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Chapter 1

Introduction: the making of
superconducting quantum
processors

The research reported in this thesis deals with the design, the fabrication and
the test of superconducting processors with the aim of running, on simple cases,
quantum codes overcoming classical ones.

1.1 The origins of quantum computing

1.1.1 From entanglement to quantum computing

The strong interest for quantum information dates back to the experimental
demonstration of the violation of Bell inequalities in the early 1980s (see [1]
and references therein to earlier work). These experiments shed light on the
concept of entangled state first considered by Einstein, Podolski and Rosen
when establishing their paradox [2]. An entangled state of two systems cannot
be factorized in a product state of the two systems. Bennett and Brassard first
established that EPR entangled pairs can be used to implement cryptography
codes that could be perfectly safe [3, 4].

On the side of computing, a series of works thought about making a quan-
tum Turing machine based on reversible dynamics. In a different direction,
Feynman pointed out that given the difficulty to simulate the evolution of a
quantum system with a classical computer, it would be very useful to build a
universal quantum system able to simulate other ones [5]. The first blueprint
for a universal digital quantum computer as we understand it now was proposed
by Deutsch [6] in 1985. Such a machine performs the evolution of a register of
two-level systems called quantum bits (qubits) using quantum logic gates oper-
ating on them. The interest for quantum computing raised significantly when
quantum codes outperforming classical ones were proposed during the 1990s.
In particular, Shor proposed a quantum algorithm able to factorize numbers
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Figure 1.1: Sketch of a universal quantum processor. Any unitary evolution
can be implemented on the qubit register using single (U1) and two-qubit gates
(U2). Each qubit can be read out independently.

with an exponential speed-up compared to known classical algorithms [7, 8].

1.1.2 Blueprint(s) for a quantum processor

The blueprint of a quantum processor, sketched in Fig. 1.1, based on the unitary
evolution of a N qubit register and on qubit readout operations, is not so
different from that of a classical processor.

The main difference is that the qubit register is not restricted to be one
of the 2N computational basis states of the register, but can be any coher-
ent superposition of them. In this scheme, the qubits should be logical qubits
protected against decoherence processes detrimental for quantum coherence,
and thus for the computation performed. The five criteria to meet for making
a quantum processor have been summarized by DiVincenzo [9]: a quantum
processor consists of a register of quantum bits (1) with good quantum coher-
ence (2), on which one can apply any unitary evolution using a universal set
of quantum gates (3), that can be read-out individually with high fidelity (4),
and that can be reset (5).

Let us mention here that the unitary evolution of a qubit register is not the
unique implementation possible of quantum computing. There is the one-way
quantum computing [10] consists in preparing a highly-entangled state, which
is the resource, and in performing subsequent single qubit projective readout
operations afterwards. Another implementation that has already led to an
industrial development is adiabatic quantum computing [11]. In this scheme,
one follows the ground state of a system whose Hamiltonian slowly evolves
from a simple form with a well-known ground-state to a more subtle one whose
ground state encodes the solution of the searched problem. This strategy,
well suited for addressing optimization problems, has been implemented by
the DWave company [12, 13]. Although quantum speed-up has not been yet
demonstrated for the DWave machine, this machine was used for solving non-
trivial problems.
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1.1.3 Physical implementations of quantum bits

Numerous implementations have been considered for making quantum proces-
sors: NMR, trapped ions and atoms, optical circuits, and of course electrical
circuits; see [14] for different implementations. Electrical circuits that can be
fabricated with the standard methods of microelectronics and are thus poten-
tially more easily scalable than other implementations are very appealing, even
though macroscopic electrical circuits are intrinsically less quantum coherent
than microscopic objects such as ions, atoms or spins. At the time of writing,
the most advanced platform for quantum information processing is based on
trapped ions ([15] and refs. therein), but no quantum processor based on the
unitary evolution of a qubit register and able to solve a non trivial problem
has yet been operated.

1.2 State of the art of superconducting quantum
processors

Among quantum bit electrical circuits, superconducting quantum bit circuits
based on Josephson junctions are the most advanced, and elementary proces-
sors have already been implemented.

1.2.1 Superconducting qubits

Following the first demonstration in 1999 of quantum coherence in a supercon-
ducting Cooper pair box circuit [16], different superconducting qubits have been
proposed and investigated [17], and very significant progress has been achieved
in term of quantum coherence, gate fidelity, and qubit readout [17]. Nowa-
days, the sole superconducting qubit architecture still used for making circuits
is the circuit quantum electrodynamics (circuit-QED) architecture [18, 19].
Circuit-QED is similar to cavity-QED in which an atomic hyperfine transition
is strongly coupled to a microwave cavity [20], but with the atom replaced by
a Cooper pair box. In circuit-QED, Cooper pair box qubits are nowadays of
the transmon type [21], and are embedded in a microwave resonator that can
be planar or three-dimensional.

1.2.2 The transmon qubit

The Hamiltonian of the Cooper pair box writes H = Ecn̂2 − Ej cos δ̂ where n
is the number of Cooper pairs transferred across the junction and δ the phase
difference across the junction, Ec = (2e)

2
/2C the charging energy and Ej the

Josephson energy of the junction. Here δ̂ and n̂ are conjugated variables and

satisfy the commutation relation
[

δ̂, n̂
]

= i. The transmon is a Cooper pair box

in the slightly anharmonic regime Ej ≫ Ec, and can be strongly electrically
coupled to a microwave resonator, as sketched in Fig. 1.2. The two lowest
energy states |g〉 and |e〉 form a quasi two-level system used as a qubit. The



CHAPTER 1. INTRODUCTION: THE MAKING OF

SUPERCONDUCTING QUANTUM PROCESSORS 10

E

Figure 1.2: (a) Cooper pair box circuit: a Josephson junction of Josephson

energy Ej in parallel with a capacitance with charging energy Ec = (2e)
2

/2C.
(b) Josephson potential energy of the Cooper pair box as a function of the
phase difference δ across the junction. Energy levels of the Cooper pair box in
the transmon regime. The two first level of this anharmonic spectrum define a
qubit. (c) Circuit QED qubit architecture: a Cooper pair box is capacitively
coupled to a microwave resonator. The resonator frequency change (±χ) with
the qubit state is used for qubit readout. (d) Josephson bifurcation (JBA)
readout scheme used in this thesis. The Josephson junction embedded in the
readout resonator makes it non linear; the switching between two dynamical
states of the resonator occurs at a rate γB depending on the qubit state; this
switching can provide high fidelity qubit readout.

transmon is capacitively coupled to a microwave resonator whose frequency is
shifted by the qubit state. This frequency shift is exploited for reading the qubit
state using the so-called dispersive readout method. When sending a microwave
pulse to the resonator, the phase of the reflected (or transmitted) signal conveys
information on the qubit state. This method is simple, but requests to use a
quantum limited amplifier for reaching high fidelity single-shot readout. Such
amplifiers were not available at the beginning of this work. In order to achieve
high fidelity single-shot readout of the transmon, the Quantronics group had
implemented a readout variant [22] in which the readout resonator is also made
slightly non-linear by including a Josephson junction in its inductor. This non-
linearity induces a bifurcation transition between two different dynamical states
with different amplitude and phase, when excited close to resonance, as first
demonstrated in [23]. Under proper conditions, one can map the qubit state to
the dynamical state of this so-called Josephson Bifurcation Amplifier (JBA).
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1.2.3 Superconducting quantum processors

Before the beginning of this thesis work, a prototype of superconducting quan-
tum processor had been operated at Yale in 2009 [24]. It was a two-qubit
transmon processor fitted with a universal set of gates but not with individual
qubit readout. Although such a limited processor could only provide a partial
answer at each run, it was sufficient for demonstrating the proper operation
of a series of gates implementing the Grover quantum search algorithm on
four items. Another implementation of a two-qubit processor had also been
made for the phase qubit at UCSB, and used for running the Deutsch-Jozsa
algorithm [25]. The Quantronics group decided to implement an elementary
superconducting quantum processor fitted with individual JBA readout of the
transmon [26]. This project to which I contributed during one and a half year
formed the core of the Ph.D. thesis of Andreas Dewes [27].

1.3 Operating the Grover search algorithm in a
two-qubit processor

The aim of this first project was to implement and test a 2-qubit processor fitted
with high fidelity single shot readout. This work is summarized in Chapter 2
that also provides most of the theoretical material needed in this thesis.

Readout 1 Qubit 1 Readout 2Qubit 2

Figure 1.3: Two-qubit processor. (a) Optical micrograph of the two-transmon
qubit circuit. (b) Electrical equivalent scheme. The qubits are capacitively
coupled, and each of them is fitted with its non-linear readout resonator.
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Figure 1.4: Grover search algorithm on four items. (top) Gate sequence used.
The algorithm proceeds as follows: the preparation creates a superposition of
all the computational basis states; one of the four possible oracle functions
(operators) is applied. The oracle is defined by a combination of the Z±π/2

operators; a decoding sequence is applied on the qubit register, and readout is
performed. (bottom) Raw success probability of the Grover search algorithm,
for the four possible cases. The dashed lines indicate the success probability of
the classical query and check algorithm. The larger success probability achieved
demonstrates quantum speedup.

Our processor shown on Fig. 1.3 is composed of 2 frequency tunable trans-
mons fitted with JBA readout, and that are capacitively coupled. Although
this coupling is not tunable, the effective interaction it induces between the
qubits can be be switched on (off ) by placing the qubits on (off) resonance us-
ing local current lines that control the qubit frequencies with the flux induced
in the transmon SQUID loops. When the qubits are on resonance, the effec-
tive interaction yields a swapping evolution of the qubit states. This evolution
can be used for obtaining an entangling gate which forms, with single qubit
gates, a universal set of gates. The process tomography of this

√
iSWAP two-

qubit gate [28] shows an overall gate fidelity of 90 %. With this processor, we
implemented the Grover quantum search algorithm on 4 items [26], as shown
on Fig. 1.4. This case of the Grover search algorithm is interesting because
it ideally succeeds at each run after a single call of the discriminating func-
tion (here an operator) provided to the user, whereas the classical “query and
check” strategy obviously achieves a success probability of 1/4. The raw data
yield an average success probability of ∼ 60 %, always above the classical limit
of 25 %, which demonstrated the quantum speedup of the implementation of
the Grover search algorithm in our processor despite its imperfections.
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1.4 Towards a scalable superconducting quantum
processor

1.4.1 A more scalable design

The design of our 2-qubit processor being clearly not scalable, the main part
of this thesis consists in developing a more scalable strategy suitable for mak-
ing larger processors. There are different scalability issues, and our aim is not
to address all of them. An obvious road-block is the readout: achieving high
fidelity individual qubit readout of a register is a difficult problem whatever
the implementation considered. The other main scalability issue is the neces-
sity to implement quantum error correction as soon as the complexity of the
processor and of the algorithm gets large. We simply aim at making a general
purpose quantum processor approaching the DiVincenzo criteria, and able to
run quantum algorithms on a still very small qubit-register. This processor
should furthermore require as moderate as possible resources in term of sig-
nal generation and digitization. We have designed, fabricated and tested a
4-qubit processor, schematized on Fig. 1.5, in which tunable-transmon qubits
are driven and read by frequency multiplexed signals carried by a single mi-
crowave transmission line. This circuit implements multiplexed JBA readout
of the transmons, and the two-qubit gates are performed by bringing the two
qubits close to resonance with a high quality factor microwave resonator, the
coupling-bus, to which all the transmons are capacitively coupled.

Figure 1.5: Schematics of the four-qubit processor operated. Each tunable
qubit is coupled to its JBA readout resonator; and to a common bus resonator,
for mediating qubit-qubit interactions. The readout resonators are staggered
in frequency and coupled to a single transmission line, carrying all the qubit
drive and readout signals.

1.4.2 Fabrication issues

As shown on the processor scheme, each qubit is fitted with its own flux line
for frequency tuning. The simplicity of this design yields however delicate
fabrication issues:
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cell 1 cell 2 cell 3 cell 4cell 1 cell 2 cell 3 cell 4

qubits

JBAs

cell 1 cell 2 cell 3 cell 4

Figure 1.6: Four-qubit sample used for multiplexed readout. (top) Equivalent
electrical scheme of the circuit. Four qubit-JBA resonator cells are coupled
to a single transmission line carrying qubit driving and readout signals. The
transmon qubits are tunable with a global magnetic field. (bottom) Optical
micrograph of the sample showing the four cells. Bonding wires connect the
signal lines from the chip to the printed circuit board, and reconnect all the
ground electrodes.

- One has to fabricate Josephson junctions for the qubits and for the JBAs at
distant places on the chip. This requires junctions with a well defined geometry
in order to obtain the suitable non-linear Josephson inductances needed in the
circuit.

- The presence of the common drive and readout line, of individual flux-
lines coming close to the transmon qubits, and of the coupling-bus coupled
to all transmons induces crossing problems between microwave transmission
lines. For making these crossings without perturbing the transmission of the
lines, we have fabricated aluminum airbridges connecting the conductors of a
transmission line over another line.

1.4.3 Demonstrating multiplexed qubit readout

Prior to the fabrication and operation of a complete quantum processor, we
describe the operation of a 4-transmon qubit circuit shown in Fig. 1.6, in which
we perform multiplexed qubit readout and individual qubit driving through a
single transmission line. In this circuit, the transmon qubits are only tunable
by applying a global magnetic field.

The four JBA readout resonators are staggered in frequency, with a 60 MHz
separation. Our first aim is to probe if single shot qubit readout is possible. For
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Figure 1.7: (left) Density plot of 105 single-shot readouts of the 4-qubit register
after applying π/2 pulses on all qubits. The four (Ii, Qi) (colors (blue, green,
red, purple) stand for i = (1 − 4)). The dots for the four JBA signals form
separated clouds corresponding to the non-bifurcated and bifurcated states of
the JBA resonators. (right) Histogram of the projection perpendicularly to the
best separatrix lines showing a good discrimination of the bifurcation states of
the JBA resonators.

readout, one has to send a microwave pulse close to the resonance frequency
of each non-linear readout resonator, and to analyze its complex amplitude
transmitted after the interaction with the JBA resonator. For synthesizing
the drive signals, we mix a single carrier frequency with a sum of ac signals
produced by an AWG in order to obtain a set of pulses at the different JBA
frequencies. After passing through the circuit, the readout signal is first ana-
logically demodulated with the carrier, which yields the sum of the four readout
signals at the different detuning frequencies between the carrier and the JBA
resonators. This signal is digitized and numerically demodulated at the four
sideband frequencies, yielding 4 pairs of (Ii, Qi) quadratures that contain the
information on qubit readout. The density plot of the quadratures in the four
complex planes is shown on the left panel of Fig. 1.7 after applying π/2 pulses
on all qubits that prepare equal weight superpositions of all qubit states. One
observes that all points pertaining to a given pair of quadratures form two
clouds that can be well discriminated by choosing suitable separatrices. The
probability pi of getting the outcome High (Hi) corresponding to the bifurcated
state of JBA i is measured by repeating a measurement sequence and counting
the number of H shots. We have checked that each cloud corresponds to a
given state of the qubit, which demonstrates single shot readout. One observes
that the simultaneous operation of the four JBAs does not prevent us from
demodulating the signals as properly as achieved in single JBA measurements.
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Figure 1.8: Rabi oscillations experiment simultaneously performed on the 4
qubits. (dots) Raw switching probability of the 4 JBA resonators (same color
code as previous figures). The duration takes into account the Gaussian shape
of the pulses.

With the improved design of the JBA non-linear readout resonators, we
achieve a readout contrast reaching up to 96.5 % for individual qubit read-
out. Given the errors are mainly due to residual thermal excitation of the
qubits and to relaxation, we estimate that the intrinsic readout fidelity of the
JBA readout method could reach 99.8 %. We have probed the presence of a
possible crosstalk when performing readout on different qubits simultaneously
and found it negligible. Given the lack of individual frequency control of the
qubits, one has to operate the global circuit at a compromise point, where the
qubits are simultaneously not too detuned from their readout resonators. As
a first test of the simultaneous operation of the drive and readout circuits for
the 4 qubits, we have performed an experiment demonstrating simultaneous
Rabi oscillations of the four qubits as shown on Fig. 1.8. Note the qubits are
not driven strictly simultaneously because each Rabi drive signal would induce
a Stark frequency shift on the other qubits, but the readout operations are
completely overlapping in time.

1.4.4 Testing a 4-qubit processor

Finally, we describe in Chapter 5 the test of the full 4-qubit processor shown on
Fig. 1.9. This circuit consists of four qubit-readout cells coupled to the same
drive-readout line. The coupling of each qubit to a high quality factor coupling
bus resonator mediates the qubit-qubit interactions.

In this circuit, individual flux control lines and a coupling bus have been
added compared to the previously described experiment. For the crossings be-
tween the lines, we have added an extra fabrication step of aluminum airbridges
at the end of the process. These airbridges can be seen on on Fig. 1.9.b.
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Figure 1.9: (a) Optical micrograph of the four-qubit processor. The frames
indicate the four cells. Each cell consists of a transmon qubit, coupled to a
common bus resonator, and to a JBA resonator, itself coupled to a single trans-
mission line carrying all the qubit drive and readout signals. The frequency
of each qubit is tuned by passing current in its dedicated flux line. (b) SEM
image of the airbridges used for line crossings.

We found that this processor suffers from losses in the JBA resonators and
of short coherence times of the qubits. The origin of these imperfections is not
known, but it could arise from the extra fabrication steps needed for making
the airbridges. Because of these imperfections, this circuit cannot be used it
as a general purpose quantum processor as it was expected to be. We show
nevertheless the operation of its new functionalities. First, our new design of
the frequency control flux lines forcing the return current to flow in separate
conductors without inducing flux in other transmons, as is often the case in
multiple flux line circuits, yields a really small crosstalk between flux controls.
Second, the airbridges fabricated for making the line crossings work properly
without inducing extra losses. Third, we probe the two-qubit interaction me-
diated by the coupling bus. This qubit-qubit interaction is obtained by placing
two qubits on resonance at a frequency slightly above the coupling bus fre-
quency, which mediates the swapping interaction. The coherent swap between
two qubits is shown on Fig. 1.10. The duration needed for obtaining a maxi-
mally entangling

√
iSWAP universal two-qubit gate is ∼ 15 ns.
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Figure 1.10: Coherent swapping oscillations between qubit 2 and qubit 4 me-
diated by coupling them through the bus resonator. The symbols are the
measured excitation probability of qubit 4 corrected from readout errors. The
solid lines are the simulated excitation probabilities of qubit 2 (green), qubit 4
(blue) and of the bus resonator (magenta).



Chapter 2

Operating a transmon based
two-qubit processor

In the aim to develop a quantum processor based on superconducting qubits
able to run quantum algorithms, the Quantronics group decided to first make
and operate the simplest possible processor, namely a two-qubit processor hav-
ing a universal set of quantum gates and individual single-shot readout. Design-
ing, fabricating and operating such a processor was the Ph.D. research project
of Andreas Dewes [27] to which I contributed during the first year of my own
Ph.D. research. The processor we developed and its schematic equivalent cir-
cuit are shown in Fig. 2.1. With this elementary but functional processor, we
generated and probed entanglement between qubits, performed the process to-
mography of a two-qubit entangling gate, and run a quantum algorithm. We
implemented the Grover search algorithm on four objects, and demonstrated
its quantum speedup.

Readout 1 Qubit 1 Readout 2Qubit 2

Figure 2.1: Prototype implementation of the processor. (a) SEM image. (b)
Electrical equivalent circuit.

The goal of this chapter is to present the work done on this two-qubit pro-
cessor. All the building blocks needed to understand this work are presented,
given that they will be also useful for the next chapters: the different elements
composing the circuits, the transmon qubit, its operation, and its readout are
first presented. Then, the operating mode of the processor, the operation and
characterization of single and two qubit gates are explained. Finally, the im-

19



CHAPTER 2. OPERATING A TRANSMON BASED TWO-QUBIT

PROCESSOR 20

plementation and operation of the Grover search algorithm in this processor is
summarized.

2.1 Superconducting qubits based on Josephson
junctions

The superconducting qubit we use is the transmon version of the Cooper pair
box qubit developed at Yale [21]. It is made of a simple capacitor and two
Josephson junctions arranged in a SQUID configuration.

2.1.1 The Josephson junction

1 2

Ej
Ej

1 2

Figure 2.2: Josephson junction. (a) The two superconducting electrodes are
in gray while the insulating barrier is show in red. (b) electrically equivalent
circuit

As shown on Fig. 2.2, a Josephson junction [29] consists of two superconducting
electrodes connected with a weak link, typically a thin insulating layer, through
which Cooper pair can tunnel. The electron tunnel Hamiltonian between the
electrodes yields the Josephson coupling between the electrodes. A Josephson
junction provides a non-dissipative single degree of freedom, the phase differ-
ence ϕ = ϕ2 −ϕ1 between its electrodes, conjugated of the number n of Cooper
pairs transferred across the junction. The Josephson Hamiltonian is

Ĥ = −Ej cos ϕ̂ (2.1)

with Ej the Josephson energy of the junction. The supercurrent between the
electrodes, proportional to the time-derivative of n, takes the form

I12 = Ic sin ϕ (2.2)

with Ic = EJ/ϕ0 the maximum supercurrent through the junction, and ϕ0 =
�/2e ≈ 2.05/2π × 10−15 Wb the reduced flux quantum.

Considering first the phase as a classical variable gives the second Josephson
relation

V = ϕ0
∂ϕ

∂t
. (2.3)

For small currents I12 ≪ Ic , the Josephson junction behaves as a phase de-
pendent inductance

Lj(ϕ) =
ϕ0

Ic cos ϕ
≈ Lj0

[

1 +
ϕ2

2
+ O

(

ϕ4
)

]

, (2.4)
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where Lj0 = ϕ0/Ic is the bare Josephson inductance. The Josephson induc-
tance

Lj(ϕ) ≈ ϕ0

Ic

√

1 − (I12/Ic)
2

≈ Lj0

[

1 +
(I12/Ic)

2

2
+ O

(

(I12/Ic)
4
)

]

(2.5)

thus depends non linearly on the supercurrent across the junction, increases
with current, and even diverges at the critical current.

2.1.2 The SQUID: a flux tunable Josephson junction

1 2

Ej1

Ej2

Figure 2.3: The SQUID: a flux controlled Josephson junction.

Two Josephson junctions in parallel constitute a SQUID1 as depicted on
Fig. 2.3. When the loop inductance is negligible, a SQUID behaves as a tunable
Josephson junction controlled by the flux Φ threading the loop. The Josephson
Hamiltonian takes the form

Ĥ = −E∗
j (d, Φ) cos ϕ̂, (2.6)

with E∗
j (d, Φ) = Ej

√

1+d2+(1−d2) cos Φ
2 being the adjustable Josephson energy

and Ej1(2) = Ej(1±d)/2 the Josephson energies of the two individual junctions,
expressed as a function of the SQUID asymmetry d.

1Superconducting quantum interference device
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2.1.3 The Cooper Pair Box

Vg
Ej Cc

Cg
ngn

Figure 2.4: The Cooper pair box: schematic electrical circuit.

The Cooper Pair Box (CPB) circuit introduced by the Quantronics group is
shown in Fig. 2.4. It consists of a Josephson junction in parallel with a capacitor
Cc, subject to an external electric field, which can be applied by a voltage source
through a gate capacitor. Its Hamiltonian [30] is

Ĥ = Ec (n̂ − ng)
2 − Ej cos ϕ̂ (2.7)

with Ec = 2e2/(Cc + Cg) the total charging energy of a single Cooper pair on
the top superconducting island, and ng = CgVg/2e the reduced gate charge.
The circuit variable n̂ (number of Cooper pairs on the island) and ϕ̂ (supercon-
ducting phase difference across the junction) satisfy the commutation relation
[ϕ̂, n̂] = i . In the phase representation, this Hamiltonian writes

Ĥ = Ec

(

−i
∂

∂ϕ
− ng

)2

− Ej cos ϕ̂. (2.8)

This form is convenient because it yields a solvable equation for the eigen-
state wave-functions in terms of Mathieu functions [31, 21]. The eigenstate
energies are given by

Ek =
Ec

4
MA

[

k + 1 − (k − 1) %2 + 2ng (−1)
k

, −2Ej

Ec

]

, (2.9)

where k is integer, and where MA [r, q] stands for the Mathieu characteristic
value ar for even Mathieu functions with characteristic exponent r and param-
eter q. The spectrum being anharmonic, the ground and the first excited states
|g〉 and |e〉 are used to define a qubit (Fig. 2.5), although the effect or other
upper levels still needs to be taken into account. When using a SQUID for the
Josephson junction, one can tune the qubit transition energy Ege = E1 − E0.
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Figure 2.5: Energy levels of the Cooper pair box. (a) The anharmonicity of
the spectrum allows to define a qubit as the two lowest energy states. (b-c)
First three energies levels of the CPB as a function of the reduced gate charge
ng for Ej/Ec = 1 and 10.

2.1.4 Different Cooper pair box flavors

Nakamura, Pashkin and Tsai [16] first demonstrated at NEC in 1999 the co-
herent manipulation of a Cooper Pair Box qubit. This CPB was operated in
the charge regime, meaning that its eigenstates consisted of a superposition
of at most two subsequent number states of the box island. Although the
achieved coherence time was rather short ≃ 5 ns, this first demonstration of
coherent Rabi oscillations with an electrical circuit triggered a huge interest in
superconducting quantum circuits.

The Quantronics group operated in 2001 a variant of the CPB in the in-
termediate regime EJ/EC ∼ 1: the Quantronium [32]. This circuit was fitted
with single-shot readout, though with limited fidelity, and with a strategy for
reducing decoherence due to the gate charge noise that plagues single elec-
tron circuits. This strategy consists in operating the Cooper Pair Box at an
optimal working point, the so-called sweet spot, where the transition energy
Ege = Ee −Eg is stationary with respect to gate charge variations. It provided
a huge gain for the coherence time measured in a two-pulse Ramsey experiment
up to 0.5 μs.

A next important step was achieved at Yale in 2004 [19] when Schoelkopf,
Wallraff, Girvin and collaborators inspired by cavity QED physics [33, 20] em-
bedded a Cooper pair box in a planar microwave resonator, creating the field of
circuit quantum electrodynamics (CQED). The interest of CQED is to isolate
the Cooper Pair Box from the outside electromagnetic noise inducing decoher-
ence, and to provide a sensitive readout method through the dependence of
the resonator frequency on the quantum state of the CPB, called cavity pull.
Another architecture variant that we will not discuss in this thesis consists in
embedding a Cooper pair box in a 3D cavity [34], in even closer analogy with
CQED.
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2.2 The transmon

The transmon, developed at Yale in 2007 [21], is now the most widely used
superconducting qubit. It is a Cooper pair box for which the strategy used to
make the it less sensitive to charge noise was pushed at its maximum: a large
shunting capacitance Cc places the Cooper pair box in the regime Ej ≫ Ec, in
which the CPB is an oscillator made anharmonic by the phase dependence of
the Josephson inductance . The great advantage of this regime is to make the
CPB first transition frequency almost completely insensitive to charge and thus
to charge noise, leading to increased coherence. Within this approximation, the
qubit transition energy Ege = E1 − E0 is given by

Ege ≈
√

2EjEc − Ec

4
. (2.10)

When one replaces the Josephson junction by a flux tunable SQUID, one
finds

Ege ≈ Emax
ge

(

1 + d2 + (1 − d2) cos Φ

2

)
1
4

(2.11)

with Emax
ge is the maximum transition energy of the qubit.

In the transmon regime (Ej ≫ Ec), the matrix elements |〈i + 1|n̂|i〉| are
well approximated with the one of the harmonic oscillator

|〈i + 1|n̂|i〉| ≈
√

i + 1

(

Ej

8Ec

)
1
4

. (2.12)

So the immunity to charge noise comes at the price of a reduced anhar-
monicity α = Eef − Ege, with Eef = E2 − E1. This anharmonicity shown on
Fig. 2.6 tends to Ec/4 when Ej ≫ Ec, which limits the speed of a resonant
drive at the qubit transition frequency as discussed below.
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Figure 2.6: Reduced anharmonicity α/Ec as a function of Ej/Ec

We describe in the next subsections the different operations on a single
qubit including state manipulation and state readout.
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2.2.1 Single qubit gates

Two knobs are available to control the transmon qubit state: the applied elec-
tric field or gate voltage Vg, and the flux Φ applied to the loop. We will discuss
the effect of both drives on the Bloch sphere that corresponds to the Hilbert
space spanned by the {|g〉 , |e〉} states, in the frame rotating at the qubit fre-
quency fge = Ege/h.

2.2.1.1 Single qubit gates with resonant gate-charge microwave
pulses

The transmon is driven quasi-resonantly at a frequency fd close to its transition
frequency fge by applying a coherent microwave electric field to its capacitor, or
equivalently a microwave gate voltage Vd (t) = V S

d (t) cos (ωdt + ϕd (t)). Such
a drive corresponds to the Hamiltonian

Ĥd = −2eβVd (t) n̂ (2.13)

with β = Cg/(Cc + Cg).
Under the Hamiltonian 2.13 and for a low amplitude V S

d (t), the qubit state
rotates in the Bloch sphere around an axis defined by

�Hd/� = −ΩR0 (t)

2
(cos ϕd (t) �x + sin ϕd (t) �y) − δ

2
�z (2.14)

at a Rabi frequency ΩR =

√

|ΩR0|2 + δ2 with δ = ωge − ωd and ΩR0 (t) =

4eβV S
d (t) |〈0|n̂|1〉| eiϕd(t). We show on figure 2.7 the measured excited state

population after a weak Rabi pulse with variable duration and frequency, the
so-called Rabi chevrons.
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Figure 2.7: Rabi oscillations under quasi-resonant weak drive. (a) Pulse se-
quence used. (b) Qubit excited state probability displaying characteristic
chevrons

The reduced anharmonicity α of the transmon sets an upper limit to the
driving speed for ensuring negligible leakage to the upper levels of the transmon.
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Indeed, in the Hilbert space spanned by the states {|g〉 , |e〉 , |f〉} and in the
frame rotating at ωd, Hamiltonian 2.13 writes

Hd/� =

⎛

⎝

0 Ω∗
R0/2 0

ΩR0/2 δ Ω∗
R0/

√
2

0 ΩR0/
√

2 2δ + α

⎞

⎠

{|g〉,|e〉,|f〉}

. (2.15)

For strong enough drives such that the Rabi frequency |ΩR0| becomes non
negligible compared to the anharmonicity |α|, the |f〉 state is populated from
the |e〉 state by the non-diagonal element ΩR0/

√
2.

Gaussian pulses To get rid of this unwanted population, one has to keep the
drive low enough by using for instance a slowly varying Gaussian shaped pulse
[35]. For a NOT gate (π pulse) in a time of ∼ 10 ns and typical anharmonicity
of α ≈ 400 − 500 MHz, we observe almost no population of the |f〉 state, but
a remaining population of the |g〉 state of about 1%. In this thesis work, we
only use Gaussian-shaped pulses, since the single qubit gate fidelity is mainly
limited by other factors.

If more accuracy is needed [36], this imperfect drive can be improved in
applying a pulse having its amplitude and its phase varying in time (V S

d (t) ∈
C). This method called “Derivative removal by adiabatic gate” (DRAG) [37],
mainly consists in driving the qubit at its ac-Stark shifted resonance frequency.

2.2.1.2 Z rotations using phase driven gates

In the rotating frame at the qubit frequency fge, any change of the qubit
frequency fge to fge + δfge induces a rotation around the Z axis of the Bloch
sphere at the frequency δfge . The application of a frequency shift pulse δfge (t)
with total duration τ thus induces a Z rotation by an angle ϕ = 2π

´

τ
δfge(t)dt,

provided that the evolution is adiabatic and does not induce a population
exchange between qubit levels. In practice, one applies trapezoidal flux pulses
on the qubit SQUID with rise and fall times of order 1-2 ns, which does not
induce any significant population change; the area under the trapeze determines
the phase accumulation (Eq. 2.11).

2.2.2 Decoherence: relaxation and dephasing

The ability to control the parameters {λ} = {ng, Φext} of the qubit Hamil-
tonian goes together with opening noise channels on these parameters, which
induces decoherence of the qubit [31, 21].

The coupling Hamiltonian to the fluctuations of a parameter λ is

δH/� = −1/2( �Dλ.�σ)δλ

with �Dλ.�σ = Dλ,xσx + Dλ,yσy + Dλ,zσz and Dλ,u being the sensitivity of H to
a small variation of λ along u in the qubit subspace.
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From the previous sections, we see that the transverse terms Dλ,x and
Dλ,y induce relaxation and excitation, whereas the longitudinal Dλ,z induces
dephasing. We gather under Dλ,⊥ the terms in the equatorial plane of the
Bloch sphere (Dλ,x and Dλ,y).

The different Dλ,u terms are linked to qubit matrix elements by

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Dng,z = 2 Ec

�
(〈g|n̂|g〉 − 〈e|n̂|e〉)

DΦext,z = 2
Ej

�

∣

∣(〈g| cos ϕ̂|g〉 − 〈e| cos ϕ̂|e〉) sin Φext

2

∣

∣

Dng,⊥ = 4 Ec

�
|〈g|n̂|e〉|

DΦext,⊥ = 1
2

Ej

�
d
∣

∣〈g| sin ϕ̂|e〉 cos Φext

2

∣

∣

. (2.16)

The relaxation rate is linked to Dλ,⊥ by

Γ
rel

λ =
π

2
D2

λ,⊥Sλ(ωge), (2.17)

where Sλ (ωge) is the noise spectral density on the parameter λ, taken at the
qubit frequency.

