N
N

N

HAL

open science

Continuous deployment of pervasive applications in

dynamic environments

Ozan Necati Glinalp

» To cite this version:

Ozan Necati Gilinalp. Continuous deployment of pervasive applications in dynamic environments.
Ubiquitous Computing. Université de Grenoble, 2014. English. NNT: 2014GRENMO052 .

01215029

HAL Id: tel-01215029
https://theses.hal.science/tel-01215029
Submitted on 13 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

tel-

https://theses.hal.science/tel-01215029
https://hal.archives-ouvertes.fr

UNIVERSITE DE GRENOBLE

THESE

Pour obtenir le grade de

DOCTEUR DE L'UNIVERSITE DE GRENOBLE
Spécialité : Informatique

Arrété ministériel : 7 ao(t 2006

Présentée par

Necati Ozan GUNALP
Thése dirigée par Philippe LALANDA

préparée au sein Laboratoire d’Informatique de Grenoble
et de Ecole Doctorale Mathématiques, Sciences et Technologies de
I'Information, Informatique

Deplmement continu des applications
pervasives en milieux dynamiques

These soutenue publiquement le 13 Novembre 2014,
devant le jury composé de :

Mme Frédérique LAFOREST

Professeur a Université de Saint Etienne, Présidente

Mr Christian BECKER

Professor at Universitat Mannheim, Rapporteur

Mr Frédéric WEIS

Professeur a I'Université de Rennes, Rapporteur

Mr Philippe LALANDA

Professeur a Université Joseph Fourier, Directeur de these

Mr Clément ESCOFFIER

Ingénieure de Recherche, Université Joseph Fourier, Co-Encadrant de thése
Mr Vincent LESTIDEAU

Maitre de Conférences, Université Joseph Fourier, Co-Encadrant de thése
Mr Levent GURGEN

Ingénieure de Recherche, CEA-LETI, Co-Encadrant de thése

From too much love of living,
From hope and fear set free,
We thank with brief thanksgiving
Whatever gods may be
That no life lives for ever;
That dead men rise up never;
That even the weariest river
Winds somewhere safe to sea.
— Charles Swineburne,
The Garden of Proserpine

To my dear family and friends.

Continuous deployment
of pervasive applications
in dynamic environments

Abstract

Driven by the emergence of new computing environments, dynamically evolving soft-
ware systems makes it impossible for developers to deploy software with human-centric
processes. Instead, there is an increasing need for automation tools that continuously
deploy software into execution, in order to push updates or adapt existing software re-
garding contextual and business changes. Existing solutions fall short on providing fault-
tolerant, reproducible deployments that would scale on heterogeneous environments.

This thesis focuses on enabling continuous deployment solutions for dynamic envi-
ronments, such as Pervasive Computing environments. It adopts an approach based on a
transactional, idempotent process for coordinating deployment actions. This thesis pro-
poses a set of deployment tools, including a deployment manager capable of conducting
deployments and continuously adapting applications according to the changes in the cur-
rent state of the target platform. The implementation of these tools, Rondo, also allows
developers and administrators to code application deployments thanks to a deployment
descriptor DSL.

Using the implementation of Rondo, the propositions of this thesis are validated in
several industrial and academic projects by provisioning frameworks as well as installing
applications and continuous reconfigurations.

Résumé

L’émergence des nouveaux types d’environnements informatiques amplifie le besoin pour
des systemes logiciels d’étre capables d’évoluer dynamiquement. Cependant, ces sys-
témes rendent tres difficile le déploiement de logiciels en utilisant des processus humains.
Il y a donc un besoin croissant d’outils d’automatisation qui permettent de déployer et
reconfigurer des systémes logiciels sans en interrompre I’exécution. Le processus de dé-
ploiement continu et automatisé permet de mettre a jour ou d’adapter un logiciel en exé-
cution en fonction des changements contextuels et des exigences opérationnelles. Les
solutions existantes ne permettent pas des déploiements reproductibles et tolérant aux
pannes dans des environnements fluctuants, et donc requérant une adaptation continue.

Cette these se concentre en particulier sur des solutions de déploiement continu pour
les plates-formes d’exécution dynamiques, tels que celle utilisé dans les environnements
ubiquitaires. Elle adopte une approche basée sur un processus transactionnel et idem-
potent pour coordonner les actions de déploiement. La thése propose, également, un
ensemble d’outils, y compris un gestionnaire de déploiement capable de mener des dé-
ploiements discret, mais également d’adapter les applications continuellement en fonc-
tion des changements contextuels. La mise en ceuvre de ces outils, permet notamment
aux développeurs et aux administrateurs de développer des déploiements d’applications
grace a un langage spécifique suivant les principes de I‘infrastructure-as-code.

En utilisant I'implantation de Rondo, les propositions de cette thése sont validées
dans plusieurs projets industriels et académiques a la fois pour I’administration de plates-
formes ubiquitaires ainsi que pour I'installation d’applications et leurs reconfigurations

continues.

Contents

Foreword 1
1 Introduction 3
1.1 MOUVALIONS « « v v v vt e e e e e e e e e e e e 4

1.2 Research Challenges 6

1.3 Contribution 7

1.4 Dissertation StruCtUIE . . . o v v vt v v i ittt e et e 8

2 Pervasive Computing 9
2.1 Introduction 10
2.1.1 Evolution of Computing Environments 10

2.1.2 Pervasive Computing. 12

2.1.3 Context & Context-awareness 14

2.14 Motivating Examples L L . 16

2.1.5 ResearchDomains, 20

2.2 Characteristics of Pervasive Environments 23
221 Distribution 23

222 Heterogeneityo oot i i 24

2.2.3 Openness & Plural Authority 25

224 Dynamism 25

225 AUONOMYt i i 26

226 Summary 27

2.3 Characteristics of Pervasive Applications 27
23.1 Resource Management 28

232 DataOrientationt 29

233 Notion of CONteXt . . v v vt vttt e et 29

234 Adaptability 30

235 SeCUILtY . . oot vt i 31

236 SUMMAIY . . . oot e 31

2.4 Building Pervasive Applications 32
24.1 DevelopmentTools. 33

2.42 Runtime Tools & Middlewares 34

243 Management Tools L ... 35

xil Contents
25 Conclusion. 37
3 Software Deployment 39
31 Introduction 40
3.1.1 Software Development Life Cycle 40

3.1.2 Development Process Models. 42

303 Summary 45

3.2 Software Deployment 46
321 TwoFacesof Evolution 46

322 Definitions . .« oo vttt 48

323 Concepts . ..o 49

3.24 Deployment ACHVITIES « « « v v v v vt e e e e e 52

3.25 DeploymentRoles 54

3.3 Issues on Software Deployment 55
3.3.1 Managing Dynamic Evolution 55

3.3.2 Maintaining Metadata Throughout the Life Cycle 56

3.3.3 Managing Heterogeneous Environments 57

3.3.4 Managing Dependencies 58

3.3.5 Planning and Coordinating Deployment Activities 58

33.6 EnsuringSecurity 59

3.4 Software Deployment and Other Research Fields 60
3.4.1 Software Architectures. L oL 60

3.4.2 Software ProductLines 61

3.4.3 Self-adaptive Software Systems 62

3.4.4 System Administration 63

345 Summary 64

3.5 Software Deployment Facilities 65
3.5.1 Characterization Framework 65

3,52 Evaluation Criteriao i it 68

3.5.3 Single Target Deployment. 69

3.5.4 Modular Execution Platforms 72

3.5.5 Distributed Deployment 75

35.6 CloudDeployment, 79

36 Conclusion. 83
4 Continuous Deployment 85
4.1 Introduction 86
4.1.1 From Lean Development to Continuous Delivery 86

4.1.2 Value Stream in Software Lifecycle 87

4.1.3 Deployment Pipeline. 88

4.2 Enabling Technologies for Continuous Deployment 90

4.2.1 Source Code Management. 90

Contents x1ii

422 AutomatedBuild oo o 91

4.2.3 Continuous Integration 91

424 Artifact Management. 93

4.2.5 Automated Deployment. 93

4.2.6 Monitoring & ControlLoop 94

4.3 Requirements for Continuous Deployment 98
4.3.1 Platform Requirements, 98

4.3.2 ProcessRequirements 100

4.3.3 Language Requirements 104

4.4 DPositioning of Related Works oo oL 106
4.4.1 Evaluation of Deployment Platforms 106

4.4.2 Evaluation of Deployment Processes 107

4.4.3 Evaluation on Deployment Descriptors 108

45 Conclusion. 110
5 Proposition 111
51 Introductiont 112
5.1.1 ProblemStatement 112

5.1.2 Research Objectives, 114

513 Approach. 116

5.2 Formalization of Deployment Concepts 118
5.2.1 Resource Related Concepts oo vv i i i 118

5.2.2 Assembly Related Concepts 123

5.2.3 Application Related Concepts 138

5.3 DeploymentProcess 142
54 DISCUSSIONS .+ . o v vttt i e 144
54.1 Actualvs. ObservedState 144

5.4.2 Idempotence & Determinism. 144

5.4.3 Traceability & Fault-tolerance 145

544 Reproducibility L L L 145

5.4.5 Application Compatibility 146

5.4.6 Dependency Managemento ovviinnt . 147

54.7 Undeployment 148

5.4.8 Continuous Adaptation 149

5.5 Reference Architecture 151
5.5.1 Context Representation 151

55.2 Deployment Manager 155

5.6 Description Language o ... 162
56,1 Basics 162

562 Repository 163

5.6.3 Resource& Assembly L L. 163

5.6.4 Condition & Conditional Assembly 164

xiv Contents

5.6.5 Application 166

57 Evaluation 168
5.7.1 Comparison of formalisms 168

5.7.2 Evaluation for Continuous Deployment Requirements 171

573 Conclusion 173

6 Implementation and Usage 175
6.1 Introductiont 176
6.2 Implementation 176
6.2.1 Global Architecture 176

6.22 EveREST e 178

6.23 RondoCoret 182

6.24 RondoDeployer 184

6.25 Resolvers 188

626 RondoCloner 190

63 Usage 190
6.3.1 Installation 190

6.3.2 JavaDSL 192

633 GroovyDSL 194

6.3.4 Resource Processor Development 194

6.4 Conclusion. 198
7 Validation 201
7.0 Introductiont i e 202
7.2 Resolver Evaluation 202
7.3 Performance Evaluation 204
7.3.1 Test Application 205

