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Résumé  

Les travaux présentés dans ce manuscrit décrivent le développement de trois supports 
innovants basés sur des nanofibres de matériaux hybrides obtenus par électrofilage pour la 
réalisation de biocapteur électrochimiques. La performance des biocapteurs est fortement 
améliorée du fait de l’utilisation de matériaux nanostructurés qui leurs confèrent des 
propriétés uniques. Les fibres obtenues par électrofilage trouvent des applications dans de 
nombreux domaines, mais leur utilisation pour l’élaboration de biocapteurs, bien que très 
prometteuse, est encore très peu abordée. Dans ce travail, différentes nanofibres polymériques 
contenant des nanotubes de carbone ou recouvertes de nanoparticules d’or ou d’un film de 
copolymère polypyrolle/poly(pyrolle-3-carboxylique acide) ont été utilisées comme support 
pour le développement de biocapteurs. La glucose oxydase a été utilisée comme enzyme 
modèle pour valider les performances des biocapteurs réalisés. Cette enzyme a été incorporée 
directement dans les nanofibres ou fixée de façon covalente à leur surface. Les biocapteurs 
ainsi obtenus, caractérisés par différentes techniques microscopiques et électrochimiques, ont 
permis la détection du glucose avec succès, en utilisant la voltammétrie cyclique et la 
spectroscopie d’impédance électrochimique, tout en montrant des performances (sensibilité, 
reproductibilité, stabilité) supérieures à celles des biocapteurs conventionnels. 

Mots-clés: 

Biocapteurs enzymatiques, voltammétrie cyclique, spectroscopie d’impédance 
électrochimique, nanofibres, électrofilage, nanoparticules d’or, nanotubes de carbone, 
polypyrrole. 

 

Abstract 

The work detailed within this manuscript describes the development of three novel 
efficient electroactive platforms based on electrospun nanofibrous hybrid materials for further 
application to electrochemical biosensors elaboration. The performance of biosensors is 
enhanced by their coupling with nanoscale materials, due to the unique properties that the 
latter exhibit. Although electroctrospun fibers find applications in various fields, their 
exploitation for biosensing is still in an early but promising stage. Herein, different polymeric 
nanofibers incorporating carbon nanotubes, decorated with gold nanoparticles or coated with 
conducting polypyrrole/poly(pyrrole-3-carboxylic acid) films were used as platforms for the 
development of biosensors. Glucose oxidase was used as a model enzyme to validate the 
performance of the developed biosensors. The enzyme was either incorporated into the 
nanofibers or covalently immobilized onto their surface. These innovative biosensors, 
characterized by different microscopic and electrochemical techniques, enabled successful 
detection of glucose by employing cyclic voltammetry and electrochemical impedance 
spectroscopy, whilst demonstrating enhanced performances over conventional biosensors in 
terms of sensitivity, reproducibility and stability. 

Keywards:  
enzyme biosensors, nanofibers, electrospinning, cyclic voltammetry, electrochemical 
impedance spectroscopy, gold nanoparticles, carbon nanotubes, polypyrrole 
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GENERAL INTRODUCTION 
 

Biosensors are rapid, selective and cost-effective analytical devices exhibiting a wide 
range of applications in various fields such as health, environment and food. They combine a 
biologically active element, which selectively recognizes one analyte or a group of analytes, 
and a physicochemical transducer to deliver complex bioanalytical measurements with simple 
and easy-to-use formats. Electrochemical biosensors are of particular interest, since they 
support fast, accurate and inexpensive analytical methods and they offer several distinct 
advantages such as being easily embedded and integrated into electronics, whilst satisfying 
the required power demands of decentralized testing, thus indicating great promise for 
biomedical applications among many others. 

Huge efforts have been focused on the miniaturization of electrochemical transducers, 
resulting in a significant reduction of the amount of the biological entity necessary for the 
realization of the biosensor, as well as to their easier integration in lab-on-a-chip devices. 
Despite the benefits associated with reducing the size of the electrodes, the sensitivity of the 
biosensor will decrease as the specific surface of the electrode, and thus the available 
immobilization sites for the biorecognition element, decreases. However, this issue can be 
successfully overcome by efficiently nanoengineering the electrodes’ surface through the use 
of flexible nanostructures. 

The design of novel sensing systems integrating nanoscale materials is a rising 
interdisciplinary topic harnessing the high specific surface area of these materials and their 
unique electronic, optical, mechanical and catalytic properties. A wide range of nanoscale 
materials such as nanoparticles, nanotubes of diferent sizes, shapes and compositions have 
been proved to be very efficient to enhance biosensors performances. 

Electrospun fibers in particular, meet many of the requirements to achieve improved 
performances as a biosensor material since they are featured with very small diameters 
(ranging from several nm up to some μm), long length, large surface area per unit mass, high 
surface-to-volume ratio and tunable pore size. Electrospun nanofibers (NFs) have been 
successfully used in various fields of applications including tissue engineering, textiles, 
energy storage, catalysis etc but the employment of electrospun nanofibers as immobilization 
matrices for biosensor elaboration is not yet a very widespread approach. However, the 
interest in electrospinning technique to fabricate functional nanofibers for biosensing is 
growing fast due to its many merits such as the simplicity and low cost requirements of the 
processing system, design flexibility and dimensional stability of the electrospun NFs, easy 
scaling, high reusability and its versatility. A few research groups have reported the enhanced 
sensitivity of biosensors based on electrospun nanofibers, when compared to conventional 
biosensors. 

In the present work, we investigated and compared different approaches for the 
nanoengineering of gold electrodes surface with conductive electrospun nanofibers for the 
development of enzymatic electrochemical biosensors. 
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 The present manuscript is organized in four chapters. The first chapter is dedicated to a 
bibliographic review of biosensors and specifically electrochemical biosensors, nanomaterials 
and their use for biosensors elaboration, electrospinning technique, conducting polymeric 
nanostructures and their integration into biosensing systems. 

The work detailed within chapters II, III and IV describes the development of three 
pioneering and new electroactive platforms based on electrospun nanofibrous hybrid materials 
for further application to electrochemical biosensors elaboration, respectively. Glucose 
oxidase was used as a model enzyme to validate the performance of the developed biosensors 
and gold electrodes were used as transducers. The first electrobioactive platform to be 
described involves the easy and rapid one-step fabrication of water-stable electrospun 
polyvinyl alcohol NFs with styrylpyridinium pendent group (PVA-SbQ) containing 
carboxylated multiwall carbon nanotubes (MWCNTs-COOH) and glucose oxidase (GOx) for 
glucose detection. The second electrobioactive surface design to be described involves the 
modification of gold electrode surfaces with one-step water-stable electrospun polyvinyl 
alcohol/polyethyleneimine (PVA/PEI) NFs which incorporate glucose oxidase as before and 
whose surface is uniformly decorated with pH-tunable densities of citrate gold nanoparticles. 
The third developed electrobioactive platform for biosensing to be described involves the 
exploitation of conducting core-shell polyacrylonitrile (PAN)/polypyrrole(PPy)/poly(pyrrole-
3-carboxylic acid)(PP3C) NFs produced by combination of electrospinning and vapour-phase 
polymerization method. The carboxylic acid groups expressed on the surface of the 
PAN/PPy/PP3C nanofibers were used for the covalent immobilization with the amino groups 
of glucose oxidase (GOx).  

A summary of the most significant results will be presented in the conclusion section, 
where we will try to highlight the advantages and disadvantages of the different approaches 
employed for the development of biosensors, and to illustrate their possible contribution to the 
development of new generation biosensing systems with enhanced performance. The present 
manuscript ends with a brief discussion on the perspectives of the presented work. 
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I.1. Generalities on Biosensors 
 Bioanalysis is a part of the analytical field essentially based on two broad categories of 
instrumentation: (a) sophisticated, high-throughput laboratory equipment capable of rapid, 
accurate and convenient measurement of complex biological interactions and components; (b) 
biosensors: easy-to-use, portable devices for use by non-specialists for decentralized, in situ 
or home analysis. The former are expensive and the latter are mass produced and 
inexpensive.1 
 The basic concept of the biosensor was first stated by Leyland C. Clark in 19622, in his 
seminal description of an ‘‘enzyme electrode’’. Building on his earlier invention of the Clark 
oxygen electrode, he reasoned that electrochemical detection of oxygen or hydrogen peroxide 
could be used as the basis for a broad range of bioanalytical instruments, by the incorporation 
of appropriate immobilized enzymes. The classic example was immobilized glucose oxidase 
(GOx), which converted a simple platinum electrode into a powerful analytical instrument for 
the detection of glucose in human samples from people suffering from diabetes. Two decades 
later, optical transducers were harnessed in conjunction with antibodies to create real-time 
bioaffinity monitors. These immunosensors laid the foundation for the second major 
evolutionary line of biosensing instrumentation.  

Growth in the field of biosensors has been phenomenal. When the principal journal in 
the field, Biosensors and Bioelectronics was launched in 1985 by Elsevier, it published about 
thirty biosensor papers that year out of a total published in the world of approximately one 
hundred.  

Biosensors combine multiple disciplines (figure 1) and they find application in 
medicine, pharmaceutical, food and process control, environmental monitoring, defence and 
security, but most of the market of over US$13 billion (figure 2) is driven by medical 
diagnostics and, in particular, electrochemical glucose biosensors3 for people with diabetes. 
The most significant trend likely to impact on biosensors is the emergence of personalized 
medicine.   

The chart presented in figure 3 shows that the percent of revenues from the mentioned 
markets have grown from 2006 through 2009 and the forecasts up to 2016 suggest that this 
growth trend will continue. 
 Hence, such electrochemical devices have come to dominate distributed diagnostics, by 
providing a simple, inexpensive and yet accurate and sensitive platform for patient diagnosis, 
whereas optical techniques have found their niche principally in R&D. To complete the 
picture concerning transduction strategies, advances in acoustic resonance devices are 
certainly worthy of note, but both thermometric and magnetic transduction have failed to have 
any serious practical impact to date.2 

                                                           
1 A.P.F. Turner, “Biosensors: Sense and Sensibility,” Chemical Society Reviews 42, no. 8 (2013): 3184. 
2 L.C. Clark and C. Lyons, “Electrode Systems for Continuous Monitoring in Cardiovascular Surgery,” Annals of 
the New York Academy of Sciences 102, no. 1 (1962): 29–45. 
3 J.D. Newman and A.P.F. Turner, “Home Blood Glucose Biosensors: A Commercial Perspective,” Biosensors and 
Bioelectronics 20, no. 12 (2005): 2435–53. 
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Figure 1. Multidisciplinary fields of biosensor applications. 

Figure 2. The total biosensors market, showing the world revenue forecast for 2009-2016. 
http://ww2.frost.com/Frost and Sullivan 

Figure 3. The total biosensors market, showing the percent of revenues by vertical world 
markets for 2009 and 2016. http://ww2.frost.com/ 
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I.1.1. Definition and General Working Principle of Biosensors 
 The most widely accepted definition of a biosensor is: “an analytical device which 
incorporates a biologically active element with an appropriate physical transducer to generate 
a measurable signal proportional to the concentration of chemical species in any type of 
sample”.4 Any biosensor consists of the following three basic components: a) a biorecognition 
element, which is a bioselective membrane involving various biological structures, b) a 
physical transducer and c) an electronic system for signal amplification and recording and 
representing the data. The working principle of biosensors is presented in figure 4. A 
biorecognition element is the basic component of any biosensor. It is due to its recognition 
element that a sensor can selectively respond to one or several analytes among a large number 
of other interfering molecules. All types of biological structures (enzymes, antibodies, 
receptors, nucleic acids, micro-organisms, biological tissues, and even living cells) are used as 
a recognition element in biosensors. A transducer converts the biological response to a 
detectable signal, which can be measured electrochemically, optically, acoustically, 
mechanically, calorimetrically, or electronically, and then correlated with the analyte 
concentration. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                           
4 R.Monošík, M. Streďanský and E. Šturdík, “Biosensors - Classification, Characterization and New Trends,” Acta 
Chimica Slovaca, 5, no. 1 (2012): 109-120. 

Figure 4. Schematic representation of the general working principle of biosensors. 
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I.1.2. Classification of Biosensors 
 Biosensors can be classified either according to the nature of their biorecognition 
element or according to the type of signal transduction they employ or, alternatively to a 
combination of the two.5 A schematic representation of biosensors classification is illustrated 
in figure 5: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
I.1.2.1. Classification based on the Biorecognition Element 
 The different bioreceptors that have been used are as numerous as the different analytes 
that have been monitored using biosensors (figure 6). However, bioreceptors can generally be 
classified into five different major categories. These categories include: 1) enzymes, 2) 
antibodies, 3) nucleic acids/DNA, 4) cellular structures/cells and 5) biomimetic materials.4 In 
the following paragraphs we will more particularly focus on enzyme-based electrochemical 
biosensors since enzyme electrodes are one of the most common biosensors reported in the 
literature and have been the topic of our concern in this work. The other categories will be 
briefly discussed. 
 
 
 
 

                                                           
5 D.R. Thévenot et al., “Electrochemical Biosensors: Recommended Definitions and Classification,” Biosensors 
and Bioelectronics 16, no. 1 (2001): 121–31. 

Figure 5. Schematic representation of biosensors classification based on the biorecognition element 
and/or the transducer.  
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Enzymatic Biosensors 
 Enzymes are biological molecules that act as catalysts in specific biochemical reactions. 
The enzymatic biosensors utilize enzymes which are often chosen as bioreceptors based on 
their specific binding capabilities as well as their catalytic activity. With the exception of a 
small group of catalytic ribonucleic acid molecules, all enzymes are proteins. Some enzymes 
require no chemical groups other than their amino acid residues for activity. Others require an 
additional chemical component called a cofactor, which may be either one or more inorganic 
ions, such as Fe2+, Mg2+, Mn2+, or Zn2+, or a more complex organic or metalloorganic 
molecule called a coenzyme. The catalytic activity of enzymes depends upon the integrity of 
their native protein conformation. For example, GOx has the FAD cofactor bound to the 
enzyme in the oxidized form (FAD) or reduced (FADH2).  

If an enzyme is denatured, dissociated into its subunits, or broken down into its 
component amino acids, its catalytic activity is destroyed. In enzymatic reactions, the 
molecules at the origin of the process, called substrates, are converted into different 
molecules, called products. In enzymatic electrochemical biosensors, the design is used when 
the substrate or the product of the enzymatic reaction is electrochemically active, capable of 
being rapidly and reversibly oxidized or reduced on an electrode upon the application of an 
appropriate potential. According to their functions, enzymatic sensors are subdivided into 
substrate and inhibitor ones. Substrate biosensors are used for the determination of specific 
substrates of enzymatic reactions. The most common biosensors of that type are glucose and 
urea biosensors,6,7 which use glucose oxidase and urease as enzymes. Inhibitor sensors are 
used for the determination of substances reducing the activity of an enzyme.8 Varieties of 
enzymes are used for biosensor construction, for example oxidoreductase enzymes are used 
for lactate, malate, and ascorbate. Extensive review of commercially available biosensors for 
glucose, cholesterol, lactate, triglycerides and creatinine determination can be found in the 
review by Monošík et al.4  
 

                                                           
6 J. Wang, “Electrochemical Glucose Biosensors,” Chemical Reviews 108, no. 2 (2008): 814–25. 
7 C.R. Ispas, G. Grivat and S. Andreescu, “Review: Recent developments in enzyme based biosensors for 
biomedical analysis,” Analytical Letters 45, (2012): 168–86. 
8 E. Korotkaya, “Biosensors: Design, Classification, and Applications in the Food Industry,” Foods and Raw 
Materials 2, no. 2 (2014): 161–71. 

Figure 6. Commonly used bioreceptors used for biosensors. 
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Active Sites and Enzyme Kinetics 
 A substrate binds only to a certain region of the enzyme, called the active site, where the 
catalytic reaction takes place. The active site is a 3D-groove or pocket formed by folding 
pattern of the protein, lined with amino acid residues.9 This three-dimensional structure, 
together with the chemical and electrical properties of the amino acids and cofactors within 
the active site, permits only a particular substrate to bind to the site, thus determining the 
specificity of the catalytic reaction. Once the substrate binds to the active site, it is chemically 
converted to products through a series of steps known as enzymatic mechanism. To 
understand how enzymes function, we need a kinetic description of their activity. 
In biochemistry, Michaelis–Menten kinetics is one of the best-known models of enzyme 
kinetics.9 

 

 

 

 

 

 
In 1913, Leonor Michaelis and Maud Menten proposed a simple mathematical model 

for the description of the enzyme kinetics.  The model takes the form of an equation 
describing the rate of enzymatic reactions, by relating reaction rate v to [S], 
the concentration of a substrate S.  It involves an enzyme E binding to a substrate S to form a 
complex ES, which in turn is converted into a product P and the enzyme. This may be 
represented schematically as: 
 
 
 
where k1, k-1 and k2 denote the rate constants for ES formation, the dissociation of ES back to 
E and S and dissociation of ES to E and P respectively, and the double arrows between S and 
ES represent the fact that enzyme-substrate binding is a reversible process. Under 
certain assumptions – such as the enzyme concentration being much less than the substrate 
concentration – the rate of product formation is given by10: 
 

 

 

                                                           
9 J.M. Berg, J.L. Tymoczko, and L. Stryer, Biochemistry, 5th edition, vol. Section 8.4, The Michaelis-Menten 
Model Accounts for the Kinetic Properties of Many Enzymes. (New York: W H Freeman; 2002). 

Figure 7. Schematic representation of the active site of an enzyme. 
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where Vmax represents the maximum rate achieved by the system, at maximum (saturating) 

substrate concentrations and KM the Michaelis constant:  and   

 The reaction rate increases with increasing substrate concentration [S], asymptotically 
approaching its maximum rate Vmax, attained when all enzyme is bound to substrate. It also 
follows that Vmax=k2[E]0, where [E]0 is the enzyme concentration, k2, the turnover number, is 
the maximum number of substrate molecules converted to product per enzyme molecule per 
second. The Michaelis constant, KM, is the substrate concentration at which the reaction rate 
is at half-maximum, and is an inverse measure of the substrate's affinity for the enzyme—as a 
small KM indicates high affinity, meaning that the rate will approach Vmax more quickly. The 
value of KM depends on both the enzyme and the substrate concentration, as well as 
conditions such as temperature and pH.9  
 

 

 

 

 

 

 

 

 

Parameters Affecting the Rate of an Enzymatic Reaction 

 Temperature 
 The rate of chemical reactions generally increases with temperature because the kinetic 
energy of the molecules is increased, which leads to a higher number of effective collisions 
resulting to reaction products. However, since enzymes have a tertiary structure which is 
highly ordered, complex and suitable for the stereospecific binding of the substrate, the 
elevation of temperature can destroy their structure leading to loss of enzyme activity.9 The 
variation of the enzymatic activity in function of the temperature is determined by measuring 
the changes of the reaction rate as a function of the temperature of the medium (figure 9a). 
The rate of an enzyme-catalyzed reaction usually increases with increasing temperature up to 
an optimum point and then it decreases because enzymes are thermosensitive. This optimal 
temperature allows to obtain a constant speed during the whole duration of the experiment. As 

Figure 8. A plot of the reaction velocity (V0) as a function of the substrate concentration [S] for an 
enzyme that obeys Michaelis-Menten kinetics shows that the maximal velocity (Vmax) is approached
asymptotically. The Michaelis constant (KM) is the substrate concentration yielding a velocity of Vmax/2.
Extracted from Ref 9. 
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the temperature continues to increase there is a critical point beyond which denaturation of the 
enzyme occurs. The thermal denaturation of an enzyme also depends on other parameters 
such as pH, ionic strength and the presence of ligands. Substrate binding generally protects 
the enzyme. In general, it is advisable to work about 10°C below the denaturation threshold.9  
 
 pH 
 Most enzymes are active in a limited pH range. This can be attributed to the stability of 
the enzyme protein in a certain pH range. The optimum pH is a function of the active site and 
the affinity of the enzyme for its substrate. Changes in pH can alter the ionization state of the 
substrate, the ionization state of the catalytic site of the enzyme or the ionization state of a 
certain number of protein molecules at the active site of the enzyme, so that the conformation 
and the catalytic activity of the enzyme change. A change in the pH can alter the rates of 
enzyme-catalyzed reactions, with many enzymes exhibiting a bell-shaped curve when enzyme 
activity is plotted against pH (figure 9b). The different groups that are present in the active 
site and can be affected by a change in the pH are: carboxyl -COOH or amine -NH2, NH 
imidazole of histidine, NH guanidine of arginine, SH sulfydryl of cysteine and phenolic OH 
of tyrosine, since the pKa value of these groups strongly depends on their polar or non-polar 
environment.9  

 
Electrochemical Glucose Biosensors- A Special Case   

As already mentioned, the entire field of biosensors can trace its origin to this original 
glucose enzyme electrode prepared by Clark2 in 1962. A wide range of amperometric enzyme 
electrodes, differing in electrode design or material, immobilization approach, or membrane 
composition, has been described ever since. The glucose biosensor is the most widely used 
example of an electrochemical biosensor which is based on a screen-printed amperometric 
disposable electrode.6 The working principle of the glucose oxidase based glucose biosensor 
is illustrated schematically below: 

 
 

Figure 9. a) Effect of temperature on the enzyme activity: heat activation (Zone A), thermal 
denaturation (Zone B) and b) Effect of pH on enzyme activity. Extracted from Ref 9. 
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          In presence of dissolved oxygen glucose oxidase catalyzes the oxidation of glucose to 
gluconolactone, which immediately hydrolyzes to gluconic acid. More specifically, the 
biocatalytic reaction involves the reduction of the flavin group (FAD) in the enzyme by 
reaction with glucose to give the reduced form of the enzyme (FADH2) followed by re-
oxidation of the flavin by molecular oxygen to regenerate the oxidized form of the enzyme 
GOx(FAD). 

                                GOx(FAD) + Glucose         GOx(FADH2) + Gluconolactone 

                                       GOx(FADH2)+O2         GOx(FAD) + H2O2  

As it can be seen from reaction (2), hydrogen peroxide is formed as a by-product. The 
detection of hydrogen peroxide through its oxidation peak, is commonly carried out on a 
platinum electrode at a moderate anodic potential of around +0.6 V (vs Ag/AgCl):  

                                           H2O2                        O2 + 2H+ + 2e-   

Measurements of peroxide formation have the advantage of being simple, especially 
when miniaturized devices are concerned. The intensity of the resulting anodic current from 
the re-oxidation on the working electrode at applied constant potential is proportional to the 
glucose concentration.6 

The above working principle of electrodes for H2O2 detection, is now utilized in the 
most commercially successful glucose biosensors for glucose testing in the home utilizing 
glucose oxidase or glucose dehydrogenase (GDH).6 However, the construction of glucose 
biosensors based on GDH requires a source of NAD+ and a redox mediator to lower the 
overvoltage for oxidation of the NADH product. 
 
 
 
 
 
 
 

(1) 

(2) 

(3) 

Figure 10. Schematic representation of working principle of amperometric glucose biosensor based 
on glucose oxidase. 
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Immunosensors 
 Antibodies are immune system-related proteins, also called immunoglobulins, 
exhibiting very specific binding capabilities for specific structures, called antigens. Each 
antibody consists of four polypeptides- two heavy chains and two light chains joined to form a 
“Y” shaped molecule. The amino acid sequence in the tips of the “Y” varies greatly among 
different antibodies. This variable region, composed of 110-130 amino acids, gives the 
antibody its specificity for binding the antigen. An antigen-specific antibody “fits” its unique 
antigen in a highly specific manner. This unique property of antibodies is the key to their 
usefulness in the development of biosensors. Immunosensors are antibody–antigen based 
affinity biosensors, in which the detection of antigen as a target analyte is a result of the 
specific binding of the antigen to particular region of an antibody on the electrode surface.10, 11 
 The specific binding of an antibody to its target antigen in a complex mixture such as 
serum and plasma provides detection and quantification at levels as low as picograms (pg). 
Compared with traditional immunoassay methods such as homogeneous competitive assays, 
heterogeneous competitive and non-competitive assays,12 with the enzymatic immunoassay 
ELISA (Enzyme Linked Immune Sorbent Assay) being the most common of them, 
electrochemical immunosensors are specific, simple and convenient, and can offer multitarget 
analyses and miniaturization. They can perform in situ, real-time, automation detection. 
  
Nucleic Acid Biosensors 
 Nucleic acids have received increasing interest as bioreceptors for biosensor and 
biochip technologies. The complementarity of adenine: thymine (A:T) and cytosine: 
guanosine (C:G) pairing in DNA forms the basis for the specificity of biorecognition in DNA 
biosensors, often referred to as genosensors.13 If the sequence of bases composing a certain 
part of the DNA molecule is known, then the complementary sequence, often called a probe, 
can be synthesized and labeled with an optically detectable compound (e.g., a fluorescent 
label). By unwinding the double-stranded DNA into single strands, adding the probe, and then 
annealing the strands, the labeled probe will hybridize to its complementary sequence on the 
target molecule.8  
 DNA biosensors have been successfully used for the detection of cancer sequences14 
and carcinogens15, pathogenic bacteria16 and common toxicants and pollutants.17 

                                                           
10 E.B. Bahadır and M.K. Sezgintürk, “Applications of Electrochemical Immunosensors for Early Clinical 
Diagnostics,” Talanta 132, no. 0 (2015): 162–74. 
11 F. Ricci, G.Adornetto and G. Palleschi, “A Review of Experimental Aspects of Electrochemical 
Immunosensors,” Electrochimica Acta 84 (2012): 74–83. 
12 N. Bojorge Ramírez, A. M. Salgado, and B. Valdman, “The Evolution and Developments of Immunosensors for 
Health and Environmental Monitoring: Problems and Perspectives,” Brazilian Journal of Chemical Engineering 
26, no. 2 (2009): 227–49. 
13 R. Rosario and R. Mutharasan “Nucleic acid electrochemical and electromechanical biosensors: a review of 
techniques and developments,” Reviews in analytical chemistry 33, 4 (2014): 213-230. 
14 A.A. Ensafi et al., “Sensitive DNA Impedance Biosensor for Detection of Cancer, Chronic Lymphocytic 
Leukemia, Based on Gold Nanoparticles/gold Modified Electrode,” Electrochimica Acta 56, no. 24 (2011): 8176–
83. 
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Biomimetic Sensors 
 An artificial receptor that is fabricated and designed to mimic a bioreceptor is often 
termed as a biomimetic receptor. Several different methods have been developed over the 
years for the construction of biomimetic receptors. These methods include: aptamers, artificial 
membrane fabrication and molecular imprinting. The molecular imprinting technique, which 
has recently received great interest, is based on the synthesis of a polymeric material endowed 
with specific recognition sites towards the molecule which must be recognized (template). 
This objective is accomplished by the addition of the template to a reaction mixture, which is 
constituted of a functional monomer, a cross-linking agent and a solvent. During the 
polymerization, the template is incorporated into the polymeric matrix and chemical groups of 
functional monomers will be arranged according to the shape and chemical properties of the 
template molecules. The extraction of the template from the obtained polymeric matrix will 
allow the formation of the template complementary recognition sites with high substrate 
selectivity and specificity. In this way, selective detection and separation properties are 
introduced in the nascent polymer.18  

 Another class of biomimetic sensors is based on the use of aptamers as recognition 
element.19 Aptamers are artificial oligonucleotides (DNA or RNA) which are also used in 
DNA sensors. They can bind to a wide variety of entities (e.g. metal ions, small organic 
molecules, proteins and cells) with high selectivity, specificity, and affinity, equal to or often 
superior to those of antibodies.20 These aptamers can be isolated from combinatorial nucleic 

                                                                                                                                                                                     
15 A.A. Ensafi et al., “A Novel Sensitive DNA–biosensor for Detection of a Carcinogen, Sudan II, Using 
Electrochemically Treated Pencil Graphite Electrode by Voltammetric Methods,” Talanta 88 (2012): 244–51. 
16 A. Walter et al., “Redox Cycling Amplified Electrochemical Detection of DNA Hybridization: Application to 
Pathogen E. Coli Bacterial RNA,” Analytica Chimica Acta 689, no. 1 (2011): 29–33. 
17 Q.Zhang, P. Dai and Z. Yang, “Sensitive DNA-Hybridization Biosensors Based on Gold Nanoparticles for 
Testing DNA Damage by Cd(II) Ions,” Microchimica Acta 173, no. 3–4 (2011): 347–52. 
18 C. Algieri et al., “Bio-Mimetic Sensors Based on Molecularly Imprinted Membranes,” Sensors 14, no. 8 (2014): 
13863-13912. 
19 K. Wang et al., “Research and Development of Functionalized Aptamer Based Biosensor,” Chinese Journal of 
Analytical Chemistry 42, no. 2 (2014): 298–304. 
20 W. Zhou et al., “Aptamer-Based Biosensors for Biomedical Diagnostics,” The Analyst 139, no. 11 (2014): 
2627-2640. 

Figure 11. General sDNA biosensor scheme. Target DNA is captured at the recognition layer (A), and 
the resulting hybridization is transduced into a measurable electronic signal (B). Extracted from Ref 4. 
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acid libraries using in vitro SELEX21 (Systematic Evolution of Ligands by EXponential 
enrichment, a combinatorial chemistry technique in molecular biology for selecting 
oligonucleotides that specifically bind to a target ligand). Synthesizing aptamers is relatively 
inexpensive, and they can be engineered easily for immobilization purposes. Moreover, unlike 
proteins, which are irreversibly denatured in unfavorable conditions, aptamers are capable of 
reversible denaturation. Consequently, by incorporating these aptamers into biosensors, it is 
possible to subject these sensing elements to repeated use, thereby realizing a device that is 
potentially recyclable. 
 
I.1.2.2. Classification based on Transducers 

Transduction can be accomplished via a great variety of methods. Most forms of 
transduction can be categorized in one of the main three classes:  

 Electrochemical transduction: The basic principle for electrochemical biosensors is 
that chemical reactions between immobilized biomolecule and target analyte produce 
or consume ions or electrons, which affect measurable electrical properties of the 
solution, such an electric current or potential.22 The electrochemical signal produced is 
then used to relate quantitatively to the amount of analyte present in a sample solution. 
Therefore, the electrochemical sensors can be further subdivided according to how the 
electrical measurement is made. They measure the change in voltage (potentiometry), 
current (amperometry and voltammetry), impedance or conductance resulting from a 
chemical reaction that either transfers or separates electric charge with reasonable 
selectivity and sensitivity.22  

 Optical transduction: this is the most diverse class of transduction because it relies on 
many different types of spectroscopy, such as absorption, fluorescence, luminescence, 
phosphorescence, surface plasmon resonance, light scattering spectroscopy, Raman, 
SERS, refraction, and dispersion spectrometry. These spectroscopic methods can 
measure different properties, such as energy, polarization, amplitude, decay time, 
and/or phase. Amplitude is the most commonly measured as it can easily be correlated 
to the concentration of the analyte of interest.8 

 Piezoelectric transduction: the piezoelectric sensors employ crystals that undergo 
elastic deformation under the action of an electric potential. An alternating potential at 
a certain frequency generates a standing wave in the crystal. Analyte adsorption on the 
surface of the crystal, which is covered with a biological recognition element, alters 
the resonance frequency, and this is an indication of binding taking place.4  

However, new types of transducers are constantly being developed for use in biosensors. Each 
of the three main classes contains many different subclasses, creating a large number of 
possible transduction methods or combination of methods.  

                                                           
21 Y.Pu et al., “Using Aptamers to Visualize and Capture Cancer Cells,” Analytical and Bioanalytical Chemistry 
397, no. 8 (2010): 3225–33. 
22 D. Wei et al., “Electrochemical Biosensors at the Nanoscale,” Lab on a Chip 9, no. 15 (2009): 2123. 
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I.1.3. Electrochemical Biosensors 
 Among these various kinds of biosensors, electrochemical biosensors are a class of the 
most widespread and successfully commercialized devices of biomolecular electronics.23 
Electrochemical sensors support accurate, fast, and inexpensive analytical methods with the 
advantages of being easily embedded and integrated into electronics, minimal power demands 

and having the greatest potential impact in the areas of healthcare, environmental monitoring, 
food packing and many other applications.24 In this section we will focus on the 
electrochemical transduction modes with a particular emphasis on cyclic voltammetry and 
electrochemical impedance spectroscopy that we have used in our work. 
 
I.1.3.1. Potentiometric Transducers 
 Potentiometric sensors measure the potential when there is no net current flowing in a 
system as all the driving forces are in balance. Under these conditions the potential difference 
between the working electrode and the reference electrode or between two references 
electrodes separated by a semipermeable membrane shows a linear relationship with the 
logarithm of the concentration (activity) of the electroactive species (analyte), as given by the 
Nernst equation. Potentiometry with ion selective electrodes (ISEs) and ion-selective field 
effect transistors (ISFETs) is an accurate, fast, and inexpensive analytical method.23 The most 
widespread potentiometric biosensors employ pH electrodes. 
 
I.1.3.2. Amperometric and Voltammetric Transducers 
Generalities 
 Amperometric biosensors are the most widespread class of electrochemical 
biosensors.25 Both amperometric and voltammetric sensors measure the Faradaic current 
generated during the heterogeneous electron transfer reaction such as the oxidation or 
reduction of the electroactive analyte species. The current is proportional to the concentration 
of the analyte. However, in amperometric sensors, the potential is fixed at a constant value 
and the concentration of the electroactive species is determined by the Faradaic current. 
Voltammetry is the application of a potential ramp with the subsequent measurement of 
current as a chemical species reacts at the electrode. Amperometric sensors are usually 
applied to the measurement of a specific biological component since they are operated at a 
constant potential.22, 25 Among voltammetric methods, enzyme based biosensors are the most 
common electrochemical biosensors.26 The working electrode is usually a noble metal or 

                                                           
23 D.W. Kimmel et al., “Electrochemical Sensors and Biosensors,” Analytical Chemistry 84, no. 2 (2012): 685–
707. 
24 H. Sharma and R. Mutharasan, “Review of Biosensors for Foodborne Pathogens and Toxins,” Sensors and 
Actuators B: Chemical 183, no. 0 (2013): 535–49. 
25 Dzyadevych et al., “Amperometric Enzyme Biosensors: Past, Present and Future,” IRBM 29, no. 2–3 (2008): 
171–80. 
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screen-printed layer covered by the bioelement. The working principle of enzymatic 
amperometric/voltammetric biosensors is illustrated schematically below: 
 
 
 

 

 

 

 

 

 
Cyclic Voltammetry (CV) 
Theoretical Background 
 Cyclic Voltammetry (CV) is the most common electroanalytical technique to obtain 
preliminary information about an electrochemical process. The basis of voltammetry is the 
current-voltage relationship exhibited by an indicator electrode immersed in a solution of 
electroactive species.27 CV is a modification of linear scan voltammetry (LSV). The cyclic 
voltammetry can be applied for the study of all electrochemical reactions without limitations. 
With the help of this method, it is possible to get information about the type of reactions 
observed in the system and the potentials at which they occur. More specifically, CV has been 
effectively applied for analytical, mechanistic and kinetic studies of redox reactions, kinetics 
of heterogeneous electron transfer reactions, coupled chemical reactions, or adsorption 
processes. It is a simple and direct method of measuring the formal potential of a half 
reaction, and often it is the first experiment performed in an electroanalytical study. At the 
same time, this technique is unfortunately not the best one to obtain quantitative data about 
electrochemical nucleation processes. The current-potential curve obtained is termed cyclic 
voltammogram. Both oxidized and reduced forms may or may not be stable during the time 
required to obtain the cyclic voltammogram.27  
 
Practical Implementation 
 The three-electrode method is the most widely used because the electrical potential of 
reference does not change easily during the measurement. This method uses a reference 
electrode (RE), working electrode (WE), and a counter electrode (CE) (also called the 
secondary or auxiliary electrode). Standard CV experiments consist of measuring the current 

                                                           
27 A.J. Bard and L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd Edition, vol. 2 
(Wiley New York, 2001). 

Figure 12. Representation of the working principle of an enzymatic amperometric /voltammetric 
biosensor. 
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flowing through the WE during a triangular potential perturbation. The applied potential is 
measured against the RE, while the CE closes the electrical circuit for the current to flow. The 
experiments are performed by a potentiostat that effectively controls the voltage between the 
RE and WE, while measuring the current through the CE (the WE is connected to the 
ground).27  
 Electrolyte is usually added to the test solution to ensure sufficient conductivity. The 
combination of the solvent, electrolyte and specific working electrode material determines the 
range of the potential to be applied. 

At the beginning the working electrode is held at some potential, Ei, where no electrode 
reactions occur. During the measurement, the potential is swept linearly at a rate ν between 
two limiting potentials E1 and E2 (Figure 13a).  The same sweep rate is normally chosen for 
the forward and reverse sweep. The corresponding current is recorded as a function of the 
varying potential. A theoretical cyclic voltammogram for a reversible system is shown in 
Figure 13b. For the cathodic scan (applied potential is decreasing) the current has a negative 
sign, for the anodic scan (applied potential is increasing) the current has a positive sign.27  

 
 

 

 

 

 

 
Important parameters in CV: 

Cyclic voltammograms are most often characterized by:  
a) the location of the forward and reverse peaks on the potential axis (Ep and ∆Ep, allowing 
the calculation of E0’) b) the ratio of currents observed on the reverse and forward scans (ip,rev / 
ip, fwd) and c) the dependence of peak currents on the scan rate (ip vs. ν1/2).  
 
I.1.3.3. Impedimetric Transducers 
Generalities 
 Electrochemical Impedance Spectroscopy (EIS) has proven to be one of the most 
powerful tools for the investigation of interfacial reaction mechanisms.28 EIS sensors measure 
the response (current and its phase) of an electrochemical system to an oscillating potential as 

                                                           
28 E. Katz and I. Willner, “Probing Biomolecular Interactions at Conductive and Semiconductive Surfaces by 
Impedance Spectroscopy: Routes to Impedimetric Immunosensors, DNA-Sensors, and Enzyme Biosensors,” 
Electroanalysis 15, no. 11 (2003): 913–47. 

Figure 13. a) Potential sweep during cyclic voltammetric measurement; Ei is initial value, E1 and E2 are
two limiting values. b) A typical cyclic voltammogram of a reversible reaction; anodic (a) and cathodic 
(c) processes, Ep is the potential at the current peak Ip. Extracted from Ref 27. 
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a function of frequency. This approach has been used to study a variety of electrochemical 
phenomena over a wide frequency range.28 If the immobilization of biomaterials, e.g., 
enzymes, antigens/antibodies or DNA on electrodes or semiconductor surfaces alters the 
capacitance and interfacial electron transfer resistance of the conductive or semiconductive 
electrodes, EIS can be used to detect that impedance change. 

It is proven that impedance spectroscopy allows analysis of interfacial changes 
originating from biorecognition events at electrode surfaces.29 Kinetics and mechanisms of 
electron transfer processes corresponding to biocatalytic reactions occurring at modified 
electrodes can be also derived from Faradaic impedance spectroscopy. This technique offers 
several advantages over chronoamperometry and cyclic voltammetry because the effects of 
solution resistance, double layer charging and currents due to diffusion or to other processes 
occurring in the monolayer can be observed more explicitly.27 Moreover, impedance 
measurement does not require special reagents and is amenable to label-free operation. EIS 
allows the measurement of several electrochemical reactions that take place at very different 
rates and provides a more thorough understanding of an electrochemical system than any 
other electrochemical technique.22  

 
Theoretical Background of EIS 
 An electrochemical reaction at the electrode–electrolyte interface cannot be fully 
understood by just using traditional electrochemical measurements. Those methods provide 
only currents made of faradaic and non-faradaic components. A complete description requires 
impedance measurements made over a broad frequency range at various potentials and 
determination of all the electrical characteristics of the interface.30 Impedance biosensors 
measure the electrical impedance of an interface in AC steady state with constant DC bias 
conditions. Most often this is accomplished by imposing a small sinusoidal voltage at a 
particular frequency and measuring the resulting current; the process can be repeated at 
different frequencies.28 The impedance is defined as the ratio between the system voltage 
phasor, U(ω), and the current phasor, I(ω), which are generated by a frequency response 
analyzer during the experiment (equation 4). Either an AC test voltage or AC test current is 
imposed while the other variable is measured. Mathematically, if the applied voltage is Vtest= 
VDC+ VACsin(ωt) and the resulting current is Itest= IDC+ IACsin(ωt − φ), then the complex-
valued impedance Z(ω) has magnitude VAC/IAC and phase φ. 

 

ω ω
ω

ω ω (4) 

 

                                                           
29 A. Bonanni and M.D. Valle, “Use of Nanomaterials for Impedimetric DNA Sensors: A Review,” Analytica 
Chimica Acta 678, no. 1 (2010): 7–17. 
30 B. Pejcic and R. De Marco, “Impedance Spectroscopy: Over 35 Years of Electrochemical Sensor Optimization,” 
Electrochimica Acta 51, no. 28 (2006): 6217–29. 
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 Where ω=2πf and ω and f (excitation frequency) have units of rad·s-1 and Hz, 
respectively. Zre and Zim represent the real and imaginary part of Z. The electrode-solution 
impedance depends on both the bias conditions (VDC) and the measurement frequency (ω). By 
exciting with a single frequency, a lock-in amplifier can be used to accurately measure the 
output signal at the same frequency. Voltage excitation is usually employed in EIS because 
the most troublesome parasitic impedances are in parallel with the measured electrode-
solution impedance. In most cases, the measurement process is repeated at different 
frequencies, yielding Z(ω).31 Zre(ω), and Zim(ω) components originate mainly from the 
resistance and capacitance of the interface, respectively. EIS data may be represented in 
different ways. Figure 14 shows one of the most commonly used, which is the Nyquist plot. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 In impedimetric biosensors, the applied voltage should be quite small – usually 10 mV 
amplitude or less – for several reasons. First, the current-voltage relationship is often linear 
only for small perturbations, and only in this situation is impedance strictly defined. A second 
reason is to avoid disturbing the probe layer. Covalent bond energies are on the order of 1–3 
eV but probe-target binding energies can be much lower (and in some cases the probe is not 
covalently attached to the electrode), and applied voltages will apply a force on charged 
molecules.27 This second consideration also applies to DC bias voltages across the electrode-
solution interface. Correctly performed, EIS does not damage the biomolecular probe layer, 
an important advantage over voltammetry or amperometry where more extreme voltages are 
applied. 
 
Measuring Electrochemical Impedance- Faradaic vs. Nonfaradaic 
 It is important to distinguish between non faradaic and faradaic biosensors. In 
electrochemical terminology, a faradaic process is one where charge is transferred across an 
interface.28, 31 However, transient currents can flow without charge transfer in nonfaradaic 
processes (e.g., charging a capacitor). In faradaic EIS a redox species is alternately oxidized 

                                                           
31 J.S. Daniels and N. Pourmand, “Label-Free Impedance Biosensors: Opportunities and Challenges,” 
Electroanalysis 19, no. 12 (2007): 1239–57. 

Figure 14. Nyquist plot of EIS. 
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and reduced by the transfer of an electron to and from the metal electrode. Thus, faradaic EIS 
requires the addition of a redox-active species and DC bias conditions such that it is not 
depleted. In contrast, no additional reagent is required for nonfaradaic impedance 
spectroscopy, rendering nonfaradaic schemes somewhat more amenable to point-of-care 
applications. The term capacitive biosensor usually designates a sensor based on a 
nonfaradaic scheme, usually measured at a single frequency.28, 31 
 A typical shape of a Faradaic impedance spectrum (presented in the form of a Nyquist 
plot) includes a semicircle region followed by a straight line (figure 15, curve a). The 
semicircle portion, observed at higher frequencies, corresponds to the electron transfer-limited 
process, whereas the linear part is characteristic of the lower frequencies range and represents 
the diffusionally limited electrochemical process. In the case of very fast electron transfer 
processes, the impedance spectrum could include only the linear part (curve b) whereas a very 
slow electron-transfer step results in a large semicircle region that is not accompanied by a 
straight line (curve c).28 The electron transfer kinetics and diffusional characteristics can be 
extracted from the spectra. The semicircle diameter equals to the electron transfer resistance, 
Ret. The intercept of the semicircle with the Zre-axis at high frequencies (ω ∞) is equal to 
the solution resistance, Rs. Extrapolation of the circle to lower frequencies yields an intercept 
corresponding to Rs+Ret. The characteristic frequency, ω0, given by equation 5, has the 
meaning of the reciprocal of the time constant of the equivalent circuit. The maximum value 
of the imaginary impedance in the semicircle part corresponds to Zim=0.5Ret and is achieved 
at the characteristic frequency, ω0.28 
                             
                                                              ω0= (CdlRet)-1    (5) 
 

 

 

 

 

 

 

 

Figure 15. Schematic Faradaic impedance spectra presented in the form of a Nyquist plot for: a) A modified 
electrode where the impedance is controlled by diffusion of the redox probe (low frequencies) and by the 
interfacial electron transfer (high frequencies). b) A modified electrode where the impedance is mainly 
controlled by diffusion of the redox probe. c) A modified electrode where the impedance is controlled by the 
interfacial electron transfer within the entire range of the applied frequencies. The arrow shows the direction 
of the frequency increase. Resistance of the electrolyte solution, Rs, and electron transfer resistance, Ret, are 
shown. Extracted from Ref 28. 
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One of the most important parameters governing the technique is the applied frequency. 
At low frequencies (f 1 mHz) the impedance value is basically determined by the DC-
conductivity of the electrolyte solution. At very high frequencies (f 100 kHz) inductance of 
the electrochemical cell and connecting wires could contribute to the impedance spectra. 
Thus, the analytically meaningful impedance spectra are usually recorded at frequencies 
where they are mainly controlled by the interfacial properties of the modified electrodes (10 
mHz f 100 kHz). 
 
