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Résumé en Français 

Etude des propriétés phytothérapeutiques de Viscum album dans le traitement de 

l'inflammation et du cancer: Détermination de ses caractéristiques anti-inflammatoires 

et d'immunostimulation 
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Les mots clés : Viscum album, lectine de gui, cyclo-oxygénases, PGE2, effet anti-

inflammatoire, effet immunomodulateur,  

 

Les préparations de Viscum album (VA), connu sous le nom vernaculaire de gui européen, 

sont fréquemment utilisées en support des traitements anticancéreux, principalement pour 

améliorer la qualité de vie des malades et réduire la croissance des tumeurs. Elles sont 

connues pour exercer des effets anti-tumoraux. Il existe de plus en plus de données 

scientifiques faisant état de liens étroits entre cancer et inflammation. Etant donné que la 

prostaglandine E2 (PGE2) induite par la cyclo-oxygénase 2 (COX-2) joue un rôle clef dans 

l’inflammation, j’ai exploré la régulation du système COX-2-PGE2 par VA et ses 

mécanismes sous-jacents. J’ai montré que VA exerce ses effets anti-inflammatoires en 

inhibant sélectivement l’expression de COX-2 et en diminuant la production de PGE2 qui en 

découle, par le biais d’une déstabilisation de l’ARNm de COX-2. En plus de leurs propriétés 

cytotoxiques, il a été montré que les préparations de VA ont également des effets 

immunostimulants. Les différentes préparations de VA sont hautement hétérogènes du fait de 

leurs compositions biochimiques qui varient selon la récolte, l’espèce de l’arbre hôte et les 

méthodes de préparation qui peuvent influer sur leur efficacité clinique. De ce fait, j’ai réalisé 

une étude comparative sur cinq préparations de VA dans le but d’analyser leurs capacités de 

maturation et d’activation des cellules dendritiques (DC) qui peuvent à leur tour présenter une 

réponse immunitaire anti-tumorale. Les résultats ont montré que parmi les cinq préparations, 

VA Qu Spez induit de manière significative l’activation des DC et la sécrétion de cytokines 

pro-inflammatoires telle que l’IL-6, l’IL-8 et le TNF-α qui induisent la production d’IFN-γ, 

orientant de ce fait la réponse immunitaire vers une réponse Th1. L’orchestration de la 
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fonction des cellules myelomonocytiques est un élément central à l’interface entre 

inflammation et cancer. Il constitue un paradigme expliquant la plasticité et la fonction des 

macrophages. Mon étude met en évidence l’influence de VA Qu Spez sur la polarisation des 

macrophages qui passent d’un état alternatif (M2) à un état dit classique (ou M1). Les 

macrophages M2 sont connus pour polariser les réponses immunitaires Th2, pour participer à 

l’élimination des parasites, pour diminuer l’inflammation, pour promouvoir le remodelage 

tissulaire et la progression des tumeurs et pour avoir des fonctions immunorégulatrices. Les 

macrophages M1 sont impliqués dans la réponse Th1, favorisent la résistance aux pathogènes 

intracellulaires et aux tumeurs et promeuvent des réactions de désagrégation tissulaires. 

L’ensemble de ces résultats permet de comprendre les propriétés anti-inflammatoires et 

immunostimulantes des préparations de VA. Des recherches complémentaires permettront 

d’améliorer les stratégies d’utilisation thérapeutique de VA et son utilisation dans les soins de 

support aux traitements anticancéreux. 
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Abstract in English 

Unravelling the therapeutic intervention of inflammation and cancer by  

Viscum album: Understanding its anti-inflammatory and immunostimulatory properties  

by  

Chaitrali SAHA 

Thesis is presented at the Faculty of Université de Technologie de Compiègne 

for obtaining the degree of  

Doctor of Philosophy (Ph.D.) of the Université de Technologie de Compiègne 

 

Key words: Viscum album, mistletoe lectin, cyclo-oxygenases, PGE2, anti-inflammatory  

effect, immunomodulatory effect, complementary and alternative medicine. 

 

Viscum album (VA) preparations, commonly known as European mistletoe, are frequently 

used as complementary therapy in cancer, mainly to improve quality of life of the patients and 

to reduce the tumor growth. They are known to exert anti-tumoral effects. There is increasing 

evidence of the convoluted connection of cancer and inflammation. As cyclooxygenase-2 

(COX-2)-induced prostaglandin E2 (PGE2) plays a key role in the inflammation, I explored 

the regulation of COX-2-PGE2 axis by VA and underlying mechanisms. I found that VA 

exerts anti-inflammatory effects by selectively inhibiting COX-2 expression and ensuing 

PGE2 production. Inhibition of COX-2 expression implicates COX-2 mRNA destabilisation. 

In addition to their cytotoxic properties, they have also been shown to have 

immunostimulatory properties. Each VA preparations are highly heterogeneous because of 

their chemical composition which varies depending on the time of harvest, species of host tree 

and manufacturing methods, together which might influence clinical efficacy of VA. 

Therefore I performed a comparative study involving five different preparations of VA 

concerning maturation and activation of dendritic cells (DCs) which in turn may manifest 

anti-tumoral immune response. Results showed that among all five preparations, VA Qu Spez 

significantly induces DC activation, secretion of pro-inflammatory cytokines such as IL-6, Il-

8 and TNF-α, enhancing IFN-γ production hence promoting Th1 immune response. The 

orchestration of myelomonocytic cell function is a key element that links inflammation and 

cancer and provides a paradigm for macrophage plasticity and function. My study reveals the 

effect of VA Qu Spez in switching the M2 macrophages which are known to participate in 

polarizing Th2 responses, help with parasite clearance, dampen inflammation, promote tissue 

remodelling and tumor progression and have immunoregulatory functions, towards classically 

activated M1 macrophages which are part of a polarized Th1 response and mediate resistance 
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to intracellular pathogens and tumors and elicit tissue-disruptive reactions. These results 

together should assist in understanding the anti-inflammatory and immunostimulatory 

properties of VA preparations and further research is warranted to improve the therapeutic 

strategies of use of VA and their role as complimentary therapy in cancer. 
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The Immune System 

The immune system is an organization of cells and molecules with specialized functions. 

Immunologic defences in vertebrates comprise of two fundamentally different types of 

responses to invading microbes. Natural or innate responses occur to the same extent even 

after encountering the infectious agent for several times, whereas acquired or adaptive 

immune responses improve upon exposure to a given infection repeatedly. Today these two 

types of immune responses are well appreciated as obligatory part of immune system 

mediating successful immune responses towards infection and tissue injury. The innate 

immunity encompasses the elements of immune system which includes phagocytic cells such 

as neutrophils, monocytes, macrophages, cells which release inflammatory mediators such as 

basophils, mast cells, eosinophils and natural killer cells for immediate host defence. The 

molecular components are complement, cytokines and acute phase proteins. Adaptive 

immunity is triggered when B and T cell receptors encounter antigens and lead to 

proliferation of these antigen-specific cells. With the help of T cells, B cells secrete antigen 

specific immunoglobulins, and then activate macrophages to eliminate intracellular 

pathogens. The innate response hampers normal tissues due to lack of specificity but the 

process is rapid, whereas the adaptive immunity can be precise and flexible but can take 

several weeks to develop and is able to combat the infections which evade the innate immune 

responses (Janeway and Medzhitov 2002). Immune cells are generated from pluripotent stem 

cells in the fetal liver and bone marrow and then circulate throughout the extracellular fluid in 

the body. Within the bone marrow B cells mature, but for T cells they have to travel to the 

thymus to mature. 

Rapid response: Innate Immune System 

The innate immune system is all about the immune defence which lack immunologic 

memory. Thus the main characteristic of this kind of immune system is that it remains 

unaltered even after several times of interactions with the antigen. It is believed that these 

kinds of responses developed earlier in evolution than acquired responses (Delves and Roitt 

2000). The cellular components of the innate immune response are dendritic cells, monocytes, 

macrophages, granulocytes, natural killer cells, even the skin, pulmonary and the gut 

epithelial cells that form the interface between an organism and its specific environment. The 

non-cellular aspects of innate immune system includes complement cascade, which is 

specialised to prevent the entry of pathogens through physical blockade, or destroying the 

pathogens directly bringing them to the attention of phagocytes (Clark and Kupper 2005). The 

immune system has evolved to recognise pathogen-associated molecular patterns (PAMP) 
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common to diverse class of pathogens. PAMPs includes lipopolysaccharides (LPS), aldehyde-

derivatized proteins, denatured DNA, mannans, teichoic acids and bacterial DNA (Medzhitov 

and Janeway 2002). The PAMPS are recognised by conserved proteins pathogen- recognition 

receptors (PRRs) (Janeway and Medzhitov 2002). PRR mediates many steps in inflammation 

which includes phagocytosis, activation of signalling pathways in inflammation, induction of 

cell death, activation of complement cascades etc. Another important pathogen recognition 

receptor is Toll-like receptor (TLR), expressed on innate immune cells, on endothelial cells, 

epithelial cells and fibroblasts (Janeway and Medzhitov 2002), (Schnare, Barton et al. 2001). 

Phagocytes are activated when TLR interacts to their microbial ligands, leading to direct 

killing of pathogens and secrete pro-inflammatory cytokines and anti-microbial peptides 

(Takeda, Kaisho et al. 2003). In addition, these TLRs activate dendritic cells (DCs), thus play 

important role in initiation of adaptive immunity. TLRs trigger NF-κB signalling pathway, 

which masters the switch for induction of inflammation pathway (Takeda, Kaisho et al. 2003). 

Other tissue factors include heat-shock proteins, cytokines, chemokines, extra-cellular matrix 

components, lectins, lipids etc. lead to phagocyte and DC activation which in turn initiates 

adaptive immune response. There are additional components of innate immune system; these 

are anti-microbial proteins such as large proteins like lysozyme and cathepsin G, smaller 

peptides like cathelicidins, defensins, and skin-antimicrobials like dermcidin and psoriasin 

(Ganz 2003), (Madsen, Rasmussen et al. 1991), (Schittek, Hipfel et al. 2001). A central 

feature of innate response is neutrophil recruitment and activation at the infection site to 

eradicate the pathogen (Witko-Sarsat, Rieu et al. 2000). Blood-borne monocyte derived 

macrophages possess receptors like mannose for carbohydrates that are not exposed on 

vertebrate cells, thus become able to discriminate between “foreign” and “self”. Macrophages 

and neutrophils both contain receptors for complement and antibodies, thus enhance 

phagocytosis (Aderem and Underhill 1999). A key cellular component of innate immunity is 

the dendritic cells, the cells which are constantly involved in the endocytosis of the 

extracellular antigens (Bell, Young et al. 1999). Unlike macrophages and neutrophils, 

eosinophils are the only phagocytic cells which are weak in their effect, however only on 

activation they secrete reactive oxygen metabolites and cationic proteins to kill parasites 

(Wardlaw, Moqbel et al. 1995). Basophils and mast cells contains high affinity IgE receptors 

(FcεR) (Kinet 1999). In atopic allergies such as asthma, hay fever, eczema, an allergen bind to 

IgE and cross-links to FcεR and this process further triggers specialized cells which release 

inflammatory mediators such as prostaglandins, histamine and leukotrienes. Natural killer 

cells (NK) remove infected cells in one of the two ways (Biron, Nguyen et al. 1999). First, the 

Fc receptors link NK cells to IgG-coated target cells, and the target cells are destroyed by 
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antibody-dependent cellular cytotoxicity. Second, the killer-activating receptors of NK cells 

recognize different molecules present on all nucleated cells, whereas the killer-inhibitory 

receptors recognize MHC-I present on the surface of all nucleated cells. When the killer-

activating receptors are blocked, the instruction of killing by NK cells is overruled by an 

inhibitory signal (Moretta, Biassoni et al. 1997), (Lanier 1998). 

Adaptable but Dependent Response: Adaptive Immune System 

T and B lymphocytes are the cellular components of adaptive immune system. Flexibility and 

memory are the hallmarks of this acquired immune response. T and B cells involve 

recombination of antigen receptor genes to create unique antigen receptors which recognize 

virtually any antigen, unlike the innate cells. The memory of this system is novel as the B and 

T cells are capable of retaining the encountered antigen for a long time within an organism 

and provide rapid responses to reinfection. The antigen receptors on B cells are the antibodies 

encoded by the heavy and light immunoglobulin (Ig) genes. Antibodies are classified based 

on the isotype of their heavy chains; they are IgM, IgG, IgE. Initially B cells produce 

pentameric IgM, however with the influence of T cell cytokines; B cells undergo isotype 

switching and generate IgG subtypes, IgE or IgA. T cell receptors are never secreted and T 

cells recognize peptides which are generated by proteolytic cleavage of antigens. Thus T cells 

recognize the primary structure of a protein, whereas B cells recognize the tertiary structure. 

The unique feature of T cells is that they can only recognize antigenic peptides when they are 

bound to major histocompatibility complex (MHC)-I/ MHC-II proteins. Cellular cross-talk is 

necessary for adaptive immune response. In response to an antigen, naïve B cells are 

stimulated by CD4+ helper T cells, followed by their proliferation and differentiation. T cells 

require a second signal for their proliferation and differentiation. B and T cells orchestrate the 

adaptive immune response engaging them in a complex dialog. Based on the specific 

functions and migration patterns T cells can be divided into distinct subsets. With the 

expression of the homing receptors L-selectin and CCR7, it is observed that naïve T cells 

recirculate between blood and lymph nodes primarily (Mackay, Marston et al. 1990), 

(Sallusto, Lenig et al. 1999). Memory T cells can be again divided into other two subsets, 

namely central memory T cells and effector memory T cells (Sallusto, Geginat et al. 2004). 

Central memory cells have long lived memory and they primarily travel between blood and 

lymph nodes, may also migrate to peripheral tissues (Campbell, Murphy et al. 2001). In 

contrast, effector memory T cells have short life and they are aggressive in nature, migrate to 

the target tissues and finally neutralize the pathogen (Sallusto, Geginat et al. 2004). CD4+ T 

helper cells comprises of several subtypes, such as Th1, Th-2 and T-regulatory cells (Treg). 
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Th-1 secretes IFN-γ and TNF-β, and is able to activate macrophages and stimulate cytotoxic 

T lymphocytes, thus induces cell-mediated immune response. Th2 cells secrete interleukins 

such as IL-4, IL-5, IL-13 and is capable of activating B cells to generate antibodies, 

specifically IgE, thus induces humoral immune response (Mosmann and Coffman 1989). The 

immune response can be cellular or humoral based on the specific response towards the 

pathogen. Th1 promotes cellular immunity whereas Th2 promotes humoral immunity. In 

some exceptional Th2 autoimmune diseases like lupus, it is found that IFN-γ (Th1 cytokine) 

induces B cell production of IgG2a antibodies (Gavalchin, Seder et al. 1987), (Snapper and 

Paul 1987). Tregs are responsible for self-tolerance, but may interfere with tumor immunity 

(Sakaguchi, Sakaguchi et al. 2001). T cell polarization regulates the adaptive immunity.  

 

Figure 1: The three sentinel cells, Dendritic, Mast, and Macrophages serves protection 

against ingested pathogens.  

 

 

The Bridge between Old and New: Dendritic cells the Key Players 

Dendritic cells are the central players of the immune system and they have the ability to 

stimulate naïve T cells to respond to antigen (Banchereau and Steinman 1998).Dendritic cells 

are capable of loading endocytosed antigenic peptides on both MHC class I and MHC class II 

molecules, and present them to CD8 and CD4 T cells (Rescigno, Citterio et al. 1998), 

(Guermonprez, Saveanu et al. 2003). They develop in the bone marrow and travel to the 
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tissues in an immature state. Dendritic cells undergo maturation when they encounter a 

number of danger signals including PAMP, cytokines and tissue factors (Chain 2003). These 

mature dendritic cells are extremely potent activators of T cells and their response. Dendritic 

cells pass a sequence of signals to responding T cells. The initial signal is the interaction of 

the T cell receptors to the specific antigen and MHC on the surface of dendritic cells and 

decides the specificity of the antigen to response. The next signal is the co-signaling which is 

required for T cells to decide to respond to the antigen. The co-signaling is of two types, co-

stimulation or co-inhibition, which is generally provided by the growing dendritic cells and 

these cells are able to promote a Th1 type of T cells in both mice and humans (Langenkamp, 

Messi et al. 2000), (Boonstra, Asselin-Paturel et al. 2003). The binding of mycoplasma 

derived lipopeptide 2 to TLR-2 (TLR-6 heterodimers) induces dendritic cells to secrete IL-10 

but not IL-12 and these dendritic cells encourage unpolarized T cell responses (Weigt, 

Muhlradt et al. 2003). Schistosomamansoni secretes lysophosphatidylserine which triggers 

TLR2 which in turn stimulates dendritic cells. These stimulated dendritic cells induce T cells 

to adopt a Treg population by secreting IL-10 which is a well-known regulatory cytokine (van 

der Kleij, Latz et al. 2002). The Th2-biased host response arise from the ability of parasitic 

antigens to induce development of type 2 dendritic cells. A glycoprotein, Es-62, from 

Acanthocheilonema, induces formation of dendritic cells of type 2 and in turn helps in the 

development of Th2 T cells (Whelan, Harnett et al. 2000). An increasing number of 

pathogens are being identified which induce regulatory dendritic cells and thus induce 

formation of regulatory T-cell responses. Bordatella pertussis- hemagglutinin and S.mansoni-

lysophosphatidylserine efficiently generates regulatory dendritic cells hence developing 

regulatory T cells (McGuirk, McCann et al. 2002), (van der Kleij, Latz et al. 2002). When T 

cells are primed by activated dendritic cells situated in the gut-associated lymph nodes an up 

regulation of gut-homing adhesion molecules takes place which preferentially send them back 

to this tissue in future (Campbell and Butcher 2002). In summary, dendritic cells provide 

three additional signals to T cells which fine tune the immune response. Innate immune 

response is vital to initiate T cell response and this type of immune response has ability to 

modulate tolerance of T cells to antigens. The dendritic cells which have not received any 

danger signal present antigen to T cells in the absence of co-signaling molecules. This kind of 

T cells can be functionally silenced and become unresponsive to antigens in future (Baxter 

and Hodgkin 2002), (Chen 2004). Dendritic cells are able to form Treg response which is the 

immune suppressive response. Lastly, the innate immune system can hamper tolerance by 

withdrawing the action of Tregs. Thus the innate immune system can induce or suppress 
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tolerance. Dendritic cells are the key players which can link two the innate and the adaptive 

immune responses.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Dendritic cells: Bridge between old and new. (A) Signal one determines antigen 

specificity and consists of interaction of the T cell receptor (TCR) with peptides loaded onto 

dendritic cell major histocompatibility (MHC) molecules. Signal two consists of co-signaling 

and can be either positive, leading to cell activation (co-stimulation) or negative, leading to no 

response (co-inhibition). (B) Signal three involves the polarization of CD4 T cells into Th1, 

Th2, or regulatory T cells. In general, viral-associated PAMP give rise to Th1 responses, and 
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PAMP from parasitic organisms favour Th2 responses. (C) Signal four leads to spatial 

imprinting of T cells, leading to the acquisition of homing receptors that induce selective 

recirculation through the tissue in which antigen was first encountered. (Adapted from Clark 

R, J invest Dermatol, 2005) 

Macrophage Biology in Homeostasis and Disease: Full Spectrum of Macrophage 

Activation 

The orchestration of myelomonocytic cell function is a major step that connects inflammation 

and cancer and sets up a paradigm for macrophage plasticity and function (Biswas and 

Mantovani 2010). One of the hallmarks of adaptive immunity is their ability to mount an 

enhanced immune response after the re-exposure of the same antigen. Similarly, sensing of 

ingested microorganisms by macrophage cells results in their functional stimulation, thus in 

response to phagocytes innate immune system generates a response which follows by a built-

in adaptive response (Bowdish, Loffredo et al. 2007), (Mantovani 2008). Encountering 

microbial components such as lipopolysaccharide (LPS) is known to be a potent activator of 

macrophages (Gordon and Taylor 2005). In response to microbe recognition, macrophages 

produce huge amount of fluid-phase pattern-recognition molecules known as ante- antibodies 

(Bottazzi, Doni et al. 2010). The repertoire of fluid-phase patter-recognition molecules 

includes molecules which belong to ficolin family, collectin family and pentraxin family. 

Pentraxin 3 is characterised to be responsible for the interaction of cellular and humoral arms 

of innate immunity (Jeannin, Bottazzi et al. 2005). 

Considering the Th1 and Th2 polarization, two distinct subtypes of polarized macrophages 

are identified: the classically activated macrophages-M1 and the alternatively activated 

macrophages-M2 (Gordon and Taylor 2005), (Mantovani, Sozzani et al. 2002). IFN-γ or LPS 

polarize macrophages towards M1, whereas M2 polarization was discovered as an original 

response to Th-2 cytokine IL-4 (Stein, Keshav et al. 1992). M2 macrophages are prone to 

phagocytosis. They are characterized by high expression of scavenging, mannose and 

galactose receptors. Through arginase pathway they produce ornithine and polyamines. M2 

macrophages express high level of IL-10 and low level of IL-12 (Gordon and Taylor 2005), 

(Mantovani, Sozzani et al. 2002), (Mantovani 2008). These M2 phenotypic macrophages 

polarize Th2 response, suppress immune response, dampen inflammation, clear pathogens, 

promote tissue remodelling, and supports tumor growth. In contrast, M1 macrophages exerts 

cytotoxic effect towards ingested microorganisms and cancer cells, thus characterized as the 

professional antigen presenting cells enhancing immune response and promoting tumor 

regression. M1 and M2 macrophages have distinct functions and chemokine profile. M1 

expresses CXCL9 and CXCL10 which are Th1 cell-attracting chemokines, whereas M2 
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expresses CCL17, CCL22, CCL24 (Martinez, Gordon et al. 2006). Th1 cells can drive M1 

macrophage polarization by producing IFN-γ. The M1 cells release large amount of pro-

inflammatory cytokines such as IL-12, IL-23 and tumor necrosis factor (TNF). They are 

characterized by higher expression of MHCII, co-stimulatory molecules, secretion of reactive 

nitrogen intermediates, reactive oxygen species, elevated capacity of antigen presentation and 

tumoricidal activity (Gordon and Taylor 2005), (Mantovani 2008). M1 macrophages through 

their secreting cytokines and chemokines recruit Th1 cells, amplify them and promote a Th1 

immune response. Th2 cell-derived IL-4 and IL-13 directs M2 polarization during helminth 

infection (Loke, Nair et al. 2002), (Raes, Brys et al. 2005). M2 macrophages support 

angiogenesis and  lymph agiogenesis by releasing several pro-angiogenic factors like EGF, 

VEGFA, VEGFC and IL-8 (Mantovani, Sozzani et al. 2002), (Schmidt and Carmeliet 2010), 

(Lin, Li et al. 2006), (Murdoch, Muthana et al. 2008). Macrophages act as „cellular 

chaperones‟ which help in the fusion of endothelial tip cells and participate in vascular 

sprouting (Fantin, Vieira et al. 2010), (Schmidt and Carmeliet 2010). 

Cancer serves as a major paradigm of macrophage diversity and plasticity (Mantovani, 

Sozzani et al. 2002), (Biswas, Sica et al. 2008), (Lewis and Pollard 2006). Macrophages from 

metastatic mouse and human tumors are of M2 phenotype (Pucci, Venneri et al. 2009), (Sica 

and Bronte 2007). In the tumor microenvironment, macrophages are characterized by shoeing 

low level of IL-12 and high level of IL-10, show impaired expression of nitrogen and oxygen 

intermediates, low antigen presentation and tumoricidal activity, and inducing expression of 

several angiogenic component (Biswas, Gangi et al. 2006), (Hagemann, Lawrence et al. 

2008), (Torroella-Kouri, Silvera et al. 2009), (Sierra, Corso et al. 2008), (Loges, Schmidt et 

al. 2010). Tumor cells entertain their interactions with macrophages by escaping phagocytosis 

(Jaiswal, Jamieson et al. 2009) and by encouraging M2 polarization via chemokines and 

cytokines such as CCL2 (Roca, Varsos et al. 2009), MSF, TNF, IL-10, TGF-β (Solinas, 

Schiarea et al. 2010), (Mantovani, Allavena et al. 2008), (Hagemann, Wilson et al. 2006). 

Strong genetic evidence suggests that Th2 derived IL-4 and IL-13 can activate M2 and their 

protumoral function. In mammary carcinoma, Th2 derived cytokines IL-4 and IL-13 induce 

polarization of tumor associated macrophages (TAMs) M2, hence promote tumor growth. In 

contrast it has been shown that blocking of IL-4 or IL-4Rα diminishes lung metastasis, which 

correlates with lower expression of Arg 1 and Tgfb 1 (M2 genes) but higher expression of IL-

6, NOS2, IL12a (M1 genes) by TAM‟s. The M2 pro-tumoral phenotype of TAMs in cancer is 

reversible (Saccani, Schioppa et al. 2006), (Stout, Watkins et al. 2009). IFN-γ abrogates level 

of TAMs in vitro (Duluc, Corvaisier et al. 2009). M1 or the classically activated macrophages 

eliminate cancer cells and elicit tumor destructive properties (Schmidt and Carmeliet 
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2010).Activation of TLR9 by its ligand CpG together with IL-10, switches TAMs from M2 

towards M1 phenotype (Guiducci, Vicari et al. 2005). Notch signalling in macrophages 

supports anti-tumor activity by promoting M1 phenotype (Wang, He et al. 2010). TAM 

infiltration is a favourable prognostic indicator of classical macrophage activation (Galon, 

Costes et al. 2006). The ability of macrophages to profoundly reprogram their functions 

smudges the difference between innate and adaptive response.  

 

 
Figure 3: The orchestration of macrophage activation and polarization by lymphoid 

cells. (a) M1-polarized macrophages and their crosstalk with Th1 and NK cells. (b) M2 

polarization of macrophages driven by Th2 cells, basophils and innate lymphoid cells through 

their secretion of IL-4, IL-13 or IL-33. (Adapted from Biswas, S. K., Nat Immunol, 2010) 

 

 

T cell Polarization and Th cell Subsets 

Human CD4+ T cells are critical regulators of immune system. CD4+ T cells are highly 

heterogeneous in human adults as they are generated in response to different pathogens and 

they are increasing in number of various subsets with specialized functions (Geginat, Paroni 

et al. 2013). Helper T cells are defined on basis of the cytokines and/or the expression of 

characteristic lineage-defining transcription factors. Five principal subsets of CD4+ T cells 

have been identified so far: T helper (Th) 1, Th2 and Th17 cells which are specialized 

pathogen targeting cells (Mosmann and Coffman 1989), (Romagnani 1997), (Korn, Oukka et 

al. 2007), regulatory T cells (Treg) involved in self-tolerance (Sakaguchi 2005) and the 

follicular helper T cells (TFH) which help in antibody production along with B cells (Crotty 

2011). As naïve T cells have stem cells like properties, they can differentiate into virtually 
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any type of the above mentioned effector, memory or regulatory cells (Geginat, Paroni et al. 

2014).  

Th1 and Th2 effector T cells: The Tip of the Iceberg 

Dendritic cells by producing IL-12, activate uncommitted naïve T cells, (Shortman and Heath 

2010), (Nizzoli, Krietsch et al. 2013) which upon activation shows IFN-γ producing capacity. 

These types of T cells are called as Th1 which are induced upon encounter of intracellular 

pathogens like bacteria or viruses and are able to activate macrophages to eliminate 

intracellular bacteria. In contrast, in presence of IL-4, naïve T cells are primed to produce 

several cytokines like IL-4, IL-5, IL-10 and IL-13, but not IFN-γ. These types of T cells are 

called as Th2 cells and fight against extracellular parasites like helminths, and also involved 

in allergies (Robinson, Hamid et al. 1992). The capacity to produce either IFN-γ or IL-4 is 

permanently imprinted by epigenetic modifications like DNA methylation and histone 

acetylation (Kanno, Vahedi et al. 2012), (Allan, Zueva et al. 2012). The “master” transcription 

factors T-bet and GATA-3 are involved in generating Th1 and Th2 cells and they inhibit 

differentiation of alternative lineage.  

FOXP3+ Treg cells 

These cells are required for self-tolerance. They were first identified in mice (Sakaguchi, 

Sakaguchi et al. 1995), and then in humans (Stephens, Mottet et al. 2001). Foxp3 transcription 

factor is required for their production (Hori, Nomura et al. 2003), (Fontenot, Rasmussen et al. 

2005). Natural/ thymic FoxP3 Tregs become regulatory upon maturation in the thymus 

(Sakaguchi, Ono et al. 2006), whereas the adaptive/peripheral FoxP3 Tregs can be matured 

with influence of TGF-β from mature CD4+Th cells (Fantini, Becker et al. 2006), (Tran, 

Ramsey et al. 2007). In humans CD45RA+CD25+FoxP3+ cells indicate bona fide „naïve‟ thus 

the thymus derived Tregs, whereas CD45RA-CD25+FoxP3+ cells represent an antigen-

experienced thymic/peripheral mixed Treg population (Hoffmann, Eder et al. 2006). Stability 

of FoxP3+ cells is always debated (Hori 2011). Tissue microenvironment is responsible for 

Treg functions. Tregs are capable of suppressing the Th cell lineages in mice, which are 

characterized to induce several transcription factors (Sawant and Vignali 2014). STAT3 

expression in Tregs is required to suppress Th17 cells (Chaudhry, Rudra et al. 2009), IRF4 to 

suppress Th2 (Zheng, Chaudhry et al. 2009) and BCL-6 to suppress TFH (Linterman, Pierson 

et al. 2011), (Chung, Tanaka et al. 2011). Stimulation with IL-12 insists FoxP3 Tregs to 

produce T-bet and IFN-γ in turn controls Th1 responses (Kleinewietfeld and Hafler 2013), 

(Sawant and Vignali 2014). These cells have cytotoxic properties in tumor-draining lymph 
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nodes in mice (Boissonnas, Scholer-Dahirel et al. 2010) and are able to inhibit anti-tumor 

CTL responses (Antony, Piccirillo et al. 2005).  

Th17 cells 

They are characterized by an independent differentiation lineage (Park, Li et al. 2005), 

(Harrington, Hatton et al. 2005), (Park, Li et al. 2005) and they express the lineage-specific 

transcription factor ROR-γt in mice and RORC2 in humans (Ivanov, McKenzie et al. 2006), 

(Unutmaz 2009). Th17 cells are important to eliminate extracellular bacteria and fungi as it is 

reported that Th17 lacking patients suffer from unhittable infection with Candida albicans (C. 

albicans) and Staphylococcus aureus (Ma, Chew et al. 2008). It was known that IL-12p40 and 

IL-12Rβ1 hetero-dimerize with respective IL-12p35 and IL-12Rβ2 to induce Th1 responses, 

but later it was demonstrated that they can also hetero-dimerize with respective IL-23p19 and 

IL-23R to initiate Th17 cells (McKenzie, Kastelein et al. 2006). TGF-β indirectly favours 

Th17 cell differentiation by inhibiting Th1 development (Santarlasci, Maggi et al. 2009). In 

absence of TGF-β1 (Acosta-Rodriguez, Napolitani et al. 2007), (Cosmi, De Palma et al. 

