velocities, steering angle, etc.

Figure 3.1 – Fully actuated electric car APACHE with some available resources.

This vehicle was equipped with two PointGrey cameras (Flea3 and BumblebeeXB3)

for perception of the environment and a GPS for global localization (GPS Haicom HI-

204E), chosen as a low cost alternative for exteroceptive sensors. The monocular cam-

era (Flea3) has a focal length of 1.8mm and large field of view (FOV) of � 140◦ to detect

the road lane center features. This large field of view (FOV) required a special setup,

which will be detailed in the Section 3.2. The stereovision camera (BumblebeeXB3) has

a focal length of 6.0mm and FOV of � 43◦, which allow the vehicle to detect road and

obstacles up to 80m away from it. Both cameras were installed on a rigid structure on

the car’s roof only for validation purposes. The GPS works at 1Hz and produce position

errors in a radius of ≈ 5m.
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To allow the implementation and execution of the navigation strategy, some embed-

ded computers for data processing and vehicle control were installed in the APACHE

(Figure 3.1). With these available resources, the solution was structured as in the Fig-

ure 3.2. The present work is concentrated in the block PC of this figure, which rep-

resents a computer with an Intel Core I7–3610QE CPU (2.30GHz). The inner blocks

are:

— EKF: responsible for the car localization, described in the Section 3.4;

— Velocity Control: for the low-level velocity control of the car, providing the set-

points for the throttle, brake, and steering actuators, presented in the Section 3.5;

— Environment Perception: where the road segmentation and obstacle detection are

performed, detailed in Chapter 4;

— Local Navigation Control: where the sensor-based local navigation task is exe-

cuted, as will be shown in the Chapter 5; and

— Global Navigation Management: to control the global navigation of the car and

define the right parameters to the local navigation control, presented in the Chap-

ter 6.

This vehicle is an important test bed for our navigation approach, but, due to the

current modifications, it is still not allowed to run in the city roads. Thus, at the Inno-

vation Center of the Université de Technologie de Compiègne (UTC) was constructed a

circuit called SEVILLE, Figure 3.3, for autonomous navigation experiments. It presents

some challenging scenarios, like tight road intersections, roundabouts, sharp turns, and

up and downhills (with ≈ 3.5◦ of slope), which will be used during the validation of our

navigation approach. The track is illustrated in the Figure 3.3.

3.2 Monocular camera setup

The large FOV capability of the monocular camera used (Section 3.1) required a

special attention during the setup. The main interest in this camera is for road surface

estimation and features extraction for the local navigation control. Due to that, the

sky information can be completely discarded. In addition, images grabbed from this

camera in a sunny day brings a lot of saturation and blooming problems, commons to

the charge-coupled device (CCD) camera sensor (Theuwissen, 1995). A saturation and
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Figure 3.2 – Schema of the APACHE’s system modules and the final software architec-
ture in the embedded PC.

blooming effect can be seen in the Figure 3.4a. In this situation, a half portion of the

image can be discarded by a region of interest (ROI) definition. Although a ROI could

be defined in software, the blooming effects associated to the CCD sensor conception

still appear and can compromise the other valid pixels. To avoid these problems, a

protection similar to a hat’s flap was installed above the camera, as illustrated in the

Figure 3.4b.

However, this resulting image can compromise the camera’s auto-shutter adjust-

ment, once there are a lot of useless pixels, as the dark region (black pixels) formed

by the flap and the car hood projection. This effect can be visualized on the images

from the Figure 3.5a, where the car was oriented against or directed to the sun which

resulted in different light conditions and pixels saturation in the final image. As a solu-

tion, a ROI was defined, as illustrated in the Figure 3.6, to eliminate the flap region and
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Figure 3.3 – SEVILLE test track at the UTC Innovation Center for autonomous navigation
experiments.

the car hood from the final image. The pixels from the valid area were so applied to a

proportional-derivative (PD) controller (Figure 3.6), based on the saturated pixels rate

wPV =

∑
(ROIpixels > 250)∑

ROIpixels
(3.1)

in the final image to define a new shutter value (sh). With this PD controller, the varia-

tions caused by different light conditions were minimized, as shown in the Figure 3.5b.

Figure 3.4 – Image from the monocular camera in a sunny day (a) and with the flap
protection (b).
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Figure 3.5 – Auto-shutter resulted by the camera software (a) and by the PD controller
(b).

Note that the resulting images present minor light changes even in different times of

day, important condition for more robust image processing algorithms.

3.3 The robot model

Recalling the Figure 3.2, the robot control inputs are the throttle, brake, and steering

actuation setpoint. These inputs are derived from the velocity input set defined as

ur = [v1 v2]
T , where v1 is the linear velocity of the front wheels and v2 is the steering

velocity. The robot movement are related to its body frame {R} in relation to an inertial

frame {O}, being recovered by q̇ = [ẋr ẏr θ̇]T . These elements were approximated by

the kinematic model of a front-wheel drive car, with the Ackerman’s approximation for

the steering angle φ, as follows (Luca et al., 1998):

⎡
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0

⎤
⎥⎥⎥⎥⎥⎥⎦
v1 +

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

0

1

⎤
⎥⎥⎥⎥⎥⎥⎦
v2 . (3.2)
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Figure 3.6 – Image ROI definition and the PD auto-shutter control diagram.

The complete diagram with the model variables are illustrated in the Figure 3.7.

In this figure, the origin of {R} is located at the midpoint of the two rear wheels,

performing circular trajectories related to the instantaneous center of curvature (ICC).

The robot orientation θ and steering angles φ are positive counter-clockwise, with θ ∈
]−π, π] and φ ∈ [−φmax, φmax]. By this model, the car linear velocity can be calculated

from the front wheel velocity as:

v = v1 cos(φ), (3.3)

and the angular velocity

θ̇ = v1 cos(φ)/r1 = ω (3.4)

is directed related to the steering angle (see the Figure 3.7). These considerations allow

us to choose the robot control input as ur = [v ω]T .

Note that this current model is an approximation used only for fast validation of

our navigation method, once it is valid only for low speed applications. This low speed

consideration was a security constraint due to the extension of the SEVILLE test track

and its sharp turns. For high speed applications, a dynamic model must be consid-

ered (Tagne et al., 2015). However, using a dynamic model requires more processing

capabilities, caused by the reduced integration time for the system state estimation.

This consideration will be left for future works.
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Figure 3.7 – Kinematic model diagram of a front-wheel drive car-like robot centered in
the body frame {R}. The pinhole camera frame is represented in {C}.

3.4 Vehicle localization

The vehicle localization is one of the first components of the system proposed, which

is represented by the block EKF in the Figure 3.2. It is the acronym for Extended Kalman

Filter (EKF) (Einicke, 2012), used to provide the vehicle state:

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xr

yr

θr

φr

v1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.5)

related to the inertial frame {O} in a dead-reckoning process. Its importance to this

work is related to the Global Navigation Management, to assure the global task accom-

plishment.

The low-cost GPS of Figure 3.1 produces several errors while estimating the vehicle

position (in a radius of ≈ 5m), with data mismatches and low rate (1Hz). In order to

filter these errors and increase the inter-frequency measurements with sensor’s fusion,

the data from the CAN bus of the vehicle was combined with the GPS position measure-

ments for a better estimation of the car’s pose. The chosen data from the CAN bus are

the steering angle and the linear velocity from the front wheels ycan = [φr v1]
T , acquired
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at 50Hz, and the data from the GPS is the position ygps = [xr yr]
T . The EKF model with

the sensor’s fusion can be defined as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xk+1 = f(xk) + αk

ygps,k = ggps(x(t0 + j · Te)) + βgps,j

ycan,k = gcan(x(t0 + j · Te)) + βcan,j

, (3.6)

where αk, βgps,j, βcan,j are the process and observation noises. They are both assumed

to be zero mean multivariate Gaussian noises with covariance Q and R.

3.4.1 Prediction

Based on the equations (3.2) and (3.6) for the car and EKF models respectively, the

state prediction can be written as:

x(k + 1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xr(k + 1)

yr(k + 1)

θr(k + 1)

φr(k + 1)

v1(k + 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xr(k) + v1(k) cos(θr(k)) cos(φr(k))Δt+ αx,k

yr(k) + v1(k) sin(θr(k)) cos(φr(k))Δt+ αy,k

θr(k) + v1(k)(sin(φr(k))/l)Δt+ αθ,k

φr(k) + αφ,k

v1(k) + αv1,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.7)

Once this is a non-linear model, its Jacobian is calculated by:

A =

[
∂f

∂x

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −v1 sin(θr) cos(φr)Δt −v1 cos(θr) sin(φr)Δt cos(θr) cos(φr)Δt

0 1 v1 cos(θr) cos(φr)Δt −v1 sin(θr) sin(φr)Δt sin(θr) cos(φr)Δt

0 0 1 v1(cos(φr)/l)Δt (sin(φr)/l)Δt

0 0 0 1 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.8)

and applied in the evaluation of the covariance matrix for x̂k|k:

Pk+1|k = Ak · Pk|k · A′
k +Q, (3.9)
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where Q is the matrix with the model noise.

3.4.2 Estimation

The measurements ygps and ycan allow linear observation models (given by the func-

tions ggps and gcan), where the observation matrix are constants:

Cgps =

⎡
⎢⎣ 1 0 0 0 0

0 1 0 0 0

⎤
⎥⎦ and Ccan =

⎡
⎢⎣ 0 0 0 1 0

0 0 0 0 1

⎤
⎥⎦ . (3.10)

Thus, for each measurement the gain of Kalman is given by:

K = Pk|k−1 · C ′ · (C · Pk|k − 1 · C ′ +R)−1, (3.11)

and the data are estimated as:

x̂k|k = x̂k|k−1 +K(yk − C · x̂k|k−1), (3.12)

where R is the covariance matrix of the measured data.

This process assures the prediction of the sensor measurements and the estimation

of the vehicle pose at 10 Hz, as illustrated in the Figure 3.8 for the SEVILLE test track

(Figure 3.3). In this Figure, it is possible to see the low frequency rate of the GPS data,

as well as the common odometry cumulative errors in the distance traveled estimation.

Note that the EKF corrects the odometry errors and reduce the variations in the GPS

data. However, it does not reduce the GPS error and cannot deal well with large time

gaps between the data. The initialization of the state also must be close to the real one,

for a fast convergence. In this case, the robot orientation could also be recovered from

an inertial measurement unit (IMU).

Once there are cameras available in the vehicle, others localization approaches could

also be implemented, like the one presented in (Comport et al., 2011), reducing the GPS

problems in the final localization. Just like Visual Odometry (Geiger et al., 2011b) is an

alternative for problems related to the limited access to the CAN bus of the vehicle.
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Figure 3.8 – APACHE localization results for a closed-loop movement in the SEVILLE
test track using the EKF, based on the data fusion of the GPS and odomentry data. The
localization is relative to the initial position (yellow circle) and finishes at the black
circle.

3.5 Velocity control

To provide the low-level control actuation setpoint for the throttle, brake, and steer-

ing, a velocity control was implemented to regulate the robot model control inputs

v1 and v2, provided by the local navigation control block (see Figure 3.2). For the

linear velocity v1, a cascade configuration of two PID controllers perform the veloc-

ity (outer loop) and acceleration (inner loop) regulation. The velocity was controlled

by a proportional-derivative (PD) configuration and the acceleration by a proportional

(P) one. The angular position of the steering wheel (φ), otherwise, was controlled

by the low-level controller block (Figure 3.2) by applying the highest possible speeds

(� 560◦/s). Due to a restrict access to this block, the steering velocity v2 was regulated

by limiting the angular variation with a proportional controller. The complete diagram

illustrating these both controllers is in the Figure 3.9. These useful control setup guar-

antees a better human driver behavior to our final system, restricting high accelerations

in the longitudinal control and applying smooth transitions in the lateral control. The
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control response of both controllers can be visualized in the Figure 3.10 for different set-

points. The linear velocity control was validated in the SEVILLE test track (Figure 3.3),

considering some perturbations caused by sharp turns and up and downhills.

Figure 3.9 – Control diagram for the linear (v1) and steering (v2) velocities of a front-
wheel drive car.

However, the setpoint values provided to our vehicle are not achieved instanta-

neously, and the time necessary for stabilization must be considered when performing

the local navigation tasks. By applying a small Δφ step with maximum speed actuation

in the steering angle, it produces the response in the Figure 3.11. The result has a dead

time td and time constant τ approximately equal to 0.2s. In total, the system takes

around 0.5s to reach the desired setpoint, which was observed for different setpoint

values. Thus, the high level system for local navigation must consider that any desired

setpoint for the steering angle will take around 0.5s to stabilize.

3.6 The simulation environment

To increase the experimental possibilities of our work and reproduce danger situa-

tions that may be unsafe for human drivers in the real world, a simulation environment

was created preserving the robots kinematics and some dynamic constraints. It makes

use of the Matlab interface to reproduce a car-like robot moving in an urban environ-

ment, based on the kinematic model of the equation (3.2). This simulated environment
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Figure 3.10 – Velocity control response for the experimental vehicle APACHE, where the
linear velocity (v1) is in (a) and the steering velocity (v2) is in (b). SP is the current
control setpoint and PV is the process value.

respects the real scale between the vehicle and the road lanes. A portion of it is illus-

trated in the Figure 3.12a.

The environment perception was also considered in the conception of the simulation

environment. The idea is to reproduce the same sensor-based approach proposed for

the vehicle APACHE. Thus, a simulated laser scanner sensor with a white noise was

incorporated to detect the obstacles and the road boundaries (Figure 3.12b). It also

includes a monocular camera with the same intrinsic and extrinsic parameters of the

one installed on the APACHE’s roof (Figure 3.12c). In addition, a localization system

provides a Gaussian error with the same range of our real GPS.

3.7 Conclusion

Before describing our navigation approach, it is important to understand the system

where it will be applied. This chapter briefly presented this system, the experimental car

APACHE and some embedded resources. It was based on a commercial car completely
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Figure 3.11 – Step response for the steering angle actuator to estimate the dead time td
and time constant τ . SP is the current control setpoint and PV is the process value.

functional and with only low cost sensors installed. The sensors were chosen to allow

an autonomous applications better suited for commercial ends.

The robot movement was reproduced by a kinematic model for low linear velocities

experiments, which is enough for validation purposes. The system also includes a local-

ization approach and a low-level velocity control. These are important considerations to

allow the global navigation management of the car movement and to accomplish local

navigation tasks. Finally, a simulation environment was created to increase the exper-

imental possibilities of our method. It uses the same kinematic constraints and some

actuator’s dynamics from the APACHE. This simulation platform also includes extero-

ceptive sensors for perception of the environment and localization of the robot, using

the same parameters of the real ones.

The next chapter will start to go into details of the proposed navigation solution.

There is presented the environment perception layer for the vehicle APACHE.
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Figure 3.12 – Simulation platform (with a simulated urban environment, vehicle and
sensors) to validate the proposed navigation approach in the car-like robot in red (a).
The simulated laser scanner measurements are illustrated in pink (b), as well as the
image view from a simulated monocular camera with the same parameters of the real
one (c).
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Chapter 4

Environment Perception

The most important decisions for several autonomous vehicles depend on the in-

formation recovered from the environment. Some perception capabilities applied to

autonomous cars were presented in the DARPA Grand Challenges, competitions pro-

moted by the American’s DARPA between 2004 and 2007. Today, with the diffusion

of autonomous and semi-autonomous vehicles, a great number of new applications for

environment perception have emerged. However, for real applications, the number of

sensors used and the final cost must be considered for viability. Based on the principle

of viability, vision systems has some advantages, because they can provide large amount

of data with a low cost, depending on their FOV and resolution.