Data Fitting and Circuit Models 

Electrochemical transformations occurring at the electrode/electrolyte interface can be 
modeled by extracting components of the electronic equivalent circuits that correspond to the 
experimental impedance spectra. A general electronic equivalent circuit (Randles and Ershler 
model), which is very often used to model interfacial phenomena, includes the ohmic 
resistance of the electrolyte solution, Rs, the Warburg impedance, ZW, resulting from the 
diffusion of ions from the bulk electrolyte to the electrode interface, the double layer 
capacitance, Cdl, and electron transfer resistance, Ret, that exists if a redox probe is present in 
the electrolyte solution (Figure 16A).28  

The parallel elements (Cdl and ZW+Ret) of the equivalent circuit are introduced since the 
total current through the working interface is the sum of distinct contributions from the 
Faradaic process, IF, and the double-layer charging, IC. Since all of the current must pass 
through the uncompensated resistance of the electrolyte solution, Rs, is inserted as a series 
element in the circuit. The two components of the electronic scheme, Rs and ZW, represent 
bulk properties of the electrolyte solution and diffusion features of the redox probe in 
solution. Therefore, these parameters are not affected by chemical transformations occurring 
at the electrode surface. The other two components in the scheme, Cdl and Ret, depend on the 
dielectric and insulating features at the electrode/electrolyte interface.28  
 
 
 
 
 
 
 
 
 
 
Figure 16. Schematic Faradaic impedance spectra presented in the form of a Nyquist plot for: a) A 
modified electrode where the impedance is controlled by diffusion of the redox probe (low 
frequencies) and by the interfacial electron transfer (high frequencies). b) A modified electrode
where the impedance is mainly controlled by diffusion of the redox probe. c) A modified electrode 
where the impedance is controlled by the interfacial electron transfer within the entire range of the 
applied frequen-cies. The arrow shows the direction of the frequency increase. d) Resistance of the
electrolyte solution, Rs, and electron transfer resistance,Ret are shown. Extracted from Ref 28. 
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The double-layer capacitance depends on the dielectric permittivity introduced into the 
double-charged layer molecules, εdl, according to Equation 6:  

 

(6) 

where εdl= ε0 ερ and ε0=8.85x10-12Fm-1 is the dielectric constant of the vacuum, ερ is the 
effective dielectric constant of the layer separating the ionic charges and the electrode surface, 
A is the electrode area, and δ is the thickness of the separating layer. 

In the equivalent electronic circuit the double-layer capacitance, Cdl, can be represented 
as a sum of a constant capacitance of an unmodified electrode (e.g., for a poly-crystalline Au 
electrode, CAu 40 ±60 Fcm-2, depending on the applied potential) and a variable capacitance 
originating from the electrode surface modifier, Cmod, connected as series elements, Figure 
16B.28  Any electrode modifier of insulating features decreases the double-layer capacitance 
as compared to the pure metal electrode. Thus, the double-layer capacitance could be 
expressed by Equation 7. 

        (7) 

Sometimes, particularly when the electrode surface is rough, the electronic properties of 
the interface cannot be described sufficiently well with a capacitive element, and a constant 
phase element (CPE), Equation 8, should be introduced instead of Cdl, Figure 16C. 28  
 

         CPE=A-1(jω)-n       (8) 

The constant phase element reflects non-homogeneity of the layer, and the extent of the 
deviation from the Randles and Ershler model is controlled by the parameter n in Equation 8. 
The CPE has meaning of capacitance and the coefficient A becomes equal to the Cdl when 
n=1. The electron transfer resistance, Ret, controls the electron transfer kinetics of the redox 
probe at the electrode interface. Thus, the insulating modifier on the electrode is expected to 
slow down the interfacial electron transfer kinetics and to increase the electron transfer 
resistance. The electron transfer resistance at the electrode is given by Equation 9, where 
Relectr and Rmod are the constant electron transfer resistance of the unmodified electrode and 
the variable electron transfer resistance introduced by the modifier, in the presence of the 
solubilized redox probe, respectively. These resistances are also connected as series elements 
in the equivalent electronic circuit (Figure 16D).28  

 
                                                                Ret=Relectr+Rmod    (9) 
 
 
 
 
 



CHAPTER I: BIBLIOGRAPHIC STUDY 

27 
 

I.1.4. Methods for Bioreceptors Immobilization  

 To preserve the biological activity of sensing elements, these latter have to be properly 
immobilized on the transducer surface.32 The step of sensing elements immobilization onto 
the transducer is very important because it will govern the overall performance of the 
biosensor, in terms of response time, specificity, selectivity, sensitivity and reliability. Since 
the scope of this work is to demonstrate advances in enzymatic electrochemical biosensors, 
we will mainly focus on the enzyme immobilization methods.33 Biosensors are usually 
designed with high enzyme loading to insure sufficient biocatalyst activities, and the enzymes 
are provided with an appropriate environment to sustain their activities. The local chemical 
and thermal environment can have profound effects on the enzyme stability. The choice of 
immobilization method depends on many factors, such as the nature of the enzyme, the type 
of transducer used, the physicochemical properties of the analyte and the operating conditions 
in which the biosensor is to function, and overriding all these considerations is necessary for 
the biological element to exhibit maximum activity in its immobilized microenvironment.32 In 
all cases, the immobilization methods must guarantee: (i) the maintenance of the integrity of 
the conformation of the biological material, in particular the active site; (ii) the access of the 
analyte to the active site of the biomolecule; (iii) the transportation of the biomolecules 
through the immobilized biological layer. The main basic methods of immobilizing 
biomaterials are:  adsorption, entrapment, affinity, cross-linking and covalent binding (figure 
17). Each immobilization method presents advantages and drawbacks (table 1).  
 
  
 
 
 
 
 

 

 

 

 

                                                           
32 A. Sassolas, L. J. Blum and B. D. Leca-Bouvier, “Immobilization Strategies to Develop Enzymatic Biosensors,” 
Biotechnology Advances 30, no. 3 (2012): 489–511. 
33 S. Datta, L. Rene Christena and Y.R.S. Rajaram, “Enzyme Immobilization: An Overview on Techniques and 
Support Materials,” 3 Biotech 3, no. 1 (2013): 1–9. 

Figure 17. Schematic representation of the basic methods used for biomaterial immobilization on the 
transducer. Extracted from Ref 32. 
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Table 1. Advantages and drawbacks of the five basic immobilization methods.32  

 Binding nature Advantages Drawbacks 
Adsorption Weak bonds 

 
- Simple and easy 

- Limited loss of enzyme 
activity 

- Desorption 
-Non-specific 

adsorption 

Entrapment Incorporation of the 
enzyme within a gel 

or a polymer 

- Several types of 
enzymes can be 

immobilized within the 
same polymer 

- No chemical reaction 
between the monomer 
and the enzyme that 

could affect the activity 

- High concentrations 
of monomer and 

enzyme needed for 
electropolymerization 

 
-Diffusion barrier 

 
-Enzyme leakage 

Cross-linking Bond between 
enzyme/cross-linker 

/inert molecule 

- Simple - High enzyme 
activity loss 

Covalent 
binding 

Chemical binding 
between functional 

groups of the enzyme 
and those on the 

support 

- No diffusion barrier 
- Stable 

- Short response time 
- High enzyme activity 

loss 

- Matrix not 
regenerable 

- Coupling with toxic 
product 

Affinity Affinity bonds 
between a functional 
group (e.g. avidin) on 
a support and affinity 
tag (e.g. biotin) on a 

protein sequence 

- Controlled and oriented 
immobilization 

 

- Need of the 
presence of specific 
groups on enzyme 
(e.g. His, biotin) 

 

 
 Adsorption: It is the simplest and fastest way to physically immobilize enzymes onto 
solid supports and it does not need any substantial pretreatment of the sensor components or 
use of special-purpose chemicals. Enzyme is dissolved in solution and the solid support is 
placed in contact with the enzyme solution for a fixed period of time. The unadsorbed enzyme 
is then removed by washing with buffer. Adsorption can be subdivided into mainy catagories 
based on physical adsorption, electrostatic interactions (layer by layer deposition, 
electrochemical doping and pre-immobilization on ion-exchanger beads) and retention in a 
lipidic microenvironment (Langmuir- Blodgett, LB, technique). However, the main two 
classes are: physical adsorption and chemical adsorption (chemisorption). Physical adsorption 
is weak and occurs mainly via Van der Waals, Coulomb, ionic interactions or hydrogen 
bonding. Many substances adsorb enzymes on their surfaces, eg. alumina, charcoal, clay, 
cellulose, kaolin, silica gel, glass and collagen.32 The result of adsorptive immobilization is 
largely determined by the properties of the transducer surface, including its charge, the 
presence of polar groups, its redox potential, and its energetic uniformity. Adsorption does not 
always afford a high concentration of a biological component. In order to increase the amount 
of enzyme adsorbed, the transducer is pretreated so as to generate charged or polar groups 
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enhancing biomaterial adsorption. This is done by using various methods of oxidation and 
surface modification with polymers or functionalizing reagents. For example, the oxidation of 
gold and carbon electrodes increases their protein, nucleic acid, and microorganism 
adsorption capacity.This technique is generally non-destructive for enzyme activity. Although 
this immobilization method causes little or no enzyme inactivation, this technique presents 
drawbacks: enzymes are loosely bound to the support and desorption of the enzyme resulting 
from changes in temperature, pH and ionic strength, appears to be the main problem. Thus, 
biosensors based on adsorbed enzyme suffer from poor operational and storage stability. 
Another drawback is the non-specific adsorption of other proteins or substances.32  
 Entrapment: Biomaterial inclusion into a forming polymer matrix is actually a universal 
method applicable to various types of recognition elements. Enzymes can be immobilized in 
three-dimensional matrices such as an electropolymerized film, an amphiphilic network 
composed of polydimethylsiloxane (PDMS), a photo-cross-linkable polymer, a silica gel, a 
polysaccharide gel or a carbon paste.32 This immobilization technique is easy to perform. 
Enzyme, mediators and additives can be simultaneously deposited in the same sensing layer. 
Biosensors based on physically entrapped enzymes are often characterized by increased 
operational and storage stability. Another obvious advantage of this method is its universality. 
However, its drawback is that the network may impede diffusion of substrate and hampers 
analyte permeation. In addition, if the molecules included into the network are not chemically 
bonded to it, they can be washed away resulting in a loss of activity. Such limitations can 
restrict the performances of the systems.32  

Cross-linking: Immobilization of enzymes by cross-linking with glutaraldehyde or other 
bifunctional agents such as glyoxal or hexamethylenediamine is another well-known approach 
to develop biosensors to chemically bond the biomaterial onto solid supports or gels. The 
enzyme can be either cross-linked with each other or in the presence of a functionally inert 
protein such as bovine serum albumin. The technique of crosslinking or co-crosslinking is 
based on the interaction between a protein/enzyme and a bifunctional agent in order to form a 
network. An example of such cross-linking is the action of glutaraldehyde34, which forms 
Schiff bases with amino, hydroxyl, and thiol groups of proteins and nucleic acids (figure18). 
This method is attractive due to its simplicity and the strong chemical binding achieved 
between biomolecules. The main drawback is the possibility of activity losses due to the 
distortion of the active enzyme conformation and the chemical alterations of the active site 
during cross-linking. 
 
 
 

 

                                                           
34 O. Barbosa et al., “Glutaraldehyde in Bio-Catalysts Design: A Useful Crosslinker and a Versatile Tool in Enzyme 
Immobilization,” RSC Adv. 4, no. 4 (2014): 1583–1600. 
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 Covalent binding: Covalent bonding is likely the most widespread immobilization 
method of enzymes used to develop enzymatic biosensors. The sensor surface is modified to 
acquire a reactive group, for example by the use of SAMs, to which a functional group of the 
biomaterial can be attached by forming a covalent bond. In the case of enzymatic biosensors, 
the enzyme is covalently bonded to the support matrix through a functional group which is not 
essential for its catalytic activity.4 It requires mild conditions under which reactions are 
performed, such as low temperature, low ionic strength and pH in the physiological range. 
The choice of chemicals to be used in this immobilization method depends on the molecules 
to be bonded and on the support material.  

Covalent bonding is usually carried out in three steps: the first step is purification of the 
support and functionalization of its surface with the necessary groups, the second step is 
biomaterial immobilization, and the third one is removal of weakly bound molecules with a 
pure solvent. Obviously, the sequence of chemical reactions should be chosen so that the 
bonds formed at the early stages persist at the later stages.8  

Covalent immobilization method improves the uniformity, density and distribution of 
the bioelements, as well as reproducibility and homogeneity of the surfaces. It may decrease 
or eliminate some common problems such as instability, diffusion and aggregation, or 
inactivation of biomolecules since it ensures strong biomaterial–support binding and prevents 
biomaterial loss. Moreover it provides means to produce sensors with a long service life.32 In 
the case of enzymes, it is always necessary to investigate the efficiency of binding by each 
method. In particular, it is necessary to compare the activity of an enzyme in solution and the 
activity of the same enzyme in the immobilized state.   

The carrier support material can either be an inorganic material (e.g. controlled pore 
glass), a natural (e.g. cellulose) or synthetic polymer (e.g. nylon). Covalent immobilization 
can be performed directly onto the transducer surface or onto a thin membrane fixed onto the 
transducer.  

Numerous protocols for employing different conjugation chemistries are available once 
a particular surface (e.g., gold, silicate, polymers) has been functionalized with an “active” 
outer layer. The choice of surface functionalization strategy is dependent on what types of 
functional groups linked to biomolecules are available. Usually, nucleophilic functional 
groups present in amino acid side chains of proteins are used for coupling. However, since 
most biomolecules have amino, carboxylic, thiol, or hydroxyl groups, which limit the type of 

Figure 18. Interaction between glutaraldehyde and an amino group of a protein. Extracted from 
Ref 8. 
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chemistry that can be used for conjugation to these functional groups, the basic conjugation 
schemes are based on activation of carboxylic groups, activation of amino groups and 
chemisorption (-SH groups).32 For these purposes the reagents such as carbodiimide, 
succinimide esters and maleinimides are often used for covalent binding of the enzymes onto 
support materials bearing –NH2, –SH, or –COOH groups on their surface.  

These conjugation strategies use one or more of the reaction pathways summarized in 
figure 19, which only shows a subset of all possible conjugation chemistries available.35  
Hydroxylated surfaces are first modified with carbonyldiimidazole (CDI) to form a reactive 
intermediate, which forms a stable carbamate bond to an amino-terminated biomolecule group 
(figure 19a) Amine-terminated surfaces provide several options for biomolecule attachment. 
For example, a surface amine group can be modified with glutaraldehyde, which forms an 
imine bond (sometimes referred to as a Schiff’s base) with an aldehyde, leaving the other 
aldehyde free for repeating this chemistry with an amino-terminated biomolecule group 
(figure 19b). Symmetrical diisothiocyanates have also been used as bifunctional linkers for 
attachment of amine-functionalized surfaces to either thiol-terminated or amine-terminated 
biomolecules (figure 19c). Finally, a widely used method to covalently immobilize enzymes 
onto carboxylated surfaces through their anino groups is the 1-ethyl-3-(3-
dimethylaminopropyl)carbodiimide (EDC)/ N-hydroxysuccinimide (NHS) coupling (Scheme 
19e). 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

                                                           
35 S. Balamurugan et al., “Surface Immobilization Methods for Aptamer Diagnostic Applications,” Analytical and 
Bioanalytical Chemistry 390, no. 4 (2008): 1009–21. 
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Figure 19. Common reaction sequences reported for covalent attachment of biomolecules to 
surfaces. CDI: carbonyldiimidazole, SMCC: succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-
carboxylate, EDC: 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, NHS: N-hydroxysuccinimide. 
Extracted from Ref 35. 
 
Alkanethiol self-assembled monolayers (SAMs)  
 An easy way to introduce all the above functional groups onto gold surfaces is the 
functionalization of the latter with SAMs, for subsequent conjugation to biomolecules. A 
tremendous advantage of this method is that the underlying monolayer can be devised to 
prevent nonspecific adsorption of biomolecule to the gold surface. Monolayer formation 
begins with the interaction between the polar moiety (head) of separate molecules and the 
support surface (figure 20). The subsequent ordering of the molecules in the monolayer plane, 
or layer self-assembling, is due to the Van der Waals interaction between the hydrophobic 
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moieties (tails) of the molecules. Various materials, including silicon, metals, and oxides, can 
serve as the support. SAMs are usable as a matrix for inclusion of biopolymers and 
hydrophobic non macromolecular compounds.4   
 

 

 

 

 

Afinity: Efforts have been achieved in order to develop biosensors based on oriented and 
site-specific immobilization of enzymes. A strategy is to create (bio)affinity bonds between an 
activated support (e.g.with lectin, avidin, metal chelates) and a specific group (a tag) of the 
protein sequence (e.g. carbohydrate residue, biotin, histidine). This method allows to control 
the biomolecule orientation in order to avoid enzyme deactivation and/or active site blocking. 
Several affinity methods have been described to immobilize enzymes through (strept)avidin-
biotin, lectin-carbohydrate and metal cation–chelator interactions. An enzyme can contain 
affinity tags in its sequence (e.g. a sugar moiety) but, in some cases, the affinity tag (e.g. 
biotin) needs to be attached to the protein sequence by genetic engineering methods such as 
site-directed mutagenesis, protein fusion technology and post-transcriptional modification.32  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 20. Representative self-assembled monolayer of CnH2n+1 alkanethiol on the surface of gold 
electrode of a DNA sensor. Extracted from Ref 8. 
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I.2. Impact of Nanotechnology on Biosensing 
   
 Recent trends in nanotechnology have brought new possibilities for developing novel 
electrochemical biosensors of improved sensitivity, specificity, speed, and cost.36, 37 The 
miniaturization of sensors38 within nanometer dimensions provides great versatility for 
incorporation into multiplexed, portable, wearable, and even implantable medical devices. 

Nanomaterials or matrices with at least one of their dimensions ranging in scale from 1 to 100 
nm, have also acquired an important impact on the development of electrochemical 
biosensors.39 

 Since the fundamental processes of life occur at the nanoscale considering that most 
biological systems including viruses, membranes and protein complexes are naturally 
nanostructured materials, biosensors exploiting nanomaterials can leverage principles and 
materials common to biological systems.37 Owing to their similar dimensions with redox 
proteins, such nanoscale materials have been used to achieve direct electrical wiring of redox 
enzymes to electrode surface, to promote electrochemical reaction, to impose nanobarcode for 
biomaterials and to amplify the signal of biorecognition event.36 Nanomaterials such as metal 
nanoparticles, carbon nanotubes or nanowires, polymeric nanofibers, magnetic nanoparticles 
and quantum dots have been actively investigated for their applications in biosensors40, 41, 
which have become a new interdisciplinary frontier between biological detection and material 
science. In the past years, research groups have started to explore an integrated approach 
combining electronics and biology to build biosensors on the nanoscale. Devices based on 
nanowires and nanofibers are emerging as powerful platforms for the direct detection of 
biological and chemical species, including determining low concentrations of proteins and 
viruses.42  
 There are different strategies for creating next generations of nanobiosensor devices: 1) 
the use of a completely new class of nanomaterial for sensing purposes, 2) new 
immobilization strategies, and 3) the new nanotechnological approaches.  
 
 
 
                                                           
36 A. Hayat, G. Catanante and J. Marty, “Current Trends in Nanomaterial-Based Amperometric Biosensors,” 
Sensors 14, no. 12 (2014): 23439–61. 
37 K.B. Cederquist and S.O. Kelley, “Nanostructured biomolecular detectors: pushing performance at 
nanoscale,” Current Opinion in Chemical Biology 16, no.3-4 (2012):415-421. 
38 M. Kuphal et al., “Polymer-Based Technology Platform for Robust Electrochemical Sensing Using Gold 
Microelectrodes,” Sensors and Actuators B: Chemical 161, no. 1 (2012): 279–84. 
39 S.H. Lee, J.H. Sung and T.H. Park, “Nanomaterial-Based Biosensor as an Emerging Tool for Biomedical 
Applications,” Annals of Biomedical Engineering 40, no. 6 (2012): 1384–97. 
40 B.J. Sanghavi et al., “Nanomaterial-Based Electrochemical Sensing of Neurological Drugs and 
Neurotransmitters,” Microchimica Acta 182, no. 1–2 (2015): 1–41. 
41 W. Zhang et al., “Nanomaterial-Based Biosensors for Environmental and Biological Monitoring of 
Organophosphorus Pesticides and Nerve Agents,” TrAC Trends in Analytical Chemistry 54 (2014): 1–10. 
42X.R. Gan and H.M. Zhao, “A review: Nanomaterials Applied in Graphene-Based Electrochemical Biosensors,” 
Sensors and Materials 27, no.2 (2015): 191-215. 
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I.2.1. Nanomaterials for New Biosensing Principles  
A wide variety of nanostructures have been reported in the literature for interesting 

analytical applications. Among these, organic and inorganic nanotubes, nanoparticles, and 
metal oxide nanowires have provided promising building blocks for the realization of 
nanoscale electrochemical biosensors due to their biocompatibility and the important 
combination of properties, such as high surface area, good electrical properties, and chemical 
stability. In particular, the ability to tailor the size and structure and hence the properties of 
nanomaterials offers excellent prospects for designing novel sensing systems and enhancing 
the performance of the bioanalytical assay. In this section, we will summarize the progress 
made in the integration of nanomaterials such as i) carbon nanotubes (CNTs), ii) 
nanoparticles (NPs), and iii) polymer nanostructures, such as nanofibers, in 
electrochemical biosensing systems and in the following chapters we will offer a fully 
detailed description of the main principles and applications of these nanomaterial-based 
biosensing systems. 

 
I.2.1.1. Carbon Nanotubes (CNTs) 
 
Structure, Charasteristics, Synthesis and Functionalization, Applications 
 Since their discovery in 199143, CNTs have attracted great attention from researchers. 
Through the amazing mechanical and structure-dependent electronic properties, these 
nanosized cylindrical structures promote many application areas of materials science such as 
nanoelectronic devices, capacitors, superconducters, and nanocomposites. In particular, fast 
electron transfer ability, high aspect ratio, electrochemical stability, and biocompatibility 
properties of CNTs have generated great interest for possible applications in electrochemical 
biosensing.44, 45 
 
 
 
 
 
 
 
 
 
 
 

                                                           
43 S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, 354, (1991): 56–58. 
44 Z. Wang and Z. Dai, “Carbon Nanomaterial-Based Electrochemical Biosensors: An Overview,” Nanoscale 7, 
no. 15 (2015): 6420–31. 
45 S. Demirci Uzun et al., “Bioactive Surface Design Based on Functional Composite Electrospun Nanofibers for 
Biomolecule Immobilization and Biosensor Applications,” ACS Applied Materials & Interfaces 6, no. 7 (2014): 
5235–43. 

Figure 21. Schematic representations of a SWCNT and a MWCNT. 
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 CNTs are fullerene - like structures (Figure 21) that can be single-walled (SWCNTs) or 
multiwalled (MWNTs).44 SWNTs are cylindrical graphite sheets of 0.5–1 nm diameter capped 
by hemispherical ends, while MWNTs comprise several concentric cylinders of these 
graphitic shells with a layer spacing of 0.3 – 0.4 nm. MWCNTs tend to have diameters in the 
2 – 100 nm range. CNTs can be produced by arc discharge methods46, laser ablation47, or 
chemical vapour deposition (CVD)48, which has the advantage of allowing the control of the 
location and alignment of synthesized nanostructures. CNTs can be functionalized with 
different chemical groups using covalent and non-covalent procedures.51 

Functionalized CNTs are then conjugated to different recognition molecules for 
bioanalytical applications. Various target analytes can be oxidized by CNTs at low potentials 
with minimal surface fouling, an appealing feature for the development of electrochemical 
sensors with high selectivity and reusability.49 In a SWNT every atom is on the surface and 
exposed to the environment. Moreover, charge transfer or small changes in the charge 
environment of a nanotube can cause drastic changes to its electrical properties. The 
electrocatalytic activity of CNTs has been related to the “topological defects” characteristic of 
their particular structure. The presence of pentagonal domains in the hemispherical ends or in 
defects along the graphite cylinder produces regions with charge density higher than in the 
regular hexagonal network, thus increasing the electroactivity of CNTs.50 Thus due to their 
unique electric, electrocatalytic and mechanical properties CNTs have found wide application 
as electrode materials and a huge number of electrochemical biosensors have been described 
employing CNTs as a platform for biomolecule immobilization as well as for electrochemical 
transduction. The only limitation can be their highly stable and closed structure, which does 
not allow a high degree of functionalization.49 Adsorption or covalent immobilization can 
only be achieved at the open end of functionalized nanotubes, after a proper oxidative 
pretreatment.51 
 
 
 
 
 
 
 
 
 
                                                           
46 S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter”, Nature, 363, (1993): 603-605.  
47 T. Guo et al., “Catalytic Growth of Single-Walled Manotubes by Laser Vaporization,” Chemical Physics Letters 
243, no. 1–2 (1995): 49–54. 
48 G. Che et al., “Chemical Vapor Deposition Based Synthesis of Carbon Nanotubes and Nanofibers Using a 
Template Method,” Chemistry of Materials 10, no. 1 (1998): 260–67. 
49 S.K. Vashist et al., “Advances in Carbon Nanotube Based Electrochemical Sensors for Bioanalytical 
Applications,” Biotechnology Advances, 29, 2 (2011): 169–88. 
50 G. Rivas et al., “Carbon Nanotubes for Electrochemical Biosensing,” Talanta 74, no. 3 (2007): 291–307. 
51 J.Wang and Y.Lin, “Functionalized Carbon Nanotubes and Nanofibers for Biosensing Applications,” TrAC 
Trends in Analytical Chemistry 27, no. 7 (2008): 619–26. 



CHAPTER I: BIBLIOGRAPHIC STUDY 

37 
 

Integration of Carbon Nanotubes in Biosensors 
 One of the first new nanomaterials to impact on amperometric biosensors were carbon 
nanotubes (CNTs), which were blended into a number of formulations to improve current 
densities and overall performance of enzyme electrodes and enzyme-labelled 
immunosensors.52, 53, 54 An extremely important challenge in electrochemical enzyme-based 
biosensors is the establishment of satisfactory electrical communication between the active 
site of the enzyme and the electrode surface. Moreover, most electroactive sites of enzymes 
are electrically insulated by a protein shell. Thus, to fabricate effective enzyme-based 
biosensors, research on CNT-based biosensors has been focused on two issues: (i) improving 
the electron-transfer reactions between enzyme and electrodes and, (ii) enhancing the 
electrochemical reactivity of enzymatic products.55 
 Nevertheless, for biological applications the lack of dispersibility of CNTs in aqueous 
media has been a major technical barrier. Great efforts have been devoted to finding cost-
effective approaches to functionalize CNTs for attachment of biomolecules, such as proteins 
(e.g., enzymes, anti-bodies), DNA and aptamers. In general, to achieve maximum attachment 
of biomolecules and keep the activity of the biomolecules on the CNTs, the choice of methods 
for treating CNTs and the method for attaching biomolecules are very critical for the 
performance of the biosensors.  
 According to the orientation of CNTs on the electrode surface, two approaches are 
generally used for immobilizing CNTs on electrodes: (i) non-aligned and (ii) aligned. In the 
non-aligned approach, CNTs are randomly immobilized on the electrode surface by physical 
adsorption (e.g., casting or spin casting) and composite entrapment using polymers and sol-
gel. On the other hand, several approaches have been developed to achieve density-controlled, 
aligned CNTs. Both approaches are widely used for biosensor developments. The adsorption 
of CNTs on an electrode surface is a simple approach, while aligned CNTs on the electrode 
surface make electron transfer easier due to the high conductance of the edge plane of CNTs. 
Moreover, aligned CNTs can be prepared in parallel for fabricating CNT arrays on a 
substrate.52 
 Vertically aligned CNTs act as molecular wires (‘nanoconnectors’) to facilitate direct 
electron transfer between the underlying electrode and the redox centers of enzymes.6 For 
instance, Willner’s group56 demonstrated that aligned reconstituted glucose oxidase (GOx) on 
the edge of SWCNT can be linked to an electrode surface (figure 22). Such enzyme 

                                                           
52 Z. Zhu et al., “A Critical Review of Glucose Biosensors Based on Carbon Nanomaterials: Carbon Nanotubes 
and Graphene,” Sensors 12, no. 12 (2012): 5996–6022. 
53 C.B. Jacobs, M. Jennifer Peairs, and B. Jill Venton, “Review: Carbon Nanotube Based Electrochemical Sensors 
for Biomolecules,” Analytica Chimica Acta 662, no. 2 (2010): 105–27. 
54 L. Agüí, P. Yáñez-Sedeño and J.M. Pingarrón, “Role of Carbon Nanotubes in Electroanalytical Chemistry,” 
Analytica Chimica Acta 622, no. 1–2 (2008): 11–47. 
55 J. Filip, P. Kasak and J. Tkac, “Graphene as signal amplifier for preparation of ultrasonic electrochemical 
biosensors,” Chemical papers 69, no.1 (2015): 112-133. 
56 F. Patolsky, Y. Weizmann, and I. Willner, “Long-Range Electrical Contacting of Redox Enzymes by SWCNT 
Connectors,” Angewandte Chemie International Edition 43, no. 16 (2004): 2113–17. 
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reconstitution on the end of CNT represents an extremely efficient approach for ‘plugging’ an 
electrode into GOx. Electrons were thus transported along distances higher than 150 nm with 
the length of the SWCNT controlling the rate of electron transport. An interfacial electron 
transfer rate constant of 42 s-1 was estimated for 50 nm long SWCNT. Efficient direct 
electrical connection to GOx was reported also by Gooding’s group57 in connection to aligned 
SWCNT arrays. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Nanowire biosensors are a class of nanobiosensors, of which the major sensing 
components are made of nanowires coated by biological molecules such as DNA molecules, 
proteins/enzymes, etc. The nanomaterials transduce the chemical binding event on their 
surface into a change in the conductance of the nanowire in an extremely sensitive, real time 
and quantitative fashion. In particular, the use of carbon nanowires for biosensor development 
has grown in recent years because of their physical and chemical properties (e.g., 
conductivity, surface area, inherent and induced chemical functionalities, and 
biocompatibility). Recent activity on carbon nanowire-based biosensors has focused on 
functionalization of the carbon nanowires for biosensing DNA and proteins.51 The 
functionalization of carbon nanowires is critical for utilizing their specific properties for 
biosensor development. Some approaches to biochemical functionalization of synthetic 
carbon nanowires have been studied, including physical adsorption and covalent bonding. 
Electrochemical techniques are often used to produce functional groups on the surface of 
                                                           
57 J.J. Gooding et al., “Protein Electrochemistry Using Aligned Carbon Nanotube Arrays,” Journal of the 
American Chemical Society 125, no. 30 (2003): 9006–7. 

Figure 22. Assembly of SWCNT electrically contacted glucose oxidase electrode: linking the 
reconstituted enzyme, on the edge of the FAD-functionalized SWCNT, to the electrode surface.
Extracted from Ref 56.  
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carbon nanowires for further modifications. Vamvakaki et al.58 reported a glucose biosensor 
based on highly-activated carbon nanowires with direct enzyme immobilization. This is a 
highly efficient method for developing very sensitive, stable, reproducible electrochemical 
biosensors. Wu and co-workers59 reported a carbon nanowire-based amperometric glucose 
sensor, which showed excellent catalytic activity of soluble carbon nanowires. It was obtained 
with a simple nitric-acid treatment, with electro-reduction of dissolved oxygen at a low 
operating potential. The carbon nanowire membrane showed good stability and provided fast 
response to dissolved oxygen. The use of a low operating potential (-0.3 V) and a Nafion 
membrane also produced good selectivity toward glucose detection. 
 To sum up, the above studies and many more performed by a great number of research 
groups have demonstrated that CNT enhance the electrochemical reactivity of important 
biomolecules and promote the electron-transfer reactions of proteins (including those where 
the redox center is embedded deep within the glycoprotein shell). In addition to enhanced 
electrochemical reactivity, CNT-modified electrodes have been shown useful to accumulate 
important biomolecules (e.g., nucleic acids) and to alleviate surface fouling effects (such as 
those involved in the NADH oxidation process). The remarkable sensitivity of CNT 
conductivity to the surface adsorbates permits the use of CNT as highly sensitive nanoscale 
sensors. The above mentioned properties make CNT extremely attractive for a wide range of 
electrochemical biosensors applications, ranging from amperometric enzyme electrodes to 
DNA hybridization biosensors.  
 
I.2.1.2. Nanoparticles (NPs)  
 One of the most versatile classes of nanomaterials is nanoparticles. Depending on their 
composition (metal, semiconductor, magnetic), nanosize particles (or beads) exemplify 
different functions in electroanalytical applications. Nanoparticles (NPs), especially nobel 
metallic nanoparticles (MNPs), have unique electrical, optical, magnetic, and catalytic 
properties in addition to their pronounced biocompatibility, thus their potential applications in 
the fields of nanotechnology, materials science, biomedical engineering, tissue engineering 
and biosensing have been an area of intense scientific interest.81 Metal nanoparticles provide 
three main functions: enhancement of electrical contact between biomolecules and electrode 
surface, catalytic effects, and, together with semiconductor ones, labeling and signal 
amplification.60, 61They are typically obtained by chemical reduction of corresponding 
transition metal salts in the presence of a stabilizer (self-assembled monolayers, 
microemulsions, polymers matrixes), which give the surface stability and proper 
                                                           
58 V.Vamvakaki, K. Tsagaraki and N.Chaniotakis, “Carbon Nanofiber-Based Glucose Biosensor,” Analytical 
Chemistry 78, no. 15 (2006): 5538–42. 
59 L. Wu, X. Zhang and H. Ju, “Amperometric Glucose Sensor Based on Catalytic Reduction of Dissolved Oxygen 
at Soluble Carbon Nanofiber,” Biosensors and Bioelectronics 23, no. 4 (2007): 479–84. 
60 L. Ding et al., “Utilization of Nanoparticle Labels for Signal Amplification in Ultrasensitive Electrochemical 
Affinity Biosensors: A Review,” Analytica Chimica Acta 797 (2013): 1–12. 
61 L. Wang et al., “Nanoparticle-Based Environmental Sensors,” Materials Science and Engineering: R: Reports 
70, no. 3–6 (2010): 265–74. 
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functionalization, in order to modulate charge and solubility properties.62 Among them, the 
most widely used for biosensing applications have been gold nanoparticles (AuNPs) because 
of their unique biocompatibility, structural, electronic, and catalytic properties. 
 
Gold Nanoparticles-A Special Case  

The unique ability of gold nanoparticles to provide a suitable microenvironment for 
biomolecules immobilization retaining their biological activity is a major advantage for the 
preparation of biosensors. Furthermore, gold nanoparticles permit direct electron transfer 
between redox proteins and bulk electrode materials63, thus allowing electrochemical sensing 
to be performed with no need for electron transfer mediators. Characteristics of gold 
nanoparticles such as high surface-to-volume ratio, high surface energy, ability to decrease 
proteins–metal particles distance, and the functioning as electron-conducting pathways 
between prosthetic groups and the electrode surface, have been claimed as reasons to facilitate 
electron transfer between redox proteins and electrode surfaces. Gold nanoparticles have also 
demonstrate to constitute useful interfaces for the electrocatalysis of redox processes of 
molecules such as H2O2, O2 or NADH involved in many significant biochemical reactions.64, 
65 
 
 
 
 
 
 
 
  
 

 
 
 
 
 
 
 
                                                           
62 S. Guo and Erkang Wang, “Synthesis and Electrochemical Applications of Gold Nanoparticles,” Analytica 
Chimica Acta 598, no. 2 (2007): 181–92. 
63 Y. Xiao et al., “‘Plugging into Enzymes’: Nanowiring of Redox Enzymes by a Gold Nanoparticle,” Science, 2003, 
299 edition. 
64 E. Hutter and Dusica Maysinger, “Gold-Nanoparticle-Based Biosensors for Detection of Enzyme Activity,” 
Trends in Pharmacological Sciences 34, no. 9 (2013): 497–507. 
65 Y. Li, Hermann,  J. Schluesener and S. Xu, “Gold Nanoparticle-Based Biosensors,” Gold Bulletin 43, no. 1 
(2010): 29–41. 

Figure 23. Solutions of gold nanoparticles of various sizes. Nano-Gold colloids exhibit different colours 
at different sizes and concentrations.  
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Integration of Gold Nanoparticles in Biosensors 
 The electrodes are usually modified by AuNPs in different ways to improve the 
performance of the biosensor.66, 67, 68 Among the various strategies followed, a useful and 
simple way consists on the direct deposition of nanoparticles onto the electrode surface. For 
example, tyrosinase immobilization by cross-linking onto a GCE modified with 
electrodeposited gold nanoparticles was used to prepare a biosensor which showed a high 
activity towards various phenolic compounds.69 Also, gold electrodes can be modified by 
attachement of AuNPs via covalent bond. A glucose biosensor was prepared by covalent 
attachment of GOx to a gold nanoparticle monolayer-modified Au electrode.70 The so 
prepared biosensor exhibited a wide linear range of glucose response, high sensitivity, good 
reproducibility and stability.  

Generally, modification of electrode surfaces with self-assembled mono-layers (SAMs) 
of thiols provides a simple way to design tailored materials that can be further used as 
functionalized sites to immobilize gold nanoparticles and enzymes. A comparison of the 
analytical performance of different GOx biosensor designs based on several SAM-modified 
electrodes showed that a configuration involving colloidal gold bound to cysteamine 
monolayers self-assembled on a gold disk electrode exhibited a high sensitivity and a long 
biosensor lifetime in comparison with other GOx biosensors. Schemes displaying the different 
strategies for GOx biosensors preparation using tailored gold nanoparticle-modified electrodes 
are shown in Figure 24. Multilayer films of GOx/gold nanoparticles on the Au electrode 
surface using cysteamine as a covalent attachment cross-linker were prepared by layer-by-
layer (LBL) technique, which has attracted much attention because of its simplicity and wide 
choice of methods. The bioelectrocatalytic response was directly correlated to the number of 
deposited bilayers, to the amount of active enzyme immobilized on the Au electrode surface.71 
 
 
 
 
 
 
 
 
                                                           
66 S. Zeng et al., “A Review on Functionalized Gold Nanoparticles for Biosensing Applications,” Plasmonics 6, no. 
3 (2011): 491–506. 
67 J.F. Rusling, “Nanomaterials-Based Electrochemical Immunosensors for Proteins,” The Chemical Record 12, 
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68 M. Hasanzadeh et al., “Dendrimer-Encapsulated and Cored Metal Nanoparticles for Electrochemical 
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69 J.M. Pingarrón, P. Yáñez-Sedeño and A. González-Cortés, “Gold Nanoparticle-Based Electrochemical 
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AuNPs/enzyme hybrid systems have been widely investigated by Willner’s group72, 73 

in order to overcome the lack of electrical communication often observed between redox 
enzymes and an electrode surface. When it was realized that the spatial separation between 
the active site and the electrode is due to the isulating protein shell, AuNPs were used as 
nanoconnectors to shorten electron transfer distances and mediate charge transport. 
Biocatalytic electrodes were prepared by conjugation of ap-GOx (apoprotein form) with 
AuNPs functionalized with a flavin adenine dinucleotide cofactor unit extracted from active 
GOx and self-assembled on a dithiol-modified gold electrode. In this way, nanoparticles were 
implanted in intimate contact with the active site of the enzyme, thus forming a hybrid 
architecture that facilitated the electrocatalytic oxidation of glucose, thanks to highly efficient 
electron transport.  

                                                           
72 Y.M. Yan et al., “Biocatalytic Growth of Au Nanoparticles Immobilized on Glucose Oxidase Enhances the 
Ferrocene-Mediated Bioelectrocatalytic Oxidation of Glucose,” Advanced Materials 20, no. 12 (2008): 2365–70. 
73 I. Willner, Bernhard Basnar, and Bilha Willner, “Nanoparticle-Enzyme Hybrid Systems for Nanobiotechnology: 
Nanoparticle-Enzyme Hybrid Systems,” FEBS Journal 274, no. 2 (2007): 302–9. 

Figure 24. Schemes of different GOx biosensors constructed by means of different tailored gold 
nanoparticle-modified electrode surfaces: (A) GOx/colloidal gold–cysteamine–AuE; (B) GOx/colloidal
gold–cysteamine/cysteamine–AuE; (C) GOx/cysteamine–electrodeposited gold nanoparticles–GCE or
GOx/3-mercaptopropionic acid (MPA)–electrodeposited gold nanoparticles–GCE. Extracted from Ref 
69. 
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 Orozco et al.74 demonstrated the role of AuNPs in enhancing the voltammetric 
performance of ultra -microelectrodes based biosensors through a comparative  study  of  bare  
and  nanoparticle  modified  surfaces  using  HRP  as  a  model recognition element. HRP was 
covalently immobilized by means of a thiol self-assembled monolayer used for the 
amperometric detection of catechol. The use of AuNPs increased the sensitivity of the 
developed biosensor 3-fold with respect to bare microelectrodes. 
 Conjugation of gold nanoparticles with other nanomaterials and biomolecules is another 
useful strategy for the preparation of enzyme biosensors with improved analytical 
performance. These devices exhibit the characteristics of the involved nanomaterials and also 
the advantages of composite electrodes, such as low background currents, a great versatility 
because it is possible to incorporate different substances into the bulk of the electrode matrix, 
and an easy surface regeneration. In this context, hybrid nanoparticles/nanotubes materials 
have shown to possess interesting properties, which can be profited for the development of 
electrochemical biosensors. A colloidal gold–CNT composite electrode using Teflon as the 
non-conducting binding material showed significantly improved responses to H2O2 when 
compared with other carbon composite electrodes, including those based on CNTs. The 
incorporation of GOx into the new composite matrix allowed the preparation of a 
mediatorless glucose biosensor with a remarkably higher sensitivity than that from other 
GOx–CNT bioelectrodes.75 Hybrid composites can be also prepared by selective attachment 
of gold nanoparticles to carbon nanotubes surfaces. This requires previous CNTs 
functionalization to immobilize gold nanoparticles. So, cationic polyethyleneamine or anionic 
citrate used as dispersants can change the surface properties of CNTs yielding acidic or basic 
surfaces. Then, CNTs could be successfully coated with gold nanoparticles by electrostatic 
interaction. 
 In another configuration, a direct electrochemical biosensing platform was fabricated by 
covalent incorporation of CNTs and gold nanoparticles onto a GCE modified with 
electropolymerized poly(thionine). The synergic effects of the composite nanomaterials 
together with the excellent mediating ability of the redox polymer, allowed faster electron 
transfer and higher enzyme immobilization efficiency than the designed based on CNTs or 
gold nanoparticles, as it was demonstrated using HRP as a test enzyme model. Furthermore, 
in enzyme biosensors based on hybrid AuNPs-polymer materials, the presence of gold 
nanoparticles in the conductive polymer matrix provides enhanced electrochemical 
activity/conductivity and restricts enzyme leaking while allowing rapid diffusion of substrate 
and product using small amount of enzyme. To sum up, in table 2 we present the various roles 
that AuNPs have played in the development of biosensing systems.65 
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Table 2. Different functions of AuNPs in electrochemical biosensor systems. 

Principle of 
detection 

Functions of AuNPs Properties used Sensor advantages 

Changes in 
electrical 

characteristics 

Immobilization platform 
 
 

Catalysis of reactions/ 
Enhancement of 
electron transfer 

Biocompatibility, large 
surface area 

 
High surface energy, 
interface-dominated 

properties 

Improved sensitivity 
and stability 

 
Improved sensitivity 

and stability 

 
I.2.1.3. Polymer Nanostructures  
 Another class of nanomaterials that exhibit appealing properties for sensor applications 
are polymeric nanostructures. 
 
Fabrication of Polymer Nanostructures  
 Technologies based on polymer nanostructures have been restricted in deploying on a 
commercial scale, mainly due to a lack of reliable and reproducible synthetic techniques. 
Therefore, the development of synthetic routes to polymer nanomaterials is a subject of great 
interest in contemporary nanoscopic research.76, 77 The synthetic strategies for obtaining 
polymer nanomaterials can be classified into hard-template synthesis, soft-template synthesis, 
and template-free synthesis.78 

 The hard template approach involves a synthesis of nanostructured polymers within the 
pores or channels of membranes. Hard-template synthesis is advantageous in tailoring the 
dimensions of nanomaterials.79,  80 It has been widely implemented in the preparation of highly 
oriented and ordered one-dimensional nanostructures such as: core/shell nanoparticles, 
nanocapsules, nanorods, nanotubes, nanowires, and nanofibers.81 However, these approaches 
suffer from disadvantages such as complicated synthetic process, etching away the template 
material after the formation of the polymer nanostructures, limited production capacity, and 
comparatively high cost. The soft-template approach has appeared as an alternative strategy to 
effectively fabricate polymer nanomaterials in a simpler and less expensive way because it 

                                                           
76 J. Jang et al., “Dual-Functionalized Polymer Nanotubes as Substrates for Molecular-Probe and DNA-Carrier 
Applications,” Advanced Functional Materials 16, no. 6 (2006): 754–59. 
77 H. Yoon, et al., “Charge-Transport Behavior in Shape-Controlled Poly(3,4-Ethylenedioxythiophene) 
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vol. 199, Advances in Polymer Science (2006), 189–260. 
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eliminates the use of the solid template and postsynthesis etching procedure.82 Soft template 
synthesis requires the presence of the structure-directing molecules such as surfactants, block 
copolymers, polyelectrolytes, liquid crystals, and biomolecules.83 In addition to the template 
approach, the polymer nanostructures can be formed by no-template techniques, such as 
radiolytic, sonochemical, electrochemical techniques, rapid mixing reactions, and interfacial 
polymerization. Template-free synthesis is very straightforward without using specific 
sacrificial templates. However, this approach is limited to particular precursor materials. 
 The aforementioned approaches require post-synthetic process for incorporating the 
nanomaterials into sensing systems, during which the soft structures may be damaged or 
obtained in the form of aggregates.  Moreover, precise control on manipulation and 
positioning of the nanomaterials is rather difficult and one must employ some pick-and-place 
technique to capture the nanostructures and to position them at the point of use, fact that often 
results in low device yield and irreproducible sensor response. Accordingly, there has been 
some effort to directly fabricate nanomaterials-integrated sensing systems such as nanowire 
electrode junctions using electrochemical and lithographic techniques.84 Although such 
methods yield controlled conducting polymer microstructures, they also possess limitations 
for creating structures with sub-100-nm dimensions on a large scale. It still remains a 
challenge to discover efficient, scalable, and site-specific methods for integrating the 
nanomaterials into sensing systems.85  

Among the various existing synthetic strategies for obtaining nanostructures, such as 
template synthesis methods, soft lithography, drawing, phase separation, self-assembly etc., 
electrospinning technique was chosen in this work for the fabrication of nanofibers in view of 
electrochemical biosensor fabrication.86 Electrospinning is a broadly used technology for 
electrostatic fiber formation which utilizes electrical forces to produce polymer fibers with 
diameters ranging from 2 nm to several micrometers using polymer solutions.87 A comparison 
of the various issues relating to these processing methods is displayed in Table 3a and 3b.88  
The electrospinning technique offers many benefits, such as the simplicity and versatility and 
low cost requirements of the processing system, positioning of the nanostructures to the point 
of use, no need of post-synthetic treatment for incorporating the nanomaterials into biosensing 

                                                           
82 J. Chen et al., “The Design, Synthesis and Characterization of Polyaniline Nanophase Materials,” Comptes 
Rendus Chimie 11, no. 1–2 (January 2008): 84–89, doi:10.1016/j.crci.2007.06.008. 
83 G. Cao and D. Liu, “Template-Based Synthesis of Nanorod, Nanowire, and Nanotube Arrays,” Advances in 
Colloid and Interface Science 136, no. 1–2 (2008): 45–64. 
84 A. Pimpin and W.  Srituravanich, “Review on Micro- and Nanolithography Techniques and Their Applications,” 
Engineering Journal 16, no. 1 (2012): 37–56. 
85 H. Yoon and J. Jang, “Conducting-Polymer Nanomaterials for High-Performance Sensor Applications: Issues 
and Challenges,” Advanced Functional Materials 19, no. 10 (2009): 1567–76. 
86 S. Ramakrishna et al., “Electrospun Nanofibers: Solving Global Issues,” Materials Today 9, no. 3 (2006): 40–
50. 
87 N.Bhardwaj and S.C. Kundu, “Electrospinning: A Fascinating Fiber Fabrication Technique,” Biotechnology 
Advances 28, no. 3 (2010): 325–47. 
88 S. Ramakrishna, An Introduction to Electrospinning and Nanofibers (Singapore; Hackensack, NJ: World 
Scientific, 2005). 
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systems. Furthermore, ES is superior in production and construction of ordered or more 
complex nanofibrous assemblies 

 In the following sections we will only focus on the electrospinning technique and its 
application to biosensors since it was the technique which was used to fabricate nanofibers in 
this work. 
 