732 TestedPlatforms 206

7.33 TestResults& Remarks 207

7.4 Use of Rondo in Various Deployment Scenarios 209
741 iCASAPlatform 209

742 Wisdom Framework 214

7.5 Dynamic AdaptabilityinRondo L o L. 218
7.5.1 Application Adaptation L. 218

752 Framework Update 220

7.6 Conclusion. 222
8 Conclusion 223
8.1 Introduction 224
8.2 ThesisSummary 224
8.2.1 ProblemStatement 224

8.2.2 ContribUtions . . . v v v v e e e 225

Contents XV
83 FutureWork 227
8.3.1 Improving Support for Applications 227

8.3.2 Mechanisms for Analyzing and Testing Deployments 227

8.3.3 Distributed Continuous Deployment. 228

8.3.4 Integration into Deployment Pipeline 229

A Proof of Assembly Join Associativity 231
B Description Language Grammar 233
C Publications 235
List of Figures 238
List of Tables 239
List of Algorithms 241
Bibliography 243

Foreword

I present with this manuscript the work I conducted during four years of doctoral studies.
The first three years of this period was a result of the collaboration between the research
team Adele of Laboratoire Informatique de Grenoble (LIG) and the Lialp team of Com-
missariat a I’énergie atomique et aux énergies alternatives (CEA). The work of my final
year, which concluded my studies, was carried out entirely in Adéle.

These four years have been a great journey, not short of many ups and downs. I would
like to take my time here to thank some of the people who made this possible and helped
me to end up with this work.

I present my gratitude to Christian Becker and Frédéric Weis for accepting to review
this thesis and Frédérique Laforest for examining my work.

First of all, I would like to thank my supervisor, Philippe Lalanda, for giving me the
opportunity to be a part of the Adéle team, providing me the guidance and support to
perform research. I would also like to thank Levent Giirgen, who welcomed me in the CEA
and gave me the possibility to contribute in numerous projects. Of course this work would
not be possible without Vincent Lestideau and Clément Escoffier, who despite their limited
availability, were always keen to guide me with precious remarks and encouragements.

I wish to thank all members of Adéle and Lialp teams, with whom I shared 5 years
plenty of good moments. All of them helped me in this work, through fruitful discus-
sions and advice. Stéphanie, German, Denis, Jonathan, Johann, Eric, Walter, Diana, Pierre,
Torito, Gabriel, Bassem, Morgan, Etienne, Yoann, Jander, Colin, Thibaud, Suzanne, Yeter,

Safietou, Mathieu, Vincent, Nicolas, Lionel, Victor are the names that first comes to mind.

I also think of all my friends in France and Turkey who were with me during this
journey. I wish to thank them for the earnest moments we shared, full of fun and inter-
esting discussions. Some of them even spared their time for proofreading this manuscript,
a special thanks to them. Besides, I am deeply grateful to Cucus and PA for being there
with me when it was most needed, and to Sinem for keeping on encouraging me.

At last, my warmest gratitude is to my family; my parents and my sister, who always
supported me unconditionally.

Tesekkirler.

Chapter 1

Introduction

“I arise in the morning torn between a desire to
improve the world and a desire to enjoy the world.
This makes it hard to plan the day. ”

— E.B. White
Contents
1.1 MOUIVALIONS &« v v v e e e e e e e e e e e e e 4
1.2 ResearchChallenges. 6
1.3 ContribUtion o vt 7
1.4 Dissertation StruCtUIE v v v v v o e e e e e e e 8

4 Chapter 1. Introduction

1.1 Motivations

The general theme in which this thesis is positioned involves two driving forces of soft-
ware development. One is about assuring the dependability of the software programs
by making sure that they behave as predictable as possible [Laprie 1992, Zave 1997]. The
other one is about making software evolutive and flexible enough so that it can react to
change as fast as possible, even proactively. These two forces are usually incongruous
with one another. The software engineering domain looks for solutions to reconcile them
in the most efficient way, producing dependable software that can adapt dynamically to
new conditions [Baresi 2010]. This section presents the motivations of this research, sub-
stantiating this point and thus forming the context of this work.

The success story of modern mobile devices such as smartphones and tablets is re-
markable. In less than 10 years they now dominate the way users interact with computing
services. According to the report [eMarketer 2014], the worldwide smartphone penetra-
tion has grown to 1.76 billion people in 2014, holding the 25 percent of global population.
The reason behind this wild adoption is not the high-resolution touchscreens, integrated
cameras or gyroscopes they embed. Notwithstanding the impact of those and many other
technologies such as high-speed wireless broadband, mobile devices largely owe their
success to the "apps” they offer.

The notion of application is most certainly not new. Back from the early days of com-
puters, operating systems provided software stacks for applications to be executed upon.
What smartphones (or tablets) did differently however, is to combine a pivotal physical in-
teraction pattern — touchscreens — with development tools, SDKs and execution platforms
destined for application developers. These software tools allowed third-party developers
to easily program, deliver and execute their applications.

The, so called, explosion of "apps” happened thanks to this ecosystem where not only
industrial software producers but also individual developers could develop and deliver
their applications to the masses. For grasping the difference these tools make, it is suffi-
cient to compare Java ME enabled SymbianOS phones with Dalvik VM based AndroidOS
phones. Both platforms supported executing applications developed in Java, but clearly
SymbianOS’s application support was primitive, which lead to its decline as a platform.
Indeed, developing applications for those platforms become so mainstream that the main
challenge for developing a successful application become finding the right idea. Then the
recipe followed by; backing it up with the right services and presenting it with a beautiful
user interface design [Hitcents 2014].

The success of smartphone applications is just another example for use cases of
domain-specific execution platforms. Another instance for such platforms is the frame-
works for developing web applications. But a more important aspect for attracting ap-
plication developers is providing tools to debug, test and deliver applications developed
on these platforms. Mobile ecosystem providers such as Apple, Google and Microsoft all

1.1. Motivations 5

achieved this by providing an "appstore”, an application market, helping users to discover
and install applications on their device with one-tap. In spite of the fact that open source
community repudiated these centrally controlled software stores at first, many software
producers enjoyed being able to see their applications bought, delivered, deployed and
run on consumer devices.

As a result, it is safe to say that what really propelled the mobile computing is the
money vector provided from these mass-market retailing channels, i.e. application mar-
kets. The deployment feature (delivery, installation, activation) played a crucial role in
implementing the infrastructures for appstores, therefore in the adoption of mobile com-
puting.

In parallel to the advancements in mobile platforms, the Cloud Computing emerged
as another aspect that marks the way applications are developed. For software producers,
Cloud computing made provisioning virtual hardware resources and executing applica-
tions on those as easy as a calling a web service. Such that applications can be bundled
in virtual machine images or lightweight containers and executed on the Cloud provider
of choice. This type of Cloud called Infrastructure-as-a-Service reduces the cost of pur-
chasing machinery, while providing great flexibility to lend additional resources to cope
with increased demand. The Platform-as-a-Service providers such as GoogleApp Engine
or Heroku rent ready to serve execution platforms to run applications while abstracting
the underlying layers (i.e. the operating system, HTTP front-end). The complex task of
administering the hardware and software infrastructures is therefore delegated. Similarly,
these platforms enable deploying an application on multiple instances of an environment
to better support the load. Although the Cloud reduces administration costs, the scala-
bility is not guaranteed. Applications generally require to be designed with flexibility to
make use of the Cloud. Yet, applications and businesses that can manage this evolution
can harvest great benefits.

Cloud Computing, domain-specific execution platforms and tools for debugging, test-
ing and delivering software all contributed to one final fact: Software is now developed
in faster cycles. With better tools at disposal, the new norm in software development is
to deliver a minimum viable product to customers as fast as possible. This allows devel-
opment teams to learn about customer requirements and iterate to improve the product.
Most importantly, automatized processes make sure that the software is tested, depend-
able and ready to be delivered to the customers as soon as it is produced.

Nowadays the computing world is sailing towards a next step with the emergence
of a new class of tiny connected devices. In [Evans 2007], Cisco estimates that by 2020,
there will be 50 billion "things" connected to the Internet, as opposed to approximately
10 billion this year. The growing interest for such devices is mainly due to the ability to
gather information from the physical environment and control things through a software
interface, giving the ability to automate this control. This automation paves the way for
developing a new class of applications that leverage devices deployed in the real world.

6 Chapter 1. Introduction

Pervasive Computing envisions a whole new kind of relationship between computers
and users. In this interaction computers are blended into everyday objects and users
access information and use services without perceiving their existence. Put differently,
the interaction pattern is not confined into a touchscreen of a mobile phone, nor a tablet
or a television; but it potentially encompasses everything in the physical world that users
interact with.