Similarly, the pure dephasing rate is

Γφ
λ = πD2

λ,zSλ(ω = 0), (2.18)

where the noise spectral density of λ is taken at ω = 0 or at a cutoff frequency
that depends on the precise experimental protocol. In the case of 1/f noise
spectrum, the decay of Ramsey oscillations is no longer exponential but Gaus-

sian ∼ exp −
(

Γφ
λt
)2

with an ’effective rate’ (defined as the inverse of a 1/e

decay time)

Γφ
λ = 3.7A

∣

∣

∣

∣

∂ωge

∂λ

∣

∣

∣

∣

, (2.19)

where A is the amplitude of the 1/f noise at 1 Hz.
The above expressions allow to calculate the relaxation and dephasing rates

due to noise on the gate charge ng and on the SQUID flux Φext.

2.2.2.1 Relaxation

Gate charge noise The gate charge noise arises from the impedance Zg in
series with the gate capacitance. Assuming this impedance at thermal equilib-
rium, the noise spectral density on the gate voltage is

SVg
(ω) =

�ω

2π

[

coth

(

�ω

2kBT

)

+ 1

]

Re [Zg(ω)] . (2.20)

In the limit of low temperature kBT ≪ �ω, the relaxation rate is

Γrel
Vg

= 16πβ2ωge
Re [Zg(ω)]

RK
|〈g|n̂|e〉|2 (2.21)

with RK = h/e2.
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Flux noise Relaxation can also occur through the flux line used to control
the qubit frequency; the mutual inductance M between the SQUID and the
flux line inductance with total impedance Zf yields:

SΦext
(ω) =

(

M

Φ0

)2
�ω

2π

[

coth

(

�ω

2kBT

)

+ 1

]

Re

[

1

Zf (ω)

]

, (2.22)

which yields a relaxation rate

Γrel
Φext

=
�ωge

4

(

EjdM

Φ0

)2

Re

[

1

Zf (ωge)

] ∣

∣

∣

∣

〈g| sin ϕ̂|e〉 cos
Φext

2

∣

∣

∣

∣

2

(2.23)

that is in our system much smaller than the measured relaxation rates, and
consequently negligible.

Other decoherence sources The external decoherence sources considered
here are often not the dominant ones. Other less controlled decoherence sources
include [38]:

• Spurious two level systems (TLS) that induce relaxation [39, 40].

• Dielectric losses in the substrate. Several designs have been operated in
order to reduce this impact [41, 42].

• Out of equilibrium quasiparticles that tunnel across the Josephson junc-
tions also lead to relaxation [43].

T1 measurement We show on Fig. 2.8 the pulse sequence used to measure
the relaxation rate Γ1 as well as a typical relaxation curve. This measure
consists in applying a π pulse on the qubit, waiting a given time Δt before
measuring the averaged qubit state population. The relaxation time T1 = 1/Γ1

is the decay time of the exponential.
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Figure 2.8: T1 measurement. (a) Pulse sequence. (b) Population of the excited
state as a function of the delay time Δt.
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2.2.2.2 Pure dephasing

Gate noise At low frequency, thermal noise is negligible, and the gate charge
noise is dominated by 1/f noise arising from microscopic fluctuations with
typical amplitude A ≈ 10−5. In the transmon limit Ej ≫ Ec, an upper bound
of the Gaussian dephasing rate is [44]

Γφ
ng

≤ 3.7 × 27 Aπ

�
Ec

√

2

π

(

2Ej

Ec

)5/4

exp −
√

32Ej

Ec
. (2.24)

This mechanism yields negligible dephasing rates compared to what is observed
in our experiments.

Flux noise For the same reason, the thermal flux noise is negligible at low
frequency. Similarly to charge noise, microscopic uncontrolled fluctuators with
a 1/f noise with a typical amplitude A = 10−6 − 10−5 yields an effective
dephasing rate

Γφ
Φext

≈ 1

2
Aωmax

ge

∣

∣

∣

∣

∣

sin (Φext)
(

1 − d2
)

(

1 + d2 + (1 − d2) cos (Φext)

2

)−3/4
∣

∣

∣

∣

∣

.

(2.25)
This contribution is often the major part of the measured dephasing rate.

Measurement of the Ramsey coherence time T ∗
2 The coherence time

is measured using a Ramsey two-pulse sequence as shown in Fig. 2.9.

pulse readout
delay t

time

pulse

Figure 2.9: Ramsey pulse sequence used for T2 measurements.

The decay time of the excitation probability is the coherence time T ∗
2 =

1/Γ2 that contain both relaxation rate Γrel and pure dephasing Γφ as Γ2 =
Γφ + Γrel/2

2.2.3 Qubit state readout

The readout of transmon qubits is now always performed in the circuit-quantum
electrodynamics (Circuit-QED) framework introduced by [19, 18], with some
variants.
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2.2.3.1 Cavity quantum electrodynamics

fge
g

fR

external

world
cavitytransmon

Figure 2.10: Cavity quantum electrodynamics schematics, showing a transmon
capacitively coupled to a cavity, connected to the outside world.

As depicted in Fig. 2.10, a resonator is capacitively coupled to the transmon
leading to the Jaynes-Cummings Hamiltonian

H/� = ωRa†a +
1

2
ωgeσZ + g

(

aσ+ + a†σ−
)

(2.26)

with g the coupling constant between the qubit and the resonator.

Cavity shift In the dispersive regime, for which the the qubit and the
resonator are far detuned (|Δ| = |ωR − ωge| ≫ g) and exchange no energy, one
can approximate2 the Hamiltonian 2.26 as

H/� = ω′
Ra†a +

1

2
ωgeσZ + χσZa†a, (2.27)

where the multi-level structure of the transmon has been taken into account in

χ = χge − χef

2 [21], the dispersive shift calculated with the first χge =
g2

ge

ωge−ωR

and second χef =
g2

ef

ωef −ωR
excited state cavity shift, and ω′

R = ωR − χef /2.

The ’coupling constants’ gij scale as the matrix element |〈i|n̂|i + 1〉| so that
gef ≈

√
2gge in the transmon regime. The dispersive Hamiltonian may be

rewritten in the form

H/� = (ω′
R + χσZ) a†a +

1

2
ωgeσZ , (2.28)

where the oscillator state remains harmonic but with a frequency that depends
on the qubit state, as sketched in Fig. 2.11. Typical qubit readout is performed
in measuring the transmission (or reflexion) coefficients of the resonator in
which the CPB is embedded.

2This approximation is only valid while the number photon in the resonator n =
〈

a†a
〉

remains small compare to ncrit = Δ2/4g2
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Figure 2.11: Qubit state dependent cavity shift

2.2.3.2 Linear dispersive readout

The simplest way to implement qubit readout is to send a microwave pulse at
the bare resonator frequency fR and to measure the phase of the reflected pulse.
The reflected pulse acquires a phase δϕ = ±2 arctan (2χ/κ) that depends on the
qubit state, with κ = ωR/Q the resonator linewidth, as depicted in Fig. 2.12.

0.95 1. 1.05

0

R

2 0

Figure 2.12: Phase of a reflected microwave pulse as a function of the frequency
for qubit in state |g〉 (blue) and |e〉 (red).

This method, known as “linear dispersive readout”, can be used to accu-
rately detect the qubit state if one is able to discriminate the two outgoing
signals out of the noise in a time shorter than the qubit lifetime.

Linear dispersive readout using homodyne detection Technically, to
get both quadratures of the reflected signal, we use an IQ mixer as a demod-
ulator, as shown in Fig. 2.13. Fed with the outgoing signal A cos (ωRt + ϕR)
and a microwave carrier L cos (ωRt) at the same frequency, the IQ mixing gives
two output

{

ID = AL cos (ωRt + ϕR) cos (ωRt) = AL
2 [cos ϕR + cos (2ωRt + ϕR)]

QD = AL sin (ωRt + ϕR) cos (ωRt) = AL
2 [sin ϕR + cos (2ωRt + ϕR)]

.

(2.29)
These two outputs are then low-pass filtered, giving access to the two quadra-
tures

{

ID = AL
2 cos ϕR

QD = AL
2 sin ϕR

. (2.30)
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This method makes possible to determine the projected qubit state from the
outgoing signal with a good accuracy if the noise added in amplifying the signal
remains under a certain level. At the beginning of this project, linear dispersive
readout of transmons had not been demonstrated with high single-shot fidelity
because of the noise added by the cryogenic amplifiers used for amplifying the
signal. High fidelity single-shot had been achieved in the Quantronics group
in 2009 [22] using a non-linear readout resonator called Josephson Bifurcation
Amplifier (JBA) [45]. Under proper drive conditions, this non linear resonator
has two possible dynamical states and can latch either state depending on
the projected qubit state. This mapping of the qubit state onto the latched
resonator state makes the JBA a suitable high fidelity readout for a transmon.
It is now described in more details.

Low pass

filters

Acos( Rt + R)

Lcos( Rt)

ALcos( R)/2

ALsin( R)/2

Figure 2.13: Homodyne detection using IQ down-conversion.

2.2.3.3 The Josephson bifurcation amplifier

The JBA is a LC resonator made slightly non-linear by inserting a Josephson
junction in series with the geometric inductance. It is operated at a driving
frequency and amplitude for which it bifurcates between two different internal
dynamical states.

Vd

Ze

Ze

Cc

Lg

I0

Lg

I0

Ze/2

Id

CT
Ci

Figure 2.14: (a) Electrical scheme of a JBA. (b) Simplified equivalent circuit
close to resonance, with Id = Vd/Ze and CT = Cj + Cc.

Figure 2.14. represent its actual lumped element circuit (a) and its equiv-
alent circuit around the resonance frequency (b).

Theory The dynamics of this system at zero temperature (and zero quantum
fluctuations) can be fully described by the charge on the capacitor q (treated
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as classical variable) under a drive Ve cos (ωmt). The equation of motion is

q̈ +
ωr

Q
q̇ + ω2

rq +
pq̇2q̈

2I2
0

=
Ve

LT
cos (ωmt) , (2.31)

with ωr = 1/
√

CT (Lg + Lj) the resonance frequency of the resonator at low

power and Q = Zi/Ze the quality factor of this resonance (Zi =
√

(Lj + Lg) /CT ).
Using the reduced parameters

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Δm = ωm − ωr

Ω = 2QΔm/ωr

u (t) =
√

pQ
2Ω

ωm

I0
q (t)

β =
(

Ve

ϕ0ωm

)2 (
pQ
2Ω

)3

, (2.32)

the slowly varying envelope of u(t) of the oscillations at ωm is given by

du

dτ
= − u

Ω
− iu

(

|u|2 − 1
)

− i
√

β. (2.33)

We display on Fig. 2.15 the stationary solutions of Eq. 2.33 for different
values of the reduced drive power β. One observes that for same driving pa-
rameters, the system can have two stable dynamical states, labeled L and H.
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Figure 2.15: Internal field stationary amplitude for different reduced drive
amplitudes βc/10, βc/3, 2βc/3, βc, 3βc/2, and 3βc(from blue to red ). Dashed
lines represent unstable solutions.

The points where the system bifurcates from a low amplitude state L to a
high amplitude state H (and inversely) are given by the equation

β± =
2

27

[

1 +

(

3

Ω

)2

±
(

1 − 3

Ω2

)3/2
]

. (2.34)

Figure 2.16 represents the two switching branches β± expressed as a func-
tion of the relative drive power.
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Figure 2.16: Bifurcation branches β± as a fonction of the reduced detuning.

Dynamics with thermal or quantum fluctuations The switching be-
tween the L and H states is a stochastic process governed by quantum and
thermal fluctuations. It is well described by the Dykman theory as explained
in [45, 46, 44, 47, 48]: slightly below the bifurcation line β+, the switching
from L and H is characterized by a switching rate Γs(Pe, fm) that increases
with temperature and decreases with the distance to the line (in power or fre-
quency). A particularly simple result is that at low temperature, the quantum
dynamics is the same as the thermal dynamics but with an effective ’quantum
temperature’ T = �ωr/2kB . If the JBA drive signal is applied during a time
τ , the rate Γs(Pe, fm) translates into a switching probability Ps,τ (Pe, fm) that
increases from 0 to 1 with increasing drive power Pe or decreasing drive fre-
quency fm. The switching curves Ps,τ,fm0

(Pe) and Ps,τ,Pe0
(fm) (called S curves

in the following) have characteristic widths δPe and δfm simply related by the
slope ∂β+/∂fm of the β+ bifurcation line.

Hamiltonian of the non-linear resonator One can also describe the un-
driven non-linear resonator by adding a quartic Kerr term to the Hamiltonian
of the harmonic oscillator:

H/� = ωra†a +
K

2

(

a†a
)2

, (2.35)

with K = −πp3ωR
Ze

Rk
the Kerr non-linearity.

JBA as qubit readout In the same way as for the linear resonator, the
JBA bare frequency is shifted depending on the qubit state, and the JBA-
qubit system is described by

H/� =

(

ωR + χσZ +
K

2
a†a

)

a†a +
1

2
ωgeσZ . (2.36)

The whole stability diagram described in Fig. 2.16 is now shifted by the two
qubit states, leading to the two bistability regions of Fig. 2.17. Accordingly,
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one has now two S curves, the width δPe (resp. δωm ) of which needs to be
compared to their separation ΔP converted in frequency with

Δf = 2χ = ΔP∂fm/∂β+. (2.37)
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Figure 2.17: (a) Stability diagram for the two possible qubit states |g〉 (blue)
and |e〉 (red) for a typical operating point (green). (b) Switching probability
as a function of the power for the selected frequency.

To operate the JBA as a qubit readout one chooses a drive frequency in the
bistability regions and a drive power between the bifurcation lines β+,〈g〉 and
β+,〈e〉 corresponding to the two qubit states (green dot on Fig. 2.17.a). The
qubit projected in its excited state will make the JBA bifurcate to its H state
whereas the projection in the ground state will leave the JBA in its L state.
After an amount of time just long enough to let the JBA reach its H state if it
switches, one reduces the drive power (orange dot) to place the driving point
in the bistable regions for both qubit states, thus latching JBA dynamics. At
this point, nor relaxation or excitation of the qubit can further impact the JBA
dynamical state.

The internal state of the resonator leaks out to build the measured signal,
which is measured using the technique described in Sec. 2.2.3.2, without any
time limitation because of the latched character of the signal.

In theory, this detector could perfectly map the qubit state to the outgo-
ing signal, yielding perfect readout. However, different effects can reduce the
readout fidelity:

• An imperfect separation of the switching curves can lead to incorrect
mapping of the qubit states to the JBA ones, as shown in Fig. 2.17.b.
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• The bifurcation dynamics lasting for a finite time, relaxation can occur
before the JBA reaches H, leading to an incorrect result.

• During the long signal acquisition step (orange dot), the JBA can switch
back from H to L if the drive frequency is chosen too high (retrapping
process), producing a wrong result.

Performance of transmon readout with the JBA Experimentally, we
apply the JBA driving pulse depicted in Fig. 2.18.a with a reduction of am-
plitude on the latching plateau of 10 − 20%. The output signal is measured
and averaged during a time tm on the latching plateau, after a small dead
time corresponding to the transient. One obtains in this way a single point in
the IQ plane. Fig. 2.18.b, shows 20000 subsequent measurement points when
the switching probability is 84%. The points are distributed in two well sepa-
rated regions that correspond to both H and L JBA states. These switching-
non switching events can be displayed as a voltage histogram (see Fig. 2.18.c)
along the red curve of Fig. 2.18.b. A threshold can be defined to calculate the
switching probability.
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Figure 2.18: Experimental measurement of the JBA switching probability. (a)
driving pulse applied at frequency fr. (b) outgoing signal demodulated at
frequency fr, averaged during the time tm. Each green point represents a single
measurement sequence. (c) Histogram of the measured quadratures along the
red axis defined on (b).

Keeping the same threshold, a switching curve is measured by varying the
amplitude of the whole pulse. Figure 2.19 shows the S curves for the qubit
prepared in its ground, first and second excited states. The maximum differ-
ence between the switching curves (dashed lines) indicates the optimal point
for mapping the qubit states to the JBA ones. At this maximum difference,
the minimum readout errors are p(H|g) ≈ 8% when the qubit is in its ground
state and p(L|e) ≈ 16% when the qubit is in its excited state. The maxi-
mum contrast is 76%, which characterizes the fidelity of a single measurement.
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When measuring qubit state populations based on precisely measured switch-
ing probabilities, these readout errors can be corrected for if needed, as detailed
in [27].

Figure 2.19: Switching curves of a JBA for a qubit in state |g〉(blue), |e〉(red)
and |f〉(green) as a function of the drive power.

Shelving to level |f〉 The use of only the first two transmon levels |g〉 and
|e〉 gives a readout contrast limited by the overlap of the switching curves.
A trick to increase S separation is to transfer the |e〉 state to the |f〉 state
prior to measurement, which increases artificially the qubit dependent cavity
shift. This escape from the computational basis allowed us to get an improved
fidelity of 81% as shown with the brown curve on Fig. 2.19. This improved
sensitivity is also due to the impossible direct relaxation from |f〉 to |g〉 during
the measurement time.

2.2.3.4 Cavity induced relaxation and dephasing

In a circuit-QED architecture, the qubit is connected to the outside dissipative
word only through its readout resonator and directly feels the resonator field,
as shown in Fig. 2.20. This leads to two important effects.

fge

gR O
u
ts

id
e

d
is

c
ip

a
tiv

e
w

o
rld

fR

Figure 2.20: Electrical scheme of a transmon in a CQED geometry.
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Purcell effect First, the impedance in series with the coupling capacitance
is now made of the resonator capacitively coupled to the 50 Ω environment; it
is frequency dependent, and Eq. 2.21 takes the simple form

Γp = κ
g2

R

Δ2 + κ2
, (2.38)

with κ the resonance linewidth, Δ = ωR − ωge the qubit resonator detuning,
and gR the coupling constant between the qubit and its readout resonator.
This enhanced relaxation rate around the resonator frequency is known as the
Purcell effect [49].

Dephasing due to photon noise in the resonator The coupling to a res-
onator also yields dephasing because the photon population in the resonator
shifts the qubit frequency and is subject to shot noise [50, 51, 52]. The dephas-
ing rate Eq. 2.27

H/� = ωRa†a +
1

2

(

ωge + χa†a
)

σZ ,

rewrites

Γφ
th =

8χ2

κ
n̄th (2.39)

with n̄th the average population.

2.3 Processor operation

The processor we have fabricated and operated consists of two tunable trans-
mon qubits I and II that are directly capacitively coupled, and fitted with in-
dividual JBA readouts. The schematics of the circuit is depicted on Fig. 2.21:
the two non-linear readout resonators are displayed in blue, whereas the two
qubits are in green; the qubits are coupled to each other through a coupling
capacitance Cqq described in Sec. 2.3.1. The current lines shown in red allow to
tune the flux in the SQUIDs and thus to control the qubit frequencies within
a few nanoseconds3, which provides the requested frequency agility for gate
operation.

3The response function of the line is actually measured in-situ, and taken into account
for generating the desired pulse shape at the SQUID level.
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Figure 2.21: Schematic circuit of the two-qubit processor operated. The two
qubits are capacitively coupled to each other and to their own readout res-
onators.

The qubit frequencies at the different operation points are shown in Fig. 2.22.

The two readout resonators are the highest frequencies in the system: f
I(II)
r =

6.84 (6.70) GHz. For readout, the transmons are moved close to their readout

resonators with detunings Δ
I(II)
rr = f

I(II)
r − f

rI(II)
ge = 0.640 (0.700) GHz, be-

fore the readout tones are applied. Since the qubits are directly coupled, as
it will be described in Sec. 2.3.1, one places them at the same frequency only
for performing two-qubit operations. Drives for single qubit gates are applied
through the readout resonators. Despite the filtering that it induces, the rel-
ative low quality factor Q ∼ 730 of the readout modes as well as the relative

small detunings Δ
I(II)
rm ∼ 1.6 GHz allow us to implement fast single qubit gates

(tg < 50 ns for a π pulse).
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Figure 2.22: Qubit and JBA frequencies for single qubit operations, two-qubit
operations, and readout.

Simultaneous readout At the end of a pulse sequence or algorithm, the
readout is performed on both qubits simultaneously. The readout process is
characterized by a 4×4 readout matrix that gives the probability of the different
possible outcomes {LL, LH, HL, HH} after having initialized the two qubit
register in states {|gg〉 , |ge〉 , |eg〉 , |ee〉}. This readout matrix, which takes
into account all readout errors including crosstalk between the two channels,
is non purely diagonal. By applying its inverse to the JBA state probability
vector deduced from repeated identical measurement sequences, one obtains
the average populations of the different qubit states and their correlations.

2.3.1 Two-qubit interaction yielding a universal gate

In order to obtain a universal set of gates able to implement any unitary evo-
lution of the qubit register, one needs an entangling interaction [25].

Figure 2.23: Electrical scheme of the capacitively coupled transmons.
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The capacitive coupling through Cqq between the two qubits, see Fig. 2.23,
yields the coupling Hamiltonian

Ĥqq =
1

2
CqqV̂ 2

qq ≈ 4e2Cqq

CΣ1CΣ2
n̂1n̂2 + ... (2.40)

Writing this Hamiltonian in the uncoupled qubit state basis yields

Ĥqq/� = gqq

(

σ̂+
I σ̂−

II + σ̂−
I σ̂+

II

)

, (2.41)

with �gqq = 4e2Cqq/CΣ1CΣ2 the coupling constant between the two qubits.
The evolution operator induced by the swapping Hamiltonian 2.41 is

UiSW AP (t, Δqq) =

⎛

⎜

⎜

⎜

⎝

1 0 0 0

0 cos tge − i
∆qq

ge
sin tge i

gqq

ge
sin tge 0

0 i
gqq

ge
sin tge cos tge + i

∆qq

ge
sin tge 0

0 0 0 1

⎞

⎟

⎟

⎟

⎠

(2.42)

with Δqq the detuning between the qubits, and ge =
√

4g2
qq + Δ2

qq the ef-

fective swapping frequency. This evolution operator efficiently entangles the
qubits when they are on resonance, yielding there the maximally entangling√

iSWAP gate for tg = π/4gqq and the iSWAP gate for tg = π/2gqq. By
non-adiabatically changing the detuning Δqq, one efficiently turns the effective
interaction on and off.

As shown in Fig. 2.24, starting from a far off-resonant condition Δqq ≫ gqq

and placing the qubit at resonance Δqq = 0 for a time tg prior to detuning
them again does induce the expected swapping.
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Figure 2.24: Avoided level crossing between the two qubits, when varying qubit
j bare frequency, with qubit i bare frequency fixed.
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Swapping evolution The swapping evolution is readily characterized by
initializing the qubit register in state |ge〉. To do so, a π pulse is applied
to one qubit, the two qubits are placed in resonance during a varying time,
and they are re-decoupled and measured, as shown in Figure 2.25.a. The
data shown are corrected to get rid of readout errors as explained in 2.3, and
the average qubit joined populations are shown on Figure 2.25.b. A swap
between states |eg〉 and |ge〉 is observed, as well as relaxation to |gg〉 and
dephasing. The dashed line represents the master equation simulated data
with the parameters independently measured. Only the qubit dephasing rates
are left as fit parameters4. The simulated data well agrees with the experiment
and gives a swapping frequency 2gqq/2π = 8.3 MHz. The

√
iSWAP (iSWAP )

is obtained in a time t√
iSW AP = 31 ns (tiSW AP = 62 ns), indicated with gray

lines on Fig. 2.25.b.
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Figure 2.25: Swapping experiment (top) Pulse sequence used. (bottom) Mea-
sured two-qubit state probability (full lines) and master equation simulation
(dashed lines).

As in the case of σZ gates detailed in Sec. 2.2.1.2, the displacement of
qubit I to place it on resonance with qubit II introduces a large spurious extra
phase ϕ = 2πtgateδf ∼ 30 − 100 × 2π. We compensate this phase up to a 2π
multiple. The phase compensation calibration is determined via quantum state
tomography.

4The first order pure dephasing rate vanishes because of the qubit insensitivity to flux
noise at resonance.
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2.3.2 Quantum state tomography

The state of the two-qubit register is described by its density matrix ρ. The
diagonal elements of this density matrix, i.e. the state populations, are di-
rectly obtained from repeated measurements of the qubit register as already
explained. Standard quantum state tomography [53] is needed for fully de-
termining the density matrix, in particular its non-diagonal elements, whereas
quantum process tomography is needed for fully characterizing the fidelity of
the

√
iSWAP gate.

Two-qubit state tomography

The density matrix of a two-qubit register can be decomposed on the gen-
eralized Pauli basis of tensorial products of two single qubit Pauli matrices
{σ̂v} = {I, X, Y, Z} :

ρ =
∑

v1,...,vn

cv1,...,vn
σ̂v1

⊗ ... ⊗ σ̂vn

22n
. (2.43)

The coefficients cv1,...,vn
with vi ∈ {I, X, Y, Z} can be obtained by a trace

operation: cv1,...,vn
= Tr [σ̂v1

⊗ ... ⊗ σ̂vn
ρ] and are determined experimentally

by measuring the qubits along the 16 directions {σ̂v1
⊗ σ̂v2

} = {I, X, Y, Z}1 ⊗
{I, X, Y, Z}2 of the Hilbert space. This is readily performed by applying suit-
able π/2 rotations bringing subsequently each direction along the σZ direction
prior to readout in the computational basis.

Because of measurement errors, the Eq. 2.43 can yield to an unphysical ρ
matrix 5. We use the so called Maximum likelihood method widely described in
[27] to determine the best density matrix compatible with the measurements
performed.

Density matrix evolution during swapping

Examples of state tomography measured in this way are shown in Figure 2.26:
they correspond to the

√
iSWAP (a) and iSWAP (b) gates including their σZ

phase compensation pulse. The displayed density matrices are those obtained
after the final maximum likelihood step.

5Realistic density matrix has to be positive (〈ψ|ρ|ψ〉 > 0 for all possible states |ψ〉) and
has to have a unitary trace T r(ρ) = 1.
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Figure 2.26: Two-qubits tomography after a
√

iSWAP gate (a) and an iSWAP
gate (b) starting from state |ge〉. The circle sizes represent absolute values |ρij |
whereas the arrows the colors both represent the corresponding phases arg(ρij).

2.4 Gate tomography

For determining the fidelity of the
√

iSWAP gate operation implemented in our
processor and for characterizing its errors, we have performed the full quantum
process tomography [54] of the gate.

2.4.1 Quantum process tomography of the
√

iSWAP gate

We use the method known as Standard Quantum Process Tomography (SQPT,
to be compared with other methods [55, 56, 57]), which consists in determining
how the implemented gate transforms a complete basis B of operators acting on
the two-qubit Hilbert space. For this basis, we take again all tensorial products
of Pauli operators. The transform of B yield a the so-called χ matrix that con-
tains the whole information on the quantum process. In practice, we transform
the 16 basis states |ψi〉 ∈ {|g〉 , |e〉 , (|g〉 + |e〉) /

√
2, (|g〉 + i |e〉) /

√
2}⊗2 where

⊗2 denotes the 2-dimensional Kronecker product of all possible permutations.
As explained in [27], the quantum state tomography for all these register states
yields the symmetric χ matrix represented in Fig. 2.27. The error process ma-
trix χ̃ = χχ−1

ideal obtained by removing the targeted transformation from the
measured one is also represented. It shows an overall fidelity Fg = 0.90, and
shows the different types of error. Relaxation during gate operation is the main
error source, followed by imprecise swap duration and imperfect corrected σZ

compensation.
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Figure 2.27: Reconstructed half χ matrix (a) and error process matrix χ̃ (b).
Each non-zero matrix coefficient is shown as a bar, the height of which encodes
the amplitude ; the phase is represented both by the bar color and a red pointer.
Solid empty boxes and black pointers corresponds to the ideal gate, for a sake
of comparison. Elements marked by T1, S and Z are errors due to relaxation,
imprecise swap duration, and imperfect σZ compensation, respectively.

2.5 Running the Grover search quantum algorithm

With the two-qubit gate just described and a set of single qubit gates, one
disposes of a universal set of quantum gates allowing to implement any unitary
evolution of the qubit register6. We decided to implement the Grover search
algorithm [58] on four objects because it provides an interesting benchmark for
quantum speedup.

6In the sense that no feedback is needed
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2.5.1 The Grover search algorithm

For finding a single state among N = 2n ones in a classical bit register, one
needs a function able to discriminate the solution, and one has to call it an
average number of time O (N) for succeeding in the search. In the case of
a search in a quantum register, the discriminating function is replaced by a
discriminating quantum operator, called the Oracle, which leaves the state
corresponding to the search solution unchanged, and inverts all the other ones.
The Grover search algorithm then finds the solution by calling the Oracle only

O
(√

N
)

times. Whereas for a classical search, the algorithm consists only in

repeating the experiment with the N different possible states, the quantum
algorithm operates very differently:

• Start with a fully superposed quantum state
{

|g〉+|e〉√
2

}⊗n

• Repeat O
(√

N
)

times the following sequence to increase the weight of

the solution in the register state:

– apply the given and unknown Oracle operator

– apply a fixed operator called diffusion (or symmetry) operator.

• Measure the register state in the computational basis {|g〉 , |e〉}⊗n

The Grover search algorithm on 4 objects In the particular case N = 4,
the Grover search algorithm requests only a single call of the Oracle for finding
the solution with certainty. This is already quite amazing, and provides a
rather clear case of quantum speedup. Note that a classical query & check
classical algorithm would succeed with a probability 1/4 after a single call.

The algorithm is fully described in figure 2.28. The four possible oracle
functions consist in a iSWAP gate followed by one of the 4 possible gates
ZI

±π/2.ZII
±π/2. These oracle functions π-shift a single state among 4. In the

two-qubits case, the diffusion operator is again a iSWAP gate followed by
XI

π/2.XII
π/2. The state readout at the end is supposed to fully represent the

oracle function applied.

Figure 2.28: Grover algorithm sequence (see text)
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2.5.2 Running the Grover search algorithm

Figure 2.29: Single-run success probabilities of the implemented Grover search
algorithm, for the 4 possible oracle operators. The success probability is always
larger than the success probability of the query-and-check classical algorithm.

We have implemented the Grover search algorithm for the four possible Oracles.
As shown in Fig. 2.29, the raw data shows a success probability for a single
run that ranges between 52% and 67%, well above the 25% success probability
of a classical algorithm. This result [26] provided the second demonstration of
quantum speedup with an electrical quantum processor after the demonstration
performed at UCSB for the Shor algorithm [59].
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Chapter 3

Design of a 4 qubit processor

Towards a more scalable architecture

We have demonstrated in the previous chapter a two-qubit processor fitted
with individual qubit control and individual qubit readout. The frequency
agility of the flux controlled transmons was used to switch on and off the in-
teraction induced by a fixed capacitive coupling, which implements a iSWAP
interaction. Using this controlled interaction, we obtained a universal set of
gates able to implement any unitary operation. With this processor, we could
run algorithms and record an outcome after each run, and this outcome was
faithful enough for demonstrating the quantum speedup of the Grover search
algorithm. This architecture is however not suited for scaling up the processor
size, and a more scalable architecture for drive, coupling and readout is clearly
needed. Section 3.1 describes the architecture we propose, the following sec-
tions discussing single-qubit gates, two-qubit gates and multi-qubit readout.

3.1 A N + 1 line architecture

Our goal is to make a simple quantum processor prototype sufficiently versatile
to run any algorithm with any choice of qubits, and get the result in a single
shot at the end of the run, by reading out simultaneously all the qubits. We
aim also at limiting the complexity and the hardware expense.

49
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Figure 3.1: (a) ’N + 1 architecture’ of a simple N -qubit processor with a
single wire used for drives and readouts, and N wires to control the qubit
frequencies. (b) Frequency domain overview of the processor: qubit frequencies
are shown (green) at various positions corresponding to different operation
(parking, driving, coupling and readout), whereas coupling bus (magenta) and
readout resonators (blue) are fixed.

The architecture that we propose is shown in Fig. 3.1. It is a ’N + 1
architecture’, meaning that it requires N + 1 lines connected to the processor
to perform all the operations and readouts on N qubits. This architecture
reuses many of the characteristics of the simple 2-qubit processor described in
chapter 1 with few important changes to make it more scalable:

• We propose first to apply single qubit gate drives via a common trans-
mission line coupled to all the qubits, through their readouts.

• Second, we target a versatile processor in which any pair of qubits can
be selected for applying an iSWAP α gate similar to the one described in
chapter 1. To do so, rather than directly coupling the qubits to each other,
we couple them capacitively to a common high quality factor resonator,
playing the role of a coupling bus [60]. To perform the gate, we intend
to place the two selected qubits on resonance, at a frequency close but
different from that of the bus.

• Third, for simultaneous single-shot high fidelity readout, we keep the idea
of having a Josephson bifurcation amplifier (JBA) per qubit. For a sake
of scalability, we intend to frequency multiplex all the readout signals on
the same line (also used for single qubit drives), adapting the multiplexed
linear dispersive readout demonstrated for flux qubits in [61].
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• Consequently, as for the two-qubit processor of the first chapter, a key
feature of our architecture is the frequency agility of the qubits. They
have to be moved from their parking frequency, to a frequency suited for
single qubit gates, then to resonance with another qubit for implementing
swap gates, and finally to a frequency close of their readout resonator for
projecting their states. Consequently, each transmon needs its own flux
control line (hence N wires), which has to be much faster than any gate
duration, but at the same time slow enough to be adiabatic (i.e. not
changing the population of the qubit eigenstates).

Figure 3.1.b shows on a frequency axis the positions corresponding to the dif-
ferent operations applied to the qubits in our architecture.

We define the computational basis of our processor as the eigenbasis of
the system when each qubit is at its parking position with the other modes
(readouts and coupling bus) being empty.

Considering that all the qubits will suffer from decoherence and relaxation,
all the operations have to be done as quickly as possible. In the rest of this
chapter, we detail how the operations are performed rapidly and the various
spurious effects.