Table 3a. Comparison of processing techniques for obtaining nanofibers.88 

Process Technological 
advances 

Can the 
process 

be 
scaled? 

Repeatability Convenient 
to process? 

Control on 
fiber 

dimensions 

Drawing Laboratory     
Template 
Synthesis 

Laboratory     

Phase 
Separation 

Laboratory     

Self-Assembly Laboratory     
Electrospinning Laboratory 

(with potential 
for industrial 
processing) 

    

 
 
Table 3b. Advantages and disadvantages of various processing techniques. 88  

Process Advantages Disadvantages 
Drawing Minimum equipment requirement Discontinuous process  
Template 
Synthesis 

Easy creation of fibers of different diameters by 
using different templates 

Complicated synthetic 
process, Required post-
synthetic process 

Phase 
Separation 

Minimum equipment requirement. Process can 
directly fabricate a nanofiber matrix. Batch-to-
batch consistency is achieved easily. 
Mechanical properties of the matrix can be 
tailored by adjusting polymer concentration. 

Limited to specific 
polymers 

Self-Assembly Good for obtaining smaller nanofibers Complex process 
Electrospinning Low cost requirements, production of long, 

continuous nanofibers  
Jet instability 
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I.3. Electrospinning 
 With the emergence of nanotechnology, researchers become more interested in studying 
the unique properties of nanoscale materials. Electrospinning is an electrostatic nanofiber 
fabrication technique which has attracted more interest in recent years due to its versatility 
and potential for applications in diverse fields. It produces polymer fibers with diameters 
ranging from 2nm to several micrometers. Besides  traditional  two-dimensional  (2D)  
nanofibrous  structures,  electrospinning  is powerful  in  fabrication  of  three-dimensional  
(3D)  fibrous  macrostructures.89, 90 Electrospun fibers have notable applications including  
tissue engineering,91 sensors/ biosensors, 89, 92, 93 electronics,94 catalysis,95 textiles, filters, 
actuators,96 energy storage,97, 98 protective clothing, drug delivery, wound dressings and 
wound healing99  and enzyme immobilization.100 The most representative applications of 
electrospinning are depicted in figure 25. 
 
 
  
  
 
 

                                                           
89 Z. Su, J. Ding, and G.Wei, “Electrospinning: A Facile Technique for Fabricating Polymeric Nanofibers Doped 
with Carbon Nanotubes and Metallic Nanoparticles for Sensor Applications,” RSC Adv. 4, no. 94 (2014): 52598–
610. 
90 B. Sun, Y.Z. Long, H.D. Zhang, M.M Li, J.L. Duvail, X.Y. Jiang and H.L. Yin, “Advances in Three-Dimensional 
Nanofibrous Macrostructures via Electrospinning,” Progress in Polymer Science 39, no. 5 (2014): 862–90. 
91 Xuegang Zhou et al., “In Vitro Hydrolytic and Enzymatic Degradation of Nestlike-Patterned Electrospun 
poly(D,L-Lactide-Co-Glycolide) Scaffolds,” Journal of Biomedical Materials Research Part A 95A, no. 3 (2010): 
755–65. 
92 M. Scampicchio, A. Bulbarello, A. Arecchi, M. S. Cosio, S. Benedetti, S. Mannino, “Electrospun Nonwoven 
Nanofibrous Membranes for Sensors and Biosensors,” Electroanalysis 24, no. 4 (2012): 719–25. 
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Polymer 49, no. 26 (2008): 5603–21. 
94 A. Luzio, E.V. Canesi, C. Bertarelli, M. Caironi, “Electrospun Polymer Fibers for Electronic Applications,” 
Materials 7, no. 2 (2014): 906–47. 
95 A. Both Engel, Y. Holande, S. Tingry, A. Cherifi, D. Cornu, K. Servat, T. Napporn and K. B. Kokoh, “Electrospun 
Carbon Fibers: Promising Electrode Material for Abiotic and Enzymatic Catalysis,” The Journal of Physical 
Chemistry C, June 11, 2015, doi:10.1021/acs.jpcc.5b04352. 
96 L. Zhang, A. Aboagye, A. Kelkar, C. Lai, and H. Fong, “A Review: Carbon Nanofibers from Electrospun 
Polyacrylonitrile and Their Applications,” Journal of Materials Science 49, no. 2 (2014): 463–80. 
97 A. Both Engel, A. Cherifi, S. Tingry, D. Cornu, A. Peigney and C. Laurent, “Enhanced Performance of 
Electrospun Carbon Fibers Modified with Carbon Nanotubes: Promising Electrodes for Enzymatic Biofuel Cells,” 
Nanotechnology 24, no. 24 (2013): 245402. 
98 A. Both Engel, A. Cherifi, M. Bechelany, S. Tingry and D. Cornu, “Control of Spatial Organization of 
Electrospun Fibers in a Carbon Felt for Enhanced Bioelectrode Performance,” ChemPlusChem 80, no. 3 (2015): 
494–502. 
99 Y. Liu, Y. Sun, H. Yan, X. Liu, W. Zhang, Z. Wang and X. Jiang ., “Electrospun Fiber Template for Replica 
Molding of Microtopographical Neural Growth Guidance,” Small 8, no. 5 (2012): 676–81. 
100 W.Chen, S. He, W. Pan, Y. Jin, W. Zhang and X. Jiang, “Strategy for the Modification of Electrospun Fibers 
That Allows Diverse Functional Groups for Biomolecular Entrapment,” Chemistry of Materials 22, no. 23 (2010): 
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The interest in ES technique to fabricate functional nanomaterials for sensing is growing fast. 
A survey of open publications related with “electrospinning” and “sensor” in the past 10 years 
with Web of Science was performed and the result is shown in Figure 26. Meanwhile, the 
applications of the electrospun nanomaterials for fabricating electrochemical sensors and 
biosensors are still at an early but promising stage.  

 
 

Figure 25. Representative applications of electrospun fibers. 

Figure 26. Comparison of the annual number of scientific publications with the keywords
“electrospinning” and “sensor”, as searched by Web of Science.  
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 The sub-micron range spun fibers produced by ES, offer various advantages such as 
high surface area to volume ratio, tunable porosity, malleability to conform to a wide variety 
of sizes and shapes and the ability to control nanofiber composition in order to get desired 
properties and functionality that is otherwise difficult to achieve by using standard mechanical 
fiber-spinning techniques. Apart from the huge success and advantages of electrospinning 
method and spun nanofibers, there are still some challenges that need proper consideration. 
The limitation of the relatively low production rate of nanofibers has been a bottleneck 
problem that limits their application. To increase the production rate of the spun fibers, 
several groups have proposed different ways of producing multiple jets instead of a single one 
which leads to enhanced performances. 
 Over the years, more than 200 polymers have been electropun and the number is still 
increasing gradually with time. In the following sections the electrospinning technique with 
its promising advantages and potential applications will be described. The electrospinning 
theory and process, spinnable polymers, polymer solution parameters, processing conditions, 
ambient parameters and solvent properties will be discussed.87, 88  

 

I.3.1. History of Electrospinning 
 Electrospinning is an old technique, however it was forgotten and rediscovered in the 
1990s.87 The neglect of this technique by researchers is ascribed to two possible reasons. One 
reason is that the high-voltage electrostatic generation technique was not very mature in the 
earlier years, and the other is that the small-size effect of the electrospun NFs had not been 
understood before the development of nanotechnology. The interaction between an electrical 
field and a polymer solution was first observed in 1897 by Rayleigh and in 1914 Zeleny 101 
performed a detailed study on electrospraying. Electrospraying is a method of ionizing 
delicate macromolecules for mass spectroscopy analysis102. To this point, to avoid any 
confusion, it should be mentioned that electrospinning and electrospraying are two similar 
technologies which differ mainly in the structure of produced materials. Final products of 
electrospinning are nanofibers, however the electrospraying results are spherical 
microparticles.  
 From 1934 to 1944, Formhals published a series of patents on electrospinning, 
describing an experimental setup for the production of polymer filaments using an 
electrostatic force.103 The first patent (US Patent Number: 2116942) on electrospinning was 
issued for the fabrication of textile yarns and a voltage of 57 kV was used for electrospinning 
cellulose acetate using acetone and monomethyl ether of ethylene glycol as solvents. This 

                                                           
101 J. Zeleny, “The Electrical Discharge from Liquid Points, and a Hydrostatic Method of Measuring the Electric 
Intensity at Their Surfaces,” Phys. Rev. 3, no. 2 (1914): 69–91. 
102 J. Kameoka et al., “An Electrospray Ionization Source for Integration with Microfluidics,” Analytical 
Chemistry 74, no. 22 (2002): 5897–5901. 
103 Z.M. Huang et al., “A Review on Polymer Nanofibers by Electrospinning and Their Applications in 
Nanocomposites,” Composites Science and Technology 63, no. 15 (2003): 2223–53. 
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process was patented by Antonin Formhals104 in 1934 and also later granted related patents 
(U.S. Patents 2116942, 2160962 and 2187306) in 1938, 1939, and 1940.105 Formhals's 
spinning process consists of a movable thread collecting device to collect threads in a 
stretched condition, like that of a spinning drum in conventional spinning.106 About 50 patents 
for electrospinning polymer melts and solutions have been filed in the past 60 years.107 
Simons in 1966108 patented an apparatus for the production of non-woven fabrics that were 
ultra thin and very light in weight with different patterns using electrical spinning. However, 
the work of Taylor 109 in 1969, on electrically driven jets has laid the groundwork for 
electrospinning.  In 1971, Baumgarten110 made an apparatus to electrospin acrylic fibers with 
diameters in the range of 0.05–1.1 μm.  
 The term “electrospinning”, derived from “electro-static spinning”, has been used 
relatively recently (in around 1994), but its origin can be traced back to more than 60 years 
ago. With the help of nanotechnology, ES technique was recovered by Reneker et al.111 in 
1996, who found that it is a very simple and powerful technique to generate ultrafine 
polymeric fibers with diameters ranging from micrometer to nanometer. Since then ES 
technique has been widely utilized for academic research and industrial applications.89 The 
popularity of the ES process can be realized by the fact that over 200 universities and research 
institutes worldwide are studying various aspects of the electrospinning process and the fiber 
it produces and also the number of patents for applications based on electrospinning has 
grown in recent years (Figures 27 and 28). Some companies such as eSpin Technologies, 
NanoTechnics, and KATO Tech are actively engaged in reaping the benefits of the unique 
advantages offered by electrospinning, while companies such as Donaldson Company and 
Freudenberg have been using this process for the last two decades in their air filtration 
products.86  

 
 
 
 

                                                           
104 A. Formhals, “Process and Apparatus for Preparing Artificial Threads,” no. 1975504 (1934), 
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Demonstration,” MRS Online Proceedings Library 827 (2004): 17-28. 
106 T. Subbiah et al., “Electrospinning of Nanofibers,” Journal of Applied Polymer Science 96, no. 2 (2005): 557–
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(2004): 1151–70. 
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Nanotechnology 7, no. 3 (1996): 216. 



CHAPTER I: BIBLIOGRAPHIC STUDY 

51 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

 

 

 

 

 

 

 

 
I.3.2. Electrospinning Process 
 Electrospinning is conducted at room temperature with atmosphere conditions. 
Currently, there are two standard electrospinning setups, vertical and horizontal87 (figure 29a 
and b). The ES standard setup consists of four major components: a high-voltage power 
supply, a spinneret with a metallic needle, a syringe pump and a grounded collector, as shown 
in Fig. 29a, b. However, some solvents used for the preparation of the electrospun mixture 
may emit unpleasant or even harmful smells, so the process should be conducted within 
chambers having a ventilation system. 
 

Figure 27. Comparison of the annual number of scientific publications with the keyword 
“electrospinning” as searched by Web of Science. 

Figure 28. Number of patents for applications based on electrospinning in recent years as searched 
by Google patent. 
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Most of the polymers are dissolved in solvents before electrospinning, and then the 

solution of the polymer, or composite is loaded into the syringe and this viscous liquid is 
driven to the needle tip by a syringe pump, forming a droplet at the tip.112, 113, 114 
 During the electrospinning process, a polymer solution held by its surface tension at the 
end of a capillary tube is subjected to an electric field and an electric charge is induced on the 
liquid surface due to this electric field. The droplet is first stretched into a structure called 
Taylor cone. When the electric field applied reaches a critical value, the repulsive electrical 
forces overcome the surface tension forces.87 Eventually, an electrified jet of the solution is 
ejected from the tip of the Taylor cone. The jet is then elongated and whipped continuously by 

                                                           
112 L. Cao et al., “Fabrication of Multiwalled Carbon Nanotube/Polypropylene Conductive Fibrous Membranes 
by Melt Electrospinning,” Industrial & Engineering Chemistry Research 53, no. 6 (2014): 2308–17. 
113 L. Cao et al., “Morphology, Crystallization Behavior and Tensile Properties of Β-Nucleated Isotactic 
Polypropylene Fibrous Membranes Prepared by Melt Electrospinning,” Chinese Journal of Polymer Science 32, 
no. 9 (2014): 1167–75. 
114 C. Wang et al., “How to Manipulate the Electrospinning Jet with Controlled Properties to Obtain Uniform 
Fibers with the Smallest Diameter?—a Brief Discussion of Solution Electrospinning Process,” Journal of Polymer 
Research 18, no. 1 (2011): 111–23. 

Figure 29. Schematic diagram of typical setups of electrospinning apparatus (a) vertical setup and (b) 
horizontal set up. c) SEM image of a typical mesh of randomly oriented electro spun nanofibers made 
of nylon 6,6. Reformed from Ref 87. 
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electrostatic repulsion until it is deposited onto the collector. The elongation with unstable 
bending results in the formation of NFs.  
 Nevertheless, the electrospinning process presents an electrified fluid dynamics related 
problem. In  order  to  control  the  morphology,  structure,  and  mass  production  of  the  
electrospun nanofibers,  it  is  necessary  to  understand  quantitatively how  the  
electrospinning  process  transforms  the  fluid  solution  through  a  millimeter  diameter  
capillary  tube  into solid  micro/nanofibers  which  are  four  to  five  orders  of magnitude  
smaller  in  diameter.  Recent  theoretical  and experimental  studies  have  demonstrated  that  
the  jet thinning process can be divided into  three  stages as depicted in figure 30:  (1) jet  
initiation  and  elongation  of  the  charged  jet  along  a straight  line;  (2)  growth  of  
electrical  bending  instability -also  known  as  whipping  instability-  and  further  elongation  
of  the  jet,  which  may  or  may  not  be  accompanied  with the  jet  branching  and/or  
splitting;  (3) solidification  of  the jet  into  micro/nanofibers  and  deposition  on  collector.90   
 Since for each specific application, a narrow 
range of NF diameters is generally required to 
optimize the performance, fiber diameter control is 
essential. However, even though a significant amount 
of empirical knowledge has been accumulated over the 
past two decades114 given the lack of predictive 
models, the correct diameter range is often attained by 
trail-and-error. For this reason several research teams 
tried to develop comprehensive theoretical models 
that would allow predicting how the NF diameter 
depends on the solution and processing parameters. 
One of the first models of electrospinning was 
proposed by Yarin et al.115 and it is based on a bead-
spring simulation of a jet-flow of a charged fluid between the electrodes. Although quite 
comprehensive in nature, it has found a rather limited acceptance by experimentalists due to 
its fully numerical nature and the absence of a simple analytical relationship for the terminal 
fiber diameter, e.g., in a scaling form, which could be used in an everyday practice. Reneker 
and coworkers 116, 117, Shin  et  al. 118, 119 and Hohman et al.120, 121 investigated  mathematical  

                                                           
115 A.L. Yarin, S. Koombhongse, and D. H. Reneker, “Bending Instability in Electrospinning of Nanofibers,” 
Journal of Applied Physics 89, no. 5 (2001): 3018-26. 
116 D.H. Reneker et al., “Bending Instability of Electrically Charged Liquid Jets of Polymer Solutions in 
Electrospinning,” Journal of Applied Physics 87, no. 9 (2000): 4531–47. 
117 D.H. Reneker and Alexander L. Yarin, “Electrospinning Jets and Polymer Nanofibers,” Polymer 49, no. 10 
(2008): 2387–2425. 
118 Y.M. Shin et al., “Electrospinning: A Whipping Fluid Jet Generates Submicron Polymer Fibers,” Applied 
Physics Letters 78, no. 8 (2001): 1149-51. 
119 Y.M. Shin et al., “Experimental Characterization of Electrospinning: The Electrically Forced Jet and 
Instabilities,” Polymer 42, no. 25 (2001): 09955–67. 
120 M.M. Hohman et al., “Electrospinning and Electrically Forced Jets. I. Stability Theory,” Physics of Fluids 13, 
no. 8 (2001): 2201-20. 

Figure 30. Scheme of a electro-
hydrodynamic model of jet elongation, 
including all the essential elements 
governing the final fiber diameter. Extracted
from Ref 125. 
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expositions  and  asymptotic  analyses  to  model  the  instabilities due to which the jet loses 
its stability against radial distortion118 leading to bending and almost horizontal orientation of 
the fiber in the whipping jet zone. Reneker and coworkers116, 117 described  the  path  of  the  
jet  as  a  straight  segment  followed by  a  series  of  successively  smaller  electrically  
driven  bending  coils,  with  each  bending  coil  having  turns  of  increasing radius. They 
proposed that the elongation of  each  segment  by  the  electrical forces  is caused  by  the  
charge  carried  with  the  jet  continues.  
 More specifically, an alternative model which also zooms into the so called whipping 
part of the electrospinning jet was developed at MIT by Fridrikh et al.122 is built around an 
assumption that the terminal fiber diameter is determined by an equlibrium between the 
Coulombic repulsion between the charges on the jet’s surface and the liquid’s surface 
tension.108 Such an argumentation yields for the fiber diameter df, up to a numerical prefactor, 
 

 
 
 Where γ is the surface tension of the polymer solution, wp is the polymer volume 
fraction, Q is the flow rate, and I is the electric current in the system, so that I/Q corresponds 
to the electric charge per unit volume of the jet. Interestingly, experiments122 on 
polycaprolactone solutions showed a perfect agreement with the predicted (Q/I)2/3 power law. 
However, there is a serious deficiency in formula (10) as it states that the terminal fiber 
diameter is independent of liquid viscosity and evaporation conditions, in contradiction to the 
common experience.123, 124 
 Very recently, Stepanyan et al.125 presented a simple electro-hydrodynamic model of the 
jet elongation, which includes all the essential elements governing the final fiber diameter. 
They showed that, in contrast to the predictions of Eq.(10), it is the kinetics of elongation and 
evaporation, which governs the NF diameter, rather than the equilibrium between the 
Coulombic repulsion between the charges on the jet’s surface and the liquid’s surface tension. 
The viscosity of the polymer solution entered the quantitative model and was proven to have a 
profound influence on the diameter. Such an argumentation lead to a scaling formula for the 
fiber’s terminal radius: 

 
                                                                                                                                                                                     
121 M.M. Hohman et al., “Electrospinning and Electrically Forced Jets. II. Applications,” Physics of Fluids 13, no. 8 
(2001): 2221-36. 
122 S. Fridrikh et al., “Controlling the Fiber Diameter during Electrospinning,” Physical Review Letters 90, no. 14 
(2003): 144502/1-4. 
123 Y. Cai and M. Gevelber, “The Effect of Relative Humidity and Evaporation Rate on Electrospinning: Fiber 
Diameter and Measurement for Control Implications,” Journal of Materials Science 48, no. 22 (2013): 7812–26. 
124 S.Y. Tsou, H.S. Lin and C. Wang, “Studies on the Electrospun Nylon 6 Nanofibers from Polyelectrolyte 
Solutions: 1. Effects of Solution Concentration and Temperature,” Polymer 52, no. 14 (2011): 3127–36. 
125 R. Stepanyan et al., “Fiber Diameter Control in Electrospinning,” Applied Physics Letters 105, no. 17 (2014): 
173105. 

(10) 

(11) 
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 An interesting point is that although Equation (11) was derived by completely different 
arguments than those used by Fridrikh et al. to derive Equation (10), it features the same 
dependency on the ratio Q/I. Additionally, Equation 11 states that the final fiber diameter is 
dependent on the evaporation rate k and the solution viscosity η0 with a power law exponent 
1/3. Finally, it was proven that the predicted scaling laws from Stepanyan et al. were very 
well supported by the experiments, both their own and available in the literature.122, 123  

 
 

 

 

 

 
 
 
 
 
 
  

With the expansion of this technology, several research groups have developed more 
sophisticated systems that can fabricate more complex nanofibrous structures in a more 
controlled and efficient manner. 89, 126, 127, 128 Since during a conventional ES process, the 
polymer jet exhibits bending instabilities due to the repulsive forces between the charges 
carried within the jet, the electrospun fibers always result in a random orientation, which 
restricts the applications of ES technique for preparing new functional materials. To overcome 
this restriction Su et al.89 developed a more advanced ES setup by adding a pair of parallel 
auxiliary electrodes between the spinneret and drum collector and replaced the common 
rotating drum collector with a high speed one (figure 32) to get not only well-oriented NF 
alignment but also controllable NF placement in the large-scale NF mats for extensive 
applications in electrochemical sensing.129, 130, 131, 132 The two symmetric, rectangular, and 

                                                           
126 S. Kidoaki, I.K. Kwon and T. Matsuda, “Mesoscopic Spatial Designs of Nano- and Microfiber Meshes for 
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Fibers,” Angewandte Chemie International Edition 46, no. 30 (2007): 5670–5703. 
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(2014): 221–30. 
129 Z. Su et al., “Chain Conformation, Crystallization Behavior, Electrical and Mechanical Properties of 
Electrospun Polymer-Carbon Nanotube Hybrid Nanofibers with Different Orientations,” Carbon 50, no. 15 
(2012): 5605–17. 
130 Z. Su et al., “Biomimetic 3D Hydroxyapatite Architectures with Interconnected Pores Based on Electrospun 
Biaxially Orientated PCL Nanofibers,” RSC Adv. 4, no. 29 (2014): 14833–39. 

Figure 31. Photograph of a jet of PEO solution during ES. Extracted from Ref 127. 
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auxiliary aluminum electrodes were operated at a high voltage of the same polarity as the 
needle but with an adjustable potential controlled by another independent high-voltage power 
supply. The alignment of polymeric NFs can be improved by constraining the bending 
instability, which is thought to be the main reason to cause random orientation.  
 
 
 
 
 
 
 
 
 
 
 
 
  
 NF structures with different morphologies e.g., parallel and crossed fiber arrays, helical 
or wavy fibers, twisted fiber yarns, patterned fiber web, and 3D fibrous stacks, fabricated with 
the modified ES technique130, 133, 134, 135, 136, 137 are depicted in Figure 33.  
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Electrospinning,” Acta Biomaterialia 6, no. 4 (2010): 1227–37. 
137 F.L. Zhou et al., “Jet Deposition in near-Field Electrospinning of Patterned Polycaprolactone and Sugar-
Polycaprolactone Core–shell Fibres,” Polymer 52, no. 16 (2011): 3603–10. 

Figure 32. Schematic diagram of advanced electrospinning setup. Extracted from Ref 89. 
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 Although the alignment of nanofibers has been accomplished through the use of a 
rotating drum collector and by using electrical fiels manipulation, precise 2D and 3D 
patterning is still very difficult to achieve with far-field electrospinning. Recent results on a 
variant of electrospinning called near-field electrospinning138 (NFES) produced some 
encouraging initial results, opening up a possibility of achieving scalable precision patterning 
with polymeric nanofibers. 

 

 

 

 

 

 

 

 
                                                           
138 G.S. Bisht et al., “Controlled Continuous Patterning of Polymeric Nanofibers on Three-Dimensional 
Substrates Using Low-Voltage Near-Field Electrospinning,” Nano Letters 11, no. 4 (2011): 1831–37. 

Figure 33. Different morphologies of electrospun polymer fibers: (a)uniaxially aligned, (b) biaxially 
oriented, (c) ribbon, (d) porousfibers, (e)Necklace-like, (f) nanowebs, (g) hollow, (h) nanowire-in-
microtube,and (i) multichannel tubular. Extracted from Ref 89. 
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I.3.3. Effects of Various Parameters on Electrospinning 
 The electrospinning process is governed by many parameters, classified broadly into 
solution parameters, processing parameters, and ambient parameters which are summarized in 
figure 34. Among them, the most important parameters that have a great influence on the 
electrospinning process are the following four: applied voltage, surface tension, molecular 
weight and viscosity. 
 The minimal requirement to perform electrospinning is to find the proper equilibrium 
between these four parameters to get a continuous jet, while avoiding Plateau-Rayleigh 
instability. Commonly, this is relatively easily achieved by tuning only the polymer 
concentration and the molecular weight, thus classifying these two parameters as the primary 
ones. However, it is highly probable that the tunning of only these two parameters is not 
sufficient to provide a solution that satisfies the requirements needed for the electrospinning 
process. Moreover, if a well-defined fiber diameter is the objective of a study, then a much 
more complex equilibrium, than the initial one, among all the other electrospinning 
parameters depicted in figure 34 much be achieved. In the following paragraphs a brief 
description of all ES parameters will be presented. 

 
I.3.3.1. Polymer Solution Parameters 
Concentration 
 The concentration of polymer solution is an important parameter affecting the fiber 
morphology, thus it was studied for a variety of synthetic and natural polymers-solvent 
systems.128 It has been found that at low polymer solution concentration, a mixture of beads 
and fibers is obtained and as the solution concentration increases, the shape of the beads 
changes from spherical to spindle-like and finally uniform fibers with increased diameters are 
formed because of the higher viscosity resistance.87, 139  

                                                           
139 A.K. Haghi and M. Akbari, “Trends in Electrospinning of Natural Nanofibers,” Physica Status Solidi (a) 204, 
no. 6 (2007): 1830–34. 

Figure 34. Schematic representation of parameters that affect the electrospinning 
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Molecular Weight 
 The molecular weight of the polymer has a significant effect on rheological and 
electrical properties such as viscosity, surface tension, conductivity and dielectric strength.89  

It is the source of the elastic component of the solution rheology and it reflects the 
entanglement of the molecules and their ability to stretch. It provides a higher cohesion of the 
jet which subsequently permits the imposition of a higher stretching of the later without 
breaking it. Thanks to the molecular weight, it is possible to stretch the jet in order to 
overcome the surface tension and also to avoid the formation of beads before spraying occurs. 

  Generally, high molecular weight polymer solutions have been used in electrospinning 
as they provide the desired viscosity for the fiber generation. It has been observed that a 
significantly low molecular weight solution tends to form beads rather than fibers and a high 
molecular weight solution gives fibers with larger average diameters.93 However, in some 
cases even when the polymer concentration is low, the polymer can maintain enough number 
of entanglements of the polymer chains, thus ensuring high cohesion of the jet and restraining 
the effects of surface tension, which plays a significant role in beads formation on electrospun 
nanofibers.140 Nevertheless, it has been observed that high molecular weights are not always 
essential for the electrospinning process if sufficient intermolecular interactions can provide a 
substitute for the interchain connectivity obtained through chain entanglements.  
 
Surface Tension 
 The initiation of electrospinning requires the coulomb repulsion to overcome the surface 
tension, with the latter one determining the onset of the jet explusion. It is the source of the 
Plateau-Rayleigh instability along the still liquid jet which could lead to beads formation if 
the stretching is too weak. 
 Surface tension is more related to the nature of the solvent rather than to the polymer. 
Different solvents may contribute different surface tensions. Generally, the high surface 
tension of a solution inhibits the ES process because of instability of the jet and the generation 
of sprayed droplets .The formation of droplets, bead and fibers depends on the surface tension 
of solution and a lower surface tension of the spinning solution helps electrospinning to occur 
at a lower electric field.87 However, a lower surface tension of a solvent will not always be 
more suitable for electrospinning. Basically, surface tension determines the upper and lower 
boundaries of the electrospinning window if all other variables are held constant. 
 
Solution Viscosity 
 It is the result of the dissipative component of the solution’s rheology, it derives from 
the dissipated energy by the slipping of the molecules and it plays an important role in 
determining the fiber size and morphology during spinning of polymeric fibers. Higher 
viscocity tends to reduce the bending instability since a part of the energy is dissipated inside 

                                                           
140 S.H. Tan et al., “Systematic Parameter Study for Ultra-Fine Fiber Fabrication via Electrospinning Process,” 
Polymer 46, no. 16 (2005): 6128–34. 
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the jet, thus imposing a reduction of the stretching. It results in lower probability to fracture 
the ejected jet into droplets, thus it is reducing the risk of electrospraying but it can possibly 
increase the diameter of the final fiber. 
 It has been found that with very low viscosity there is no continuous fiber formation and 
that with very high viscosity there is difficulty in the ejection of jets from polymer solution, 
thus there is a requirement of optimal viscosity for electrospinning. Viscosity, polymer 
concentration and molecular weight of polymer are strongly correlated to each other.87 For 
solution of low viscosities, surface tension is the dominant factor and just beads or beaded 
fibers are formed, while above a critical concentration a continuous fibrous structure is 
obtained and its morphology is affected by the concentration of the solution. 
 
Solution Conductivity 
 ES involves stretching of the solution caused by repulsion of the charges at its surface. 
Thus, if the conductivity of the solution is increased, more charges can be carried by the 
electrospinning jet. Solution conductivity is mainly determined by the polymer type, solvent 
used, and the availability of ionisable salts. The increase of the electrical conductivity of a 
solution, significantly decreases the diameter of the electrospun NFs due to the increase in 
electric charges carried by the jet and thud tensile force in the presence of an electric field.87 

On the contrary, with low conductivity of the solution, insufficient elongation of a jet occurs 
which leads to the formation of fibers and beads. Moreover, Hayati et al.141 have shown that 
highly conductive solutions are extremely unstable in the presence of strong electric fields, 
which results in a dramatic bending instability as well as a broad diameter distribution. 
 
I.3.3.2. Processing Parameters 
Applied Voltage 
 A crucial element in electrospinning is the application of a high voltage to the solution. 
The high voltage induces the necessary charges on the solution and together with the electric 
field, initiates the ES when the electrostatic force in the solution overcomes the surface 
tension of the solution. Researchers have suggested that when higher voltages are applied, 
there is more polymer ejection and this facilitates the formation of a larger diameter fiber.142 

Other authors have reported that an increase in the applied voltage (i.e., by increasing the 
electric field strength), increases the electrostatic repulsive force on the fluid jet which 
ultimately favors the narrowing of fiber diameter. In most cases, a higher voltage causes 
greater stretching of the solution due to the greater columbic forces in the jet as well as a 
stronger electric field and these effects lead to reduction in the fiber diameter and also rapid 
evaporation of solvent from the fibers results. Furthermore, at a higher voltage there is greater 

                                                           
141 I. Hayati et al., “Investigations into the Mechanisms of Electrohydrodynamic Spraying of Liquids: I. Effect of 
Electric Field and the Environment on Pendant Drops and Factors Affecting the Formation of Stable Jets and 
Atomization,” Journal of Colloid and Interface Science 117, no. 1 (1987): 205–21. 
142 C. Zhang et al., “Study on Morphology of Electrospun Poly(vinyl Alcohol) Mats,” European Polymer Journal 
41, no. 3 (2005): 423–32. 
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probability of beads formation. The effect of high voltage is not only on the physical 
appearance of the fibers, but it also affects the crystallinity of the polymeric fiber. The 
electrostatic field may cause the polymer molecules to be more ordered during the 
electrospinning thus it induces a great crystallinity in the fiber. 88, 143 
 

 

 

 

 

 

 
Feed Rate/ Polymer Flow Rate 
 Flow rate of the polymer solution is an important process parameter as it influences the 
material transfer rate. For a given voltage the feed rate must be carefully tuned to maintain a 
stable Taylor cone.  A lower feed rate is basically more desirable to obtain thinner fibers.144 
When the feed rate is significantly increased, there is a corresponding increase in the fiber 
diameter and sometimes it could result to the collection of still wet fibers due to unavailability 
of proper drying time prior to reaching the collector. 
 
Effect of Collector  
 In most ES setups, the collector plate is made out of a conductive material such as 
aluminum foil which is electrically grounded so that there is a stable potential difference 
between the source and the collector. However, other collectors such as conductive paper, 
conductive cloth, wire mesh145, pin146, parallel or grided bars147, rotating rod, rotating 
wheel/cylinder148, liquid non solvent such as methanol coagulation bath149 are also used. 

                                                           
143 S. Zhao et al., “Electrospinning of Ethyl–cyanoethyl Cellulose/tetrahydrofuran Solutions,” Journal of Applied 
Polymer Science 91, no. 1 (2004): 242–46. 
144 X. Yuan et al., “Morphology of Ultrafine Polysulfone Fibers Prepared by Electrospinning,” Polymer 
International 53, no. 11 (2004): 1704–10. 
145 X. Wang et al., “Formation of Water-Resistant Hyaluronic Acid Nanofibers by Blowing-Assisted Electro-
Spinning and Non-Toxic Post Treatments,” Polymer 46, no. 13 (2005): 4853–67. 
146 B. Sundaray et al., “Electrospinning of Continuous Aligned Polymer Fibers,” Applied Physics Letters 84, no. 7 
(2004): 1222–24. 
147 D. Li, Y. Wang and Y. Xia, “Electrospinning Nanofibers as Uniaxially Aligned Arrays and Layer-by-Layer 
Stacked Films,” Advanced Materials 16, no. 4 (2004): 361–66. 
148 C.Y. Xu et al., “Aligned Biodegradable Nanofibrous Structure: A Potential Scaffold for Blood Vessel 
Engineering,” Biomaterials 25, no. 5 (2004): 877–86. 

Figure 35. A droplet of a 5% solution of poly(ethylene oxide) (PEO) in water, dyed with fluorescein: A) 
in the absence of an applied voltage and B) at an applied voltage of 20kV, with a let perpendicular to 
the counter electrode. Extracted from Ref 127. 
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Several research groups have demonstrated the use of a rotating drum or a rotating wheel-like 
bobbin or metal frame as the collector, for getting aligned electrospun fibers more or less 
parallel to each other.150 Several types of split electrodes have been used for getting aligned 
nanofibers and typically such collectors consist of two conductive substrates separated by a 
void gap where aligned nanofibers are deposited.  
 
Diameter of Pipette Orifice/Needle 
 The internal diameter of the needle or the pipette orifice has a certain effect on the ES 
process. A smaller internal diameter was found to reduce the clogging as well as the amount 
of beads on the electrospun fibers. Decrease in the internal diameter of the orifice was also 
found to cause a reduction in the diameter of the electrospun fibers. When the size of the 
droplet at the tip of the orifice is decreased, such as in the case of a smaller internal diameter 
of the orifice, the surface tension of the droplet increases. For the same voltage supplied, a 
greater columbic force is required to cause jet initiation.87 As a result, the acceleration of the 
jet decreases and this allows more time for the solution to be stretched and elongated before it 
is collected. However, if the diameter of the orifice is too small, it may not be possible to 
extrude a droplet of solution at the tip of the orifice.143  
 
Tip to Collector Distance 
 The time of flight as well as the electric field strength may also affect the ES process 
and the resultant fibers. Varying the distance between the tip and the collector has a direct 
influence on both these factors. A minimum distance is required to give the fibers sufficient 
time to dry before reaching the collector, otherwise with distances that are either too close or 
too far, beads have been observed. Depending on the solution property, the effect of varying 
the distance may or may not have a significant effect on the fibers morphology. One 
important physical aspect of the electrospinning nanofibers is their dryness from the solvent 
used to dissolve the polymer.151 Thus, there should be optimum distance between the tip and 
collector which favors the evaporation of solvent from the nanofibers.  
 
 
 
 
 
 
 

                                                                                                                                                                                     
149 C.S. Ki et al., “Electrospun Three-Dimensional Silk Fibroin Nanofibrous Scaffold,” Journal of Applied Polymer 
Science 106, no. 6 (2007): 3922–28. 
150 J.M. Deitzel et al., “The Effect of Processing Variables on the Morphology of Electrospun Nanofibers and 
Textiles,” Polymer 42, no. 1 (2001): 261–72. 
151 R. Jalili, Seyed Abdolkarim Hosseini, and Mohammad Morshed, “The Effects of Operating Parameters on the 
Morphology of Electrospun Polyacrilonitrile Nanofibres,” Iranian Polymer Journal 14, no. 12 (2005): 1074-81. 
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I.3.3.3. Ambient Parameters 
 Apart from solution and processing parameters, ambient parameters encompass the 
humidity, temperature, pressure and the type of atmosphere that surround the jet, significantly 
affect the ES process. Since there is an inverse relationship between temperature and 
viscosity, it is apparent that every time that the temperature changes, the viscosity of the 
solution also changes. 
 The variation in humidity has been studied and it was shown that by increasing 
humidity there is an appearance of small circular pores on the surface of the fibers, fabricated 
from polymers mainly dissolved in organic solvents. Further increasing the humidity leads to 
the pores coalescing.152 It has been found that at very low humidity, a volatile solvent may dry 
rapidly as the evaporation of the solvent is faster. Sometimes the evaporation rate is so fast 
than compared to the removal of the solvent from the tip of the needle and this would create a 
problem with electrospinning. As a result, the electrospinning process may only be carried out 
for a few minutes before the needle tip is clogged. It has also been suggested that the high 
humidity can help the discharge of the electrospun fibers.147, 153 
 Air composition in the ES environment also has an effect on the ES process. Different 
gases have different behavior under electrostatic field. For example, helium breaks down 
under high electrostatic field and thus electrospinning is not possible. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
                                                           
152 C.L. Casper et al., “Controlling Surface Morphology of Electrospun Polystyrene Fibers: Effect of Humidity and 
Molecular Weight in the Electrospinning Process,” Macromolecules 37, no. 2 (2004): 573–78. 
153 M. Li et al., “Electrospun Protein Fibers as Matrices for Tissue Engineering,” Biomaterials 26, no. 30 (2005): 
5999–6008. 
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I.3.4. Materials Used in Electrospinning 
 Electrospun nanofibers may be fabricated from a remarkably wide range of inorganic154, 
155, 156 and organic materials.97, 157 These latter include synthetic polymers, natural polymers, 
copolymers, polymer blends including proteins, nucleic acids, enzymes and even 
polysaccharides and composites. The specific physical and chemical properties of the created 
fibers make them very versatile for different applications such as optoelectronics, sensors and 
biosensors, catalysis, textiles, filters, fiber reinforcement, tissue engineering, drug delivery, 
and wound healing.   
 
I.3.4.1. Natural and Synthetic Polymers 
 It is not surprising that one of the greatest potential of electrospun fibers is their 
application in the area of bioengineering128 since the sub-micron dimension of the fibers 
resembles that of a natural extracellular matrix. Naturally occurring polymers normally 
exhibit better biocompatibility and low immunogenicity, compared to synthetic polymers, 
when used in biomedical applications. Typical natural polymers include collagen, silk protein, 
fibrinogen, chitosan, gelatin, casein, cellulose acetate, hyaluronic acid, chitin etc. Scaffolds 
fabricated from natural polymers promise better clinical functionality.87 However, partial 
denaturation of natural polymers has been reported in recent years that demands concern.  

Synthetic polymers often offer many advantages over natural 
polymers as they can be tailored to give a wider range of properties 
such as, necessary mechanical properties (viscoelasticity and 
strength), and desired degradation rate.158 Typical polymers used in 
biomedical applications are hydrophobic biodegradable polyesters, 
such as polyglycolide (PGA), polylactide (PLA), poly (έ-
caprolactone) (PCL) and polyurethane (PU), which have all been 
electrospun into nanofibrous scaffolds. Other typical synthetic 
polymers that have been successfully electrospun are: poly(ethylene 

oxide) (PEO), polyacrylonitrile (PAN), poly(vinyl alcohol) (PVA), polystyrene, polyurethane, 
poly(vinyl chloride) (PVC), poly(vinyl pyrrolidone) (PVP). 
 

                                                           
154 Y. Dai, W. Liu, E. Formo, Y. Sun and Y. Xia, “Ceramic Nanofibers Fabricated by Electrospinning and Their 
Applications in Catalysis, Environmental Science, and Energy Technology,” Polymers for Advanced Technologies 
22, no. 3 (2011): 326–38. 
155 Y. Zhao, L. Sun, M. Xi, Q. Feng, C. Jiang and H. Fong, “Electrospun TiO2 Nanofelt Surface-Decorated with Ag 
Nanoparticles as Sensitive and UV-Cleanable Substrate for Surface Enhanced Raman Scattering,” ACS Applied 
Materials & Interfaces 6, no. 8 (2014): 5759–67. 
156  S. Chattopadhyay, J.  Saha and G. De, “Electrospun Anatase TiO 2 Nanofibers with Ordered Mesoporosity,” J. 
Mater. Chem. A 2, no. 44 (2014): 19029–35. 
157 M. Bourourou, M. Holzinger, K. Elouarzaki, A. Le Goff, F. Bossard, C. Rossignol, E. Djurado, V. Martin, D. 
Curtil, D. Chaussy, A. Maaref and S. Cosnier “Laccase Wiring on Free-Standing Electrospun Carbon Nanofibres 
Using a Mediator Plug,” Chem. Commun., 2015, doi:10.1039/C5CC03906A. 
158 M. Hakkarainen, “Aliphatic Polyesters: Abiotic and Biotic Degradation and Degradation Products,” in 
Degradable Aliphatic Polyesters, vol. 157, Advances in Polymer Science (2002): 113–38. 

Figure 36. Collagen 
structure. 
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I.3.4.2. Copolymers and Polymer Blends   
 Sometimes, it is beneficial to obtain a structure that combines the properties of two or 
more polymers. This can be achieved either through polymerization of two different 
monomers to form a copolymer or by physical mixing of two or more polymers to form a 
blend. Electrospinning with copolymers offers property enhancement of polymeric materials, 
including tailoring of thermal stability, mechanical strength and barrier properties, or  
improving cell affinity and has therefore been often pursued for engineering structural 
applications through methods as copolymerization, melt-blending and incorporation of 
inorganic fillers.159  
 
I.3.4.3. Composites   
 Composites are combination of two distinct material phases, a bulk phase-the matrix- 
and a second phase- the reinforcement phase- which gives to the composite its additional and 
superior properties that are not available in any single conventional material. Both phases can 
be metal, ceramic or polymer. In most cases, composites are designed for load-bearing 
applications and the second component of the composite acts as a reinforcement phase. 
However, other classes of composites have been developed and used for their interesting 
electrical, thermal or magnetic properties.88 For biosensor applications, that constitute the aim 
of the present work, the fabrication of conductive fibers is required. In the following sections 
we will focus on composites based on polymer NFs incorporating conductive nanomaterials 
such as carbon nanotubes and metallic nanoparticles (MNPs). 
 
Electrospun polymer NFs doped with CNTs 

It is well known that the filling of CNTs into the electrospun polymeric NFs can greatly 
influence the mechanical, electrical, and thermal properties of NFs. To maximize the 
reinforcement of CNTs in polymer composites, the alignment and dispersion of CNTs in NFs 
are two important factors that should be considered but are not easy to achieve.  

 
General applications of electrospun NFs with CNTs 

In 2004, Reneker's group160 for the first time found that the orientation of MWCNTs 
within the electrospun NFs was much higher than that within the polyacrylonitrile (PAN) 
polymer crystal matrix (Fig. 37a). This finding suggests that not only the surface tension and 
jet elongation but also the slow relaxation of MWCNTs in NFs are the key factors for the 
orientation of MWCNTs. As a result of the highly anisotropic orientation of MWCNTS in the 
polymer NFs, the fabricated PAN–MWCNT nanofibrous mats possessed enhanced properties 
like electrical conductivity, mechanical strength, thermal stability, and dimensional stability.  