This chapter presents the environment perception approach for the experimental

vehicle APACHE (Figure 3.1) using vision systems. It is based on our contributions in

2D/3D image processing (Vitor et al., 2013; Lima et al., 2013) to minimize the com-

mon urban environments problems caused by shadows, road texture, light variations,

etc. First a short review on stereo vision systems is proposed in Section 4.1. Then,

our contributions on 2D/3D image processing using 2D segmentation, are presented in

Section 4.2, with applications on road detection and disparity map refinement. Thus,

the current solutions for road/obstacle detection and image feature extraction are de-

scribed in the Sections 4.3 and 4.4 respectively. As an extension of the vehicle FOV, the

road and obstacles detected were projected in a local occupancy grid, explained in the

Section 4.5. The experimental validation of our approaches in a real urban scenario is

shown in the Section 4.6. Finally, conclusions are proposed at Section 4.7.

43
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4.1 Stereo vision systems

The most part of stereo vision systems are based on two (binocular) or more dis-

placed cameras with synchronous image data. They are normally passive systems,

where the 3D information of the environment must be extracted combining their image

data in a stereo matching problem. The active ones, otherwise, apply a light in the en-

vironment (e.g. laser or structured light) to simplify the matching problem. However,

the concepts around the 3D information projection are similar in both systems and can

be found in (Faugeras, 1993).

Focusing on passive systems, to acquire the 3D information of the scene, synchronous

images must be taken at first. These images are so processed to remove some distor-

tions, mainly caused by lens imperfections. In order to reduce the processing time

during the stereo matching, a rectification step is performed, based on the epipolar ge-

ometry (Faugeras, 1993). This geometry guarantees that the similar information, in

both images, is related to the same row (v). The resulting images are then processed

with a stereo matching algorithm to provide the disparity map (I�), which the inten-

sity values corresponding to the distances (in pixels) between the corresponding points

from both images. The I� values are related to the distance between the camera and

the point in the world, given by:

zc =
fB

d
, (4.1)

where f is the focal length of the camera, B is the camera baseline, and d is the disparity

value.

There are several stereo matching algorithms available to create the I� (Geiger

et al., 2011a), classified between local and global ones. The local algorithms typically

combine image statistics in a small window to find the best corresponding point in the

row (epipolar line). One example of local approach is the Sum of Absolute Differences

(SAD) (Hiroshi et al., 1995), which produces a fast result with a lot of mismatches. In

the other extremity are the global matching techniques (Kolmogorov and Zabih, 2001),

considering the entire image during the matching process. This group of techniques

produces good results with a high computational cost. As intermediate solutions, there

are the semi-global matching techniques (Hirschmuller, 2005) to expands the line re-
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search in different local directions. They have satisfactory results for fast embedded

solutions (Banz et al., 2010), better suited for ADAS applications.

Due to its fast calculation, this work used the OpenCV Block Matching (BM) func-

tion, an implementation of the SAD algorithm for the stereo matching. However, the

semi-global technique Semi-Global Block Matching (SGBM) (Hirschmuller, 2005) was

also used to evaluate the disparity refinement contribution, which is explained below in

Subsection 4.2.2. The resulting I� are shown in the Figure 4.1.

Figure 4.1 – Example of disparity maps calculated by the stereo matching algorithms
BM (right top) and SGBM (right bottom), for the reference image from the KITTI flow
benchmark (Geiger et al., 2012) on the left.

Several problems can be observed on the I� images of Figure 4.1, mainly caused

by specific elements of the urban environments, such as shadows, light reflections, and

low texture variations. These elements hamper the right pixel matching in the stereo

pair. Some of these matching problems are detected and eliminated as black points (0

value) in the I�. The remaining ones must be considered in further implementations,

like the 2D/3D image processing approaches presented in the following sections.

4.2 2D/3D image processing based on 2D segmentation

There are many problems related to the stereo vision systems in urban environments

(see Section 4.1). Therefore, the road and obstacles detection becomes a hard task using

only sparse disparity information (Labayrade et al., 2002), like the one from Figure 4.1.

However, once the I� is constructed from a 2D reference image, a lot of information
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from this image can be added to improve the final detection problem (Soquet et al.,

2007). This information can also be used to enhance the I� (Xu et al., 2012).

Image segmentation is a powerful tool for image analysis, once it combines near

pixels with similar information which could belong to the same object in the world.

The formed segments, also known as clusters or super pixels, can be used as a simpli-

fication of the original image. How close the segments are to the boundaries of the

real objects, better they represent the environment. Giovani B. Vitor proposed in (Vi-

tor et al., 2013) an image segmentation applying the Watershed transform based on

local elements, named as Local Condition Watershed Transform (LC-WT) (Audigier and

de Alencar Lotufo, 2010). It was performed after some preprocessing steps and the

result is illustrated in the Figure 4.2. With this segmentation, we combined 2D and 3D

image data to perform the road detection (Vitor et al., 2013) and the disparity map

refinement (Lima et al., 2013). They are presented in the following subsections.

Figure 4.2 – Examples of image segmentation based on the Watershed transform (Vitor
et al., 2013), using the KITTI flow benchmark (Geiger et al., 2012) (on the left) and the
same stereo vision camera from APACHE (on the right).

4.2.1 Road detection

The principle beyond combining the 2D and 3D image data of the scene during the

road detection is to complement the dubious information from each side. Considering

the segmentation using the Watershed transform (see Figure 4.2), the idea proposed

in (Vitor et al., 2013) was to classify each segment in road surface or non-road surface

(obstacles, sky, etc.) based on a features descriptor. To do so, the entire area of the
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segment was applied in a 2D and 3D features extraction, enhancing the sparse disparity

information (of Figure 4.1).

The 3D features were calculated from the planar world approximation on the V-

Disparity map (IV�), presented by (Labayrade et al., 2002). In this approach, the IV�

is segmented in small horizontal and vertical planes representing the drivable (free)

and non-drivable (obstacle) areas. The selected features were the percentage of free,

obstacles, and non-classified (without disparity) data in the area defined by the cluster.

The 2D features used some statistical calculations from (Shinzato and Wolf, 2011),

providing the mean, entropy, and variance of the Red, Green, and Blue (RGB) color

space and the Hue, Saturation, and Value (HSV) representation of every image cluster.

Then, an ANN was trained and applied to classify the clusters in road surfaces, non-road

surfaces, and unknown areas.

The final solution was tested and validated in urban environment, with different

light conditions and structures. Based on a personal dataset, a ground truth was cre-

ated by classifying some Watershed segments in road surface or not, for different images

conditions. The final solution reached an accuracy of 93.30%. Some results are repli-

cated in the Figure 4.3, showing the robustness in presence of many different obstacles

such as vehicles, pedestrians, trees, and road barriers. The same is perceived in shadow

areas and sun light reflection. It was also evaluated in the KITTI vision benchmark suite

(KITTI) (Geiger et al., 2012), presenting a recognition performance of 80.95% in non-

sequential images. A complete analysis between this technique related to the new ones

presented in the following sections is performed in the Section 4.6.

Although this approach was able to classify different urban scenarios, the processing

time related to the image segmentation, features extraction, and ANN classification

can compromise real time applications. This mainly caused by the number of clusters

detected, which are variable, and the algorithm implementation, not optimized. In

addition, the V-Disparity map also has some limitations for obstacle detection, which

could be improved in the 3D features extraction. Finally, the ANN classifier requires a

training step for every new scenario and a hard human work creating the dataset and

ground truth for each image cluster.
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Figure 4.3 – Road segmentation result from the 2D/3D vision based approach (Vitor
et al., 2013) for urban road (a) and highway (b) scenarios. The original image is on
top and the segmented result is on bottom, where the original color represents the road
surface, in red color the non-road surfaces, and yellow the unknown areas.

4.2.2 Disparity map refinement

As a solution to enhance the 3D information from stereo matching algorithms, the

idea presented in (Lima et al., 2013) combined the image segmentation using the

Watershed transform (see Figure 4.2) with the planar world approximation similar

to (Labayrade et al., 2002). The I� refinement aims to reduce the inter-pixels variation

and the missing disparity information (as shown in the Figure 4.1), by approximating

the formed clusters into small planes. For each cluster, all disparity values were applied

into a RANSAC based plane estimation. Thus, all points were projected in the plane and

filtered by considering:

— The point distance to the plane;

— The percentage of valid points on the cluster;

— The maximum number of RANSAC interactions; and

— The difference between the original and the projected point.

The results were validated with the KITTI (Geiger et al., 2012), for the stereo al-

gorithms BM and SGBM illustrated in the Figure 4.1. For the BM, where the average

density of the I� was less than 50%, the final result was enhanced to 77.24%, without
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introducing significant error in the final disparity value. However, in the case of the

SGBM refinement, where more pixels are available to estimate the plane, the final I�
had enhanced the density from 87.31% to 97.80% reducing the final disparity value error

too. This new information also improved the visualization of small size elements, such

as the difference between the road and the side-walks, once the error related to the pixel

variation was reduced. Some qualitative outcomes from this approach are reproduced

in the Figures 4.4 and 4.5

Figure 4.4 – Final result for the disparity map refinement of the BM method in different
urban scenarios.

Similarly to the road detection approach (at Subsection 4.2.1), the I� refinement

also presented a variable computational time related to the image segmentation and

RANSAC planes approximation. It also added a new step before perform the road and

obstacle detection. In practical situations, this could compromise final control applica-

tions which require a regular cycle time.

Due to that, the environment perception for the vehicle APACHE will focus on the

road and obstacles detection based on 2D/3D image processing, speeding up the seg-

mentation and classification process. This includes the estimation of the road surface

directly on the 2D image and then combining it with the 3D information. The road

surface estimation will also be applied to detect the features for the local navigation

control. The next sections will describe these approaches.
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Figure 4.5 – Final result for the disparity map refinement of the SGBM method in dif-
ferent urban scenarios.

4.3 Road and obstacles detection

The road and obstacle detection was based on the combination of 2D/3D image pro-

cessing, similarly to the concept presented in (Vitor et al., 2013), and shortly described

in the Section 4.2. However, the 2D image processing was adapted from the one de-

tailed in (Miranda Neto et al., 2013), to reduce the processing time, and the 3D image

processing was improved with the U/V Disparity maps for better estimate drivable and

non-drivable areas. In addition, the final classification was simplified. The Figure 4.6

illustrates how the proposed solution was divided. It is presented in the following sub-

sections.

4.3.1 2D image processing

The 2D image processing aims to estimate a possible road surface in the image

frame, which will be validated with the 3D information in the classification step (Sub-

section 4.3.3) and used to detect the road lane center (Subsection 4.4.2). It requires

a preprocessing to intensify the visual information and a segmentation to distinguish it

from the rest, as presented as follows.
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Figure 4.6 – Block diagram for the environment perception solution.

Preprocessing

There are several robust image processing algorithms to enhance the desired infor-

mation to be detected (Bertozzi et al., 2000). In this work was applied a Gaussian filter

(similar to a low-pass frequency filter) and an image resizing to smooth and reduce the

processing time (Gonzalez and Woods, 2001). Thus, the final analyzed image has 120

rows proportionally. It is also important to consider only the regions with possible road

information, by defining a ROI in the image frame and removing the car’s hood and a

portion of the sky. The resulting image is in the Figure 4.7a.

Once color images have substantial information about road surface, grass, and road

marks, the RGB color model was considered in the final evaluation. However, differ-

ently from (Miranda Neto et al., 2013) where a single RGB channel was chosen for

the segmentation step, we have based our segmentation in three preprocessed images.

The first one is an enhancement of the blue channel IB information, main component

color in the asphalt, by removing the other two channels (IR and IG) from IB (see

Figure 4.7d):

IB+ = (IB − IG) + (IB − IR). (4.2)

The second image adds the lane marks information to the final segmentation. Con-

sidering white lane marks, they can be emphasized by equalizing the original image

(Figure 4.7a) and selecting the saturated color region IS (all pixels > 250), as shown

in the Figure 4.7c. The last one uses the hue channel IH , from the HSV representation,
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Figure 4.7 – The 2D image processing steps to estimate the road surface area in (i). The
preprocessing is performed in the original image after resizing and selecting the ROI (a).
Thus, the three preprocessed images related to the hue channel IH (b), the saturated
color region IS (c), and the blue channel IB+ are generated. The segmentation of these
images result in IHSw (f) and IBw (g). Finally a weighted sum between the previous
estimation IFA(t− 1) (e), IHSw, and IBw gives the current free area estimation IFA (h).
The yellow rectangle in the image in (h) represents the region with higher percentage
of navigable area, used to find (i).

to improve the robustness of the present approach to light variations, once only color

information are presented in this channel (Figure 4.7b).

Image segmentation

The original proposition of (Miranda Neto et al., 2013) was based on the combina-

tion of a color segmented image from the RGB, using the Otsu method (Otsu, 1979),

and an image formed from an edge and line finders. Although these considerations are

good for large interclass variations, e.g. between road surfaces and herbs, dealing with

urban environments many mismatches can appears due to light variations and road

marks. To avoid these problems, the previous formed images IHS = IH + IS and IB+

were segmented. Applying a linear threshold, it results in the images IHSw and IBw, as

the ones in the Figure 4.7f-g.
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In order to estimate a multimodal 2D drivability free-area, IFA, which represents the

road surface, a weighted average of the segmented images intensities was performed.

It is described in equation (4.3).

IFA(t) = 0.2IFA(t− 1) + 0.4IHS(t) + 0.4IB+(t), (4.3)

where IFA(t − 1) is the previous multimodal image calculated. By using IFA(t − 1),

small variations between the previous (t − 1) and the current (t) reference frame can

be used to improve the final result. However, to avoid the problems associated to large

variations in these frames, the weighting parameters (0.2, 0.4, 0.4) were set to maintain

only the repeating data. The resulting image IFA is illustrated in the Figure 4.7h. The

final segmentation is performed in the IFA, where the navigable area is composed by

all segments belonging to the yellow rectangle defined in the bottom of the image (as

seen in the Figure 4.7h), resulting the Figure 4.7i.

4.3.2 3D image processing

At the same time that the 2D processing performs the road segmentation, the 3D

processing classifies the reference image in free space and obstacles (see Figure 4.6).

This is acquired by means of the U/V disparity maps (Labayrade et al., 2002) and the

approximation of the environment to small planes.

Preprocessing

The processing starts with the rectification of the stereo pair acquired from the cam-

eras (Figure 4.8a), using the epipolar geometry (Faugeras, 1993). The rectified images

are applied to the correlation algorithm SAD to built the disparity map (I�), illustrated

in the Figure 4.8b. The closest regions to the camera are in light grey and far way in

dark grey. These grey values represent the disparity for each pixel and they are related

to the distance between the camera and the 3D point in the world. In this figure, the

influence several noise (shadows, light reflection, and low texture variance) produce a

sparse I� with no disparity values (black points).
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Figure 4.8 – The 3D image processing steps for the rectified stereo pair in (a). The
preprocessing is performed to create the disparity map I� (b) and its row/column rep-
resentations IV� (c) and IU� (d). Approximating the environment by small planes, the
U/V disparity maps are classified in free space (g) and obstacles, by the intersection of
(e) and (f).