In Section 3.2, we discuss the expected accuracy of fast single-qubit gates as
well as their undesired effects on non-targeted qubits (all drives being applied
through a single line potentially affecting all the qubits). We then discuss
in Section 3.3, two-qubit gates, in term of coupling constant and expected
maximum fidelity. We also detail the effect of residual couplings between qubits
at their parking frequencies.

In Section 3.4, we discuss the parameter chosen for readout, the resulting
readout accuracy, and the possible readout crosstalk of simultaneous readout
by the intrinsic non-linearity of the JBAs.

Last, we discuss in Section 3.5 discuss the problem of frequency crowding
potentially limiting scalability, and check that the parameters chosen yield to
coherence and life times long enough to perform simple algorithm.

3.2 Single qubit gates

We discuss single qubit gates in the frames rotating at the qubit transition
frequencies. Rotations around the Z axis of the Bloch sphere are performed
using adiabatic frequency changes, whereas rotation around X and Y axis are
obtained by applying Rabi pulse with suitable amplitude, duration and phase.

3.2.1 Z axis rotations

A σZ gate on qubit i is performed with a current pulse on its flux line, starting
at its parking position.

For this, we use a 1 GHz bandwidth flux line, a pulse generator with a 1 ns
time resolution and 14 bits depth to encode frequency changes up 8 GHz.
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A phase ϕ =
´

δf (t) dt ∈ [−π, π] is easily obtain in 10 ns (10 samples) by a
qubit displacement δf of order 100 MHz. The 14 bits depth makes the phase
tunable with an accuracy of 1 bit × 1 ns = 10−3π.

Spurious drives The spurious flux ϕk induced in the loop of qubit k when
driving the qubit i = k induces correspond to a unitary operation given by

Uk =

(

1 0
0 cikϕi

)

, (3.1)

where ϕi is the phase applied to qubit i and cik is the relative crosstalk between
flux line i and qubit k. This cik crosstalk have to be minimized at the design
step of the processor geometry with the help of microwave simulations (See
Sec. 3.6.1). Any residual crosstalk is finally corrected by applying a calibrated
correction matrix to the vector of flux pulse amplitudes.

3.2.2 X and Y axis rotations

drive

QB1 QB2 QB4 QB3
Frequency

Figure 3.2: Selective drive method

As in chapter 1, X and Y rotations are applied resonantly to a selected
qubit i, in the shortest possible time tg compatible with the 3-level nature of
the transmon qubit. More precisely, to avoid spurious excitation of the third
level or incomplete rotation of a π pulse, we indent to either use Gaussian π
pulses of 20 ns (±3σ) or 10 ns long DRAG pulses [62, 63] yielding errors below
1%.

However, contrary to Chapter 2, since all the qubits are driven through a
single line in our architecture, two important differences have to be considered:

• As a first consequence, the Rabi pulse on selected qubit i is also felt by
all other qubits k = i. In order to minimize the corresponding spurious
drive, qubit i is moved away from the parking region to the drive position.
The residual drive of qubit k and its compensation are evaluated in next
section.

• Since qubit i is moved back and forth away from its parking position, it
accumulates extra phase that needs to be compensated by a Z gate.
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3.2.2.1 Displacement induced phase

As in Sec. 3.2.1, the accumulated phase due to the displacement is ϕ =
´ (

ωge (t) − ωparking
ge (t)

)

dt. To avoid any extra Z rotation during X or Y pulse,
one need to make this accumulated phase to be zero (or 2π multiple). For fast
flux pulse and a detuning Δdrive−parking = ωdrive

ge − ωparking
ge ∼ 2 − 4 GHz, this

acquired phase is of the order of ϕ ∼ tgΔdrive−parking ∼ (20 − 40) 2π but only
a small amount ϕ [2π] ∈ [−π, π] of it has to be compensated using a σZ gate
as in Sec. 3.2.1.

3.2.2.2 Spurious drive on the other qubits

The evolution induced on qubit k is given by 3.2 (in the rotating frame at ωk
ge)

Uk =

⎛
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⎝
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))

ΩR

⎞

⎟

⎠

{|gk〉,|ek〉}
(3.2)

with δ = ωk
ge − ωd the detuning between the two qubits, ΩR0 is the Rabi

drive strength at resonance and Ω2
R = Ω2

R0 + δ2 the actual Rabi frequency of
the detuned qubit.

It is shown in Fig. 3.3 for a particular bad choice of the parameter exacer-
bating the error.

Figure 3.3: Spurious Rabi oscilation in the Bloch sphere

We see on the off-diagonal terms of Eq. 3.2, that the variation of the complex
amplitudes oscillate periodically, cancel every tL = Lπ/ΩR ∼ Lπ/δ (L integer)
and have a maximum value aR = ΩR0

ΩR
= 1√

1+ǫ−2
∼ ǫ with ǫ = ΩR0/δ.

The diagonal terms show a complicated phase evolution: taken at all tL

times, this variation is ϕL = 2Lπδ
ΩR

≈ πLǫ2

At large detuning ǫ → 0, this spurious drive becomes negligible; however
the detuning δ is in practice limited to 2 − 4 GHz and we choose this value
(ǫ = 1/40−1/80 given gate duration tg ). This yields to an amplitude variation
that can reach 2.5%.
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If full cancellation of this error is needed, we can choose precisely the parking
frequencies and the drive frequency and strength to verify Ωk

R = 2LΩi
R0, with

an easily reachable MHz precision.
In that case, the phase error can be cancelled using a compensating σZ gate

(typically ϕ ≈ πǫ
2 ∼ 2.5°).

3.2.2.3 Alternatives

The spurious drive discussed above and its necessary compensation due to
limited detunings is inherent to our N +1 architecture. An alternative solution
is to have one drive per qubit, either by adding N driving wires (leading to a
2N + 1 architecture) or by using the flux lines as a charge driving line of the
transmon [64]. This latter alternative comes at the expense of more hardware
on each flux line (bias tees and filters).

3.3 Two-qubits gates

For obtaining a universal set of gates, it is sufficient to combine single qubit
gates and an entangling two-qubit gate. Direct constant capacitive coupling
between qubits, as done is Chapter 2, being not scalable, we use a bus resonator
as already mentioned [19, 65].

3.3.1 Coupling with bus resonator

We consider the system formed by a resonator coupled to a register of qubits.
The overall Hamiltonian takes the Tavis-Cummings form:

H/� = ωRa†a +
∑

i

ωi
geσi

Z +
∑

i

gi(σ
i
+a + σi

−a†) (3.3)

where gi is the coupling constant between the resonator mode and qubit i.
In the limit where ωi

ge −ωR ≫ gi, one can trace out resonator mode degrees
of freedom (see Sec. 3.3.3 for validity) and end up with an effective Hamiltonian

H/� =
∑

i

ωi
geσi

Z +
∑

i 	=j

Jijσi
Xσj

X (3.4)

with

Jij = gigj

(

1

Δi
+

1

Δj

)

, (3.5)

where Δi = ωr − ωi
qe.

The important difference with the direct coupling used in chapter 2 is the
frequency dependence of the coupling constant Jij , giving a supplementary nob
to switch on or off the interaction.
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3.3.2 iSwap gate

When two particular qubits are placed on resonance close to the bus frequency,
the interaction terms in Eq. 3.4 yield an effective iSWAP interaction with
frequency Jij/2π, via virtual photon exchange.

We choose to perform a
√

iSWAP gate in 20 ns, compatible with the 1 ns
resolution of our pulse control system. This correspond to Jij/2π = 12.5 MHz

Given the chosen bus-qubit coupling gi/2π = 50 MHz, one finds the bus-
qubits detuning is

Δbus−coupling = 2g2
i /Jij ≃ 2π 400 MHz. (3.6)

3.3.3 Validity of the empty bus approximation

In order to check that the bus remains empty during the interaction, we cal-
culate the unitary evolution operator of the complete system composed of two
qubit symmetrically coupled to the bus. Instead of looking at the bus pop-
ulation, we consider the matrix element 〈ge0|U |eg0〉, as shown on Fig. 3.4,
reaching −1 for a complete swap with no energy left in the resonator. We see
that even with the fast oscillations with the bus, one can find a place where
the swap is almost perfect |〈ge0|U |eg0〉| > 0.9999.
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Figure 3.4: 〈ge0|U |eg0〉 matrix element as a function of the swap duration

In reality, the two coupling constant between the qubit ant the bus can
slightly differ due to geometrical constrains. We show on Fig. 3.5 the minimum
value of the same matrix element as a function of the asymmetry. We see that
an asymmetry of 5% leads to a swap element of -0.995, corresponding to a gate
fidelity greater than 99.5%.

3.3.4 Residual coupling

Since the coupling between the two qubit cannot be completely switched off,
a residual partial SWAP evolution occurs at their parking positions. Solving
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Figure 3.5: 〈ge0|U |eg0〉 matrix element as a function of the qubit-bus coupling
asymmetry.

Eq. (3.4 -3.6) for two qubits i and j out of resonance yields a SWAP frequency
fqq and amplitude aqq

fqq =
√

4J2
ij + Δ2

ij ∼ Δij

aqq =
2Jij√

4J2
ij

+∆2
ij

∼ 2Jij

∆ij
≪ 1

, (3.7)

at large detuning, with Δij = ωi − ωj .
Accepting a qubit-qubit detuning Δqubit−qubit/2π = 400 MHz at the park-

ing frequencies, and requesting a swap amplitude aqq ≤ 1% yields an upper
bound for the effective coupling Jij/2π ≤ 2 MHz. Given this constraint, we
find a lower bound for the qubit-bus detuning at parking

Δbus−park/2π ≥ 2 GHz. (3.8)

3.4 Simultaneous readout of transmons

At the end of any algorithm (or at intermediate error correcting steps), the
qubit register (or at least, part of it) has to be read out:

• each measured qubit should be read with a high fidelity that does not
depend on the simultaneous readout of other qubits. In other words,
readout crosstalk should be kept at a negligible level [9].

• Ideally, this measurement should also be quantum non-demolishing (QND)
in order to be able to continue the computation with the projected qubit,
which can be useful in certain algorithms. However, it is always possible
to replace a QND readout by transferring the state to be measured to
another fresh qubit using a C-not gate just before measurement.
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3.4.1 Frequency multiplexing of readouts

As already explained in chapter 1, qubit readout is usually obtained in CQED
from the state dependent frequency shift of a readout resonator. Measuring
the reflection or transmission coefficients of a microwave pulse reflected from
(or transmitted through) this resonator allows to discriminate the two qubit
states.

This readout method can be frequency multiplexed using frequency-staggered
readout resonators (sketched in Fig. 3.6), provided that all the signals are suf-
ficiently amplified to extract their in- and out-of-phase quadratures and so the
projected qubit state.

Multiplexed readout of qubits was first performed in circuit QED for flux
qubits using a wide-band HEMT cryogenic amplifier [61, 66]. However the
single-shot sensitivity was not reached with an high fidelity.

Figure 3.6: Multiplexed readout method

In order to reach this sensitivity, an additional amplification stage with
better signal to noise ratio is needed and two options are possible: either use
one quantum limited amplifier inserted before the HEMT to amplify all the
readout signals, or as in chapter 1, use one JBA per qubit

3.4.2 Amplification schemes for multiplexing

3.4.2.1 Linear readout with a quantum limited amplifier

Single-shot readout and continuous measurements have been performed with
different kind of quantum limited amplifiers (Josephson parametric amplifier
and Josephson parametric convertor) mainly for single-qubit. To readout a set
of qubits, with readout cavities in a Δf range, the quantum limited amplifier
needs to have a larger bandwidth and not to saturate even when simultaneously
fed by all the readout signals.

At the beginning of this thesis work, quantum limited parametric amplifiers
had bandwidth of the order of a few tens of MHz and maximum output power
of the order of −100 dBm that made them not suited for a scalable multiplexed
readout.

Recent implementations of Josephson parametric amplifiers [67, 68] demon-
strate larger bandwidths (up to few GHz) and higher saturation power (up
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to−80 dBm) that allowed this kind of amplifier to readout simultaneously up
to 4 qubits with a high fidelity [64].

3.4.2.2 Multiplexing several Josephson bifurcation amplifiers

On our side, we decided at the beginning of this thesis to frequency multi-
plex Josephson parametric amplifiers (JBA) used in our previous experiment
(Chapter 2). Each qubit is fitted with its own complete non-linear readout
device that provides a (nearly) quantum limited discriminator, only requesting
commercial low noise cryogenic HEMT amplifier .

However, the JBAs are non-linear resonators, so that the dynamics of one
might affect the switching probability the others. This imposes to separate
their frequencies more than for linear multiplexed readout, leading to a larger
frequency span for measuring the same number of qubits. Technically, this
requires only to control readout signals over a larger bandwidth.

3.4.3 JBA characteristics
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Figure 3.7: (a) Equivalent electrical circuit of the JBA. (b) JBA switching curve
for the qubit in its ground (blue) and excited (red) state. (c) JBA stability
diagram for both qubit states

As explained in Sec. 2.2.3.3, a JBA is operated is operated in its bistable
regime. At a given driving frequency, the resonator switches from its low to its
high amplitude state at a driving power that depends on the qubit state. This
switching is a stochastic process governed by quantum noise at low tempera-
ture, and its rate increases with power. For a given shape of readout pulse,
this stochastic switching translates into a power dependent switching proba-
bility. This so-called S switching curve is characterized by its 10 − 90% width
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δP10−90. As shown in Fig. 2.2.3.3.b, a good JBA readout has its switching
width δP10−90 much smaller than the power separation ΔP = 2χ ∂Pd

∂fd
|β+

be-

tween the two switching curves for the two qubit states (β+denote the L to H
switching line show in Fig. 2.2.3.3.c).

A few parameters control the dynamics of the JBA:

• The resonator characteristic impedance Zc =
√

Lg+Lj

Ci+Cc
. In practice, this

impedance can be designed in the 30−80Ω range. We choose a relatively
low Zc ≃ 35 Ω to get rather high current at low photon number.

• The resonator frequency is fixed by other constraints explained in Sec.
3.1. In our design, this frequency is at about 11 GHz.

• The resonator non-linearity is a key parameter that is best expressed in
term of participation factor p =

Lj

Ltot
with Lg, Lj , and Ltot = Lj + Lg the

geometrical, Josephson and total inductances, respectively.

• The resonator external quality factor Qe defining the coupling to the read-
out line (assuming an internal quality factor Qi ≫ Qe) and controlling
the speed of the switching dynamics.

These last two parameters are now discussed.

3.4.3.1 Choice of JBA parameters

3.4.3.1.1 External quality factor, sensitivity and measuring speed
As show in formula 2.38, at large qubit-resonator detuning, the relaxation rate
of the qubit through the cavity is inversely proportional to the cavity quality
factor Q. We thus choose the largest possible value of Q ≃ 3000 compatible
with a fast energy loading of the resonator in a time τR = Q

ωR
≃ 50 ns. This

time τR is the rise/decay time of the resonator at low power (linear regime)
and can be quite different from the characteristic time scales of the dynamics
at large driving power. Numerical simulations of the experiment of chapter 1
show that Q ≈ 600 leads to a switching time τp ∼ 30 ns. τp is the time needed
to separate the trajectories that switches from those that do not, and is larger
than the qubit projection time.

The new chosen value correspond to a switching time τp ∼ 100 ns, which can
be made shorter than the Purcell relaxation times as readout as discussed in
Sec. 3.4.3.2. Moreover, this slower JBA has a narrower power width δP10−90 ≈
1 dB and consequently a smaller frequency width

δf10−90 = δP10−90

(

∂Pd

∂fd
|β+

)−1

≈ 0.8 MHz, which makes easier discriminating

the two qubit states.

3.4.3.1.2 Non linearity As show by Eqs. 2.32, the reduced non linearity
p impacts directly the resonator energy just before and after switching (L
and H states at switching), but simulation show that it has a small impact
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on the JBA switching speed. The internal number of photon at switching
determines our ability to discriminate the L and H states in a given time;
we target a readout signal at switching of −100 dBm, which should allow us to
measure the quadratures of the outgoing signal within a few microseconds with
sufficient accuracy to perfectly discriminate the two resonator states. Using
2.2.3.3, this leads to a non linearity p ≃ 0.15 for a typical reduced detuning of
Ω = 2Q ∆f

f ∼ 4 − 10.

3.4.3.2 Qubit-readout coupling

We decide to be in the regime where the two switching curves are completely
separated, accepting an error of 10−5 due to this overlap. This imposes us to
choose a value of 2χ ≥ 4 MHz.

The qubit state dependent cavity shift χ and Purcell relaxation rate Γpurcell

are strongly dependent on the coupling constant g and of the qubit-resonator
detuning Δreadout−JBA. We show in Fig. 3.8 the relaxation time as a function
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Figure 3.8: Purcell relaxation time as a function of the coupling constant g
where 2χ = 4 MHz

of the coupling constant g, take at the selected point where 2χ = 4 MHz.
Since the qubit projection time is fixed by the JBA parameters to τp ∼

100 ns, we also accept a relaxation during measurement of 1−2% leading us to
a Purcell relaxation time at readout of 5 − 10 μs while keeping a low coupling
to avoid spurious effects. We choose a reasonable value of g/2π = 75 MHz
leading a relaxation of the excited state of ∼ 1.5% at the optimal detuning
Δreadout−JBA/2π ≃ 1 GHz.

3.5 Processor Parameters

The relative detunings chosen in the 3 previous sections already provide a
picture of the the overall frequency staging.
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3.5.1 Final choice

In order to ensure negligible thermal excitation of the bus resonator (which has
the lowest frequency in the system), we choose its frequency to be fbus = 4 GHz.
This yields to a thermal population of ∼ 10−3 at 30 mK.

We also choose the readout resonators to be the highest frequencies in
the system to keep the transmon frequencies below their readout resonator
frequencies at readout and avoid the straddling regime in which the resonator
dispersive shifts cancel [69]. This leads us to the frequency staging shown on
Fig. 3.9.

Figure 3.9: Overall frequency staging

Figure 3.10: Complete schematics, with relevant physical parameters

3.5.2 Overall decay and coherence rates

Assuming a standard amplitude (A = 10−5) for the 1/f flux noise in transmon
SQUID loops, Eq. 2.25 predicts that a transmon with a symmetric SQUID (i.e.
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whose frequency can go well below the bus frequency) would have a coherence
time T2 ≃ 1μs at the bus frequency as show in Fig. 3.12.

Since there is no need for the transmon frequency to reach the bus frequency,
an asymmetric design of transmon would be appropriate (see Fig. 3.11).

We get a minimum coherence time around the parking place (6 − 7 GHz)
of T2 = 2 μs.
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Figure 3.11: Transmon frequency as a function of the reduced flux through the
loop for d = 0 (blue) and d = 0.4 (red).
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Figure 3.12: Decay and coherence rates as a function of the frequency for two
different junction asymmetry d = 0 (dashed lines) and d = 0.4 (solid lines)
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3.6 Sample design

We need now to translate the physical parameters from the previous sections
into an actual geometrical design that we can fabricate. This section explains
general rules used for sample design (Sec. 3.6.1) as well as how we perform mi-
crowave simulations (Sec. 3.6.2) to extract the relevant parameters (Sec. 3.6.4).
The geometry of the design highly depends on the substrate material, sapphire
in our case, which is chosen because of its low microwave losses.

3.6.1 Overall design

We first need to place the different components and their connecting lines. As
shown in Fig. 3.13, topological constraints impose crossings at least between
some of the lines, given that connections are located on the sample edges[70].
Because such crossings can introduce impedance mismatching and crosstalks
of the crossing lines, we decide to cross the flux biasing lines carrying signals
at relatively low frequency (f ≤ 1 GHz) with the drive-readout line on which
a small signal loss (≤ 1 dB) cannot be not too detrimental.

Figure 3.13: Geometric placement of the different components. The flux biasing
lines cross the microwave drive and readout line.

Flux lines

In our design, the frequency control of the qubit is performed by applying
current pulses to the flux lines. In order minimize the crosstalk of flux line i to
other qubits j, one has to prevent the current returning to ground to flow away
from flux line i, from low frequency to microwave frequencies (DC − 1 GHz).
For that purpose, we use a separate ground (red lateral lines in Fig. 3.14),
which is reconnected to the common ground only at the chip edges.

At DC frequencies, the only path to ground is obviously though this sepa-
rate ground; at microwave frequencies (1 GHz), simulations confirm that only
less than 1% of return current flows in other ground, and a negligible part of
it can approach other qubits.
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The only remaining source of crosstalk is thus the field induced by flux line
i on qubit j. This contribution is negligible, given the quadrupolar nature of
the CPW mode and of the symmetric double loop design.

Figure 3.14: Design of our flux lines. The colors are only given for The qubit is
in green while the flux line is in red. The ground symbol “S” (“N”) represents
connection to the main ground via superconducting (normal) material.

3.6.2 Microwave simulations

Microwave design is not always intuitive because none of the designed element
are purely capacitive or inductive. Although approximate formulas and experi-
ence are good guides, numerical simulations are however necessary to check the
correct behavior of different elements at high frequencies and to obtain precise
values of the relevant electrical parameters.

Although the experiment will involve non-linear resonator in the quantum
regime, they can be considered as simple linear elements working in the classical
regime at the design step. Each Josephson junction (or SQUID) is thus replaced
in the simulations by its equivalent linear inductance Lj = Φ2

0/Ej .
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Given our circuit is essentially planar, we perform our simulations with a
so called 2.5D simulator, well adapted to this task and requiring less memory
than a full 3D simulator. We choose a professional software called SONNET.
Since our circuit is only made of thin film superconductors, we model it with
ideal metal sheets with zero resistivity.

This simulator can give us:

• the resonance frequencies of the transmons and of their readout res-
onators,

• the coupling between a transmon, its readout resonator, and the drive-
readout line,

• the spurious cross-talk between lines,

• the decay rates (or quality factor) of the resonators relaxation rates due
to dielectric losses or coupling to the 50 Ω matched external lines.

Since simulation times increase extremely fast with the size of the simulated
circuit, we make many different simulations of only simulate parts of it, like
a particular crossing, or at most, a single cell of the processor, including the
transmission line, a readout resonator, a qubit and a part of the coupling bus.

Signals are connected to the simulated lines via ports, which are character-
ized by their internal impedance Zpi (Fig. 3.15).

Vi ii

ai

bi

Vjij

aj

bj

D.U.T.

Figure 3.15: Schematic of a microwave simulation. Two ports i and j are
connected to the device (D.U.T.). Note that port impedance Zpi are complex
numbers.

The simulator calculates for each targeted frequency the microwave cur-
rents and charges in all conducting materials; it outputs the S matrix (reflex-
ion/transmission), or equivalently the Y admittance and Z impedance matrices
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(Eqs. 3.9). As other commercial softwares, SONNET offers an ABS1 function-
ality able to get a fine frequency meshing from a small number of simulated
frequencies, which decreases simulation times.

3.6.3 Transmission, admittance and impedance matrices

The transmission, admittance and impedance matrices are defined by:

Yij = Ii

Vj
|Vk �=j=0

Zij = Vi

Ij
|Ik �=j=0

Sij = bi

aj
|ak �=j=0

(3.9)

We see from Eqs. 3.9 and Fig. 3.15 that the Zij and Yij coefficients depend
only of the device under test while the Sij coefficients include also the port
impedances Zpi.

To deduce relevant parameters from the simulations, as done in the next
part (3.6.4), we exploit the relations between these different matrices. The
scattering matrix is obtained from the admittance and impedance ones using

S =
(

1N −
√

ZpY
√

Zp

) (

1N +
√

ZpY
√

Zp

)−1

Z = Y −1
(3.10)

with 1N the identity matrix and Zp =

⎛

⎜

⎝

Zp1 0
. . .

0 ZpN

⎞

⎟

⎠
the diagonal

complex port impedance matrix.

3.6.4 Extraction of the relevant parameters

The first parameters that we want to obtain from simulation are the readout
resonator frequency and quality factor. Figure 3.16 shows the simulated design
and the S parameters. The resonance at f = 11.96 GHz is fit to extract the
quality factor Q = 3500.

This direct method works well for not too large quality factors. At quality
factors Q > 10000 , obtaining accurate results from such a simulation of the S
matrix becomes very long. A better solution consists in introducing an internal
port k in the circuit directly connected to the resonator and in simulating the
admittance Yk as seen from this port (See Fig. 3.17). Indeed, a resonance
occurs when the imaginary part of Yk crosses zero. In the same way as the
quality factor of a parallel RLC circuit is given by Q = R/Zc with Zc the
characteristic impedences of the resonator (See also [71]), the quality factor of
the simulated circuit is given by

{

Im [Yi (ω0)] = 0

Q = ω0

2

Im[Y ′
i (ω0)]

Re[Yi(ω0)]

(3.11)

1Adaptive Band Synthesis
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Figure 3.16: Readout resonator coupled to the transmission line. (a) drawing
placed in the simulator. (b) simulated reflexion (S11) and transmission (S21)
parameter as a function of the frequency.

D.U.T.

Ypk

Re(Yk)

Y
p
i

Yi

Im(Yk)

Yi

Ypk

port k

Figure 3.17: Impedance Zk as seen from the port

Two points have to be made here:

• Introducing such a port at any place where it does not exist in the actual
circuit does not change at all the physics (resonances, quality factor, etc),
provided this port has an infinite impedance. However, simulating with
a finite port impedance is also possible since the simulated Y and Z
matrices do not depend of port impedences.

• In equation 3.11, the admittance Yk as seen from the port differs from
the matrix element Ykk given by the simulator (except when port k is the
only port), because Yk include the impedences of port i = k while Ykk do
not. Yk = 1/Zk is actually obtained from the S matrix coefficient

Skk =
Zk − Zpk

Zk + Zpk
, (3.12)

which includes the effect of all port impedances but Zpk.
We apply below this method to extract the qubit resonance frequency and

its quality factor, leading to the relaxation time T1 up to a factor close to unity.
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3.6.4.1 Qubit resonance width

Figure 3.18: Simulation performed to check qubit quality factor. (a) drawing
placed in the simulator. (b) equivalent circuit of the drawing. (c) complex ad-
mittance seen from port 3 (port 1 and 2 having 50Ω impedence). (d) equivalent
model in adding a paralell inductance

Figure 3.18.a shows the simulated geometry, with real port 1 and 2 and
the internal port 3 introduced at the level of the transmon SQUID. In this
simulation, the SQUID Josephson is actually removed and Y3 will include only
the capacitive part of the circuit and the rest of the circuit (Fig. 3.18.b). The
inductance can be added later in parallel with Y3 (Fig. 3.18.d) to place the
qubit resonance at any targeted frequency. Figure 3.18.c shows the real and
imaginary part of Y3, the peak at ≈ 12GHz corresponding to the readout
resonance. Adding to Y3 a variable Josephson admittance 1/jLJω and using
Eq. 3.11 we obtain a relaxation time T1 ≈ Q/ωge that increases with the qubit-
readout detuning. We see on Fig. 3.19 that the relaxation time extracted in
this way follow the Purcell approximation (Eq. 2.38) up to a detuning of order
2 GHz and then gets shorter because of a spurious coupling of the qubit to the
outside world.

3.6.4.2 Qubit readout coupling constant

The method above also leads to the coupling constant between the qubit and
its readout, indeed, Im(Y tot

3 ) crosses zeros at both qubit and readout reso-
nances (see Fig. 3.20). The separation between the zeros varies with Lj and
reproduces the anticrossing. The minimum separation correspond to 2g up to
a reduced matrix element |〈g|n̂|e〉| of order unity. One can easily reach the tar-
geted coupling in a few with slightly different geometries changing the effective
capacitance between the readout and transmon capacitors.



CHAPTER 3. DESIGN OF A 4 QUBIT PROCESSOR 69

4 6 8 10 12 14

0.1

0.3

1

3

10

30

Frequency �GHz�

T
1
�μ
s�

Figure 3.19: Extracted relaxation time T1 from microwave simulations (blue)
and theoretical Purcell decay time (red)
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Figure 3.20: Imaginary part of the admittance, with a parallel inductance of
Lj = 6 nH. The resonances are shown with green and blue dots.

The same method is applied to the qubit-bus coupling.

3.7 Complete design

The full result of the design is shown in Fig. 3.21, including the pads to wire-
bond the circuit to input and output lines.

In the next chapter, we explain how this design was fabricated, as well as
another simpler design used for testing the multiplexed readout.
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a)

b)

1mm

100 μm

Figure 3.21: Complete design of the sample (a) Full view. (b) Zoomed view on
the first cell



Chapter 4

Sample fabrication

In this chapter, we discuss the fabrication of the samples made during this
thesis work.

As already mentioned, the substrate chosen is mono-crystalline sapphire
for its particularly low loss tangent. Moreover, this material has a relatively
high dielectric constant (εr ∼ 10) well suited for microwave circuits, because
capacitors can be made compact, which means small parasitic inductance and
consequently higher frequencies of the spurious resonances. The surface of
the substrate is the crystallographic C-plane (1,1,1,0), chosen for its in-plane
isotropic dielectric constant. Given the equipment in our fabrication facility,
we work on 2 inch wafers. With the standard 10 mm x 3 mm size of the sample
chips chosen before my thesis, such a wafer can contain up to 44 chips.

The chip design explained in Chapter 3 is shown in Fig. 4.1. Because it
comprises relatively large structures of ∼ mm - μm size (shown in gray) as
well as small patterns down to ∼ 100 nm (JBAs Josephson junction in red
and qubit SQUID in blue), fabrication involves both optical and electron-beam
lithography. The process flow usually starts on the whole wafer for a certain
number of steps; at some point, the wafer is cut into chips that are processed
one by one for the remaining steps. Two different process flows have been used
in this work:

• Process flow 1

– Deposition and patterning of large structures by optical lithography
(full wafer);

– Fabrication of JBA Josephson junctions by electron-beam lithogra-
phy and deposition-oxidization (full wafer);

– Fabrication of the qubits by electron beam lithography and deposition-
oxidization (full wafer);

– Fabrication of microwave bridges (introduced in Chapter 3) for im-
plementing crossings and ground re-coupling (full wafer);

– Dicing with diamond saw or scribing of the wafer.

71
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• Process flow 2

– Optical lithography of the main pattern (full wafer);

– Deposition of the resist for e-beam lithography (full wafer);

– Dicing or scribing of chips;

– Fabrication of both qubits and JBA junctions at the same time by
e-beam lithography and deposition-oxidization (chip per chip).

Both methods present advantages and drawbacks: Process flow 1 is easy to
control because of the large size of the wafers, and makes possible a systematic
variation of the qubit junction size on the different chips, which is useful to
obtain a chip with the targeted resistance of the Josephson junctions; the price
to pay is two long e-beam lithography steps and the loss of the full wafer if
something goes wrong. Process flow 2 offers more flexibility because fabrication
parameters like Josephson junctions areas, oxidation pressure and duration, can
be adjusted on a chip according to results obtained on previously fabricated
chips, and because only one chip is lost if something goes wrong. But this flow
is slower and forbids fabrication of microwave airbridges, not feasible on small
samples.

In the following, we detail, the fabrication of the large patterns (Section 4.1),
of the JBA Josephson junctions and qubits (Section 4.2), of the microwave
airbridges (Section 4.3), and in Section 4.4 the mounting of sample chips.
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Large pattern (opt. litho.)

Small pattern (elec. litho.)

Bridges (opt. litho.)

Figure 4.1: Chip design of the 4-qubit processor fabricated in this thesis. The
gray, red, blue, and green colors correspond to four subsequent fabrication
steps. (a) Single chip in a 2” wafer. (b) Zoom on the first (left) qubit-readout
cell of a chip.

4.1 Fabrication of large structures using optical
lithography

The superconducting metal chosen for large structures is niobium, for several
reasons: it is a conventional BCS superconductor easy to deposit in thin films;
it has a TC = 9.2 K critical temperature sufficiently high to make possible mea-
surement of test structures at 4.2 K and 1 K, easily reachable temperatures
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with liquid helium. Many experiments have proven its ability to be used for
good enough quality factors (Q > 106) of resonators at a few GHz. Moreover,
contrary to aluminum, its critical magnetic field is high enough to be compat-
ible with the flux lines we have designed, which will carry a few milliamperes
on 150 nm thick and 10 μm wide wires. Finally, despite its type II supercon-
ductivity, niobium can be made free of magnetic vortices at the low magnetic
fields required to vary the qubit frequencies by patterning the film as grids (see
gray ground planes in Fig. 4.1).

The best niobium thin films being obtained by RF magnetron sputtering,
we use this technique to deposit an homogeneous film over the whole wafer, and
then pattern it by removing the metal between the electrodes by reactive ion
etching [72]. More precisely, the recipe to make the global pattern represented
on Fig. 4.2 is the following (see also Fig. 4.3):

• Cleaning of the sapphire wafer in an oxygen plasma at ∼ 8 W/cm
2

during
3 minutes to suppress any organic trace.

• Niobium sputtering (a): deposition of 150 nm at a rate of ∼ 2 nm/s by
RF magnetron sputtering.

• Photo-resist (b): spin 500 nm of Shipley S1813 resist + bake on a hot
plate at 110 °C for 2 minutes.

• Photo-lithography (c): UV exposure (monochromatic, line I) through the

mask shown in Fig. 4.2, in hard contact, with a dose of 200 mJ/cm
2
.

• Development (d): dissolution of exposed resist in pure MF319 developer
(TMAH1).

• Etching (e): Reactive ion etching of uncovered niobium using a gas mix-
ture of CF4 (20 c.c./min) and Ar (10 c.c./min) at a pressure of 50 μbar.
The etching is monitored by an optical interferometer and lasts approxi-
mately 5 minutes at ∼ 0.6 W/cm2.

• Lift-off (f): Removal of remaining (and partially cross-linked) resist in a
bath of warm (70 °C) 1165 remover (NMP2).