                                                           
159 M. Wang et al., “Electrospinning of poly(MMA-Co-MAA) Copolymers and Their Layered Silicate 
Nanocomposites for Improved Thermal Properties,” Polymer 46, no. 10 (2005): 3407–18. 
160 J.J. Ge et al., “Assembly of Well-Aligned Multiwalled Carbon Nanotubes in Confined Polyacrylonitrile 
Environments: Electrospun Composite Nanofiber Sheets,” Journal of the American Chemical Society 126, no. 48 
(2004): 15754–61. 
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With natural polymer, Jin's group prepared silk fibroin fibers161, where MWCNTs were 
embedded and well aligned (Fig. 37b). Meanwhile, Haddon's group162 studied SWCNT 
reinforced polymer composite membranes using ES technique. NFs with diameters in the 
range of 50–100 nm were obtained by spinning SWCNTs filled PS composites. TEM 
observations revealed that the incorporation of small bundles of SWCNTs orient parallel to 
the NF axis (Fig. 37c). 

By using a post-treatment process, Lee's group163 prepared the mesoporous CNT- 
embedded carbon NFs (Fig. 37d). ES can also be used to fabricate NFs with multi-component 
polymer matrix. Shim's group164 fabricated copolymer NFs doped with MWCNTs by ES and 
utilized the fabricated NFs as a chemiresistor to detect the aromatic volatile organic 
compounds (Fig. 37f).  

Su’s group89 has also reported that both the alignment of MWCNTs in the electrospun 
PEO NFs and the orientation of electrospun PEO–MWCNT hybrid NFs can be controlled by 
an advanced ES technique. The embedding and alignment of MWCNTs in PEO NFs were 
confirmed by TEM, as shown in Fig. 37g and 37h. By increasing the content of MWCNTs in 
the electrospun NFs, MWCNTs were tended to align closely in a line, forming an ideal 
structure that can best express the unique anisotropic properties of CNTs. In a next study, they 
further investigated the preparation of polyurethane (PU) NFs filled with MWCNTs and 
created a novel PU – MWCNT conductive fibrous membrane with ES technique (Fig. 37i). 

Throughout these studies it was clearly shown that the use of CNTs to reinforce and 
enhance the performance of polymer – CNT hybrid NFs can produce a new generation of 
composite materials. The above introduction highlights the fact that the intrinsic crystalline 
quality and the straightness of the embedded CNTs are significant factors influencing the 
reinforcement capability. 

 
 
 
 
 
 
 
 

 

                                                           
161 M. Kang, P. Chen and H.J. Jin, “Preparation of Multiwalled Carbon Nanotubes Incorporated Silk Fibroin 
Nanofibers by Electrospinning,” Current Applied Physics 9, no. 1 (2009): S95–97. 
162 R.Sen et al., “Preparation of Single-Walled Carbon Nanotube Reinforced Polystyrene and Polyurethane 
Nanofibers and Membranes by Electrospinning,” Nano Letters 4, no. 3 (2004): 459–64. 
163 S.H. Park et al., “MWCNT/mesoporous Carbon Nanofibers Composites Prepared by Electrospinning and 
Silica Template as Counter Electrodes for Dye-Sensitized Solar Cells,” Journal of Photochemistry and 
Photobiology A: Chemistry 246 (2012): 45–49. 
164 J. Choi, D.W. Park and S.E. Shim, “Electrospun PEDOT: PSS/carbon nanotubes/PVP Nanofibers as 
Chemiresistors for Aromatic Volatile Organic Compounds,” Synthetic Metals 162, no. 17–18 (2012): 1513–18. 
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Electrospun polymer NFs doped with CNTs for electrochemical enzyme-based biosensing 
 CNT-NFs composites are also very attractive for biosensor applications and in 
particular for the elaboration of enzyme-based electrochemical biosensors. As already 
mentioned, electrospun NFs meet many of the requirements to achieve improved 
performances as a biosensor material since they are featured with very small diameters, long 
length, large surface area per unit mass, high surface-to-volume ratio and tunable pore size.89  
 NFs-CNTs composite materials seems to be very promising for the development of new 
generation biosensing systems with improved sensitivity and superior performance compared 
to the existing biosensors. In the electrospun polymer–CNT composites, polymers not only 
act as the matrix for the uniform distributions of CNTs and the formation of a sensing layer, 
but also play a significant role in enhancing the electrochemical characteristics by means of 
their interactions with CNTs. The applications of electrospun NFs-CNTs composites for 
fabricating new generation electrochemical enzyme nanobiosensors are still at an early but 
promising stage. A real challenge lies in the possibility to produce a three-component 
composite (NFs/CNTs/enzyme) of maximal electrochemical and biological sensing 
properties.  

Different strategies have been proposed to produce enzyme-loaded electrospun NFs.165 
One of the most common methods consists in immobilizing the enzymes onto hydrophobic 

                                                           
165 Z.G. Wang et al., “Enzyme Immobilization on Electrospun Polymer Nanofibers: An Overview,” Journal of 
Molecular Catalysis B: Enzymatic 56, no. 4 (2009): 189–95. 

Figure 37. Electrospun polymer NFs doped with CNTs: (a) PAN – MWNT, (b) silk fibroin – MWCNT, (c)
SWNT bundle (white arrow) embedded in the PS NFs, (d) mesoporous carbon NF – MWCNT, (e) PAN-
g-PDMS –MWCNT, (f) PVP – MWCNT, (g) PEO – MWCNT hybrid NFs with 0.5% MWCNT, (h) PEO –
MWCNT hybrid NFs with 3% MWCNT, and (i) PU –MWCNT. Extracted from Ref 89. 
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NFs (e.g. carbon97, Nylon 6,645, polyacrylonitrile166), which generally requires the 
modification of NFs surface to improve its biocompatibility. 

Following this approach, Im et al.167 constructed CNT-doped PAN porous NFs by ES 
technique and further modified the NFs with glucose oxidase, GOx, for electrochemical 
sensing of glucose. CNTs were embedded as an electrically conductive additive to improve 
the electrical property of the porous CNFs. The e ects of CNT addition and oxyfluorination 
on the performance of the fabricated glucose sensor were investigated with cyclic 
voltammetry (CV). The current peak intensity in the CVs increased due to the e ect of CNT 
additive and oxyfluorination treatment. This result was attributed to e cient GOx 
immobilization and the improved a nity between GOx and the surface resulting from the 
introduced hydrophilic functional groups on carbon surface and the e cient electron transfer. 
When glucose was freshly injected to achieve higher glucose concentrations, the stabilization 
time of the current was approximately 7s at every step. This rapid stabilization of current is 
attributed to the enhanced e ect of CNTs on the electrical properties of electrode. 

In another study, Lee et al.168 fabricated another glucose sensor by immobilizing GOx 
onto electrospun polymer [poly(diallyldimethylammonium chloride) (PDDA) and PMMA]– 
MWCNT nanofibrous membranes. The fabricated PMMA(PDDA)–MWCNT/GOx exhibits 
excellent electrocatalytic activity towards hydrogen peroxide (H2O2) with a pronounced 
oxidation current at +100 mV. Glucose was amperometrically detected at +100 mV in 0.1 M 
phosphate bu er solution (PBS, pH 7). The linear response for glucose detection is in the 
range of 20 μM to 15 mM with a detection limit of 1 mM and a response time of 4 s. The 
superior performance of this kind of sensors is due to the wrapping of PDDA over MWCNTs 
that bound with GOx. 
 Uzun et al.45 fabricated a glucose sensor by preparing nylon 6,6 NFs incorporating 
MWCNTs via ES technique, which were further coated with a conducting polymer named 
PBIBA [poly-4-(4,7-di(thiophen-2-yl)-1H-benzo[d]imidazol-2-yl)benzaldehyde] to covalently 
attach GOx on the surface of the fibers due to the free aldehyde groups of the CP. The 
resulting novel glucose biosensor revealed good stability and promising I max values (16.67 
μA) and long shelf life (44 days). The linear response for glucose detection is in the range of 
0.01 mM to 2 mM with a detection limit of 9 μA. 
 Wang et al.169 constructed CNT-doped poly(acrylonitrile-co-acrylic acid) (PANCAA) 
NFs by ES technique and further modified the NFs with glucose oxidase, by covalently 

                                                           
166 R. Xu et al., “Laccase–Polyacrylonitrile Nanofibrous Membrane: Highly Immobilized, Stable, Reusable, and 
Efficacious for 2,4,6-Trichlorophenol Removal,” ACS Applied Materials & Interfaces 5, no. 23 (2013): 12554–60. 
167 J.S. Im et al., “The Effects of Carbon Nanotube Addition and Oxyfluorination on the Glucose-Sensing 
Capabilities of Glucose Oxidase-Coated Carbon Fiber Electrodes,” Applied Surface Science 258, no. 7 (2012): 
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168 K.M. Manesh et al., “A Novel Glucose Biosensor Based on Immobilization of Glucose Oxidase into Multiwall 
Carbon Nanotubes–polyelectrolyte-Loaded Electrospun Nanofibrous Membrane,” Biosensors and 
Bioelectronics 23, no. 6, 18 (2008): 771–79. 
169 Z.G. Wang et al., “Carbon Nanotube-Filled Nanofibrous Membranes Electrospun from Poly(acrylonitrile- co -
Acrylic Acid) for Glucose Biosensor,” The Journal of Physical Chemistry C 113, no. 7 (2009): 2955–60. 
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immobilizing GOx on the membranes through the activation of carboxyl groups on the 
PANCAA nanofiber surface. The electrochemical properties of enzyme electrodes were 
characterized by chronoamperometric measurements, which showed that MWCNT filling 
enhances the electrode current and sensitivity. Combined with the results of kinetic studies, it 
was concluded that the interactions between MWCNT and FAD play a significant role in 
enhancing the electroactivity of the immobilized GOx, even though the secondary structure of 
the immobilized GOx is disturbed in the presence of MWCNT. 

However, when enzymes are attached to NFs after electrospinning, only the external 
surface of the NFs may be used for further enzyme immobilization, without taking full 
advantage of the internal volume of fibers that can protect enzyme molecules from harsh 
conditions. Enzyme loading is therefore rather limited. Therefore another way to proceed 
consists in electrospinning a blend of enzymes and water-soluble polymer. Encapsulation of 
enzymes into polymer NFs helps preserving their biological activity.231 Electrospun 
composites of CNTs with water-soluble polymers (e.g. PVA) are of particular interest for 
these applications, since they provide a suitable environment for the incorporation of 
biomolecules within the mixture, thus leading to one-step fabrication techniques of novel 
electroactive surfaces for biosensing.  

Recently, Ford’s170 and Ding’s group171 reported the successful fabrication of PVA-
SWCNTs nanofibers and PVA-MWCNTs nanofibers respectively. The hybrid nanofibers 
exhibited electrical conductivity of 1.8x10-4 S/cm. Shortly afterwards, Ford’s team172 
fabricated SWCNT/poly(vinyl alcohol)(PVA)/ Bovine Serum Albumin (BSA) nanofibers by 
ES technique in order to study their role in the chemical deactivation of threat agents by 
means of enzymatic proteins. It was proven that protein loading and the surface chemistry of 
hybrid nanofibers influenced the efficacy by which embedded enzymes could digest the 
substrate of interest and most importantly that the activity of BSA was not compromised 
because of its incorporation within the nanofiber. Most importantly, active proteins remained 
accessible to the substrate regardless of its affinity with the host polymer. This study confirms 
that the polymeric nanofibrous platform modulated by SWNTs can be a viable approach to 
the engineering of enzyme catalytic biosensors.  

Su at al.173 developed a novel biosensing platform for glucose detection, by 
electrospinning a solution of poly(vinylalcohol) (PVA)/chitosan/graphene oxides (GO) and 
glucose oxidase (GOx) to fabricate to NFs. After ES, the modified electrode with electrospun 
PVA/chitosan/GOD/GO NFs was placed in glutaraldehyde vapor for crosslinking to form 

                                                           
170 E.N. J. Ford et al., “Influence of SWNTs on the Preferential Alignment of Molecular Moieties in PVA Fibers,” 
Macromolecular Chemistry and Physics 213, no. 6 (2012): 617–26. 
171 Ding et al., “Self-Assembled Transparent Conductive Composite Films of Carboxylated Multi-Walled Carbon 
Nanotubes/poly(vinyl Alcohol) Electrospun Nanofiber Mats”, Material Letters 128, (2014):310-313. 
172 E.N.J. Ford et al., “Role of Single-Walled Carbon Nanotubes on Ester Hydrolysis and Topography of 
Electrospun Bovine Serum Albumin/Poly(vinyl Alcohol) Membranes,” ACS Applied Materials & Interfaces 6, no. 
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173 X. Su et al., “A Novel Platform for Enhanced Biosensing Based on the Synergy Effects of Electrospun Polymer 
Nanofibers and Graphene Oxides,” The Analyst 138, no. 5 (2013): 1459. 
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water-insoluble nanofibers. Then, a thin layer of Nafion was deposited on the surface of the 
matrix, the prepared electrode was used for glucose amperometric detection. The electrode 
exhibited high sensitivity 11.98 μA cm-1 mM-1, good stability, low detection limit (5μM) and 
wide linear range of 5 μM–4 mM. 

Finally, a mixture of PVA and enzyme was already electrospun by Tang et al.174 and 
after intensive enzymatic studies it was proven that by using this enzyme immobilization 
approach the enzyme still remains very active after the electrospinning process. 
 
Electrospun polymer NFs doped with MNPs 
 As already mentioned, the electrochemical properties of MNPs are extremely sensitive 
to their sizes, shape, and dispersion. A high dispersion of MNPs in functional materials is 
important to present high electrochemical activity, while the associated tendency of MNPs to 
aggregate would lower their catalytic activity and reuse life-time. Therefore, how to design 
and prepare MNP-based materials with long-term dispersion stability and high catalytic 
efficiency is a primary challenge for their wide applications.175  Several strategies have been 
utilized to synthesize and immobilize MNPs into electrospun polymer NFs. For instance, 
polymer–MNP hybrid NFs can be prepared by mixing MNPs into a polymer solution and 
spinning subsequently.176 MNPs can also be directly deposited onto electrospun polymer NFs 
via surface modication. Alternatively, MNPs can be synthesized on the surface of electrospun 
polymer NFs through thermal and chemical reduction of metallic precursor ions.177  
 Zhang et al.178 prepared PAN NFs decorated with AgNPs by ES technique. AgNPs were 
created on the PAN NFs with a seed-mediated electroless plating. A typical TEM image is 
shown in Fig. 38b, in which numerous AgNPs were attached onto PAN NFs. The AgNPs 
were roughly spherical in shape and were randomly distributed on the surface of the NFs with 
a moderate density. The size distribution of AgNPs is 23 5 nm. Lei and co-workers179 
reported the successful preparation of polyaniline (PANI) NFs with integrated Pt nanoflowers. 
PANi was prepared by in situ polymerization of aniline on an electrospun NF template in an 
acidic solution with ammonium persulfate as the oxidant. Pt nanoflowers were further electro-
deposited onto the PANi NF backbone by CV, resulting in novel functionalized hybrid NFs 
(Fig. 38c).  

                                                           
174 C. Tang et al., “Cross-Linked Polymer Nanofibers for Hyperthermophilic Enzyme Immobilization: Approaches 
to Improve Enzyme Performance,” ACS Applied Materials & Interfaces 6, no. 15 (2014): 11899–906. 
175 H. Zhu et al., “Facile and Green Fabrication of Small, Mono-Disperse and Size-Controlled Noble Metal 
Nanoparticles Embedded in Water-Stable Polyvinyl Alcohol Nanofibers: High Sensitive, Flexible and Reliable 
Materials for Biosensors,” Sensors and Actuators B: Chemical 185 (2013): 608–19. 
176 J. Song et al., “Safe and Effective Ag Nanoparticles Immobilized Antimicrobial NanoNonwovens,” Advanced 
Engineering Materials 14, no. 5 (2012): B240–46. 
177 T. Zhang et al., “Biotemplated Synthesis of Gold Nanoparticle-Bacteria Cellulose Nanofiber Nanocomposites 
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 You's group prepared PdNP-modified CNFs by ES and subsequent thermal 
treatments.180 Figure 38d shows the SEM image of the electrospun CNF–PdNP hybrid. The 
surface of CNFs is coarse and the diameter is in the 200–500 nm range. The spherical PdNPs 
with a mean diameter of about 75 nm can be observed on the surface of CNFs. Meanwhile, 
they also prepared NiNP-loaded CNFs (CNF–NiNP) by combination of ES technique and 
thermal treatment.181 The TEM image illustrates that the NiNPs with a diameter of about 50 
nm are embedded in the CNF matrix (Fig. 38e). Shanmugam et al. fabricated CoNP-doped 
porous carbon nanorods (CNR–CoNP) by an easy and versatile ES technique and followed by 
one-step carbonization at 900 °C in Ar.182 FE-TEM analysis clearly shows that the CoNPs are 
actually embedded in the CNRs (Fig. 38f). The size of CoNPs ranges from 20 nm to 100 nm. 
Wang's group synthesized Cu-doped ZnO NFs via ES technique.183 The SEM image of the as-
synthesized Cu-doped ZnO NFs is shown in Fig. 38g. 
 Xia's group reported a simple method for functionalizing the surface of ZrO2 
nanofibrous membranes with RhNPs.89 The ZrO2 membranes were fabricated in the form of 
nonwoven mats by ES with a solution of polyvinylpyrrolidone (PVP) and zirconium 
acetylacetonate, followed by calcination in air at 550 °C to yield the tetragonal phase. The 
fibrous mats were then immersed in a polyol reduction bath to coat the surface of the NFs 
with RhNPs of 2–5 nm in size.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                           
180H. Zhang et al., “Electrochemical Detection of Hydrazine Based on Electrospun Palladium 
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183 M. Zhao et al., “Electrospun Cu-Doped ZnO Nanofibers for H2S Sensing,” Sensors and Actuators B: Chemical 
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Electrospun polymer NFs doped with MNPs for electrochemical enzyme-based biosensing 

Recently, the synthesis and immobilization of noble metal nanoparticles (MNPs) into 
and onto electrospun nanofibers184, 185, 186 for producing functional nanocomposites in sensing 
have attractred much attention. By introducing a small amount of MNP, in/on the electrospun 
polymeric NFs, the mechanical strength and conductivity of the final NF-MNP composites 
can be obviously improved compared to those of pristine polymeric fibers.  ES technique has 
been used to prepare MNP–CNF composites for electrochemical sensing applications by 
spinning metal precursor-containing polymer NFs, followed by a thermal treatment.187 The 
advantages of this method include the uniform dispersion of MNPs within the framework of 
CNF, the high electrical conductivity of CNF, and the highly porous and mechanically strong 
network structure of the resulting composite, which contribute to a high electrochemical 

                                                           
184 X. Fang et al., “Facile Immobilization of Gold Nanoparticles into Electrospun Polyethyleneimine/polyvinyl 
Alcohol Nanofibers for Catalytic Applications,” Journal of Materials Chemistry 21, no. 12 (2011): 4493. 
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Containing Gold Nanoparticles by Electrospinning Method,” Solid State Communications 141, no. 5 (2007): 
292–95. 
187 J. Huang et al., “Simultaneous Electrochemical Determination of Dopamine, Uric Acid and Ascorbic Acid 
Using Palladium Nanoparticle-Loaded Carbon Nanofibers Modified Electrode,” Biosensors and Bioelectronics 
24, no. 4 (2008): 632–37. 

Figure 38. Electrospun polymer NFs doped with different MNPs: (a) PVA–AuNP, (b) PAN–AgNP, (c)
PANi–PtNP, (d) CNF–PdNP, (e) CF–NiNP, (f) CNR–CoNP, (g) ZnO–CuNP, (h) Rh-doped ZrO2 NFs, (i)
CNF–Pd30Ni70 . Extracted from Ref 89. 
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activity by providing a larger active surface area, preventing MNPs from detachment and 
agglomeration, and facilitating electron and mass transfer within the system. 
 Guo et al.188 successfully prepared Pd–Ni alloy NP-doped carbon NFs (CNF–PdNi) 
composites by a simple method involving ES of precursor PAN/Pd(acac)2/Ni(acac)2 NFs, 
followed by a thermal process to reduce metals and carbonize PAN (figure 38i). CV studies 
showed that the CNF–PdNi-based electrodes reveal enhanced redox properties compared to 
the Ni-metal electrode and show significantly improved electrocatalytic activity to sugars 
(e.g., glucose, fructose, sucrose, and maltose) oxidation. The application potential of CNF–
PdNi-based electrodes in flow systems for sugar detection was explored. A very low limit of 
detection for sugar (e.g.,7–20 nM), high resistance to surface fouling, excellent signal stability 
and reproducibility, and a very wide detection linear range (e.g., 0.03–800mM) were revealed 
for this new type of CNF–PdNi composite as the detecting electrode. 
 Hou and co-workers189 synthesized PdNP-loaded CNFs (CNF–PdNP) by the 
combination of ES and thermal treatment processes. The CNF–PdNP-modified carbon paste 
electrode (CNF–PdNP/CPE) demonstrated direct and mediatorless responses to H2O2 at low 
potentials. The results of CVs suggested a faster electron transfer rate and higher 
electrocatalytic activity toward the reduction of H2O2 at the CNF–PdNP/CPE when compared 
to AgNP-modified glassy carbon electrode (GCE). The sensor achieved 95% of the steady-
state current within 5 s. The CNF–PdNP/CPE displayed a wider linear range from 0.2 mM to 
20 mM and a slope of 4.15 AmM-1. 
 Liu et al.190 produced a novel PtNP-loaded carbon NF (CNF–PtNP) electrode with ES 
technique, and further applied the electrode for sensing of H2O2. When applied to the 
electrochemical detection of H2O2, the CNF–PtNP electrode exhibited low over-potential, fast 
response, and high sensitivity. In addition, the CNF–PtNP electrode showed good selectivity 
for H2O2 detection in the presence of ascorbic acid, acetaminophenol and uric acid under 
physiological pH condition. The electrode exhibited strong and fast response to each injection 
of analyte, attributing to the high electrocatalytic efficiency of the well-dispersed PtNPs. With 
this electrospun electrode, a detection limit of 0.6 M with a linear range of 1–800 M was 
obtained. 
 To produce electrochemical enzymatic biosensors of enhanced sensitivity, 
NFs/AuNPs/enzyme composites can be elaborated. Devadoss's group191 reported the 
electrochemical application of AuNP-decorated Nafion NFs (NNF–AuNP) using a facile ES 
technique. Owing to the uniform distribution of the AuNPs and the large surface area of the 
NNFs, the NNF–AuNPS-modified electrodes gave rise to greatly improved electrochemical 
                                                           
188 Q. Guo et al., “Pd–Ni Alloy Nanoparticle/Carbon Nanofiber Composites: Preparation, Structure, and Superior 
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properties compared to AuNP-free electrodes. When they were employed as reservoirs for 
immobilizing horseradish peroxidase (HRP), sensitive electrochemical detection by the 
enzyme reaction was achieved. The detection sensitivity for H2O2 was determined to be as 
low as 38 Nm. To determine the electrochemical response to H2O2, CV was performed in the 
absence and presence of 0.01 mM H2O2, where HRP-immobilized NNFs and NNF–AuNP-
modified electrodes were compared. Upon the addition of 0.01 mM H2O2, the most noticeable 
change in the current was observed for the NNF–AuNP electrode. The current density of 
NNF–AuNP/HRP-modified electrodes was almost 2.4-fold greater than that of NNF/HRP-
modified electrodes. This result clearly indicates that the AuNPs play a critical role in H2O2 
reduction through catalyzing HRP enzyme on the composite electrode. Furthermore, the 
NNF–AuNP-modified electrode in the absence of HRP did not show the distinct redox peak 
even at high concentrations of H2O2 indicating that the reduction of H2O2 at the electrode 
surface is predominantly catalyzed by the immobilized HRP. This kind of H2O2 sensor has a 
good linear range from as 0.06 to 0.08 M with a current sensitivity of 0.3242 A M-1.  

Nevertheless, to have the surface of the polymeric fibers effectively covered with 
MNPs, which is essential in applications where the amount of accessible sites is important (i.e 
their catalytic performance in biosensing), a large ratio of MNPs relative to the polymeric NFs 
is usually incorporated into the polymer solution leading to an increase in the cost. So, 
alternatively, MNPs can be directly deposited onto electrospun polymer NFs via surface 
modication.192, 193, 194 Dong et al.192 demonstrated the successful assembly of MNPs (Ag, Au, 
Pt) onto electrospun nylon 6 NFs by controlling the interfacial hydrogen-bonding interactions. 

Recently, Zhu et al.175 reported the fabrication of water stable PVA/MNPs fibers for 
biosensors. They prepared highly uniform and monodisperse noble MNPs (Ag, Au, and Pt) in 
polyvinyl alcohol (PVA) NFs by combining electrospinning (a mixture of MNPs and PVA) 
and an in situ reduction technique (crosslinking under GA vapors), which were used as 
efficient biosensor for the detection of H2O2. The fabricated AgNPs/PVA NFs functionalized 
electrodes exhibited remarkably increased electrochemical catalysis toward H2O2 and 
excellent stability, reusability, high sensitivity and broad linear range (10μM to 560 μM). The 
rapid electrode response to the change of the H2O2 concentration is attributed to the fast 
diffusion of the H2O2 onto the surface of small AgNPs through the porous nanofibers 
structures.  

Wang et al.194 reported a facile route to fabricate water stable AuNP–poly(vinyl alcohol) 
(PVA/AuNPs) hybrid nanofibrous mats with tunable densities of AuNPs and further 
demonstrated the potential application of as-prepared PVA/AuNPs NFs as e cient H2O2 
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biosensor substrate materials. The PVA NFs were rendered water stable through the designed 
in situ cross-linkage in co-electrospun PVA/glutaraldehyde NFs. The electrospun water stable 
NFs were covered with MPTES, which triggered homogeneous decoration with AuPs through 
gold-sulfur bonding. Finally, the PVA/AuNPs NFs embedded with horseradish peroxidase 
(HRP) by electrostatic interactions were used as biosensor substrate materials for H2O2 
detection. The fabricated PVA/AuNPs/HRP biosensor showed a highly sensitivity with a 
detection limit of 0.5 μM.  

Chowdhury195 et al. reported the fabrication of a biosensing platform by covalent 
attachment of biomolecules on PANI nanowire (NW) decorated with gold nanoparticles 
(AuNP) for the detection of glucose, complementary DNA strand and Lamin A protein. The 
lower detection limit (1 M), higher sensitivity (14.63 AmM−1cm−2), wide dynamic range 
(1 M to 20mM), greater stability and the excellent specificity demonstrates the sensors 
enhanced performance compared to other glucose sensors. 
 
Electrospun polymer NFs doped with CNTs and MNPs for electrochemical sensing  
 One of the latest trends in the development of new generation electrochemical sensors is 
the use of electrospun fibers doped with both CNTs and MNPs.196, 197 Considering the good 
electrocatalytic performance of AgNPs and the excellent conductivity of MWCNTs, Ouyang 
et al.198 reported the electrospun preparation of PU NFs filled with MWCNTs and AgNPs 
(PU–MWCNT–AgNP) for the fabrication of electrochemical sensors. The prepared PU–
MWCNT–AgNP hybrid NFs are expected to have better performance than either PU–
MWCNT or PU–AgNP NFs. By simply blending the suspension of modified MWCNTs and 
commercialized AgNPs with PU solution and then performing ES, PU–MWCNT–AgNP 
hybrid NFs were directly electrospun onto the surface of a polished GCE and the performance 
of the NF-modified GCE for H2O2 sensing was investigated. The presented CV results 
indicated that the PU/MWCNT/AgNPs-modified GCE has better electrocatalytic activity than 
either PU/MWCNT or PU/AgNPs modified GCE toward the reduction of H2O2, which 
confirms the synergistic effect of MWCNTs and AgNPs. PU–MWCNT–AgNP-modified 
GCE reveals a linear response to H2O2. The sensor has a linear detection range from 0.5 to 30 
mM, and possesses a detection limit of 18.6 M (S/N=3) with a sensitivity of 160.6 AmM-

1cm-2. 
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 In a further study, Zhang et al.199 fabricated PVDF/MWCNT/PtNPs nanofibrous 
membrane by ES and utilized the membrane for sensors of H2O2 and glucose. The 
nonenzymatic amperometric biosensor has highly stable and sensitive, and selective detection 
of H2O2 and glucose. 
 
I.4. Nanostructured Conducting Polymers for High Performance Biosensor 
Applications: Issues and Challenges 

 Another very interesting class of materials for the production of electrospun NFs for 
biosensor applications is the one of conducting polymers. Except for the advantages that they 
have to offer in the biosensors field, in the following sections we will describe the challenges 
that are encountered during the electrospinning of such materials, while demonstrating 
alternative ways to overcome this issue. 

I.4.1. Importance of Nanostructured Conducting Polymers to Biosensor Applications 
 Conducting polymers (CPs) are multifunctional materials of particular interest that can 
be employed as receptors as well as transducers or immobilization matrices in electrochemical 
biosensing due to their unique electrical properties.200, 201 They possess fascinating chemical 
and physical properties, such as intrinsic conductivity, derived from their conjugated π-
electron system and so they have been used to enhance the speed, sensitivity and versatility of 
biosensors.202,  203 CPs have a variety of advantages such as facile synthesis, structural 
diversity and flexibility, light weight, and cost effectiveness. 
 From the viewpoint of sensor applications, the most distinguishing properties of CPs are 
as follows: i) conducting polymers can be readily prepared by electrochemical and chemical 
polymerization. The electrochemical synthesis allows the direct deposition of the polymer on 
the electrode surface, with simultaneous entrapment of protein molecules. It is thus possible to 
control the spatial distribution of the immobilized enzymes, the film thickness and modulate 
the enzyme activity by changing the state of the polymer, ii) they are highly sensitive to a 
broad range of analytes at ambient temperature; iii) an amplified response is expected from 
their inherent transport properties (e.g., electrical conductivity and rapid electron transfer), iv) 
the polymer structure is conveniently modified or functionalized to display selective 
responses toward specific analytes, v) a sensor array can be fabricated through 
electrochemical deposition or solution casting, which allows miniaturization and mass 
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production of sensor devices. These features make it highly attractive to use conducting 
polymers for sensor applications.85 Most conducting polymer sensors rely on electrochemical 
detection techniques using amperometric, potentiometric, and conductometric methods. The 
response mechanisms of conducting polymers comprise oxidation/reduction, swelling, 
conformational changes, charge transfer, and so forth. 
 Nevertheless, only limited progress had been made in conducting-polymer-based 
biosensors until nanostructured CPs, such as nanofibers, nantubes, nanorodes, etc., have 
emerged as promising candidates for high-performance signal transducer applications. 
Significant advances in the synthesis of conducting-polymer nanomaterials have been recently 
reported, with enhanced sensitivity relative to their bulk counterparts. More specifically, when 
formed as nanostructures, CPs inherit the fascinating properties from their bulky counterparts 
and possess further appealing properties such as high surface area, ease of preparation by 
chemical or electrochemical methods, considerable signal amplification due to their electrical 
conductivity, and fast electron transfer rate. By virtue of the high surface-to-volume ratio, CP 
nanomaterials are capable of yielding excellent sensitivity via enhanced interaction between 
the conducting polymers and a wide range analytes. The nanostructured materials permit rapid 
adsorption/desorption kinetics for analytes, leading to fast response/recovery time even at 
room temperature. Moreover, they allow easy chemical functionalization of their structure in 
order to obtain high specificity towards different compounds, and are amenable to fabrication 
procedures that greatly facilitate miniaturization and array production.85  
 
I.4.2. Conducting Polymers: Characteristics and Synthesis 
 As mentioned, CPs are characterized by an extended π-conjugation along the polymer 
backbone which promotes their unusual electronic properties such as intrinsic conductivity,204 
low energy optical transitions, low ionization potential and high electron affinity. This 
extended π -conjugated system of the conducting polymers have single and double bonds 
alternating along the polymer chain. The higher values of the electrical conductivity obtained 
in such organic polymers have led to the name ‘synthetic metals’.205 Their electrical 
conductivity results from the formation of charge carriers (“doping”) upon oxidizing (p - 
doping) or reducing (n-doping) their conjugated backbone.206 In this way they assume the 
electrical properties of metals, while having the characteristics of organic polymers, such as 
light weight, resistance to corrosion, flexibility, and ease of fabrication.207 The main classes of 
conductive polymers are shown in figure 39. 
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 Various methods are available for the synthesis of conducting polymers. The polymers 
can be synthesized either by addition of an external agent (this approach is often referred as 
“chemical synthesis” of CP) or by electrochemical reaction. A widely used technique is the 
oxidative coupling involving the oxidation of monomers to form a cation radical followed by 
coupling to form dications and the repetition leads to the polymer.205 Chemical synthesis of 
CP is usually performed by such oxidants as (NH4)2S2O7 or FeCl3 and is commonly used for 
the preparation of CP solutions, while electrochemical deposition is used mainly for 
deposition of CP films on conducting substrates. An advantage of this method is the 
possibility to control the film thickness by varying either the potential or current with time 
during the film growth. Other popular techniques for depositing thin films on various 
substrates are spin coating by a solution of a chemically synthesized CP, the deposition of one 
or more monomolecular layers of CP by Langmuir–Blodgett technique, or coating of 
substrates by bilayers of CP and opposed charged polymers by the layer-by-layer 
technique.206 

I.4.3. Challenges of Electrospinning Intrinsically Conducting Polymers 
 Electrospinning is capable of producing conductive fibrous membranes with high 
specific area, high porosity and tunable fiber diameters, which further broadened conductive 
polymers applicability in a wide range of applications.208 However, processing intrinsically 
conducting polymers (ICPs) has always represented a challenge. Indeed, most of them are 
insoluble and infusible due to the stiffness of their all-conjugated aromatic backbone 
structures103, which renders them hardly electrospinnable. Therefore to overcome this issue, 
different approaches maybe used which allow the fabrication of conductive NFs. These 

                                                           
208 J. Wang et al., “Electrospun Porous Conductive Polymer Membranes,” ed. Nakhiah C. Goulbourne and 
Zoubeida Ounaies, (2012): 83420F – 83420F – 13. 

Figure 39. Chemical formulas of the main classes of conductive polymers. 
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techniques include: a) the addition of a spinnable polymer used as a carrier to the ICP209, 210, 

211, 212 to improve the spinability of the latter. Nevertheless, the electroactive properties of 
ICPs can be significantly reduced when blended with conventional polymers. b) the 
dispersion of a conductive load such as carbon nanotubes or metal nanoparticles into a non-
conducting polymer matrix129, 213, 214, 215, 216, 217 as it has already been descrided in details in the 
previous section, c) the use of polymer precursors by subsequent conversion into conducting 
polymer in the second step218, and d) the use of a core-shell coaxial electrospinning by 
subsequent removal of the non-conductive core or shell.219, 220  
 Recently, an interesting processing technique has been developed and optimized to 
fabricate conductive fibers on electrospun non-conductive fibers: the Vapour-Phase 
Polymerization technique (VPP)221, 222. The method was originally described by Mohammadi 
et al.223 as a chemical vapour deposition (CVD) process using FeCl3 or H2O2 as oxidizing 
agents for polymerization of PPy films. VPP is a two-step in situ polymerization process: (1) 
the oxidant is deposited from solution onto a substrate by a usual coating method (spin-
coating, screen-printing, inkjet printing, etc.) and annealed in order to remove the solvent; (2) 
the coated substrate is then placed in a reactor kept in dry conditions and filled with the 

                                                           
209 K. Low et al., “Composition-Dependent Sensing Mechanism of Electrospun Conductive Polymer Composite 
Nanofibers,” Sensors and Actuators B: Chemical 207 (2015): 235–42. 
210 Mohammad Rezaul Karim, “Fabrication of Electrospun Aligned Nanofibers from Conducting Polyaniline 
Copolymer/polyvinyl Alcohol/chitosan Oligossacaride in Aqueous Solutions,” Synthetic Metals 178 (2013): 34–
37. 
211 E. Zampetti et al., “Biomimetic Sensing Layer Based on Electrospun Conductive Polymer Webs,” Biosensors 
and Bioelectronics 26, no. 5 (2011): 2460–65. 
212 I.S. Chronakis, “Conductive Polypyrrole Nanofibers via Electrospinning: Electrical and Morphological 
Properties,” I S Chronakis, “Conductive Polypyrrole Nanofibers via Electrospinning: Electrical and Morphological 
Properties,” Polymer 47 (2006): 1597-1603. 
213 K. Ketpang and Jun Seo Park, “Electrospinning PVDF/PPy/MWCNTs Conducting Composites,” Synthetic 
Metals 160, no. 15–16 (2010): 1603–1608. 
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Culture,” International Journal of Biological Macromolecules 51, no. 4 (2012): 627–31. 
217 S. Shao et al., “Osteoblast Function on Electrically Conductive Electrospun PLA/MWCNTs Nanofibers,” 
Biomaterials 32, no. 11 (2011): 2821–33. 
218 D.Y. Youn et al., “Facile Synthesis of Highly Conductive RuO2-Mn3O4 Composite Nanofibers via 
Electrospinning and Their Electrochemical Properties,” Journal of The Electrochemical Society 158, no. 8 (2011): 
A970. 
219 J.C. Dias et al., “Electrical Properties of Intrinsically Conductive Core–shell Polypyrrole/poly(vinylidene 
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monomer vapours. When the vapours come into contact with the oxidant, they polymerize at 
the exact same place where the oxidant was coated. This latter step is a solvent-free process 
where the oxidant is thought to play a templating role that leads to particularly ordered 
polymers and sometimes crystalline ones. 
 Different studies demonstrated that this high molecular order resulted in polymers with 
significantly higher charge conductivities (better interchain π-π stacking resulting in enhanced 
charge mobility in the polymer).224 For example, thin films of vapour-phase polymerized 
polypyrrole (PPy) have reached conductivities of 200 S/cm.225 Moreover since it is a flexible 
and solventless method it simplifies the coating process on a variety of organic and inorganic 
materials because it does not depend on evenly wetting the substrate surface and also it 
enables conformal coatings on high-area-surface morphologies, like fibers and pores, 
important for higher device efficiencies.221 The VPP technique was successfully used to coat 
electrospun nanofibers of conventional polymers with an ICP226, 227, 228 and the electrical 
properties observed for these polymeric porous nanostructured materials are very promising. 
 The VPP technique is generally used to achieve highly ordered thin films of ICPs and as 
metallic electrode replacement in organic electronic devices, such as photovoltaics, field-
effect transistors, or light-emitting devices.224 Bai et al.227 reported the fabrication of a gas 
sensor based on polypyrrole (PPy)/PMMA composite fibers for sensing ammonia or 
chloroform vapour, prepared by combining electrospinning and vapor-phase polymerization, 
which exhibited greatly improved performances comparing with those of the device based on 
a PPy flat film. 
 
I.4.4. Integration of Electrospun Conducting Polymers to Sensing and Biosensing 
Systems 
 Electrospun conductive polymeric NFs, mainly produced by mixing a conductive and a 
non conductive polymer and by the dispersion of a conductive loading into a non-conducting 
polymer matrix, have been employed to detect diverse analytes such as toxic gases, volatile 
organic compounds, and biological species. It has been proven that the utilization of 
conducting electrospun polymeric NFs229, such as polyaniline NFs (PANI),230 polypyrrole 

                                                           
224 A.Laforgue and Lucie Robitaille, “Production of Conductive PEDOT Nanofibers by the Combination of 
Electrospinning and Vapor-Phase Polymerization,” Macromolecules 43, no. 9 (2010): 4194–4200. 
225 P. Subramanian, N. B. Clark, L. Spiccia, D. R. MacFarlane, B Winther-Jensen and C. Forsyth, “Vapour Phase 
Polymerisation of Pyrrole Induced by iron(III) Alkylbenzenesulfonate Salt Oxidising Agents,” Synthetic Metals 
158, no. 17–18 (2008): 704–11. 
226 F. Granato, A. Bianco, C. Bertarelli and G. Zerbi, “Composite Polyamide 6/Polypyrrole Conductive 
Nanofibers,” Macromolecular Rapid Communications 30, no. 6 (2009): 453–58. 
227 H. Bai, L. Zhao, C. Lu, C. Li and G. Shi, “Composite Nanofibers of Conducting Polymers and Hydrophobic 
Insulating Polymers: Preparation and Sensing Applications,” Polymer 50, no. 14 (2009): 3292–3301. 
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(PPy) NFs,202, 231, 232, 233 and poly(3,4-ethylenedioxythiophene) (PEDOT) NFs,234 as 
biomolecule immobilization matrices for the fabrication of sensors provides high surface area 
for loading and that in this way it is possible to generate reproducible, highly sensitive and 
long time stable biosensors. 
 Suitable surface functionalization of the NFs can lead to a significant improvement of 
properties relevant to their sensor applications. Covalent and non-covalent approaches have 
been commonly used to functionalize conducting-polymer nanomaterials. From the viewpoint 
of covalent approaches, CP nanotubes/nanofibers can be easily modified by grafting 
functional groups on the polymer backbone or by employing inherently functionalized 
monomers during polymerization. On the other hand, the non-covalent approaches take 
advantage of the incorporation of appropriate counter ions into the polymer during synthesis 
and the electrostatic adsorption of guest molecules on the nanomaterial surface.  
 Compared with non-covalent approaches, covalent approaches offer more stable and 
robust functionalities that can withstand further handling and modification steps. In addition, 
covalent approaches may allow control over the surface functionality in both qualitative and 
quantitative aspects. A notable example involves chemical derivatization of pyrrole monomer 
for PPy functionalization.76 The pyrrole monomer has been modified by chemical substitution 
predominantly at the nitrogen and 3-position. The N and 3 substitutions ensure that the 
pyrrole rings are bonded via the a,a’ linkages. While N-substituted PPy tends to have poor 
conductivity due the disruption in π-electron conjugation, 3-substituted PPy shows 
electrochemical properties equivalent to those of non-substituted PPy. Various functional 
groups such as amino, carboxyl, and alkyl groups have been successfully incorporated into the 
PPy backbone for specific functionalities, including hydrophobicity/hydrophilicity, adhesion, 
lubrication, and biocompatibility. For example, the surface carboxyl groups of the nanotubes 
have been coupled with various functional materials such as organic dyes, DNA, protein, and 
even nanoparticles.231, 232, 235  
 The above stated support the fact that conducting polymer NFs may be excellent 
candidates for fabricating high-performance sensors. However, to realize next-generation 
high-performance sensors based on conducting-polymer NFs, there are still several 
technological challenges to be solved for practical (bio)sensor applications.85  
 

 

                                                           
231 H. Yoon et al., “A Novel Sensor Platform Based on Aptamer-Conjugated Polypyrrole Nanotubes for Label-
Free Electrochemical Protein Detection,” ChemBioChem 9, no. 4 (2008): 634–41. 
232 H. Yoon et al., “Field-Effect-Transistor Sensor Based on Enzyme-Functionalized Polypyrrole Nanotubes for 
Glucose Detection,” The Journal of Physical Chemistry B 112, no. 32 (2008): 9992–97. 
233 J.P. Lellouche et al., “Polydipyrrole- and Polydicarbazole-Nanorods as New Nanosized Supports for DNA 
Hybridization,” Chemical Communications, no. 34 (2005): 4357. 
234 J. Jang et al., “Chemical Sensors Based on Highly Conductive Poly(3,4 Ethylenedioxythiophene) Nanorods,” 
Advanced Materials 17, no. 13 (2005): 1616–20. 
235 S. Ko and J. Jang, “A Highly Efficient Palladium Nanocatalyst Anchored on a Magnetically Functionalized 
Polymer-Nanotube Support,” Angewandte Chemie International Edition 45, no. 45 (2006): 7564–67. 



CHAPTER I: BIBLIOGRAPHIC STUDY 

82 
 

I.5. Conclusion 

 The presented bibliographic study illustrated that the development of innovative and 
efficient electrochemical biosensors has been the subject of many studies in the recent 
decades. Since electrochemical sensing is essentially a surface phenomenon, subsequently the 
surface morphology and electrical properties of the working electrode are critical parameters 
which determine the sensor performance. In order to enhance both sensitivity and selectivity, 
the surface topology must be engineered at the nanoscale in order to maximize the contact 
surface between the sensor and the solution to be analyzed. This surface must also be 
chemically modified in order to promote specific interaction between the latter and the target 
molecules. Finally, the surface must be conductive enough, in order to get a sensor with a low 
electronic transfer resistance.  

In this context, nanofibers meet many of the requirements to achieve improved 
biosensor performances, mainly because they can significantly increase the specific area of 
the electrode. More specifically, it was highlighted that NFs produced by employing the 
electrospinning technique are of particular interest due to the advantages that this technique 
has to offer over other techniques, such as the simplicity and versatility of the processing 
system and the design flexibility of the electrospun NFs without the need of post-synthetic 
treatments of the electrospun NFs.  

 In this chapter, we have shown that the coupling of non conductive electrospun NFs 
with other classes of nanomaterials such as metallic nanoparticles and carbon nanotubes, leads 
to a great variety of different pioneering nanostructures that offer great prospects in the 
development of a whole new generation of biosensing systems. 

The above concept is validated through the comparison of a great variety of 
conventional biosensors reported in the literature and those few based on composite 
electrospun nanofibers, with the latter exhibiting superior advantages in terms of sensitivity, 
stability and fast response. However, the employment of such nanostructures as 
immobilization platforms for the development of new generation biosensors with enhanced 
performance is still in an early stage. Therefore, there are still limitations to be overcome and 
improvements to be done in areas such as the simplicity and rapidity of the synthetic method 
employed for the construction of the biosensor and the reproducibility of the novel biosensors. 

Furthermore, in this chapter we have cited another approach to produce conductive 
electrospun NFs, by coating non-conductive electrospun NFs with a layer of conducting 
polymer through the VVP process. However, to the best of our knowledge, the combination of 
the electrospinning technique with the VPP process has not been employed for the elaboration 
of enzyme-based electrochemical biosesnors. 

