Carl Jung

Continuous deployment of pervasive applications in dynamic environments

Keywords: Integration into Deployment Pipeline

Driven by the emergence of new computing environments, dynamically evolving software systems makes it impossible for developers to deploy software with human-centric processes. Instead, there is an increasing need for automation tools that continuously deploy software into execution, in order to push updates or adapt existing software regarding contextual and business changes. Existing solutions fall short on providing faulttolerant, reproducible deployments that would scale on heterogeneous environments. This thesis focuses on enabling continuous deployment solutions for dynamic environments, such as Pervasive Computing environments. It adopts an approach based on a transactional, idempotent process for coordinating deployment actions. This thesis proposes a set of deployment tools, including a deployment manager capable of conducting deployments and continuously adapting applications according to the changes in the current state of the target platform. The implementation of these tools, Rondo, also allows developers and administrators to code application deployments thanks to a deployment descriptor DSL.

Using the implementation of Rondo, the propositions of this thesis are validated in several industrial and academic projects by provisioning frameworks as well as installing applications and continuous recon gurations.

Résumé

L'émergence des nouveaux types d'environnements informatiques ampli e le besoin pour des systèmes logiciels d'être capables d'évoluer dynamiquement. Cependant, ces systèmes rendent très di cile le déploiement de logiciels en utilisant des processus humains. Il y a donc un besoin croissant d'outils d'automatisation qui permettent de déployer et recon gurer des systèmes logiciels sans en interrompre l'exécution. Le processus de déploiement continu et automatisé permet de mettre à jour ou d'adapter un logiciel en exécution en fonction des changements contextuels et des exigences opérationnelles. Les solutions existantes ne permettent pas des déploiements reproductibles et tolérant aux pannes dans des environnements uctuants, et donc requérant une adaptation continue.

Cette thèse se concentre en particulier sur des solutions de déploiement continu pour les plates-formes d'exécution dynamiques, tels que celle utilisé dans les environnements ubiquitaires. Elle adopte une approche basée sur un processus transactionnel et idempotent pour coordonner les actions de déploiement. La thèse propose, également, un ensemble d'outils, y compris un gestionnaire de déploiement capable de mener des déploiements discret, mais également d'adapter les applications continuellement en fonction des changements contextuels. La mise en oeuvre de ces outils, permet notamment aux développeurs et aux administrateurs de développer des déploiements d'applications grâce à un langage spéci que suivant les principes de l'infrastructure-as-code.

En utilisant l'implantation de Rondo, les propositions de cette thèse sont validées dans plusieurs projets industriels et académiques à la fois pour l'administration de platesformes ubiquitaires ainsi que pour l'installation d'applications et leurs recon gurations continues.

Foreword

I present with this manuscript the work I conducted during four years of doctoral studies. The rst three years of this period was a result of the collaboration between the research team Adèle of Laboratoire Informatique de Grenoble (LIG) and the Lialp team of Commissariat à l'énergie atomique et aux énergies alternatives (CEA). The work of my nal year, which concluded my studies, was carried out entirely in Adèle.

These four years have been a great journey, not short of many ups and downs. I would like to take my time here to thank some of the people who made this possible and helped me to end up with this work. I present my gratitude to Christian Becker and Frédéric Weis for accepting to review this thesis and Frédérique Laforest for examining my work.

First of all, I would like to thank my supervisor, Philippe Lalanda, for giving me the opportunity to be a part of the Adèle team, providing me the guidance and support to perform research. I would also like to thank Levent Gürgen, who welcomed me in the CEA and gave me the possibility to contribute in numerous projects. Of course this work would not be possible without Vincent Lestideau and Clément Esco er, who despite their limited availability, were always keen to guide me with precious remarks and encouragements. I wish to thank all members of Adèle and Lialp teams, with whom I shared years plenty of good moments. All of them helped me in this work, through fruitful discussions and advice. Stéphanie, German, Denis, Jonathan, Johann, Eric, Walter, Diana, Pierre, Torito, Gabriel, Bassem, Morgan, Etienne, Yoann, Jander, Colin, Thibaud, Suzanne, Yeter, Sa etou, Mathieu, Vincent, Nicolas, Lionel, Victor are the names that rst comes to mind.

Chapter 1

Introduction " I arise in the morning torn between a desire to improve the world and a desire to enjoy the world. This makes it hard to plan the day. "

Motivations

The general theme in which this thesis is positioned involves two driving forces of software development. One is about assuring the dependability of the software programs by making sure that they behave as predictable as possible [Laprie , Zave]. The other one is about making software evolutive and exible enough so that it can react to change as fast as possible, even proactively. These two forces are usually incongruous with one another. The software engineering domain looks for solutions to reconcile them in the most e cient way, producing dependable software that can adapt dynamically to new conditions [Baresi]. This section presents the motivations of this research, substantiating this point and thus forming the context of this work.

The success story of modern mobile devices such as smartphones and tablets is remarkable. In less than years they now dominate the way users interact with computing services. According to the report [eMarketer], the worldwide smartphone penetration has grown to . billion people in , holding the percent of global population. The reason behind this wild adoption is not the high-resolution touchscreens, integrated cameras or gyroscopes they embed. Notwithstanding the impact of those and many other technologies such as high-speed wireless broadband, mobile devices largely owe their success to the "apps" they o er.

The notion of application is most certainly not new. Back from the early days of computers, operating systems provided software stacks for applications to be executed upon. What smartphones (or tablets) did di erently however, is to combine a pivotal physical interaction pattern -touchscreens -with development tools, SDKs and execution platforms destined for application developers. These software tools allowed third-party developers to easily program, deliver and execute their applications.

The, so called, explosion of "apps" happened thanks to this ecosystem where not only industrial software producers but also individual developers could develop and deliver their applications to the masses. For grasping the di erence these tools make, it is sucient to compare Java ME enabled SymbianOS phones with Dalvik VM based AndroidOS phones. Both platforms supported executing applications developed in Java, but clearly SymbianOS's application support was primitive, which lead to its decline as a platform. Indeed, developing applications for those platforms become so mainstream that the main challenge for developing a successful application become nding the right idea. Then the recipe followed by; backing it up with the right services and presenting it with a beautiful user interface design [Hitcents].

The success of smartphone applications is just another example for use cases of domain-speci c execution platforms. Another instance for such platforms is the frameworks for developing web applications. But a more important aspect for attracting application developers is providing tools to debug, test and deliver applications developed on these platforms. Mobile ecosystem providers such as Apple, Google and Microsoft all achieved this by providing an "appstore", an application market, helping users to discover and install applications on their device with one-tap. In spite of the fact that open source community repudiated these centrally controlled software stores at rst, many software producers enjoyed being able to see their applications bought, delivered, deployed and run on consumer devices.

As a result, it is safe to say that what really propelled the mobile computing is the money vector provided from these mass-market retailing channels, i.e. application markets. The deployment feature (delivery, installation, activation) played a crucial role in implementing the infrastructures for appstores, therefore in the adoption of mobile computing.

In parallel to the advancements in mobile platforms, the Cloud Computing emerged as another aspect that marks the way applications are developed. For software producers, Cloud computing made provisioning virtual hardware resources and executing applications on those as easy as a calling a web service. Such that applications can be bundled in virtual machine images or lightweight containers and executed on the Cloud provider of choice. This type of Cloud called Infrastructure-as-a-Service reduces the cost of purchasing machinery, while providing great exibility to lend additional resources to cope with increased demand. The Platform-as-a-Service providers such as GoogleApp Engine or Heroku rent ready to serve execution platforms to run applications while abstracting the underlying layers (i.e. the operating system, HTTP front-end). The complex task of administering the hardware and software infrastructures is therefore delegated. Similarly, these platforms enable deploying an application on multiple instances of an environment to better support the load. Although the Cloud reduces administration costs, the scalability is not guaranteed. Applications generally require to be designed with exibility to make use of the Cloud. Yet, applications and businesses that can manage this evolution can harvest great bene ts.

Cloud Computing, domain-speci c execution platforms and tools for debugging, testing and delivering software all contributed to one nal fact: Software is now developed in faster cycles. With better tools at disposal, the new norm in software development is to deliver a minimum viable product to customers as fast as possible. This allows development teams to learn about customer requirements and iterate to improve the product. Most importantly, automatized processes make sure that the software is tested, dependable and ready to be delivered to the customers as soon as it is produced.

Nowadays the computing world is sailing towards a next step with the emergence of a new class of tiny connected devices. In [Evans], Cisco estimates that by , there will be billion "things" connected to the Internet, as opposed to approximately billion this year. The growing interest for such devices is mainly due to the ability to gather information from the physical environment and control things through a software interface, giving the ability to automate this control. This automation paves the way for developing a new class of applications that leverage devices deployed in the real world.

Pervasive Computing envisions a whole new kind of relationship between computers and users. In this interaction computers are blended into everyday objects and users access information and use services without perceiving their existence. Put di erently, the interaction pattern is not con ned into a touchscreen of a mobile phone, nor a tablet or a television; but it potentially encompasses everything in the physical world that users interact with.

Currently, applications proposed in this domain do not exceed vertical, proprietary solutions. Clearly, as it was in the case of mobile computing, there is a lack of software engineering tools that help developers to program, test, debug, deploy and execute their applications. Dealing with real life environments, connected devices and human behavior, developing pervasive applications is di cult. The execution context of applications and the platforms that execute those, tend to evolve rapidly. This may be due to many reasons such as contingent devices, unstable network communication and the need for contextawareness. Among many challenges application developers and system operators face, the need to handle dynamism stands out to be the most eminent. This work aims to improve this situation by investigating solutions for one of the software engineering problems, deployment of software, particularly in dynamic computing environments.

Research Challenges

This thesis investigates software deployment solutions for modern applications in dynamic execution environments. Additionally, it considers the requirements of pervasive computing for applying these solutions. Two actors are particularly involved and impacted by this work, namely, the application developer and the operator of execution platforms.

Four major challenges are addressed in providing the proposition of this thesis:

Heterogeneity: No two computer systems are bitwise identical in terms of con gurations and capabilities. A software deployment solution must be able to target different platforms. Conversely, it must be able to ignore insigni cant di erences between platforms and customize the deployment for e ectuating essential changes. Also di erent applications and platforms may need various kinds of con gurations and actions to be performed.

Scalability: Applications and execution platforms can grow rapidly in size and complexity, incorporating high number of con gurations. On the other hand, Pervasive and Cloud systems can require to run deployments on a high number of target platforms. The proposed solution must therefore scale horizontally and vertically.

Industrialization: To expect the same leap done in mobile computing from pervasive systems, the way software is developed and deployed must be industrialized. For software production, this means having automated processes for developing, building and delivering applications with a predictable and testable way. In addition, such systems must be cost e cient, promote productivity and robust.

Context-awareness: The deployment solution must turn the dynamically evolving nature of pervasive environments to its advantage by proposing policies that can be customized according to the state of the target platform and changes in this state.

Contribution

This thesis proposes a novel approach for deploying software in dynamic execution environments. This approach is based on a transactional, idempotent process capable of coordinating deployment actions. The properties granted to this process allow performing continuous deployments, in accordance with the current state of the target platform.

Along with this process de nition, this thesis proposes:

-the generic resource-based model in terms of which the platform state, the deployment request and the deployment process are de ned.

-the deployment manager capable of continuously adapting applications according to the changes in the context.

-the domain-speci c language for describing application deployments with architectural variability.

-the extension mechanisms for extending the capabilities of the deployment manager and the description language for handling new kinds of resources.

There are, however, some aspects that are deliberately left out of the scope of this work. Namely, the deployment in distributed computer environments is not treated in this work. The security aspect for transferring deployment artifacts is another subject that this work does not cover.

These contributions are developed and available as Rondo project. Rondo provides a tool suite containing, among others the deployment manager and the deployment descriptor language. These tools are fully operational and are tested against deployment scenarios de ned within industrial and research projects, including pervasive platforms.

Dissertation Structure

After this introduction, the remainder of this document is divided into two parts, namely, the state of the art and the contributions of this work.

The state of the art includes three chapters:

Chapter 2 presents background information about pervasive computing. It examines the challenges brought by this computing domain, some of which this work contributes to tackle.

Chapter 3 studies the general concepts of software deployment. It discusses common issues addressed in software deployment and compares di erent deployment automation approaches.

Chapter 4 introduces the ideas and concepts behind continuous deployment. It presents current practices for implementing deployment pipelines. More particularly, this chapter proposes a characterization framework for evaluating continuous deployment solutions.

The contributions of this work are presented under three chapters:

Chapter 5 recalls the addressed problem, outlines the objectives and gives an overview of the approach of this work for enabling continuous deployment in dynamic execution environments. Then, it details this approach by presenting the formal framework, the deployment manager architecture and the descriptor language. It includes a series of discussions that these propositions invoke. At the end of this chapter, an evaluation of these propositions is presented.

Chapter 6 describes how the propositions of this thesis are implemented. Rondo is the tool suite which proposes implementations of the deployment manager and the deployment description language for OSGi™ platforms.

Chapter 7 presents experiments performed using Rondo tools for validating the contributions of this thesis. This chapter also reports the experiences of using Rondo for various deployment scenarios.

Finally Chapter concludes this document by summarizing the principal ideas and proposes future research directions revealed by this work.

Introduction

This chapter presents background information about pervasive computing. It describes the general idea behind this emerging computing domain, followed by motivating examples and various research domains that contribute to its realization. It continues by identifying general characteristics of pervasive environments. Following the context of this thesis, this chapter discusses requirements for developing pervasive applications focusing principally on middleware solutions. Relevant related work is presented focusing on middleware approaches. The chapter discusses limitations of existing work followed by a conclusion.

Evolution of Computing Environments

The world now is becoming increasingly digital, populated by a profusion of digital devices designed to assist and automate more and more human tasks and activities, to enrich human social interaction. However, this was not the case half a century ago, when analog machines of the industrial age left their legacy to the digital revolution, paving the way for miniaturized digital computers. Since the introduction of digital computers, computing environments have evolved constantly; thanks to technologies that allow increasingly smaller, more powerful, communicating and energy-autonomous devices to be built. Therefore, human perspective of computer systems has undergone di erent stages of evolution, each one altering the way humans interact with computers. The following analysis of this evolution is inspired by a similar analysis presented by Weiser in [Weiser] which started with these introduction lines:

"The important waves of technological change are those that fundamentally alter the place of technology in our lives. What matters is not technology itself, but its relationship to us. "

The gure . illustrates the fundamental technological changes related to computer systems. It highlights some crucial steps that have marked its evolution. In particular, the notions of distribution, mobility and proliferation of computer systems clearly appear as major aspects. We examine more precisely in the following sections these di erent stages. In the early s, centralized computing was predominant and appeared as the only way to build computer systems. These took the form of isolated computers, requiring large amounts of space, even taking up whole rooms. They were compounds of processors and memory, and were administered continuously by experts. These experts were at the same time administrators, developers and users of equipment and software. These mainframes had limited resources and had to be shared among multiple users.

Later, with the evolution of electronics, the term mainframe was attributed to highend powerful computers, running applications that serve a large number of users. Even today, it is possible to have same kind of relationship of the mainframe era; anytime a computer is a scarce resource and must be negotiated and shared with others. Usually usage of domain-speci c hardware with special calculation properties belong to that era of computing. In [Weiser] Weiser summarized mainframe computing as "If lots of people share a computer, it is mainframe computing. "

In this same analysis, Mark Weiser then introduced the emergence of personal computing as follows: "In the number of people using personal computers surpassed the number of people using shared computers. The personal computing relationship is personal, even intimate. You have your computer, it contains your stu , and you interact directly and deeply with it. " Personal Computers (known as PC's) continue to be the signi cant way of human interaction with the digital world. This kind of interaction needs special attention from the user, as a user's principal intention is to use a service or access to information. As it is a personal belonging, most users are the administrator of their PC, installing and con guring the software developed and distributed by third parties.

While standalone PCs or mainframes restrictively use local resources, network infrastructures allow computers to access remote resources, interconnecting personal, business and government information. Computers with Internet access thus allow developers and service providers to build complex applications with more added value for users. However, they also created many issues for system administrators and application developers such as distributed security, remote communication and integration of heterogeneous applications. To quote Wieser again, "Interestingly, the Internet brings together elements of the mainframe era and the PC era. It is client-server computing on a massive scale, with web clients the PCs and web servers the mainframes. "

In early s, emergence of portable laptop computers and wireless networks gave birth to mobile computing. It allowed users to access network-enabled applications while being mobile, therefore changing location. Moreover, increased attention to smartphones and tablet computers created a new kind of PC, that is powerful, mobile and connected wirelessly with high data-rates via new generation cellular networks (G, LTE). These devices unfold new possibilities in terms of user interaction with computers; e.g. smartphones can be associated with their owner and they can be used to determine the position of the user via integrated GPS. Integration of mobile clients into existing distributed systems brought about new issues such as location sensitivity, energy-awareness and adaptive resource management [Satyanarayanan].

In this post-PC era, more and more connected mobile devices dominate the human interaction with the computing world. Pervasive Computing, often also referred to as Ubiquitous Computing, is a vision for next-generation computer systems that are infused into real world environments. Pervasive Computing envisions a whole new kind of relationship between computing and users, exceeding mobile computing, where computers are blended into everyday objects and users access information and use services without perceiving their existence.

Pervasive Computing

Pervasive Computing, or as it was introduced in [Weiser] Ubiquitous Computing, describes next-generation computing environments, which puts humans at the center of focus, rather than machines. The seminal paper of Weiser illustrates mostly perspectives of his vision for this new kind of human-computer relationship. Weiser and his colleagues in Xerox Palo Alto Research Center postulated a world saturated with tiny computing devices integrated into everyday objects and a computing infrastructure that interconnects these devices in order to support human tasks, in a way that all this is invisible to the users. Therefore users could concentrate on their tasks naturally, instead of worrying about how to operate the whole computing system.

Their ideas have inspired many researchers, which has lead to the appearance of di erent terms, such as calm computing, disappearing computer, everyware [Green eld], Internet of Things [Mattern], Ambient Intelligence [Epstein , Hansmann] and things that think [Hawley]. Although there has been a battle of concepts in media and the research community over the usage of these words [Ronzani]; basically all these terms point at an infusion of computing environments into the real world, following the vision of Weiser. The author of this thesis does not treat these terms di erently, and in the context of this work, the term "pervasive computing" is used to refer to the general paradigm.

In the presence of these related concepts, instead of proposing a single de nition of pervasive computing, one of the main goals of this chapter is to establish a common understanding of the vision it refers to. To this extent, it is crucially important to analyze di erent de nitions in the literature: "The most profound technologies are those that disappear, [...] They weave themselves into the fabric of everyday life until they are indistinguishable from it. " [Weiser] "We characterized a pervasive computing environment as one saturated with computing and communication capability, yet so gracefully integrated with users that it becomes a 'technology that disappears. ' [sic] " [Satyanarayanan] In previous de nitions, authors take a bird's-eye view on the technology and focus on the seamless integration aspect of the services provided by pervasive computing. The following de nitions focus more on the connectivity of di erent kinds of devices.

"One could describe 'ubiquitous computing' as the prospect of connecting the remaining things in the world to the Internet, in order to provide information "on anything, anytime, anywhere. [...] the term 'ubiquitous computing' signi es the omnipresence of tiny, wirelessly interconnected computers that are embedded almost invisibly into just about any kind of everyday object. " [Mattern] "Pervasive computing calls for the deployment of a wide variety of smart devices throughout our working and living spaces. These devices are intended to react to their environment and coordinate with each other and network services. Furthermore, many devices will be mobile and are expected to dynamically discover other devices at a given location and continue to function even if they are disconnected. " [Grimm] "The basic idea of this concept [Internet of Things] is the pervasive presence around us of a variety of things or objects -such as Radio-Frequency IDenti cation (RFID) tags, sensors, actuators, mobile phones, etc. -which, through unique addressing schemes, are able to interact with each other and cooperate with their neighbors to reach common goals. " [Atzori] From the de nitions above, pervasive computing can be summarized into following core properties:

-Pervasive Computing is invisible through unobtrusive human-computer interaction.

-Pervasive Computing is inherently distributed among mobile and stationary devices, and network services. These devices are usually hidden from the user but constantly interacting with each other and their environment.

-Pervasive Computing is context-aware in order to optimize its operation to the current environment.

These core properties de ne brie y the pervasive computing vision. They reveal some of the fundamental aspects of pervasive computing like invisibility, distribution, mobility and context-awareness. However, they are widely incomplete to be able to uncover challenges for realizing the pervasive computing vision. Sections . and . of this chapter decomposes these core properties into detailed characteristics expected from pervasive computing system.

Context & Context-awareness

Context-awareness is an essential property for pervasive computing systems. Contextaware systems are systems that are aware of their "context" and that are able to adapt their operations according to the changes in their environment [Baldauf]. "Aware" systems began appearing in the mobile computing era in the form of location-awareness. Location-aware mobile devices are able to determine a user's location and notify when the user changes their location [Bauer]. Although location continues to be the principal context information, it does not necessarily represent interesting information for every kind of application scenario. Since then the way context information is de ned has evolved towards more elaborate models.

Context-awareness was rst introduced in the early years of pervasive computing, by Schilit and Theimer. The authors de ned the context as the following de nitions. "[...] the location of use, the collection of nearby people, hosts, and accessible devices, as well as to changes to such things over time" [Schilit].

Later Dey proposed a general de nition, which is accepted today as one of the most accurate de nition.

Definition 1: Context "Any information that can be used to characterize the situation of entities (i.e., whether a person, place or object) that are considered relevant to the interaction between a user and an application, including the user and the application themselves. " [Dey] Based on a general context de nition, a classi cation is proposed for di erent types of context [Schilit]:

-Computing (Virtual) Environment includes all the variables that describe the available computer technology such as used resources, available devices and resources, network bandwidth, etc.

-User (Human) Environment includes information on users: location, immediate needs, social activities, nearby people etc.

-Physical Environment describes the physical environmental attributes of the place the user is situated, including in particular, temperature, luminosity, noise level etc.

This classi cation of di erent types of context reveals an important concept about context-awareness in pervasive computing: It shows how pervasive computing brings together virtual and physical environments through a focus on users. In pre-pervasive eras, computing involved only virtual entities conceptualized by software developers. And the context was principally resources available to the computer hardware, which are usually virtualized by the operating system. However, pervasive computing involves not only an abundant number of computing devices but also users and physical environments. Context information about the users' situation and the physical environment are as important as the virtual context. Therefore, a pervasive computing environment(or only pervasive environment) consists of the intersection of these three environments (see gure .).

Virtual, human and user environments are in constant interaction between each other. For example, the fact that a user changes his/her location causes the physical environment to change, which leads to changes in the computing environment via sensors. Or a change in the physical environment, like an increase in indoor temperature, can obviously a ect user comfort but can also cause damage to the computer hardware.

Context-awareness is a central enabling technology for pervasive computing systems (see de nition). It is required for creating computers and applications that are non-intrusive in terms of the user's perception. An important thing to note is that most of the research conducted in context-awareness is applied in pervasive computing environments. However the pervasive computing should not be reduced to context-awareness as it has many other requirements. Aware of the changes in di erent contexts, a pervasive computing system coordinates the interactions between these environments, in order to provide useful services and information to users.

Motivating Examples

Pervasive computing postulates a world where people are surrounded by computing devices and applications that support and augment everyday activities. The focus is on developing pervasive computer systems to support people during their daily activities and tasks, to simplify these in a less obtrusive way. People will live, work, and get entertained in a seamless computer-enabled pervasive environment that is interwoven into the physical environment. A physical world integrated with computing devices and services have many implications for everyday life. This integration would change how people live their private life, how industries make money and how public institutions deliver their services.

a. Smart Spaces

Pervasive computing vision was deemed a futuristic but realizable one, especially while Moore's Law proved to be more accurate than its initial predictions [Moore]. Early work in pervasive computing concentrated especially on integrating miniaturized computers into daily life and exploring new ways of human-computer interaction. These projects were the pioneers of pervasive computing applications. They aimed to implementing vertical application scenarios involving environments equipped with sensors, actuators and mobile devices called smart spaces [Kidd].

tour of the house with up-to-date descriptions of the technologies arranged by name and location. Smart mailbox. The mailbox senses mail arrival and notifies the occupant.

Smart front door. The front door includes a radio-frequency identification (RFID) tag for keyless entry by residents and authorized personnel. It also features a microphone, camera, text LCD, automatic door opener, electric latch, and speakers that occupants can use to communicate with and admit visitors.

Driving simulator. The garage has a driving sim- ulator to evaluate elderly driving abilities and gather data for research purposes.

Smart blinds. All windows have automated blinds that can be preset or adjusted via a remote device to control ambient light and provide privacy.

Smart bed. The bed in the master bedroom has special equipment to monitor occupants' sleep pat-terns and keep track of sleepless nights.

Smart closet. The master bedroom closet will, in the future, make clothing suggestions based on outdoor weather conditions.

Smart laundry. In combination with the smart closet, future RFID-based technology will notify residents when to do laundry as well as help sort it.

Smart mirror. The master bathroom mirror displays important messages or reminders-for example, to take a prescribed medication-when needed. This technology could be expanded to other rooms.

Smart bathroom. The master bathroom includes a toilet paper sensor, a flush detector, a shower that regulates water temperature and prevents scalding, and a soap dispenser that monitors occupant cleanliness and notifies the service center when a refill is required. Other technologies under development measure occupant biometrics such as body weight and temperature. Location-aware o ce oors that forward incoming phone calls, context-aware meeting rooms that sense human activities, classrooms that are equipped with smart whiteboards and interactive surfaces, digitally augmented outdoors and yet wearable computers were the example of such application scenarios. Although they were mainly experimental prototypes, these early applications demonstrated some of the fundamental application areas of pervasive computing.

b. M2M Systems

Machine-to-Machine (M M) systems are based on the communication between machines, without human intervention. In a M M application, machines communicate with each other, using services of each other and exchanging data. These kinds of systems are widely used in di erent industrial areas such as environmental surveillance, logistics, utility infrastructures etc.

The idea behind M M systems originates from the word 'telemetry', which means "measurements from distance" or "remote measurement". The concept of telemetry involves using sensors and remote machines for collecting data and sending it to a central location for later analysis. Types of machines interacting in such a system can range from tiny sensing devices that operate on low power, to powerful servers. Modern M M systems bring considerable improvements over existing telemetry concepts. Wireless sensor technologies o er enhanced connectivity and sensitivity. Modern information systems supported by interconnected servers and server farms enable fast processing of huge amounts of data. M M systems involve large-scale deployment of machines. Sensor networks connect mobile or (carefully placed) stationary sensor nodes that measure di erent metrics of their environment and send these measurements to centralized information systems tted with databases and data analysis software. In this way, raw data produced by sensors eventually goes through a set of transformations and ltering, also known as data mediation. Data, mediated to servers, then would be stocked in databases for later querying. They can be analyzed to create reports and to take decisions -either by humans or in best-case scenarios, avoiding human action by computer-based decisions. M M systems have many application areas including inventory management for retailers and manufacturers, water quality monitoring for public utilities, or even microweather forecasting for agricultural areas. The gure . depicts a M M application for managing forklifts using wireless data transmission. M M applications are about collecting and processing high amounts of data. In the context of pervasive computing, they demonstrate a special case of interaction between physical and virtual environments. Establishing software and hardware infrastructures to cope with this intensity of data, especially on wireless sensor networks, is extremely complex. c. Smartlife s witnessed widespread adoption of computerized information systems by most of the organizations of the modern world. Banks, retailers, manufacturers, press, utility/service providers, government agencies, almost every department in any company started using computer systems for automating and optimizing their business. Information, whether produced internally as a result of business processes or gathered from external sources; stocked in databases and analyzed, in order to take vital decisions about business management. As a result, information, and the information systems, became the most valuable business assets.

Gateway Information System

A decade later, with the prevalent usage of Internet in modern communities, these organizations stawrted using the web for reaching their clients (or their users for nonpro t organizations). Web applications allowed people to access information previously locked up in computer systems of these organizations. Mutually, for organizations, this meant a new playground for gathering information and improving their services and pro t. Rapidly new kinds of businesses emerge from Internet-only services that leverage user-habits, usage statistics etc. Expansion in the usage of Internet services caused a boom in the volume of information stocked and analyzed in information systems.

In parallel, M M systems let organizations expand the information gathering into physical environments, with the goal of monitoring and optimizing business processes. With the emergence of IPv , sensors and actuators embedded in physical objects are connected through the same protocol that connects the Internet. M M systems and Internetbased services became tools for harvesting information from the environments and users and communicating with them. A term that is recently appearing in pervasive computing domain is 'Smartlife'. It de nes a concept where organizations reach their customers and users in their everyday life by providing them useful services and information anytime, anywhere. It comprises di erent vertical pervasive computing domains like Home, O ce, Transportation, Shopping, Healthcare, City and Utilities. On top of these existing domains, Smartlife proposes a new business model, which allows service providers and vendors to bring and integrate their services into these everyday environments with a holistic approach.

These new kind of services have the novelty of pro ting from pervasive contextawareness. Applications and services integrated into 'Smartlife' use the extended knowl-edge about users and their physical environments, and the ability to perform actions directly on user's environment via embedded devices. Usage of context information horizontally between domains allows an application, for example, to leverage information about the shopping list of a consumer in the context of home automation, to track the freshness of foods in the refrigerator and in the context of healthcare, to inform the consumer about their bad nutrition habits The next step for the advancements in pervasive computing research will be the realization of Smartlife concept. This will require the contributions from smart-spaces, mobile computing and M M systems. Work on smart spaces would provide more natural, ubiquitous interaction with users and their environments, whereas M M systems o er the information systems for enhancing this interaction with business services. This points out to a need for developing hardware and software infrastructures that will host and execute these kinds of pervasive applications with speci c requirements.

Research Domains

Pervasive computing gives rise to new challenges in di erent domains. Attaining this vision requires collective research e orts in a variety of areas, including microelectronics, telecommunication, embedded systems, wireless networks, information systems, software engineering and also social sciences. illustrates di erent levels of domains contributing to the vision of pervasive computing, as sensors and devices, communication protocols, runtime platforms and application development. In this section some of the research advancements that have a direct impact on pervasive computing are introduced.

a. Smart Devices

Advancements in microelectronics and circuit design allow to produce more powerful and smaller embedded devices that can integrate better in physical environments. With the usage of advanced materials and production techniques, it is possible to produce devices at low costs. Low device costs and wireless communication technologies enable large scale, nomadic usage of self-powered devices. However, improvements in these aspects are not backed-up by e cient energy capacity solutions. Internal power sources, such as batteries, constitute the primary limitation for size, weight and lifetime of current devices.

Many e orts on creating smart devices are concentrated on increasing energy autonomy. With recon gurable hardware and software solutions, embedded devices can reduce their energy consumption by optimizing their operation (usually less wireless communication means less energy usage) [Druilhe]. In addition to that, energycapturing solutions such as photovoltaic cells, piezoelectric modules or radio wave energy harvesting antennas allow devices to convert environmental energy into electrical power [Sudevalayam].

In addition to energy optimization, there are other challenges for manufacturing smart devices that integrate and interact better with physical environments and users. Usage of innovative technologies like nano and organic materials opens the way for constructing little devices with precision that can be embedded even in the human body [Ratner]. In the light of these advances, in the near future it is predictable to see devices that are negligibly small and that have greater energy autonomy.

b. Wireless Communication & Networking

Most of the recent smart devices bene t from the advantages that cable-free wireless communications o er. Wireless communication technologies ensure smart devices' connectivity to the outside world, while freeing them from constraints of wires, enabling mobility and widespread deployment. Wireless networking solutions are needed especially in sensor networks where sensor nodes are spatially distributed and interconnected via wireless communication. Nodes transfer data and measurements from one node to another until it reaches a base station, or a gateway. In the gateway, these measurements can be exploited by applications and presented to users. This way, sensor nodes can be deployed within longer ranges and still be connected to the gateway.

Wireless technologies bring new problems in terms of communication quality. The research community's e orts concentrate on developing hardware and networking solutions to provide the best possible communication quality while optimizing a device's functionality and battery life. Innovative networking solutions o er adaptive network topologies that self-optimize and self-repair in case of bad connections between nodes or non-responding nodes [Dijkstra]. On the other hand, application level communication protocols are emerging that are tailored for lossy, low-bandwidth networks, such as CoAP [Shelby] or MQTT [Hunkeler].

c. Software Engineering Processes & Tools

Regarding the advancements in microelectronics and wireless communication, it becomes possible to leverage the capabilities of smart, wirelessly communicating devices for developing pervasive applications. However, there are still some key challenges yet to be addressed. A major challenge for pervasive service providers is dealing with the high complexity of development, integration, deployment and management of pervasive systems and applications [Schiele]. Research in software engineering strives to come up with solutions that will ease the development and execution of pervasive applications.

Middlewares aim to provide a solution for easing the development and execution of applications. They stand between operating systems and applications to provide highlevel abstractions and functionalities, hiding certain complexities of application development. They have evolved from simple technologies hiding network details of distributed applications into important blocks of software that hides and deals with many aspects such as heterogeneity, mobility, data processing and scalability. Throughout their evolution, middleware systems adopted and enforced software engineering principles such as separation of concerns and modularity to manage the increasing complexity of applications and facilitate programmability. Moreover, recent works on middlewares concentrate on providing runtime support for monitoring and managing applications during their execution [Floch].

In addition to middlewares, development tools also provide ways to facilitate software development. Build automation tools help streamline compiling and packaging stages, and ease the distribution of software artifacts. Dependency management tools such as Apache Maven serve to manage complex projects with multiple dependencies, promoting the modularity in software development. Integrated Development Environments (IDEs) are software programs that usually include di erent tools such as editors and building tools for generating executables and debuggers for testing. The popular IDE, Eclipse, provides an extensible environment, which can integrate di erent tools for modeling, programming, dependency management, building, versioning, testing, etc. With its plugin system, Eclipse allows for integrating new tools and provides an ecosystem for building domain-speci c IDEs. For instance, Xtext allows creating domain-speci c languages and corresponding code editors based on Eclipse.

Integrated tools ease the e orts of application designers and developers to create testable and maintainable applications. In addition to that, most of the existing tools constitute a solid base for extending these capabilities to speci c domains, in which it is particularly di cult to create applications. Pervasive computing is one of these eld, where domain-speci c tools address speci c issues. The section . of this chapter presents different types of tools in more detail.

d. Social Sciences

The inevitable emergence of pervasive computing raises issues beyond technology and operating techniques. It requires sociological and philosophical studies on the understanding, acceptance and usage of possible pervasive applications [Bohn].

Before being adopted in a widespread fashion, pervasive computing systems need to be accepted by the ethical barriers of the society. The prevalent infusion of connected computer systems into every aspect of life can be unnatural for some of the age generations. Current discussions over the privacy concerns of social networks provides a good example for what may be the struggle for pervasive computing.

Another societal concern involves the government's implication and regulations over such computing systems. While modern open societies accept the governments' role of regulating certain domains in order to protect individuals' civil and property rights, recent experiences shows that the same trusted organizations can be transformed into mass violators of human rights.

Although these research themes are well beyond the scope of this thesis, they are nevertheless inseparable from the consequences of the pervasive computing vision.

Characteristics of Pervasive Environments

Pervasive computing is about uniting physical and computing environments with the intention of providing human-centric services. Pervasive computing is more of a vision about the evolution of computing than a whole new domain. It is di cult to reconcile di erent de nitions, to have an exact de nition of pervasive computing (see previous section . .). However, it makes sense to de ne its properties that lay out its goal and the challenges between. This section details important characteristics of pervasive computing environments.

Distribution

Services and information o ered to the users in pervasive environments often originate from di erent remote providers and sources. Some of these service providers and information sources consist of embedded devices that are dispersed (hidden or exposed) in physical environments, such as environmental sensors, mobile phones, electronic appliances or actuators. These devices are constantly in interaction with physical and user environments -they are capable of sensing their environment and acting on it; they incorporate user interfaces that let users interact and access information. Resources on these devices are accessed using di erent communication protocols, based on either wired or wireless technologies. Because of their limitations in terms of computing power and stocking capacity, applications using capabilities of these devices and coordinating them, do not necessarily run on top of these devices. This particularity makes pervasive computing environments inevitably distributed.

Resources available for pervasive computing are generally not limited to devices present in a physical environment. For instance, in M M applications, measurements collected from sensors are sent -via Internet-to remote servers for stocking and analyzing the data. These information systems, usually highly capable in terms of computing power and stocking space, are located physically too far apart to be called pervasive. Nevertheless, their resources can be leveraged in pervasive computing by providing value-added services and information, that otherwise wouldn't be possible.

The increasing number of communicating devices and servers creates the need for large-scale deployment, installation and maintenance of software and hardware components. Computing infrastructures in pervasive environments (both hardware and software) should have scalable architectures to cope with high density of devices, provided services and produced data. Software designers and developers should take into account the distributed nature of applications, remote services and devices.

Heterogeneity

Every year there are more and more device manufacturers o ering products for usage in the pervasive computing domain. Communication protocols are equally diversi ed, as each device type has di erent characteristics and requirements regarding the nature of its use. Many working groups have made e orts to standardize common protocols. UPnP, Bluetooth, Device Pro le for Web Services (DPWS), ZigBee, X , KNX are just well-known examples. However, industrial device manufacturers usually prefer using proprietary protocols instead of sticking to standards. They want to keep their product environment private and closed in order to sustain their product ecosystem and continue selling products. Because of this it leads to a device market that is highly heterogeneous.

In pervasive environments accessing and using resources on heterogeneous devices like sensors or actuators is only one side of the problem. It is equally important to administer and con gure devices present in an environment. Di erent manufacturers are likely to use di erent device management models and protocols to represent information about the device itself and perform maintenance functions. A similar tendency is seen in web technologies for service models. Accessing services over web, and exposing functionalities as remotely accessible services, requires integrating di erent service models along with communication protocols.

As a result, application designers have an increasing need to integrate new communication protocols, device types and services into their applications, which without a doubt increases the level of complexity of an application. Many pervasive frameworks are supporting only a limited set of protocols such as [Helal] and [King]. To meet the market evolution, pervasive platforms must support an open set of protocols, which can be extended after the initial deployment of the platform and applications.

Openness & Plural Authority

In a pervasive environment, computing resources, either in form of devices or services, usually belong to di erent stakeholders such as device manufacturers, vendors or service providers. Applications running on top these environments need to interoperate these resources. This is only possible in an open world (open environment) where each one of these devices and services are designed to be open i.e. all or some of their functions are accessible openly by other devices or applications. Although openness is a prerequisite for creating pervasive environments, many systems today are still designed to restrict openness and interoperability. Vendors may deliberately restrict openness and ignore interoperability with a competitor's services, in order to preserve their market share.

The restriction of openness implies that the access to the resources of some devices or services may be subject to constraints and authorization. In pervasive environments, multiple pervasive applications run in the same environment. They access devices available in the environment at the same time, sharing their resources and functions. Applications can eventually have di erent levels of authorization of access to these resources. For instance, a certi ed application from a device vendor can have full access to its own devices, while another application would have limited access. These kinds of restrictions may serve device vendors or service providers to keep a certain level of control over their products, while continuing to contribute to the open environment with publicly available services. As services can have access to personal data, another reason for these restrictions is the privacy concerns of users. Maintenance and management of such an environment is complicated where multiple applications access shared resources (from devices or services) and interoperate with each other.

Dynamism

Evolution is an essential property of every computing environment. Hardware components fail due to faulty electronics or environmental conditions, and software programs have bugs that need continuous maintenance and updates. In open environments evolution is prevalent. Every device, every system that contributes to the open environment evolves and changes through time. Pervasive environments are an example for such open environments. Pervasive applications access and coordinate the resources from these systems; using services from remote systems or devices present in the physical environment. Openness allows pervasive applications to dynamically discover new resources and use them, while the state of previously available resources may degrade and become inaccessible.

In addition to being open, pervasive computing environments are constantly in relation with physical and user environments. Because of continuous changes in user and physical context, elements in pervasive computing environments are forced to evolve dynamically. Changes in these environments, combined with open world assumption, there are many reasons for the pervasive environment to be dynamic, including:

-Service availability: In an open and heterogeneous environment, there is a high chance that frequently; a pre-known resource is not available, because it undergoes a software update or system maintenance, triggered by users or service provider administrators. Yet another reason that would undermine availability is limited device resources, so that it does not allow simultaneous access to its services.

-User mobility: Users move freely in physical environments, whether indoors or outdoors. The mobile devices carried by users also change location with them. For example, services on a Wi-Fi enabled smartphone are accessible when the user carrying it enters an area covered by a Wi-Fi router. Likewise, as the user exits the area, devices signal coverage would drop and the services on it will be in unavailable.

-Device contingencies: Devices that are designed to be used in pervasive context are generally low-cost and unsturdy. They are designed to maximize usage time with minimum resources. In some cases, like RFID tags, they are even disposable and negligible. Device functionalities and communication capabilities are usually a ected by physical properties of the device and its environment such as heat, radio interferences, and battery level that lead to errors or unpredicted behavior.

-Users' interaction with the environment: Users' interaction with their environment allows applications to gather information about users intents and actions. Context-awareness of pervasive applications depends on this interaction. Sometimes users can cause devices not to work, by turning them o .

Because of the dynamism in pervasive environments, applications hardly nd all needed resources that were on the whiteboard at the design time.

Autonomy

The pervasive environment consists of transparent relationship between users, physical environments and computer systems. To hide the complexity of the entanglement between the physical and logical world, it is necessary that pervasive computing environments be as independent as possible. The autonomy of pervasive environments is crucial particularly for two reasons.

First of all, in order to satisfy the seamless integration into real environments, interactions between users and pervasive systems must be natural and transparent. The user can know that he is dealing with an augmented physical environment, but he/she must not have to worry about how the system works. To guarantee an always usable system, in face of changes in the involved environments, the pervasive system must adapt in response to these changes or even anticipate the change. The more a pervasive environment is autonomous, the less its users will need to adapt their behavior to interact with it. Autonomy is thus a characteristic, which promotes interaction transparency between humans and pervasive systems.

Secondly, the large-scale deployment and adoption of pervasive systems brings a problem of administration and maintenance. As these systems are situated in heterogeneous, open and dynamic environments, their management requirements are greater. Moreover, the physical environemnts in which pervasive systems are usually installed are not always accessible by system administrators. The autonomic management of pervasive systems is therefore essential, in order to alleviate the burden for system administrators maintaining these systems.

Summary

Pervasive environments are by nature distributed, heterogeneous, open, dynamic and unpredictable. Within these environments, a multitude of actors and entities are interacting in a natural and transparent manner. These are situated in and integrated with real physical environments, of which the boundaries can be precise (e.g. inside a building) or sometimes very blurred (a park, neighborhood, city, etc.).

All the characteristics presented above are more or less intended by the vision of pervasive computing and its various interpretations and applications (such as smart spaces and smartlife). They express how pervasive environments are perceived from the outside: how it interacts with the physical elements, with users and/or other systems.

These pervasive properties have a signi cant impact on the systems and applications that are contained and are operating in these environments. A computer system is composed of both hardware (sensors, displays, peripheral devices, etc.) and software (data, applications, components, ...) elements. According to the context and its use, applications coordinate these elements , in order to provide functionalities they are designed for.

In the case of a pervasive environments, in addition to the properties of which have been stated above, applications will need to handle some essential aspects. The next section presents how pervasive computing systems and applications are distinguished from traditional systems, by taking into account the characteristics required for pervasive computing.

Characteristics of Pervasive Applications

The application software, or just application, is software that performs speci c tasks for users. Applications are generally installed on top of system software that operates hardware and manages access to resources. In the case of applications running on mid-dlewares, the middleware sits between the application and the system software, o ering a more convenient, managed way to develop and execute applications.

Whether running directly on the operating system or on top of a middleware stack, an application's design and techniques used during its conception are strictly linked and sometimes constrained by the underlying systems capabilities. The above-mentioned characteristics of pervasive environments impose new challenges to the existing techniques employed for creating pervasive applications. For a better understanding of the features that will facilitate the conception of pervasive applications, one should look at the requirements of the applications running in pervasive environments. Following are some of key properties that separate pervasive applications from traditional ones.

Resource Management

Traditional applications are conceived to work with a set of prede ned resources. Either running locally or distributed among distant machines, traditional applications are owned by devices (machines), and are restricted by the resources these devices provide. However, in recent years, there have been several movements that changed this paradigm. Especially the emergence of personal mobile devices opened a new era, where computing has become more and more human-centric. Pervasive applications conform well in human-centric vision of computing, where applications are associated to users and places rather than devices. Consequently, these applications need to discover, manage and use di erent devices and heterogeneous resources.

Traditional systems such as PCs or enterprise servers execute applications with a set of resources that are prede ned and abstracted by operating systems (OS) or middlewares. CPU time, memory, disk space, network bandwidth are examples of such resources. These systems use abstractions to simplify the access of applications to resources. For example, OSs provide lesystem abstraction to manage disk access requests from applications (processes). Through this abstraction, it is also possible to manage the access authorizations. In [Krakowiak], a resource is characterized by a number of properties, which impact the way it may be used and managed:

-Exclusive or shared: The resource may be exclusive to a particular application or simultaneously shared between multiple applications.

-Stateful or stateless: The resource may have a state related to the application that currently uses it.

-Individual or pooled: The resource may be individual or may be a part of a pool of identical resources.

In addition to these properties, a resource may have other attributes such as its location and may accept a number of con gurations that will a ect its behavior. All of the properties and con gurations are usually expressed in resource descriptors, which are communicated during resource discovery.

Devices in pervasive environments are typically rst class resources for applications. Device functionalities can be shared between applications, or more critic functionalities can be exclusive to applications with speci c permissions. An example to such operations is device con guration: While most of the devices function in stateless mode, they are becoming more and more con gurable. Con gurability enables optimization of device functions according to the changes in its condition (e.g. battery level). However, a change in device con guration inevitably a ects all applications that use the device. Heterogeneous devices and protocols complicate virtualization of access to resources, thus making them individually managed resources.

It is a challenging task to handle access permissions, fair use of devices and coherent device con gurations at the same time; in environments with high number of devices. Middlewares and OSs already incorporate some management policies for resource access [Bernstein]. Beyond that, dynamic and unpredictable nature of resources in pervasive environments requires adapting and rethinking these policies.

Data Orientation

Pervasive applications o er services with added value by leveraging the data gathered from di erent sources, including sensor devices. So it is only natural to expect that in a pervasive application, a service depends not only on other service speci cations but also on well-de ned data types, where meta-information of the data is more important than its origin. Also, this data-orientation imposes a programming scheme where the consumer reacts to an event containing data produced by the provider. Therefore, a pervasive middleware should enable de ning dependencies over data types and assure that these dependencies are satis ed with the data produced by data provider services.

Notion of Context

As discussed earlier, context-awareness is one of the core properties of pervasive computing. The context may be any information that is relevant for the application and it can be separated into three groups as user context, physical context and execution context. But the concept itself is not new, because the latter has had its place in applications for a long time, since developers need information about the state of underlying system -hardware or software. The need for context modeling became more apparent with programs that were executed by virtual machines such as Java. Even though WORA (Write Once, Run Anywhere) principle reduced development e orts of cross-platform programs, as di erent platforms can still exhibit di erent behaviors, the developers should take this into account in their code. A very simple example of a way to access the 'context' of an underlying virtual environment is through the system properties in Java. It lets developers access primitive static information about the OS version, OS architecture, etc.