2008), (Ghoreschi, Laurence et al. 2010) or in presence of TGF-β3 in mice (Lee, Awasthi et 

al. 2012), pathogenic Th17 cells are produced which secrete both IL-17 and IFN-γ both. In 

this situation, Th1/Th17 cells co-express RORC2 and T-bet, are predominantly present in 

autoimmune patients and are specific for both Th1 and Th17-inducing pathogens (Zielinski, 

Mele et al. 2012), (Duhen and Campbell 2014). Ex-vivo isolated human Th17 cells possess 

stable epigenetic marks at cytokine and transcription factor loci (Cohen, Crome et al. 2011), 

suggesting in vivo generated human Th17 cells are stable. It was identified that a rare 

population of human T cells simultaneously produces IL-4 and IL-17 (Cosmi, Maggi et al. 

2010) and these cells were highly pro-inflammatory in allergic asthma. Th17 cells are highly 

heterogeneous and characterized by their ability to produce various effector cytokines such as 

Il-22 which promotes epithelial proliferation and barrier function (Zenewicz and Flavell 

2008), IL-26 which is a pro-inflammatory cytokine and  not expressed in mice (Dambacher, 

Beigel et al. 2009), IL-21 which inhibits GM-CSF and IFN-γ and promotes IL-10 secretion in 

developing Th17 cells (Peters, Lee et al. 2011). 
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Figure 4: CD4+ T cell differentiation. Naïve T cells upon activation can differentiate into 

specific lineage based on the cytokine milieu in the local environment. IL-12/IFN-γ promotes 

Th1; IL-4/IL-2 promotes Th2; TGFβ, IL-6, IL-21, IL-23 promotes Th17 and TGF-β/IL-2 

promotes Tregs. These T cell lineage express specific set of transcription factors and 

cytokines which are crucial for effector function in host defense as well as in immune-

mediated disease. (Adapted from O‟Shea and Paul, 2010, Science) 

 

 

Immunologic Dysfunction  

A specialized controlled protection against the invading pathogens and cancer is served by a 

co-ordinated crosstalk between multi-component systems of innate and adaptive immunity. 

Immune system accomplishes dual faceted mechanism to perform this regulatory function. 

One hand, it serves protection to our body by fighting against infection and malignancies 

while on the other it can be deceitful, in attacking self-tissues and cells to produce devastating 

pathologies, and even more dangerous fatal autoimmune diseases (Matzinger 1994). Thus, 

any kind of misdirected or inappropriate immune responses lead to a number of human 

diseases. A hyperactive or undesirable immune response can lead to various immunological 

disorders like allergy, autoimmune disease and graft rejection in transplantation while 

insufficient or deprived immune response can be associated with immunodeficiency, chronic 

infections or cancer. The concept of recognising and eliminating primary developing tumors 

by immune system in absence of external therapeutic intervention has existed for nearly 100 

years. However, it has been difficult to validate this concept. An accumulation of mutational 
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and epigenetic changes leads to cellular transformation and tumor development which pre 

dominantly alters normal cell growth and survival pathways (Smyth, Dunn et al. 2006). 

Cancer Despite. Immunosurveillance: Means of Immunoselection and 

Immunosubversion 

Numerous innate and adaptive immune effector cells and molecule exert important roles in 

recognising and eliminating cancer cells and this phenomenon is known as 

immunosurveillance. But in some cases cancer cells escape such immunosurveillance by two 

processes, i.e. Immunoselection: outgrowth of poorly immunogenic tumor cell variants and 

Immunosubversion: subversion of immune system (Zitvogel, Tesniere et al. 2006). Cancer is 

a serious manifestation of misdirected immune system, which results in failure of recognising 

the transformed cells and their killing by immune attack. According to Hannahan and 

Weinberg, tumor is characterized by six hallmarks (Hanahan and Weinberg 2000) and 

conceptual progress in the last decade has added few more emerging hallmarks (Hanahan and 

Weinberg 2011). Together they are as follows: 1) sustaining proliferative signalling, 2) 

evading the growth suppressors, 3) avoiding immune destruction, 4) limitless growth 

potential, 5)promoting inflammation, 6) an unusual ability to invade surrounding tissues and 

metastasize to distant organs 7) ability to sustain angiogenesis, 8) genome instability and 

mutation, 9) resisting cell death, and 10) deregulating cellular energetic. 
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Figure 5: The hallmarks of cancer. (Adapted from Hanahan and Weinberg, Cell, 2011) 

 

 

A key question in cancer immunology is whether recognition of tumor antigens by immune 

system leads to activation known as surveillance or tolerance. The fundamental processes of 

cancer progression are tissue invasion and metastasis, which are pro-inflammatory and thus 

activates innate and adaptive anti-tumor immunity (Pardoll 2003). 

Immunosurveillance actively involves lymphocytes which act as sentinels in recognizing and 

eliminating continuously arising, nascent transformed cells (Shankaran, Ikeda et al. 2001). 

The fundamental of immune surveillance is that tumor arises with similar frequency to 

infection with pathogens and the immune system acts constantly by recognizing and 

destroying these tumors based on their expression of tumor-associated antigens (TAAs) 

(Pardoll 2003). Both spontaneously arising and chemically stimulated tumors show diverse 

properties, with some being rejected efficiently which are known as regressor-tumors and 

some progressively growing known as progessor-tumors. Cancer immunosurveillance appears 

to be an important host protection process that inhibits carcinogenesis and maintains regular 

cellular homeostasis. The recognitions that immune system plays a dual function in the 

complex interactions between tumors and the host defined a refinement of cancer 

immunesurveillance into “cancer immunoediting” (Dunn, Old et al. 2004). Gavin P Dunn 

http://en.wikipedia.org/wiki/Carcinogenesis
http://en.wikipedia.org/wiki/Homeostasis
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reported 3 Es of cancer immunoediting called elimination, equilibrium and escape. These 

effector immune cells employ extremely diverse mechanisms to control tumor targets 

including the induction of tumor cell death by mitochondrial and cell death receptor 

pathways. Tumors not only can survive and disseminate, but also, more importantly, they can 

mimic some of the signalling pathways of the immune system to propagate conditions that 

favour tumor immune tolerance thereby escaping the tumor immunity.  

The immune response to tumors includes NK-cell activity, CTL-mediated lysis, macrophage-

mediated tumor destruction, and ADCC mediated destruction (Smyth, Thia et al. 2000), 

(Girardi, Oppenheim et al. 2001). Several cytotoxic factors, including TNF-α, TNF-β and 

IFN-γ mediate tumor-cell killing (Kaplan, Shankaran et al. 1998). By modulating their tumor 

antigens, reducing expression of class I MHC molecules, and by antibody mediated or 

immune complex-mediated inhibition of CTL activity, tumors may evade the immune 

response. Both innate and adaptive immune systems play an important role in cancer immune 

editing. Recent investigate several models for the role of innate immunity in recognition and 

elimination of malignant cells, where innate immune cells can sense transformed cells 

through expression of molecules up-regulated during the process of malignant transformation 

and tumor progression (Vesely, Kershaw et al. 2011). With respect to the self and non-self 

paradigm, two types of receptors on innate immune cells namely toll-like receptors (TLR) and 

the NKG2D receptor play an important role. Toll-like receptors expressed by APCs recognize 

non-self-molecules, e.g., pathogen-associated molecular patterns (PAMPS) such as bacterial 

cell wall structures and viral polynucleotides. However NKG2D receptor of lymphocytes 

recognizes self-ligands expressed by cancer cells. The discovery of self-innate immune 

receptors that are involved in activation of the innate and adaptive immune system results in 

reconsideration of the framework of "evolution of an immune system to recognize foreign". T 

cells, NK cells, and NKT cells express NKG2D receptors (Diefenbach, Jensen et al. 2001). 

Ligands for NKG2D receptors include major histocompatibility complex (MHC) class I chain 

related (MIC) A and MIC B on human cells. Ligands that are induced only in the context of 

malignancy are not recognized by innate immune cells, but recognize ligands that are up-

regulated by non-malignant cells during oxidative stress, heat shock, altered cell cycle 

regulation, and viral or bacterial infection (Zafirova, Wensveen et al. 2011). 

Immune reactions can also potentially promote cancer development and growth. Chronic 

inflammatory responses, a feature of innate immunity, can contribute to the development of 

cancer. Additionally, the activation of immune cells places these cells at risk for cancer. For 

example, the activation B lymphocytes require various DNA modifying activities, errors in 



29 
 

which can result in molecular lesions (oncogene mutation, chromosomal translocations) that 

lead to cancer.  

As there are „3E‟s suggested by Gavin P. Dunn, existing in cancer editing as follows E1: 

elimination, E2: equilibrium, E3: escape, there are even „3S‟s exists suggested by Weiping 

Zou, which includes 3 therapeutic strategies they are S1: subversion of tolerizing conditions 

S2: supplementation of immune elements and S3: suppression of tumor angiogenesis and 

growth. 
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Figure 6: Cancer immunosurveillance and immunoediting. (Adapted from Matthew D 

Vesely, 2011) 
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Inflammation 

Inflammation is an adaptive immune response which is triggered by noxious stimuli such as 

infection and tissue injury. At a basic level, infection or tissue injury triggers acute 

inflammatory response which recruits co-ordinated delivery of plasma and leukocytes. 

Receptors of innate immune response such as Toll-like receptors (TLRs) and nucleotide-

binding oligomerization-domain protein (NOD) like receptors (NLRs) are involved in this 

kind of response (Barton 2008). Tissue resident macrophages and mast cells recognize the 

infection and lead to production of various inflammatory cytokines and mediators to elicit an 

inflammatory response and then the plasma proteins and leukocytes mainly neutrophils which 

are restricted to the blood vessels gain an access to the extravascular tissues at the infection 

site (Medzhitov 2008). Neutrophils release toxic contents of their granules such as reactive 

oxygen species (ROS) and reactive nitrogen species (RNS) cathepsin G, proteinase 3 and 

elastase (Nathan 2006). The switch in lipid mediators from pro-inflammatory prostaglandins 

to anti-inflammatory lipoxins is important for converting inflammation to resolution. If the 

acute inflammatory response fails to destroy pathogen the inflammatory process persists. 

During infection infiltration of neutrophil is replaced by macrophages and T cells. If 

macrophages and T cells are not sufficient to confer the effect then a chronic inflammation 

state ensues which includes formation of granulomas and tertiary lymphoid tissues (Drayton, 

Liao et al. 2006). Autoimmune response can cause chronic inflammatory condition.  

Inflammatory Pathway 

There are two important participants in process of inflammation, inducers and mediators. 

Inducers are the signals that initiate inflammation by activating specialized sensors, hence 

production of mediators, whereas mediators are responsible for altering the functional states 

of tissue and organs which are the effectors of inflammation.  
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Figure 7: The Inflammatory Pathway. a) Inflammatory pathway consists of inducers, 

sensors, mediators and effectors. b) Further classifications of the inflammatory pathway. 

(Adapted from Medzhitov R, Nature, 2008) 

 

 

Inducers can be exogenous or endogenous. Exogenous inducers are classified in two groups: 

microbial and non-microbial. There are two classes of microbial inducers: PAMPs and 

virulence factors. Non-microbial exogenous inducers of inflammation include allergens, 

irritants, toxic compounds and foreign bodies. Endogenous inducers of inflammation are the 

signals which are produced by stressed, damaged, malfunctioning tissues. A plasma-derived 

regulator of inflammation, the Hageman factor (factor XII) activates in contact with collagen 

and other components of extracellular matrix and upon activation they act as a sensor of 

vascular damage and initiates the four proteolytic cascades that generate inflammatory 

mediators: the kallikrein-kinin cascade, the coagulation cascade, the fibrinolytic cascade and 

the complement cascade (Majno 2004). 

Mediators are produced by inducers of inflammation and they are the downstream effectors of 

inflammatory pathway. These mediators are mainly involved in vasculature and in recruiting 

leukocytes. They are derived from plasma proteins or they are secreted by cells. Based on 

their biochemical properties inflammatory mediators can be classified into seven groups: 

vasoactive amines, vasoactive peptides, fragments of complement components, lipid 

mediators, cytokines, chemokines and proteolytic enzymes (Majno 2004).  

http://www.ncbi.nlm.nih.gov.gate2.inist.fr/pubmed/?term=Medzhitov%20R%5bAuthor%5d&cauthor=true&cauthor_uid=18650913
http://www.ncbi.nlm.nih.gov.gate2.inist.fr/pubmed/?term=Medzhitov%20R%5bAuthor%5d&cauthor=true&cauthor_uid=18650913
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The effectors of inflammatory response are the tissue and cells, the functional states of these 

effectors are affected by the mediators of inflammatory pathways. Generally an inflammation 

response is presumably engaged whenever tissue malfunctions are detected. Whatever is the 

cause of inflammation, its purpose is to sequester the source of irritation, to allow the host to 

adapt to the unusual environment, and ultimately, to restore the function and homeostasis to 

the tissue.  

 

Figure 8: Steps of the inflammatory immune response. 

 

 

Inflammation and Cancer: Two Faces of Same Coin 

The functional relationship between inflammation and cancer is nothing new. In 1863, 

Virchow hypothesized the origin of cancer was at the sites of chronic inflammation (Balkwill 

and Mantovani 2001). Inflammation responses orchestrate tumor development at different 

stages, including initiation, promotion, malignant conversion, invasion, and metastasis. 

Proliferating cells that sustain DNA damage and mutagenic assault continue to proliferate in 

inflammatory condition that supports their continuous growth. In other word tumors act as 

wounds that fail to heal (Dvorak 1986). Epidemiological evidence indicates a reflexive 

relation between inflammation and a predisposition for the development of cancer, i.e., long-

term inflammation can cause dysplasia. Nearly 15% of the world wide cancer cases are 

associated with microbial infection (Kuper, Adami et al. 2000). In the middle of 19th century 

Virchow first observed that many tumors for which infection is not the predisposing factor as 
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in mammary adenocarcinoma, show a lymphophoreticular infiltrate. This type of tumors have 

activated macrophages and fibroblasts,  in addition to a gene expression profile with an 

inflammatory signature (Rakoff-Nahoum 2006). To prevent familial adenomatous polyposis 

(FAP), non-steroidal anti-inflammatory drugs (NSAIDs) are used and with the use of these 

drugs role of inflammation came up (Ulrich, Bigler et al. 2006). Thus cancer and 

inflammation are linked by epidemiological, histopathological, and inflammatory profiles.  

Inflammation Can Cause Cancer 

The chronic inflammatory states associated with infection and irritation can result in tumor 

initiation. During the process of fight against microbial infections reactive oxygen 

intermediates (ROI), reactive nitrogen intermediates (RNI), are produced which leads to 

oxidative damage and nitration of DNA bases which in turn increases the risk of DNA 

mutation (Hussain, Hofseth et al. 2003). Under physiological condition, inflammation 

mediates tissue repair, but as an extension it may play a contrasting role in providing survival 

and proliferative signals to the tumor initiated cells, thus promoting tumor progression. The 

Wnt/β-catenin pathway plays a role in both in maintaining the steady state proliferative 

compartment as well as in tumorigenesis of tissues (Beachy, Karhadkar et al. 2004). Thus, in 

the presence of initiation and both tissue injury and massive cell death, inflammatory response 

activates which leads to tumor promotion. 

Cancer Can Cause Inflammation 

Coussens and Hanahan have described that tumor growth is biphasic (Coussens, Raymond et 

al. 1999). In the first phase body treats tumor as wounds. This phase is indicated as 

physiological tissue repair phase. In the later phase the pro-inflammatory factors like MMPs 

are under control of tumor themselves (Lin and Karin 2007). A similar transition in the 

regulation of inflammatory response by early vs late tumors may be at hand in spontaneous 

intestinal tumorigenesis in both mice and in humans. Playing a critical role in tumor growth, 

inflammatory response can even have a role in tumor progression by mediating angiogenesis. 

Cancer and Inflammation: Friend or Foe? 

It is the expression of various immune mediators and modulators and the abundance and 

activation of different cell types in the tumor microenvironment that decides in which 

direction the balance is favored and whether tumor-promoting inflammation or antitumor 

immunity will ensue (Smyth, Dunn et al. 2006). Surgery, chemotherapy and radiation are the 

cancer treatments which cause local or systemic inflammation triggered by tissue injury and 

cancer cell death. Surgery leads to an activation of infection-related pathways, whereas radio 
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and chemotherapy results in cancer cell death mostly through necrosis which is a pro-

inflammatory form of cell death (Vakkila and Lotze 2004). In case of more conventional 

chemotherapy, therapy induced inflammation has been found to stimulate antigen 

presentation by tumor-infiltrating dendritic cells and results in activation of adaptive anti-

tumor immunity by producing several cytokines (Apetoh, Ghiringhelli et al. 2007), (Zhang, 

Bowerman et al. 2007). Therapy induced anti-tumor immunity is noticed in some of the drugs 

like doxorubicine, etoposide but not with others (Ghiringhelli, Apetoh et al. 2009). These 

drugs eliminate infiltrating immune and hematopoietic stem cells, which are essential immune 

function, thus therapy induced antitumor immunity requires small doses of chemotherapy to 

be effective to escape immunosuppression.  

 

 

Figure 9: Types of Inflammation in Tumorigenesis and Cancer. (Adapted fromKarin M. 

et al., Cell, 2010) 

 

 

Cancer Immunotherapy: Current Paradigm  

Since the turn of the century, scientists have tried to understand the interactions between the 

immune system and cancer cells so that the anti-tumor immunity could be amplified as a 

mean of cancer therapy. Tumor immunotherapy is emerging by use of several 

immunomodulatory strategies such as inhibiting immune suppressors or regulatory T cells 

(Tregs), paralysed APC, suppressive cytokines like TGF-β, and blocking the signalling events 

which encourage the suppressive phenotype(Gajewski, Meng et al. 2006). Dendritic cells 

http://www.ncbi.nlm.nih.gov.gate2.inist.fr/pubmed/?term=Karin%20M%5bAuthor%5d&cauthor=true&cauthor_uid=20303878
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vaccination can induce immunological as well as clinical responses in cancer patients (Nestle, 

Banchereau et al. 2001). One of the primary goals of cancer vaccines is to target the 

immunizing antigens to specific bone marrow derived APCs (Hahn and Weinberg 2002). 

Recent discoveries show that tumors actively fight back by producing several 

immunosuppressive factors such as IL-10 (Salazar-Onfray 1999), (Moore, de Waal Malefyt et 

al. 2001), TGF-β (Gajewski, Meng et al. 2006), (Li, Wan et al. 2006), (Liu, Wong et al. 

2007), and VEGF (Gabrilovich, Chen et al. 1996). Agents blocking VEGF, prostaglandins, 

and estrogen which are the probable contributor of Treg differentiation and/or function in 

some tumors therefore be therapeutically beneficial through Treg depletion (Curiel 2007). 

Another promising immunomodulatory approach is to enhance the stimulators of the immune 

system, like pro-inflammatory cytokines such as IL-2, IFN-γ, IL-12, stimulating the dendritic 

cells (Liu 1998, Pardoll 1998), which can further drive the immune response towards a 

specific cytotoxic T cell functioning and activation of NK cells (Rosenberg, Spiess et al. 

1986), (Hahn and Weinberg 2002).  

Inflammation and cancer, which share several signalling pathways and regulatory 

mechanisms and the interplay between these two systems, have clearly shown the 

involvement of inflammatory processes in malignant disease (Vendramini-Costa and 

Carvalho 2012), (Servais and Erez 2013), (Kundu and Surh 2012), (Sethi, Shanmugam et al. 

2012). This is an attractive target for an important immunotherapeutic approach for cancer 

therapy, suggesting that the inflammatory cells and inflammatory mediators in the tumor 

microenvironment may be targets for treatment or prevention, and therefore anti-

inflammatory drugs may be useful in cancer prevention and treatment (Balkwill and 

Mantovani 2010). Considering crucial role of inflammatory mediators and the regulators of 

chronic inflammation in tumor development and in generating an inflammatory tumor 

microenvironment, anti-inflammatory therapeutics play a promising role in designing efficient 

therapeutic strategies which can be used in the treatment of malignant diseases and vice versa. 

Therefore the therapeutics with anti-tumor properties can be used in inflammatory conditions 

and those with anti-inflammatory properties can be used for the treatment of cancer. 

Importance of cyclo-oxygenases and COX-derived prostaglandins in Cancer and in 

Inflammation 

Cyclooxygenases (COXs), also known as prostaglandin-endoperoxide synthase (PTGS) are 

the enzymes that regulate the biosynthesis of an important family of biological mediators 

called prostanoids such as prostaglandins, prostacyclin and thrombaxane. They catalyse the 

first two biochemical reactions in the conversion of arachidonic acid (AA) into prostanoids.  
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There are several reports suggesting that cyclooxygenases and cyclooxygenase-derived 

prostaglandins are actively involved in cancer as well as inflammation. A range of human 

tumors express high levels of cyclooxygenase-2 (COX-2) (Shono, Tofilon et al. 2001), (Wolff, 

Saukkonen et al. 1998), (Joki, Heese et al. 2000). COX-2 promotes prostaglandin E2 (PGE2) 

production in the tumor microenvironment and this PGE2 in turn suppresses DC 

differentiation and function (Sombroek, Stam et al. 2002), (Akasaki, Liu et al. 2004). COX-2 

inhibitors are able to suppress human tumor growth in mice (Leahy, Ornberg et al. 2002). 

Overexpression of the pro-inflammatory mediator COX-2 is a common characteristic of 

several pre-malignant and malignant cases involving organs like bladder, colon, breasts, lungs, 

prostate, stomach (Zitvogel, Tesniere et al. 2006).  Chemotherapeutic effect in colon cancer 

has been achieved by inhibiting COX-2. COX-2 results in over production of PGE2 which is 

thought to have a major role in promoting angiogenesis, through induction of VEGF (Brown 

and DuBois 2005). Moreover COX-2 and prostanoids especially PGE2, suppress anti-tumor 

immunity by suppressing macrophage-mediated or T cell-mediated tumor destruction by 

polarizing the balance of T helper cell responses towards Th2 cell responses. In lung cancer 

selective inhibition of COX-2 is able to restore the tumor-induced imbalance between IL-10 

(Th2 cytokine) and IL-12 (Th1 cytokine) in mice (Stolina, Sharma et al. 2000) and even can 

restore paralysed mononuclear-cell function in head and neck cancer patients (Lang, Lauffer et 

al. 2003). In inflammatory setting, the inducible form of cyclooxygenase, i.e., COX-2 is 

detected in a variety of cells, resulting in high amount production of pro-inflammatory and 

cytotoxic PGs, playing an important role by enhancing the blood flow to the healing area of 

injured tissues. Unfortunately release of PGs by inducible isoforms of COX is associated with 

several diseases. Arachidonic acid is metabolized by cyclooxygenases (COX1 and COX-2) to 

form eicosanoids which produce prostaglandings and these prostaglandins in turn cause 

vasodilation. PGE2 is hyperalgesic and a potent inducer of fever (Higgs, Moncada et al. 

1984). 
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Figure 10: Prostaglandin synthesis from arachidonic acid by cyclo-oxygenases. (Adapted 

from G. Tim Bowden, Nature Reviews Cancer, 2004) 

 

 

Cyclooxygenases: Structural and Functional Insights 

Cyclooxygenase (COX) also known as prostaglandin H synthase is the key enzyme required 

for conversion of arachidonic acid (AA) to prostaglandins (PGs). Among three isoforms of 

this enzyme, cyclooxygenase-1 (COX-1) is constitutively expressed in many tissues and they 

participate in tissue homeostasis, whereas cyclooxygenase 2 (COX-2) induced by pro-

inflammatory cytokines, tumor promoters, oncogenes, and growth factors (Vane, Bakhle et al. 

1998), (Dubois, Abramson et al. 1998), (Crofford 1997). Recently identified another isoform 

COX-3, exhibits the catalytic features of COX-1 and COX-2 (Chandrasekharan, Dai et al. 

2002).  Human COX-1 and COX-2 are homodimers and they are of 576 and 581 amino acids 

respectively. Both the enzymes contain three high mannose oligosaccharides, one of which is 

able to fold proteins. Only COX-2 contains the fourth oligosaccharide which regulates its 

degradation. There is around 60% homology in the structure of COX-1 and COX-2. Each 

subunit of the dimer is having three domains, residues 34-72: the epidermal growth factor 

domain, residues 73-116: the membrane binding domain, and the catalytic domain. This 

catalytic domain comprises the most of the protein containing the cyclooxygenase and 

peroxidase function on either side of heme prosthetic group (Smith, DeWitt et al. 2000), 

(Rouzer and Marnett 2003), (Mbonye, Yuan et al. 2008).  
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COX-1 is constitutively expressed in resident inflammatory cells, and studies confirm their 

role in multiple inflammatory models. COX-2 plays a major role in resolution of inflammatory 

response that is necessary for healing of gastric ulcers (Rouzer and Marnett 2009). Ulceration 

is observed with a combination of COX-1 and COX-2 inhibitors, suggesting reduction in 

global PGs is more important than inhibiting a specific COX. Studies with COX-2 knockout 

mice demonstrate the homeostatic role of this enzyme. Genetic deletion of COX-2 caused a 

severe dampening of development of postnatal kidney and female knockout mice are no more 

fertile due to impaired ovulation and embryo implantation (Lipsky, Brooks et al. 2000), 

(Langenbach, Loftin et al. 1999). It is seen that prolonged use of COX-2 selective inhibitors 

results in cardiotoxicity which further confirms the homeostatic role of COX-2 (Grosser, Fries 

et al. 2006), (Marnett 2009).  COX-1 and COX-2 are not functionally interchangeable at the 

protein level. An explanation for the difference in isoform function may be that COX-2 for 

their activation requires much lower concentrations of hydroperoxide than does COX-

1(Kulmacz 2005). Another reason might be COX-2 has wider substrate specificity. Thus, it is 

clear that the original „COX-2 hypothesis‟ ascribing a homeostatic function to COX-1 and a 

patho-physiologic function to COX-2is oversimplified. 

 

 

Figure 11: Proposed functions of cyclooxygenase derived PGs. COX-1 participates in 

physiological hoemostasis, COX-2 is expressed under inflammatory conditions. COX-3 is the 

splice variant of COX-1. (Adapted from Joan Claria, Current pharmaceutical Design, 2003) 
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Inhibition of the COX Pathways 

COX is the main pharmacological target for nonsteroidal anti-inflammatory drugs (NSAIDs). 

Vane, Ferreia et al. and Smith et al. in 1971 first reported abrogation of PGs production by 

directly inhibiting COX enzymes (Vane 1971), (Ferreira, Moncada et al. 1971). At present 

worldwide NSAIDs are among the most widely prescribed pharmaceutical drugs to treat pain, 

fever, inflammation (Thun, Henley et al. 2002). Since COX-1 derived PGs are involved in 

housekeeping functions and COX-2 derived PGs are in inflammation, NSAID gastrotoxicity 

to be the consequence of inhibiting both the enzymes by NSAIDs such as aspirin, 

melofenamate etc. At the site of inflammation (COX-2 activity) the dose required for 

inhibiting PG biosynthesis also hamper PG production in the gastrointestinal and renal system 

(COX-1 activity). A new class of compounds which selectively inhibit COX-2 without 

altering COX-1 dependent PG biosynthesis is developed (Gilroy, Tomlinson et al. 1998), 

(Smith, Zhang et al. 1998), (Warner, Giuliano et al. 1999). There are in-vitro evidence 

proving that this new generation of anti-inflammatory drugs selectively inhibit COX-2and 

showed to be as effective as standard NSAIDs in several in-vivo inflammatory models (Smith, 

Zhang et al. 1998),(Warner, Giuliano et al. 1999). There are two selective COX-2 inhibitors 

(COXIBS) celecoxib and refecoxib are in market for past few years, proven to provide 

significant relief in osteoarthritis and rheumatoid arthritis, (Simon, Lanza et al. 1998), 

(Simon, Weaver et al. 1999), (Feldman and McMahon 2000). A second generation of 

selective COX-2 inhibitors, i.e., valdecoxib and etoricoxib is currently under evaluation in 

rheumatoid arthritis and osteoarthritis patients.  

Targeting COX-2 Expression by Natural Compounds 

In autoimmune diseases, it is involved in degenerative functions whereas it correlates with 

poor prognosis is cancer. Prolonged administration of COX-2 inhibitors has been ineffectual 

for chemopreventive and chemotherapeutic purposes since the risks prevail over benefits. The 

classical COX-2 inhibitors may cause severe side effects and efforts are underway to identify 

alternative chemo preventive approaches. Thus, the current concern is that direct COX-2 

enzymatic inhibition might not represent a negligible clinical strategy to target COX-2. COX-

2 is a pro-inflammatory immediate early response gene which might encode for cytokines, 

chemokines and proto-oncogenes.COX-2expression is highly regulated at transcriptional and 

post-transcriptional levels. As COX-2 expression implies the existence of multiple level of 

modulation, thus targeting COX-2 expression may represent a promising strategy, by gaining 

therapeutic benefits while avoiding the severe side effects. Thus, the complex multi-step 

regulation of COX-2 gene expression offers an alternative to the challenges of COX-2 
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enzymatic inhibition. This allows the consideration of COX-2 expression as a more versatile 

target to modulate the wide array of its enzymatic functions, thus potentially contributing new 

perspectives in therapeutic and chemopreventive strategies. Therefore, the regulatory events 

which are the determinants of COX-2 expression, in its biological functioning, can be 

intervened by therapeutic approaches. 

Determinants of COX-2 Expression 

Transcriptional Regulation 

COX-2 promoter contains a number of upstream regulatory sequences specific for binding 

with a variety of transcription factors, such as NF-κB, the SP-1transcription factor (SP-1), the 

cAMP responsive element binding protein (CRE), the transcription factor 4 (TCF4), the 

CCAAT/enhancer-binding protein beta (c/EPB), and the activator protein 1 (AP-1). COX-1 

family member lacks characteristic TATA and GC boxes in its promoter region.COX-2 

promoter implicates the participation of several kinase-mediated signal transduction 

mechanisms including mitogen-activated protein kinases (MAPKs), c-Jun NH2-terminal 

kinase (JNK), p38 and the extracellular signal regulated protein kinases 1/2 (ERK). A wide 

range of stimuli such as pathogen associated molecular patterns (PAMPs) and pro-

inflammatory cytokines may trigger these intracellular signalling pathways, and downstream 

transcription of COX-2.Activation of COX-2 transcriptional cascade can be altered by 

modulating the three-dimensional conformation of chromatin due to altered methylation 

status, or by interfering with the binding of transcription factors, or by altering the expression 

of regulatory factors required for the transactivation of COX-2. Understanding the 

transcriptional regulation of COX-2 is important for the designing the therapeutics. 