Currently, applications proposed in this domain do not exceed vertical, proprietary
solutions. Clearly, as it was in the case of mobile computing, there is a lack of software
engineering tools that help developers to program, test, debug, deploy and execute their
applications. Dealing with real life environments, connected devices and human behavior,
developing pervasive applications is difficult. The execution context of applications and
the platforms that execute those, tend to evolve rapidly. This may be due to many reasons
such as contingent devices, unstable network communication and the need for context-
awareness. Among many challenges application developers and system operators face,
the need to handle dynamism stands out to be the most eminent.

This work aims to improve this situation by investigating solutions for one of the soft-
ware engineering problems, deployment of software, particularly in dynamic computing
environments.

1.2 Research Challenges

This thesis investigates software deployment solutions for modern applications in dy-
namic execution environments. Additionally, it considers the requirements of pervasive
computing for applying these solutions. Two actors are particularly involved and im-
pacted by this work, namely, the application developer and the operator of execution
platforms.

Four major challenges are addressed in providing the proposition of this thesis:

Heterogeneity: No two computer systems are bitwise identical in terms of configura-
tions and capabilities. A software deployment solution must be able to target dif-
ferent platforms. Conversely, it must be able to ignore insignificant differences be-
tween platforms and customize the deployment for effectuating essential changes.
Also different applications and platforms may need various kinds of configurations
and actions to be performed.

Scalability: Applications and execution platforms can grow rapidly in size and complex-
ity, incorporating high number of configurations. On the other hand, Pervasive
and Cloud systems can require to run deployments on a high number of target
platforms. The proposed solution must therefore scale horizontally and vertically.

1.3. Contribution 7

Industrialization: To expect the same leap done in mobile computing from pervasive
systems, the way software is developed and deployed must be industrialized. For
software production, this means having automated processes for developing, build-
ing and delivering applications with a predictable and testable way. In addition,
such systems must be cost efficient, promote productivity and robust.

Context-awareness: The deployment solution must turn the dynamically evolving na-
ture of pervasive environments to its advantage by proposing policies that can be
customized according to the state of the target platform and changes in this state.

1.3 Contribution

This thesis proposes a novel approach for deploying software in dynamic execution en-
vironments. This approach is based on a transactional, idempotent process capable of
coordinating deployment actions. The properties granted to this process allow perform-
ing continuous deployments, in accordance with the current state of the target platform.
Along with this process definition, this thesis proposes:

— the generic resource-based model in terms of which the platform state, the deploy-

ment request and the deployment process are defined.

- the deployment manager capable of continuously adapting applications according
to the changes in the context.

- the domain-specific language for describing application deployments with archi-

tectural variability.

- the extension mechanisms for extending the capabilities of the deployment man-
ager and the description language for handling new kinds of resources.

There are, however, some aspects that are deliberately left out of the scope of this
work. Namely, the deployment in distributed computer environments is not treated in
this work. The security aspect for transferring deployment artifacts is another subject
that this work does not cover.

These contributions are developed and available as Rondo project. Rondo provides
a tool suite containing, among others the deployment manager and the deployment de-
scriptor language. These tools are fully operational and are tested against deployment
scenarios defined within industrial and research projects, including pervasive platforms.

8 Chapter 1. Introduction

1.4 Dissertation Structure

After this introduction, the remainder of this document is divided into two parts, namely,
the state of the art and the contributions of this work.

The state of the art includes three chapters:

Chapter 2 presents background information about pervasive computing. It examines the
challenges brought by this computing domain, some of which this work contributes
to tackle.

Chapter 3 studies the general concepts of software deployment. It discusses common
issues addressed in software deployment and compares different deployment au-
tomation approaches.

Chapter 4 introduces the ideas and concepts behind continuous deployment. It presents
current practices for implementing deployment pipelines. More particularly, this
chapter proposes a characterization framework for evaluating continuous deploy-
ment solutions.

The contributions of this work are presented under three chapters:

Chapter 5 recalls the addressed problem, outlines the objectives and gives an overview
of the approach of this work for enabling continuous deployment in dynamic exe-
cution environments. Then, it details this approach by presenting the formal frame-
work, the deployment manager architecture and the descriptor language. It includes
a series of discussions that these propositions invoke. At the end of this chapter, an
evaluation of these propositions is presented.

Chapter 6 describes how the propositions of this thesis are implemented. Rondo is the
tool suite which proposes implementations of the deployment manager and the
deployment description language for OSGi™ platforms.

Chapter 7 presents experiments performed using Rondo tools for validating the contri-
butions of this thesis. This chapter also reports the experiences of using Rondo for
various deployment scenarios.

Finally Chapter 8 concludes this document by summarizing the principal ideas and
proposes future research directions revealed by this work.

Chapter 2

Pervasive Computing

“If history were taught in the form of stories, it
would never be forgotten. ”

— Rudyard Kipling
Contents
2.1 Introduction 10
2.1.1 Evolution of Computing Environments 10
2.1.2 Pervasive COomputing.o vt v vt 12
2.1.3 Context & Context-awareness « v v v v v v v v v v v e e, 14
2.14 MotivatingExamples. L oo oL 16
2.15 ResearchDomains 20
2.2 Characteristics of Pervasive Environments 23
22.1 Distribution e 23
222 Heterogeneity ovv vt 24
223 Openness & Plural Authority 25
224 Dynamism 25
225 Autonomy 26
226 SUMMArY . . . oo 27
2.3 Characteristics of Pervasive Applications 27
23.1 Resource Management 28
232 DataOrientation v v v vt it e e e 29
233 Notionof Context 29
234 Adaptability 30
235 SECUTILY .+ o v v oot et e e e e e 31
236 Summary 31
2.4 Building Pervasive Applications 32
24.1 Development Tools. 33
2.42 Runtime Tools & Middlewares 34
243 ManagementTools 35
25 Conclusion 37

10 Chapter 2. Pervasive Computing

2.1 Introduction

This chapter presents background information about pervasive computing. It describes
the general idea behind this emerging computing domain, followed by motivating ex-
amples and various research domains that contribute to its realization. It continues by
identifying general characteristics of pervasive environments. Following the context of
this thesis, this chapter discusses requirements for developing pervasive applications fo-
cusing principally on middleware solutions. Relevant related work is presented focusing
on middleware approaches. The chapter discusses limitations of existing work followed
by a conclusion.

2.1.1 Evolution of Computing Environments

The world now is becoming increasingly digital, populated by a profusion of digital de-
vices designed to assist and automate more and more human tasks and activities, to en-
rich human social interaction. However, this was not the case half a century ago, when
analog machines of the industrial age left their legacy to the digital revolution, paving
the way for miniaturized digital computers. Since the introduction of digital computers,
computing environments have evolved constantly; thanks to technologies that allow in-
creasingly smaller, more powerful, communicating and energy-autonomous devices to
be built. Therefore, human perspective of computer systems has undergone different
stages of evolution, each one altering the way humans interact with computers. The
following analysis of this evolution is inspired by a similar analysis presented by Weiser
in [Weiser 1996] which started with these introduction lines:

“The important waves of technological change are those that fundamen-
tally alter the place of technology in our lives. What matters is not technology
itself, but its relationship to us”

The figure 2.1 illustrates the fundamental technological changes related to computer
systems. It highlights some crucial steps that have marked its evolution. In particular, the
notions of distribution, mobility and proliferation of computer systems clearly appear as
major aspects. We examine more precisely in the following sections these different stages.

In the early 1940s, centralized computing was predominant and appeared as the only
way to build computer systems. These took the form of isolated computers, requiring
large amounts of space, even taking up whole rooms. They were compounds of proces-
sors and memory, and were administered continuously by experts. These experts were
at the same time administrators, developers and users of equipment and software. These
mainframes had limited resources and had to be shared among multiple users.

Later, with the evolution of electronics, the term mainframe was attributed to high-

end powerful computers, running applications that serve a large number of users. Even

2.1. Introduction 11

: @% ety

5 comm. dh ngn

o net\%/ork \ Dgn Egﬂ D§g /;
5 Ly | . L

| interfaces pvoc;ssor memory - 1 B@D Intelligence
= d <H>S(O§<a N = E@D become
= R g / ambient
L B§D 2005-...
> energy I

= Computer
& ‘ ‘ # systems become
g ubiquitous

— 2000-2005
| / Mobile
Lal computers
v emerge
R A 1990
Computers
B-B-E‘/communicate
1970

Dawn of
computer science
1960

R R R R RN R 3

Figure 2.1: Evolution of Computer Systems (adapted from [Waldner 2007])

today, it is possible to have same kind of relationship of the mainframe era; anytime a
computer is a scarce resource and must be negotiated and shared with others. Usually
usage of domain-specific hardware with special calculation properties belong to that era
of computing. In [Weiser 1996] Weiser summarized mainframe computing as

“If lots of people share a computer, it is mainframe computing.”

In this same analysis, Mark Weiser then introduced the emergence of personal com-
puting as follows:

“In 1984 the number of people using personal computers surpassed the
number of people using shared computers. The personal computing rela-
tionship is personal, even intimate. You have your computer, it contains your
stuff, and you interact directly and deeply with it”

Personal Computers (known as PC’s) continue to be the significant way of human
interaction with the digital world. This kind of interaction needs special attention from
the user, as a user’s principal intention is to use a service or access to information. As
it is a personal belonging, most users are the administrator of their PC, installing and
configuring the software developed and distributed by third parties.