Through our work we have tried to address the above issues and to contribute in a more 
simple, easy and rapid way, towards the fabrication of highly senstitive and stable 
electroactive platforms for electrochemical enzyme biosensors based on conductive 
electrospun NFs. In chapters II and III, the one-step synthesis of composite 
CNTs/polymer/enzyme NFs and AuNPs/polymer/enzyme NFs for biosensor elaboration will 
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be demonstrated respectively. Finally, in chapter IV we will demonstrate the fabrication of an 
original and highly sensitive electrochemical biosensor based on conductive NFs through the 
combination of the electrospinning technique and VPP process. 
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II.1. Introduction 
  Among the different approaches already reported in the literature for the elaboration of 
NF-based enzymatic electrochemical biosensors, in this chapter we focused on the technique 
that consists of the one-step electrospinning of polymer/enzyme/conductive nanomaterial 
blends.  
 To do so, among a wide spectrum of polymers we had to strategically select one which 
would satisfy the following requirements 1) good processability/electrospinnability, 2) 
biocompatibility (especially in terms of solvent compatibility with the biomolecule since the 
biomolecule is mixed with the polymer) and 3) high conductivity. Glucose oxidase (GOx) 
was used as a model enzyme for the detection of glucose. Poly(vinyl alcohol) (PVA), a 
nontoxic, water soluble synthetic polymer236, was a great candidate due to its many 
advantageous properties, e.g., its hydrophilicity, good physical properties, processability, high 
biocompatibility,237, 238, 239 good chemical resistance and facile modification of its pendant 
hydroxyl groups. More specifically, its high water content and minimal diffusion restrictions 
provide the immobilized enzyme a microenvironment close to that of the soluble enzyme. 
However, its high hydrophilicity contributes to the fast dissolution of PVA nanofibers (NFs) 
in aqueous solution, which limits its applications in biosensing. It has been shown that this 
issue can be overcome by a crosslinking step,240, 241, 242 generally performed by exposure to 
glutaraldehyde solutions250 or vapours.173 This step is time-consuming and requires careful 
optimization to preserve enzyme conformation and activity. For this reason, it was decided to 
work with a PVA derivative with pendent styrylpyridinium groups (SbQ), PVA-SbQ, which 
has been extensively used as a photocrosslinkable material due to its water stability, high 
photosensitivity and good storage stability.243 PVA-SbQ was been widely used in the 
development of enzymatic biosensors244 and the PVA-SbQ entrapment of enzymes is 
schematically represented in figure 40. 

                                                           
236 M. A.P. Nunes, P.C.B. Fernandes and M.H.L. Ribeiro, “High-Affinity Water-Soluble System for Efficient 
Naringinase Immobilization in Polyvinyl Alcohol-Dimethyl Sulfoxide Lens-Shaped Particles: High-affinity water 
system for efficient naringinase immobilization,” Journal of Molecular Recognition 25, no. 11 (2012): 580–94. 
237 C. Tang et al., “Effect of pH on Protein Distribution in Electrospun PVA/BSA Composite Nanofibers,” 
Biomacromolecules 13, no. 5 (2012): 1269–78. 
238 T. Kowalczyk et al., “Electrospinning of Bovine Serum Albumin. Optimization and the Use for Production of 
Biosensors.,” Biomacromolecules 9, no. 7 (2008): 2087–90. 
239 J.J. Won et al., “Electrospun Core–shell Nanofibers from Homogeneous Solution of Poly(vinyl 
Alcohol)/bovine Serum Albumin,” International Journal of Biological Macromolecules 50, no. 5 (2012): 1292–98. 
240 E. Yang, X. Qin and S. Wang, “Electrospun Crosslinked Polyvinyl Alcohol Membrane,” Materials Letters 62, 
no. 20 (2008): 3555–57. 
241 J.M. Gohil, A. Bhattacharya, and P. Ray, “Studies On The Crosslinking Of Poly (Vinyl Alcohol),” Journal of 
Polymer Research 13, no. 2 (2006): 161–69. 
242 J. Zeng et al., “Photo-Induced Solid-State Crosslinking of Electrospun Poly(vinyl Alcohol) Fibers,” 
Macromolecular Rapid Communications 26, no. 19 (2005): 1557–62. 
243 K. Ichimura, “Photocrosslinkable Poly(vinyl alcohols): Preparation, Properties and Application,” 
Heterogeneous chemistry reviews, 3 (1996): 419-441. 
244 J.M. Guisan, ed., Immobilization of Enzymes and Cells, vol. 1051, Methods in Molecular Biology (Totowa, NJ: 
Humana Press, 2013). 
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 The photocrosslinking behaviour and mechanism of PVA-SbQ have been systematically 
investigated.243, 245, 246, 247Y. Liu et al.247 were the first to prepare water-insoluble electrospun 
PVA-SbQ fibers. 
 Despite their many merits, PVA-SbQ nanofibers still did not satisfy the third and very 
crucial parameter of electrical conductivity. To improve the conductivity of the polymeric 
NFs, we proceeded to the addition of carboxylated multiwall carbon nanotubes as conductive 
fillers into the PVA-SbQ matrix. Nevertheless, the lack of solubility of CNTs in aqueous 
media has been a technical barrier for many groups in the past. For this reason, herein we 
decided to work with MWCNTfunctionalized with carboxylic groups (MWCNTs-COOH), to 
improve their dispersibility in PVA and PVA/GOx aqueous solutions.248 
 Electrospun PVA fibers filled with nanomaterials such as graphene, graphene oxide or 
carbon nanotubes have already been used for the elaboration of enzymatic electrochemical 
biosensors as it is illustrated in Table 4. The enzyme was either encapsulated in polymer, 
when PVA matrix is used, or immobilized after electrospinning, when other types of matrices 
were used (carbon, nylon 6,6, chitosan or polyacrylonitrile). The interest of the encapsulation 
of enzyme in polymer nanofibers is the preservation of its activity.174 The objective of this 
study was the fabrication of an efficient bioactive surface design for biosensing, by modifying 
gold electrode surfaces with one-step electrospun PVA-SbQ/MWCNT-COOH/GOx 
nanofibers. This configuration has never been tested until now (Table 4). Furthermore, 
MWCNTs-COOH have never been used as conductive fillers in PVA-SbQ NFs for any kind 
of application. 

                                                           
245 E.S. Cockburn, R.Stephen Davidson, and Julie E. Pratt, “The Photocrosslinking of Styrylpyridinium Salts via a 
[2 + 2]-Cycloaddition Reaction,” Journal of Photochemistry and Photobiology A: Chemistry 94, no. 1 (1996): 83–
88. 
246 Y. Shindo, et al., “Reactivities and Thermal Mechanical Properties of Polyvinyl alcohol and Poly(vinyl-b-
acrylic acid) with Pendant Styrylpyridinium Groups,” Journal of Photopolymer Science and Technology, 15 
(2002):153-158. 
247 Y. Liu et al., “Water Resistance of Photocrosslinked Polyvinyl Alcohol Based Fibers,” Materials Letters 63, no. 
3–4 (2009): 419–21. 
248 Jeongwoo Lee et al., “Measurement of the Dispersion Stability of Pristine and Surface-Modified Multiwalled 
Carbon Nanotubes in Various Nonpolar and Polar Solvents,” Measurement Science and Technology 18, no. 12 
(2007): 3707–12. 

Figure 40. PVA-SbQ entrapment of enzymes. Extracted from Ref 32. 
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Table 4. Relevant amperometric enzymatic biosensors based on electrospun polymer nanofibers. 
 

Polymer Enzyme  Nanomaterials Electrode Dynamic 
range 

LOD Ref 

 
Encapsulation of enzyme in the polymer before electrospinning 
 

PVA 
Reticulation with 

GA 

GOx  None Au 1mM – 10 
mM 

50 μM 249 

PVA 
Reticulation with 

GA 

GOx  Graphene (20 
ppm) 

Pt 0 – 15 mM NR 250 

PVA/chitosan/ 
Nafion layer 

GOx  Graphene oxide Pt 5 μM – 3.5 
mM 

5 μM 173 

Silica-PVA Tyrosinase 
encapsulated  

None ITO  0 – 100 mM 10 μM 251 

 
Immobilization of enzyme after electrospinning 
 

Carbon  GOx  None SPE 0 – 20 mM NR 252 
Nylon 

6,6/PBIBA 
GOX  MWCNTs Graphite  0.01 mM – 2 

mM 
10 μM 45 

Chitosan/CNTs Uricase  CNTs Au modified 
with AgNPs  

1μM – 0.4 
mM 

1 μM 253 

polyacrylonitrile Polyphenol 
oxidase  

CNTs PPO 
modified 

PAN–NH2–
CNT fibers 

0 – 1 mM 0.9 μM 254 

 
 In this chapter, PVA bearing UV cross-linkable pendent styrylpyridinium groups (PVA-
SbQ) was used as polymer matrix to enable a fast, easy and soft cross-linking step without 
any added chemicals. Different electrospinning parameters including flow rate, applied 
voltage, distance between tip and collector, polymer concentration were tailored to produce 
PVA-SbQ/MWCNT-COOH nanofibers (NFs) with minimal beading. The electrochemical 
properties of electrospun PVA-SbQ/MWCNT-COOH nanofibrous mats were characterized by 
cyclic voltammetry and electrochemical impedance spectroscopy. Scanning electron 

                                                           
249 Guanglei Ren et al., “Electrospun Poly(vinyl Alcohol)/glucose Oxidase Biocomposite Membranes for 
Biosensor Applications,” Reactive and Functional Polymers 66, no. 12 (2006): 1559–64. 
250 C. M. Wu, “Graphene Modified Electrospun Poly(vinyl Alcohol) Nanofibrous Membranes for Glucose Oxidase 
Immobilization,” Express Polymer Letters 8, no. 8 (2014): 565–73. 
251 Dennis A. Oriero et al., “Electrospun Biocatalytic Hybrid silica–PVA-Tyrosinase Fiber Mats for Electrochemical 
Detection of Phenols,” Microchemical Journal 118 (2015): 166–75. 
252 Tae-Sung Bae et al., “Effects of Carbon Structure Orientation on the Performance of Glucose Sensors 
Fabricated from Electrospun Carbon Fibers,” Journal of Non-Crystalline Solids 358, no. 3 (2012): 544–49. 
253 Apon Numnuam, Panote Thavarungkul, and Proespichaya Kanatharana, “An Amperometric Uric Acid 
Biosensor Based on Chitosan-Carbon Nanotubes Electrospun Nanofiber on Silver Nanoparticles,” Analytical and 
Bioanalytical Chemistry 406, no. 15 (2014): 3763–72. 
254 Mariem Bourourou et al., “Chemically Reduced Electrospun Polyacrilonitrile–carbon Nanotube Nanofibers 
Hydrogels as Electrode Material for Bioelectrochemical Applications,” Carbon 87 (2015): 233–38. 
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microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize 
the morphology of the nanofibers. The obtained biosensor enabled successful detection of 
glucose by cyclic voltammetry.  
 

II.2. Apparatus 

II.2.1. Instrumentation and Experimental Setup for Electrochemical Measurements 
 During all electrochemical experiments, cyclic voltammetry and electrochemical 
impedance spectroscopy were carried out using Voltalab 80 PGZ 402 analyzer (Hach Lange, 
France) in a 5 mL cell equipped with a conventional three electrode configuration as seen in 
figure 41. The analyzer was controlled by a software named “Voltamaster”. 
 

 

 

 

 

 

 

 

 
Electrochemical Cell 
 Cyclic voltammetry and impedimetric measurements were carried out by using a glass 
electrochemical cell with a conventional three electrode configuration: a working electrode 
(WE), a reference electrode (RE) and a counter electrode (CE) (figure 42). The geometry of 
the cell allows a well defined arrangement of three electrodes. As a matter of fact it is 
important to ensure a homogeneous current density at the working electrode and minimize the 
phenomenon of ohmic drop, maintaining the working electrode as close as possible to the 
counter electrode. The Working Electrode used for the electrochemical experiments was a 
macroelectrode consisted of a gold layer of thickness 300 nm, deposited by evaporation onto 
substrates of Si / SiO2 using an adhesion layer of 30 nm of titanium (Ti). The gold electrodes 
were fabricated by the French RENATECH network (Laboratoire d'Analyse et d'Architecture 
des Systèmes-LAAS, CNRS Toulouse). The active surface of the working electrode was 0.07 
cm2. The Reference Electrode used was a silver chloride electrode Ag/AgCl. A platinum 

Figure 41. Photograph of working area, presenting the Voltalab 80 PGZ 402 analyzer, the 
electrochemical cell equipped with a conventional three electrode configuration and the computer 
used during the electrochemical experiments. 
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electrode was used as Counter Electrode. The active surface of the counter electrode was 
0.29 cm2.  
 

  

 

 

 

 

 

 

 

 

II.2.2. Instrumentation and Experimental Setup for Electrospinning Technique 

 In this study, PVA-SbQ, PVA-SbQ/ MWCTNs-COOH and PVA-SbQ/ MWCTNs-
COOH/GOx nanofibers were fabricated by using the electrospinning technique. The NFs 
were fabricated by a home-made electrospinning device at the Institute of Nanotechnology of 
Lyon (INL) which is represented in figure 43.  

 

 

 

 

 

 

 

 

 

Figure 42. Schematic representation of the electrochemical cell used throughout the electrochemical 
experiments, equipped with a conventional three electrode configuration. 

Figure 43. Photograph of the home made electrospinning device used at this work. 
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 The spinneret was made of a glass syringe equipped with a luer lock port to connect 
blunt-end needles (22 gauge). To control the feed rate of the polymer solution with no 
induced fluctuations, a pneumatic jack driven by an electro-pneumatic regulator (ITV 1030, 
SMC) and controlled through a LabView interface was used. The electrical field was 
produced by a high voltage power supply (Spellman CZE1000R) delivering up to 30kV.  

II.3. Materials 
 Polyvinyl alcohol with styrylpyridinium pendent groups (PVA-SbQ SPP-H-13: degree 
of polymerization 1700, degree of saponification 88, betaine SbQ 1.3 mol%, solid content 
13.35wt%, pH 6.2) was purchased from Toyo Gesei, Glucose and Glucose Oxidase, GOx, 
from Aspergillus niger  was purchased from Sigma-Aldrich (Saint-Quentin-Fallavier, France). 
Carboxylated multi-walled carbon nanotubes (MWCNT-COOH, O.D. x L 100<nm x 5-10μm, 
purity >95%) were synthesized by Dr.Madjid Arab at Université du Sud Toulon Var – Institut 
Matériaux Microélectronique et Nanosciences de Provence, France. The multiwall carbon 
nanotubes were dispersed in aqueous solution (C=0.2 mg/mL) containing 2% (m/v) of SDS. 
All reagents were used without further purification. Phosphate saline buffer solutions were 
prepared with mono and dibasic phosphate (pH 7.2, 0.1M). 
 
 Glucose, is a sugar with the molecular formula C6H12O6 and molecular weight of 180.16 
g/mol. α-D-glucose is one of the 16 aldose stereoisomers. The D-isomer (figure 44) occurs 
widely in nature, but the L-isomer does not. Glucose is produced during photosynthesis from 
water and carbon dioxide, using energy from sunlight. The reverse of the photosynthesis 
reaction, which releases this energy, is a very important source of power for cellular 
respiration.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 44. Chemical formula of D-glucose. 
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 GOx enzyme is an oxido-reductase that catalyses the oxidation of of β-D-glucose to D-
glucono-1,5-lactone, which then hydrolyzes to gluconic acid. It is often extracted from 
Aspergillus niger.  

  
 GOx from Aspergillus Niger is a dimeric protein consisting of 2 equal subunits each 
with a molecular weight of 80 kDa. Each subunit contains one mole of flavin adenine 
dinucleotide and one mole of iron. The enzyme is a glycoprotein containing approximately 
16% neutral sugar and 2% amino sugar. The 
enzyme also contains 3 cysteine residues and 8 
potential sites for N-linked glycosylation. The 
oxidation reaction is performed by the FAD 
cofactors bound deep inside the enzyme, shown in 
red. The active site where glucose binds is just 
above the FAD, in a deep pocket shown with a 
star. Notice that the enzyme, like many proteins 
that act outside of cells, is covered with 
carbohydrate chains, shown in green. Some other 
characteristics may be found below: 
 
Molecular weight: 160 kDa (gel filtration) 
Extinction coefficient: E1%= 16.7 (280 nm)  
Isoelectric point: 4.2 
Optimal pH: 5.5 (broad activity range of pH 4-7) 
Inhibitors: Ag+, Hg2+, and Cu2+ ions, phenylmercuric acetate and p-chloromercuribenzoate 
inhibit glucose oxidase. Non metallic sulfhydryl reagents, such as N-ethylmaleimide, 
iodoacetate, and iodoacetamide, are not inhibitors. 
Substrates: Glucose oxidase is relatively specific for b-D-glucose (KM of 33-110 mM). It also 
oxidizes D-aldohexoses, monodeoxy-D-glucoses, and methyl- D-glucoses at varying rates. 
The following substrates are listed in decreasing order of oxidation rate: D-glucose, 2-deoxy-
D-glucose, 4-O-methyl-D-glucose, 6-deoxy-D-glucose, 4-deoxy-D-glucose, 3-deoxyD-
glucose, 3-O-methyl-D-glucose. 
 
 

Figure 45. 3-D structure of GOx. Extracted 
from RCSB PDB-101 (Protein Data Bank). 
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 Polyvinyl alcohol, PVA, is a water soluble synthetic polymer, white and odorless with 
chemical formula [CH2CH(OH)]n (figure 46). Unlike most vinyl polymers, PVA is not 
prepared by polymerization of the corresponding monomer. The monomer, vinyl alcohol, is 
unstable with respect to acetaldehyde. PVA is prepared by first polymerizing vinyl acetate, 
and the resulting poly(vinyl acetate) is converted to the PVA. The final properties of PVA 
mainly depend on the properties of its parent polymer, i.e., poly(vinyl acetate), its 
polymerization conditions and degree of hydrolysis.241 
 All multifunctional compounds capable of reacting with the hydroxyl group may be 
used as a cross linker of PVA, such as dialdehydes, dicarboxylic acids, dianhydrides, etc.240 
 

  

 

 

 

 As already mentioned the photocrosslinking behaviour and mechanism of PVA-SbQ 
have been systematically investigated by Ichimura et al.243, Shindo et al.246, Cockburn et al. 245 
and Liu et al.247 The SbQ pendant groups undergo [2+2]-cycloaddition reactions which 
crosslink the PVA backbones (Figure 47). 
 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 46. Chemical formula of PVA. 

Figure 47. Mechanism of photo-cross-linking of PVA-SbQ. Extrected from Ref 247. 
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MWCNTs-COOH- Synthesis and functionalization  
 MWCNTs were produced by aerosol-assisted catalytic chemical vapor deposition 
(AACCVD). The growth approach was based on the catalytic decomposition of liquid 
hydrocarbons by pyrolysing mixed aerosols containing both the hydrocarbon and the metallic 
source which simultaneously and continuously filled the reactor volume.255 The solution was 
prepared by dissolving 5 wt% of ferrocene in toluene. The experimental setup was composed 
of four different parts: an aerosol generator, a ceramic multi-piezoelectric generator, a quartz 
reactor placed in a furnace and a gas system inlet. The above solution was placed inside the 
ultrasonic aerosol generator which was connected to the reactor and an air flow of 400 mL 
min-1 was flushed inside the reactor. The temperature of the tubular furnace is then raised up 
to 820 °C in 1 h. As soon as the synthesis temperature was reached, the argon flow was 
increased to 1 L min-1. The piezoelectric ceramic, operating at 850 KHz, of the ultrasonic 
generator was then activated creating an aerosol at the gas-liquid interface which was carried 
by the argon flow through the heated quartz reactor. At the end of the experiment, the samples 
were then slowly collected and cooled down to room temperature.  
 In this study, the obtained multi-walled carbon nanotubes (MWCNTs) were used after 
being chemically surface-modified in mixed solvents of nitric and sulfuric acid (3:1 molar 
ratio) at 90 °C for 10 min, followed by high-energy sonication in ethanol for two hours.256 In 
this way the MWCNTs were functionalized with (-COOH) and hydroxylic (-COH) groups. 
Finally, the functionalized MWCNTs were collected by filtration, then washed with distilled 
water and dried in an oven at a temperature of 80 °C. They were finally dispersed in a 2% 
(m/v) SDS aqueous solution to achieve a 0.2 mg/mL concentration. 
 

 

 

 

 

 

 

 

                                                           
255 M. David et al., “Carbon Nanotubes/ceria Composite Layers Deposited on Surface Acoustic Wave Devices for 
Gas Detection at Room Temperature,” Thin Solid Films 520, no. 14 (2012): 4786–91. 
256 Jae Whan Cho et al., “Electroactive Shape-Memory Polyurethane Composites Incorporating Carbon 
Nanotubes,” Macromolecular Rapid Communications 26, no. 5 (2005): 412–16. 

Figure 48. TEM images of the above synthesized carboxylated multi-walled carbon nanotubes. 
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II.4. Experimental Section 

II.4.1. Preparation of the working electrodes 
 As mentioned in II.2.1., gold electrodes were used as working electrodes. Before 
functionalization, the gold electrodes were cleaned in an ultrasonic bath for 10 min in acetone 
and dried under a N2 flow, then dipped for 2 min at room temperature into a piranha solution, 
and then rinsed with ethanol. Between and after these treatments, the gold electrodes were 
rinsed thoroughly with ultrapure water. 
 
II.4.2. Preparation of electrospun solutions 
 For the fabrication of pure PVA-SbQ NFs, PVA-SbQ solutions (1.5, 5.3, 6.7 and 8 
wt%) were prepared by appropriate dilutions of the 13.3 wt% commercial solution in 
ultrapure water. Transparent and homogeneous solutions were obtained by stirring for 2h at 
room temperature. For the fabrication of PVA-SbQ/MWCNTs-COOH nanofibers, three PVA-
SbQ/ MWCNT-COOH suspensions containing 1, 5 and 10wt% of MWCNT-COOH with 
respect to the polymer mass were prepared. To do so, MWCNT-COOH at different 
concentrations (1, 5 and 10 wt% respectively) were added to PVA-SbQ solutions individually 
and the resulting PVA-SbQ/MWCNT-COOH suspensions were mechanically stirred for 3h 
and sonicated for 2h at ambient conditions to obtain homogeneous solutions. For the 
fabrication of PVA-SbQ/MWCNTs-COOH/GOx nanofibers, glucose oxidase (GOx) powder 
was added to each of the above mixtures (15mg enzyme per mL of polymer solution) and the 
resulting composites were stirred for another half an hour.  
 
 
 

 

 

 

 
II.4.3. Electrospinning: Fabrication of electrospun PVA-SbQ, PVA-SbQ/MWCNTs-
COOH and PVA-SbQ/MWCNTs-COOH/GOx NFs 
 

PVA-SbQ, PVA-SbQ/MWCNTs-COOH and PVA-SbQ/MWCNTs-COOH/GOx 
suspensions were loaded immediately after preparation into a glass syringe fitted with a 
stainless needle (0.644 mm I.D.), the cleaned working gold electrodes were placed on the 
collector inside the ES chamber and fibers were spun at room room temperature (23±2 °C) in 

Figure 49. To the left: PVA-SbQ solution (6.7 wt%) after stirring for 2h. To the right: PVA-
SbQ/MWCNT-COOH mixture containing 5wt% MWCNT-COOH with respect to the polymer mass after 
3h of stirring and 2h in ultasonication bath. 
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the dark in order to avoid photocrosslinking. The nanofibers were directly deposited on the 
surface of the electrodes. Since solution viscosity and conductivity varies with MWCNTs-
COOH concentration, electrospinning parameters (e.g. applied voltage, feed rate and 
collection distance) had to be adjusted in each experiment to limit bead formation. Optimal 
values found for the different MWCNTs-COOH loading are summarized in table at section 
II.5.1.2. These values were not significantly affected by the addition of GOx in the PVA-
SbQ/MWCNTs-COOH composite. 
 
II.4.4. Crosslinking of electrospun NFs 
 The electrospun NFs were irradiated for 10 min at 365nm in a Bio-link BLX UV- cross-
linker (Vilbert Lourmat) equipped with one 100 W UV lamp. All the treated mats were 
immersed into phosphate saline buffer (pH 7.2) to examine their water stability. 
 
II.4.5. Electrochemical Characterizations 
 Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) 
characterizations were all performed at room temperature. A Voltalab 80 PGZ 402 analyzer 
and a 5 mL cell equipped with a conventional three electrode configuration were employed, as 
described in section II.2.1. 
 
II.4.5.1. PVA-SbQ NF and PVA-SbQ/MWCNTs-COOH NF modified electrodes 
 EIS characterization of PVA-SbQ NF and PVA-SbQ/MWCNTs-COOH NF modified 
electrodes were carried out in 0.1 M phosphate saline buffer (PBS) pH 7.2 containing 10 mM 
K3Fe(CN)6

3- and K4Fe(CN)6
4-, varying the frequency in the 100mHz to 100kHz range and 

acquiring 5 points per decade. An excitation voltage of 10mV was superimposed on a dc 
potential of -300mV. Impedance data were fitted to equivalent electrical circuits by means of 
the ZView2 software (Scribner Associates Inc, Southern Pines, USA). The same electrodes 
were also characterized by CV, the potential being cycled from -400 and +600 mV (versus 
Ag/AgCl) with a scan speed of 100 mV/s. 0.1M PBS buffer pH 7.2 containing 10 mM 
K3Fe(CN)6

3- and K4Fe(CN)6
4- was chosen as electrolyte. After each measurement, the 

electrolyte solution was refreshed, and the electrodes were washed with distilled water to 
remove any residues. 
 
II.4.5.2. PVA-SbQ/MWCNTs-COOH/GOx NF modified electrodes 
 Biosensing experiments were performed by injecting glucose from mother solution into 
the 4 mL electrochemical cell containing the PVA-SbQ/MWCNT-COOH/GOx NF modified 
electrodes and 0.1 M PBS pH 7.2 as electrolyte.  After 5 min reaction, CV was perfomed at 
50mV/s in the 0-800 mV range for the specific detection of hydrogen peroxide. Three 
replicates were performed for each glucose concentration and related standard deviations were 
calculated. 
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II.4.6. Characterization of NFs morphology 
 Fiber mats were characterized by transmission electron microscopy (TEM) using a  
Philips CM120 instrument operating at an accelerating voltage of 120 kV and by scanning 
electron microscopy with a TESCAN MIRA3 FEG-SEM microscope after sample 
metallization (2 nm Pt or Cr).  
 

II.5. Results and Discussion 

II.5.1. Optimization study of ES parameters for the fabrication of nanofibrous mats 

 It is known that surface morphology of electrospun NFs may be affected by different 
parameters, which may be divided into three main categories: i) solution parameters, i.e. 
concentration and molecular weight of the polymer, viscosity, conductivity and surface 
tension, ii) processing parameters, i.e. applied voltage, collection distance, feed rate, iii) 
ambient parameters, i.e. humidity, temperature.87 In our study, temperature was regulated at 
23 2 °C and all the processing parameters were carefully adjusted in each experiment to 
produce smooth and uniform fibers without beads and drops. 
 
II.5.1.1. Optimization of PVA-SbQ concentration  
 The influence of PVA-SbQ concentration on NFs morphology was first investigated by 
pure polymer solutions. Four concentrations, 1.5, 5.3, 6.7 and 8 wt% of PVA-SbQ were 
tested. We observed that it was not possible to produce NFs at the lowest polymer 
concentration due to the insufficient viscocity of the solution for ES. At 5.3 wt% 
concentration value, polymer chain entanglements were still insufficient to achieve complete 
stabilization of the jet but the jet was produced and the contraction of its diameter driven by 
the surface tension caused the solution to form beads. Increasing PVA-SbQ concentration 
from 5.3 up to 6.7 and finally 8 wt%, helped solving this issue and pure fibers were generated. 
However, the 8wt% PVA-SbQ solutions supplemented with carbon nanotubes appeared as 
hardly electrospinnable due to the very high viscocity that the blend exhibited. The 6.7 wt% 
concentration was therefore selected for further experiments.  
 
II.5.1.2. Influence of MWCNTs-COOH loading on ES parameters for the fabrication of 
PVA-SbQ/ MWCNTs-COOH NFs 
 Since PVA-SbQ solution viscosity and conductivity varies with MWCNTs-COOH 
concentration, electrospinning parameters (e.g. applied voltage, feed rate and collection 
distance) had to be adjusted in each experiment to limit bead formation during the fabrication 
of PVA-SbQ/ MWCNTs-COOH NFs. To do so, a wide range of applied voltage (10-18kV), 
tip-to-collector distance (9-23cm) and feed rate (1-3 mL/h) were tested in order to find the 
optimal conditions. Optimal values found for the different MWCNTs-COOH loadings are 
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summarized in Table 5. These values were not significantly affected by the presence of GOx 
in the polymer composite during the fabrication of PVA-SbQ/ MWCNTs-COOH/GOx NFs. 
 
Table 5. Optimal electrospinning process parameters for the different MWCNT loadings. 6.7 wt % 
PVA-SbQ concentration, needle i.d.: 0.644 mm, deposition time : 1 min. 

Polymer 
Matrix 
(wt%) 

MWCNT-COOH 
loading 
(wt%) 

Feed Rate  
 

(mL/h) 

Distance from 
Collector 

(cm) 

Applied Voltage 
(kV) 

 
6.7 

1 2.0 10 10 
5 1.0 10 12 
10 3.0 15 14 

 
 
II.5.2. Morphological Characterization of PVA-SbQ, PVA-SbQ/MWCNTs-COOH NFs 

and PVA-SbQ/MWCNTs-COOH/GOx NFs 

 PVA-SbQ/MWCNT-COOH nanofibers obtained from the 6.7 wt% PVA-SbQ solution 
containing 1%, 5% and 10% MWCNTs are named as PVA-SbQ/1MWCNT, PVA-
SbQ/5MWCNT, and PVA-SbQ/10MWCNT, respectively. SEM and TEM images of the pure 
PVA-SbQ NFs revealed a perfectly smooth fiber surface (figures 50a and 51a) with average 
diameter (AFD) of 350 20nm. PVA-SbQ/MWCNTs-COOH NFs containing 1 and 5wt% 
MWCNTs-COOH with respect to the polymer mass were also bead free and slightly less 
uniform than pure PVA-SbQ NFs, with an AFD of 250 50nm for both MWCNT-COOHs 
concentrations. They exhibited a slighty smaller diameter and a narrowest distribution, when 
compared to pure PVA-SbQ NFs.  
 Thus, it was concluded that the incorporation of nanotubes reduces the average diameter 
of the NFs (figures 50b and 50c). The observed decrease of the AFD with the increase of 
CNTs concentration in the composite, is in good agreement with results generally reported in 
the literature257, 258, 259, 260, 261 for PVA polymeric matrices and for Nylon matrix.45 It is known 
that incorporation of CNTs has a significant impact on both the electrospinnability of polymer 
solutions and the morphological and electrical properties of the produced NFs.254, 262 The 
reduced fiber diameter for the MWCNT/PVA NFs is presumably due to increased stretching 

                                                           
257 O. Koysuren, “Preparation and Characterization of Polyvinyl Alcohol/carbon Nanotube (PVA/CNT) 
Conductive Nanofibers,” Journal of Polymer Engineering 32, no. 6–7 (2012): 407–13. 
258 G.R. Rakesh, “A Facile Route for Controlled Alignment of Carbon Nanotube-Reinforced, Electrospun 
Nanofibers Using Slotted Collector Plates,” Express Polymer Letters 9, no. 2 (2014): 105–18. 
259 M. Naebe et al., “Electrospun Single-Walled Carbon Nanotube/polyvinyl Alcohol Composite Nanofibers: 
Structure–property Relationships,” Nanotechnology 19, no. 30 (2008): 305702. 
260 N. Diouri and M. Baitoul, “Effect of Carbon Nanotubes Dispersion on Morphology, Internal Structure and 
Thermal Stability of Electrospun Poly(vinyl Alcohol)/carbon Nanotubes Nanofibers,” Optical and Quantum 
Electronics 46, no. 1 (2014): 259–69. 
261 K.K.H. Wong et al., “The Effect of Carbon Nanotube Aspect Ratio and Loading on the Elastic Modulus of 
Electrospun Poly(vinyl Alcohol)-Carbon Nanotube Hybrid Fibers,” Carbon 47, no. 11 (2009): 2571–78. 
262 N. Ning et al., “Dramatically Improved Dielectric Properties of Polymer Composites by Controlling the 
Alignment of Carbon Nanotubes in Matrix,” RSC Adv. 4, no. 9 (2014): 4543–51. 
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of the fiber diameter during ES, as a result of increased charge when the conductive CNTs 
were present in the polymer solution. Therefore, CNTs act as lubricant in electrospinning 
solution and thereby induce homogenization and shrinkage of composite nanofibers. 

Embedded nanotubes, well dispersed in the polymer matrix and some aligned along the 
NFs direction, were detected by TEM after the study of PVA-SbQ/MWCNTs-COOH NFs 
containing 1 and 5 wt% MWCNTs-COOH with respect to the polymer mass. (figures 51b and 
51c). The hydrogen bonding interactions between the hydroxyl groups present in PVA-SbQ 
and carboxyl groups present on the acid treated MWCNTs can also contribute to the reduction 
in PVA-SbQ/MWCNT-COOH NFs diameter and alignment by favouring MWCNT-COOHs 
dispersion into the PVA-SbQ solution.258, 263   

On the contrary, the formation of beads could not be avoided at the highest MWCNT-
COOH concentration tested (10wt%) and a significant increase of AFD  which corresponds to 
450 100 nm was observed (figure 50d). The significant increase in fibers diameter and the 
non uniformity of fiber shape for PVA-SbQ/10MWCNT-COOH could be the result of poor 
alignment of MWCNT inside the fibers and the formation of MWCNT-COOH agglomerates. 
This speculation was supported by TEM images showing the presence of clusters of coiled/ 
bundles CNTs inside the fibers (figure 51d). It is reported by Wong et al.261 that once the CNT 
loading reach a certain level, the CNTs inevitably form bundles and clusters and distribute 
non uniformly within the fibers. 

All and all, it is important to say that since in this study voltage and feed rate were 
adjusted during the fabrication process each time to reduce bead formation, the diameter of 
the obtained fibers is not only dependent of MWCNT-COOH concentration as reported in 
literature, but also to the ES parameters. 
 Finally, the morphology of PVA-SbQ/MWCNT-COOH fibers was further investigated 
after the incorporation of GOx in the electrospun mixture. The proportion of added enzyme 
was 30 wt% with respect to the polymer mass. It was observed that the addition of GOx in the 
mixture which was electrospun did not affect the electrospinning parameters, since voltage, 
feed rate and collection distance were the same in the presence and in the absence of GOx. 
Furthermore, in this work it was shown that after the incorporation of GOx inside the fibers 
no obvious change had been recorded in the diameter of PVA-SbQ/5MWCNT-COOH/GOx 
fibers comparing to PVA-SbQ/5MWCNT-COOH fibers, which is in good agreement with 
what has been reported in the literature for protein concentration lower than 50%. 237, 249, 264, 

265  In addition, smooth fiber surfaces, along with the uniformly distributed fiber sizes, suggest 
that PVA and enzymes are well mixed due to polar interactions between PVA and enzyme. 

                                                           
263 S. Sarkar et al., “Polymer-Derived Ceramic Composite Fibers with Aligned Pristine Multiwalled Carbon 
Nanotubes,” ACS Applied Materials & Interfaces 2, no. 4 (2010): 1150–56. 
264 Y. Wang and Y.L. Hsieh, “Immobilization of Lipase Enzyme in Polyvinyl Alcohol (PVA) Nanofibrous 
Membranes,” Journal of Membrane Science 309, no. 1–2 (2008): 73–81. 
265 A. Moradzadegan et al., “Immobilization of Acetylcholinesterase in Nanofibrous PVA/BSA Membranes by 
Electrospinning,” Engineering in Life Sciences 10, no. 1 (2010): 57–64. 
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Figure 51. Representative TEM images of a) pure PVA-SbQ, b) PVA-SbQ/1MWCNT-COOH, c) PVA-
SbQ/5MWCNT-COOH and d) PVA-SbQ/10MWCNT-COOH under optimum conditions. 

Figure 50. Representative SEM images of a) pure PVA-SbQ, b) PVA-SbQ/1MWCNT-COOH, c) PVA-
SbQ/5MWCNT-COOH, d)PVA-SbQ/10MWCNT-COOH under optimum conditions and fiber diameter 
distribution histograms of the above electrospun fibers. 
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II.5.3. Optimization of the post-electrospinning photo-crosslinking step 
 Since the PVA-SbQ used for electrospinning is a water-soluble polymer, the formed 
electrospun PVA-SbQ and PVA-SbQ/MWCNT-COOH/GOx NFs dissolve immediately upon 
coming into contact with aqueous solutions. To retain their water stability a crosslinking step 
was necessary. For this purpose, the NFs were irradiated by a 100-W UV lamp. Different 
exposure times (from 0 to 30 min) were tested. The morphology of cross-linked NFs, as 
observed by SEM, was compared to the one observed after soaking in PBS for various times 
in the 0-14h range. As expected, the nanofibrous mats dissolved immediately after immersion 
in PBS in absence of irradiation. Setting irradiation time to 10 or 30 min helped preventing 
NFs dissolution by inducing cross-linking reaction. Immersion into PBS resulted in a slight 
swelling of the NFs, but the overall morphology was retained, even after 14h of contact. It 
was observed that swelling was maximal after 1h, whatever the irradiation time. Figure 52 
shows the effect of immersion on the cross-linked NFs morphology. However, 10-min cross-
linking time was finally selected since it was proven that after irradiation of the PVA-
SbQ/MWCNTs-COOH/GOx NFs for 10 min a CV signal was recorded proving that the 
enzyme retains its activity, whereas after irradiation for 30 min no CV signal could be further 
detected demonstrating a loss of enzyme activity.  
 
 

 

 

 

 

.  

 

 

 

 

 

 

 

Figure 52. SEM images of crosslinked PVA-SbQ/5MWCNT fibers before and after exposure to UV light 
for 10 min, and after immersion in phosphate buffer solution (0.1M, pH 7.2) for 3h. 
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II.5.4. Electrochemical Characterization of PVA-SbQ and PVA-SbQ/MWCNTs-COOH 
NFs 
 In order to confirm the influence of carbon nanotubes loading on the electrical 
properties of nanofibrous mats, cyclic voltammetry and electrochemical impedance 
spectroscopy were employed. CVs were recorded in 10mM at pH 7.2 at scan rate 100mV/s 
using Fe(CN)6

3-/Fe(CN)6
4- couple as a redox probe. The potential was repetitively cycled until 

several consecutive curves were superimposed. Cyclic voltagrammograms were recorded 
before and after the functionalization of the electrode surface with the nanofibrous mats. 
Potential separation of redox peaks and current density of peak maximum in CVs can be 
correlated to the electron transfer properties of the NF mat modified gold electrodes.  
 As seen in figure 53, both oxidation and reduction peaks of the Fe(CN)6

3-/Fe(CN)6
4- 

couple could be clearly detected before the modification of the gold electrode with NF mats. 
The separation between anodic and cathodic peak potentials (ΔEp=Epa-Epc) was 155mV. A 
large increase of ΔEp up to 510mV was observed together with a drastic decrease of the 
anodic peak intensity (Ipa) from 1150 to 25 μA·cm-2 following the modification of the gold 
electrode surface with pure PVA-SbQ NFs. This result could be attributed to the electrical 
insulating properties of PVA-SbQ polymer.  
 Further incorporation of MWCNTs-COOH into the fibers led to a significant 
improvement of the charge transfer efficiency through the mat. Ipa intensities reached 137, 204 
and 398 μA·cm-2 for 1%, 5% and 10% of MWCNTs-COOH respectively. This result is 
consistent with the larger electroactive surface exhibited by PVA/MWCNTs modified 
electrodes.266 Electrons may be transfered through the insulating polymer layers that separate 
CNTs by a tunneling mechanism during conduction. The size of CNT agglomerates could be 
reduced by using an ultrasonic bath for dispersion into SDS/water mixture. Owing to the 
excellent conductivity of CNTs, electrical resistivity decreases with increasing content of the 
conductive nanoobjects. Alignment of the nanotubes plays an important role in the conductive 
properties of the NFs, as observed by several authors.257,  262  
 The electronic transfer properties of the bare, pure PVA-SbQ and PVA-SQ/MWCNTs-
COOH modified gold electrodes were also characterized by EIS by varying the frequency in 
the 100mHz to 100 kHz range at a constant potential of -300mV. The Nyquist plots were 
repetitively cycled until several consecutive plots were superimposed. EIS is a very powerful 
technique to explore metal electrode/aqueous electrolyte interfaces and it has been extensively 
used.267 Nyquist plots of bare and modified electrodes presented in Figure 54, were 
satisfactorily fitted (χ2 = 6x10-3) with a Randles-Ehrshler equivalent electrical circuit which 
comprised the ohmic resistance of the bulk electrolyte (Rs) in series with a parallel 

                                                           
266 Y.C. Tsai and J.D. Huang, “Poly(vinyl Alcohol)-Assisted Dispersion of Multiwalled Carbon Nanotubes in 
Aqueous Solution for Electroanalysis,” Electrochemistry Communications 8, no. 6 (2006): 956–60. 
267 E.P. Randviir and C.E. Banks, “Electrochemical Impedance Spectroscopy: An Overview of Bioanalytical 
Applications,” Analytical Methods 5, no. 5 (2013): 1098. 
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combination of the constant phase element (CPE) as non-ideal capacitor and the Warburg 
resistance, Zw, resulting from ion diffusion from the bulk electrolyte to the electrode interface, 
in series with the interfacial charge resistance resistance (Rct) (figure 55) Due to the surface 
heterogeneity, the impedance Z(ω) of such an non-ideal layer can be expressed as   
Z(ω)=CPE-1 (jω)-n, where ω is a circular frequency and n parameter varies from 0 to 1.267 
 From the Nquist plots fitting, it was concluded that CPE behave as capacitance since 
values of n (=0.9) were close to 1. A value of 43.8 μF/cm2 was obtained for PVA-SbQ NF 
modified electrode and this value increased by 10% in presence of 1% of MWCNTs, showing 
that the dielectric constant of the composite was increased. As it can be seen in table 6, the 
incorporation of 1, 5 and 10% of MWCNT-COOH into PVA-SbQ NFs induced a 11, 30 and 
60% decrease of RCT value. These results are consistent with those obtained by cyclic 
voltammetry: the decrease of charge transfer resistance reflects the enhancement of the charge 
transfer, due to the increase of the conductivity of the PVA-SbQ/ MWCNTs-COOH NFs. 
 
Table 6. RCT values of PVA-SbQ nanofibrous mats containing 0, 1, 5 and 10% of MWCNTs-COOH 
respectively. 

Nanofibrous 
Mat 

Pure PVA-
SbQ 

PVA-SbQ/1 
MWCNT-COOH 

PVA-SbQ/5 
MWCNT-COOH 

PVA-SbQ/10 
MWCNT-COOH 

RCT (kΩ·cm-2) 14.89 13.21 10.41 5.86 
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Figure 53. Cyclic voltammograms of modified gold electrodes by different electrospun nanofibrous 
mats (in [Fe(CN)6]3-/4- aqueous solution, pH 7.2, scan rate 100mV s-1). 
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Figure 54. Nyquist plots of impedance spectra obtained at a frequency range between 100 mHz to 
100 kHz, at -300 mV, upon increasing concentration of MWCNTs-COOH in the electrospun PVA-SbQ 
nanofibers. The EIS were recorded in the presence of a 10mM [Fe(CN)6]3-/4- aqueous solution. 
 

 

 

 

 
 Therefore, based on the results of the morphological and electrochemical 
characterizations we have selected to work with PVA-SbQ/5MWCNT NFs for the elaboration 
of the biosensor because they satisfied both the requirements of smooth, bead-free 
morphology and enhanced electrical properties. 
 
II.5.5. Biosensor Application 
II.5.5.1. Electroanalytical Characterization 
 The electroanalytic characterization of the glucose biosensors was performed by using 
CV as the detection technique (Figure 56), recording the current density at the PVA-
SbQ/5MWCNT-COOH/GOx NFs modified electrode at different concentrations of GOx 
substrate (glucose) after 10 min of contact. This time was sufficient to achieve a stable signal 
for each injected concentration.  

As seen in Figure 56, the biosensor signal increased with glucose concentration in the 0-
4 mM range. No peak could be detected in the same conditions in the absence of GOx (i.e. 
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Figure 55. The Randles-Ehrshler model. Rs represents the ohmic resistance of the electrolyte solution, 
Rct the charge transfer resistance, Zw the Warburg impedance and CPE the constant phase element. 
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with the PVA-SbQ/5MWCNT-COOH NFs control electrode) independently on the added 
glucose concentration up to 4 mM, demonstrating that CV signal recorded for the PVA-
SbQ/5MWCNT-COOH NFs biosensor is only due to glucose oxidation catalyzed by the 
immobilized GOx inside the fibers. In presence of dissolved oxygen, this reaction produces 
gluconic acid and hydrogen peroxide according to equation: Glucose + O2  Gluconic acid + 
H2O2. The current density measured by CV (Figure 56) corresponds to hydrogen peroxide 
oxidation at the electrode: H2O2  O2 + 2H+ + 2e-. The hydrogen peroxide is detected through 
its oxidation peak, which was recorded at 527 mV/Ag/Ag/AgCl.The oxidation of H2O2 at 
conventional solid electrodes needs a high overpotential as high as +900mV/ Ag/Ag/AgCl, 
but wiring of enzyme with conductive nanomaterials is known to decrease this potential value 
until +300mV/ Ag/Ag/AgCl.75 In the present study, the favorable hydrophilic environment of 
GOx preserves its catalytic activity and the vicinity of GOx with MWCNTs allows a better 
electron transfer rate and a rather low potential value is required for H2O2 oxidation: 527 mV/ 
Ag/Ag/AgCl. 

 
II.5.5.2. Analytical performance of the glucose biosensor 
 Figure 57 shows the calibration curve obtained by plotting current density versus 
log(glucose concentration)  for  the  PVA-SbQ/5MWCNT-COOH/GOx NFs  biosensor.  The 
biosensor signal was linear up to 4mM range and the resulting calibration curve had an R-
squared value of 0.984. The limit of detection (LOD), calculated as the concentration of 
glucose giving a signal equal to three times the standard deviation on the blank (i.e. in 
absence of glucose) was 2μM. As seen in Table 7, the proposed biosensor exhibited a wide 
linear range and a LOD lower than most of the amperometric glucose biosensors based on 
electrospun NFs already reported in the literature. It offers the advantage to be easy and more 
rapid to prepare. 