Post-transcriptional Regulation 

Post-transcriptional regulation is the process of regulation of the stability of an mRNA. 

Stability of COX-2 is regulated by two unique mechanisms, first is the presence of 3′-

untranslatedregion (3′-UTR) which contains a number of copies of the highly conserved cis-

acting consensus motif AAUAAA (AU-rich elements) or AREs and several ARE binding 

proteins which modulate the physical accessibility and stability of the target mRNAs for 

translation,  second is the regulation by several microRNA  (miRNA) such as mir-101a, mir-

26b, mir-16 and many others which regulate the stability of COX-2 transcripts, and help to 

maintain the mRNA turn over and mRNA half-life differentially, depending on the cell type 

and their inflammatory status. These regulatory mechanisms will maintain the mRNA 

turnover and silence the COX-2 expression under normal conditions. Thus interfering with 
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the regulatory events at the post-transcriptional level may serve as potential tool to modulate 

the expression of COX-2 in various pathological situations. 

Post-translational Regulation 

There is an interesting role of different post-translational modifications such as N-

glycosylation, S-nitrosylation, phosphorylation, and acetylation in maintaining stability and 

integrity of COX-2 protein. Understanding of the role of these regulatory events is not clear 

with respect to the emergence of inflammatory and pro-tumoral conditions. Thus better 

understanding of the post translational steps of COX-2 might implicate potential identification 

of novel chemopreventive agents acting through the modulation of the post-translational 

modifications. 

 

 
Figure 12: COX-2 Gene Expression. COX-2 transcripts present two alternative sites of 

polyadenylation, referred as proximal and distal, leading to the formation of transcripts of 2.8 

and 4.6 kb, respectively. The long transcript contains an additional sequence of >2000 nt 

comprising 22 known additional AU-rich elements (AREs). The proximal 116 nt region 

containing 6 AREs has, however, been characterized as a modulator of mRNA turnover and 

translation. The trans-acting factors HuR and TTP compete for binding to partially 

overlapping sequences, thus promoting mRNA stabilization or decay depending on their 

abundance and level of activity. The two translational silencers TIA-1 and TIAR recognize 

and bind sequences contained in the same regions, as do some microRNAs. All these factors 

are believed to form a multimeric protein complex. (Adapted from C. Cerella et al., 

Biochemical Pharmacology, 2010) 
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Phytotherapy: A Power of Nature to Cure Immuno-Inflammatory Pathologies and 

Cancer 

The emerging integrative model of cancer treatment recognizes the beneficial role of 

botanical medicine. A prominent group of  effective cancer chemopreventive drugs are 

available from natural source which exerts low toxicity while processing apparent benefit in 

the process of disease progression. Herbal terpenoids supress cell proliferation through their 

anti-neoplastic functions and induces apoptosis. The important molecular targets of 

chemotherapy are the transcriptional molecules of NF-κB, MEK-ERK and PI3K/Akt/mTOR 

pathways, which  regulate the apoptosis pathways. Recent studies show that induction of pro-

apoptototic protein NAG-1 is an important step which decides the anti-carcinogenic property 

of different herbal compounds (Ko, Leung et al. 2007). In the process of metastasis of cancer 

the major contributors are angiogenesis, oxidative stress and inflammation, which could be 

efficiently modulated by several novel plant agents (Ko and Auyeung 2013). The signaling 

pathways in carcinogenesis could be pre dominantly altered by natural products and novel 

herbal compounds. In addition of their use in complementary and alternative medicines 

(CAM), herbal medicines and nutritional supplements are used in combination for symtom 

management and improving the quality of life. There are several phytosubstances, the 

flavonoids (genistein, daidzein, quercetin and glycetin), the epigallocatechin-gallate (green 

tea), the carotenoid lycopene, the polyphenols curcumin, resveratrol which are being used for 

cancer treatment (Von Low, Perabo et al. 2007). Advances in eliciting the cellular and 

molecular mechanisms during anti-tumoigenic process of phytotherapeutics will be of 

important clinical significance to exert the clinical benefit and reduce the adverse effects of 

drugs in cancer patients and thus improving the quality of life of the cancer patients.  

 

 

Figure 13: Anti-cancer effects of Phytochemicals. (Adapted from Joshua K Kao, Current 

Pharmaceutical design, 2013) 
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Table.1 List of some medicinal herbal products. (Adapted from Joshua K Kao, Current 

Pharmaceutical design, 2013) 
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Figure 14: Phytotherapy strategy. a) Bioactive compounds b) Molecular targets of bioactive 

compounds (Adapted from Treasure et al., Seminars in Oncology Nursing, 2005) 

 

 

Conventional Oncology and Viscum album 

Viscum album (Viscum album L.) is a traditional phytomedicine of Europe, commonly known 

as European mistletoe, also found in Western and Southern Asia and it is the most thoroughly 

studied complementary treatments in Europe. Several systemic reviews and meta-analyses 

have found that viscum treatment is beneficial for cancer patients in terms of survival, 

improved quality of life and reduce side effects of conventional anticancer therapies. Several 

study supports that plant lectins, i.e. carbohydrate-binding proteins, exert remarkable 

antitumor properties (Liu, Bian et al. 2010), (Liu, Luo et al. 2013), (Zhang, Chen et al. 2012). 

Schink et al., in a randomised clinical trial, demonstrated that perioperative infusion of 

Iscador® can inhibit NK cell activity associated with major surgery, which favours 

haematogenic tumor cell dissemination (Schink, Troger et al. 2007).  

 

Quality of life and Viscum album 

Quality of life and the safety of adjuvant mistletoe therapy in gastric cancer patients were 

tested in a randomised clinical trial (Kim, Yook et al. 2012). The additional mistletoe therapy 

was found to be safe and associated with improved quality of life in these gastric cancer 

patients. In a study of 70 cancer patients with different digestive tract cancers, use of 

mistletoe drug- Isorel® showed improved immune competence and an improved overall health 

a 
b 
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status of cancer patients undergoing conventional anti-tumor therapies (Enesel, Acalovschi et 

al. 2005), (Galun 2015).  

Viscum album 

Viscum album has been used in European countries as sole intervention or as complement to 

the conventional cancer therapies for more than eighty years (Bock, Friedel et al. 2004), 

(Kroz, Kienle et al. 2014). It is a semiparasitic shrub that grows on other trees. Mistletoelectin 

belong to the families Loranthaceae and Viscaceae which are both are taxonomically related 

(Lyu and Park 2006). The pharmacologically applicable components of European mistletoe 

are lectins, polysaccharides, alkaloids, lipids, triterpenes, peptides, vesicles, flavonoids, 

visalbcBA (chitin binding agglutinin) (Khwaja, Dias et al. 1986), (Hajto, Hostanska et al. 

1989), (Mueller and Anderer 1990), (Park, Hyun et al. 1998). Mistletoe lectin share hetero-

dimeric glycoproteins comprising two polypeptide chains: a carbohydrate-binding B-chain 

which has a capability of binding to cell surface glycol conjugates which permits protein to 

enter the cell and the catalytic A-chain which acts as ribosome-inactivating substance and 

hence hinders protein synthesis intracellularly by removing an adenine residue from the 

28SrRNA of 60S subunit of the ribosome (Peumans, Verhaert et al. 1996). The  extract acts 

not only as immunostimulatory drug but also have cytotoxic properties and DNA-stabilising 

properties (Bussing, Regnery et al. 1995). It also stimulates the immune system in vivo and in 

vitro by activating monocytes, macrophages, T cells, dendritic cells, granulocytes, NK cells 

further induces several cytokines like IL-1, IL-2, IL-4, IL-5, IL-6, IL-8, IL10, IL-12, GMCSF, 

IFN-γ and TNF-α (Thies, Nugel et al. 2005). 

Mythological Aspect 

The European mistletoe is a pharmaceutical plant and a symbol in mythology. Depending on 

host specificity, there are three host races existing in Europe, they are 1. V. Album album- 

grows on a wide variety of deciduous trees. 2. V. a. abietis (fir). 3. V. a. austriacum (Pine). 

European mistletoe, i.e., is the first plant which was termed as “mistletoe”. Theopharastos 

(371-286 BC) recognised that mistletoe is spread to the trees by birds and never touched the 

earth. During the dead winters in Europe when branches of Oak trees were bare, mistletoe is 

still green even considering the fact of not having roots on earth, made the Celtic Druids 

believe mistletoe as sacred as ever-lasting life. According to G. P. Secundus (23-79 AC) this 

plant was considered to be an antidote for poisons and the plant became a miracle because of 

its ability to cure each illness. In ancient times this mythical plant was used in combination 
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with aromatic compounds and the surmise was the plant served protection against bad dreams, 

lighting etc (Büssing 2003). 

Mistletoe as a Remedy 

Diosorides, the Greek author and physician (15-85 AC) reported that during 460-377 BC 

spleen related diseases were treated using Oak tree mistletoe. During 23-79 AC, Plinius 

explained the beneficial role of mistletoe in the treatment of infertility, ulcers, epilepsy. 

Platonist around 150 AC described the utilization of mistletoe to treat tumors. During 1731 

mistletoe was used for various treatments including labour pain, guts and deworming 

children. Mistletoe treatment seemed to be beneficial for mumps, leprosy, and hepatitis. 

During 18th Century this remedy was used for Oedema and heart weakness. In spite of having 

a strong historical background of mistletoe, in the 19th Century scientific community rejected 

mistletoe remedy. However, the interest was re awakened in the 20th century when Ganltier 

(1907, 1910) demonstrated oral/subcutaneous administration of fresh mistletoe (L. Extract) to 

cure blood pressure related issues both in animal and human. In 1920, the founder of 

anthroposophy, Rudolf Steiner, introduced L. as an anti- cancer remedy (Büssing 2003). 

Preparation of therapeutic preparation of Viscum album 

Iscador® is the commercial preparation of VA preparations. It is prepared as an aqueous 

extract of the whole mistletoe plant with a formulated fermentation with the bacterium 

Lactobacillus plantarum. The product is then mixed and filtered to remove the bacteria before 

being standardized and packaged in ampules for injection. Fermentation of the mistletoe 

extract alters its medicinal activity to a significant degree and this change is thought to be 

related to the degradation of the most toxic lectins. It is believed that the efficacy of mistletoe 

extracts like Iscador are due to a synergy between both its components that are medicinally 

active when isolated, and those components like polysaccharides that are medicinally 

inactive, but can interact with the more active constituents to form complexes. 

Chemical Compounds in Viscum album 

Viscotoxins 

Viscotoxin shows the structural characteristics of plant α- and β-thionins, which are the 

cysteine rich residues and highly basic in nature. Seven different isoforms have been 

identified so far, they are viscotoxin A1, A2, A3, B, B2, C1 and 1-PS. These isoforms are 

consist of 46 amino acids. , among which 32 have identical amino acids and all isoforms 

contain 3 disulphide bridges at highly conserved positions which are Cys3/Cys40, 
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Cys3/Cys32 and Cys16/Cys26). They are compact in structure and highly stable under several 

denaturing conditions. The phosphate binding site of viscotoxins interferes with cell 

membrane and dampens their integrity, which is the main reason of their cytotoxic effects, 

primarily necrosis and later in apoptosis (Schaller, Urech et al. 1998).  

 

Lectins 

Three different mistletoe lectins (ML) were identified in Viscum album with differential 

sugar-binding specificities, they are galactose-specific MLI: 115 kDa, diner, galactose- and 

N-acetyl-D-galactosamine-specific MLII: 60 kDa and N-acetyl-D-galactosamine-specific 

MLIII: 60 kDa. They belong to type 2 ribosome inactivating proteins that consist of a lectin 

subunit B and a toxophoricA chain, which is RNA N-glycosidase. In eukaryotic cells, MLs 

block protein synthesis by hydrolysing 28S rRNA. They induce apoptotic cell death 

(Krauspenhaar, Eschenburg et al. 1999), (Wacker, Stoeva et al. 2004). 

Polysaccharides 

Mistletoe stems and leaves show differences due to the structural difference in the 

polysaccharides. From these parts of the plant, a highly methylated galacturonan, a pectin (42 

kD) and arabinogalactan (110 kD) were isolated. The high-molecular weight arabinogalactan 

of viscum stimulates CD4+ Th cells proliferation (Stein, Edlund et al. 1999). Stimulation of 

NK cells by Iscador® is due to its rhamnogalacturonan (Mueller and Anderer 1990).  

Liposoluble compounds 

Viscum album is rich in triterpenes, includingoleanolic acid, β-amyrinacetate, β-amyrin, the 

lupanesleupeol, lupeol acetate, betulinic acid and urosolic acid (Jager, Trojan et al. 2009), 

(Urech 2015). 

Flavonoids, Phenylpropanoids and phenolic Acids 

Viscum album contains phenolic compounds such as flavonoids, phenolic acids, 

phenylpropanoids. Evidence of their pharmacological roles in pathologies is of great interest. 

Lectin-induced apoptosis in cancer cells through increased oxidative stress is due to certain 

flavonoids. They exert cytotoxic, anti-angiogenic, detoxicative, anti-inflammatory and anti-

hormonal effects on cancer cells (Schramm 2015), (Urech 2015).  
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Table 2. Chemical compounds identified in the European Viscum album L. (Adapted from 

Konrad Urech, Transl Res Biomed, 2015) 

Class of chemical compounds  Compounds 
Proteins Thionins  Viscotoxins A1, A2, A3, B, B2, C1, 1-PS 

Lectins  Mistletoe lectin I (MLI), II (MLII), III (MLIII)  
Chitin-binding mistletoe lectin 1 (cbML1), 2 (cbML2), 3 
(cbML3) 

Peptides  Oligopeptides  Glutathione 

Amino acids  Arginine, cystein, γ-aminobutyric acid 

Amines   Acetylcholine, choline, tyramine, histamine 

Proteoglycans   Arabinogalactan-proteins 

Polysaccharides  Methylated poly-1→α4 galacturonic acid, arabinogalactan, 
rhamnogalacturonan 

Fatty acids  
 

 Oleic acid, palmitic acid, linoleic acid, linolenic acid, 
arachidic acid, cerotic acid, stearic acid, lignoceric acid 

 
 
 
 
 
 
 
 

 
Phenolic 
compounds 
 

Flavonoids 2′-hydroxy-4′,6′-dimethoxychaIcone-glucosid, 2′-hydroxy-
4′,6′-trimethoxychaIcone-glucosid, 2′-hydroxy-4′,6′ 
dimethoxy- chalcone-4- 
O-[apiosyl(1→2)] glucoside, (2R)-5,7-dimethoxyflavanone-
4′-O-gIucosid, (2S)-3′,5,7-trimethoxy-flavanone-4′-O- 
gIucoside, homoeriodictyol-7-Oglucoside, rhamnazin-3,4′-di-
O-glucoside, 5,7-dimethoxy-4′-hydroxyflavon 
After acid hydrolysis: homoeriodyctiol, sakuranetin, 
rhamnazin, isorhamnetin, quercetin, 6 different quercetin 
methylesters, kaemferol, naringenin 

 Phenylpropanoids  
 

Syringenin-4′-O-glucoside (syringin), syringenin-4′-O-
apiosyl-1 (Pfeil) 2 glucoside (syringoid), syringaresinol-4,4′-
O-glucoside, eleutheroside E, syringaresinol- mono-O-
glucoside, sinapic acid, cinnamic acid, rosmarinic acid, 
caffeic acid, ferulic acid, chlorogenic acid, isochlorogenic 
acid, syringic acid, p- and m-coumaric acid 

 Other phenolic acids 
 

Gallic acid (3,4,5-trihydroxybenzoic acid), digallic acid, 
para-OH benzoic acid, syringic acid (methylated 
trihydroxybenzoic acid), salicylic acid, protocatechuic acid 
(3,4-dihydroxybenzoic acid), vanillic acid (methylated 
dihydroxybenzoic acid), gentisic acid (2,5 dihydroxybenzoic 
acid), salicylic acid (2 hydroxybenzoic acid), ellagic acid 

 
 
Terpenoids 

Triterpenoids  
 

Oleanolic acid, betulinic acid, ursolic acid, β-amyrin, β-
amyrin acetate, lupeol, lupeol acetate 

 Tetraterpenoids  Carotin 

Phytosterols  β-sitosterol, 
stigmasterol 

 

Inorganic 
substances 
 

Manganese, 
potassium, calcium 
(calcium oxalate) 

 

Various compounds 
 

Ascorbic acid  
7-iso-jasmonic acid, 
and its precursor 12-
oxophytodienoic acid 
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Figure 15: Mechanism of action of type II lectins. 

 

 

Multifarious Properties of Viscum album 

Cytotoxicity 

Mistletoe lectin can induce apoptosis depending on the apoptosis-associated factor-1 (Apaf-1) 

pathway by mitochondrial membrane potential (MMP) breakdown and stimulating caspase-3 

(Lyu, Choi et al. 2002), (Liu, Luo et al. 2013). JNK can be stimulated by ML-I and leads to 

translocation of the pro-apoptotic proteins Bax and Bad. Mistletoes induce apoptosis in 

human peripheral blood lymphocytes, murine lymphocytes, mononuclear leukemia cells 

MOLT4 and human monocytic THP1 cells (Janssen, Scheffler et al. 1993), (Mockel, Schwarz 

et al. 1997), (Kim, So et al. 2000). ML-I downregulates Bcl-2 and upregulates TNF-α and 

hence provoke apoptosis. We have demonstrated that VA Qu Frf, induces significant cell 

toxicity in vitro in the human T cell lines CEM and in monocytic cell lines HL-60 and MM-6 

(Duong Van Huyen, Sooryanarayana et al. 2001). 

Anti-inflammatory 

Diarylheptanoids and flavonoids of mistletoe inhibit LPS-stimulated production of pro-

inflammatory cytokines such as TNF-α, IL-6, IL-12p40 in bone marrow-derived dendritic 

cells (Nhiem, Kiem et al. 2013). Our group have found that VA Qu Spez impedes cytokine-

induced PGE2, by selectively inhibiting COX-2 which is transcriptionally activated in 

response to various pro-inflammatory cytokines (Hegde, Maddur et al. 2011). Further, we 

have dissected the molecular events of COX-2 regulation recently we observed significant 

reduction of COX-2 mRNA half-life without influencing its protein stability, clearly 

suggesting that it induces destabilisation of COX-2 mRNA (Saha, Hegde et al. 2015). 
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Anti-angiogenic: 

Tumor growth can be impedimented by inhibiting angiogenesis. Treating B16L6 melanoma 

cells with viscum suppressed tumor growth and resulted in DNA fragmentation, nuclear 

morphological changes, suggesting that it inhibits tumor growth and metastasis by elevating 

apoptosis and blocking angiogenesis (Park, Lyu et al. 2001). Our group has shown that VA 

QU Frf induces apoptosis of endothelial cells in human umbilical vein endothelial cells 

(HUVEC) and in immortalised human venous endothelial cell line (IVEC). In an in vivo 

system it was clearly demonstrated that VA Qu Spez dramatically impedes the vessel score in 

mice, diminishing angiogenic growth (Elluru, Duong Van Huyen et al. 2009). 

Immunomodulatory 

Viscum album, significantly enhanced IFN-γ; strongly supports the fact that is an immune 

modulator (Lyu and Park 2007). Our group has reported that in a murine melanoma model, 

QU Frf mistletoe preparation significantly inhibited tumor growth and up-regulated IL-12 

secretion, which was confirmed by abrogation of IL-12 expression in IL-12 knockout mice 

(Duong Van Huyen, Delignat et al. 2006). Qu Spez  amplifies the expression of several 

antigen presenting and co-stimulatory molecules on human dendritic cells and additionally 

induces secretion of pro-inflammatory cytokines such as IL-6 and IL-8 and stimulates 

proliferation of CD4+ Tcells (Elluru, Duong van Huyen et al. 2008). 

Viscum album: Clinical Evidence 

Rudolf Steiner, the father of anthroposophy, in 1961 had first propounded the use of mistletoe 

extracts for cancer treatment. Anthrosopical medicine professes that mistletoe is effective for 

cancer patients as it delays disease progression, protracts survival time, modulates immune 

function and overall improves general well-being. Only three among several preparations of 

mistletoe is tested clinically, they are Iscador®, Eurixor®, and Helixor® (Kleijnen and 

Knipschild 1994). There are several reports on the use of mistletoe in clinics and their 

efficacy. However, the proof of results is controversial because of the loopholes in the 

methodology used to evaluate the effectiveness of complementary medicine. 

H.S.LIN (2004) group had taken an attempt to gather information on the efficacy, safety and 

side effects of standardized mistletoe extract by following “Good Clinical Practice”. This 

study enrolled 233 patients with 71 ovarian, 68 breast and 94 non-small lung cancer. Among 

these 233 cancer patients 224 patients were included in the final analysis out of which 115 

patients were treated with mistletoe. All patients underwent the conventional chemotherapies. 
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According to the “Intension to treat principle” analysis, complementarily mistletoe treated 

patient group had shown a significant improve in the quality of life (QOL) compared to the 

control group. Concerning the side effects such as fatigue, nausea, anorexia and insomnia, the 

adverse effects (AES) recorded were fewer than the control group. Most of these effects were 

self-limiting and harmless, proving the safety of mistletoe use (Piao, Wang et al. 2004). 

In 2004, another clinical study reported by U. Mengs, recruiting 272 patients, showed 

PS76A2, an aqueous mistletoe extract at a dose of 15 ng ML/0.5ml/twice weekly is safe for 

treatment and improved QOL effectively in breast cancer patients who were receiving 

adjuvant cyclophosphamide-methotrexate-fluorouracil (CMF). An increase of T helper 

lymphocytes (CD4+) as well as the ratio between CD4+/CD8+supported the data on QOL 

(Semiglasov, Stepula et al. 2004). 

Schiernoz team (2008) investigated the safety and efficacy of standardised mistletoe extract 

HELIXOR® complimentary treatment of breast cancer patients. The study was carried out 

during a defined after care period of 5 years of the patients through a comparative 

epidemiological cohort study by random selection of 53 hospitals in Germany including 681 

patients. Firstly data showed 56.3% study group versus 70% control group 

complaints/therapy-related symptoms and secondly disease-related signs was lessened with 

mistletoe treated patients harmonized to a significantly improved QOL. The adverse drug 

reactions were self-limiting (Beuth, Schneider et al. 2008). 

Physicians often noticed that mistletoe intake have favourable impact on cancer-related 

fatigue (CRF). In one of the clinical study, a 36-year old Swedish woman with 10-year history 

of reappearance of breast cancer was suffering from CRF and when the lady was treated with 

mistletoe beside the conventional therapy, she improved her QOL by reducing fatigue level 

(Wode, Schneider et al. 2009). 

Preclinical and clinical studies exploring the effect of extract recommended strongest 

beneficial role of VAE in terms of QOL and tolerance to the conventional anti-cancer 

treatments in gynaecological and breast cancer. VAE was able to elevate survival rate and 

abrogate tumor especially in mice. There was a strong cytotoxic effects observed on cancer 

cells in vitro with VAE treatment (Kienle, Glockmann et al. 2009). 

A study investigated Post relapse (12 month) disease-free survival rate in Osteosarcoma 

patients who has a high chance of second relapsing receiving either Etoposide or Viscum 

album. Twenty patients were matriculated in the study. In Etoposide group the median 
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PRDFS was 4 months, whereas it was prolonged to 39 months in viscum group. Thereby, 

viscum therapy remains superior to Etoposide treatment (Longhi, Reif et al. 2014). 

Mansky et al (2003) conducted a phase I, 2 stage dose-escalation study (Case Study: 02-074) 

with the intension to test European mistletoe (EurixorTM) used with an approved 

antimetabolite chemotherapeutic agent gemcitabine in solid tumor patients. Combination of 

1380 mg/m2 gemitabine and 250 mg mistletoe was the maximum tolerated dose. Out of 44 

patients, 33 patients completed minimum 3 cycles of therapy. 6% (n=2) showed partial 

response, 42% (n=14) developed stable disease, 43% (n=14) improved upon treatment. 37% 

patients developed non neutropenic fever, whereas control group was associated with 41% 

fever. Mistletoe/gemcitabine cocktail and gemcitabine alone showed similar hematologic 

toxicity profile and febrile reaction. There was an ascending trend of ANC with mistletoe 

treatment (Mansky, Grem et al. 2003), (Mansky, Wallerstedt et al. 2013). 

European mistletoe extracts (L.) are the most commonly prescribed cancer treatments in 

Germany per se in 2010 (Kroz, Kienle et al. 2014). In–vitro and in-vivo studies have 

identified their immunomodulatory and cytostatic effects (Lyu and Park 2006). Today the 

therapeutic goal is to improve health related QOL and that is acknowledged as an end point in 

clinical trials. Pharmacological actions of mistletoe lectin are well documented, however, 

clinical trials evidence was rare and the existing proofs have been criticised. Wide variety of 

commercial availability of mistletoe impedes the comparative assessment of the benefits of 

use of the extract in cancer therapy. Difference in the extraction process and manufacturing 

method, result in the variation of pharmacological or clinical effects of mistletoe (Kleijnen 

and Knipschild 1994). Consequently complementary treatment with standardised mistletoe 

extract in cancer can be regarded as safe. 
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In view of the critical link between inflammation and cancer which share several signalling 

events, regulatory mechanisms, it is necessary to unravel the molecular and cellular 

mechanisms of underlying anti-inflammatory and immunomodulatory effect of Viscum 

album, which can provide a better understanding of its immunotherapeutic strategies to 

develop integrative medicinal approaches to inflammatory pathologies and cancer. Therefore 

my study addresses the anti-inflammatory and immunomodulatory properties of viscum and 

the mode of action which in turn can strengthen the beneficial application of viscum in 

complementary therapy to improve the survival and quality of life of cancer patients. 

Following are the objectives of my study. 

Objective 1: Molecular dissection of Viscum album mediated COX-2 inhibition and 

better understanding of its anti-inflammatory effect. 

Objective 2: Exploring the immunomodulatory effects of Viscum album by studying 

differential effect of various preparations of Viscum album on maturation and activation 

of human dendritic cells and T cell response. 

Objective 3: Exploring the anti-tumor response of Viscum album by understanding their 

effect on the full spectrum of macrophage polarization.  
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Extensive use of Viscum album (VA) preparations in the complementary therapy  of cancer 
and in several other human  pathologies has led to an increasing number  of cellular and mo- 
lecular approaches to explore the mechanisms of action of VA. We have recently demon- 
strated that, VA preparations exert a potent anti-inflammatory  effect by selectively  down- 
regulating  the COX-2-mediated cytokine-induced secretion of prostaglandin E2 (PGE2), 
one of the important molecular  signatures of inflammatory reactions. In this study, we ob- 
served a significant down-regulation of COX-2 protein expression in VA-treated A549 cells 
however  COX-2 mRNA levels were unaltered. Therefore, we hypothesized that VA induces 
destabilisation of COX-2 mRNA, thereby  depleting  the available  functional COX-2 mRNA 
for the protein synthesis and for the subsequent secretion of PGE2. To address this ques- 
tion, we analyzed the molecular degradation of COX-2 protein and its corresponding mRNA 
in A549 cell line. Using cyclohexamide pulse chase experiment, we demonstrate that, COX- 
2 protein degradation is not affected  by the treatment with VA whereas experiments on tran- 
scriptional blockade with actinomycin  D, revealed a marked  reduction in the half life of 
COX-2 mRNA due to its rapid degradation in the cells treated with VA compared to that in 
IL-1β-stimulated cells. These results  thus demonstrate that VA-mediated  inhibition of PGE2 
implicates  destabilization of COX-2 mRNA. 
 
 
 
 
 
Introduction 
 

Cyclo-oxygenase-2 (COX-2) is an early response protein, up-regulated during many pathologi- 
cal conditions and human malignancies. It is over expressed in most of the cells upon stimula- 
tion with diverse pro-inflammatory stimuli such as pro-inflammatory cytokines, chemokines, 
infectious agents, bacterial lipopolysaccharide etc. COX-2 is a critical enzyme required for the 
biosynthesis of prostaglandin E2, one of the important molecular mediators of inflammation 
[1]. Two other COX isoenzymes, COX-1 and COX-3, catalyze the same kind of reaction. COX-
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1 is an important cyclo-oxygenase family member, and is constitutively expressed in cells and 
tissues, while precise functions are not known for COX-3, which is expressed only in some spe- 
cific compartments including brain and spinal cord [2, 3]. The pattern of expression of COX-1 
versus COX-2 further regulates their differential functions. COX-1 is constitutively and stably 
expressed at low levels in many tissues. This ensures a constant production of prostaglandins, 
which are essentially required for the maintenance of important physiological functions, such 
as platelet aggregation, normal renal functions and gastric mucosal protection. In contrast, 
COX-2 is mostly quiescent but the expression can be induced in response to diverse pro-in- 
flammatory and pathogenic stimuli. When stimulated, its expression is high and transient 
which leads to a burst of prostaglandin production in a regulated time-limited manner [4]. 
Thus, depending on the COX isoform, the production of the same precursor PGH2 from ara- 
chidonic acid differs with respect to the amount and timing of production. This can be differ- 
entially decoded by the cells, thereby leading to the activation of various intracellular pathways 
involving specific classes of prostaglandins and therefore, different responses [5]. 

Since COX-2 expression is up-regulated during several pathological conditions and human 
malignancies, strategies controlling the expression and activity of COX-2 have been developed 
as potent anti-tumor and anti-inflammatory treatments [6–10]. In line with the therapeutic 
benefit of non steroid anti-inflammatory drugs (NSAID), which are synthetically designed 
mainly to inhibit the enzymatic activity of COX-2, a diverse spectrum of therapeutics of natural 
origin such as phytotherapeutics have been characterized to evaluate their potential to inhibit 
the COX-2 functioning thereby down-regulating the pathological level of prostaglandins. Due 
to the structural homology between COX-1 and COX-2, most of the NSAID inhibit both the 
enzymes and thus resulting in several severe side effects due to the inhibition of physiological 
prostaglandins. Therefore, selective inhibitors of COX-2 are of great interest. Although, a 
promising class of synthetic COX-2 selective inhibitors called COXIBS have been developed, 
their therapeutic efficacy is compromised due to various side effects [11, 12]. Interestingly, sev- 
eral phytotherapeutics have been shown to exert therapeutic benefit via selective inhibition of 
COX-2. These natural molecules have been shown to interfere with the expression and regula- 
tory mechanisms of COX-2 to inhibit its functioning [13, 14]. 