Determining user context in application code is a bit trickier. In traditional applications such as web applications, users change their context much more frequently than in the virtual environment in which applications execute. In this case, a user's context can be the browser used to access the web page, the visiting history, the cookies and so forth. The popular Servlet API [Sun Microsystems b] was introduced in the early years of Java provides standard mechanisms to represent an HTTP request to a server. It allows server-side developers to access information about the request, and therefore construct a user pro le that represents its context.

As for pervasive applications, in addition to virtual and user context, they are also involved with physical context. Pervasive applications need to transform raw data sensed from devices (measurements from sensors, indicators from other appliances) into more meaningful state indicators about the physical environment. Determining complex user context (e.g. behavior, mood, intention) and the dynamic virtual context (e.g. availability of resources, performance metrics) is more di cult in comparison with traditional applications. In many cases the content of the context is very subjective to a particular application. Therefore, applications incorporate "context provider services" that are responsible for transforming raw information from di erent, possibly heterogeneous sources to context state [Huebscher]. For the sake of context-awareness, middlewares should employ mechanisms to inspect the virtual execution context. Moreover, providing support mechanisms for applications to construct their formal context models would not only decrease development times but also enable context-awareness at runtime.

Adaptability

Context-awareness requires that pervasive applications adapt constantly to the changing context. Pervasive applications should continue to satisfy user requirements in face of contingent devices, failing software modules and in general continuously changing context. In order to do this, it should be aware of its context and exible enough to be able to apply necessary con gurations and change its behavior. In addition, all this adaptation should take place autonomously to reassure user acceptance and ful ll the pervasive computing vision. Most of the traditional applications are developed to fulll a xed set of requirements. However, in pervasive environments, due to dynamic context, there are variations in requirements that may not be covered with a static application [Hallsteinsen]. Therefore, fully speci ed, statically coded applications are not a good match for pervasive environments. Applications should be developed and executed with regard to these possible variations in requirements. On one hand, at design time, developers need to specify and develop the system providing di erent con gurations of their applications. On the other hand, during execution, applications should be composed in a exible manner allowing dynamic recon guration, meaning dynamically passing from one con guration to another. A typical example in mobile pervasive envi-ronments is the case where availability of a certain device triggers the change: According to the location of the user, the application may choose to display its user interface between a high-de nition screen or a portable device, optimizing the amount of information shown to the user.

Moreover, there may be di erent variability choices within an application. These choices should be coordinated in order to provide optimal operation in a given context. Due to rapid changes in pervasive environments and the lack of human administers, need for autonomic approaches emerge to guide dynamic adaptations at runtime.

Security

As discussed earlier, security mechanisms are needed to control the access of applications to the resources. Authentication, authorization, and accounting (AAA) protocols may be implemented on di erent layers of the pervasive system, including the middleware, in order to control resource access, enforce permission policies, audit resource usage, etc. Another important aspect concerns privacy in pervasive environments. Gathered data from various devices may contain or be used to deduce private information about the users' life. In the presence of multiple applications and devices from di erent owners, middlewares need to preserve users' privacy.

One of the main challenges for establishing security mechanisms in pervasive environments is determining user identity. Usually it is not possible to ask users to identify themselves as in web pages, and therefore applications should be authenticated with different credentials (e.g. platform owner, application owner) and handle secure communications permanently.

Summary

The development of pervasive applications raises particularly di cult challenges, much more demanding than those encountered for traditional applications. As a result, developing pervasive systems and applications requires a very high skill level from developers, far beyond what is usually encountered.

It is therefore necessary to provide speci c tools that ease certain tasks during the design, development, deployment, execution and maintenance of pervasive systems. The purpose here is to abstract a number of problems such as those mentioned above: adaptability management, data management, security management, etc. Many works in this direction have already been completed, with varying levels of success. The next section explores a set of tools that contribute to the development of pervasive applications.

Building Pervasive Applications

The above points served to identify the founding principles of pervasive computing. These guidelines de ne a number of essential characteristics of pervasive environments. In order to preserve the nature of such environments, pervasive applications must show a speci c set of properties, which allow seamless integration into the environment.

Consideration of all these properties has a signi cant impact on the lifecycle of pervasive applications. This section focuses on trying to understand what are the e ects of pervasive properties on the lifecycle of applications, what new challenges it brings to their design and execution, and nally what are the software engineering approaches that allow easier implementation of these applications.

Since the dawn of computing, computing systems have become more sophisticated and software programming is becoming more and more complex. In the late s the discipline of So ware Engineering has emerged as a response to this increasing complexity. The period following the beginning of software engineering discipline, has witnessed the falling prices of computer hardware and the miniaturization of computers, which led the way to the era of personal computing. Until then computers owned by large institutions (governments, universities, private industries, etc.) were programmed and maintained by same people, and the software they execute was custom developed for these systems. The way of operating-in-isolation allowed strict control of the lifecycle of software development until their execution, and their distribution was very limited or non-existent.

The personal computer era has completely changed this mode of operating. Along with computers, software has been distributed to large user communities, who became the de facto administrators of their machines. In addition to that, a multitude of new concepts emerged, which increased the size and complexity of software programs: graphical interfaces, multi-user, concurrent programming, etc. Clearly empirical, ancestral methods previously used to design and execute programs were not suited to meet these new challenges. Software was delivered late, costed more than expected, was unreliable and/or ine cient.

It was in this time of crisis, which is now called so ware crisis that software engineering appeared, o ering systematic methods for designing and implementing software. The employment of these formal or semi-formal approaches has helped build large projects, resulting in reliable programs and predictable delivery times, in accordance with the xed costs of production. The techniques developed by this new branch of computer science have overcome the software crisis, and paved the way for the wave of personal computing and waves that followed until the pervasive computing.

To facilitate software production throughout the lifecycle of the application, software engineering o ers many tools and methods: requirement analysis tools, compilers, code interpreters, shared libraries, dependency management tools, testing tools, deployment tools, code complexity analysis, monitorung tools, etc. The knowledge in the software engineering eld is vast and varies according to the approaches used to develop the software and to the concerned phases of the application lifecycle. Early during the emergence of pervasive computing idea, researchers worked on identifying requirements of building applications for this new eld [Banavar].

Comfort Application

Safety Application

Healthcare Application

Runtime Platform

Developer Administrator

Figure 2.7: Application Tools

Various approaches can be divided into three families of tools that ease the conception and execution of applications: development tools, runtime tools and management tools (see gure .). All three have the same goal, namely to shorten the lifecycle of applications, making their design, implementation and/or their maintenance easier, faster and cheaper. Even so the approaches taken by these tools are very di erent, each one focusing on a well-de ned part of the lifecycle. Development tools focus on the design phase of the software by providing support mainly to the developers. Runtime tools such as middlewares are placed in execution between the target software system and the application, providing an abstraction for a simpli ed execution. And management tools such as monitoring and deployment tools focus on correct execution and the maintenance of software systems. In the following part of this section these three types of tools are presented more in detail.

Development Tools

In software engineering, the rst approach to simplify the development of applications is based on providing a variety of tools for the development activities. These tools are therefore designed to support the maximum e ort during phases of application lifecycle, reducing the task of the developers and also human errors. Some of these focus on how the software will be designed by simplifying the code to produce. They generally o er a development model that overcomes intricate details, such as the hardware architecture, memory management, and communication protocols. This type of development tools includes programming languages, compilators and debuggers.

Other tools alternatively focus on the project's infrastructure, facilitating the workow of development teams. If they do not participate directly in the development of the nal product, but they greatly facilitate its development, construction and / or maintenance. These tools are, in particular the version control systems, bug tracking and issue management systems, production engines and project management tools and code analysis tools.

Finally, some of the works have a more holistic approach and try to cover a large part of the lifecycle of the application. They bring together the tools described above and integrating them into a uni ed environment, even in some cases until the execution of developed applications. The approach of Computer Aided Software Engineering (CASE) tools designed to bring together project management software environments, ergonomic and have an overview of the project throughout various phases of lifecycle.

Runtime Tools & Middlewares

The word middleware is a generic term designating an intermediate software layer that sits between computing resources and manages one or more applications [Krakowiak]. This intermediate layer is to facilitate access to these resources, and thus to simplify the execution of the application, which may have positive impacts on the design, development and/or deployment.

The concept of middleware has appeared during the emergence of distributed computing. The main problem at the time was that the systems could not communicate naturally together because of their di erences in architecture and communication protocol. The solution has been to place an intermediate layer that abstracts the di erences in architecture and protocols, and undertakes to translate exchanges between heterogeneous systems. As system complexity increases, areas covered by middlewares are expanding. In addition to the management of distributed communication, middlewares provide other functionalities such as distributed naming service, data persistence, transactional operations and runtime management and monitoring of applications.

The founding principle of middlewares is thus the abstraction layer: applications use the managed resources through a model de ned by the middleware, which hides the complexities of management of underlying resources. Technical aspects for managing this complexity are provided by the middleware, and not required to be integrated into each application. Providing these common functionalities is often complex and prone to many errors. The code provided by the middleware, that implements these technical aspects, becomes non-functional from the point of view of applications, and is not related to the business domain of applications. Applications completely delegate these technical aspects, and ultimately eliminate much of the potential sources of error.

There are lots of research projects that address the challenges of pervasive computing through middleware solutions. Indeed regarding their level in the software stack, it is logical and versatile to employ middlewares to resolve most of the problems introduced in this chapter. Gaia] are only some of the examples of such middlewares. The goal and the scope of this chapter and this thesis is not to provide a comparative study of capabilities of these middlewares but to point out their importance in pervasive systems.

In addition to those, there are generic execution platforms that are used commonly in the pervasive context. Fractal [Bruneton], K-Component [Dowling], Kevoree [Fouquet] and Apache Felix iPOJO [Esco er] are some of the component-based execution platforms that provide the basis for constructing frameworks and middlewares.

Management Tools

Middlewares provide useful abstractions that facilitate the management and supervision of executing applications. But still tools are needed to help system administrators and operations teams to install and supervise computing systems. Especially in the pervasive context, the above-mentioned characteristics aggravate the inherent di culty of applying management actions on these systems. Despite the unpredictable nature of pervasive computing, the administrators need to ensure the reliable execution of runtime platforms and of applications on top of those. The management domain can be studied in three categories as deployment, monitoring and administration.

The administration of a system involves mostly the con guration of hardware and low-level software stack of computing systems. The administration of large-scale, distributed systems is already an issue addressed since distributed systems. The heterogeneity and openness of pervasive systems adds new challenges to the mix. In such a system, the number of types of actions and con gurations is high and has the possibility to increase. The autonomy requirement of pervasive systems impacts the way they can be administered. That is why automation is needed for con guring multiple machines.

TR-[Broadband Forum

] is a commonly used protocol in telecommunications industry for administering devices connected to Internet.

The deployment process involves the sequence of actions that brings software from development to execution. Although most of the times the deployment is used to refer to the rst installation of software to a administered machine, it is not restrained to that. It includes the process that changes the software at the target environment, with updates, recon gurations and eventually the uninstallation. Deployed software can be a single application, multiple applications in the same time or the whole runtime platform. As the deployment process involves several complicated actions on the target machine, its automation is equally crucial for ensuring the correctness of the system. Requirements related to the dynamism are especially challenging for deployment of pervasive systems. Among other challenges, the deployment process must ensure the adaptability of the software according to the changes in the context. The software deployment constitutes the main subject of this thesis and the following two chapters present the software deployment domain in more details.

The monitoring of computing systems is essential for tracing the evolution of the system and produce useful feedback on problems of software and hardware. This is enabled via sensors that are carefully placed on the software system, collecting the information produced and reporting those for analysis. The analysis of monitoring data can involve detecting correlations and calculating business metrics. In pervasive systems, monitoring must include the pervasive context, i.e. the information that the system has about its physical and user environment. In addition to that, the dynamism exhibited by the pervasive system means that rapid changes that occur in the system should be reported in the same manner, resulting in producing monitoring data more frequently.

Conclusion

Pervasive computing is not some obscure idea that is waiting to be implemented in some distant future. It is a technology that is already here and gaining growth, bringing with it a myriad of complicated interactions and perhaps unforeseen consequences in regards to social uses. For computer science though the pervasive computing eld brings a whole new set of possibilities and also challenges to overcome. This chapter presents the idea behind the vision of pervasive computing and the characteristics of the computing system it entails. From the beginning, it is underlined that context-awareness is an inseparable property of pervasive systems. A pervasive computing system integrates with three intertwined environments, namely the users, physical spaces and the computing resources. The principal goal of applications running in this context is to provide useful services to the users, in a transparent manner. This is made possible by using information gathered from the environment and coordinating harmoniously the available devices and services. The understanding of pervasive application scenarios has evolved throughout the years. Lately, more and more application scenarios leverage both local devices situated in user environments and remote computing resources, especially using the Cloud Computing.

The chapter continues on by discussing the characteristics of pervasive environments and applications. These discussions point out new challenges brought by pervasive computing as well as how the existing ones are a ected. Among the main challenges, handling dynamism of pervasive environments is undoubtedly one of the most concerning. Pervasive environments are subject to constant evolution. The applications concerned with such environments are required to change according to circumstances and adapt to match the surrounding environment and the needs of users. Without dynamically adaptable applications, pervasive systems cannot o er the exibility to blend into the real environments.

The nal part of this chapter adopts a software engineering point of view in order to take a closer look at the development of pervasive applications. It brie y presents di erent approaches for tackling the complexity of building applications for the pervasive context. Three categories of software engineering tools are presented as development tools, runtime tools and management tools. While there are many middleware solutions that tackle the challenges of developing and executing applications in pervasive environments, the same cannot be said for the management tools.

The goal of this work is to study the deployment requirements for pervasive applications and provide a solution that manages software deployment in dynamically changing environments. The following chapter introduces the general concepts of software deployment.

Introduction

In order to be in use, any software must be installed and con gured. This process is called so ware deployment and it consists in the activities that carry software from development into execution. This chapter introduces the process of software deployment, its terminology and the fundamental concepts. Then, it discusses common issues of software deployment and adjacent domains of software engineering that can be used to address these issues. Finally, the chapter concludes by presenting di erent approaches that automates the deployment process and comparing them against de ned evaluation criteria.

Software Development Life Cycle

Before introducing software deployment, it is important to recognize the broader context in which the deployment is situated: the Software Development Life Cycle (SDLC). Advances in software engineering have radically changed the way software is developed. Previously software was created in two phases, analysis and development. Currently the process of software production has become more methodological and divided into several steps with distinct characteristics. Each step requires speci c skill sets, endowed by actors specialized in performing di erent activities of a software development project. As a result, the software can be seen as a living entity, changing and evolving during its lifetime through a series of activities. SDLC aims to de ne the tasks, activities and processes required for developing and maintaining software.

The IEEE standard on Software life cycle processes (ISO/IEC -) [IEE] de nes an exhaustive list of the processes applied during the life cycle of software development. These processes are classi ed into di erent groups such as agreement processes, organizational project-enabling processes, project processes and technical processes. The domain of software engineering is mostly interested in technical processes and these are de ned as the following.

Requirements analysis aims to de ne the objectives of the project. It identi es the stakeholders that are involved in the system throughout its life cycle, together with their needs and desires. Then, those are analyzed and reduced into a common set of requirements that expresses intended operation of the system. As in non-software projects, this analysis can be supported by a market research and feasibility study to identify the requirements of stakeholders and if they may be satis ed. Lastly the requirements are transformed into a set of technical requirements that will guide the design of the system.

Design process focuses on creating the skeleton of the software: its architectural design.

The system is divided into several elements, and identi es which system require-ments should be addressed by which element of the system. Each element is specied in terms of expected operations, as well as the relationships between di erent elements. Architectural design speci cation acts as a blueprint and eases the future phases of development. It increases the predictability of the project in terms of cost and time.

Implementation consists of the realization of the speci ed system elements, established during design phase. It consists primarily of programming activity. Resulting software elements must conform to the designated architectural speci cations. Individual elements of the software can often be developed in parallel and independently.

Integration process puts system elements together (including software, hardware, other third party systems, etc.) in order to produce a complete system that will satisfy the system design and requirements. This step usually includes the build process, which constructs executable software from the source code. The build process applies operations such as compilation and linking depending on the technology in which the software elements are implemented. At the end of the integration process, the system is ready to be tested as a whole for verifying its quality.

Testing processes are performed transversally to the other phases of the SDLC for verifying and assessing the produced software. Di erent types of tests validate the system for compliance with the design speci cations and requirements. They usually de ne criteria for assessing the system for delivery. Unit tests check if the implementation of each system element performs conforming to the design speci cation. Integration tests validate if the assembly of di erent elements behave according to the expectations. User acceptance tests verify that the resulting software is suitable for the user.

Installation is the set of activities for bringing the software to the target environment and making necessary con gurations for the software to run on existing infrastructures. Depending on the environments targeted by the software project, (personal computers, enterprise servers, etc.), these activities can be included in the life cycle (delivered with on-site installation), or left at the discretion of possible users. In either case, the installation should make sure that the system is running expectedly.

Operation is the nominal functioning phase of the software. It represents the nal outcome of the software product, operating in its intended environments. This phase is unstable, as the software may stop working or require changes. These problems must be addressed in parallel with the execution of the software in the maintenance phase.

Maintenance process aims to keep the software in a state of optimal performance a er its delivery. Software in operation is subject to malfunctions and changes. This may be due to an error in the development phase (e.g. bug), or a missing feature.

Once the problem is reported, a maintenance team will have to correct the problem, propose a x and update the application.

Disposal process ends the existence of a software system. It terminates the active support by the operation and maintenance processes, deactivates and removes the product from the target environments. It should leave the environments in an acceptable condition, in accordance with prede ned requirements and agreements.

Important point to note is that the entire IEEE standard document does not de ne or refer to the notion of deployment. Nevertheless, installation, operation, maintenance and disposal processes are described as occurring at the target environment where the software operates. The deployment process presented in this chapter corresponds vaguely to these activities. These technical lifecycle processes outline a linear development for the software project, where each process succeeds the previous one. It is equally acknowledged that software producer organizations are free to make customizations and adjustments to those processes and the way they are applied. The following section presents several well-known development models that propose organization principles on how development processes are applied.

Development Process Models

In spite of the standardization e orts, the de nition and coordination of software development activities depend largely on the organization that creates the software. The IEEE standard recognizes this fact and allows customization of their processes de nitions. It also recognizes that, above all, software development is a project management challenge. Its foremost problem is to nd an e cient way to organize a group of people to create and maintain a reliable, high quality software product, based on customer requirements, such as required features, cost and time constraints. For this reason solutions and practices for developing software depend, to a great extent, on the structure of the organization that develops the software. As expressed by Conway's Law [Conway], the quality of the software is correlated with the quality of the organization structure producing it.

A software development process model describes the activities performed at each stage of a software development project. These models also contain methods, principles and best practices for streamlining the development process. Throughout the years various models have been proposed, bringing adjustments to the development process. New development models allow developers to use the potential of latest paradigms in software engineering and consequently respond to requirements of the software industry. This section describes well-known development process models, comparing the deployment activities considered within.

a. Waterfall Model

Waterfall model is the most basic and oldest of all development processes that formalize the steps of software development life cycle. It involves successive application of development phases as requirements analysis, design, implementation, test, installation and maintenance (Figure .). A phase starts once the previous one is nished. The main convenience of the waterfall model is that it is easy to understand. It lets inexperienced developers to work according to a well-de ned, rigid structure. The project requirements are xed early in the project lifetime, so they are well known upfront by developers and stakeholders. However, the waterfall model is inapt for many of the software projects because of its in exible structure. It is di cult to respond when the implementation encounters a problem or some of the requirements change at the course of the project. Additionally, passing a lot of time analyzing requirements that are susceptible to change slows down the software creation. In the waterfall model, the deployment process is not explicitly described. The software product is delivered once it is entirely developed and tested, meaning that the deployment step happens at the end of the project. It corresponds to the installation, operation and maintenance activities.

b. Iterative Development Model

Iterative development model aims to revise and improve the software product by applying multiple development cycles until it is decided that the software satis es its requirements (Figure .). Each cycle involves the same sequence of steps as the Waterfall model. Development is done iteratively until the software product is perfected and ready to be released. This way important functions with higher risk factors are developed early in the project, delivered to the customers and receive more feedback for new iterations. Because each release delivers an operational product to the customers, the initial delivery time is reduced. With frequent releases, the development team can react to changing requirements, and adjust the software accordingly for the upcoming release. In iterative development model the deployment occurs only at the end of certain cycles, when a release is decided to be delivered to the customer. Compared to the waterfall model, the product is deployed much more frequently. Even so, details of the deployment process are not explained in the model.

c. Agile Methods

Agile software development is a group of methods that are based on incremental and iterative development. It combines aforementioned iterative development cycle with incremental build model. Incremental build model proceeds by dividing the system into parts that implement and o er required functions. Then the e orts of development teams are allocated over the set of parts with high priority. Contrary to the monolithic approach where all the di erent parts are assembled at product release, in incremental development each part is constantly integrated to the whole system as soon as it is completed. izing hinders the development process, which as a result delays the release of working software products. In order to prevent this, agile software development promotes evolutionary development approach with shorter iteration times. Instead of passing time on planning how to make big design decisions, agile methodology encourages working with the customers closely for understanding their needs and rapidly reacting to the changes. The goal of the development team is to deliver early versions of working software products to the customers, and keep the software in working condition. The deployment gains importance because each development iteration is likely to nish in working software.

In agile development working software is promoted over exhaustive planning and comprehensive documentation. This provokes many critics, arguing that agile methods lack the discipline for developing large-scale software. In [Boehm], Boehm and Turner discuss the dichotomy between discipline and agility. They argue that discipline without agility leads to bureaucracy and slowness, whereas agility without discipline leads to uncontrolled and insigni cant enthusiasm. They present agility as a value that augments discipline, for being inventive and adaptive. In fact, compared to more structured, plan-driven development methodologies, agile development requires experienced development teams to adapt to changing requirements and conditions. Development of modern applications that are both critical and dynamic would need to reconcile between agility and discipline.

There are di erent methods that organize development teams for applying agile principles. Some of the well-known examples include eXtreme programming, Lean Software Development, Scrum and Kanban. Each one of these methods concentrates on di erent parts of the SDLC. For example, eXtreme programming organizes developers to be more productive in developing high-quality software. It includes practices like pair programming, peer review, extensive testing and minimal documentation. However, it does not describe any constraints or guidelines about the deployment. Scrum provides a framework for organizing requirements de nition, development cycles and team meetings. The scrum process relies on the concept of sprint, a two to four week e ort focused on developing, testing and deploying a speci c functionality. At the beginning of each sprint, the customer can intervene and reprioritize and change requirements of the project. Kanban is another agile methodology that aims to establish a work ow for continuously improving the working product. It is based on a board on which visually represents the state of feature development. This allows tracking and getting feedback from the advancement of speci c tasks and the overall project.

Summary

In addition to the ones presented in this section, there are many other software development methodologies, such as Spiral, V-model and Y-model. In [Larman] authors track down the origins of incremental and iterative software development. They point out a historical shift from strict development models such as waterfall, to iterative and evolutionary methods, which eventually gave rise to the agile methodology. This shift can be seen as an indicator of the acceleration of software development speed. Despite the known advantages of rigorous documentation and planning in other engineering domains, software development took a turn for rapidity, and frequent release. For instance, a project that applies waterfall method for software development delivers the resulting product at the end of the project, typically after several months of development. Recent agile methods, on the other hand, encourage releasing a version of the product frequently, several times a week, sometimes even at each modi cation of the source code. In order to cope with this increasing workload, developers are increasingly using more tools to automate their tasks for programming, building, packaging and releasing software.

While software development methods keep accelerating their pace and shortening their iteration cycle, the deployment process needs to keep up with the need for frequent software delivery.

While software development methods keep accelerating and producing software at a higher pace; there is an increasing need for maintaining this ow until the operation, delivering the newly released software to the customers as soon as possible. The research practices in the software deployment process try to answer this problematic. They study activities and models for providing tools that automate and streamline the deployment process.

Software Deployment

In the previous section the software development life cycle and di erent methodologies for development are presented. It is shown that recently, software development is seen not as a one-time procedure, but an iterative process that improves the software product and evolves it against changing requirements. This section focuses on the process of software deployment, which is the main subject of this chapter.

Two Faces of Evolution

Software development life cycle paints a vision of software that evolves through its lifetime. The goal of software evolution is to prevent exponential growth of software complexity, in a time computing environments continue to evolve. This evolution leads to consecutive cycles of software design, development and maintenance that continue throughout the lifespan of the software. Such iterative cycles are more and more included in software development processes. As it is discussed in the previous section, agile software development methodologies are built on evolutionary view of software.

New Oxford American Dictionary de nes the term evolution as 'the gradual development of something, especially from a simple to a more complex form' [Stevenson]. Even though evolution is most commonly employed in biology, it is a broader concept that implies changes over time in the characteristics, attributes or properties of an entity or a system [Lehman]. Lehman et al. studied the 'software evolution' to explain the tendency of software programs to steadily increase in size and complexity, becoming harder to adapt. They later described two working areas around this concept, rst for understanding the causes, processes and e ects of this evolution and second for developing software engineering activities (design, maintenance, refactoring, etc.) to manage e ects of it. Lehman et al. classify these modern software programs as evolving-type programs, as opposed to speci cation-type programs that are not subject to changes. Evolving programs must be adapted to match any changes in the real world that a ect whether the program satis es its stakeholders' objectives. Since the requirements change constantly, the program must be adapted to continue its correct operation, conforming to its operating environment and stakeholders' requirements. Consequently, unless nothing is done to counter its e ects, the software will become more and more complex and unpredictable.

The problem of managing software evolution is addressed at di erent stages of SDLC. As mentioned previously, agile development methods address the problem of evolution by applying successive development cycles, for changing and improving the delivered product. However, it is also necessary to deliver these changes to the customers through new versions of executing software. On that account, there are two faces of how the evolution is managed, rst at development time by managing di erent versions of developed software, and the second at execution time by delivering the changes to the execution.

The software evolution is handled at two levels; during development by managing the changes on the developed software and during execution, by managing the executing software.

For managing the evolution during development, changes brought to the software should be under control. So ware Con guration Management is a discipline that allows supervising the changes in the software, which in turn serves to control the evolution of the software. The software deployment was initially regarded as a simple extension of con guration management and was not considered a respectable subject of study. Deployment tools were built ad hoc, in the form of scripts that install the software via low-level actions. As the complexity of computing environments increases, the deployment process became an important process of the SDLC. Thus, the transition of the software from development to the execution is covered by the deployment process (Figure .). This chapter is dedicated to the software deployment. It presents concepts and di erent approaches and discusses how this restrictive vision of deployment is evolved towards

Definitions

Software deployment is a discipline that manages the evolution of a software product after it has been developed. This section re nes the general vision of deployment by looking at how it is de ned by di erent researchers. There are di erent understandings of software deployment according to the domain of interest of the author. Fortunately their de nitions do not diverge radically, but emphasize di erent aspects. For the start, Szypersky confronts the problem of deployment in the context of component-based systems [Szyperski]:

"Deployment is the process of readying such a component for installation in a speci c environment. The degrees of deployment freedom are typically captured in deployment descriptors, where deployment corresponds to lling in parameters of a deployment descriptor. " This de nition underlines the importance of componentization in software deployment and introduces the concept of deployment descriptor. For Szypersky, the deployment is installation and con guration of components in an environment. The deployment descriptor can include parameters that serve to con gure the components selected with a varying degree of liberty. Object Management Group's Deployment and Con guration of Component-based Distributed Applications Speci cation [Object Management Group b] (OMG D&C) is a widely admitted reference in software deployment, which describes entities and actors that are involved in the process of deployment. OMG D&C de nes the deployment as the following: "Deployment is de ned as the processes between acquisition of software and execution of software. [...] In order to instantiate, or deploy, a component-based application, instances of each subcomponent must rst be created, then interconnected and con gured. "

This description is conform to the process view of deployment and sees the deployment of a component-based application as the instantiation, con guration and interconnection of constituting components. Carzinga et al. propose a more general de nition of deployment [Carzaniga]:

"Informally, the term software deployment refers to all the activities that make a software system available for use. [...] The delivery, assembly and management at a site of the resources necessary to use a version of a software system. "

In this de nition Carzinga et al. acknowledge that the deployment is a set of activities but adds the notion of management to the mix, alongside with delivery and assembly. Moreover it emphasizes that those activities are applied on resources on a site, in order to set up a particular version of a software system among possible others. Lastly Hall et al. details the activities of the same vision in [Hall]:

"Software deployment is actually a collection of interrelated activities that form the software deployment life cycle. The software deployment life cycle, as we have de ned it, is an evolving de nition that consists of the following processes: release, retire, install, activate, deactivate, recon gure, update, adapt, and remove. " Above de nitions converge towards a common understanding of the notion of software deployment. The deployment is a process that carries the software product from development to the execution. It consists of various activities which form a lifecycle of the software system.

Definition 3: Software Deployment

Software deployment is the process between the production and the execution of software systems, which involves a set of correlated activities that consists of making congurations and bringing the software to its desired execution state. This process can continue along the lifetime of the software system in order to bring it to a new state via recon gurations and updates.

Concepts

Following three sections aim to establish a common understanding of software deployment. It presents roles, entities and activities involved in the deployment process. This section, the concepts of deployment, introduces common terms used in most of the deployment systems. Along the introduction of these terms, illustrations enhance and re ne the previously mentioned vision of deployment for a more precise description.

a. Component

In [Szyperski

], a component is de ned to be a unit of composition with contractually speci ed interfaces and explicit context dependencies. A component de nes its behavior in terms of provided and required interfaces. Deployment plays a central role in Szyperski's de nition of component. The rst property of components is to be a unit of deployment that is executable in an execution environment context. Moreover components are a unit of versioning and replacement that is to encapsulate the state they represent. In order to deploy a component it must be instantiated, supplied with instances of components on which it depends and is con gured.

b. Assembly -Application

An assembly is a set of interconnected components. It can itself be viewed as a component made up of subcomponents, and o ering and requiring interfaces. The required interfaces of the components in an assembly may be satis ed either by other components in the assembly or be required from the environment in which the assembly is deployed. An application is simply an assembly of components that are related to each other in order to perform some function. Similarly, in [Carzaniga] a so ware system is dened as a coherent collection of artifacts, such as executable, source code, data les and documentation, that are needed at a site to o er some functionality to end users. The Figure . shows a component-based software is released as an assembly.

Development Deployment Execution

Component Assembly A deployment descriptor captures and describes the artifacts, their con guration parameters, their requirements and relationships, and deployment instructions. It serves to transmit a request of deployment. For example, the deployment descriptor for an application would consist of the components that are included, their relationships, con gurations, executable les for those components and speci c actions to be taken during the deployment. As shown in gure . , the deployment request is transmitted in the deployment descriptor. A resource is anything needed to enable the use of a software system at a site (both hardware, software and system artifacts). Examples include IP port numbers, memory, disk space and other systems. Some resources may be shared, while others can be used by one system at a time.

e. Site -Target Environment

A site refers to a single computer that hosts resources. It is part of a network of computers that are administered identically. In OMG D&C [Object Management Group b], the target environment is termed a domain and is comprised of nodes (computers), interconnects (network connections) and bridges (routes between interconnects). As previously mentioned, components are required to execute within a controlled environment known as the execution environment or the container. At the execution side, the deployment is performed on multiple sites, as shown in Figure . . Each one of these sites constitutes a software system, accommodating a number of resources.

g. Repository

Deployable artifacts produced from these source documents, are versioned in artifact repositories. A repository contains the artifacts to be deployed. The repository manager stores and organizes deployable artifacts and meta information about these artifacts. Repository managers are capable of archiving multiple versions of an artifact and analyzing them according to policies indicating product quality such as dependability or performance. They also allow publicly sharing artifact binaries with members of the development team or third-party collaborators. The repository may be located on a central site, which may or not be part of the target platform; or it may be distributed on the sites of the target platform. Regardless of the physical setup, the important point is the logical distinction between the repository and the target. Finally, the Figure . illustrates how multiple versions of components are handled by the repository and used by the deployment process.

Deployment Activities

The process de nition of the deployment concept entails the existence of distinct activities. Di erent studies referenced above, and some others [Dearle , Liu] tried to identify the activities that cover the deployment process as a whole.

Szyperski focuses on the activities for the deployment of particular components. Szyperski identi es four activities for component deployment as acquisition, deployment, installation and loading. The acquisition refers to obtaining the software component to be deployed. The deployment readies the component for installation in a speci c environment by con guring the parameters. Then the installation makes the component available on a particular host of an environment. And lastly loading enables installed component in a particular runtime context.

Although activities identi ed by Szyperski are valid for deployment of components, they present a view of a one-time deployment. However, previous sections showed that deployment is an ongoing process that manages the evolution of deployed software. Carzinga et al. propose a more complete view, including activities such as update and adaptation that are intended for evolving the deployed software. Figure . illustrates these activities. Notice that release and de-release activities involve decisions of development, while other activities occur at the target environment of the software. Release is the interface between developers and the actors in the remainder of the software life cycle. At this point the software is assembled into packages containing su cient metadata to describe the resources on which it depends. These packages become thus the units of deployment. Released packages can be registered on a repository, which will attribute the package with a version, archive it and make the software eligible for access.

Installation is the activity that covers the initial insertion of a system into the consumer site. Usually, it is the most complex of the deployment activities because it deals with the proper assembly of all the resources needed to use a system. It refers to two distinct activities; transfer and con guration.

Activation is the process of starting the software executing or putting in place triggers that will execute the software at an appropriate time. This is sometimes achieved by using graphical interfaces or with scripts or daemon processes.

De-Activation is the opposite of activation, and refers to the activity of shutting down any executing components of an installed system. In general de-activation is required for other activities such as update.

Update is the process of changing a piece of installed software usually triggered by the release of a new version by the developers. Update is a special case of installation but may require installed software to be deactivated prior to update and reactivated after recon guration.

Adaptation activity involves modifying a software system that has been previously installed. Adaptation di ers from update in that the update activity is initiated by remote stimuli, such as a software producer releasing an update, whereas adaptations are initiated by local stimuli, such as a change in the environment of the consumer site. An adaptation activity may be initiated to take corrective action to maintain the operational correctness of the deployed software system.

Uninstallation activity happens when a software system is no longer required at a given consumer site and can be removed. It presumes the system is already deactivated.

The uninstallation activity possibly involves some recon guration of other systems in addition to the removal of the uninstalled systems artifacts.

De-release withdraws the system as it is judged obsolete by the producer. As with uninstallation, care must be taken to ensure that the withdrawal will not cause di culties. This requires the withdrawal to be advertised to all known consumers of the system.

Deployment Roles

Software deployment process happens between the production and execution of software. Therefore two natural roles can be identi ed; one party that produces the software, the producer, and the other one who consumes and executes it, the consumer [Carzaniga , Szyperski]. The producer is basically the role in charge of developing and releasing the software. It is situated at the development side of the software life cycle. Within the organization of the producer role, there are some internal roles that can be relevant for deployment, these are: Specifier creates the speci cation of the software to develop. It is a role involved primarily in the design phase, creating the system architecture, including component de nitions and relationships. In many organizations the speci er is a senior developer or an architect.

Developer creates the implementations of the speci cations. Developers program and produce source code for the implementing components.

Assembler decides on component con gurations and interconnections that constitute the software. Those are majorly de ned in the architecture speci cation. The Assemblers job is to choose which implementations will concretely compose the software product.

Packager produces one or more packages that wrap software elements. Granularity of these packages change depending on the technology and the design decisions. Software products may be packaged in an archive le or in a directory that contains all necessary artifacts. Otherwise, each artifact may be packaged separately and assembled at deployment time.

In parallel to these roles, the Repository Administrator is in charge of maintaining the repository manager for storing packaged artifacts for later delivery to consumer sites. Repository administrators can be software producers, consumers or third parties who assemble artifacts from di erent producers.

The consumer is the general term for the party who receives and executes the software. It is the consumer-side where almost all of the deployment activities happen. The consumer oversees the functioning of the physical machines of hosts, the execution environments and the software that executes on top of those. The consumer can be re ned into these internal roles:

Infrastructure Administrator who operates the physical infrastructures of deployment sites, and in charge of guaranteeing physical resources required by deployed software.

Execution Environment Administrator (or Platform Operator) operates one or more execution environments that are found on the deployment sites. The platform operator is in charge of providing software resources required by the software deployed on the execution environment, such as applications.

Deployer is in charge of applying deployment activities (installation, activation, deactivation, update, adaptation and uninstallation) according to deployment requests. In OMG D&C [Object Management Group b] deployer roles are rened as the Planner, who creates a deployment plan describing the actions to be taken for the deployment process; and the Executor, who executes these actions.

Issues on Software Deployment

Concepts, activities and roles presented in the previous sections establish a basic terminology for studying the software deployment process. This section raises a set of issues and problems that are commonly addressed by current practices of software deployment.

Managing Dynamic Evolution

The evolution of software systems is both natural and inevitable. The evolution is due to the changes in both the software system and its execution environment. Some of these changes can be planned by involved actors, and then executed on the system as such. For example, installation of a new hardware component, such as a network interface, can induce the need for an update of the corresponding driver. A newer version of that driver can make use of the new component, improving performance and security. Similarly, adding a new feature in an application may require applying deployment actions on different software systems on which the application depends. Nevertheless, in most of the cases, changes are involuntary and unpredictable. A hardware failure (i.e. storage disk failures) or an error of software component (i.e. software bugs) can cause some resources to become unavailable. In such cases the software system may fail, or it can be adapted and recon gured to function with actual condition of resources.

Emergence of new computing domains, such as Cloud Computing and Pervasive Computing, increases the need for applying deployment activities without disrupting the services provided by the system. Software systems needed for these new domains require to function with high availability while resources are dynamic and volatile. In pervasive systems for instance, communication and integration with devices that are present in an environment is problematic, as these devices can appear and disappear dynamically, without notice. However, this should not interrupt running applications, on the contrary, applications running on a pervasive system should use these changes to their advantage, in order to optimize their behavior.

Managing dynamic evolution is challenging for the deployment process as well as for the execution environment. The ability to apply deployment activities without disrupting the whole system depends on the capabilities supported by the execution environment. Yet, some of the changes brought by deployment activities can occur at runtime, while others may require restarting the system, for the changes to take e ect. Consequently, the deployment process should automatically react to the dynamic changes and function with a minimum of human intervention.

Maintaining Metadata Throughout the Life Cycle

As in any design and development process, software producers make decisions throughout the development life cycle. These decisions may include choice of using a programming language, a container, or a software library over another; the description of components and modules, organization and versioning of the source code, structure of other artifacts that are necessary for execution, etc. Such metadata may a ect the resulting software product as much as the source code itself. Although developers and software producers in general have valid arguments on why and how they made their decisions, those choices are loosely documented, if at all. Eventually, the information about these design decisions are lost.

One of the ways to overcome this di culty is to manage every development artifact, source code and design document, using a con guration management system . Along with source and artifact repositories, a con guration management system can be extended to include a metadata repository for storing design decisions. Indeed, a new class of applications called Application Lifecycle Management (ALM) is emerging to propose such integrated solutions. An ALM goes beyond simple con guration management, by automating work ows and processes performed in the SDLC. It helps creating, assigning and tracking tasks; sharing information between team members and documenting all the inputs made to the software. Using such systems design decisions become visible and their correspondence with functional artifacts are tracked.

Once the software is to be built, released and deployed into execution environment, it is particularly di cult to keep the links between the development artifacts and the actual software at execution. Preserving a direct correspondence between development and execution would help to maintain the software, whether to correct bugs, seek security threats or apply updates. It is thus crucial to maintain the correspondence between development artifacts and the deployed system. The deployment process should con rm which version of which artifact is deployed and e ective at runtime, as well as be aware of subsequent changes during the execution.

Managing Heterogeneous Environments

As discussed in section . . , software life cycle involves many actors comprising end users, software producers and other stakeholders such as platform operators. In modern computing environments it seems impossible to impose a particular con guration of an environment on all the sites that the software is expected to run. For example, the developer team producing the software may work on the Windows platform, while the resulting source code is compiled and integrated on a Linux Server and than at last run on the Linux desktop environment. Additionally, a software product is rarely developed for only a single platform; usually it is destined to run on multiple target environments that have di erent properties and resources.

Thanks to distributed, large-scale networks, heterogeneous hardware platforms such as servers, personal workstations and mobile devices more and more coexist in same computing infrastructures. These hardware platforms can host software systems that are connected to each other through standard communication protocols. Even if these environments share a major number of properties (i.e. hardware con guration, operating system, ...), each system is unique with di erent software dispositions.

Heterogeneous target environments challenge deployment in various fronts. First of all, the software that supports deployment has to function in every target platform. This means that the deployment software must recognize every type of resource in those environments and know how to deploy (install, recon gure, uninstall) resources. Moreover, deployment procedures of similar resources can be di erent in di erent platforms. The software that automates the deployment should be generalized enough for handling similar resources, but also specialized enough for managing heterogeneity of platforms. Often, it is necessary to extend the deployment to able to handle new types of resources and software systems.

Managing Dependencies

Reutilization and modular design has become de-facto principles of software development. Recently, with the proliferation of the Internet and web technologies, any nontrivial software system consists of multiple modules with dependencies to applications or external libraries. Installing an application composed of multiple components requires installing all components and ensuring that they can function properly, i.e. all of their dependencies are satis ed.

There are di erent types of dependencies that software systems are subject to. First, in a software system, components constituting the system may have dependencies between each other. Resolving such dependencies and managing them at execution time requires e orts on both development and the deployment process. Components may manifest dependencies during di erent life cycle stages. For instance, a component may not have any dependencies for its installation, but may need the functionality proposed by another for its correct execution. Secondly, software systems may have dependencies to the resources or functionalities provided by the target execution environment. An application requiring access to a le in the lesystem is an example to this use case. Thirdly, there may be dependencies between software systems. For example, a ight booking application would need to access to another application, possibly managing a database, for querying available seats and the prices. In this respect, the deployment process should ensure, before deploying the booking application, that the database application is available on site or remotely; and con gure both systems for guaranteeing the communication between the two.

The promise of modular programming is to separate the concerns such that di erent modules perform discrete functions. Separated into modules, the code base of software is easier to maintain, that is to develop, debug and update. It is also easier to reuse these modules in other software products. However, in a modular system interactions between modules pose several problems. Module dependencies signi cantly increase the complexity of the assembly and the deployment process. The deployment process should resolve dependencies of each module, assemble needed versions of those, deploy them separately and ensure that they are linked together to form the expected software.

Planning and Coordinating Deployment Activities

A signi cant concern is regarding the planning and coordination of the deployment process. Deployment planning is the operation that decides the actions to be taken during the deployment process. The plan is calculated with the given deployment descriptor and the state of the resources of the target environment on which the software will be executed. Once the deployment plan is constructed, the deployment process should coordinate the decided actions, possibly by targeting distributed sites, in order to successfully execute the deployment process.

The calculated deployment plan is the outline of the actions to be applied during the deployment process. It should answer several questions regarding how the deployment will proceed:

-What: What are the artifacts (components, les, etc.) that will be brought to the target environment and installed? What are the resources that are already on the target sites but needs recon guring or adapting?

-Where: Where the software system and its components will be placed? Which component will be placed on which target site?

-When: When will the deployment actions occur? Is there a need for synchronizing di erent actions, or can any two tasks be executed at the same time?

Calculating answers to those questions is challenging, especially when there is a large number of component and target site combination. In fact, without any indications set by the deployment descriptor, this component placement problem is a special case of quadratic assignment problem, which is NP-hard [Garey]. For this reason solutions for a deployment plan require a degree of guidance to restrict the possibilities. This information can be acquired as policies described in the deployment descriptor, deployable artifact or target site description.

Once the deployment plan is decided on, it is to the deployment system to coordinate the actions on possibly multiple sites for accomplishing the process. In general, most deployment activities take place at the consumer site. They make use of system resources and often require exclusive access to system components. Also, a deployment action might introduce con icts with installed or running software.

Ensuring Security

The capabilities of a deployment system are in vain if they compromise the security of the deployed software and the target site. In an enterprise environment, computer security is a prime concern, especially when it is about the management of distributed network of machines. There are three aspects of computer security that are critical with respect to software deployment: authorization, privacy and integrity.

Deployment actions require usually access to critical resources of the system. Reliable authentication procedures must be in place to ensure that deployment processes are started and conducted only by authorized actors. The organizations are rightfully concerned about the privacy of the information they transmit into the network. In the case of deployment, transferred deployment artifacts (for instance, database les, data structures, etc.) may contain sensible information that the organization wants to make it private. Providing this level of privacy may require several things. First of all, deployment process must make sure that the connection between the two parties of the le transfer is authentic. Secondly, signatures and encryption can be necessary to guarantee both the authenticity and privacy of the artifacts content. These prevent a third-party to look or change the contents of the transferred artifact, which is valid for a le as well as for an executable component.

Even if the transfer of software is carried out in a secure way, there might still be security concerns related to the installation of software in the nal target environment. In particular, it is important to guarantee the integrity of the organization's data against the execution of malicious or incorrect procedures that may cause corruption or loss of data during installation or update.

Software Deployment and Other Research Fields

Like most of the domains of software engineering software deployment is not an isolated research domain. As it is situated between the development and execution, the techniques and methods employed for deploying software is highly in uenced by the advances in development and execution platforms. Therefore it is impossible to study software deployment without understanding these adjacent domains. Di erent domains of software engineering have addressed issues discussed above, and these domains have contributed on how the deployment process is conducted. This section presents these domains and how they contribute to the deployment process.

Software Architectures

Software architecture is a design artifact that records and justi es important design decisions of a software system. It abstracts information on di erent views of the software system, notably regarding its structure and evolution. The architecture is a description of the expected system, including components, relationships between them, constraints on their execution, etc. But also it is a prescription of how the system can evolve; principles, restrictions and guidelines that may be presented as architectural patterns and styles. While historically software architectures are design artifacts created in development, their usage increasingly shifts to the heart of execution [Baresi].

The research community studies the usage of speci c languages for describing and manipulating software architectures, named Architecture Description Languages (ADL). ADLs intend to represent one or more architectural views focusing on a particular concern. An ADL can be designed in di erent forms; as informal (e.g. use of schemas), as semi-formal (e.g. UML) or as formal. Architecture described using a formal ADL can be interpreted by a machine for evaluating and automating certain aspects, such as design, deployment and execution [Medvidovic].

In software deployment eld, architecture-based deployment is a common term for describing the usage of architectural description as deployment descriptor that guides the deployment process. Architectural models are adequate for this because they already contain information about the elements contained in the software and their relationships. The architecture of a system can be served as a base model for associating metadata about deployable artifacts. This information can then be leveraged throughout the deployment as discussed in section . . . As for relationships, they usually represent a kind of use relation between the elements they involve. Therefore, they can be interpreted as dependencies between software elements. The issue about managing dependencies is discussed in section . . . Dependency information contained in architectural models can also be used in the deployment process.