1Tetramethylammonium hydroxide
2N-methyl-2-pyrrolidine
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room for JBA junction

room for qubit and SQUID

Figure 4.2: (a) Mask used for optical lithography of the main pattern. The 2”
wafer perimeter is shown in red. (b) Zoom on the first cell of a chip (shown in
Fig. 4.1) showing the room left for fabricating the JBA junction (red rectangle)
and a qubit (blue rectangle) in subsequent steps.

Al2O3

Nb

S1813

UV

Cr mask

CF4*
Ar*

Figure 4.3: Fabrication of the main pattern by (a) magnetron sputtering of
Nb, (b-d) optical lithography, and (e) reactive ion etching of unprotected Nb.

4.2 Fabrication of Josephson junctions and qubits

The Josephson junctions of the Josephson bifurcation amplifiers as well as the
transmon qubits (see Fig. 4.5) are fabricated by overlapping two aluminum lay-
ers, the first of which being oxidized to form the tunnel barrier. This stack is
obtained by the Fulton and Dolan bridge technique [73], i.e by e-beam lithog-
raphy and double-angle evaporation through a suspended shadow mask (see
Fig. 4.6). The shadow mask is a resist bilayer made of a spacer layer and of
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the mask layer itself. The spacer is made of LOR3, that we dissolve to create
the desired undercut below the mask, without e-beam exposure. Because of
the insulating property of sapphire, an aluminum layer is deposited on top of
the bilayer, to avoid charging effects during e-beam exposure.

The exact recipe is the following:

• Bilayer resist stack

– Spacer resist (a): 1 μm thick LOR5B resist, bake out at 190 °C for
5 minutes.

– Mask resist (b): ∼ 300 nm thick PMMA 950 kg/mol, bake out at
180 °C for 1 min 30 sec.

– Discharge layer (c): a 7 nm layer of aluminum is evaporated on top
of the bilayer.

• e-beam exposure (d): 25 keV beam, dose of 300 − 400 μC/cm
2
. The e-

beam pattern (Fig. 4.5) is aligned on marks of the main pattern realized
by optical lithography; the focus is periodically corrected using a laser
interferometer measuring the distance between the sample and the elec-
tronic microscope objective. This exposure step lasts for 3−4 hours when
exposing the JBA junctions (i) on the whole wafer and for ∼ 12 hours
when exposing all the qubits (ii-iii).

• Resist developing

– Al discharge layer removal (e) using a 1.2 % water solution of TMAH
(1 : 1 MF-CD-26 to H2O).

– Development (f): exposed resist is dissolved in 1 : 3 MIBK4 to iso-
propanol in approximately 1 min 30 sec.

– Undercut (g) is obtained by dissolving the spacer resist with the
same TMAH solution. This method makes possible to tune the un-
dercut by observing it with an optical microscope and by immersing
the sample several times until the targeted undercut is obtained. A
1.5 μm wide undercut is usually achieved in 2 − 3 minutes.

– Under-mask cleaning: sample is cleaned in an oxygen plasma asher
for ∼ 30 s (∼ 15 nm of resist ashed) to remove possible resist residues
from the substrate. Note that this highly oxidizing step has to
be skipped when a recontact to previously deposited material is
required and when some residues on the surface are not detrimental
(e.g. for JBA junctions recontact to JBA resonators).

• Junction fabrication in a single vacuum cycle:

3polydimethylglutarimide
4Methyl-isobutyl-ketone
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– Pumping down to 10−7 mbar.

– Ion milling to outgas the substrate and deoxidize the metal elec-
trodes to be recontacted: Neutralized 500eV Ar ion beam at 0.8 mA/cm

2

during 10 seconds (i.e. 50 Ar atom per electrode (substrate) atom).

– First aluminum layer (h): 30 nm of aluminum is deposited with e-
gun evaporation at a rate of 1 nm/s through the mask with an angle
of −30◦.

– Oxidation (i): the whole chamber is placed in a static O2/Ar (15/85 %)
atmosphere to oxide the aluminum layer surface. This oxidation con-
trols the tunnel resistance and so the Josephson energy of the future
junction. The oxidation parameters are 1 mbar during 50 sec for the
JBA junctions, and 25 mbar during 10 min for the qubit ones.

– Second aluminum layer (j): 60 nm deposited with an angle of +30◦.
Note that the total Al/AlOx/Al thickness (90 nm) is sufficient for
the new junction arms to soar from the substrate to the top of
previously fabricated electrodes.

• Lift-off (k): The resist stack covered with aluminum is finally removed
with a warm (70 °C) bath of PG remover (NMP).

In the case of a process flow 1, the previous recipe is followed twice: once for
JBA junctions and once for qubit and SQUID fabrication. For qubit SQUID
fabrication, the size of the junctions vary along the different samples between
−50 % and +50 % compared to the targeted value.

Figure 4.4: SEM pictures of the Josephson junctions under angle: (a) JBA
junction, where we see the overlap between the two aluminum layers. (b) qubit
SQUID, the junctions are hardly visible.

We show in Fig. 4.4 the obtained junctions, for the qubit and the JBA. We
also fabricate in the corner of each sample some test structures with junctions
identical to those of the processor. These test junctions can be measured
without damaging those of the processors. The room temperature resistance
RN of a junction gives the Josephson critical current and energy

Ic =
πΔ

2eRN
, EJ = ϕ0Ic, (4.1)

with Δ ≈ 180 − 190 μeV the energy gap of our evaporated aluminum. A
correction factor of ≈ +15 % needs to be applied on the critical current to take
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into account the reduction of tunnel resistance when temperature drops from
room temperature to cryogenic temperatures.

Figure 4.5: Patterns of (i) the JBA junction and of (ii) the transmon, including
(iii) its SQUID, are defined by e-beam lithography.

e-

Al2O3

LOR5B

PMMA

Al

Al.

O2

Figure 4.6: Fabrication process of the JBA junctions and transmon qubits by
(a-g) e-beam lithography and (h-k) double angle evaporation of aluminum with
intermediate oxidation.

4.3 Airbridge fabrication

To implement the line crossings and mass re-connections of our processor design
(see Section 6 of Chapter 3 and Fig. 4.8), we have developed an airbridge
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fabrication process, adapted from similar processes previously developed in
other laboratories [70, 74]. A key feature of this technique is to use the rounding
effect of a patterned and re-flowed thick resist layer, leading to smoothed resist
profiles.

Al2O3

Nb
S1813

Cr mask

UV

Al

Figure 4.7: Bridge fabrication by (a-c) optical lithography, (d) reflow, (e) alu-
minum evaporation, (f-h) second optical lithography and (i,j) aluminum etch-
ing.

This fabrication process is described on Figure 4.7 and can be divided in
four major steps detailed below:

• Bridge “pillars” patterning by positive UV lithography (where the bridges
are to be contacted to the existing niobium layer)

– Photo-resist (a): Spin on the cleaned wafer of a ∼ 4 μm thick S1828
resist layer, bake at 110 °C for 5 minutes (1 min/μm minimum). This
thickness will define the bridge height.

– Exposure (b): large dose of 900 mJ/cm
2

of UV light (line I), due to
large resist thickness. The mask (Fig. 4.8, orange) is aligned with
an accuracy of < 1 μm on top of the main pattern.

– Development (c): exposed resist removed in MF319 developer. Spe-
cial care is needed to completely get rid of resist residues at the
“base” of the pillars.
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• Resist reflow (d): patterned photoresist is baked at 140 °C for 4 min-
utes. The resist is rounded by surface tension effect, which defines the
lateral profile of the future bridge. This rounding is visible with optical
microscope.

• Aluminum bridge deposition in a single vacuum cycle:

– Ion milling: to allow good galvanic contact the niobium surface is ion
milled with neutralized 500 eV Ar ion beam at 0.8 mA/cm

2
during

100 seconds (i.e. ∼ 500 Ar atom per electrode atom). Note that
this steps also burns the top surface of the resist mask.

– Deposition (e): 500 nm of aluminum is evaporated at right angle all
over the wafer. This thickness is that of the future bridges.

• Bridge pattering by positive UV lithography and etching:

– Photo-resist (f): spin ∼ 2 μm thick S1828 resist layer, bake it at
about 110 °C for 7 minutes. This thickness is sufficient to completely
planarize the new resist (i.e. fill the holes defined in the previous
lithography step).

– Exposure (g): The whole wafer is exposed except bridge arches

(Fig. 4.8, green) with a dose of 1000 mJ/cm
2
. This dose has to

be controlled properly to pierce the 7 μm thick resist without over-
dosing and enlarging too much the pattern.

– Development (h): develop in a solution of H2O 1 : 1 AZ devel-
oper, which has a low etching rate of aluminum used for the bridges
compared to many other resist developers. The exposed resist is
dissolved in 2 min 30 sec. Special care is needed to get rid of resist
residues around the pillars.

– Etching (i): the unprotected aluminum is then etched by immersion
during 15 minutes in a commercial aluminum etchant5 and agita-
tion to prevent hydrogen bubbles from sticking to the surface and
stopping the etching.

– Removal of burnt resist: resist cross-linked during the ion milling
step, is eliminated by a 5 minute long exposure to an oxygen plasma
in a asher (∼ 2 W/cm

2
).

5MicroChemical aluminum etchant: H3P O4 : 73 %, HNO3 : 3.1 %, CH3COOH :
3.3 %, H2O : 20.6 %
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Pillars (first litho.)

Bridges (second litho.)

Figure 4.8: Series of two masks used for optical lithography of aluminum air-
bridges. First mask (orange) defines the bridge pillars and recontacts (positive
lithography before deposition), while second mask (green) defines the bridge
itself (positive lithography before etching).

The result of this process is shown on Fig. 4.9 where we clearly see the
bridge profile resulting from the resist reflow.

Figure 4.9: SEM picture of airbridges taken with angle. We see two transmis-
sion lines crossing with airbridges.

4.4 Cutting and mounting

As already mentioned, at a given step that depends on the process flow, the
2 inch wafer is cut. The 44 rectangular chips with size 3 × 10 mm are cut
apart either with a diamond dicing saw or a manual diamond scriber. Prior
to cutting, the full wafer is protected with an additional photoresist layer:
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either a thick Shipley S1828 layer for process flow 1 with bridges, or a 1 μm
thick UV3 layer for process flow 2 with electronic resist bilayer. After cutting,
the samples are placed correspondingly either in a hot bath of 1165 remover to
dissolve both the protecting layer and the resist used to fabricate the airbridges,
or in isopropanol to dissolve the UV3.

Once cut and cleaned, the samples of process flow 1 are electrically charac-
terized by measuring their test structure junctions. Note that due to the 20 μm
width of the transmon capacitance “fingers”, it is also possible to measure di-
rectly the actual qubit SQUID resistances. The samples of process flow 2 are
processed one by one and characterized in the same way.

Sample holder and wire-bonding

2 mm

Figure 4.10: (a) Printed chip board with sample installed in its groove.
(b) Zoomed view on the sample and its wire-bonds.

A sample selected for low temperature characterization is then stuck with wax
or vacuum grease in a groove of a Rogers6 TMM10i circular printed circuit
board (PCB). The sample pads and ground planes of the chip are wire-bonded
to the PCB lines and grounds using a 33 μm diameter aluminum7 wire, super-
conducting at the temperature of a dilution refrigerator. The 50 Ω coplanar
waveguide transmission lines of the PCB are terminated by 50 Ω right-angle
mini-SMP connectors with a typical reflexion coefficient of -26 dB @ 12GHz.
The PCB is metalized on both sides with gold-coated copper, and ground planes
of both sides are connected to each other with standard metalized vias.

The PCB is placed in on a sample holder with a cover (see Fig. 4.11)
matching precisely its size and having a small cavity above the chip to avoid
spurious resonances in the relevant frequency window (DC-15GHz). The closed
sample holder is finally anchored at the mixing chamber of a conventional wet
dilution refrigerator.

6Rogers corporation
7Al : 99%, Si : 1%
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1 cm

Figure 4.11: (a) PCB on its sample holder. (b) cover, with grooves facing the
transmission lines on the PCB and the chip and holes for connectors.



CHAPTER 4. SAMPLE FABRICATION 84



Chapter 5

Multiplexed readout of transmon
qubits

As explained in Chapter 3, our proposition for making a scalable quantum
processor is to multiplex the readout of many transmon qubits using a single
line that carries all the readout signals. In this chapter, we show how we have
implemented and tested this readout strategy on a four-qubit register. We first
describe the sample used for this test in section 5.1, then describe in section 5.4
the readout of a single qubit and its performance for an optimal coupling, and
finally demonstrate in section 5.5 the simultaneous readout of the four qubits,
and discuss the performance reached and the perspectives.

5.1 Sample and experimental setup

5.1.1 Sample

The sample used in this experiment is shown in Fig. 5.1.b. It consists in four
almost identical cells 1-4 depicted in Fig. 5.1.a. Each of these cells is composed
of a flux tunable transmon qubit capacitively coupled to a JBA readout res-
onator made of lumped elements, itself capacitively coupled to the transmission
line. As for the two-qubit processor described in chapter 2, the non-linearity
is obtained by introducing in the resonator inductance a Josephson junction
(the inductance of which depends on the current). The readout resonators of
the different cells have staggered frequencies obtained by varying the resonator
capacitance. As shown in Fig. 5.1.c, the resonator interdigitated capacitances
are decreased from cell to cell by removing about half a finger when moving
to the next one. The sample is fabricated on sapphire using the chip by chip
process flow number 2 described in Chapter 4. The common readout line and
the readout resonators are patterned in a niobium film by optical lithography
and reactive ion etching. The JBA junctions and the qubit (capacitor and
SQUID), see Fig. 5.1.d-e, are fabricated using electron-beam lithography and
double-angle evaporation of aluminum through a suspended PMMA shadow

85
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mask. As already explained, airbridges cannot be fabricated with this process
flow, and the top and bottom ground electrodes separated by the transmission
line are reconnected by bonding of 25μm Al-Si(1%) wires. In this experiment,
only two ports of the chip are used, out of the 6 available ones.

5.1.2 Low temperature setup

As shown on Fig. 5.2.b, the microwave line that carries the qubit readout and
drive signals from room temperature to the sample thermally anchored at tem-
perature T ∼ 30 mK is attenuated at several intermediate temperatures in
order to ensure a low electronic temperature at the sample stage. A band-
pass filter is also inserted in the line to prevent spurious high frequency noise
from reaching the sample. On the output line, the readout signals are routed
to a cryogenic amplifier thermally anchored at 4.2 K through two 4 − 8 GHz
circulators and a 4 − 8 GHz bandpass filter that prevents noise outside the
bandwidth, at the amplifier input port, from reaching the sample. The sample
is placed in a superconducting coil, the ensemble being placed inside a Cry-
operm cylindrical box1 that shields the static magnetic field induced by the
circulator magnets. Another Cryoperm shield is added all around the 30 mK
stage of the dilution fridge in order to protect the experiment from fluctuating
magnetic field coming from the environment.

5.1.3 Microwave setup

The microwave setup used in this experiment is shown in Fig. 5.2.a. The
hardware for the qubit drive is shown in brown whereas hardware for readout
drive and acquisition is shown in purple. Both qubit and readout signals are
generated using a single sideband mixing technique discussed in Sec. 5.2.1.
Then, the simultaneous readout outcomes for all qubits are obtained from
the output signal using further amplification and a two-stage demodulation
technique discussed in Sec. 5.2.2.

5.2 Experimental techniques

5.2.1 Single sideband mixing

In order to obtain the microwave pulses at the different relevant frequencies,
we use a single sideband mixing technique based on IQ mixers whose functional
diagram is described in Fig. 5.3. In this method a continuous carrier is applied
to the LO port, and ac modulated signals are applied on both on the I and
Q ports to translate the frequency to the targeted value and define the pulse
envelope; the resulting microwave pulse is picked on the RF port.

1MμShield ®
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cell 1 cell 2 cell 3 cell 4cell 1 cell 2 cell 3 cell 4

qubits

JBAs

cell 1 cell 2 cell 3 cell 4

500μm

10μm 10μm

Figure 5.1: 4-qubit sample used for testing the multiplexed JBA readout. (a)
Equivalent electrical circuit showing the four cells composed of a flux tunable
transmon coupled to a JBA resonator, itself coupled to the readout line. (b)
Optical micrograph of the chip connected to a printed circuit board. (c) Op-
tical micrographs of the qubit cells 1-4 (blue, green, red, purple). The JBA
capacitance decreases from cell to cell in order to obtain staggered frequencies
with 70 MHz steps. (d-e) Optical micrographs of the Josephson junctions of
the qubit SQUID (d) and of the JBA readout resonator (e).
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Figure 5.2: (a) Room temperature microwave experimental setup. Qubit drives
are shown in brown and readout lines in purple. An arbitrary waveform gen-
erator (AWG) delivers the driving and readout pulses, which are mixed with
continuous microwaves. The red dashed lines carry a 10 MHz reference signal
for synchronizing the microwave generators, the AWG, as well as the measuring
apparatus, which are triggered by the AWG. (b) Electrical setup in the dilution
refrigerator, showing the attenuated and filtered input line, the isolated and
amplified output line, as well as the global magnetic field generation.
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I Q
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Figure 5.3: IQ mixer. (a) symbolic representation; (b) functional diagram.

Ideally, in order to generate a pulse with a suitable envelope A (t), a mi-
crowave frequency ωRF = ωLO+δω away from the LO signal LO (t) = ALO cos (ωLOt),
and a given phase ϕ, one applies I and Q signals with the same envelope A (t),
the same frequency δω, but a π/2 phase difference:

[

I(t)
Q(t)

]

= A(t)

[

cos (δω t + ϕ)
sin (δω t + ϕ)

]

. (5.1)

The resulting output RF signal takes the requested form:

RF (t) = LO (t) I (t) + LO
(

t − π

2

)

Q (t)

= ALOA(t) [cos (ωLO t) cos (δω t + ϕ) − sin (ωLO t) sin (δω t + ϕ)]

= ALOA(t) cos [(ωLO + δω) t + ϕ] (5.2)

∝ A(t) cos (ωRF t + ϕ) .

The IQ mixers suffer however from important imperfections. Their use
requires a careful calibration procedure, and a careful check of the outgoing
signal in order to obtain a signal at a single sideband frequency, and with the
desired amplitude and phase. These imperfections are:

• saturation-bandwidth: the I and Q ports have limited bandwidth and
saturate easily. Although the few GHz bandwidth is not a limiting factor
for our application, the saturation at a few dBm RF power had to be
calibrated.

• amplitude imbalance: contrary to the ideal case of Eq. 5.2, the IQ mixing
rather takes the form RF (t) = LO (t) I (t) + αLO (t − π/2) Q (t), where
α is a coefficient that deviates from 1 by about 1 − 2 dB.

• phase imbalance: the imperfect phase shifting leads to a modified mix-
ing RF (t) = LO (t) I (t) + LO

(

t − β π
2

)

Q (t) with β ∼ 1. The phase
imbalance is typically 5 − 10◦ for a well chosen LO power.

These three main imperfections decreasing with increasing LO power, the signal
of the microwave generators is first amplified as shown on Fig. 5.2.a in order to
operate the mixers at the maximum possible LO power. Even under this con-
dition, the imbalance effects cannot be neglected, and corrections are needed.
We compensate these imperfections by applying I and Q signals with slightly
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different amplitudes and phases deduced from a calibration. The calibration
coefficients are periodically checked and tuned by minimizing the signal at the
unwanted sideband frequency (ωLO − δω) /2π, using the spectrum analyzer.

The calculation done above for a single microwave frequency ωRF is also
valid for obtaining a sum of RF signals from a sum of I and Q signals with
amplitudes {Ai}, frequencies {δωi}, and phases {ϕi}, with the very same LO
frequency. Consequently, one can frequency multiplex a series of j simultaneous
pulses using only one IQ mixer and only two channels of an AWG.

5.2.2 Demodulation and horizontal synchronization

On the acquisition side, a similar mixer is also used to demodulate the output
signal, since a mixer is a reciprocal device. The signal s (t) = AS(t) cos (ωRF t + ϕS)
is down-converted with a local oscillator LO (t) = ALO cos (ωLOt). The output
quadratures on the I and Q ports - also known as IF (intermediate frequency)
ports - are

[

I (t)
Q (t)

]

=

[

s(t) × LO (t)
s (t) × LO (t + π/2)

]

(5.3)

= As(t)ALO cos (ωRF t + ϕS)

[

cos (ωLOt)
sin (ωLOt)

]

(5.4)

Writing ωRF as ωLO +δω, and neglecting low-pass filtered terms at ωRF +ωLO,
the I and Q quadratures takes the form

[

I (t)
Q (t)

]

=
1

2
AS(t)ALO

[

cos(δω t + ϕS)
− sin(δω t + ϕS)

]

. (5.5)

This signal is then digitized in a time window during which its amplitude AS

is constant, with a sampling period dt and a spurious trigger jitter 0 < ǫ ≤ dt
that is independently measured precisely by modern digitizers. Sample k reads
thus

[

I (k)
Q (k)

]

=
1

2
ASALO

[

cos(δω {k dt + ǫ} + ϕS)
− sin(δω {k dt + ǫ} + ϕS)

]

. (5.6)

This digital signal is then numerically demodulated using tabulated values of
the cosine functions at the known signal frequency δω. To do so, a compiled C
DLL computes

[

Iδω (k)
Qδω (k)

]

≡ 1

N

N
∑

i=0

[

I (k)
Q (k)

]

cos (k δω dt) , (5.7)

which can be written

[

Iδω (k)
Qδω (k)

]

=
1

4
ASALO

[

cos(δω ǫ + ϕS)
− sin(δω ǫ + ϕS)

]

, (5.8)
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assuming a large sample size N ≫ 1. The jitter delay ǫ being known, I and Q
are corrected using the rotation matrix

M ≡
(

cos δω ǫ sin δω ǫ
− sin δω ǫ cos δω ǫ

)

[

Icorr
δω (k)

Qcorr
δω (k)

]

≡ M

[

Iδω (k)
Qδω (k)

]

(5.9)

=
1

4
ASALO

[

cos ϕS

sin ϕS

]

which gives access to the amplitude AS and phase ϕS of the signal initially
oscillating at ωRF .

As for the case of up-conversion (Sec. 5.2.1), this down-conversion process
suffers from the same imperfections since it uses the same IQ mixer:

• saturation: the incoming signal (RF port) being usually much smaller
than the LO power, the device is used in its “linear” regime and this
effect is negligible.

• amplitude/phase imbalance: the pump power being in the specified range,
the amplitude and phase imbalance have the same value than in the single
sideband mixing case. But these effects, can be mainly ignored in our
application since the absolute amplitude and phase do not matter, but
only their changes.

• trigger jitter: the numerical demodulation being performed at frequencies
up to δf = 200 MHz at 2 GSamples/s, the jitter delay 0 < ǫ ≤ 0.5 ns
corresponds to a phase jitter dϕ = 2π δf ǫ that can reach 36°, larger than
the typical phase shifts to be measured. This is why ǫ has to be measured
by the digitizer for each acquired trace.

Once again, this calculation done for a single RF signal is valid for a sum
s (t) =

∑j
i=1 AS,i(t) cos (ωRF,i t + ϕS,i) of j signals undergoing an analog de-

modulation with the same mixer and LO frequency, followed by j digital
demodulations at all known intermediate frequencies {δωi}, because digital
demodulation of signal i at the frequency of component m = i averages to
zero. Consequently, one obtain from such a multiplexed demodulation a series
{(Ii,Qi)} couples per acquisition.

5.3 Sample characterization

5.3.1 JBA readout resonator characterization

We first probe the readout resonators by measuring the sample S21 trans-
mission coefficient (amplitude and phase) of the sample as a function of the
frequency with a vector network analyzer (VNA). The transmission curves
shown in Fig. 5.4 show four resonances, the shape of which varies with the
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measurement powers. At sufficiently low power (dark blue curves), the JBA
resonators simply behave as linear resonators. The frequency separation is
70 MHz between subsequent resonators. At higher power (other curves), an
abrupt change (more clearly visible on the phase) is the signature of the bifur-
cation phenomenon: the JBA switches from its low amplitude dynamical state
L to the high amplitude one H, as explained in section 2.2.3.3. The switching
back and forth between the two states can even be observed for some driving
parameters, as show for instance on the data taken at −95 dBm power around
7.64 GHz, where the phase undergoes multiples jumps (see orange curve - this
unstable behavior is due here to the way the VNA ramps its probe frequency).
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Figure 5.4: (a) Spectroscopy of the JBA resonators at different drive powers,
recorded with a vector network analyzer. The bifurcation phenomenon corre-
sponds to abrupt changes, mainly visible on the phase. (b) Fit of the linear
resonance of JBA 1 by expression Eq. 5.10, yielding its bare frequency and
internal and external quality factors. (c) Stability diagram of the JBA as a
function of the reduced detuning Ω. The solid blue line correspond to the
switching from L to H whereas the vertical red line indicates the reduced drive
frequency Ω = 6.5. (d) Switching probability as a function of driving power,
for the chosen frequency Ω = 6.5.
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By fitting in the complex plane {Re [S21] , Im [S21]} each of the four linear
resonances measured at low power (see example of JBA 1 in Fig. 5.4.b) with
expression

S−1
21 (f) = 1 +

Qint

Qext

1

1 + 2jQint (f/fR − 1)
, (5.10)

the resonator internal and external quality factors Qi
int and Qi

ext are extracted.
We find Qi

int = {2500, 2550, 2650, 2200} and Qi
ext > 40000 for the four read-

outs. Then, the JBAs are placed in their bifurcation regime and their switching
probability is measured using rectangular pulses with increasing powers (see
Fig 5.4.d). In order to benefit from a large readout sensitivity without suffer-
ing from the retrapping instability, we choose drive frequencies 10 MHz below
the resonator frequencies in the linear regime, which corresponds to a reduced
detuning Ω = 6.5 ≫ Ωc =

√
3 (see Eq. 2.32).

5.3.2 Qubit spectroscopy

The next step consists in measuring spectroscopically the qubits using the
methods described in Chapter 2, as a function of the global magnetic field
that can be applied to the sample with a single coil. The result is shown
on Fig. 5.5, where the switching probabilities pS,i of the four JBAs are all
superposed (see caption). These measurement are performed at sufficiently
large power to show both the |g〉 → |e〉 spectroscopic line and the two-photon
|g〉 → |f〉 transition, which gives access to the transmon anharmonicity α =
fge − fef = −434 ± 2 MHz for the four qubits. Note that qubit 3 (red) is
not tunable because of a discontinuity in the SQUID loop, already detected at
room temperature. The three tunable qubits have different offset in magnetic
field due to imperfect shielding of the magnetic field created by the circulators.
The magnetic field periods of these qubits are different, which we attribute to
a difference of the shielding currents induced in the superconducting ground
electrodes by the Meissner effect canceling the magnetic field.

5.3.3 Qubit-readout resonator coupling constant

The coupling constant between each qubit and its readout resonator cannot be
measured directly by observing an anticrossing between both objects, because
the JBA frequencies have been placed well above the maximum qubit frequen-
cies in this sample. Consequently, it is deduced from the qubit frequency
modulation and from the resonator pull χge

i (in the linear regime) induced by
the qubit i left in its ground state: the resonator frequency fR is measured as
a function of the global magnetic field that controls the qubit frequency (see
Fig. 5.6), and is fitted with the model of Eq. 2.27. Indeed, we have

fR
i = fR0

i + χge
i /2π (5.11)

with fR0
i the resonator frequency in the absence of qubit and χge

i the cavity shift
(Eq. 2.27). This yields g/2π = 85 ± 3 MHz. The coupling constant obtained
for cells 2 and 4 has the same value.
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Figure 5.5: Simultaneous spectroscopy of the four qubits as a function of the
global magnetic field applied to the sample: the four switching probabilities
pi are encoded from transparent for pi = 0 to blue, green, red, and purple
for p1,2,3,4 = 1, and are all superposed. The blue arrow corresponds to the
optimal working qubit used to characterize cell 1 (Sec. 5.4), whereas the yellow
dashed line corresponds to a compromised working point used for testing the
multiplexed readout of all qubits (Sec. 5.5).

In the next section, we characterize the readout performance of qubit-JBA
cell 1 at its optimal point for readout (cyan arrow on Fig. 5.5), where it shows
good readout fidelity and sufficiently long estimated Purcell relaxation time
(TP > 8 μs). In section 5.5, we will operate the full circuit at the magnetic
field shown by the yellow line of Fig. 5.5. Due to the lack of individual control
of each qubit frequency in this sample, this magnetic field is not optimal for
any of the qubits: it is actually a reasonable compromise between all the qubit
readout contrasts, given the complex frequency pattern of the sample.

5.4 Single qubit readout

In this section, we characterize the readout of qubit-JBA cell 1 at its optimal
point, i.e. where the qubit-readout frequency difference is not too large to
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Figure 5.6: Resonator 1 linear resonance frequency as a function of the coil
current that modulates all qubit frequencies. The full line is a fit yielding the
coupling constant g/2π = 85 ± 3 MHz between the transmon and its readout
resonator.

insure a sufficient resonator pull and a full separation of the switching curves
corresponding to the qubit ground and excited states, but also sufficiently large
for limiting the Purcell relaxation rate of Eq. 2.38.

At this operating point, the frequency difference between qubit 1 and its
readout resonator is Δ1 = fge

B1 − fR1 = −1.08 GHz. The qubit and readout
pulse amplitudes used are shown in Fig. 5.7; the signals are produced using
single sideband mixing as described in section 5.2.1.

Single qubit control pulses are carefully designed to avoid spurious popu-
lation of transmon level f (see Section 3.2.2). We label θij a resonant drive
between the states |i〉 and |j〉 inducing a rotation by an angle θ. For small
Rabi angles θ, the control pulses are Gaussian shaped with a time truncation
at ±3σ and σ = 4 ns (24 ns foot to foot). Their amplitude is increased propor-
tionally to the targeted θ until the maximum amplitude allowed by the setup is
reached (see dashed gray line in the left panel of Fig. 5.7). Above this limit, a
plateau is added to the pulse between the Gaussian rise and the Gaussian fall.
For simplicity, an equivalent pulse “length” is defined as the duration of an
equivalent rectangular pulse having the same area with the maximum allowed
amplitude. Numerical simulations of the dynamics of a transmon with its three
lowest energy levels show that such relatively long pulses with Gaussian rise
and fall induce preparation errors smaller than 0.1%, which allowed us not to
use the DRAG technique [37] required for shorter and stronger pulses.

As already mentioned, the JBA is driven at a frequency ∼ 10 MHz below its
linear resonance frequency. The readout pulse consists of a 2.025 μs long almost
rectangular pulse, with a first 25 ns long step at higher amplitude to accelerate
the energy loading at the beginning. As discussed below and in Appendix A,
the time needed by the JBA for projecting the qubit and ’deciding’ to switch
or not is of the order of 100 ns. After this the JBA is in a latched state
and maintains its signal whatever the qubit “does”. The 2.025 μs long pulse
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is transmitted through the whole setup and is then digitized for subsequent
digital demodulation between time 0.325 μs and time 1.325 μs (2000 sampling
points).
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Figure 5.7: (left) Microwave control pulse envelopes for πge, πef , and (2π)ge

rotations. The dotted line shows the maximum amplitude used. (right) Begin-
ning of the microwave readout pulse envelope

The outcome of each readout sequence yields a pair of (I1, Q1) quadrature
amplitudes, i.e. a point in the complex amplitude plane. We show in Figure 5.4
a density plot of these amplitudes on a set of 105 measurements taken just af-
ter applying a

(

π
2

)ge
pulse in order to have equal populations of the ground

and excited states. On the left panel, one observes two clouds corresponding
to the two dynamical states of the readout resonator. The blue dashed line
represents the best separatrix between the two regions. The right panel repre-
sents the projection of the (I1, Q1) orthogonally to the separatrix line; the two
corresponding histograms overlap by less than 10−4 of their area. A single-shot
experiment result is labeled as low (L) if the outcome is on the left side of the
red dashed line and high (H) if it is on the right.
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Figure 5.8: JBA 1 outgoing signal, (left) in the (I1, Q1) plane and (right)
histogram of the projection orthogonally to the dashed blue line.

Description of the switching curves

We now define the bifurcation switching probability p1 as the probability for
the JBA to be found in its high (H) state. Figure 5.9 shows the variations of
this probability as a function of the peak drive power for the qubit prepared in
the |g〉, |e〉 and |f〉 states, respectively. In order to best display the difference
between p1 and 0 or 1, we plot the switching curves using a double logarithmic
scale below and above 0.5.
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control pulse (blue) and after a πge pulse alone (red) or with shelving (ma-
genta). These curves are shown using a double-logarithmic scale below and
above 0.5 (right axis). Thin green lines represent “ideal” S curves built by
shifting the blue line to the red one above 50% switching and the red line to
the blue line below 50%. The vertical dashed lines indicate the pulse power
yielding the highest readout contrasts with (left) and without (right) shelving.

• No qubit pulse applied:

When no control pulse is applied to the qubit (blue curve), i.e. with the qubit
supposedly in its ground state |g〉, one notices that the switching probability
continuously increases with power, but presents a shoulder at a level of 1.1%
that we interpret as a spurious population of the excited state |e〉 in excess
compared to the expected thermal equilibrium value of 2 10−5. The 1.1% value
observed corresponds to an effective qubit temperature of 70 mK, above the
30 mK fridge temperature. Note that such a large qubit temperature is usually
not observed in 2D architectures and that it was not observed on previous
samples with more attenuation at low temperature. It may result from a bad
infrared shielding in this particular experiment.