Viscum album (VA) preparations commonly called as mistletoe extracts, are extensively 
used as complementary therapeutics in cancer and also in the treatment of several inflammato- 
ry pathologies [15–19]. Despite their therapeutic application for several years, the underlying 
mechanisms are not yet clearly understood. Several lines of evidence have revealed that these 
preparations exert anti-tumor activities, which involve the cytotoxic properties, induction of 
apoptosis, inhibition of angiogenesis and several other immunomodulatory and anti-inflam- 
matory mechanisms [20–30]. These properties collectively define the mechanistic basis for the 
therapeutic benefit of VA preparations. Recently we have shown that, VA preparations exert a 
potent anti-inflammatory effect by selectively down-regulating the COX-2-mediated cytokine- 
induced secretion of prostaglandin E2 (PGE2), one of the important molecular signatures of in- 
flammatory reactions [31]. However, the molecular mechanisms associated with the Viscum- 
mediated COX-2 inhibition are not clear. VA preparations are shown to inhibit the COX-2 
protein expression without modulating its expression at mRNA level suggesting a possible ef- 
fect of VA on post-transcriptional events of COX-2 regulation. Several molecules and phy- 
totherapeutics are known to interfere with the post-transcriptional and post-translation 
regulation of COX-2 in order to inhibit the COX-2 expression and subsequent reduction of 
PGE2 [32–34]. Therefore in the current study, we investigated the post-transcriptional and 
post-translational regulation of COX-2 by analyzing the stability of COX-2 protein and 
mRNA, which can explain in part, the molecular mechanisms of Viscum-mediated COX- 
2 inhibition.
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Materials and Methods 
Viscum album preparations 

 

VA Qu Spez was a kind gift from Weleda AG (Arlesheim, Switzerland). VA Qu Spez is a thera- 
peutic preparation of Viscum album that grows on oak trees and is obtained as an isotonic solu- 
tion of 10mg/ml formulated in 0.9% NaCl. It is free from endotoxins and contains the 
standardized levels of mistletoe lectins. 

 

 
Culture of A549 cells 

 

Human lung adenocarcinoma cell line A549 was a kind gift from Dr. Maria Castedo-Delrieu, 
Institute Gustave Roussy, Villejuif, France. A549 cells were grown in 75 cm2 culture flasks in 
Dulbecco’s modified Eagle’s medium (DMEM) F-12 (GIBCO, Life Technologies, Grand Island, 
NY, USA) supplemented with 10% fetal calf serum (FCS) and 50 U/ml penicillin and 50 μg/ml 
of streptomycin (GIBCO). Cells are incubated at 37°C with 5% CO2 in humidified atmosphere 
to obtain the cells of about 80–90% confluence and used for all experiments. 

 

 
Co- and post- treatment of VA Qu Spez and induction of COX-2 

 

Cells grown in complete medium (DMEM with 10% FCS) were harvested by trypsinisation 
using 0.5% trypsin (Biological Industries, Kibbutz Beit Haemek, Israel) and were seeded in 
12-well culture plates (0.5×106/ml cells per well). Wells containing the adherent A549 were 
then replenished with the complete medium containing recombinant human IL-1β (10 ng/ml) 
(Immuno Tools, Friesoythe, Germany). In one set of experiment VA Qu Spez is added at the 
time of addition of IL-1 β (co-treatment) and in another set, we add VA Qu Spez 14 hours after 
adding IL-1β (post-treatment) and both the sets were incubated until 18 hours at 37° C and 5% 
CO2. After 18 hours of incubation cells were harvested by trypsinization and used for the anal- 
ysis of COX-1/COX-2 protein by flow cytometry. 

 

 
Analysis of the degradation profile of COX-2 protein by cyclohexamide 
pulse chase experiment 
A549 cells with an appropriate confluency were treated with IL-1β for 18 hours in the presence 
or absence of VA Qu Spez. To block the protein synthesis 10 μg/ml of cyclohexamide (Sigma- 
Aldrich, Lyon, France) was added after 90 minutes of addition of IL-1β and then cells were har- 
vested at different time intervals as indicated to achieve a clear pattern of COX-2 degradation. 
At each time point, expression of remaining COX-2 protein was analyzed by intracellular label- 
ling, by flow cytometry and further validated by western blotting. 

 

 
Analysis of COX-2 mRNA half-life by actinomycin  D pulse chase 
experiment 
A549 cells with an appropriate confluency were treated with IL-1β for 4 hours in the presence 
or absence of VA Qu Spez. After 4 hours, 10 μg/ml of actinomycin D (Sigma-Aldrich) was 
added to the cells and cells were harvested by trypsinisation at different time intervals as indi- 
cated. Expression of remaining COX-2 mRNA was analyzed by RT-PCR. 

 

 
Statistical analysis 

 

Densitometric analysis of the immunoblots was performed using BIO-1D analysis software. 
Values are expressed as arbitrary units. All the observations are expressed as Mean ±SEM and
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analyzed using two-way ANOVA. Graph-Pad Prism 5.0 is used for all the statistical analysis. 
P values less than 0.05 were considered to be statistically significant. 

 

 
Results 
Co-treatment of A549 cell with IL-1β and Viscum album inhibits the 
cytokine-induced COX-2 expression 
Following our observation of the inhibition of cytokine-induced COX-2 expression, we investi- 
gated the appropriate window of efficient inhibition by VA. Human lung adenocarcinoma 
(A549) cells were stimulated with IL-1β for 18 hours in the presence or absence of VA Qu 
Spez. VA was added to the cells either along with the cytokine (co-treatment) or after 14 hours 
of IL-1β induction. Flow cytometric analysis of intracellular COX-2 expression demonstrated 
that VA significantly inhibits cytokine-induced COX-2 expression as measured by mean fluo- 
rescent intensity (MFI) only when it is added as a co-treatment with IL-1β but not when it was 
added after 14 hours (Fig. 1A and 1B). This suggests that, VA-mediated COX-2 inhibition oc- 
curs at the early phases of inflammatory process and opens other exploratory avenues to un- 
derstand the regulatory mechanisms of COX-2 inhibition mediated by VA at the early phase 
of inflammation. 

 

 
Inhibition of COX-2 protein expression by Viscum album is independent 
of modulation of stability of COX-2 protein 
In order to address the effect of VA on the molecular stability of COX-2, which could be a po- 
tential contributing factor for the observed reduction in COX-2 protein expression, we ana- 
lyzed the stability of COX-2 protein. A549 cells were stimulated with a pro-inflammatory 
cytokine IL-1β in the presence and absence of VA Qu Spez. At 18 hours, we observed a signifi- 
cant reduction in COX-2 protein level treated with VA Qu Spez. Further, cells were harvested 
at different time intervals after blocking the protein synthesis by treating the cells with cyclo- 
hexamide and analyzed for COX-2. Flow cytometric analysis of COX-2 protein has revealed 
that, there is no significant difference in the protein degradation profile of COX-2 in VA-treat- 
ed and untreated cells after 90 minutes of blocking the protein synthesis (Fig. 2A and Fig. 2B). 
Further, western blot analysis of COX-2 protein expression at different time intervals showed 
that despite the clear inhibition in the protein expression after 18 hours of exposure to cytokine 
followed by VA treatment (Fig. 3A), upon blocking the protein synthesis, there is no remark- 
able difference in the COX-2 degradation profile in cells treated with cytokine irrespective of 
VA treatment (Fig. 3B, 3C and 3D). Fig. 3B indicates the level of COX-2 expression immediate- 
ly after 90 minutes of cyclohexamide addition (0 hour). Figs. 3C and 3D indicate the level of 
COX-2 expression upon blocking the protein synthesis after 5 and 11 hours respectively. These 
results may indicate that the regulation of COX-2 by VA may occur in an early phase of COX- 
2 expression but not at the later stages of protein expression and stabilization. 

 

 
Viscum album increases the COX-2mRNA degradation 

 

Due to the indication of effect of VA in the early stages of COX-2 expression, but not at the 
level of its mRNA expression, we analyzed the mRNA stability of COX-2 modulated by VA. 
A549 cells were stimulated with IL-1β in the presence and absence of VA Qu Spez for 4 hours. 
After 4 hours, cells were treated with actinomycin D and harvested at different time intervals. 
Total cellular RNA was isolated and used for RT-PCR for the estimation of COX-2 mRNA. 
Treatment with IL-1β is known to induce the expression of COX-2 mRNA by transcriptional 
activation and also by increasing the stability of COX-2 mRNA. RT-PCR analysis of COX-2
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Fig 1. Co-treatment of A549 cell with IL-1β and Viscum album inhibits the cytokine-induced COX-2 
expression. A549 cells were treated with IL-1β (10 ng/ml) and two different concentrations of Viscum album 
Q Spez preparation for 18 hours. Cytosolic COX-2 was measured using flow cytometric analysis. Viscum 
album is added to the cells either from the beginning of the experiment along with IL-1β (co-treatment) or after 
14 hours of IL-1β induction (post-treatment). Percentage COX-2 expression as measured in intracellular 
staining by flow cytometry (A) and mean fluorescence intensity (MFI) of COX-2 expression (B) is shown. 
Results are mean ±SEM of 4 independent experiments (**p<0.01; ***p<0.001). 

 
doi:10.1371/journal.pone.0114965.g001 

 
mRNA expression at different time intervals after actinomycin D treatment revealed that, at 
any given time interval there is a tendency to decline the relative expression of COX-2 mRNA 
in VA-treated cells compared to the cells treated with IL-1β (Fig. 4A). This suggests that VA at 
25 μg/ml increases the rate at which the COX-2 mRNA degrades in the absence of new mRNA 
synthesis. Further, results from RT-PCR analysis have also showed COX-2 mRNA half life, 
time required for 50% of the mRNA degradation in case of VA-treated cells was marginally re- 
duced compared to that in case of cells stimulated with cytokine alone (Fig. 4B). This suggests 
that VA is able to reduce the mRNA half-life of COX-2 thereby leading to its reduced bioavail- 
ability for the protein synthesis. 

 
 

Discussion 
 

Prolonged administration of anti-inflammatory COX-2 inhibitors has been ineffective for che- 
mopreventive and chemotherapeutic purposes since the risks prevail over the benefits. Clinical 
demonstration of severe side effects due to the failure of the classical COX-2 inhibitors to dis- 
criminate between an aberrant pathological versus homeostatic functional activation state, 
raised the concern that direct COX-2 enzymatic inhibition might not sufficiently represent an 
appropriate clinical strategy to target COX-2. Since in contrast to COX-1, COX-2 is an early re- 
sponse gene, similar to the genes encoded for cytokines, chemokines and proto-oncogenes,
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Fig 2. Effect  of Viscum album on the stability of COX-2 protein as analyzed by flow cytometry. A549 
cells were stimulated with IL-1β for 90 minutes with or without VA Qu Spez. Cells were harvested at different 
time intervals after blocking the protein synthesis with cyclohexamide (10 μg/ml) for 90 minutes till 11 hours. 
Normalised percentage COX-2 expression as measured in intracellular staining by flow cytometry (A) and 
mean fluorescence intensity (MFI) of COX-2 expression (B) is shown. Data is representative of mean ±SEM 
of three independent experiments. 

 
doi:10.1371/journal.pone.0114965.g002 

 
they can be regulated under different levels of expression and modulation, ranging from direct 
transcriptional effects to post-transcriptional and post-translational levels and also indirectly 
by various transcription factors that mediate the stability [32, 35]. Such multiple levels of mod- 
ulation of COX-2 expression imply the existence of several mechanisms, which may be targeted 
to finely modulate COX-2 functions [36–38]. Several phytotherapeutics have been shown to 
exert modulatory effect on COX-2 at various levels of its molecular regulation and therefore
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Fig 3. Effect  of Viscum album on the stability of COX-2 protein as determined by western blot. Confluent A549 cells were treated with IL-1β in the 
presence and absence of VA Qu Spez in dose dependent concentrations in μg/ml. Cells were harvested at different time intervals after blocking the protein 
synthesis with cyclohexamide (10 μg/ml) for 90 minutes till 11 hours. COX-2 expression was measured by western blot using the cytosolic extracts. (A), 
inhibition of COX2 protein synthesis by VA at 18 hours. (B) (C) (D) are the representative western blots after 90 minutes, 5 hours and 11 hours respectively 
showing level of COX-2 expression after cyclohexamide treatment with or without Viscum album. β-actin was used as an internal control. All blots are 
representative of three independent experiments and the densitometry values for each band are mentioned below the representative blots. 

 
doi:10.1371/journal.pone.0114965.g003 

 
have been considered as an effective alternative strategy to control the pathogenic expression 
of COX-2 [33, 39, 40]. Given that VA preparations exert a potent anti-inflammatory effect by 
selective down regulation of COX-2, it is extremely interesting to dissect the COX-2 inhibition 
mediated by VA in different regulatory mechanisms at molecular level. 

Co-treatment of VA along with cytokine stimulation, marginally decreases COX-2 expres- 
sion indicated by the percentage-positive COX-2 expression in Fig. 1A. However, VA signifi- 
cantly inhibits intensity of expression of COX-2 as analyzed by MFI. The fact that VA 
treatment at the later phases of cytokine induction does not inhibit COX-2 suggests that, inhi- 
bition of COX-2 by VA occurs in the early phase of COX-2 regulation but not at the later 
phases (Fig. 1). Since we observed an inhibition of COX-2 protein expression by VA but not of 
mRNA, we analyzed the protein stability of COX-2 in the presence of VA by cyclohexamide 
pulse chase experiments. Flow cytometric analysis of COX-2 expression after 90 minutes of 
blocking the protein synthesis with cyclohexamide showed that, there is no significant differ- 
ence in the COX-2 degradation profile of cells simulated with IL-1β with or without treatment 
with VA (Fig. 2A and 2B). Western blot analysis of COX-2 protein after 5 and 11 hours of 
cyclohexamide blockade showed no significant difference in the degradation pattern of COX-2 
in cytokine stimulated cells with or without VA treatment (Fig. 3C and 3D). Similar results at
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Fig 4. Increase in the COX-2 mRNA degradation by Viscum album treatment. A549 cells were stimulated 
with a pro-inflammatory cytokine IL-1β in the presence and absence of VA Qu Spez for 4 hours. After 4 hours 
of IL-1β stimulation cells are blocked with actinomycin D (10 μg/ml). Cells were harvested at different time 
intervals after adding actinomycin D and total cellular RNA was isolated and used for RT-PCR for the 
estimation of COX-2 mRNA. Relative expression of remaining COX-2 mRNA at each time point, in VA treated 
and untreated cells (A) and the time required for 50% of the mRNA degradation as COX-2 mRNA half life (B). 
Data is obtained from three independent experiments. 

 
doi:10.1371/journal.pone.0114965.g004 

 
 

different time points were observed (data not shown). Therefore, it is clear that COX-2 protein 
degradation is not affected by VA. Further, reduced level of COX-2 expression at 0 hour in this 
experiment (Fig. 3B) also suggests that, there may be modulation by VA of the COX-2 expres- 
sion before the addition of inhibitor of protein synthesis. Inhibition of COX-2 protein expres- 
sion by VA (Fig. 3A) without modulating its stability (Fig. 3B, 3C and 3D) strongly indicates 
that, there is a possible modulation by VA at an early stage than when the proteins were ex- 
pressed. However VA did not modulate COX-2 mRNA expression and therefore we analyzed 
the mRNA stability of COX-2 by actinomycin D pulse chase experiment. mRNA degradation
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profile of COX-2 obtained by analyzing the COX-2 mRNA at different time intervals after 
blocking the transcription using actinomycin D showed that the rate of degradation of COX-2 
mRNA is higher in cells treated with VA compared to those treated with cytokine alone 
(Fig. 4A). This reduction in the mRNA half-life of COX-2 in the cells treated with VA (Fig. 4B) 
suggests that, VA induces destabilization of COX-2 mRNA, thereby diminishing the available 
functional mRNA for the protein synthesis and for the subsequent secretion of PGE2. 

Although this study postulates destabilization of COX-2 mRNA by VA preparations as a 
possible mechanism for VA-mediated COX-2 inhibition, further molecular dissection is neces- 
sary in order to clearly understand the regulatory events of COX-2 regulation, contributing fac- 
tors and their modulation by VA preparations. 

 
 

Conclusion 
 

Increasing body of evidence for anti-inflammatory activity of plant-derived molecules by mod- 
ulating the COX-2 functions has evolved as a potent alternative strategy for the conception of 
novel therapeutic molecules in the treatment of various inflammatory pathologies and in vari- 
ous malignancies. In view of the therapeutic benefit of VA preparations in diverse pathological 
situations including inflammatory and cancer conditions, dissecting their molecular mecha- 
nisms would contribute enormously to the understanding of role of phytotherapy-based treat- 
ment strategies either in complementary or alternative medicine or in other 
combinational therapies. 
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Abstract 

Extracts of Viscum album (VA), the semi-parasitic plant, are frequently used in 

complementary cancer treatment. Various reports show that VA modulates the immune 

system and exerts immune-adjuvant activities that might influence the tumor regression. 

Currently, several preparations of VA are available for the therapy. Each VA preparation is 

heterogeneous because of its chemical composition, which varies depending on the time of 

harvest, species of host tree and preparation methods; together these factors influence 

considerably the clinical efficacy of VA. An insight into the mechanism of action of different 

VA preparations is therefore necessary, that will contribute further guidelines for the utility of 

VA preparations in cancer treatment. In the present study we performed a comparative study 

involving five different preparations of VA aimed at their effect on maturation and activation 

of human dendritic cells (DCs) in view of the critical role they play in anti-tumoral immune 

response. Among five preparations tested, VA Qu Spez, a fermented extract with a high level 

of lectins, significantly induced DC activation, secretion of pro-inflammatory cytokines such 

as IL-6, IL-8, TNF-α and also enhanced the production of CD4+ Th1 cytokine IFN-γ. These 

results are of significant relevance for adopting appropriate therapeutic regimen along with 

other conventional treatments. 

 

Key words: Viscum album; dendritic cells; cytokines; CD4+ T cells; IFN-γ 
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1. Introduction 

Viscum album (VA), European mistletoe lectin, has been used successfully in several cancer 

therapies as a complementary therapy in addition to the conventional mainstream anti-tumor 

treatments [1]. VA belongs to the family of type II ribosome-inactivating proteins and consists 

of two subunits, A chain (29 KDa) and B chain (34 KDa). A-chain is responsible for ribosome 

inactivation whereas the B-chain helps to bind to the terminal galactoside residues on cell 

membrane thus enabling the entry of the protein into the cell [2,3] VA preparation is a 

heterogeneous mixture of several bio active molecules, but the major components of this 

extract are lectin and viscotoxin. 

 

Mistletoe preparations are grown on different host trees (table 1). The difference in their 

biological activities majorly depends on the host trees they are derived from, the time they are 

harvested, and the extraction method [4,5]. Various cancer cells respond to mistletoe treatment 

in different manner. Lectin of this preparation is the major contributor, which is primarily 

responsible for the cytotoxicity of each preparation. Thus often, it is difficult to prescribe the 

most suitable mistletoe preparation for a specific cancer condition, as the specific response to 

certain preparation is not well identified. Therefore the cytotoxic effect of mistletoe is not only 

cell type-dependent but also dependent on the composition of each extracts. The production 

process considerably differs for different preparations and it is unlikely that, the effect of one 

particular preparation will be similar for all other extracts [6]. Attempts to distinguish the 

extracts using microarray analysis have revealed variations in their ability to activate several 

immunoregulatory genes [7].  

 

Dendritic cells (DCs) are the versatile controllers of the immune system. They are the 

professional antigen presenting (APCs) and sensing cells, which are involved in initiating and 

modulating the immune response and bridge innate and adaptive immunity. Thus DCs are the 

potential targets for therapeutic intervention in immune-mediated conditions [8]. Immature 

DCs expressing low MHC II on their surface are specialized to internalize and process 

antigens. Upon interacting with specific stimuli, the DCs undergo maturation and induce T 

cell immunity. The mature DCs express high level of MHC II, T cell adhesive and co 

stimulatory molecules [9]. Under inflammatory condition, DCs receive danger signals from 

pathogen-associated molecules and lead to the development of effector T cells. However, in 

the absence of such danger signals at a steady state situation, presentation of self-antigens by 



69 
 

DCs results in eradication of responsive T cells or production of regulatory T cells promoting 

tolerance [8,10]. Whereas DCs are capable of recognizing and presenting antigens to CD4+ T 

cells on MHC II, their ability to present the exogenous antigens to CD8+ T cells on MHC I is 

highly regulated and this cross-presentation is important for tumor regression for generation of 

cytotoxic T lymphocytes [11,12]. 

 

When the host anti-tumor immune response is compromised, tumors can evade 

immunosureveillance. DCs are the central players to induce anti-tumor immune responses and 

requisite function of these cells is crucial for the success of the cancer immunotherapy [13]. 

DCs are immature and functionally defective in cancer patients and tumor‐bearing animals. 

Functional impairment of DCs is the repercussion of the insufficient danger signal in tumor 

environment [14]. The major reason for functional inability of DC could be direct contact of 

immature DCs to tumor cells that hamper maturation process of DC and antigen presentation 

to T cells. [15-18]. 

 

There is strong consistent evidence of relevant therapeutic efficacy of mistletoe in the field of 

cancer to improve survival of patients, damage recovery caused by the conventional cancer 

therapies and to improve the quality of life of the patients [19,20] Further, VA-educated DCs 

favour them towards maturation and activation [21]. Clinical outcome of one preparation is 

not necessarily similar for other preparations because of the variation in the composition [22]. 

Thus the effects of VA have to be ideally authenticated by means of controlled trials for every 

single VA preparation. In the current study, we thus set out to investigate the ‘potent’ VA 

preparation among several commercially available preparations from immunomodulatory 

angle by exploring their differential effect on DC activation.  

 

2. Materials and Methods 

2.1. VA preparations 

Five clinically validated preparations of VA namely VA Qu Spez, VA Qu Frf, VA M Spez, 

VA P and VA A were a kind gift from Weleda AG (Arlesheim, Switzerland). These are the 

extracts of VA that grow on different trees like oak, apple, pine and abies. All these 

preparations are free from endotoxins. VA preparations are formulated in 0.9% sodium 

chloride isotonic solution as 5 mg/ml vials. During the manufacturing process, VA 

preparations are prepared by standardizing the levels of mistletoe lectins and viscotoxins and 

the method of preparing these standard extracts are different, thus they are either fermented or 

unfermented (see: Table1). 
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Table1. Composition of VA preparations 

Preparation 

Concentration 

Host trees Lectin Content 

(ng/ml) 

Viscotoxin content 

(µg/ml) 

Method of 

preparation 

VA Qu Spez 

10 mg 

Quercus (Oak) 785±10% 5±5% Fermented 

VA Qu Frf 

10 mg 

Quercus (Oak) 2391±10% 19±5% Unfermented 

VA M Spez 

10 mg 

Malus (Apple) 548±10% 4±5% Fermented 

VA P 

10 mg 

Pinus (Pine) 28±10% 6±5% Fermented 

VA A 

10 mg 

Abies (Fir) 23±10% 19±5% Fermented 

 

2.2. Differentiation of human monocyte-derived DCs 

Peripheral blood mononuclear cells (PBMC) were isolated from buffy coats of healthy donors 

obtained from Centre Necker-Cabanel (EFS, Paris). Circulating monocytes were isolated 

using CD14 beads (MiltenyiBiotec, France) and were cultured for 5 days in RPMI 1640 

containing 10% FCS, rhIL-4 (500 IU/106 cells) and rhGM-CSF (1000 IU/106 cells) to obtain 

immature DCs as previously described [23]. 

 

2.3. Viscum album treatment of DCs 

Immature DCs were washed and cultured in respective cytokines and treated with VA Qu 

Spez, VA Qu Frf, VA M Spez, VA P and VA A at four different concentrations: 5, 10, 15 and 

20 µg/ml for 48 hours. Cell culture supernatants were collected for analysing cytokines and 

the phenotype of cells was analyzed by flow cytometry. 

 

2.4. DC: CD4+ T cell co-cultures 

CD4+ T cells were obtained from PBMC using CD4 microbeads (MiltenyBiotec). DCs 

following treatment with VA were washed extensively and seeded with 1×105 responder 

allogenic CD4+ T cells at DC:T cell ratio of 1:10. Post 5th day, cell culture supernatants were 

collected for analysing cytokines and cells were analyzed for either intracellular T-cell 

cytokines/transcription factor. 
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2.5. Flow cytometry 

FITC-conjugated monoclonal antibodies (MAbs) to CD1a, CD86, HLA-DR, and CD25; PE-

conjugated MAbs to CD83, (BD Biosciences, France), CD40 (Beckman Coulter, France) and 

Alexa Flour®700-conjugated MAbs to CD4 (eBioscience, France) were used for the surface 

phenotype analysis. 

For intra-cellular staining, FITC-conjugated MAbs to IFN-γ (eBioscience), PE-conjugated 

MAbs to IL-17A and IL-4 (eBioscience) and APC–conjugated MAbs to Foxp3 (eBioscience) 

were used. Live-dead cells were differentiated by PO-Fixable Viable Dye (eBioscience). 

For surface staining, following Fc receptor blockade, antibodies against surface molecules 

were added at pre-determined concentration and incubated at 4°C for 30 min. Cells were 

acquired on LSRII and processed with FACS DIVA software (BD Biosciences) and analysed 

by Flowjo. The data are presented as % positive cells for indicated markers or mean 

fluorescence intensities (MFI) of their expression. 

For intra-cellular staining, cells were stimulated with phorbolmyristate acetate (50 ng/ml; 

Sigma-Aldrich, France) and ionomycin (500 ng/ml; Sigma-Aldrich) at 37°C for 5-6 hours in 

the presence of golgistop (BD Biosciences) during the last 2 hours. Cells were fixed and 

permeabilized using Foxp3 Fixation/Permeabilization kit (eBioscience) and incubated at 4° C 

with anti-Foxp3. 

 

2.6. Cytokine assay 

IL-6, IL-8, IL-10, TNF-α, IL-4, IL-13, IFN-γ and IL-17 in cell-free culture supernatants were 

quantified by Ready-SET-Go enzyme-linked immunosorbent assay (ELISA) kits 

(eBioscience, France). 

 

2.7. Statistical analysis 

The significant difference between samples were determined by One way ANOVA Tukey’s 

Multiple Comparison Test using Prism 5 software (GraphPad Software, Inc, La Jolla, Calif). 

Values of P<0.05 were considered statistically correlated (*P<0.05, **P<0.01, ***P<0.001, 

****P<0.0001).  

 

3. Results 

3.1. Comparison of the effect of different VA preparations on the maturation of DCs 

Aim of this study was to investigate the differential effect of five VA preparations on 

immature human DCs. Immature DCs of 5 day old culture were either untreated or treated 

with five VA preparations and each at four different concentrations: 5 µg/ml, 10 µg/ml, 15 
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µg/ml, 20 µg/ml for 48 hours. Post two days, cells were analyzed for the expression of several 

surface molecules (Fig. 1A-F). VA Qu Frf, VA M Spez, VA P, VA A were not able to 

enhance the expression of antigen presenting molecule HLA-DR and co-stimulatory 

molecules such as CD80, CD86, CD83 and CD40. Interestingly, VA Qu Spez was able to 

enhance the expression of both antigen presenting molecules and the co-stimulatory 

molecules. These results suggest that among all the preparations tested; only VA Qu Spez is 

able to induce maturation of DCs.  

 

 

3.2. Comparison of the differential effect of VA preparations on the secretion of DC cytokines  

It is well reported that DC-derived cytokines are crucial for priming T-cell response. We 

analyzed the differential effect of five VA preparations on the level of secreted cytokines such 

as IL-6, IL-8, IL-10 and TNF-α. As shown in Fig.1, VA Qu Spez was capable of activating 

DCs, in turn suggesting the possible effect of VA Qu Spez on the secretion of cytokines. 

Compared to untreated DCs, VA Qu Spez-treated DCs showed significantly increased 

secretion of IL-6, IL-8 and TNF-α (Fig. 2A, B, D). The untreated or control DCs secreted 

4.773 ± 5.17 pg/ml of IL-6 and was significantly enhanced to 156.957 ±105.15 pg/ml by VA 

Qu Spez. In case of IL-8, the control DCs secreted 102.29 ± 78.54 pg/ml, whereas VA Qu 

Spez at highest concentration, induced 612.13 ±20.47 pg/ml. TNF-α secretion by untreated 

DCs was 3.22 pg/ml, and with VA Qu Spez-treatment, this cytokine was increased to 135.7 ± 

37.9 pg/ml. Apart from VA Qu Spez, even VA Qu Frf and VA M Spez showed moderate 

enhancement of above pro-inflammatory cytokines, but VA P and VA A were unable to 

modulate DC cytokines. These results showed that VA Qu Spez is the most potent preparation 

capable of enhancing IL-6, IL-8 and TNF-α. IL-10 level was unaltered with all five VA 

treatments even at highest dose (Fig. 2C). Together, our data suggest that VA Qu Spez 

significantly induces several pro-inflammatory cytokine secretions without modulating 

immune-suppressive cytokine IL-10. 

 

3.3. Comparison of the effect of VA preparations on the CD4+ T cell response  

One of the key functions of APC is to promote T cell response. DCs primed with various 

preparations of VA were co-cultured with allogenic total CD4+ T cells at a ratio of 1:10 and 

Th1, Th2, Th17 and T regulatory cells (Treg) responses were measured by flow cytometric 

analysis of intracellular IFN-γ (Th1), IL-4 (Th2), IL-17 (Th17), FOXP3 (Treg). Although VA 

Qu Spez induced maturation of DC, this effect was not associated with the modulation of 

frequency of various T cell subsets (Fig. 3A-D). However, analysis of T cell cytokines in DC-
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T cell co-culture revealed that VA Qu Spez significantly stimulated IFN-γ secretion (Fig. 4A), 

without having any effect on the secretion of IL-4 (Fig.4B), IL-13 (Fig. 4C) and IL-17 (Fig. 

4D). As expected, other four preparations of VA did not alter either frequency of T cell 

subsets or secretion of T cell cytokines.  Taken    together, these results suggested that VA Qu 

Spez favours Th1 response. 

 

4. Discussion 

IFN-γ plays an important role in mediating protective immune response against cancer cells 

and viral and intracellular bacterial infections [24]. IFN-γ enhances MHC class I expression 

on tumor cells and MHC class II expression on antigen presenting cells like DCs, which in 

turn link innate and adaptive immunity [25]. IFN-γ responsiveness of the tumor cell is 

important for successful immune recognition; as it was demonstrated that mice, which were 

non-responsive to IFN-γ develop more tumors compared to wild-type mice. Studies show that 

cross-talk between lymphocytes and IFN-γ/STAT1 signalling pathway, plays an important 

role in maintaining the immune competiveness of the host in the fight against tumors [26]. 

Tumor apoptosis can be achieved by idiotype specific CD4+ Th1 cell directly by Fas/Fas L 

interaction and indirectly by IFN-γ production, which can regress tumor [27]. Thus, IFN-γ is 

important in forming the basis of an extrinsic tumor-suppressor mechanism [28]. VA 

significantly enhanced IFN-γ, which strongly supports the fact that VA is an immune 

modulator [29]. 