The software deployment process is about maintaining evolution of the software system at execution time. A more recent class of ADLs addresses this issue by allowing dynamic architectural manipulation. C , Rapide, Darwin and Weaves are some of the examples for Dynamic ADLs. These provide operations and languages for modifying the architectures by adding, removing and rewiring elements at runtime. However, many of the current ADL's does not cope well with expressing dynamic changes [Medvidovic]. Changing a software speci cation written with an ADL introduces many problems related to the deployment. Migrating the system into a new architectural speci cation triggers a set of adaptation and update activities in which components can be created, destroyed, recon gured while sometimes saving their internal state. In [Dearle], Dearle states that such activities do not only require languages to express these operations, but they also need to be capable of expressing the complex temporal and transactional state space that occur during recon guration.

Software Product Lines

A software product line (SPL) is a set of engineering techniques for developing software systems. It favors reuse of artifacts by de ning product families that share common features [Bosch]. Like in industrial product lining, in SPLs, software products are divided into groups of closely related products, to o er them separately in di erent situations. The concept of a product family de nes the whole of the con guration space, including points of variability over possible products. A software product can be seen as a particular con guration of reusable artifacts, composed in accordance with a number of constraints and preferences. SPLs aim to improve the time to market, productivity and quality of software products by promoting reusability.

The deployment process is involved in this when the product, meaning the resulting application con guration, is released and delivered to the consumers. Once released, the products can be delivered rapidly using an automated deployment process placed at the end of the product line. Releasing an application from a product family requires deciding on an application con guration. In component-based, modular systems the choice of assembled components can de ne the application con guration. Whereas in monolithic systems, these con gurations are made when the software is built through a customiz-able build process. For example, tools like Maven and make les allow to de ne such custom build processes and releasing software for di erent target environments. These techniques applied in product line practices allow software producers to address heterogeneous target environments discussed in section . . . The variability over possible choices in a product family is represented in models called reference architecture. Reference architectures include shared architecture of a product family and additional information for variable features. When constructing an application, the SPL is confronted with the problem of resolving dependencies of the expected product con guration (discussed in section . .). Reference architectures can be re ned with choices made on the product release to calculate the e ective architecture of a particular application and resolve the dependencies of the application.

Traditional SPL engineering advocated that variation points are bound before the delivery of the software. More recently Dynamic SPLs (DSPL) emerged, where selection and binding of the variation points are realized dynamically at runtime [Hallsteinsen , Bencomo

]. These systems use the variability model that is expressed in the reference architecture for adapting the running system. The deployment process of such systems should evaluate the variability model in permanence in order to change chosen variation con gurations.

In [Cetina

] Cetina et al. presents a discussion interesting from the point of view of deployment process. In this paper authors de ne the di erence between two architectures of DSPLs as connected and disconnected. In the connected DSPL architecture, the con gurable product is always coupled with a product line, from which it receives adaptation requests. In a disconnected DSPL architecture the con gurable product is more autonomous. It embeds the product line model (reference architecture) and applies adaptations by making decisions based on this model. These approaches indeed show two visions of deployment. First, the deployment is decided remotely and guided by requests sent to target sites. Second, the deployment is decided and conducted essentially on local site.

Self-adaptive Software Systems

Installed systems must evolve to address changes in both the environment in which they operate and the requirements they ful ll. As presented above in software architectures and product lines, the ability to change software systems dynamically is a demanded property for coping with planned and unplanned evolution. Self-adaptive software systems are able to adjust their behavior in response to their perception of the environment and the system itself. Engineering self-adaptive systems pose major challenges. These systems should be aware of the environment, take decisions and be able to change their execution accordingly.

Self-adaptive systems propose the primitives for a deployment that covers the adap-tation activity. Deployment on a self-adaptive target would decide on the actions to be taken, and coordinate the execution of these actions on the system. In [Oreizy] Oreizy et al. distinguish these two processes in self-adaptive systems as evolution management and adaptation management. On one hand the evolution management aims to maintain the consistency and integrity of the system over time based on architectural models. On the other hand, changes and observations needed by the evolution management are applied by the adaptation management (issue . .). The adaptation management is in charge of detecting the inconsistencies, planning and deploying modi cations (issue . .).

With these operations, a self-adaptive system can be seen as a closed-loop system with feedback from the environment and itself. Autonomic computing [Kephart] proposes the MAPE-K architecture for implementing this adaptation loop, including Monitoring, Analyzing, Planning functions and a shared Knowledge-base. Autonomic managers that interact with the managed system via sensors and actuators implement this architecture.

There are a number of obstacles to overcome for engineering the execution environment for self-adaptive systems. First, a self-adaptive system should be aware of itself and its environment, monitoring the changes and being noti ed about them. This includes an introspectable execution environment, meaning that it should provide means for inspecting its architecture. Additionally, information about its environment context should be gathered and modeled within the system. Second, the information about the system should be analyzed, and the self-adaptive system should make decisions on the actions to take. Many approaches are invented and borrowed from other domains for analysis and decision functions [Salehie]. Policies, rules, QoS de nitions and arti cial intelligence techniques are some of the approaches most commonly used. Lastly, decided actions should be e ectuated through an infrastructure that allows managing the system and making changes at runtime.

System Administration

The correct execution of a software system depends on its stability and harmony with its environment. The goal of the system administration is to ensure the stability of execution of computing systems both hardware and software. System administrators are in charge of supervising the whole system hardware and software. They make sure that the system provides resources needed for the execution of the applications and services. Their goal is to ensure that the computing system is operating with optimal performance and uncompromised security, without exceeding the requirements of maintenance costs. The domain of system administration (also called IT administration or operations) is decoupled from the development of the software. The software development seeks developing new features, optimizing existing ones and xing bugs thus evolving the software system. While the system administration is about trying to keep the system as-is, once it is at good operation, and is interested in evolving the ecosystem in which the software system lives. This may involve tasks such as migrating systems to new environments, running back-up procedures and troubleshooting the errors.

In order to accomplish these tasks, system administrators usually execute one or many activities of the deployment process. However, historically they are used to interact with the systems via low-level tools. They usually run commands via command-line interface, or in some cases use ad-hoc scripts they have written for automating some recurrent tasks. Supporting the tasks of system administrators with well-de ned deployment processes would not only automate these tasks but also reduce human errors that occur during deployment activities.

Summary

The previous section discusses the issues encountered in the software deployment process. The problem of software deployment stands out as a collection of intricate issues that involve many research elds in software engineering. This section presented the elds that already address aforementioned issues. An important point to remark is that software deployment has two-way relationships with those domains. Meaning that all of these domains involve and apply deployment processes and they also contribute to the way the deployment is conducted by resolving issues. The table . shows a summary of tackled issues by these research elds. The following section presents existing e orts, both academic and industrial, that tackle these issues. Some of the important deployment automation solutions are evaluated against criteria that are also presented.

Software Deployment Facilities

Automating the software deployment process is the only way to cope with increasing speed of the cycle of development, release and delivery. There are a large variety of tools to help producers and consumers to deploy their software. These tools provide di erent degrees of automation over deployment activities presented in the subsection . . . All the same, regarding automation, it is important to recognize that the deployment process is a part of the SDLC, where human participants conduct most of creative tasks in di erent processes. For example, developers are in charge of producing the creative content (code, con guration les, etc.) although tools of modeling and programming aid them.

Software deployment is about organization of human processes, as much as it is about the tools that help its actual process. Therefore the models used to represent the process and the practices employed during it are as important as the tools themselves. It is useful to de ne a concept that includes all conceptual and software tools that helps automating the deployment process. The following de nition describes this concept of so ware deployment facilities.

Definition 4: Software Deployment Facilities

Software deployment facilities de nes the group of models, processes and tools employed by an organization for handling deployment processes by optimizing and automating its tasks.

Characterization Framework

Before presenting di erent technologies and academic works that propose software deployment facilities, this subsection is dedicated to the conceptual framework that is suggested by Heimbigner et al. [Heimbigner]. This conceptual framework aims to characterize di erent capabilities expected from a deployment facility and used by the authors to classify existing technologies. Presenting these capabilities serves for evaluating different deployment facilities presented in this section.

a. Process Coverage

The rst characterization criterion is the process coverage, the degree to which a deployment system covers each of the deployment activities of the process. The subsection . . describes activities that constitutes the software deployment process. An activity is covered if the deployment system provides full support, meaning that it implements at least a default version of the activity and describes how it can be integrated to the whole process. An activity is partially covered when the deployment system does not provide an implementation but recognizes the existence of the particular activity and provides means to the user for implementing and integrating the activity to the process. The process coverage criterion evaluates the completeness of the deployment automation solution. Finally an activity is not covered by the deployment system if it does not explicitly recognizes as part of the process.

b. Process Changeability

The second of characterization criterion is the changeability of the deployment process. It is di cult to de ne and implement a deployment process for every possible use of software product and consumer site. Typically, a particular product can require a special procedure for deployment, or a consumer site may need to run speci c test before validating the deployment. This implies that a rigid, non-changing deployment process is not applicable to all possible use cases. Process changeability indicates the ability of the process to be changed and be customized after de nition. A changeable deployment system should allow customizing the deployment process per consumer in order to include additional steps to some deployment activity.

c. Interprocess Coordination

A complete deployment process would most possibly include coordination of various deployment activities on di erent software systems. Additionally these systems can be distributed over di erent sites and should be synchronized for the sake of the coherence of whole deployment process. For example, updating a component may require, rst to deactivate other components that depend on it, then updating the rst component and only after that reactivating its dependencies. The interprocess coordination criterion evaluates the deployment system's ability to coordinate activities and synchronize between distributed processes.

d. Site, Product, Policy Abstraction

The nal characterization criterion is about how activities are described in the process de nition. A deployment activity can be seen as a procedure for controlling execution of actions that manipulate resources on consumer sites. Therefore an activity can be described in terms of the consumer site, the product or components of the product and a set of execution policy constraints.

There are many ways to program deployment activities for implementing a deployment system that automates the deployment process. The straightforward way of describing a deployment activity is to program execution procedures for each combination of product and consumer site with every kind of execution policy. These execution procedures are usually developed with general-purpose scripting languages such as Perl, Python and Ruby. Clearly this can lead to a large number of such scripts and the consequent high cost of their individual development and maintenance. Another way of describing deployment activities is to factor out common information about product, consumer site and policies inside abstract models. Modeling information about these entities reduces the e ort required to de ne deployment processes, and allows to use the same abstractions in di erent range of situations. Thus, the deployment procedures themselves become generic, reducing the total number of deployment procedures that must be dened. These generic models can then be parameterized with information speci c to the particular deployment process.

The site model, the product model, and the policy model characterize a deployment systems ability to describe information about the deployment activities. The following are more detailed descriptions of these models.

The Site Model The site model is a standardized way of describing or abstracting a consumer site's resources and con guration. A site model for a single computer would contain information such as the machine type, the operating system, the available hardware and software resources.

The site model enables all consumer sites to be treated in the same manner, regardless of their nature. This way all consumer sites can be treated in the same manner, regardless of their particularities. A uni ed model would provide standard methods to access the site's con guration and to manipulate required resources for performing deployment activities. The deployment system then can ignore di erences between consumer-sites. In this respect the site model speci cally addresses the issue of heterogeneity discussed in section . . . With a site model the deployment activities are greatly simpli ed, since a deployment system can access the common information from the site model to use in deployment activities. Autoconf and Windows Registry are two examples of simple site models for respectively Linux and Windows platforms. Autoconf is used to produce procedural shell scripts from con gurations by dynamically computing the site abstraction. Windows Registry, in contrast, is a passive repository containing the site abstraction.

The Product Model The product model describes the constraints and dependencies of the system to be deployed. The deployment system uses this model to reason about all deployable and deployed products, in order to ensure that the target site is consistent. The product model should include information about the content of the product, such as the set of required les and components, dependency speci cations, general information about the producer and documentation. The deployment descriptor de ned in . . usually contains the product model, or enough information to construct the product model. Constructing the product model can be straightforward for a monolithic system, whereas modular products that will be deployed in distributed environments increase the need for more expressive models.

Throughout the deployment process, the product model is queried by the deployment system for gathering the information needed to execute deployment activities.

It is often the case that the product information is integrated into the site informa-tion once a system is installed. In section . . , it is discussed that con guration management tools also schematize information about the software products. This integration indicates the link between con guration management and deployment systems.

The Policy Model A deployment policy is a particular way of customizing the execution of a deployment activity. It de nes how the standard deployment activity is changed for that particular deployment. The policy model can include information describing aspects such as scheduling deployment requests, preferences, and security control. For example, in case of a modular product, the integrity and compatibility of constituent components should be veri ed. A strict policy would be to perform these checks beforehand, and consider starting the deployment accordingly. Or a looser policy would start the installation with a minimum of veri cation and then validate the deployment once all components are in place. Another example of alternative policies for the same activity concerns whether updates should be pushed or pulled. Under both the push and pull policies, the installation activities are essentially the same, di ering only in when and how updates are triggered.

Usually di erent policies are hard-coded within the deployment system and not externalized in policy models. It is di cult to construct a deployment system that can be extended with new policies. Instead of modeling various policies, many deployment facilities choose to provide hooks for developers (either for product developers or consumers) to react to di erent stages of the standard deployment process.

Evaluation Criteria

Creating abstract models of these aspects is of major importance for automating the deployment process. This is particularly apparent in distributed environments, where heterogeneity and coordination issues should be handled in order to provide a successful deployment environment. Previous section presents the characterization framework proposed by Heimbigner et al. [Heimbigner]. Authors use this framework for evaluating some of industrial solutions. However, their evaluation lacks concrete indicators of capabilities expected from deployment solutions. To serve as evaluation criteria, here a number of indicators are identi ed and grouped into three categories: Deployment Platform de nes the technology stack on which the consumer sites are constructed. The characteristics of the deployment platform are as important as the deployment system itself. The capabilities of deployment solutions are naturally limited by those of the deployment platform.

-Deployment Unit: The kind and granularity of the deployment unit.

-Modularity: Whether the platform provides a modularity layer that allows to load and unload modules.

-Site Representation: Whether the platform provides a representation of the resources available on the platform and site in general.

Deployment Process de nes the characteristics of the process proposed by the deployment facility.

-Deployment Activities: The set of activities de ned by the process for evaluating the process coverage.

-Process Hooks: Whether and where the process de nes places in the process to attach customization policies.

-Distributed Coordination: Whether the deployment process can be coordinated on multiple distributed sites.

Deployment Description de nes the kind of deployment description and the capabilities enabled by it.

-Deployment Descriptor: The kind of deployment description artifact.

-Descriptor Placement: Whether there is an independent descriptor artifact or if not, how does the deployment descriptor is kept.

-Policy Description: Whether the descriptor lets de ning custom deployment policies for extending default deployment process.

The rest of this section presents software deployment facilities proposed by industrial products and the research community. They are divided into four categories according to their operation scope. At the end of each category some of the solutions characterizing that category are evaluated against these criteria.

Single Target Deployment

Single target deployment comprises technologies that consider a single machine as their target consumer site. Automating the deployment process is relatively unchallenging, as the deployment system does not need to deal with issues like heterogeneity, planning and coordination on distributed environments. Additionally, automation requirements are less elaborated as the main goal of these systems is to help end-users install applications. Nevertheless, numerous tools proposed in this eld have constituted the foundational e ort for deployment automation in general. These technologies are studied in three categories.

a. Package Managers

RPM Package Manager (RPM) [Bailey

] and dpkg are examples of package managers, widely used low-level deployment tools for Linux and UNIX-like operating systems. These utilities are capable of querying, verifying, installing, uninstalling and updating software packages. They propose command-line interfaces for accessing information about packages and executing deployment actions. A package is de ned as a collection of les, con gurations, documentation and metadata such as description and signature. In general, packages are required to be associated with a version, which allows to handle multiple revisions of the same package. Package managers use repositories where packages are stored and indexed. A package repository is a remote database containing metadata about available packages. A local database is also used to register that are changed and created when a package is installed. This can revert the changes and remove an installed package, without breaking existing ones.

For handling the deployment of multiple packages, package managers model applications as a graph of interdependent packages. This brings the problem of managing dependencies of package to be installed. Numerous higher-level tools for software package maintenance exist such as Yellowdog Updater Modi ed (YUM) and Advanced Packaging Tool (APT). Their automated deployment operations such as retrieving, installing, updating, and uninstaling applications, calculating the tree of dependencies.

Package managers are the most common way of delivering software in general. There are many examples of package managers, each specialized in deploying packages required for the respective technologies. NPM3 for Node.js, Ruby Gems4 for Ruby, NuGet5 for .Net are some examples of package managers specialized per execution environment. NPM, for instance, allows the deployed software to declare scripts that will be called on certain deployment stages such as pre-install, post-install, pre-start, etc. Homebrew6 is another tool that is specialized for installing Unix-like packages in Mac OS environments. It is based on package descriptions called formula. A formula can cite other packages it depends, resources it needs to download and nally a script (written in Ruby) that applies the installation. This lets Homebrew to download directly the source code of the program and compile it on-site.

b. Application Installers

Compared to the package managers, Application Installers provide an application-centric deployment model. Tools such as Windows Installer and InstallShield handle applications on the basis of features and components. A feature represents an application functionality that users may or may not decide to install. Features can be installed independently from each other. A component is the part of an application to be installed which is hidden from the user. Applications installers usually propose a standardized user interface, where the user can choose one or more features for installation. Then the installer determines which components must be installed in order to install that feature. It is up to application developers to decide how to divide their application into features and components.

Application installers also use a local database for tracking which applications require a particular component, which les comprise each component, where each le is installed in the system, and where component sources are located. The deployment process consists of acquisition of features to be deployed, calculation of components to be installed and execution of component installation. The installation phase comprise the execution of prede ned scripts of installation. If the installation process fails, a rollback process can revert the changes.

Comparably, IzPack7 is a tool that applies principles of application installers, which are predominantly in Windows environments, to applications running on the Java technology. IzPack allows developers to create customizable software packages that can be deployed in multiple environments. It lets application developers to specify deployment policies that are conditional on the parameters that di er from one target environment to another.

c. Web-centric Deployers

Web-centric Deployers emerged with the proliferation of Internet, for transferring software in a controlled, secure way.

Several technologies support the web-centric deployment model. Java Applets, ActiveX components, Java Web Start [Sun Microsystems a] (a reference implementation of Java Network Launching Protocol (JNLP) standard), .Net ClickOnce8 and ZeroInstall9 are such examples of web-centric deployment technologies. The web-centric deployment aims to transparently transfer executable software artifacts from a web server to the computer of the end-user. As security is a major preoccupation in web technologies, unless trusted, applications run in a protective environment, a sandbox, with restricted access to local deployment site resources.

Web-centric deployment techniques can divide software into smaller components. This enables incremental retrieve and update but is prone to the dependency management issue. In order to overcome this problem, web-centric applications are usually packaged independently. Instead of sharing their components, artifacts of each application is downloaded and stored separately. Another functionality proposed by web-centric deployers is the ability to detect missing runtime environments (Java Runtime Environment (JRE) or Common Language Runtime (CLR)) and automatically installing the required runtime. This brings increased transparency for the users, though it is prone to con icts between runtimes needed by di erent applications.

To conclude single target deployment, the web-centric model ensures signi cant automation of the deployment process for single computer machine. The presented mechanisms nd their use also for more complex execution environments. In such a case, however, they need to be supported by additional deployment tools to provide full deployment automation. In the following subsection we present execution platforms that enable deployment of independent modules.

Policy Description

Scripts other than process hooks

Custom actions -

Modular Execution Platforms

Deployment of traditional applications depends on external deployer facilities, such as the ones presented in the preceding section. A deployment system needs to calculate or extract information on applications such as dependencies, geographical distribution on target sites, availability of required resources on these sites etc.

In a broader view component-based programming is based on the modular design principles for software development. With component-based programming a major e ort was made to facilitate the deployment of component-based applications, the objective being to predict the phase of the deployment during the development. That is to say, in component execution platforms, models explicitly provide means to describe components (or modules) and their dependencies. This section presents three important execution platforms that promote developing modular software by providing execution environments that host the components. More speci cally, the emphasis of these discussions are on how the modules or components are described and packaged, how does the deployment descriptor of those is created and in which ways these platforms addressed previously introduced issues.

a. CORBA Component Model

The Common Object Request Broker Architecture (CORBA) is a standard de ned by the OMG that enables software components written in di erent computer languages and executing on multiple computers to work together. Corba Component Model (CCM) [Object Management Group a] is a component-based execution platform of distributed CORBA.

In CCM, a component is de ned by an interface and one or more implementations of that interface. A CORBA component is a unit of deployment, that is to say it is the basic element of the deployment. It consists of a zip archive containing the description of the component les, the implementation binaries and a le to express the properties. An assembly of CCM components is a set of logically interconnected components distributed over multiple machines. During deployment, the assembly will be physically installed on a given con guration machines by establishing connections between components. To describe the assembly, CCM uses a descriptor le (.cad for "Component Assembly Descriptor"). An assembly description is composed of assembly packages that contain the assembly handle and a set of component packages, containing the components involved in assembly.

CORBA runtime provides tools to realize the deployment phase. The deployment activities include transfer, installation, composition, instantiation and con guration of components on targeted runtimes. CCM speci es a number of steps to take during the deployment process: the de nition and selection of deployment sites; installation of implementations using the information contained in the descriptor software package, instantiation of components and nally connection of components.

b. EJB

Enterprise JavaBeans (EJB) is a managed, server-side component architecture for modular construction of enterprise Java applications. The EJB speci cation is one of several Java APIs in the Java EE speci cation [Sun Microsystems a]. The EJB speci cation intends to provide a standard way to implement the back-end 'business' code typically found in enterprise applications (as opposed to 'front-end' interface code). Such code addresses the same types of problems, and solutions to these problems are often repeatedly re-implemented by programmers. Enterprise JavaBeans are intended to handle such common concerns as persistence, transactional integrity, and security in a standard way, leaving programmers free to concentrate on the particular problem at hand. EJB speci cation de nes the installation, activation, deactivation and uninstall beans. However, contrary to what could be expected, the bean is not the unit of deployment that has been used. The deployment of beans or the applications based on beans are de ned via an archive le. These archives can contain an XML le playing the role of deployment descriptor. This descriptor typically contains information required for each bean in terms of transactions, security and persistence. Finally, it should be noted that the archive format and content of the deployment descriptor are the main elements of the standard de ned by the EJB speci cation for units of deployment.

EJB speci cation does not address the problem of coordinated deployment of beans on multiple distributed application servers.

c. OSGi

OSGi is a service platform speci cation, which delivers an open common architecture for service providers, software developers and equipment vendors to develop, deploy and manage services in a coordinated fashion [OSGi Alliance]. It enables exible and managed deployment of services, based on a modularization model for Java Runtime Environment (JRE). OSGi de nes deployment units, called bundle that contain compiled Java code and other resources. The OSGi platform allows to install, start, stop, update and uninstall bundles at execution time without the need for restarting the whole platform. Each bundle expresses its capabilities and requirements in terms of Java packages and other resources. Therefore the platform calculates and manages connections between bundles and assures the satisfaction of mandatory requirements of a bundle before executing it.

The bundles in OSGi, as a set of shared, required and private Java packages or other generic capabilities. OSGi bundles are deployed as a JAR (Java ARchive) le containing a special descriptor le called manifest.mf. This descriptor allows developers to package self-descriptive bundles. The information contained in this description about the bundle's unique identi cation, version, contents, provided capabilities and the ones it requires from other bundles in order to work and more. Once a bundle is deployed to an OSGi framework, the framework uses this description to resolve declared requirements of the bundle. The resolving process involves matching and linking requirements of the deployed bundle with the capabilities already available on the platform. This process results with the construction of a class space in which the code contained on the deployed bundle will be loaded and executed.

While an OSGi platform manages the lifecycle changes of each module it contains, it does not provide a mechanism for deploying a software system (e.g. an application) with a coordinated fashion. The closest to a deployment system speci cation is the Deployment Admin Service speci cation that de nes a deployment package as a collection of bundles and other artifacts. The deployment procedure of a deployment package is well de ned.

Policy Description

No custom deployment policies

No custom deployment policies

No custom deployment policies

Distributed Deployment

Computing environments are more and more distributed over multiple machines. Distributed deployment consists of the problem of that conducting the deployment process over multiple distributed machines, connected over the network. Software deployment in a distributed system aggravates the complications and issues discussed in this chapter. One of the main problems is the heterogeneity of resources, which generates the need for modeling di erent types of target sites, the resources that they contain. The other important issue is the planning and coordination of deployment actions of many components that the software product is composed of. In addition, the issue of dependency management is more complicated because of the physical disparity of target sites and the components that they will host. Last but not least, accessing physical machines dispersed over the network and executing commands remotely is prone to errors and security breaches.

All these issues indicate that it is di cult to deal with the problem of distributed deployment manually. Distributed deployment requires support by some kind of automation tool that should cover as much of deployment activities as possible. The deploy-ment solutions in distributed environments are studied in three categories as script-based, language-based and model based deployment [Talwar]. In this article, authors argue the trade-o s between these di erent approaches, represented in this diagram . . As shown, language-based and model-based approaches require more investment to establish but can scale easily and handle deployment of complex systems.

t

Examples of Deployment Approaches

To better illustrate how to automate Sarah's scenario, let's look at individual technologies. We use Nixes, SmartFrog, and Radia as examples for the script-, language-, and model-based deployment approaches, respectively; each part of Figure 2 (next page) illustrates deployment steps for them. Script-based approach use existing tools and technologies for applying deployment actions on disributed environments. This method makes use of a number of scripts, for example bash scripts) that coordinate existing tools for conducting common deployment activities. These scripts can copy les using tools such as scp over ssh, for applying predened con guration les. They can also invoke package managers for installing software packages.

Approaches for Service Deployment

At rst sight, this approach seems convenient for system administrators who are familiar with these tools. After all it is fully customizable and the process is fairly straightforward. However, it is not suitable for more complex use cases, where managing applications and execution environments with scripts becomes long and di cult to maintain. Site and product models do not exist or are limited to simple ad-hoc models. It has also limited expressiveness regarding to resource description what makes the automation not always achievable. The most important problem with leaving system administrators for deploying systems via scripts is the lack of traceability of their actions. Script-based deployment processes are susceptible of human errors, which can harm the distributed computing infrastructure.

b. Language-based Deployment

Language-based deployment improves on some of the limitations of script-based approaches. This approach uses a con guration language, parsers and tools to perform deployment tasks. A number of deployment methods follow this approach such as Smart-Frog [Goldsack] and [Wang]. Specialized deployment language o ers an easier usage for these tools. However, apart from the specialized language the execution of the deployment process is similar with scripted deployment approaches.

Language-based deployment frameworks usually include a distributed deployment management runtime. The language they propose serves to describe the system con guration and the deployment work ow. This language de nes an abstraction layer for managing the con gurations of deployed software. Using the provided work ow, a dedicated deployment agent can coordinate deployment tasks. A prepared deployment work ow is then executed by the distributed deployment engine that enacts the work ow to achieve and maintain the desired application state.

Using the language-based deployment approach brings several advantages. Mainly, having a language proposes higher-level abstractions for developers that specify the actions of the deployment process, compared to the script-based approaches. This enables associating management strategies like software recon guration, automated updates and on-demand deployment. However, language-based deployment modeling does not allow for full deployment automation. The language facilitates specifying the deployment but it is still di cult to associate custom automation policies and enhance the deployment process. With language-based approach it is also di cult to address heterogeneity of resources and components, as the engine that executes the language should still cope with heterogeneous product and site models. These remaining issues are addressed by modelbased deployment techniques.

c. Model-based Deployment

Model-based deployment systems leverage architectural models for modeling structure of a software application together with the target execution environment. Architectural models explicitly represent components, connectors, component con gurations and their requirements on one side, and execution nodes, network connections and resources on the other. This separation between software and environment models is one of the key advantages of the model-based approach. In such models, the relationship between applications and the target environment are also represented. Usually target environment descriptions include features and resources exposed by the runtime while, the applications, or more speci cally composing components, declare their requirements on the former. This improves reusability and enables full automation of the process. The model of a software product can be reused when the software is deployed in di erent execution environments. Similarly, the model of an execution environment may be reused for deployment of many di erent applications. Moreover, when component-based systems are considered, the architectural model created during development, can be the basis for a de nition of the software deployment model. Therefore, the model-based approach is especially suitable for the component-based systems.

DAnCE [Wang], JADE [Bouchenak]

, DeployWare [Flissi], and DACAR [Dubus] are some of the important examples. These frameworks are based on two key features: A common model for representing the software product and target environment, and a set of model-driven engineering techniques that are used to enhance the common model with di erent aspects. For instance, Quality of Service (QoS) information can be associated with each component implementation of the software product for a more e cient dependency resolution. With these new aspects, capabilities of the deployment system can be augmented by providing better decisions for deployment activities, be it installation, con guration or update.

Software Dock is a system of loosely coupled, cooperating, distributed components. It supports software producers by providing a Release Dock and a Field Dock. The Release Dock acts as a repository of software system releases. The Field Dock supports a software consumer by providing an interface to the consumer's resources, con guration, and deployed software systems. The Software Dock employs agents that travel from a Release Dock to a Field Dock in order to perform speci c software deployment tasks. A wide area event system connects Release Docks to Field Docks.

Prism is a deployment approach based directly on an architectural model. It is destined for resource-constrained, mobile target environments, addressing distribution, heterogeneity and wireless communication issues. Authors present two different modes of deployment process; with and without centralized ownership. In centralized ownership process, a central site continuously analyzes the architectural models of target sites and ensures that they are valid. If it is not the case, the central site prepares a deployment package, with binary components, and sends them to local sites. Each local site is responsible for applying architectural changes and informing the central site once the deployment is successful. In the case of distributed ownership, each local site decides when and what they need in terms of deployment and demands it from the central site.

ADME is a framework for deployment and management of distributed component-based applications. Authors applied an autonomic computing approach using a declarative constraint de nition language for specifying high-level goals. Deployment goals are speci ed in terms of components, deployment sites and available resources. Constraints restrict the deployment process by mapping components to sites and applying topological constraints. A constraint resolver engine evaluates the application con gurations and current state of the deployment sites and decides on a mapping between components, deployment sites and connection between those. Deployed applications and deployment sites are monitored by the centralized deployment framework, as so if a constraint is no longer satis ed, the deployment process is relaunched for nding another mapping satisfying constraints.

DAnCE addresses deployment of CCM applications. It is based on the OMG D&C speci cation that standardizes many aspects of con guration and deployment for component-based systems. DAnCE enhances the D&C data models to describe deployment concerns related to real-time QoS requirements of applications and con gurations of middleware services.

DeployWare is based on the Fractal component model and abstracts concepts of the deployment independently of the underlying paradigm and technology. It provides a domain-speci c modeling language and a metamodel to mask software heterogeneity. Every notion in DeployWare is being modeled as a component: properties are represented as a composite component that contains the con gurable properties of a software, dependencies are composites that contain references to other software components, even procedures, such as install, con gure or start, are represented as components symbolizing the instructions. These instructions are runnable components that use the DeployWare libraries to realize elementary deployment tasks.

DACAR is another deployment system that is based on OMG D&C speci cation for CCM applications. Authors propose using Event-Condition-Action rules for expressing deployment concerns. These rules express what should be monitored on the execution environment (observation rules), how architectural changes are decided (architectural rules) and how the deployments will proceed (deployment rules). These rules are executed in order to construct an autonomic control loop.

Study of these examples show that a multitude of approaches can be associated with models for providing deployment solutions. They use proprietary architectural models or the OMG D&C component model as a common model, but they choose to construct the deployment process using di erent approaches such as mobile-agents, constraint solvers and rules. Table . compares three of these frameworks according to evaluation criteria.

Cloud Deployment

Cloud Computing is a model for enabling access to a shared pool of con gurable computing resources [Peter Mell and Tim Grance]. It relies on the premise that sharing resources over e ectively constructed computing infrastructures would reduce the overall cost of construction, operation and maintenance of software services. Cloud Computing is the result of evolution and adoption of existing technologies and paradigms, such as virtualization, autonomic computing, service-oriented computing and grid computing. Outsourcing computer infrastructures allows companies to bene t from these technologies without the need of costly investments on knowledge and expertise. This helps them to focus on their business, and easily adjust their need for computing resources according to their changing demands.]. These are easy access to standardized mechanisms, resource pooling, multi-tenancy, rapid elasticity and the measured service. Looking from the deployment perspective, these characteristics can be resumed into following points that are important for the software deployment process.

-Virtualization: The main enabling technology for cloud computing is virtualization. The fundamental idea behind the virtualization is to generalize physical infrastructures, transparently mapping those to virtual resources that are easy to use and manage. For software deployment, virtualization helps eliminating the problem of resource heterogeneity by providing uniform interface. In addition, virtual resources can hide some of the complexities of the underlying resources.

-Multi-tenancy: In Cloud Computing, resources are shared between multiple tenants, and assigned exclusively at run time to one consumer at a time. Assigning resources is done dynamically based on the consumers' needs. Sharing resources can help increase utilization, and hence signi cantly reduce the operation cost.

-Elasticity: Elasticity is the ability to scale in and out by provisioning resources and releasing them. Cloud Computing should provide mechanisms to allow quick and automatic elasticity. The large pool of resources in cloud infrastructures gives the illusion of in nite resources to the consumers, and elasticity provides the exibility to provision these recourses on-demand.

-Volatility: In counterpart of elasticity, virtualized resources can be unprovisioned in any time, for leaving physical resources to other demands. To balance the reliability of resources, consumers can provide multiple redundant services for the sake of service continuity.

-Monitoring: Cloud computing provide mechanisms to measure service usage as well as to monitor the health of services. Measuring services enables optimizing resources and provides transparency for both consumers and providers, allowing them to better utilize the service. Measured services can help in building closedloop cloud systems that are fully automated.

Cloud computing promises agility to the consumers, by giving the ability of provisioning on-demand services. Cloud computing providers o er their services according to three major service models.

Software-as-a-Service (SaaS) refers to the service model in which a service is a software service that allows the consumer (end user) to access and use a provider software application that is hosted, deployed, and managed by the provider. Consumers have limited control over the application, and are restricted in how they can use and interact with the application. The application is usually accessed via a thin client (i.e., Web browser), through which consumers can input data and get output. Examples of SaaS are email services (i.e., Gmail), business applications such as customer relationship management applications (i.e., Salesforce), and data storage services (Hosted SQL or NoSQL Databases). Because consumers have limited control over SaaS applications, this service model has little interest for the software deployment process. Nevertheless, any deployed software can depend on some SaaS, so the deployment coordination may involve sending appropriate con guration to a SaaS.

Platform-as-a-Service (PaaS) refers to the service model that o ers a platform service on which consumers can de ne, develop, con gure, deploy, manage, and monitor cloud software. Mostly, PaaS provides a managed infrastructure and low-level software (operating system and an execution platform) on which consumers can build their software. Although consumers can control their deployed software, PaaS providers do not give direct control over the underlying cloud infrastructure.

Instead consumers are given the choice of customizing the platform service with access to physical resources and other software services such as event distribution and data storage. Windows Azure, Google App Engine and Heroku are examples of PaaS providers.

The advantage of such platforms for deployment is that they abstract the communications with the lower-level infrastructure and provide easy to access and easy to use interfaces for managing software deployment. Independent from the technology of the underlying execution platform, deployment activities can be commanded via graphic user interfaces (GUI) or automated via application programming interfaces (APIs). In addition, some PaaS providers allow consumers to push code directly to the platform using distributed source revision systems such as Git.

Infrastructure-as-a-Service (IaaS) refers to the service model, which allows the service consumer to lease infrastructure capabilities based on demand. The infrastructure capabilities include processing, storage, network, or any other basic computing resources that can be used to deploy and run execution platforms (i.e., operating systems, management tools, development tools, and monitoring tools) and the applications developed on top of the platforms. IaaS consumers are not given direct access to resources but have the ability to select and con gure resources as required based on their needs.

IaaS is very close to the virtualization, since it serves from virtualization technologies to partition physical resources, in order to provide the consumers with a pool of storage and computing resources. Indeed in many cases consumers are provided with a precon gured operating system. Operating system con gurations are created as hard drive images of a system snapshot. Using virtualization techniques enables provisioning rapidly di erent instances of this machine image. This paradigm is interesting for the software deployment, because it lets developers release software bundled into images, precon gured with the execution environment, ready to execute. For instance, Amazon Elastic Compute Cloud service accepts Amazon Machine Image (AMI) as deployment unit to provision virtual machines.

Lastly, the physical infrastructures of Cloud Computing providers can be installed in di erent environments. There are di erent types of deployment environments are known as deployment models and di er according to the physical location, the platform constraints and overall access to the facilities. A public cloud refers to an installment of physical infrastructure facilities that are provided by a third party. The public cloud is shared between multiple organizations or consumers. It is the least expensive amongst other models but su ers from the lack of a trust model between providers and consumers. On the contrary a private cloud is owned by a cloud provider but installed entirely on the premises of consumer, which is the software service provider. This eliminates the trust issue and provides more exibility, as organizations can implement their own privacy, security and access policies. However, this option is the most expensive one in terms of cost of operation and maintenance. There are hybrid cloud models that makes compromises between public and private models by establishing trust policies between providers and consumers, partitioning critical resources and other support services.

Conclusion

This chapter presented the notion of software deployment; the process of delivering the software from its production, i.e. the development, until its execution. Contrary to the early assumptions, the deployment is a process, which involves a set of correlated activities for con guring and bringing the software to its desired state at execution. This process can continue along the lifetime of a software system, forming a bridge between the development to the execution. The bridge between two worlds gains more and more importance in recent years, with the increasing need to manage software evolution at execution via software recon gurations and adaptations. This chapter presented some of the important issues that need to address in order to provide deployment solutions. To tackle these issues software deployment domain is in close relationship with other domains of software engineering. From software architectures to software product lines and self-adaptive systems, these domains not only showed solutions for these issues but also expanded the scope of software deployment.

Involving many actors, the deployment process includes not only tools for automating activities but also a set of models and process de nitions that serve to model and optimize deployment tasks. Corresponding to this view, this chapter introduced the notion of software deployment facilities as the group of models, processes and tools employed by an organization for handling deployment processes by optimizing and automating its tasks. Later, many examples of deployment facilities from di erent approaches have been introduced brie y and compared against a set of evaluation criteria.

To conclude this chapter, there are two major reasons for that automated software deployment facilities are needed more than ever. First, automated processes are needed for deployment because software development keeps accelerating and software producers need to push changes into execution environments as rapidly as possible. Second, propelled with the emergence of new computing domains such as cloud computing and pervasive computing, dynamically evolving systems makes it impossible for producers to deploy software by hand, with human processes. Instead software deployment processes automated with appropriate tools should continuously deploy software into execution, reacting to the dynamic changes in environments and requirements. This newly applied paradigm, continuous deployment is the subject of the next chapter.

Introduction

The goal of software deployment is to construct executing software using artifacts created in the development. The previous chapter introduces the software deployment process in detail and discusses the need for its automation. It concludes by stating that automated deployment facilities are needed to cope with accelerating software development and dynamism of novel execution environments. This chapter focuses on a recent trend, radically changing the way software is deployed: continuous deployment.

Before going into details, let's rst de ne continuous delivery and continuous deployment. Continuous delivery (Cd) is a set of practices that transforms the software development lifecycle. It can roughly be summarized by the phrase "Every commit triggers a release." So every change made by a developer is integrated into a new software release, ready to be installed. Continuous Deployment (CD) extends this principle to the actual deployment of the created release. Pushed to its limit, it means that every commit is pushed to production.

Obviously both Cd and CD require rigorous methods and sophisticated tools. There are many di erent ways to achieve Cd and CD but most of them rely on the idea of deployment pipeline. This pipeline represents the journey from the development to the release repository or the production environment.

The goal of this chapter is twofold. First, it aims to introduce the general idea behind continuous deployment. For that matter, this chapter starts by presenting the concepts of lean development and deployment pipeline. Then in the following section it discusses the current practices that are used for implementing deployment pipelines. The concerns addressed by these technologies involve a large range of software lifecycle phases that exceed the subject of this thesis. This is why the second part of this chapter focuses particularly on the execution platforms and the deployment process. It studies the requirements for implementing deployment facilities that support continuous deployment. Each one of these requirements is detailed in order to establish a characterization framework for continuous deployment facilities.

From Lean Development to Continuous Delivery

The Agile Manifesto a rms that responding to change is more important than following a strict project plan. Development processes evolving around this vision acknowledge that changes are inevitable throughout the project and that investing in immutable system designs is counterproductive. However, this does not mean that the software producers must compromise on the quality of the software systems and the rigor of the process that produces these systems. On the contrary, di erent stages of the software lifecycle require optimizations more than ever, to be able to cope with the change and still provide quality software.

Lean software development (LSD) is the application of Lean manufacturing principles to software lifecycle processes. Lean as a manufacturing and production practice, aims to create value with less work. The value concept is de ned as any action or process that brings added value to the product or service. Lean manufacturing is based on optimizing value-creating ows in order to increase e ciency and decrease the waste. The goal of LSD is to reduce the time and e ort wasted for producing, releasing and deploying software. This is enabled by setting rigorous practices and processes that continuously re ects produced value over the software product. Continuous Delivery applies this principle by turning every value created by developers to a software release, all by guaranteeing the quality of the released product.

Kanban, presented brie y in the previous chapter in the section . . , is a method for keeping track of the work-in-progress and managing ow. It provides a good framework for organizations to apply lean principles [Poppendieck]. The Kanban board represents the stream of values that are being created. The value stream represents the work-in-progress values that pass through di erent states and enter into the responsibility of di erent teams (see gure .). The key to a Kanban system is that within any value-adding activity the total amount of active work is limited. Therefore the entire value stream contains a limited amount of work. This pushes the incentive for the teams to consider optimizing and adapting the value stream activities to avoid bottlenecks.

Value Stream in Software Lifecycle

The value produced in software lifecycle manifests itself under di erent forms. The most obvious type of software value is the source code, which is built into executable binaries. But most of the time binaries are not enough for executing the system. Correct execution of a software system requires other assets. One type of value that is usually needed is the set of con gurations to execute the software. Software systems execute on software and hardware infrastructures that are meticulously determined in order to guarantee the correct execution of the system. Operations teams create these execution environments as descriptions or the disk images. Finally, applications usually require data. For example, the database schemas are values produced during the development. The gure . depicts these four types of value. To be able to track the evolution of the system each value, changes made to these assets must be versioned and archived. A commit represents the identi ed, versioned record of change that is brought to the system. In a continuous delivery (Cd) system every commit -therefore added value -triggers a set of processes to test and validate the change and produce a release of the system. Continuous deployment (CD) pushes this further by deploying each commit to the production environments.

The ultimate goal of software producers is to deliver high-quality, valuable software in an e cient, fast and reliable way. Rationally each commit passes through di erent phases until it is a part of the running system. The term cycle time refers to the time it takes inside an organization from deciding to make a change in the system to making it available to the users. When a new feature is developed or a bug is xed by the development team, it passes through a set of quality gates, which validates its conformity and quality. The system is ready to be delivered to the consumers, once an overall quality and con dence is guaranteed.

A lean delivery process encourages development teams to work in an empirical approach, in which they can test new ideas and get early feedback from automated tests and customers. Cd and CD are enabled by a streamlined process that continuously evaluates the reliability of the software system at each commit, such that the latest reliable version of the software system is always available. The following section presents the deployment pipeline that implements this process.

Deployment Pipeline

The deployment pipeline proposes a solution for the problem of continuous delivery. It provides an end-to-end approach to delivering software by automating all the processes from version control until execution. In this pipeline every change to the software goes through a complex process on its way to being released. The process involves building the software, followed by the progress of these builds through multiple stages of testing, deployment into di erent environments and nally the release [Humble].

Definition 5: Deployment Pipeline

A deployment pipeline is a holistic process that automates certain software lifecycle activities such as build, test, deployment and release; which enables tracking each value from the it's conception at development until it's inception in the system.

The deployment pipeline provides visibility into the production readiness of software by observing and controling the progress of each change through di erent activities. As presented in the previous chapter (see . .), software lifecycle requires the involvement and collaboration of many di erent actors, such as developers, testers and operations personel. Having a holistic deployment pipeline enhances how many individuals from di erent teams work together e ectively.

The deployment pipeline is a pull-based system [Poppendieck]. Rather that pushing changes to di erent actors, the changes produced by the developers are built and stored in artifact repositories. This way changes are built once and generated artifacts can be associated with the change version. Only then di erent actors such as testing teams and operations can pull these builds as they need in the continuous ow. The central enabler of the pipeline is a repeatable, reliable and automated deployment process that produces deterministic results.

Using this deployment process, overall cost and risk of releasing and deploying software is reduced. Quality assurance teams can pull and deploy builds into testing environments. Similarly, operations can deploy builds into staging and production environments. The gure . depicts a generic deployment pipeline. The actual implementations of this model depend on the structure and requirements of the organization.

Since the deployment process (whether to a development machine or for production) is automated, it can be executed and tested regularly. Indeed for each change (on code or con guration) there can be a deployment on a testing environment. As a result, involved teams can get rapid feedback on the code and the deployment process. The idea of transferring knowledge regularly from the deployment process to the development team gave rise to a new movement called DevOps [Humble]. The idea behind DevOps movement is to encourage the close relationship between di erent actors; developers, operations and testers (or quality assurance), involved in the software production, who belong traditionally to di erent backgrounds. The continuous feedback provided by deployment pipeline bring together the developers, who are in charge of requirement analysis, design and development with operations teams, who supervise the deployment, execution and maintenance.

Enabling Technologies for Continuous Deployment

The continuous deployment, as seen in the previous section is built upon a set of best practices around the pivotal concept of deployment pipeline. The deployment pipeline is made possible by a set of tools and indeed, accommodating right tools helps to establish best practices inside an organization. This section presents brie y the practices that are essential to establish a continuous deployment pipeline. These are source code management, automated build, continuous integration, artifact management, automated deployment and autonomic control loop.

Source Code Management

Version control systems (VCS), also known as source code management (SCM) systems, are a mechanism for keeping multiple versions of les, so that each modi cation is archived and previous versions of les are accessible. Beyond that, they are tools through which people involved in software delivery can collaborate. These tools provide a workspace for collaborating and creating new value from existing ones.

VCSs help teams to avoid (and resolve) con icts that may appear during development by keeping track of changes made on controlled les. Indeed, this is valid not only for source code les but for every single artifact related to value creation. These artifacts may include source code, documentation, con guration les, les related to the build or even virtual machine images. Each change to these les is identi ed by a commit that represents a a particular version of the software. More recently, with the emergence of systems that automate deployment process, the deployment con guration of applications and the description of the runtime environments are equally included in version control as code. The trend to treat those artifacts as code and put them into version control is known as the infrastructure-as-code [Spinellis].

There can be di erent types of VCSs depending on the type of the stored artifacts. Git 1 is an example VCS for source code and con guration les. Distributed VCSs like Git provide entire history of the source repository to each user. They allow developers to easily create local and remote branches, work o ine, merge changes and push them to other users. They also enable advanced collaboration scenarios such as code reviews.