• After a πge pulse:

When measuring the switching curve after a πge pulse, one obtains the switch-
ing curve displayed in red, which differs from the green one obtained by shifting
the blue curve by a power corresponding to the 2χ frequency change of the
readout resonator (Eq. 2.37). One observes a sloping shoulder between −114
and −111 dBm. The red line indicates the largest difference between the two
switching curves without and with a πge pulse applied. The value p1 ≃ 0.96
at this point is smaller than 1 for different reasons we only partly explain.
First, the excess initial population in the excited state is transferred back to
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the ground state by the πge pulse, hence a 1.1% missing population in the
excited state. Second, relaxation during the drive pulse itself, before readout
starts, results in a small error. Having independently measured T1 = 2 μs,
we estimate this specific relaxation error at about 0.6%. Then we tentatively
attribute the missing 2.3 % difference at the measurement point to relaxation
during the readout itself because the effective projection time is longer than the
duration of the first plateau of the readout pulse, as discussed further below.

• After a πge and a πef pulses

For further improving the readout fidelity, we have used the already known
trick that consists in transferring the excited qubit population from |e〉 to |f〉.
When measuring the switching probability curve after a πge and πef pulse
(pink curve), ideally preparing the qubit in the |f〉 state, we see the curve
shifted again, but with a plateau at about 0.977 between −114 and −111 dBm
instead of a sloping shoulder. On this plateau, a relaxation from |f〉 to |e〉 has
a negligible impact on readout outcome. Indeed, in absence of direct relaxation

from |f〉 to |g〉, the ground state population grows quadratically as ∼
(

t/T fg
)2

with T fg =

√

T fe
1 T eg

1 ≈
√

2T eg
1 , where T ij

1 stands for the relaxation time

from |i〉 to |j〉 state. This yields a really small error of 0.1 − 0.2 % during
measurement, even assuming measurement times longer than 100 ns. In this
composite measurement with a a πef applied before the readout pulse, the
plateau close to one on the switching curve is thus quantitatively explained
by excess population of the excited state combined with relaxation during the
drive sequence. This observation strongly supports that the slope observed
after a πge pulse is also due to relaxation.

The pink dashed line points out the maximum difference between the qubit
left in its ground state and the composite pulse measurement after a πge pulse.
This 96.5% contrast obtained, mainly limited by thermal population (2.2% of
loss) and relaxation during drives (1.1% of loss), indicates that the intrinsic
fidelity of our JBA readout could reach a 99.8% fidelity provided one makes
transmon qubits with a longer relaxation time T1 and without excess population
of the excited state.

Observation of single qubit Rabi oscillations

The left part of Fig. 5.9 shows the best results obtained after a Rabi sequence,
measured with simple and composite readout pulse.

One has to note that a composite measurement pulse takes the qubit out
of the computational basis {|g〉 , |e〉}, which prevents from continuing a com-
putation with it. Nevertheless, this limitation is of the same nature as that of
a non QND detector and can be circumvented by using ancillary qubits.

The three tunable transmons (and the one with an open loop SQUID)
show similar performances at similar ∼ 1 GHz qubit-JBA detuning. Moreover,
at all measured transmon frequencies, they all show relaxation times in the
range T1 : 1.7 − 3.2 μs significantly below the estimated Purcell lower limit
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TP > 8 μs, and shorter than in other comparable 2D transmon circuits. We
tentatively attribute these short relaxation times to dielectric losses [75].

JBA internal state evolution

In order to shed light on the evolution of the internal state of the JBA res-
onator during readout, we have performed semi-classical numerical simulations
of the JBA dynamics with parameters that correspond to those independently
measured experimentally. The way these simulations are done is detailed in
Appendix A. Resulting trajectories of the internal JBA complex field ampli-
tude are shown in the left panel of Fig. 5.10. The detailed evolution of the
amplitude module is shown in the right panel.
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Figure 5.10: (a) Simulated internal state trajectories, colored in blue for tra-
jectories ending in the L state (qubit in |g〉) and in red for the H state (qubit
in |e〉). (b) Time evolution of the internal amplitude for switching and non-
switching trajectories.

This simulation shows that the JBA bifurcates from about 4 to about 50
photons after a transient at about 16 photons. One observe that the time
taken by the JBA to “decide” to switch (or not) to the H state is most of the
times shorter than 100 ns, meaning that qubit relaxation after this time has no
impact on the final outcome; older observations with an oscilloscope of averaged
trajectories at 0% and 100% of switching confirm that L and H trajectories
diverge before 100 ns, which can be taken as an upper bound for the time needed
for the qubit projection. According to Eq. 2.39 and for our quality factor and
dispersive shift, this projection should occur within T φ (α) ∼ 86 ns/ |α|2, i.e. in
about 5 ns during the transient around 16 photons. This shows that although
the measurement output develops over one hundreds of nanoseconds, the actual
projection time is much shorter.
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By simulating a large number of similar trajectories (see Appendix) of a
JBA alone with qubit state dependent parameters, we obtain the switching
curves shown in Fig. 5.11 , which are compared to the experimental ones. The
reasonably good agreement obtained for the separation the S curves as well as
for their slope, without introducing any adjustable parameters apart from the
attenuation of the driving line that is known with a precision of only 2 dB, shows
that Dykman’s effective temperature approach works well and that simulations
do capture the physics of bifurcation. The sloppy shoulder of the S curve for
the qubit excited state is not predicted at all. This is not a surprise since our
simulation do not really include the qubit, and especially not its relaxation
during measurement. This is why our collaborators A. Blais and B. Royer
have performed full quantum simulation including a three state transmon, a
JBA, and the possibility for the transmon to relax during measurement.. Their
simulation are also shown on Fig. 5.11. They do not fit as well the data but
capture a relaxation induced small rounding at the top of the S curve for
|e〉. Nevertheless the effect is much less pronounced that what is observed
experimentally. Coming back to the upper bound of 100 ns for the projective
time, we point out that applying the independently measured relaxation rate
to this time would reduce the |e〉 population by ∼ 0.5 %, which is here also
insufficient to explain the experimental p1(|e〉) at -114dB for instance. The
conclusion is that the sloppy shoulder cannot be explained by normal relaxation
during the measuring time, and that an important ingredient of the dynamics
of the JBA coupled to an excited qubit is missing in the theory. This issue could
be related to a similar unexplained problem observed with the linear dispersive
readout of transmons [76]: indeed, non-QNDness of the readout, i.e. excitation
and relaxation during readout, has often (but not always) been observed with
an average photon number in the cavity well below the critical photon number
ncrit mentioned in Section 2.2.3.1. Yet our JBAs switch from about 5 to 50
photons and could suffer from this non-QNDness. Although fortunately, this
effect can be eliminated by using shelving, it is still to be understood.
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Figure 5.11: Experimentally measured (dots), semi-classical (dashed) and full
quantum simulated switching curves for the qubit in the ground (blue) and
excited state (red)

5.5 Multiplexed qubits readout

After having performed individual qubit readout, we investigate now the si-
multaneous readout of the four transmon qubits.

5.5.1 Readout frequencies, signal generation and analysis

Given the lack of individual transmon tunability, a magnetic field leading to
not too large detunings Δi = {−1.2, −1.76, −3.12, −2.06} GHz was applied,
placing the system at a compromise point as indicated by the yellow line on
Fig. 5.5. In particular, we have to operate JBA 3 far detuned from its transmon
with a broken SQUID, and for increasing the visibility, this JBA is driven
∼ 5 MHz below its frequency, i.e. at Ω = 3.2.

fR1sbfR2sbfR3sbfR4sb

7.7 7.8

fR1 fR2 fR3 fR4fC

frequency (GHz)

Figure 5.12: Readout frequency overview. The carrier frequency is fc =
7.77 GHz, fRi stand for readout frequency and fRisb represent the ideally can-
celed sideband.
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Register state discrimination

Given these larger detunings than in the optimized case, we now use readout
pulses with a 50 ns first plateau followed by a 2 μs latching plateau. The car-
rier frequency fc used to generate the sideband tones fRi = fc + δRi is chosen
so that the undesired sidebands fRisb = fc − δRi, possibly not perfectly can-
celed, nevertheless stand away from other relevant frequencies, as shown in
Fig. 5.12. All the tones falling in a ±120 MHz bandwidth around the carrier
frequency, we generate their additive combination with an arbitrary waveform
generator (AWG) sampling at 1 GSample/s. After sending the four tones at
their specific amplitude as in the previous experiment, the signal returned is
analog-demodulated with the carrier, and one gets a signal containing the four
readout signals at the different detuning frequencies. This signal is digitized
and numerically demodulated at the four sideband frequencies δRi, yielding 4
(Ii, Qi) quadratures pairs at frequencies fRi. The density plot of the quadra-
tures in the four complex planes is shown on the left panel of Fig. 1.7 after
applying

(

π
2

)ge

i
pulses on all qubits. Again, on can observe that the two clouds

of each pair i can be well discriminated by choosing four suitable separatrices,
and the probability pi of outcome H for JBA i is measured by repeating a
measurement sequence and counting the number of H shots: the simultaneous
operation of the four JBAs does not prevent us from demodulating the signals
as properly as achieved in the single JBA measurements.
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Figure 5.13: Density plot of 105 single-shot outcomes, each including the four
(Ii, Qi) quadratures. The colors (blue, green, red, purple) stand for i = (1 − 4).
(left) (Ii, Qi) coordinates at the frequency fRi. (right) Histogram of the pro-
jection perpendicularly to the best separatrix lines.
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5.5.2 Switching performance

As done in previous individual qubit readout experiments, we measure the
set of switching curves for the four JBAs. These curves are represented on
Fig. 5.14 for the qubits prepared in |g〉, |e〉, and |f〉 state2. As expected, the
larger qubit-JBA detunings Δi lead to smaller resonator pulls χi, to a reduced
separations between the S curves, and to lower readout sensitivities.

Figure 5.14: Measured S curves as a function of the drive power for the four
qubit, in the ideally prepared |g〉, |e〉, and |f〉 state.

Nevertheless, the maximum contrast between the qubit left in its ground
place or in the |e〉 states measured with and without composite readout is
shown on Table. 5.1.

Qubit πge
i contrast πge

i + πef
i contrast

1 92.5% 95%
2 92.3% 94%
3 79% N/A
4 81.2% 88%

Table 5.1: Contrast obtained obtained with standard and composite pulse on
the 4 qubits.

2Except for qubit 3 whose |e〉 ↔ |f〉 transition frequency is out of the reachable frequency
window.
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5.5.3 Simultaneous qubit drive and readout

5 6
frequency (GHz)

7 8

Figure 5.15: Readout frequencies (dotted lines), and transmon transition fre-
quencies fge (solid lines) and fef (dashed lines)

For the chosen compromise working point, the frequency distribution of the
transmons and their readout resonators is shown on Fig. 5.15. Several frequen-
cies are close to each other, raising a problem often referred to as “frequency
crowding” [77], which is easily solved when individual frequency control of the
qubits is available. Because of the ac Stark shifts induced on qubit frequency
i by drives applied to qubits m = i (as detailed in Section 3.2.2), driving the
qubits 1, 2 and 4 simultaneously would be complicated, and we prefer slightly
separate their drive and use the driving sequence shown in Fig. 5.16. Neverthe-
less, the readout of the different transmons can overlap without any problem.
For best readout performance, we apply readout pulses right after driving, and
use composite readout pulses (with shelving to |f〉 state) for the qubits 2 and

3, but neither for qubit 1 because fef
1 ≈ fge

2 nor for qubit 3 because the low

fef
3 happens to be filtered by the readout resonator.
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Figure 5.16: Drive sequence for simultaneous readout: (top) Qubit pulse en-
velopes; (bottom) readout pulse envelopes.

To demonstrate that the readout of the full register is operational, we have
performed the simultaneous measurement of Rabi oscillations of all qubits by
applying to all of them θge

i pulses of increasing areas (with the same shape for
all qubits except for an arbitrary amplitude factor), and then reading out the
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full register. We obtain the Rabi oscillations shown in Fig. 5.17, expressed as
a function of the equivalent duration defined above.

Figure 5.17: Simultaneous measurement of Rabi oscillations on 4 transmons.

The Rabi frequencies are different because of the different drive amplitudes,
and their values can be controlled over similar ranges. The visibility of these
Rabi oscillations is large, but significantly smaller for qubit 3 due to its very
large detuning from its readout resonator. Figure 5.18 summarizes the readout
contrast and errors obtained on the four cells, with this non optimal magnetic
bias. This basic experiment demonstrates that multiplexed JBA readout is
compatible with qubit driving.
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Figure 5.18: Contrast and errors obtained by quasi simultaneous qubit drives
and readouts on four qubit cells.

5.5.4 Readout crosstalk between JBAs

A natural question that arises is the maximum number of transmons that our
multiplexed JBA scheme could handle. Given JBAs are non-linear resonators
which can à priori interfere, this raises a frequency-crowding problem different
from the one faced by linear dispersive readout. It is thus important to inves-
tigate any possible crosstalk between different channels. Note that increasing
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the total bandwidth needed to avoid crosstalk can increase the technical diffi-
culty for producing all readout drive signals and to demodulate the outgoing
readout signal.

The issue is how close the JBA frequencies can be without the bifurcation
dynamics of a given JBA getting affected by the dynamics of the other ones,
whether they switch or not. To answer this question, we had to average prob-
abilities pi obtained in different conditions, over large period of time. So we
first checked the stability of our measurement chain.

To measure this stability, we monitor the variance of pi measured over N
consecutive shots upon increasing N . More precisely, we compare the standard

deviation σi for the four outcomes to the predicted value σi = (pi (1 − pi) /N)
1/2

assuming independent statistical events. As shown in Fig. 5.19, the standard
deviation follows perfectly the predictions for independent variables up to a
maximum size N < 5 × 104, limited by slow drifts in signal preparation and
measurement.
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Figure 5.19: Standard deviation as a function of the number of measurement
n for the 4 readout. Experimental data (dotted) and theory (solid line)

In the present setup with 70 MHz frequency difference between two neigh-
boring JBAs, the crosstalk is quantified by preparing qubit 2 in a superposition
(|g〉 + |e〉) /

√
2 and qubit 1 either in |g〉 or in |e〉, and by averaging p2 as much

as allowed by the drifts. We find that the difference in p2 for the two states of
qubit 1 yields a crosstalk of only 0.2 ± 0.05% , as show in Fig. 5.20. This low
value shows that the JBA frequency separation of 70 MHz that we have used
is rather conservative, and therefore that JBA readout of a larger register is
possible using the same microwave hardware. However, this empirical upper
bound of 70 MHz for the JBA separation does not fully answer the question,
and the crosstalk issue deserves more in-depth theoretical prediction.
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Figure 5.20: Crosstalk measurement between JBA 1 and JBA 2, on N =
300 × 1000 measurements. Red point stand for the qubit 1 prepared in |e〉 and
blue when left in |g〉. Blue and red line show the mean values and the difference
represent the crosstalk.

5.6 Overall performance and conclusion

In conclusion, the experimental results obtained in this chapter on multiplexed
JBA readout of four transmons show that JBA readout has an excellent intrin-
sic readout fidelity when shelving is used and that it is compatible with driving
and reading transmons in a small qubit register. However, the overall readout
contrast obtained with our multiplexed JBA scheme is significantly lower than
that demonstrated at UCSB [78] on also four transmon qubits, using individual
linear dispersive readout and a wideband quantum limited parametric ampli-
fier. Nevertheless the larger errors in our experiment are not due to the readout
method itself but (i) to the lack of individual qubit frequency control in this
first simple design, (ii) to slightly too high temperature of the qubits, and (iii)
to faster qubit relaxation. The UCSB team has been limited to four qubit
read simultaneously because of the still limited −107 dBm saturation power
of their parametric amplifier. But recent developments of the Traveling Wave
Parametric Amplifier [67] will probably help solving the scalability issue for
linear dispersive readout. On our side, although we have measured a negligible
crosstalk between the JBAs and have not found any blocking issue, the scal-
ability of multiplexed JBAs will at some point be limited by the interactions
between JBAs with close frequencies. Although the quantitative limit is still
unknown, present results suggest that reading out a ten-qubit register with
multiplexed JBA is possible.
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Chapter 6

Characterizing a 4 qubit
processor prototype: preliminary
results

This chapter reports our fabrication and test of a 4-qubit processor imple-
menting the design described in chapter 3 and fitted with the multiplexed
qubit readout demonstrated in the last chapter 5. We first describe the sample
and the setup used (Sec. 6.1), then the readout and qubit performances (Sec-
tions 6.2-6.2.3) that we compare with the results obtained in chapter 5. We
finally characterize the qubit-qubit interaction mediated by the bus resonator
(Sections 6.3and 6.4). Because of problems encountered in the fabrication pro-
cess, this first prototype does not meet the performances of an operational
processor, with sufficient coherence time, gate fidelity and readout fidelity for
running any algorithm. We could nevertheless test different features of our
architecture.

6.1 Sample and experiment setup

6.1.1 Sample

The sample used for this experiment is shown in Fig. 6.1. As in the previ-
ous experiment, it consists in four almost identical cells 1 − 4. Each cell is
made of a JBA resonator capacitively coupled to a single transmission line on
one side, and to a transmon qubit on another side. The main difference with
the sample investigated in Chapter 5 is that the transmons are independently
tunable by passing current in individual local flux lines, and are coupled to
a single high quality bus resonator that mediates an exchange interaction be-
tween them. As explained before, the flux lines have dedicated ground return
conductors for avoiding the return current to spread in superconducting elec-
trodes in an uncontrolled way. Because of the need of line crossings, the sample
is fabricated using the process flow 1 described in Chapter 4, and fitted with

111
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airbridges. The flux and transmission lines, the JBA geometrical inductances
and capacitances, and the coupling bus are first patterned in a niobium film
on a 2” sapphire wafer. The JBA Josephson junctions are fabricated on the
whole wafer using standard double-angle aluminum evaporation through a re-
sist shadow-mask made by e-beam lithography. The transmon capacitance and
Josephson junctions are then fabricated in the same way. The bridges are fi-
nally fabricated on the full wafer, prior to cutting it in individual sample chips.
The sample is placed in the groove of a TMM10 printed circuit board (PCB)
and the 6 lines on the PCB are wire-bonded to the sample with aluminum
wires.

6.1.2 Low temperature setup

As shown on Fig. 6.2, the microwave setup is similar to the one used in the
experiment of Chapter 5, expect that the readout frequencies are now in the
8 − 12 GHz bandwidth. The incoming microwave line down to the sample is
thermally anchored and attenuated at different temperatures. The outgoing
line is composed as before, of a 8 − 12 GHz double circulator followed by a
8 − 12 GHz cryogenic bandpass filter, prior to the cryogenic amplifier at 4.2 K.

The electrical setup now also includes four lines for driving the flux through
the SQUID loops of the transmons with a large 1 GHz bandwidth. Since these
lines carry quite a large current (few mA) at the sample level, the only 20 dB
(50 Ω matched) attenuator used for reducing the noise is placed on the 4.2 K
stage, where the available cooling power is large enough to dissipate ∼ 5 −
30 mW. For the same reason, the flux drive lines are routed using CuNi cables,
temperature independent between 300 and 4.2 K, NbTi superconducting cables
between 4.2 K and 30 mK to avoid heat transfer, and semi-flexible silver plated
copper cables at 30 mK. To block high frequency radiation, these lines are low-
pass filtered at 1 GHz with a commercial filter actually acting as a stop-band
filter between 1 and ∼ 20 GHz. This filter is then followed by a soft absorptive
real low-pass filter up to UV frequencies. This homemade filter is simply a
coaxial waveguide with its dielectric made of Eccosorb1, which provides a good
absorptive material even at low temperature.

1Emerson & Cuming Microwave Products.
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Figure 6.2: Fridge wiring. Only one on the 4 flux lines is drawn

6.1.3 Microwave setup

The microwave setup used at room temperature is again really similar to the
one used in Chapter 5, except that the readout mixers are now replaced by
Hittite HMC-C042 mixers, the local oscillator frequency of which is in the
8.5 − 13.5 GHz range, while the readout frequencies are now at ∼ 11 GHz.
The flux lines are directly connected to the outputs of a 4 channels Tektronix
AWG5014 waveform generator, sampling at 1 GSample/s.

6.2 Individual cell characterization

We detail here the characterization of the different functionalities of the ele-
mentary cells. We first characterize the JBA readouts (Sec. 6.2.1), then the
transmon coherence and relaxation times. Finally the crosstalk in the frequency
control of the transmons is investigated.

6.2.1 JBA resonator characterization

6.2.1.1 S21 coefficient varying with power

The frequency dependence of the S21 transmission coefficient measured with
a VNA is shown in Fig. 6.3 for various drive powers. It clearly points out to
a defective behavior of the JBA resonators. First, only 3 over the 4 expected
resonances are visible on the transmission, indicating that the Josephson junc-
tion of JBA 1 is probably open. Second, one notices on the low power curve
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(top blue trace) that the resonance dip is only of ∼ 6 dB, which clearly indi-
cates that the quality factor of the resonators are low. Third, the power (albeit
roughly calibrated) needed for observing the switching to the bifurcated state
(see green, olive and red traces) is sizeably larger that for the sample of chap-
ter 5. All these features can be well explained by an abnormally low internal
quality factor of the JBA resonators, as characterized more precisely below.
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Figure 6.3: VNA measured S21 coefficient as a function of the frequency for
different incident power

6.2.1.2 Quality factor in the low power linear regime

Figure 6.4 shows the complex S21 transmission coefficient of the three visible
resonances (JBA 2 − 4) in the linear regime. The fit in the complex plane
yields external quality factors Qe ≈ 3000 in agreement with the design value,
but internal quality factors 1800 < Qi < 2900 significantly lower than in the
previous experiment. This is a clear indication that one of the last steps of the
fabrication process has induced losses not present before, as discussed more
precisely below.
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Figure 6.4: S21 coefficient in the linear regime around the 3 resonances, fitted
to extract the external Qe and internal Qi quality factor

6.2.1.3 Readout contrast

Even though the internal quality factor of the JBAs resonators is low, we
investigate their ability to perform qubit readout. From here to the end of the
chapter, we focus only on cells (qubit + readout) 2 and 4. The switching curves
of JBA 2 and 4 are shown on Fig. 6.5 for the qubits prepared in the ground
or excited state. The detunings Δi = fR

i − fge
i used for this characterization

are Δ2 = −1.01 GHz and Δ4 = −0.85 GHz, similar to the value used for
characterizing a single JBA in Sec. 5.4. One observes that the switching curves
widely differ from the almost ideal situation reached in the previous experiment,
and that the achieved readout contrast {0.2 , 0.4} is very small compared to the
value > 0.9 achieved in the previous experiment.

1.0

0.8

0.6

0.4

0.2

0.0

J
B

A
 2

 s
w

it
c
h
in

g
 p

ro
b
a
ili

ty
 p

2

0.40.3

Drive amplitude (arb.)

1.0

0.8

0.6

0.4

0.2

0.0

J
B

A
 4

 s
w

it
c
h
in

g
 p

ro
b
a
ili

ty
 p

4

0.60.5

Figure 6.5: Measured switching curves for JBA 2 (left) and JBA 4 (right), for
the qubit in its ground (blue) and excited state (red), as a function of the drive
amplitude. The green curves are the corresponding differences, or contrast of
a π pulse.
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Figure 6.6: Simulated switching curves of JBA 2 for the two detunings Δf2 =
−10, −13 MHz that correspond to the qubit in its ground (blue) and excited
(red) states, with the measured internal quality factor Qext

2 = 2850 (solid lines)
and for the ideal case Qext

2 ≫ Qint
2 (dashed lines). Green curves indicate the

contrast.

In order to check if the poor internal quality factors 1800 < Qi < 2900 of the
JBA resonators can indeed be responsible for the poor readout performances
observed, numerical simulations of the switching curves were performed using
the method explained in Appendix A. An extra shunt resistor at the same
quantum temperature as the external load was added across the JBAs to model
Qi. The separation between the simulated switching curves for the two qubit
states (see Fig. 6.6) is indeed strongly reduced in comparison with the case of
no internal loss, hence the reduced readout contrast. The agreement with the
experiment is only qualitative due to the rounding of the S curve in state |e〉,
as already discussed in section 5.4. Nevertheless, these simulations prove the
detrimental effect of the lowered Qi’s on the JBAs readout contrasts. The exact
cause of these lowered Qi’s are unknown and determining them will require
further investigations on test structures all along the fabrication process flow.
For the present sample we can only speculate, about the possible explanations:

• First the bridge fabrication process could introduce microwave losses by
leaving resist residues below the bridges or all over the sample. This
hypothesis seems however ruled out by the observation of a high qual-
ity factor ˜50000 for the bus-resonator, whose resonance mode involves
ground currents in airbridges.

• Second, the JBA resonators are baked at ∼ 190 °C during the subsequent
qubit fabrication, which could lead to oxidation of the aluminum layer.
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• Third, the recontact areas of the JBAs aluminum Josephson junctions to
the niobium meander inductances (see Fig. 4.1) could have been oxidized,
either before aluminum deposition or at a subsequent hot temperature
step. Indeed, an effective series resistance Rs ≈ 10−2 Ω would be sufficient
to reduce the resonator quality factor down to Qi ∼ 2000 − 3000.

Whatever the correct explanation, the low readout contrast found in this sam-
ple as well as the missing resonator have prevented high fidelity multiplexed
readout, and thus operation as a quantum processor. Nevertheless, the differ-
ent functions of the chip can be tested by rescaling the raw measured switching
probability by measured readout fidelities of Fig. 6.5 for obtaining the qubit
populations p(|ei〉) as mentioned in section 2.2.3.3.

6.2.2 Qubit characterization

6.2.2.1 Spectroscopy

The measured transition frequencies of qubit 2 and 4, together with the low
power resonances of their readout resonators are plotted in Fig. 6.7 as a function
of the current applied to their flux line. More precisely, a 5 μs long saturating
qubit pulse followed by a readout pulse are applied every 20 μs. The qubit fre-
quencies are perfectly fitted by Eq. 2.11 using fge max

2(4) = 10.038 (10.623) GHz

and a SQUID asymmetry d = 0.05 (0.02). These values of d are actually only
upper bounds because filters in the setup prevent from measuring resonances
below 3.8 GHz, and thus from reaching the minimum transition frequencies.
The small modulation of the resonator frequency with the qubit frequency
give access to the qubit-JBA resonator coupling constant. Using Eq. 2.27,
one obtains g2(4)/(2π) = 95 (101) MHz, slightly larger than the design value
estimated in Chapter 3.
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Figure 6.7: Cell 2 (left) and cell 4 (right) characterization: VNA measured
readout resonator frequency in the linear regime (top) and qubit transition
frequency fge

2 (bottom) as a function of the flux line voltage.

6.2.2.2 Single qubit gates: Rabi oscillations

We have controlled coherently the quantum state of the qubits, as shown on
Fig. 6.8 for qubit 2 and 4. Their resonant frequencies are here the maximum
one indicated above, and the data show the 20 % and 40 % contrasts previously
determined.
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Figure 6.8: Rabi oscillation of qubit 2 and qubit 4. Raw switching probability.

6.2.2.3 Qubit relaxation and dephasing times
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Figure 6.9: Qubit 2 decoherence (T2) and relaxation times (T1) at a few fre-
quencies. The maximum qubit frequency and the readout frequency are shown
by green and red dashed lines, respectively. The solid red and green lines
are the expected Purcell relaxation time (Eq. 2.38) and the decoherence time
T −1

2 = T −1
purcell/2 + T −1

φ with Tφ the pure dephasing time corresponding to a

qubit frequency noise with a A/f spectral density with amplitude A = 10−5

at 1 Hz.

The coherence times T1 and T2 measured for qubit 2 at different frequencies are
shown in Fig. 6.7. These times are significantly shorter than those estimated
from the parameters shown in Fig. 3.12.
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First, the relaxation time at high frequency fge > 8 GHz is shorter than
predicted by the Purcell expression, even taking into account the reduced qual-
ity factor of the readout resonators. This points to an imperfect control of the
microwave environment around the qubit at these frequencies. On the low fre-
quency side (fge < 7 GHz), the measurements indicate T1 > 3.5 μs, once again
well below the Purcell limit. Because there is no reason that the relaxation in
the flux line should be 20 times faster at 8-10 GHz than at 5-6 GHz, we tend
to think that the strong relaxation is not due to the bad design of the flux line.

Second, the T2 coherence time measured with a 2-pulse Ramsey sequence, is
also between a factor 2 and a factor 100 shorter than the measured 2T1. Since
the echo-coherence time is not longer, the noise responsible for the dephasing
occurs mainly above 10 MHz. We cannot exclude that this noise is coming from
the flux line, but the fact that its value is comparable with the one measured in
the multiplexed readout experiment of Chapter 5 that had no flux lines suggest
an alternative source of noise.

The qubit 4 shows similar dephasing and relaxation times, indicating once
again that this sample can only be used for probing some function designs.
Further investigations are clearly needed to characterize both relaxation and
dephasing sources in this first prototype.

6.2.3 Frequency control, flux lines crosstalk

The spectroscopic data of Fig. 6.7 demonstrates our ability to control the qubit
frequencies from ∼ 3 to 10.5 GHz at low frequency (50 kHz). But our processor
is based on the ability to change a qubit frequency precisely in a few nanosec-
onds only. To test this ability, we measure the response of the flux lines in-situ
by applying to flux line 2 a voltage step with a 1 ns rise-time and measuring
the qubit frequency after a variable delay. More precisely, we make the qubit
swap with the bus as explained in the next section and deduce its frequency
from the swap period. The result is shown on Fig. 6.10 with a time resolution
of 10 ns. As for the experiment of chapter 2, the response function of the line
does not correspond to a simple first order filter: it is very fast at the beginning
but shows a slower increase in the last few per cent. This effect can be easily
corrected by applying a pulse with a properly calculated overshoot, as done in
section 2.3.
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Figure 6.10: In-situ measured response function of a flux line. Relative error on
the qubit frequency as a function of time, after having applied to the flux line
a 0.096 V step to shift the qubit frequency from 5.4 GHz to 3.825 GHz (1 ns
rise-time on the AWG). The dashed line indicates the targetted duration for
two-qubit iSWAP gates. (inset) relative amplitude of the frequency change.

Another important property is the crosstalk between two flux lines at low
and high frequency. On the high frequency side, this crosstalk was not mea-
sured but is expected to be negligible with our design. Indeed, dedicated return
current lines separated from other ground electrodes, force the current pulses
to adopt the CPW quadrupolar geometry, which localize the induced fields.
The situation is not as simple at low frequency, although one could think that
because the qubit j is more than 200 time farther from a flux line i = j than
qubit i and because the field decays as the inverse of the distance to square, the
direct crosstalk is negligible. Indeed, the field induced by flux line i is expelled
from the neighboring superconducting electrodes by Meissner effect; which in-
duces screening currents that can flow all over the sample and can generate
local fields on qubit j. The low frequency crosstalk has thus to been measured
at DC. This measurement is performed by placing qubit 4 at 7 GHz, where
the frequency sensitivity to its flux line voltage is ∂fge

4 /∂V4 ≈ 11 GHz/V, and
in varying the voltage of flux line 2. One finds a slope ∂fge

4 /∂V2 ≈ 90 MHz/V
that indicate a crosstalk of 0.8% between cells 2 and 4 at DC frequency. This
crosstalk is smaller than previously achieved in similar designs without dedi-
cated return lines (∼ 30 % [79] for instance). It has nevertheless to be corrected
when operating a processor, by applying the correction matrix mentioned in
Sec. 3.2.1.

6.3 Bus characterization and coupling to the qubits

As the bus is not directly coupled to the readout resonators, it is à priori
invisible without using one of the qubit as a spectrometer. However, it was
detected at fbus = 3.825 GHz in a high-power 2-tone spectroscopy with a first
spectroscopic pulse at a variable frequency and a power ∼ 40 times higher
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than for driving a qubit, and a second pulse to read out a JBA (see Fig. 6.11).
Because this high power effect is not understood, a more controlled way to
characterize the bus is to use a qubit and measure directly its coupling to the
bus.
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Figure 6.11: Spectroscopic line of the bus resonator observed at high excitation
power on the switching probability of JBA 2.

The coupling Hamiltonian detailed in Sec. 3.3 reads

H1
c =

(

Δi gi

gi Δi

)

{|ei0〉,|gi1〉}
(6.1)

with Δi = ωR − ωge
i the qubit-bus detuning, when restricted to a single qubit

and a single excitation in the system. Equation 6.1 leads to vacuum Rabi
oscillations observed as a chevron pattern when measured as a function of Δi.

Experimentally, the qubit is prepared in its excited state, is then frequency
tuned across the bus frequency for a variable duration ts, and is finally tuned to
its readout frequency for measurement, as shown in the top panel of Fig. 6.12.
The readout outcome is corrected for finite readout fidelity and shown in the
bottom panel. The chevron pattern observed shows a small asymmetry and a
drift at short time. This effect is due to the uncorrected finite rise time of the
flux pulse described in Sec. 6.10 above. The data at times larger than 75 ns
are fitted to determine the qubit-bus coupling constant g2/2π = 90 MHz. The

predicted chevron minima, solution of
(

Δ2
i + g2

i

)

t2
s = (2Nπ)

2
, are displayed

on top of the data, without taking into account the frequency drift.
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Figure 6.12: Swap between qubit 2 and bus. (top-left) qubit spectroscopic line
versus current applied to the flux line. (top-right) Pulse sequence used as a
function of time. The flux pulses have been converted in frequency units to
share the same vertical scale as the left panel. Microwave pulses envelopes
are represented on the same graph by dashed lines placed at the proper time,
but with a height representing their microwave amplitude (unrelated to the
frequency axis). (bottom) Qubit 2 excitation probability as a function of the
flux line 2 voltage and of the swap duration. The dashed black line represent
the location of the expected probability minima for the ideal frequency step on
the qubit (see text).