While standalone PCs or mainframes restrictively use local resources, network infras-
tructures allow computers to access remote resources, interconnecting personal, business
and government information. Computers with Internet access thus allow developers and
service providers to build complex applications with more added value for users. How-
ever, they also created many issues for system administrators and application developers

12 Chapter 2. Pervasive Computing

such as distributed security, remote communication and integration of heterogeneous ap-
plications. To quote Wieser again,

“Interestingly, the Internet brings together elements of the mainframe era
and the PC era. It is client-server computing on a massive scale, with web
clients the PCs and web servers the mainframes.”

In early 1990s, emergence of portable laptop computers and wireless networks gave
birth to mobile computing. It allowed users to access network-enabled applications while
being mobile, therefore changing location. Moreover, increased attention to smartphones
and tablet computers created a new kind of PC, that is powerful, mobile and connected
wirelessly with high data-rates via new generation cellular networks (3G, LTE). These
devices unfold new possibilities in terms of user interaction with computers; e.g. smart-
phones can be associated with their owner and they can be used to determine the position
of the user via integrated GPS. Integration of mobile clients into existing distributed sys-
tems brought about new issues such as location sensitivity, energy-awareness and adap-
tive resource management [Satyanarayanan 2001].

In this post-PC era, more and more connected mobile devices dominate the human
interaction with the computing world. Pervasive Computing, often also referred to as
Ubiquitous Computing, is a vision for next-generation computer systems that are infused
into real world environments. Pervasive Computing envisions a whole new kind of rela-
tionship between computing and users, exceeding mobile computing, where computers
are blended into everyday objects and users access information and use services without
perceiving their existence.

2.1.2 Pervasive Computing

Pervasive Computing, or as it was introduced in [Weiser 1991] Ubiquitous Computing,
describes next-generation computing environments, which puts humans at the center of
focus, rather than machines. The seminal paper of Weiser illustrates mostly perspectives
of his vision for this new kind of human-computer relationship. Weiser and his colleagues
in Xerox Palo Alto Research Center postulated a world saturated with tiny computing de-
vices integrated into everyday objects and a computing infrastructure that interconnects
these devices in order to support human tasks, in a way that all this is invisible to the
users. Therefore users could concentrate on their tasks naturally, instead of worrying
about how to operate the whole computing system.

Their ideas have inspired many researchers, which has lead to the appear-
ance of different terms, such as calm computing, disappearing computer, ev-
eryware [Greenfield 2006], Internet of Things [Mattern 2005], Ambient Intelli-
gence [Epstein 1998, Hansmann 2003] and things that think [Hawley 1997]. Although
there has been a battle of concepts in media and the research community over the usage

2.1. Introduction 13

of these words [Ronzani 2009]; basically all these terms point at an infusion of computing
environments into the real world, following the vision of Weiser. The author of this thesis
does not treat these terms differently, and in the context of this work, the term “pervasive
computing” is used to refer to the general paradigm.

In the presence of these related concepts, instead of proposing a single definition of
pervasive computing, one of the main goals of this chapter is to establish a common un-
derstanding of the vision it refers to. To this extent, it is crucially important to analyze
different definitions in the literature:

“The most profound technologies are those that disappear, [...] They
weave themselves into the fabric of everyday life until they are indistinguish-
able from it” [Weiser 1991]

“We characterized a pervasive computing environment as one satu-
rated with computing and communication capability, yet so gracefully in-
tegrated with users that it becomes a ‘technology that disappears’ [sic]

B

[Satyanarayanan 2001]

In previous definitions, authors take a bird’s-eye view on the technology and focus
on the seamless integration aspect of the services provided by pervasive computing. The
following definitions focus more on the connectivity of different kinds of devices.

“One could describe ‘ubiquitous computing’ as the prospect of connecting
the remaining things in the world to the Internet, in order to provide infor-
mation “on anything, anytime, anywhere. [...] the term ‘ubiquitous comput-
ing’ signifies the omnipresence of tiny, wirelessly interconnected computers
that are embedded almost invisibly into just about any kind of everyday ob-
ject” [Mattern 2001]

“Pervasive computing calls for the deployment of a wide variety of smart
devices throughout our working and living spaces. These devices are in-
tended to react to their environment and coordinate with each other and net-
work services. Furthermore, many devices will be mobile and are expected to
dynamically discover other devices at a given location and continue to func-
tion even if they are disconnected” [Grimm 2003]

“The basic idea of this concept [Internet of Things] is the pervasive pres-
ence around us of a variety of things or objects — such as Radio-Frequency
IDentification (RFID) tags, sensors, actuators, mobile phones, etc. — which,
through unique addressing schemes, are able to interact with each other and
cooperate with their neighbors to reach common goals” [Atzori 2010]

14 Chapter 2. Pervasive Computing

From the definitions above, pervasive computing can be summarized into following
core properties:

- Pervasive Computing is invisible through unobtrusive human-computer interac-
tion.

— Pervasive Computing is inherently distributed among mobile and stationary de-
vices, and network services. These devices are usually hidden from the user but
constantly interacting with each other and their environment.

- Pervasive Computing is context-aware in order to optimize its operation to the
current environment.

These core properties define briefly the pervasive computing vision. They reveal some
of the fundamental aspects of pervasive computing like invisibility, distribution, mobility
and context-awareness. However, they are widely incomplete to be able to uncover chal-
lenges for realizing the pervasive computing vision. Sections 2.3 and 2.2 of this chapter
decomposes these core properties into detailed characteristics expected from pervasive
computing system.

2.1.3 Context & Context-awareness

Context-awareness is an essential property for pervasive computing systems. Context-
aware systems are systems that are aware of their “context” and that are able to adapt
their operations according to the changes in their environment [Baldauf 2007]. “Aware”
systems began appearing in the mobile computing era in the form of location-awareness.
Location-aware mobile devices are able to determine a user’s location and notify when
the user changes their location [Bauer 2002]. Although location continues to be the prin-
cipal context information, it does not necessarily represent interesting information for
every kind of application scenario. Since then the way context information is defined has
evolved towards more elaborate models.

Context-awareness was first introduced in the early years of pervasive computing, by
Schilit and Theimer. The authors defined the context as the following definitions.

“[...] the location of use, the collection of nearby people, hosts, and acces-
sible devices, as well as to changes to such things over time” [Schilit 1994].

Later Dey proposed a general definition, which is accepted today as one of the most
accurate definition.

2.1. Introduction 15

Definition 1: Context

“Any information that can be used to characterize the situation of entities (i.e., whether
a person, place or object) that are considered relevant to the interaction between a user
and an application, including the user and the application themselves.” [Dey 2001]

Based on a general context definition, a classification is proposed for different types
of context [Schilit 1994]:

- Computing (Virtual) Environment includes all the variables that describe the
available computer technology such as used resources, available devices and re-
sources, network bandwidth, etc.

— User (Human) Environment includes information on users: location, immediate
needs, social activities, nearby people etc.

- Physical Environment describes the physical environmental attributes of the
place the user is situated, including in particular, temperature, luminosity, noise
level etc.

This classification of different types of context reveals an important concept about
context-awareness in pervasive computing: It shows how pervasive computing brings to-
gether virtual and physical environments through a focus on users. In pre-pervasive eras,
computing involved only virtual entities conceptualized by software developers. And the
context was principally resources available to the computer hardware, which are usually
virtualized by the operating system. However, pervasive computing involves not only
an abundant number of computing devices but also users and physical environments.
Context information about the users’ situation and the physical environment are as im-
portant as the virtual context. Therefore, a pervasive computing environment(or only
pervasive environment) consists of the intersection of these three environments (see
figure 2.2).

Virtual, human and user environments are in constant interaction between each other.
For example, the fact that a user changes his/her location causes the physical environment
to change, which leads to changes in the computing environment via sensors. Or a change
in the physical environment, like an increase in indoor temperature, can obviously affect
user comfort but can also cause damage to the computer hardware.

Context-awareness is a central enabling technology for pervasive computing sys-
tems (see definition 2). It is required for creating computers and applications that are
non-intrusive in terms of the user’s perception. An important thing to note is that most
of the research conducted in context-awareness is applied in pervasive computing envi-
ronments. However the pervasive computing should not be reduced to context-awareness

as it has many other requirements.

16 Chapter 2. Pervasive Computing

User | | Physical
Environment — — — Environment
I Pervasive I
Computing
I Environment I
I Virtual I
I Environment I

Figure 2.2: Pervasive Computing Environment

Definition 2: Pervasive Computing System

Aware of the changes in different contexts, a pervasive computing system coordinates
the interactions between these environments, in order to provide useful services and
information to users.

2.1.4 Motivating Examples

Pervasive computing postulates a world where people are surrounded by computing de-
vices and applications that support and augment everyday activities. The focus is on
developing pervasive computer systems to support people during their daily activities
and tasks, to simplify these in a less obtrusive way. People will live, work, and get enter-
tained in a seamless computer-enabled pervasive environment that is interwoven into the
physical environment. A physical world integrated with computing devices and services
have many implications for everyday life. This integration would change how people live
their private life, how industries make money and how public institutions deliver their

services.

a. Smart Spaces

Pervasive computing vision was deemed a futuristic but realizable one, especially while
Moore’s Law proved to be more accurate than its initial predictions [Moore 1965]. Early
work in pervasive computing concentrated especially on integrating miniaturized com-
puters into daily life and exploring new ways of human-computer interaction. These
projects were the pioneers of pervasive computing applications. They aimed to imple-
menting vertical application scenarios involving environments equipped with sensors,
actuators and mobile devices called smart spaces [Kidd 1999].