Several DC-based cancer immunotherapies have been established with the aim of enhancing 

DC maturation with high migration capacity and enhancing tumor suppressive mechanisms 

mediated by CTLs [8,30]. There are reports suggesting that IFN- enhances apoptotic response 

to mistletoe lectin (ML) II through enhancement of Fas/Fas L expression and caspase 

activation in human myeloid U937 cells [31]. Our data demonstrates, among various VA 

preparations tested, VA Qu Spez is able to enhance the expression of antigen presenting and 

co-stimulatory molecules on human DCs. Furthermore, VA Qu Spez-educated DCs co-

cultured with allogenic CD4+ T cells were able to secrete significant amount of IFN-γ, 

suggesting VA drives Th1 response, which could manifest the anti-tumoral immune response 

of VA along with its immunomodulatory response in the host. 

Currently available mistletoe extracts are highly heterogeneous preparations because of the 

difference in their host trees, nutritional source, time of harvest, and the method of extraction 

[4,5], thus different preparations could exert divergent biological activities. However, 

biological effects of different preparations of VA extracts have not been assessed till date. In 

particular, analysis of the effect of different VA preparations on immunocompetent cells such 
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as DCs and its correlation with the lectin content has not been reported. The present 

comparative study of different VA preparations represents an important aspect in the field of 

phytotherapy to be addressed in order to understand the underlying mechanism of action of 

VA. 

MLs are the active components of mistletoe extracts and have several functions. MLs are 

responsible for stimulating effector cells of the innate and adaptive immune system such as 

DCs, macrophages, natural killer cells, and B and T lymphocytes. This function of MLs might 

represent one of the mechanisms responsible for the anti-tumoral effect of mistletoe extracts. 

It is known that ML-I B-chain (MLB) causes Ca2+ influx in Jurkat cells mediated by its 

interaction with surface glycoprotein receptors which participates in early activation of T-cells 

[32]. Chemical labelling of the lectin revealed that it binds to surface of peripheral and 

intratumoral monocytes and this lectin component of ML-I plays a major role in 

immunomodulation [33]. Depending on the concentration used for treatment, mistletoe 

extracts also induce cell death in tumor cells and exert direct necrotic effects or apoptosis [34]. 

Cytotoxicity of mistletoe is attributed majorly to its lectin contents [35, 36]. Several studies 

have clearly demonstrated that lectin internalization is required for ML-I mediated apoptosis, 

independent of surface receptor-mediated pathway [37].  

VA Qu Frf, an unfermented preparation containing highest concentration of lectin and 

viscotoxin, was unable to activate DCs. In parallel, other VA preparations, which are 

fermented and contain low lectin, were unable to stimulate DCs. Whereas VA Qu Spez, a 

fermented preparation which contains second highest concentration of lectin, (785 +/- 10% 

ng/ml) efficiently activated DCs and promoted Th1 response. These results suggest that, in 

addition to the lectin content, the methodology of preparation, i.e., fermented vs unfermented 

is crucial in conferring stimulatory properties to VA and indicates that it might be possible that 

fermentation could have an effect on the lectin structure. 

A recent study shows that the 3D structure of ML-A chain shares structural homology with 

shiga toxin from Shigella dysenteriae. As Mistletoe plant produces a bacterial toxin, it has 

strong immune stimulatory capacity [38]. It is also demonstrated that the Korean mistletoe 

lectin (KML) is a TLR-4 ligand [39]. Since Korean ML and European ML have 84 % of 

sequence identity [40], it is presumable that european ML could mimic TLR-4 ligand [38]. It 

is known that TLRs are potent activators of DCs, which is a pre-requisite to initiate a full-

blown T cell response against cancer. Several clinical studies have provided evidence in 

support of the beneficial effects of mistletoe in cancer patients and mistletoe thus remains as 

one of the remedies most often used as a complementary therapy. 
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Taken together, our study delineates the differential effects of various VA preparations and 

reveals VA Qu Spez to be the potent preparation in activating DCs and promoting Th1 

response. Thus, this study along with other reports provides a rational for the use of VA Qu 

Spez as an immune modulator [41-43] and further strengthens the beneficial effect of VA 

preparations as complimentary therapy in cancer. 
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Figure Legend 

Fig 1. Comparison of the differential effects of VA preparations on phenotype of human DCs. 

Immature DCs were treated with medium alone (control) or with 5 preparations of VA at 

various concentrations for 48 hours. Expressions (mean ±SEM, ≥ 5 independent donors) (A) 

CD1a, (B) CD83, (C) HLA-DR, (D) CD40, (E, F) CD86 on DCs were analyzed by flow 

cytometry. The data are presented either as % positive cells or MFI of indicated markers. X-

axis denotes concentrations of VA preparations. *p <0.05, ***p <0.001. 

Fig 2. Comparison of the effect of VA preparations on the secretion of DC cytokines. 

Immature DCs were untreated (control) or treated with 5 preparations of VA at various 

concentrations for 48 hours. The secretion (pg/ml, mean ± SEM, four independent donors) of 

(A) IL-6, (B) IL-8, (C) IL-10 and (D) TNF-α in cell-free supernatants were measured. **p< 

0.01, ***p < 0.001, ****p <0.0001. 

Fig 3. Differential effect of VA preparations on T cell response. DCs treated with medium 

alone (control) or with 5 preparations of VA for 48 hours. These DCs were co-cultured with 

allogenic CD4+ T cells at 1:10 ratio. After 5 days of co-culture, the cells were analyzed. A-D 

indicates percentage (mean ± SEM, six independent donors) of IFN-γ+ Th1, IL-4+ Th2, IL-17+ 

Th17 and CD25+Foxp3+ Treg cells. ns, non-significance. 

Fig 4. Effect of VA preparations on T cell cytokine secretion. Immature DCs  were treated 

with medium alone (control) or with 5 preparations of VA for 48 hours. These DCs were co-

cultured with allogenic CD4+ T cells for 5 days. Amount of secretion (pg/ml, mean ± SEM, 

six independent donors) of (A) IFN-γ, (B) IL-4, (C) IL-13 and (D) IL-17 in the cell-free 

supernatants from the above co-cultures. *p< 0.05. 
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Figure2. 
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Figure3. 
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Abstract 

Wide use of Viscum album (VA) preparations in complementary and alternative therapies for 

cancer has revealed their beneficial effects on the survival and the quality of life of cancer 

patients. The underlying molecular and cellular mechanism of their therapeutic efficacy 

encompasses cytotoxic properties, inhibition of angiogenesis and importantly several 

immunomodulatory functions. Tumor progression depends on their ability to re-educate the 

polarization state of tumor associated macrophages from pro-inflammatory M1 to anti-

inflammatory M2. The orchestration of monocyte-macrophage function is a key element that 

links inflammation and cancer and provides a paradigm for macrophage diversity and 

plasticity. Thus, we have investigated whether VA can modulate macrophage polarization, 

which in turn can be associated with their anti-tumor property. Our data demonstrates VA 

mediates the switch of M2 macrophage polarization towards M1 macrophages. Therefore, the 

immunomodulatory activity of VA is dependent on the polarization state of the responding 

macrophages, and their ability to drive M1 macrophages over M2 macrophages might be 

another angle underlying their therapeutic benefit in cancer. 

 

Key words: Viscum album, myelomonocytic cells, macrophage cells, Immune dysregulation, 

pro-inflammatory cytokines 
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Introduction: 

A constant influx of myelomonocytic cells is an important characteristic of tumor to support 

stroma remodelling and angiogenesis for their continuous growth. In early 1980s an 

interesting population called natural suppressors was identified which are known to be 

associated with immune suppression and tumor development [1]. Another fascinating 

observation was in tumor microenvironment, number of myeloid cells are elevated which in 

turn alter anti-tumor immune reactivity [2], [3]. Immune dysregulation and immune 

suppression are the common features in cancer bearing patients in which even tumor-specific 

T cell death can occur [4]. At tumor site, accumulation of immunosuppressive 

myelomonocytic cells can take place [5], [6]. Recently these immune suppressor cells are 

called as myeloid-derived suppressor cells (MDSCs), which are deficient of expressing 

mature myeloid cell markers [7]. In 1980s, Alberto Mantovani originally described that [8], in 

the tumor site, circulating monocytes are recruited and with the help of a tumor-derived 

chemotactic factor CCL2, these cells differentiate into tumor associated macrophages (TAMs) 

[9]. These tumor-derived chemokines along with recruiting monocytes in the tumor site play 

an important role in tumor progression by encouraging inflammation and angiogenesis thus 

inducing neoplastic growth [10]. TAMs are the second population of myelomonocytic 

immune suppressors which shows a negative effect on anti-tumor immune responses, they are 

believed to be derived from or related MDSCs [4]. Cancer-related inflammation is associated 

with mononuclear phagocytes [11], [12] and cancer is a major paradigm of macrophage (M 

diversity and plasticity [13], [14], [15]. 

Considering T helper type 1 (Th1) and T helper type 2 (Th2), polarization, two distinct types 

of macrophages have been recognized: classically activated macrophages-M1 and 

alternatively activated macrophages-M2 [16], [13]. Th1 cells can drive M1 macrophages by 

producing IFN-γ and even bacterial moieties such as LPS can polarize M1 macrophages. 

These cells are characterized by their ability to secrete pro-inflammatory cytokines such as 

IL-12, IL-23 and tumor necrosis factor (TNF), reactive oxygen and nitrogen species, antigen 

presentation and elevated expression of major histocompatibility complex II, and tumoricidal 

activity [17]. Through expression of several cytokines and chemokines such as IL-12, CXCL-

9 and CXCL-10, they recruit Th1 cells thus promoting Th1 response [9]. They confer 

resistance to intracellular pathogens and tumors leading to tumor-disruptive response [16], 

[18]. M1 macrophages show a phenotype of high IL-12 and low IL-10 expression. In contrast, 

Th2 cytokine IL-4 triggers M2 macrophage polarization [19]. These cells are involved in 

amplifying Th2 responses. These cells are more phagocytic in nature and exert high 
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expression of scavenging, galactose and mannose receptors, through arginase pathway they 

produce polyamines and ornithine, and even show a characteristic of expressing low IL-12 

and high IL-10 [16], [13], [18]. M2 macrophage expressing chemokines are CCL17, CCL22 

and CCL24 [20]. As M2 macrophages drive Th2 immune response in turn they actively 

participate in encapsulation and clearance of parasites hence in tumor progression and tissue 

remodelling and importantly exert an immune regulatory property [17]. 

Viscum album (VA) commonly known as European mistletoe is extensively used in 

complementary and alternative medicine in cancer and also in the treatment of several 

inflammatory diseases [21]. Several systemic reviews and meta-analyses supports a beneficial 

effect of mistletoe treatment on cancer patient survival [22], [23] and due to their ability to 

improve quality of life of cancer patients [22], [24], [25] and minimising the side effects of 

conventional anti-cancer therapies [24]. Viscum preparations consist of multiple components 

at variable concentrations, depending on the host tree they are harvested from, the time at 

which they were harvested and the method of preparation. Mistletoe lectins (MLs) I-III, 

especially ML-I and viscotoxins are the major bioactive components of this preparation which 

are majorly involved to exert their anti-cancer property [26]. This preparation also composed 

of several other biologically active components such as flavonoids, peptides, several enzymes, 

polysaccharides, phenols, triterpenes, lipids, phytosterols, amino acids, thiols, cyclitoles, 

phenylpropanes and minerals [27]. ML-I belongs to a class of ribosome inactivating protein 

(RIP), such as highly toxic ricin and abirin [28]. It consists of two subunits, the α and the β-

chain connected by a disulphide bridge [29]. The β-chain binds to sugar components 

expressed on the surface of cells which enables their uptake into the cells. This characteristic 

of viscum is believed to be the reason for their specific anti-cancer effects. The α-chain exerts 

RNA-glycoside hydrolase activity, resulting in inactivation of ribosomes hence their ability to 

induce apoptosis [30]. Increasing evidence has revealed that VA exerts anti-tumor activities 

including cytotoxic properties [31], [32], induction of apoptosis [33], inhibition of 

angiogenesis [34], and immunomodulatory properties and anti-inflammatory properties [35], 

[36]. 

There is increasing evidence supporting the fact that in cancer, the M2-like pro-tumoral 

phenotype of TAMs is reversible [37], [38]. Guiducci et al. reported that CpG activated TLR9 

and IL-10 Ab can switch M2 TAMs to M1 phenotype [39]. Notch signalling can enhance 

anti-tumor activity by encouraging classically activated macrophages, which are known to kill 

cancer cells [40]. Re-directing macrophage polarization can be achieved by genetic blocking 

of molecular determinants of macrophage polarization such as STAT3, STAT6, NF-kB p50 
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which might lead to anti-tumor activity [37], [41], [42]. Thus it is confirmed that in early 

stages of cancer T cell response decides classical macrophage polarization. Therefore, in view 

of the anti-tumoral and immunomodulatory effect of viscum, we were interested to investigate 

whether VA can modulate macrophage polarization, which in part explains the mechanisms 

underlying the beneficial effect of VA in cancer therapy.  

Results 

VA Qu Spez induced switch of macrophage polarization in a M1/M2 mixed phenotype 

We first investigated whether VA modulates polarization of M1 and M2 macrophages. M1 

macrophages are known to be pro-inflammatory in nature, thus we were initially interested to 

study the effect of VA Qu Spez on polarization of M1 macrophages. The cells were cultured 

either with GMCSF, LPS and IFN-γ to obtain M1 macrophages or with M-CSF, IL-13 and 

IL-4 for M2 macrophage polarization. In both the culture conditions we obtained a mixed 

M1/M2 phenotype population of macrophages. And in both the conditions, interestingly VA 

Qu Spez was able to significantly favour M1 phenotype over M2 phenotype. VA induced M1 

phenotype is showed by elevated expression of M1 surface markers such as CD80 (Fig. 2B 

and 2C) and CCR7 (Fig. 2D). Along the same line VA provoked a dramatic polarization 

switch in M2 macrophages, as it reduced the expression of M2 specific marker CD206 (Fig. 

1C). Altogether these results demonstrate the ability of VA Qu Spez to promote M2 to M1 

polarization switch in human macrophages. 

Significant induction of IL-12 expression by VA Qu Spez in a M1/M2 mixed phenotype 

indicating the effect of VA in M2 to M1 polarization switch 

M1 macrophages are characterized by high expression of IL-12 and low IL-10 expression, but 

in contrast, M2 macrophages exert a phenotype of low IL-12 and high IL-10 expression. 

Previous results indicated that VA is able to favour M1 macrophage polarization over M2. 

Thus we were interested to explore whether VA can modulate the expression of IL-12 and IL-

10, which in turn can strengthen our previous observation. Interestingly in both the culture 

condition of M1 and M2, VA Qu Spez significantly induced IL-12 expression (Fig. 3A and 

3D), confirming that VA skew them towards the acquisition of the phenotypic characteristics 

of M1 macrophages. 

VA Qu Spez significantly drives M1 polarization in distinct M2 macrophage population 

To determine the extent of the relevance of these findings, we next determined whether VA 

Qu Spez-mediated polarization switch in a mixed M1/M2 phenotype, holds true even in a 
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distinct M1 and M2 scenario. Thus we validated polarization state of distinct M1 and M2 

macrophages. Macrophages showing significant induced expression of CD80 and CCR7, 

confirmed specific M1 population (Fig. 4A), whereas elevated expression of CD206 and 

CD209 validated specific M2 polarized macrophages (Fig. 5A). Although there was no 

modulation of polarization observed with VA Qu Spez treatment in both M1 and in M2 cells 

(Fig4. and Fig5. B-E), but surprisingly induced CD80 expression by VA treatment compared 

to the untreated cells in M2 macrophages, once again strongly indicates the role of VA in 

switching M2 to M1 phenotype.  

VA Qu Spez drives M2 to M1 switch by inhibiting expression of IL-10 in M2 

macrophages 

Regarding previously reported immunomodulatory and anti-inflammatory properties of VA 

Qu Spez and the prognostic impact of alternatively polarized macrophages, we were 

interested in the effect of VA Qu Spez on polarization of macrophages. Macrophages were 

polarized in-vitro as described above to obtain distinct M1 and M2 phenotype. There was no 

significant alteration in the IL12 and IL-10 profile (Fig. 6A, 6b and 6D) after treatment with 

VA compared to the control untreated cells. But interestingly VA significantly abrogated the 

expression of IL-10 in M2 macrophages. Therefore all results collectively suggest that, VA 

Qu Spez alters the macrophage polarization, i.e., drives alternatively activated macrophage 

switch towards classically activated macrophages, which in turn can be beneficial to limit 

tumor growth.   

Discussion 

Mechanisms of immune surveillance are able to control the growth of new tumors or affect 

the progression of existing tumors is well known [43]. Immune dysregulation and immune 

suppression in cancer patients is a composite event which in turn leads to abnormal 

myelopoesis and recruitment of several immunosuppressive myelomonocytic cells at tumor 

vicinity [5], [6]. This immune dysfunction even can cause death of tumor-speecific T cells or 

lymphocyte dysfunction. These immunosuppressive myelomonocytic cells are involved in 

process of angiogenesis and stroma remodelling needed for tumor progression.  In the tumor 

site, tumor-derived factors are involved in functional differentiation of myelomonocytic cells 

majorly the macrophages to sustain myelopoiesis [4]. Regulation of Monocyte-macrophage 

function at equilibrium is essential for dealing with pathogens, tissue damage and repair. The 

orchestration of myelomonocytic cell function links inflammation and cancer. Macrophages 

show considerable functional plasticity and exert an immediate response to alter according to 
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the change in the microenvironment [44]. Cancer serves a paradigm of macrophage plasticity 

and diversity [13], [14], [15]. Based on Th1 and Th2 polarization, macrophages are classified 

in two distinct states: the classically activated macrophages or M1 and the alternatively 

activated macrophages or M2 [17]. Myelomonocytic cells are involved in carcinogenesis at 

every possible stages of tumor progression [11], [12], [45]. These cells influence the 

following steps: suppressing adaptive immune response [46], supporting angiogenic network 

and lymphangiogenesis [47], [48], [49], promoting genetic instability, senescence regulation 

[50], promoting invasion and tumor metastasis [48]. But on the other hand tumor cells are 

capable of escaping phagocytosis by macrophage cells [51], and majorly by recruiting M2 

macrophages in the tumor site through chemokines and cytokines such as MCSF, IL-10, 

TGF-β etc. [52], [11].  

Several study showed that Viscum album exerts anti-tumor properties. VA induces cell 

toxicity and inhibits proliferation of a variety of cell types [31], VA Qu Frf mistletoe extract 

induces apoptosis in a variety of transformed cells in a Fas independent way [32]. Kaveri 

group had demonstrated anti- tumoral property of that VA and reported that VA is able to 

induce apoptosis of endothelial cells and can inhibit angiogenesis which is essential for tumor 

metastasis [33], [34]. Apart from its anti-tumor properties VA also employs a novel anti-

inflammatory effect by inhibiting cytokine induced prostaglandin E2 via selective inhibition 

of Cyclooxygenase-2 [53], [54]. In addition to its ani-tumor properties, viscum preparations 

have immunomodulatory effects. VA facilitates tumor elimination in experimental models 

[55]. VA lectin induces gene expression of IL-1α, IL-6, TNF-α, IFN-γ and GM-CSF from 

PBMC [56]. VA preparations stimulate the maturation and activation of human DCs, which in 

turn might facilitate anti-tumor immune responses [36]. Triterpenes in VALE is shown to 

have immunomodulatory effects on tumor cell co-cultured macrophages in vitro by 

modulating monocyte chemotactic transmigration [57].  Mistletoe exerts a beneficial effect on 

cancer patient survival [22], [23] and their ability to improve quality of life of cancer patients 

[24], [25] and minimising the side effects of conventional anti-cancer therapies [24] is 

demonstrated by several systemic reviews and clinical studies. 

In the present in vitro study, we demonstrate that VA Qu Spez drives M2 switch towards M1, 

in a mixed M1/M2 population as well as in distinct M1 and M2 phenotype. VA- mediated 

modulation of this switch is demonstrated by induced expression of M1 surface markers such 

as CD80 and CCR7, but in parallel, reduced expression of M2 surface markers such as 

CD206 and CD209, with VA treatment in both the culture conditions. In addition, VA 

provoked polarization of IL-12hi and IL-10lo characterised M1cells over IL12lo and IL-10hi M2 
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macrophages, suggesting that VA is able to play M2 to M1switch. There are several reports 

suggest that M2-like pro tumoral phenotype of TAMs in cancer is reversible [38] [58]. Tumor 

associated macrophages are the main source of IL-10 which is an imuunomodulating cytokine 

which can turn down innate and adaptive immune response and they are responsible to 

maintain M2 state of macrophages [39]. Strategies to overcome tumor escape mechanisms by 

changing the immunosuppressive situation are the key to effective immunotherapy. Our 

results show that VA down modulates IL-10 expression in M2 macrophages will probably be 

one of the reasons for VA to exert immunomodulatory effect. IL-12 links innate and adaptive 

immunity by promoting cytotoxic T lymphocytes (CTL). Reduced production of CTL and 

abrogation of tumor rejection was observed in IL-12 knockout mice [39]. In this study we 

show that VA Qu Spez was able to significantly induce IL-12 expression in M1/M2 mixed 

phenotype which strengthens the underlying therapeutic efficacy of VA as an 

immunomodulatory compound. The ability of viscum to manipulate M2 macrophages 

towards M1 phenotype by increased expression of M1 markers such as CD80, CCR7 and IL-

12, and reduced expression of M2 markers such as CD206, CD209 and IL-10, indirectly 

suggests recruitment of Th1 response and a possibility of relief of tumor immunosuppression, 

which may represent potential effective anti-tumor therapeutic benefit of VA. 

Conclusion 

A better understanding of the interplay between myelomonocytic cells and neoplastic cells 

may confer novel targets for therapeutic intervention and enhancing the anti-tumor response. 

Balance in monocyte- macrophage function is important for developing immune response 

which is resistance to pathogens, tissue damage and repair. Viscum album is known to 

improve quality of life of cancer patients and their survival. Our results demonstrate the 

ability of VA Qu Spez to switch immunoregulatory M2 macrophage cells towards M1, thus 

indicating the ability of VA to drive Th1 response. This study provides another new angle to 

understand VA-associated immunomodulation which could be critical in understanding their 

role as complimentary therapy in cancer. 

Methods 

VA preparation 

VA Qu Spez was a kind gift from Weleda AG (Arlesheim, Switzerland). This is the extract of 

Viscum album growing on different oak trees (Quercus). The VA preparations are therapeutic 

preparations that are free from endotoxins. VA preparations are formulated in sodium 

chloride (NaCl 0.9%) isotonic solution as 5 mg/ml vials. VA preparations are prepared by 
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standardizing the levels of Mistletoe lectins and viscotoxins. VA Qu Spez is a fermented 

preparation, composed of 785 +/- 10% ng/ml of lectin and 5 +/- 5% µg/ml of viscotoxin. 

 

Isolation of circulating human monocytes, their differentiation to macrophages containing 

a mixed M1/M2 population 

Peripheral blood mononuclear cells (PBMC) were isolated from buffy coats of healthy donors 

purchased from Centre Necker-Cabanel (Etablissement Franc¸ ais du Sang, Paris, France). 

Circulating monocytes were isolated using CD14 beads (MiltenyiBiotec, Paris,France), and 

subsequently cultured for 5 days in medium (RPMI 1640, GIBCO/Invitrogen) with 10% FCS, 

50 U/ml penicillin, 50 µg/ml streptomycin, and either with 1000 IU/106 cells recombinant 

human GM-CSF (MiltenyiBiotec) to generate M1 macrophage or 2000 IU/106recombinant 

M-CSF (Immunotools) to generate M2 macrophage. Post 5 days macrophage polarization was 

obtained by removing the culture media and culturing cells for additional 48 hours in the 

similar medium condition with 200 ng ml-1 LPS (from Escherichia coli, sigma-Aldrich) plus 

40 ng ml-1 IFN-γ (Immunotools) for M1 polarization or 500 IU ml-1 IL-4 (MiltenyiBiotec) 

plus 200 ng ml-1 IL-13 (Immunotools) for M2 polarization and at the same time cells are co-

treated with VA Qu Spez for the subsequent hours. 

 

Isolation of circulating human monocytes and their polarization to distinct M1 and M2 

macrophages 

Human peripheral blood mononuclear cells were isolated using density gradient 

centrifugation. Monocytes were isolated using anti-CD14 microbeads (MiltenyiBiotec, Paris, 

France). Macrophages were obtained by culturing monocytes for 6 days in RPMI 1640 

supplemented with 20% FCS plus 50 U/ml penicillin and 50 µg/ml streptomycin and 100 ng 

ml-1macrophage colony-stimulating factor at a density of 1.5 ×105 per cm2. Macrophage 

polarization was obtained by removing the culture media and culturing cells for an additional 

72 hours in RPMI 1640 supplemented with 5% FCS and 100 ng ml-1 LPS plus 20 ng ml-1 

IFN-γ (for M1 polarization) or 20 ng ml-1 IL4 plus 20 ng ml-1 IL-13 (for M2 polarization). 

Post 72 hours M1 and M2 macrophages were treated with VA Qu Spez for 48 hours.  

 

Viscum album treatment 

In case of the first protocol, where we obtained a mixed population of M1 and M2, cells were 

treated with VA Qu Spez for 48 hours at two different concentrations, i.e., 15 µg/ml and 20 

µg/ml or they were untreated (control cells). The phenotype of cells was analyzed by flow 

cytometry. When we obtained distinct M1 and M2 phenotypic cells, they were either 
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untreated (control cells) or treated with VA Qu Spez at much lower concentration, i.e., 0.5 

µg/ml and 1 µg/ml respectively as these concentrations were optimum to the cells. Further 

cell phenotype was analyzed by flow cytometry. 

 

Flow cytometry 

To investigate the effect of VA on macrophages, 0.5 × 106 macrophages were either untreated 

or treated with VA preparations for 48 hrs. To analyse M1 macrophage phenotype we used 

the following fluorochrome-conjugated antibodies such as: PE-conjugated-CD80 (BD 

Biosciences) and APC-conjugated-CCR7 (eBioscience) and to analyze M2 macrophage 

phenotype, we used PE-conjugated-CD206 (BD Biosciences) and APC-conjugated-CD209 

(BD Biosciences). 

For determining intracellular M1/M2 expression we used APC-conjugated IL-12 

(eBioscience) and PE-conjugated IL-10 (BD Biosciences).  

For surface staining cells were suspended in 10% FCS/PBS and antibodies against surface 

molecules were added at pre-determined concentration and incubated at 4° C for 30 min. BD 

Fix buffer was used to fix the cells and washed before analysis. The data are presented as % 

positive cells for indicated molecules or mean fluorescence intensities (MFI) of their 

expression. 

Macrophage cells were stimulated with Phytohaemagglutinin (PHA)-L (10 µg ml-1, Sigma-

Aldrich) at 37°C for 18 hours and for extra 2 hours with golgistop (BD Biosciences). Cells 

were fixed and permeabilized using Foxp3 Fixation/Permeabilization kit (eBioscience) and 

incubated at 4°C with fluorescence-conjugated mAbs. Cells were acquired on LSRII, 5000 

events were recorded and analyzed for each sample. Data was analyzed by BD FACSDIVA 

software (BD Biosciences, France).  

 

Statistical analysis 

Levels of significance for comparison between samples were determined by One way 

ANOVA Tukey’s Multiple Comparison Test. Values of P <.05 were considered statistically 

correlated (*P <0 .05, *** p< 0.0001). All statistical analyses were performed using Prism 5 

software (GraphPad Software, Inc, La Jolla, Calif). 
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Figure Legends 

Figure.1. VA Qu Spez favours M1 MФ by reducing M2 surface marker CD206 in a 

mixed M1/M2 MФ population of cells. The bar graphs show expression of several MФ 

surface markers on M1 and M2 mixed human macrophage cell population treated or untreated 

with VA Qu Spez in a dose dependent manner. In all the panels X axis indicates concentration 

of VA Qu Spez, i.e., 15 µg/ml and 20 µg/ml respectively. Untreated macrophage cells are 

considered as control cells. The expressions of all the markers are analyzed by flow cytometry 

(BD LSRII). A) % positive cells expressing CD80: M1marker. B) Mean fluorescence 

intensity (MFI) of CD80 expressing macrophage cells. C) Mean fluorescence intensity (MFI) 

of the M2 surface marker CD206. Data are mean ± SD, representative of 3 independent 

experiments done and the statistical significance (*, p <0.05) as analyzed by One-way 

ANOVA Tukey’s multiple comparison Test. 

 

Figure.2. VA Qu Spez efficiently drives M1 phenotypic cells in a M1/M2 MФ mixed 

population by significantly upregulating M1 MФ surface markers such as CD80 and 

CCR7. Human monocyte- derived macrophage cells were treated either with LPS and IFN-γ 

for M1 polarization or with IL-4 and IL-13 for M2 polarization. These M1/M2 mixed 

phenotypic macrophage cells were treated with VA Qu Spez for 48 hours and analysed for 

surface marker expression by flow cytometry. A) Mean fluorescence intensity (MFI) of 

CD206. B) % of macrophage cells positive for CD80. C) Mean fluorescence intensity (MFI) 

of CD80. D) % positive cells expressing CCR7 (M1 phenotype marker). E) Mean 

fluorescence intensity (MFI) of CCR7.  Data are presented as mean ± SEM from minimum 3 

independent donors. Statistical significance (*, p< 0.05) as analyzed by One-way ANOVA 

Tukey’s multiple comparison Test. 

 

Figure.3. VA Qu Spez promotes M1 cells in a M1/M2 MФ mixed population by 

significant induction of IL-12. Flow cytometric analysis of intracellular IL-12 and IL-10 in 

M1/M2 macrophage population after 5 days of culture for macrophage polarization. Cells 

were stimulated with PHA for 18 hours and extra 2 hours of golgi stop stimulation. A-D) 

Percentage of IL-12 and IL-10 cells (mean ± SEMs, n=3 donors) in M1/M2 polarized 

macrophages. *, p< 0.05, ***, p< 0.0001, One-way ANOVA Tukey’s multiple comparison 

Test.  

 

Figure.4. VA Qu Spez slightly induces M1 marker CCR7 expression in M1 MФ cells. 6 

days old monocyte-derived macrophages were cultured for 72 hours with LPS and IFN-γ to 
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obtain M1 macrophages. These M1 cells were treated with or without VA Qu Spez for 

additional 48 hours and then analysed for surface marker expression by flow cytometry. A) 

Validation of M1 macrophage polarization indicated by significant % positive expression of 

M1 surface markers such as CD80 and CCR7. B) Percentage of cells positive for CD80. C) 

Mean fluorescence intensity (MFI) of CD80 D) % positive cells expressing CCR7. E) Mean 

fluorescence intensity (MFI) of CCR7 expression. Results are presented as mean ± SEM from 

minimum 3 healthy donors.  

 

Figure.5. Indication of M2 MФ switch to M1 MФ by VA Qu Spez by significant 

induction of M1 marker CD80. Post 6 days monocyte-derived macrophages were cultured 

for 72 hours with IL-13 and IL-4 to obtain M2 macrophages. M2 cells were treated with or 

without VA Qu Spez for 48 hours. The expressions of all the surface markers are analyzed by 

BD LSRII flow cytometry.  A) Conformation of M2 phenotypic expression indicated by 

significant expression of the mannose-receptor (C-type lectin) CD206 and CD209 (DC-

SIGN). B) Percentage of CD206 positive cells. C) MFI of CD206. C) % positive cells 

expressing CD209. D) MFI OF CD209. E) % positive cells for M1 surface marker CD80. 