The same experiment performed on qubit 4 (see Fig. 6.13) gives a similar
chevron pattern and a coupling constant g4/2π = 101 ± 3 MHz.
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Figure 6.13: Qubit-bus swap experiment performed with qubit 4 and flux
line 4.

These measured coupling are about twice as high as the designed values
which is not understood but can only facilitate the test of the two-qubit gates.

Bus resonator quality factor

For determining the bus resonator quality factor, we measure the decay time of
a single photon in the resonator. The protocol is sketched on Fig. 6.14.a: qubit
2 is prepared in its excited state, prior to a swap with the bus at frequency f bus.
The swapping time was chosen such that the qubit excitation is transferred to
the bus with a high probability > 95%. After this excitation swap, a waiting
time Δt is applied prior to a second swap that transfers the remaining excitation
back to the qubit. The excitation probability of qubit 2 shown on Fig. 6.14.b
as a function of the waiting time Δt decays exponentially with a time constant
τ = 2.2 μs, which corresponds to a quality factor Qtot = 2πτf bus ≈ 50, 000
for the bus. The excitation lifetime of the bus resonator is thus comparable to
those of the qubits.
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Figure 6.14: Measured decay time of the bus resonator, using qubit 2. (top)
Qubit spectroscopy and pulse sequence used (see text). (b) Final switching
probability of the JBA 2 reflecting the final remaining bus population.

Impact of higher harmonics of the bus resonator

A point ignored in the design, that could complicate the processor operation, is
the impact of higher harmonic modes of the bus resonator. The frequency of the
second harmonic around 8 GHz is indeed not far from the parking frequencies
of the qubits (6 − 7.5 GHz, see Fig. 3.9).

Now, the coupling between the qubit and a bus resonator mode is propor-
tional to the amplitude of the electric field for this modes at the position of
the qubit. Given that the qubits are placed close to the electric nodes of the
second harmonic (see Fig. 6.15), the estimated coupling to this harmonic is
only g/2π < 30 MHz. Nevertheless it is not negligible and it would be useful
and easy to reduce it even more by moving them slightly in the design.
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Figure 6.15: (top) Reduced electric field versus position, for the first three
modes of the bus resonator. (bottom) Coupling constant between the qubit
and these mode as a function of the qubit position.

6.4 Qubit-qubit bus mediated interaction

The exchange interaction g/2π ≈ 90−100 MHz found between the bus-resonator
and the qubits is expected to mediate a sizable qubit-qubit interaction. We
remind here the Hamiltonian of the 2 qubits coupled to the bus (Eq. (3.3)):

H24/� = ωbusa†a + ωge
2 σ2

Z + ωge
4 σ4

Z + g2(σ+
2 a + σ−

2 a†) + g4(σ+
4 a + σ−

4 a†). (6.2)

Tracing out the bus degrees of freedom in the dispersive regime
∣

∣

∣
ωge

2(4) − ωbus
∣

∣

∣
≫

g2(4) yields the effective two-qubit Hamiltonian (Eq. (3.4))

H/� = ωge
2 σ2

Z + ωge
4 σ4

Z + J24σX
2 σX

4 (6.3)

with J24 = g2g4

(

1
∆2

+ 1
∆4

)

the effective qubit-qubit coupling constant.

Since simultaneous readout of two qubits is impossible with this sample due
to its too low readout efficiency, we characterize the swapping by measuring
only qubit 4 at the end of a variable coupling time of qubits 2 and 4. As
already mentioned, a proper calibration of readout errors makes possible to get
the absolute population of the excited state of qubit 4.

6.4.1 Resonance condition for qubit-qubit swapping

One first needs to determine the flux line currents that places the 2 qubits
on resonance, i.e. fge

2 = fge
4 . To do so, after having prepared qubit 2 in its
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excited state, we vary the two flux line currents simultaneously for a given
arbitrary amount of time, and then displace qubit 4 for readout (see top panel
of Fig. 6.16). The excited state population p (|e4〉) of qubit 4 increases as
shown in the bottom panel when the 2 qubits are on resonance and can share
the same excitation. The resonance condition line is marked with a dashed
black line. One also notices that the probability p (|e4〉) increases when the
qubit 4 is resonant with the bus and gets a spurious excitation from it.
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Figure 6.16: Swap between qubit 2 and qubit 4. (top-left) spectroscopic lines of
qubit 2 and 4 versus current applied to their own flux lines. (top-right) Pulse
sequence used as a function of time (see text). Microwave pulses envelopes
are represented on the same graph by dashed lines placed at the proper time,
but with a height representing their microwave amplitude (unrelated to the
frequency axis). (bottom) Qubit 4 excitation probability as a function of the
voltage on flux line 2 and 4, for a short swap duration ts = 40 ns. The oblique
dashed black line indicates where the two qubits are on resonance, whereas the
horizontal one indicates where qubit 4 is resonant with the bus.

6.4.2 Swapping coupling strength

As mentioned above, the qubit-qubit effective coupling J24 = 2g2g4

∆ is inversely
proportional to the common detuning Δ between the resonant qubits and the
bus. Given the short coherence times T2 of the qubits, it is advantageous to
use a large coupling (small detuning) to reduce the gate time and increase
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its fidelity. On another hand, as discussed in Section 3.3.3, the smaller the
detuning, the larger the residual population of the bus and the higher the
precision needed for the gate time.

In order to find the largest coupling that does not leave a too large exci-
tation in the bus, we measure and simulate the swap experiment for the two
qubits on resonance ( fge

2 = fge
4 ) at different detunings Δ with the bus. To

do so, we vary the swap duration ts (along the oblique line of Fig. 6.16), as
shown in the top panel of Fig. 6.17. The resulting excitation probability of
qubit 4 is shown in the bottom panel Fig. 6.17, together with the results of
a simulation by integration of the master equation of the system, described
below in Section 6.4.4. Experimental data and simulation agree qualitatively,
despite the much lower resolution used in the experiment. Note also that the
theoretical time axis has been slightly shifted upward to compensate for a 14 ns
delay between the current pulses in the two flux lines. The simulation shows
a Moiré pattern around the symmetry axis at 3.825 GHz, between two sets of
chevrons. Those pointing upwards correspond actually to the fast oscillation
of the bus population discussed in section 3.3.3. To limit this unwanted popu-
lation, we choose a detuning Δ = −0.462 GHz (see magenta line on Fig. 6.17),
where the Moiré becomes barely visible. This correspond to J24/2π ≈ 30 MHz,
much larger than the Jij/2π ≈ 12.5 MHz value targeted in Section 3.3.
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Figure 6.17: Qubit-qubit swap at different common qubits-bus detunings Δ.
(top-left) spectroscopic lines of qubit 2 and 4 versus current applied to their
own flux line. (top-right) Pulse sequence used as a function of time (see
text). (bottom-left) Measured qubit 4 excitation probability as a function
of the SWAP duration and of flux lines 2 voltage (the voltage of flux line 4 is
calculated to maintain the resonance condition) (bottom-right) Simulation by
integration of the master equation of the system with T1 = 2.7 μs, the same
effective T2 = 170 ns for the two qubits, and τ = 2.2 μs (see Section. 6.4.4).
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6.4.3 Bus mediated swap

The swap protocol used is sketched in the top panel of Fig. 6.18: the qubit 2
is first prepared in its excited state and placed during a variable time ts at the
frequency fge

2 = 4.29 GHz chosen above. During that time, qubit 4 is placed
at a variable frequency around fge

2 . Qubit 4 is finally moved at its readout
frequency and measured. Its resulting excitation probability is shown in the
central panel of Fig. 6.18 as a function of ts and fge

4 . A simulation of the very
same protocol is shown on the right. It is performed using the values of the
measured T1 and τ times, and with an effective T2 = 170 ns time common to
the two qubit and adjusted to fit the data (see section. 6.4.4).

The time dependence of p (|e2〉) and p (|e4〉) at the chosen frequency fge
4

(see magenta line of the central panel of Fig. 6.18) is shown in the bottom
panel of the figure. The agreement between data and simulation is correct.
One observes fast oscillations of the bus population at the bus-qubit detuning
frequency, with a maximum amplitude of 10%. This residual amplitude would
be too high to implement a high fidelity gate and is the result of the small
detunings chosen because of the too short decoherence times.

The maximum excited state population p (|e4〉) is about ∼ 90%, which
gives the modulus of the matrix element 〈e2g4|UiSW AP |g2e4〉 responsible for the
SWAP. This indicates that the corresponding gate fidelity could reach this value
when complemented by a σZ phase gate for correcting the phase accumulated
during the swap. This limited fidelity is due to (i) dephasing for ∼9 %, (ii)
relaxation for 1 % and (iii) residual population in the bus for < 1 %. With the
present coupling and relaxation and effective dephasing times of 20 μs and 5 μs
respectively, the gate fidelity could reach 98 % with a detuning Δ = −1.4 GHz
and a gate swap time of 40 ns.
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Figure 6.18: Swap between qubit 2 and 4 at fixed qubit 2 frequency (Δ2 =
−0.462 GHz). (top-left) Spectroscopic lines of qubit 2 and 4 versus current
applied to their own flux lines. (top-right) Pulse sequence used as a function of
time (see text). (middle-left panel) Measured qubit 4 excitation probability as
a function of the SWAP duration and flux lines 4 voltage (middle-right panel).
Simulation by integration of the master equation of the system with the same
parameters as in Fig. 6.16. Solid and dashed lines indicates the minima and
maxima of p (|e4〉), respectively. (bottom) Measured (dots) qubit 4 population
along the magenta line of middle panel. Solid lines are simulated population
of qubit 2, qubit 4, and of the bus.
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6.4.4 Simulation of the swap experiments

The simulated data shown in this chapter are obtained by integrating the mas-
ter equation

∂ρ

∂t
= − i

�
[H, ρ] +

∑

i

Di (ρ) (6.4)

H/� = ωbusa†a + ωge
2 σ2

Z + ωge
4 σ4

Z (6.5)

+g2(σ+
2 a + σ−

2 a†) + g4(σ+
4 a + σ−

4 a†)

Di (ρ) = LiρL†
i − 1

2
L†

i Liρ − 1

2
ρL†

i Li (6.6)

with ρ the density matrix of system expressed in the tensorial basis {|g2〉 , |e2〉}⊗
{|g4〉 , |e4〉} ⊗ {|0〉 , |1〉 , ..., |5〉} truncated at 5 photons, H the Hamiltonian of
the system, and Di (ρ) the decoherence super-operators. In equation 6.4, the
sum is taken over all the pure dephasing and relaxation phenomena of the two
qubits and the bus:

qubit jdephasing: Lφ
j =

√

Γφ
j /2σZ

j (6.7)

qubit jrelaxation: Lr
j =

√

Γr
jσ−

j (6.8)

bus relaxation: Lr
bus =

√

Γr
busa (6.9)

This integration was performed with the open-source Python Quantum Tool-
box named QuTiP [80] well suited for simulating the dynamics of open quantum
systems. The simulator outputs the population Tr (σz

4ρ) of qubit 4 to be com-
pared with the experimentally measured data points, as well as the excitation
population Tr (σz

2ρ) of qubit 2 and of the bus Tr
(

a†aρ
)

that were not measured.
The bus frequency f bus = 3.825 GHz and the coupling constants g2(4)/2π =

90 (100) MHz entering in the simulation are the one independently measured.
The data are fitted with relaxation times T1 = 2.7 μs for the two qubit and
a decay time τ = 2.2 μs previously measured for the bus resonator. Because
the individually measured dephasing times of each qubits are not relevant any
longer when the two qubit are resonantly coupled, and because the exact the-
oretical description of pure dephasing is missing in this case, we phenomeno-
logically model dephasing by a common dephasing time acting independently
on both qubits and left as a free fitting parameter. The fit yield T2 = 170 ns.

6.5 Conclusion

In conclusion, several problems have been encountered on this first measured
prototype that prevented to use it as a real processor. In particular, a miss-
ing JBA and other JBAs being lossy, most likely due to fabrication problem,
prevented us from reproducing the good multiplexed readout results of the
previous chapter. However, it was possible to demonstrated SWAP operations
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between two qubits, with a fidelity clearly limited by much too short coherence
times. For progressing, one has to work on the fabrication process, in particular
for improving the contact between the aluminum electrodes of the Josephson
junctions on the niobium layer, and for optimizing the parameters of the the
airbridge fabrication process in order to avoid any highly cross-linked resist
layer underneath the bridges.

These preliminary tests make us think that our architecture based on mul-
tiplexed JBA readout and on the non-resonant coupling of transmons to a high
Q bus resonator for gate operation is a viable concept, if and only if qubits
with reproducible coherence times larger than 20 μs can be obtained.
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Chapter 7

Conclusion and perspectives

7.1 Operating the 4-qubit processor

In this thesis work, we have designed, implemented and tested a prototype
version of a simple electrical 4-qubit processor. Although its imperfections
have prevented us from using it as a real processor, we were able to validate its
functional blocks and the overall design. We describe here the solutions that we
envision for solving the technical issues we have encountered, and in a broader
perspective, the scalability potential of superconducting quantum processors.

Solving technical issues

In our rather complex circuits, we have obtained qubits with coherence times
systematically shorter than calculated from the relaxation and dephasing one
could attribute to the electromagnetic circuit in which they are embedded.
These problems were even more acute in the full processor where the qubits
and the JBA resonators showed quite bad performances.

Since some transmons fabricated on sapphire using the same deposition
machines and measured in 3D cavities have yielded much longer coherence
times, we cannot attribute the source of our problems to the superconducting
thin films deposited, but rather to defects induced during the whole fabrica-
tion process. Further tests are clearly necessary for clarifying this issue. The
Josephson junctions of the JBA readouts and the qubits are fabricated in two
rounds, the second potentially detrimental to the first set of junctions. If this
is indeed a problem, fabricating all the junctions in a single round would solve
it.

Nevertheless, fabricating the airbridges requires a baking at high tempera-
ture (140°C). Because of the fragility of these bridges, they have to be made at
the very end, possibly degrading the junctions. An alternative solution would
be to fabricate bridges prior to the junctions with a dielectric material beneath
the bridge, thus replacing the “air”. We have obtained the optical masks needed
for modifying our fabrication process, but had not the time for developing it.
Different dielectric materials could be used, such as silicon nitride (Si3N4),
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aluminum oxide (Al2O3), or low loss plastic used in microwave electronics as
BCB (benzo-cyclo butene). We have performed some preliminary tests using
the Cyclotene BCB photoresist that allows us to obtain thick layers of ∼ 5 μm
more easily than when using Si3N4 or Al2O3 that can be deposited at a rate
of ∼ 0.1 nm/s. Once cured, this material is expected to have relatively small
dielectric losses (tan δ ∼ 0.0008). Such non-suspended strong bridges would al-
low us to fabricate the Josephson junctions afterwards, preventing them from
re-baking.

Our circuits in which aluminum films are contacted on niobium films are also
prone to interface problems even when 500 eV ion cleaning of niobium is done
prior to aluminum deposition. Replacing niobium by another superconductor
less prone to surface oxidation such as NbTiN has been recently successfully
demonstrated [81].

In addition to that, our experiments probably suffer from imperfect filtering
of the flux and microwaves lines [82].

Operating our 4-qubit processor

Assuming solving all technical issues leads to better transmon qubits and to the
high fidelity JBA readout obtained on simpler samples, could one really use this
4-qubit circuit as a universal quantum processor? We have demonstrated that
the coupling bus induces an effective swapping evolution between two qubits
on resonance slightly above the bus frequency, but we have not determined the
fidelity of the two-qubit gate one can obtain this way. Would this fidelity be as
good as estimated in Chapter 3, this processor could run some simple quantum
algorithms such as the Grover search algorithm on 16 items, and protocols such
as the teleportation protocol.

7.2 Scalability issues faced by superconducting
processors

7.2.1 The readout scalability issue

One important aim of this thesis work was to propose a more scalable solution
than previously achieved for making a superconducting processor. In this re-
spect, we have clearly demonstrated multiplexed readout on four transmons,
which is the state of the art. Indeed, although a nine transmon circuit was
recently operated in [64], simultaneous multiplexed single-shot readout reach-
ing a high fidelity has not been achieved on more than four transmons using
linear dispersive readout. This method is limited by the small saturation power
(∼ −105 dBm) of presently available Josephson parametric amplifiers [78]. The
scalability of linear dispersive readout is presently estimated at about ten qubits
but the recent operation of the so-called Travelling Wave parametric Amplifier
(TWPA) [67, 83] may lead to a large increase.

On the side of our architecture based on multiplexed JBA readout and on
a coupling bus, the scalability would be limited by the interaction between
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non-linear resonators too close in frequency, and by the technical difficulty
to produce and to analyze readout signals spanning a too large bandwidth.
Keeping the same frequency staging of 60 MHz for preventing crosstalk would
allow us to scale up to 10-15 qubits without changing our microwave setup.
However, coupling more than 5-6 of our transmons to the same bus resonator
seems a bit unreasonable because of residual couplings of the qubits at their
parking frequencies. A way to get around this issue could be to use tunable
couplers [84, 85] between each qubit and the coupling bus which mitigates the
frequency crowding problem.

7.2.2 All scalability issues

Our previous analysis of scalability in term of readout is insufficient because one
needs to make a large number of coherent qubits, which implies to implement
at the same time quantum error correction, definitively a formidable challenge.

First the error correcting codes already developed are extremely demanding
in terms of coherence and gate performance for the physical qubits, with a
threshold at about ∼ 10−5 error per gate operation, plus with a huge overhead
in term of physical qubit number [8]. Given this strategy seems presently
irrealistic, other approaches have been recently considered.

A new strategy less demanding in term of gate error fidelity but far more in
term of physical qubit resources is the surface code approach [86, 87]. It consists
in making a 2D array of transmons and resonators coupled as shown in Fig. 7.1
(different designs are possible). The transmons, coupled to two resonators are
used as data qubits and for error detection. In this scheme, one keeps track
of the errors that occur without correcting them on the fly. A preliminary 1D
version of a 9-qubit circuit recently achieved the 1 % error threshold needed in
this approach [64]. The complexity of the surface code 2D design requires a
3D packing of the elements, and poses formidable technical challenges in term
of frequency crowding and residual couplings. The estimated overhead in term
of physical qubit number could be as large as 103.
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Figure 7.1: Surface code architecture with bus resonators. Each qubit Q is
coupled to 2 resonators, and each resonator R to 4 qubits, including 1 logical
qubit for computation and 3 ancillary qubits used for detecting errors. (taken
from [86])

A very different strategy consisting in making intrinsically more robust
qubits based on high quality factor resonators was recently proposed [88]. The
qubits would be Schrödinger cat states encoded in the internal field of res-
onators, with Josephson coupling elements and extra low quality factor driven
resonators for preparing them and controlling their evolution. This strategy
is based on controlling dissipation in order to stabilize the qubit Hilbert sub-
space. Errors consisting only in the emission of single photons are detected
using parity measurements, and one would simply record them. Experiments
have been recently performed along these lines [89].

7.3 Other promising strategies for quantum information
processing

7.3.1 The hybrid route

A completely different approach than making the processor with a large num-
ber of qubit is to combine a few-qubit processor with a RAM-style quantum
memory. This memory would store the whole qubit register, and transfer on
demand, qubits to the processor for performing gate operations, before trans-
ferring them back to the memory.

Hybrid systems that combine the convenient addressability of electrical cir-
cuits and the intrinsically good coherence properties of some microscopic sys-
tems have been proposed, and some results have been obtained in this direction.
In the case of nitrogen-vacancy (NV) spins in diamond, a proof of concept for
a memory based on a spin ensemble was demonstrated in [90]. A full protocol
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for a multimode memory was proposed in [91] and preliminary results obtained
[92].

A nuclear spin based quantum processor?

Nuclear spins with coherence times up to hours are probably among the best
qubits. Since nuclear spins can be coupled to electronic spins by hyperfine
interactions, they can be entangled, which is equivalent to operating an en-
tangling gate on them [93]. Here, superconducting circuits would be used to
transfer quantum information between the electronic spins, and thus between
the nuclear spins.

7.3.2 Semiconductor qubits are back

Quantum bits based on electronic spins or quantum dots in semiconducting
materials have been developed very early, but they have never achieved good
enough quantum coherence for making circuits. Andrea Morello and his team
at UNSW recently made a breakthrough by demonstrating qubits in a spinless
semiconducting material 28Si that achieve extremely long coherence times [94,
95, 96], far longer than those of superconducting qubits.

7.4 Personal viewpoint

Superconducting quantum information processors are certainly not yet around
the corner, but research in this field is worth being pursued in-depth.

First, these circuits and the design flexibility they offer have recently pro-
vided excellent systems for carrying out foundational experiments in quantum
mechanics that only were thought experiments. The direct observation of the
quantum trajectory followed by the quantum state of an artificial atom weakly
continuously measured [97, 98] was made possible thanks to the progress on
superconducting qubit control.

Second, research in this field has already led to the development of inter-
esting devices such as the Josephson parametric amplifier used in the above-
mentioned experiment. These amplifiers that reach the ultimate sensitivity
limit imposed by quantum mechanics have already been used for improving
the sensitivity of electron spin resonance spectroscopy [99]. This demonstrates
the interest of superconducting quantum circuits beyond qubit research.
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Appendix A

Numerical simulation of the
switching dynamics of a JBA

This appendix describes numerical simulations performed to check that the
switching dynamics of the Josephson Bifurcation Amplifiers (JBA) used for
reading out the qubits is understood. Our goal is to produce the JBA switching
curves in the different experiments. Although no complete analytical theory
of the JBA exists, M. Dykman has established a quantum Langevin equation
for the JBA valid for a drive frequency not too close to the critical frequency
Ωc =

√
3 and a drive amplitude close to the switching one. An interesting

result of his work is that the quantum dynamics is equivalent to the classical
one but with an effective temperature T = �ω0/2kB [100, 48], with ω0 the
angular frequency of the JBA resonator. We have performed such classical
simulations of the JBA alone to produce the switching curves. In this approach,
the influence of the qubit in taken into account in a very simple way, through
a change of the JBA parameters (due to the 2χ frequency pull between ground
and excited qubit states). More advanced theoretical investigations have been
performed by A. Blais and his coworkers [101, 102] by treating fully quantum
mechanically the coupled sytem JBA + Transmon, including the drive and the
qubit decoherence. This approach was in particular used to try to reproduce the
shoulder observed in the switching curve for state |e〉 (see Section 5.4), which
reduces the readout fidelity. We establish below in sections A.1 and A.2 the
classical Langevin equation of the JBA. This equation of motion was simulated
with a program written in C and optimized for speed. Section A.3 presents
simulated trajectories and the resulting switching curves obtained from these
simulations.

A.1 Equivalent model of the JBA resonator

The schematic circuit of the JBA resonator connected to its source and load
through the input and output lines is shown on Fig. A.1.a.
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Figure A.1: Equivalent circuits of the JBA resonator connected to input and
output lines. See text.

The resonator consists of its geometrical inductance Lg in series with a
Josephson inductance Lj = I0/ϕ0 , in parallel with an internal capacitance C
and a resistance Ri modeling the losses. This resonator is capacitively coupled
by a capacitance Cc to a transmission line connected to a microwave source
with internal voltage V0 and impedance R0 ≃ 50 Ω and to a load R0.

Using the Norton-Thevenin theorem, one simplifies the system to a single
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port circuit (see Fig. A.1.b) with the resonator driven by a voltage source V0/2
through an impedance

Zd =
R0

2
+

1

jCcω
. (A.1)

Applying once more the Norton-Thevenin theorem, one obtains the circuit
of Fig. A.1.c with a parallel current source.

Assuming a drive frequency ω close to resonance ω0 as well as a large quality
factor leading to Ccω0R0 ≪ 1, Zd can be approximated by the capacitance Cc

in parallel with a resistance Req = 2/(R0C2
c ω2

0), and the current source by
Id = j V0

2 Ccω0 (see Fig. A.1.d).
The angular frequency and characteristic impedance of the resonator are

thus ω0 = 1/
√

LtotCtot and Zc =
√

Ltot/Ctot with Ctot = C + Cc and Ltot =
Lg+Lj ; we denote p = Lj/Ltot the participation ratio of the Josephson junction
to the total inductance.

The quality factor Qtot of this parallel RLC circuit is simply the ratio of its
resistance to the resonator charactic impedance

1

Qtot
=

Zc

Ri
+

Zc

R0

2 (Ccω0)
2 (A.2)

=
Zc

Ri
+

R0/2

Zc

(

Cc

Ctot

)2

(A.3)

=
1

Qi
+

1

Qe
(A.4)

where Qi = Ri/Zc and Qe = Zc

R0/2

(

Ctot

Cc

)2
are the internal and external quality

factors, respectively.
Finally, the model can be expressed using only reduced parameters (Q, Zc,

...) as shown on Fig. A.1.e, with a thermal current noise source included in the
current source and characterized by its spectral density SI (ω).

A.2 Equation of motion of the JBA

The charge q on the capacitor Ctot under a drive I (t) = V0

R0

√

2
QZc

sin (ωdt)

obeys the equation

q̈ +
ω0

Qtot
q̇ + ω2

0q +
pq̇2q̈

2I2
0

=
V0

R0

√

2

QeZc
ωd cos (ωdt) + ˙in, (A.5)

where in is a white noise source with spectral density Sin
(ω) = 4kBT/Req

and temperature T = �ωd/2kB . Writing the charge on the capacitance as
q(t) = Q(t) cos (ωdt + ϕ) with Q(t) a slowly varying envelope, and using the
reduced variable and parameters already mentionned in Section 2.2.3.3 and in
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[103], i.e.
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√

pQtot

2Ω
ωd

I0
Q (t)
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(

V0

ϕωd

)2 (
pQe

2Ω

)3

Ω = 2Qtot
ωd−ω0

ω0

τ = t (ω0 − ωd)

, (A.6)

the equation of motion of the slow charge envelope reads

du

dτ
= − u

Ω
− ju

(

|u|2 − 1
)

− j
√

β + ηx + jηy, (A.7)

where the noise source in is replaced by an in-phase and in-quadrature indepen-
dant gaussian noise sources ηx and ηy with variance 1 and quadratic average

Zce2p3

16�(1−ωd/ω0)2
1

Qtot

2kBT
�ωr

. The reduce charge u is related to the internal number

of photons in the resonator by n = �|Ω|
p3e2ZcQtot

|u|2. Equation A.7 is then step-
wised integrated with a compiled C program using finite differences of the real
and imaginary parts of u.

A.3 Simulations
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Figure A.2: Simulated trajectories of the resonator field α for non-switching
(qubit in |g〉, blue) and switching (qubit in |e〉, red), in the complex plane
(center) and as a function of time (right). The reduced parameters are {Zc =
36 Ω, Qtot = Qe = 2500, f0 = 7.75 GHz} and the driving parameters are
Ωg = −8.08, βg = 0.076 for the qubit in |g〉 and Ωe = −5.8, βe = 0.205 for the
qubit in |e〉, corresponding to the optimal readout used in Section 5.4 (left)

Figure A.2 presents the trajectories corresponding to the optimal readout point
from Section 5.4, for the same absolute driving amplitude of Pinc ≈ −113 dBm,
and the two detunings corresponding to the qubit in its ground and excited
state β = {0.076, 0.205}{|g〉,|e〉}. We see two sets of trajectories ending in (non-
switching) L and (switching) H states; that are fully correlated to the qubit
state because of the large switching curves separation.
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The typical time taken by the sytem to “decide” to switch or not is below 100
ns in this case (note however that for some very rare trajectories (not shown)
this ’decision’ can take up to 300 ns). Given the experimentally observed good
mapping of the qubit state to the switching/non-switching of the JBA, the
100 ns time before switching gives an upper bound for the qubit readout time
by a JBA. As far as the qubit projection is concerned, this readout is thus as
fast as a readout based on a linear resonator followed by a quantum limited
amplifier.

A threshold |αth| shown by the dashed circle of Fig. A.2 is then chosen
to discriminate the switching and non-switching events. The threshold choice
is made to stop the simulation as soon as the switching trajectory crosses it,
which limits the simulation time (10, 000 full trajectories takes approximately
10 seconds on a work station).

To produce a switching curve, we then simulate 10,000 trajectories that we
stop if the threshold is crossed, for many different values of the drive amplitude
in the relevant switching range. To simulate the effect of the dispersive shift
due to the qubit, the drive frequency is simply changed from ωd − χ to ωd + χ.
We obtain the switching curves on Fig. A.3 (left) and convert them to absolute
units of drive amplitude using

Pinc =
β
(

1 − (ωd/ω0)
2
)3

Qe�
2ω2

0

2p3e2Zc
(A.8)

.
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Figure A.3: Simulated switching probabilities for parameters corresponding to
the experiment of Section 5.4 (mentionned in Fig. A.2). The blue (red) curve
correspond to qubit state |g〉 (|e〉). Results are shown in reduced (left) and
absolute (right) drive amplitude units.

The switching curves in reduced unit happens to strongly overlap whereas
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those in absolute units are very well separated. This indicates that the discrim-
ination of the two qubit states is mainly due to the change of Ω ∼ 1−(ωd/ω0)

2
.

Comparison of experimental data with simulations

We show on Fig. A.4 the comparison between the experimentally measured
switching curves with the simulated curves.

Figure A.4: Switching curves for the qubit in its ground (blue) and excited
(red) state; experimental data points (dots), semi-classical simulation (dashed)
and full quantum simulation (solid) including T1 and T2 decoherence times.

First, the curves from the semi-classical simulations agree well with the
experimental data in term of slope and separation. Obviously, it does not
reproduce the slow increase between 0.9 and 1 coming from relaxation, widely
discussed in Chapter 5. The curves coming from the full quantum simulations
from A. Blais et al. approximately agree with the data in term of slope and
separations, but shows a similar but not quantitative shoulder on the switching
curve from the qubit in its excited state.

These agreements indicates that the semi-classical theory with an effec-
tive temperature T = �ω/2kB is correct, and that the complex full quantum
simulation needs to be futher investigated to perfectly describe the switching
curves.
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We report the characterization of a two-qubit processor implemented with two capacitively coupled

tunable superconducting qubits of the transmon type, each qubit having its own nondestructive single-shot

readout. The fixed capacitive coupling yields the
ffiffiffiffiffiffiffiffiffiffiffiffiffi

iSWAP
p

two-qubit gate for a suitable interaction time.

We reconstruct by state tomography the coherent dynamics of the two-bit register as a function of the

interaction time, observe a violation of the Bell inequality by 22 standard deviations after correcting

readout errors, and measure by quantum process tomography a gate fidelity of 90%.

DOI: 10.1103/PhysRevLett.108.057002 PACS numbers: 85.25.Cp, 03.67.Lx, 74.78.Na

Quantum-information processing is one of the most

appealing ideas for exploiting the resources of quantum

physics and performing tasks beyond the reach of classical

machines [1]. Ideally, a quantum processor consists of an

ensemble of highly coherent two-level systems, the qubits,

that can be efficiently reset, that can follow any unitary

evolution needed by an algorithm using a universal set of

single- and two-qubit gates, and that can be readout pro-

jectively. In the domain of electrical quantum circuits [2],

important progress [3–7] has been achieved recently with

the operation of elementary quantum processors based on

different superconducting qubits. Those based on transmon

qubits [3,4,8,9] are well protected against decoherence but

embed all the qubits in a single resonator used both for

coupling them and for joint readout. Consequently, indi-

vidual readout of the qubits is not possible and the results

of a calculation, as the Grover search algorithm demon-

strated on two qubits [3], cannot be obtained by running the

algorithm only once. Furthermore, the overhead for getting

a result from such a processor without single-shot readout

but with a larger number of qubits overcomes the speed-up

gain expected for any useful algorithm. The situation is

different for processors based on phase qubits [5,6,10],

where the qubits are more sensitive to decoherence but

can be read individually with high fidelity, although de-

structively. This significant departure from the wished

scheme can be circumvented, when needed, since a de-

structive readout can be transformed into a nondestructive

one at the cost of adding one ancilla qubit and one extra

two-qubit gate for each qubit to be read projectively.

Moreover, energy release during a destructive readout

can result in a sizable cross talk between the readout out-

comes, which can also be solved at the expense of a more

complex architecture [10,11].

In this work, we operate a new architecture that comes

closer to the ideal quantum processor design than the

above-mentioned ones. Our circuit is based on frequency

tunable transmons that are capacitively coupled. Although

the coupling is fixed, the interaction is effective only when

the qubits are on resonance, which yields the
ffiffiffiffiffiffiffiffiffiffiffiffiffi

iSWAP
p

universal gate for an adequate coupling duration. Each

qubit is equipped with its own nondestructive single-shot

readout [12,13] and the two qubits can be read with low

cross talk. In order to characterize the circuit operation, we

reconstruct the time evolution of the two-qubit register

density matrix during the resonant and coherent exchange

of a single quantum of excitation between the qubits by

quantum state tomography. Then, we prepare a Bell state

with concurrence 0.85, measure the Clauser-Horne-

Shimony-Holt (CHSH) entanglement witness, and find a

violation of the corresponding Bell inequality by 22 stan-

dard deviations. We then characterize the
ffiffiffiffiffiffiffiffiffiffiffiffiffi

iSWAP
p

univer-

sal gate operation by determining its process map with

quantum process tomography [1]. We find a gate fidelity

of 90% due to qubit decoherence and systematic unitary

errors.