2.1. Introduction 17

Smart Smart Social- Smart Smart Home security
laundry projector Smartwave distance dining display blinds monitor
() () () (E) € € (©)

(F)

Smart Driving Ultrasonic Smart Smart Smart Smart
mailbox simulator location tracking front door mirror bathroom closet
(€) (E) (E) (€) (€0 (F)

Figure 2.3: Example for Smart-space Environment (from [Helal 2005])

Location-aware office floors that forward incoming phone calls, context-aware meet-
ing rooms that sense human activities, classrooms that are equipped with smart white-
boards and interactive surfaces, digitally augmented outdoors and yet wearable comput-
ers were the example of such application scenarios. Although they were mainly experi-
mental prototypes, these early applications demonstrated some of the fundamental appli-
cation areas of pervasive computing.

b. M2M Systems

Machine-to-Machine (M2M) systems are based on the communication between machines,
without human intervention. In a M2M application, machines communicate with each
other, using services of each other and exchanging data. These kinds of systems are
widely used in different industrial areas such as environmental surveillance, logistics,
utility infrastructures etc.

The idea behind M2M systems originates from the word ‘telemetry’, which means
“measurements from distance” or “remote measurement”. The concept of telemetry in-
volves using sensors and remote machines for collecting data and sending it to a central
location for later analysis. Types of machines interacting in such a system can range from
tiny sensing devices that operate on low power, to powerful servers. Modern M2M sys-
tems bring considerable improvements over existing telemetry concepts. Wireless sensor
technologies offer enhanced connectivity and sensitivity. Modern information systems

18 Chapter 2. Pervasive Computing

supported by interconnected servers and server farms enable fast processing of huge
amounts of data.

M2M systems involve large-scale deployment of machines. Sensor networks connect
mobile or (carefully placed) stationary sensor nodes that measure different metrics of their
environment and send these measurements to centralized information systems fitted with
databases and data analysis software. In this way, raw data produced by sensors eventu-
ally goes through a set of transformations and filtering, also known as data mediation.
Data, mediated to servers, then would be stocked in databases for later querying. They
can be analyzed to create reports and to take decisions - either by humans or in best-case
scenarios, avoiding human action by computer-based decisions.

nformation Gatoway /ffc’r(B

System

Forklifts

Figure 2.4: M2M Application Example (adapted from [Lalanda 2014])

M2M systems have many application areas including inventory management for re-
tailers and manufacturers, water quality monitoring for public utilities, or even micro-
weather forecasting for agricultural areas. The figure 2.4 depicts a M2M application for
managing forklifts using wireless data transmission. M2M applications are about collect-
ing and processing high amounts of data. In the context of pervasive computing, they
demonstrate a special case of interaction between physical and virtual environments.
Establishing software and hardware infrastructures to cope with this intensity of data,
especially on wireless sensor networks, is extremely complex.

c¢. Smartlife

1990s witnessed widespread adoption of computerized information systems by most of the
organizations of the modern world. Banks, retailers, manufacturers, press, utility/service
providers, government agencies, almost every department in any company started using
computer systems for automating and optimizing their business. Information, whether
produced internally as a result of business processes or gathered from external sources;
stocked in databases and analyzed, in order to take vital decisions about business manage-
ment. As a result, information, and the information systems, became the most valuable
business assets.

A decade later, with the prevalent usage of Internet in modern communities, these

2.1. Introduction 19

organizations stawrted using the web for reaching their clients (or their users for non-
profit organizations). Web applications allowed people to access information previously
locked up in computer systems of these organizations. Mutually, for organizations, this
meant a new playground for gathering information and improving their services and
profit. Rapidly new kinds of businesses emerge from Internet-only services that lever-
age user-habits, usage statistics etc. Expansion in the usage of Internet services caused a
boom in the volume of information stocked and analyzed in information systems.

In parallel, M2M systems let organizations expand the information gathering into
physical environments, with the goal of monitoring and optimizing business processes.
With the emergence of IPv6, sensors and actuators embedded in physical objects are con-
nected through the same protocol that connects the Internet. M2M systems and Internet-
based services became tools for harvesting information from the environments and users
and communicating with them.

Smart Home

\
g
Smart Life 4
\ 7
d\ l ~N ~
’%@ ¢ —
?‘

Figure 2.5: Smartlife Concept (adapted from [FP7 BUTLER Project 2013])

A term that is recently appearing in pervasive computing domain is ‘Smartlife’. It
defines a concept where organizations reach their customers and users in their everyday
life by providing them useful services and information anytime, anywhere. It comprises
different vertical pervasive computing domains like Home, Office, Transportation, Shop-
ping, Healthcare, City and Utilities. On top of these existing domains, Smartlife proposes
a new business model, which allows service providers and vendors to bring and integrate
their services into these everyday environments with a holistic approach.

These new kind of services have the novelty of profiting from pervasive context-
awareness. Applications and services integrated into ‘Smartlife’ use the extended knowl-

20 Chapter 2. Pervasive Computing

edge about users and their physical environments, and the ability to perform actions di-
rectly on user’s environment via embedded devices. Usage of context information hor-
izontally between domains allows an application, for example, to leverage information
about the shopping list of a consumer in the context of home automation, to track the
freshness of foods in the refrigerator and in the context of healthcare, to inform the con-
sumer about their bad nutrition habits

The next step for the advancements in pervasive computing research will be the real-
ization of Smartlife concept. This will require the contributions from smart-spaces, mobile
computing and M2M systems. Work on smart spaces would provide more natural, ubiq-
uitous interaction with users and their environments, whereas M2M systems offer the
information systems for enhancing this interaction with business services. This points
out to a need for developing hardware and software infrastructures that will host and

execute these kinds of pervasive applications with specific requirements.

2.1.5 Research Domains

Pervasive computing gives rise to new challenges in different domains. Attaining this
vision requires collective research efforts in a variety of areas, including microelectron-
ics, telecommunication, embedded systems, wireless networks, information systems, soft-

ware engineering and also social sciences.

Healthcare Safety Comfort
Application Application Application

Runtime Platform
A A N
/ : ‘\

Communication '

Sensors & Devices
Figure 2.6: Pervasive Computing Technology Stack

Figure 2.6 illustrates different levels of domains contributing to the vision of perva-
sive computing, as sensors and devices, communication protocols, runtime platforms and
application development. In this section some of the research advancements that have a

direct impact on pervasive computing are introduced.

2.1. Introduction 21

a. Smart Devices

Advancements in microelectronics and circuit design allow to produce more powerful and
smaller embedded devices that can integrate better in physical environments. With the
usage of advanced materials and production techniques, it is possible to produce devices
at low costs. Low device costs and wireless communication technologies enable large
scale, nomadic usage of self-powered devices. However, improvements in these aspects
are not backed-up by efficient energy capacity solutions. Internal power sources, such as
batteries, constitute the primary limitation for size, weight and lifetime of current devices.

Many efforts on creating smart devices are concentrated on increasing energy au-
tonomy. With reconfigurable hardware and software solutions, embedded devices can
reduce their energy consumption by optimizing their operation (usually less wireless
communication means less energy usage) [Druilhe 2013]. In addition to that, energy-
capturing solutions such as photovoltaic cells, piezoelectric modules or radio wave en-
ergy harvesting antennas allow devices to convert environmental energy into electrical
power [Sudevalayam 2011].

In addition to energy optimization, there are other challenges for manufacturing smart
devices that integrate and interact better with physical environments and users. Usage of
innovative technologies like nano and organic materials opens the way for constructing
little devices with precision that can be embedded even in the human body [Ratner 2003].
In the light of these advances, in the near future it is predictable to see devices that are
negligibly small and that have greater energy autonomy.

b. Wireless Communication & Networking

Most of the recent smart devices benefit from the advantages that cable-free wireless
communications offer. Wireless communication technologies ensure smart devices’ con-
nectivity to the outside world, while freeing them from constraints of wires, enabling mo-
bility and widespread deployment. Wireless networking solutions are needed especially
in sensor networks where sensor nodes are spatially distributed and interconnected via
wireless communication. Nodes transfer data and measurements from one node to an-
other until it reaches a base station, or a gateway. In the gateway, these measurements
can be exploited by applications and presented to users. This way, sensor nodes can be
deployed within longer ranges and still be connected to the gateway.

Wireless technologies bring new problems in terms of communication quality. The
research community’s efforts concentrate on developing hardware and networking so-
lutions to provide the best possible communication quality while optimizing a device’s
functionality and battery life. Innovative networking solutions offer adaptive network
topologies that self-optimize and self-repair in case of bad connections between nodes or
non-responding nodes [Dijkstra 1974]. On the other hand, application level communica-
tion protocols are emerging that are tailored for lossy, low-bandwidth networks, such as
CoAP [Shelby 2014] or MQTT [Hunkeler 2008].

22 Chapter 2. Pervasive Computing

c. Software Engineering Processes & Tools

Regarding the advancements in microelectronics and wireless communication, it becomes
possible to leverage the capabilities of smart, wirelessly communicating devices for de-
veloping pervasive applications. However, there are still some key challenges yet to be
addressed. A major challenge for pervasive service providers is dealing with the high
complexity of development, integration, deployment and management of pervasive sys-
tems and applications [Schiele 2010]. Research in software engineering strives to come
up with solutions that will ease the development and execution of pervasive applications.

Middlewares aim to provide a solution for easing the development and execution of
applications. They stand between operating systems and applications to provide high-
level abstractions and functionalities, hiding certain complexities of application develop-
ment. They have evolved from simple technologies hiding network details of distributed
applications into important blocks of software that hides and deals with many aspects
such as heterogeneity, mobility, data processing and scalability. Throughout their evolu-
tion, middleware systems adopted and enforced software engineering principles such as
separation of concerns and modularity to manage the increasing complexity of applica-
tions and facilitate programmability. Moreover, recent works on middlewares concentrate
on providing runtime support for monitoring and managing applications during their ex-
ecution [Floch 2006].