Automated Build

A build process is a sequence of tasks that transforms development artifacts (source code, con gurations etc.) to deliverables (executable binaries, distributions etc.). Depending on the technology, this process can include steps such as dependency calculation, environment-speci c compilation, di erent kinds of tests and packaging.

While the value is created as raw artifacts, the focus of a deployment pipeline is deliverables. This is why it is crucial for the coherence of the pipeline that the build process is automated in a way to produce deterministic deliverables. Automated tests attached to the build process verify each build in order to detect errors as soon as possible. Tests are particularly important, because they validate the correctness and quality of resulting deliverables. They are focused on asserting that the code compiles successfully and passes a body of unit and acceptance tests. There are many tools that allow build automation, such as Make 2 , Apache Ant 3 , Apache Maven 4 , Gradle 5 , and MsBuild 6 .

Continuous Integration

Continuous Integration is a software development practice where members of a team integrate their work frequently, leading to daily integrations of projects. Frequent integrations are enabled by an automated build process that rebuilds and tests the system at each change. Continuous integration ensures that teams working together to create complex systems can do so with a higher level of con dence.

A continuous integration tool provides a bridge between di erent other tools. It is based on the notion of job that executes and integrates di erent tools (see gure .). A change in the source code, a dependency or a xed period can trigger the execution of jobs. Usually the job execution merges the changes from the VCS, invokes the build process and test suites. Indeed in a deployment pipeline, it is crucial that every change (every commit to the VCS) triggers a build process in order to detect early con icts and errors. This allows teams to follow the state of the software product at each commit. If the build process and all the tests nish without errors, the job ends by producing binaries and often by publishing them into an artifact repository. It is essential in the context of a deployment pipeline to produce executable binaries exactly once for each commit and keep the track of which commit produced which set of binaries. Another type of job can connect code metrics and pro ling utilities that evaluate source code and generate reports about its quality. However, for the rapidity of builds, the build and test process should not be exceedingly long. Usually minutes is an acceptable time for project build and unit tests to be completed.

Continuous integration mainly focuses on development teams. The output of the continuous integration system, therefore the binaries and build reports, normally forms the input to the manual testing process and to the rest of the release process. The goal of the deployment pipeline is to continue automating the rest of this process. There are many tools that lets implementing continuous integration such as Jenkins CI 7 and Travis CI8 .

Artifact Management

Artifacts are assembled pieces of software that include packaged, deliverable application code, application assets, virtual machine images, and (typically) con guration data. An artifact is identi able with a unique name and version. Each identi ed artifact is also immutable. An artifact repository manager stores and organizes artifacts and metadata about those. Repository managers are capable of archiving multiple versions of artifacts and analyzing those according to policies indicating product quality such as dependability or performance. They allow to publicly share binaries with members of the team or third-party collaborators. Sonatype Nexus 9 is an example of repository managers that is widely used by developers to archive and publish software artifacts. Another example of repository manager is a service called Bintray 10 . It provides social services for developers to store, publish, share and download software artifacts, and receive feedback over users of their packages.

Automated Deployment

As expressed above, deployment automation is a must for the deployment pipeline. The previous chapter studied software deployment in details, and presented di erent approaches to automate the deployment process. Throughout the course of the deployment pipeline the deployment process is invoked in di erent stages for deploying applications into testing, staging and production environments.

The deployment automation takes care of two distinct but complementary deployment requirements. Firstly, teams need to create runtime environments on-demand by using tools that can provision machines (possibly virtual machines) and con gure those with prescribed environment templates. Such environments are usually software stacks consisting of the operating system, required services and the middleware. Vagrant 11 and Docker 12 are examples of tools that allows de ning runtime infrastructures. Then, secondly, using the provisioned environment as a basis, applications can be deployed by retrieving binaries from the artifact repository and application con gurations. Such tools include Chef 13 , CFEngine 14 and Puppet 15 .

The whole process of provisioning the runtime environment and deploying the application must be automated, easy to invoke and deterministic. For example, if a script is realizing the application deployment, it must be accessible to everyone through version control and give the same result in same conditions no matter where it is deployed. This is required to make sure that the software tested throughout the pipeline is the same as the system released into production. Together with the automated build, this property ensures that artifacts built on the development machines are the same as the one that reaches the production.

The deployment pipeline depends on the ability of di erent teams to reproduce runtime environments and applications. Each time a commit passes the build process and automated tests, a well-de ned deployment process can be invoked automatically. The automated deployment process pulls the latest changes, deploys and executes the software for acceptance tests and staging. Here the software system runs on con gurations as close as possible to the production. It is subjected to di erent kinds of functional and performance tests. Tools that test application behavior include Apache JMeter16 and Cucumber17 , whereas LoadUI18 is a tool for performance testing. Only if the functions are quali ed, the new system containing the changes of the commit can be released to the production.

It is possible to implement di erent release policies for the delivery of the software into the production environments. Cd and CD are distinguished in this respect. If the deployment pipeline applies CD, the deployment into production occurs at each commit. A common practice is to deploy changes to production by promoting staging environments into production. This way deploying a new release, for example of a web application, can be as easy as switching requests from old production machine to the new one. Other deployment patterns include canary releases, where multiple versions of the same product coexists or yet, blue/green deployments in which new release takes over to the old one gradually.

In these use cases automated deployment must not only conduct deployment actions in one deployment host, but also coordinate deployment processes in multiple hosts. Remote administration tools such as Capistrano19 and Fabric20 help realizing such tasks. However, in some environments such redundancy is not permitted. For example, in pervasive environments machines are not replaceable due to physical location concerns. Instead, new releases should recon gure and adapt existing production environments in order to deploy the new release.

Monitoring & Control Loop

In lean software development it is pivotal to continuously improve applied processes by rapid feedbacks. Throughout the deployment pipeline feedbacks are constantly gathered from build and test reports. When a problem is detected, the instance of the deployment pipeline is stopped and error reports are transferred to the developers. On the other hand, in addition to di erent kinds of tests (unit, integration, acceptance, functional, etc.) it is also important to monitor running systems for errors and unexpected behavior. As soon as a problem is detected on the production system, development and operations teams act on to resolve the issue and push a change to the deployment pipeline that xes it.

Analyzing system logs is still one of the essential ways of spotting problems at runtime. For systems running on multiple machines, logs should be collected from each machine, stored and indexed for search. For system monitoring, tools such as Nagios21 and Collectd22 provide metrics and auditing on system health and performance. For monitoring applications, each middleware technology provides touch points for monitoring the aspects they handle. More generic approaches also exist. CIM [Dis] is an open standard that provides a common de nition of management information for systems, networks, applications and services. It enables consistent information exchange between multiple parties about managed systems. JMX [Sun Microsystems b] speci cation provides a standard way for monitoring and managing Java Virtual Machine. The .Net Framework provides monitoring management interfaces through Windows Management Instrumentation (WMI) [Microsoft].

In spite of many possibilities for monitoring running systems, it is still di cult for operations teams to make decisions and take actions depending on low-level information such as logs. Graphite23 is a visualization tool that aggregates di erent monitoring metrics and provides meaningful graphs to system administrators. In most cases operations teams -including system administrators -need to run in-depth system diagnostics to detect root cause of errors. Such diagnostics may require a post-mortem analysis of the system state (memory, disk space etc.) at the time the error has occurred. Similarly, system optimization requires comprehensive reports over a period of time, in order to detect performance bottlenecks, security soft spots and memory leaks. In order to obtain highlevel indicators for the system's health and performance, system administrators need to store monitoring data historically and then run analysis on it.

Once operations teams are capable of analyzing running systems and detecting errors, they can take relevant actions in order to circumvent errors and/or to optimize the system. Most of the time these actions involve a deployment process of recon gurations and updates. Similar to the monitoring, these actions are e ectuated through a number of touch-points from di erent layers of the system. The key for achieving CD is to minimize the time between the problem detection and the propagation of the solution that xes the problem. Therefore for fast response times system operators need to establish a control system by automating both the monitoring and the deployment actions.

The idea of autonomic computing, initiated by IBM in a manifesto [Horn], pro-poses a solution for this problem. Autonomic Computing aims to develop self-managing software systems in order to minimize human intervention during their operation. IBM identify four properties for self-managed, autonomic systems:

-Self-con guration: The system has the capacity to con gure itself and its components in an automated way, guided by high-level policies and goals.

-Self-optimization: The system and its components have the capacity to optimally use the available resources. It continually seeks to improve its own performance and e ciency.

-Self-protection: The system automatically defends against malicious attacks or cascading failures. To protect itself, the system must detect (or anticipate) risky situations by using early warning and prevent systemwide failures.

-Self-healing: The system automatically detects, diagnoses and repairs software and hardware problems. The goal of the system is to increase fault-tolerance and the availability of the system and its services.

Autonomic systems are made of collections if autonomic elements, which manage its own behavior and its relationships with other elements, in accordance with policies established by humans and other authorities. Inside an autonomic system, elements that are managed can be in many levels. At low-level, the managed element could be a hardware resource, such as storage, a CPU, or a printer. At this level autonomic abilities of individual components are relatively limited and hard-coded. Particularly well-established techniques are used for providing fault-tolerance. At higher levels, software resources of di erent scales can also be managed, such as databases, legacy systems, software components, application services and third-party software utilities. Usually software management allows increased dynamism and exibility. Autonomic aspects can be expressed in more high-level, goal-oriented terms, leaving the rest to the autonomic capabilities of the element.

Autonomic elements need to continuously sense and respond to the environment in which they are situated. Constructing autonomic elements requires to implement, implicitly or explicitly, one or more feedback loops that will gather information and act on the system and its environment in order to meet the established goals. In a classical sense a control loop includes at least three steps: information gathering, decision=making and action. Based on the information collected in the environment and its internal state, the system determines the necessary actions to comply with a set of objectives and acts accordingly.

IBM proposes a logical architecture for the implementation of this control loop, identifying four distinct activities performed by an autonomic loop control [Kephart]. The reference model for an autonomic manager is composed of ve parts (see gure .), known as MAPE-K: -Analyze: This module determines if changes are required according to the reports provided by the monitoring. It can diagnose problems by detecting correlations and anticipating situations that can occur. As a result, it produces a list of problems to resolve.

-Plan: Planning resolves the identi ed problems. It accomplishes this by proposing an action plan, a series of operations that allows to attain a particular state, that will resolve the problem.

-Execute: It applies the problem resolution. It acts on the managed element using action touchpoints for applying actions xed by the plan.

-Knowledge: Knowledge base allows di erent modules to exchange messages and persist the information they produce, for example, measured values or a history of these last, as well as information on policies and high-level objectives. It is continuously updated to trace the evolution of the state of the system.

The foremost advantage of this separation lies in the increased maintainability and reusability. Modular design and well-de ned interfaces between di erent modules, as recommended by the reference model, allows to use di erent tools and technologies for each activity. These tools can be implemented separately by di erent companies or groups who can focus on a particular aspect.

Requirements for Continuous Deployment

Previous sections of this chapter introduced lean software development and discussed the practice of continuous deployment in more details. The remainder of this chapter concentrates on the continuous deployment in modern, dynamic execution environments, such as pervasive and Cloud computing. This section discusses the requirements for constructing deployment facilities that are able to apply continuous deployment in dynamic execution environments. The previous chapter of software deployment evaluated certain existing works against a number of criteria (see section . .), which are derived from the characterization framework of [Heimbigner]. The requirements studied in this section aim speci cally to identify challenges brought by dynamic environments to the problem of continuous software deployment. The most apparent characteristics of such environments are the unanticipated, continuous change and the fact that deployment requests can originate from di erent sources. Similar to the previous chapter, here also the requirements are studied in three categories, requirements linked to the deployment platform, requirements regarding the deployment process, and the requirements for the language that describes the deployment. A preliminary version of this study is published in [Esco er b].

Platform Requirements

The rst category of requirements focuses on the deployment platform, i.e. the capabilities that must be provided by the execution environment to support the continuous deployment of pervasive applications. First of all, the platform must be able to deploy components separately at runtime. Because of the dynamism exhibited by pervasive environments, the platform must also provide con gurability, re ection, architectural recon guration and context access capabilities.

a. Configurability

The deployment process is not limited to transfer software resources to the execution environment; it also includes con gurations. This requirement is particularly important in pervasive applications as the con guration is one of the most used levers to handle adaptations [McKinley]. Because of the dynamic adaptations required by pervasive systems, the con gurations must be updatable at runtime.

-Execution Platform Con gurations: The con gurations to initialize the execution platform at start-up.

-Load-time Con guration & Composition: The ability to con gure code at loadtime. For modular platforms this may also include the composition and binding con gurations of modules and components.

b. Modular Dynamic Execution Platform

In order to adapt themselves to unanticipated situations, pervasive applications must be modular [Kramer]. The platforms and applications must be composed of distinct modules that can be installed, updated and uninstalled individually. Modularity may also involve dependency management. Modules could declare dependencies that must be resolved by the deployment process. The targeted entities can be another module, or be more abstract in order to introduce variability and constraints.

-Loading/Unloading code: The ability to both load and unload modules dynamically at runtime.

-Dependency expression and resolution: The type of dependency expressions and how they are resolved and satis ed on the execution platform.

-Dynamic programming languages: Some execution platforms allow dynamically loading code using dynamic programming languages.

c. Reflection

Managing modules and con gurations is not enough. The platform must also provide information about the current modules, their states, and con gurations, and allow to change these when needed. The capability to change represented aspects, i.e. intercession, is a must for the deployment process to modify the execution platform. Having introspection facilities is an also absolute requirement to let the deployment process determines changes to apply on the system. The introspection data must not be limited to deployment information, but also represent system speci cities, available services, computational resources and any data required by the deployment agent to drive the deployment process successfully.

-Structural reflection: The platforms capability to re ect its static structure, such as modules, packages, con gurations.

-Behavioral reflection: The platforms capability to re ect its execution such as processes, variables and threads.

-Call interception: The platforms ability to intercept calls, such as method invocations and variable accesses. The interception can change the content of the invocation.

-Binding interception: The platforms ability to change and customize the default policies for binding module and component dependencies.

d. Architectural Reconfiguration Support

The dynamism of the pervasive environment in uences the architecture of pervasive applications [Oreizy]. For instance, a new resource can become available, while another disappears. These events can involve dynamic architectural recon guration. In order to make these adaptations possible the platform must provide primitives on which the deployment agent can rely.

-Architectural script: The execution platform can provide basic operations and scripts on top of those in order to enable architectural recon guration.

-Service-orientation in component binding: The service-orientation in component interfaces and binding mechanisms allows architectural recon guration to be seamless during execution.

-Tranquility: The platform can provide tranquility (sometimes called quiescence) of components during architectural recon guration. This may involve deactivating the component, saving its current execution state and restoring that state at the end of the recon guration.

e. Context access

The uctuations of the environment in which the pervasive applications are executed are also posing problems in terms of deployment. Contextual changes have an e ect on the deployment process. To implement the continuous loop required to deploy pervasive systems and keep them e ective when facing new situations, the deployment agent must be able to monitor the environment. For this reason, the platform must o er context mining, and observation features. This requirement does not de ne the scheme or the type of represented context data. However, every piece of information required to optimally drive the deployment process should be accessible by the agent.

-Flexible context model: A exible context model can be extensible with new context information and clients of this model can choose to consume di erent views.

-Context mining: The context mining involves the ability to discover new information from the represented context. It may involve correlation analysis of certain context data inside a temporal window.

Process Requirements

The second category of requirements focuses on the deployment process itself. Dynamic environments impose several characteristics to the deployment process. Whether it is for an installation, update or uninstallation, the deployment process is initiated either from the system or externally. Then, it analyzes the deployment request and de nes a deployment plan listing all the actions. This process includes the selection and/or re nement of the components to deploy. Because of the pervasive environment characteristics, the decisions taken during the deployment process may become invalid, and adaptations must be applied to keep the applications in an operational state.

a. Pull/Push

The deployment process may be triggered either by the system itself or push from externally. In the rst case, the system discovers a new required resource, such as a device driver and asks the deployment agent to install the required artifacts. In the second case, the deployment process is triggered by an external entity. It can be the user having purchased a new application on a store, an application update pushed by the application vendor or the platform operator updating technical services. The openness and uncertainty of the pervasive environment requires that both the pull and push modes be supported. More interestingly, the source of the push is not unique. Having multiple sources makes the scheduling and prioritization of deployment requests more complex.

-Push: The deployment request is pushed to the platform start a deployment process. Multiple deployment processes on remote machines can be coordinated with the push approach.

-Pull: An internal change from the platform can trigger a deployment request that pulls the changes to deploy and executes the deployment process locally.

-Both: The deployment request can be pushed from an external authority or pulled by the initiative of the platform.

b. Determinism & Idempotence

Determinism is an essential property to make pervasive system deployment reproducible.

For a particular environment, on a speci c platform, a singular deployment process must always result to the same system. Such a capability is critical for making the deployment process testable, and improves the reliability of the deployment infrastructure.

Idempotence implies that the deployment will not change the system if it is already in a desired state. This is important because running the deployment process multiple times will only change resources that are necessary to change, without touching others. This property is rarely supported in traditional deployment tools. Unfortunately, the multiplicity of deployment sources makes the idempotence a requirement necessary but di cult to satisfy.

-Idempotence: The actions taken during the deployment and the overall deployment process is idempotent. For example, deploying an already deployed artifact won't modify the system.

-Deterministic: The decisions made during the deployment process are result of deterministic processes and algorithms.

-Probabilistic: The deployment facilities employ probabilistic algorithms during deployment.

-Heuristic: The process use heuristics to decide on the actions taken during the deployment.

c. Fault-tolerance

The deployment process is constituted from a set of actions that change the pervasive system. However, one or more of these deployment actions can fail. In this case, it is essential to rollback to an operational state, avoiding stale situations. As a consequence, all the deployment activities must be executed inside a transaction [Coghlan]. Many deployment technologies are supporting transactions, however in case of dynamic environments transactions are not only impacted by the deployment process but also by external events. This aspect makes the transaction support very complex to implement.

-Concurrency Atomicity: Two concurrent deployment processes does not e ect one another. This is also called isolation.

-Failure Atomicity: A failure atomic deployment process performs either a deployment entirely or, in case of a failure, not at all.

-Consistency: A consistent process assures the integrity of the constraints on the platform state. These are invariant properties of the platform resources and deployed applications.

-Durability: Durability property states that if a deployment process succeeds, the changes it brought to the platform are permanent, until another deployment process. In certain environments, where some changes are contingent and uncontrollable; assuring durability is not an option.

d. Customizability

One of the main di erences between traditional deployment and pervasive system deployment is the unknown environment in which the applications are deployed. The constantly changing target site entails the process to adapt itself. These adaptations include variability in resource selection, extension of the process for error handling and adaptive algorithms for resolving resource dependencies.

In addition, the platform is actively involved in the deployment process. It often needs to participate to the resolution and decision making process to adapt the deployed resources and their con gurations. The deployment process should be customizable according to platforms changing requirements and constraints. For instance, the platform may provide the process with con guration data and in uence dependency resolution to t the underlying system constraints.

-Policy customization: The ability of the process to allow customization of deployment policies. Custom policies are useful in cases of error and con ict.

-Resource type extensibility: The ability of the deployment process to be extended for covering di erent types of resources.

e. Continuous Adaptation

Deployment process adaptation does not only happen during the initial deployment. Throughout the lifetime of the system, adaptations are required such as in [Medvidovic]. Environmental changes may require adapting already installed resources. Newly installed applications may also ask for optimizations or recon gurations on technical services provided by the platform. This continuous adaptation process is similar to the autonomic computing loop proposed by [Kephart]. In such paradigm, the deployment agent would be an autonomic manager handling deployment requests, and adapting applications when changes in uence the component selection and/or con guration. Notice that pervasive applications are often autonomic [Parashar , Diaconescu] and collaboration between an autonomic manager and a deployment agent is proposed in [Maurel].

-Policy based: Adaptation logic are developed as code in policies that decides on the deployment actions to take and executes the adaptation process.

-Constraint based: Adaptations are described as constraints on the platform state.

A constraint solver (usually a SAT-based solver) must decide in which state the platform must be, and triggers the deployment process for the suitable change.

-Rule based: A set of rules constitute the adaptation logic. A rule can be described with conditions on certain platform state or events and the actions to take once these conditions are valid.

-Planning based: Adaptations are generated as a result of a AI planning algorithm (for example LPG [Kvarnström]) continually working to satisfy given domain knowledge and constraints.

It is important to note that constraint solvers, rule-based systems and planning algorithms that use heuristics do not produce deterministic results for obtaining adaptation logic.

Language Requirements

The third category of requirements includes the criteria on the descriptor language that de nes the deployment. The deployment descriptor language is the interface between users (such as developers and operations) and the deployment facilities that conduct the deployment process. It structures and limits the information that can be introduced into the deployment process.

a. Expressivity

The deployment descriptor thus has a pivotal role in the deployment process. Not only it speci es the rst deployment of the system but it is also needed for guiding continuous adaptations during its lifetime. Expressivity de nes the elements that can be described by the deployment descriptor.

-Entities and their relationships: The descriptor language allows describing entities to be deployed and the relationships between those, such as dependencies and inclusions.

-Platform constraints and requirements: The deployment descriptor includes information about the invariants of the deployment platform and the connections between the platform and deployed applications.

-Process customizations: The deployment language allows to describe custom policies for that the deployment process is customized for a particular instance of deployment.

b. Extensibility

Open environments such as in pervasive computing, deal with a vast heterogeneity of types of entities and artifacts. The deployment of each di erent type of entity may require di erent information and procedures. The deployment descriptor language must be able to express a variety of resources, and be extensible with new eventual types. In addition, for a deployment process that is extensible for handling new types of resources, the descriptor language must also describe how the process is extended for handling them.

-New entity type: The deployment descriptor language allows integrating new entity types.

-Inheritance: New entity descriptions can be created by inheriting from existing ones, adding other properties.

-Substitution: The language allows rede ning existing entity descriptions according to a well-de ned contract [Liskov].

c. Variability

The traditional vision of deployment favors precise description of the system to deploy.

Precisely described system deployment does not leave any ambiguities nor choices and leverages determinism of the resulted system. Static, precise deployment descriptions are inadequate to be used for deploying software in dynamic environments. While target environment is unknown and dynamically changing, the deployment descriptor must allow certain amount of variability. The notion of variability is studied in software product lines [Bosch], which is a static, prede ned variability. The description of a pervasive deployment must support a higher level of variability, where resource selection, resolution and activation are done at runtime regarding state of dynamically evolving environment. Dynamic product lines address this problem by calculating and deploying new con gurations of the system at runtime [Cetina , Parra].

-Resource selection: The variability described by the descriptor includes information for the adaptation process to choose the changes for applying the variability.

-Architectural con guration: The deployment descriptor describes di erent architectural con gurations each variability contains.

-Dynamic recon guration: The deployment descriptor language includes information that enables dynamically recon guring between di erent variability choices.

d. Usability

Specifying a deployment is a delicate work, which usually needs high precision and attention. Deployment descriptors are development artifacts, and as any other code must be versioned and tested [Spinellis]. The language of deployment descriptor should be easy to develop in order to simplify the work of platform operators and application developers. Usually reducing the number of concepts would result in a simpler language. However this should not compromise on the expressive power and completeness of the speci ed program. A better way to quantify this may be the learning curve for new developers and ease of adoption for organizations. Also, as for any code, reuse of already speci ed descriptors would ease development. The language for deployment descriptor must provide constructs like code inclusion, inheritance or composition.

-Declarative language: The language describes the structure of the entities and artifacts involved in the described deployment process, instead of expressing the execution ow of the process.

-Imperative language: The language describes the execution of the deployment process, in terms of sequences of actions to perform.

-Language constructs: Language structures such as including and referencing other descriptions allow reuse and composition of deployment descriptors.

Positioning of Related Works

Evaluation of Deployment Platforms

In this section, we position well known platforms and academic works against presented platform requirements and compare them (Table .). Nearly all deployment solutions are built on existing platforms. They enhance standard functionalities on these platforms for providing deployment operations. Package managers, such as RPM [Bailey] built on Linux systems, are heavily used in the provisioning of industrial applications. The combination of the underlying operating system and the package manager allow the installation, update and removal of packages dynamically. The package structure, their customization and how dependencies are expressed make them an interesting approach to build Linux-based pervasive systems. With the rise of Cloud Computing, new tools have emerged to ease large-scale deployment [Turnbull , Nelson-Smith]. Infrastructure-as-code facilitates creating deployment descriptions. These systems support con guration and recon guration of different types of systems. However, they do not support architectural recon guration and often rely on packaging systems. Their context management is also limited to prede ned data.

The OSGi service platform has become the de-facto modular layer for the Java Virtual Machine. OSGi™ de nes a dynamic deployment platform ful lling most of the platform criteria. With modular deployment capabilities, OSGi constitutes an important foundation for building Java-based deployment platforms. OSGi proposes technics to support architectural recon guration by promoting service-orientation. However it involves very complex code to manage it correctly. In addition it does not provide any context support. Many pervasive platforms, such as H-Omega, GatorTech and SOCAM, are relying on OSGi to deploy applications. They o er a context service responsible for collecting and maintaining contextual data. In addition, H-Omega is based on the Apache Felix iPOJO component model o ering dynamic architectural recon guration support. But this support is too limited to cover all cases, such as global constraints or contextual bindings.

In academia, early works such as [Andersson] concentrated on de ning bases of deployment platforms and stressed importance of modularity and the dynamic update of modules. Later, platforms that provide dynamic recon gurability feature [Bures , Hoareau] gained focus as foundations for deployment in pervasive environments. Especially, the combination of PCOM [Becker] and BASE [Becker] provides a pervasive platform with architectural recon guration capabilities.

By default, all of these systems satisfy con gurability and introspection requirements, which is absolutely necessary for any kind of deployment.

Evaluation of Deployment Processes

In this section, we position well-known platforms and academic works against the presented process requirements. Package managers enhancing the operating system are providing very customizable transactional deployment processes. Every module can extend the process with pre-and post-actions. Unfortunately, they need to be extended in order to support external push. In addition, they do not support any continuous adaptation.

Tools like Puppet or Chef generally adopt a centralized master server, triggering deployment on remote targets. These targets can impact the deployment process, such as the resource selection. Thanks to the resource-state model promoted by Puppet, it also supports idempotence. However this feature makes the usage of Puppet much more complex for administrators, requiring to shift their mind to this new descriptive model.

Many tools rely on OSGi to enhance their deployment capabilities. OBR and P are proposing advanced provisioning functionalities on the top of OSGi. They extend standard OSGi deployment features with advanced dependency management and constraint solving. Deployment admin speci cation provides a transactional deployment model. Apache Ace is based on the deployment admin and allows deployments from a remote server. However, they do not provide enough exibility to support continuous adaptations needed for pervasive deployment.

OMG D&C [Object Management Group b] speci cation de nes rigorous principles, actors and actions included in a standard deployment process. It speci es a push model, where released software is con gured on target platforms according to a deployment plan. Software Docks [Hall] proposes a deployment agent supporting a very customizable process. It can adapt deployed components to the current environment, and install additional components according to the current constraints. Unfortunately, they do not support continuous adaptation, and do not natively provide a dynamic deployment platform.

Several projects have proposed autonomic deployment process such as ADME [Dearle

] and j-ASD [Hoareau].

These approaches are based on constraint-solving to select the components to install. Other projects such as PlanIt [Arshad] and PLASMA [Tajalli] use planning algorithms for calculating deployment plans. PCOM [Becker] also applies adaptation on architecture level for a customizable, continuous deployment process. However, any of these approaches support transactions and their support of the continuous adaptation is not deterministic.

Lastly, Nix [van der Burg

] stands apart from other projects as it stresses the importance of transactional deployments. However, it renounces dynamic adaptations in order to provide safer transactions.

Evaluation on Deployment Descriptors

In this section, we position deployment descriptor languages employed by deployment tools against presented requirements. Table . outlines this positioning. Note that we did not included deployment script languages in our study.

As an early approach to deliver Java applications to Internet clients, Java Web Start provides an XML-based description language, is relatively accessible to developers. However, it doesn't provide any variability over the resources, nor let users express requirements for applications. Puppet and Chef provide domain-speci c languages (DSL) for] provides a functional language to describe deployments. Functional programming is useful for the implementing an idempotent deployment process, but it is di cult for developers to debug their descriptions.

Conclusion

This chapter presents the ideas behind the recent trend of continuous deployment; in which every change created by the software producers is deployed into consumer environments. Continuous deployment is an end result of applying Lean manufacturing principles into software development. The goal of Lean is to create value-added products by less work. For this, it focuses on optimizing the production process in order to eliminate the waste, i.e. the work that do not make it to consumers.

Lean principles are applied in the software development through the concept of deployment pipeline. The deployment pipeline is a pull-based system that automates certain activities of software lifecycle, such as build, tests and deployment. During the process, it ensures that each change included in the development is traced and tested before being delivered to the consumers. Deployment pipeline also implements error reporting and feedback loops in every stage of software delivery. This allows software producer teams (developers, operations, etc.) to work empirically, seeing real repercussions of their e ect on the system. Once the deployment pipeline is in place, releasing versions of the software and deploying continuously depends on the automation capacity of the pipeline.

Later, this chapter brie y presents the technologies that are essential to implement the deployment pipeline. Some of these are traditional tools used in software lifecycle, such as version control systems, build automation and artifact management. Others comprise more advanced and recent technologies as continuous integration, deployment automation and testing and nally the monitoring and autonomic control.

The second part of this chapter presents the requirements for enabling continuous deployment, speci cally in dynamic execution environments. Similar to the previous chapter's deployment evaluation, requirements are regrouped into three categories, as platform, process and language. Each identi ed requirement is explained in detail for studying di erent possibilities in which they are satis ed. Lastly, these requirements serve to evaluate existing work. The result of this evaluation shows which requirements are not yet satis ed by the existing work. For deployment platforms, in spite of some proprietary works, most of the existing platforms lack the capability of providing access to exible context models. For deployment processes, deployment tools that provide deterministic and fault-tolerant deployment processes do not extend these properties to provide continuous adaptation properties. On the opposite end, works that concentrate on providing continuous adaptation lack on satisfying other requirements. For deployment descriptor, existing deployment tools lack the language support for describing a variable deployment process.

The next chapter presents the proposition of this thesis for addressing a set of wellidenti ed objectives in order to provide continuous deployment facilities for dynamic execution environments.

Introduction

The rst part of this document introduces the context of this work and presents the state of the art on software deployment in general. Then the previous chapter studies the requirements for the continuous deployment of software systems. This chapter is dedicated to the propositions of this thesis. To begin with, this section starts by spelling out the problems addressed by this research and clarifying the objectives pursued. Then it continues on by presenting the adopted approach and summarizing the overall proposition. After this introduction, di erent parts of the proposition are presented in detail, together with corresponding discussions. Finally this chapter concludes by evaluating the contributions of this proposition.

Problem Statement

Modern applications raise new challenges for the developers and other stakeholders who participate in the development process. Developing dynamic, scalable software systems that run on distributed and heterogeneous environments goes beyond the realm of programming. From the technical point of view, this requires integrating hardware and software solutions in order to make services available to the use of users. Besides, from the industrial point of view, service and application providers want to maintain these solutions and keep providing users with new and better versions of their services, as fast as possible. Therefore, modern application development is rst of all a software engineering challenge, one that requires supplying developers coherent tools and processes to make sure of agile and continuous software delivery.

Considering its particular case, dynamism is one of the requirements and main enablers of this vision. It is a property that is increasingly expected from modern applications. After having been limited to a few domains such as operating systems [Fabry] or pervasive computing [Satyanarayanan]; most recently, dynamism is increasingly expected from modern applications. For instance, applications running on Cloud environments have access to dynamically allocated computing resources that can change at anytime. Similarly, as a next step of modularization of software systems, so-called traditional enterprise application providers start to show interest to dynamism. Dynamism allows to handle asynchronous evolution of individual modules separately and without disrupting provided services.

The need for dynamic evolution of modern applications stems from di erent sources. Three sources that trigger the change can be distinguished [Esco er]. The rst type of change is initialized in a controlled manner, externally and consciously by administrator or con guration of user. Usually, this kind of change is anticipated and planned in advance. The second type of change is due to a decision taken by the application itself. This kind of change is seen in self-adaptive applications. It can be triggered due to a selfoptimization or reaction to a change in the internal context of the application, such as detection of an error. And the third sort of change is due to events external to the application, originating from the execution environment or the surrounding context. This kind of change is usually unanticipated, i.e. happens without the knowledge of the users and the administrators. Nonetheless unexpected things happen very often due to external conditions, such as network disruption or hardware fail. After such change, it is di cult to verify the integrity of the application and decide on which state it supposed to have.

In parallel, it is also important to recognize the administration aspect of these execution environments, regarding the ways software are being delivered to those. The recent years have witnessed the proliferation of application platforms. In not so distant past, only the operating systems of personal computers allowed users to easily install applications. Now di erent domains, such as Cloud, mobile and more recently pervasive environments, see stakeholders providing execution platforms and application stores that allow delivery and execution of applications easily over Internet. On the system administration front, this creates a duality over type and control over the software management. On one hand, the platform providers need to make sure that the software platform that provides support (APIs, access to resources, etc.) for applications is working as expected. This requires exhaustive testing of those platforms, against many scenarios and thus relatively little and slow evolution of the software. On the other hand, the application developers want to continue reaching users in di erent conditions, but also push new functionalities as early as possible. So the applications need evolving more rapidly and dynamically to the changes. As a consequence the development process of applications running in dynamic environments is hindered by the lack of tools that rapidly and automatically reproduce runtime environments used for testing, production, etc.

In this picture, the deployment process gains importance for the software delivery, as it is the crucial step that transforms passive code into an active entity. However, despite many in-depth studies on this domain, traditional approaches fail to address the above-mentioned challenges of dynamic systems. Often reduced to a process executed once and for all, current deployment solutions need to be extended for dynamic environments. The recently emerging eld of continuous deployment is a promising candidate for responding to the deployment needs of dynamic environments. It incorporates a set of practices aiming to provide a process for deploying software rapidly and predictably; whether for the rst provisioning of the system or for the adaptation of the running applications. The previous chapter studies requirements for enabling continuous deployment on dynamic environments and concludes that current deployment facilities fall short on satisfying those. For this kind of environments and applications the continuous deployment features need to take into account di erent requirements of the execution platform and applications, updates of separate modules, as well as their recon gurations to cope with the evolving context.

Research Objectives

The main goal of this research is to enable continuous deployment on dynamic execution environments, so that software systems continuously get updated and adapt to the changes of their internal con gurations and external context. Particularly, this thesis proposes a set of deployment facilities that are adequate for reaching this goal and demonstrate how these facilities can be implemented and used. These facilities comprise; -the process de nition that allows continuous deployments, -the reference architecture for a deployment manager and -the domain-speci c language for describing deployment tasks.

The requirements for achieving continuous deployment are already listed and explained in the chapter . In addition to the satisfaction of those requirements, the contribution of this thesis pursues four major objectives for the proposed solution and discusses their implications along this chapter. These objectives are: reproducibility and faulttolerance of the deployment process, providing means for continuous adaptation and the tooling support for the proposed facilities. Each objective address a number of underlying challenges, as shown in the Table . . Reproducibility -For build systems that produce executable software artifacts from the source code, reproducibility is a common practice: It is expected that every time same source code is built, the resulting artifacts will be the same. As for the deployment facilities, they produce executing software from software artifacts. Similarly a deployment process must ensure that repeating the same deployment operation in di erent deployment sites produces the same result on every site. If a deployment facility ensures reproducible process, only then it can be used to deploy on large scale, with many deployment sites. Total reproducibility is di cult to achieve because every deployment site is di erent in its actual state, which is sometimes unobservable. On the upside, it is possible to achieve a partial reproducibility, meaning that the system guarantees that a local, well-de ned part of the system con guration is as expected. This, in turn, gives the ability to deploy software on heterogeneous environments.

Fault-tolerance -One of the essential properties of software is the fault-tolerance, which is the ability to continue functioning under the conditions that are not expected. Yet it is seldom possible to provide a full coverage of faults and errors that may occur in real-world systems. Any software system needs to guarantee a minimum of fault-tolerance to be used in industrial scales. Moreover, attaining faulttolerance is even more challenging in distributed systems, because of the unpredictable nature and scale of underlying network infrastructures. In modern applications coordinating distributed computing elements has became mundanely common. Deployment is a critical process that is liable for failures, because of the fact that it changes the state of possibly already running systems. Because of these reasons, it is even more di cult to coordinate the deployment on multiple machines found in distributed systems. Providing industrial-scale, distributed solutions for deployment depends on the ability of the deployment process to be fault-tolerant.

Continuous Adaptation -As expressed in the beginning of this chapter, the environments targeted in this work are characterized by their unpredictable, dynamic evolution. The successful introduction of a software system in such environments is not the end of the deployment, but it marks the beginning of the runtime management of the deployed system. Managing the system at runtime requires monitoring its state and continuously adapting it through deployment actions such as updates and recon gurations. Continuous adaptation allows applications to handle dynamic changes. This way, applications can continue to be operational despite unexpected side e ects of dynamism. Moreover, such adaptation capabilities are the foremost prerequisite for creating context-aware applications. Context-aware applications can deliberately alter their con guration and behavior according to the current state of their environments.

Tooling -The adoption of a software solution is directly related to its ease of use, the more so when the target domain is complex. The ease of use is re ected through the mechanisms implemented to simplify the work of developers for performing tasks in hand. Tools help reducing the complexity by performing certain tasks automatically. Two important tasks that constitute deployment are the speci cation of the deployment and the execution of the deployment process according this speci cation. Deployment facilities are, by de nition, about automation of deployment operations. Yet this is, in general, con ned to the execution of the deployment process. Speci cation of the deployment is all so important and can get very complex for even small-sized systems. Easy to use deployment facilities are crucial to increase manageability of the deployment process, therefore that of the deployed system. Another aspect that increases the ease of use of the proposed system is its testability. The management of complex software systems is not possible without tools that allow to test deployment speci cations.

Approach

The state of the art on continuous deployment presented in the previous chapter concludes that the existing works fall short on satisfying all the necessary requirements for the deployment process. The contribution of this thesis concentrates, in the rst place, on providing a deployment process that satis es the mentioned requirements. In order to do so, the following de nition of the deployment process is used throughout this proposition.

Definition 6: Software Deployment Process

The software deployment process is a coordination of operations that brings a software system from its actual state to a target state.

This de nition is chosen explicitly to put emphasis on the coordination and state transition aspects of the deployment process. The rst step of this approach, therefore, is to formally de ne the problem domain of the software deployment process. Three parts can be extracted from this de nition namely, () the current state of a software system, () the target state expected to be e ective on the system and () the transition process that applies the expected state onto the actual execution environment.

Before proceeding further, it merits noticing that the contribution of this work does not handle distributed deployment. For concentrating on mentioned aspects, it is restricted to the deployment of applications running on a single site. Nevertheless, these applications can, and often does rely on remote services.

The rst part of this proposition, presented in section . , consists of providing a formal framework for these concepts. This framework is based on the generic concept of resource to represent current and target states of the platform. Resource concept allows the deployment process to be extensible for covering di erent kinds of entities that can be deployed on deployment sites. In addition to this, the target state of the system can be described as a resource graph, this time with di erent levels of precision and variability. This allows expressing possible con gurations of the applications regarding di erent states of the execution environment. This declarative approach is advocated by the Infrastructure-as-Code approach and the DevOps movement [Spinellis].

The next step of this approach is to de ne a deployment process on the top of state descriptions. This process is based on a transformation operation on resource graphs, which provides means to combine multiple descriptions into one. In other words, it describes the coordination of resource state transitions that occur during a deployment process. The section . outlines how the operation serves to de ne the deployment of a target description on an execution platform. This operation holds certain formal properties, including idempotence. Later discussions in the section . argues how the fault-tolerance and reproducibility are granted to the deployment process thanks to these properties.

Then the second part of this proposition, presented in the section . , consists of designing the reference architecture for a deployment manager that implements the formally described deployment process. This architecture aims to complete the promise of the deployment process by providing continuous deployment facilities for dynamic environments. The gure . shows the overview of this architecture. The context representation is in charge of modeling the current state of the platform. It provides a resource-based representation, on which each represented entity (resource) yields interfaces for observing and manipulating its state. This representation is extensible with di erent kinds of entities in order to cover possible resource heterogeneity on dynamic environments, notably in pervasive environments.

The deployment manager treats deployment requests triggered from di erent sources and, if necessary, plans and executes the deployment process. The execution of the deployment process is implemented inside local transactions for ensuring the faulttolerance. In addition to the implementation of the deployment process, the deployment manager provides management support for applications. Depending on the capabilities of the underlying context representation, it activates monitoring policies for each deployed application. Together with custom adaptation policies, it is capable of continuously adapting managed applications according to the changes on the platform state.

The third and last part of this proposition, presented in the section . , involves the design of a domain-speci c language (DSL) for describing the target state, as determined by the formal framework. This language allows to design deployment descriptors for applications containing variability. It constitutes a basis for the tool support and ensures the ease of use of the proposed deployment facility.

In the remaining sections of this chapter each one of these contributions are presented in detail. Finally the last section of this chapter concludes this proposition by evaluating these contributions in relation with the research objectives.

Formalization of Deployment Concepts

This section aims to present the conceptual framework, which guides the main propositions of this thesis. The framework formally de nes the concepts of software deployment based on the Set Theory and the Graph Theory. The concepts are presented in three groups as; resource related concepts, assembly related concepts and application related concepts. Each concept is de ned together with the rules and operations they participate in. Finally, these concepts allow to describe the algorithms used during the deployment process.

Resource Related Concepts

The resource is the elementary concept manipulated during the deployment process. A resource describes an entity state. This entity is intended to be found on a deployment site in the given state. This way a deployment site is composed of a set of resources, which represent all the relevant information of the environment. Resources contain su cient information to represent the knowledge of state and con guration of each entity. The state of the entity is modeled by a set of properties.

a. Property

The rst concept of the formalization is the property. Let k a name and v a value, then property p is de ned as a pair of name and value (See equation .). Notice that here the value type of properties is omitted in the de nition for the sake of simplicity. One can simply extend the de nition of property by de ning data types and valid values for each types, such as Boolean, Integer, String, etc. The real set containing is also simpli ed for the same reason.

b. Resource Type

The generic concept of resource covers a large spectrum of entities like services, les, executable binaries, their con guration, code libraries like Dll and Jar les, hardware resources like network ports, disk space, available memory, available peripherals etc. To be able to manage this heterogeneity di erent types of resources are de ned by the resource type concept.

The resource type determines the set of property names that are valid for resource descriptions. Each resource type identi es three sets of property names that are used to describe resources belonging to that type1 . Di erent kinds of properties serve to identify the resource description level, which is discussed below. In addition to that, each resource type de nes a special property that describes the state of absence, called negative property, which is also discussed below in detail. And nally a function f that prescribes the operations to be performed on the deployment site for changing resource state. The internal modeling of the state changing functions is out of the scope of this work. To give an idea, they can be thought as functions that take initial state and target state as resource descriptions and perform a set of operations. An example signature for a state transition function would be f = (r ini t ial , r t ar get).

Let I is a nite set of property names called Inquiring, S is a subset of I de ning property names called Specifying, C is a nite set of property names de ning property names called Constructing, ¬ the negative state property and the function f the state transition function. Then the resource type t is de ned with the following equation . . Notice that including valid property values for each property name de ned by the resource type can enhance this de nition This is also left out in this formalization because is not the core of this work.

c. Resource

The resource concept delineates the state of entities found on deployment sites. According to the type of the resource, the deployment process applies di erent actions for bringing resources to their intended states. For example, for a resource of type le, the deployment process should rst identify the hypothetical le described by the resource and then make sure that the actual le exists on given location, possessing described properties and content. If the le does not already comply with the described state, the deployment process should use the information given by the resource description (le path, le source, content, permissions, etc.) in order to apply necessary actions for creating or updating the le. On the other hand, there are resources, like available memory, that the deployment process does not have direct access on. These types of resources are still relevant for the deployment but all the deployment process can do is to check if an entity exists with the state described by the resource.

A resource is de ned with its type and the set of properties that describes its state. Let t is a resource type and P is a nite set of properties, the resource r is de ned as the pair type and properties (See equation .).

r = (t, P) | t = (I, C, S, ¬, f) ∈ , ∀p ∈ P | p = (k, v), k ∈ (C ∪ I) = { Set of resource types }, P = { Finite set of properties } (5.3)
An alternative but equivalent de nition of the resource concept would be de ning the properties into separate sets according to di erent types of properties (See equation .).

r = (t, P I , P C , P S) | t = (I, C, S, ¬, f) ∈ , ∀p ∈ P I | p = (k, v), k ∈ I, ∀p ∈ P C | p = (k, v), k ∈ C, ∀p ∈ P S | p = (k, v), k ∈ S, (5.4)
Universal set of all possible resources is noted as R. R = { Set of all resources } (5.5)

For a given resource r, its type is noted t y peO f (r) and its property set is noted pr oper t iesO f (r).

∀x ∈ R, x = (t x , P x) | t x = t y peO f (x) and P x = pr oper t iesO f (x) (5.6)

d. Resource Description Levels

As de ned by the resource type, properties included in a resource description can be inquiring, specifying or constructive. This gives the possibility to describe resource state in various levels, conforming to the type it belongs. Three rules are de ned on the resource concept that decides the level of description of resources. These rules give rise to four subsets of the universal resource set, noted , , and N .

Specified resource refers to a resource description that includes necessary information to be matched with a speci c entity. For example, given a le resource type, a speci ed resource should include the le's canonical path to be able to point to the exact le on the deployment site's lesystem. Let resource r = (t, P) with resource type t = (I, C, S), r is called speci ed resource if all the specifying property names de ned by the t are included in the properties of r. A speci ed resource is thus quanti ed as shown in the equation . .

∀r ∈ | r = (t, P), t = (I, C, S, ¬, f) ∀k ∈ S, ∃p ∈ P | p = (k, v) (5.7)
Constructive resource refers to a resource description that includes enough information to construct the given resource in case it is necessary for the deployment process.

Following the example on le resource type, a constructive resource would include the source identi er of the le or the content, along with the path that is intended to be placed on the lesystem. Notice that some resource types may not de ne any constructive property names, thus it is not possible to construct resources of that type. An example for these resources are hardware interfaces. A deployment system can check if a hardware interface, a USB device for instance, is present on the system but cannot construct it. Let resource r = (t, P) with resource type t = (I, C, S), r is called constructive resource if all the constructive property names de ned by the t are included in the properties of r. It can be quanti ed as in the equation . .

∀r ∈ | r = (t, P), t = (I, C, S, ¬, f) ∀k ∈ C, ∃p ∈ P | p = (k, v) (5.8)
Inquiring resource refers to a resource description that neither speci ed nor constructive, but describes the state of an hypothetical resource entity that exist on the deployment site. Instead of referring to a particular resource entity, inquiring resources describe a query on the deployment site, whether such resource described by the properties exists. An inquiring resource of type le, for example, may describe a le that is located under a particular directory, with a particular le extension, owner or access rights. This knowledge is not enough to create the le if it does not exist, or check its exact state, such as its content. Let resource r = (t, P) with resource type t = (I, C, S), r is called inquiry resource if all properties of resource r are inquiry property names de ned in t. It can be quanti ed as shown in the equation . .