Data from minimum 3 donors is presented (mean ± SEM). *Statistical significance as 

determined by One-way ANOVA Tukey’s multiple comparison Test, where p< 0.05.  

 

Figure.6. VA Qu Spez favours M2 MФ switch to M1 MФ by reducing IL-10 expression 

in M2 MФ population. Flow cytometric analysis of intracellular IL-12 and IL-10 in the M1 

and M2 macrophage cells after 9 days culture either in presence of LPS and IFN-γ for M1 

macrophage polarization or in the presence of IL-13 and IL-4 for M2 macrophage 

polarization. In all the panels X axis indicates concentration of VA Qu Spez, i.e., 0.5 µg/ml 

and 1 µg/ml respectively. These were the optimum concentration to be tolerated by the 

distinct M1 and M2 macrophage cells in this particular culture condition. Results are 

representative of minimum 3 healthy donors. A) % positive cells for IL-12 in M1 macrophage 

cells. B) Percentage of IL-10 cells in M1 macrophage cells. C) Percentage of IL-10 in M2 

macrophages. D) % positive cells for IL-12 in M2 macrophage cells. Statistical significance 

(*, p< 0.05) as analyzed by One-way ANOVA Tukey’s Multiple comparison Test. 
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The immune system can discriminate between a range of stimuli, in one hand it  allows some 

to provoke immune responses, which leads to immunity, and on the other hand it can prevent 

others from doing so, which leads to tolerance. To this end, the immune system is highly 

organized and orchestrated at molecular, cellular and systemic levels. In the context of tumour 

immunology, tumour immunity or immune tolerance to tumour means the success 

or failure of the immune system to eliminate a tumour. When the immune tolerance is 

interrupted, an exacerbated activity of the immune system towards self-tissues leads to 

autoimmune disease characterized by inflammation. Inflammation is a physiopathological 

symptom of infection, autoimmunity or cancer. Thus, dysfunctional immune system serves as 

an ideal target for several therapeutic interventions.  Therapeutic intervention using natural 

compounds has enormously contributed to the field of complementary and alternative 

medicines (CAM). A prominent group of effective cancer chemo preventive drugs has been 

derived from natural products having low toxicity while possessing apparent benefit in the 

disease process. Our research group is extremely interested in elucidating the 

immunomodulatory effects of Viscum album, a heterogeneous plant preparation, extensively 

used in the complementary and alternative medicine for cancer for several years. Several 

preclinical and clinical data suggest that Viscum album improves the survival and quality of 

life of cancer patients. In addition, VA preparations have been implicated as conventional 

phytotherapeutics in the treatment of several conditions associated with allergic reactions, 

nervous system abnormalities and immune-inflammatory diseases. Long-term side effects of 

nonsteroidal anti-inflammatory drugs (NSAID) in various pathological conditions and the 

increasing body of evidence for anti-inflammatory activity of plant-derived molecules 

together encourage the conception of phytotherapeutics as potent alternatives to classical anti-

inflammatory drugs. 

Despite the use of viscum in complementary medicine and their therapeutic benefit, being 

observed for several decades, the underlying molecular mechanisms have not been clearly 

demonstrated. Therefore, my study is focused towards understanding the molecular 

mechanisms of these therapeutic preparations, in the context of inflammation and majorly 

immunomodulation.  

 

Viscum album-Mediated COX-2 Inhibition Implicates Destabilization of COX-2 mRNA 

Owing to the intricate association of inflammation and cancer and in view of the fact that 

several anti-tumor phytotherapeutics also exert a potent anti-inflammatory effect, our group 

have recently demonstrated that, VA Qu Spez exerts a potent anti-inflammatory effect by 

selectively downregulating the COX-2-mediated cytokine-induced secretion of prostaglandin 
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E2 (PGE2), one of the important molecular signatures of inflammatory reactions. Therefore, 

we hypothesized that VA induces destabilisation of COX-2 mRNA, thereby depleting the 

available functional COX-2 mRNA for the protein synthesis and for the subsequent secretion 

of PGE2. 

Clinical demonstration of severe side effects due to the failure of the classical COX-2 

inhibitors to discriminate between an aberrant pathological versus homeostatic functional 

activation state, raised the concern that direct COX-2 enzymatic inhibition might not 

sufficiently represent an appropriate clinical strategy to target COX-2. COX-2 is an early 

response gene, similar to the genes encoded for cytokines, chemokines and proto-oncogenes, 

they can be regulated under different levels of expression and modulation, ranging from direct 

transcriptional effects to post-transcriptional and post-translational levels and also indirectly 

by various transcription factors that mediate the stability. Such multiple levels of modulation 

of COX-2 expression imply the existence of several mechanisms, which may be targeted to 

finely modulate COX-2 functions. Several phytotherapeutics have been shown to exert 

modulatory effect on COX-2 at various levels of its molecular regulation and therefore have 

been considered as an effective alternative strategy to control the pathogenic expression of 

COX-2.   

Thus, I analyzed the protein stability of COX-2 in the presence of VA by cyclohexamide 

pulse chase experiments. Flow cytometric analysis of COX-2 expression after 90 minutes of 

blocking the protein synthesis with cyclohexamide showed that, there is no significant 

difference in the COX-2 degradation profile of cells simulated with IL-1β with or without 

treatment with VA. Western blot analysis of COX-2 protein after 5 and 11 hours of 

cyclohexamide blockade showed no significant difference in the degradation pattern of COX-

2 in cytokine stimulated cells with or without VA treatment. Similar results at different time 

points were observed. Therefore, it is clear that COX-2 protein degradation is not affected by 

VA. Further, reduced level of COX-2 expression at 0 hour in this experiment also suggests 

that, there may be modulation by VA of the COX-2 expression before the addition of inhibitor 

of protein synthesis. Inhibition of COX-2 protein expression by VA without modulating its 

stability strongly indicates that, there is a possible modulation by VA at an early stage than 

when the proteins were expressed. However VA did not modulate COX-2 mRNA expression 

and therefore, I analyzed the mRNA stability of COX-2 by actinomycin D pulse chase 

experiment. mRNA degradation profile of COX-2 obtained by analyzing the COX-2 mRNA 

at different time intervals after blocking the transcription using actinomycin D showed that 

the rate of degradation of COX-2 mRNA is higher in cells treated with VA compared to those 

treated with cytokine alone. This reduction in the mRNA half-life of COX-2 in the cells 
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treated with VA suggests that, VA induces destabilization of COX-2 mRNA, thereby 

diminishing the available functional mRNA for the protein synthesis. Although this study 

postulates destabilization of COX-2 mRNA by VA preparations as a possible mechanism for 

VA-mediated COX-2 inhibition, further molecular dissection is necessary in order to clearly 

understand the regulatory events of COX-2 regulation, contributing factors and their 

modulation by VA preparations. 

Differential effect of various preparations of Viscum album on maturation and 

activation of human dendritic cells and T cell response 

In addition to the anti-inflammatory and cytotoxic properties, VA preparations have 

immunostimulatory effects. However, to mount an effective anti-tumoral immune response, 

an induced expression of co-stimulatory molecules on the DCs, the sentinels of the immune 

system, which bridges the innate immune system with adaptive immune system, accompanied 

by an enhanced secretion of pro-inflammatory cytokines that culminates in T cell proliferation 

is required. There are several reports, suggesting that in breast cancer patients DCs found to 

exert deficiencies in expressing several co-stimulatory molecules and impaired generation of 

inflammatory cytokines. Our group had demonstrated that mistletoe extracts induce 

maturation and activation of DCs accompanied by the induction of inflammatory cytokines 

and stimulation of tumor-specific T cells. It is a well-documented fact that mistletoe extracts 

are heterogeneous preparations and thus exert different response. The difference in the 

biological activities of different Viscum album majorly depends on the host trees or the 

nutritional source, the time they are harvested or seasonal variation, and the method of 

extraction. Therefore, I was interested to perform a comparative study of different 

preparations of Viscum album which could be an important contribution to the field to 

understand the underlying mechanism of action of each VA preparations associated with its 

anti-tumor effect. In my study, I included five different preparations of VA - VA Qu Spez, 

VA Qu Frf, VA M Spez, VAP and VAA respectively. I demonstrated the differential effect of 

these preparations on maturation and activation of dendritic cells (DCs) which in turn may 

manifest anti-tumoral immune response. We found among all five preparations, VA Qu Spez 

significantly induces DC activation and secretion of pro-inflammatory cytokines such as IL-6, 

Il-8 and TNF-α, enhancing IFN-γ production hence promoting Th1 immune response. Flow 

cytometric data revealed that VA Qu Frf, VA M Spez, VAP and VAA were not able to 

enhance the expression of antigen presenting molecule HLADR and co-stimulatory molecules 

such as CD80, CD86, CD83, CD40. But interestingly, VA Qu Spez was able to enhance the 

expression of the co-stimulatory as well as the antigen presenting molecules. Further, I 

analyzed the differential effect of five VA preparations on secretory cytokines such as IL-6, 
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IL-8, IL-10 and TNF-α. Results showed apart from VA Qu Spez, VA Qu Frf and VA M Spez 

showed moderate enhancement of these pro-inflammatory cytokines, but VAP and VAA were 

unable to modulate their secretion level not even at considerable level. VA Qu Spez is 

efficiently capable of enhancing IL-6, IL-8 and TNF-α, without having any effect on immune-

suppressive cytokine IL-10. One of the key functions of APC is to promote polarized T cell 

response. Thus, next explored the effect of VA Qu Spez on T cell responses. Five 

preparations of VA primed DCs were co-cultured with allogenic total CD4+T cells at a ratio 

of 1:10 and Th1, Th2,Th17 and Treg response was measured by flowcytometric analysis of 

intracellular IL-17 (Th17), IFN-γ (Th1), IL-4 (Th2), FOXP3 (Treg). Previous data suggested 

that VA Qu Spez is capable of activating DCs differentially, but these activated DCs were 

unable to promote any of the T cell response analyzed by flow cytometry. Further, I sustained 

the observation by analyzing the quantity of IFN-γ, IL-4, IL-13 and Il-17 in culture 

supernatants by ELISA. Data revealed that VA Qu Spez significantly stimulates IFN-γ 

secretion without having any effect on modulation of IL-4, IL-13, and IL-17, suggesting VA 

Qu Spez favours Th1 response.  

Cytotoxicity of mistletoe is majorly attributed to its lectins. As mistletoe lectins bind to sugar 

residues, it is meaningful to speculate that glycoproteins from serum competes with cell 

surface glycoproteins for binding of lectin, thus abrogating the amount of lectins engulfed by 

cells. Cytotoxic glycoproteins, the lectins, are one of the active components of mistletoe 

extracts which is responsible for stimulating effector cells of the innate and adaptive immune 

system such as dendritic cells, macrophages, natural killer cells, and B and T lymphocytes, 

that might be one of the mechanisms responsible for the anti-tumoral effect of mistletoe 

extracts. Several studies clearly demonstrated lectin internalization is required for ML-I 

mediated apoptosis independent of surface receptor- mediated pathway. Among all five 

preparations, VA Qu Spez contains the second highest amount of lectin, i.e., 785 +/- 10% 

ng/ml, this could one of the possible reasons to account for it to be the most effective 

preparation in terms of DC activation and conferring T cell response. 

For therapeutic intervention at least three approaches can be considered to induce tumor 

rejection by cytotoxic T lymphocytes (CTLs). First is encouraging antigen presenting ability 

of DCs, second is promoting protective T cell response and last but not the least defeating 

immunosuppressants in tumor vicinity. Several DC-based cancer immunotherapy has been 

established with the aim of enhancing DC maturation with elevated expression of maturation-

molecules, high migration capacity, enhancing CTLs. Tumor apoptosis can be achieved by 

Idiotype specific CD4+ Th1 cell by FasLFas interaction directly and indirectly by IFN-γ 

production which can regress tumor. Our data demonstrates that VA Qu Spez induces IFN-γ 
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production thus favouring Th1 type immune response which indirectly could be one of the 

mechanisms strengthening the beneficial effect of VA preparations as complimentary therapy 

in cancer. 

Viscum album promotes anti-tumor response by modulating M1/M2 macrophage 

polarization switch 

Mechanisms of immune surveillance are able to control the growth of new tumors or affect 

the progression of existing tumors is well known. Immune dysregulation and immune 

suppression in cancer patients are the composite events which in turn leads to abnormal 

myelopoesis and recruitment of several immunosuppressive myelomonocytic cells at tumor 

vicinity. This immune dysfunction even can cause death of tumor-speecific T cells or 

lymphocyte dysfunction. These immunosuppressive myelomonocytic cells are involved in 

process of angiogenesis and stroma remodelling needed for tumor progression.  In a tumor 

site, tumor-derived factors are involved in functional differentiation of myelomonocytic cells 

majorly the macrophages to sustain myelopoiesis. The orchestration of myelomonocytic cell 

function links inflammation and cancer. Macrophages show considerable functional plasticity 

and exert an immediate respond to alter according to the change in the microenvironment. 

Cancer serves a paradigm of macrophage plasticity and diversity. Alberto Mantovani 

described that, in the tumor site, circulating monocytes are recruited and these cells 

differentiate into tumor associated macrophages (TAMs). These TAMs play an important role 

in tumor progression by encouraging inflammation and angiogenesis thus inducing neoplastic 

growth. Based on Th1 and Th2 polarization, macrophages are classified in two distinct states: 

the classically activated macrophages or M1 and the alternatively activated macrophages or 

M2. M1 macrophages recruit Th1 cells thus promoting Th1 response and they confer 

resistance to intracellular pathogens and tumors leading to tumor-disruptive response. In 

contrast,  as M2 macrophages drive Th2 immune response in turn they actively participate in 

encapsulation and clearance of parasites hence in tumor progression and tissue remodelling 

and importantly exert an immune regulatory property. Therefore, in view of the anti-tumoral 

and immunomodulatory effect of viscum, I was interested to investigate whether VA can 

modulate macrophage polarization, which in part explains the mechanisms underlying the 

beneficial effect of VA in cancer therapy. In the present in vitro study, I demonstrated that 

VA Qu Spez drives M2 switch towards M1, in a mixed M1/M2 population as well as in 

distinct M1 and M2 phenotype. VA- mediated modulation of this switch is demonstrated by 

induced expression of M1 surface markers such as CD80 and CCR7, but in parallel, reduced 

expression of M2 surface markers such as CD206 and CD209, with VA treatment. In 

addition, VA provoked polarization of IL-12hi and IL-10lo characterised M1cells over IL12lo 
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and IL-10hi M2 macrophages, suggesting that VA is able to play M2 to M1 switch. There are 

several reports suggesting, M2-like pro-tumoral phenotype of TAMs in cancer is reversible. 

Tumor associated macrophages are the main source of IL-10 which is an imuunomodulating 

molecule which can turn down innate and adaptive immune response and they are responsible 

to maintain M2 state of macrophages. Strategies to overcome tumor escape mechanisms by 

changing the immunosuppressive situation are the key to effective immunotherapy. My 

results show that VA down modulates IL-10 expression in M2 macrophages will probably be 

one of the reasons for VA to exert immunomodulatory effect. IL-12 links innate and adaptive 

immunity by promoting cytotoxic T lymphocytes (CTL). Reduced production of CTL and 

abrogation of tumor rejection was observed in IL-12 knockout mice. In this study we show 

that VA Qu Spez was able to significantly induce IL-12 expression in M1/M2 mixed 

phenotype which strengthens the underlying therapeutic efficacy of VA as an 

immunomodulatory compound. The ability of viscum to manipulate M2 macrophages 

towards M1 phenotype by increased expression of M1 markers such as CD80, CCR7 and IL-

12, and reduced expression of M2 markers such as CD206, CD209 and IL-10, indirectly 

suggests recruitment of Th1 response, which may represent potential effective anti-tumor 

therapeutic benefit of VA. 
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Altogether, the aim of my thesis to understand the anti-inflammatory and 

immunomodulatory effect of Viscum album, I found that VA exerts anti-inflammatory 

effects by selectively inhibiting COX-2 expression and ensuing PGE2 production, 

implicating viscum mediated COX-2 mRNA destabilisation. An in vitro comparative 

study involving five different preparations of VA concerning maturation and activation 

of dendritic cells (DCs) which in turn may manifest anti-tumoral immune response, 

showed that among all five preparations, VA Qu Spez significantly induces DC 

activation, secretion of pro-inflammatory cytokines such as IL-6, Il-8 and TNF-α, 

enhancing IFN-γ production hence promoting Th1 immune response. In view of the key 

role of myelomonocytic cells that links inflammation and cancer and provides a 

paradigm for macrophage plasticity and function, my study revealed an interesting 

effect of VA Qu Spez in switching the M2 macrophages which are known to participate 

in polarizing Th2 responses, help with parasite clearance, dampen inflammation, 

promote tissue remodelling and tumor progression and have immunoregulatory 

functions, towards classically activated M1 macrophages which are part of a polarized 

Th1 response and mediate resistance to intracellular pathogens and tumors and elicit 

tissue-disruptive reactions.  
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Perspectives 

Although viscum is known for several years for their traditional and medicinal history and 

known to exert several therapeutic benefits, an extensive future investigation is required with 

respect to its mechanism of action at systemic, cellular and molecular level. 

Thus, I propose some of the future direction of this study to extend my thesis studies which 

broadly include: 

 TLR4-mediated activation of immune cells: To explore the downstream cell 

signalling target of viscum  

 

 To decipher the downstream target of Viscum album associated with viscum-

mediated M2 to M1 polarization switch: better understanding of therapeutic 

benefit of viscum 

 
 

 To explore the clinical relevance of immunomodulatory effect of Visum album: 

angle of viscum mediated DC activation and macrophage polarization switch 

 

TLR4-mediated activation of immune cells: To explore the downstream cell signalling 

target of viscum  

The main immunostimulatory component of Viscum album preparation, mistletoe lectin, has 

been recently shown to be a pattern recognition receptor ligand, which binds to an important 

class of pathogen-sensing receptors. Pattern recognition receptor ligands are key players of 

cancer immunotherapy, which are responsible for activating dendritic cells, leading to T cell 

response against cancer cells.  Recent study revealed a structural similarity between bacterial 

origin mistletoe lectin and shiga toxin from Shigella dysenteriae, which describes 

immunogenicity of mistletoe lectin (Maletzki, Linnebacher et al. 2013). Another study 

suggests Korean mistletoe lectin is a Toll-like receptor (TLR) 4 ligand (Park, Hong et al. 

2010). As European mistletoe and Korean mistletoe have 84% of sequence resemblance and 

similar 3D structures, suggesting European mistletoe presumably is a TLR-4 ligand (Abagyan 

and Batalov 1997). The TLR family is one of the best identified PRR families responsible for 

sensing invading pathogens outside of the cells and intracellular endosomes and lysosomes 

(Akira, Uematsu et al. 2006). TLRs can recognise PAMPs and this can lead to transcriptional 

upregulation of distinct genes, which depends on the TLRs and the cell types (Maletzki, 
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Linnebacher et al. 2013). Based on the selection of the distinct adaptor molecules, TLR 

signalling is divided into two broad pathways, MyD88 and TRIF. TLR4 together with 

myeloid differentiation factor 2 (MD2) recognize lipopolysaccharide (LPS) on the cell 

surface. TLR4 triggers both MyD88-dependent and TRIF-dependent signalling. TLR4 is 

involved in severity of inflammation induced by nonmicrobial agents. MyD88 interacts with 

IL-1R-associated kinase (IRAK)-4, which activates other IRAK family members such as 

IRAK-1 and IRAK-2. The IRAKs further dissociate from MyD88 and interact with TNFR-

associated factor 6 (TRAF6), which acts as an E3 ubiquitin protein ligase. Downstream of this 

pathway, TGF-β-activated kinase 1 (TAK1) along with TAK1-binding protein1 (TAB1), 

TAB2, and TAB3 is activated and phosphorylates IκB kinase (IKK)-β and MAP kinase kinase 

6. IKK-α, IKK-β, and NF-κB essential modulator (NEMO), together known as the IKK 

complex, phosphorylates an NF-κB inhibitory protein IκBa. This phosphorylated IκB 

undergoes degradation by ubiquitin-proteosome system, which in turn helps NF-κB to 

translocate to the nucleus and activates the expression of several pro-inflammatory cytokine 

genes (Maletzki, Linnebacher et al. 2013). TLR signalling induces expression of noncoding 

RNAs, which can lead to production of microRNAs (Guttman, Amit et al. 2009), (Taganov, 

Boldin et al. 2006). TLR4 signalling is negatively modulated by miR-21 by the tumor 

suppressor PDCD4, which is required for NF-κB activation (Sheedy, Palsson-McDermott et 

al. 2010). In view of mistletoe being a TLR4 ligand and active participation of TLR4 in 

triggering the intracellular signalling cascades, leading to transcriptional expression of 

inflammatory mediators that coordinate the elimination of pathogens and infected cells, it 

would be interesting to unravel the underlying molecular mechanism of viscum which can 

support its immunomodulatory effect. Though the wide use of viscum as successful adjuvant 

therapy is known, but their mechanism of action is yet to be explored extensively. Therefore 

investigating the target of viscum in these downstream signalling pathways and identifying 

the microRNA target of viscum, which underlies its therapeutic benefit could be an interesting 

angle to explore to have a better understanding of the specific target of viscum, which in turn 

might help in the adjuvant therapy of viscum for the cancer patients. 
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Figure 16:  TLR signalling pathways. (Adapted from Shizuo Aira, Cell, 2010) 

 

 

To decipher the downstream target of Viscum album associated with viscum-mediated 

M2 to M1 polarization switch: better understanding of therapeutic benefit of viscum  

LPS and IFN-γ are the major stimuli for M1 polarization, which signal trough TLR4, IFN-α, 

or IFN-β receptor (IFNAR) and IFN-γ receptor (IFNGR) pathways, inducing activation of the 

transcription factors such as NF-κB (p65 and p50), AP-1, IRF3 and STAT1, leading to the 

transcription of M1 genes. STAT6, a master regulator of M2 macrophage polarization, 

induces the expression of transcription factor PPAR-γ. Histone demethylase JMJD3 regulates 

transcription of several M2-asscociated genes, such as Arg1, Ym1, and Fizz at an epigenetic 

level. IL-4 induces upregulation of JMJD3, which in contrast inhibits M1 transcription. 

JMJD3 regulates M2 polarization by inducing transcription factor IRF4 expression, which is 

known to be a negative regulator of TLR4 signalling by binding to MyD88. The binding of 

immune complexes to activatory FcγR on macrophages triggers a tyrosine kinase dependent 

pathway, which inhibits TLR4 through upregulation of IL-10. Prostaglandin E2 in produced 

when the inhibitory receptor FcγRIIb on macrophages is ligated, which inhibits TLR4 

triggered inflammatory cytokines expression (Biswas and Mantovani 2010). Our results 

demonstrated Viscum album directs the M2 polarization switch towards M1; suggesting 

VA 

VA 
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viscum is capable of promoting Th1 response efficiently. Thus, it would be of great interest to 

dissect the molecular mechanism of action of viscum on this macrophage switch axis. As I 

described earlier that, there are reports suggesting viscum indeed is a TLR4 ligand and 

considering the fact of the negative regulation of TLR4 signalling by several M2 specific 

genes, it would be enthralling to investigate the direct inhibitory effect of viscum on any of 

these M2 associated downstream signalling cascade. 

 

Figure 17: Molecular pathways of macrophage polarization. (Adapted from Subhra K 

Biswas, nature Immunology, 2010) 

 

 

To explore the clinical relevance of immunomodulatory effect of Visum album: angle of 

viscum mediated DC activation and macrophage polarization switch 

Results presented in my thesis reveal mechanism of action of Viscum album in an in vitro 

system. This complete study can be extended to validate the similar observations in cancer 

patients following viscum therapy and other experimental models of cancer which in turn can 

strengthen the study. 

We are very interested in generating ideas and developing possible preclinical models in 

collaboration with the scientists in Arlesheim to investigate the effect of viscum treatment on 

cancer-related fatigue, especially determining the mode of action. 

Cancer fatigue is one of the main symptoms that significantly affect the quality of life of 

patients, which on the other hand is beneficially affected by complementary viscum treatment. 

Therefore, it is interesting to explore the underlying therapeutic benefit of viscum in the 

VA 

VA 
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context of cancer related fatigue considering better understanding of their effective role as an 

anti-tumor, anti-inflammatory, anti-angiogenic and importantly immunomodulatory 

compound. 
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Inhibition of Programmed 
Death 1 Ligand 1 on Dendritic 
Cells Enhances 
Mycobacterium-Mediated 
Interferon γ (IFN-γ) Production 
Without Modulating the 
Frequencies of IFN-γ– 
Producing CD4+ T Cells 

 
TO THE EDITOR—Mycobacterium tubercu- 
losis, the causative agent of tuberculosis, 
uses several strategies to evade the im- 
mune system, which include inhibition 
of phagosomal maturation and antigen 
presentation, blockade of apoptosis and 
autophagy of infected cells, suppression 
of T-helper type 1 (Th1) and interferon 
γ (IFN-γ) responses, and expansion of 
CD4+CD25+FoxP3+   regulatory T cells 
(Tregs) [1–3]. Recently Singh et al re- 
ported that M. tuberculosis exploits the 
programmed death 1 (PD-1) pathway to 
inhibit IFN-γ responses [4]. Conversely, 
blockade of the PD-1 pathway either by 
blocking PD-1 on CD3+ T cells or block- 
ing PD-1 ligand 1 (PD-L1) on monocytes 
in vitro rescued IFN-γ–producing T cells 
from undergoing apoptosis. However, 
2  issues remain  unanswered:  (1)  the 
specific role of PD-L1 on CD4+  T cells 
and (2) the contribution of PD-L1 on 
dendritic cells (DCs), the professional an- 
tigen-presenting cells, in polarizing My- 
cobacterium-mediated IFN-γ responses 
from naive CD4+  T cells. 

Human CD4+  T cells, when activated, 
were reported to express PD-L1 [5]. 
Therefore, it is likely that interaction of 
PD-L1–expressing CD4+   T  cells with 
PD-1–positive T cells might modulate 
IFN-γ responses. We found that Mycobac- 
terium induced only a marginal increase 
in PD-L1 expression on  CD4+   T cells 
(Figure 1A). Our  results thus  indicate 
that  the  relatively high  expression of 
PD-L1 on  CD3+   T  cells (up  to  25%) 

observed by Singh et al [4] upon stimula- 
tion with mycobacterial antigens might re- 
flect modulation of PD-L1 expression on 
CD8+  T cells, rather than CD4+  T cells. 
PD-L2 expression, however, remained 
negative on these activated CD4+  T cells 
(data  not  shown). In  accordance with 
data on low-level expression of PD-L1 on 
CD4+ T cells, blockade of this molecule by 
using monoclonal antibodies (mAbs) did 
not significantly modulate either the fre- 
quency of IFN-γ+CD4+  T cells (Figure 1B 
and 1C) or the quantities of IFN-γ sec- 
reted from these cells (Figure 1D). Thus, 
our results suggest that PD-L1 on CD4+ 

T  cells plays only a  marginal  role in 
mediating impaired IFN-γ responses by 
Mycobacterium. 

Dendritic cells (DCs) are sentinels of the 
immune system that orchestrate primary 
immune responses to Mycobacterium by 
polarizing distinct CD4+ T-cell responses 
from naive T cells [1]. Therefore, we next 
examined the role of PD-L1 on DCs in 
regulating  IFN-γ   polarizing  respon- 
ses from naive CD4+  T cells. DCs were 
generated  from  circulating monocytes 
as previously described [6]. Similar to the 
results obtained with monocytes [4], 
stimulation of DCs with gamma-irradiated 
M. tuberculosis H37Rv or bacillus Calm- 
ette–Guérin induced significant upregu- 
lation of PD-L1 (Figure 1E and 1F ). Live 
Mycobacterium bacilli were more efficient 
in  inducing  PD-L1 than  killed bacilli, 
implying that, in addition to cell-wall path- 
ogen-associated molecular patterns, secre- 
tory antigens and signals associated with 
replication of bacteria provide stimuli for 
the  induction  of PD-L1. However, we 
could not  detect PD-L2 on  DCs (data 
not shown). 

Analysis of polarization of T-cell re- 
sponses from naive CD4+ T cells revealed 

that so-called Mycobacterium-educated 
DCs significantly enhanced the frequency 
of IFN-γ+  Th1 cells (Figure 1G and 1H). 
However, it was not associated with the 
increased quantities of IFN-γ secretion 
from these CD4+ T cells (Figure 1I), pos- 
sibly because of negative signaling by PD- 
L1 on DCs. Therefore, we attempted to 
confirm  this  proposition  by blocking 
PD-L1 on DCs. We confirm that blocking 
mAbs to PD-L1 were functional, as these 
antibodies quenched even the basal ex- 
pression of PD-L1 (Figure 1E ). Further, 
in contrast to the results obtained with 
monocytes  [4],  blocking  PD-L1  on 
DCs did not significantly alter the fre- 
quency of IFNγ+CD4+  T cells (Figure 1G 
and 1H). However, PD-L1 blockade led 
to significant increase in the quantity 
of IFN-γ  produced  by CD4+   T  cells 
(Figure 1I). 

It should be noted that to analyze the 
expression of surface molecules and in- 
tracellular T-cell cytokines, Singh et al 
stimulated peripheral blood mononuclear 
cells with M. tuberculosis antigens for 48 
hours in the presence of brefeldin A, a 
Golgi transport blocker [4]. For blocking 
experiments involving PD ligands or re- 
ceptors, monocyte–T-cell cultures were 
treated with brefeldin A for 72 hours [4]. 
However, because brefeldin A is highly 
toxic to cells if they are treated for longer 
periods, short-period treatment  (dura- 
tion, typically 4–6 hours) is recommend- 
ed. Hence, we suggest that  the results 
reported by Singh et al on Mycobacteri- 
um-mediated IFN-γ responses need to 
be judged with caution because of the 
possible toxic effects of brefeldin A. 