The disparity map (I�) is converted in a V and U disparity maps (IV� and IU�) (So-

quet et al., 2007), respectively in the Figures 4.8c and 4.8d. Basically, the IV� is com-

puted accumulating the similar disparities in the same image row (v). In this image, the

rows are the same of the I�, the columns represent the disparity values (grey scale),

and the intensity value store the number of pixels with the same disparity in the row

analyzed. Generalizing, it is a composition of row histograms of the I�. The IU� is

calculated similarly to IV�, changing row to columns in the previous definition, being

a composition of column (u) histograms of the I�.

Planes detection

The U/V disparity technique was chosen to allow an easy classification of the image

data in free space and obstacles. As described in (Lima et al., 2013), the information on

the world environment can be approximated by small horizontal and vertical planes in

the disparity map (I�) in a non-flat world representation. This means that free spaces

have linear variations on their disparity value in a short horizon, whereas the obstacles
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have almost the same disparity values. These both effects generate high intensity values

in the IV� (for free spaces) and IU� (for obstacles). In this context, the noisy pixels are

removed by a threshold and only the most significant ones are considered in the final

classification process (Soquet et al., 2007).

The free space are classified as small lines with a slope bigger than 90◦ and lo-

cally refined for each IV� row. The final free space segmentation is represented in the

Figure 4.8g. The obstacles candidates in the IV� are all the other pixels with no clas-

sification (Figure 4.8f). To confirm which candidates are real obstacles, the IU� was

similarly segmented in the Figure 4.8e. This IU� segmentation intersected with the

previous IV� candidates gives us the obstacles mapping, used in the final classification

explained in the Subsecion 4.3.3 below.

4.3.3 Final classification

Once processed the 2D and 3D layers of Figure 4.6, the reference image may be

finally classified in road, obstacles and unknown areas. Differently from (Vitor et al.,

2013), where a Neural Network was trained to perform this classification, here the final

result was acquired by intersecting both 2D and 3D information to speed up the process.

The Figure 4.9 describes the proceedings to acquire the final segmented image.

The 3D Image Processing (Subsection 4.3.2) has detected the obstacles (Figure 4.8e-

f) and free space (Figure 4.8g) in the IV� and IU�. By converting back these images

in the I� (Figure 4.8b), the resulting masks of obstacles and free space are obtained

in the Figure 4.9a-b. The 2D Image Processing (Subsection 4.3.1) has performed the

road segmentation (illustrated in the image mask of Figure 4.9c). Thus, the final road

surface is defined as the intersection between the free space and the road segmentation

(illustrated by the original color in the Figure 4.9d). The final obstacles are all the

obstacles previously classified from the 3D processing which are not in the final road

surface area (represented by the red color in the Figure 4.9d). The unknown area is

represented by every pixel without classification or disparity information (shown by the

yellow color in the Figure 4.9d).
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Figure 4.9 – Final classification of the road surface and obstacles using the 2D/3D image
processing approach in the reference image (d). The detected obstacles (a) are mapped
in red. The road surface is represented in the original color, formed by the intersection
of the free space from the 3D processing (b) and the road segmentation from the 2D
processing (c). The unknown area (without classification or disparity information) is in
yellow.

4.4 Image feature detection for visual navigation

4.4.1 Features description

The sensor-based control of our vehicle was conceived for monovision cameras,

where image features are used to calculate control velocities in a visual servoing ap-

proach. To achieve that, the robot described in the Subsection 3.3 also includes a fixed

pinhole camera, represented by the reference frame {C} at the Figure 3.7. The optical

center position in the robot frame is given by (xc, yc, zc) = (tx, ty, tz), with zc parallel to

xr and a constant tilt offset 0 < ρ < π
2

related to the xr axis. The image frame {I} for

the camera at this configuration is illustrated in the Figure 4.10, where (umax, vmax) and

(2XI , 2YI) are the image size in pixels and in normalized perspective respectively.

This image defines a path once differentiable in IR2 on the road lane center P be-

tween the boundaries δ1 and δ2. For path continuity, the vehicle must always see the

lane. In our visual servoing approach for path reach and following, the image fea-

tures are the line (X, Y , and Θ) formed by the tangent Γ of the path P at the point
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Figure 4.10 – Image frame {I} representation for the camera frame {C}. The road
lane center P (in red) is related to the boundaries δ1 and δ2 (in yellow). Its tangent Γ
(in blue), at the point D and angle offset Θ from Γ to the axis −Y , defines the image
features X, Y , and Θ.

D = (X, Y ). The angular offset Θ ∈]− π, π] is from Γ to the axis −Y (positive counter-

clockwise).

Due to the camera’s tilt offset ρ and the planar surface constraint, an image point

(u, v) can be easily projected on the road plane with relation to the robot frame, by

using the homogeneous transformation from {C} to {R}. For a pinhole camera model,

with the intrinsic parameters focal length (fx, fy) and image center (cx, cy) in pixels,

the extrinsic parameters ρ and tz, and the normalized perspective

⎧⎪⎨
⎪⎩
X = u

umax−1
− cx = xcfx

zc

Y = v
vmax−1

− cy =
ycfy
zc

, (4.4)

the mapping between {I} and {C} is calculated by:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xc =
Xtz

sin ρ+Y cos ρ

yc =
Y tz

sin ρ+Y cos ρ

zc =
tz

sin ρ+Y cos ρ

. (4.5)

There are no singularities in these equations caused by a zero on the denominator, once

the planar projection is limited to Y > − tan ρ. The intrinsic parameters (fx, fy, cx, cy)

were acquired from the camera calibration.
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4.4.2 2D features extraction

As described in the Figure 4.6, the image once segmented is applied to a 2D fea-

tures extraction component. These features are selected to be the reference to the local

navigation approach based on visual servoing, as presented previously in the Subsec-

tion 4.4.1.

The principle beyond the present approach is the same of several lane detection

algorithms, once the road is first segmented and the lane (or boundaries) are fitted

to lines or curves (Beyeler et al., 2014). Following the Figure 4.11, the previous road

segmentation (Figure 4.11a) are processed with an edge finder (Gonzalez and Woods,

2001) and combined with the saturated color region IS (see Subsection 4.3.1) to form

the Figure 4.11b. The boundaries candidates are detected in the Figure 4.11c and the

reference line is fitted by the RANSAC approach (Fischler and Bolles, 1981) resulting

the Figure4.11c.

Figure 4.11 – The 2D features extraction process to detect the reference road center line
(d) for visual servoing applications. For the road segmented image in (a), the image
edges are combined with the white segments available to form (b). It is used to estimate
the lane boundaries candidates in (c) and to fit a line by the RANSAC approach in (d).

4.5 Occupancy grid

The final classification presented in the Section 4.3 was simplified to speed up the

road and obstacle detection process. However, this increases the occurrence of false

positives that could compromise the robot navigation. Furthermore, the sensors used
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have a limited FOV to the front of the vehicle, which need to be enhanced to allow the

obstacle avoidance. For that, the local occupancy grid (Elfes, 1989) was chosen to store

the detected obstacles and road surface and also perform the data fusion for the vision

cameras.

Based on (Nguyen et al., 2012), the obstacles and road surface from the stereo vi-

sion camera (Figure 4.9d) were projected in the occupancy grid, as well as the road

segmentation from the monocular camera (Figure 4.11a). In the case of the monocular

camera, the projection was performed using the equations (4.4) and (4.5) in a short

horizon (12m), due to possible calibration errors and the planar workspace approxi-

mation. The use of monocular camera data aims to extend the APACHE FOV during

the road intersection maneuvers. The projection, in both camera’s systems, respect a

Gaussian distribution model with the standard deviation σ related to the 3D point es-

timation error. Thus, the occupancy probability of one cell ci at one 3D measurement

Pc = (xc, yc, zc) in the time t is given by:

P occ
t (ci, Pc) = k ·

∮
Acell

⋂
3D

1

σ
√
2π

exp−1

2

(
Pc − Pcell

σ

)2

, (4.6)

where Pcell is the cell position, k represents the percentage of contribution of a single

3D point in the occupancy level of a cell, and Acell
⋂

3D is the integral of the distribution

over the area that overlaps with the cell ci. In addition, if ci has the influence of more

than one 3D point, the final occupancy probability is:

P occ
t (ci) =

∑
allPci

P occ
t (ci, Pc). (4.7)

These equations were used to represent the detected obstacles in the occupancy grid.

For the detected road from the stereo and monocular cameras, the occupancy proba-

bility is calculated with the same formulation of Eq. (4.6), but inverted to assign zero

probabilities to the occupancy grid:

P free
t (ci) = 1−

∑
allPci

P occ
t (ci, Pc). (4.8)
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The final projection of both camera’s systems are illustrated in the Figure 4.12, for the

robot oriented to the right (red rectangle).

Figure 4.12 – Local occupancy grid projection based on the stereo and monocular vision
data for road and obstacles, for the vehicle (red rectangle) oriented to the right. The
light and dark blue rectangles represent an expansion of the vehicle size for security
reasons. The car relative movement is also used to locally update the grid. The pink
dots illustrate the effective obstacles detected for the later autonomous navigation steps.

Once only the local information are held in the grid, it was centralized on the robot

frame R and updated with the car relative movement. To minimize detection mistakes

and cumulative localization errors (caused by kinematic approximations), a forgetting

term was applied to the grid in order to clear regions with no sensor reading after some

time interval.

Since defined on the grid, the effective obstacles and navigable area limits related to

the robot are detected and later applied in the navigation steps. They are represented

by the pink dots in the Figure 4.12, which means the radius distance (robst) to the end

of the free area at the orientation angle (θobst), in the robot body frame {R}. This figure

also shows an expansion of the robot dimensions (light and dark blue rectangles) used

for security reasons during the navigation steps.
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4.6 Experimental results

Some results have already been shown in the previous sections illustrating the meth-

ods. Here we will focus on the validation of the present approach with quantitative and

qualitative outcomes. The quantitative analysis will evaluate the performance of this

approach in an urban dataset, the same used in (Vitor et al., 2013). The qualitative

results present some frames processed by our embedded approach on the experimental

vehicle APACHE at the SEVILLE test track.

4.6.1 Quantitative results

The dataset is formed by a sequential video with 3704 frames, processed at the final

resolution of (400x300). We are applying this sequential video instead of the widely

used KITTI (Geiger et al., 2012), once the algorithm proposed for image segmenta-

tion uses the past information contained in the image IFA(t − 1) (see Eq. 4.3), and

KITTI provides non-sequential frames. Our set contains several samples of unmarked,

marked, and multiple marked road lanes. It also presents several noise sources, like

shadows, light reflections, and low texture variations. Differently from (Vitor et al.,

2013), where some formed segments were manually classified as road surface or not,

here the ground truth was manually drawn for 210 random frames (non-sequential),

respecting the road limits. This set was used to evaluate the road detection capabili-

ties of the 2D road estimation (Subsection 4.3.1) and its final integration in the 2D/3D

approach (Subsection 4.3.3), comparing with the previous results from (Vitor et al.,

2013), shortly described in the Section 4.2. The experiments were all executed in the

same embedded PC of the vehicle APACHE (see Section 3.1 for details).

They were evaluated using the following pixel-based metrics:

Precision =
TP

TP + FP
, (4.9)

Recall =
TP

TP + FN
, (4.10)

F−measure = (1 + β2)
Precision Recall

β2Precision + Recall
, (4.11)
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Accuracy =
TP + TN

TP + FP + TN + FN
. (4.12)

where TP and TN are the number of true positives/negatives, FP and FN are the num-

ber of false positives/negatives, and β = 1 defines the harmonic mean (F1-measure)

between precision and recall. The results of this evaluation are listed in the Table 4.1.

They are illustrated in the Figure 4.13 with the outcomes for fell frames.

Table 4.1 – Evaluation of the road detection algorithms.
Method Precision Recall F−measure Accuracy
Original 2D/3D 0.834 0.972 0.894 0.898
2D estimation 0.856 0.928 0.882 0.874
Final 2D/3D 0.897 0.686 0.774 0.806

Figure 4.13 – Image results from the evaluation of the road detection algorithms. The
colors represents: the true positives (TP) on green, the true negatives (TN) in the origi-
nal color, the false positives (FP) on blue, and the false negatives (FN) on red.

In the Table 4.1 it is possible to see that the better results were acquired for the

original 2D/3D method (Vitor et al., 2013), mainly for the recall and accuracy rates.
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However, due to 3D features extraction based only on the V-Disparity map, many ob-

stacles mismatches occurs increasing the number of false positives and, consequently,

reducing the precision of the approach. In car navigation situations, this could be dan-

gerous, once obstacles are classified as road surface in some cases, as shown as the blue

regions of the Figure 4.13. Moreover, if the cluster has both road and obstacle data

and is classified as a road surface, this also increases the false positives. As mentioned

before, the variable number of clusters also generates a variable execution time (around

2∼5 Hz) with some locking points, where the frame is visibly frozen.

The false positive problem is also observed using only our 2D road estimation ap-

proach during the evaluation. In this case, the detected road surface is constantly mis-

matched with obstacles which colors are near to the road surface (see Figure 4.13).

Thus, validating the 2D estimation with the 3D data in our final approach, several mis-

matches are removed, like obstacles and the uncertain regions with no disparity value.

Note that, this reduces the sensitiveness to road detection (recall rate in Table 4.1), due

to many road surfaces with low texture information which result in no disparity values.

However, this considerably increases the precision of the method against false positives.

In addition, the execution time for this final application was successfully limited to 10

Hz with low CPU usage, leaving it available for others system processes. The most costly

task here is the disparity map calculation, that can be implemented in GPU cards (Banz

et al., 2010).

Comparing the original 2D/3D road detection from (Vitor et al., 2013) with the

final one presented here, the main differences concern to the cluster’s approximation

and the ANN classification in the first one, and the color based segmentation and the

U/V-Disparity maps in the second one. The cluster’s features combined with the ANN

classification are more robust to uncertain regions with no disparity information, once

2D features are also used during the classification process. On the other hand, the color

based segmentation with the U/V-Disparity maps is more sensible to detect obstacles

and different color surfaces (like grass and mud). Furthermore, the false negatives can

be reduced performing the sensor fusion on the occupancy grid with the 2D estimation

data.
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4.6.2 Qualitative results

Taking into account the precision of our final 2D/3D road/obstacle detection and

the sensibility (recall) of the 2D road estimation, we finally integrate the complete

perception system in the experimental vehicle APACHE (Figure 3.1). For a constant

control loop time, the perception rate was limited to 10 Hz. The monocular camera is

installed on the robot sagittal plane with a rigid structure at (tx, ty, tz) = (1.54, 0.0,

1.62)m and tilt offset ρ � 9.5◦ performing the 2D road estimation and the lane center

features detection. The stereo camera is at (tx, ty, tz) = (1.60, 0.29, 1.60)m with the

same tilt offset of the monocular one. The occupancy grid range is up to 30 m, has a

cell size of 0.2 m, and uses the CAN velocity information to update its stored data. The

final system images during a tour around the SEVILLE test track are composed in the

Figure 4.14.

Figure 4.14 – Environment perception results in the SEVILLE test track for different
lighting conditions.