In addition to middlewares, development tools also provide ways to facilitate software
development. Build automation tools help streamline compiling and packaging stages,
and ease the distribution of software artifacts. Dependency management tools such as
Apache Maven serve to manage complex projects with multiple dependencies, promoting
the modularity in software development. Integrated Development Environments (IDEs)
are software programs that usually include different tools such as editors and building
tools for generating executables and debuggers for testing. The popular IDE, Eclipse,
provides an extensible environment, which can integrate different tools for modeling,
programming, dependency management, building, versioning, testing, etc. With its plug-
in system, Eclipse allows for integrating new tools and provides an ecosystem for building
domain-specific IDEs. For instance, Xtext allows creating domain-specific languages and
corresponding code editors based on Eclipse.

Integrated tools ease the efforts of application designers and developers to create
testable and maintainable applications. In addition to that, most of the existing tools con-
stitute a solid base for extending these capabilities to specific domains, in which it is par-
ticularly difficult to create applications. Pervasive computing is one of these field, where
domain-specific tools address specific issues. The section 2.4 of this chapter presents dif-
ferent types of tools in more detail.

2.2. Characteristics of Pervasive Environments 23

d. Social Sciences

The inevitable emergence of pervasive computing raises issues beyond technology and
operating techniques. It requires sociological and philosophical studies on the under-
standing, acceptance and usage of possible pervasive applications [Bohn 2005].

Before being adopted in a widespread fashion, pervasive computing systems need to
be accepted by the ethical barriers of the society. The prevalent infusion of connected
computer systems into every aspect of life can be unnatural for some of the age genera-
tions. Current discussions over the privacy concerns of social networks provides a good
example for what may be the struggle for pervasive computing.

Another societal concern involves the government’s implication and regulations over
such computing systems. While modern open societies accept the governments’ role of
regulating certain domains in order to protect individuals’ civil and property rights, re-
cent experiences shows that the same trusted organizations can be transformed into mass
violators of human rights.

Although these research themes are well beyond the scope of this thesis, they are
nevertheless inseparable from the consequences of the pervasive computing vision.

2.2 Characteristics of Pervasive Environments

Pervasive computing is about uniting physical and computing environments with the
intention of providing human-centric services. Pervasive computing is more of a vision
about the evolution of computing than a whole new domain. It is difficult to reconcile
different definitions, to have an exact definition of pervasive computing (see previous
section 2.1.2). However, it makes sense to define its properties that lay out its goal and the
challenges between. This section details important characteristics of pervasive computing
environments.

2.2.1 Distribution

Services and information offered to the users in pervasive environments often originate
from different remote providers and sources. Some of these service providers and informa-
tion sources consist of embedded devices that are dispersed (hidden or exposed) in phys-
ical environments, such as environmental sensors, mobile phones, electronic appliances
or actuators. These devices are constantly in interaction with physical and user environ-
ments — they are capable of sensing their environment and acting on it; they incorporate
user interfaces that let users interact and access information. Resources on these devices
are accessed using different communication protocols, based on either wired or wireless
technologies. Because of their limitations in terms of computing power and stocking
capacity, applications using capabilities of these devices and coordinating them, do not

24 Chapter 2. Pervasive Computing

necessarily run on top of these devices. This particularity makes pervasive computing
environments inevitably distributed.

Resources available for pervasive computing are generally not limited to devices
present in a physical environment. For instance, in M2M applications, measurements col-
lected from sensors are sent —via Internet- to remote servers for stocking and analyzing
the data. These information systems, usually highly capable in terms of computing power
and stocking space, are located physically too far apart to be called pervasive. Neverthe-
less, their resources can be leveraged in pervasive computing by providing value-added
services and information, that otherwise wouldn’t be possible.

The increasing number of communicating devices and servers creates the need for
large-scale deployment, installation and maintenance of software and hardware compo-
nents. Computing infrastructures in pervasive environments (both hardware and soft-
ware) should have scalable architectures to cope with high density of devices, provided
services and produced data. Software designers and developers should take into account
the distributed nature of applications, remote services and devices.

2.2.2 Heterogeneity

Every year there are more and more device manufacturers offering products for usage
in the pervasive computing domain. Communication protocols are equally diversified,
as each device type has different characteristics and requirements regarding the nature
of its use. Many working groups have made efforts to standardize common protocols.
UPnP, Bluetooth, Device Profile for Web Services (DPWS), ZigBee, X10, KNX are just
well-known examples. However, industrial device manufacturers usually prefer using
proprietary protocols instead of sticking to standards. They want to keep their product
environment private and closed in order to sustain their product ecosystem and continue
selling products. Because of this it leads to a device market that is highly heterogeneous.

In pervasive environments accessing and using resources on heterogeneous devices
like sensors or actuators is only one side of the problem. It is equally important to admin-
ister and configure devices present in an environment. Different manufacturers are likely
to use different device management models and protocols to represent information about
the device itself and perform maintenance functions. A similar tendency is seen in web
technologies for service models. Accessing services over web, and exposing functional-
ities as remotely accessible services, requires integrating different service models along
with communication protocols.

As a result, application designers have an increasing need to integrate new communi-
cation protocols, device types and services into their applications, which without a doubt
increases the level of complexity of an application. Many pervasive frameworks are sup-
porting only a limited set of protocols such as [Helal 2005] and [King 2006]. To meet the
market evolution, pervasive platforms must support an open set of protocols, which can

2.2. Characteristics of Pervasive Environments 25

be extended after the initial deployment of the platform and applications.

2.2.3 Openness & Plural Authority

In a pervasive environment, computing resources, either in form of devices or services,
usually belong to different stakeholders such as device manufacturers, vendors or service
providers. Applications running on top these environments need to interoperate these
resources. This is only possible in an open world (open environment) where each one of
these devices and services are designed to be open i.e. all or some of their functions are
accessible openly by other devices or applications. Although openness is a prerequisite
for creating pervasive environments, many systems today are still designed to restrict
openness and interoperability. Vendors may deliberately restrict openness and ignore
interoperability with a competitor’s services, in order to preserve their market share.

The restriction of openness implies that the access to the resources of some devices
or services may be subject to constraints and authorization. In pervasive environments,
multiple pervasive applications run in the same environment. They access devices avail-
able in the environment at the same time, sharing their resources and functions. Appli-
cations can eventually have different levels of authorization of access to these resources.
For instance, a certified application from a device vendor can have full access to its own
devices, while another application would have limited access. These kinds of restrictions
may serve device vendors or service providers to keep a certain level of control over their
products, while continuing to contribute to the open environment with publicly available
services. As services can have access to personal data, another reason for these restric-
tions is the privacy concerns of users. Maintenance and management of such an environ-
ment is complicated where multiple applications access shared resources (from devices or
services) and interoperate with each other.

2.2.4 Dynamism

Evolution is an essential property of every computing environment. Hardware compo-
nents fail due to faulty electronics or environmental conditions, and software programs
have bugs that need continuous maintenance and updates. In open environments evolu-
tion is prevalent. Every device, every system that contributes to the open environment
evolves and changes through time. Pervasive environments are an example for such open
environments. Pervasive applications access and coordinate the resources from these sys-
tems; using services from remote systems or devices present in the physical environment.
Openness allows pervasive applications to dynamically discover new resources and use
them, while the state of previously available resources may degrade and become inacces-

sible.

In addition to being open, pervasive computing environments are constantly in re-
lation with physical and user environments. Because of continuous changes in user and

26 Chapter 2. Pervasive Computing

physical context, elements in pervasive computing environments are forced to evolve dy-
namically. Changes in these environments, combined with open world assumption, there
are many reasons for the pervasive environment to be dynamic, including:

- Service availability: In an open and heterogeneous environment, there is a high
chance that frequently; a pre-known resource is not available, because it undergoes
a software update or system maintenance, triggered by users or service provider
administrators. Yet another reason that would undermine availability is limited

device resources, so that it does not allow simultaneous access to its services.

— User mobility: Users move freely in physical environments, whether indoors or
outdoors. The mobile devices carried by users also change location with them. For
example, services on a Wi-Fi enabled smartphone are accessible when the user car-
rying it enters an area covered by a Wi-Fi router. Likewise, as the user exits the area,
devices signal coverage would drop and the services on it will be in unavailable.

- Device contingencies: Devices that are designed to be used in pervasive context
are generally low-cost and unsturdy. They are designed to maximize usage time
with minimum resources. In some cases, like RFID tags, they are even disposable
and negligible. Device functionalities and communication capabilities are usually
affected by physical properties of the device and its environment such as heat, radio
interferences, and battery level that lead to errors or unpredicted behavior.

- Users’ interaction with the environment: Users’ interaction with their envi-
ronment allows applications to gather information about users intents and actions.
Context-awareness of pervasive applications depends on this interaction. Some-
times users can cause devices not to work, by turning them off.

Because of the dynamism in pervasive environments, applications hardly find all
needed resources that were on the whiteboard at the design time.

2.2.5 Autonomy

The pervasive environment consists of transparent relationship between users, physical
environments and computer systems. To hide the complexity of the entanglement be-
tween the physical and logical world, it is necessary that pervasive computing environ-
ments be as independent as possible. The autonomy of pervasive environments is crucial

particularly for two reasons.