Together, these results provide insight 
on how PD-L1 on innate cells regula- 
tes IFN-γ responses to Mycobacterium. 
However, the functional repercussion of
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Figure 1.   Inhibition of programmed death 1 ligand 1 (PD-L1) on dendritic cells (DCs) enhances Mycobacterium-mediated interferon γ (IFN-γ) production without 
modulating the frequencies of IFN-γ–producing CD4+ T cells. A, The expression  of PD-L1 on activated  CD4+ T cells. CD4+ T cells were  isolated  from buffy coat 
specimens from healthy donors by using CD4 microbeads (Miltenyi Biotec, France). Permission from the ethics committee was obtained for the use of buffy coats 
(protocol 12/EFS/079). CD4+ T cells were cultured in 96-well plates  at a concentration of 0.1 × 106  cells/well in 200  µL. Cells were stimulated with anti-CD3 and 
anti-CD28 monoclonal antibodies  (mAbs; 1 µg/mL, both from R&D systems,  France) alone (Ctr) or with either gamma-irradiated Mycobacterium tuberculosis 
H37Rv (20 µg/mL) or bacillus Calmette–Guérin (multiplicity of infection, 1:10). The expression  of PD-L1 was analyzed by flow cytometry (LSR II, BD Biosciences, 
France) after 5-day culture by using fluorochrome-conjugated  mAbs to PD-L1 (BD Biosciences). To block PD-L1 on CD4+  T cells, blocking mAbs to PD-L1 (10 µg/mL, 
eBioscience, France) were added 18 hours after Mycobacterium stimulation. The quenching effect of anti–PD-L1 blocking mAbs was analyzed by flow cytometry. 
Results are mean (± standard error of the mean [SEM]) for 4 independent donors. B–D, The role of PD-L1 on CD4+  T cells in modulating Mycobacterium-mediated 
IFN-γ responses.  The CD4+ T cells were  cultured and stimulated as described  panel A. After 5 days, cell-free supernatants  were collected, and T cells  were 
activated with phorbol myristate acetate  (50 ng/mL) and ionomycin (500 ng/mL, Sigma-Aldrich, France), along with GolgiStop (BD Biosciences), for 4 hours. IFN- 
γ+CD4+ T cells were analyzed by flow cytometry. Surface staining was done with fluorochrome-conjugated CD4 mAb (BD Biosciences) and fixable viability dye 
(eBioscience) to gate and analyze viable CD4+ T cells. Further, cells were fixed, permeabilized (Fix/Perm; eBioscience), and incubated at 4°C with fluorochrome- 
conjugated mAbs to IFN-γ (BD Biosciences). B, A representative  dot plot showing the frequency of CD4+IFN-γ+ T cells. C, The results  from 6 independent donors 
are expressed using a box and whisker plot, in which boxes represent the interquartile range of data between the 25th and 75th percentiles, whiskers represent 
the upper and lower limits of the data, and the dividing line in the box represents the median. D, The quantity of IFN-γ (n = 6) in the culture supernatants described 
above was determined by enzyme-linked immunosorbent assay (ELISA; eBioscience). The results are expressed using a box and whisker plot and the dividing line 
in the box represents the median. E and  F, The expression of PD-L1 on DCs following stimulation  with Mycobacterium.  Immature DCs (0.5 × 106  cells/mL) derived 
from peripheral blood monocytes (isolated using CD14 microbeads; Miltenyi Biotec) from healthy donors were cultured in the presence of the cytokines gran- 
ulocyte-macrophage colony-stimulating factor (1000 IU/106 cells) and interleukin 4 (500 IU/106 cells; both from Miltenyi Biotec) alone (DC-Ctr) or in the presence 
of cytokines plus gamma-irradiated  M. tuberculosis or bacillus Calmette–Guérin  for 48 hours. The expression  of PD-L1 was analyzed by flow cytometry. Rep- 
resentative histograms (E ) and  mean  values  (± SEM; F ) for  4 independent donors are shown. Following Mycobacterium  stimulation,  DCs were  incubated  with 
anti–PD-L1 blocking mAbs for 3 hours, and the quenching effect of blocking mAbs was determined by flow cytometry (E and  F ). G–I, Inhibition of PD-L1 on DCs 
enhances Mycobacterium-mediated IFN-γ production without modulating the frequency of IFN-γ–producing CD4+ T cells. DCs were  stimulated  Mycobacterium 
and washed extensively. Following incubation with or without  anti–PD-L1 mAbs, DCs were  cocultured  with  autologous  CD45RA+CD25−  naive  CD4+  T cells 
(0.1 × 106  cells/well/200 µL) at 1:20 ratios for 5 days. The frequency of CD4+IFN-γ+ cells was analyzed by flow cytometry. Representative dot blots (G) and pooled 
data for 6 independent donors are expressed using a box and whisker plot (H). I, The quantity of IFN-γ (n = 6) in the supernatants of DC–CD4+ T-cell cocultures  as 
determined  by ELISA. The results are expressed using a box and whisker plot and the dividing line in the box represents  the median.  *P < .05, **P < .01, and 
***P < .001, by 1-way  analysis  of variance.  Abbreviations:  BCG, bacillus Calmette–Guérin; ns, not significant. 
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PD-L1 blockade might depend on the 
type of innate cells (monocytes vs DCs) 
and  T  cells (memory  vs naive T-cell 
polarization). Previous reports have also 
implicated PD-L1 in the Mycobacterium- 
mediated expansion of Tregs, the im- 
mune suppressor [7, 8]. These data thus 
provide a rationale for targeting the PD- 
1–PD-L1 pathway to combat tuberculo- 
sis [9, 10]. 
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Intravenous immunoglobulin  (IVIg) is a pooled prepara- 

tion  of  polyspecific, polyreactive immunoglobulin  (Ig)G 

molecules from several thousand  healthy donors. The 

immunoglobulin  (Ig) molecule has Fab region, which is 

involved in antigen-binding and the Fc portion,  which is 

involved in effector function. As IVIg is prepared from mul- 

tiple donors, it contains numerous antibodies directed 

against    a    wide    range    of    antigens;    consequently, 

the variable regions on the Ig Fab fragments in IVIg 

preparations  are diverse. The variable region can bind to 

non-self-antigens (foreign antigens), self-antigens and anti- 

idiotypic antibodies. IVIg contains  a broad  spectrum  of 

antibody specificities against bacterial, viral, parasitic and 

mycoplasma antigens, that are capable of both opsonization 

and neutralization of microbes and toxins. 

In addition  to its initial use as replacement therapy in 

primary and secondary immunodeficiencies, IVIg is widely 

indicated in a large spectrum of autoimmune  and inflam- 

matory diseases. One of the first proposed mechanisms of 

action of IVIg was via Fcγ receptor blockade [1]. This study 

demonstrated  that infusion of Fcγ fragments in idiopathic 

thrombocytopenic purpura/immune thrombocytopenia 

(ITP)  patients  increased platelet count,  mediated  by the 

blockade of Fcγ receptors [1]. It has since been demon- 

strated in vivo that Fcγ fragments, particularly if sialylated, 

can exert anti-inflammatory effects [2]. This suggests that 

the  clinical benefits of IVIg may be mediated  via an Fc 

pathway; indeed, to date there have been no studies that 

demonstrate the clinical benefit of Fab fragments alone. 

However, non-Fc mechanisms have been proposed that 

provide an insight into the possible molecular mechanisms 

of action of IVIg, although these do not exclude the poten- 

tial co-operation of Fab and Fc portion of IgG to elicit the 

effects of IVIg. 

One mechanism of action was proposed by Sultan et al., 

who found that anti-idiotypic antibodies in IVIg were effec- 

tive in the treatment of autoimmune haemophilia [3]. This 

led to the study and characterization of anti-idiotypic anti- 

bodies in IVIg which neutralize pathogenic autoantibodies 

[4,5]. IVIg was found to contain anti-idiotypes against anti- 

factor VIII, anti-neutrophil  cytoplasmic antibody, anti- 

DNA, anti-thyroglobulin,  anti-acetylcholine receptors and 

anti-neuroblastoma   antigens. Furthermore,  anti-idiotypic 

antibodies have been found to play a role in transplantation 

due to the anti-human leucocyte antigen antibodies. 

In addition to ITP and haemophilia, IVIg has been found 

to  be effective in several inflammatory and  autoimmune 

diseases. Therefore, anti-inflammatory effects of IVIg were 

studied and were shown to be mediated in part  through 

anti-complement   effects. Dermatomyosis  is  a  condition 

mediated by C5b/C9 membranolytic attack complexes 

(MACs)  in  intramuscular  capillaries. The  formation  of 

MAC occurs when C3 is hydrolyzed into C3b, which leads 

to the activation of C5b and the formation of MACs. In a 

study conducted by Basta et al. [6], IVIg was found to form 

complexes with C3, preventing MAC formation and deposi- 

tion in patients with dermatomyosis. This suggests that the 

clinical benefit of IVIg can be attributed  to complement
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scavenging, demonstrating  an  additional  distinct  mecha- 
nism of action that may be mediated by F(ab′)2  and whole 
IVIg, but not Fcγ fragments alone. 

Anaphylatoxins are complement  peptides that  are pro- 
duced when the complement system is activated. A study by 
Basta  et al.  implicates  F(ab′)2    in  the  neutralization   of 
anaphylatoxins, such as C3a and C5a [7]. IVIg is able to 
suppress C3a- and C5a-induced release of thromboxane B2 
and histamine, which have proinflammatory properties. 
Moreover, circulatory collapse caused by C5a was prevented 
in pigs pretreated with F(ab′)2  IVIg. The neutralization of 
C3a and C5a were observed in cells treated with F(ab′)2 IVIg 
and whole IVIg and not Fcγ IVIg fragments, suggesting that 
F(ab′)2  and not Fcγ are implicated in this process. 

IVIg has also been found to be beneficial in a murine 
model of brain  ischaemia and  stroke, via a complement 
scavenging mechanism. Administration of IVIg, either prior 
to an ischaemic event or during reperfusion, led to a two- to 
three-fold improvement in functional outcomes in ischae- 
mia and reperfusion. C3 levels were higher in injured com- 
pared to non-injured brain regions. Furthermore, compared 
with wild-type mice, C5-deficient mice were protected from 
ischaemia and reperfusion. IVIg decreased C3 and caspase 3 
activation, suggesting that IVIg inhibits complement- 
mediated cell damage via scavenging of complement pro- 
teins to elicit beneficial effects [8]. In addition to a role in 
scavenging complement in inflammatory and immune dis- 
eases, IVIg has  also  been  shown  to  alter  the  cytokine 
network and mediate the balance between T helper (Th) 
types. Th cells can be classified into several subsets, such as 
Th1, Th2, Th17 and regulatory T cells, which produce dis- 
tinct cytokines. Th1 cells produce cytokines such as inter- 
feron (IFN)-γ and  tumour  necrosis factor (TNF)-α,  Th2 
cells produce IL-4, IL-5, IL-13 and IL-10, Th17 cells 
produce  IL-17, IL-21 and  IL-22, and  regulatory  T  cells 
which  are  immunosuppressor   cells produce  TGF-β  and 
IL-10. In a study conducted by Ruiz de Souza et al., periph- 
eral  blood   monocytes   treated   with  IVIg  induced   an 
up-regulation of anti-inflammatory cytokine IL-1 receptor 
antagonist and down-regulation of several proinflam- 
matory  cytokines [9].  By the  early 2000s there  was an 
increasing focus on  the  role of dendritic  cells and  their 
effect on  T  cell polarization.  Mature  dendritic  cells can 
stimulate naive T helper cells (Th0) and polarize them into 
distinct  subsets. Our  study  demonstrated  that  both  the 
F(ab′)2  and Fc fragments of IVIg are capable of inhibiting 
the differentiation and maturation  of dendritic cells, sug- 
gesting  that   IVIg  is  capable  of   inducing   tolerogenic 
dendritic cell phenotypes [10]. 

As a consequence of IVIg-induced tolerogenic dendritic 
cells, regulatory T cells are up-regulated. Using a murine 
model of autoimmune encephalomyelitis (EAE), prophylac- 
tic IVIg was found  to  increase CD4+CD25+forkhead box 
protein 3 (FoxP3+) regulatory T cells [11]. This proliferation 
of regulatory T cells has also been observed in  humans 

following high-dose IVIg treatment in patients with auto- 
immune rheumatic disease [12]. 

We recently reported that, in EAE mice, IVIg inhibits the 
differentiation of CD4+ T cells to Th1 and Th17 cells [13]. 
The down-regulation of Th1 and Th17 cells was observed 
with  a  concomitant  up-regulation  of  regulatory T  cells, 
demonstrating   the  reciprocal  regulation  mechanism  of 
IVIg. Furthermore, the reciprocal regulation was suggested 
to be F(ab′)2-dependent  due to the comparable inhibition 
of Th1 and Th17 cells observed in mice treated with F(ab′)2 

fragments or IVIg [13]. 
IVIg-induced expansion of regulatory T cells may be due 

to  several mechanisms.  Mazer  et al.  propose  that  IVIg 
renders dendritic cells tolerogenic via its interaction  with 
dendritic cell immunoreceptor  (DCIR) [14]. This leads to 
increased levels of  FoxP3+  regulatory T  cells which can 
attenuate autoimmune disease severity. Another mechanism 
of  action  for  regulatory  T  cell  expansion  is  provided 
recently  by  our  group.  Our  report  suggests that  IVIg- 
induced expansion of regulatory T cells is due to the induc- 
tion   of  cyclo-oxygenase 2-dependent   prostaglandin   E2 

production  in  dendritic  cells [15].  Inhibition  of  cyclo- 
oxygenase 2 enzymatic activity significantly reduced IVIg- 
mediated regulatory T cell expansion both in vitro and in 
vivo in EAE mice. This mechanism was dependent on Fab 
fragments of IVIg but not Fc. 

Immunomodulatory   mechanisms  of  IVIg in  autoim- 
mune   conditions   are   not   fully  understood,   although 
several mutually non-exclusive effects have been proposed. 
Individually, each  of  these  mechanisms  may  participate 
to  a  certain  extent  in  the  overall effect of  IVIg. While 
some of the effects may rely upon  the binding of the Fc 
moiety of IgG to Fcγ receptors on target cells, others may 
be primarily dependent  on  the range of variable regions 
of IgG. 
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Interferon-a inhibition by intravenous 
immunoglobulin is independent of modulation of 
the plasmacytoid dendritic cell population in the 
circulation: comment on the article by Wiedeman et  al 

To the Editor: 
High-dose intravenous immunoglobulin (IVIG) is used 

in the therapy of various rheumatic diseases, and the beneficial 
effects of IVIG in these autoimmune and inflammatory con- 
ditions are mediated through several mutually nonexclusive 
mechanisms (1–3). Recent data reported by Wiedeman et al 
(4) suggest that one such action of IVIG comprises inhibition 
of interferon-a (IFNa) production by two distinct mechanisms. 
The first mechanism described by Wiedeman and colleagues 
involved Fc-mediated inhibition of immune complex binding 
to Fcμ receptor IIa on plasmacytoid dendritic cells (PDCs). 
The second mechanism involved F(ab')2 fragment–dependent 
inhibition of IFNa production when PDCs were stimulated 
with Toll-like receptor 7 (TLR-7) and TLR-9 agonists. Those 
authors also reported that the inhibitory effect of IVIG on 
IFNa production by TLR-stimulated PDCs required 
monocyte-derived prostaglandin E2 (PGE2) (4). These data, 
along with findings described in a previous report on the 
inhibitory effect of IVIG on IFNa-mediated differentiation of 
monocyte-derived DCs (5), suggest that IVIG affects IFNa- 
mediated inflammatory pathways. The inhibitory effect of 
IVIG on IFNa production reported by Wiedeman et al also 
raises another possibility, that this inhibition might be due to a 
reduction in the number of PDCs, the principal producers of 
IFNa. 

prednisone. PDCs in whole blood were analyzed by flow 
cytometry using surface expression of HLA–DR and CD123 
(Figure 1A). 

Before IVIG therapy, the mean ± SD percentage of 
circulating PDCs among total blood leukocytes in the myositis 
patients was 0.104 ± 0.132%. After IVIG therapy, we observed 
a marginal increase in PDCs in 4 of the patients, probably 
indicating the inhibitory effects of IVIG on the migration of 
PDCs toward inflamed tissue. However, overall, IVIG therapy 
did  not  lead  to  significant  alterations  in  circulating     PDC 

PDCs and type I IFN are implicated in the pathogen- 
esis of various rheumatic diseases, including systemic lupus 
erythematosus, myositis, rheumatoid arthritis, and psoriasis 
(6,7). Aberrant activation of PDCs and their migration to 
inflamed tissue, and high levels of type I IFN, are hallmarks of 
these diseases. Ablation of PDCs in vivo was found 
Heparinized blood samples were obtained from 9 patients with 
myositis (7 female and 2 male; ages 27–70 years), before and 
48–72 hours after initiation of IVIG (1 gm/kg). All patients 
provided written informed consent for participation in the 
study, and ethics committee permission was received prior to 
study initiation. The specific diagnoses of the patients were as 
follows: polymyositis (n = 3), dermatomyositis (n = 1), 
anti–signal recognition particle–associated necrotizing myop- 
athy (n = 2), anti–3-hydroxy-3-methylglutaryl-coenzyme A 
reductase–associated necrotizing myopathy (n = 2), and anti- 
Mi2–associated unclassified myositis (n = 1). Additional treat- 
ments   patients   were   receiving   included   methotrexate and 

to inhibit autoimmunity via expansion of myeloid-
derived suppressor cells (8). In addition, antiinflammatory 
agents, such as cortico- steroids in high doses (1 gm/day), 
are known to reduce the number of circulating PDCs (9). We 
therefore investigated whether the inhibitory effects of IVIG 
on IFNa production reported by Wiedeman et al also 
implicate modulation of the circulating PDC population in 
vivo in patients with rheumatic disease. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Effect of intravenous immunoglobulin (IVIG) on circulat- 
ing plasmacytoid dendritic cells (PDCs) from patients with myositis. 
Heparinized blood samples were obtained 48–72 hours after initiation 
of high-dose IVIG therapy. Red blood cells were separated from 
nucleated cells using HetaSep (StemCell Technologies) (1 part Heta- 
Sep, 5 parts blood). A, Representative dot plots showing the percent- 
age of PDCs with positive gating for HLA–DR and CD123. B, Changes 
in the percentage of HLA–DR+CD123+ PDCs in the circulation of 
myositis patients (n = 9) following IVIG therapy. Each symbol 
represents an individual patient. PDCs were analyzed by flow cytom- 
etry (LSR II; BD Biosciences) using fluorescence-conjugated mono- 
clonal antibodies to HLA–DR (BD Biosciences) and CD123 (eBiosci- 
ence). Statistical significance was assessed by Student’s paired 2-tailed 
t-test. NS = not significant. 
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numbers, which were a mean ± SD of 0.197 ± 0.242% of total 
leukocyte numbers after treatment (P = 0.249) (Figure 1B). 
These data, along with those reported by Wiedeman et al (4), 
thus suggest that although IVIG inhibits IFNa production 
from PDCs via monocyte-derived PGE2, this reduction  in 
IFNa production is not due to an alteration in the number of 
circulating PDCs in vivo. Importantly, it has been shown that 
IVIG could also induce cyclooxygenase 2–dependent PGE2 
from human DCs (10), which would lead to an expansion of 
CD4+CD25+FoxP3+ Treg cells. 
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Reply 

To the Editor: 
Sharma et al present the results of their studies on the 

effect of IVIG on circulating PDCs in patients with myositis. 
Based on our reported finding that IVIG inhibits PDC pro- 
duction of IFNa in vitro, they offer two possible hypotheses on 
how IVIG may affect PDCs in vivo. One possibility is that 
IVIG treatment would simply reduce PDC numbers. Alterna- 
tively, IVIG inhibition of PDCs may reduce their activation 
and subsequent migration to inflamed tissue, thus resulting in 
increased numbers of PDCs in the periphery. By comparing 
the percentage of PDCs in peripheral blood before, and then 
2–3 days after, high-dose IVIG therapy, they found that the 
peripheral PDCs were slightly, but not statistically significantly, 
increased. These results indicate that IVIG  does  not induce 
cell death of  PDCs. 

We find these results of interest as they demonstrate 
what we would expect to see in vivo based on our observation 
that IVIG alters the functional properties of PDCs. We also 
considered death of PDCs as a potential mechanism by which 
IVIG could inhibit IFNa production. However, we found that 
IVIG treatment of lupus immune complex–stimulated PDCs 
did not increase cell death after 22 hours of culture (Figures 
1A and B). As reported in our article, we had shown that in 
response to TLR ligand stimulation of IFNa, the sialylated 
subset of IVIG (sialic acid–specific Sambucus nigra agglutinin 
positive) was a more potent inhibitor. Even so, treatment with 
this IVIG subset did not result in increased PDC death in vitro 
(Figure 1C). These results are consistent with the maintenance 
of PDC numbers after IVIG treatment in vivo observed by 
Sharma  et al. 

While the number of peripheral PDCs  is  unaltered 
with IVIG treatment, it would be of great interest to determine 
whether high-dose IVIG regulates IFNa production in vivo. 
Increased serum IFNa has been linked to both myositis and 
systemic lupus erythematosus, and implicated in their patho- 
genesis  (1,2).  It  would  be  relatively  straightforward  to  test 
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Intravenous immunoglobulin (IVIg) is used in the therapy of various autoimmune and inflammatory 
diseases. Recent studies in experimental models propose that anti-inflammatory effects of IVIg are mainly 
mediated by a2,6-sialylated Fc fragments. These reports further suggest that a2,6-sialylated Fc fragments 
interact with DC-SIGN1 cells to release IL-33 that subsequently expands IL-4-producing basophils. 
However, translational insights on these observations are lacking. Here we show that IVIg therapy in 
rheumatic patients leads to significant raise in plasma IL-33. However, IL-33 was not contributed by human 
DC-SIGN1 dendritic cells and splenocytes. As IL-33 has been shown to expand basophils, we analyzed the 
proportion of circulating basophils in these patients following IVIg therapy. In contrast to mice data, IVIg 
therapy led to basophil expansion only in two patients who also showed increased plasma levels of IL-33. 
Importantly, the fold-changes in IL-33 and basophils were not correlated and we could hardly detect IL-4 in 
the plasma following IVIg therapy. Thus, our results indicate that IVIg-induced IL-33 is insufficient to 
mediate basophil expansion in autoimmune patients. Hence, IL-33 and basophil-mediated 
anti-inflammatory mechanism proposed for IVIg might not be pertinent in humans. 

 

ntravenous immunoglobulin (IVIg) is a therapeutic preparation of normal pooled immunoglobulin G (IgG) 
obtained from the plasma of several thousand healthy donors. High-dose IVIg (1–2 g/kg) is widely used in the 

treatment of various autoimmune and inflammatory diseases including Kawasaki disease, idiopathic 
thrombocytopenic purpura, Guillain-Barre´ syndrome, chronic inflammatory demyelinating polyneuropathy, 
myasthenia gravis, autoimmune blistering diseases, inflammatory myopathies, graft versus host disease and 

others1–4. The cellular and molecular mechanisms of action of IVIg in these diverse diseases remain incompletely 
understood. However, available evidence both from experimental and clinical studies provide an indicator that 
IVIg could benefit these diverse diseases via several mutually non-exclusive mechanisms2,5–10. These mechanisms 
include inhibition of activation and functions of innate immune cells such as dendritic cells (DCs), monocytes, 
macrophages and neutrophils; inhibition of pathogenic effector T cells such as Th1 and Th17 cells; expansion of 
regulatory T cells (Tregs); modulation of B cell responses; and inhibition of complement pathways. In addition, 
IVIg has been shown to inhibit inflammatory cytokines and to augment anti-inflammatory molecules such as IL- 
10 and IL-1 receptor  antagonist11–21. 

IgGs are glycoproteins and contain fragment antigen-binding (Fab) regions that recognize antigens, and 
fragment crystallizable (Fc) regions that exert effector functions upon binding to Fcc receptors. The Fc fragments 
are glycosylated at Asn297 and recent studies in animal models advocate that anti-inflammatory effects of IVIg 
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are mediated by a small fraction of antibodies that contain terminal 
a2,6-sialylated glycans at Asn297. It was proposed that a2,6-sialy- 
lated Fc fragments interact with dendritic cell-specific intercellular 
adhesion molecule-3-grabbing non-integrin-positive (DC-SIGN1) 
innate cells to release IL-33, which subsequently expands IL-4-pro- 
ducing basophils22. However, translational insights on these observa- 
tions are lacking. Therefore, we investigated whether high-dose IVIg 
therapy induces IL-33 production in autoimmune patients, which in 
turn would mediate basophil expansion and IL-4 responses. 

 

Results 
IVIg therapy induces IL-33 in autoimmune patients. Previous 
work on the role of IL-33 in IVIg-mediated anti-inflammatory 
effects was performed in K/BxN serum-induced murine arthritis 
model. It should be noted that IVIg is not recommended for 
rheumatoid arthritis due to its inefficacy to relieve inflammation4. 
Therefore, K/BxN serum-induced murine arthritis model might not 
provide factual image of the mechanisms of IVIg in autoimmune 
patients. Earlier studies have indicated that IVIg therapy benefits 
patients with inflammatory myopathies1,4. Therefore, by using 
heparinized blood samples of these patients (cohort 1 patients), we 
first investigated the repercussion of IVIg therapy on the induction of 
IL-33. We found that, out of nine patients, six had minimal level of 
plasma IL-33 prior to IVIg therapy. The pre-IVIg plasma level of IL- 
33 was in the range of 150.75 6 79.52 pg/ml (n 5 9) (Fig. 1a). 
Following IVIg therapy, with an exception of one patient, all 
remaining patients had significant raise in plasma IL-33 and was 
in the range of 492.23 6 130.30 pg/ml (n 5 9) (Fig. 1a). However, 
the increase in IL-33 following IVIg therapy was heterogeneous and 
was varying from 1.2 to 911-fold. 

To confirm these results, we analyzed the plasma samples from 
another cohort of patients with inflammatory myopathies (n 5 4) or 
anti-neutrophil cytoplasmic antibody-associated vasculitis (n 5 3) 
(cohort 2 patients). Importantly, these patients also showed signifi- 
cant increase in plasma IL-33 following IVIg therapy (Fig. 1b) thus 
confirming the results obtained with cohort 1 patients. The pre-IVIg 
plasma level of IL-33 was 80.43 6 24.93 pg/ml (n 5 7) that increased 
to 291.58 6 34.40 pg/ml following IVIg therapy. Together, these 
results indicate that irrespective of pathologies, IVIg therapy in 
patients leads to increased plasma level of IL-33. 

 
IVIg-induced IL-33 is not associated with an expansion of baso- 
phils. Basophils play a crucial role in the induction of Th2 
responses23,24. Recent data from K/BxN serum-induced murine 
arthritis model suggest that IVIg-induced IL-33 promotes basophil 
expansion22. Therefore, we investigated changes in the circulating 
basophils following IVIg therapy in cohort 1 patients. Basophils 
were identified based on the expression of FceRI and CD203c 
(Fig. 2a)25. In contrast to the results from murine model, we found 
that IVIg therapy leads to basophil expansion only in two patients 
who also showed increased plasma level of IL-33 (Fig. 2b). In other 
patients, basophils were either declined or unaltered. The changes in 
the proportion of basophils in the circulation following IVIg therapy 
were not statistically significant. Importantly, the fold-changes in IL- 
33 and basophils were not correlated (Fig. 2c). Also contrary to 
previous report22, we could hardly detect IL-4 in the plasma of 
patients following IVIg therapy. Thus, these results demonstrate 
that IVIg therapy in patients does not lead to an expansion of 
basophils. Of note, a recent data from murine models of collagen 
antibody-induced arthritis and K/BxN serum transfer arthritis also 
reveal that therapeutic effect of IVIg is independent of sialylation and 
basophils26. 

 
DC-SIGN-positive human innate cells do not produce IL-33 upon 
IVIg exposure. DC-SIGN1 innate cells (or SIGN-R11 cells in the 
murine spleen) were proposed to produce IL-33 upon   interaction 

 

 

Figure 1 | Consequence of IVIg therapy in autoimmune patients on the 
plasma level of IL-33. (a) Heparinized blood samples were obtained from 
nine patients with inflammatory myopathies (Cohort 1 patients) before 
(Pre-IVIg) and 2-3 days after initiation of IVIg therapy (Post-IVIg). IL-33 
(pg/ml) in the plasma was measured by ELISA. Each symbol in the graph 
represents individual patient. (b) IL-33 in the plasma of four inflammatory 
myopathies and three anti-neutrophil cytoplasmic antibody-associated 
vasculitis patients (Cohort 2 patients) before and post-IVIg therapy. The 
statistical significance as determined by two-tailed Student-t-test is 
indicated, where *,P , 0.05; **, P , 0.01. 

 
with a2,6-sialylated Fc fragments of IVIg22. By generating 
humanized DC-SIGN-transgenic mice, the authors found that 
these transgenic mice express DC-SIGN on DCs, macrophages and 
monocytes in the blood, bone marrow and spleen. Importantly, 
higher percentage of monocytes in these transgenic mice expressed 
DC-SIGN22. 

We analyzed the expression of DC-SIGN in human myeloid cells. 
Contrary to humanized DC-SIGN-transgenic mice, circulating 
human monocytes did not express DC-SIGN whereas its expression 
on macrophages was restricted to M2 type macrophages wherein up 
to 28% cells were positive for DC-SIGN. We could observe high 
expression of DC-SIGN (<100%) only in monocyte-derived DCs 
(Mo-DCs) (Fig. 3a). In the human spleen, up to 24% splenocytes 
were positive for DC-SIGN (Fig. 3b). 

Therefore, we explored if Mo-DCs secrete IL-33 upon IVIg treat- 
ment. In contrast to proposition by Ravetch and colleagues, we could 
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Figure 2 | Changes in the proportion of circulating basophils of 
autoimmune patients following IVIg therapy. Heparinized blood samples 
were obtained from cohort 1 patients with inflammatory myopathies 
before (Pre-IVIg) and 2–3 days after initiation of IVIg therapy (Post-IVIg). 
(a) Representative dot-plots showing basophils from cohort 1 patients 
gated positive for FceRI and CD203c (b) Modulation of circulating 
basophils following IVIg therapy (n 5 9). Basophils were analyzed in the 
whole blood by flow cytometry. The statistical significance as determined 
by two-tailed Student-t-test is indicated, where NS, non-significant. 

(c) The correlation between fold-changes in IL-33 and basophils following 
IVIg therapy. 

 
detect secreted IL-33 from IVIg-exposed DC-SIGN1 Mo-DCs nei- 
ther under non-inflammatory nor under inflammatory conditions 
(Fig. 3c). Similarly, despite the presence of DC-SIGN1 cells in the 
spleen, human splenocytes did not produce detectable levels of 
IL-33 upon IVIg exposure both under inflammatory and non- 
inflammatory conditions (Fig. 3c). 

 
Discussion 
Our results demonstrate that IVIg therapy induces IL-33 in 
autoimmune patients thus confirming the previous observation 
made in mice. However, IL-33 was not contributed either by splenic 

Figure 3 | Effect of IVIg on the IL-33 production from DC-SIGN1 human 
innate cells. (a and b) Histograms showing the expression of DC-SIGN by 
healthy donor’s monocyte-derived human dendritic cells (Mo-DCs) and 
splenocytes. (c) IVIg does not induce IL-33 from DC-SIGN1 human innate 
cells. Mo-DCs or human splenocytes (n 5 5 donors) were exposed to IVIg 
either under non-inflammatory conditions or under inflammatory 
conditions (TLR-stimuli or inflammatory cytokine cocktail) for 48 hours. 
IL-33 in the culture supernatants was analyzed by ELISA. 