These images illustrate the robustness of the entire solution to several noise sources,

like the sun light variations and the environment shadows. They also present the impor-

tance of the occupancy grid filtering out the detection mismatches, resulting in constant
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information in from of the vehicle. Moreover the sensor’s fusion in the occupancy grid

increase the FOV of the vehicle, mainly in sharp turns, where the roundabout form

is easily recovered from these images. This will be an important issue for the global

navigation management described in the Chapter 6.

4.7 Conclusions

The environment perception provides the most important information for robots

navigation. For autonomous robotic automobiles, this means to provide a robust road

and obstacle detection capabilities to allow the vehicle movement with further reactive

actions. This chapter proposed some 2D/3D image based approaches to improve the

road and obstacle detection problem. The 2D vision solution performed the image

segmentation, used to estimate the road surface, and the 3D information (stereo vision

data) calculated the drivable and non-drivable areas. The image was segmented using a

color based approach and the stereo vision data were processed using the U/V-Disparity

technique. The result were combined and classified in road surface and obstacles, with

a precision of 89.7% and an accuracy of 80.6% in urban environments. It also presented

a fast execution time, allowing regular scheduled applications.

As presented in the Section 4.6, the solution was robust to different environment

conditions which normally lead to false detection. This includes several uncertain re-

gions formed by shadows, light variations, and low texture surfaces, where the missing

information was merged in the occupancy grid. Comparing the 2D estimation with the

2D/3D classification, the first one was more sensible to detect the road surface (with a

higher recall rate), whereas the second was robust against false positives, increasing the

precision. Both were useful to provide a dense occupancy grid in front of the vehicle.

Some improvement could be realized in the disparity map calculation, reducing the

disparity problems caused by the uncertain regions and increasing the recall rate of

the system. Better classifications methods, integrating the benefits of all techniques

presented here can also be studied. This final system was validated during several

autonomous navigation tasks. They are illustrated in the next chapters.
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Chapter 5

Local Navigation Control

Navigation of mobile robots is a large topic with different technologies and applica-

tions. In general, robot navigation requirements are divided in three scales (Dixon and

Henlich, 1997):

— Global navigation: where the robot has the ability to determine its absolute or

map-referenced position, and move to a goal destination;

— Local navigation: where the robot localization is related to static or moving ob-

jects in the environment, and interact with them properly;

— Personal navigation: where the position of the body parts of the robot must be

taken into account to make up oneself, acting between them or with other ob-

jects.

In terms of car-like robots, the global navigation defines an optimal path from a

start and goal points in the city map (not directly connected) to guide the car during its

movement. The local navigation allows the vehicle interaction with the environment to

respect the traffic laws and drive in the right lane, avoiding pedestrians and other cars.

However, personal navigation is not applied, once it is not desired any vehicle contact

interaction with other elements of the environment.

This chapter will address the autonomous vehicle local navigation in urban environ-

ments, more specifically in the road lane following problem. For this purpose, it must

take into account the road and lane limits, traffic laws and possible obstacles while

performing the navigation task. In the current proposition the vehicle localization is

not required, and only the near perceived environment information will be considered

during the movement. Hence, the environment perception approach, previously pre-

67
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sented in Chapter 4, will be an important support for the navigation, providing all these

required information.

Based on the intelligent vehicle APACHE and its resources (Section 3.1), we propose

a new vision-based navigation approach combining Visual Servoing (VS) and obstacle

avoidance in a hybrid control. The focus is on the optimality of deliberation for road

lane following and the real-time reaction to environment changes. The deliberative

control will be performed by an Image-based Visual Servoing (IBVS) approach, adapted

from (Cherubini et al., 2008) to follow the road lane, whereas the reactive control is

assured by a new IDWA. The IDWA will also be used as a validation for the visual

servoing velocities. Note that, we have chosen to work in the image space (IBVS) and

in the 3D space (DWA) simultaneously. By using an IBVS approach instead of a PBVS

avoids the knowledge of the path geometric model. Moreover, this also reduce errors

associated with the calibration of the camera, as described in (Chaumette, 1998). It is

important to mention that the VS methodology chosen is just one between many others

which could be adapted to the present solution. This hybrid controller will be presented

as follows.

5.1 Control design

The hybrid controller, combining VS and IDWA, aims to associate the best elements

of both deliberative and reactive controls. The idea is using the benefits of the IBVS

for path following, to keep the vehicle in the road lane center, and the IDWA to give

priority to fast obstacle avoidance maneuvers and smooth convergence to the lane cen-

ter. This section describes both controllers, compounding the hybrid controller called

by VS+IDWA.

5.1.1 Statement of the problem

The problem of road lane following could be performed by several different visual

approaches, as described in the Section 2.2. Here the road path was approximated to

a line path on the floor and projected in the image frame {I} to define the features

set s = [X Y Θ]T , presented in the Subsection 4.4.1. The objective is to guide these
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features to the desired configuration X = X∗, Y = Y ∗ , and Θ = Θ∗, while avoiding

obstacles. This means that the car must respect the road boundaries and speed, as well

as cars, pedestrians, etc., on the way. Once the camera is installed on the car sagittal

plane (ty = 0), the desired configuration is the line vertically oriented (90◦) on the

center of the image.

5.1.2 Deliberative control: Visual Servoing (VS)

This subsection recall the formulation used by (Cherubini et al., 2008) for the Im-

age-Based Visual Servoing (IBVS) approach of follow a line path projected on the image

frame. Considering the image frame depicted in the Figure 4.10a, the features set

s = [X Y Θ]T defined by the tangent Γ, and the camera installed on the sagittal plane

of the car, the goal is to compute a control input to drive these features to the final

configuration X∗ = Θ∗ = 0 and Y ∗ = YI , which means the vehicle in the center of the

lane. This is achieved considering a constant linear velocity v = vd > 0, in accordance

with the speed limits of the road, and applying a nonlinear feedback control law in the

angular velocity of the car ω, as defined below.

Diffeomorphism between image and cartesian velocities: the interaction matrix

The formulation is based on a row/column controller related to the error in X/Y ,

as seen in the Figure 5.1. Each controller must relate the image features velocities

ṡ = [Ẋ Ẏ Θ̇]T to the robot velocities ur = [v ω]T . Remembering that these velocities

are associated to the car control inputs by the equations (3.3) and (3.4). Initially, the

image features velocities must be written in terms of the camera frame velocities uc =

[vc,x vc,y vc,z ωc,x ωc,y ωc,z]
T , by

ṡ = Lsuc. (5.1)
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This expression uses the interaction matrix Ls for the normalized perspective camera

model of equation (4.4), derived from (Espiau et al., 1992) as:

Ls(X, Y,Θ) =

⎡
⎢⎢⎢⎢⎢⎣

− 1
zc

0 X
zc

XY −(1 +X2) Y

0 − 1
zc

Y
zc

1 + Y 2 −XY −X
CρC2Θ

tz

CρCΘSΘ
tz

− ζCρCΘ
tz

−ζCΘ −ζSΘ −1

⎤
⎥⎥⎥⎥⎥⎦
, (5.2)

with CΘ = cosΘ, SΘ = sinΘ, Cρ = cos ρ, and ζ = (Y sinΘ +X cosΘ). Note that each

line of Ls is related to its respective image feature (LX , LY and LΘ). This matrix also

requires the distance estimation between the camera and the projected image point D

in the world frame, given by the expression (4.5).

Figure 5.1 – Feature configuration to apply the column (a) and row (b) controllers and
their corresponding setpoints in dashed yellow.

Thus, ur may be expressed in the camera frame {C} by (5.3) using the homogeneous

transformation (5.4):

uc =
C TRur, (5.3)

CTR =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −tx cos τ
− sin ρ ty cos ρ

cos ρ −ty sin ρ
0 0

0 − cos τ cos ρ

0 − cos τ sin ρ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.4)
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The columns of the transformation CTR, named as Tv and Tω, are related to the robot

velocities. Once the camera is on the sagittal plane of the car, τ = 0.

Robot control calculation

The row controller must drive (X,Θ) to the desired state (X∗,Θ∗), regulating the

error e = [X − X∗ Θ − Θ∗]T to zero under the constraint Y = const = Y ∗. This led

us to the system state equations, obtained from combining the equations (5.1), (5.3),

and (5.4):

[Ẋ Θ̇]T = Arv +Brω, (5.5)

with:

Ar =

⎡
⎣ LX

LΘ

⎤
⎦Tv and Br =

⎡
⎣ LX

LΘ

⎤
⎦Tω. (5.6)

When Br �= 0, the control law is:

ω = −B+
r (λe+ Arv), (5.7)

where B+
r is the Moore-Penrose matrix pseudoinverse of Br, and λ = [λX λΘ]

T are

positive gains.

Similarly to the row controller, the column controller must drive (Y ,Θ) to the desired

state (Y ∗,Θ∗), regulating the error e = [Y − Y ∗ Θ − Θ∗]T to zero under the constraint

X = const = X∗. It is analogously defined changing the row controller definitions

from X to Y . The controllers are selected regarding the features’ coordinates in the

image plane (see Figure 5.1). If Y �= YI , the column controller is applied for X∗ = XI ,

otherwise is the row controller the selected one.

This controller proposed by (Cherubini et al., 2008) presents some convergence

problems related to the IBVS, mainly for large initial offsets between the robot and

the line on the floor (here represented by the road lane center). However, during the

line following, the robot presents good results, better than a PBVS approach (Cheru-

bini et al., 2011). For more details about the implementation and stability analysis

see (Cherubini et al., 2008, 2011). Some studies could be performed in order to change

the control law and improve the controller convergence. Instead of that, here we pro-
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pose the VS validation before applying its velocities in the vehicle, avoiding large move-

ments when far away from the final desired setpoint. This will be performed by the

reactive controller presented next.

5.1.3 Reactive control: Image-based Dynamic Window Approach

(IDWA)

The Dynamic Window Approach is a reactive obstacle avoidance technique proposed

originally by (Fox et al., 1997). It selects, between all available velocities in a Dynamic

Window search space (VDW ), the best control input by optimizing the objective func-

tion (5.8):

DWA(v, ω) = α · heading(v, ω) + β · dist(v, ω) + γ · velocity(v). (5.8)

This takes into account the weighted sum (adjusted by the gains α, β, and γ) of three

functions:

— heading: based on the final orientation of the robot regarding the goal position

in the world;

— dist: which prioritize movements over the areas free of obstacles (with the high-

est distance to collision); and

— velocity: with focus on the desired linear velocity setpoint.

Due to the nature of this optimization function, the DWA was adapted to several ma-

jor goals (Brock and Khatib, 1999; Ogren and Leonard, 2005; Saranrittichai et al., 2013)

and different robot types, like car-like robots (Rebai et al., 2007; Rebai and Azouaoui,

2009), as well as to dynamic environments (Seder and Petrovic, 2007). However, the

robot and goal relative position to the world were known in these works, which are

susceptible to GPS localization problems.

To avoid these problems, we proposed a new approach for the DWA, by consid-

ering 2D image features to guide the robot and 3D obstacles information to avoid

them. This reactive controller was named as Image-Based Dynamic Window Approach

(IDWA). Note that this technique combines 2D and 3D data in the visual servoing con-

text, thus the IDWA can also be classified as a hybrid visual servoing. The originality
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of our method IDWA w.r.t DWA concerns to the function heading of the objective func-

tion (5.8), as explained bellow.

The IDWA functions

The heading(v, ω) function is responsible to guide the vehicle to a desired goal con-

figuration. In the original DWA formulations (Fox et al., 1997), heading returns high

weights for those control inputs which lead the vehicle orientation nearest to goal posi-

tion, based on the robot localization. However, in the present VS application (Subsec-

tion 5.1.2) the robot localization is not required, and the goal is to guide the error of

the image features to zero. Extending to the DWA, the heading function must estimate

the error

et+�t =

⎡
⎢⎢⎢⎣
Xt+�t −X∗

Yt+�t − Y ∗

Θt+�t −Θ∗

⎤
⎥⎥⎥⎦

in the next frame It+�t, considering (X∗,Y ∗,Θ∗) as setpoint. This is illustrated in the

Figure 5.2. Thus, high weights are given to the sets of control inputs (vi, ωj) ∈ VDW

which reduce the final error et+�t.

Figure 5.2 – Estimation of the image features set Γi (blue line) in the frame It+�t ap-
plying the control inputs (v1, ω1), (v2, ω2) and (v3, ω3). The reference position is also
represented in red, which means the vehicle in the center of the road lane.

Recalling the equations (5.1) and (5.3), it is possible to estimate the features ve-

locities ṡ in the current image frame It for all robot control input ur ∈ VDW . Thus,

integrating each set of velocities over the time, we estimate the features configuration

in the frame It+�t. As the row/column controllers are applied independently, the func-
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tion heading(v, ω) was divided in: XYerror(v, ω), responsible for the row/column error

(X or Y ); and Θerror(v, ω) with the Θ error. Their final values were calculated by:

XYerror(v, ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1− |eX(t+�t)|
eXmax

, if row controller,

1− |eY (t+�t)|
eY max

, otherwise.

(5.9)

Θerror(v, ω) = 1− |eΘ(t+	t)|
π

. (5.10)

The errors in the image frame It+�t are eX , eY , and eΘ, and the maximum measurable

errors in X and Y are eXmax and eY max. Then, we evaluate heading(v, ω) as the sum of

these previous functions:

heading(v, ω) = α1XYerror(v, ω) + α2Θerror(v, ω). (5.11)

where α1 and α2 are the weighting parameters.

Next, the dist function is calculated by:

dist(v, ω) =
dcoll
dmax

,

where dcoll is the distance to collision given by (Arras et al., 2002) for polygonal robots

moving in circular trajectories. This approach is better described in the Appendix A. The

maximal perceived distance dmax is a sensor limitation, here equivalent to the limits

of the occupancy grid (Section 4.5). To allow speed variations while moving along

narrow roads or performing the obstacle avoidance, the limits of the robot were linearly

expanded regarding its speed during the dist evaluation (see the light and dark blue

rectangles at the Figure 4.12). This is the same consideration from (Fox et al., 1997;

von Hundelshausen et al., 2008), creating the robot side clearance related to the speed,

which is robust to errors in the circular trajectory approximation.

The last function velocity(v) is defined based on the desired robot linear velocity vd

(from the VS approach in the Subsection 5.1.2). It is constant and respects the road
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speed limit. Thus, the objective is to return high values to velocities near to vd to

prioritize these outputs in the IDWA. It was defined as:

velocity(v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v

(vd − vmin)
if v ≤ vd,

(vmax − v)

(vmax − vd)
if v > vd,

(5.12)

where vmin and vmax are the robot minimal and maximal reachable velocities.

The Dynamic Window search space VDW

Initially, for the current robot velocity (va, ωa), the Dynamic Window Vd is defined

for all reachable velocities in a time interval 	t as:

Vd = {(v, ω)| v ∈ [va − v̇	t, va + v̇	t] ,

ω ∈ [ωa − ω̇	t, ωa + ω̇	t]} , (5.13)

with the robot input set ur = [v ω]T (see Section 3.3) and the robot accelerations (v̇, ω̇).

Thus, each reachable velocity in Vd must be classified as admissible or not due to the

distance to collision dcoll (see Appendix A), calculated by the function dist(v, ω), and the

robot maximum decelerations (v̇b, ω̇b). By the equation (5.14), based on the Torricelli’s

equation, if dcoll is bigger than the distance required to stop the vehicle safely, then the

velocity is admissible.