First of all, in order to satisfy the seamless integration into real environments, in-
teractions between users and pervasive systems must be natural and transparent. The
user can know that he is dealing with an augmented physical environment, but he/she
must not have to worry about how the system works. To guarantee an always usable sys-

tem, in face of changes in the involved environments, the pervasive system must adapt in

2.3. Characteristics of Pervasive Applications 27

response to these changes or even anticipate the change. The more a pervasive environ-
ment is autonomous, the less its users will need to adapt their behavior to interact with
it. Autonomy is thus a characteristic, which promotes interaction transparency between

humans and pervasive systems.

Secondly, the large-scale deployment and adoption of pervasive systems brings a
problem of administration and maintenance. As these systems are situated in hetero-
geneous, open and dynamic environments, their management requirements are greater.
Moreover, the physical environemnts in which pervasive systems are usually installed are
not always accessible by system administrators. The autonomic management of pervasive
systems is therefore essential, in order to alleviate the burden for system administrators
maintaining these systems.

2.2.6 Summary

Pervasive environments are by nature distributed, heterogeneous, open, dynamic and un-
predictable. Within these environments, a multitude of actors and entities are interact-
ing in a natural and transparent manner. These are situated in and integrated with real
physical environments, of which the boundaries can be precise (e.g. inside a building) or

sometimes very blurred (a park, neighborhood, city, etc.).

All the characteristics presented above are more or less intended by the vision of per-
vasive computing and its various interpretations and applications (such as smart spaces
and smartlife). They express how pervasive environments are perceived from the outside:
how it interacts with the physical elements, with users and/or other systems.

These pervasive properties have a significant impact on the systems and applications
that are contained and are operating in these environments. A computer system is com-
posed of both hardware (sensors, displays, peripheral devices, etc.) and software (data,
applications, components, ...) elements. According to the context and its use, applications
coordinate these elements , in order to provide functionalities they are designed for.

In the case of a pervasive environments, in addition to the properties of which have
been stated above, applications will need to handle some essential aspects. The next sec-
tion presents how pervasive computing systems and applications are distinguished from
traditional systems, by taking into account the characteristics required for pervasive com-

puting.

2.3 Characteristics of Pervasive Applications

The application software, or just application, is software that performs specific tasks
for users. Applications are generally installed on top of system software that operates
hardware and manages access to resources. In the case of applications running on mid-

28 Chapter 2. Pervasive Computing

dlewares, the middleware sits between the application and the system software, offering
a more convenient, managed way to develop and execute applications.

Whether running directly on the operating system or on top of a middleware stack,
an application’s design and techniques used during its conception are strictly linked and
sometimes constrained by the underlying systems capabilities. The above-mentioned
characteristics of pervasive environments impose new challenges to the existing tech-
niques employed for creating pervasive applications. For a better understanding of the
features that will facilitate the conception of pervasive applications, one should look at
the requirements of the applications running in pervasive environments. Following are
some of key properties that separate pervasive applications from traditional ones.

2.3.1 Resource Management

Traditional applications are conceived to work with a set of predefined resources. Either
running locally or distributed among distant machines, traditional applications are owned
by devices (machines), and are restricted by the resources these devices provide. How-
ever, in recent years, there have been several movements that changed this paradigm.
Especially the emergence of personal mobile devices opened a new era, where comput-
ing has become more and more human-centric. Pervasive applications conform well in
human-centric vision of computing, where applications are associated to users and places
rather than devices. Consequently, these applications need to discover, manage and use
different devices and heterogeneous resources.

Traditional systems such as PCs or enterprise servers execute applications with a set
of resources that are predefined and abstracted by operating systems (OS) or middlewares.
CPU time, memory, disk space, network bandwidth are examples of such resources. These
systems use abstractions to simplify the access of applications to resources. For example,
OSs provide filesystem abstraction to manage disk access requests from applications (pro-
cesses). Through this abstraction, it is also possible to manage the access authorizations.
In [Krakowiak 2007], a resource is characterized by a number of properties, which impact
the way it may be used and managed:

- Exclusive or shared: The resource may be exclusive to a particular application or
simultaneously shared between multiple applications.

— Stateful or stateless: The resource may have a state related to the application that
currently uses it.

- Individual or pooled: The resource may be individual or may be a part of a pool
of identical resources.

In addition to these properties, a resource may have other attributes such as its loca-
tion and may accept a number of configurations that will affect its behavior. All of the

2.3. Characteristics of Pervasive Applications 29

properties and configurations are usually expressed in resource descriptors, which are
communicated during resource discovery.

Devices in pervasive environments are typically first class resources for applications.
Device functionalities can be shared between applications, or more critic functionalities
can be exclusive to applications with specific permissions. An example to such opera-
tions is device configuration: While most of the devices function in stateless mode, they
are becoming more and more configurable. Configurability enables optimization of de-
vice functions according to the changes in its condition (e.g. battery level). However, a
change in device configuration inevitably affects all applications that use the device. Het-
erogeneous devices and protocols complicate virtualization of access to resources, thus
making them individually managed resources.

It is a challenging task to handle access permissions, fair use of devices and coherent
device configurations at the same time; in environments with high number of devices.
Middlewares and OSs already incorporate some management policies for resource ac-
cess [Bernstein 1996]. Beyond that, dynamic and unpredictable nature of resources in
pervasive environments requires adapting and rethinking these policies.

2.3.2 Data Orientation

Pervasive applications offer services with added value by leveraging the data gathered
from different sources, including sensor devices. So it is only natural to expect that in
a pervasive application, a service depends not only on other service specifications but
also on well-defined data types, where meta-information of the data is more important
than its origin. Also, this data-orientation imposes a programming scheme where the
consumer reacts to an event containing data produced by the provider. Therefore, a per-
vasive middleware should enable defining dependencies over data types and assure that
these dependencies are satisfied with the data produced by data provider services.

2.3.3 Notion of Context

As discussed earlier, context-awareness is one of the core properties of pervasive comput-
ing. The context may be any information that is relevant for the application and it can be
separated into three groups as user context, physical context and execution context. But
the concept itself is not new, because the latter has had its place in applications for a long
time, since developers need information about the state of underlying system — hardware
or software. The need for context modeling became more apparent with programs that
were executed by virtual machines such as Java. Even though WORA (Write Once, Run
Anywhere) principle reduced development efforts of cross-platform programs, as differ-
ent platforms can still exhibit different behaviors, the developers should take this into
account in their code. A very simple example of a way to access the ‘context’ of an un-
derlying virtual environment is through the system properties in Java. It lets developers

30 Chapter 2. Pervasive Computing

access primitive static information about the OS version, OS architecture, etc.

Determining user context in application code is a bit trickier. In traditional applica-
tions such as web applications, users change their context much more frequently than in
the virtual environment in which applications execute. In this case, a user’s context can
be the browser used to access the web page, the visiting history, the cookies and so forth.
The popular Servlet API [Sun Microsystems 2013b] was introduced in the early years of
Java provides standard mechanisms to represent an HTTP request to a server. It allows
server-side developers to access information about the request, and therefore construct a
user profile that represents its context.

As for pervasive applications, in addition to virtual and user context, they are also in-
volved with physical context. Pervasive applications need to transform raw data sensed
from devices (measurements from sensors, indicators from other appliances) into more
meaningful state indicators about the physical environment. Determining complex user
context (e.g. behavior, mood, intention) and the dynamic virtual context (e.g. availability
of resources, performance metrics) is more difficult in comparison with traditional appli-
cations. In many cases the content of the context is very subjective to a particular appli-
cation. Therefore, applications incorporate “context provider services” that are responsi-
ble for transforming raw information from different, possibly heterogeneous sources to
context state [Huebscher 2004]. For the sake of context-awareness, middlewares should
employ mechanisms to inspect the virtual execution context. Moreover, providing sup-
port mechanisms for applications to construct their formal context models would not only
decrease development times but also enable context-awareness at runtime.

2.3.4 Adaptability

Context-awareness requires that pervasive applications adapt constantly to the chang-
ing context. Pervasive applications should continue to satisfy user requirements in face
of contingent devices, failing software modules and in general continuously changing
context. In order to do this, it should be aware of its context and flexible enough to
be able to apply necessary configurations and change its behavior. In addition, all this
adaptation should take place autonomously to reassure user acceptance and fulfill the
pervasive computing vision. Most of the traditional applications are developed to ful-
fill a fixed set of requirements. However, in pervasive environments, due to dynamic
context, there are variations in requirements that may not be covered with a static ap-
plication [Hallsteinsen 2012]. Therefore, fully specified, statically coded applications are
not a good match for pervasive environments. Applications should be developed and ex-
ecuted with regard to these possible variations in requirements. On one hand, at design
time, developers need to specify and develop the system providing different configura-
tions of their applications. On the other hand, during execution, applications should be
composed in a flexible manner allowing dynamic reconfiguration, meaning dynamically
passing from one configuration to another. A typical example in mobile pervasive envi-

2.3. Characteristics of Pervasive Applications 31

ronments is the case where availability of a certain device triggers the change: According
to the location of the user, the application may choose to display its user interface between
a high-definition screen or a portable device, optimizing the amount of information shown
to the user.

Moreover, there may be different variability choices within an application. These
choices should be coordinated in order to provide optimal operation in a given context.
Due to rapid changes in pervasive environments and the lack of human administers, need
for autonomic approaches emerge to guide dynamic adaptations at runtime.