The circuit implemented is schematized in Fig. 1(a): the

coupled qubits with their respective control and readout

subcircuits are fabricated on a Si chip [see Supplemental

Material (SM), Sec. I [14]]. The chip is cooled down to

20 mK in a dilution refrigerator and connected to room-

temperature sources and measurement devices by attenu-

ated and filtered control lines and by twomeasurement lines

equipped with cryogenic amplifiers. Each transmon j ¼
I; II is a capacitively shunted SQUID characterized by its

Coulomb energy Ej
C for a Cooper pair, the asymmetry dj

between its two Josephson junctions, and its total effective

Josephson energy Ej
Jð�jÞ ¼ Ej

Jj cosðxjÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ d2j tan
2ðxjÞ

q

,

with xj ¼ ��j=�0, �0 the flux quantum, and �j the mag-

netic flux through the SQUIDs induced by two local current

lines with a 0.5 GHz bandwidth. The transition frequencies

�j ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2E
j
CE

j
J

q

=h between the two lowest energy states j0ij
and j1ij can thus be tuned by�j. The qubits are coupled by

a capacitor with nominal value Cc ’ 0:13 fF and form a

register with the Hamiltonian (see Sec. II of the SM [14])
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H ¼ hð��I�
I
z � �II�

II
z þ 2g�I

y�
II
y Þ=2. Here h is the

Planck constant, �x;y;z are the Pauli operators, 2g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EI
CE

II
C�I�II

q

=ECc � �I;II is the coupling frequency, and

ECc the Coulomb energy of a Cooper pair on the coupling

capacitor. The two-qubit gate is defined in the uncoupled

basis fjuvig � fj0iI; j1iIg � fj0iII; j1iIIg, at a working point

MI;II where the qubits are sufficiently detuned (�II � �I �
2g) to be negligibly coupled. Bringing them on resonance at

a frequency � in a time much shorter than 1=2g but much

longer than 1=�, and keeping them on resonance during a

time �t, one implements an operation �I�II

ffiffiffiffiffiffiffiffiffiffiffiffiffi

iSWAP
p ð8g�tÞ,

which is the product of the

ffiffiffiffiffiffiffiffiffiffiffiffiffi

iSWAP
p

¼
1 0 0 0

0 1=
ffiffiffi

2
p

�i=
ffiffiffi

2
p

0

0 �i=
ffiffiffi

2
p

1=
ffiffiffi

2
p

0

0 0 0 1

0

B

B

B

@

1

C

C

C

A

gate to an adjustable power and of two single qubit phase

gates �j ¼ expði�j�j
z=2Þ accounting for the dynamical

phases �j ¼
R

2�ð�� �JÞdt accumulated during the cou-

pling. The exact
ffiffiffiffiffiffiffiffiffiffiffiffiffi

iSWAP
p

gate can thus be obtained

by choosing �t ¼ 1=8g and by applying a compensation

rotation ��1
j to each qubit afterward.

For readout, each qubit is capacitively coupled to its own

�=2 coplanar waveguide resonator with frequency �j
R and

quality factor Qj ’ 700. The frequency �j
R is shifted by

�� depending on the measured qubit state, with � ’
g20=ð�j

R � �jÞ and g0 the qubit-resonator coupling fre-

quency. Each resonator is made nonlinear with a

Josephson junction and is operated as a Josephson bifurca-

tion amplifier, as explained in detail in [13]: ideally, it

switches from a low to a high amplitude oscillating state

when qubit state j1i is measured. Consequently, the homo-

dyne measurement [see Fig. 1(a)] of two microwave pulses

simultaneously applied to and reflected from the two res-

onators yields a two-bit outcome uv that maps with a high

fidelity the state juvi on which the register is projected; the
probabilities puv of the four possible outcomes are deter-

mined by repeating the same experimental sequence a few

104 times. Single qubit rotations uð�Þ by an angle � around

an axis ~u of the XY plane of the Bloch sphere are obtained

by applying Gaussian microwave pulses directly through

the readout resonators, with frequencies �j, phases ’j ¼
ð ~X; ~uÞ, and calibrated areas Aj / �; a sufficiently high

power is used to compensate for the filtering effect of

each resonator, which depends on the detuning �j � �j
R.

Rotations around Z are obtained by changing temporarily

�I;II with dc pulses on the current lines.

The sample is first characterized by spectroscopy [see

Fig. 1(b)], and a fit of the transmon model to the data yields

the sample parameters (see Sec. III of the SM [14]). The

working points where the qubits are manipulated (MI;II),

resonantly coupled (C), and readout (RI;II) are chosen to

yield sufficiently long relaxation times �0:5 	s [15] dur-
ing gates, negligible residual coupling during single qubit

rotations and readout, and best possible fidelities at read-

out. Figure 1(b) shows these points as well as the spectro-

scopic anticrossing of the two qubits at point C, where
2g ¼ 8:3 MHz in agreement with the design value of Cc.

Then, readout errors are characterized at RI;II (see Sec. IV

of the SM [14]): In a first approximation, the errors are

independent for the two readouts and are of about 10% and

20% when reading j0i and j1i, respectively. This limited

FIG. 1 (color). (a) Circuit schematics of the experiment show-

ing the qubits I and II in green, their readout devices in grayed

blue, and the homodyne detection circuits with their digitizer

(ACQ) in blue. (b) Left-hand panel: Spectroscopy of the sample

showing the resonator frequencies �I
R ¼ 6:84 GHz and �II

R ¼
6:70 GHz (horizontal lines), and the measured (disks, triangles)

and fitted (lines) qubit frequencies �I;II as a function of their flux

bias �I;II when the other qubit is far detuned. Right-hand

panel: Spectroscopic anticrossing of the two qubits revealed by

the 2D plot of p01 þ p10 as a function of the probe frequency and

of �I, at �II ¼ 5:124 GHz. (c) Typical pulse sequence including
X or Y rotations, a

ffiffiffiffiffiffiffiffiffiffiffiffiffi

iSWAP
p


 gate, Z rotations, and tomographic

and readout pulses. Microwave pulses aðtÞ for qubit (green)

and for readout (blue) are drawn on top of the �I;IIð�Þ dc pulses
(red lines).
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fidelity results for a large part from energy relaxation of the

qubits at readout. In addition, we observe a small readout

cross talk, i.e., a variation of up to 2% in the probability of

an outcome of readout j depending on the state of the other
qubit. All these effects are calibrated by measuring the four

puv probabilities for each of the four juvi states, which
allows us to calculate a 4	 4 readout matrixR linking the

puv’s to the juvi populations.
Repeating the pulse sequence shown in Fig. 1(c) atMI ¼

5:247 GHz, MII ¼ C ¼ 5:125 GHz, RI ¼ 5:80 GHz,
RII ¼ 5:75 GHz, and applying the readout corrections R,

we observe the coherent exchange of a single excitation

initially stored in qubit I. We show in Fig. 2 the time

evolution of the measured juvi populations, in fair

agreement with a prediction obtained by integration of a

simple time independent Liouville master equation of the

system, involving the independently measured relaxation

times TI
1 ¼ 0:44 	s and TII

1 ¼ 0:52 	s, and two indepen-

dent effective pure dephasing times TI
’ ¼ TII

’ ¼ 2:0 	s as

fitting parameters. Tomographic reconstruction of the

register density matrix � is obtained by measuring the

expectation values of the 15 two-qubit Pauli operators

fPkg ¼ fI; X; Y; ZgI � fI; X; Y; ZgII � fIIg, the Xj and Yj

measurements being obtained using tomographic pulses
~Yj (� 90
) or ~Xj (90


) just before readout. The � matrix

is calculated from the Pauli set by global minimization of

the Hilbert-Schmidt distance between the possibly non-

physical � and all physical (i.e., positive-semidefinite)

�’s. This can be done at regular intervals of the coupling

time to produce a movie of �ð�tÞ (see the Supplemental

Material [14]) showing the swapping of the j10i and j01i
populations at frequency 2g, the corresponding oscillation

of the coherences, as well as the relaxation towards j00i.
Figure 2 shows fhPkig and � only at �t ¼ 0 ns and after a
ffiffiffiffiffiffiffiffiffiffiffiffiffi

iSWAP
p

obtained at�t ¼ 31 nswith��1
j rotations of �I ’

�65
 and �II ’ þ60
. The fidelity F ¼ hc idj�jc idi of �
with the ideal density matrices jc idihc idj is 95% and 91%,

respectively, and is limited by errors on the preparation

pulse, statistical noise, and relaxation.

To quantify in a different way our ability to entangle the

two qubits, we prepare a Bell state j10i þ eic j01i (with
c ¼ �II � �I) using the pulse sequence of Fig. 1(c) with

�t ¼ 31 ns and no ��1
j rotations, and measure the CHSH

FIG. 2 (color). Coherent swapping of a single excitation be-

tween the qubits. (a) Experimental (solid lines) and fitted

(dashed lines) occupation probabilities of the four computational

states j00i . . . j11i as a function of the coupling duration. No Z or

tomographic pulses are applied here. (b),(c) State tomography of

the initial state (left) and of the state produced by the
ffiffiffiffiffiffiffiffiffiffiffiffiffi

iSWAP
p

gate (right). (b) Ideal (empty bars) and experimental (color

filling) expected values of the 15 Pauli operators IX; . . . ; ZZ.
(c) Corresponding ideal (color-filled black circles with black

arrow) and experimental (red circle and arrow) density matrices,

as well as fidelity F and concurrence C. Each complex matrix

element is represented by a circle with an area proportional to its

modulus (diameter equals cell size for unit modulus) and by an

arrow giving its argument. See Sec. VI of the SM [14] for a real

and imaginary part representation of the matrices.

FIG. 3 (color). Test of the CHSH-Bell inequality on a j10i þ
eic j01i state by measuring the qubits along XI or YI and XII

’ or

YII
’ (see top-left inset), respectively. Blue (red) error bars are the

experimental CHSH entanglement witness determined from the

raw (readout-error corrected) measurements as a function of

the angle ’ between the measuring basis, whereas solid line is

a fit using c as the only fitting parameter. Height of error bars is

�1 standard deviation �ðNÞ (see bottom-right inset), with N the

number of sequences per point. Note that averaging beyond N ¼
106 does not improve the violation because of a slow drift of ’.
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entanglement witness hXX’i þ hXY’i þ hYY’i � hYX’i
as a function of the angle ’ between the orthogonal

measurement bases of qubits I and II. Figure 3 compares

the results obtained with and without correcting the

readout errors with what is theoretically expected from

the decoherence parameters indicated previously:

unlike in [11] and because of a readout contrast limited

to 70%–75%, the witness does not exceed the classical

bound of 2 without correcting the readout errors. After

correction, it reaches 2.43, in good agreement with the

theoretical prediction (see also [16]), and exceeds the

classical bound by up to 22 standard deviations when

averaged over 106 sequences.
In a last experiment, we characterize the imperfections of

our
ffiffiffiffiffiffiffiffiffiffiffiffiffi

iSWAP
p

gate by quantum process tomography [1].

We build a completely positive map �out ¼ Eð�inÞ ¼
P

m;n�mnP
0
m�inP

0y
n characterized by a 16	 16 matrix �

expressed here in the modified Pauli operator basis fP0
kg ¼

fI; X; Y0 ¼ iY; Zg�2, for which all matrices are real. For that

purpose, we apply the gate (using pulse sequences similar to

that of Fig. 1(c), with�t ¼ 31 ns and��1
j rotations) to the

16 input states fj0i; j1i; j0i þ j1i; j0i þ ij1ig�2 and charac-

terize both the input and output states by quantum state

tomography. By operating as described previously, we

would obtain apparent input and output density matrices

including errors made in the state tomography itself, which

we do not want to include in the gate map. Instead, we fit the

16 experimental input Pauli sets by a model (see Sec. Vof

the SM [14]) including amplitude and phase errors for theX
and Y preparation and tomographic pulses, in order to

determine which operator set fPe
kg is actually measured.

The input and output matrices �in;out corrected from the

tomographic errors only are calculated by inverting

the linear relation fhPe
ki ¼ Trð�Pe

kÞg and by applying it to

the experimental Pauli sets. We then calculate from the

f�in;outg set an Hermitian � matrix that is not necessarily

physical due to statistical errors, and which we render

physical by taking the nearest Hermitian positive matrix.

This final � matrix is shown and compared to the ideal

matrix �id in Fig. 4, which yields a gate fidelity Fg ¼
Trð��idÞ ¼ 0:9 [17] for a single run of the gate. To better

understand the imperfections, we also show the map ~� of

the actual process preceded by the inverse ideal process

[18]. The first diagonal element of ~� is equal to Fg by

construction. Then, main visible errors arise from unitary

operations and reduce fidelity by 1%–2% (a fit yields a too

long coupling time inducing a 95
 swap instead of 90
 and

�I;II rotations too small by 3.5
 and 7
, respectively). On the
other hand the known relaxation and dephasing times re-

duce fidelity by 8% but is barely visible in ~� due to a spread

over many matrix elements with modulus of the order of or

below the 1%–2% noise level.

In conclusion, we have demonstrated a high fidelity
ffiffiffiffiffiffiffiffiffiffiffiffiffi

iSWAP
p

gate in a two Josephson qubit circuit with individ-

ual nondestructive single-shot readouts, observed a

violation of the CHSH-Bell inequality, and followed the

register’s dynamics by tomography. Although quantum

coherence and readout fidelity are still limited in this circuit,

they are sufficient to test in the near future simple quantum

algorithms and get their result in a single run, which would

demonstrate the concept of quantum speed-up.

FIG. 4 (color). Map of the implemented
ffiffiffiffiffiffiffiffiffiffiffiffiffi

iSWAP
p

gate yielding

a fidelity Fg ¼ 90%. Superposition of the ideal (empty thick

bars) and experimental (color-filled bars) upper part of the

Hermitian process matrix � (a) and lower part of the

Hermitian error matrix ~� (b), in the two-qubit Pauli operators

basis fII; . . . ; ZZg. Expected elements are marked with a star,

and elements below 1% are not shown. Each complex matrix

element is represented by a bar with height proportional to its

modulus and by an arrow at the top of the bar (as well as a filling

color for the experiment—see top inset) giving its argument. See

also Sec. VI of the SM [14] for a real and imaginary part

representation of these matrices and for additional information.

Labeled arrows indicate the main visible contributions to errors,

i.e., a too long swapping time (S), too small rotations �I;II (Z),
and relaxation (T1)—see text.
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I. SAMPLE PREPARATION AND EXPERIMENTAL SETUP

• Sample fabrication: the sample is fabricated on a silicon chip oxidized over 50 nm. A 150 nm thick niobium layer
is first deposited by magnetron sputtering and then dry-etched in a SF6 plasma to pattern the readout resonators,
the current lines for frequency tuning, and their ports. Finally, the transmon qubit, the coupling capacitance
and the Josephson junctions of the resonators are fabricated by double-angle evaporation of aluminum through
a shadow mask patterned by e-beam lithography. The first layer of aluminum is oxidized in a Ar−O2 mixture
to form the oxide barrier of the junctions. The chip is glued with wax on a printed circuit board (PCB) and wire
bonded to it. The PCB is then screwed in a copper box anchored to the cold plate of a dilution refrigerator.

• Qubit microwave pulses: The qubit drive pulses are generated by two phase-locked microwave generators whose
continuous wave outputs are fed to a pair of I/Q-mixers. The two IF inputs of each of these mixers are provided
by a 4-Channel 1GS/s arbitrary waveform generator (AWG Tektronix AWG5014). Single-sideband mixing in
the frequency range of 50− 300MHz is used to generate multi-tone drive pulses and to obtain a high ON/OFF
ratio (> 50 dB) of the signal at the output of the mixers. Phase and amplitude errors of the mixers are corrected
by measuring the signals at the output and applying sideband and carrier frequency dependent corrections in
amplitude and offset to the IF input channels.

• Flux Pulses: The flux control pulses are generated by a second AWG and sent to the chip through a transmission
line, equipped with 40 dB of attenuation distributed over different temperature stages and a pair of 1GHz
absorptive low-pass filters at 4K. The input signal of each flux line is fed back to room temperature through
an identical transmission line and is then measured to compensate the non-ideal frequency response of the line.

• Readout Pulses: The pulses for the Josephson bifurcation amplifier (JBA) readouts are generated by mixing
the continuous signals of a pair of microwave generators with IF pulses provided by a 1GS/s arbitrary function
generator. Each readout pulse consists of a measurement part with a rise time of 30 ns and a hold time of 100 ns,
followed by a 2μs long latching part at 90 % of the pulse height.

• Drive and Measurement Lines: The drive and readout microwave signals of each qubit are combined and sent to
the sample through a pair of transmission lines that are attenuated by 70 dB over different temperature stages
and filtered at 4K and 300mK. A microwave circulator at 20mK separates the input signals going to the chip
from the reflected signals coming from the chip. The latter are amplified by 36 dB at 4K by two cryogenic
HEMT amplifiers (CIT Cryo 1) with noise temperature 5K. The reflected readout pulses get further amplified
at room temperature and are then demodulated with the continuous signals of the readout microwave sources.
The IQ quadratures of the demodulated signals are sampled at 1GS/s by a 4-channel Data Acquisition system
(Acqiris DC282).

II. TWO-QUBIT HAMILTONIAN

The Hamiltonian of a Cooper pair box j [s2, s1] with total Coulomb energy Ej
C (for a Cooper pair), with total

Josephson energy Ej
J(φj), with island charge Nj (in Cooper pair units) and conjugated phase variable δj, biased

by a gate charge Ng,j, is Hj = Ej
C

(
N̂j −Ng,j

)2

− Ej
J(φj)cos

[
δ̂j − δj,0(φj)

]
with tan (δj,0) = djtan (πφj/φ0). In the

limit Ej
J ≫ Ej

C [8] that corresponds to the transmon qubit and when restricting the Hilbert space to the two lowest

eigenstates {|0〉j , |1〉j}, the Ng,j parameters become irrelevant, and one has 〈0| N̂j |0〉 ≃ 〈1| N̂j |1〉 ≃ 0, 〈1| N̂j |0〉 =

2−3/4i
(
Ej

J/E
j
C

)
1/4, and Hj = −hνjσ

j
z/2 with νj ≃

√
2Ej

CE
j
J(φj)/h. When coupling two such transmon qubits by



2

a capacitance Cc much smaller than each total island capacitance, the total Hamiltonian is H = H1 + H2 + Hint

with Hint = 2EI
CE

II
C/ECcN̂1N̂2 and ECc the Coulomb energy of a Cooper pair on the coupling capacitor. Using the

matrix elements above leads to Hint = hgσI
yσ

II
y with g =

√
EI

CE
II
CνIνII/(2ECc). This symmetric and purely transverse

coupling term σI
yσ

II
y (exchange term) is not surprising since each charge on a transmon island varying at the frequency

of the other qubit plays the role of a resonant gate drive for this second qubit, and makes it rotate around an equatorial
axis of its Bloch sphere. The precise YY nature (rather than XX for instance) is on the other hand meaningless and
is a matter of initial convention for the global phases of the |0〉 and |1〉 states.

III. SAMPLE PARAMETERS

The sample is first characterized by spectroscopy (see Fig. 1.b of main text). The incident power used is high enough
to observe the resonator frequency νR, the qubit line ν01, and the two-photon transition at frequency ν02/2 between
the ground and second excited states of each transmon (data not shown). A fit of the transmon model to the data
yields the sample parameters EI

J/h = 36.2GHz, EI
C/h = 0.98GHz, dI = 0.2, EII

J /h = 43.1GHz, EII
C/h = 0.87GHz,

dII = 0.35, νIR = 6.84GHz, and νIIR = 6.70GHz. The qubit-readout anti crossing at ν = νR yields the qubit-readout
couplings gI0 ≃ gII0 ≃ 50MHz. Independent measurements of the resonator dynamics (data not shown) yield quality
factors QI = QII = 730 and Kerr non linearities [s3],[13] KI/ν

I
R ≃ KII/ν

II
R ≃ −2.3± 0.5× 10−5.

IV. READOUT CHARACTERIZATION

Errors in our readout scheme are discussed in detail in [13] for a single qubit. First, incorrect mapping |0〉 → 1 or
|1〉 → 0 of the projected state of the qubit to the dynamical state of the resonator can occur, due to the stochastic
nature of the switching between the two dynamical states. As shown in Fig. IV.1, the probability p to obtain the
outcome 1 varies continuously from 0 to 1 over a certain range of drive power Pd applied to the readout. When the
shift in power between the two p|0〉,|1〉(Pd) curves is not much larger than this range, the two curves overlap and errors
are significant even at the optimal drive power where the difference in p is maximum. Second, even in the case of
non overlapping p|0〉,|1〉(Pd) curves, the qubit initially projected in state|1〉 can relax down to |0〉 before the end of
the measurement, yielding an outcome 0 instead of 1. The probability of these two types of errors vary in opposite
directions as a function of the frequency detuning ∆ = νR − ν > 0 between the resonator and the qubit, so that a
compromise has to be found for ∆. Besides, the contrast c = Max

(
p|1〉 − p|0〉

)
can be increased [13] by shelving state

|1〉 into state |2〉 with a microwave π pulse at frequency ν12 just before the readout resonator pulse. The smallest

errors eI,II0 and eI,II1 when reading |0〉 and |1〉 are found for ∆I = 440MHz and ∆II = 575MHz and are shown by
arrows in the top panels of Fig. IV.1: eI0 = 5% and eI1 = 13% (contrast cI = 1 − eI0 − eI1 = 82%), and eII0 = 5.5%
and eII1 = 12% (cII = 82%). When using the |1〉 → |2〉 shelving before readout, eI0 = 2.5% and eI2 = 9.5% (contrast
cI = 1− eI0 − eI2 = 88%), and eII0 = 3% and eII2 = 8% (cII = 89%). These best results are very close to those obtained
in [12], but are unfortunately not relevant to this work.

Indeed, when the two qubits are measured simultaneously, one has also to take into account a possible readout
crosstalk, i.e. an influence of the projected state of each qubit on the outcome of the readout of the other qubit.
We do observe such an effect and have to minimize it by increasing ∆I,II up to ∼ 1GHz (where the dispersive shift
χ ≃ 2.5MHz is still large enough), and by not using the shelving technique. An immediate consequence shown in
Fig. IV.1(b) is a reduction of the cI,II contrasts. The errors when reading |0〉 and |1〉 are now eI0 = 19% and eI1 = 7%
(contrast cI = 74%) and eII0 = 19% and eII1 = 12% (contrast cII = 69%). Then to characterize the errors due to
crosstalk, we measure the 4× 4 readout matrix R linking the probabilities puv of the four possible uv outcomes to the
population of the four |uv〉 states. As shown in Fig. IV.1(c-d), we then rewrite R = CCT. (CI ⊗ CII) as the product of
a 4× 4 pure crosstalk matrix CCT with the tensorial product of the two 2× 2 single qubit readout matrices

CI,II =

(
1− eI,II0 eI,II1

eI,II0 1− eI,II1

)
.

In the worst case, the readout crosstalk is 2.1%. We also illustrate on the figure the impact of the readout errors on
our swapping experiment by comparing the bare readout outcomes uv, the outcomes corrected from the independent
readout errors only, and the|uv〉 population calculated with the full correction including crosstalk.

We now explain briefly the cause of the readout crosstalk in our processor. Unlike what was observed for other
qubit readout schemes using switching detectors [5], the crosstalk we observe is not directly due to an electromagnetic
perturbation induced by the switching of one detector that would help or prevent the switching of the other one.
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Indeed, when both qubits frequencies νI,II are moved far below νI,IIR , the readout crosstalk disappears: the switching
of a detector has no measurable effect on the switching of the other one. The crosstalk is actually due to the rather
strong ac-Stark shift ∼ 2 (nH − nL) g

2
0/(R− νR) ∼ 500MHz of the qubit frequency when a readout resonator switches

from its low to high amplitude dynamical state with nL ∼ 10 and nH ∼ 102 photons, respectively. The small residual
effective coupling between the qubits at readout can then slightly shift the frequency of the other resonator, yielding
a change of its switching probability by a few percent. Note that coupling the two qubits by a resonator rather than
by a fixed capacitor would solve this problem.

V. REMOVING ERRORS ON TOMOGRAPHIC PULSES BEFORE CALCULATING THE GATE

PROCESS MAP

Tomographic errors are removed from the process map of our
√
iSWAP gate using the following method. The

measured Pauli sets corresponding to the sixteen input states are first fitted by a model including errors both in the
preparation of the state (index prep) and in the tomographic pulses (index tomo). The errors included are angular

errors εprepI,II on the nominal π rotations around XI,II, η
prep,tomo
I,II and δprep,tomo

I,II on the nominal π/2 rotations around

XI,II and YI,II, a possible departure ξI,II from orthogonality of
(−→
XI,

−→
YI

)
and

(−→
XII,

−→
YII

)
, and a possible rotation μI,II

of the tomographic XY frame with respect to the preparation one. The rotation operators used for preparing the
states and for doing their tomography are thus given by

Xprep
I,II (π) = e−i(π+εprep

I,II )σ
I,II
x /2,

Xprep
I,II (−π/2) = e+i(π/2+ηprep

I,II )σ
I,II
x /2,

Y prep
I,II (π/2) = e−i(π/2+δprep

I,II )[cos(ξI,II)σ
I,II
y −sin(ξI,II)σ

I,II
x ]/2,

Xtomo
I,II (π/2) = e−i(π/2+ηtomo

I,II )[sin(μI,II)σ
I,II
x +cos(μI,II)σ

I,II
y ]/2,

Y tomo
I,II (−π/2) = e+i(π/2+δtomo

I,II )[cos(μI,II+ξI,II)σ
I,II
y −sin(μI,II+ξI,II)σ

I,II
x ]/2.

The sixteen input states are then
{
ρein = U |0〉 〈0|U †

}
with {U} = {II, Xprep

I (π), Y prep
I (π/2), Xprep

I (−π/2)} ⊗
{III, Xprep

II (π), Y prep
II (π/2), Xprep

II (−π/2)}, and each input state yields a Pauli set {〈P e
k 〉 = Tr (ρeinP

e
k )} with {P e

k} =
{II, Xe

I , Y
e
I , ZI} ⊗ {III, Xe

II, Y
e
II, ZII}, Xe = Y tomo(−π/2)†σzY

tomo(−π/2), and Y e = Xtomo(π/2)†σzX
tomo(π/2). Fig-

ure V.1 shows the best fit of the modeled {〈P e
k 〉} set to the measured input Pauli sets, yielding εprepI = −1°, εprepII = −3°,

ηprepI = 3°, ηprepII = 4°, δprepI = −6°, δprepII = −3°, ηtomo
I = −6°, ηtomo

II = −4°, λtomo
I = 12°, λtomo

II = 5°, ξI = 1°, ξII = −2°,
and μI = μII = −11°.

Knowing the tomographic errors and thus {〈P e
k 〉}, we then invert the linear relation {〈P e

k 〉 = Tr (ρP e
k )} to find the

16× 16 matrix B that links the vector
−−→〈P e

k 〉 to the columnized density matrix −→ρ , i.e. −→ρ = B.
−−→〈P e

k 〉. The matrix B is
finally applied to the measured sixteen input and sixteen output Pauli sets to find the sixteen (ρin,, ρout)k couples to
be used for calculating the gate map.
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Figure V.1: Fitting of the pulse errors at state preparation and tomography. Measured (red) and fitted (blue - see text) Pauli
sets 〈P e
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VI. REAL AND IMAGINARY PART REPRESENTATION OF THE MATRICES OF MAIN FIGURES 2

AND 4.

The ρ , χ and χ̃ matrices of figures 2 and 4 of the main text are represented in an unconventional way that allows
to encode both the modulus and the argument of each matrix element in the same matrix cell. Figures VI.1 to VI.3
show the same matrices using the more conventional real and imaginary part representation.

In addition, we show in Fig. VI.4 the contributions of relaxation, of inaccurate swapping time and of inaccurate
rotations θI,II to the error matrix χ̃. Contribution of relaxation is directly calculated from the independently measured
values of the relaxation time T1, whereas the two other contributions result from a fit to the whole experimental χ̃
matrix.

F=95% F=91%

b)

C=0.85
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I11>

1
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Im
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Target:  I10>
Target: 

i I01> + I10> 

measuredideal0

Figure VI.1: Same ideal and experimental density matrices as in Fig. 2, before and after one operation of the
√
iSWAP

gate. (a) Color-filled black circles with black arrow is the ideal matrix whereas red circles and arrows is the experimental one.
Each complex matrix element is represented by a circle with an area proportional to its modulus (diameter = cell size for
unit modulus) and by an arrow giving its argument (usual trigonometric convention). (b) Real (top) and imaginary (bottom)
parts of the same matrices, with positive and negative numbers being encoded along the vertical direction. The ideal matrix
is represented by thick black empty bars, whereas experimental data are shown as blue-filled (positive) or red-filled (negative)
thin bars.
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data are shown as blue-filled (positive) or red-filled (negative) thin bars. Labeled arrows indicate the main visible contributions
to errors, i.e. a too long swapping time (S), too small rotations θI,II (Z), and relaxation (T1).

[s1] D. Vion et al., Science 296, 886 (2002).
[s2] A. Cottet, Ph.D. thesis, Universite Paris VI, 2002.
[s3] F. R. Ong et al., Phys. Rev. Lett. 106, 167002 (2011).
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We operate a superconducting quantum processor consisting of two tunable transmon qubits coupled by

a swapping interaction, and equipped with nondestructive single-shot readout of the two qubits. With this

processor, we run the Grover search algorithm among four objects and find that the correct answer is retrieved

after a single run with a success probability between 0.52 and 0.67, which is significantly larger than the 0.25

achieved with a classical algorithm. This constitutes a proof of concept for the quantum speed-up of electrical

quantum processors.
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The proposition of quantum algorithms1–3 that perform

useful computational tasks more efficiently than classical

algorithms has motivated the realization of physical systems4

able to implement them and to demonstrate quantum speed-up.

The versatility and the potential scalability of electrical circuits

make them very appealing for implementing a quantum pro-

cessor built as sketched in Fig. 1. Ideally, a quantum processor

consists of a scalable set of quantum bits that can be efficiently

reset, that can follow any unitary evolution needed by an

algorithm using a universal set of single- and two-qubit gates,

and that can be read projectively.5 The nonunitary projective

readout operations can be performed at various stages of an

algorithm, and in any case at the end in order to get the

final outcome. Quantum processors based on superconducting

qubits have already been operated, but they fail to meet

the above criteria in different aspects. With the transmon

qubit6,7 derived from the Cooper pair box,8 simple quantum

algorithms, namely, the Deutsch-Jozsa algorithm,9 the Grover

search algorithm,1 and a three-qubit quantum error correction

code, were demonstrated in two- and three-qubit processors

with the coupling between the qubits mediated by a cavity

also used for readout.10,11 In this circuit, the qubits are not

read independently, but the value of a single collective variable

is determined from the cavity transmission measured over

a large number of repeated sequences. By applying suitable

qubit rotations prior to this measurement, the density matrix

of the two-qubit register was inferred at different steps of the

algorithm, and it was found to be in good agreement with the

predicted one. Demonstrating quantum speed-up is, however,

more demanding than measuring a collective qubit variable

since it requests to obtain an outcome after a single run, i.e.,

to perform the single-shot readout of the qubit register. Up

to now, single-shot readout in superconducting processors has

been achieved only for phase qubits.12,13 In a multiphase-qubit

processor equipped with single-shot but destructive readout of

each qubit, the Deutsch-Jozsa algorithm9 was demonstrated

in Ref. 12 with a success probability of order 0.7 in a single

run, to be compared to 0.5 for a classical algorithm. Very

recently a similar processor ran a compiled version of Shor’s

algorithm,2 yielding prime factors of 15 with a 48% success

rate.14

Since the Deutsch-Jozsa classification algorithm is not

directly related to any practical situation, demonstrating

quantum speed-up for more useful algorithms in an electrical

processor designed along the blueprint of Fig. 1 is an important

goal.14 In this Rapid Communication, we report the operation

of a two-transmon-qubit processor15 that comes closer to

the ideal scheme than those previously mentioned, and the

single-shot run of the Grover search algorithm among four

objects. Since, in this case, the algorithm ideally yields the

answer after one algorithm step, its success probability after

a single run provides a simple benchmark. We find that our

processor yields the correct answer at each run, with a success

probability that ranges between 0.52 and 0.67, whereas a

single-step classical algorithm using a random query would

yield the correct answer with probability 0.25.

The sample and the setup used for this experiment are

the very same as those described and characterized in detail

in Ref. 15. The sample fabrication and parameters are

summarized in Secs. I and II of the Supplemental Material,16

whereas the scheme of our processor and its mode of operation

are recalled in Fig. 2: Two tunable transmon qubits coupled

by a fixed capacitor are embedded in two identical control

and readout subcircuits. The Hamiltonian of the two qubits

{I,II} is H/h = (−νIσ
I
z − νIIσ

II
z + 2gσ I

yσ
II
y )/2, where σx,y,z

are the Pauli operators, νI,II are the qubit frequencies controlled

by the flux applied to each transmon superconducting quan-

tum intereference device (SQUID) loop with fast (0.5-GHz

bandwidth) local current lines, and g = 4.6 MHz ≪ νI,II is the

coupling frequency controlled by the coupling capacitance (see

Sec. II of the Supplemental Material and Ref. 17). The achieved

frequency control allows us to place the two transmons on

resonance during times precise enough for performing the

universal two-qubit gate
√

iSWAP (Ref. 15) and the exchange

gate iSWAP used in this work. The qubit frequencies are tuned

to different values for single-qubit manipulation, two-qubit

gate operation, and readout (see Sec. III of the Supplemental

Material16). The readout is independently and simultaneously

performed for each qubit using the single-shot method of

Ref. 18. It is based on the dynamical transition of a nonlinear

resonator19,20 that maps the quantum state of each transmon

to the bifurcated or nonbifurcated state of its resonator, which

140503-11098-0121/2012/85(14)/140503(4) ©2012 American Physical Society
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FIG. 1. (Color online) Schematic blueprint of a quantum pro-

cessor based on quantum gates, represented here in the two-qubit

case relevant for our experiment. A quantum processor consists of

a qubit register that can perform any unitary evolution needed by

an algorithm under the effect of a universal set of quantum gates

(single-qubit gate U1, two-qubit gate U2). Ideally, all the qubits may

be read projectively, and may be reset.

yields a binary outcome for each qubit. This readout method

is potentially nondestructive, but its nondestructive character

is presently limited by relaxation during the readout pulse. In

order to further improve the readout fidelity, we resort to a

shelving method that exploits the second excited state of the

transmon. For this purpose, a microwave pulse that induces

a transition from state |1〉 toward the second excited state

|2〉 of the transmon is applied just before the readout pulse,

as demonstrated in Ref. 18 (this variant does not alter the

nondestructive aspect of the readout method since an extra

pulse bringing state |2〉 back to state |1〉 could be applied after

readout). Although the readout contrast achieved with this

shelving method and with optimized microwave pulses reaches

0.88 and 0.89 for the two qubits, respectively, the values

achieved at working points suitable for processor operation

are lower and equal to 0.84 and 0.83. The sources of readout

errors are discussed in Sec. IV of the Supplemental Material16

and include a small readout crosstalk contribution. The overall

readout fidelity is thus characterized by a 4 × 4 matrix R,

giving the readout outcome probabilities for each of the input

states of the two-qubit register.