Va = {(v, ω)| v ≤
√

2 · dist(v, ω) · dmax · v̇b,
ω ≤

√
2 · dist(v, ω) · dmax · ω̇b} . (5.14)

Finally, the Dynamic Window search space is computed considering the current speed

of the vehicle, the maximum accelerations and decelerations, the physical limits, and

the obstacles in the environment by the equation (5.15).

VDW = Vd ∩ Va ∩ Vs , (5.15)
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where Vs is the set of points that satisfy the maximum velocity constraints vmax and

ωmax. By discretizing the search space VDW , a velocity is selected following the criteria

presented by the objective function (5.8). The discretization considers the smallest

Δφ and Δv which significantly contribute in the vehicle navigation. In addition, the

stabilization time required for the vehicle actuators were observed when defining the

final 	t (see Section 3.5). An example of VDW is shown in the Figure 5.3, where wa

was converted in φa, by means of the equation (3.4), for visualization purposes.

Figure 5.3 – Example of a Dynamic Window VDW (b) calculated for a certain vehicle
state in (a). In (a), the vehicle is illustrated by the red rectangle, where the obstacle
(blue) and road boundaries are detected by a laser (pink dots) projected in an occu-
pancy grid. In (b), va and φa are the current linear velocity and steering angle of the
vehicle, resulting the VDW in green.

5.1.4 Hybrid control: VS+IDWA

The VS methodology presented in the Subsection 5.1.2 does not guarantee safeness

to the car movement, once its main objective is only the road lane following. To achieve

that, it neglects the obstacles information and the vehicle dimensions, allowing move-

ments out of the road surface or directly throw an obstacle. The IDWA, otherwise, has

opposite tasks defined by the functions heading and dist, which can compromise the

optimal road following. Due to this, we combine both controllers in the hybrid solution

VS+IDWA proposed in this work. In this controller, the VS output is validated before

being applied in the vehicle.
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The equation (5.15) defines the IDWA search space VDW , with all reachable veloc-

ities available in a time interval 	t. Basically, if the VS velocities (vV S, ωV S) are not

in the current VDW , a new control input is calculated by the objective function defined

in (5.8). In order to increase the robot reaction against obstacles, a maximal distance

to collision (dV S), for the VS velocities, was added to this evaluation. Thus, the VS

velocities will be considered valid if:

(vV S, ωV S) ∈ VDW and dist(vV S, ωV S) >
dV S

dmax

. (5.16)

5.2 Convergence Analysis

To analyze the convergence of the current approach, it is necessary to define the

expected objectives of the local navigation approach. Once we are not using global

motion planning to assure global convergence or local minima-free movements, three

local objectives were set:

1. Stabilize in the road lane center and follow it when there are no obstacles;

2. Change to the next free lateral lane if available;

3. Stop when there are no options available.

These are the same main tasks that a human driver must deal when navigating in a

road to get to the next intersection. For all tasks it is considered that the environment

perception is able to define the right free-lane setpoint to follow.

The first main task (1) is guaranteed by the deliberative control (VS), once its sta-

bilization is proved by (Cherubini et al., 2008). The next task (2) is performed by the

hybrid controller VS+IDWA, when there are obstacles in the current lane and the robot

must avoid all obstacles and limits of the road to converge to the next desired setpoint.

Similarly to (Brock and Khatib, 1999), where a global planning was used with the DWA

to guide the robot with no local minimas, the IDWA uses the VS equations to move

toward to the next image setpoint. Note that, for the IDWA, following the road lane

and avoiding an obstacle in the same lane are opposite tasks. Thus, if we want a re-

active obstacle avoidance, we must reduce the gain for road lane following (heading

function) and consequently affect the robot stabilization in the lane center. Here is the
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main contribution of associating the deliberative controller VS with the IDWA, because

when the robot is closer to the next desired setpoint, the VS starts to actuate and the

condition (1) guarantees the robot stabilization in the road lane center. Finally, the task

(3) is performed when there are no options available, once the IDWA moves the vehicle

just before collide and all control inputs are not allowed. In the next section, these

situations will be illustrated with some experiments in a simulation environment and in

a real autonomous car.

5.3 Experimental Results

The proposed controller was implemented in the simulation environment and in the

real car APACHE presented in the Chapter 3. The experiments setup and results are

shown next.

5.3.1 Experiments setup

To validate the navigation methodology proposed, the simulation environment was

adjusted with the same parameters from the vehicle APACHE (Figure 3.1). This means

the use of the kinematic model from equation (3.2) to represent the vehicle movement,

the same kinematics constraints, and some actuators dynamics (as described in the Sec-

tion 3.5. The perception of the environment was implemented the solution proposed

in the Chapter 4, where the monocular camera is installed on the robot sagittal plane

with a rigid structure at (tx, ty, tz) = (1.54, 0.0, 1.62) m and tilt offset ρ � 9.5◦ to detect

the road lane center features, as described in the Subsection 4.4.1. It also detects ob-

stacles with a laser sensor with 180◦ of coverage (for the simulation experiments) or a

stereo vision camera (for real experiments). The laser is located in front of the vehicle

at (tx, ty) = (3.43, 0.0) m and the stereo camera is at (tx, ty, tz) = (1.60, 0.29, 1.60) m

with the same tilt offset of the monocular one. To extend, filter, and fuse the perception

data, all the detected elements are represented in an occupancy grid locally constructed

around the robot (Elfes, 1989), as detailed in the Section 4.5. The grid range is up to

dmax = 30 m and the maximal distance to collision for the VS velocities was defined to

dV S = 20 m, which gives enough space for reactive maneuvers in low speed.
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5.3.2 Simulation experiments

Simulation is an important resource that aggregates several experiments possibili-

ties, which could be hard to execute in real environments. It also allows an easy visu-

alization of the influence of the VS control parameters and the IDWA validation during

the robot navigation. The robot speed was limited to 3 m/s due to the kinematic model

approximations. The reference was always set to the center of the right lane, similar to

the Figure 4.10a. With this setup, we checked the influence of the VS and IDWA gains

in the final VS+IDWA result, then we performed a quantitative comparison between

IDWA and the VS+IDWA, and finally we verified the VS control output validation in

the IDWA. For a better visual explanation, the vehicle pose (red rectangles) were left in

all figures to illustrate its movement during these experiments. These rectangles also

give a speed notion during the vehicle movement, where more spaced they are, higher

is the final speed. It is important to note that in our approach there is no a priori path

planning.

Influence of the VS gain

The Figure 5.4 was created to understand the influence of the gain on the VS ap-

proach. It shows the simulation results for some λ values to track the road lane center,

without considering any obstacle on the way. In this figure it is possible to see the er-

rors decreasing when increasing λ, which is evidenced by the Table 5.1 with the mean

square error (MSE) of the image features. However, high λ values also mean large con-

trol output variations, mainly when the features present significant errors, as illustrated

in the same figure. Increasing the λ, the steering velocity v2 reached several times the

maximum value (|v2max|) and frequently changed the signal, resulting in uncomfortable

behavior for a human driver.

Table 5.1 – VS gain λ evaluation.
λ MSEX MSEΘ

0.3 0.512 0.302
0.4 0.175 0.197
0.5 0.117 0.156
0.6 0.096 0.146
0.7 0.090 0.152
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Figure 5.4 – Simulation result for the VS controller performing the road lane following
with λ = 0.3 (a), λ = 0.5 (b), and λ = 0.7 (c). The left column illustrates the car
movement in this environment, where in yellow is the initial pose and in red the in-
stantaneous positions for a clockwise movement. In the column of the middle is error
evolution of the image features and in the column of the right is the steering wheel
velocity output (v2) during the experiments.

Moreover, this figure shows that the VS approach is not robust for path reaching,

once it results in large overshoots on the final movement. Differently for path following,

where the lateral error is reduced and the robot can track the road lane with better

precision. The convergence problem is mainly caused by the large v2 commands, which

do not consider the road boundaries and obstacles, neither the linear velocity changing

to reduce the overshoot.

There are many possibilities to adjust the gain for this VS approach. The one used

by (Cherubini et al., 2008), e.g., considered a variable exponential gain related to the

error of the image features, reducing the gain when the higher is the error. Although
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applying this gain resulted in small overshoots while converging to the center of the

lane, it presents some problems when following the lane center in the curves. This is a

similar result to the one illustrated in the Figure 5.4a. They also showed that there is a

relation between the gain and the maximum curvature of the path, which is limited by

the robot kinematic constraints (see the ICC in the Figure 3.7).

Instead of dynamic adjusting the gain, it is possible to reduce the overshoot by vali-

dating the VS control outputs in the IDWA. For that, we considered the final λ = 0.5, to

take advantage of the path following capabilities of the VS controller (Figure 5.4b). It

is important to mention that drifting away the tangent estimation point D (see the Fig-

ure 4.10) can also be used to anticipate the vehicle reaction to different path curvatures

and reduce the problem observed in the Figure 5.4a.

Influence of the IDWA gains

Before applying the complete VS+IDWA solution, the gains α, β, and γ associated

with the IDWA must be tuned. However, there are no metrics to evaluate these gains

during a reactive obstacle avoidance maneuver, once it is a user choice to define what

is the best reaction to the robot (e.g. overtaking or just stopping near to the obstacle).

The IDWA functions control the final robot reaction, and then by enabling these gains

one by one it is possible to understand their influence and finally adjust them.

The vehicle movement of the Figure 5.5a is acquired from adding some obstacles to

the simulation environment and using only the heading function, composed by XYerror

and Θerror. This function prioritize only the road lane following until stop near to an

obstacle or in a situation where the error cannot be reduced, as shown in this figure.

The function dist (Figure 5.5b), otherwise, results in a movement over the regions free

of obstacles but without any goal or speed definition. This leads the vehicle to stop

in a region equidistant from other obstacles or moves with low velocities. The effect

associated to the function velocity is to emphasize the linear velocities commands near

to vd. This results in a movement closer to the obstacles, with abrupt maneuvers to

avoid them, as shown in the Figure 5.5c. All functions together with no adjustment

result in the Figure 5.5d. With this configuration, the robot gives priority to reduce the

error in the image features until stop near to an obstacle.
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Figure 5.5 – Influence of the gains associated with the IDWA when performing a reactive
obstacle avoidance. Initially, only the functions XYerror and Θerror were enabled in (a),
dist in (b), and velocity (c). Finally, all the gains were enabled in (d), with α1 = α2 =
β = γ = 1.0. The car initial pose is represented in yellow, the obstacles are in blue, and
in red are the car instantaneous positions for a clockwise movement.

By comparing the movements presented in the Figure 5.5, we can see that the

heading function showed an opposite result to those from dist and velocity. This is

caused by the opposition between follow the road lane and avoid the obstacles on the

same road lane. However, when these functions were combined with similar gains, the

vehicle was able to perform the road lane following, with the linear velocity near to

vd, and avoiding the collision with the obstacle situated on the lane. Once the main

objective for the IDWA is the smooth obstacle overtaking with high velocities, in the

Figure 5.6 the previous gains were adjusted one by one regarding this final objective.

Initially, we reduced the XYerror and Θerror gains α1 = α2 = 0.1 (Figure 5.6a) to

avoid the native opposition between heading and the other functions of the IDWA (Sec-

tion 5.2). Although avoiding obstacles, this configuration reduced considerably the car

linear velocity (v1) during the maneuvers. In this context, we increased the velocity

gain γ = 3.0 in the Figure 5.6b. Thus, the distance to the obstacles was enhanced

by the gain β = 2.0, resulting in the Figure 5.6c. The final configuration was set to
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Figure 5.6 – Tuning process for the gains associated with the IDWA, where: (a) α1 =
α2 = 0.1, β = 1.0, and γ = 1.0; (b) α1 = α2 = 0.1, β = 1.0, and γ = 3.0; and (c)
α1 = α2 = 0.1, β = 2.0, and γ = 3.0. The car initial pose is represented in yellow,
the obstacles are in blue, and in red are the car instantaneous positions for a clockwise
movement.

α1 = α2 = 0.1, β = 2.0, and γ = 3.0. Note that the steering velocity v2 varies smoothly

in all configurations presented in this figure.

VS+IDWA versus IDWA

With the previous selected gains (λ = 0.5, α1 = α2 = 0.1, β = 2.0, and γ = 3.0), an

important difference between the results from VS+IDWA and IDWA may be observed,

as shown in the Figure 5.7 and explained as follows. When performing the reach and

following, both controllers are able to converge to the right lane center in the same

time (0 to 15 seconds of simulation). However, following the right lane center (15

to 30 seconds of simulation), the deliberative control part of the VS+IDWA results in a
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small error in the image features than the IDWA controller. This is only possible because

the VS controller has no opposition following the road lane center, different from the

IDWA which always regards the distance to collision and the robot velocity to calculate

the vehicle control input. This is proved calculating the MSE for both simulations (see

Figure 5.7). This difference can also be observed in several points of the Figure 5.8,

mainly on the dashed boxes I and II. In all cases, the setpoint was defined as the road

lane center on the right side, when there are visible marks, or the road center, otherwise.

Figure 5.7 – Comparison between the vehicle lane convergence and following using
the IDWA (a) and the VS+IDWA (b) controllers, with the error of the image features
and the MSE. The car initial pose is represented in yellow and the car instantaneous
positions are in red for a left to right movement.
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Figure 5.8 – Comparative movement using only the reactive controller IDWA (a) and
the complete solution VS+IDWA (b). The difference is mainly observed for the road
lane following task in the dashed box I and II. The car initial pose is represented in
yellow, the obstacles are in blue, and the car instantaneous positions are in red for a
clockwise movement.

The VS validation

By focusing on the VS validation in the IDWA, the experiment illustrated in the Fig-

ure 5.9 was performed for the car starting in the center of the road lane. It presents 30

seconds of simulation during the road lane following and obstacle avoidance maneuver.

This simulation used the previous gains setup of λ = 0.5, α1 = α2 = 0.1, β = 2.0, and

γ = 3.0. For better visualizing and understanding the car movement, the Figure 5.9a-c

is vertically in the same time scale and the outputs displayed are the linear velocity v1

and the steering angle φ.

When the condition expressed by (5.16) is valid, the VS output is allowed as the

robot input and its values are confirmed by the IDWA. This is represented in the first 10

seconds of simulation of the Figure 5.9. After that, the obstacle prevents the movement

in the road lane and the IDWA starts to modify the VS control output to guarantee the

obstacle avoidance. At the end of the road, the obstacles completely block the roadway

and, as expected, the IDWA makes the vehicle stop safely before the collision. During

the whole procedure, the steering angle performed only smooth variations, without
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Figure 5.9 – VS and the VS+IDWA outputs for the simulation result represented in (a),
with the car’s linear velocity v1 in (b) and steering angle φ in (c). The car initial pose is
represented in yellow, the obstacles are in blue, and the car instantaneous positions are
in red for a left to right movement.

reach values higher than±10◦, as seen in the Figure 5.9c. For passengers on the cockpit,

this is an important indicative for the comfort on the car.