∀r ∈ | r = (t, P) , t = (I, C, S, ¬, f) ∀p ∈ P , ∃k ∈ I | p = (k, v) (5.9)
Negative resource refers to a resource description that describes the absence of the described entity. Each resource type de nes a negative property ¬ that describes a state of the resource in which it does not exist on the deployment site. For a resource type le, it can be the state "deleted" or simply "absent". Notice that the value of this property is usually a String or a Boolean that represents the non-presence semantic depending on the resource type. For example, a system service's negative property can be de ned either as "not present" or "not started". A negative resource can be quanti ed by the equation . .

∀r ∈ N | r = (t, P) , t = (I, C, S, ¬, f) ∃p ∈ P | p = ¬ (5.10)
It is possible for a resource state to have mixed description levels. For example, a speci ed resource can include a number of inquiry properties that narrows down and describes more precisely the state of the resource. Constructive resources can also include inquiring and specifying properties to describe and specify the resource to be constructed. Relationships between di erent description levels are illustrated in the schema . . To summarize resource description levels, inquiry properties comprise the description of the expected state of the resource; specifying properties hold the information for pointing to a speci c entity and constructive properties hold the information whether the resource will be constructed, if yes how. And these three types of properties can be used together in a resource description (see Figure .). In parallel to these three description levels, a negative resource designates the state of absence of the described resource. Based on resource properties and description levels, it is possible to compare resources. Following rules lay out concepts of equivalence, inclusion and con ict between resources.

Resource Equivalence Two resources are said equivalent if they belong to the same type and their property set are the same, i,e. they have exactly the same properties, including name and values. In order words, let r 1 and r 2 two resources. r 1 and r 2 are equivalent if their type and property sets are equal (See equation .). Equivalence between r 1 and r 2 would be noted as r 1 ≡ r 2 .

∀r 1 , r 2 ∈ R t y peO f (r 1) = t y peO f (r 2)
pr oper t iesO f (r 1) = pr oper t iesO f (r 2) ⇔ r 1 ≡ r 2

(5.11)

Resource Subsumption A resource is subsumed into another if they are the same type and one's properties completely includes the other's. Let r 1 and r 2 two resources. r 1 is subsumed into r 2 if they are the same type and the property set P(r 1) of r 1 is a subset of property set P(r 2) of r 2 (See equation .). Subsumption between r 1 and r 2 is noted as r 1 r 2 , or r 2 r 1 .

∀r 1 , r 2 ∈ R t(r 1) = t(r 2) P(r 1) ⊆ P(r 2) ⇔ r 1 r 2
(5.12)

If two resources are equivalent, they are subsumed into each other.

r 1 ≡ r 2 ⇔ r 1 r 2 and r 1 r 2 (5.13)

Resource Conflict Two resources are in conflict if they refer to the same speci c resource entity but describe di erent states via their properties. Let r 1 and r 2 two resources. r 1 and r 2 are con icting if their type and their specifying properties are equal, they do not subsume one another and their entire set of properties are not equal (See equation .). Con ict between r 1 and r 2 would be noted as r 1 r 2 .

∀r 1 , r 2 ∈ R t(r 1) = t(r 2) = (I, C, S, ¬, f) ∀k ∈ S , ∃p = (k, v) | p ∈ P(r 1) , p ∈ P(r 2)
r 1 r 2 , r 1 r 2 P(r 1) , = P(r 2) ⇔ r 1 r 2

(5.14)

Assembly Related Concepts

Resources are regrouped together inside assembly structures. Inside an assembly, relationships can be expressed between resources. Assembly structures allow to bring resources that have associations relevant to the context of deployment.

a. Dependency

Naturally resources depend on each other to be able to function properly. A basic example would be a software component requiring a le to read and write data. In this case the component depends on the le. Dependency is a kind of "use" relationship between two resources. Resources can use, thus depend on, one another in various stages of software life-cycle, such as development time, deployment time and nally at runtime. In the previous example (gure .), although the component depends on the le, the absence of the le probably won't pose any problems during the installation of the component. However, at execution, the absence of the le may have an e ect on the operation of the component. In return a software component can also depend on another component, which it requires during deployment and execution. The concept of dependency is not equivalent nor do cover the notion of binding, a term that usually refers to the runtime references between software components. Instead, the dependency relationship models the requirements of a particular resource to attain the state described by its properties.

Let R is a nite set of resources, dependency is an asymmetric, intransitive binary relation in R. For r 1 , r 2 ∈ R dependency relation would be noted r 1 → r 2 . It is said that r 1 depends on r 2 . It is important to note that the dependency concept here represents only mandatory requirements, as opposed to the concept of optional dependencies. The concept of optional dependency appears in many dependency systems. It describes the cases where an entity will continue to operate in the absence of its optional dependencies but in a di erent manner. In this formalization framework such a special case is not needed because resources describe the state of entities. Indeed, an entity having an optional dependency can be represented as two resources with di erent states, representing the same entity, and one having an additional dependency for the case of optional dependency. There are pros and cons of such a modeling preference. On the downside, representing entities having multiple optional dependencies is di cult. This will cause as much di erent resources as there are combinations of availability of optional dependencies. On the upside, the resources represent entities in a precise manner. Each case of availability and unavailability of an optional dependency is represented with a resource state. Representing an entity with two optional dependencies (noted here with) would be like the following. Let r, s, m, x and y are resources

s → r r → m r x r y ⇒ s → r r → m & s → r x r x → m r x → x & s → r y r y → m r y → y & s → r x y r x y → m r x y → x r x y → y (5.15)

Graph Theory

A graph G is de ned as a pair of sets G = (V, E), where V is the set of vertices and E is the set of edges, formed by pair of vertices.

An alternative de nition de nes explicitly the direction of the edges is G = (V, E, s, t), where s, t : E → V are two relations indicating source and target vertices of edges. If sources and targets of edges are di erentiated, these graphs are called directed graphs, noted G d .

A graph is called simple if there is no loops and no multiple edges between two distinct vertices. A graph is connected if there is a path between every pair of vertices in the graph. If a graph is not connected, than each subset of vertices that are connected with each other with edges are called components (not to be confused with software components).

Directed Acyclic Graph or a DAG is a directed graph with no directed cycles, noted G d a . That is, when traversing vertexes in the direction of edges, there is no way of passing from the same vertex a second time.

b. Assembly

The highly generic concept of resource and simple dependencies leave many possibilities to express complicated dependency systems. A resource, for example a software component, can express its requirements for other software components and services, which are another resources; on a le, which is another resource; requirement on a container property, and yet on a feature of the operating system, which can also be described as resources.

The concept of assembly models a dependency system with a set of resources and dependency relations between those. Let R a nite set of resources and D a dependency relation de ned on top of R, an assembly is de ned as in the equation . .

A = (R, D) | R ⊂ R, D ⊆ R × R.
(5.16)

This assembly de nition is equivalent to that of a directed graph, with vertices as resources and edges as dependencies. Resources as assembly vertices already contain properties. Indeed a more speci c equivalence would be to the concept of property graph, in which each vertex and edge are associated with a set of key/value properties, as de ned in the concept of property. The universal set of all possible assemblies is noted as . In its de nition, a graph does not exist with an empty set of vertices. For this, an empty assembly is de ned as , as a theoretical assembly without resources and dependencies, de ned in equation . .

= (R, D) | R, D = = { Set of all assemblies } = G d ∪ { } (5.17)
For an assembly A, the set of resources it contains is noted r esour cesO f (A) and the set containing dependency relations between these resources is noted as

d epend enciesO f (A) (See equation .). ∀M ∈ , M = (R M , D M) | R M = r esour cesO f (M) and D M = d ependenciesO f (M) (5.18)
Assembly Validity An assembly is called "valid" if there is no con ict between its resources and dependencies between resources does not form a cycle. The set of valid assemblies is noted as * . Given the acyclic nature of the dependency relations in valid assemblies, the graph representing a valid assembly is a directed acyclic graph or a DAG, noted G d a . Assembly validity is de ned in equation . .

∀A ∈ * | A ∈ G d a , r 1 , r 2 | r 1 r 2 , where * = { Set of all valid assemblies } * ⊂ G d a (5.19)
An assembly is de ned non-valid when it contains dependency cycles or resource con icts. However, when an assembly contains resources that are equivalent with each other, or that subsumes one another, it is still deemed valid. This is because such assemblies can be reduced by eliminating resources that are equivalent or that subsume each other; without loosing information.

Assembly Completeness An assembly is called "complete" if it is valid and for each inquiry resource of the assembly is found at least one speci c resource that subsumes the inquiry resource. It is said that all inquiry resources are resolved inside the assembly. The set of complete assemblies is noted as + . Note that although all complete assemblies are valid by de nition, a valid assembly is not necessarily complete. Assembly completeness is de ned in the following equation . .

∀A ∈ + | A ∈ * , r 1 , r 2 ∈ r esour cesO f (A), ∀r 1 ∈ , ∃r 2 ∈ | r 2 r 1 (5.20)
The above remark about reducing assemblies is also viable for complete assemblies. Eliminating subsumed inquiry resources such that all remaining resources are speci ed or constructive can reduce a complete assembly. Such operations on assemblies are de ned in the following section.

Following are a suite of concepts that are linked to the graph theory and graph transformations. These theories are used to de ne the deployment process and the algorithms that can be used for coordinating this process. The properties shown by means of these theories are later discussed and serve to discuss that the approach presented in this thesis meets its objectives.

Graph Operations

Graph operations produce new graphs from input graphs. The changes to a graph as a result of an operation is represented using graph morphisms. Let G = (V H , E H , s H , t H) and H = (V H , E H , s H , t H) are two graphs, a graph morphism is de ned by a function f : G → H, f = (f V , f E) , which consists of two functions f V : V G → V H and f E : E G → E H such that f E and f V are compatible with source and target mappings, with

f V • s G = s H • f E and f V • t G = t H • f E . The composition of two morphims g = (g V , g E) and f = (f V , f E) is noted as g • f = (g V • f V , g E • f E) : G → I with f : G → H and g : H → I.
Using graph morphism, it is straightforward to de ne simple, local changes to graphs, such as addition or deletion of vertexes and edges.

A useful elementary operation is vertex contraction (identi cation), where two vertices of a graph are identi ed and merged into one vertex, assembling the edges into that merged vertex. Let G = (V, E, s, t) is a graph, vertices

x 1 , x 2 ∈ V , then it is noted cont r ac t ion(G, x 1 , x 2) : G → G .
The vertex contraction operation is used in the construction of quotient graphs. A quotient graph is constructed from a graph G with vertex set V and an equivalence relation ∼: V → V such that all relations in ∼ are identi ed and contracted in G. Quotient graph of G according to the equivalence class ∼ is noted

G /∼ .
A common binary operation is the disjoint union of two graphs. For two graphs

G = (V G , E G) and H = (V H , E H), their disjoint union is G ⊕ H = (V G ∪ V H , E G ∪ E H).
Using quotient graphs and disjoint union, it is possible to write another binary operation which glues two graphs to each other. Gluing of two graphs G and H is simply the quotient graph of the disjoint union of two graphs, (G ⊕ H) /∼ . Gluing constructions of graphs gave rise to the domain of graph transformations by the seminal work of [Ehrig].

c. Unary Operations on Assemblies

The fact that assemblies are de ned as graphs allows to use graph operations and graph theory methods to analyze and manipulate assemblies. This section de nes two operations, resource identi cation and resource subsumption built upon already existing operations on graphs.

Resource Identification is an unary operation de ned on assemblies. It manipulates the given assembly, contracting resources that are equivalent. The resulting assembly does not have any resources that are equivalent to each other. Resource identi cation over an assembly A is noted as id ent i f y(A). It is indeed a quotient graph of A over the equivalence relation ≡, which can be noted A /≡ . An algorithmic de nition of the operation would be like the following.

Procedure identify(assembly A)

Input: A = (V, E) ∈ . Result: A = (V , E) ∈ with V ⊆ V such that r 1 , r 2 ∈ V | r 1 ≡ r 2 1 forall the r 1 , r 2 ∈ A | r 1 ≡ r 2 do 2 A ← cont r ac t ion(A, r 1 , r 2)
// contract equivalent ∀A ∈ G d a , identify(identify(A)) = identify(A)

(5.22)
Resource Subsumption is another unary operation de ned on assemblies. Given an assembly, it merges resources that subsume each other for eliminating multiple declaration of a speci ed resource. Resource descriptions and assemblies describe nal expected state of resource entities. An assembly containing two resources, one subsuming another, means that same speci c resource entity is described with two di erent levels of detail. Therefore this information is redundant. Resource subsumption eliminates this redundancy by merging subsumed resources into the upper resource, gathering dependencies into that upper resource. The algorithmic description of this procedure is de ned as the following.

Procedure subsume(assembly A)

Input:

A = (V, E) ∈ . Result: A = (V , E) ∈ with V ⊆ V such that r 1 , r 2 ∈ V | r 1 r 2 1 forall the r 1 , r 2 ∈ A | r 1 r 2 , r 1 ≡ r 2 do 2 A ← cont r ac t ion(A, r 1 , r 2)
// contract subsuming 3 return A Like the resource identi cation operation, resource subsumption is also non-closed on the set of valid assemblies and idempotent.

Graph Transformation

Graph transformation or graph rewriting consists of techniques that aim to create a new graph out of an original graph algorithmically. There are di erent approaches for transforming graphs, such as algebraic-categorical approach, term graph rewriting and matrix graph grammars. In the context of this work, algebraic-categorical approach is presented in more details.

The gluing construction of two graphs was de ned previously in a settheoretical way, using quotient graphs, in the form (A ⊕ B) /≡ . Starting from the gluing construction algebraic approach for graph grammars aims to generalize the notion of Chomsky grammars for constructing graph grammars that apply transformations [Ehrig]. Like for Chomsky grammars, a graph transformation system is based on production rules that describes the kind of change that will transform certain graphs into others. For the case of graph grammars a production rule describes graph morphisms. In the double-pushout approach (DPO), a production rule, or a rewriting rule, r = (L ← K → R) consists of two graph morphisms, where K → L is injective. Brie y explained, in DPO a production rule describes the part of the graph to be deleted (the left-hand side K → L) and the part of the graph to be inserted (the right-hand side K → R). The application of the rule r on the initial graph G to form the target graph

H is noted G =⇒ r H. L ←---K ---→ R       G ←---D ---→ H G =⇒ r H is called a direct derivation via r, based on K → L. A derivation G =⇒ * H means G is transformed into H as a result of a sequence of nite direct derivations G = G 0 =⇒ p 1 G 1 =⇒ p 2 • • • =⇒ p n-1 G n = H.

d. Monoid on Assemblies

In this section a monoid structure on the set of assemblies is de ned. A monoid is an algebraic structure with a single binary operation that is associative and that has an identity element. This section presents the join operation and discusses its properties.

The assembly monoid is de ned over the binary operation assembly join. This operation aims to glue two valid assemblies all by preserving the validity of the resulting assembly. The join of two valid assemblies A and B is noted A@B. As discussed previously, a gluing operation consists of applying a disjoint union of two graphs and then contracting the resulting graph according to an equivalence class. In the case of assemblies there are two equivalence classes; resource equivalence and resource subsumption (as explained previously in the Concept: Unary Operations). However as a result of such an operation, two criteria for assembly validity can be breached :

-Acyclic condition: Even though operand assemblies were valid, the quotient assembly containing merged resource dependencies can form cycles, -Con ict condition: The union assembly containing resources and dependencies from the operand assemblies can have con icting resources.

For the acyclic condition, the unary operations that contract equivalent or subsumed resources are already not closed on valid assemblies set * , because of this condition. The problems caused by this property and their consequences are discussed later in this chapter. But for the sake of simplicity the cases join operation produces cyclic assemblies are omitted.

For the resource con ict condition, the join operation resolves such con icts by replacing the con icting resource in the right-hand operand with its counterpart in the left-hand operand. In a sense, as a result of the operation A@B the assembly A is joined into the assembly B, and in case of resource con ict the resource description contained in A prevails over the resource description in B. In the context of the join operation, the second operand, assembly B is called the base assembly and the rst operand, assembly A is called the joined assembly.

The following procedure describes a possible implementation of join operation between two assemblies. Notice that before gluing two assemblies con icting resources are registered and then they are contracted accordingly during the gluing phase.

Procedure join(assembly A, assembly B)

Input:

A = (V A , E A), B = (V B , E B) ∈ * . Result: R = (V , E) ∈ * with V ⊆ V A ∪ V B such that r 1 , r 2 ∈ V | r 1 r 2 .
1 forall the r 1 ∈ V A do // First register conflicting resource pairs

2 forall the r 2 ∈ V B do 3 if r 1 r 2 then 4 C ← C ∪ (r 1 , r 2) 5 R ← A ⊕ B // disjoint union of A and B 6 forall the (r 1 , r 2) ∈ C do // Contract conflicting resources in R 7 R ← cont r ac t ion(R, r 1 , r 2) 8 R ← id ent i f y(R) 9 R ← subsume(R) 10 return R
The algorithmic description gives an idea on what the join operation does and how it can be implemented but it is not adequate for further analyzing the properties of the operation. Instead, it is then useful to describe the join operation using algebraic-categorical approach. The operation can be de ned as a graph morphism. Let A and B valid assemblies, there exists a graph morphism T : * → * , for transition, that transforms B to A@B.

Furthermore for each graph morphism T that transforms B to A@B, a graph transformation system can be de ned, guided by a set of production rules called T . The graph derivation B =⇒ A@B can be decomposed into a sequence of direct derivations

B = B 0 =⇒ t 1 B 1 =⇒ t 2 • • • =⇒ t n-1 B n = A@B such that the set of production rules T consists of {t 1 , t 2 , • • • , t n-1 }.
Given that the join operation is applied on valid assemblies and supposing that the resource identi cation and subsumption operations are applied beforehand on both of the operand assemblies, the join operation can thus be reduced into the sequence of transformations that glue assembly A into assembly B, overriding con icting resources. One can identify the types of production rules that are included in such a transformation system:

. replace(r,r'): p {r→r } = (L ←-K -→ R). The production rule is described with r ∈ L and r ∈ R such that r ≡ r or r r or r r. The graph R consists of r and the edges (dependencies) of r that are to be included in the target graph. The graph L consists of r and the edges of r that are needed to be in the original graph, to be able to apply the rule. Using these two types of production rules, a transformation system can be constructed such that each derivation =⇒ p via the production rule p involves only one resource from the joined assembly. In each step of derivation, a resource of the joined assembly is joined into the base assembly. As a consequence, the set of production rules T and the order in which they are applied depends on the joined assembly i.e. the rst operand, A in the example. This means that the transition function T can be generated from the joined assembly and thus it can be noted T A such that T A (B) = A@B (See equation .).

L ←--- K ---→ R
A, B ∈ * , ∃ T A : * → * | T A (B) = A@B
(5.23)

Sequential & Parallel Graph Transformation

In graph transformation systems an applicability condition describes if the production rule can be applied to a given graph. The applicability of a production rule (L ←-K -→ R) is de ned by the left-hand side graph L. If the graph L is not contained in the original graph G, then the rule is not applicable onto graph G. According to the applicability rules, it is possible to speak of sequentially dependent and parallel independent production rules. Between parallel independent transformations the transformation system is locally con uent, meaning that independent from the order of application of those rules, the system will converge to the same result. Convergence and con uence of abstract rewriting systems are described in in [Church] known as the Church-Rosser property.

In order to explain brie y, two production rules are sequentially dependent if one's applicability condition L involves vertices or edges created by the second rule. Similarly, they are parallel independent if their context graph K is disjoint (their applicability condition L and the inclusion graph R are disjoint).

Generating the production rule set is indeed straightforward, because for each resource in the joined assembly there will be a production rule.

The application order of these direct derivations is more complicated. Both of the above-mentioned production rule types allow generating rules that de ne non-empty lefthand side graphs. Naturally, the dependencies between generated production rules are same as the dependencies included in the joined assembly. For example, in the context of the operation A@B, a resource r contained in A, can be joined into B if and only if all of the resources on which r depends are already joined into B.

Given that the join operation is de ned on the valid assembly set * , the joined assembly is whether a directed acyclic graph G d a (DAG) or the empty assembly . In case of it is an empty assembly the transition function simply does no derivations. That is why the is described as the identity element (see below). In case of a DAG, the order of the derivation sequence can be the strict partial order that is calculated by nding one of the transitive closures of the DAG according to dependency relations of the assembly. There are many well-known algorithms for nding partial orders of DAGs, especially used in scheduling, such as topological sorting algorithms. In the following example . , assembly on the right is rearranged according to the distance of each node to the sink. An example derivation sequence would then be the {6, 4, 5, 3, 2, 1}. Note that there can be many di erent transitive closures that satisfy the dependency relation orders. Choosing one over another would not change the result of the operation. Depending on the dependency relations over the joined assembly graph, there can be derivations that are parallel independent, meaning that they can be applied in the same time, without any e ect on the application of one another. In the previous example, using the parallel independence between resources of the same level, derivations can be regrouped as [{6, 4}, {5, 3}, {2}, {1}].

A corollary of de ning join operation as a sequence of transformations generated using the joined assembly is that at each application of direct derivation rule, the obtained result is still a valid assembly. This means that for every join operation A@B via the transition function T A , there exists a transition function for each of the direct derivations such that its result is a valid assembly (See equation .).

A, B ∈ * , r * ∈ R(A), ∀T A | T A (B) = A@B, T A = T r n • T r n-1 • • • • • T r 1 • T T A (B) = T r n (T r n-1 • • • T r 1 (B)) (5.24)
Each one of these direct derivations T r i corresponds to the operation of the state transition function f de ned resource types. With this algebraic de nition of the assembly join operation in mind, the join procedure can be rewritten algorithmically as in the join * operation.

Procedure join*(assembly A, assembly B)

Input:

A = (V A , E A), B = (V B , E B) ∈ * . Result: R = (V , E) ∈ * with V ⊆ V A ∪ V B such that r 1 , r 2 ∈ V | r 1 r 2 .
/ * First identify and subsume A and B * /

1 A ← id ent i f y(A) 2 A ← subsume(A) 3 B ← id ent i f y(B) 4 B ← subsume(B) 5 O ←

Identity Element

The identity element of the join monoid is the empty assembly, noted by . Joining an empty assembly with any other base assembly will result with the original base assembly as the derivation sequence will be empty (See equation .). Similarly, if the base assembly is an empty assembly, the sequence of derivations will result with the joined assembly.

∀A ∈ , @A = A and A@ = A (5.25)

Associativity The assembly join operation is associative, meaning that the order in which the operations are applied does not matter, as long as the sequence of the assemblies is not changed. The de nition of this associativity is shown in equation . .

A, B, C ∈ * , (A@B)@C = A@(B@C) (5.26)
The proof of the associativity can be found in Appendix A. According to the general associativity theorem, the use of parentheses can be omitted for writing a given sequence of operands, such as A@B@C@ • • • @D.

Partial Commutativity

The assembly join operation is not commutative, meaning that the sequence of operand assemblies changes the resulting assembly. This is reasonable considering the de nition of the assembly join; because it overrides the con icting resources from the left operand. The de nition of this commutativity is shown in equation . .

A, B ∈ * , A@B = B@A (5.27)

In spite of that, in case of no con ict between A and B, the join operation is commutative. The proof of this is straightforward; without con icts, the join operation is reduced to a gluing operation over identi cation and subsumption equivalence classes, which is commutative. This is shown in the following equation . .

A, B ∈ * , r 1 ∈ A , r 2 ∈ B | r 1 r 2 ⇒ A@B = B@A (5.28)
Together with the associativity, partial commutativity means that in case of there are not any con icts between operand assemblies join operations can be applied in any sequence and order.

Idempotence The assembly join operation provides idempotence, meaning that any assembly joined with itself produces itself as the result (See equation .).

∀A ∈ * , A@A = A (5.29)
The idempotence property is obvious. The transition function generated by the assembly A would contain a series of transitions that for each resource they involve, there will be the same exact resource in A. The join operation will be reduced to a series of replace rules with same resources, which will leave the base assembly unchanged.

A corollary of the idempotence is that if the joined assembly is already contained in the base assembly, the operation would give the base assembly as the result.

Another way of expressing this containment is that there exists two non-con icting assemblies X and A such that the base assembly B is the join of these two assemblies. Than it is said that A or X is contained in B, and B will stay unchanged if it is joined with one of these assemblies (See equation .).

A, B ∈ * , ∃X ∈ * | B = T X (A) , r 1 ∈ A , r 2 ∈ X | r 1 r 2 ⇒ A@B = B (5.30)
The assembly join operation presented here forms a monoid with idempotent, partially commutative and associative properties. These types of monoids are also called history monoids and they are often employed in computer science to model systems with a sequence of state changes. The sequential aspect of the join operation grant desired attributes to the deployment process and discussed later in this chapter.

Before proceeding to the next concept, a nal point should be made about the acyclic condition of assembly validity. As stated before, a join operation between two assemblies can create a cyclic assembly, even though neither one of the assemblies contained cycles. This is not an obstacle for the application of the join, because only the acyclic condition of the joined operation is needed for nding a sequence of transformations. Moreover there exist algorithms to break a cyclic graph into two or more acyclic graphs. Obtaining a cycle means that the resulting assembly cannot be joined later into another, which invalidates the associativity.

e. Platform

In the context of deployment, it is useful to de ne the concept of the deployment platform, also called the deployment site, on which the assemblies are deployed. A platform is a specialization of the assembly concept, containing resources and the dependency relationships. The special case for platforms is that they are valid assemblies and all of their resources are speci ed. The platform is de ned in the following equation . .

P | P ∈ * and ∀r ∈ r esour cesO f (P), r ∈ (5.31)
This broad de nition of the platform concept allows to describe the deployment process in terms of assembly operations. The deployment process is, for the most part, a join operation between a platform and an assembly to be deployed. What sets the deployment apart from the join operation is that its result is a platform, meaning that all of its resources are speci ed. Yet a simple join operation glues two assemblies, contracting equivalent and con icting resources but preserving any other type of resources such as inquiry and constructive. Instead, the deployment process includes an additional step to transform inquiry and constructive resources into speci c resources before joining them into the platform. For the generated derivation sequence of each resource r contained in the joined assembly, -if r is an inquiry resource, the deployment process must nd in the platform at least one speci c resource that subsumes r.

-if r is a constructive resource, the deployment process must nd a speci c resource that is equivalent to r, or it must construct the resource by applying necessary actions (such as install, con gure, update, create) on the execution platform and eventually join the resource r , which subsumes r, into the platform assembly.

If any one of these actions cannot be done, the deployment process fails. The procedure implementing this process is given in the procedure deploy.

Procedure deploy(assembly A, platform P)

Input: A = (V A , E A) ∈ * , P = (V P , E P) ∈ . Result: P = (V , E) ∈ 1 A ← ident i f y(A) 2 A ← subsume(A) 3 O ← par t ial or d er(A) 4 P ← P 5 forall the r 1 ∈ O do 6 if r 1 ∈ then 7 if r 2 ∈ V | r 2 r 1 then 8 return f ail 9 else if r 1 ∈ then 10 if r 2 ∈ V | r 2 r 1 then 11 r ← const ruc t(r 1)
12 P ← inser t(P , r)

13 return P

The platform concept represents the current state of the deployment site. At the end of each deployment process the deployed assembly is joined into the platform. So that the resulting platform is the latest actualized state of the deployment site. More exactly, the platform stays always a complete assembly, meaning that the dependencies are necessarily satis ed inside the platform.

The idempotence property is pivotal in the construction of the platform. The idempotent join operation makes it possible to know the exact state of the platform over the course of multiple deployment processes. In case a resource description cannot be constructed inside the platform, the deployment can be invalidated, knowing at which point the process is halted. The consequences engendered by this property are detailed below in the discussions.

Application Related Concepts

Concepts presented until here describe the algorithms that are used to deploy an assembly on a platform. These algorithms constitute the basis for the coordination of the deployment process. But the goal of this formalization framework is also to de ne a deployment process that is capable of adapting software with continuous deployments. The application and related concepts enable expressing variability on deployment and de ne the management of applications at runtime.

a. Condition

A condition is a predicate on a given inquiry resource whether it can be speci ed in a given assembly, most often in a platform. It consists of a Boolean value 〈true,false〉 and an inquiry resource r i (See equation .).

c = (b, r i) | b = 〈true, false〉 , r i ∈ (5.32)
Conditions are useful to validate an assembly, according to the state of resources contained within.

b. Repository

A repository is de ned as a knowledge base that is capable of responding to queries composed of constructive resources, by returning deployable and/or con gurable software artifacts, as depicted in Figure . . In a sense it manages a one-to-one index of constructive resource descriptions and software artifacts. An example for this kind of repositories would be Maven artifact repositories, where coordinates of group id, artifact id and version are associated with artifacts. It is important to note that there are also repository implementations that incorporate dependency resolution capabilities. Such that, in terms of the concepts used in this conceptual framework, they are able to respond to queries composed of inquiry resources by returning an assembly, which contains all the dependencies transitively. OSGi Repository Admin, Eclipse p and YUM are examples of such repositories that are able to resolve dependencies.

The problem of dependency resolution is out of the context of this work; therefore this capability is deliberately excluded from the repository de nition in this framework. Nonetheless such a mechanism can be used in tandem with the framework presented here as a means to complete assemblies that lack dependency information.

The artifact repositories are relevant in the context of application stores. A deployment system that allows to install software through an application store requires repositories for software artifacts and for application descriptions.

c. Application

The last concept of this formalization is the application. An application description is de ned to contain the information necessary for a deployment manager to deploy the application and also to manage its evolution later, during its execution. An application a is de ned as a quadruple a = (R, C P r e , C Post , A C), composed of: -R: A set of repositories. These repositories are to be queried by the deployment process to gather software artifacts to install or con gure.

-C P r e : A rst set of conditions called pre-conditions. These conditions should be valid for that the deployment of the application can proceed.

-C Post : A second set of conditions called post-conditions. These conditions should be valid at the end of the deployment and should continue to be valid along the lifetime of the application.

-A C : A set of pairs of conditions and assembly (C, A) called conditional assemblies. Conditional assemblies are deployed depending on whether the conditions associated with them are valid. In an application condition sets associated with each conditional assembly are neither disjoint nor exclusive. This implies that conditional assemblies of an application form a decision tree. At a given time, there can be several conditional assemblies for which all the conditions are valid. Deployment of an application requires obtaining a coherent assembly from all the conditional assemblies described by the application. This operation is called fla ening, and realized by joining together the assemblies with valid condition sets. Flattening operation is not possible if there are con icting resources in di erent assemblies. Once a at assembly is obtained, the deployment of the application proceeds by deploying the attened assembly onto the platform. For an application deployment to take place there are a number of prerequisites:

-All pre-conditions associated with the application are valid.

-Post-conditions of the application do not contain a condition contradicting with post-conditions of existing applications.

-Flattening conditioned assemblies is possible and attened assembly is valid and not empty.

-Existing pre-conditions does not contradict with the attened assembly to be deployed.

The application concept augments the assembly concept in two ways. First and foremost, conditional assemblies contained in an application allow applications to change the way they are deployed according to the current state of the deployment site (i.e. actual state of the resources of the platform). This adds variability to the application description and allows to reevaluate this description for further evolution of the application. In this respect the variability proposed by the application concept is very close to the ones studied in so ware product lines.

Secondly, pre-and post-conditions serve to describe constraints on the deployment of the application. Pre-conditions designate constraints on the rst deployment of the application onto a platform. As for the post-conditions, they become the invariants of the platform and validate the state of the resources of applications that are already deployed. Using post-conditions, for instance, it is possible to express that the state of a given resource will not be modi ed during execution. This guarantees that application deployments that occur afterwards will not alter the state of these resources.

Deployment Process

This section presents how all the concepts that are presented in the previous section is brought together in a process of application deployment. Lets consider the case of an application a = (R, C P r e , C Post , A C), being deployed on the platform P = (V P , E P). And a set of existing post conditions C P that are already associated with the platform P. Then the following steps are an example ow for the rst deployment of the application a on the platform P.

. The platform P represents the current state of the execution platform, i.e. the deployment site. The actual state of the execution platform is obtained either from a rst provisioning of the deployment site or as a result of a sequence of deployments. The post-conditions C P associated with the platform is the union of post-conditions of previously deployed applications and the constraints imposed by the platform operator in order to guarantee the integrity of the platform resources.

. The application description a is composed of links to repositories, pre-conditions, post-conditions and conditional assemblies as expressed in concept . . .c. For a more controlled and secure deployment the developer company or some trusted partner maintains the linked repositories. These are to be used to gather the artifacts needed to construct resources. However, in another scenario the artifacts of the constructive resources can be bundled together with the description and transferred to the deployment site. Then one can imagine an earlier step that unbundles these artifacts along with the description.

. The application description a is introduced into the platform P.

. The rst step of the deployment, is to check the eligibility of the platform towards the application. This is represented by the pre-conditions of the application. If all the pre-conditions return valid against the platform state, then the deployment can proceed.

. Next the existing post-conditions C P associated with the platform are checked against the post-conditions of the application. The deployment can proceed if no con icts is found within these two sets of conditions.

. In this step the deployment manager analyzes the conditional assemblies de ned inside the application in order to decide which assemblies will be included for the deployment. This analysis produces a subset of conditional assemblies choosing the ones with all the conditions valid.

. Next step is to produce a single coherent assembly from the set of assemblies chosen in the previous step. This operation, called attening, checks rst if there are con icting resources in gathered assemblies and if there are not any, proceeds by joining them together. For example, if the set of assemblies chosen as valid is {A, B, C, D} then the attened assembly would be F = A@B@C@D.

. Before deploying the attened assembly F the deployment checks whether it is valid. If the attening did not reproduced a valid assembly, the deployment process return back to the step and choose a new set of assemblies to be deployed.

. Finally the deployment occurs as described in the platform deployment (see procedure deploy). The given set of repositories R are used to gather artifacts for the constructive resources. The new state of the platform is actualized as P = F @P.

The post-conditions of the application C Post are also added to the post-conditions of the platform C P .

Procedure deployApplication(Application a, Platform P, Set of conditions C P) Input: a = (R, C P r e , C Post , A C), P = (V P , E P) ∈ , C P = {c = (b, r i)}.

Discussions

Using concepts presented above, this formalization serves to outline a framework to dene and implement the deployment process. It proposes concepts to represent the actual state of a deployment site, the expected state of what will be deployed and de nes the deployment process that coordinates the actions to be taken to apply the expected new state. There are a number of choices that are made throughout the construction of this framework and of course these choices produce some desired characteristics and limitations.

The following are the discussions on these choices, their consequences and limitations.

Actual vs. Observed State

Every deployment site, i.e. platform possibly contains a very large number of entities that constitute the actual state. In dynamic environments such as in pervasive computing, the states of entities are contingent and likely to change dynamically. Representing this state via platform and resources, like explained in this framework, requires continuous monitoring and reporting of the state of all the entities and building continuously the corresponding models that validate those. Constructing such models in computer memory can become very expensive and can easily disrupt the functional execution of the platforms business intent, notably deployed applications.

The deployment process relies on queries of whether the platform includes an entity that corresponds to some resource descriptions. Without a complete representation of the platform graph, the deployment process requires a framework that is capable of responding to such queries. This framework should be able to manage di erent types of resources and the state models associated with each resource. The implementation of the deployment process depends heavily on the capabilities of this framework representing resource states. The following section presents in detail this resource representation framework that is proposed for this purpose.

Idempotence & Determinism

It is previously argued that the assembly join operation is idempotent. For the deployment process this ensures that the coordination of actions that change the state of resources is idempotent. Still, in order to provide an idempotent deployment process each state transition f de ned by resource types must also be idempotent. To recall, f is the transition function de ned by each resource type to change the state of resources. State transition functions may involve multiple operations. For example, making sure that a software component is active may require rst to transfer the executable binary, then install the component to the platform, and then con gure it to active state. Resource type functions should at least guarantee that each state transition is sequence idempotent. This characteristic must be taken into account by the implementations of the function f provided by resource types.

Determinism can be guaranteed as soon as every algorithm used in the deployment process is deterministic i.e. returns the same value every time it is invoked with same input. This involves the resource type state transition functions, algorithms to analyze an application, algorithm to calculate the derivation sequence of deployment etc.

Traceability & Fault-tolerance

A process is traceable if every step and action taken in it can be identi ed and recorded chronologically. The fact that every state transition is well known in the deployment process makes it traceable. The sequential aspect of the join operation is crucial in this respect, because each transformation changes the state of the base assembly, by passing through valid, well known states. Regarding the deployment process, instead of applying state changes in a random order, the derivation sequence ensures that at each step a resource state described in the joined assembly is integrated as a speci ed resource in the platform. With this in place, platform operators can trace the evolution of the platform.

Determinism, idempotence and the traceability increase the fault-tolerance of the deployment process. Leveraging the traceability property, deployment actions can be coordinated inside a transaction-like construction where in case of an error; rollback actions can be applied in order to return resources to the previous state. Here, the term transaction is used in caution because ACID properties may not be satis ed in all instances. Contrary to the data-oriented systems like databases and lesystems, resources in dynamic execution environments (such as pervasive environments) are contingent, therefore not durable. Even though the deployment process ensures the atomicity (both the isolation atomicity and the failure atomicity) of state transition operations and their consistency; the state change can happen at anytime. General idempotence of the deployment process also plays a role in providing a faulttolerant deployment. Reapplying idempotent operations have no unwanted e ects on the platform. So if the deployment fails due to an unhandled error, and the platform is in an unknown state, the deployment facility can restart the process. This approach can constitute the basis of distributed deployment system, in which idempotent deployment commands are coordinated for fault-tolerant deployment in distributed environments [Ramalingam].

Reproducibility

A reproducible deployment process means that for a given target state, the deployment process can be applied in di erent starting conditions and will still produce the same state of the platform. Reproducing the same results (i.e. the same target state) with de-ployments in di erent conditions is extremely important for deployment facilities. Every deployment site is di erent with unique disposition of resources. It is unfeasible to customize deployment requests for every other deployment site, especially when the scalability is at stake. In the continuous deployment paradigm, the same deployment description is deployed in multiple di erent target sites, like many testing, staging and production environments. The deployment process should reproduce the expected state described by assemblies, in spite of the heterogeneity of these environments.

The goal of achieving the target state should be evaluated in terms of the previous discussion on the "Actual vs. Observed state" (see . .). It is considered that a deployment is reproducible, or a deployment process is capable of reproducing its results, in the extent that it can produce platforms on di erent conditions but give same target state when observed. Other than that reproducing the actual state is unreasonable because each execution environment would contain uncontrollable parameters and characteristics.

There are two ways of ensuring that deployments are reproducible. First way is to calculate a proper set of operations on each of the di erent platform states so that the result of application of those will converge to the target state. Problem with this approach is to nd the set of coherent, semantically and syntactically composable operations that will converge into the target state. It involves calculating all the possible con gurations and distinguishes the paths that lead to the target state.

A second way is to make sure that each one of the di erent platforms undergo the same idempotent and deterministic state changes that represent the expected, target state. This second way is possible as long as the target state has a traceable path of state changes. The deployment process de ned in this formalization achieves reproducibility using the second approach.

Application Compatibility

Every deployment facility should ensure two fundamental properties when it comes to the deployment of applications.

-Correctness: At each deployment request, the deployment process should make sure that the resulting state corresponds with the expected state of the application.

-Safeness: At the end of each deployment, the deployment process should make sure that the new deployment did not make any changes that invalidate or disrupt the correct execution of existing applications.

For correctness, the application concept de ned in this framework ensures that a coherent con guration of the application (join of valid conditional assemblies) is deployed and that the post-conditions de ned by the application are valid.

For the safeness of the existing applications, each deployment makes sure that none of the post-conditions will be invalidated at the end of the deployment process. Another way of putting this is that validity of the application against the future evolution of other resources on the platform can be guaranteed by post-conditions. For example, with postconditions, an application can express that even though it includes a software component resource of a certain version, it will be still valid if that resource is updated, or downgraded inside a certain version range. This notion is often known as backward and forward compatibility. Likewise the application can also specify a post-condition to indicate that a particular resource should not be modi ed afterwards and keep the speci ed state. This kind of constraints are very common in platforms that contain core technical services that should not be modi ed by application deployments as in pervasive platforms or application servers.

Dependency Management

Dependency is a key concept in this formalization framework and there are important discussions about what kind of knowledge it can represent and how this knowledge can be obtained. During the presentation of the dependency concept it was already pointed out that dependencies only model the mandatory requirements of resources. But the semantic behind the notion of requirements can be various, depending on the types of source and target of the dependency. An example often appearing in other dependency systems is di erent dependencies software components are involved in. A software component may require services, executable binaries, software modules, but also may depend on a particular con guration of the container or execution environment on which they will execute. All these requirements of software components are indeed entities of execution environment and represented as resources in this formalization framework. Here the dependency relationship between the component and a particular container state represents a constraint on the execution of the component. Whereas dependency between two components represent a use relationship. It merits to be noted again that the deployment process does not actually wire links between dependent resources. This is delegated to the execution platform. All it does is to guarantee that the dependency will be resolved with a resource because it exists at a given required state.

The other important discussion about the dependency management, and the assemblies in general, is how does the knowledge about the dependencies is produced. During the development phase most of the executable software artifacts are created and packaged along with the metadata of their requirements at execution, such as execution constraints, required services and code libraries etc. Most of those dependencies can be extracted and resolved from those metadata. In some cases this information is not explicit and requires to be completed by human actors. For instance, a software component that needs a to read and write to a le, or to serial port requires that these resources are available for access.

Another case of the need for human intervention is when there are multiple solutions for the target of a dependency. For the sake of determinism, the actor who speci es the deployment (usually developers or operators) should make decisions and create conditional assemblies that describe possible con gurations of the application. As discussed previously in repository concept, resolving transitive dependencies for the target of a dependency is out of the context of this work. Most repository technologies incorporate mechanisms that resolve and return the transitive set of dependencies. Apache Maven, Eclipse p , OSGi Repository Admin Speci cation and YUM are examples of such technologies. The deployment process assumes that all the dependencies are complete in the described assemblies.

Undeployment

Notice that there are no constructs or algorithms de ned in the formalization framework to undeploy an assembly once it is joined into a platform. The terms undeployment or application uninstallation loose their conventional meaning because the deployment process is de ned as a change of state of resources of a platform. Hence these terms need rede ning. In terms of this formalization the undeployment of an assembly A can be de ned as the join of another assembly ¬A that undoes the changes made by the assembly A. Then the open question is how to calculate this ¬A given that the platform could have undergone di erent deployments between the deployment of A and ¬A.

A naive approach to create this ¬A would be to include the negative resources of only the constructive resources of A. It seems like this would uninstall all the resources brought (constructed) by A. This is ne as long as the assembly A's constructive resources are disjoint from all other resources of the platform, including other already installed applications. However, if the deployment of A recon gures or assumes some already existing resource, as a result of a constructive resource it contains, then this approach is no longer reliable. The deployment of such ¬A would compromise the safeness of the platform. An example to this case is the resources shared among di erent applications. Take the case of a platform P with two valid assemblies A and B representing two applications. If they do not contain any con icting resources in between and with the platform, then A and B can be deployed with any order (conforming to the partial commutativity property described above). So the naive approach of undeployment would work without compromising the safeness of the platform. This case can be interpreted as if applications are isolated, sharing only the platform resources via inquiry resources.

Even though it is out of the context of this work, resource sharing and application isolation are mechanisms that can be built on top of this conceptual framework. Sharing resources between applications, all by guaranteeing a safe undeployment process, would require extending the resource concept with properties expressing sharing policies. These policies then can be interpreted by a deployment process which will deploy applications in isolation, but also share resources between them as indicated.

Current industrial approaches of undeployment do not propose satisfying solutions to this problem. An early approach is to use defensive undeployment scripts. These scripts would uninstall applications, but leave any artifact that is likely to be shared. This is equivalent to writing assemblies by hand that uninstalls and deletes certain resources within a certain logic to undeploy one or several applications. In Apple Mac OS, application les are bundled into special packages. In theory the user can uninstall the application only by deleting this package le. However, in addition to execution processes, most of the running applications create les in di erent places of the lesystem for extensions, preferences, cache les etc. These les stay in the lesystem even though the application is uninstalled. A similar problem occurs in Microsoft Windows OS with registry entries and les. There are third-party applications that try to resolve this issue by nding and deleting related les.

Continuous Adaptation

The primary purpose of the application concept is to represent the notion of application at runtime. An application contains the necessary information to perform the rst deployment and afterwards manage the application con guration during execution. The constraints on how the rst deployment should be carried out is already discussed in application compatibility, section . . . As for the management of the application at runtime, it involves activities of deployment (creating new resources or changing the state of existing ones) and should be handled by the deployment facility.

In addition to the standard deployment process which alters the state of resources on the platform, runtime management of applications requires three important capabilities [Dearle]. First is the ability to describe the resource con gurations in which the application is still valid, or considered operating correctly. Instead of de ning the application con guration as a static resource disposition, the application descriptor describes the variability of the application con guration depending on the conditions of the platform. This formalization allows two levels of variability:

-On assembly level, inquiry resources express the external dependencies. An inquiry resource can be described without precision, in order to accept many possibilities.

For example an inquiry resource of type package can de ne a version range to accept packages of several versions.

-On application level, conditional assemblies allow to express di erent con gurations of the application, depending on conditions, i.e. the current state of the platform. For example, a particular application feature can be installed or activated only if the platform is capable of executing it, or only if the user payed for such feature.

Second important capability is the ability to monitor the state of deployed applications. The application concept of this formalization framework does not de ne explicitly a lifecycle, neither a state for applications. Given that each application is described with its own variability, it is not possible to de ne a common lifecycle and state for all possible applications. Then observing application state becomes synonymous with observing resources on which the application executes. Adequate monitoring policies are needed to decide which resources are to be monitored. A straight-out policy would be to monitor all the resources that the application description includes. However, not only this is not optimal, but also states of some of the resources are expected to change during execution. A monitoring policy advocated in this thesis is to monitor two aspects. First, the application post-conditions should be monitored for changes, because these are the invariants of the application and as soon as a post-condition is no longer valid, the application is invalid. Secondly, the changes in the resources involves in choosing the variants in conditional assemblies should be monitored to decide whether a conditional assembly is no longer valid or a new one become eligible. The implementation of resource monitoring is also problematic. Depending on the resource type, some resources may be capable of notifying on state change, while others need periodic checks whether their state have changed or not.

The third capability required for runtime management is the reevaluation of the application description. The application description with variability allows many di erent con gurations for the application. A decision policy is needed to reevaluate di erent possibilities the variable application description proposes. This policy decides on a particular con guration and applies necessary deployment actions to change the application con guration. Once the monitoring detected a change, the application description containing variability should be reanalyzed, in order to choose another con guration. Here also there can be many policies that choose to deploy or not conditional assemblies. As expressed before, condition sets on conditional assemblies of an application form a decision tree. This is very close to the autonomic control loop. Indeed the reference architecture presented in the next section is inspired by the MAPE-K architecture of autonomic computing [Kephart].