The relative standard deviations calculated from three consecutive measurements on one 
single biosensor were lower than 5% in the 5μM-4mM range, showing an excellent 
repeatability of the proposed biosensor.  Inter-sensor reproducibility of the method was also 
rather good as the relative standard deviation, calculated from the analysis of the 5 μM 
glucose solution using five different biosensors, was 12%.  
 Additionally, operational and storage stabilities were determined. There exists no 
decrease of the PVA-SbQ/5MWCNT-COOH/GOx biosensor response subsequent after 10 
measurements of the 2mM glucose solution, performed the same day. In the same way, CV 
signal remained stable for 5 days when the biosensor was tested once a day at the 2 mM 
glucose concentration and the biosensor was kept at 4°C between two measurements. These 
results demonstrate the good operational and storage stabilities of the PVA-SbQ/5MWCNT-
COOH/GOx NFs biosensor. 
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Figure 56. Influence of glucose concentration on the PVA-SbQ/5MWCNTs-COOH/GOx NFs biosensor 
response. Cyclic voltammograms recorded in PBS 0.1M, pH 7.2, at a scan rate of 50mV s-1, 10 min 
after glucose injection. 
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Figure 57. Calibration curve of the PVA-SbQ/5MWCNT-COOH/GOx NFs biosensor (in PBS 0.1M, pH 
7.2). Error bars represent standard deviations obtained from three successive measurements. 
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Table 7. Comparison of proposed biosensor with amperometric glucose biosensors in the 
literature based on GOx and electrospun NFs. 
 

 
 
II.6. Conclusion and Perspectives 
 In the present study, a one-step elaboration of PVA-SbQ/MWCNT-COOH/GOx 
electrospun nanofibrous mats followed by a rapid and facile photochemical cross-linking step 
was proposed and these electroactive surfaces were further evaluated for electrochemical 
biosensor application. The combination of MWCNTs and PVA-SbQ polymer improved the 
electron transfer ability of the generated nanofibrous mats and preserved enzyme activity.  
 The resulting glucose biosensor exhibited high Imax, was linear in a wide range of 
glucose concentration (up to 4mM) and a very low LOD value (2μM) was achieved. This 
approach of blending enzyme, MWCNTs-COOH, and water-soluble polymers offers a simple 
method to produce biologically active electrospun fibers and thus fabricating novel 
electroactive platforms for enzyme immobilization in one-step synthesis. Most importantly, 
enzymes remained active and accessible to the substrate regardless its affinity to the host 
polymer. This study paves the way for the engineering of new generation biosensing systems 
with improved sensitivity and superior performance compared to existing biosensors. This 
novel nanofiber based platform is not only limited to enzymatic biosensor and it could also be 
used for the development of immunobiosensors, nucleic acid biosensor, etc. 
 
                                                           
268 S.Huang et al., “Glucose Biosensor Using Glucose Oxidase and Electrospun Mn2O3-Ag Nanofibers,” 
Electroanalysis 23, no. 8 (2011): 1912–20. 
269 Y. Huang et al., “Fabrication of a Chitosan/glucose Oxidase–poly (anilineboronic acid)–Au nano/Au-Plated Au 
Electrode for Biosensor and Biofuel Cell,” Biosensors and Bioelectronics 31, no. 1 (2012): 357–62. 

Immobilization Matrix Detection Limit ( 
μM) 

Linear Range Reference 

Nylon 6.6/PBIBA fibers/GOx NFs 18  0.02-2 mM Uzun 2014 45  

Nylon 6.6/4MWCNT/PBIBA NFs  9  0.01-2 mM Uzun 2014 45  

Mn2O3-Ag NFs  1.73  up to 1.1 mM Huang 2011268 

PANCAA /MWCNT/ GOx 670 0.67-7 mM Wang 2009 169 

Nafion/PVA/Chitosan/GOx/GO 
NFs  

5  0.005-3.5 mM Su 2013 173 

CS/AuNPs/ GOx NFs 2 0.01-2 mM Huang 2012269 

PVA-SbQ/5MWCNT-COOH/GOx 
NFs 

2 0.001-4 mM this work 
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III.1. Introduction 
 In the previous chapter, we demonstrated that electrospun PVA NFs nanofibers may act 
as a suitable immobilization matrix for GOx and may be used for the elaboration of very 
performing electrochemical biosensors for glucose detection, the enzyme remaining active 
and accessible to the substrate. NFs were produced by electrospinning GOx/PVA solutions 
containing dispersed carboxylated CNTs. Herein, a second approach was evaluated, which 
consists in immobilizing GOx in electrospun NFs and decorating them with gold 
nanoparticles. PVA/ polyethyleneimine (PEI) blend solutions were investigated for the 
elaboration of the NFs. PEI is a polycationic water soluble polymer bearing ionized amino 
groups able to interact with anionic groups located at proteins surface and constitutes a good 
matrix for enzyme stabilization.270 It has already been used for tissue engineering scaffolds,271 
catalytic184 and biosensor applications.272 However, electrospinning of PEI itself in aqueous 
solutions does not generate ultra-fine fibers due to the strong polarity and hydrophilicity273 of 
the polymer and the formation of intermolecular hydrogen bondings.  
 Blending PEI and PVA produces flexible networks of high porosity with enhanced 
mechanical strength and thermal stability due to the formation of strong hydrogen bondings 
between amino groups of the PEI chain and hydroxyl groups of the PVA chain274  and it was 
shown that electrospinning of the blend275 could result in ultrafine PEI/PVA NFs of enhanced 
mechanical properties, thus making them promising candidates for biosensing.275 The fast 
dissolution of PVA/PEI nanofibers (NFs) in aqueous solution, as observed for PVA alone, 
could be overcomed by a crosslinking step.276  

In this chapter we report the fabrication of a highly sensitive, stable and efficient 
bioactive surface design for biosensing, by modifying the gold electrode surfaces with one-
step water-stable electrospun polyvinyl alcohol/polyethyleneimine (PVA/PEI) nanofibers 
incorporating glucose oxidase (PVA/PEI/GOx NFs), followed by their uniform decoration 
with pH-tunable densities of citrate AuNPs. In spite of the attractive properties of PVA/PEI 
blends and their abundant use for the production of functional membranes, they have been 

                                                           
270 J.M. Bolivar et al., “Coating of Soluble and Immobilized Enzymes with Ionic Polymers: Full Stabilization of the 
Quaternary Structure of Multimeric Enzymes,” Biomacromolecules 10, no. 4 (2009): 742–47. 
271 N. Khanam et al., “Electrospun Linear Polyethyleneimine Scaffolds for Cell Growth,” Acta Biomaterialia 3, 
no. 6 (2007): 1050–59. 
272 S. Kurunczi et al., “Polyethylene Imine-Based Receptor Immobilization for Label Free Bioassays,” Sensors and 
Actuators B: Chemical 181 (May 2013): 71–76. 
273 C. Dong et al., “Preparation of PVA/PEI Ultra-Fine Fibers and Their Composite Membrane with PLA by 
Electrospinning,” Journal of Biomaterials Science, Polymer Edition 17, no. 6 (2006): 631–43. 
274 Sua Choi, Duck Kun Hwang, and Heon Sang Lee, “Thermal Properties in Strong Hydrogen Bonding Systems 
Composed of Poly(vinyl Alcohol), Polyethyleneimine, and Graphene Oxide,” Carbon Letters 15, no. 4 (2014): 
282–89. 
275 X. Fang et al., “Fabrication and Characterization of Water-Stable Electrospun Polyethyleneimine/polyvinyl 
Alcohol Nanofibers with Super Dyesorption Capability,” New J. Chem. 35, no. 2 (2011): 360–68. 
276 C. Tang et al., “In Situ Cross-Linking of Electrospun Poly(vinyl Alcohol) Nanofibers,” Macromolecules 43, no. 2 
(2010): 630–37. 
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rarely exploited for the elaboration of biosensors175 and this is the first time that cross-linked 
PVA/PEI/GOx NFs decorated with Au nanoparticles are proposed for this purpose.  

Firstly, adhesion improvement of the electrospun PVA/PEI/GOx NFs onto the gold 
electrode surface by modifying the surface with a conductive self-assembled monolayer 
(SAM) was investigated. For the formation of the SAMs, 4-aminothiophenol was used, 
bearing thiol groups for covalent bonding to the gold surface and amine groups which reacted 
with the amine groups of PEI in a following crosslinking step.   

Then, different electrospinning parameters including flow rate, applied voltage, distance 
between tip and collector, polymer concentration were tailored to produce PVA/PEI NFs with 
minimal beading. The NFs were rendered water insoluble via exposure to glutaraldehyde 
vapours and their conductive properties were significantly improved by pH-tunable 
decoration with AuNPs. The effect of pH of Au colloidal solutions on the assembly of AuNPs 
on water-stable PVA/PEI nanofibers was investigated.  

The electrochemical properties of electrospun PVA/PEI and PVA/PEI/AuNPs 
nanofibrous mats were characterized by cyclic voltammetry and electrochemical impedance 
spectroscopy. Scanning electron microscopy (SEM) was used to characterize the morphology 
of the NFs. GOx, used as model enzyme, was further incorporated into the PVA/PEI mixture, 
before electrospinning, resulting to the fabrication of PVA/PEI/GOx NFs. The analytical 
performances of the produced NFs were finally determined. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 

Figure 58. Schematic representation of the working principle of the fabricated biosensor. 
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III.2. Materials 
 Polyvinyl alcohol powder (PVA, average Mw:85,000-124,000, 87-89% hydrolyzed), 
Polyethyleneimine (PEI, , average Mn 60,000 by GPC, average Mw 750,000 by LS, 50wt% 
in H2O), 4-aminothiophenol (ATP), Glutaraldehyde (GA, 25wt% aqueous solution), Glucose 
and GOx, from Aspergillus niger was purchased from Sigma-Aldrich (Saint-Quentin-
Fallavier, France). Citrate gold nanoparticles (diameter: 23 5 nm) were synthesized in the 
Laboratoire Hubert Curien (University Jean Monnet, Saint-Etienne, France). All reagents 
were used without further purification. Phosphate saline buffer solutions were prepared using 
monopotassic and dibasic phosphate, sodium and potassium chloride from Sigma-Aldrich (pH 
adjuste at 5.0 with HCl, 0.1M). 
 
 A detail description of the characteristics of GOx, glucose and PVA was made in 
section II.3.  
 Polyethyleneimine, PEI, is a water-soluble synthetic polymer, colorless to light yellow 
and odorless with repeating unit composed of the amine group and two carbon aliphatic 
CH2CH2 spacer. Linear polyethyleneimines contain all secondary amines, in contrast to 
branched PEIs which contain primary, secondary and tertiary amino groups. Totally branched, 
dendrimeric forms are also reported. The linear PEIs are solids at RT, where branched PEIs 
are liquids at all molecular weights. Branched PEI can be synthesized by the ring opening 
polymerization of aziridine. Depending on the reaction conditions different degrees of 
branching can be achieved. 

 
 
 
 
 
 
 
 4-aminothiophenol, ATP, is an aromatic thiol, white to yellow solid, with a molecular 
weight of 125.19 g/mol.  
 
 
 
 
 

 
 

Figure 59. Chemical formula of branched PEI used in this work. 

 Figure 60. Chemical formula of ATP. 
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 Glutaraldehyde, GA, is a bifunctional agent used extensively for cross-linking, with 
molecular formula C5H8O2 and molecular weight 100.1 g/mol (anhydrous product). The 
density of the 25% solution at 20°C is 1.06 g/mL. 
 
 
 
 
 
 
Citrate-Stabilized AuNPs 
 Gold nanoparticles were synthetized according to the following procedure (Turkevich 
and Frens method): tetrachloroauric(III) acid trihydrate  (11.6 mg,  2.9 ×  10−5mol)  was 
dissolved in pure water (21 mL) in a 100 mL round bottomed flask equipped with a 
condenser. Then this solution was heated to reflux.  In another 100 mL round bottomed flask, 
sodium citrate dihydrate (27.4 mg, 9.3 × 10−5 mol) was dissolved in pure water (7 mL) and 
then added to the first flask. During the addition, the yellow gold chloride solution turned red, 
indicating the formation of gold clusters (Figure 62). The mixture was moderately stirred, 
refluxed for 30 min under continuous stirring and cooled to room temperature under 
continuous stirring to yield the nanoparticle solution. Laser granulometer measurements 
(Malvern Zetasizer 1000 HSA laser granulometer) showed the absence of aggregates and a 
nanoparticle size of around 23 nm with a standard deviation of 5 nm was determined by TEM 
analysis. From the UV-Vis spectrum recorded at room temperature on a Perkin Elmer 
Lambda 900 UV/Vis/NIR spectrophotometer, the plasmon band was measured at around 527 
nm.277, 278 
 
 
 
 
 
 
 
 
 
 

                                                           
277 W. Nouira, A. Maaref, H. Elaissari, F. Vocanson, M. Siadat and N. Jaffrezic-Renault, “Comparative Study of 
Conductometric Glucose Biosensor Based on Gold and on Magnetic Nanoparticles,” Materials Science and 
Engineering: C 33, no. 1 (2013): 298–303. 
278 W. Nouira, A. Maaref, A. Elaissari, F. Vocanson, M. Siadat and N. Jaffrezic-Renault, “Enhanced Response of a 
Proteinase K-Based Conductometric Biosensor Using Nanoparticles,” Sensors 14, no. 7 (2014): 13298–307. 

Figure 62. Synthesis of citrate AuNPs according to Turkevich Method. 

Figure 61. Chemical formula of glutaraldehyde. 
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III.3. Experimental Section 
III.3.1. Preparation of Working Electrodes 
  Working electrodes used in this work were the same as the ones used in chapter 2 and 
described in section II.2.1. (300-nm gold/30-nm titanium on silicon substrate). Before 
functionalization, the gold electrodes were cleaned in an ultrasonic bath for 10 min in acetone 
and dried under a N2 flow, then dipped for 2 min at room temperature into a H2O2:H2SO4 (3:7 
v/v) piranha solution and rinsed with ethanol. Between and after these treatments, the gold 
electrodes were rinsed thoroughly with ultrapure water. Subsequently, the electrodes were 
incubated in an 10 mM ATP solution (6.75 mg of ATP in 1mL of ethanol) for 12 h in order to 
spontaneously formulate the SAMs. After the formation, the electrodes were rinsed with 
ethanol and PBS (pH 5.0, 0.1M). 
 
III.3.2. Preparation of electrospun solutions 
 Two concentrated PVA and PEI solutions (12 wt%) were first prepared. The first one 
was obtained by dissolving PVA powder into water at 80 C° for 3 h under magnetic stirring, 
and then cooling it down to room temperature. PEI solution was obtained by simple dilution 
of the commercial 50 wt% solution in water. Adequate volumes of both solutions were further 
mixed under magnetic stirring overnight to achieve a homogeneous solution with a PVA/PEI 
weight ratio of 3:1.274, 275 For the fabrication of PVA/PEI/GOx NFs, GOx powder was added 
to the above mixture (15mg enzyme per mL of polymer solution) and the resulting composites 
were stirred for another half an hour. 
 
III.3.3. Electrospinning: Fabrication of electrospun PVA/PEI and PVA/PEI/GOx NFs 
  NFs were fabricated using a home-made electrospinning device descrided in section 
II.2.2. PVA/PEI and PVA/PEI/GOx suspensions were loaded immediately after preparation 
into a glass syringe fitted with a stainless needle (0.644 mm I.D.), the cleaned working gold 
electrodes were placed on the collector inside the ES chamber and fibers were spun at room 
room temperature (23±2 °C). The NFs were directly deposited on the surface of the gold 
electrodes. Electrospinning parameters (e.g. applied voltage, feed rate and collection distance) 
ranging from 10-25kV for the applied voltage, 9-23 cm for the tip-to-collector distance and 
0.1-0.5mL/h for the polymer flow rate, had to be adjusted to limit bead formation. Optimal 
values found for electrospinning parameters are given in details in section III.4.1. These 
values were not significantly affected by the addition of GOx in the PVA/PEI mixture. 
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III.3.4. Crosslinking of electrospun NFs 
 Gold electrodes modified with PVA/PEI electrospun NFs were exposed to GA vapours 
for 30 min. All the treated mats were immersed into phosphate saline buffer (pH 5.0) to 
examine their water stability. 
 
III.3.5. Decoration of water-stable electrospun PVA/PEI NFs with AuNPs 
 For pH-controlled assembly of AuNPs on water-stable PVA/PEI NFs and 
PEI/PVA/GOx NFs, the pH values of the solution of AuNPs was adjusted to 5.0, 6.0, 7.0, 
respectively, from the original pH 8.9 using a 1 M HCl solution. Immediately after pH 
adjustment, the electrospun NF mats, were immersed into the pH-adjusted solutions. After a 3 
h immersion, the mats were taken out, thoroughly rinsed in deionized water and N2-dried.  
 
III.3.6. Electrochemical characterizations 
 Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) 
characterizations were all performed at room temperature in a Faraday cage. A Voltalab 80 
PGZ 402 analyzer (Hach Lange, France) and a 5 mL electrochemical cell equipped with a 
conventional three electrode configuration were employed as described in section II.2.1.  
 
III.3.6.1. PVA/PEI NFs and PVA/PEI/AuNPs NFs modified electrodes  
 EIS characterization of PVA/PEI NFs and PVA/PEI NFs modified electrodes were 
carried out in 0.1 M phosphate buffer saline buffer (PBS) pH 5.0 containing 10 mM 
K3Fe(CN)6

3-
 and K4Fe(CN)6

4-, varying the frequency in the 100 mHz to 100 kHz range and 
acquiring 5 points per decade. An excitation voltage of 10 mV was superimposed on a dc 
potential of -300 mV. Impedance data were fitted to equivalent electrical circuits by means of 
the ZView2 software (Scribner Associates Inc, Southern Pines, USA). The same electrodes 
were also characterized by CV, the potential being cycled from −400 and +600 mV (versus 
Ag/AgCl) with a scan speed of 100 mV/s. 0.1 M PBS buffer pH 5.0 containing 10 mM 
K3Fe(CN)6

3-
 and K4Fe(CN)6

4- was chosen as electrolyte. After each measurement, the 
electrolyte solution was refreshed, and the electrodes were washed with distilled water to 
remove any residues.  
 
III.3.6.2. PVA/PEI/AuNPs/GOx NF modified electrodes  

Biosensing experiments were performed by injecting glucose from a mother solution 
into the 4 mL electrochemical cell containing the PVA/PEI/AuNPs/GOx NF modified 
electrodes and 0.1 M PBS pH 5.0 as electrolyte. EIS measurements were performed by 
varying the frequency in the 100 mHz to 100 kHz range and acquiring 5 points per decade, on 
a dc potential of -300 mV. Three replicates were performed for each glucose concentration 
and related standard deviations were calculated.  
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III.3.7. Characterization of NFs morphology 

Fiber mats were characterized by scanning electron microscopy with a TESCAN 
MIRA3 FEG-SEM microscope after sample metallization (2 nm Pt or Cr).  
 
III.4. Results and Discussion 
 
III.4.1. Morphological Characterization of PVA/PEI, PVA/PEI/GOx and 
PVA/PEI/AuNPs/GOx electrospun NFs 
 
III.4.1.1.Effect of electrospinning parameters on the morphology of PVA/PEI and 
PVA/PEI/GOx electrospun NFs 
 PVA exhibits good viscosity for ES and the addition of PVA into other polymer 
solutions can significantly improve the spinnability of the polymers.279, 274 Therefore, in this 
study, we selected the PEI/PVA mixture to obtain uniform, polymer NFs with abundant amine 
groups on the fiber surfaces. It has been mentioned that surface morphology of electrospun 
NFs may be affected by various parameters (Section I.3.3.).87 In our study, temperature was 
regulated at 23 2 °C and key processing parameters such as flow rate, applied voltage, tip-to-
collector distance were systematically optimized to produce smooth and uniform fibers 
without beads and drops. 

The influence of applied voltage on nanofibers morphology was first investigated. The 
polymer concentration was set at 12 wt% and kept steady throughout the whole ES procedure 
according to the literature.275 Figure 63 shows the SEM images of the electrospun PVA/PEI 
NFs fabricated by using an applied voltage of a) 13kV and b) 25kV, whilst the other ES 
parameters were set as follows: a polymer flow rate of 0.2 mL/h and tip-to-collector distance 
of 12 cm. SEM images revealed a perfectly smooth fiber surface with an average diameter 
(AFD) of 360 20nm at an applied voltage of 13kV (figure 63a). Significantly thinner (AFD: 
240 20nm) but also bead free fibers were obtained when the applied voltage was 25kV 
(figure 63b). The observed decrease of AFD upon the increasing values of applied voltage is 
in good agreement with results generally reported in the literature.275, 280 Higher voltage can 
cause greater stretching of the solution due to greater columbic forces in the jet as well as 
stronger electric field, leading to reduction in the fiber diameter. In a next step, applied 
voltage of 25kV was selected to further optimize the other ES parameters, to fabricate 
uniform PVA/PEI nanofibers.  

                                                           
279 S. Xiao et al., “Immobilization of Zerovalent Iron Nanoparticles into Electrospun Polymer Nanofibers: 
Synthesis, Characterization, and Potential Environmental Applications,” The Journal of Physical Chemistry C 
113, no. 42 (2009): 18062–68,. 
280 W. Zuo et al., “Experimental Study on Relationship between Jet Instability and Formation of Beaded Fibers 
during Electrospinning,” Polymer Engineering & Science 45, no. 5 (2005): 704-709. 
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 Afterwards, the tip-to-collector distance was increased from 12 cm to 23 cm, whilst the 
flow rate was kept at 0.2 mL/h. Generally, increasing the collection distance is beneficial for 
solvent evaporation and solidification of the nanofibers.281 The electrospun PVA/PEI NFs 
obtained at both collection distances revealed a uniform and smooth surface free of beads 
(figure 64). It was clear that the morphology of the NFs did not significantly change at the 
selected two collection distances. Electrospun NFs fabricated at 12 cm tip-to-collector 
distance exhibited smaller AFD (270  30nm) (figure 64a) when compared to NFs fabricated 
at 23 cm tip-to-collector distance (AFD: 380 20nm). (figure 64b) 

 

                                                           
281 S. Megelski et al., “Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers,” 
Macromolecules 35, no. 22 (2002): 8456–66. 

Figure 63. Representative SEM images of electrospun PVA/PEI NFs formed by using a) an applied 
voltage of 13kV and b) an applied voltage was 25kV.  The other electrospinning parameters were set 
as follows: polymer concentration of 12 wt%, flow rate of 0.2 mL/h and collection distance of 12 cm. 

Figure 64. Representative SEM images of electrospun PVA/PEI NFs formed by using a) collection
distance of 12cm and b) collection distance of 23cm.  The other electrospinning parameters were set 
as follows: polymer concentration of 12 wt%, flow rate of 0.2 mL/h and applied voltage of 25 kV. 
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 Finally, the influence of the polymer flow rate on the fibers morphology was 
investigated. To do so, the applied voltage was set at 25 kV and the tip-to-collector distance at 
12cm, whilst ranging the polymer flow rate from 0.2 to 0.6 mL/h. SEM images of PVA/PEI 
NFs at a flow rate of 0.2 mL/h revealed a perfectly smooth surface with an AFD of 
220 30nm (figure 65a), whereas beaded structures along the NFs where observed when the 
flow rate was 0.6 mL/h, with AFD of 310 30nm. (figure 65b) At higher flow rates, the 
Taylor cone was unstable and droplets were frequently spouting out. 

 
III.4.1.2.Influence of enzyme on the morphology of the PVA/PEI/GOx electrospun NFs 
 The proportion of added enzyme was 30 wt% with respect to the polymer mass. 
Morphology of PVA/PEI fibers was further investigated after the incorporation of GOx in the 
electrospun mixture. It was observed, as for the PVA-SbQ/MWCNT/GOX NFs described in 
the previous chapter, that the addition of GOx in the mixture which was electrospun did not 
affect the electrospinning parameters, since voltage, feed rate and collection distance were the 
same in the presence and in the absence of GOx. Furthermore, in this work, it was shown that 
after the incorporation of GOx inside the fibers no obvious change had been recorded in the 
diameter of PVA/PEI/GOx fibers comparing to PVA/PEI fibers. In addition, smooth fiber 
surfaces, along with the uniformly distributed fiber sizes, suggest that PVA/PEI and enzymes 
are well mixed due to polar interactions between enzyme and both PVA and PEI. 

Thus the electrospinning parameters of PEI/PVA NFs were optimized at a concentration 
of 12 wt% (PEI/PVA= 1:3), flow rate of 0.2 mL/h, applied voltage of 25 kV and tip-to-
collector distance of 12 cm. 
 
 

Figure 65. Representative SEM images of electrospun PVA/PEI NFs formed by using a) flow rate of 0.2 
mL/h and b) flow rate of 0.6 mL/h.  The other electrospinning parameters were set as follows: 
polymer concentration of 12 wt%, collection distance of 12 cm and applied voltage of 25 kV. 
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III.4.2. Crosslinking of electrospun PVA/PEI NFs under GA vapours-Water insolubility 
 Since both PEI and PVA used for electrospinning are water-soluble polymers, a 
crosslinking step was necessary. For this purpose, the NFs were exposed to GA vapours for 
times varying from 0 to 30 min. Different exposure times (from 0 to 30 min) were tested. As 
expected, it was observed that without exposure of the NFs to GA vapours, the nanofibrous 
mats were totally dissolved upon immersion in phosphate saline buffer (0.1M, pH 5.0). On the 
contrary, after exposure from 15 to 30 min to GA vapours, the NFs became water-insoluble 
and the morphology of the fibers was retained, suggesting the successful crosslinking reaction 
induced by glutaraldehyde vapours, during which the hydroxyl groups of the PVA and the 
amine groups of PEI react with the aldehyde groups of GA to form aldimine linkages.34, 282 
Furthermore, upon exposure to GA vapours, the amine groups which were introduced onto the 
surface of the gold electrodes by modifying with the ATP conductive self-assembled 
monolayer, reacted with the amine groups along the backbone of PEI NFs, thus resulting to 
adhesion improvement of the electrospun PVA/PEI/GOx NFs onto the gold electrode surface. 
After immersion in PBS (0.1M, pH 5.0), ranging from 5h to 4 days, the nanofibrous structure 
was still preserved (figure 66). The AFD of the GA cross-linked NFs (350±30nm) was 
slightly larger than the one of non-crosslinked NFs (270±30), possibly due to the swelling of 
the NFs during the GA vapour cross-linking step. These results are in good agreement with 
results reported in the literature.275 

 

 
III.4.3. pH-controlled Decoration of water-stable PVA/PEI NFs with AuNPs 
 The initial Au-colloidal solution exhibited a deep red wine colour and had a pH of 8.9. 
The citrate ions, weakly bounded on the NPs surface, imparted negative charges to the metal 
NPs and prevented their aggregation.192, 283, 284 The electrospun water-stable PVA/PEI NFs 

                                                           
282 Y.Z. Zhang et al., “Crosslinking of the Electrospun Gelatin Nanofibers,” Polymer 47, no. 8 (2006): 2911–17. 
283 A. Henglein and M. Giersig, “Formation of Colloidal Silver Nanoparticles: Capping Action of Citrate,” The 
Journal of Physical Chemistry B 103, no. 44 (1999): 9533–39. 

Figure 66. Representative SEM images of water-stable electrospun PVA/PEI NFs a) after exposure to 
GA vapors for 30min, b) after immersion in PBS (0.1M, pH 5.0) for 5h and c) after immersion in PBS 
(0.1M, pH 5.5) for 4 days. 
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and PVA/PEI/GOx NFs modified gold electrodes were immersed into pH-adjusted solutions 
of AuNPs, with pH values of 5.0, 6.0 and 7.0. The pH values ranging from 5.0 to 7.0 were 
carefully selected, by taking into consideration that GOx is active on a specific pH range (4-7) 
with an optimum at 5.5. The colour of the nanofibrous mats evolved from white into dark red 
after they were immersed for 3h in AuNPs solutions of pH 5.0 and 6.0 and into light red after 
immersion for 3h in solutions of pH 7.0. Aggregates of NPs were observed in the solutions 
with pH ranging from 5.0 to 7.0 after the solutions stood overnight. After removing the 
PVA/PEI/AuNPs NFs modified electrodes from the AuNPs solutions, the NFs were rinsed 
with distilled water and dried with N2. Figure 67 shows SEM images of water-stable 
PVA/PEI/AuNPs NFs as a function of pH values of the AuNPs solutions. At pH 5.0 we 
observed that AuNPs distribute uniformly and in a high coverage density on the surface of 
water-stable NFs (figure 67d), whereas when the pH value increased to 6.0 and then to 7.0, 
the coverage density of AuNPs on the surface decreased (figure 67b, 67c). 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

                                                                                                                                                                                     
284 C. Li et al., “Facile Synthesis of Concentrated Gold Nanoparticles with Low Size-Distribution in Water: 
Temperature and pH Controls,” Nanoscale Research Letters 6, no. 1 (2011): 1–10. 

Figure 67. a) Representative SEM image of water-stable electrospun PVA/PEI NFs before immersion 
in the AuNPs solution. b, c, d) Representative SEM images of decorated with citrate AuNPs water-
stable electrospun PVA/PEI NFs. Assembly of AuNPs on the NFs after immersion in colloidal 
solutions with various pH values of b) 7.0, c) 6.0 and d) 5.0. 
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 The assembly mechanism for citrate AuNPs on the electrospun water-stable PVA/PEI 
NFs could be explained on the basis of hydrogen bonding interactions between the amine 
groups along the PEI backbone and the carbonyl in the carboxylate groups capped on the 
surface of citrate AuNPs. Similar results were reported from Dong et al.192 while decorating 
nylon NFs with AgNPs. Furthermore, in our study, taking into account that the pKa values of 
branched PEI are 4.5 for primary, 6.7 for secondary and 11.6 for tertiary amine groups,285 it is 
obvious that at pH regions ranging from 5.0 to 6.7 PEI exists in a highly (but not fully) 
protonated form, facilitating the electrostatic interactions with the citrate ions bound to the 
AuNPs surface. The results are in good agreement with what has been generally reported in 
the literature.286, 287 It is important to mention that uniform dispersion and immobilization of 
AuNPs on the PVA/PEI/GOx NFs surface was performed in an aqueous environment, thus 
eliminating the need of an extra step of coating the NFs with organic solvents (such as 
mercaptopropyltrimethoxysilane) for covalent binding of MNPs on the NFs surface185, 194 

which led to a facile and green approach for the fabrication of electroactive nanofibrous novel 
platforms for enzyme immobilization. 
 
III.4.4. Electrochemical Characterization of PVA/PEI NFs and PVA/PEI/AuNPs 
composite electrospun NFs 

In order to confirm the influence of AuNPs loading on the electrical properties of 
nanofibrous mats, CV and EIS were employed. CVs were recorded in 10 mM PBS at pH 5.0 
at a scan rate of 100mV/s using Fe(CN)6

3-/Fe(CN)6
4- couple as redox probe. The potential was 

repetitively cycled until several consecutive curves were superimposed. Cyclic 
voltagrammograms were recorded before and after the functionalization of the electrode 
surface with the ATP SAMs and with the nanofibrous mats. 

As seen in Figure 68, both oxidation and reduction peaks (Ipa=1194 μA·cm-2) of the 
Fe(CN)6

3-/Fe(CN)6
4- couple could be clearly detected before the gold electrode modification 

with NF mats. The separation between anodic and cathodic peak potentials (ΔEp =Epa − Epc) 

was 161 mV. After the modification of the gold electrode surface with SAMs formed from 4-
ATP molecules, only a slight decrease of the anodic current peak was induced (Ipa=1035 
μA·cm-2), resulting in a ΔEp of 167 mV (Figure 68). The efficient electron transfer through 
the SAM layer was expected due to the extensive conjugation of the aromatic ring to the 
amine groups at the p-position from the sulfur atom.288  
                                                           
285 K.D. Demadis, Maria Paspalaki, and Joanna Theodorou, “Controlled Release of Bis(phosphonate) 
Pharmaceuticals from Cationic Biodegradable Polymeric Matrices,” Industrial & Engineering Chemistry 
Research 50, no. 9 (2011): 5873–76. 
286 W. Patungwasa and José H. Hodak, “pH Tunable Morphology of the Gold Nanoparticles Produced by Citrate 
Reduction,” Materials Chemistry and Physics 108, no. 1 (2008): 45–54. 
287 Li et al., “Controllable Anchoring of Gold Nanoparticles to Polypyrrole Nanofibers by Hydrogen Bonding and 
Their Application in Nonenzymatic Glucose Sensors,” Biosensors and Bioelectronics 38, no.1 (2012): 402-406. 
288 S.H. Cho, D. Kim and S.M. Park, “Electrochemistry of Conductive Polymers,” Electrochimica Acta 53, no. 11 
(2008): 3820–27. 



CHAPTER III: ELECTROSPUN WATER-STABLE POLYVINYL ALCOHOL/POLYETHYLENEIMINE NANOFIBER 
MATS INCORPORATING ENZYME AND DECORATED WITH GOLD NANOPARTICLES FOR BIOSENSOR 

APPLICATIONS 

123 
 

 
A large increase of ΔEp up to 464 mV was observed together with a drastic decrease of 

the anodic peak intensity (Ipa) from 1035 to 13 μA·cm-2 following the modification of the 
ATP-gold electrode surface with PVA/PEI NFs. This result could be attributed to the 
electrical insulating properties of PVA/PEI mixture. Further decoration with AuNPs onto the 
fibers led to a significant improvement of the charge transfer efficiency through the mat. Ipa 
intensities reached 391μA·cm-2 after the AuNPs loading on the NFs (Figure 68). This result is 
consistent with the larger electroactive surface exhibited by PVA/PEI/AuNPs modified 
electrodes. Owing to the conductivity of AuNPs, electrical resistivity decreases with 
increasing content of the conductive nanoobjects.  
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Figure 68. Cyclic voltammograms of gold modified electrodes by ATP SAMs, ATP SAMs/PVA/PEI 
water-stable electrospun NFs and ATP SAMs/PVA/PEI/AuNPs water-stable electrospun NFs (in 
[Fe(CN)6 ]3-/4- PBS solution, pH 5.0, scan rate 100mV/s. 

 The electronic transfer properties of the PVA/PEI NFs and PVA/PEI/AuNPs NFs 
modified gold electrodes were also characterized by EIS by varying frequency in the 100 
mHz to 100 kHz range at a constant potential of -300 mV. The Nyquist plot of the gold 
electrodes modified with ATP and ATP/PVA/PEI/AuNPs NFs are presented in figure 70. 
They were satisfactorily fitted with a Randles-Ehrshler equivalent electrical circuit (Figure 
55). The circuit parameters obtained by fitting the impedance data with the equivalent circuit 
shown in figure 55 are summarized in Table 8. 
 Nyquist plot of the ATP/PVA/PEI NFs modified gold electrode (figure 69), shows that 
the charge transfer resistance is very high (in the range of MΩ) in the absence of AuNPs, in 
good adequacy with the electrical insulating properties of PVA/PEI polymer. Decoration of 
the NFs with Au NPs resulted in a significant decrease of Rct (figure 70). This result confirms 
those obtained with CV:  the decrease of charge transfer resistance reflects the enhancement 
of the charge transfer, due to the increase of the conductivity of the PVA/PEI/AuNPs NFs. 



CHAPTER III: ELECTROSPUN WATER-STABLE POLYVINYL ALCOHOL/POLYETHYLENEIMINE NANOFIBER 
MATS INCORPORATING ENZYME AND DECORATED WITH GOLD NANOPARTICLES FOR BIOSENSOR 

APPLICATIONS 

124 
 

0,0 0,5 1,0 1,5 2,0 2,5 3,0
0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

Im
Z 

(M
/c

m
2 )

ReZ (M /cm2)  
Figure 69. Nyquist plot of impedance spectra obtained for ATP/PVA/PEI water-stable electrospun NFs 
before immersion in the Au NPs solution. The EIS measurements were performed at -300 mV in the 
presence of a 10mM [Fe(CN)6]3-/4- PBS  solution  by varying frequency in the 100 mHz to 100 kHz 
range. 
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Figure 70. Nyquist plots of impedance spectra obtained for gold electrodes modified with ATP-SAMs 
and ATP/PVA/PEI/AuNPs water-stable electrospun NFs after immersion in the Au NPs solution pH 
5.0. The EIS measurements were performed at -300 mV in the presence of a 10mM [Fe(CN)6]3-/4- PBS  
solution  by varying frequency in the 100 mHz to 100 kHz range. 
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 Table 8. Fitting parameters obtained from Nyquist plots of impedance spectra by using the equivalent 
 Randles-Ehrshler circuit presented in figure 55. 

 Rs (Ω·cm-2) Rct CPE ( F·s(n-

1)) 
nCPE x2 

4-ATP 89.7  156 Ω·cm-2 3.41 0.993 0.007 
ATP/PVA/PEI/AuNPs 17.2 7.01 kΩ·cm-2 22.72 0.9254 0.0071 

 

III.4.5. Analytical performance of the PVA/PEI/AuNPs/GOx glucose biosensor 
 The electroanalytic characterization of the PVA/PEI/AuNPs/GOx glucose biosensor 
was performed by using EIS as the detection technique (Figure 72). Firstly, negative tests 
were performed by using a PVA/PEI/AuNPs control electrode, and it was demonstrated that 
the response of the developed sensor was negligible in the absence of enzyme. In a second 
step, the biosensor response was determined following the injection of various amounts of a 
glucose concentrated solution to achieve final concentrations in the 1 M-1 mM range into 
the measurement cell. Nyquist plots of the resulting impedance spectra (figure 71) were 
satisfactorily fitted using the Randles-Ehrshler equivalent electrical circuit. The circuit 
parameters obtained are summarized in Table 9. It was evidenced that the magnitude of 
impedance increases upon the increasing concentration of glucose (figure 72)289. 
 This increase in impedance upon increasing substrate concentration has already been 
reported in the literature for the glucose-GOx interaction290 and for the norepinephrine 
detection using phenylethanolamine N-methyl transerase.291 This could be explained due to 
nonspecific binding as well as due to the physical adsorption of the enzymatic reaction 
products on the modified electrodes surface, acting as a blocker for electron transfer thus 
increasing the electron transfer resistance. 
 
 
 
 
 
 
 
 
 
 

                                                           
289 F. Lisdat and D. Schäfer, “The Use of Electrochemical Impedance Spectroscopy for Biosensing,” Analytical 
and Bioanalytical Chemistry 391, no. 5 (2008): 1555–67. 
290 T.L. Adamson et al., “The Promise of Electrochemical Impedance Spectroscopy as Novel Technology for the 
Management of Patients with Diabetes Mellitus,” The Analyst 137, no. 18 (2012): 4179. 
291 B.A. Haselwood and J.T. La Belle, “Development of Electrochemical Methods to Enzymatically Detect 
Traumatic Brain Injury Biomarkers,” Biosensors and Bioelectronics 67 (2015): 752–56. 



CHAPTER III: ELECTROSPUN WATER-STABLE POLYVINYL ALCOHOL/POLYETHYLENEIMINE NANOFIBER 
MATS INCORPORATING ENZYME AND DECORATED WITH GOLD NANOPARTICLES FOR BIOSENSOR 

APPLICATIONS 

126 
 

 
 
Table 9. Fitting parameters obtained from Nyquist plots of impedance spectra by using the equivalent 
Randles-Ehrshler circuit presented in figure 55 upon the addition of increasing glucose concentration. 

Glucose 
Concentration 

Rs (kΩ·cm-2) Rp(kΩ·cm-2) CPE ( F·s(n-1)) nCPE x2 

0.00 M 0,01365 7,30757 22.89 0,904 0,005 
1.24 M 0,01214 8,19032 23.32 0,888 0,006 

12.31 M 0,01362 8,72978 25.13 0,873 0,004 
24.06 M 0,00799 9,22854 25.54 0,877 0,005 

67.34 M 0,01806 10,0899 26.89 0,863 0,009 
0.1mM 0,01591 11,26132 27.56 0,855 0,005 
0.2mM 0,01221 12,21725 28.51 0,876 0,006 
1mM 0,01635 13,32444 28.78 0,843 0,007 
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Figure 71. Nyquist plots of impedance spectra obtained for gold electrodes modified with 
ATP/PVA/PEI/AuNPs/GOx water-stable electrospun NFs upon the increasing concentration of 
glucose. The EIS measurements were performed at -300 mV in the presence of PBS solution (0.1M, 
pH 5.0), by varying frequency in the 100 mHz to 100 kHz range. 
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Figure 72 shows the calibration curve obtained by plotting Rp variations versus 
log(glucose concentration) for the ATP/PVA/PEI/AuNPs/GOx NFs biosensor. The slope of 
the logarithmic calibration curve was 2.5KΩ/log[glucose] and the linear range was up to 1mM 
and the resulting calibtration curve had an R-squared value of 0.986 (Figure 72). The limit of 
detection (LOD), calculated as the concentration of glucose giving a signal equal to three 
times the standard deviation on the blank (i.e. in absence of glucose) was 0.15μM. This is ten 
times lower than the LOD obtained for the PVA/MWCNT-COOHs/GOx NFs described in the 
previous chapter.  
 The relative standard deviations calculated from three consecutive measurements on one 
single biosensor were lower than 4 % in the 1.24μM -1mM range, showing an excellent 
repeatability of the proposed biosensor.  Inter-sensor reproducibility of the method was also 
rather good as the relative standard deviation, calculated from the analysis of the 1.24 μM 
glucose solution using five different biosensors, was 14%.  
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Figure 72. Calibration curve of the ATP/PVA/PEI/AuNPs/GOx NFs biosensor (in PBS 0.1M, pH 5.0). 
Error bars represent standard deviations obtained from three successive measurements. 