5.3.3 Real car-like robot experiments

Three experiments (I-III) were performed with the real car-like robot APACHE (Fig-

ure 3.1) in order to validate the VS+IDWA control approach. They were performed with

the same setup of the previous simulation results (λ = 0.5, α1 = α2 = 0.1, β = 2.0, and

γ = 3.0), at the SEVILLE test track illustrated in the Figure 5.10. In all cases, the vehicle

must to move in the road center respecting the road boundaries and the desired linear

velocity vd (limited for security reasons). The visual servoing task is defined by a yellow
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line and the reference by a dotted red line in the follow images. These experiments

where performed as explained below.

Figure 5.10 – Robot course (red line) for the local navigation experiments at the
SEVILLE test track. All experiments start in the arrow.

Experiment I - Road lane center tracking

The experiment I considered the road lane center reach and following, where the

robot starts away from the final objective, as presented in the image sequence of the

Figure 5.11a. The desired linear velocity vd was set to 3.61 m/s (or 13 km/h). The

Figure 5.11b-c shows the evolution of the error in the image features, converging to the

zero condition at the center of the image (red dotted line in the Figure 5.11a). Note

that, even with large variations in the features set (first 7 seconds of Figure 5.11b-c),

the robot was able to accomplish its task in security.

During the car navigation, the VS validation in the IDWA is observed in the Fig-

ure 5.11d-e. In these figures, the VS represents the deliberative control calculations

alone, on the other hand the VS+IDWA is the final result after validation in the equa-

tion (5.16). When the curves are different, it means that the vehicle control input is

given by the reactive part of the VS+IDWA controller. In the first 15 seconds, once the

errors in the features set result in large control outputs for the VS, the IDWA changes

the v1 and v2 values in order to slowly converge the car to the road center. Then, after
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Figure 5.11 – Road center tracking experiment (I) applying the VS+IDWA, where (a)
presents some detected image features in sequence during the experiment, (b) and (c)
show the evolution of the X, Y , and θ errors. The vehicle control inputs calculated by
VS and the VS+IDWA are in (d) and (e).

15 seconds, the VS control is valid and guarantees a better error reduction than the

IDWA approach, as proved in the simulation results of Figures 5.7 and 5.8. Just as the

human driver behavior, the vehicle control inputs were performed smoothly during the

experiment, validating the gains tuned in simulation.

Experiment II - Road following with obstacle avoidance

In the second experiment (II) the reactive capability of the controller was analyzed

during an obstacle avoidance maneuver. For this purpose, a person was placed on the

way to force the reactive obstacle avoidance. In the image sequence of the Figure 5.12a

it is possible to see the car avoiding the person and moving safely at the maximum

speed of vd = 1.5 m/s (or 5.4 km/h).

In the Figure 5.12b-e, the obstacle avoidance is related to the first 23 seconds, where

the VS outputs are invalid. The last 2 seconds were free from frontal obstacles and the

VS+IDWA returned the valid VS outputs. Similarly to the experiment I, the VS+IDWA
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Figure 5.12 – Road center following with obstacle avoidance experiment (II) applying
the VS+IDWA, where (a) presents some detected image features in sequence during the
experiment with the obstacle indicated by the red arrow, (b) and (c) show the evolution
of the X, Y , and θ errors. The vehicle control inputs calculated by the VS and VS+IDWA
are in (d) and (e).

always provided smooth vehicle control inputs, improving the comfort sensation for the

passengers (Figure 5.12d-e).

Experiment III - Road following with collision avoidance

The third experiment (III) was performed to check the collision avoidance by the

reactive system when there is no other possibility to go. In addition, the desired

linear velocity was increased to 2.7 m/s (or 10 km/h) to check the final accelera-

tion/deceleration applied to the car. The person was so positioned in the middle of

the road, blocking completely the robot way to force it to stop. In the image sequence

of the Figure 5.13a, the car follows the road lane center until stop just in front of the

person.

Once the road center is obstructed, the image features detection vary considerably

during the vehicle movement (Figure 5.13b-c), but the VS+IDWA always avoided hard

movements which could lead the vehicle out of the road. We can note the acceleration
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Figure 5.13 – Road center following with collision avoidance experiment (III) applying
the VS+IDWA, where (a) presents some detected image features in sequence during the
experiment with the obstacle indicated by the red arrow, (b) and (c) show the evolution
of the X, Y , and θ errors. The vehicle control inputs calculated by the VS and VS+IDWA
are in (d) and (e).

and deceleration applied in the linear velocity control, taking almost the same time to

go from 0 to 2.7m/s and vice-versa (Figure 5.13d-e). In practical situations, the robot

reaction depends on the actuator dynamics considered during the VS+IDWA calcula-

tion.

For a better visualization of the local navigation control capabilities, a complete

video sequence, including some experiments described here, is available in (Lima and

Victorino, 2014a).

5.4 Conclusions

This chapter presented a new hybrid controller for vision-based local navigation of

car-like robots in urban environments. By combining a VS approach, as deliberative con-

trol, and the IDWA, as reactive control, it allowed the road lane following with obstacle

avoidance by our experimental vehicle. Using only the VS controller it is not possible to
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guarantee the accomplishment of the local navigation task, caused by some limitations

like: the path reaching problems, the constant linear velocity, and the obstacles in the

environment. However, validating the VS outputs in the IDWA assured the safeness of

the VS approach. In addition, if the VS outputs are not allowed, the IDWA optimization

function give us a reactive alternative to safely complete the navigation task. Moreover,

the VS control avoided the inherent opposition presented in the IDWA functions while

following the road lane center.

Several tests were performed in the simulation environment over Matlab consider-

ing the car kinematics constraints, and some dynamics and sensors limitations, which

provided a solid validation for the proposed solution. In this environment, a complete

analysis about the controller gains was performed for a better setup.

Experiments in the real electric car-like robot APACHE showed the viability of the

proposed methodology for local navigation with smooth control behavior. The complete

strategy have integrated several resources from the car and environment perception

systems.

It is important to mention that other Visual Servoing techniques could be integrated

with the present solution to accomplish different tasks. Due to the nature of the pre-

sented approach, it can be applied with low-cost sensors and independent of high pre-

cision localization system. Based on these benefits, in the Chapter 6 this controller

was integrated to a global navigation methodology using low-cost sensors and our au-

tonomous vehicle.
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Chapter 6

Global Navigation Management

Full autonomous systems must be able to accomplish the desired user tasks with

no human intervention. The Chapter 5 presented an approach for local tasks accom-

plishment, guiding our experimental vehicle APACHE during road following navigation

with the perceived information from the environment (Chapter 4). However, a full au-

tonomous car must equally deal with the global navigation problems of go from a initial

position (qinit) to a final destination (qgoal), passing through different roads and other

scenarios conditions.

In the Section 2.3 several global navigation approaches were listed. They used way-

points to describe the robot path and, some of them, are highly dependent on GPS

based localization to guide the robot to qgoal. But GPS sensors are very susceptible to

errors, mainly in urban environments, where there are tall buildings, overpasses and

tunnels (von Hundelshausen et al., 2008). This chapter presents a global navigation

approach based on the topological representation of the path, divided on corridors and

critical points (CPs). During the navigation on the corridors (the roads), which are con-

nected by a topological representation, the local autonomous navigation strategy is used

without explicitly localization of the robotic vehicle. When the vehicle arrives at a criti-

cal point (road intersections and roundabouts) a global localization phase takes place in

a global navigation strategy, object of this chapter. The topological representation was

constructed after a global path planning from qinit to qgoal based on a user-generated

digital map. This chapter will present the methodology for our global autonomous

navigation contribution (Pereira et al., 2014), generalizing and testing the navigation

strategy in real scenarios with the experimental vehicle APACHE.

93
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Following the system proposition of Figure 3.2, this navigation combines the en-

vironment information (Environment Perception block) surrounding the robot and its

current estimated position (EKF block) to provide the correct setpoints for the Local

Navigation Control block. Although we are using a GPS based localization for fast val-

idation purposes, this is not a limitation for the approach, once digital maps can help

with different localization possibilities, as well as vision cameras (Comport et al., 2011)

and vehicle-to-infrastructure (V2I) communication (Hassan et al., 2013). However, the

focus here is not to solve localization problems, but the car global navigation as a whole.

The digital map applied in this work and its resources are described next.

6.1 OpenStreetMap: user-generated street maps

OpenStreetMap (OSM) is a free user-generating mapping platform for digital map

with several detailed maps worldwide proposed by (Haklay and Weber, 2008). The

OSM data include three basic geometric elements: nodes, ways and relations. The nodes

are geometrical points interconnected by ways used to represent the geometry of the

way. In case of roads, they also represent the intersections and roundabouts. To fit the

geometry, the ways represent a set of nodes characterizing a specified object like road,

building, railway, etc. The element relations constructs a relationship of geoobjects,

where the relation may contain nodes and ways. The Figure 6.1 presents an example of

the OSM data in a portion of the city of Compiègne, France. In Figure 6.1a it is shown

the region of interest, extracted from the OSM using the global GPS coordinates (lati-

tude and longitude). The OSM data is represented by a metadata file containing all the

geometric elements, as shown in figure 6.1d. The geometric elements are represented

by different types of nodes, identified in the file by keytags according to the origin of the

node (building, railways, highways). In our case, it is necessary only the ways with the

keytag “highway", as they correspond to the navigable area. The Figures 6.1b and 6.1c

presents the respective drivable area filtered from a research on the metadata file (cor-

responding to the portion of the map in 6.1a) using the keytag "highway". Note that, the

data from the OSM are rich in details, as many commercial digital maps, and provides

some information about the road, like the number of lanes, maximum speed, and the

road direction (see Figure 6.1d).



6.1. OpenStreetMap: user-generated street maps 95

Figure 6.1 – Example of the OpenStreetMap data of a urban environment (a), all the
extracted nodes (b), and the resulting ways with the tag "highway". A piece of the OSM
metadata file for the road indicated by the yellow arrow is illustrated in (d), with the
way definition (green), the keytag (red), the nodes (blue), and some parameters of the
road (white).

In the Figure 6.2 both OSM (red) and differential GPS (DGPS) data (yellow) were

plotted during a car navigation, in order to verify how far from the real road network

are the OSM data. It shows the consistency of the data from the OSM database, com-

paring with the DGPS data. The error was around 5 to 10 meters, mainly in the road

intersections, due to the nature of the OSM data provided by final users. The users’

data are normally added by personal GPS measurements or line segments approxima-

tion in a drawing interface. For a global navigation application based on them, an error

smaller than 10 meters should be considered to better deal with the road intersections.

Otherwise, the points must be prerecorded by high precision devices and then inserted

in the map (Ziegler et al., 2014), which are not the case for this current work.

The focus here is on the benefits of the OSM data for the geometric representation

of the environment. This information will be combined in a routing table for the vehicle

guidance, where the global navigation is acquired managing the vehicle state (following
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Figure 6.2 – OSM and GPS data comparison during the vehicle navigation.

the road or turning into the next road) in the routing table. The next section will

describe this routing table principle and its construction after a global path planning.

6.2 Global route planning

In a simplified description of the urban environment, it can be divided into corridors

and critical points (CPs) in a topological representation similar to the one applied to

indoor places (Victorino et al., 2003b). The corridors are synonym for streets, avenues,

etc., where the navigation task does not change and there are only one possible way

to go until arrive into a CP. This task can be accomplished by some road following

task (Dickmanns and Zapp, 1987; Kosecka et al., 1998; Lima and Victorino, 2014b),

which does not obligatorily requires a localization system. The CPs represent the po-

sition where the local navigation task must take a decision to continue or change to a

new task. This is commonly represented by the road intersections, traffic lights, pedes-

trian crossing, etc. By this assumption, every corridor must be connected to a CP and

vice-versa. In this scenario, the car-like robot must localize itself only when it is near to

a CP, avoiding several localization problems (von Hundelshausen et al., 2008).

To validate the present navigation approach, roads were considered as corridors

and their intersections as CPs. Based on digital maps, provided by the OSM, a routing
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table is created by structuring the global navigation from qinit to qgoal. For this, the

first step is to perform the path planning, where the optimal path from qinit to qgoal is

calculated. There are many techniques dealing with the path planning problem (Choset

et al., 2005). Since dealing with road networks from digital maps, the optimal path

search model was approximated to a graph traversal problem. In this case, we applied

the A* algorithm (Hart et al., 1968), an evolution from the Dijkstra’s algorithm with

logarithmic time complexity. This search algorithm minimizes a cost function, defined

by the Euclidean distance between two nodes and the car maximum speed, computing

the path with the lowest driving time. The result is a list of nodes, or waypoints, in

which the robot must pass. The nodes representing the road intersections are so filtered

out forming the list of CPs (see Figure 6.3).

Figure 6.3 – Optimal path planning from qinit to qgoal with the list of nodes representing
critical points. This used the OSM data in a portion of the city of Compiègne, France.

From this list, the local information is extracted and organized as a routing table.

The Table 6.1 presents the routing table parameters for the path (red dotted line) illus-

trated in the Figure 6.4. This table was divided in two parts, Road description and CP

geometry, where the first one is related to the road (way) leaving this CP, and the sec-
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ond part represents the CP geometry with the angle and direction of every intersecting

road. The first part has a constant number of columns, once the possible road parame-

ters are always the same, and the second one has a number columns depending on the

number of roads intersecting the CP. During the robot navigation, first comes the CP

(with its associated geometry) and them the road leaving CP (with its description). The

routing table parameters are:

Node is the list of CPs of the path ordered from qinit to qgoal;

Lat and Long are the latitude and longitude coordinates of the CPs in degrees;

Vmax defines the maximum speed limit of the road leaving the CP (in km/h);

Rlanes indicates the number of available lanes in the road leaving the CP (even if it

is a two way road);

Rway classifies the road leaving the CP in one way (1) or not (2);

Ra tells if the CP is a roundabout point or not;

Nroads enumerates the roads connected to the CP;

Θ1..Nroads
and D1..Nroads

form the sets of angle and direction for each road at the CP,

ordered counterclockwise. Θ1..Nroads
are formed angles between the current road

and the next one in the intersection. D1..Nroads
indicate if the road is the path to

follow(4), a wrong way (arrival) road (3), a right way (departure) road(2), an

arrival/departure road(1), or if it is the goal point(0).

Table 6.1 – Routing table for the path represented in the Figure 6.4.
Road description

Node Lat Lon Vmax Rlanes Rway Ra

qinit 49.392 2.798 30 1 1 0
1 49.400 2.800 50 2 2 0
...

...
...

...
...

...
...

CP geometry

Node Nroads Θ1 D1 Θ2 D2

qinit 1 180 4 - -
1 2 110 4 290 1
...

...
...

...
...

...

A complete routing table based on the OSM data is presented in the Table 6.2, for

the optimal path (red dotted line) of Figure 6.3. A global navigation, based on the
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Figure 6.4 – Example of a road intersection to illustrate the routing table definitions,
where the yellow arrows indicates the traffic way.

routing table, can be performed by following the directions indicated as path to follow

(4) at each CP. The management of this table is presented next.

6.3 Global navigation

The global navigation takes into account the problem of guiding the robot from

qinit to qgoal. Focusing on local navigation approaches to solve the entire problem, the

global navigation was divided in two local tasks: road lane following (corridors) and

road intersection maneuvers (at CPs). At this section, both navigation problems were

solved based on the routing table, previously defined in the Section 6.2. However,

it is necessary to switch between these two tasks, managing the car’s motion when

navigating in a CP.