Reference Architecture

This section presents the proposal for the reference architecture to implement the deployment process introduced in the section . , using the concepts and operations presented beforehand in the formalization. The proposed reference architecture comprises two separate but complementary parts. The rst is the context representation framework that serves to provide the current state of the execution platform. This module sits on top of the execution platform. The second is the deployment manager, which implements the described deployment process by using the representation provided by the underlying framework. Design details of these two entities and their primary functions are presented in their respective sections. Before presenting details of the architecture it is crucial to characterize the execution platform on which the reference architecture is based. The requirements on deployment platforms for implementing continuous deployment facilities are already presented in the previous chapter , as well as in the paper [Esco er b]. The modularity and con gurability of the execution platform stands as fundamental properties required to implement this reference architecture. Then the continuous adaptation aspect of applications requires an introspectable platform monitoring, and the ability to make state changes by dynamically loading and unloading modules and recon guration on architecturelevel. The context representation however is considered inside the reference architecture. It provides the necessary information, such as the current state of the platform resources for the deployment process.

Context Representation

Notions of context and context-awareness are introduced in the chapter . To recall, a general de nition of the notion of context is "any kind of information that is relevant to characterize the situation of an entity" [Dey]. In dynamic environments, entities can be regrouped into three types of context entities, identi ed as computing environment, user environment and physical environment [Coutaz]. The foremost challenge for reaching context-awareness in those environments is the construction of a representation of the context and propagating changes to interested parties.

The context representation framework aims to provide an easy to use and uniform model for context sources to represent any type of context entity. Conforming to the deployment process concepts, these entities are represented and mapped as resources. Resource's state, relationships with others, as well as actions to manipulate them are included in the resource representation. It allows context consumers to uniformly access the context, through resource representations, without any prior knowledge about the type of manipulated entities. To cope with dynamically changing context entities, it adopts the REST architectural style [Fielding]. This section discusses advantages of this choice, followed by the details of the context model and the representation framework.

a. REST Architectural Style

REST is a software architecture style for distributed hypermedia systems such as the World Wide Web. It is based on a number of constraints for re ecting the properties of modern web applications such as scalability, fault-tolerance, recoverability, security and loose-coupling. While not undermining utility of these principles, the main interest is the uniform interface principle proposed by REST. According to this constraint, clients access resource representations through a simpli ed, uniform interface. However, this oversimpli cation may not suit to any application needs. In order to properly implement uniform interfaces, there are some constraints on the overall model:

-Resource identi cation: A particular resource can be referenced by an identi er, regardless of its type or location.

-Resource manipulation: Resource representations allow to retrieve the state of the represented entity as well as manipulating it.

-Self-descriptive messages: Resource representations are self-descriptive; meaning they contain not only information about the resource, but also metadata that describes how the representation can be manipulated.

-HATEOAS (Hypermedia As The Engine Of Application State): Corollary to the previous constraint, client applications can examine resource representations that contain metadata about the state transitions and choose from alternative possible states, without prior knowledge about the type nor the structure of the resources.

-CRUD: REST architecture style relies on the transfer of resource states. Even though it is not speci ed in [Fielding], it is easier to guarantee state transfer and the interface uniformity, with a restricted set of operations. CRUD (Create, Read, Update, Delete) operations are chosen for a simple and universal way to allow both retrieval and alteration of those states.

Adopting REST provides a number of advantages for addressing the discussed requirements. Universal access and usability are greatly improved by the uniform interface. Self-descriptive resource representations enable providing a description of possible actions to manipulate the resource. Context providers can serve multiple versions of the context model, evolving and extending the context model without breaking existing consumers. Aside from these advantages, RESTful interfaces (CRUD operations or Put, Post, Get, Delete operations) are used commonly in development of Web APIs. This will create a positive incentive for developers towards implementing context representations.

b. Resource Model

The context representations are based on a resource model that represents dynamic context entities. A resource can be any context data. It serves as a representation of the state of the entity at a moment in time. The properties of the state are contained in the metadata of the resource, as key/value pairs. Resources are identi ed through their Path. The hierarchical nature of paths creates a hierarchical composition of resources, meaning that every resource has a parent and may have subresources (children) logically attached to it. Therefore resources are organized into a tree structure starting from the root, all the way down to the leafs (Figure .). The most important aspect for implementing a HATEOAS is the inclusion of links between resources that describe the state transitions. Just as web pages that contain hyperlinks, resources have relations describing links to other resources or themselves. Thus utility of relations is twofold: they describe how a resource should be manipulated, indicating operation type and parameters expected by the resource representation to apply this action. Also, they serve to link other resources, which constitute a virtual directed graph, where vertices are resources and edges are relations. It is possible to traverse this graph by retrieving the resources referenced by relations.

c. Resource Resolution & Observation

The main purpose of o ering a context representation is to allow retrieving and modifying context state by applications. As depicted by gure . , applications have two ways to interact with the context representation framework: requests and events. Requests are sent by applications in order to retrieve the state of the context, or to impact it. Each request contains the intention of the requester to interact (using one of the CRUD operations) with a speci c resource, identi ed by its path. The framework is in charge of the resolution of the resource, based on the provided path, and the application of the requested operation. Such operations may retrieve/alter the state of the targeted resources: their metadata and their relations. Therefore, requests o er applications a simple and uni ed way to interact with the context. Navigability through the context graph, using resource tree's natural hierarchy or customizable relations, is favored by the simplicity of the resource model.

While requests are a powerful way to interface with the context, they do not permit to capture all its dynamics. To achieve this crucial need, the framework augments the REST architectural style by emitting events on context changes. The framework can therefore notify applications that are interested in these changes, when such changes occur. Events are sent each time a resource is created, updated or deleted. Requests and events allow to impact on resource's state and to observe its changes, o ering a fully dynamic representation of the context.

To improve the usability of the framework, requests and events can also use queries to select a set of resources. This feature gives the ability to mine inside the whole context to retrieve the adequate set of data. In addition, an application can be noti ed when a resource starts or stops matching a query.

d. Resource Extension & Transformation

The inherent simplicity of the resource model favors its usability. But much simplicity produces disadvantages, limiting the context evolution and exibility. The framework provides two mechanisms to overstep these limitations: extension and resource transformation. Addressing extensibility, it o ers applications the ability to enrich the context representation by adding new resource spaces. By this way, applications can contribute to the context by providing new resources, accessible by other applications.

In addition to providing resources, applications can transform the metadata and the relations of resources to meet their own model. Such transformation can be contributed to the context, and kept private. The transformations are applied when a resource is referenced by a request of sent by an event.

Moreover, even though resources are untyped, which favors discoverability, it is sometimes useful to adapt the representation to the represented entity. Some resources give access to the underlying entity. Obviously, not all resources have this capability, but such feature promotes the connectivity between the context representation and its underlying objects.

Deployment Manager

The deployment manager implements the deployment process described formally in previous sections. It unites two main functions of the deployment process, namely, the analysis of the application descriptions and the coordination of the deployment actions. These two concerns of the deployment process are handled separately inside the deployment manager architecture, in Analyzer (section . . .b) and Planner (section . . .c) modules. To be able to provide these functions in a generic manner, the deployment manager also separates the modules that know how to execute deployment actions and how to observe and compare resource states. Resource Processors (section . . .a) are the extensions of the deployment manager that implement these resource interactions. The monitors and executors are created by the resource processors to interact with the context entities.

The context representation framework, presented in the previous section . . , sits between the actual execution platform and the deployment manager. It provides a resource-based, uni ed interface to manage the entities of the deployment site. The Figure . presents the architecture of the deployment manager, alongside the context representation framework.

It is important to emphasize that the reference architecture adopts the MAPE-K architecture commonly used in autonomic computing and self-adaptive software systems. In terms of this architecture, the context representation framework constitutes the knowledge base. It provides the necessary information, such as the current state of the platform resources for the deployment process. Whereas the MAPE control loop, implemented by the deployment manager, ensures the deployment process and the runtime manage-

a. Resource Processors

Resource processors are extensions to the deployment manager that are capable of manipulating resource states. Each resource processor is associated with a resource type. It is in charge of querying the context representation for resources and changing the state of resources of that type. Di rent modules of a resource processor is shown in the gure . . The primary function implemented by the resource processor is the state transition function, f , which is introduced previously in formalization concept . . .b). Resource processors also implement other type-speci c functions needed during the deployment process. They provide two types of stateful components that are created and used during the deployment process and afterwards for the monitoring. These are deployment participants and resource monitors. Lastly, they provide extensions for the deployment descriptor language. Type-specific Functions Resource processors implement any function needed during the deployment process, the implementation of which is speci c to each resource type. These functions include the resource subsumption, detection of resource con ict and fetching deployment artifacts and metadata of those, from given constructive properties.

Deployment Participants They are executor components that apply state transition function f de ned by the resource processor. Deployment participants are created and coordinated by the planner module. At each instance of deployment process, a number of deployment participants are created to apply unitary state transition on resources. Each deployment participant is therefore created with a target resource description and its state is only valid during the deployment process to which it belongs. It is responsible for ensuring that the given target state is attained by at least one speci c resource. Their lifecycle is presented in the section . . .c.

Resource Monitors Resource monitors are components that observe and validate state of resources. The analyzer module creates resource monitors to validate particular application con gurations and conditional assemblies. Each resource monitor is created with a condition. Depending on the type of the resource, it applies a monitoring policy on resources of context representation framework. They notify the analyzer if the given condition is no longer valid.

Language Extensions Language extensions are necessary for providing a deployment description language with di erent resource types. These extensions de ne valid properties and parsers for descriptors using processed resource type.

b. Analyzer Operations

The primary goal of the analyzer module is to treat deployment requests and calculate the assembly for deployment. Deployment requests can originate from the demand of new application deployment or for adapting existing applications. The analyzer module handles each application description separately to be able to apply the rst deployment. Once deployed, the application is monitored and new deployment actions are calculated for adapting the application according to the dynamically changing context. The architecture of the analyzer is shown in the gure . . New Application Deployment Each deployment request contains one or more application descriptions. The deployment analyzer receives deployment requests and analyzes them to decide whether to start a deployment process or not. As described in the deployment process, the analyzer rst decides whether application description is eligible for deployment. This analysis includes checking pre-conditions of the application and choosing a subset of conditional assemblies de ned inside application description. Here the analyzer is customizable with custom policies for each application. The adaptation policy is responsible for choosing a subset of conditional assemblies de ned inside the application de nition to be deployed. Then a at assembly is calculated using chosen conditional assemblies. If a valid at assembly is possible, this assembly is transferred to the planner module for deployment.

Application Monitoring As soon as the deployment of the at assembly is started, the analyzer activates resource monitors necessary for observing the state of the deployed application. The analyzer associates a number of resource monitors for each managed application. As discussed previously in discussion . . , the resources to be observed are, by default, the resources that are involved in conditions of conditional assemblies and the post-conditions of the application. The resource monitors notify back the analyzer if a condition changes state from valid to invalid or vice versa. Depending on the type of the resource to observe, the resource monitor whether subscribes to the events of one or more resource entities, or checks periodically if the condition changed it's state.

Application Adaptation In case of condition changes, the analyzer handles the notication from the resource monitor and starts the adaptation process. This analysis comprises the reevaluation of conditional assemblies in the application description depending on the current, latest state of the platform. It calculates an assembly to deploy, which adapts the application to the current conditions of the platform, i.e. the context.

The main goal of application adaptation is to decide on a di erent application conguration, in terms of conditional assemblies that are e ective, i.e. deployed on the platform. There are two important aspects to consider in the implementation of the adaptation functionality. The rst aspect is the set of policies that the analyzer will use to decide which conditional assemblies to include in for deployment. Selfadaptive systems and autonomic computing community studies self-star policies for optimizing, recon guring, repairing applications [Miller]. Analyzer enables implementing these policies inside the customizable adaptation policy associated with each application. In some cases, the adaptation policy can be unable to choose any valid assembly to apply onto the platform. This can either mean the application is unable to function in the current state of the execution platform, or it has fallen into an unrepairable state.

The second important aspect is the way the deployment manager transmits the application state from one con guration to another. To illustrate this, lets consider an application a that has four conditional assemblies, {A, B, C, D}, which is already deployed with the con guration F = A@B@C. And as the result of the reevaluation, the adaptation policy decides on a new con guration that is F = A@D@C. The deployment process should apply the state transition F =⇒ F so that the assembly B should be removed from the platform and replaced by the assembly D. Then the analyzer should calculate an assembly G to deploy on top of F , such that F = G@F . Indeed, the main problem of obtaining the assembly G is not with including D but removing B from the platform. This is partially an operation of undeployment.

Undeployment The problem of undeployment is already discussed previously in the discussions (see discussion . .). A solution is proposed in this reference architecture for undeployment of applications. Continuing from the previous example, undeployment involves constructing the assembly G as G = F @(-F). The negative function (-) being a function that takes only the constructive resources contained in an assembly, and makes each of those resources negative by adding ¬ property. Then joining the negative of F with F serves to override any resources shared in both F and F along with the dependency relations described in F . This way the resources of F can be deployed using the correct dependency order, and the resources that were only constructed for the B can be undeployed. To achieve a complete undeployment of the application a, the same operation is applied with the F = .

c. Planning Operations

The deployment planner module is in charge of executing the deployment command of an assembly. It receives assemblies to be deployed, enqueues them to the deployment queue and executes the deployment inside a transaction. The execution of deployment starts by calculating the deployment plan, which is created in the basis of the transitive closure of the input assembly. Given that the input assembly is valid, meaning contains no cycles; it is always possible to nd a plan. A deployment plan consists of a sequence of list of resource descriptions. At each stage of the sequence, state transitions of the resource list are parallel independent, so they can be executed in parallel. As discussed earlier in the assembly concept, there are di erent algorithms to calculate this deployment plan. Here it is important for the sake of determinism to employ deterministic algorithms. A deterministic algorithm will result in exactly the same deployment plan, each time it is given the same assembly. The planner module allows to customize this algorithm, implemented by the resolver component.

Once the deployment plan is calculated for the assembly, the planner creates deployment participants with each resource description, using the resource processors respective to their resource types. Then the deployment participants are coordinated inside a deployment transaction according to the deployment plan.

Deployment Transaction Di culties of implementing a transactional deployment are previously discussed in . . . Several assumptions are made in order to implement transactional coordination of the deployment inside the planner module. In an ideal transaction management system, transactions involve a sequence of atomic elementary actions. These actions are indivisible and either end successfully or fail. In the context of this work, instead of atomic actions, coordination elements are resource state transitions. So the rst of the assumptions is that resource processors are implemented in a way that each state transition function f is a set of sequentially idempotent and fail-stop actions. This way the state transition is idempotent and its execution fails and stops the transition as soon as it encounters an error.

Other important point is the concurrency of transactions. Transaction management systems runs multiple transactions simultaneously by isolating their execution. Concurrency control of transactions requires serializing actions and managing their access to the resources via locking mechanism. The resource-based formalization allows applying these concepts to the deployment domain. Implementing locking mechanisms for entities in dynamic execution environments is di cult because of contingent nature of resources. Such mechanisms are outside the context of this work. Nevertheless, assuming that context representation framework provides such mechanisms; treating inquiry resources would need to acquire read accesses, while constructive resources would require write accesses. Without proper resource locking mechanisms, the second assumption is that there is only one deployment transaction executing on a platform. For this purpose the planner module employs a deployment queue, which ensures treating one assembly deployment at a time (see gure .).

Under these assumptions, the goal of deployment transactions is to extend the atomicity property over the deployment process. The atomicity property (in our case the failure atomicity) allows limiting the uncertainty about the outcome of the execution of a transaction in the presence of failures [Krakowiak]. A deployment transaction is thus de ned for enabling recovery operations. It is modeled following the two-phase commit transaction protocol (see gure .).

First the transaction coordinator calls all the deployment participants to prepare for transaction. At this phase participants decide whether the state transition is Error Handling Handling deployment failures is crucial for providing fault-tolerance. The deployment transaction ensures tracing the source of the fail and reporting it to the analyzer for further investigation. The transaction already includes the default behavior for handling deployment fails, which is the rollback phase. During rollback, the deployment participants try to recover from the modi cations they made to the resources by undoing their actions. Therefore deployment participants need to save the initial resource state during the prepare phase. If all the participants rollback successfully, then the platform should be at its previous state. However, contrary to database management systems, in execution platforms rollback actions are not always possible, or they could also fail.

In both of these cases, the planner noti es the analyzer, the party who ordered the deployment of an assembly, with the state of the deployment, if it was successful or unsuccessful, detailing the cause of the failure if there is one. In case of successful deployment, the default action of the analyzer is to activate monitoring components for observing the state of post-conditions. If the deployment was unsuccessful however, the analyzer can recalculate a new assembly, using the current state of the platform and the results of previous deployment attempts. This is an example of roll-forward and continuous software adaptation using information on historical deployment events. Such information facilitate developing autonomic policies that enhance applications with self-repair and self-optimization properties.

Description Language

The last part of the contribution is the proposition of a domain-speci c language (DSL) for describing the deployment of applications. This declarative language allows to express the concepts presented in the formalization until the description of applications. Application descriptions written in this language serve as an input for the deployment manager. Obviously on the basis of the proposed formalization, it possible to design different languages that describe the same concepts, using various constructs. Indeed, in the following chapter , in the context of this work two di erent implementations of this language is developed, each one with its advantages. However, they handle same kind of concepts. For illustration purposes the grammar syntax for one of these languages is presented here.

The deployment description language allows developers to codify the deployment process and treating deployment descriptors as rst-class development artifacts. The description is stored in a le and archived on a version control system. It can then be analyzed for syntactic and semantic errors and transferred to the execution platform. This artifact is transferred to the deployment manager and treated as a deployment request. This practice establishes the basis for the infrastructure-as-code movement and favors the continuous deployment [Spinellis]. Leveraging the deployment process presented above, deployment events and results can be traced back to the deployment code developed in this language. Such development characteristics enable debugging and testing of deployment descriptors.

Basics

The description language is based on a number of syntactic atoms, which facilitate the de nition of following constructs. First one of these elementary constructs is the property (Figure .). It serves to de ne key, value properties as described in the property concept. is used to attribute identi cators to some of the concepts (Figure .). It is necessary to create references to language elements.

Similarly, the Type is also used to identify the resource types. Two common resource properties are also identi ed as Name and State. The Version is also a common property required in deployment systems. There are many conventions about the versioning schemes. In this case the VersionLiteral can any expression that allows totally ordered versions.

Repository

The repository construct contains the name and remote access URL for a repository, dened in the repository concept. The diagram in . shows the syntax of repositories and set of repositories. Again for the sake of simplicity, the security issues are left aside from this description. Thus the con gurations needed for authenti cations and secure repositories connections are omitted.

Resource & Assembly

As described in the resource concept, property names of resource descriptions are different for each resource type. The description language de nes the syntax of resource description for a generic resource type, shown in the diagram in . To form an assembly resource descriptions are declared and linked to each other by dependency relationships. The syntax of resource declarations and assemblies are shown in the diagram . . Resource declarations attribute an identi cator, Id, to the resource descriptions. This identi cator is unique for the resource declaration inside the assembly it is included.

Resource declarations comprise either a resource description or the identi cator of an already included resource and refer to several other resource identi cators as its dependencies. The dependsOn keyword is used to express the dependency relationship. Resource declarations are included inside an assembly by the resource keyword. This way inside an assembly description, dependencies can be either inline with resource state descriptions or they can be included all at once by referring to already described resources.

Condition & Conditional Assembly

As introduced in the formalization the condition concept, a condition is composed of a resource state description and a fact, which is either true or false. The syntax of a condition contains a generic resource and a fact (Figure .). Each application contains assemblies grouped inside a number of conditional assemblies, described in the application concept. A conditional assembly regroups a set of conditions and an assembly in order to include the assembly to the application. There is also the case when the condition set of a conditional assembly is empty. This means that the assembly is unconditionally added to the application. Therefore, the syntax for conditional assemblies considers these two cases. First the case with, which includes the assembly to the application without conditions. And second the case when, which includes the assembly described after then, with the given non-empty condition set. The syntax describing these two options are shown in the diagram . . Notice that this construct enable creating applications with variability.

tor les referring to the application by its identi cator. It is also possible using default language constructs to reference and include code from other les. This lets developers to write common assembly descriptions, stock them inside separate les and reuse those by including them to their application descriptor le. The grammar in EBNF language can be found in the Appendix B.

The following example describes a simple application with two included assemblies:

Evaluation

To conclude the proposition chapter, this section evaluates the presented contributions against other works in software deployment domain. In the rst evaluation section, the formalization proposed in this work is compared to the previous studies that proposed formal frameworks. Secondly, major contributions of this work; the deployment process, the reference architecture and the description language are evaluated against the characterization framework, established in the chapter . And lastly this chapter concludes by summarizing the contributions of this work.

Comparison of formalisms

In this section a number of studies that propose formalization of deployment concepts are presented and compared to the proposition of this work. These studies are chosen for the evaluation particularly because they focus on solving di erent problems and thus for some employ di erent models for deployment concepts. The goal of this evaluation is to identify the similarities and di erences of these approaches.

. First in [Parrish], authors lay out the general concepts for deployment of component based applications. They model components, applications, the current state of an execution platform (con guration as called in the paper) and installations, which is the deployment process for applications. Authors focus on managing di erent versions (or di erent implementations) of components and examine di erent strategies for replacing components. They identify these strategies as Replace Always, Replace Only If Newer and Never Replace. Then two installation properties are de ned, as successful and safe. A successful installation implies that the installed application works properly. A safe installation implies that existing applications continue to work after the installation is applied. The authors continue by de ning backward and forward compatibility for components. Andnally they link installation strategies with those in order to de ne the conditions for safe and successful installations. While this work de nes many important concepts, it lacks the concept of dependency between components. There are no de nitions or rules for the deployment process and the execution of applications.

. In [Buckley], Buckley provides a framework to resolve code dependencies and load those dynamically, speci cally on the CLR (.Net) execution environment. The paper de nes the assembly (a CLR core concept) structure that contains executable binaries and associated with metadata such as name and version and dependencies. The formal framework de nes the deployment process of a module (an assembly) by resolving its dependencies, locating those and nally executing the module by making necessary bindings inside the execution context. The author details the process of loading the assembly to the execution environment. Here each successful load operation changes the state of the execution context. During the loading of an assembly, if a dependency resolution fails to nd a corresponding assembly, the install operation tries to gather it externally (from the end user), and tries to load that assembly on demand. If the system fails to make necessary bindings the installation fails, leaving the environment unchanged. This work concentrates on the internals of the runtime environment for resolving module dependencies by names and linking them. However, it does not address the evolution of applications. Similarly in [Esco er], authors explore dynamic code loading and unloading capabilities of .Net platforms.

. Liu et al. propose a formal framework for modeling the deployment of component based applications [Liu]. Their formal framework models the whole of the component deployment lifecycle, from building and assembling components through shipping the system from the development site, installation of the system at the deployment site, recon guring the system in response to changes and executing the system. The proposed formalism is based on the concept of application buildbox, which is the resolution space for component dependency constraints. The labeled transition system they propose de nes the state changes of this buildbox, therefore the evolution of the application. Their component de nition let considering static and dynamic dependencies. At development time, components are packaged into assemblages, which are modules with interfaces. Then the goal of the formalism is to ensure that the application builbox (thus the deployment site) is well-formed, meaning that all the constraints on components and their dependencies are satis ed.

. In [Belguidoum] authors propose a formalization of component substitutability. Their goal is to provide a safe and exible upgrade operation per component. The proposed formalization compares the dependencies of components as service interfaces and context descriptions. Components are described with mandatory, optional and negative dependency declarations. Then at runtime, wires between components satisfy these requirements. The context is de ned as the current state of the execution environment. The work focuses on ensuring the safety of the system. To achieve this, the paper proposes verifying tthe requirements, the e ect of the substitution and preserving invariants of services, components and context.

. Lastly in his doctoral thesis, Sun examines the complexity of con guration management [Sun]. The author proposes a state machine model for con guration management systems. On this model the reproducibility and composability of operations are studied. The proposition studies properties such as idempotence, sequence idempotence, commutativity and convergence of operations composed of atomic actions. Using this formalism, it is proven that in general cases system management processes are NP-complete and NP-hard. Then the process of depen-dency analysis between managed entities and operations is described. Here the distinction between two types of entities is made. In the black-box approach, only information on external behavior is available. As for the white-box approach, entities contain some representation of content that is available for analysis. High complexity of these processes causes for the con guration management to be nondeterministic and intractable for system administrators.

Compared to those formalisms, the proposition in this work stands out in several aspects. To begin with, the formalism in this work speci cally aims to coordinate the deployment operations. In this respect, the core concept is chosen as the resource to be able to cover di erent kinds of entities that can be found on deployment sites. Other formalisms except the are limited with component-based deployments.

Continuing from the coordination aspect, the studies in items , , specify the internal operations of the execution platform required for installing and executing components. However, this work proposes to delegate that concern to the underlying platform and only command state changes of resources. Speci cally the details discussed in the work for component installation can be used to implement the resource processor for components.

This work adopts the declarative approach for describing the deployment of multiple entities. So users provide the deployment descriptor that designates the expected state of one portion of the execution platform. The state transition process that makes this happen is then deduced from this description. As argued in , this is the ideal approach for verifying the state of the platform. Other works, while describing also components, concentrate primarily to resolve the deployment concerns on the basis of single components.

Contrary to the and , where dependencies can have di erent types and contain constraints, this work, as like the one in , consider only simple dependency descriptions. This reduces the complexity of graph operations, because constraints on entities are only described in resources.

The formalisms in , and concentrate on resolving dependencies with constraintsolving and name matching. The complexity of such algorithms that choose components by constraint-solving is studied in . Constraint satisfaction algorithms often use heuristics for limiting and reducing the resolution time and therefore not deterministic. In this work most of the dependency choices are made beforehand, when the deployment descriptor is created. Surely the application description contains di erent conditions, which are constraints on the platform state. But the resolution of those constraints and decisions on application variability are con ned to the analyzer module. The current algorithms can be replaced by sophisticated constraint solvers such as SAT-based engine with or without backtracking.

Lastly, the ability to describe variability allows applications to adapt to the changes on the platform state, and evolve on the long-term. Continuous adaptation proposed in this work eliminates the restriction of declarative approaches, which is also expressed in the work .

Evaluation for Continuous Deployment Requirements

Following the formalism comparison, this section evaluates the continuous deployment requirements satis ed by as the result of this work. To recall, in the previous chapter requirements for continuous deployment are presented in three groups, deployment platform requirements, deployment process requirements and language requirements.

Platform Requirements As it is discussed previously in the section . that the proposed reference architecture presumes an underlying execution platform. This execution platform is supposed to be con gurable, introspectable, modular, dynamic and capable of applying architectural recon gurations. Therefore, the requirements de ned by the characterization be present on the platform, except the contextrepresentation. This last requirement is satis ed by the reference architecture by the proposition of context representation framework presented in section . . .

Process Requirements

The notion of deployment request appears in the proposed architecture as the application description. Application descriptions trigger analysis and then the execution of deployment inside deployment manager. The deployment request can be introduced to the deployment manager (more speci cally to the analyzer module) either from outside by installing or updating an application (push), or from inside the deployment manager, as a result of change demands of a already installed application (pull).

The proposed deployment process determinisim, idempotence and faulttolerance properties are already argued in corresponding discussions . . and . . . These re ections are then transferred into the reference architecture for the proposition of idempotent resource processors, deterministic deployment plans and transactional process execution.

The proposed process and architecture are customizable in many points. The generic process allows to integrate new resource types, and this is also rati ed in the reference architecture by the resource processors. Algorithms and policies with many possible implementations are left customizable inside the deployment manager architecture.

The reference architecture is proposed speci cally to support the continuous adaptation of applications. Each deployed application is monitored automatically and changes are noti ed to custom application policy for adaptation decision. Changes decided by the adaptation policies also pass from the same coordination process as regular deployments.

Language Requirements The description language proposed in the section . allows to express resource descriptions according to the concepts de ned in the formalization. As a result, the language allows to describe resource states and their dependencies. Leveraging the use of di erent description levels, the description language lets users de ne their applications with more or less precision.

The language is extensible with di erent resource types. Resource processors are in charge of providing implementations of language extensions for the resource type they manage.

Aligned with the application concept in the formalization, the description language allows describing conditional assemblies inside application descriptions. This enables variability over descriptions and is necessary for continuous adaptation.

Using standard language constructs, assembly descriptions can be referenced from di erent source codes. This eases the management of the deployment description codes and allows reuse of common portions of application descriptions.

The following table summarizes the evaluation of the proposition against these requirements. The signi es that these characteristics are inherited from already existing work. The represents the requirements to which this thesis have proposed contributions.

Conclusion

This evaluation concludes the proposition of this thesis.

In order to summarize, the section . proposes a formalization framework for deployment concepts. This framework describes algorithms that coordinate deployment actions. The discussions in the section . explained the consequences of this deployment process. Concepts along with the deployment process are embodied inside the reference architecture, presented in the section . . The reference architecture describes the context representation framework and the deployment manager which implements the proposed process. Finally, a deployment description DSL is proposed in the section . . This language allows to code deployment descriptions that serve as deployment requests for the deployment manager.

In the beginning of this chapter a number of objectives are presented to be addressed by this work. This evaluation explains how presented contributions satisfy their objectives. Following table . summarizes of the research objectives and corresponding contributions. The following section presents the implementation details of the EveREST framework and di erent tools developed within Rondo tool suite.

Implementation

This section presents EveREST and Rondo frameworks, the global architecture they are used in, and later details each one of these projects. The EveREST project contains EveR-EST Core, EveREST OSGi, EveREST iPOJO, EveREST System and EveREST Filesystem. The Rondo project implements tools for the deployment, including the Rondo Core, Rondo Deployer, di erent Resolvers, Rondo Cloner and DSLs in Java and Groovyy languages.

Global Architecture

The main solution developed in the context of this work is the deployment framework called Rondo. Rondo framework proposes a set of tools that implement the contributions presented during the previous chapter. These tools are developed for obtaining experimental results and for validating the approach of this work. The central tool of this approach is the deployment manager, implemented in the Rondo Deployer module. As proposed in the reference architecture, the deployment manager depends on a context representation framework for observing and manipulating the actual state of the platform. This context representation framework is developed in a separate development project called EveREST. This section presents brie y the EveREST framework, followed by the details of di erent modules and tools proposed by Rondo framework.

Both of these projects are based on OSGi 1 and Apache Felix iPOJO 2 technologies. The OSGi is a modular service execution platform on Java technology. As discussed previously in . . , it is used as the basis of many deployment solutions. However, the evaluation of existing deployment solutions in chapter concluded that the OSGi lacks the architectural recon guration support and a proper context representation. iPOJO addresses one of these issues, the architectural recon guration, by providing a service-oriented component model on top of OSGi service and module layer. The component model proposed by iPOJO manages the lifecycle of components, component instances, their con guration, execution and recon guration. It provides a simple programming model, hiding the complexity of the dynamism management [Esco er a]. iPOJO allows to con gure instances with extensible mechanisms that select and inject service dependencies. These changes are applied transparently to the component code, at the architectural level. The following schema displays basics of iPOJO component model (see gure .). The deployment tools proposed by Rondo framework address primarily the applications running on OSGi and iPOJO. But as it is explained later in this chapter, the architecture of these tools allow to be extended with di erent types of resources and thus are not limited to this environment. This way Rondo and EveREST can be used in di erent domains without much e ort. Following are the di erent sub-projects that are developed within Rondo framework. The diagram in gure . shows their interdependencies.

Brie y Rondo framework includes following projects:

-The rondo-core project provides the implementations of the resource and assembly models for the deployment descriptor. It proposes a uent API for creating these models, which constitutes the Java DSL for the deployment descriptor.

-The deployment manager is implemented by the rondo-deployer project. This module provides all the necessary components for handling new deployment request programmed in DSLs and, for handling the deployment and management of applications. -The rondo-cloner module proposes a reverse-engineering tool for extracting the current state of a platform into a deployment descriptor. This descriptor can than be used as a basis for reproducing the same conditions of the platform.

-Certain resource types that are already built-in the core and the deployer modules allowing for their description and deployment. Extensions augment the description language and the deployment manager with other resource types.

-As expressed earlier in the proposition, there are many ways to calculate a deployment plan from a given deployment descriptor. Resolvers provide di erent algorithms for this important operation inside the deployment process.

-The rondo-command module proposes useful commands to the user for introspecting managed applications and the state of deployments, starting new deployments or cloning the platform state. It is useful for debugging purposes, rather than a tool for production.

-The groovy-lang module provides the deployment descriptor DSL on the Groovy language support. Groovy enable compiling and loading the code at runtime. Also it provides a more cleaner language syntax. This chapter explains some of these projects in more detail, starting from the EveREST framework.

EveREST

The EveREST framework implements the context representation required by the deployment manager. The reference architecture of this framework is already presented previously in the section . . . The EveREST framework is composed of a core module and several domains that extend this core. Domains provide resource representations of different kinds of entities. In its current state, the EveREST project contains domains for representing the execution environment of the platform it runs on. Having runtime models of the execution is pivotal for the implementation of the deployment facilities. These domains are OSGi, iPOJO, Java Runtime Environment and the Filesystem.

a. EveREST Core

The EveREST core provides the resource model that allows to apply REST architectural style to context representations. It is the essential part of the framework that serves as a bridge between domains and external applications that want to access and manipulate the context. EveREST maintains a common access point for external applications to make requests to resources. The EveRESTService interface allows applications to transfer requests to resources. A Request is composed of an action, a target path and a set of parameters. EveREST guarantees the tree structure of resources for that requests can reach addressed resource representations. To enable this, each Resource implements a process method, which by default delegates the request until its destination where it is nally treated and applied.

Each resource is an object that allows to obtain and manipulate the state of the entity it represents. Resources describe their own capabilities via relations they possess.

A Relation is described with a name, a target Path, an Action and a set of parameter descriptions. In addition to that, some of the resources can produce noti cations that inform applications of their state changes. EveREST allows resources to publish synchronous and asynchronous noti cations, which relies on OSGi Event Admin messaging backend. Domains provide implementations of the Resource interface for di erent kinds of entities they model. Each domain must identify itself with a root resource, which identi es the entry point to the domain. EveREST provides default implementations of the resource model. By extending these default implementations, domain developers can inherit the default behavior and structure of resources. This way they can concentrate on the model of their resource representations. Each domain model must design carefully the information they need to include, its resource structure and the relationships that resources will have.

b. EveREST OSGi

The OSGi domain models entities found in standard OSGi platforms. The entities modeled as resources include the con gurations of the OSGi framework itself, bundles, packages, services, Con guration Admin con gurations, log entries and Deployment Admin deployment packages. Resource models also include the relationship between di erent types of resources. For example, a bundle resource is linked to package and service resources it provides and requires. The listing . shows a bundle representation in Json. Deployment packages are linked to the bundles it contains. In addition to representing the state of these entities, some resources let manipulating the state of resources. OSGi domain let installing new bundles and deployment packages, changing the state of bundles and creating and updating con gurations.

{

"bundle-id": 1, "bundle-state": "ACTIVE", "bundle-symbolic-name": "org.apache.felix.configadmin", "bundle-version": { "major": 1, "minor": 8, "micro": 0, "qualifier": "" }, "bundle-location": ".../org.apache.felix.configadmin-1.8.0.jar", "bundle-last-modified": 1403801594012, "bundle-fragment": false, "__observable": true, "__relations": { "Child:services": { "href": "http://localhost:8080/everest/osgi/bundles/1/services", "action": "READ", "name": "Child:services", "description": "Get the child \"services\"", "parameters": [] }, Listing 6.1: Resource representation of a bundle

c. EveREST iPOJO

The iPOJO domain models the entities found in the iPOJO component model such as component factories, component instances, handlers and declarations. iPOJO domain is an example of how an EveREST domain can extend another. Resources in iPOJO domain contain relations to the resources of OSGi domain. The component factories and handler reference the bundle they are de ned inside. Component instances reference the OSGi services they require and provide. It is possible therefore traverse the complete resource graph following these cross-domain relations. iPOJO domain allows to create, recon guring and destroying component instances. The following instance representation in listing . contains relations for recon guring and destroying the instance. The important di erence compared to architectural reconguration mechanisms is that the changes in EveREST resources are expressed as new resource states and not actions. Each resource representing the entity decides the actions to perform based on the current state and requested target state. { "name": "org.ow2.chameleon.everest.core.Everest-0", "factory.name": "org.ow2.chameleon.everest.core.Everest", "factory.version": null, "state": "valid", "configuration": {}, "__observable": true, "__relations": { "reconfigure": { "href": ".../org.ow2.chameleon.everest.core.Everest-0", "action": "UPDATE", "name": "reconfigure", "description": "Reconfigure this component instance", "parameters": [{ "name": "state", "type": "java.lang.String", "description": "The state of the component instance", "optional": true }, { "name": "configuration", "type": "java.util.Map", "description": "The configuration of the component instance", "optional": true }] }, "delete": { "href": ".../org.ow2.chameleon.everest.core.Everest-0", "action": "DELETE", "name": "delete", "description": "Destroy this component instance", "parameters": [] }, Listing 6.2: Resource representation of an iPOJO instance

d. EveREST System

The System domain represents the properties obtained from the operating system and the standard Management Beans o ered by the JVM, according to the JMX speci cation [Sun Microsystems b]. System and environment properties, information on the operating system, memory and processor load and Java threads are represented as resources inside the System domain. Most of these resources are for monitoring purposes so they are read-only.

e. EveREST FS

The lesystem domain represents the local les and directories accessible by the platform. It presents an example on how the resources representing underlying entities can be created on demand, according to the request. Searching and creating every le and directory on the lesystem is inconceivably ine cient. Filesystem domain creates the resource and its tree hierarchy once it receives a request for a resource. The issue of loading big resource graphs into memory can appear in di erent domains. The optimization used by lesystem domain is an example to circumvent this issue.

Before continuing to the implementation of Rondo framework, it merits noticing that the resource models o ered by EveREST domains remarkably help implementing contextaware applications. The deployment facility provided by Rondo is an example for contextaware application. Rondo deployment manager deploys applications according to the current state of platform, represented by EveREST. The generic Resource interface allows to manipulate entities through a uniform interface, without necessarily knowing how to change resource states of di erent types of entities. Applications accessing context information concentrate on the information they possess, not the actions they should apply in order to obtain and change the state of entities. Using cross-domain relationships, it is easier to extract the information hidden inside links between di erent types of entities. All these elements ease the implementation of deployment tools provided by Rondo, which is presented in following sections.

Rondo Core

Rondo Core project implements the model of concepts presented in the previous chapter. This model enables creating the deployment description that holds information about applications, assemblies and resources. The diagram in Figure . presents this model. The resource concept is modeled using the ResourceDeclaration interface. It is a common interface for all types of resources. The ResourceDeclaration in-terface de nes name, id and state properties. Di erent resource types are de ned by extending this interface and declaring the additional properties. For example, the interface describing the Bundle resource type is shown in listing . . The types of resource declarations are extracted from such interfaces that extend the ResourceDeclaration.

The implementations of these interfaces constitute actual resource declarations. Resource declaration implementations must build the set of properties the resource describes. It is recommended that resource declaration implementations are developed regarding the resource property types; inquiry, speci c and constructive of the conceptual model presented in the previous chapter. Here in the example of bundle resource, the source is a constructive property, whereas the symbolicName and version properties are speci c properties. The Rondo Core de nes and implements resource types commonly found in an execution environment with OSGi and iPOJO: bundles, packages, services, con gurations, les, component factories, component instances, etc.

The Assembly class regroups a set of ResourceDeclarations and allows to de ne dependencies between them. The type and id pair of a resource declaration constitutes its unique identi er inside an Assembly. This means that an assembly cannot contain two resource declarations with the same type and the same id. A ResourceReference contains a type and a id for referring to a declaration. It allows to de ne the dependencies between resources. The Dependency class represents this relationship and enables navigation of the assembly graph.

The Application and ConditionalAssembly extend the assembly class.

An application being an assembly itself, de nes the resources and their dependencies that are unconditional. It contains a set of conditional assemblies, pre-conditions, post-conditions and links to repositories. Lastly, the Condition class contains a ResourceDeclaration and a fact, which is a boolean value.

The Rondo Core also provides generic functions for analyzing and manipulating assemblies. These are the functions that are not dependent to resource types such as calculating dependency closures of resources, the join operation or the relative complement operation between two assemblies.

Finally, the core model provides a uent API developed in Java, which constitutes the basis of the Java DSL. It allows to code, in plain Java, application descriptions with re-source declarations, dependencies, conditional assemblies and pre-and post-conditions. The usage of the Java DSL is detailed in the usage section (see .).

Rondo Deployer

The Rondo Deployer project implements the deployment manager, whose architecture is presented in the section . . . It receives deployment requests of applications, manages them continuously and executes the deployment process when necessary. The deployer is composed of three types of service-oriented components; the resource processors, the analyzer and the executor. The analyzer and the executor components are singleton and static, meaning that even though they are service-oriented components, they are not replaceable at runtime. But resource processors are dynamic, the Rondo Deployer can be extended with new types of resource processors, taken into account dynamically at runtime. Service interfaces published by the components to the OSGi service registry are noted with the «service». The process and monitor methods of the processor are the factory methods for creating deployment participants and resource monitors. Resource monitors are used by the analyzer for monitoring deployed applications. Deployment participants are coordinated by the executor inside deployment transactions. The implementations of resource processor can check a given resource state whether it is ful lled by the platform or not.

It provides the method contract which for given two resources, returns a contracted resource if possible. The resource contraction is possible if two resources are equivalent or one subsumes the other. Finally the resource processor implementation can provide a function for calculating implicit dependencies inside an assembly.

The Rondo Deployer provides implementations of the resource processors for the default resource types de ned in the core. These implementations are based on the EveREST framework.

The capabilities of the deployment manager can be augmented by providing custom resource processors for di erent resource types. These extensions provide the resource declarations for the resource types they manage. They must also implement the

ResourceProcessor interface and publish it in the OSGi service registry. Other deployer components associate resource processors with the resource type they manage and use them during deployment analysis and execution.

b. Analyzer

The analyzer is a singleton component that analyzes deployment requests and manages deployed applications. It is in charge of continuously monitoring deployed applications The analyzer assigns an InfrastructureManager to each application to manage its continuous deployment. Infrastructure managers are provided with an

AnalysisContext, through which they can access necessary information about the current state of the platform. The analysis context is initialized by the anaylzer with the resource processors discovered through the OSGi registry. It provides common methods used during the deployment analysis for checking conditions and validating assemblies.

It can also access the DeploymentExecutor service for requesting the deployment of an assembly (presented in the following part of this section).

These functions provided by the analysis context are used in the analysis of the infrastructure managers for new deployment requests and for adapting running applications.

The InfrastructureManager is in charge of conducting analysis operations for the application they manage. On one hand, it evaluates the deployment requests, for the rst time an application is to be deployed and later for the pushed updates. Each deployment request contains the application management information it targets.

On the other hand, once deployed, the infrastructure manager oversees the monitoring mechanism to trigger adaptations when necessary. The implementation of the InfrastructureManager is depicted in the diagram . . The analyzer component starts the infrastructure manager with an initial deployment request and later on with each new deployment request, analyzer redirects it to the corresponding infrastructure manager. The infrastructure manager holds the information on the e ective assembly deployed and the chronological order of the deployment handles (also presented in the following part of this section).

The infrastructure manager starts and maintains the monitoring mechanism for the deployed application. It creates the ResourceMonitors using appropriate resource processors and adds itself as listener for resource state changes.

Together with the deployment request, it is possible to set a custom adaptation pol-icy for each application by providing a class implementing the AdaptationPolicy interface. The adaptation policy has access to the AnalysisContext of the managed infrastructure. It implements the chooseToDeploy method to decide on which contained assemblies are going to be chosen for deployment. The infrastructure manager delegates deployment events and resource state changes to the adaptation policy, for that the policy can decide whether to trigger a deployment process. The analyzer already provides a default implementation of this interface to be used when no custom policy is set.

c. Executor

The executor component implements the planner module of the reference architecture. It is a singleton component that implements the DeploymentExecutor interface and publishes it in the OSGi registry. The main method of this interface, handle, takes an assembly to deploy as input, plans and executes its deployment. The diagram . shows the architecture of the executor component. The handle method returns a DeploymentHandle immediately after creating the deployment plan for the assembly. As discussed earlier there are many possible implementations for creating the deployment plan. Therefore the DeploymentResolver implementations are separated from the executor. The executor depends strictly on a resolver service it discovers from OSGi registry for resolving deployment plans.

The executor maintains the deployment queue, which ensures that there is only a single deployment process executing on the platform. If the resolver returns a deploy-ment plan, the executor enqueues the plan for deployment. A single thread handles the assemblies on the queue one by one in the order of arrival.

The DeploymentHandle represents a speci c deployment process. It is created with the deployment plan, the deployment context and a DeploymentCustomizer if available. It allows to start the deployment proces or cancel an ongoing one. It also allows to make a dry run, which tests only the prepare phase of the deployment. The handle of a deployment enables the introspection of the process, o ering the deployment state and the failure, if the deployment failed. Possible states for a deployment process are as the following:

-CREATED: Deployment enqueued, but not yet started.

-DRYRUNNING: Deployment running on dry mode. The execution won't a ect the platform and prepared resources will be cleaned up.

-RUNNING: Deployment created and started running.

-UNSUCCESSFUL: Deployment nished but was unsuccessful.

The getFailure method returns the root reason of failure as a Throwable.

-SUCCESSFUL: Deployment nished and was successful.

The state changes are noti ed to the DeploymentListeners that can be registered to the deployment handle. For example, InfrastructureManagers are registered to the deployment handles they requested.

The DeploymentCustomizer is a service discovered from the OSGi service registry by the executor. It is called by the handle before, after and on rollback of deployment. The customizer can return a modi ed deployment plan on the predeployment callback. Similarly, onRollback callback can return a deployment plan to recompensate on the failure and continue the deployment with the alternative plan.

The DeploymentContext manages the deployment session as well as the deployment transaction. The deployment handle prepares the deployment transaction by creating DeploymentParticipants from corresponding processors and adding those to the transaction according to the deployment plan. Deployment participants have access to the deployment context for using con gurations of the particular deployment.

They are coordinated by the DeploymentTransaction, as explained before in the reference architecture . . .c.

Resolvers

As explained above, there are many possible algorithms to calculate the deployment plan, thus there are di erent implementations of the DeploymentResolver interface. A resolver is in charge of calculating the deployment plan but also reporting that a plan cannot be calculated in case of a cyclic assembly. Rondo proposes three functional implementations of the resolver, each with di erent characteristics; breadth-rst resolver, depth-rst resolver and the topological ordering resolver. The following chapter evaluates the performances of these di erent algorithms.

a. Breadth-first Resolver

The rst resolver implementation applies a breadth-rst search (BFS) on the assembly graph for constructing the deployment plan. It implements the BFS iteratively from bottom of the tree, up to roots. Starting from resources without dependency, in each iteration, resource declarations that all the requirements are already visited are added to the deployment plan. This resolver is the only one that creates parallel resource declarations to the deployment plan. However, it does not provide detailed error information if the assembly is cyclic.

b. Depth-first Resolver

The second resolver implementation applies a depth-rst search (DFS) on the assembly graph. The search starts from an arbitrary resource declaration and drills down to its dependencies recursively. It creates the resource order according to the preordering, i.e. the order they are visited by the DFS. If all the dependencies are already in the deployment plan, then the visited resource is added next in the plan. If there are still resources that are not visited, the search continues on by choosing one of them and recursively searching its dependencies.