DC-SIGN1 cells or myeloid DCs. Also, the amount of IL-33 induced 
in the patients was not sufficient to expand basophils. It should be 
noted that the quantity of IL-33 protein induced in the mice follow- 
ing IVIg treatment was not presented in the previous report. In 
addition, significant amount of data on IVIg was indirect rather than 
direct demonstration of IVIg-mediated regulation of cytokine net- 
work22. Authors showed that IVIg induces about 12-fold increase in 
IL-33 mRNA level. However, the contribution of this increased IL-33 
mRNA towards IL-33 protein is not clear. Considering five liters as 
total blood volume in adults, our results show that IVIg induces 
<2460 6 650 ng of IL-33 (based on the data from cohort 1 patients). 
However, to demonstrate the role of IL-33 in IVIg-mediated anti- 
inflammatory effects, Anthony et al., injected 400 ng of IL-33 for 
four  consecutive  days22.  As  mouse  weighing  25 g  would have 
<1.5 ml of blood, based on the IL-33 data from patients, we could 
infer that the amount of exogenous IL-33 injected into the mice 
represents at least 540-times excess of IL-33 that otherwise induced 
by IVIg. This might explain why IVIg failed to induce expansion of 
basophils in the patients. Although in our study, patients’ sample size 
was small, we included diseases such as inflammatory myopathies 
and vasculitis that were shown to benefit from IVIg therapy. Further 
investigations in a larger number of patients should confirm these 
observations. 
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Table 1 | Summary of data for autoimmune rheumatic patients 

Cohort 1 patients    

Number Disease Age (years) Sex IVIg Additional treatments 

1 Polymyositis 59 F CLAIRYGH 1 g/kg Methylprednisolone 
2 Anti-SRP associated necrotizing myopathy 27 F CLAIRYGH 1 g/kg Prednisone, Methotrexate 
3 Anti-HMGCR associated necrotizing myopathy 62 F CLAIRYGH 0.5 g/kg Prednisone, Methotrexate 
4 Anti-HMGCR associated necrotizing myopathy 61 F CLAIRYGH 1 g/kg Prednisone, Methotrexate 
5 Dermatomyositis 52 F CLAIRYGH 1 g/kg Prednisone, Methotrexate 
6 Polymyositis associated with mixed connective 41 F CLAIRYGH 1 g/kg Prednisone, Methotrexate 

tissue disease and Sjögren’s syndrome    
7 Anti-SRP associated necrotizing myopathy 40 M CLAIRYGH 1 g/kg Prednisone, Methotrexate 
8 Anti-Mi2 associated unclassified myositis 30 M CLAIRYGH 1 g/kg Prednisone, Methotrexate 
9 Polymyositis and probable associated Sjögren’s  70 F CLAIRYGH 1 g/kg Prednisone, Methotrexate 

syndrome    
Cohort 2 patients    

Number Disease Age (years) Sex IVIg Additional treatments 

1 Dermatomyositis 22 F TEGELINEH 1g/kg Prednisone,  Mycophenolate mofetil 
2 Polymyositis 42 M TEGELINEH 1g/kg Prednisone, Methotrexate 
3 Dermatomyositis 35 M TEGELINEH 1g/kg Prednisone 
4 Polymyositis 46 F TEGELINEH 1g/kg Prednisone, ciclosporin 
5 Microscopic polyangiitis 61 F TEGELINEH 1g/kg Prednisone 
6 Wegener’s granulomatosis 62 M TEGELINEH 1g/kg None 
7 Microscopic polyangiitis 61 M TEGELINEH 1g/kg Prednisone,  Mycophenolate mofetil 

SRP, Signal Recognition Particle; HMGCR, 3-hydroxy-3-methylglutaryl-CoA reductase.    
 

The role of Fc-sialylation, DC-SIGN and Fcc receptor IIB 
(FccRIIB) in the anti-inflammatory effects of IVIg has been debated 
recently by several groups27. Mice and humans show wide variations 
in the expression pattern of FccRs, and the phenotype and anatom- 
ical distribution of innate cells. Unlike mice, human innate cells 
express both activating FccRIIA and inhibitory FccRIIB. 
Therefore, the proposition that IVIg enhances FccRIIB on effector 
macrophages of mice without having corresponding data on 
FccRIIA might provide a biased picture on the mechanisms of 
IVIg. Gene array analysis could not confirm IVIg-mediated up-regu- 
lation of FccRIIB in the patients with Kawasaki disease28. In line with 
this report, another recent study failed to demonstrate enhanced 
expression of FccRIIB on monocytes following IVIg therapy in chil- 
dren with immune thrombocytopenia29. Also, FccR polymorphisms 
did not predict response to IVIg in myasthenia gravis30. Although 
DC-SIGN promoter 2336 A/G (rs4804803) polymorphism was 
associated with susceptibility of Kawasaki disease, this variant was 
found to be not associated with the occurrence of IVIg resistance31. 
Of note, treatment response in Kawasaki disease is apparently assoc- 
iated with sialylation levels of endogenous IgG but not therapeutic 
IVIg32. All these data thus questions the relevance of DC-SIGN- 
FccRIIB pathway of anti-inflammatory mechanisms of IVIg in 
humans. 

Several recent studies have challenged the concept of a2,6- 
sialylated Fc fragments-mediated anti-inflammatory mechanism of 
IVIg both in experimental models and in humans. IVIg could inhibit 
human Th17 cell differentiation and expansion independent of anti- 
gen presenting cells and hence independent of interaction of DC- 
SIGN and a2,6-sialylated Fc fragments13–15. Also, F(ab’)2 fragments 
of IVIg exerted similar effects thus pointing towards dispensability of 
a2,6-sialylated Fc fragments in mediating the suppression of Th17 
cells. We have demonstrated that DC-SIGN and a2,6-sialylated Fc 
fragment interaction is dispensable for the anti-inflammatory activ- 
ity of IVIg on human DCs33. F(ab’)2 fragments but not Fc fragments 
of IVIg were shown to mediate Treg expansion by inducing cycloox- 
ygenase-2-mediated prostaglandin E2 secretion in human myeloid 
DCs and was dependent in part on DC-SIGN19. Similarly, sialylation- 

enriched F(ab’)2 fragments could inhibit interferon-a production 
from toll-like receptor (TLR)7 and TLR9 stimulated human plasma- 
cytoid DCs, although sialic acid itself was not  required34. 

In the previous reports, Ravetch and colleagues enriched sialic 
acid-containing IgG-Fc by using sialic acid-specific lectin Sambu- 
cus nigra agglutinin-based affinity fractionation22,35–37. However, by 
using same fractionation method, Guhr et al., showed that IVIg 
fractions depleted for the sialylated antibody fraction exert benefits 
in a murine model of passive-immune thrombocytopenia similar to 
that of intact IVIg. However, sialic acid-enriched IVIg fraction failed 
to enhance platelets count in this model38. Similar sialic-acid inde- 
pendent anti-inflammatory mechanisms were also reported in mur- 
ine herpes simplex virus encephalitis model39. Further, Ka¨sermann 
and colleagues showed that lectin fractionation of IVIg results in 
increased sialylation of Fab fragments but not Fc fragments. By using 
human whole blood stimulation assay either with lipopolysaccharide 
or phytohaemagglutinin, they further showed that anti-inflammat- 
ory effects of IVIg is associated with F(ab’)2 fraction of IVIg40. In 
animal models of immune thrombocytopenia and multiple sclerosis, 
the beneficial effects of IVIg were independent of Fc or F(ab’)2 - 
sialylation and FccRIIB41–44. Based on these results, it was suggested 
that genetic background of the mice and dose of IVIg are the critical 
factors that determine the role of FccRIIB in IVIg-mediated bene- 
ficial effects. In line with these observations, two studies have failed to 
demonstrate the direct interaction between sialylated IgG Fc frag- 
ment and DC-SIGN45,46. These data thus point out that a2,6- 
sialylated Fc fragment-DC-SIGN-FccRIIB mechanism merely repre- 
sents one of the several anti-inflammatory mechanisms of IVIg that 
were reported. Therefore, this anti-inflammatory pathway of IVIg 
might be operational in certain pathologies and experimental models 
and might not be considered as a universal mechanism. 

It was proposed that in humanized DC-SIGN-transgenic mice, 
DC-SIGN1 innate cells such as monocytes, macrophages and DCs 
produce IL-33 upon interaction with a2,6-sialylated Fc fragments of 
IVIg22. Recent reports show that IL-33 is an important player for the 
promotion of Th2 responses and activated DCs are one of the sources 
of this cytokine47,48. We found that unlike monocytes from  huma- 
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nized DC-SIGN-transgenic mice that were highly positive for DC- 
SIGN, human monocytes hardly express DC-SIGN. Further, human 
Mo-DCs despite expressing DC-SIGN, failed to produce IL-33 when 
exposed to IVIg either under non-inflammatory or inflammatory 
conditions. In wild type mice, it was suggested that a2,6-sialylated 
Fc fragments bind to SIGN-R1 expressed on splenic marginal zone 
macrophages35. Marginal zone macrophages are absent in human 
spleen and data from humans show that spleen is dispensable for 
the anti-inflammatory effects of IVIg. In line with this concept, by 
using a passive model of induced immune thrombocytopenia, it was 
shown that IVIg is fully functional in splenectomized mice although 
this report supported the sialic acid and SIGN-R1-dependent 
mechanisms of IVIg49. We found that despite the presence of DC- 
SIGN1 innate cells in the human spleen, IVIg could not induce IL-33 
from the splenocytes. All these data indicate that spleen and DC- 
SIGN1 cells are dispensable for IVIg-mediated IL-33 induction in 
humans. Thus, the source of IL-33 in humans following IVIg therapy 
remains elusive. As IVIg is known to cause apoptosis of cells, we 
suggest that secondary necrosis of late stage apoptotic cells could 
release IL-3350–52. This process might depend on the signals provided 
by anti-Fas IgG or anti-Siglec IgG in the IVIg preparations rather 
than the repercussion of interaction of a2,6-sialylated Fc fragments 
with DC-SIGN53,54. In addition, IL-33 is also constitutively expressed 
in the nucleus of endothelial cells and epithelial cells in vivo55. 

 

Methods 
Patients. All experiments were performed in accordance with relevant guidelines and 
regulations. We obtained heparinized blood samples of nine patients (cohort 1    
patients) with inflammatory myopathies (Table 1). Patients were aged 49.1 6 15.2 
years and include two men. Blood samples were obtained before and 2–3 days 

following initiation of IVIg therapy (CLAIRYGH, Laboratoire Français    du 
Fractionnement et des Biotechnologies, France). Informed consent was obtained 
from all the patients. The study was approved by CPP-Ile-de-France VI, Groupe 
Hospitalier Pitie -́Salpe t̂rie r̀e, Paris. In addition, we also analyzed plasma samples of 
seven rheumatic patients (cohort 2 patients) before and 2–3 days post-IVIg therapy 

(TEGELINEH, Laboratoire Français du Fractionnement et des Biotechnologies). The 
patients were aged 47 6 5.8 years (four men) and include inflammatory myopathies 
and anti-neutrophil cytoplasmic antibody-associated vasculitis (Table 1). 

 

Analysis of basophils. Red blood cells (RBCs) from heparinized blood samples of 
cohort 1 patients were depleted by using HetaSepTM (Stemcell Technologies Sarl, 
France) and nucleated cell suspension was obtained. Basophils were analyzed in RBC- 
depleted cell suspension by flow cytometry (LSR II, BD Biosciences, France) using 
fluorochrome-conjugated monoclonal antibodies to FceRI (Miltenyi Biotec, France) 
and CD203c (eBioscience, France). Data were analyzed by FACSDivaTM software (BD 
Biosciences). 

 

Generation of monocyte-derived DCs. Buffy coats from the healthy donors were 
purchased from Centre Necker-Cabanel, Etablissement Français du Sang (EFS), 
Paris, France. Institut National de la Santé  et de la Recherche Me´dicale-EFS ethical 
committee permission (Nu12/EFS/079) was obtained for the use of buffy coats of 
healthy donors. Peripheral blood mononuclear cells (PBMCs) were purified from the 
buffy coats by density gradient centrifugation using Ficoll-paque PREMIUM (GE 
healthcare, France). CD141 monocytes were isolated from PBMCs by using CD14 
microbeads (Miltenyi Biotec). Purified monocytes were then cultured for 6 days in 
RPMI-1640 medium plus 10% fetal calf serum (FCS) containing cytokines GM-CSF 
(1000 IU/106 cells) and IL-4 (500 IU/106 cells) (both from Miltenyi Biotec) to obtain 
DCs56. The purity of DCs was .98%. DC-SIGN expression on Mo-DCs was 
examined by flow cytometry using fluorochrome-conjugated monoclonal antibodies 
(BD Biosciences) and data were analyzed by FACSDivaTM and FlowJo softwares (Tree 
Star, USA). 

 

Isolation of human splenocytes. The remnant human spleen sections from 
individuals submitted for pathological diagnosis were obtained from service 
d’anatomie pathologique, Hoˆpital Europe´en Georges Pompidou, Paris, France. Only 
healthy spleen tissues were used for the research purpose. Since the study did not 
require additional sampling, an approval from an ethics committee was not required 
under French law according to the article L.1121-1 of the public health code. The 
article states that: The research organized and performed on human beings in the 
development of biological knowledge and medical research are permitted under 
the conditions laid down in this book and are hereinafter referred to by the term 
‘‘biomedical research’’. The article further states that it does not imply under 
conditions: For research in which all actions are performed and products used in the 
usual way, without any additional or unusual diagnostic procedure or surveillance. 

The spleen sections were collected in RPMI 1640 medium supplemented with 
100 IU/ml penicillin, 100 mg/ml streptomycin, and 10% FCS. Single-cell suspension 

of splenocytes was obtained by mechanical disaggregation of spleen tissue pieces by 
using gentleMACS dissociator (Miltenyi Biotec) followed by filtration through 70-mm 
nylon membrane filter (BD Biosciences). Splenocytes were then subjected to Ficoll- 
Paque PREMIUM density gradient centrifugation to obtain mononuclear cells. DC- 
SIGN expression on the splenocytes was investigated by flow cytometry using 
fluorochrome-conjugated monoclonal antibodies and data were analyzed by 
FACSDivaTM and FlowJo softwares. 

 

Stimulation of cells. Mo-DCs (0.5 3 106/ml) were cultured in RPMI 1640-10% FCS 
containing GM-CSF and IL-4 in a 12-well plate. The cells were then exposed to IVIg 
(25 mg/ml) for 48 hours to analyze the effect of IVIg on IL-33 production under non- 
inflammatory conditions. In parallel, Mo-DCs were stimulated with either TLR4 
ligand lipopolysaccharide (100 ng/ml/0.5 3 106 cells) (Sigma-Aldrich, France) or 
inflammatory cytokine cocktail (10 ng/ml each of IL-1b, IL-6 and TNF-a, all from 
ImmunoTools, Germany)57. After four hours, IVIg was added and cultures were 
maintained for 48 hours to analyze the effect of IVIg on IL-33 production under 
inflammatory conditions. 

Similarly, splenocytes (0.5 3 106/ml) were cultured in RPMI 1640-10% FCS for 
48 hours either alone or with IVIg. In addition, splenocytes were also stimulated with 
inflammatory cytokine cocktail and IVIg was added to the cultures after four hours. 
The cultures were maintained for 48 hours. 

 

Quantification of cytokines. IL-33 in the plasma samples of the patients and in cell- 
free culture supernatants was quantified by ELISA (R&D systems, France). IL-4 in the 
plasma was also measured by ELISA (R&D systems). 

 

Statistical analysis. Data was analyzed using Prism 5 software (GraphPad software). 
Two-tailed Student’s t-test was used to determine the statistical significance of the 
data. Values of P , 0.05 were considered as statistically significant. 
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Several mechanisms account for the beneficial effect of intravenous immunoglobulin 

(IVIg) in autoimmune and inflammatory diseases. These mechanisms include effects 

on the cellular compartment and on the humoral compartment. Thus, IVIg impacts on 

dendritic cells, macrophages, neutrophils, basophils, NK cells, and B and T lymphocytes. 

Several studies have emphasized that the antiinflammatory effect of IVIg is dependent 

on α2,6-sialylation of the N-linked glycan on asparagine-297 of the Fc portion of IgG. 

However, recent reports have questioned the necessity of sialylated Fc and the role of 

FcγRIIB in IVIg-mediated antiinflammatory effects. In view of the critical role played by 

Th17 cells in several autoimmune pathologies and the increasing use of IVIg in several 

of these conditions, by using neuraminidase-treated, desialylated IVIg, we addressed 

whether the α2,6-sialylation of IgG is essential for the beneficial effect of IVIg in experi- 

mental autoimmune encephalomyelitis (EAE), a Th17-driven condition, and for the recip- 

rocal modulation of helper T-cell subsets. We observed no difference in the ability of IVIg 

to ameliorate EAE irrespective of its sialylation. Our findings thus show that sialylation 

of IVIg is not necessary for IVIg-mediated amelioration of EAE or for downregulation of 

Th17 cells and upregulation of regulatory T cells. 
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Introduction 
 

Intravenous immunoglobulin (IVIg) is a therapeutic preparation 

of polyspecific human gammaglobulin (IgG) derived from the 

pooled plasma of thousands of healthy donors [1–3]. IVIg is pri- 

marily used as an IgG replacement therapy in immune-deficient 

patients. Paradoxically, high doses of IVIg are also used to treat a 

number of autoimmune and inflammatory pathologies including 

immune thrombocytopenia, Guillain-Barr´e syndrome, Kawasaki 

disease, and chronic inflammatory demyelinating polyneuropa- 

thy [1, 3]. The beneficial effect of IVIg in two opposing clini- 

cal scenarios (immunodeficiency and autoimmune pathology) is 

intriguing; notably the role of IVIg therapy in the latter con- 

dition is under intense investigation. IVIg is  known  to func- 

tion by several mutually nonexclusive mechanisms modulating 

both molecular and cellular networks of  the  immune system 

[4]. Molecular pathways modulated by IVIg include cytokines, 

autoantibodies, complement proteins and  Fc  receptors; cellu- 

lar targets include antigen-presenting cells (DCs), macrophages, 

neutrophils, basophils, natural killer cells, B and T lymphocytes 

[5–8]. 

Several previous reports have uncovered a surprising role of 

IgG glycosylation that accounts for the therapeutic efficacy of 

IVIg [9–12]; it has been demonstrated that the antiinflamma- 

tory activity of IVIg is dependent exclusively on α2,6-sialylation of 

N-linked glycan on asparagine-297 in the Fc portion of IgG [9]. 

Using a K/BxN model of arthritis, it was shown that the sialylated 

Fc fraction of IVIg upregulates FcγRIIB (an inhibitory Fc recep- 

tor) on the effector macrophages, thus increasing their activa- 

tion threshold and circumventing the joint damage [9]. However, 

recent studies have questioned the requirement of sialylated Fc 

and the role of FcγRIIB in models of immune thrombocytopenia 

and in IVIg-mediated inhibition of innate immune cell functions 

[13–19]. 

Interleukin-17 secreting helper T (Th17) cells have emerged 

as key pathogenic players in rheumatoid arthritis, antineu- 

trophil cytoplasmic antibody-associated vasculitis, asthma, allergic 

contact dermatitis, systemic lupus erythematosus, chronic inflam- 

matory bowel disease, and MS [20]. In these conditions, Th17 

cells coordinate with IFN-γ-secreting Th1 cells and attract other 

effector cells to the sites of inflammation. Interestingly, regulatory 

T (Treg) cells expressing the transcription factor Foxp3 are impli- 

cated in the suppression of autoreactive T cells, including Th17 

cells and preventing Th17-dependent autoimmune conditions 

[20]. 

In view of the importance of  the  Th17  cells  in  auto- 

immune and inflammatory  conditions  and  the  proposed role 

of sialylation of IVIg, in this study, we examined the role of 

sialylation of IVIg in a Th17 cell mediated autoimmune model, 

the experimental autoimmune encephalomyelitis (EAE), a 

classical murine model of MS proven to be mediated by Th17 

cells [21]. Our results  indicate  that  the  reciprocal  regulation 

of CD4+ T cells by IVIg in EAE appears to be independent of 

sialylation. 

 

 

 

 
Figure 1. SDS-PAGE and lectin blot profiles of native and desialylated 

IVIg (NA-IVIg). One microgram of IgG was loaded and run on NuPage 

10% BisTris gels under nonreducing conditions. The gels were stained 

with colloidal Coomassie (left) or blotted onto nitrocellulose, probed 

with biotin-SNA and AP-streptavidin, and visualized with chromogenic 

AP conjugate substrate (right). The molecular weight markers are also 

indicated. Data shown are representative of more than five indepen- 

dent desialylation and purification processes. 

 

 

Results and discussion 
 

Considering the crucial role played by Th17 cells in many autoim- 

mune pathologies and increasing use of IVIg in several of these 

conditions, it is important to understand the role of sialylation of 

IVIg in a Th17 cell mediated autoimmune model. EAE is classical 

murine model of MS proven to be mediated by Th17 cells [21]. 

Using myelin oligodendrocyte glycoprotein (MOG35–55)-induced 

EAE, we have recently demonstrated that IVIg delays the onset and 

decreases severity of disease by inhibiting Th17 and Th1 cells, and 

concomitantly expanding Foxp3+ Treg cells [22]. To our surprise, 

this reciprocal regulation was independent of inhibitory FcγRIIB. 

Here, we addressed whether the α2,6-sialylation on IgG is required 

for the beneficial effect of IVIg in EAE and for the reciprocal mod- 

ulation of helper T-cell subsets by using neuraminidase-treated, 

desialylated IVIg. 

Desialylation and integrity of the neuraminidase-treated IVIg 

(NA-IVIg) was confirmed by SDS-PAGE, and lectin blottings 

(Fig. 1). Reverse phase high performance liquid chromatography 

(RP-HPLC) revealed that NA-IVIg contained less than 0.1 mg of 

sialic acid per gram of IgG as compared native, untreated IVIg 

(0.67 mg/g of IgG) (data not shown)  [14]. 

EAE was induced in 10-week-old female C57BL/6J mice. 

NA-IVIg delayed the onset and decreased severity of the disease 

similar to that of IVIg (p < 0.001 for both IVIg and NA-IVIg) 

(Fig. 2). We observed no difference in the ability to ameliorate 

EAE between IVIg and desialylated IVIg (Mean maximal score 

(MMS)  ± SD  for  control  = 3.28  ± 0.58;  IVIg  = 2.04  ± 0.98; 
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Figure 2. Neuraminidase-treated desialylated IVIg (NA-IVIg) delays the 

onset of EAE similar to native IVIg. EAE was induced in 10-week-old 

female C57BL/6J mice. Native IVIg (open triangles) or NA-IVIg (filled 

circles) was given at 0.8 g/kg from day 0 to 18. Control mice received 

 

 
not been completely elucidated. It has been proposed that anti- 

inflammatory activity of IVIg is dependent exclusively on sialyla- 

tion of the Fc portion of IgG. In the present study, we demonstrate 

that the protection against EAE by IVIg and reciprocal regula- 

tion of proinflammatory encephalitogenic Th17 and Th1 cells and 

Foxp3+ Treg cells are not dependent on sialylation of IgG. In con- 

clusion, these data along with those reported in murine immune 

thrombocytopenia further question the role of Fc sialylation in the 

mechanism of IVIg effect and highlight the importance of multi- 

pronged antiinflammatory action of IVIg. 

 

 

 
 

Desialylation of IVIg with neuraminidase and 

confirmation by lectin blotting and HPLC 

 
§R 

an equal volume of PBS (open circles). Daily clinical scores of   control, IVIg (Hizentra )  was  desialylated  by  enzymatic  digestion   as 

IVIg and NA-IVIg groups are shown as mean + SEM of n = 11–18 mice 

pooled from two independent experiments. *** p < 0.001, using two-way 

ANOVA with Bonferroni’s post t test. 

 

 
NA-IVIg = 2.30 ± 0.60, p = 0.7124 between IVIg and NA-IVIg 

group). Hence, sialylation of IgG is not required for beneficial 

effect of IVIg in EAE. 

Mechanistically, IVIg delays the onset of EAE by inhibiting dif- 

ferentiation of nä ıve CD4+ T cells into encephalitogenic Th17 and 

Th1 cells, and expanding Foxp3+ Treg cells. We explored whether 

desialylated IVIg also exerted similar mechanisms. Consistent with 

our published results on IVIg [22], NA-IVIg also decreased Th17 

cells (fivefold change, p = 0.015) and Th1 cells (sevenfold change, 

p = 0.015) in draining lymph nodes (Fig. 3A and C). Accordingly, 

this inhibition was associated with an increase in the number of 

Foxp3+ Treg cells in the spleen (1.5 fold change, p = 0.015; Fig. 1B 

and D). Therefore, reciprocal regulation of CD4+ T cells by IVIg 

in EAE appears to be independent of sialylation. Recent studies 

from our laboratory showed that F(abr)2 fragments of IVIg could 

inhibit expansion and activation of human Th17 cells [23] and 

could induce Treg-cell expansion by inducing COX-2-dependent 

prostaglandin E2 in DCs [18]. Further, in vitro studies showed that 

the observed antiinflammatory effects of IVIG are Fab-mediated 

and not sialic acid-dependent. It was proposed that the skewed 

antibody repertoire in sialylated IVIg prepared by lectin chro- 

matography is responsible for this effect [19]. Together, these 

data raise intriguing questions on the role of sialylation of Fc- 

fragment of IgG for the beneficial effect of IVIg and the reciprocal 

modulation of helper T-cell subsets by IVIg in murine model of 

MS. 

 

 

Concluding remarks 
 

The mechanisms underlying the potent antiinflammatory effect of 

IVIg in a number of autoimmune and inflammatory diseases have 

reported previously [14]. Briefly, seven units of recombinant neu- 

raminidase (New England BioLabs, USA) were incubated with 

each mg IVIg for 48 h at 37°C. Following this, concentration and 

buffer exchange to PBS was performed by tangential flow filtration 

using a 100 kD millipore filter unit (minimate TFF system, Pall). 

To confirm desialylation by lectin blotting, one microgram IgG 

was loaded and ran on a NuPage 10% Bis-Tris gels under non- 

reducing conditions (Invitrogen, USA). The gels were stained 

with colloidal Coomassie (Gelcode, Thermo Scientific, USA) or 

blotted onto nitrocellulose. The blots were blocked with Carbo- 

Free blocking solution (Vector Laboratories, USA), probed with 

biotin-SNA (2 g/L, Vector) and AP-streptavidin (1.5 g/L, Invit- 

rogen) and visualized with chromogenic AP conjugate sub- 

strate (BioRad, Switzerland). Alternatively  for  HPLC,  sialic 

acid  was  released  by  acidic  hydrolysis  of  neuraminic    acid 

in  0.25  M  NaHSO4  followed  by  derivatization  of  the   gly- 

can with the fluorophore1,2-diamino-4,5-methylenedioxybenzene 

dihydrochloride (DMB). Quantification of the derivatized sialic 

acid was performed by RP-HPLC using N-acetyl neuraminic acid 

(Neu5Ac; Fluka, Switzerland) as a standard and expressed as 

Neu5Ac per IgG (weight/weight) [14]. 
 
 
 

Induction EAE and treatment with IVIg or NA-IVIg 

 
Animal experiments were performed as previously described 

[18, 22] according to the Charles Darwin ethical committee guid- 

ance (UPMC Paris). A 10-week-old C57BL/6J mice (Janvier Labo- 

ratories, France) were immunized subcutaneously with 200 μL 

of emulsion (50 μL per site) containing 200 μg of MOG35–55 

peptide (MEVGWYRSPFSRVVHLYRNGK, PolyPeptide laboratory 

Strasbourg, France) emulsified in complete Freund’s adjuvant 

(Sigma–Aldrich) containing 880 μg of nonviable Mycobacterium 

tuberculosis antigen H37RA (Difco Laboratories). Mice received 

300 ng of pertussis toxin after 2 and 48 h intravenously. Develop- 

ment of EAE was assessed daily according to the following criteria; 
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0-No signs, 1-tail paresis, 2-hindlimb paresis, 3-hind limb paral- 

ysis, 4-tetraplegia, 5-moribound. IVIg (Hizentra§R 20% w/v, CSL 

Behring) or desialylated (NA-IVIg) was given daily at 0.8 g/kg i.p 

from the day of the immunization until the peak of the disease 

(day 16–18). Control mice received equal volume PBS. 

 
Isolation of cells from draining lymph nodes and 

spleen, and flow  cytometry 

 
Nine days after EAE induction, mice were sacrificed under 

Xylazinane/Ketamine anesthesia to obtain draining inguinal 

lymph nodes and spleen. Single cell suspension was prepared 

by mechanical disaggregation and passing through 70 μm nylon 

membrane filter. Red blood cells were removed using ACK lysis 

buffer. A total of 1.5 × 106 cells were stimulated with 25 ng 

of phorbol 12-myristate 13-acetate (PMA) and 1 μg ionomycin 

(Sigma) in the presence of Monensin (Golgistop§R BD biosciences) 

in 10% FCS/RPMI for 4 h at 37°C. Cells were labeled with anti- 

mouse CD4-Pacific Blue (Clone RM4–5, BD biosciences) after 

blocking the Fc-receptors with anti-mouse CD16/32 antibody (BD 

Fc Block). Intracellular staining was performed using FoxP3 stain- 

ing buffer set (eBioscience) with the following antibodies: IL-17A- 

 
Figure 3. Neuraminidase-treated desia- 

lylated IVIg reciprocally modulates 

helper T lymphocytes, as does native 

IVIg. Nine days after EAE induction, mice 

were sacrificed. Spleen and draining 

lymph nodes (DLN) were collected and 

analyzed for helper T-cell subsets by 

flow cytometry. Representative dot plots 

showing CD4+ T cells from (A, C) the 

DLN gated for  IL-17  and  IFN-γ;  and 

(B, D) the spleen gated for Foxp3 in 

control, desialylated IVIg (NA-IVIg) and 

native IVIg-treated mice are shown. 

Value in each quadrant denotes percent- 

age of cells positive for IL-17, IFN-γ, and 

Foxp3 among the CD4+ population. Each 

symbol represents an individual mouse 

and data are shown as mean ± SEM from 

4–6 mice pooled from two experiments 

(right panels, A–D). *p < 0.05, **p < 0.01, 

Mann–Whitney test. 

A488 (clone 11B11, BD), IFN-γ-allophycocyanin (Clone XMG1.2, 

BD), Foxp3-PE (clone FJK16s, eBioscience). BD LSR II with FACS 

Diva software was used to acquire and analyze the data. 

 
Statistical analysis 

 
Two-way analysis of variance (ANOVA) with Bonferroni’s post test 

was used to compare daily clinical score. Mann–Whitney’s U test 

was used to compare parameters between control and NA-IVIg 

group. Values of p obtained are indicated in Figure legends. 
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