 

 Aditionally, operational and storage stabilities of the biosensor were also determined. 
No significant decrease of the PVA/PEI/AuNPs/GOx biosensor response was observed after 
10 measurements of the 0.1 mM glucose solution, performed the same day. In the same way, 
EIS signal remained stable for 4 days when the biosensor was tested twice per day at the 
0.1mM glucose concentration and the biosensor was kept at 4°C between two measurements. 
The results demonstrate the good operational and storage stabilities of the 
PVA/PEI/AuNPs/GOx NFs biosensor. 
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III.5. Conclusion 
 In the present study, a one-step elaboration of water-stable PVA/PEI/AuNPs/GOx 
electrospun nanofibrous mats followed by a cross-linking crosslinking step via exposure to 
GA vapours was proposed and these electroactive surfaces were further evaluated for 
electrochemical biosensor application. The obtained impedimetric glucose biosensor exhibited 
linearity in a wide range of glucose concentration (1μM -1mM) and a very low LOD value 
(0.15 μM) was achieved.  
 The advantages of this work include the uniform dispersion and pH-tunable assembly of 
AuNPs on the surface of the electrospun NFs based on hydrogen bonding interactions and 
physical entrapment of AuNPs into NFs porosity. The AuNPs enhanced the electrical 
properties of the bioactive electrospun NFs and thus facilitated the electron transfer within the 
system. 
 Furthermore, the expression of amino groups on the surface of the electrospun 
nanofibers, achieved through the incorporation of PEI into the electrospun mixture, served to 
practical adhesion improvement of the electrospun PVA/PEI/GOx nanofibers onto the gold 
modified electrode surface. This was achieved by modifying the surface with a conductive 
self-assembled monolayer, ATP-SAMs, bearing thiol groups for covalent bonding to the gold 
surface and amine groups which reacted with the amine groups of PEI in a following cross-
linking step under GA vapours.  
 Once again, it was proven that the approach of blending the enzyme inside the water-
soluble polymers offers a simple method to produce biologically active water-stable fibers, 
while enzyme is accessible to the substrate, in one-step synthesis. A ten times improvement of 
the LOD was achieve using this approach compared to the one described in the previous 
chapter. 
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IV.1. Introduction  
 Among the numerous intrinsically conductive polymers (ICPs) prepare to date, 
polypyrrole (PPy) is by far the most extensively studied and commonly used in biosensing 
applications, owing to its biocompatibility, high hydrophilic character, and ease of synthesis 
through electrochemical and chemical routes, high stability at ambient conditions and 
commercial availability.292, 293 Hence, PPy presents several advantages including good redox 
properties and the ability to give high electrical conductivities. Various mechanisms have 
been proposed for the polymerization of pyrrole monomer, the most probable being radical 
cation formation, radical coupling and deprotonation. An in-depth study of the mechanism 
was performed by Sadki et al.294 Different strategies have been investigated to immobilize 
biomolecules on PPy, including direct adsorption, entrapment, and chemical grafting on N-
[12] or 3-substituted polypyrrole.293 
 Over the past 2 decades, PPy mainly deposited onto an electrode surface as thin films 
via electropolymerization, has been extensively used for the development of amperometric 
biosensors for glucose detection.202, 295 During the deposition process, the enzyme was 
incorporated into PPy films. This method significantly enhanced the sensor performance, due 
to the following reasons: 
• Tight adherence of PPy to electrode materials, ability to control the properties of the 
conducting polymer film by changing the conditions during electrochemical polymerization. 
• Simple one-step procedure of enzyme entrapment within the film by electrochemical 
deposition performed under mild conditions thereby preserving enzyme activity. 
• PPy layer prevents enzymes from leaching out of the biocatalytic layer. 
 However, a challenge in thin film based applications is that the active sensing 
components are embedded in the bulk, which limits the efficiency and sensitivity. In addition, 
the working area for sensing is limited to its nominal surface area and small surface areas 
often limiting the sensitivity. Therefore, it is desirable to fabricate conducting polymer 
nanostructures which offer high porosity and high specific surface area, thus ensuring easy 
mass transport to and out of the conducting polymer surface.296 
 Production of PPy in a nonwoven fiber mat form has traditionally been accomplished 
through template synthesis methods by employing mesoporous silica, anodized aluminium 
oxide membrane, and particle track-etched membranes for various applications including 
                                                           
292 R. Janmanee et al., “Detection of Human IgG on Poly(pyrrole-3-Carboxylic Acid) Thin Film by 
Electrochemical-Surface Plasmon Resonance Spectroscopy,” Japanese Journal of Applied Physics 50 (2011): 
01BK02. 
293 H.Q.A. Lê, H. Sauriat-Dorizon, and H. Korri-Youssoufi, “Investigation of SPR and Electrochemical Detection of 
Antigen with Polypyrrole Functionalized by Biotinylated Single-Chain Antibody: A Review,” Analytica Chimica 
Acta 674, no. 1 (2010): 1–8. 
294 S. Sadki, P. Schottland, N. Brodie and G. Sabouraud, “The Mechanisms of Pyrrole Electropolymerization,” 
Chemical Society Reviews 29, no. 5 (2000): 283–93. 
295 C.M. Hangarter, M. Bangar, A. Mulchandani and N. V. Myung, “Conducting Polymer Nanowires for 
Chemiresistive and FET-Based Bio/chemical Sensors,” Journal of Materials Chemistry 20, no. 16 (2010): 3131. 
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sensing and biosensing. After PPy components are grown in these porous templates, the 
templates are removed via chemical etching to provide PPy nanofibers. However, NFs 
produced by these methods are typically very short and require further processing to make 
devices.296  
 On the other hand, the electrospinning process leads to the production of long, 
continuous fibers directly deposited on electrode surfaces without the need of post-treatment 
processes. However, it is well known that the ES process is not suitable for direct fabrication 
of PPy nanofibers. Pristine PPy, without any bulky side groups, is insoluble in all solvents and 
even though adding bulky side chains to the PPy backbone makes it soluble, the molecular 
weight is not high enough to form fibers on its own through the ES process.296 Thus, an 
alternative ES process can be used instead, in which electrospun fibers of a non-conducting 
polymer can be used as a template for PPy growth since they provide high surface-to-volume 
ratios, enhanced mechanical properties and tunable porosity in the nonwoven fiber mat.219 The 
coating of the non-conductive backbone NFs can be achieved by using a variety of methods, 
including the VPP process.224 When PPy is grown on top of the fiber surface, it should not 
suffer from the dilution effect by the template polymers, which is inevitable in electrospinning 
of composite nanofibers. 
 Finally, in order to secure successful immobilization of the enzyme, pyrrole derivatives 
containing carboxylic groups297 are excellent candidates for electrochemical biosensors 
because they offer suitable interface for covalent grafting of biomolecules, which results to 
good stability and high immobilization density.298 They have been studied for the 
development of immunosensors and aptasensors by a few research groups. 292, 298, 299, 300  
 Among them, 3-substituted PPy offers the advantage of maintaining its full intrinsic 
electrical properties during the construction of immunosensors301 without interfering with the 
polymer elongation which typically occurs through coupling at the 2 and 5 positions of the 
monomer rings.302 As an example, Yoon et al.303 reported the successful fabrication of a field-

                                                           
296 S. Nair, E.Hsiao and S.H. Kim, “Fabrication of Electrically-Conducting Nonwoven Porous Mats of Polystyrene–
polypyrrole Core–shell Nanofibers via Electrospinning and Vapor Phase Polymerization,” Journal of Materials 
Chemistry 18, no. 42 (2008): 5155-5161. 
297 S. Ko and J. Jang, “Controlled Amine Functionalization on Conducting Polypyrrole Nanotubes as Effective 
Transducers for Volatile Acetic Acid,” Biomacromolecules 8, no. 1 (2007): 182–87. 
298 R. Janmanee et al., “In Situ Electrochemical-Transmission Surface Plasmon Resonance Spectroscopy for 
Poly(pyrrole-3-Carboxylic Acid) Thin-Film-Based Biosensor Applications,” ACS Applied Materials & Interfaces 4, 
no. 8 (2012): 4270–75. 
299 O.S. Kwon, S. J. Park and J. Jang, “A High-Performance VEGF Aptamer Functionalized Polypyrrole Nanotube 
Biosensor,” Biomaterials 31, no. 17 (2010): 4740–47. 
300 H. Yoon, J. H. Kim, N. Lee, B. G. Kim and J. Jang, “A Novel Sensor Platform Based on Aptamer-Conjugated 
Polypyrrole Nanotubes for Label-Free Electrochemical Protein Detection,” ChemBioChem 9, (2008): 634-641. 
301 H. Korri-Youssoufi, B. Makrouf, and A. Yassar, “Synthesis of 3-Derivatized Pyrroles Precursors Polymers for 
Functionalization with Biomolecules toward Biosensor Devices,” Materials Science and Engineering: C 15, no. 1 
(2001): 265-268. 
302 E. De Giglio, I. Losito, F. Dagostino, L. Sabbatini, P. G. Zambonin, A. Torrisi and A. Licciardello, “Analytical 
Characterization of Poly (Pyrrole-3-Carboxylic Acid) Films Electrosynthesised on Pt, Ti and Ti/Al/V Substrates,” 
Annali Di Chimica 94, no. 3 (2004): 207–18. 
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effect transistor (FET) thrombin aptasensor using carboxylic-acid-functionalized polypyrrole 
(CPPy) nanotubes.  The carboxylic-acid-functionalized polypyrrole (CPPy) nanotubes were 
fabricated by copolymerizing pyrrole-3-carboyxylic acid (P3C) with pyrrole by using 
cylindrical micelle templates in a water-in-oil emulsion system.  
 However, although many polypyrrole (bio)sensors have been developed by employing 
the electropolymerization method and some studies have reported the fabrication of enzymatic 
biosensors based on nanofibrous supports, mainly by employing template methods, to the best 
of our knowledge there are no studies existing in the literature reporting the fabrication of 
enzymatic biosensors based on nanofibrous supports fabricated by combination of 
electrospinning and VPP process.  
 In this context, the objective of the present work was the fabrication of an original and 
efficient electroactive platform for electrochemical biosensing, based on conducting core-
shell nanofibers produced by the combination of electrospinning and vapour-phase 
polymerization. To do so, polyacrylonitrile, PAN, a well-studied polymer with good stability 
and mechanical properties, was used to fabricate electrospun PAN NFs.304  These NFs were 
used as backbone non-conductive structure (core fibers), whilst facilitating the growth of two 
different ICPs coatings onto their surface: a) polypyrrole (PPy) and b) polypyrrole 
(PPy)/poly(pyrrole-3-carboxylic acid)(PP3C), for the elaboration of different glucose 
biosensors.  
 
 The methodology we used was the following: 
a) Elaboration of electrospun PAN NFs coated with PPy using vapour-phase 
polymerization (VPP) process for glucose detection 
 In a first step, PAN NFs were fabricated by employing the electrospinning technique. 
Different electrospinning parameters including flow rate, applied voltage, polymer 
concentration and tip-to-collector distance were tailored to produce PAN nanofibers with 
minimal beading. Then, PPy was grown onto the surface of the non-conductive PAN NFs via 
an in situ simple two-step VPP method. In this process, the NFs were immersed into a 
chemical oxidant solution (ferric (III) p-toluenesulfonate, FeTos) of different concentrations 
(12, 20 and 40wt% respectively) and subsequently, pyrrole monomers were deposited from 
the gas phase onto the fiber surfaces, which initiated the polymerization reaction producing 
PPy coatings. The effect of the oxidant concentration on the morphology and conductivity of 
the NFs was investigated. Finally, glutaraldehyde vapours, were used as cross linking agent 
during the immobilization process of GOx onto the surface of the PAN/PPy NFs. The 
electrochemical properties of electrospun PAN/PPy nanofibrous mats were characterized by 

                                                                                                                                                                                     
303 Yoon, Ko, and Jang, “Field-Effect-Transistor Sensor Based on Enzyme-Functionalized Polypyrrole Nanotubes 
for Glucose Detection.” The Journal of Physical Chemistry 112, (2008): 9992-9997. 
304 S.K. Nataraj, K.S. Yang, and T.M. Aminabhavi, “Polyacrylonitrile-Based nanofibers—A State-of-the-Art 
Review,” Progress in Polymer Science 37, no. 3 (2012): 487–513. 
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cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Scanning 
electron microscopy (SEM) was used to characterize the morphology of the nanofibers. 
 
b) Elaboration of electrospun PAN NFs coated with PPy/PP3C by VPP process for 
glucose detection  
 In a second step, the fabrication of a highly sensitive, stable and efficient 
electrobioactive surface design, by modifying the gold electrode surfaces with electrospun 
core-shell PAN- PPy/ PP3C NFs produced by VVP was optimized for further detection of 
glucose. To do so, two different approaches were tested. In the first approach, electrospun 
PAN NFs were used as backbone non-conductive NFs. As previously, different 
electrospinning parameters were tailored to produce PAN nanofibers with minimal beading. 
Afterwards, VPP was employed as before to grow a thin PPy/PP3C coating onto the NFs 
surface. In this process, the NFs were immersed into FeTos solutions of different 
concentrations (12, 20 and 40 wt% respectively) and subsequently, pyrrole and pyrrole-3-
carboxylic acid monomers were deposited from the gas phase onto the fiber surfaces, which 
initiated the co-polymerization reaction producing PPy/PP3C coatings. The effect of the 
oxidant concentration on the morphology and conductivity of the NFs was investigated. 
Alternatively, a the second approach was evaluated in order to produce PPy/PP3C coatings on 
the backbone fibers in a phenomenally simpler way, the incorporation of the chemical oxidant 
into the electrospun PAN fibers, by mixing the FeTos solution with PAN solution. To do so, 
various ratios of FeTos/PAN mixtures were tested in order to electrospin the composite fibers.  
 The polymerization time of the co-polymer was varied in order to ensure a complete 
polymerization. The functional monomer P3C was integrated into a copolymer scheme in 
order to provide sufficient immobilization sites for the enzyme. It was polymerized along with 
the pyrrole monomer during the VPP process. Finally, the carboxylic acid groups of the 
PAN/FeTos/PPy/PP3C nanofibers were activated for the covalent immobilization with the 
amino groups of GOx by using N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide 
hydrochloride (EDC)/ N-hydroxysuccinimide (NHS) chemistry.  
 The electrochemical properties of electrospun PAN/PPy/PP3C nanofibrous mats were 
characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy 
(EIS). The obtained biosensor enabled successful detection of glucose by electrochemical 
impedance spectroscopy. Scanning electron microscopy (SEM) and transmission electron 
microscopy (TEM) were used to characterize the morphology of the NFs.  
 The above described approaches employed for the elaboration of impedimetric GOx-
based biosensors are summarized in table 10. 
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Table 10. Different approaches employed for the elaboration of impedimetric glucose biosensors, 
based on the fabrication of conductive NFs through the combination of ES and VPP process. 

Different 
approaches 

NFs 
Composition 

Immersion 
in FeTos 

Mixing 
with 

FeTos 

Coating 
layer 

Immobilization 
method of GOx 

Section 

1 PAN Yes No PPy GA vapours IV.4.1.3, 
IV.4.1.4. 

2 PAN/FeTos No Yes PPy/PP3C  IV.4.2.1. 
3 PAN Yes No PPy/PP3C Covalent 

grafting with 
EDC/NHS 

IV.4.2.2. 

 
 
IV.2. Materials and Methods 
 Polyacrylonitrile (PAN, average Mw:150,000), Iron(III) p-toluenesulfonate hexahydrate, 
(FeTos), 1-Butanol (ButOH), Acetonitrile (ACN, 99% anhydrous), N,N-Dimethylformamide, 
(DMF), Glutaraldehyde (GA, 25wt% aqueous solution),  N-hydroxysuccinimide (NHS), N-(3-
Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC), Pyrrole-3-carboxylic acid 
(P3C), Pyrrole (Py), Glucose and Glucose Oxidase (GOx, from Aspergillus niger 50KU) was 
purchased from Sigma-Aldrich (Saint-Quentin-Fallavier, France). Pyrrole was further distilled 
before usage. Phosphate saline buffer solutions were prepared with mono and dibasic 
phosphate (pH 7.2, 0.1 M). 
 
 Polyacrylonitrile, PAN, is a synthetic, semicrystalline white to yellow organic 
polymer resin, with the linear formula (C3H3N)n. It is a hard, rigid, thermoplastic material that 
is resistant to most solvents and chemicals, slow to burn anf of low permeability to gases. 
Almost all PAN resins are copolymers made from mixtures of monomers with acrylonitrile as 
the main component. It is a versatile polymer used to produce large variety of products. All 
commercial methods of production of PAN are based on free radical polymerization 
of Acrylonitrile (AN). In most cases, small amount of other vinyl comonomers are also used 
(1-10%) along with AN depending on the final application. Anionic polymerization also can 
be used for synthesizing PAN. For textile applications, PAN with molecular weight in the 
range of 40,000 to 70,000 is used.  
 
 
 
 
 
  

Figure 73. Chemical formula of PAN used in this work. 
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 Iron(III) p-toluenesulfonate hexahydrate, FeTos, is a yellow and solid organic 
compound with linear formula (CH3C6H4SO3)3Fe·6H2O with molecular weight 677.52 g/mol. 
It is soluble in water, alcohols, and other polar organic solvents. In this work, a ferric tosulate 
solution was used as the oxidant solution for the vapour-phase polymerization of Py. 
 
 
 
 
 
 
 
 N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride, EDC, is a 
carboxyl and amine-reactive zero-length crosslinker with molecular weight 191.7 g/mol. EDC 
reacts with a carboxyl group first and forms an amine-reactive O-acylisourea intermediate that 
quickly reacts with an amino group to form an amide bond and release of an isourea by-
product (figure 75).  

 
 The intermediate is unstable in aqueous solutions, and therefore, two-step conjugation 
procedures rely on N-hydroxysuccinimide for stabilization (figure 76). Failure to react with an 
amine will result in hydrolysis of the intermediate, regeneration of the carboxyl and release of 
an N-substituted urea. A side reaction is the formation of an N-acylurea, which is usually 
restricted to carboxyls located in hydrophobic regions of proteins. 
 
 N-hydroxysuccinimide, NHS is used to prepare amine-reactive esters of carboxylate 
groups for chemical labeling, crosslinking and solid-phase immobilization applications. 
Carboxylate groups may be reacted to NHS in the presence of a carbodiimide such as EDC as 
mentioned previously, resulting in a semi-stable NHS ester, which may then be reacted with 
primary amines (-NH2) to form amide crosslinks (Figure 76). Although NHS is not required 

Figure 74. Chemical formula of FeTos used in this work. 

Figure 75. One-step EDC reaction with carboxyl and amine-containing molecules.  
https://www.lifetechnologies.com/fr/fr/home/life-science/protein-biology/protein-biology-

learning-center/protein-biology-resource-library/pierce-protein-methods/carbodiimide-crosslinker-
chemistry.html Thermo-Scientific 
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for carbodiimide reactions, their use greatly enhances coupling efficiency. Furthermore, using 
NHS makes it possible to perform a two-step reaction. 

 
 NHS is soluble in aqueous and organic solvents. Activation with NHS, however, 
decreases water-solubility of the modified carboxylate molecule, while activation with Sulfo-
NHS preserves or increases water-solubility of the modified molecule, by virtue of the 
charged sulfonate group. Although prepared NHS esters are sufficiently stable to process in a 
two-step reaction scheme, both groups will hydrolyze within hours or minutes, depending on 
water-content and pH of the reaction solution. (NHS esters have a half-life of 4-5 hours at pH 
7, 1 hour at pH 8 and only 10 minutes at pH 8.6). The activation reaction with EDC and NHS 
is most efficient at pH 4.5-7.2 and reaction of NHS-activated molecules with primary amines 
is most efficient at pH 7-8, and NHS-ester reactions are usually performed in phosphate-
buffered saline (PBS) at pH 7.2-7.5.  
 
 Pyrrole, Py, is a 5-membered aromatic heterocyclic organic compound, with chemical 
formula C4H5N. It is a colourless to yellow volatile liquid that darkens readily upon exposure 
to air and is usually purified by distillation immediately before use. 
 
 

 
 
 
 
 

Figure 76. Reactions involving EDC, including activation as an NHS ester. 
https://www.lifetechnologies.com/fr/fr/home/life-science/protein-biology/protein-biology-

learning-center/protein-biology-resource-library/pierce-protein-methods/carbodiimide-
crosslinker-chemistry.html Thermo-Scientific 

Figure 77. Chemical structure of Pyrrole. 



CHAPTER IV: PREPARATION AND CHARACTERIZATION OF CORE-SHELL POLYPYRROLE NANOFIBERS BY 
COMBINATION OF ELECTOSPINNING AND VAPOUR-PHASE POLYMERIZATION FOR BIOSENSOR 

APPLICATIONS 

138 
 

 
 Pyrrole-3-carboxylic acid, P3C, is a pyrrole derivative containing carboxylic groups at 
3-position with molecular weight 111.10g/mol. 
 

 
 
 
 
 
 
 
IV.3. Experimental Section 
IV.3.1. Preparation of the working electrodes  
 Gold electrodes used as working electrodes and their cleaning protocol were the same as 
described in the second chapter, at section III.3.1. 
 
IV.3.2. Preparation of electrospun solutions 
IV.3.2.1. Preparation of PAN suspension 
 For the fabrication of PAN NFs, a 12 wt% PAN solution was prepared by dissolving 
PAN powder into DMF at 80 °C for 3 h under magnetic stirring. The solution was cooled 
down to room temperature before use.  
 
IV.3.2.2. Preparation of PAN/FeTos suspensions 
 For the fabrication of PAN/FeTos NFs, a 15 wt% PAN solution was prepared by 
dissolving PAN powder into DMF at 80 °C for 5 h under magnetic stirring. Three different 
FeTos suspensions (12, 20 and 40wt% in DMF) were also prepared. The FeTos suspensions 
were added to PAN solutions individually and the resulting PAN/FeTos COOH suspensions 
were heated at 80 °C under for 3 h under magnetic stirring. Different ratios of PAN and FeTos 
(1:1, 2:1, 3:1 and 1:2 respectively) were tested for each concentration of the oxidant. 
 
IV.3.3. Electrospinning: Fabrication of electrospun PAN and PAN/FeTos nanofibers 
 NFs were fabricated using the home-made electrospinning device descrided in section 
II. 2.2. PAN and PAN/FeTos suspensions were loaded immediately after preparation into a 
glass syringe fitted with a stainless needle (0.644 mm I.D.), the cleaned working gold 
electrodes were placed on the collector inside the ES chamber and fibers were spun at room 
room temperature (23±2 °C). The nanofibers were directly deposited on the surface of the 
gold electrodes. Electrospinning parameters (e.g. applied voltage, feed rate and collection 
distance) ranging from 8-22 kV for the applied voltage, 9-23 cm for the tip-to-collector 
distance and 1-3mL/h for the polymer flow rate, had to be adjusted to limit bead formation.  
 

Figure 78. Chemical structure of P3C used in this work. 
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IV.3.4. Distillation of Pyrrole 
 Pyrrole darkens very quickly (from colourless to yellow and then brown) upon contact 
with air. So in order to remove any impurities, distillation by using a vacuum/inert (N2) gas 
line 305 was performed before proceeding to VPP method. To do so, the assembly depicted in 
figure 79 was used. Standard laboratory glassware with ground glass joints was used. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 Firstly, Py was introduced into a 250mL round-bottom distilling flask and CaH2 was 
added and left overnight in it in order to remove all traces of water. Afterwards, the solution 
was filtered with the help of a funnel in order to remove CaH2. The assembly (figure 79) was 
evacuated and 3 cycles of vacuum/inert gas were performed. Then, the pyrrole was introduced 

in the system, whilst kept under agitation in a nitrogen atmosphere. Within 5 min under 
vaccum, pyrrole was distilled at 32°C. It was collected in a round-bottom receiving flask 
which was covered with aluminium foil in order to avoid photopolymerisation and it was kept 
in the freezer in a sealed dark glass bottle. 
 
IV.3.5. VPP process 
 An in situ VPP process was used to apply the conductive polymer coating onto the 
surface of NFs, as described in figure 80. In the PPy and PPy/PP3C coating procedures, the 
PAN NFs were firstly dipped into three oxidant solutions of FeTos (12, 20 and 40 wt% in 
ButOH) individually. The excess of FeTos solution (defined as the amount of FeTos clogging 
the porosity of the mat) was removed by using a spincoater (for 20s at 3000 rpm). 

                                                           
305 W.L.F. Armarego and C.L.L. Chai, Purification of Laboratory Chemicals, 5. ed (Amsterdam: Butterworth-
Heinemann, 2003). 

Figure 79. Distillation setup used for pyrrole. Reformed from Ref 305. 
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Subsequently, the FeTos NFs were annealed in air at 70°C on a hot plate for 5min. The NFs 
were then introduced in a reactor where nitrogen was bubbled through the liquid monomer. 
The monomer(s) vapours polymerized when they came in contact with the FeTos-coated NFs, 
producing conductive polymer coating, doped with tosylate anions.  
 In the PPy coating procedure, a pyrrole solution (0.05M) was prepared by appropriate 
dilution of the 14M commercial solution in acetonitrile. In the PPy/PP3C coating procedure, 
pyrrole-3-carboxylic acid was dissolved in acteonitrile (0.1M) and was added to pyrrole 
suspension (0.05M). The monomers mixture was then placed into the reactor as described 
above. The polymerization time was varied depending on the monomer used: pyrrole alone 
polymerized at ambient temperature within a few minutes (7 min), as revealed by the 
appearance of the characteristic black colour of polypyrrole. The polymerization time for PPy 
was then set at 15 min to ensure a complete polymerization. On the other hand, Py/P3C 
polymerized in ambient temperature also but a longer polymerization time was required. The 
black characteristic colour of the co-polymer started to appear within 20 min, so the 
polymerization time for PPy/PP3C was set at 30min to ensure a complete polymerization. 
After the polymerization, the PAN/FeTos/PPy and PAN/FeTos/PPy/PP3C NFs were removed 
form the reactor and left in ambient atmosphere for 4-5 h to ensure complete evaporation of 
Py and Py/P3C vapours. They were then ultrasonicated for 1min, rinsed with H2O/MeOH 
mixture (1:1) for 10 min and dried under N2 at room temperature. 

 
IV.3.6. Immobilization of GOx on the surface of PPy coated PAN NFs with GA 
 A mixture containing 5 mg of GOx, 5 mg of BSA was prepared in 100 M phosphate 
buffer (20 mM, pH 7.2). From this mixture, 20 L were deposited onto the PAN/PPy NFs 
modified gold electrode surface by spincoating for 15 s at 500 rpm and then for 15 s at 1000 
rpm. After the membrane deposition, the electrodes were exposed to GA satured vapours for 
30 min. GA allows the cross-linking of the enzyme and BSA through the formation of Schiff 
bases (-N=CH-). BSA, a lysine-rich protein with no enzymatic activity, was used as 
crosslinking co-reagent to help forming enzyme immobilization matrices and protect the 

Figure 80. Two-step VPP coating process. Reformed from Ref 309. 
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enzyme from excessive reaction with GA, which might have compromised its activity.34 
Then, the membranes on top of PAN/PPy NFs were dried at room temperature for 1h and 
were kept dry overnight at 4°C. 
 
IV.3.7. Covalent immobilization of GOx onto the surface of PPy/P3C coated PAN NFs 
by using EDC/NHS chemistry 
 Aqueous solutions of EDC (100 mM) and NHS (100 mM) were prepared by dissolving 
1.9 mg EDC in 100 L and 1.2 mg NHS in 100 L. Subsequently, the two solutions were 
mixed together (Cfinal of each=10 mM) and the gold electrodes modified with PAN/PPy/PP3C 
NFs were immediately immersed into the EDC/NHS mixture for 1 h. Afterwards, the 
activated surface of the PAN/PPy/PP3C NFs surface was washed 3 times with distilled H2O 
to remove the excess of unreacted EDC/NHS moieties. Finally, the modified working 
electrodes were immersed into the enzyme solution (10 mg GOx in 300 L of PBS 5 mM, pH 
7.2) for 2 h at room temperature, washed with distilled H2O and immediately used for 
electrochemical measurements. 
 
IV.3.8. Electrical resistance measurements 
 A four-point probe (Lucas Lab S-302) which was connected to a digital multimeter with 
four wires measurement capability (Keithley 2001) were used to measure the electrical 
resistance of the PAN/FeTos/PPy/P3C NFs. The resistance measurements were carried out 
using a home-made electrodes design depicted in figure 81. The four electrode design 
minimizes the influence of the contact impedance which could appear at the electrode/mat 
interface. The electrodes consisted of a 150-nm thick gold layer deposited by evaporation 
onto microscope glass slide substrates using an adhesion layer of 20 nm of titanium (Ti). 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 81. Schematic representation of gold electrodes used for electrical resistance measurements. 
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IV.3.9. Electrochemical Characterizations 
 CV and EIS characterizations were all performed at room temperature as described in 
II.2.1. 
 
IV.3.9.1. PAN NFs, PAN/FeTos/PPy NFs and PAN/FeTos/PPy/PP3C NFs modified 
electrodes 
 EIS characterization of PAN NFs and PAN/FeTos/PPy/PP3C NFs modified electrodes 
were carried out in 0.1 M phosphate buffer saline buffer (PBS) pH 7.2 containing 10 mM 
K3Fe(CN)6

3-
 and K4Fe(CN)6

4-, varying the frequency in the 100 mHz to 100 kHz range and 
acquiring 5 points per decade. An excitation voltage of 10 mV was superimposed on a dc 
potential of -300 mV. Impedance data were fitted to equivalent electrical circuits by means of 
the ZView2 software (Scribner Associates Inc, Southern Pines, USA). The same electrodes 
were also characterized by CV, the potential being cycled from −400 and +600 mV (versus 
Ag/AgCl) with a 100 mV/s scan rate. 0.1 M PBS buffer pH 7.2 containing 10 mM 
K3Fe(CN)6

3-
 and K4Fe(CN)6

4- was chosen as electrolyte. After each measurement, the 
electrolyte solution was refreshed, and the electrodes were washed with distilled water to 
remove any residues.  
 
IV.3.9.2. PAN/FeTos/PPy/GOx NFs and PAN/FeTos/PPy/PP3C/GOx NFs modified 
electrodes  
 Biosensing experiments were performed by injecting glucose from mother solution into 
the 4mL electrochemical cell containing either PAN/FeTos/PPy/GOx NFs or 
PAN/FeTos/PPy/PP3C/GOx NFs modified electrodes and 0.1 M PBS pH 7.2 as electrolyte. 
EIS measurements were performed by varying the frequency in the 100 mHz to 100 kHz 
range and acquiring 5 points per decade, on a dc potential of -300 mV. Three replicates were 
performed for each glucose concentration and related standard deviations were calculated.  
 
IV.3.10. Characterization of NFs morphology 
 NF mats were characterized by transmission electron microscopy (TEM) using a Philips 
CM120 instrument operating at an accelerating voltage of 120 kV and by SEM with 
a TESCAN MIRA3 FEG-SEM microscope after sample metallization (2 nm Pt or Cr).  
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IV.4. Results and discussion 
IV.4.1. Elaboration of electrospun PAN NFs coated with PPy by VVP for glucose 
detection 
  
IV.4.1.1. Effect of electrospinning parameters on the morphology of PAN electrospun 
NFs  
 The influence of PAN concentration on NFs morphology was first investigated. Three 
concentrations, 7, 12 and 18 wt% of PAN were tested. We observed that it was not possible to 
produce NFs at the lowest polymer concentration due to the insufficient viscosity of the 
solution for ES. Increasing PAN concentration from 7 up to 12 wt%, helped solving this issue 
and pure fibers were generated. However, the 18wt% PAN solutions appeared as hardly 
electrospinnable due to the very high viscosity that they exhibited. The 12 wt% concentration 
was therefore selected for further experiments. The influence of applied voltage (ranging from 
8-22 kV), the tip-to-collector distance (9-23 cm) and the polymer flow rate (1-3 mL/h) on NFs 
morphology were further investigated. It was observed that when the applied voltage was 
fixed at 22 kV, the collection distance at 15 cm and the flow rate was set at 1 mL/h, the 
electrospinning process was very stable and allowed the continuous production of very 
uniform PAN NFs, free of beads with average diameter 650 10 nm (figure 82). TEM images 
of the pure PAN NFs revealed a perfectly smooth fiber surface (figure 82). 
 
 
 
 
 
 
 
 
 
 
 
 

 
IV.4.1.2. Morphological Analysis of coated PAN NFs with PPy 
 Figure 83 shows pictures of PAN NFs, uncoated (a) and coated with a protective mask 
(b), immersed in FeTos solution (c), annealed at 70°C for 5 min (d), as well as coated with 
PPy (e, f). The blue protective mask was placed on the NFs in order to ensure a well-
established shape (known length and width) necessary for the comparison of the electrical 

Figure 82. SEM (left) and TEM (right) images of electrospun PAN NFs formed by using an applied 
voltage of 22 kV, a polymer concentration of 12 wt%, flow rate of 1 mL/h and collection distance of 
15 cm.   
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resistance measurements of the nanofibrous mats. Calculations of resistivity values were not 
performed, given the fact that a precise and acurate measurement of the coated mat thickness 
could not be performed. 
 
  
 
 
 
 
 
 
 
 
 
 
 

 
 The NFs mats colour was characteristic of the polymer present at the surface: uncoated 
PAN NFs exhibited a white colour, whereas PAN NFs immersed in FeTos solution and 
annealed at 70°C, exhibited the characteristic yellow/orange colour of the oxidant solution.  
PAN NFs further coated with PPy displayed a black colour, characteristic of the presence of 
Py. The coatings appeared uniform and homogeneous over the covered NFs.  
 Core-shell PAN/PPy conductive NFs were obtained by in situ VPP polymerization of 
Py on the surface of PAN fibers. When the electrospun NFs were exposed to Py monomer 
vapours, redox reaction occurs where Py is oxidized while FeTos is reduced. SEM images 
revealed that after 15 min of polymerization, the PPy covers completely the surface of PAN 
NFs. It was observed that cauliflower shaped PPy nanostructures were covering the fiber 
surface (figure 84), as the PPy was polymerized on top of the PAN/FeTos fibers. The AFD of 
PAN NFs coated with PPy was roughly estimated, understanding the limitations of the 
measuring method. A slight increase within the range of 10 to 20nm was observed by 
calculating the difference in the AFD of uncoated and coated with PPy PAN NFs.  The results 
are in good agreement with what has been reported in the literature.306 

                                                           
306 J. Wang, H. E. Naguib, and A. Bazylak, “Electrospun Porous Conductive Polymer Membranes,” Behavior and 
Mechanics of Multifunctional Materials and composites 8342, (2012): 83420F-1 -83420F-13. 

Figure 83. Different steps of PAN NFs PPy coating during the VPP procedure. a) Uncoated PAN fibers, 
b) placement of blue mask onto the NFs in order to accurately define the shape and size (height and 
width) of the conductive area to ensure reproducible resistance measurements of the NFs, c) PAN NFs 
coated with the oxidant after immersion in 20 wt% FeTos solution, d) FeTos coated PAN NFs after 
annealing at 70°C, d) PPy coated PAN NFs after 15min polymerization time at RT, PPy coated PAN NFs 
after the removal of protective blue mask. 
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IV.4.1.3. Electrochemical Characterization of PAN/PPy electrospun NFs  
 CV and EIS were employed to evaluate the electrochemical performance of gold 
electrodes modified with PAN/PPy NFs upon increasing concentration of the oxidant 
solution. Polymerization time was set at 15 min. CVs were recorded in 10 mM PBS at pH 7.2 
at a scan rate of 100mV/s using Fe(CN)6

3-/Fe(CN)6
4- couple as redox probe. The potential was 

repetitively cycled until several consecutive curves were superimposed. CVs were recorded 
before and after the functionalization of the electrode surface with PAN NFs and PAN/PPy 
NFs when using FeTos solution of 12 wt%, 20 wt% and 40 wt% during the VPP process. It is 
clearly demonstrated that coating the PAN NFs (initially exhibiting strong insulating 
properties-figure 85, black curve) with PPy results in the fabrication of conducting NFs 
(figure 85, red, blue and green curves) with  highly capacitive behaviour. The levelled current 
densities for the PAN/FeTos 40%/PPy/PP3C NFs modified electrode are higher than those of 
PAN/FeTos 20%/PPy/PP3C NFs electrode and much higher than those of PAN/FeTos 
12%/PPy/PP3C NFs electrode. These results are in good agreement with what has been 
reported in the literature and is consistent with the well-known PPy electrochemical 
properties.307, 308  
 

 

  

                                                           
307 J.G. Wang et al., “Rational Synthesis of MnO2/conducting Polypyrrole@carbon Nanofiber Triaxial Nano-
Cables for High-Performance Supercapacitors,” Journal of Materials Chemistry 22, no. 33 (2012): 16943. 
308 S. Chen and I. Zhitomirsky, “Capacitive Behaviour of Polypyrrole, Prepared by Electrochemical and Chemical 
Methods,” Materials Letters 125 (2014): 92–95. 

Figure 84. Representative SEM images of conductive PAN NFs coated with PPy, after exposure to 
Pyrrole vapours for 15min in ambient conditions.  



CHAPTER IV: PREPARATION AND CHARACTERIZATION OF CORE-SHELL POLYPYRROLE NANOFIBERS BY 
COMBINATION OF ELECTOSPINNING AND VAPOUR-PHASE POLYMERIZATION FOR BIOSENSOR 

APPLICATIONS 

146 
 

-400 -200 0 200 400 600
-600

-400

-200

0

200

400

600

800

1000

j (
A

/c
m

2 )

E (mV/Ag/AgCl)

PAN
 PAN/FeTos 12%/PPy 0,05M
 PAN/FeTos 20%/PPy 0,05M
 PAN/FeTos 40%/PPy 0,05M

 
Figure 85. Cyclic voltammograms of gold modified electrodes with PAN NFs and PAN/PPy electrospun 
NFs by using FeTos solutions of 12, 20 and 40wt% (in [Fe(CN)6]3-/4- aqueous solution, pH 7.2, scan rate 
100mV s-1). 

 

 The electronic transfer properties of the PAN/PPy NFs modified gold electrodes were 
further characterized by EIS by varying frequency in the 100 mHz to 100 kHz range at a 
constant potential of -300 mV. The Nyquist plots of PAN/PPy NFs electrodes presented in 
figure 86, were satisfactorily fitted with a Randles-Ehrshler equivalent electrical circuit. 
Circuit parameters obtained by fitting the impedance data with the equivalent circuit shown in 
figure 55 are summarized in Table 11. 
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Figure 86. Nquist plots of impedance spectra obtained for gold electrodes modified with PAN/PPy 
electrospun NFs by using FeTos solutions of 12, 20 and 40wt%. The EIS measurements were 
performed at -300 mV in the presence of a 10mM [Fe(CN)6]3-/4- PBS  solution  by varying frequency in 
the 100 mHz to 100 kHz range. 

 
 Table 11. Fitting parameters obtained from Nquist plots of impedance spectra by using the equivalent 
 Randles-Ershler circuit presented in figure 55. 

 Rs (Ω·cm-2) Rct (kΩ·cm-2) CPE ( F·s(n-1)) nCPE x2 
PAN/FeTos 
12wt%/ PPy 

0.181 4.107 1.985 0.985 0.004 

PAN/FeTos 
20wt%/ PPy 

0.149 1.544 2.312 0.984 0.004 

PAN/FeTos 
40wt%/ PPy 

0.135 1.151 2.183 0.978 0.003 

 
The transfer charge resistance of PAN/PPy NFs decreased by increasing FeTos 

concentration, indicating the enhanced electron transfer capability of the PAN/PPy NFs 
modified gold electrodes.  
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IV.4.1.4. Electroanalytical characterization of PAN/PPy/GOx electrospun NFs  
 In subsequent experiments, GOx enzyme was casted and cross-linked on the PAN/PPy 
NFs modified electrodes prepared at the three FeTos concentrations and EIS measurements 
were performed by varying the frequency in the 100 mHz to 100 kHz range at a constant 
potential of -300 mV and injecting different glucose concentrations in order to evaluate the 
biosensor response. A large number of electrodes were tested, but in all cases Nyquist plots 
obtained at the different glucose concentrations were superimposed with the curve recorded 
before glucose injection.  
 After the removal of the working electrode from the electrochemical cell, the absence of 
the membrane containing the biomolecule of interest (GOx) was certified, whilst the 
PAN/PPy NFs were still well attached to the gold substrate. The first protocol tested for the 
production of PAN/PPy/GOx NFs modified electrodes was therefore not satisfying since it 
did not enable a firm attachment of the biological sensing membrane onto the fibers. This is 
why a second strategy of enzyme immobilization was investigated, which consisted in the 
covalent binding of GOx by incorporating functional carboxylic groups to the PPy coating. 
This was done by incorporating PP3C containing carboxylic groups in the conductive layer 
covering the PAN NFs. 
 
IV.4.2. Electrospun PAN NFs coated with PPy/ PP3C by VVP for glucose detection  
 As already mentioned in the introduction, two different approaches were tested. In the 
first approach, PAN/FeTos NFs were produced by electrospinning PAN solutions containing 
FeTos, as described in section IV.3.3. VPP process followed in order to coat the oxidant fibers 
with a thin layer of PPy/PP3C.  In the second approach, pure electrospun PAN NFs (used as 
backbone (core) fibers) were first immersed into the oxidant solution (FeTos in ButOH) and 
after the removal of the excess using a spincoater, their exposure to PPy/P3C vapours by 
using VPP process led to coating their surface with the conductive layer. 
 
IV.4.2.1. First approach: Fabrication of PAN/FeTos composite NFs 
 The influence of FeTos concentration on the viscosity and the conductivity of the 
resulting PAN/FeTos electrospun mixtures was first investigated. Three concentrations (12, 
20 and 40 wt% of FeTos in DMF) were tested. FeTos solutions exhibited a significant 
electrical conductivity and varying viscosity depending on the concentration of the solution309 
with those of 40wt% being more conductive and viscous when compared to the others. After 
the addition of FeTos solutions of different concentrations into 12 wt% PAN solution (1:1 
ratio), it was observed that the FeTos presence decreases the viscosity of the resulting 
mixture.  

                                                           
309 A. Laforgue and L. Robitaille, “Deposition of Ultrathin Coatings of Polypyrrole and Poly(3,4-
Ethylenedioxythiophene) onto Electrospun Nanofibers Using a Vapor-Phase Polymerization Method,” 
Chemistry of Materials 22, no. 8 (2010): 2474–80. 
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 All mixtures of 12 wt% PAN solutions supplemented with FeTos solution (12, 20 and 
40 wt%) exhibited insufficient viscosity for electrospinning, but this issue was overcome by 
increasing PAN concentration from 12 to 15 wt%. To obtain optimum viscosity and to 
evaluate the influence of FeTos in the conductivity of the composite NFs, different 
polymer/oxidant mass ratios were tested. 1:1 and 2:1 (PAN: FeTos) ratios exhibited the 
required viscosity whereas the viscosity of the solution by using 3:1 ratio became so high that 
after the addition of the polymer a gel formed at room temperature, leading to the 
solidification of the mixture. On the contrary, when a ratio of 1:2 (PAN: FeTos) was used, the 
viscosity of the resulting mixture was insufficient to obtain stable conditions for 
electrospinning. 
 By using mixtures of PAN/FeTos (1:1) for all FeTos concentrations, composite oxidant 
NFs exhibiting the characteristic yellow/orange colour of FeTos, were successfully obtained.  
However, due to high electrostatic interactions it was hard to achieve deposition of the fibers 
onto the gold substrate. Instead, we observed the formation of these composite fibers in the 
air. The phenomenon was more intense upon increasing values of applied voltage and above 
15 kV, sparks creation made the process impossible. It was thus concluded that FeTos 
demonstrates a significant electrical conductivity which greatly affects the conductivity of the 
electrospun mixture. 
 Successful fabrication of oxidant FeTos/PS NFs has already been reported in the 
literature by Laforgue et al.224 However, in that study the reported FeTos fibers were 
extremely sensitive to humidity due to the low polymer content used, and they were liquefied 
within a few min by incorporation of water, if not kept in a very dry environment (relative 
humidity <15%). So in that study, the electrospinning had to be performed in a controlled 
chamber kept at 10% of relative humidity to maintain the NF integrity while being produced 
and the VVP process was carried out under vacuum.  
 On the contrary in our study, the resulting electrospun oxidant PAN/FeTos NFs were 
very stable upon their exposure to humidity due to the high polymer content used and the VPP 
process was simply performed under nitrogen atmosphere. However, the reproducibility of the 
electrospinning process was limited due to the difficulty in achieving highly stable jets and in 
controlling all the parameters in order to deposit the NFs onto the gold surface. So in order 
not to compromise the reproducibility of the glucose sensor, it was decided to produce pure 
PAN NFs and then immerse them into the oxidant solution (FeTos in ButOH) for the 
fabrication of the oxidant fibers. 
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IV.4.2.2. Second approach: Immersion of PAN NFs into FeTos solutions 
 In this approach, PAN electrospun NFs were produced in the optimal conditions defined 
in section IV.A.1.1. and immersed in FeTos solutions (12, 20 and 40 wt%) and core-shell 
PAN/PPy/PP3C conductive NFs were obtained by in situ VPP of Py/P3C blends on the 
surface of PAN NFs.  
 
IV.4.2.2.1. Effect of FeTos concentration on the growth and morphology of conductive 
PPy/PP3C coating onto core PAN NFs 
 Two of the most widely used Fe-based oxidants are FeCl3 and ferric tosylate, with the 
latter being more able to suppress crystallite formation and moderate the solution pH, 
generally resulting in much smoother and more conducting coatings.310 In this study, three 
different FeTos concentrations were tested in order to investigate the way that the final 
coating thickness and the conductivity of the coated NFs were influenced by the oxidant 
concentration.  
 For all FeTos concentrations, after 30 min polymerization time, SEM images revealed 
that uneven nodular PPy/PP3C thin coating was grown onto the surface of oxidant PAN NFs. 
Figure 87 shows representative SEM images of coated PAN/PPy/PP3C NFs produced by VPP 
process after their immersion in 12, 20 and 40 wt% FeTos solution respectively, before the 
rinsing step with H2O/MeOH. It was revealed that unreacted oxidant crystallized as FeTos 
salts, confirming that a significant part of the oxidant has not been consumed by Py/P3C 
polymerization. An increasing amount of FeTos salts crystals was observed upon increasing 
the concentration of the oxidant solution. 
 

 

                                                           
310 M.A. Ali et al., “Effects of iron(III) P-Toluenesulfonate Hexahydrate Oxidant on the Growth of Conductive 
poly(3,4-Ethylenedioxythiophene) (PEDOT) Nanofilms by Vapor Phase Polymerization,” Synthetic Metals 161, 
no. 13–14 (2011): 1347–52. 
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 As seen in figure 87c, a much thicker film of PPy/PP3C, compared to the one produced 
at the lowest oxidant concentrations, was obtained for the highest FeTos concentration (40 
wt%). This film was formed at almost the whole surface of the mat. This large difference 
observed could not be attributed only to FeTos concentration in itself, but also to the highest 
viscosity of the solution that prevented an efficient removal of the excess of oxidant from the 
mat during the spincoating process. Different speed rates ranging from 0 to 3000 rpm were 
tested during the spincoating process in order to achieve better removal. It was found that 
maximum, though partial, removal was achieved at 3000rpm.  
 By decreasing the concentration of FeTos solution to 20wt% and finally 12wt%, the 
viscosity of the solution was reduced, allowing more successful but still partial removal of the 
FeTos excess during the spincoating process thus resulting to coating of individual fibers 
without filling the entire porosity of the mat (figure 87a and 87b).  
 Thus, an additional cleanning step was necessary to remove the excess of the unreacted 
FeTos. To do so, different solvents were tested including distilled H2O, pure methanol, 
ethanol and a mixture of H2O/methanol (1:1) which was found to be the most efficient. 
Simply rinsing the modified electrodes was not sufficient to remove the totality of FeTos 
crystals, so the PAN/PPy/PP3C NFs modified gold electrodes were first placed into an 
ultrasonic bath. The sonication time was varied from 0 to 3 min. For sonication times less 
than 1 min, the removal of unreacted FeTos was incomplete, independently of oxidant 

Figure 87. Representative SEM images of PAN NFs covered with PPy/PP3C coatings after VPP process
and before the cleaning step. The PAN NFs mats were immersed in a) FeTos 12wt%, b) 20wt% and c) 
40wt%, respectively.  
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concentration, and for sonication times higher than 3 min, partial removal of the fibers 
themselves was observed. Thus, optimum conditions were found at ultrasonication time of 1 
min followed by rinsing with H2O/MeOH. Figure 88 shows SEM images after the rinsing step 
with H2O/MeOH.  

 
 SEM images presented in Figure 88a and b confirm the total elimination of crystallized 
FeTos salts when FeTos solutions of 12wt% and 20wt% are used. The successful removal of 
FeTos salts after rinsing NFs with methanol has been also reported and confirmed by X-ray 
diffraction analysis by some authors.224 At the 40 wt% concentration Figure 88c, only partial 
removal of FeTos crystals was achieved, also confirming some previous results reported in 
the literature.309 

 After the cleaning step, all the coated NFs maintained the fibrous morphology and the 
surfaces were cauliflower shaped, and some NFs were bonded at the fiber-fiber intersections. 
A possible reason for the formation of the bonding structure is the capillary effect occurring 
during the coating of the NFs with FeTos solution, in a way that extra FeTos was adsorbed at 
these intersections and therefore more PPy/PP3C was formed in these areas.311 As a result, the 

                                                           
311 H. Wang et al., “Polypyrrole-Coated Electrospun Nanofibre Membranes for Recovery of Au(III) from Aqueous 
Solution,” Journal of Membrane Science 303, no. 1–2 (2007): 119–25. 

Figure 88. Representative SEM images of PAN NFs covered with PPy/PP3C immersed in a) FeTos 
12wt%, b) 20wt% and c) 40wt%, respectively, after ultrasonication for 1min and rinsing with 
H2O/MeOH.  
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PPy/PP3C coating makes the individual fibers less distinguishable when compared to 
uncoated PAN NFs. (figure 89) 
  
 
 
 
 
 
 
 
 
  
 

  
 Moreover, it was noted that the AFD of the PAN/PPy/PP3C NFs was not affected 
during the rinsing step, which was expected given the fact that PAN does not swell in H2O 
and alcohols. The AFD of PAN/PPy/PP3C NFs was 660±10 nm, 670±5 nm and 710±10 nm 
for 12, 20 and 40 wt% FeTos concentration respectively, when the polymerization time was 
set at 30 min. The PPy/PP3C coating thickness, roughly estimated by calculating the 
difference in the AFD of uncoated and PPy/PP3C coated PAN NFs, was in the 10 to 20 nm 
range, when using 12 wt% and 20 wt% oxidant concentrations. The coatings were found to be 
thicker at higher oxidant concentration, most likely because of the increase of the oxidant 
solution viscosity that produced thicker overlayers on the nanofibers. 
  