Notice that this implementation choses arbitrarily resource to search in depth, meaning that the order of resources is arbitrary. This is a weakness for the implementation, because it is not deterministic. For its advantage it can detect cycles giving more detail about the detected cycle.

c. Topological Ordering Resolver

The last resolver implementation applies a topological sort algorithm. The resolver uses JGrapht3 library for detecting cycles and calculating the topological order. The topological ordering creates a reverse postordered resource list, meaning that resources in the deployment plan are ordered in the inverse of the last visit order during a DFS. Instead of handling resources in arbitrary order like the DFS, the topological ordering can lexicographically order the dependencies according to ids of resource declarations.

Using the JGrapht library, the detection of cycles is more detailed. The library offers a tool for detecting all of the cycles in a given DAG. With lexicographically ordered topological sort, the deployment plan calculcated is deterministic.

Rondo Cloner

The Rondo Cloner is an reverse-engineering tool, which allows to create the deployment descriptor from an already executing OSGi platform. Using the graph of resources represented by EveREST framework it creates the Rondo model as an assembly and writes the deployment descriptor into a le with the Java DSL.

The tool is called cloner because the descriptor written into the Java source code can then be compiled and deployed to another platform in order to reproduce the cloned platform (see gure .). The cloner follows the extensible architecture of Rondo and EveREST. Resource processors can provide a ResourceWriter interface as service which writes the declarations of di erent types of resources into descriptor source code. As example follows, the cloner provides writer for the core resource types, and discover other resource writer from the OSGi registry.

Usage

This section explains the installation and usage of Rondo tools, as well as the examples for coding deployment descriptors using Rondo DSLs. It also details how to develop resource processors for custom resource types.

Installation

As expressed previously, Rondo is executed on OSGi platforms. It is developed using the iPOJO component model and depends on the EveREST framework. The basis for an OSGi platform that is con gured with Rondo tools contain following bundles.

-Apache Felix iPOJO: iPOJO is needed both for EveREST and Rondo bundles as they are designed and developed as several service-oriented components, presented in the previous section.

-EveREST Bundles: EveREST bundles include the EveREST-core, EveREST-osgi, EveREST-ipojo and any other EveREST domain. EveREST OSGi domain has optional dependencies to OSGi Con guration Admin and Deployment Admin Package services for representing these domains.

-OSGi Event Admin: The OSGi Event Admin is used for delivering EveREST event for resource noti cations. A stable and compliant implementation such as Apache Felix Event Admin is recommended for use.

-Rondo Bundles: Rondo bundles necessary for the deployment manager are the core, the deployer and a resolver. The core bundle provides the model and some abstract classes for developing new resource types. The deployer bundle provides the components of the deployment manager, resource processors for standard EveREST domains and the abstract classes useful for developing other resource processors. A resolver implementation is required for the deployment system to function. In addition to those, the command bundle provides OSGi console commands that integrates to the Apache Felix Gogo Runtime. These commands serve to introspect the deployment system, managed applications and clone the platform. Finally, a deployment customizer can be provided per platform for customizing the deployment process.

-Rondo Extensions: Rondo can be extended with resource processors for di erent resource types. The system extension is an example for Rondo extensions, which depends on the EveREST domain with the same name.

-Rondo Cloner: The cloner component is packaged in a separate bundle from the deployer. It only depends on the core and it is not required by the deployment manager.

-Rondo Groovy DSL Bundles: The Groovy DSL support is provided by the Groovy Script Deployer bundle. It requires the Groovy Runtime to be installed on the OSGi platform. The usage of the Groovy DSL is explained later in this section.

-URL Handlers: The resource processors that construct resources on the platform usually need to fetch artifacts (bundles, jars or any other les) from remote lesystems or repositories. As explained earlier, Rondo does not deal with resolution of artifacts from software repositories. Instead, it delegates this to the resource processors capabilities to fetch artifacts. An example to this by relying on the URL handlers of OSGi platform. For example, OPS J Pax Url Handler4 for Apache Maven URLs resolves the mvn://.. links inside given Maven artifact repositories.

In addition to the installation of bundles to the OSGi platform, Rondo does not need any other con gurations. Once installed Rondo Deployer is ready for accepting deploy-ment requests written in Java or Groovy DSLs. Following sections explain how to develop deployment descriptors using these DSLs.

Java DSL

The Java DSL consists of a fluent API, provided by the Rondo core. The concept of uent API is described by Martin Fowler and serves, among other things, to write a type of DSL called Embedded DSL. An Embedded DSL is written using another programming language for leveraging the constructs and also the already existing tools of that programming language.

Rondo Java DSL is embedded inside Java. It is based on the uent API provided by the Rondo Core for creating application descriptions with assemblies and resource declarations. Despite of being a based on a uent API, the description language is declarative. The descriptions written using this DSL are compiled using standard Java compiler and need only the Rondo Core in the classpath. The compilation phase grants the syntactic checking of Java to the descriptor. It also enables establishing a build process with other model checking mechanisms for consistency and coherence of the coded descriptor.

Application descriptions written in Java DSL are annotated with @Application or @Infrastructure annotations, compiled and packaged into OSGi bundles. The deployer provides a mechanism for processing bundles, extracting the annotated classes, creating the descriptions and transferring those to the analyzer as deployment requests. Following are the portions of code for illustrating the usage of the Rondo Java DSL.

app.resource(pckg("config-admin") .name("org.apache.felix.config.admin") .version("1.2.6")) .resource(bundle("icasa-bundle") .symbolicName(name) .version(bundleVersion) .state("ACTIVE")

.source("mvn:fr.liglab.adele.icasa/"+name+"/"+version))

Listing 6.5: Resource Declaration -Java DSL

Once the assembly model is initiated, the resources can be added by calling resource method, which takes a ResourceDeclaration as parameter. In this example resources of con guration, package and bundle are added to the assembly.

.resource(Bundle.class,"icasa-bundle")

.dependsOn(Package.class,"config-admin") .resource(Configuration.class,"conf")

.dependsOn(Bundle.class,"icasa-bundle"); Listing 6.6: Resource Dependencies -Java DSL Dependencies between resources are added to the assembly by calling its resource method, which in this case takes a resource type and a resource id. It returns a

ResourceReference, to which dependencies are added calling the dependsOn method.

app.when(condition(configuration() .pid("org.ops4j.pax.url.mvn")) .isTrue())

.then("appfragment",appFragment()); } Listing 6.7: Conditional Assembly -Java DSL This illustrates how to add conditional assemblies to the assembly. The when method allow specifying the condition set of the conditional assembly. Conditions are created using the condition method, which creates a condition with the given ResourceDeclaration. The condition designates the fact of the condition by isTrue or isFalse methods. Finally, the then method adds the assembly in its parameter to the main assembly.

public Assembly appFragment(){ return assembly() .resource(zigbeedevice("discovery")) .resource(zigbeedevice("factories")) .resource(zigbeedevice("importer")) .resource(zigbeedriver("api"))

.resource(zigbeedriver("impl")); } Listing 6.8: Method returning an assembly -Java DSL This example shows the appFragment method called in the conditional assembly of the previous example. The descriptor code is still standard Java, which allows including other libraries to the code, possibly referring to other assembly descriptions. In this case, the method returns an assembly including ve resources that are constructed using di erent methods.

tence. Therefore, it is also necessary to help developers program new resource processors and integrate those to development tools provided by Rondo. This section demonstrates resource processor development by presenting two use cases: the fragment and parallel resource types.

a. Fragment Resource Processor

Fragments are special type of bundles in the OSGi speci cation. They are attached to one or more host bundles, as part of the package resolution. The framework appends denitions of the fragment to the host bundle, before the resolution of the host. Fragments are therefore treated as part of the host when loading classes or accessing other Java resources. Contrary to the standard bundles, fragments are never activated but only resolved if and only if they are attached to a host. This mechanism enforces a constraint on the deployment of fragments. The host of the fragment must already be installed before the fragment, therefore the fragment depends on its host. But even though it is not explicit, in most of the cases the host bundles resolution depends on the existence of fragments. Indeed this results in a cyclic dependency system between fragments and their host bundles. A general practice for deploying fragment bundles is to install them in two steps. Host bundles are installed without resolving before the installation of fragments. Then once the fragments are installed and attached to the hosts, hosts are resolved and started.

The cyclic dependency poses a problem for the deployment plan resolution in Rondo. But above all the previous general practice is not applicable neither. Notice that the Rondo deployment descriptors declare the expected, nal state of resources, not the deployment process. The deployment process and the actions it contains are inferred from that target state. Therefore describing the previous process results in creating two resource states for the host bundle such as INSTALLED and ACTIVE, which are obviously con icting. This is why the development of fragment resource processor is an important use case for understanding the expected state described by resource declarations and the idempotence of resource processor implementations. The solution implemented in the Rondo Deployer project is presented here.

The fragment resource declaration is similar to the one of bundles, describing the symbolic name, the version the state and the source of the fragment. In addition to that, fragment declaration includes a declaration of the host bundle. The following example shows an example of fragment declaration.

fragment("slf4j.simple")

.source("mvn:org.slf4j/slf4j-api/1.6.6") .symbolicName("org.slf4j.api") .version("1.6.6")); prepare: The prepare method rst checks whether the given resource declaration is well-formed or not. In case of fragments, this is done for both the fragment and the host de nition. Then it checks if in the current state of the platform, one or more resources correspond to this declaration. If found it backs up the state representation of these resources. In case of fragments, the state of the fragment and the host bundle, and their source (using the bundle-location property) are backed up. This is one of the reasons why deployment participants are stateful objects. If any resource exists corresponding to the declaration and the given declaration is not constructive, the prepare throws an exception. If the declaration is constructive, it prepares necessary les or con gurations for constructing the resource in the next phase. For fragments and bundles, the prepare method downloads the bundle le and checks if the manifest information corresponds to the given declaration.

commit: The commit method is in charge of making the changes on resource states, if necessary, and checking if these changes are applied. Fragment deployment participant rst makes sure the host bundle is at least installed, and then proceeds with installation of the fragment bundle. If any bundle installations are needed it uses the les and con gurations prepared in the prepare phase. Finally, it makes a last check of the state of resources.

cleanup: The cleanup method is called if the transaction fails after or during the prepare phase. In case of fragments, it makes sure the downloaded and prepared les are deleted.

rollback: The rollback is called if the transaction fails during the commit phase.

It makes best e ort to restore the backed up state of resources. In case of bundles and fragments it reinstalls the bundle to the OSGi with the backed up le, if necessary.

The deployment participant code involves a lot of error handling. Fragment resource processor leverages the EveREST framework for gathering the state and manipulating the bundles. This results in uniform interfaces and exception handling in the implementation of deployment participant.

For the implementation of resource monitors, another abstract class, AbstractResourceMonitor is provided by the deployer project. The implementations that extend this class implement the open, close and check methods. As explain earlier in this chapter, check method is also implemented by the resource processor to check whether a declaration is true for the current state of the platform. The open and close methods start and end the monitoring of the resource state. The resource monitoring implementation must observe the resource state and calls the stateChanged method provided by the abstract class to notify the state change.

For some resource types the push noti cations can be obtained from the platform, but for others the resource monitor should poll the resource periodically and for controlling if the state has changed. For instance, the EveREST framework sends noti cations for state changes of any bundle type, including fragments. But such noti cations are not available for system properties in Java Runtime Environment.

b. Parallel Resource Processor

Depending on the resolver that constructs the deployment plan, Rondo deployer is capable of running resource participants in parallel. This is made possible by implementing a parallel resource processor. A parallel resource declaration is constructed with several other declarations. The resource processor holds a thread pool for executing participant tasks in parallel. The size of the thread pool can be con gured according to the platform machine, for example related to the number of processors. At each transaction phase, the parallel deployment participant coordinates the participants it contains and invokes their corresponding actions (see gure .). The consequences and advantages of executing some of the deployment actions in parallel are evaluated in the following chapter.

Conclusion

This chapter presented the important points about the implementation of the reference architecture, the Rondo deployment tools and the EveREST context representation framework. Both Rondo and EveREST are available as open source in GitHub respectively at https://github.com/AdeleResearchGroup/Rondo and https://github.com/ow2-chameleon/EveREST.

The EveREST project implements an extensible framework for representing context, adapted for dynamic environments. This chapter shows how EveREST framework can be extended for representing di erent types of context entities from the platform. Using the context representation provided by EveREST, Rondo project implements various tools for deployment facilities. This chapter studies in detail how these tools are implemented and arguments di erent implementation choices. These tools are equally extensible for taking into account di erent resource types available on a deployment site. This chapter also presents guidelines for extending the capabilities of Rondo tools by implementing resource processors.

Rondo and EveREST serve in the following chapter for testing and validating the contributions of this thesis.

The following table (see table .) indicates the lines of code and lines of test code in each of the projects developed for Rondo deployment tools.

Introduction

The previous chapter describes the implementation details of the context representation framework, Everest; and the set of deployment tools, which implement the main contributions of this thesis, called Rondo. The previous chapter also gives instructions on how to use principal functionalities of Rondo and how to extend it with di erent resource processors.

This chapter provides validation for the deployment capabilities of Rondo framework. First, in the next section, di erent resolver implementations are tested by calculating deployment plans for di erent assemblies. Secondly, the chapter continues by presenting di erent use cases in which the Rondo deployment manager is tested. Presented tests and evaluations focus on validating four properties of Rondo framework:

-Performance and overhead acceptability: The comparative acceptability of deployment process performance and the overhead on the idle platform.

-Deployment versatility: The ability to be used in di erent deployment scenarios, including deployment of platform technical services and applications.

-Error handling and diagnosis: The reaction and exibility o ered in face of errors during the deployment process.

-Dynamic adaptability: The deployment manager's ability to adapt the deployed applications dynamically according to the de ned variability.

Resolver Evaluation

In the section . . of the previous chapters presented three di erent implementations of resolver components 1 . To recall brie y, the deployment plan designates the order of which the deployment actions are applied by the deployment manager. The calculation of this deployment plan is therefore a key step in the deployment process. The resolver is in charge of resolving the graph of the assembly and producing a deployment plan as a result. This rst section presents the results of the performance tests performed in order to evaluate and compare these di erent algorithms for deployment plan resolution. These performance tests are executed on a MacBook Pro featuring GB of RAM and an Intel . Ghz Core Duo processor. It runs OS X . . -Bit operating system and Java HotSpot version . . _ , -Bit Server virtual machine.

The resolver performance tests evaluate the execution time of deployment plan resolution of di erent assemblies. The set of test assemblies is a mixture of assemblies that are used for deployment; noted by Shelbie, iCASA and iCASA & Wisdom and other assemblies that are obtained from generated graphs. For instance, OW Shelbie2 console is a textual shell implementation for OSGi platforms. iCASA and Wisdom frameworks are introduced later in this chapter. The assemblies Graph-, Graph-, Graph-and Graph-are generated randomly conforming to directed acyclic forest graphs. They are generated by determining a xed node size, in order to evaluate the performance changes of resolvers.

The table . shows the properties of these assemblies and execution times of three resolvers; depth-rst search (DFS), topological sorting (Topsort) and breadth-rst search (BFS). The mean and median of execution times, measured in milliseconds, are calculated as the result of iterations of resolution. The chart in the gure . summarizes the comparison of three resolver algorithms. All three of the algorithms produce acceptable calculation times, even for large assemblies containing thousand nodes. But otherwise, they fare di erently according to the properties of the assemblies they receive. The DFS resolver implementation is by far the fastest among them. However, it produces sequential deployment plans. The BFS resolver, which produce parallel deployment plans, is slower than the DFS. The resolution times increase linearly with relation to the size of the assembly. The Topsort resolver implementation uses an external library, Jgrapht. This explains the higher execution times, even for the smallest size assemblies, because the assembly models are transformed into the Jgrapht graphs before running the topological sorting. But once this overhead is accepted, it produces acceptable resolution times.

Despite its secondary place in assembly resolution, the following tests mostly use the BFS resolver implementation. The foremost reason for this choice is its ability to produce deployment plans that enable parallel deployments. As the following section shows, executing deployment actions in parallel greatly improves the execution time of deployment processes. Furthermore, in platforms where parallel execution of deployment actions is not favored, the BFS or Topsort resolver implementations are still a viable choice. In the remaining sections of this chapter, the comparison between parallel and sequential deployment plans are displayed through BFS and Topsort resolvers.

Performance Evaluation

The goal of this section is to evaluate the performance acceptability of Rondo with comparison to other currently used deployment methods on OSGi™ platforms. This evaluation comprises a comparison of metrics for the deployment platform and the deployment process. The metrics for the deployment platform measures the adoption cost of the deployment tool. These metrics are:

-Start-up duration: The time it takes from the launch event of the deployment platform until all of the resources are initialized and fully operational.

-Idle memory consumption: The memory consumption of the platform while it is not active, i.e neither a deployment process nor any application is executing on the platform.

On the other hand, following metrics measure the performance of the deployment process:

-Deployment process duration: The time it takes from the request for deploying a test application until all of the resources of this application are fully operational.

-Deployment process CPU consumption: The maximum CPU consumption during the deployment process.

Test Application

The deployment process is evaluated by deploying a test application that can execute on all of the platforms. This test application is a simple service-based application that is very common on OSGi platforms. The implementation uses iPOJO for de ning components, instances and providing OSGi services. It is composed of a library module, an API module, a support component, a server component and a client component. The application includes a single non-conditional assembly that is showed in the graph depicted in the gure . . . To give an order of scale, this assembly declares resources and dependencies. The API module contains the service contracts, which are de ned separately for a better decoupling between client, server and support components. The server module depends on the library for providing the main service of the application, with the help of at least one or multiple support services. This exempli es two kinds of dependencies in the OSGi platforms, package level-dependency and service-level dependency. The behavior of the server in delivering its service changes according to the number of support services it has in its disposition. Note that in the assembly graph, two initial instance resources are declared for the support component. However, the server instance depends on the existence of a support service. Lastly, the client component requires a service provided by the server to be active and calling the server.

Tested Platforms

As explained before, the performance acceptability tests involve comparing multiple platforms with di erent deployment methods. Following are the brief descriptions of the platforms tested in the context of this comparison: Rondo -Topsort: The platform con guration includes Rondo deployment manager with the Topsort resolver implementation and the system extension, without the Groovy Language extension.

Rondo -BFS:

The last platform con guration is same as the previous one, except that it uses the BFS resolver implementation. This serves to recognize the e ect of parallelization of deployment actions on deployment process duration.

Note that these platforms are instrumented for being able to execute measurement tests. For measuring start-up and deployment durations, platforms are instrumented in order to generate and capture events that signal the start and end of the durations. Startup times are measured by modifying the baseline framework for registering the events of platform start and of bundle and service stability. Likewise, the durations of deployments are registered using an iPOJO component that tracks an event for the start of the deployment and measures the time until the bundle and service stability. For low level metrics such as CPU consumption and memory usage, YourKit5 pro ling tool is used. In the context of these tests prepared platforms are launched times (following a times warm up period) in order to measure the start-up durations. The idle memory consumption shown is the sum of heap and non-heap used memory. The pro ling tool is used to measure the memory consumption at the -minute mark from the launch and initialization of the framework, when there is no activity after a full garbage collection. Then the test follows by deploying the test application and measuring the time between the start event of the deployment and the moment there is no more bundle and service activity in the framework. In the case of Rondo, the default deployment customizer of Rondo provides the beginning and the end of the deployment process. During the deployment process, the CPU consumption is measured using the pro ling tool by tracing the CPU percentage with -second intervals. The results show that start-up durations and memory consumptions follow the complexity of the deployment method. The Deployment Admin service and the Apache Felix File Install introduce small overhead on start-up and memory compared to the baseline. The overhead of Rondo (combined with Everest framework) is higher but still would not be signi cant in a larger system.

The deployment durations and CPU consumption of tested solutions are close but comparable. The chart in gure . shows the distribution of deployment durations in milliseconds. The deployment process of Deployment Admin service is slightly faster and consumes less CPU than the File Install and Rondo with Topsort resolver. This can be explained by the process of bundle activation. Both the Deployment Admin and the File Install employ a two-step process to handle OSGi bundles. First they call the OSGi framework to install the bundles that constitute the test application. At each bundle install, the OSGi framework analyzes the dependencies of bundles and tries to resolve them. Once all bundles are installed, Deployment Admin proceeds by activating all resolved bundles. File Install, however, gets noti ed each time a bundle is resolved, and tries to activate the bundle. This explains why all deployment experiments with Deployment Admin result concentrated times. With comparison, the installing and activation of File Install depends on the order the les are copied to the watched directory. In case of Rondo deployment process, the dependencies are already declared inside the deployment descriptor and a deployment plan is prepared by the resolver. The Topsort resolver produces sequential deployment plans, in which only one deployment action is executed at a time. This explains the longer deployment duration of Rondo with Topsort resolver. However, Rondo using the BFS resolver produces faster deployments because, the resolver produces deployment plans that contain parallel deployment actions. In turn Rondo executes several deployment actions at the same time. As the deployment plan already takes into account the dependencies between resources, the dependency resolution of bundles conducted by OSGi framework is much faster.

To conclude this section it is useful to compare the development e ort for creating descriptors of each deployment method. The table . compares the number of development les, the number of deployment les, lines of code and lines of con guration need for describing and deploying the test application with each deployment method. The rst thing to notice is that File Install method for deploying applications is merely copying the bundles and con gurations in a watched directory. So there is no deployment descriptors only bundles and con gurations for creating instances. The Deployment Admin service uses special archive les called deployment package for packaging the bundles and other artifacts. Deployment packages contain a manifest that lists their content. This manifest is read and interpreted at runtime by the deployment agent. For creating the deployment package for the test application, the same bundles and con gurations are used. An Apache Maven project uses a plugin for creating the deployment package. As for Rondo, the deployment descriptor is coded using the Java DSL, compiled and packaged as an OSGi bundle. The lines of codes corresponds to that of the Java descriptor and the lines of con gurations are for the Apache Maven project that creates the bundle. A noticeable trait is that even for a small sized application, the Rondo descriptor contains declarations for resources and dependencies; therefore it requires more lines of code.

Use of Rondo in Various Deployment Scenarios

This section presents several use cases in di erent projects where Rondo is used for deployment. Rondo is integrated into execution platforms operating in pervasive and web domains. The primary use cases are rst to deploy the technical services that constitute the platform and then on top of that, deploy several applications. Here two projects, iCASA and Wisdom Framework, are presented. Additionally, Rondo is tested on deployment of an Internet of Things gateway platform6 through the BUTLER project [FP BUTLER Project].

iCASA Platform

Along with the development of Rondo and Everest frameworks, the work carried out during this thesis and presented in the previous chapters contributed in the implementation of a project for pervasive computing. The project, called iCASA, provides a development and execution environment of pervasive applications, specialized in home automation. iCASA is composed of two main parts: a simulator for home automation environment and an execution platform for applications.

iCASA execution platform supports the deployment and execution of home automation applications by providing the following:

-Mechanisms for discovering and reifying physical devices as services using RoSe [Bardin].

-Technical services, such as service for task scheduling, recording user preferences and persisting application data.

-Application development model, based on service-oriented components. In practice, OSGi and iPOJO frameworks are the technical basis for iCASA platform, and this will allow us to directly use our proposal.

-Analysis and introspection tools used to manage running applications and detect any de ciencies.

-A Web interface for viewing and administration of the platform and the applications and services that it is composed of. The simulation environment, on the other hand, is used to test one or more applications by imitating a realistic pervasive runtime environment. The gure . shows an example of such a simulated environment that is represented by this user interface. The home context and devices shown in this gure are simulated for testing the LightFol-lowMe application. To achieve this, iCASA provides:

-A virtual home automation environment, representing a house or apartment. This environment includes a physics engine to measure certain characteristics of the environment (light, temperature, noise, etc.). This virtual world also allows to represent the people, their actions, their movements, etc.

-A wide variety of devices that may be simulated and displaced placed in the virtual environment as described above. These devices can directly a ect the virtual environment by changing its physical characteristics. For example, a simulated lamp which is lit will increase the brightness of the simulated room in which it is placed.

-A Web interface simulation, which represents graphically the simulated environment, the devices that are present and those who inhabit it. This interface allows to interact directly with the simulated environment by adding new devices, moving users or by activating certain features.

-A scripting language for creating simulation scenarios that tests applications on di erent combination of con gurations.

a. Platform Deployment

As expressed above, the rst deployment scenario is the deployment of the platform itself, i.e the technical services that constitute the iCASA framework. The tested platform conguration of iCASA framework version . . -SNAPSHOT is based on OW Chameleon Core and constituted of OSGi bundles. The infrastructure assembly coded in Rondo Java DSL de nes resources (including bundles, packages and les) and dependencies.

The table . presents comparative results of this deployment. Along with the Baseline framework and the Rondo platform con gurations, the table compares a platform that contains iCASA framework (iCASA on the table) and a platform of iCASA with Rondo (iCASA + Rondo). The deployment duration indicates the deployment of iCASA platform on top of Rondo using Topsort and BFS resolvers. As in the previous example these durations are the arithmetic mean value of deployment times.

As shown on the table, Rondo on top of the iCASA framework causes a slower platform start-up, due to the number of bundles and component instances Rondo brings to the platform. From the comparison of idle memory consumptions, an apparent result is that the memory overhead of Rondo is increased but not signi cantly. This increase is mostly due to the size of the system that is represented by the Everest framework. As for the deployment durations, they reveal the di erence between parallel and sequential deployment processes. The assembly that describes the iCASA framework is obtained using the Rondo Cloner (see previous chapter . .) on an already executing iCASA platform. The Rondo Cloner generates a deployment descriptor that can be edited and build into deployable application descriptions.

b. Application Deployment

The second deployment scenario is the deployment of modules and applications on top of the platform. Leveraging the modular architecture enabled by the OSGi, iCASA project disposes several technical service modules that can be included into the framework dynamically at runtime. In addition to these modules, there is a collection of pervasive applications developed using the home context provided by iCASA.

Before the integration of Rondo, iCASA project experimented with di erent deployment methods for the installing technical service modules and applications. The rst and basic deployment method was using Apache Felix File Install for inserting OSGi bundles and con gurations into the platform. More recently, the iCASA project integrated a custom deployment process, which extends the default Deployment Admin Package process. Inside this process, every module is packaged as a deployment package -an archive le including the artifacts and a special manifest that lists the content of the package. Using deployment admin package had several consequences on the life cycle of the project:

-In development, each module has a Apache Maven project that includes con guration artifacts and builds the deployment package by gathering executable artifacts (i.e. included bundles). The development of these modules was particularly challenging. First, the deployment admin packages do not contain any information for specifying relations between included artifacts. This leads to invent custom mechanisms for circumventing this issue. Developed module often logically extended existing modules. To resolve this issue, the development team invested in developing a build process that included the contents of the extended deployment packages inside the new one.

-In deployment, the default deployment agent of deployment admin package is extended with a manager that extends and oversees the deployment process. Firstly, the process is extended with a resource processor that handles con guration artifacts. These artifacts are extracted from the archive and treated as in the case for File Install. Secondly, because the deployment description doesn't include any relation between artifacts, often the installed bundles were not resolved and con gured at rst try. To overcome this issue, the manager re-invoked the deployment process after a prede ned timeout, in order to retry the installation of the deployment package.

The utilization of Rondo for deploying modules and application on iCASA was straightforward. All types of resources needed for these modules -bundles, packages, components, instances, con gurations, les -are already included in Rondo Core. Then all that is required is to program the deployment descriptions in Rondo DSL.

Here is a selection of technical service modules and applications that are tested for deployment utilizing Rondo:

Zigbee Module: This module regroups necessary APIs, device proxy implementations, communication and discovery mechanisms for integrating Zigbee devices into iCASA framework. It includes nrjavaserial7 library for serial communication through USB port, where the Zigbee radio dongle is plugged.

Philips Hue Module: This module includes Philips Hue SDK8 and the discovery mechanism for importing Philips Hue lamps into iCASA framework as OSGi services.

Jersey Module: This module includes Jersey9 core and client bundles for importing and exporting RESTful Web Services as OSGi services into iCASA framework.

Gas Detection Alarm Application: This application uses gas sensors present in the home environment (simulated by iCASA) for detecting increased levels of CO 2 concentration in the air. When the concentration threshold is breached it triggers an alarm using the lighting system (lamps, etc.). In addition to that it sends an e-mail report to a designated person. For this it includes a E-mail API and Service.

Light Follow-Me Application: This application uses motion sensors present in the home environment (simulated by iCASA) for detecting presence in rooms. It regulates the lighting system inside rooms by turning on the lights for occupied rooms and turning o the lights when the room is no longer occupied.

Actimetrics Application: This application registers the occupation rate of rooms and sends the gathered data to a remote server using a RESTful Web Service. It includes the Jersey Module for importing the remote Web Service and sending the actimetry data.

The following table (.) presents the comparison of development e orts between Deployment Admin package and Rondo. For Deployment Admin, the table indicates the number of artifacts included inside the deployment package and the number of lines of con guration for Apache Maven project. Rondo deployment descriptions of each module and application are developed using Groovy DSL. The table shows the number of lines of Groovy code developed and the number of resources and dependencies of resulting assembly. The development experiments show that developing Rondo deployment descriptors with Groovy DSL is straightforward. Despite the high complexity of dependencies between resources, the lines of code is restrained, thanks to the preprocessing of deployment. The preprocessing extracts the dependencies between bundles, packages and components; including them into the assembly automatically. This lets developers to concentrate on the business-speci c dependencies, such as les, instances and services.

Compared to the previous deployment method in iCASA framework, utilizing the Rondo deployment manager for deployment of modules and applications eliminates the disadvantages mentioned above. The deployment process is well-de ned and deployment errors are clearly reported to the user. Furthermore, applications enlisted for deployment are managed at runtime and Rondo allows introspecting these. Any errors occured during the deployment process are registered and available for diagnostics.

Wisdom Framework

The deployment capabilities of Rondo are tested inside another project called Wisdom Framework10 . Wisdom is a framework for developing modular dynamic web applications. It is based on non-blocking I/O (Netty11) and an actor system (Akka12), limiting thread and CPU usage. Wisdom is built on top of OSGi, to enable modularity, and on Apache Felix iPOJO, in order to handle the dynamism.

Wisdom integrates two ideas for development and runtime of web applications. Wisdom eases the complicated build process of modern web applications, which involves HTML les, client-side code, Javascript libraries, stylesheets, templates and medias. It proposes a simple build process that eases the development and testing of applications. During the development process, each change triggers a Apache Maven build process, which compiles, packages and deploys the application.

Secondly, Wisdom provides a modular and dynamic runtime, featuring a stack of technical services that simpli es the development and execution of web applications. This modular stack comprises services such as template engine for static content, JSON libraries for exchanging easily JSON payload, bean validation, Web sockets support, dynamic internationalization support and scheduled and asynchronous task support.

a. Platform Deployment

Modularity and dynamism inherent to Wisdom applies to its own architecture as well as to the applications developed on top of it. This makes Wisdom an adequate candidate to test the capabilities of Rondo. Similar to the previous example, the rst deployment scenario is to deploy the platform itself, all of its technical services and con gurations. The tested platform con guration of Wisdom framework version . . is deployed on OW Chameleon Core and constituted of OSGi bundles. The infrastructure assembly developed in Rondo Java DSL declares resources (including bundles, packages and les) and dependencies.

The table . presents the results of this deployment test. The table compares a platform that contains Wisdom framework and a platform of Wisdom and Rondo. The deployment duration indicates the deployment of Wisdom platform on top of Rondo using Topsort and BFS resolvers. As in the previous example these durations are the arithmetic mean value of deployment times. As previous tests, the start-up and memory overheads are proportional to the size of the platform. The deployment durations are also coherent with the previous tests. The deployment plan created by the BFS resolver implementation fares better in terms of the time it takes in comparison with the Topsort resolver.

b. Application Deployment

As for application deployments, Rondo Groovy DSL is used to develop the deployment descriptors of two applications.

Wisdom Monitor: This application provides an application for monitoring the execution platform. In addition to the application bundle, which provides the main web application, it includes bundles for monitoring the JVM and the OSGi platform.

Wisdom Documentation: This application serves a web page of the Wisdom framework documentation.

Again, thanks to the preprocessing of bundle dependencies, the deployment descriptors are easy to develop, and still, the deployment process proceeds as expected. The following table (see table .) presents the development e orts for these applications. One of the returns of experience during the experiments with Wisdom framework involved error diagnosis. The rst attempt to deploy the Wisdom framework resulted with an error due to unresolved dependencies of a bundle. Rondo deployment manager reported the error back as the result of the deployment process was unsuccessful. A closer inspection revealed that the bundle lack indeed proper manifest metadata for declaring its dependencies. Then two options were possible to overcome this issue. In the immediate, Rondo deployment descriptor for Wisdom framework was updated in order to declare necessary dependencies. Then, the error is reported as a development issue and subsequently the bundle is xed with correct dependency metadata.

To conclude this section it is useful to present a recapitulation of previous experimentations. The following chart in gure . outlines the impact of having Rondo on the execution platform. The chart compares the idle memory consumption and start-up durations of baseline, iCASA and Wisdom frameworks, against its counterparts with Rondo.

The start-up durations show a steady increase with the size of the framework in question. The only exception for that is the case for Baseline framework with Rondo deployment manager. The mechanism iPOJO uses for starting component instances explains this increase. iPOJO uses multiple threads to start components that are contained in bundles. Default resource processors for Rondo are contained inside the deployer bundle, which are in this case handled inside a same thread. Furthermore, the memory used by Rondo increases constantly but negligibly with the framework size.

Dynamic Adaptability in Rondo

In the last part of this section, dynamic adaptation capabilities granted by Rondo are demonstrated using two adaptation scenarios. The rst adaptation case involves the adaptation of an application, guided by its deployment description which includes variability.

The second case demonstrates a case for updating the technical services that constitute the framework itself.

Application Adaptation

For the rst adaptation scenario, consider the test application presented previously in section . . of this chapter. The application consisted of a single, non-conditional assembly depicted in the gure . . . This served to describe the application in a static fashion that did not de ne any dynamic adaptations. Leveraging its service-oriented modular design and implementation, the application would survive service disruptions or an externally triggered update on its dependencies. However, it would not autonomously change its architecture reacting to the changes.

In order to add self-adaptive capabilities to this application the existing application description is augmented with two conditional assemblies, as shown in the gure . . Recall that the main non-conditional assembly included one client instance, one server instance and two support instances. The new version of the test application contains the main non-conditional assembly as-is. In addition to that, the rst conditional assembly de nes a third support instance, uniquely named support-3. Also a dependency between this instance and the support component description noted c sup is declared. The second conditional assembly rede nes the client instance, named client-1, already contained inside the main assembly, with a new instance con guration. This instance declares its dependency to the client component description, noted c cl i . Furthermore this second assembly rede nes the support instance support-3 with a state DISPOSED, which is the negative state for instance resource type. This explicit description denotes that the instance support-3 will not exist inside this assembly.

condition(configuration())))

) .pid("port'active")))))

) .with("port").setto("USB'1"))

resource(instance().name("support'2"))))

) .state("VALID")))

resource(component().name("example.support"))

) .state("VALID")))

resource(Instance.class,"support'2")))))))))))))

.dependsOn(Component.class,"example.support") isTrue() isFalse() resource(instance().name("support'2"))))

) .state("DISPOSED")))

resource(instance().name("client'1"))))

) .with("period").setto(3000).state("VALID")))

resource(component().name("example.client"))

) .state("VALID")))

resource(Instance.class,"client'1")))))))))))))

.dependsOn(Component.class,"example.client")) when then then

Figure 7.7: Test Application Conditions

As for the conditions of these assemblies, they are de ned as complementary and mutually exclusive, i.e. when one is true, the second one is false. The conditions are based on a resource of type con guration (OSGi Con guration Admin con guration). This con guration resource is speci ed with an id and holds a property value. The schema shown in the gure . explains the condition cases and assembly descriptions using the portions of the Java DSL code.

As a result of these modi cations the test application gained the ability to autonomously adapt to the changes of the con guration. Considering that at the time of rst deployment of the application the con guration resource active-port, has the expected value, a third support instance is included into the application. Then during the course of execution, if the con guration resource does not hold the expected value anymore, due to an internal or external event, the change is detected and a deployment process is triggered to adapt the application. The adapted application includes only two support instances and a di erent con guration for client instance. The inverse case is also valid, according to the state of the condition, the e ective application con guration is changed back and forth.

A set of experiments is conducted in order to measure the time cost of these adaptations. The table . lists the average durations in milliseconds of deployment processes that apply corresponding changes. The table compares creation and recon guration of iPOJO instances and Con guration Admin con gurations and the execution time of the deployment process that adapts the test application. A general remark is that any application adaptation takes longer then the actual changes brought by the deployment actions (new instance, recon guration, etc.). This is because the whole application assembly is calculated and validated at the analyze phase, resulting in a longer deployment process. Lastly, note that deployments describing the current state of the platform (for example instance declaration for an already existing instance) take much signi cantly less time because of idempotence of the deployment actions and process.

Framework Update

The second case that demonstrates the dynamic adaptability capabilities of Rondo is an update scenario within Wisdom framework. Being in active development at the time of writing of this manuscript, the Wisdom framework project made several releases. This section brie y explains the return of experience of using Rondo for deploying and updating Wisdom framework.

With each release of Wisdom framework, the Rondo code that describes the framework deployment is needed to be revised for the new version. This revision task is fairly easy thanks to the use of standard programming language constructs such as elds, parameters and methods. For example, the release version that is shared by all of the Wisdom project artifacts is able to be parameterized into eld. This is also valid for bundle dependencies that constitute logical modules that share the same namespace and version. As a result, for the case of updating the Wisdom framework version . . to the . . , the revision task is in essence the change of a eld denoting the framework version in the description source code.

Once the new version of the deployment descriptor is produced, the stake is to push this update to the platforms executing the old version (. .) of the framework. Thanks to the modular dynamic nature of Wisdom framework and applications, the update operation can be applied at runtime. The deployment of new version (. .) conducted by Rondo deployment manager only updated the necessary bundles (of bundles forming the Wisdom Framework), leaving the matching resources unchanged. During the deployment process, the update operation of critical technical services disrupted the applications, but once the new version of the framework is up and running, the applications took over. However, only in seldom cases some of the platform services could not handle the dynamism and stopped working.

The last remark about the deployment process is about the kind of utilized deployment plans. In spite of longer deployment durations produced by sequential deployment plans, the framework update tests using the DFS or Topsort resolver implementations fared better in terms of safety of the platform.

Conclusion

This chapter proposes a validation for the overall contribution of this thesis. Making use of the proposed implementation -Rondo deployment tools -validation cases presented in this chapter proves that the approach adopted in this thesis is pertinent. More specifically, the validation cases evaluate four aspects; the performance, the ability to be used in di erent deployment scenarios, its advantages for developers and nally the ability for conducting dynamic adaptations.

From the performance acceptability point of view, two separate evaluations are effectuated. The resolver evaluation tested three resolver implementations against various assembly cases and compared their performance. Then in the performance evaluation section, capabilities of Rondo deployment manager is compared against other currently used deployment methods. This section revealed an apparent but acceptable overhead compared to the other methods. This overhead is compensated through improved results in terms of the duration of deployment processes.

The chapter followed by presenting two projects, iCASA and Wisdom frameworks, in which Rondo is tested as the method for deploying the framework and the applications. Such use cases demonstrate the usability and easy adoption process of the approach. The Rondo DSL for programming deployment descriptors plays a central role in this outcome. Along these tests, return of experiences show that the deterministic and fault-tolerant behavior provided by Rondo helps developers for reacting to errors that may occur inside the deployment process.

Finally, the previous section demonstrates dynamic adaptation capabilities granted by Rondo deployment manager. These are presented in two di erent use cases. The rst case illustrates the process of adding variability over an example application, using the Rondo DSL. This simple example of application variability showcases the potential of the proposed deployment process for elaborate continuous adaptation usages. The second use case presents the experience of a framework update operation. This exempli es how the deployment process handles a large-scale runtime update task.

Introduction

This thesis studied the continuous deployment in dynamic environments and presented in detail the contributions of this work. The presented contributions comprise the denition of a continuous deployment process, the reference architecture of the deployment manager implementing this process, and a domain-speci c language to describe deployments. This work also contributed to the development of a set of deployment tools, called Rondo, which served to highlight and validate the points made throughout this thesis. Rondo is a fully operational prototype and available as an open source project. Capabilities of Rondo deployment manager are tested within di erent deployment scenarios, using various software projects. This chapter summarizes these propositions and results of this work. This work gives birth to many research questions and perspectives. The second part details future work possibilities. These involve, rst of all, investigating runtime support for applications in dynamic environments and secondly, enhancing existing tool ecosystem to improve testability and ease of use.

Thesis Summary

This section highlights the contributions of this work. It summarizes the various points raised in this thesis.

Problem Statement

The development of modern applications is a software engineering challenge. It requires providing developers coherent tools and processes to make sure of correct execution and fast software delivery. Dynamism is one of the requirements that is increasingly expected from modern applications. Pervasive environments, for instance, require applications to dynamically evolve at runtime in order for them to blend seamlessly into real environments. Adaptations are necessary to add new functionality to an application, but also to improve quality or to adjust to a new execution context. However, the development of such applications is complex and error-prone. Developers are usually obliged to sacri ce software consistency and dependability in the expense of achieving dynamism. Furthermore, recent years have witnessed the proliferation of application platforms. This Platform-Application view creates a separation over the type and the control level of software management. Platform providers want to make sure that their platform is working as expected. This requires exhaustive testing of those platforms, against many scenarios and thus exert relatively slow but con dent evolution over the software. Conversely, application developers require attracting users with new functionalities as fast as possible. So the applications need evolving more rapidly and dynamically to the changes.

The software development life cycle of applications running in dynamic environments is hindered by the lack of tools that help delivering software rapidly and automatically into environments used for development, testing and production. Traditional approaches fail to address the deployment challenges of dynamic systems.

Emerging practices of continuous deployment is a promising candidate for responding to the deployment needs of dynamic environments. It is based on a set of practices aiming to provide a process for deploying software rapidly and predictably. The continuous deployment for dynamic environments would need to respond to di erent requirements of execution platforms and applications, updates of separate modules, as well as their recon gurations to cope with the evolving context.

Contributions

The main objective of this thesis is to enable continuous deployment on dynamic execution environments. The requirement analysis presented as part of this work showed that existing works in this domain are inadequate. In addition to satisfying these requirements, contributions of this work lean speci cally on four points. These objectives address the research challenges that are addressed in this thesis (see table .). The rst point is the reproducibility of deployed software systems. The deployment process must ensure that repeating the same deployment operation in di erent deployment sites produces the same result on every site. A reproducible deployment process is necessary for large-scale deployment of software systems.

The second point consists of the fault-tolerance of the deployment process. The deployment includes a series of critical actions that are error-prone. Providing industrialscale, distributed solutions for deployment depends on the ability of the deployment process to be fault-tolerant.

The third point involves the support of continuous adaptation of deployed software. The successful deployment of a software system in dynamic environments is not the end of the process, but the beginning of the runtime management of the deployed system. Handling dynamism requires continuous runtime management and adaptation of software.

The last point is the tool ecosystem that facilitates the work of developers who specify deployments. The speci cation of the deployment descriptors is a crucial but laborious task. Tools help developers to create and test the deployments they specify.

In the light of these requirements, this work contributes to the speci cation and the development of a set of deployment facicilities. These facilities comprise:

. the process de nition that allows continuous deployments, . the reference architecture for a deployment manager and . the domain-speci c language for describing deployment tasks.

Central to the proposed deployment facilities is a formalization framework. This framework models the expected state of applications (or any other software to be deployed) and the current state of the deployment platform. These models are based on the generic concept of resource. A resource describes the state of any kind of entity. Using the graph theory, this framework formally describes the deployment process. The formalization framework includes the description of the deployment process, based on the graph theory. This ensures the idempotence of the deployment process, which is crucial for achieving fault-tolerance and reproducibility.

The contributions of this thesis include the reference architecture for the deployment manager that implements the deployment process. The deployment manager speci es the transactional deployment executor which coordinates deployment process. An analysis component is in charge of the runtime management of applications. It enables continuous adaptations by maintaining a monitoring infrastructure and triggering deployment requests when needed.

Conforming to the formalization framework, adaptation requirements of applications are described as variabilities. Variability descriptions are taken into account at application runtime for adapting the application according to the context changes. If a context change triggers an adaptation, the deployment process checks the validity of the application and proceeds with its execution on the platform.

Finally the deployment facilities include a DSL for describing deployments. It constitutes a basis for the tool support and ensures the ease of use of the proposed deployment facility.

The contributions of this thesis are fully developed inside Rondo project. Rondo is a tool suite containing the implementations of the formalization model, the deployment manager and the deployment descriptor DSL. This work also presented the implementation details of Rondo tools. These tools are fully operational and available as open source at https://github.com/AdeleResearchGroup/Rondo. In addition to serving for validating the approach and the contributions of this thesis, Rondo is tested against deployment scenarios de ned within industrial and research projects.

Future Work

This work proposed an approach for enabling continuous deployment in dynamic execution environments. Nevertheless, there are many open research questions on the deployment solutions in dynamic environments and much to do to improve the contributions of this thesis. This section looks into some of the perspectives that are revealed over this study.

Improving Support for Applications

This thesis proposes an application description based on the deployment point-of-view. Nevertheless, the notion of application in dynamic, open execution environments leaves a lot more to investigate. The section . . on application compatibility discusses the basic conditions for multiple applications to cohabit on a platform. While this ensures the coherence of application resources, no restriction is enforced for applications sharing, accessing and using resources at runtime. The resource-based application description proposed in this thesis is a good starting point for describing the boundaries and access rights of each application. For example, in Android OS access right to common platform services is based on declarations that come with the application description. Users who authorize the installation of the application, approve the access request. In dynamic execution environments, however, access rights can be provisional and change according to the context. The description of provisional access rights might seem trivial, but the enforcement of these should investigate advanced security mechanims. Furthermore, sharing application resources is another concern faced by execution platforms. Recall that applications as de ned in this work do not possess any belongings towards resources. In this setting certainly applications can enforce constraints on the evolution of resources (using post conditions) but this does not mean that a resource belongs to one particular application. The common practice for cohabiting multiple applications is to isolate them in sandboxes. This highly restricts sharing of application resources, although applications still have access to common platform resources. Exploring isolation mechanisms for dynamic open execution environments would contribute to resolve some of the problems encountered in this thesis, such as application undeployment.