6.3.1 Navigation management

For the car moving from qinit to qgoal, the role of the navigation management is

to determine which local navigation task must be performed (road lane following or

road intersection maneuver), regarding the routing table for its planned path. The

selected task defines the image setpoint and all control parameters based on the robot
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Table 6.2 – Routing table for the optimal path presented in the Figure 6.3.
Road description

Node Lat Lon Vmax Rlanes Rway Ra

qinit 49.399 2.800 30 1 2 0
1 49.399 2.799 30 1 2 0
2 49.398 2.799 30 1 2 0
3 49.398 2.798 30 1 2 0
4 49.397 2.797 50 1 2 0
5 49.397 2.796 50 1 2 0
6 49.397 2.795 50 2 1 1
7 49.397 2.795 50 2 1 1

qgoal 49.398 2.795 - - - -
CP geometry

Node Nroads Θ1 D1 Θ2 D2 Θ3 D3

qinit 1 180 4 - - - -
1 2 180 4 271 1 - -
2 3 93 1 177 4 278 1
3 2 89 1 165 4 - -
4 2 97 4 278 1 - -
5 2 75 1 188 4 - -
6 2 88 4 268 3 - -
7 2 114 4 268 2 - -

qgoal 1 180 0 - - - -

perception. Considering the localization method of the vehicle APACHE, based on a

low-cost GPS (see Section 3.4), the world related position of the robot is provided with

an error around ±5m. Thus, the navigation management is performed estimating the

car position related to the CPs around during the movement, for an initial position near

to qinit.

If the robot is located between two CPs (far away from both), this means that it

is situated in a corridor. At corridors, there are only one direction to go and the local

navigation Road lane Following is performed, as described in the subsection 6.3.2. When

the robot is close enough to a CP, the information about the angles and directions

are extracted from the routing table and the local navigation task is switched to Road

intersection maneuver (as explained in the Section 6.3.3 bellow).

By analyzing these conditions, we observed that the management objective is to

define how near/far the robot is from a CP, then switch between the local tasks. To do

so, we performed the APACHE movement in the SEVILLE test track, defining the CPs in

all road intersections, as seen in the Figure 6.5. The resulting trajectory, provided by its
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localization system, always intersects the black circles containing the CPs. The circles

consider the maximum localization and OSM errors of 10 meters. Thus, the vehicle is

near to a CP when the distance between them is lower than 10 meters and faraway

otherwise. Approaching a CP, the maximum vehicle speed can be reduced to improve

the navigation behavior and also apply some localization technique based on the local

information (Comport et al., 2011; Hassan et al., 2013).

Figure 6.5 – Critical points for the test track SEVILLE, circumscribed by the black circles
with radius equal to 10 meters, considering the localization and OSM errors. The vehicle
trajectory is in red, always contained in the CPs.

6.3.2 Local navigation: road lane following

There are several approaches based on road lane following (Espiau et al., 1992; Lee

et al., 1998; Broggi et al., 1999), which are able to control the vehicle without accurate

position information. These approaches require a linear velocity setpoint for the longi-

tudinal control, as well as a robust perception system to detect the road limits and lane

marks for the lateral control. This work applies the VS+IDWA algorithm proposed in the

Chapter 5 to accomplish the current local navigation task. The environment perception

of Chapter 4 will provide the controller setpoint defined as the road lane center.
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With the previous knowledge about road speed limit (Vmax), number of lanes (Rlanes),

and traffic way (Rway), provided by the routing table, the speed setpoint can be adjusted

and the lane detection algorithm optimized for each road. In addition, with the traffic

way, the obstacle overtaking can be better controlled, and movements in discordance

with the traffic laws are as well avoided.

6.3.3 Local navigation: road intersection maneuvers

Approaches for road lane following do not traditionally deal with road intersection

maneuvers, requiring some intervention at these situations. With this problem in mind,

we propose a complement for the vehicle control, based on the previous VS+IDWA

(Chapter 5), with an algorithm to artificially change the local environment information

perceived at the local occupancy grid (see Section 4.5). This algorithm is based on the

road intersection geometry, retrieved from the CPs at the routing table. It includes the

directions that the car should take and the formed angle between the current and next

roads.

The VS+IDWA provides safe movement to the vehicle by means of the reactive con-

troller IDWA and the perceived obstacles in the navigable area. Artificially changing the

navigable area with virtual obstacles, it is possible to force the IDWA to guide the ve-

hicle to take right directions at intersections. In addition, providing the image features

closer to the final destination make the IDWA to prioritize the velocities which lead the

vehicle to this direction.

The first part of this approach is described in the Algorithm 6.1, with the detection

of the road intersection corners. The main steps are illustrated in the Figure 6.6. It was

inspired by the laser detection of tunnel intersections (Larsson et al., 2008), where a

similar laser reading in the local occupancy grid defines the obstacles position in polar

coordinates (robst, θobst) in a maximum perceived distance dmax (see the pink dots in

the Figure 6.6b). It also uses the car’s width Cwidth, to eliminate false positives, and

the routing table information of Nroads, with the number of roads at the intersection

and their geometry (Figure 6.6c). These parameters define the path possibilities for the

current robot state (Figure 6.6a), represented by the arrows (red and yellow colors) in

the navigable area (black pixels) of the occupancy grid.
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Algoritmo 6.1 Find the road intersections based on the routing table information. Re-
turn the (row, θ) pairs representing the intersecting roads.
find intersection corners(robst, θobst, dmax, Cwidth, Nroads)

1: il, ir = find main road limit(robst, θobst, dmax)

2: Ipolar = Plot(robst, θobst)
3: for all Ipolar row between the columns il and ir do

4: find the n columns pairs (θobst,l [1..n] , θobst,r [1..n]) in the row, representing the
grey areas limited by the white pixels

5: if n == Nroads then

6: if Edist(Cart(row, θobst,l [1..n]), Cart(row, θobst,r [1..n])) > Cwidth then

7: return row, θobst,l [1..n] , θobst,r [1..n]
8: end if

9: end if

10: end for

11: return false

Following this algorithm, initially, when the vehicle is close enough to the CP, the

main road limit is calculated by the Algorithm 6.2, which return il and ir. They rep-

resent the left and right θobst indexes with the smallest distance to the vehicle. These

points reduce the search algorithm to the region defined between them. The final search

is performed in the polar coordinates graphic Ipolar (Figure 6.6d), with the radius mea-

surements linked by the white line dividing the area among the vehicle (grey color) and

faraway (black color). Thus, the algorithm search for the row discontinuities, which

represent the white-grey and grey-white variations between il and ir. These points are

the candidates for the road intersection corners and must be checked by the following

two filters:

— Nroads - verify if the number of n candidates is equal to the amount of expected

roads at the intersection. One candidate is equal to the pair formed by the white-

grey (row, θobst,l [k]) and grey-white (row, θobst,r [k]) variation, for k = [1..n];

— Edist - test if the Euclidean distance of each candidate, in Cartesian coordinates

(Cart), is higher than the car width (Cwidth).

The valid candidates are illustrated by dots in the Figure 6.6d. The main road limits

and the intersections found are represented in the grid point-of-view in the Figure 6.6e.

By the intersection geometry, the wrong vehicle directions are obstructed with virtual

obstacles (also known as geofencing) at the distance equal to row, which results in

the Figure 6.7a. Once the VS+IDWA requires an image features set for the control
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Figure 6.6 – Steps to find the road intersection corners for the car pose represented by
the red rectangle (a). The respective local occupancy grid (b) and routing table state
(c) illustrate the end of the navigable area given by pink dots with polar coordinates
(robst, θobst) and the road structure at the intersection. These polar coordinates were
used to detect the main road limits and to generate the graph (d), which defines the
road intersections corners (in blue). They are better visualized in the grid point of view
in (e), with the main road in yellow, the intersections in blue, and the destination road
center in green.

calculation, the line connecting the vehicle to the next valid road center (green point at

the Figure 6.7a) was projected in the image plane. This was performed by means of the

equations 4.4 and 4.5, defining the new image feature line in the Figure 6.7b.

This approach is always executed when the vehicle is on the road intersection. Thus,

the center of the destination road (green point) can be used as a condition to check if

the robot has reached the destination road. If this point is closer enough to the front of

the car, the road intersection maneuver was successfully performed and we can switch

to the next local navigation method. This entire technique will be illustrated next in the

experimental results at the real car APACHE.

6.4 Experimental results

To validate the proposed global navigation management, it was completely imple-

mented in the embedded PC of the experimental car APACHE (see Section 3.1, using the
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Algoritmo 6.2 Find the main road limit. Return the corners indexes (il, ir) closer to the
robot.
find main road limit(robst, θobst, dmax)

1: ldmin
= rdmin

= dmax

2: for i = 1 to SizeOf(θobst)/3 do

3: if ldmin
> robst [i] then

4: ldmin
= robst [i]

5: il = i
6: end if

7: if rdmin
> robst [SizeOf(θobst)− i+ 1] then

8: rdmin
= robst [SizeOf(θobst)− i+ 1]

9: ir = i
10: end if

11: end for

12: return il, ir

Figure 6.7 – Final robst and θobst with the virtual obstacles defined by the method de-
scribed in the Algorithm 6.1 (a) and the new image features (b), oriented to the center
of the next road (green point).

previous approaches for environment perception (Chapter 4) and local navigation con-

trol (Chapter 5). For the entire system running at 10 Hz, two navigation experiments

were performed in order to present the global navigation management capabilities dur-

ing the road lane following and the road intersection maneuvers. Both experiments

were realized in the SEVILLE test track in full autonomous mode and their respective

routing table constructed using the OSM data. Once this is a closed circuit, the path

planning was not performed, requiring only the order of the CPs where the vehicle

must pass. The localization tolerance for each CP was set to 10 m, regarding the GPS

and OSM errors. These experiments are presented as follow.
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6.4.1 Management at road lane following

Considering the results for the local navigation control based on the VS+IDWA (pre-

viously discussed in the Chapter 5), the experiment for road lane following management

focused on the road description provided by the routing table during the car movement.

The main information extracted here will be the maximum speed limit vd for the roads

and intersections. The experiment used the Table 6.3 to result the robot motion plot-

ted in the Figure 6.8. This figure also presents some screenshots from the environment

perception system to illustrate the car navigation during the road lane following tasks.

Note that the localization variations make path following applications using GPS points

unfeasible, but they are well fitted in the CPs tolerance radius.

Table 6.3 – Routing table for the global navigation management experiment I presented
in the Figure 6.8.

Road description

Node Lat Lon Vmax Rlanes Rway Ra

qinit 49.4021061 2.7948685 13 1 1 0
1 49.4024539 2.7953365 7 1 2 0
2 49.4024597 2.7955631 5 1 2 1
3 49.4026169 2.7955953 7 1 1 1
4 49.4024800 2.7953713 13 1 2 0

qgoal 49.4021041 2.7948731 - - - -
CP geometry

Node Nroads Θ1 D1 Θ2 D2

qinit 1 180 4 - -
1 2 135 4 180 3
2 2 180 4 330 3
3 2 180 4 210 2
4 2 180 4 315 2

qgoal 1 180 0 - -

On this previous movement, the global navigation management performs the speed

limitation for each local road. The Figure 6.9 shows the linear velocity profile for the

complete movement with the limitation performed for each routing table row. In this

figure, the global management is evidenced during the CP transitions, where the road

nominal speed (defined as 5, 7 and 13 km/h) is limited to 5 km/h to allow the intersec-

tion maneuvers. In order to mimic a human driver behavior and preparing the vehicle

for the arrival of an intersection, we anticipate the speed limitation to 5 m before the

CPs. This distance allows a smooth arrival in the intersection for the current speed
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Figure 6.8 – Global navigation experiment I focusing on the road lane following for the
routing table defined on Table 6.3. The initial position is defined by the blue arrow and
the destination by the green point. The robot positions are illustrated in red and the
localization tolerance around each CP are represented by the black circles.

limitations. However, for high speed applications, this distance must be related to the

vehicle maximum deceleration for a smooth speed reduction.

6.4.2 Management at road intersection maneuvers

Extending the previous movement for the entire figure-eight circuit, we verify here

the vehicle reaction at the road intersections. The Table 6.4 describes this movement,

observed in the Figure 6.10 with some screenshots of the environment perception sys-

tems at the intersections. In these situations, the strategy proposed in the Subsec-

tion 6.3.3 modifies the occupancy grid information with virtual obstacles (blue dots).

These obstacles combined with the new image feature (estimated from the green dot in

the occupancy grid), allow the global navigation of the vehicle.

In addition, the Figure 6.11 presents in detail one of these maneuvers, with some

sequential frames. In these frames it is possible to see the robustness of this approach

during the movement, detecting the intersecting road with low variations as well as the
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Figure 6.9 – Velocity profile for the global navigation experiment I of Figure 6.8.

next road center. Note that the roads geometry at the intersection do not matter on

fact, but can be considered to enhance the detection capabilities. The most important

element here is a good representation of the road area by the perception system. If the

next road surface is not well detected for example, or it is not on the sensor’s FOV, the

vehicle will not be able to exit from the intersection situation.

6.5 Conclusions

Global navigation is an important task for many robots, and for car-like robots it is

one of the main frontiers between a full and semi-autonomous system. In this chapter

we presented a new sensor-based approach to deal with the global navigation problem

in urban environments, using only low-cost sensors. We focused on two main tasks:

road lane following and road intersection maneuvers. To accomplish it, the robot path

was divided in critical points (CPs) for a topological representation of the global naviga-

tion task. These CPs were structured in a routing table, which describes the main road

(lane, way, speed limit) and its geometry at the intersection. All the information re-

quired for it were retrieved from digital maps, provided by the OpenStreetMap (OSM).

The management of this information allowed us to perform the global navigation of our

vehicle.

The final system has integrated all the available resources of our experimental ve-

hicle APACHE, detailed in the Chapters 3, 4 and 5, for localization, low-level control,



6.5. Conclusions 109

Table 6.4 – Routing table for the global navigation management experiment II presented
in the Figure 6.10.

Road description

Node Lat Lon Vmax Rlanes Rway Ra

qinit 49.4021061 2.7948685 13 1 1 0
1 49.4024539 2.7953365 7 1 2 0
2 49.4024597 2.7955631 5 1 2 1
3 49.4026169 2.7955953 7 1 1 1
4 49.4024800 2.7953713 10 1 2 0
5 49.4020526 2.7947947 7 1 2 0
6 49.4019573 2.7946756 5 1 1 1
7 49.4018369 2.7946884 5 1 2 1
8 49.4019316 2.7948211 5 1 2 1
9 49.4020526 2.7947947 7 1 2 0

qgoal 49.4021061 2.7948685 - - - -
CP geometry

Node Nroads Θ1 D1 Θ2 D2

qinit 1 180 4 - -
1 2 135 4 180 3
2 2 180 4 330 3
3 2 180 4 210 2
4 2 180 4 315 2
5 2 180 4 225 3
6 2 180 4 330 2
7 2 180 3 245 4
8 2 180 4 225 3
9 2 135 4 315 2

qgoal 1 180 0 - -

environment perception, and local navigation control. The two main tasks were suc-

cessfully accomplished, following the image reference and avoiding obstacles, in a sim-

ulation environment and in real experiments. The results showed the viability of the

solution, even in the presence of a reduced number of sensors for environment percep-

tion. Nevertheless, increasing the FOV and, consequently, the number of sensors used

is fundamental to assure safe navigation in more situations.