In order to characterize the evolution of this register

during the algorithm, we determine its density matrix by state

tomography. For this purpose, we measure the expectation

values of the extended Pauli set of operators {σxI, . . . ,σzσz}
by applying the suitable rotations just before readout and by

averaging typically 104 times. Note that the readout errors are

corrected by inverting the readout matrixRwhen determining

the expectation value of the Pauli set, and thus do not contribute

to tomography errors, as explained in Ref. 15. The density

matrix ρ is then taken as the acceptable positive-semidefinite

matrix that, according to the Hilbert-Schmidt distance, is

the closest to the possibly nonphysical one derived from the

measurement set. In order to characterize the fidelity of the

algorithm at all steps, we use the state fidelity F = 〈ψ |ρ|ψ〉,
with |ψ〉 the ideal quantum state at the step considered; F

is in this case the probability for the qubit register to be in

state |ψ〉.
The Grover search algorithm1 consists of retrieving a

particular basis state in a Hilbert space of size N using a

function able to discriminate it from the other ones. This

function is used to build an oracle operator that tags the

searched state. Starting from the superposition |φ〉 of all

register states, a unitary sequence that incorporates the oracle

operator is repeated about
√

N times, and eventually yields the

readout I
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FIG. 2. (Color online) Electrical scheme of the two-qubit cir-

cuit operated and typical sequence during processor operation.

(a) Two capacitively coupled transmon qubits have tunable frequen-

cies controlled by the flux induced in their SQUID loop by a local

current line. The coupling capacitance (center) yields a swapping

evolution between the qubits when on resonance. Each transmon is

embedded in a nonlinear resonator used for single-shot readout. Each

reflected readout pulse is routed to a cryogenic amplifier through

circulators, homodyned at room temperature, and acquired digitally,

which yields a two-bit outcome. (b) Typical operation of the processor

showing the resonant microwave pulses a(t) applied to the qubits and

to the readouts, on top of the dc pulses (polylines) that vary the

transition frequencies of qubit I (solid) and II (dashed). With the

qubits tuned at a first working point for single-qubit gates, resonant

pulses are applied for performing X and Y rotations, as well as small

flux pulses for Z rotations; qubits are then moved to the interaction

point for two-qubit gate operations. Such sequences can be combined

as needed by the algorithm. Qubits are then moved to their initial

working points for applying tomography pulses as well as a |1〉 → |2〉
pulse X12(π ) to increase the fidelity of the forthcoming readout.

Finally, they are moved to better readout points and read.

searched state with a high probability. The implementation of

Grover’s algorithm in a two-qubit Hilbert space often proceeds

in a simpler way21–26 since the result is obtained with certainty

after a single algorithm step. The algorithm then consists

of an encoding sequence depending on the searched state,

followed by a universal decoding sequence that retrieves it.

Grover’s algorithm thus provides a simple benchmark for

two-qubit processors. Its implementation with our quantum

processor is shown in Fig. 3(a). First, the superposed state |φ〉
is obtained by applying π/2 rotations around the Y axis for

the two qubits. The oracle operator Ouv tagging the two-qubit

state |uv〉 ≡ |u〉I ⊗ |v〉II to be searched is then applied to

state |φ〉. Each Ouv consists of an iSWAP gate followed by

a Z(±π/2) rotation on each qubit, with the four possible sign

combinations (−,−), (+,−), (−,+), and (+,+) corresponding

to uv = 00, 01, 10, and 11, respectively. In the algorithm we
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FIG. 3. (Color online) (a) Experimental sequence used for im-

plementing the Grover search algorithm on four objects. First,

Y (π/2) rotations are applied to produce the superposition |φ〉 =
(1/2)

∑

u,v |uv〉 of all basis states; then one of the four possible oracles

(corresponding to the four sign combinations of the Z rotations) is

applied. The tagged state is then decoded in all cases using an iSWAP

operation followed by X(π/2) rotations. (b) State tomography at two

steps of the algorithm (ρ matrices) and success probability after a

single run (histograms). The bright dots on the left-hand side mark

the basis state tagged by each oracle operator used. The amplitude

of each matrix element is represented by a disk [black for the ideal

density matrix, red (gray) for the measured one] and its phase by an

arrow (as well as a filling color for the ideal matrix). After applying

the oracle, the information on the tagged state is encoded in the phase

of six particular elements of ρ. After decoding, the tagged state should

be the only matrix element present in ρ. The fidelity Ffinal actually

obtained is indicated in this element. The probability distribution

of the single-run readout outcomes is shown on the right-hand side

(bright box for the correct answer, solid dark boxes for the wrong

ones).

use, the encoding is a phase encoding as in Ref. 10. When

applied to |φ〉, each oracle operator inverts the sign of the

component corresponding to the state it tags, respectively, to

the other ones. The density matrix, after applying the oracle,

ideally takes a simple form: The amplitude of all coefficients

is 1/4, and the phase of an element ρrs is ϕrs = π (δrt + δst ),

where t corresponds to the state tagged by the oracle operator.

The state tomography performed after applying the oracle,

shown in Fig. 3(b), is in good agreement with this prediction.

More quantitatively, we find that after having applied the

oracle operator, the intermediate fidelity is Fint = 0.87, 0.80,

0.84, and 0.82, respectively. The last part of the algorithm

consists in transforming the obtained state in the searched

state irrespectively of it, or equivalently to transform the phase

information distributed over the elements of the density matrix

in a weight information with the whole weight on the searched

state. This operation is readily performed by applying an iSWAP

gate followed by X(π/2) rotations for both qubits. We find that

the fidelity of the density matrix at the end of the algorithm

is Ffinal = 0.70, 0.62, 0.67, and 0.66, respectively. We explain

both Fint and Ffinal by gate errors at a 2% level, by errors in the

tomography pulses at a 2% level, as well as by decoherence

during the whole experimental sequence [at the coupling point,

relaxation times are T I
1 ≃ 450 ns and T II

1 ≃ 500 ns, and the

effective dephasing times T I
ϕ ≃ T II

ϕ ≃ 2 μs (Ref. 15)].

We now consider the success probability obtained after a

single run (with no tomography pulses), which probes the

quantum speed-up actually achieved by the processor. We find

(see Fig. 3) that our processor does yield the correct answer

with a success probability PS = 0.67, 0.55, 0.62, and 0.52 for

the four basis states, which is smaller than the density matrix

fidelity Ffinal. One notices that the difference between Ffinal

and PS, mostly due to readout errors, slightly depends on the

searched state: The larger the energy of the searched state, the

larger is the difference. This dependence is well explained by

the effect of relaxation during the readout pulse, which is the

main error source at readout, the second one being readout

crosstalk. One also notices that the outcome errors are dis-

tributed over all the wrong answers. To summarize, the errors

of our implementation of Grover’s algorithm originate both

from small unitary errors accumulated during the algorithm,

and from decoherence during the whole sequence, in particular,

during the final readout.

We finally discuss the significance of the obtained results

in terms of quantum information processing. The achieved

success probability is smaller than the theoretically achievable

value 1, but nevertheless it is sizably larger than the value

of 0.25 obtained by running once the classical algorithm

that consists in making a random trial. From the point of

view of a user who has to find out which unknown oracle

has been given to him, the fidelity of the algorithm outcome

is fab = 0.57, 0.63, 0.57, and 0.59 for the 00, 01, 10, and

11 outcomes, respectively, as explained in Sec. V of the

Supplemental Material.16 Despite the presence of errors,

this result demonstrates the quantum speed-up for Grover’s

algorithm when searching in a Hilbert space with a small

size N = 4.

In conclusion, we have demonstrated the operation of

the Grover search algorithm in a superconducting two-qubit

processor with a single-shot nondestructive readout. This result

indicates that the quantum speed-up expected from quantum

algorithms is within reach of superconducting quantum bit

processors. Demonstrating the
√

N speed-up for Grover’s

algorithm in larger Hilbert spaces requires a qubit architecture
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more scalable than the present one, which presently is a major

challenge in the field.
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I. SAMPLE PREPARATION

The sample is fabricated on a silicon chip oxidized over 50 nm. A 150 nm thick niobium

layer is first deposited by magnetron sputtering and then dry-etched in a SF6 plasma to

pattern the readout resonators, the current lines for frequency tuning, and their ports.

Finally, the transmon qubit, the coupling capacitance and the Josephson junctions of the

resonators are fabricated by double-angle evaporation of aluminum through a shadow mask

patterned by e-beam lithography. The first layer of aluminum is oxidized in a Ar − O2

mixture to form the oxide barrier of the junctions. The chip is glued with wax on a printed

circuit board (PCB) and wire bonded to it. The PCB is then screwed in a copper box

anchored to the cold plate of a dilution refrigerator.

II. SAMPLE PARAMETERS

The sample is first characterized by spectroscopy [15]. The incident power used is high

enough to observe the resonator frequency νR, the qubit line ν01, and the two-photon tran-

sition at frequency ν02/2 between the ground and second excited states of each transmon.

A fit of the transmon model to the data yields the sample parameters, i.e. total Josephson

energies of the transmons in zero magnetic field EI

J
/h = 36.2GHz and EII

J
/h = 43.1GHz,

total charging energies EI

C
/h = 0.98GHz and EII

C
/h = 0.87GHz, assymetries between the

two junctions of a transmon dI = 0.2 and dII = 0.35. The measured resonance frequencies

of the readout resonators are νI

R
= 6.84GHz, and νII

R
= 6.70GHz. The qubit-readout anti-

crossing at ν = νR yields the qubit-readout couplings gI
0
≃ gII

0
≃ (2π) 50MHz. Independent

measurements of the resonator dynamics yield quality factors QI = QII = 730 and Kerr non

linearities [15,17] KI/ν
I

R
≃ KII/ν

II
R

≃ −2.3± 0.5× 10−5.

III. EXPERIMENTAL SETUP

• Qubit resonant microwave pulses: The qubit drive pulses are generated by two phase-

locked microwave generators feeding a pair of I/Q-mixers. The IF inputs are provided

by a 4-Channel1GS/s arbitrary waveform generator (AWG Tektronix AWG5014).

Single-sideband mixing in the frequency range of 50-300 MHz is used to generate

2



multi-tone drive pulses and to obtain a high ON/OFF ratio (> 50 dB). Phase and

amplitude errors are corrected by applying suitable sideband and carrier frequency

dependent corrections to the amplitude and offset of the IF signals.

• Qubit frequency control: Flux control pulses are generated by a second AWG and sent

to the chip through a transmission line equipped with 40 dB total attenuation and a

pair of 1 GHz dissipative low-pass filters at 4K. The input signal of each flux line is

returned to room temperature through an identical transmission line and measured,

which allows to compensate the non-ideal frequency response of the line.

• Readout pulses: The driving pulses for the Josephson bifurcation amplifier (JBA) read-

outs are generated by mixing the continuous signals of a pair of microwave generators

with IF pulses provided by a 1GS/s arbitrary waveform generator (AWG Tektronix

AWG5014). Each readout pulse consists of a measurement part with a rise time of

30 ns and a hold time of 100 ns, followed by a 2μs long latching part at 90 % of the

pulse height.

• Drive and measurement lines: The drive and readout microwave signals of each qubit

are combined and sent to the sample through a pair of transmission lines with total

attenuation 70 dB and filtered at 4K and 300mK. A microwave circulator at 20mK

protects the chip from the amplifier noise. The signals are amplified by 36 dB at 4K

by two cryogenic HEMT amplifiers (CIT Cryo 1) with noise temperature 5K. The

reflected readout pulses are amplified and demodulated at room temperature. The IQ

quadratures of the demodulated signals are sampled at 1GS/s by a 4-channel data

acquisition system (Acqiris DC282).

IV. READOUT ERRORS

Errors in our readout scheme are discussed in detail in Ref. [15] for a single qubit. First,

incorrect mapping |0〉 → 1 or|1〉 → 0 of the projected state of the qubit to the dynamical

state of the resonator can occur, due to the stochastic nature of the switching between

the two dynamical states. As shown in Fig. 4.1, the probability p to obtain the outcome

1 varies continuously from 0 to 1 over a certain range of drive power Pd applied to the

readout. When the shift in power between the two p|0〉,|1〉(Pd) curves is not much larger than
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Figure IV.1:

(a) Switching probability p of each readout as a function of its peak driving power, when its qubit

is prepared in state |0〉 (blue), |1〉 (red), or |2〉 (brown), with the other qubit being far detuned.

The arrows indicate the readout errors where the contrast is optimal with (brown) and without

(red) |1〉 → |2〉 shelving. (b) Readout matrix R giving the probabilities of the four ab outcomes,

for the four computational input states |uv〉, when using |1〉 → |2〉 shelving. Each matrix elements

is represented by a circle of area proportional to its value (a unit circle would touch the cell

borders).

this range, the two curves overlap and errors are significant even at the optimal drive power

where the difference in p is maximum. Second, even in the case of non overlapping p|0〉,|1〉(Pd)

curves, the qubit initially projected in state|1〉 can relax down to |0〉 before the end of the

measurement, yielding an outcome 0 instead of 1. The probability of these two types of

errors vary in opposite directions as a function of the frequency detuning ∆ = νR − ν > 0

between the resonator and the qubit, so that a compromise has to be found for ∆. As

explained in the main text, we use a shelving method to the second excited state in order to

improve the readout contrast c = Max
(
p|1〉 − p|0〉

)
, with a microwave π pulse at frequency
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ν12 bringing state |1〉 into state |2〉 just before the readout pulse. The smallest errors eI,II
0

and eI,II
1

when reading |0〉 and |1〉 are found for ∆I = 440MHz and ∆II = 575MHz: eI
0
= 5%

and eI
1
= 13% (contrast cI = 1− eI

0
− eI

1
= 82%), and eII

0
= 5.5% and eII

1
= 12% (cII = 82%).

When using the |1〉 → |2〉 shelving before readout, eI
0
= 2.5% and eI

2
= 9.5% (contrast

cI == 1 − eI
0
− eI

2
= 88%), and eII

0
= 3% and eII

2
= 8% (cII = 89%). These best results are

very close to those obtained in Ref. [15] of main text, but cannot however be exploited for

simultaneous readout of the two qubits.

Indeed, when the two qubits are measured simultaneously, we find an influence of the

projected state of each qubit on the outcome of the readout of the other one. In order to

to minimize this spurious effect, we increase the detuning ∆I,II up to ∼ 1GHz with respect

to previous optimal values. An immediate consequence shown in Fig. S4.1(a) is a reduction

of the cI,II contrasts. The errors when reading |0〉 and |1〉 are then eI
0
= 10% and eI

1
= 16%

(contrast cI = 74%) and eII
0
= 12% and eII

1
= 15% (contrast cII = 73%). When shelving

the qubit in state |2〉 , the errors are eI
0
= 5%, eI

2
= 11% (contrast cI = 84%), eII

0
= 5%,

eII
2
= 12% (contrast cI = 83%). The readout errors are captured in the 4×4 readout matrix

R shown in Fig. S4.1(c), that gives the probabilities puv of the four possible outcomes for

the different input states using the |1〉 → |2〉 shelving technique. This matrix R is used to

correct the readout errors only when doing state tomography, and not when the running the

algorithm once. The cause of the readout crosstalk in our processor is discussed in Ref. [15].

V. ALGORITHM FIDELITY

From the point of view of a user that would search which unknown oracle has been

given to him, the fidelity fab of the algorithm for each possible outcome ab is fab =

pab/Oab
/
(
pab/O00

+ pab/O01
+ pab/O10

+ pab/O11

)
with pab/Ouv

the probability of obtaining out-

come ab knowing that Ouv has been used. These probabilities are shown in table V.1,

yielding f00,01,10,11 = 0.57, 0.63, 0.57, and 0.59.
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ab/Ouv O00 O01 O10 O11

∑
fab

00 0.666 0.192 0.188 0.122 1.168 57.0 %

01 0.127 0.554 0.071 0.122 0.874 63.4 %

10 0.128 0.106 0.615 0.239 1.088 56.5 %

11 0.079 0.148 0.126 0.517 0.870 59.4 %

Table V.1: Conditional probabilities pab/Ouv
and statistical fidelities fab for all possible outcomes

ab, measured for our version of Grover’s algorithm.
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Achieving individual qubit readout is a major challenge in the development of scalable superconducting

quantum processors. We have implemented the multiplexed readout of a four transmon qubit circuit using

nonlinear resonators operated as Josephson bifurcation amplifiers. We demonstrate the simultaneous measurement

of Rabi oscillations of the four transmons. We find that multiplexed Josephson bifurcation is a high-fidelity readout

method, the scalability of which is not limited by the need of a large-bandwidth, nearly quantum-limited amplifier

as is the case with linear readout resonators.
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I. INTRODUCTION

Since the demonstration of quantum coherence in single

Cooper pair boxes [1,2], the coherence time of superconduct-

ing quantum bits (qubits) has increased by orders of magni-

tude [3–5], and high-fidelity operation has been achieved [6,7].

Quantum speedup of the Deutsch-Josza [8], Grover search [9],

and Shor’s factorization [10] algorithms, as well as deter-

ministic teleportation [11] and measurement-based entangle-

ment [12,13] protocols, were recently demonstrated in circuits

with a few (2–5) qubits. Nevertheless, no superconducting

quantum processor able to run algorithms demonstrating the

power of quantum computation [14] has been operated yet.

Making operational processors with a large number of qubits

faces the challenge of maintaining quantum coherence in

complex circuits, of implementing multiple individual qubit

readout, and of performing high-fidelity gates in parallel with

quantum error correction. Much effort is presently devoted to

solving these different scalability issues [15].

We address here the problem of simultaneous readout of

transmon qubits [3] in a single shot. Readout of Josephson

qubits is commonly performed by coupling each of them to

a linear microwave resonator whose resonance frequency is

shifted by a qubit-state-dependent value ±χ [16]. Measuring

the reflection or the transmission of a microwave pulse by

the resonator then reveals the qubit state [17]. High-fidelity

readout has been reached in several experiments [13,18] by

using quantum-limited Josephson parametric amplifiers [19].

Besides, simultaneous readout of several qubits was achieved

by using resonators with staggered frequencies, all coupled to a

single line on which microwave readout pulses were frequency

multiplexed [20]. However, reaching single-shot fidelity in this

case requires parametric amplifiers with both large bandwidth

to accommodate all of these frequencies and large saturation

power to linearly amplify all simultaneous pulses. The recent

implementation of this method in a four-transmon circuit [21]

achieved fast readout with a fidelity compatible with surface-

code error correction.

An alternative method for transmon readout that does not

require a Josephson parametric amplifier consists in turning

each readout resonator into a nonlinear one, operated as

a Josephson bifurcation amplifier (JBA) [22–24]. Indeed,

driving a JBA with a suitable microwave pulse yields a fast

and hysteretic transition between dynamical states with widely

different field amplitude and phase, which can discriminate

with high fidelity the transmon ground state |0〉 from its excited

states |i〉 = |1〉 , |2〉. The determination of the dynamical state

then requires a subsequent longer measuring time at a lower

power level [25]. In this work, we demonstrate multiplexed

high-fidelity single-shot readout of four transmons using the

circuit described in Fig. 1.

II. EXPERIMENTAL SETUP

The chip consists of four cells, labeled i = 1–4, coupled

to a single transmission line that carries the multiple qubit

control and JBA signals. The sample is fabricated on a

sapphire substrate in a two-step lithography process. The

transmission line and the readout resonators are first patterned

in a niobium film using optical lithography and reactive

ion etching. The transmons and JBA junctions are then

fabricated by electron lithography and double-angle evapo-

ration of aluminum through a suspended shadow mask, with

intermediate oxidation. It is measured in a dilution refrigerator

with base temperature 30 mK. Each transmon Bi includes a

superconducting quantum interference device (SQUID) [see

Fig. 1(d)] that makes its |0〉 ↔ |1〉 transition frequency f 01
Bi

tunable with magnetic field [26]. In this experiment dedicated

to readout, only a global magnetic field produced by a

single coil can be applied to all transmons simultaneously.

Each qubit is coupled to its JBA with a coupling constant

gi/2π ≃ 85 MHz. The JBAs have staggered frequencies fRi

around 7.75 GHz separated by 61, 69, and 96 MHz, and quality

factors of 2500, 2550, 2650, and 2200. All have the same Kerr

nonlinearity [27] K/2π ⋍ −225 kHz (that corresponds to a

frequency reduction of 112.5 kHz per photon).

The qubits are controlled resonantly and we note θ kl
i a

rotation of qubit i by an angle θ between its states |k〉
and |l〉. The microwave control pulses at frequencies f kl

Bi

are obtained by translating the frequency fB0 of a single

carrier using the technique of single-sideband mixing: using

an IQ mixer, the carrier is multiplied by two signals I and

Q delivered by an arbitrary waveform generator (AWG). I

and Q are a sum of signals at frequencies δkl
Bi = f kl

Bi − fB0,

with suitable envelopes and phases. Another mixer is used to

produce the JBA drive signals in the same way, that is by
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FIG. 1. (Color online) Readout of transmon qubits based on

multiplexed JBAs. (a) Schematic electrical circuit. Four qubit-readout

cells i (only one shown) are capacitively coupled to a microwave

transmission line (black central line). Each cell is made of a tunable

transmon qubit Bi [26] of transition frequencies f kl
Bi , capacitively

coupled to a JBA resonator Ri of frequency fRi . Control and readout

pulses are produced and analyzed as described in the text. (b), (c)

Optical micrographs showing (b) the measured chip with four cells,

and (c) cell 1 with transmon B1 and lumped element JBA R1. (d)

Spectroscopy of the four qubits Bi and readouts Ri as a function of

the coil current inducing a global magnetic field. Frequencies fRi

are indicated by lines, whereas qubit spectra are obtained by exciting

the qubits with a 4 μs long single-frequency control pulse, reading

out simultaneously the four JBAs, and color-plotting their switching

probabilities.

IQ-mixing a carrier fR0 with a sum of signals at frequencies

δRi = fRi − fR0. Figure 1(a) illustrates the setup used. Driven

at frequencies fRi chosen 9 MHz below their bare frequencies

(with the transmon in its ground state), the JBAs switch at

bifurcation from a state with average photon number 11 ± 1

to a state between 40 and 100 photons [27,28].

The transmon-JBA detuning �i/2π = f 01
Bi − fRi deter-

mines both the readout sensitivity (through χi) and the Purcell

energy relaxation rate T −1
P,i ≃ 2πfRi/Qi(gi/�i)

2 of the qubit

through the resonator input line [3]. The readout pulses have

a first short 25 ns long step [see Fig. 2(b)] and a longer 2 μs
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FIG. 2. (Color online) Characterization of cell 1 at detuning

�1/2π = 1.08 GHz. (a) Microwave control pulse envelopes for π01
1 ,

π 12
1 , and (2π )01

1 rotations (see text). The dotted line shows the

maximum amplitude used. (b) Beginning of the microwave readout

pulse envelope (solid green line). Left inset: Density plot of (I1,Q1)

obtained from 105 repetitions of a (π/2)01
1 pulse [purple dot P in (c)]

followed by a readout pulse. Right inset: Corresponding histogram

(population in 10 mV wide bins) along the direction I ′ joining the two

cloud centers. (c) Rabi oscillation of p1 as a function of the equivalent

control pulse length (duration of a rectangular pulse with maximum

amplitude), without (red) and with (magenta) shelving (see text). (d)

Probability p1 with no qubit control pulse (blue) and after a π01
1 pulse

alone (red) or with shelving (magenta). Solid lines represent p1 on a

linear scale (left axis) whereas dashed and dotted lines show it using a

double-logarithmic scale below and above 0.5 (right axis). Thin solid

and dotted lines represent “ideal” S curves (see text). The vertical

dashed lines indicate the pulse power yielding the highest readout

contrasts with (left) and without (right) shelving.

latching step at 85% of the peak power. In practice, bifurcation

develops (or not) between 50 ns and 500 ns, whereas I and Q

are averaged between 325 ns and 1325 ns. Readout pulses can

overlap in time [see for instance Fig. 4(a)] so that the output

signal contains contributions of different JBAs. In order to

extract these contributions, the output signal is demodulated

in two steps: An analog demodulation at the readout carrier

frequency fR0 is first performed; the resulting signal is then

digitized at 2 Gsample/s with a 1 GHz analog bandwidth that

widely covers the 250 MHz frequency range spanned by the

four JBAs; it is then demodulated numerically by a dedicated

PC, which directly multiplies it with cosine functions at

frequencies δRi and averages the result. The outcome of a

readout sequence is four points (Ii,Qi) in the in-phase and

quadrature plane (one for each JBA frequency fRi), as shown

in Fig. 3(b). The outcome of a readout sequence is thus four

points (Ii,Qi) in the in-phase and quadrature plane.

Spectroscopic data of the qubits and readout resonators

as a function of the coil current are displayed in Fig. 1(d).

These data were recorded at high excitation power to show

spectroscopic lines at both f 01
Bi and f 02

Bi /2. Frequencies f 01
Bi

of tunable qubits B1,2,4 peak at about 0.7–1 GHz below the
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FIG. 3. (Color online) Simultaneous readout of the

four qubits at a magnetic field such that �1−4/2π =
(−1.2,−1.76,−3.12,−2.06) GHz. (a) Switching probabilities

pi of the four readouts as a function of readout power PR , after

no control pulse (right curves in each panel), and after a π01
i pulse

without (middle) and with shelving (left curves for B1,2,3). Dashed

vertical lines indicate the optimal readout powers used in (b) and

(c) and in Fig. 4 (shelving used only for B2 and B4). (b) Density

plots of the four (Ii,Qi) obtained from 105 measurements. Segments

indicate the separatrices between switching and nonswitching

events. (c) Corresponding histograms along the lines perpendicular

to separatrices.

frequency of their respective JBA, and the anharmonicity α =
f 12

Bi − f 01
Bi ≃ −434 ± 2 MHz. The measured relaxation times

of all transmons are found to be in the range T1 = 1.7–3.2 μs

for |�i/2π | � 1 GHz. This is significantly below the Purcell

limit TP > 8 μs and shorter than in comparable 2D transmon

circuits [21], probably due to dielectric losses [29].

III. READOUT PERFORMANCE

All qubit-readout cells yielded similar performances at

equal detuning �i . Performance of cell 1, operated at a

qubit-JBA detuning �1/2π = −1.08 GHz, is summarized in

Fig. 2. All qubit control pulses have 3σ long Gaussian rises

and falls with σ = 4 ns, as shown in Fig. 2(a). Numerical

simulations of the transmon dynamics including its three

lowest levels show that such control pulses do not introduce

preparation errors larger than 0.1% [30]. Readout is performed

either immediately after applying a θ01
1 Rabi pulse, or after a

subsequent π12
1 pulse that shelves the excited qubit in state |2〉,

as in [23]. This shelving decreases the error made in measuring

the excited qubit by blocking its relaxation down to state |0〉
before the measurement is completed [31].

The density plot of (I1,Q1) obtained from 105 repetitions

of the readout after a (π/2)01
1 pulse is shown in the left inset

of Fig. 2(b). The two clouds with a small relative overlap of

order 10−5 (estimated from the corresponding histogram in

the right inset) reveal an excellent discrimination of the JBA

states. The fidelity of the qubit to JBA mapping is investigated

by measuring the variations of the switching probability p1 as

a function of the peak readout power PR . These so-called S
curves are shown in Fig. 2(d) in three different cases: when

the qubit is left in its ground state |0〉 with no applied control

pulse (blue), after a π01
1 pulse aiming at preparing state |1〉

(red), and after a π01
1 pulse followed by a π12

1 shelving pulse

(magenta). One observes that the S curves for the two states |0〉
and |1〉 are separated in PR by about 5.5 dB (or equivalently by

2χ = 3.4 MHz in resonator or drive frequency), which is much

larger than the 2.4 dB (1.5 MHz) width of the ground-state S
curve, defined here by 1% < p < 99%. This result implies

that, in the absence of preparation errors and relaxation before

and during measurement, readout errors would be negligible.

In practice, at the optimal powers PR [see Fig. 2(d)],

the measured total errors are 1.1% for |0〉, and 3.1% and

2.2% for |1〉 without and with shelving, respectively. These

errors result from two effects. First, the 1.1% error in the

ground state is due to a residual thermal excitation of the

qubit (corresponding to a qubit temperature of 70 mK), as

evidenced by the flat shoulder on the ground-state S curve at

low power. This spurious excitation is also responsible for the

same absolute 1.1% error in preparing state |1〉. The remaining

errors in |1〉 are thus 2.0% and 1.1% without and with shelving.

Second, numerical simulations including relaxation during the

control pulses, using the independently measured relaxation

time (�10
1 )−1 = 2.0 μs, account for absolute errors of 0.6% and

1.1% without and with shelving. The shelving case is thus fully

understood: errors in |1〉 are only due to thermal population and

relaxation at preparation, and relaxation to |0〉 during readout

is efficiently blocked as proven by the horizontal plateau at

p1(PR) ≃ 0.98. The intrinsic readout fidelity with shelving is

thus excellent.

Without shelving, the remaining readout error is 1.4% at the

optimal PR , but with a slow increase of p1(PR) as it approaches

1. This behavior is not understood and quantum simulation of

the JBA + excited qubit dynamics is needed to address this

question. Nevertheless, to infer what would be the intrinsic

readout fidelity in the absence of preparation errors and extra

relaxation at readout, we reconstruct ideal S curves: for the

ground state, the lower part p1 � 0.5 is replaced by the S curve

measured for the qubit excited state and shifted in power to

remove the effect of residual thermal excitation; for the excited

state, its upper part p1 > 0.5 is replaced by the one measured

in the ground state and shifted in power to remove the effect of

relaxation at readout. These ideal S curves, illustrated by thin

solid and dotted lines in Fig. 2(d), give intrinsic readout errors

lower than 2 × 10−3 both for the ground and excited states.

We now discuss the simultaneous readout of the four

qubits. Given the lack of individual transmon tunability, a

magnetic field leading to not too large detunings �i/2π =
(−1.2,−1.76,−3.12,−2.06) GHz was applied. In addition,

longer readout pulses with 50 ns measurement step and

2 μs latching step are used, as shown in Fig. 4(a). The

measurement outcomes for the four qubits prepared with

control pulses close to (π/2)01 and with π12 shelving only

for B2 and B4 [32] are shown in Fig. 3. The density plots

in the (Ii,Qi) planes are shown with their best separatrix

between switching and nonswitching events. As illustrated

in Fig. 3(c), the switching histograms measured along an axis

perpendicular to the separatrix show a good separation, albeit

smaller than obtained at the optimal working point of each
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FIG. 4. (Color online) Simultaneous measurement of Rabi os-

cillations of the four qubits at readout powers indicated in Fig. 3.

Microwave control (a) and readout (b) pulse envelopes used at 5 ns

equivalent Rabi pulse duration. Only B2 and B4 are shelved on

their second excited levels before readout. (c) Simultaneous Rabi

oscillations of p1−4 as a function of the equivalent control pulse

duration.

cell. The standard deviation of the switching probability for

all cells was checked to decrease as expected for independent

events.

Having characterized simultaneous readout of the four

qubits, we now include qubit drive (see Fig. 4). For simplicity,

the control pulses are not applied simultaneously in order to

avoid having to take into account the qubit ac Stark shift

resulting from other qubit drives. The control and readout

pulses are shown in Fig. 4(a). The switching curves of the four

JBAs are shown in Fig. 4(b) after no qubit pulse, and after a π01
i

pulse without or with shelving. Rabi oscillations of the four

qubits, measured at the optimal powers indicated in Fig. 4(b),

are shown in Fig. 4(c). These data show that JBA readout is

compatible with qubit driving and simultaneous multiplexed

operation. The overall performance of our multiplexed JBA

is thus comparable with that achieved using linear dispersive

readout and parametric amplifiers [21], albeit with larger errors

not due to the readout method itself.

IV. CONCLUSION

A natural question that arises is the maximum number of

transmons that multiplexed JBA could handle. Indeed, due

the nonlinear character of JBAs, bifurcation of a given JBA

can be affected by the dynamics of other JBAs that are close

in frequency. How close their frequencies can be without

inducing readout crosstalk is not known. In the present setup,

this phenomenon was quantified by preparing B1 in |0〉 or

|1〉 and B2 in a superposition (|0〉 + |1〉)/
√

2. The difference

between the values of p2 for the two B1 states gives a crosstalk

of only 0.2% ± 0.05%. This low value shows that a JBA

frequency separation of 60 MHz is conservative, and therefore

that more qubits could be read out in parallel.

In conclusion, multiplexed JBA readout of transmons has an

excellent intrinsic readout fidelity when shelving is used, and is

compatible with driving and reading transmons in a small qubit

register. Its scalability, limited by the interactions between

JBAs with close frequencies, is still under investigation, but

the present results suggest that reading out a ten-qubit register

is possible.
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