Mechanisms for Analyzing and Testing Deployments

The deployment process described in this thesis proposes simple analysis at runtime for transforming applications into deployable entities, that is to assemblies. A major phase inside this analysis consists of deciding which application fragments, conditional assemblies, are to be deployed. The analysis on di erent variabilities of the application is the heart of the continuous adaptability. As expressed earlier in this document, future work is bound to investigate the possibilities for this decision function.

Similar research questions are already explored in the context of SPL feature models. A major question is what knowledge is needed by this decision function to be able to choose between variabilities. This work paves the way for more advanced adaptation scenarios by associating a well-de ned deployment process with self-adaptation possibilities. Autonomic Computing solutions can be employed to enhance the self-adaptable applications with self-optimization, self-healing and self-protection functionalities.

The continuous adaptability implies analyzing application variabilities at runtime. However, deployment descriptors can also be analyzed beforehand for testing purposes. Using combinatorial testing methods application descriptions can be exposed against different platform con gurations and state changes. This would allow testing the adaptation logic contained inside variabilities.

The deployment process proposed in this thesis involves analyzing dependencies between resources, according to the deployment description, in order to calculate a deployment plan. Therefore all dependencies between resources are expected to be explicitly included inside the deployment description. Even though this is needed for guaranteeing the determinism of the deployment process, specifying all dependencies can be laborious and it can hinder the development.

As argumented earlier, this process does not include a phase for resolving dependencies by soliciting an artifact repository. Nevertheless, as discussed in the section . . , such a mechanism can be integrated inside an development environment (IDE) that help completing deployment descriptors with dependency resolution information.

Distributed Continuous Deployment

This work deliberately excluded the problem of deploying software to multiple target platforms in distributed environments. Next logical step is looking for expanding this work into distributed environments. Basically put, the distributed deployment is an orchestration of deployments in multiple target machines. As a matter of fact, many properties ensured by this work, such as fault-tolerance, determinism and introspection are crucial for distributed deployment. Some of the works in this direction are already presented in section . . of this document. In order to provide continuous deployment in distributed environments, the planning function should be revised for taking into account spatial and temporal constraints over target machines.

With the emergence of many Cloud computing providers, the possibilities for distributed deployment are increasing. Most of these providers o er APIs so that deployment automation tools can manipulate Cloud resources as VMs, computing infrastructures or

 . 4 1.2 Research Challenges . 6 1.3 Contribution . 7 1.4 Dissertation Structure . 8

Figure 2 . 1 :

 21 Figure 2.1: Evolution of Computer Systems (adapted from [Waldner 2007])

Figure 2 . 2 :

 22 Figure 2.2: Pervasive Computing Environment

 Figure 1. Gator Tech Smart House. The project features numerous existing (E), ongoing (O), or future (F) "hot spots" located throughout the premises.

Figure 2 . 3 :

 23 Figure 2.3: Example for Smart-space Environment (from [Helal 2005])

Figure 2 . 4 :

 24 Figure 2.4: M2M Application Example (adapted from [Lalanda 2014])

 r t T r a n s p o r t

Figure 2 . 5 :

 25 Figure 2.5: Smartlife Concept (adapted from [FP7 BUTLER Project 2013])

Figure 2 . 6 :

 26 Figure 2.6: Pervasive Computing Technology Stack

Figure .

 Figure.illustrates di erent levels of domains contributing to the vision of pervasive computing, as sensors and devices, communication protocols, runtime platforms and application development. In this section some of the research advancements that have a direct impact on pervasive computing are introduced.

 Figure 3.1: Waterfall Model

Figure 3 . 2 :

 32 Figure 3.2: Iterative Development Model

 Figure . illustrates this dual functioning 1 .

Figure 3 . 3 :

 33 Figure 3.3: Incremental and Iterative Development Agile manifesto 2 is initiated on the recognition that over planning and over formal-1 Original illustrations created by Jeff Patton: http://www.agileproductdesign.com/jeff_patton.html 2 Agile manifesto: http://agilemanifesto.org

Figure 3 . 4 :

 34 Figure 3.4: Software Deployment

Figure 3 . 5 :

 35 Figure 3.5: Software Deployment -Componentization

Figure 3 . 6 :

 36 Figure 3.6: Software Deployment -Deployment Descriptor

Figure 3 . 7 :

 37 Figure 3.7: Software Deployment -Target Environments

Figure 3 . 8 :

 38 Figure 3.8: Software Deployment (Repository)

Figure 1 .Figure 3 .

 13 Figure 1. Trade-offs between initial cost (development and learning) and repeated use cost. The level of a tool's automation pushes costs up earlier in the development cycle, but developing tools, learning from them, and creating templates with them pays off as complexity increases.

Figure 4 .

 4 Figure 4.1: Kanban Board

Figure 4 .

 4 Figure 4.2: Software Values

Figure 4 . 3 :

 43 Figure 4.3: Deployment Pipeline (adapted from [Humble 2010])

Figure 4 . 4 :

 44 Figure 4.4: Jenkins Job List

Figure 4 . 5 :

 45 Figure 4.5: Autonomic Managers

 Figure 5.1: Proposition Overview

p

 = (k, v) | k ∈ and v ∈ = { Set of all valid property names }, = { Set of all valid values } (5.1)

FileFigure 5 . 2 :

 52 Figure 5.2: Resource Type Examples

t

 = (I, C, S, ¬, f) | S ⊆ I and C ∩ I = I, C = {Finite set of property names }, ¬ = (k, v) | k ∈ I (5.2)

Figure 5 . 3 :

 53 Figure 5.3: Resource Description Levels

 bash_profile:File path: ~/.bash_profile source: ftp://../../profile owner: root rights: 777 abc:Component binary: mvn://../../abc/1.0.1 type: xyz-abc version: 1.0.1 configuration:

Figure 5

 5 Figure 5.4: Resource Examples

r 1 r 2 Figure 5 . 5 :

 255 Figure 5.5: Resource Dependency

Figure 5 . 6 :

 56 Figure 5.6: Optional Dependency System

6 binaryFigure 5 . 7 :

 657 Figure 5.7: Assembly Example

--

 Non-closure Let assembly A = (R, D) ∈ * , resource identi cation operation is not closed on the set of valid assemblies. Identi cation operation can result in cycles in the dependencies (Equation .).∃ A ∈ * | identify(A) / Idempotence Let assembly A = (R, D), resource contraction operation is idempotent. Applying resource contraction multiple times has no e ect on the resulting assembly (Equation .).

Figure 5 . 8 :Figure 5

 585 Figure 5.8: Example Production Rule for replace: p {r→n}

Figure 5 .

 5 Figure 5.10: Calculation of Derivation Sequence

 Figure 5.11: Repository

Figure 5 .

 5 Figure 5.12: Application Example

Figure 5 .

 5 Figure 5.13: Layers of the Reference Architecture

Figure 5 .

 5 Figure 5.14: Resource Graph

Figure 5 .

 5 Figure 5.15: EveREST Framework Overview

Figure 5 .

 5 Figure 5.16: Deployment Manager

Figure 5 .

 5 Figure 5.17: Resource Processor

 Figure 5.18: Analyzer Module

Figure 5 .

 5 Figure 5.19: Planner Module

Figure 5 .

 5 Figure 5.20: Deployment Transaction State Transition

Figure 5 .Figure 5 .

 55 Figure 5.21: Property

Figure 5 .Figure 5 .

 55 Figure 5.23: Syntax Diagram of Repository

Figure 5 .Figure 5 .

 55 Figure 5.25: Syntax Diagram of Resource Declaration and Assembly

Figure 6 . 1 :

 61 Figure 6.1: Apache Felix iPOJO component model

Figure 6 . 2 :

 62 Figure 6.2: Project Dependency Graph

Figure 6 . 3 :

 63 Figure 6.3: Rondo Core Model

3 :

 3 Bundle resource type

 a. Resource ProcessorsAs described earlier in the section . , the deployment managers architecture allows to extend the scope of resource types it can manipulate. A resource processor implements the interactions with resource of a particular type. Stateful resource interactions happen in the DeploymentParticipant and the ResourceMonitor created by the processor. Any other resource speci c function is provided by the ResourceProcessor implementation. The diagram . shows these interfaces and their relationships.

Figure 6 . 4 :

 64 Figure 6.4: Resource Processor Model

Figure 6 . 5 :

 65 Figure 6.5: Analyzer Model

Figure 6 . 6 :

 66 Figure 6.6: Infrastructure Manager Model

Figure 6 . 7 :

 67 Figure 6.7: Executor Model

Figure 6 . 8 :

 68 Figure 6.8: Rondo Cloner

@

 Application(id = "example-application", version = "1.0.0") public class ExampleApplication { AssemblyImpl app = assembly(); Listing 6.4: Application description -Java DSL In this example the ExampleApplication class is annotated with the Application annotation, specifying the identi er and the version of the application. Then the assembly model is initiated with the assembly method.

11 }

 11 Listing 6.10: Fragment Declaration ExampleThe deployer project provides the AbstractDeploymentParticipant abstract class for facilitating deployment participant development. The abstract class gives access to the involved resource declaration and the deployment context. The deployment participant for fragment resources extend this class and implement the methods for participating to the transaction. The following resumes the implementation of these methods:

Figure 6 . 9 :

 69 Figure 6.9: Parallel Deployment Participants

Figure 7 . 1 :

 71 Figure 7.1: Deployment Resolver Performance Comparison

Figure 7 . 2 :

 72 Figure 7.2: Assembly Graph of the Test Application

Figure 7 . 3 :

 73 Figure 7.3: Deployment Execution Time Distributions

Figure 7 . 4 :

 74 Figure 7.4: iCASA Home Simulator

Figure 7 . 5 :

 75 Figure 7.5: Overhead of Rondo

Figure 7 . 6 :

 76 Figure 7.6: Test Application Conditional Assemblies

Table 3 .

 3 1: Software engineering fields responses to issues

	Issues	Software Architectures	Software Product Lines	Self-Adaptive Systems	System Administration
	Managing Dynamic				
	Evolution				
	Maintaining Metadata				
	Throughout the Life Cycle				
	Managing Heterogeneous				
	Environments				
	Managing Dependencies				
	Planning and Coordinating				
	Deployment				
	Ensuring Security				

Table 3 .

 3 2: Comparison of single target deployment facilities

	Criteria	npm	IzPack	Java Web Start
	Deployment Unit	Package, compressed folder with package descriptor about dependencies	Pack, files grouped under a package ID	Resource, set resources such as Jar files, native libraries and system properties
	Modularity	Node.js module structure	Standard Java modularity	Standard Java modularity
	Site Representation	Installed packages, Key-value properties, environment variables	Key-value properties, environment variables, Windows Registry	Environment variables, operating system, processor architecture, JVM arguments
	Deployment Activities	Publish, install, remove, uninstall, unpublish restart, start, stop, update,	Parameter collection, Install Uninstall, Reporting (file copy, parse, execute),	-
	Process Hooks	Script hooks on test, start, restart, stop	Listeners before/after install and uninstall	-
	Distributed Coordination	No coordination, network connection between client and package registry	No coordination	No coordination, network connection between client and web server
	Descriptor File	package.json citing dependencies	Installation description (XML)	Jnlp file (XML)
	Descriptor Placement	Contained in packages	Used for creating the installer	Independent from resources

Table 3 .

 3 3: Comparison of modular platforms

	Criteria	CCM	EJB	OSGi
		Component package, one or		
	Deployment Unit	more implementations of components, component descriptors, assembly	Ear, jar archive containing bean implementations and component descriptor files	Bundle, jar archive containing implementations and manifest file
		descriptions		
	Modularity	Language independent modular execution platform	Java enterprise application execution platform	Java modular execution platform
	Site Representation	-	JNDI naming service for accessing resources, other beans	Bundle resources, Service registry
	Deployment Activities	Installation, Configuration, Planification, Preparation, Launch, Uninstallation	Installation, Activation, Deactivation, Uninstallation	Install, Activate, Deactivate, Update, Uninstall
	Process Hooks	-	-	Listeners on bundle life cycle changes
	Distributed Coordination	Coordination based on the and component concepts of node, assembly	-	-
			Different XML files	
	Descriptor File	Component Assembly Descriptor	according to component types such as beans.xml,	Manifest.mf
			ejb-jar.xml, web.xml	
		Separate descriptors for		
	Descriptor Placement	component description, component package,	Inside the ear archive	Inside the bundle archive
		component assembly		

Table 1 (

 1 p. 73) presents a breakdown of SOC approaches according to their levels of automation. We will quantitatively compare these steps later in the article. From Table1, we can see that the increased level of abstraction enables higher levels of automation.

Nixes (www.aqualab.cs.northwestern.edu/ nixes.html) is a tool used to install, maintain, control, and monitor applications on PlanetLab (www.planet-lab.org), a globally distributed test bed for experimentation with planetary-scale network services. It consists of a set of bash (Bourne again shell) scripts, a configuration file, and a

Table 3 .

 3 4: Comparison of model-based deployment facilities

	Criteria	Software Dock	Prism	ADME
	Deployment Unit	Package, containing deployment artifacts and the descriptor	ComponentContent, messages containing mobile code and information about the target location of the component	Bundle, XML-encoded closure of code and data together with bindings naming the data
	Modularity	Monolithic software systems	Modular architectural model with components and connectors	Platform that is capable of executing multiple bundles within isolation
	Site Representation	Hierarchically organized key-value registry containing information about sites	Partial architectural model of the site	Site configuration in terms of currently running components
		Release, Installation,		
	Deployment	Activation, DeActivation,	(Request, Receive), Add,	Plan, Install, Instantiate,
	Activities	Update, Adapt,	Weld, Upgrade, Start	Wire
		DeInstallation, DeRelease		
	Process Hooks	-	-	-
	Distributed Coordination	Remote deployment but no coordination	Distributed coordination with centralized or distributed ownership	Autonomic control of distributed hosts based on constraint solving
	Descriptor File	Deployable Software Description (DSD), Declarative language	ADL (C2SADEL), transmitted with ArchitecturalModel message	Constraint-based language (Deladas)
			ArchitecturalModel	
	Descriptor Placement	Inside the deployment package	messages are transmitted ComponentContent separately from	Independent
			messages	
	Policy Description	Different policies can be deployment descriptor defined inside the	-	-

A number of characteristics are identi ed by widely accepted de nition document of NIST [Peter Mell and Tim Grance

Table 4

 4

		.1: Positioning for deployment platform requirements	
	Tools	PF.1	PF.2	PF.3	PF.4	PF.5
	RPM + Linux					
	Puppet + Linux					
	Chef + Linux					
	JVM					
	OSGi™					
	JDrums					
	PCOM					
	Sofa 2.0					
	GatorTech					
	Socam					
	H-omega					

 Table . summarizes this study.

	Table 4.2: Positioning for deployment process requirements	
	Tools	PP1	PP2	PP3	PP4	PP5
	RPM + Linux	Pull				
	Puppet + Linux					
	Chef + Linux					
	Java Web Start	Pull				
	OSGi™	Pull				
	OSGi™+ Deployment Admin	Pull				
	OSGi™+ OBR / P2	Pull				
	OSGi™+ Apache Ace	Push				
	Software Dock					
	OMG D&C	Push				
	Nix					
	PCOM	Pull				
	Planning-based	Push				
	Constraint-based	Pull				

Table 4 .

 4 These languages are based on resources found on operating systems extensible with new types of resources. They provide very little, prede ned variability. OSGi provisioning systems, OBR and P , are based on generic resource model with capabilities and requirements. There is usually a high barrier between these systems and users in terms of usability.In academia, the description language provided by Software Dock[Hall] is capable of expressing all necessary aspects such as constraints, artifacts, dependencies, con gurations and activities. It lets describing software families, providing a static variability to the description. Projects that use planning algorithms [Arshad , Tajalli] take as input 'facts' such as resource descriptions and constraints. These descriptions are based on generic, extensible models. They let expressing variability but those are hidden implicitly in constraints. Constraint-based approaches [Dearle , Hoareau] provide less extensibility but more explicit variability. Developing and maintaining constraints and rules are di cult. Nix [van der Burg

	3: Positioning for deployment descriptor requirements
	Tools	PD1	PD2	PD3	PD4
	Puppet + Linux				
	Chef + Linux				
	Java Web Start				
	OSGi™+ OBR / P2				
	Software Dock				
	OMG D&C				
	Nix				
	PCOM				
	Planning-based				
	Constraint-based				
	declaring expected system.				

Table 5 .

 5 1: Research objectives and addressed challenges

	Objectives	Challenges
	Reproducibility	Scalability, Heterogeneity
	Fault-tolerance	Distribution, Industrialization
	Continuous Adaptation Dynamism, Context-awareness
	Tooling	Automatization, Testability

resource log { bundle 'bundle-symbolic-name' "

 org.apache.felix.log" source "mvn:org.apache.felix/org.apache.felix.log/1.0.1"

	application "MyApp" , name: "My Application", version:"1.0.1",
	repos : [
	{name:"maven-central",
	url:"http://oss.sonatype.org/content/repositories/releases/"}
],
	pre: [] ,
	post: [] ,
	{
	when [
	{{file state:"exists", path:"/etc/bash_rc"}:true},
	{{bundle state:"ACTIVE",
	'bundle-symbolic-name':"org.apache.felix.eventadmin",
	version:"1.3.0" }:false}
]
	then {
	resource eventadmin { bundle
	'bundle-symbolic-name' "org.apache.felix.eventadmin"
	state "ACTIVE"
	'bundle-version' "1.3.2"
	}
	}
	with {
	resource eventadmin { bundle
	'bundle-symbolic-name' "org.apache.felix.eventadmin"
	state "ACTIVE"
	'bundle-version' "1.3.2"
	}
	state "ACTIVE"
	'bundle-version' "1.0.1"
	} dependsOn(eventadmin)
	resource logPackage { pkcg
	id "org.osgi.service.log"
	version "1.0.1"
	} dependsOn(log)
	}
	}
	Listing 5.1: Example of an application description

Table 5 .

 5

	2: Positioning against continuous deployment requirements
	Platform	Process	Language
	Configurability	Pull/Push	Expressivity
	Reflection	Determinism & Idempotence	Extensibility
	Modular + Dynamic Execution	Fault-tolerance	Variability
	Architectural Reconfiguration	Customizability	Usability
	Context access	Continuous Adaptation	

Table 5 .

 5 3: Research objectives and contributions of the propositionThe goal of this chapter is to present how the propositions of the previous chapter are implemented. Speci cally, it presents the development projects of the context representation framework, EveREST, and the deployment framework that is developed to validate the contributions of this thesis, Rondo. The tools provided by Rondo includes the deployment manager that implements the reference architecture and the DSLs (domain-speci c languages) for describing deployment of applications. Both of these projects, Rondo and EveREST, are developed on top of OSGi™ and Apache Felix iPOJO™ technologies. They are available as open source and are fully operational at their current state.

	Objectives	Contributions
	Reproducibility	Traceability 5.4.3, Determinism 5.4.2
	Fault-tolerance	Transactions 5.5.2.c, Idempotence & Determinism 5.4.2
	Continuous	Application Description with Variability 5.2.3.c,
	Adaptation	Reference Architecture 5.5.2.b,
	Tooling	Description Language 5.6

Table 6

 6 Tested Platforms . 206 7.3.3 Test Results & Remarks . 207 7.4 Use of Rondo in Various Deployment Scenarios 209 7.4.1 iCASA Platform . 209 7.4.2 Wisdom Framework . 214 7.5 Dynamic Adaptability in Rondo . 218 7.5.1 Application Adaptation . 218 7.5.2 Framework Update . 220 7.6 Conclusion . 222

	.1: Lines of code in Rondo project	
	Project	LOC LOTC
		Model	136	
	Rondo Core	Implementation	1219	329
		Utils	135	
		Analyzer	494	
		Executor	443	
		Transaction	278	
	Rondo Deployer	Resource Processors	2826	511
		Utils	1821	
		Other	516	
	Rondo Cloner	Cloner	643	108
		Writers	385	
	Rondo Command		270	-
	Rondo Groovy Lang		550	44
		Simple	59	
	Resolvers	Recursive	48	92
		Jgrapht	53	
	Extensions	System	173	48
		Framework	289	65
		Shell	776	
	Descriptor Examples	iCASA	755	-
		Application	42	
		Infrastructure	42	
	Total		

Contents 7.1 Introduction . 202 7.2 Resolver Evaluation . 202 7.3 Performance Evaluation . 204 7.3.1 Test Application .

Table 7

 7

			.1: Deployment plan resolution comparison		
	Assembly	# of nodes	# of edges	DFS median	mean	Topsort median mean	median	BFS	mean
	Shelbie	54	94	0	0.13	3	3.09	0		0.5
	Graph-150	150	250	0	0.32	7	8.20	2		2.10
	Graph-300	300	453	1	0.64	12	13.17	4		5.03
	Graph-487	487	680	1	1.06	21	23.43	7		8.36
	iCASA	487	879	1	1.20	23	24.57	7		7.33
	Graph-800	800	1415	2	2.02	46	52.73	19		20.30
	iCASA & Wisdom	1036	2177	3	3.26	78	91.05	39		44.52

 Baseline framework -OW2 Chameleon Core: The test baseline is anOSGi framework based on the Apache Felix implementation, version . . , structured with the open source project OW Chameleon Core 3 . It simpli es the distribution of customized OSGi based platforms. It includes a number of core technical services such as interactive console, logging backend and OSGi Con guration Admin support. Other platform con gurations in this list are built upon this baseline platform. Deployment Admin Package: The Deployment Admin Package is a speci cation rst included in the OSGi speci cation version . [OSGi Alliance] for managing runtime con gurations of an OSGi platform. It is mentioned and described several times in this document. The platform con guration for testing deployment admin package deployment includes an implementation of the Deployment Admin service and the Autoconf resource processor that serves processing OSGi Con guration Admin con gurations from les. These implementations are open source and provided by akquinet AG4 .Apache Felix File Install: The Apache Felix File Install is an utility for watching directories in the lesystem for managing the runtime con gurations of an OSGi platform. The content found in the watched directory constitutes the con guration of the platform. It is capable of processing and installing OSGi bundles and creating Con guration Admin con gurations. File Install also allows adding new listeners on the watched directory for handling custom artifact types. Mostly because of its simplicity File Install is a widely used tool for conducting deployments in OSGi platforms. This test con guration includes the Apache Felix File Install version . . . The context representation framework Everest doesn't conduct deployment processes but is included in this test in order to evaluate the footprints of Everest and Rondo frameworks.

Everest:

 7.3.3 Test Results & Remarks The table . presents the results of conducted comparative tests. All the performance tests are executed on a MacBook Pro featuring GB of RAM and an Intel . Ghz Core Duo processor. It runs OS X . . -Bit operating system and Java HotSpot version . . _ , -Bit Server virtual machine. It is useful to recall that this JVM uses G garbage collector [Detlefs] as default and does not have a PermGen memory space.

Table 7 . 2 :

 72 Test application deployment comparison

	Platform	Start-up Duration (ms)	Idle Memory (Mb)	Deployment (ms) Duration	Max. CPU %
	Baseline -Chameleon Core	2694	35.87	-	-
	Deployment Admin Package	2978	37.74	1034	23
	Apache Felix File Install	2867	36.49	1063	51
	Everest	3549	40.65	-	-
	Rondo -Topsort	5876	46.85	1094	65
	Rondo -BFS	5885	45.89	899	72

Table 7 .

 7 3: Test application development efforts

	Deployment Method	# of dev. files	# of dep. files	LOC	LOConf
	Deployment Admin Package	3	1	0	64
	Apache Felix File Install	2	7	0	2
	Rondo	2	1	112	46

Table 7 .

 7 4: iCASA Framework deployment measurements

	Platform	Start-up Duration (ms)	Idle Memory (Mb)	Deployment Duration (ms)
	Baseline -Chameleon Core	2694	35.87	-
	Rondo -Topsort	5876	46.85	20417
	Rondo -BFS	5885	45.89	11213
	iCASA	7585	81.41	-
	iCASA + Rondo	8872	95.16	-

Table 7 .

 7 5: iCASA Module deployment descriptor development efforts

		Deployment Admin		Rondo -Groovy	
	Module	# of artifacts	LOConf	# of resources	# of dependency	LOC
	Zigbee	7	66	36	58	56
	Philips Hue	3	46	33	40	21
	Jersey	3	46	54	65	29
	Gas Detection	4	66	25	34	30
	Light Follow-Me	1	51	16	15	12
	Actimetrics	3	61	81	106	39

Table 7 .

 7 6: Wisdom Framework deployment measurements

	Platform	Start-up Duration (ms)	Idle Memory (Mb)	Deployment Duration (ms)
	Baseline -Chameleon Core	2694	35.87	-
	Rondo -Topsort	5876	46.85	15894
	Rondo -BFS	5885	45.89	9861
	Wisdom	5149	75.76	-
	Wisdom + Rondo	5181	83.72	-

Table 7 .

 7 7: Wisdom application deployment descriptor development efforts

			Rondo -Groovy	
	Module	# of resources	# of dependency	LOC
	Wisdom Monitor	123	190	47
	Wisdom Documentation	11	10	11

Table 7 .

 7 8: Application adaptation comparison

	Action	New Configuration	Configuration Reconf.	New Instance	Instance Reconf.	Application Adaptation
	Time(ms)	9	1.16	82	1.43	236

Table 8 .

 8 1: Research challenges and contributed objectives

	Objectives	Challenges
	Reproducibility	Scalability, Heterogeneity
	Fault-tolerance	Distribution, Industrialization
	Continuous Adaptation Dynamism, Context-awareness
	Tooling	Automatization, Testability

[

 Becker] Christian Becker, Marcus Handte, Gregor Schiele et Kurt Rothermel. Pcom-a component system for pervasive computing. pages -, . Middleware: A Model for Distributed System Services. Commun. ACM, vol. , no. , pages -, February . (page .) [Bertolino] Antonia Bertolino, Guglielmo Angelis, Lars Frantzen et Andrea Polini. The PLASTIC Framework and Tools for Testing Service-Oriented Applications. Software Engineering, January . (page .) [Boehm] B. Boehm et R Turner. Balancing Agility and Discipline: A Guide for the Perplexed. Pearson Education, . (page .) [Bohn] Jürgen Bohn, Vlad Coroamă, Marc Langheinrich, Friedemann Mattern et Michael Rohs. Social, economic, and ethical implications of ambient intelligence and ubiquitous computing. In Ambient intelligence, pages -. Maturity and Evolution in Software Product Lines: Approaches, Artefacts and Organization. In GaryJ. Chastek, editeur, Software Product Lines, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma et Jean-Bernard Stefani. An open component model and its support in Java. In Component-Based Software Engineering, pages -. Springer, . (page .) [Buckley] Alex Buckley. A Model of Dynamic Binding in .NET. In Alan Dearle et Susan Eisenbach, editeurs, Component Deployment, volume of Bures, P. Hnetynka et F. Plasil. SOFA . : Balancing Advanced Features in a Hierarchical Component Model. In Fourth International Conference on Software Engineering Research, Management and Applications, Julien Bruneau et Charles Consel. A tool suite to prototype pervasive computing applications. In th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), Vicente Pelechano, Pablo Trinidad et Antonio Ruiz Cortés. An Architectural Discussion on DSPL. In Software Product Lines, th International Alonzo Church et J Barkley Rosser. Some properties of conversion. Transactions of the American Mathematical Society, vol. , no. , pages John Walsh, Geo Quigley, David O'Callaghan, Stephen Childs et Eamonn Kenny. Principles of Transactional Grid Deployment. James L Crowley, Simon Dobson et David Garlan. Context is key. Communications of the ACM, vol. , no. , pages -, . (page .) [Dearle] A. Dearle, G. N C Kirby et A.J. McCarthy. A framework for constraintbased development and autonomic management of distributed applications. Christine Flood, Steve Heller et Tony Printezis. Garbagerst Garbage Collection. In Proceedings of the th International Symposium on Memory Management, ISMM ' , pages -, New York, NY, USA, Understanding and Using Context. Personal and Ubiquitous Computing, vol. , no. , pages -, . (pages and .) [Diaconescu] Ada Diaconescu, Johann Bourcier et Clement Esco er. Autonomic iPOJO: Towards Self-Managing Middleware for Ubiquitous Systems. Jim Dowling et Vinny Cahill. The K-Component Architecture Meta-Model for Self-Adaptive Software. In Metalevel Architectures and Separation of Crosscutting Concerns, pages -. Springer Berlin Heidelberg, Berlin, Heidelberg, January . (page .) [Druilhe] Rémi Druilhe. L'E cience Énergétique des Services dans les Systèmes Répartis Hétérogènes et Dynamiques : Application à la Maison Numérique. These, Université des Sciences et Technologie de Lille -Lille I, December . (page .) [Dubus] J Dubus et P Merle. Applying omg d&c speci cation and eca rules for autonomous distributed component-based systems. Models in Software Engineering, An algebraic approach. In Switching and Automata Theory, . SWAT' . IEEE Conference Record of th Annual Symposium on, pages -. Introduction to the algebraic theory of graph grammars (a survey). In Graph-Grammars and Their Application to Computer Science and Biology, pages -. Springer, Patrick Goldsack, Julio Guijarro, Antonio Lain, Guillaume Mecheneau, Paul Murray et Peter Toft. SmartFrog: Con guration and Automatic Ignition of Distributed Applications. In In: HP Openview University Association Conference (HP OVUA, pages -, . (page .) Hall, Dennis Heimbigner et Alexander L. Wolf. A Cooperative Approach to Support Software Deployment Using the Software Dock. In Proceedings of the st International Conference on Software Engineering, ICSE ' , pages -, New York, NY, USA, . ACM. (pages , , and .) [Hallsteinsen] S. Hallsteinsen, M. Hinchey, Sooyong Park et K. Schmid. Dynamic Software Product Lines. Computer, vol. , no. , pages -, . (page .) [Hallsteinsen] S Hallsteinsen, K Geihs, N Paspallis, F Eliassen, G Horn, J Lorenzo, A Mamelli et G A Papadopoulos. A development framework and methodology for self-adapting applications in ubiquitous computing environments. Journal of Systems and Software, vol. , no. , pages Andre Van der Hoek, Richard S Hall, Alexander L Wolf, Antonio Carzaniga et Alfonso Fuggetta. A Characterization Framework for Software Deployment Technologies. . (pages , and .) [Helal] S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura et E. Jansen. The Gator Tech Smart House: a programmable pervasive space. Computer, vol. , no. , MC Huebscher et JA McCann. Adaptive middleware for context-aware applications in smart-homes. Proceedings of the nd workshop on Middleware for pervasive and ad-hoc computing, pages -, . (page .) Jez Humble et Joanne Molesky. Why Enterprises Must Adopt Devops to Enable Continuous Delivery. Cutter IT Journal, vol. , no. , pages -, August . (page .) [Hunkeler] U. Hunkeler, Hong Linh Truong et A Stanford-Clark. MQTT-S -A publish/subscribe protocol for Wireless Sensor Networks. In Communication Systems Software and Middleware and Workshops, Je rey O. Kephart et David M. Chess. The Vision of Autonomic Computing. Kidd, Robert Orr, Gregory D Abowd, Christopher G Atkeson, Irfan A Essa, Blair MacIntyre, Elizabeth Mynatt, Thad E Starner et Wendy Newstetter. The aware home: A living laboratory for ubiquitous computing research. In Cooperative buildings. Integrating information, organizations, and architecture, pages -. Je rey King, Raja Bose, Hen-I Yang, Steven Pickles et Abdelsalam Helal. Atlas: A service-oriented sensor platform: Hardware and middleware to enable programmable pervasive spaces. In Local Computer Networks, Proceedings Philippe Lalanda, Catherine Hamon et Clément Esco er. Cilia: An autonomic service bus for pervasive environments. Proceedings of the th IEEE International Conference on Services Computing (SCC), Laprie, A Avizienis et H Kopetz. Dependability: Basic Concepts and Terminology. International Federation for Information Processing WG . on Dependable Computing and Fault Tolerance, February . (page .) [Larman] Craig Larman et Victor R Basili. Iterative and incremental developments. a brief history. Computer, vol. , no. , pages -, . (page .) Jong Hyun Lim, Andong Zhan, Evan Goldschmidt, JeongGil Ko, Marcus Chang et Andreas Terzis. HealthOS: a platform for pervasive health applications. In Proceedings of the Second ACM Workshop on Mobile Systems, Applications, and Services for HealthCare, mHealthSys ' , pages -, New York, NY, USA, . ACM. (page .) [Liskov] Barbara H. Liskov et Jeannette M. Wing. A Behavioral Notion of Subtyping. ACM Trans. Program. Lang. Syst., vol. , no. , pages Yu David Liu et Scott F. Smith. A Formal Framework for Component Deployment. In Proceedings of the st Annual ACM SIGPLAN Conference on Object-oriented Programming Systems, Languages, and Applications, OOPSLA ADLs and dynamic architecture changes. In Joint proceedings of the second international software architecture workshop (ISAW-) and international workshop on multiple perspectives in software development (Viewpoints') on SIGSOFT' workshops, pages -. ACM, . (page .) [Parra] Carlos Parra, Xavier Blanc et Laurence Duchien. Context awareness for dynamic service-oriented product lines. In Proceedings of the th International Software Product Line Conference, pages -. Carnegie Mellon University, Poppendieck et T Poppendieck. Leading Lean Software Development: Results Are not the Point. Addison-Wesley Signature Series (Beck). Mary Poppendieck et Michael A Cusumano. Lean software development: A tutorial. Software, IEEE, vol. , no. , pages -, . (page .) [Ramalingam] Ganesan Ramalingam et Kapil Vaswani. Fault tolerance via idempotence. In POPL ' : Proceedings of the th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages. ACM Request Permissions, Román, C. Hess, R. Cerqueira, A Ranganathan, R.H. Campbell et K. Nahrstedt. Gaia: a middleware platform for active spaces. ACM SIGMOBILE Mobile Computing and Communications Review, vol. , no. , pages -, . (page .) [Ronzani] D. Ronzani. The battle of concepts: Ubiquitous Computing, pervasive computing and ambient intelligence in Mass Media. Ubiquitous Computing and Communication Journal. v i , . (page .) [Rouvoy] Romain Rouvoy, Paolo Barone, Yun Ding, Frank Eliassen, Svein Hallsteinsen, Jorge Lorenzo, Alessandro Mamelli et Ulrich Scholz. Software Engineering for Self-Adaptive Systems. chapitre MUSIC: Middleware Support for Self-Adaptation in Ubiquitous and Service-Oriented Environments, pages -. Zave et M Jackson. Four dark corners of requirements engineering. ACM Transactions on Software Engineering and Methodology (TOSEM), vol. , no. , pages -, . (page .)

	(pages ,] Meriem Belguidoum et Fabien Dagnat. Formalization of Component .) Substitutability. Electronic Notes in Theoretical Computer Science, vol. , pages and [Belguidoum -, June . (page .) [Bencomo] Nelly Bencomo, Jaejoon Lee et Svein Hallsteinsen. How dynamic is your Dynamic Software Product Line? . (page .) [Bernstein] Philip A. Bernstein. Springer, . (page .) [Bosch] Jan Bosch. Design and use of software architectures: adopting and evolving a product-line approach. Pearson Education, . (page .) [Bosch] Jan Bosch. volume of Lecture Notes in Computer Science, pages -. Springer Berlin Heidelberg, . (page .) [Bouchenak] S Bouchenak, N De Palma, D Hagimont et C Taton. Autonomic man-agement of clustered applications. IEEE International Conference on Cluster Computing, pages -, . (page .) [Broadband Forum] Broadband Forum. TR-CPE WAN Management Protocol (CWMP). Technical report, . (page .) [Bruneton] Eric Bruneton, Lecture Notes in Computer Science, pages -. Springer Berlin Heidelberg, . (page .) [Bures] T. ., pages -, (page .) [Carzaniga] Antonio Carzaniga. A Characterization of the Software Deployment Pro-. cess and a Survey of related Technologies. . (pages , , and .) [Cassou] Damien Cassou, , pages -, . (page .) [Cetina] Carlos Cetina, Conference, SPLC , Limerick, Ireland, September -, , Proceedings. Second Volume (Workshops), pages -, . (pages and .) [Church] -, . (page .) [Coghlan] Brian Coghlan, In Ad-vances in Grid Computing -EGC , volume of Lecture Notes in Computer Science, pages -. Springer Berlin Heidelberg, . (page .) [Conway] Melvin E. Conway. How Do Committees Invent? Datamation, April . (page .) [Coutaz] Joëlle Coutaz, In Au-tonomic Computing, . Proceedings. International Conference on, pages -, . (pages , and .) [Dearle] Alan Dearle. Software deployment, past, present and future. In Future of Software Engineering, pages -. IEEE Computer Society, . (pages , and .) [Detlefs] David Detlefs, . ACM. (page .) [Dey] Anind K Dey. Networking and Communications, . WIMOB ' . IEEE International Conference on Wire-less and Mobile Computing" pages -, . (page .) [Dijkstra] Edsger W. Dijkstra. Self-stabilizing Systems in Spite of Distributed Control. Commun. ACM, vol. , no. , pages -, November . (page .) [Dis] Distributed Management Task Force. Common Information Model (CIM) Spec-i cation, June . (page .) [Dowling] pages -, . (page .) [Ehrig] Hartmut Ehrig, Michael Pfender et Hans Jürgen Schneider. Graph-grammars: IEEE, . (page .) [Ehrig] Hartmut Ehrig. . (page .) [eMarketer] eMarketer. Worldwide Mobile Phone Users: H Forecast and Com-parative Estimates. Market research, . (page .) [Epstein] Brian Epstein et Eli Zelkha. Ambient Intelligence. http:// www.epstein.org/brian/ambient_intelligence.htm, . (page .) [Esco er] Clément Esco er, Didier Donsez et Richard S Hall. Developing an OSGi-Conference (CCNC'), . (page tion Technology, October . (page .) .) [Horn] P Horn. Autonomic computing: IBM's perspective on the State of Informa-Springer, . (page .) like service platform for .NET. IEEE Consumer Communications and Networking [Goldsack] [Green eld] Adam Green eld. Everyware : the dawning age of ubiquitous com-puting. New Riders, Berkeley, CA, . (page .) [Grimm] R Grimm. System support for pervasive applications. Future directions in distributed computing, . (page .) [Hall] Richard S. -, December . (page .) [Hansmann] Uwe Hansmann. Pervasive computing : the mobile world. Springer, Berlin New York, . (page .) [Hawley] Michael Hawley, R Dunbar Poor et Manish Tuteja. Things that think. Per-sonal Technologies, vol. , no. , pages -, . (page .) [Heimbigner] Dennis Heimbigner, pages -, . (pages , and .) [Hitcents] Hitcents. Hanx Writer. http://www.hitcents.com/b2b/ work/hanx, . Accessed: --. (page .) [Hoareau] Didier Hoareau et Yves Mahéo. Middleware support for the deployment of ubiquitous software components. Personal and Ubiquitous Computing, vol. , no. , pages -, . (pages , and gence, vol. , no. -, pages -, Mars . (page .) initial experience. In Advanced Information Systems Engineering, pages -. .) [Huebscher] [Humble] Jez Humble et David Farley. Continuous Delivery: Reliable Software Re-leases through Build, Test, and Deployment Automation. Addison-Wesley Profes-sional, st édition, . (pages , and .) [Humble] . COMSWARE . rd Interna-tional Conference on, pages -, Jan . (page .) [IEE] ISO/IEC/IEEE Standard for Systems and Software Engineering -Software Life Cycle Processes. IEEE STD -, pages c -, . (page .) [Kephart] Computer, vol. , no. , pages -, January . (pages , , and .) [Kidd] Cory D Springer, . (page .) [King] st IEEE Conference on, pages -. IEEE, . (pages and .) [Krakowiak] Sacha Krakowiak. Middleware Architecture with Patterns and Frame-works, . (pages , and .) [Kramer] Je Kramer et Je Magee. Self-managed systems: an architectural chal-lenge. In Future of Software Engineering, . FOSE' , pages -. IEEE, . (page .) [Kvarnström] Jonas Kvarnström et Patrick Doherty. TALplanner: A Temporal Logic Based Forward Chaining Planner. Annals of Mathematics and Arti cial Intelli-[Lalanda .) [Laprie] J C [Lehman] M M Lehman. Programs, life cycles, and laws of software evolution. In Proceedings of the IEEE, pages -, . (page .) [Lim] -, November . (page .) [Liu] ' , pages -, New York, NY, USA, . ACM. (pages and .) [Mattern] F Mattern. The vision and technical foundations of ubiquitous computing. Upgrade European Online Magazine, pages -, . (page .) [Mattern] Friedemann Mattern. Ubiquitous Computing: Scenarios for an informa-tized world, pages -. Springer-Verlag, . (page .) [Maurel] Y Maurel, Ada Diaconescu et Philippe Lalanda. CEYLON: A Service-Oriented Framework for Building Autonomic Managers. Seventh IEEE Interna-tional Conference and Workshops on Engineering of Autonomic and Autonomous Systems, pages -, . (page .) [McKinley] P.K. McKinley, S.M. Sadjadi, E.P. Kasten et B.H.C. Cheng. Composing adaptive software. Computer, vol. , no. , pages -, . (page .) [Medvidovic (page .) [Parrish] Allen Parrish, Brandon Dixon et David Cordes. A conceptual foundation for component-based software deployment. Journal of Systems and Software, vol. , no. , pages -, . (page .) [Peter Mell and Tim Grance] Peter Mell and Tim Grance. The NIST De nition of Cloud Computing, . (pages and .) [Poppendieck] M Pearson Education, . (page .) [Poppendieck] January . (page .) [Ratner] M.A. Ratner et D. Ratner. Nanotechnology: A gentle introduction to the next big idea. Safari Tech Books Online. Prentice Hall, . (page .) [Román] M. Springer-Verlag, Berlin, Heidelberg, . (page .) [Rudolph] Larry Rudolph. Project oxygen: Pervasive, human-centric computing-an] Nenad Medvidovic. .] . (pages and [Zave] P

Node Packaged Modules: https://www.npmjs.org/

Ruby Gems: https://rubygems.org/

Nuget: https://www.nuget.org/

Homebrew: http://brew.sh/

IzPack: http://izpack.org/

MS .Net ClickOnce: http://msdn.microsoft.com/en-us/library/t71a733d(v= vs.80).ASPX

Zero Install: http://0install.net/

Research community showed special interest on model-based deployment solutions. Software Dock [Hall] Prism [Mikic-Rakic], ADME [Dearle],

Jenkins CI: http://jenkins-ci.org/

Travis CI: https://travis-ci.org/

Apache JMeter: http://jmeter.apache.org/

Cucumber: http://cukes.info/

LoadUI: http://www.loadui.org/

Capistrano: http://capistranorb.com/

Fabric: http://www.fabfile.org/

Nagios: http://www.nagios.org/

Collectd: https://collectd.org/

Graphite: http://graphite.wikidot.com

These set of property names do not contain duplicate names.

http://www.osgi.org

http://www.ipojo.org

http://jgrapht.org/

http://github.com/ops4j/org.ops4j.pax.url

.host(bundle("slf4j-api")

OW2 Shelbie: http://shelbie.ow2.org/

OW2 Chameleon -Core: http://ow2-chameleon.github.io/core/snapshot/

Deployment Admin: https://github.com/akquinet/osgi-deployment-admin

YourKit : http://www.yourkit.com/

http://open-platforms.eu/library/butler-smart-gateway/

Nrjavaserial: https://github.com/NeuronRobotics/nrjavaserial

Philips Hue SDK: http://developers.meethue.com/

Jersey: https://jersey.java.net

Wisdom Framework: http://wisdom-framework.org/

Netty: http://netty.io/

Akka: http://akka.io/

Application

Finally the parent construct for this descriptor language is the application. As mentioned earlier an application forms a deployment request for the deployment manager. A unique Id identi es each application description. Applications contain also a human readable Name and a Version.

Depending on the policy of the deployment manager the (Id, Version) pair can also be used as a unique identi cator for the management of applications. Then it is up to the deployment manager to handle cases such as di erent applications descriptors with the same Id, multiple application descriptors with the same Id but di erent versions etc. These choices are deliberately excluded from the reference architecture, because they depend on the design decisions and the capabilities of the execution platform.

Conforming to the formalization in the (application concept), an application is composed of a set of repositories, pre-and post-conditions, and a set of conditional assemblies. The syntactic de nition of an application is shown in the diagram . . The descriptors written in Java DSL need a compilation phase and are introduced to the deployment manager as OSGi bundles. Groovy DSL, on the other hand, is written as scripts and compiled directly on the execution platform. The syntax of the Groovy DSL is detailed previously in the section . . Scripts written in Groovy DSL are saved into les with .rondo extension. The Groovy Script Deployer component handles these les, executes the script, which creates deployment requests. By default, the script deployer monitors a directory in the local lesystem for changes and each time there is a change, the deployment description is reconstructed and transferred to the analyzer. Similarly to the Java DSL, these scripts leverage Groovy language. It is possible to create methods and assign variables. The following example shows a simple application written in Groovy DSL.

}

Listing 6.9: Application example -Groovy DSL Moreover, the script deployer handles together di erent scripts that have the same package name.

Resource Processor Development

The deployer project already provides resource processor implementations for common resource types in the context of this work. As expressed earlier Rondo tools are extensible with new resource types. Development of these resource processors is crucial for the characteristics guaranteed by the deployment process, notably the determinism and idempo-platforms. This unlocks new possibilities for easily managing distributed deployment. There are many tools that already help developers and system administrators in this direction. Docker (https://www.docker.com/) provides a lightweight runtime based on Linux containers. It o ers a set of tools for packaging applications and automating testing and deployment work ows. Roboconf (http://roboconf.net/) is an automation tool for coordinating deployment to multiple Cloud targets.

Extending the approach proposed in this thesis with these capabilities would enable dynamically adaptive deployment in distributed environments.

Integration into Deployment Pipeline

This work proposes a deployment solution capable of being used in continuous deployment scenarios. However, it does not provide the complete deployment pipeline. Integrating the contributions of this thesis into an end-to-end software development process would unlock the full potential of the promise of continuous deployment.

The deployment descriptor language provided in this work would play a pivotal role inside such a deployment pipeline. Each commit during the development would trigger a set of tests before being ready to be deployed into production environments. Di erently to the current testing practices, to enable the triggered updates, a testing platform, having the same current state of production environments, would receive the update, in order to test the update behavior and possible errors.

In the pervasive computing scenarios, platforms like iCASA that simulate physical environments, can be used in the context of testing dynamic behavior of applications. These tests can be automatized in part of the deployment pipeline.

Appendix A

Proof of Assembly Join Associativity

Proof. Associativity property can be proven by induction. Consider a transition function of any non-empty assembly X, T X = δ such that δ(A@B) = δ(A)@B. Indeed this is valid for every non-empty assembly X, as shown in following A.1.

Then using the identity element and this transition δ as the successor function, the associativity can be proven by applying induction.

A, B, C ∈ * , (A@B)@C ? = A@(B@C)

For the base case consider A = , (@B)@C ? = @(B@C)

For the induction case consider that the hypothesis is true, assuming that for an assembly A, A@(B@C) = (A@B)@C. Then,

Then the induction case is true for δ(A). Therefore the associativity property (A@B)@C = A@(B@C) is true for all assemblies.

Description Language Grammar