Future works must deal with these perception limitations, enhancing the actual per-

ception configuration for better intersection detection. Moreover, better localization

techniques, like those presented by (Comport et al., 2011; Hassan et al., 2013) should

be tested to avoid GPS problems in urban canyons when approaching an intersection.

In addition, more road constraints must be considered, like road lanes, stop signs, the
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Figure 6.10 – Global navigation experiment II focusing on the road intersection maneu-
vers, for the routing table defined on Table 6.4. The initial position is defined by the
blue arrow and the destination by the green point. The robot positions are illustrated in
red and the localization tolerance around each CP are represented by the black circles.

road priority, etc., to allow road following and intersection maneuvers closer to real

situations.
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Figure 6.11 – Vehicle movement during a road intersection maneuver, emphasizing the
virtual obstacles (blue dots) and the destination road center (green dot) used to define
the new image feature in these conditions (yellow line).



112 Chapter 6. Global Navigation Management



Chapter 7

Conclusions and Future Works

This work presented some contributions for the sensor-based navigation problem

applied to autonomous robotic automobiles. Beyond the several exiting contributions,

described in the related work, we proposed a solution less dependent on high cost

sensors and without any proprietary information prerecorded. The problem was so

divided in three big areas: the environment perception, the local navigation control, and

the global navigation management. In order to experimentally validate all techniques, a

real electric vehicle was prepared with several components, like embedded computers,

exteroceptive sensors, localization system, and low-level velocity controller. Moreover,

a simulation environment was also developed to allow fast experiments in different

scenarios.

In the environment perception, we presented contributions in the 2D/3D image pro-

cessing context. They were developed to deal with common problems associated to the

stereo vision cameras, like shadows, light reflections, and low texture variations. The

first contribution was a road detection algorithm (Vitor et al., 2013), based on 2D image

segmentation and classification in an artificial neural networks (ANN). This approach

enhanced the 3D image data (from the stereo camera) with features extracted from the

reference image (2D), for each formed segment, to perform a robust road detection.

Once that many stereo vision problems are associated to sparse disparity map informa-

tion, caused by wrong stereo matching, we avanced in this direction proposing another

contribution, a disparity map refinement in (Lima et al., 2013). This refinement com-

bined the previous 2D image segmentation with a RANSAC plane fitting to enhance the

valid disparity information and filter out the variation of the data.
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Although these were useful approaches, the execution time associated to these tech-

niques was not enough to be used in our navigation system. In addition, they would

have required a hard effort and working time to speed up these algorithms, which could

compromise the development of the entire navigation system. Instead of that, we pro-

posed another contribution, by using the 2D/3D image processing idea to improve and

combine some existing techniques in a fast application for road and obstacle detection.

All algorithms were tested in different urban scenarios and compared between them,

with relation to a ground truth. The final solution was embedded in the experimental

vehicle during the autonomous navigation experiments, and presented a precision of

89.7% and an accuracy of 80.6%.

For the local navigation control, we proposed an original contribution, that is a new

hybrid control strategy called VS+IDWA (Lima and Victorino, 2014b). It combined a

Visual Servoing (VS) approach as deliberative control and an Image-Based Dynamic

Window Approach (IDWA) (Lima and Victorino, 2014c) as reactive control. The VS

velocities directly applied in the vehicle do not guarantee the safe navigation of the

vehicle, but their validation in the IDWA allowed a better convergence to the setpoint

(compared with the IDWA control alone) and reactive obstacle avoidance. This con-

troller was applied for road lane following with obstacle avoidance, where several val-

idation experiments in simulation and real scenarios were performed. This solution

considered the car kinematic and some dynamics constraints, only low-cost sensors,

and no localization system. It is important to mention that several VS approaches could

be applied in this context.

However, the previous local navigation control was not able to deal with road inter-

sections, where there is more than one road available to follow. Therefore, we proposed

a new global navigation management to artificially change the environment information

and provide the right setpoint for the local navigation control. Starting from an initial

contribution (Pereira et al., 2014), the routing table representation was improved and

the navigation management was generalized and tested in a real scenario. Two nav-

igation situations were considered: the road lane following and the road intersection

maneuvers. In these situations, the control laws were performed in the sensors space.

The final system integrates all these capabilities in a modular scheme, user friendly

and in a context of sustainable environment (an nowadays problem of the humanity).
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In the practical context, it is easy to change and adapt each component of the proposed

system to improve the final result. Nevertheless, there are several opportunities left for

future works in each one of those presented areas.

In the environment perception it is important to consider more sensors in the vehicle

surrounding, increasing the system FOV. Some improvements in the recall and accuracy

rate could also be performed, integrating the benefits of each 2D/3D image processing

techniques in a final solution. In a real scenario, moving obstacles must be considered

by the perception system.

Once perceived the moving obstacles, they must be integrated in the final local nav-

igation control, where techniques like (Seder and Petrovic, 2007) should be studied. In

order to increase the vehicle speed, the car’s dynamic model must be observed during

the control. Other VS approaches could also be tested to allow, e.g., vehicle platooning

and navigation in different scenarios. In addition, the influence of the path curvature

in the features estimation must be studied to improve the lane tracking.

For the global navigation, all the elements listed previously must be integrated into

the management. This means to increase the routing table application in different traffic

scenarios, improving the vehicle overtaking and other behaviors. Alternatives for the

localization system used can also be studied, avoiding completely GPS problems with a

V2I communication scheme (Hassan et al., 2013). This may include problems associated

with multi-vehicle navigation and system-to-system interaction, improving the decision-

taking mechanisms in road intersections. Finally, navigation experiments in a real urban

scenario must be considered for the complete validating of these methods.
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Chapitre 8

Conclusions et Travaux Futurs

Ce travail a présenté des contributions pour le problème de navigation référencée

capteurs appliqué aux voitures robotisées. Au-delà des plusieurs contributions déjà exis-

tantes, décrites dans les travaux connexes, nous avons proposé une solution moins dé-

pendante des capteurs à coût élevé et sans aucune information propriétaire préenre-

gistrée, normalement réalisée avec des systèmes de haute précision. Pour cela, le pro-

blème a été divisé en trois grandes axes : la perception de l’environnement, le contrôle

de la navigation locale, et la gestion globale de la navigation. Afin de valider expéri-

mentalement toutes les techniques, un véhicule électrique a été préparé avec plusieurs

composants, comme des ordinateurs embarqués, des capteurs extéroceptifs, un système

de localisation et un régulateur de vitesse de bas niveau. En outre, un environnement

de simulation a également été développé pour permettre des expériences rapides dans

différents scénarios.

Dans le volet perception de l’environnement, nous avons présenté des contributions

dans le contexte du traitement d’image 2D/3D. Ils ont été conçus pour résoudre les

problèmes communs liés aux caméras de vision stéréo, comme l’ombre, des reflets de

lumière, et des faibles variations de texture. La première contribution est un algorithme

de détection de la route (Vitor et al., 2013), basée sur la segmentation d’images 2D et

une classification avec un réseaux de neurones artificiels (ANN). Cette approche ajoute

des caractéristiques extraites dans l’image de référence (2D) aux données d’image 3D

(de la caméra stéréo), pour chaque segment formé, pour effectuer une détection de

la route d’une façon plus robuste. Une fois que nombreux problèmes de vision stéréo

sont associés aux informations clairsemées de la carte de disparité, causées par une

mauvaise correspondance stéréo, nous avons avancé dans cette direction en proposant
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une autre contribution, un raffinement de la carte de disparité dans (Lima et al., 2013).

Ce raffinement a combiné la segmentation d’images 2D précédente avec la méthode

RANSAC, pour l’estimation des plans sur chaque segment. Cela a amélioré l’information

de disparité valide et a filtré la variation sur les données.

Bien que ces approches fussent utiles, le temps d’exécution associé à ces techniques

n’était pas suffisant pour être utilisé dans le système de navigation de notre véhicule.

En outre, ils auraient exigé un grand effort et un temps important de travail pour ac-

célérer ces algorithmes, ce qui pourrait compromettre le développement du système de

navigation complet. Comme alternative, nous avons proposé une autre contribution, en

utilisant le traitement d’image 2D/3D pour améliorer et combiner des techniques exis-

tantes dans une application plus rapide pour la détection de la route et des obstacles.

Tous les algorithmes ont été testés dans différents scénarios urbains et comparés entre

eux, par rapport à une vérité terrain. La solution finale a été intégrée dans le véhicule

expérimental au cours des essais de navigation autonomes, et elle a présenté une fidélité

de 89,7% et une justesse de 80,6%.

Une nouvelle stratégie de commande hybride appelé VS+IDWA (Lima and Victo-

rino, 2014b) a été proposé, pour le contrôle de navigation locale. Elle a combiné une

approche d’asservissement visuel (VS) pour le contrôle délibératif et l’approche de la

fenêtre dynamique référencée image (IDWA) (Lima and Victorino, 2014c) pour le

contrôle réactif. Les vitesses calculées par le VS ne garantissent pas la navigation sécu-

risée du véhicule. Toutefois, leur validation dans l’IDWA a permis une meilleure conver-

gence vers la consigne (par rapport à la commande de générée seulement par l’IDWA)

et un évitement d’obstacle réactif. Ce contrôleur a été appliqué pour le suivi de la voie

routière avec évitement d’obstacles, où plusieurs essais de validation en simulation et

en scénarios réels ont été réalisés. Cette solution a bien considéré des contraintes ciné-

matiques et dynamiques de la voiture, aussi comme des capteurs à faible coût et aucun

système de localisation. Il est important de mentionner que plusieurs méthodes de VS

pourraient être appliquées dans ce contexte.

Cependant, le contrôle de navigation locale précédente n’était pas capable de traiter

le mouvement dans des intersections de la route, où il y a plus d’une route disponible à

suivre. Par conséquent, nous avons proposé une nouvelle gestion globale de la naviga-

tion pour changer artificiellement les informations de l’environnement perçu et fournir
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la bonne consigne pour le contrôle de navigation locale. En partant de notre contri-

bution décrite en (Pereira et al., 2014), la représentation de la table de routage a été

améliorée et la gestion de la navigation a été généralisée et testé dans un scénario réel.

Deux situations de navigation ont été testées : le suivi de la route et les manœuvres dans

les intersections des routes. Dans ces situations, les lois de contrôle ont été effectuées

dans l’espace des capteurs.

Le système final intègre toutes ces fonctionnalités dans un système modulaire et fa-

cile à utiliser. Dans le contexte pratique, il est possible de modifier et d’adapter chaque

composant du système proposé pour améliorer le résultat final. Néanmoins, il y a plu-

sieurs possibilités pour des travaux futurs dans chacun de ces domaines ici présentés.

Dans la perception de l’environnement, il est important d’augmenter la quantité des

capteurs autour du véhicule, ce qui accroît le champ de vision FOV du système. Quelques

améliorations dans les taux de rappel et précision pourraient également être effectuées,

en intégrant les avantages de chaque technique de traitement d’image 2D/3D dans

une solution finale. Dans un scénario réel, des obstacles mobiles doivent être pris en

considération par le système de perception.

D’autres techniques, telles que (Seder and Petrovic, 2007), devraient être étudiées

afin de considérer des obstacles mobiles dans l’approche de navigation locale. Afin

d’augmenter la vitesse du véhicule, le modèle dynamique de la voiture doit être consi-

déré dans la génération de la commande. Autres méthodes de VS pourraient également

être testées pour permettre, par exemple, les platooning de véhicules et la navigation

dans des différents scénarios.

Tous les éléments énumérés précédemment doivent être intégrées dans la gestion

d’une navigation globale. Cela signifie augmenter l’application de la table de routage

dans différents scénarios de circulation, pour améliorer le dépassement des véhicules

et d’autres comportements. D’autres alternatives pour le système de localisation uti-

lisé peuvent aussi être étudiés, en évitant les problèmes de GPS avec les solutions de

communication entre véhicules et infrastructure (V2I) (Hassan et al., 2013). Cela peut

inclure des problèmes associés à la navigation multi-véhicule et l’interaction système-à-

système, améliorant les mécanismes de décision dans les intersections de routes. Enfin,

plusieurs essais de navigation dans un scénario urbain réel doivent être considéré pour

la validation complète de ces méthodes.
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Appendix A

Distance to collision calculation

This Appendix presents the Distance to Collision (dcoll) formulation proposed by (Ar-

ras et al., 2002) for polygonal robots, like car-like robots, moving in circular trajectories.

Considering the robot body frame {R}, the objective is to describe the trajectory that an

obstacle point O performs in {R}. Thus, the expected collision point P into the robot

can be estimated by the intersection of the robot dimensions with the trajectory of O.

To calculate this trajectory, some vectors and variables are defined as in the Figure A.1:

−→
PC =

−→
P −−→C ,

−→
OC =

−→
O −−→C ,

−→
RC =

−→
R −−→C ,

|r| =
∣∣∣−→C

∣∣∣ ,
ω = v1 cos(φ)/r = θ̇,

v = v1 cosφ,

r = v/ω,

rO =
∣∣∣−→OC

∣∣∣ .

(A.1)

All vectors are represented in the initial frame (x, y, θ, φ) = (0, 0, 0, φ) and depend on

the velocity of the front wheel v1, the steering angle φ, and the obstacles’ data.

Accordingly to the Figure A.1, the obstacle point O describes a circular trajectory

(dashed line) with the same center of the robot frame trajectory (continuous line). Its

equation can be defined as:

r2O = x2
coll + (ycoll − r)2. (A.2)

131



132 Appendix A. Distance to collision calculation

Figure A.1 – Circular trajectory of a point O (dashed line) described in the robot frame
{R} (continuous line). If P is on the robot contours, the distance to collision is the arc
length between

−→
PC and

−→
OC .

where rO is the circle’s radius given by the length of the vector
−→
OC . For each side of the

car, the collision point P = (xcoll, ycoll) is acquired by the following equation systems:

— Front side, with ycoll ∈ [YRIGHT , YLEFT ]

x2
coll + (ycoll − r)2 = r2O

xcoll = XFRONT

⎫⎬
⎭⇒ ycoll = r ±

√
r2O −X2

FRONT

xcoll = XFRONT

(A.3)

— Left side, with xcoll ∈ [XBACK , XFRONT ]

x2
coll + (ycoll − r)2 = r2O

ycoll = YLEFT

⎫⎬
⎭⇒ xcoll = ±

√
r2O − (YLEFT − r)2

ycoll = YLEFT

(A.4)

— Right side, with xcoll ∈ [XBACK , XFRONT ]

x2
coll + (ycoll − r)2 = r2O

yc = YRIGHT

⎫⎬
⎭⇒ xcoll = ±

√
r2O − (YRIGHT − r)2

ycoll = YRIGHT

(A.5)

— Back side, with ycoll ∈ [YRIGHT , YLEFT ]

x2
coll + (ycoll − r)2 = r2O

xcoll = XBACK

⎫⎬
⎭⇒ ycoll = r ±

√
r2O −X2

BACK

xcoll = XBACK

(A.6)
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Note that, only the real solutions represent a collision in the point P . The distance of

each collision point can be calculated by the angle α formed between the vectors
−→
PC

and
−→
OC as:

d = α · r. (A.7)

Once the obstacle point O can collide in more than one point in the robot contour, the

final distance to collision dcoll is the smallest distance between all possible ones:

dcoll = min (dFRONT , dLEFT , dRIGHT , dBACK). (A.8)
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