IV.4.2.2.2. Effect of Polymerization time on the conductive polymer coating 

Different polymerization times, ranging from 30 min to 3 h, were tested in order to 
ensure complete co-polymerization. Preliminary tests were firstly performed, in order to 
roughly estimate the polymerization kinetics of the two monomers. By keeping the 
concentration of the two different monomers the same (0.05M), VPP was performed with a) 
PPy and b) PP3C. From our previous work, we have observed that during the coating of 
electrospun PAN NFs with PPy by VPP process, pyrrole alone polymerized at ambient 
temperature within a few minutes (7 min), as revealed by the appearance of the characteristic 
black colour of polypyrrole onto the NFs. The observed results are in good agreement with 
what has been reported in the literature during the coating of NFs with PPy by using VPP 
process.311 

Figure 89. Representative SEM images of a) uncoated PAN fibers and b) PPy/PP3C coated PAN NFs 
after rinsing with H2O/MeOH (polymerization time: 30min, FeTos concentration: 20wt%, PPy/PP3C
ratio: 1:2. 
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Additional experiments were performed for the fabrication of conductive PAN/PP3C 
core-shell NFs, by in situ VPP of PP3C on the surface of PAN fibers. P3C polymerized also 
in ambient temperature but a longer polymerization time was required, probably due to slower 
evaporation rate of the P3C momoner. When PAN NFs were exposed for 15 min to Py/P3C 
vapours generated from a Py/P3C (1:2 w/w) solution, the nanofibrous mat turned grey/black, 
indicating the presence of PPy/PP3C on the NFs. 

Polymerization times of 30 min and 3 h were subsequently tested in order to determine 
the evolution of the NFs diameter with the PPy/PP3C synthesis time. In both cases, the whole 
membrane looked very uniform, without any colour variations and physical defects. Average 
fiber diameters of PAN/PPy/P3C NFs after exposure times of 30 min and 3 h, estimated by 
SEM analysis, are summarized in Table 12. It was observed that AFD slightly increased upon 
the increasing exposure time to Py/P3C vapours.  
 
Table 12. Influence of FeTos solution concentration and polymerization time on AFD of NFs 
prepared by VPP of Py/P3C (1:2 w/w).  

FeTos Concentration (wt%) Reaction time: 30min Reaction time: 3h 
12 660±10nm 680±10nm 
20 670±5nm 690±10nm 
40 710±10nm 735±30nm 

  
 

IV.4.2.2.3. Electroconducting properties 
 To characterize the electroconducting properties of the PAN/PPy/PP3C NFs 
(PPy/PP3C: 1:2 w/w; polymerization time: 30 min), surface resistance was measured by using 
a four-point probe technique, as described in section IV.3.8.. Increasing FeTos concentration 
resulted in a significant decrease of the resistance of PAN/PPy/PP3C mats, values being 37.6 
kΩ, 9.2 kΩ and 3.3 kΩ for the 12, 20 and 40 wt% concentration, respectively. 
 Such low resistance values may be assigned to the soldering phenomenon revealed by 
SEM images at fiber intersections after polymerization, this phenomenon being more intense 
upon the increasing concentration of FeTos solution. This suggests that the fibers are 
interconnected at multiple junctions, which ensures a good contact between the fibers and 
therefore a low ohmic barrier to the charge transport from one fiber to another. Especially at 
the highest oxidant concentration, the fibers are almost compacted (as revealed by SEM 
pictures) thus forming a continuous conductive path and significantly reducing the contact 
resistance between fibers. The observed results are consistent with what it is generally 
reported in the literature.309, 312  
 The low resistance values exhibited by the conductive nanofibrous mats produced in our 
study may also be attributed due to a possible semi-crystalline nature of the PPy/PP3C 
                                                           
312 J.Y. Lee et al., “Polypyrrole-Coated Electrospun PLGA Nanofibers for Neural Tissue Applications,” 
Biomaterials 30, no. 26 (2009): 4325–35. 
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coatings. Laforgue and Robitaille showed by X-ray diffraction analysis (XRD)309 that PPy 
coatings produced by VPP method are crystalline. The crystallinity of the coatings was 
attributed to the fact that the VPP method is a solvent-free polymerization process where the 
tosylate anions produce a templating effect during the growth of the polymers, resulting in the 
production of particularly ordered polymers by π-π interactions.313, 314 Additional 
characterization by X-ray diffraction analysis (XRD) should be performed to confirm our 
assumption. 
 
IV.4.2.2.4. Electrochemical Characterization of PAN/PPy/PP3C core-shell electrospun 
NFs  
 CV and EIS were employed to evaluate the influence of increasing FeTos concentration 
on the electrochemical characteristics of the gold electrodes modified with PAN/PPy/PP3C 
NFs. Polymerization time was set at 30 min. CVs were recorded in 10 mM PBS at pH 7.2 at a 
scan rate of 100mV/s using Fe(CN)6

3-/Fe(CN)6
4- couple as redox probe. The potential was 

repetitively cycled until several consecutive curves were superimposed. CVs were recorded 
before and after the functionalization of the electrode surface with PAN NFs and 
PAN/PPy/PP3C NFs when using FeTos solution of 12 wt%, 20 wt% and 40 wt% during the 
VPP process. Figure 92 evidences that PAN NFs is highly insulating (black curve) and 
becomes conductive, with a strong capacitive behaviour, when coated with PPy/PP3C thin 
films (figure 92, red, blue and green curves). The capacitive current observed for the 
PAN/FeTos 40%/PPy/PP3C NFs modified electrode is higher than that of PAN/FeTos 
20%/PPy/PP3C NFs electrode and much higher than that of PAN/FeTos 12%/PPy/PP3C NFs 
electrode. These results are in good agreement with what has been reported in the literature.310 

                                                           
313 B. Winther-Jensen et al., “High Current Density and Drift Velocity in Templated Conducting Polymers,” 
Organic Electronics 8, no. 6 (2007): 796-800. 
314  B. Winther-Jensen et al., “Order–disorder Transitions in poly(3,4-Ethylenedioxythiophene),” Polymer 49, no. 
2 (2008): 481-487. 



CHAPTER IV: PREPARATION AND CHARACTERIZATION OF CORE-SHELL POLYPYRROLE NANOFIBERS BY 
COMBINATION OF ELECTOSPINNING AND VAPOUR-PHASE POLYMERIZATION FOR BIOSENSOR 

APPLICATIONS 

156 
 

-400 -200 0 200 400 600
-600

-400

-200

0

200

400

600

800

j (
A

/c
m

2 )

E (mV/Ag/AgCl)

PAN
 PAN/FeTos 12%/PP3C 0,1M/PPy 0,05M
 PAN/FeTos 20%/PP3C 0,1M/PPy 0,05M
 PAN/FeTos 40%/PP3C 0,1M/PPy 0,05M

 
Figure 90. Cyclic voltammograms of gold modified electrodes with PAN NFs and 
PAN/FeTos/PPy/PP3C electrospun NFs by using FeTos concentrations of 12, 20 and 40 wt%. The CVs 
were performed in a 10mM [Fe(CN)6 ]3-/4- PBS solution, pH 7.2, at a scan rate of 100mV/s. 

 The electronic transfer properties of the PAN NFs and PAN/PPy/PP3C NFs modified 
gold electrodes were further characterized by EIS by varying frequency in the 100 mHz to 
100 kHz range at a constant potential of -300 mV. The Nyquist plot of bare modified with 
PAN NFs and PAN/PPy/PP3C NFs electrodes presented in figures 91 and 92 respectively, 
were satisfactorily fitted with a Randles-Ershler equivalent electrical circuit (Figure 55). The 
circuit parameters obtained are summarized in Table 13. 
 The Rct-values of PAN/PPy/PP3C NFs modified electrodes revealed a slight increase in 
the magnitude of impedance when compared to those of PAN/PPy NFs modified electrodes 
(Table 11), fabricated under the same conditions. This slight increase in impedance was 
attributed to the incorporation of the functional monomer pyrrole-3-carboxylic acid (P3C) into 
the co-polymer scheme, even though it is well-known301, 302 that 3-substituted pyrroles 
demonstrate the ability to maintain their intrinsic electrical properties without interfering with 
the polymer elongation. 
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Figure 91. Nyquist plots of impedance spectra obtained for gold electrodes modified with PAN NFs. 
The EIS measurements were performed at -300 mV in the presence of a 10mM [Fe(CN)6]3-/4- PBS  
solution  by varying frequency in the 100 mHz to 100 kHz range. 
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Figure 92. Nyquist plots of impedance spectra obtained for gold electrodes modified with 
PAN/FeTos/PPy/PP3C NFs by using FeTos concentrations of 12, 20 and 40 wt%. The EIS 
measurements were performed at -300 mV in the presence of a 10mM [Fe(CN)6]3-/4- PBS  solution  by 
varying frequency in the 100 mHz to 100 kHz range. 
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 Table 13. Results of fitting the Nyquist plots of impedance spectra recorded for gold electrodes 
 modified by PAN NFs and PAN/PPy/PP3C with the equivalent Randles-Ehrshler circuit (figure 55). 

 Rs (Ω·cm-

2) 
Rct (kΩ·cm-2) CPE ( F·s(n-1)) nCPE x2 

PAN NFs  0.270 32.17 4.945 0.995 0.003 
PAN/FeTos 

12wt%/ PPy/PP3C 
0.177 6.130 1.640 0.988 0.005 

PAN/FeTos 
20wt%/ PPy/PP3C 

0.168 2.998 1.656 0.981 0.004 

PAN/FeTos 
40wt%/ PPy/PP3C 

0.191 1.705 2.332 0.977 0.003 

 
 The decrease of Rct-values observed by coating the PAN NFs with PPy/PP3C indicate 
that the electron transfer capability of the PAN/PPy/PP3C NFs modified gold electrodes is 
significantly enhanced in comparison to the one of PAN NFs modified electrode, this 
phenomenon being accentuated by increasing FeTos concentration. These results confirm CV 
measurements, the diminution of the charge transfer resistance reflecting the increase of the 
conductivity of the PAN/PPy/PP3C NFs with oxidant concentration. 
 
IV.4.2.2.5. Electroanalytical characterization of PAN/PPy/PP3C/GOx electrospun NFs  
 For the development of the glucose biosensor, 20 wt% FeTos solution was selected as 
the oxidant solution in which the PAN NFs were immersed prior to the VPP process, since the 
mats exhibited high conductivity and uniform coating with PP3C/PPy, and were free of FeTos 
crystals, as the results of the electrochemical characterization and SEM analysis after the 
cleaning step had revealed. Although the PAN/40 wt% FeTos/PPy/PP3C NFs exhibited a 
lower charge transfer resistance than the other fibers, the excess of FeTos crystals could not 
be totally removed form the mats and would jeopardize the reproducibility of the sensor. 

 In order to study the influence of the proportion of non carboxylated Py and 
carboxylated Py in the monomers solution on the final glucose biosensors response, different 
electrodes were prepared using pure P3C, and 1:1 or 1:2 (w:w) Py/P3C mixtures. PP3C 
carboxyl groups were then activated for further GOx binding. Each electrode was measured 
by EIS in PBS solution in presence of different glucose concentrations.  Glucose could not be 
detected, neither with the PAN/P3C/GOx NFs nor with the PAN/Py/P3C(1:1)/GOx NFs 
modified electrode.  

The first result may be attributed to the too high density of carboxyl groups present on 
the surface, which may hamper activation reaction and/or subsequent binding of a sufficient 
amount of enzyme. The same issue and/or a slower evaporation rate of the P3C momoner 
compared to PPy may explain the absence of signal observed for the PAN/Py/P3C(1:1)/GOx 
NFs modified electrode. PPy alone polymerizes at ambient temperature within a few minutes 
(7 min), whereas for P3C a longer polymerization time is required (15min).  By setting the 
ratio of Py/P3C monomers at 1:2, EIS measurements enabled successful detection of glucose, 
thus validating the successful incorporation of carboxylic groups onto the NFs surface (Figure 
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93). Impedance decreased upon the increasing concentration of glucose, probably due to the 
fact that the electron transfer is facilitated by the presence of the enzymatic reaction products. 
No signal was detected from the PAN/PPy/PP3C control electrode.  
 The Nyquist plots recorded at the different glucose concentrations for 
PAN/PPy/PP3C/GOx NFs modified electrodes were satisfactorily fitted with a Randles-
Ehrshler equivalent electrical circuit (figure 55). The circuit parameters obtained by fitting the 
impedance data to the equivalent circuit are summarized in Table 14. Values of Rp were used 
to built the calibration curve of the proposed PAN/PPy/PP3C/GOx NFs biosensor and 
determine its analytical performances. 
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Figure 93. Nyquist plots of impedance spectra obtained for gold electrodes modified with PAN/FeTos 
20wt%/PPy0.05M/PP3C0.1M/GOx electrospun NFs upon the increasing concentration of glucose. 
The EIS measurements were performed at -300 mV in the presence of PBS solution (0.1M, pH 7.2), by 
varying frequency in the 100 mHz to 100 kHz range. 
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Table 14. Fitting parameters (Randles-Ehrshler model) obtained from Nyquist plots of impedance 
spectra recorded at increasing glucose concentration for the PAN/PPy/PP3C/GOx NFs biosensor. 
 

Glucose 
Concentration 

Rs (kΩ·cm-2) Rp (kΩ·cm-2) CPE ( F·s(n-1)) nCPE x2 

0.00 nM 0,0213 3.381 1.879 0,995 0,003 
19 nM 0,0216 3.350 2.027 0,993 0,005 
46 nM 0,0214 2.719 2.341 0,996 0,003 
103 nM 0,0214 2.493 2.553 0,989 0,007 
206 nM 0,0217 2.218 1.793 0,991 0,004 
412 nM 0,0226 1.931 2.142 0,990 0,006 
1 M 0,0224 1.565 2.431 0,993 0,004 
2 M 0,0228 1.402 2.836 0,997 0,005 

 

 
IV.4.2.2.6. Analytical performances of the glucose biosensor 

Figure 94 shows the calibration curve obtained by plotting Rp versus log(glucose 
concentration) for the PAN/FeTos 20wt%/PPy/PP3C/GOx NFs biosensor. The signal was 
linear in the 19nM-2μM range (R2 = 0.977) with a slope of 0.98 KΩ/log[glucose] (Figure 95).  
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Figure 94. Calibration curve of the PAN/FeTos 20wt%/PPy/PP3C/GOx NFs biosensor (in PBS 0.1M, pH 
7.2). Error bars represent standard deviations obtained from three successive measurements. 
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The limit of detection (LOD), defined as the concentration of glucose giving a signal 

equal to three times the standard deviation on the blank (i.e. in absence of glucose) was 
calculated for several electrodes coming from the same and from different batches of the VPP 
process in order to evaluate the reproducibility of the VPP method. The LOD values are 
illustrated in Table 15. It is important to point out that even though the LOD slightly varies 
when the sensor used is coming from different batches (while keeping the same conditions 
during VPP), all sensors tested exhibited linearity within the same range (19 nM-2 μM), 
implying that even though the thickness of the conducting PPy/PP3C coating during the VPP 
was not accurately controlled, the impact of this fact on the reproducibility demonstrated by 
the developed glucose biosensors was negligible.  

 
Table 15. Limit of detection calculated for six electrodes coming from two different batches of VPP 
process. 

 Batch 1 Batch 2 

LOD (nM) Sensor 1: 
1.49 

Sensor 2: 
1.28 

Sensor 3: 
2.67 

Sensor 4: 
2.46 

Sensor 5: 
5.14 

Sensor 6: 
2.38 

Mean LOD (nM) 1.8 3.3 
Slope 

(KΩ/log[glucose]) 
0.98 0.96 0.97 0.57 0.33 0.86 

 
 The relative standard deviations calculated from three consecutive measurements on one 
single biosensor were lower than 2% in the 19nM-2μM range, showing an excellent 
repeatability of the proposed biosensor.  Inter-sensor reproducibility of the method was also 
rather good as the relative standard deviation, calculated from the analysis of the 46nM 
glucose solution using six different biosensors, was 15%.  
 Additionally, operational and storage stabilities of the biosensor were determined. 
According to the operational stability measurement results, no significant decrease of the 
PAN/PPy/PP3C/GOx biosensor response was observed after 10 measurements of the 1μM 
glucose solution, performed the same day. In the same way, EIS signal remained stable for 10 
days when the biosensor was tested twice per day at the 1μM glucose concentration and the 
biosensor was kept at 4°C between two measurements. The results demonstrate the good 
operational and storage stabilities of the PAN/PPy/PP3C/GOx NFs biosensor. 
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IV.5. Conclusion 
 In the present study, different approaches of fabricating core-shell conductive NFs, by 
combination of electrospinning process and vapour-phase polymerization process, were tested 
for biosensor elaboration. 
  In the first approach, electrospun PAN NFs were used as backbone non-conductive NFs 
which were then coated with conductive PPy coating, through the VPP process. GA vapours 
were used as cross-linking agent for the immobilization of GOx onto the PAN/PPy NFs 
surface. By using the VPP method, uniform coating of PAN NFs with PPy was achieved as 
SEM images revealed, and the resulting fibers exhibited high conductivity as electrochemical 
characterization results revealed. However, this first approach was not satisfying since it did 
not enable a firm attachment of the biological sensing membrane onto the fibers and the 
biosensing layer detached rapidly. 
 To overcome this issue, covalent immobilization of the enzyme onto the surface of the 
NFs was decided, and the incorporation of carboxylated functions into the conductive coating 
through the evaporation of Py/PP3C mixtures instead of Py alone, was investigated. Owing to 
the poor electrospinnability of PAN/FeTos solutions, immersion of PAN NFs into FeTos 
oxidant solution was found to be the best way to produce the PAN/FeTos oxidant NFs used as 
support for subsequent Py and Py/PP3C polymerization. Based on this approach, the 
successful and rapid elaboration of an original electrochemical glucose biosensor based on 
electrospun PAN NFs covered with conducting PPy/PP3C coatings via VPP, followed by 
covalent grafting of GOx onto the surface of the NFs, was illustrated.  
  The resulting glucose biosensor exhibited enhanced performance, by achieving 
linearity in a wide range of glucose concentration (19nM-2μM), good stability (shelf life time 
of 10 days) and very low LOD values (2-5 nM) when compared to LODs obtained via the two 
approaches described in chapter II and III, and to conventional film-based polypyrrole 
electrochemical glucose biosensors. Although the thickness of the conducting coating was not 
accurately controlled, as in an electropolymerisation process, biosensors coming from 
different batches exhibited linearity in the same ranges thus implying good reproducibility of 
the VPP method. Moreover by employing the electrospinning technique for the fabrication 
PAN/PPy/PP3C NFs instead of template synthesis methods, are commonly used for the 
elaboration of nanostructured polyppyrole based biosensors, we eliminated the need of post-
synthetic treatment of the electrospun nanofibers while significantly increasing the specific 
surface of the biosensor. 
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GENERAL CONCLUSION AND PERSPECTIVES 
 

In the present dissertation, we reported the simple, rapid and successful fabrication of 
three pioneering, highly sensitive and electroactive platforms based on conductive electrospun 
nanofibrous composite materials for further application to electrochemical biosensors 
elaboration. Glucose oxidase was used as a model enzyme to validate the performance of the 
developed biosensors. The enzyme was either incorporated into the NFs or covalently 
immobilized onto their surface. These original biosensors, characterized by various 
microscopic and electrochemical techniques, enabled successful detection of glucose by 
employing cyclic voltammetry and electrochemical impedance spectroscopy, whilst 
demonstrating enhanced performances over conventional biosensors in terms of sensitivity, 
reproducibility and stability. 

Optimizing the processing parameters during the electrospinning process, including 
flow rate, applied voltage, distance between tip and collector, and polymer solution 
parameters such as polymer concentration, is of high importance to fabricate nanofibrous mats 
with minimal beading. This is important in order to decrease the variability of the mats 
morphology and subsequently increase the reproducibility of the resulting biosensors. 
 The modification of gold electrodes with electrospun PVA-SbQ/MWCNTs-
COOH/GOx NFs, followed by a rapid and facile photochemical cross-linking step which 
rendered the NFs water-stable, resulted in the production of a highly sensitive voltammetric 
glucose biosensor exhibiting a wide linear range (5 μM-4 mM) and a very low LOD value (2 

M). Judging from the exhibited high Imax, it was concluded that introducing MWCNTs-
COOH as conducting filler into the polymeric NFs, improved their conducting properties thus 
enhancing the electron transfer ability of the generated nanofibrous mats. Moreover, this 
approach of blending enzyme, MWCNTs-COOH, and water-soluble polymers offers a simple 
method to electrospin biologically active fibers and thus fabricate a novel electroactive 
platform for enzyme immobilization in a one-step synthesis approach. Most importantly, it 
was proven that the enzyme remained active and accessible to the substrate.  
 In the second approach, water-stable PVA/PEI electrospun NFs incorporating GOx 
were produced and uniformly decorated with pH-tunable densities of citrate AuNPs. The 
AuNPs enhanced the electrical properties of the bioactive electrospun NFs and thus facilitated 
the electron transfer within the system. The obtained impedimetric glucose biosensor 
exhibited linearity in a wide range (1μM -1mM) of glucose concentration and very low LOD 
value (0.15 M). Furthermore, the expression of amino groups on the surface of the 
electrospun nanofibers, achieved through the incorporation of PEI into the electrospun 
mixture, served to practical adhesion improvement of the electrospun PVA/PEI/GOx 
nanofibers onto the gold modified electrode surface. This was achieved by modifying the 
surface with a conductive self-assembled monolayer, ATP-SAMs, bearing thiol groups for 
covalent bonding to the gold surface and amine groups which reacted with the amine groups 
of PEI in a following cross-linking step under GA vapours.  
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 Finally, the successful elaboration of a pioneering electrochemical glucose biosensor 
based on core-shell PAN/PPy/PP3C nanofibrous mats fabricated by combination of 
electrospinning process and vapour-phase polymerization process, was illustrated. The 
originality of this work derives from the fact that the combination of ES and VPP technique 
was employed for the first time for the elaboration of an electrochemical biosensor instead of 
the use of template synthesis methods, which have traditionally been employed for the 
elaboration of nanostructured polypyrrole based biosensors. 
 The advantages of this work include the uniform coating of the surface of the 
electrospun NFs with PPy/PP3C in a rapid and simple way by carefully setting parameters 
such as polymerization temperature and time, during the VPP process. The uniform covering 
of electrospun PAN NFs with conducting PPy/PP3C coatings, contributed to improved 
electrochemical activity of the nanofibers, thus facilitating the electron transfer within the 
system. Furthermore, the successful expression of –COOH groups onto the NFs surface, 
enabled the covalent immobilization of the enzyme, thus decreasing common problems such 
as diffusion, instability etc. encountered at non-covalent immobilization techniques. Tunable 
conductivity of the NFs was achieved by immersing the NFs into oxidant solutions of 
different concentrations before the VPP process.  
 The resulting glucose biosensor exhibited enhanced performance, by achieving linearity 
in a wide range of glucose concentration (19 nM-2 μM) and very low LOD values (2-5 nM) 
when compared to conventional film-based polypyrrole electrochemical glucose biosensors. 
Although the thickness of the conducting coating was not accurately controlled, whereas in an 
electropolymerization process it is, biosensors coming from different batches of VPP (while 
keeping the same conditions during VPP) exhibited linearity in the same ranges thus implying 
good reproducibility of the VPP method.  
 The above mentioned analytical performances of the three developed biosensors are 
summarized in table 16.  
 
Table 16.  Analytical performances of the developed biosensors. 

 Detection method: CV Detection method: EIS 
Sensor 1 Sensor 2 Sensor 3 

Linearity range 5 μM-4 mM 1 μM-1 mM 19 nM-2 μM 
Limit of detection 2 μM 0.15 μM 2-5 nM 

Storage ability 5 days 4 days 10 days 
Intra-sensor 

Reproducibility 
lower than 5% lower than 4% lower than 2% 

Inter-sensor 
Reproducibility  

12% 14% 15% 
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 The elaboration of an impedimetric biosensor based on PVA-SbQ/MWCNTs/GOx 
would have been interesting in order to be able to perform a more complete comparison 
between this sensor and the two impedimetric biosensors developed in this work and to 
evaluate their performance. Only the second and third biosensors can be really compared as 
they are based on the same transduction mode.  

The higher sensitivity achieved using the third approach, compared to the second one, 
may be due to the fact that when the NFs are covered with a conducting coating instead of 
being decorated with a certain amount of AuNPs, enhanced electrical properties are achieved, 
resulting in enhanced electron transfer within the system. The improved electrical properties 
of PAN/PPy/PP3C nanofibers over PVA/PEI/AuNPs nanofibers were attributed to the fact 
that during the coating step with PPy/PP3C, a continuous conductive path was created which 
significantly reduced the contact resistance between the fibers and facilitated the charge 
transfer whereas in the case of PVA/PEI/AuNPs NFs the electrons are transferred through the 
insulating polymer NFs by a tunneling mechanism through conduction, which leads to a lower 
charge transfer efficiency through the mat. An attempt to improve the electrical properties of 
PVA/PEI/AuNPs NFs was performed, by trying to increase the coverage of their surface with 
a higher amount of AuNPs. However, the results presented in this work were the optimal 
ones, since AuNPs aggregated for pH values lower than 4. 
 The higher sensitivity of PAN/PPy/PP3C/GOx biosensor may be also due to the fact 
that the enzyme is covalently grafted onto the surface of the nanofibers instead of being 
encapsulated within the fibers. It is therefore more accessible to the substrate.  
 Finally, the improved storage ability of PAN/PPy/PP3C/GOx biosensor over 
PVA/PEI/AuNPs/GOx biosensor, was attributed to the fact that even though the cross-linking 
of PVA/PEI NFs under GA vapours was successful, after a certain time (4 days) they finally 
lost their water-insolubility, whereas PAN NFs remained stable since PAN is a water-
insoluble polymer. Except that, given the fact that the decoration of PVA/PEI NFs with 
AuNPs is based on hydrogen bonding and physical entrapment by the cavities of the 
nanofibrous mats, it was assumed that due to the relatively weak interaction between the NFs 
and the AuNPs, the latter are being progressively removed from the NFs surface after a given 
time.   

As a conclusion, elaboration of core-shell nanofibrous mats by combination of 
electrospinning process and vapour-phase polymerization process is a novel and very exciting 
area of research that opens new perspectives, not only for engineering biosensing systems 
with improved sensitivity and superior performances compared to existing biosensors, but 
also for a wide range of applications, e.g. biofuels. Nevertheless, in spite of the promising 
results we have already obtained, additional characterizations of the systems we developed as 
well as some technological improvements in their elaboration are still to be done in order to 
achieve optimal performances. For example, additional experiments able to monitor and 
quantitatively determine the incorporation of the P3C monomer into the co-polymer scheme 
would be helpful to optimize Py/PP3C ratio to achieve higher sensitivity of the developed 
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sensors. For instance, the amount of –COOH coming from the incorporation of the P3C 
monomer might be determined through the grafting of  amino-terminated fluorophores to the 
PAN/PPy/PP3C NFs  surface. 
 Moreover, in order to evaluate the nature of the produced PPy/PP3C and to see if they 
have a semi-crystalline nature, which possibly contributes to the low resistance values that 
PAN/PPy/PP3C nanofibrous mats exhibited or not, X-ray diffraction analysis (XRD) 
measurements are necessary in order to prove the speculations made within this dissertation. 

Finally, it would be interesting to better control of the deposition of the NFs on the 
electrodes to master the alignment and thickness of the fibers to improve the reproducibility 
of the final devices produced, by using more advanced electrospinning setups.  

Grafting other types of biomolecules (DNA, antibodies, aptamers,…) on these novel 
hybrid nanofiber based platforms may be also envisaged, enabling to expand their application 
to the development of other classes of biosensors such as immunobiosensors, nucleic acid 
biosensor, etc.  
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Résumé (détaillé) 
Introduction générale 

 
 Les biocapteurs sont des dispositifs analytiques rapides, sélectifs et à bas coûts 
présentant une large gamme d’applications dans différents domaines tels que la santé, 
l’environnement et l’alimentaire. Ils combinent un élément biologique actif, reconnaissant 
sélectivement une espèce chimique ou bien une famille d’espèces chimiques, et un 
transducteur physico-chimique pour fournir des mesures complexes de biologie analytique 
avec un système simple et facile à utiliser. Les biocapteurs électrochimiques présentent un 
intérêt particulier car ils proposent des méthodes analytiques rapides, précises et à bas coût et 
offrent de nombreux avantages tels que la possibilité d’être facilement intégrés dans 
l’électronique tout en satisfaisant les demandes de puissances requises pour des tests 
décentralisés, ce qui montrent leur fort potentiel notamment pour les applications 
biomédicales. 
 D’importants efforts ont été portés sur la miniaturisation de transducteur 
électrochimique, résultant en une diminution significative de la quantité suffisante de l’entité 
biologique nécessaire pour la réalisation d’un biocapteur, et également une intégration 
simplifiée dans des lab-on-chip. Malgré les avantages associés à cette diminution de taille des 
électrodes, la sensibilité des biocapteurs diminuera car la surface spécifique des électrodes, et 
donc les sites d’immobilisation disponibles pour l’élément de reconnaissance biologique, 
seront moins nombreux. Cependant, cette difficulté peut être surmontée avec succès en 
nanostructurant la surface des électrodes et notamment au traver de l’utilisation de 
nanostructures flexibles. 
 La conception de nouveaux capteurs intégrant des matériaux nanométriques est un 
sujet interdisciplinaire en plein essor notamment grâce à leur surface spécifique élevée et leurs 
propriétés optiques, mécaniques et catalytiques particulières. Une large gamme de matériaux 
nanométriques tels que les nanoparticules et les nanotubes, avec des formes et des 
compositions différentes, ont prouvé leur efficacité pour améliorer les performances des 
biocapteurs. 
 En particulier, les fibres électrofilées remplissent de nombreuses conditions 
nécessaires à l’amélioration des performances d’un biocapteur du fait qu’ils présentent de très 
faibles diamètres (d’une centaine de nanomètre à quelques micromètres), des longueurs 
élevées, des surfaces spécifiques par unité de masse élevées, et donc un rapport 
surface/volume élevé et des tailles de pores modulables. Les nanofibres électrofilées ont été 
utilisées avec succès dans différents domaines d’application tels que l’ingénierie tissulaire, le 
stockage de l’énergie, la catalyse etc, mais leur utilisation en tant que matrice 
d’immobilisation pour un biocapteur n’est pas très répandue. Cependant, l’intérêt d’utiliser 
l’électrofilage pour la fabrication de nanofibres fonctionnalisées, pour la biodétection, croît 
rapidement en raison de nombreux avantages de cette technique tels que son utilisation simple 
ne nécessitant pas d’équipements coûteux, la possibilité de contrôler la géométrie des 
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nanofibres électrofilées, sa haute ré-utilisabilité et sa polyvalence. Des biocapteurs basés sur 
des nanofibres électrofilées fabriqués par quelques groupes de chercheurs ont été rapportés 
dans la littérature et ont montré des sensibilités supérieures à celles de biocapteurs 
conventionnels. 
 Dans les travaux présentés, nous étudions et comparons différentes approches pour la 
nanostructuration de surface d’électrodes en or avec des nanofibres électrofilées conductrices 
pour le développement de biocapteurs enzymatiques électrochimiques. 
 Ce manuscrit est organisé en quatre chapitres. Le premier chapitre est dédié à une 
revue bibliographique des biocapteurs et en particulier les biocapteurs électrochimiques, les 
nanomatériaux et leurs utilisations pour l’élaboration de biocapteurs, la technique de 
l’électrofilage, les polymères conducteurs et leur intégration dans des systèmes de 
biodétection. 
 Les travaux présentés dans les chapitres II, III et IV décrivent chacun le 
développement d’une nouvelle plateforme innovante basée sur des nanofibres électrofilées en 
matériaux hybrides pour leur application dans l’élaboration de biocapteurs électrochimiques. 
La glucose oxydase a été utilisée comme enzyme modèle pour valider les performances des 
biocapteurs développés et des électrodes d’or ont été utilisées comme transducteur. La 
première plateforme électroactive à être décrite implique la fabrication en une étape simple et 
rapide de nanofibres électrofilées d’alcool polyvinylique résistantes à l’eau avec des groupes 
styryle pyridine pendants (PVA-SbQ) contenants des nanotubes de carbones multifeuillets 
(MWCNTs-COOH) et de la glucose oxydase (GOx) pour la détection du glucose. La seconde 
surface électroactive décrite implique la modification de la surface d’une électrode d’or avec 
la réalisation en une étape de nanofibres de copolymère d’alcool 
polyvinylique/polyéthylèneimine (PVA/PEI) dans lesquelles est incorporée la glucose 
oxydase comme dans le précédent cas, et la surface de ces nanofibres a été recouverte 
uniformément par des nanoparticules d’or dont la densité est fonction du pH. La troisième 
plateforme électroactive développée pour la biodétection à être décrite est basée sur 
l’utilisation de nanofibres conductrices cœur-enveloppe de polyacrylonitrile (PAN) – 
polypyrrole(PPy)/acide poly(pyrrole-3-carboxylique) (PP3C) produites par la combinaison du 
procédé d’élctrofilage avec la technique de polymérisation en phase vapeur. Les fonctions 
carboxyliques présentes en surface des nanofibres PAN/PPy/PP3C ont été utilisées pour le 
greffage de façon covalente de la glucose oxydase en réagissant avec les fonctions amine de 
cette dernière. 
 Une synthèse des résultats les plus significatifs sera présentée en conclusion, elle 
mettra en avant les avantages et les inconvénients de chacune des différentes approches 
employées pour le développement de biocapteurs, et également pour illustrer leur contribution 
pour le développement de système de biodétection de nouvelle génération menant à des 
performances supérieures. Ce manuscrit se conclura par une brève discussion sur les 
perspectives des travaux présentés. 
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Conclusion générale 

 Dans ce manuscrit, la fabrication simple, rapide et efficace de trois plateformes 
électroactives basées sur des nanofibres électrofilées de matériaux composites présentant des 
sensibilités très élevées ont été présentées pour leur application dans l’élaboration de 
biocapteurs. La glucose oxydase a été utilisée comme enzyme modèle pour valider les 
performances des biocapteurs développés. L’enzyme a été soit incorporée directement dans 
les nanofibres, soit greffée de façon covalente en leur surface. Ces biocapteurs originaux, 
caractérisés par de nombreuses techniques microscopiques et électrochimiques, ont permis de 
détecter avec succès du glucose en employant la voltammétrie cyclique et la spectroscopie 
d’impédance électrochimique, tout en montrant des performances supérieures en termes de 
sensibilité, reproductibilité et stabilité par rapport aux biocapteurs conventionnels. 
 L’optimisation des conditions opératoires du procédé d’électrofilage, notamment le 
débit, la différence de potentiel appliquée, la distance entre la pointe et le collecteur, et les 
paramètres de la solution de polymère avec notamment sa concentration, sont déterminants 
dans la fabrication de tapis de nanofibres avec le minimum de perlage. Il est important de 
maîtriser ce phénomène dans le but de diminuer les variations de morphologie des tapis et 
donc ainsi augmenter la reproductibilité des biocapteurs développés. 
 La modification des électrodes d’or avec les nanofibres électrofilées PVA-
SbQ/MWCNTs-COOH/GOx, suivie par une étape rapide et simple de réticulation 
photochimique rendant les nanofibres résistantes à l’eau, a permis la production de biocapteur 
de glucose à haute sensibilité en voltammétrie montrant une large domaine linéaire (5 μM-4 
mM) et une faible LOD (2μM). Les hautes valeurs de Imax retrouvées sur ces biocapteurs ont 
été attribuées à l’introduction de MWCNTs-COOH comme renfort conducteur dans les 
nanofibres polymères, améliorant ainsi leur propriétés conductrices et en particulier en 
améliorant la capacité de transfert des électrons des tapis de nanofibres. De plus, cette 
approche consistant à mélanger l’enzyme, les MWCNTs-COOH et un polymère hydrosoluble 
offre une méthode de synthèse simple et en une étape pour l’électrofilage de fibres 
biologiquement actives, et donc la fabrication de nouvelles plateformes électroactives pour 
l’immobilisation. En particulier, il a été prouvé que l’enzyme reste active et accessible pour la 
solution. Cette étude ouvre la voie vers de nouveaux systèmes de biodétection avec une 
sensibilité et des performances supérieures à celles des biocapteurs conventionnels. 
 Dans une deuxième approche, des nanofibres résistantes à l’eau de PVA/PEI contenant 
la GOx ont été produites et uniformément recouvertes avec des nanoparticules d’or (AuNPs) 
dont la densité est fonction du pH. Les AuNPs améliorent les propriétés électriques des 
nanofibres électrofilées bioactives et donc facilite le transfert d’électrons dans le système. Les 
biocapteurs du glucose par impédance obtenus ont montré une linéarité sur un large domaine  
de concentration de glucose (1μM – 1 mM) et une très faible valeur de LOD. De plus, la 
présence des groupes amines en surface des nanofibres électrofilées, due à la présence de PEI 
dans le mélange électrofilé, permet d’améliorer l’adhérence des nanofibres PVA/PEI/GOx 
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électrofilées sur l’électrode en or fonctionnalisée. Les électrodes étant au préalable 
fonctionnalisées avec une monocouche conductrice comportant une fonction thiol pour le 
greffage covalent à la surface d’or et une fonction amine réagissant avec les fonctions amines 
du PEI lors de l’étape de réticulation sous les vapeurs de glutaraldéhyde (GA). 
 Enfin, l’élaboration avec succès d’un biocapteur électrochimique innovant pour la 
détection du glucose basé sur un tapis de nanofibres cœur-enveloppe PAN/PPy/PP3C fabriqué 
par la combinaison du procédé d’électrofilage et celui de la polymérisation par phase vapeur a 
été présenté. L’originalité de ce travail provient du fait que c’est la première fois que le 
procédé d’électrofilage est combiné à celui de la polymérisation par phase vapeur pour 
l’élaboration d’un biocapteur électrochimique, passant outre l’utilisation des techniques 
conventionnels de nanostructuration utilisées pour l’élaboration de biocapteurs basés sur des 
nanostructures en PPy. 
 Les travaux présentés permettent le dépôt homogène sur des nanofibres électrofilées 
de PPy/PP3C de façon rapide et simple en ajustant correctement les paramètres 
expérimentaux tels que la température de polymérisation et la durée du procédé de 
polymérisation par phase vapeur. Le recouvrement uniforme de nanofibres électrofilées PAN 
avec un dépôt conducteur de PPy/PP3C contribue à l’amélioration de l’activité 
électrochimique des nanofibres, et donc facilite le transfert d’électron dans le système. De 
plus, la présence de fonctions carboxyliques en surface permet le greffage covalent de 
l’enzyme, évitant ainsi les problèmes communément retrouvés tels que la diffusion, 
l’instabilité (etc…) lors de greffages non covalents des enzymes. La variation de la 
conductivité des nanofibres a été maîtrisée par l’immersion des nanofibres dans des solutions 
oxydantes de différentes concentrations avant le procédé de polymérisation par phase vapeur. 
 Les biocapteurs de glucose ainsi réalisés ont montré des performances supérieures, en 
possédant une linéarité sur une large gamme de concentration de glucose (19 nM – 2 μM) et 
de très faibles valeurs de LOD (2-5 nM) par rapport aux biocapteurs électrochimiques de 
glucose conventionnels basés sur un film de PPy. Bien que l’épaisseur de PPy déposée par 
VPP n’est pas précisément contrôlée, contrairement à celles déposés par 
électroplolymérisation, les biocapteurs réalisés séparément mais sous les même conditions 
expérimentales ont montré une linéarité similaire sur le même domaine, montrant ainsi une 
bonne reproductibilité du procédé VPP. 
 Les performances analytiques des trois biocapteurs innovants présentés ci-dessus sont 
résumées dans la table 1. 
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Table 17: Synthèse des performances analytiques des biocapteurs développés. 

 Méthode detection : VC Méthode de detection : SIE 
Capteur 1 Capteur 2 Capteur 3 

Domaine de linéarité 5 μM-4 mM 1 μM-1 mM 19 nM-2 μM 
Limite de détection 2 μM 0.15 μM 2-5 nM 

Capacité de stockage 5 days 4 days 10 days 
Reproductibilité des 

mesures sur un capteur 
lower than 5% lower than 4% Lower than 2% 

Reproductibilité des 
mesures sur différents 

capteurs 

12% 14% 15% 

 
 Etant donné que les performances électroanalytiques du premier biocapteur développé 
ont été réalisées par voltammétrie cyclique tandis que celles des deux autres biocapteurs ont 
été étudiées par spectroscopie d’impédance électrochimique, une comparaison de ces 
performances ne sera faite que pour ces derniers. Tel que démontré précédemment, lorsque les 
nanofibres de PAN recouvertes d’un film conducteur de PPy/PP3C ont été utilisées, de 
meilleurs résultats ont été obtenus en terme de sensibilité et de capacité de stockage par 
rapport aux biocapteurs basés sur des nanofibres de PVA/PEI recouvertes de nanoparticules 
d’or. 
 Une explication possible à ce phénomène vient du fait que lorsque les nanofibres sont 
couvertes avec un dépôt conducteur, plutôt qu’avec des nanoparticules métalliques, elles 
possèdent de meilleures propriétés électriques de surface et donc un meilleur transfert 
d’électron. L’amélioration des propriétés électriques des nanofibres PAN/PPy/PP3C par 
rapport aux PVA/PEI/AuNPs a été attribuée au fait que durant l’étape de dépôt de PPy/PP3C, 
un film continu conducteur est ainsi créé entre certaines nanofibres diminuant fortement la 
résistance de contact entre les fibres et facilitant le transfert de charges, tandis que dans le cas 
des nanofibres PVA/PEI/AuNPs les électrons ne peuvent être transférés aux nanofibres 
isolantes que par des mécanismes d’effet tunnel, ce qui mène à une efficacité de transfert de 
charges plus faible dans le tapis. Pour améliorer les propriétés électriques des nanofibres 
PVA/PEI/AuNPs, des essais ont été réalisés pour augmenter le taux de recouvrement des 
nanofibres par les AuNPs. Cependant, les résultats présentés dans ces travaux sont déjà les 
plus optimaux, étant donné que pour des valeurs de pH inférieures à 4 les AuNPs se sont 
aggrégées. 
 De plus, concernant la plus grande sensibilité des biocapteurs PAN/PPy/PP3C/GOx, il 
peut aussi être envisagé que comme l’enzyme ait été greffée de façon covalente à la surface 
des nanofibres au lieu d’être encapsulée dans les fibres, elle demeure plus accessible par la 
solution. 
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 Enfin, la capacité de stockage supérieure des biocapteurs PAN/PPy/PP3C/GOx, par 
rapport aux biocapteurs PVA/PEI/AuNPs, a été attribuée au fait que même si la réticulation 
des nanofibres de copolymère PVA/PEI sous des vapeurs de glutaraldéhyde (GA) a 
fonctionné, après un certain temps (4 jours) les nanofibres perdent leur résistance à l’eau 
tandis que les nanofibres de PAN reste stables étant donné que le PAN est insoluble dans 
l’eau. Par ailleur, étant donné que le recouvrement des nanofibres PVA/PEI avec les AuNPs 
est basé sur des laisons hydrogènes et par l’ancrage mécanique dans les rugosités des 
nanofibres, il a été présumé qu’en raison de l’unique présence d’interactions faibles entre les 
AuNPs et les nanofibres, après un certain temps, les AuNPs sont progressivement retirées de 
la surface des nanofibres. 
 Concernant les perspectives de travaux présentés, il peut être mentionné que la 
réalisation d’expériences supplémentaires pourrait être menée dans le but de contrôler et de 
déterminer les proportions de monomère P3C dans le copolymère. L’incorporation de la 
proportion optimale de P3C est un paramètre clé pour la sensibilité des biocapteurs 
développés étant donné que ce sont ces fragments qui permettent l’immobilisation de 
l’enzyme. Par exemple, des fluorophores aminés peuvent être utilisés pour être greffés sur les 
nanofibres PAN/PPy/PP3C permettant ainsi de quantifié la quantité de sites COOH 
disponibles pour l’enzyme par spectroscopie infra-Rouge à transformée de fourrier, 
déterminant ainsi de façon indirecte la proportion de P3C dans le copolymère. 
 De plus, pour déterminer la nature des nanofibres PPy/PP3C, plus particulièrement 
leur nature semi-cristalline ou non qui pourrait expliquer les faibles valeurs de résistance des 
tapis de nanofibres PAN/PPy-PP3C, des analyses par diffraction des rayons X seraient 
nécessaires pour appuyer les hypothèses formulés dans ce manuscrit. 
 D’un autre côté, la réalisation d’un biocapteur d’impédance basé sur un tapis de 
nanofibres de PVA-SbQ/MWCNTs/GOx aurait été intéressante dans le but d’être capable de 
réaliser une comparaison plus complète, du point de vue des performances analytiques, entre 
ce biocapteur et les deux autres développés dans ces travaux. 
 Pour conclure, il est important de noter que l’application de ces plates-formes 
innovantes basées sur des nanofibres en matériaux hybrides n’est pas seulement limitée aux 
biocapteurs enzymatiques mais peut également être utilisée pour le développement d’autres 
types de biocapteurs tels que les biocapteurs immunologiques ou des biocapteurs d’acides 
nucléiques. De plus, au lieu d’utiliser des équipements conventionnels d’électrofilage pour la 
fabrication de tapis de nanofibres aléatoirement réparties, des équipements plus sophistiqués 
peuvent être utilisés pour fabriquer des tapis de nanofibres alignées ce qui contribuera à une 
meilleure reproductibilité des biocapteurs fabriqués. 
 
 
 
 
 