2.3.5 Security

As discussed earlier, security mechanisms are needed to control the access of applications
to the resources. Authentication, authorization, and accounting (AAA) protocols may be
implemented on different layers of the pervasive system, including the middleware, in
order to control resource access, enforce permission policies, audit resource usage, etc.
Another important aspect concerns privacy in pervasive environments. Gathered data
from various devices may contain or be used to deduce private information about the
users’ life. In the presence of multiple applications and devices from different owners,
middlewares need to preserve users’ privacy.

One of the main challenges for establishing security mechanisms in pervasive envi-
ronments is determining user identity. Usually it is not possible to ask users to identify
themselves as in web pages, and therefore applications should be authenticated with dif-
ferent credentials (e.g. platform owner, application owner) and handle secure communi-
cations permanently.

2.3.6 Summary

The development of pervasive applications raises particularly difficult challenges, much
more demanding than those encountered for traditional applications. As a result, devel-
oping pervasive systems and applications requires a very high skill level from developers,
far beyond what is usually encountered.

It is therefore necessary to provide specific tools that ease certain tasks during the
design, development, deployment, execution and maintenance of pervasive systems. The
purpose here is to abstract a number of problems such as those mentioned above: adapt-
ability management, data management, security management, etc. Many works in this
direction have already been completed, with varying levels of success. The next section
explores a set of tools that contribute to the development of pervasive applications.

32 Chapter 2. Pervasive Computing

2.4 Building Pervasive Applications

The above points served to identify the founding principles of pervasive computing.
These guidelines define a number of essential characteristics of pervasive environments.
In order to preserve the nature of such environments, pervasive applications must show
a specific set of properties, which allow seamless integration into the environment.

Consideration of all these properties has a significant impact on the lifecycle of per-
vasive applications. This section focuses on trying to understand what are the effects
of pervasive properties on the lifecycle of applications, what new challenges it brings to
their design and execution, and finally what are the software engineering approaches that
allow easier implementation of these applications.

Since the dawn of computing, computing systems have become more sophisticated
and software programming is becoming more and more complex. In the late 1960s the dis-
cipline of Software Engineering has emerged as a response to this increasing complexity.
The period following the beginning of software engineering discipline, has witnessed the
falling prices of computer hardware and the miniaturization of computers, which led the
way to the era of personal computing. Until then computers owned by large institutions
(governments, universities, private industries, etc.) were programmed and maintained by
same people, and the software they execute was custom developed for these systems. The
way of operating-in-isolation allowed strict control of the lifecycle of software develop-
ment until their execution, and their distribution was very limited or non-existent.

The personal computer era has completely changed this mode of operating. Along
with computers, software has been distributed to large user communities, who became
the de facto administrators of their machines. In addition to that, a multitude of new con-
cepts emerged, which increased the size and complexity of software programs: graphical
interfaces, multi-user, concurrent programming, etc. Clearly empirical, ancestral meth-
ods previously used to design and execute programs were not suited to meet these new
challenges. Software was delivered late, costed more than expected, was unreliable and/or
inefficient.

It was in this time of crisis, which is now called software crisis that software en-
gineering appeared, offering systematic methods for designing and implementing soft-
ware. The employment of these formal or semi-formal approaches has helped build large
projects, resulting in reliable programs and predictable delivery times, in accordance with
the fixed costs of production. The techniques developed by this new branch of computer
science have overcome the software crisis, and paved the way for the wave of personal
computing and waves that followed until the pervasive computing.

To facilitate software production throughout the lifecycle of the application, software
engineering offers many tools and methods: requirement analysis tools, compilers, code
interpreters, shared libraries, dependency management tools, testing tools, deployment
tools, code complexity analysis, monitorung tools, etc. The knowledge in the software

2.4. Building Pervasive Applications 33

engineering field is vast and varies according to the approaches used to develop the soft-
ware and to the concerned phases of the application lifecycle. Early during the emergence
of pervasive computing idea, researchers worked on identifying requirements of building
applications for this new field [Banavar 2000].

3 8

Developer Administrator

Healthcare Safety Comfort
Application Application Application
2

Runtime Platform

Figure 2.7: Application Tools

Various approaches can be divided into three families of tools that ease the concep-
tion and execution of applications: development tools, runtime tools and management
tools (see figure 2.7). All three have the same goal, namely to shorten the lifecycle of ap-
plications, making their design, implementation and/or their maintenance easier, faster
and cheaper. Even so the approaches taken by these tools are very different, each one
focusing on a well-defined part of the lifecycle. Development tools focus on the design
phase of the software by providing support mainly to the developers. Runtime tools
such as middlewares are placed in execution between the target software system and the
application, providing an abstraction for a simplified execution. And management tools
such as monitoring and deployment tools focus on correct execution and the maintenance
of software systems. In the following part of this section these three types of tools are
presented more in detail.

2.4.1 Development Tools

In software engineering, the first approach to simplify the development of applications
is based on providing a variety of tools for the development activities. These tools are
therefore designed to support the maximum effort during phases of application lifecycle,
reducing the task of the developers and also human errors. Some of these focus on how
the software will be designed by simplifying the code to produce. They generally offer a
development model that overcomes intricate details, such as the hardware architecture,
memory management, and communication protocols. This type of development tools
includes programming languages, compilators and debuggers.

Other tools alternatively focus on the project’s infrastructure, facilitating the work-
flow of development teams. If they do not participate directly in the development of the

34 Chapter 2. Pervasive Computing

final product, but they greatly facilitate its development, construction and / or mainte-
nance. These tools are, in particular the version control systems, bug tracking and
issue management systems, production engines and project management tools and
code analysis tools.

Finally, some of the works have a more holistic approach and try to cover a large
part of the lifecycle of the application. They bring together the tools described above and
integrating them into a unified environment, even in some cases until the execution of
developed applications. The approach of Computer Aided Software Engineering (CASE)
tools designed to bring together project management software environments, ergonomic
and have an overview of the project throughout various phases of lifecycle.

2.4.2 Runtime Tools & Middlewares

The word middleware is a generic term designating an intermediate software
layer that sits between computing resources and manages one or more applica-
tions [Krakowiak 2007]. This intermediate layer is to facilitate access to these resources,
and thus to simplify the execution of the application, which may have positive impacts
on the design, development and/or deployment.

The concept of middleware has appeared during the emergence of distributed com-
puting. The main problem at the time was that the systems could not communicate nat-
urally together because of their differences in architecture and communication protocol.
The solution has been to place an intermediate layer that abstracts the differences in ar-
chitecture and protocols, and undertakes to translate exchanges between heterogeneous
systems. As system complexity increases, areas covered by middlewares are expanding.
In addition to the management of distributed communication, middlewares provide other
functionalities such as distributed naming service, data persistence, transactional
operations and runtime management and monitoring of applications.

The founding principle of middlewares is thus the abstraction layer: applications use
the managed resources through a model defined by the middleware, which hides the com-
plexities of management of underlying resources. Technical aspects for managing this
complexity are provided by the middleware, and not required to be integrated into each
application. Providing these common functionalities is often complex and prone to many
errors. The code provided by the middleware, that implements these technical aspects,
becomes non-functional from the point of view of applications, and is not related to the
business domain of applications. Applications completely delegate these technical as-
pects, and ultimately eliminate much of the potential sources of error.

There are lots of research projects that address the challenges of pervasive computing
through middleware solutions. Indeed regarding their level in the software stack, it is
logical and versatile to employ middlewares to resolve most of the problems introduced
in this chapter. Gaia [Roman 2002], Oxygen [Rudolph 2001], Aura [Garlan 2002], MU-

2.4. Building Pervasive Applications 35

SIC [Rouvoy 2009], DiaSuite [Cassou 2010], WComp [Tigli 2009], Base [Becker 2003]
and PCOM [Becker 2004], PLASTIC [Bertolino 2009], Atlas [King 2006],
HealthOS [Lim 2012] and PerLa [Schreiber 2012] are only some of the examples of
such middlewares. The goal and the scope of this chapter and this thesis is not to
provide a comparative study of capabilities of these middlewares but to point out their
importance in pervasive systems.

In addition to those, there are generic execution platforms that are used com-
monly in the pervasive context. Fractal [Bruneton 2004], K-Component [Dowling 2001],
Kevoree [Fouquet 2012] and Apache Felix iPOJO [Escoffier 2008] are some of the
component-based execution platforms that provide the basis for constructing frameworks
and middlewares.

2.4.3 Management Tools

Middlewares provide useful abstractions that facilitate the management and supervision
of executing applications. But still tools are needed to help system administrators and
operations teams to install and supervise computing systems. Especially in the pervasive
context, the above-mentioned characteristics aggravate the inherent difficulty of applying
management actions on these systems. Despite the unpredictable nature of pervasive
computing, the administrators need to ensure the reliable execution of runtime platforms
and of applications on top of those. The management domain can be studied in three
categories as deployment, monitoring and administration.

The administration of a system involves mostly the configuration of hardware and
low-level software stack of computing systems. The administration of large-scale, dis-
tributed systems is already an issue addressed since distributed systems. The hetero-
geneity and openness of pervasive systems adds new challenges to the mix. In such a
system, the number of types of actions and configurations is high and has the possibility
to increase. The autonomy requirement of pervasive systems impacts the way they can
be administered. That is why automation is needed for configuring multiple machines.
TR-069 [Broadband Forum 2013] is a commonly used protocol in telecommunications in-
dustry for administering devices connected to Internet.

The deployment process involves the sequence of actions that brings software from
development to execution. Although most of the times the deployment is used to refer to
the first installation of software to a administered machine, it is not restrained to that. It
includes the process that changes the software at the target environment, with updates,
reconfigurations and eventually the uninstallation. Deployed software can be a single
application, multiple applications in the same time or the whole runtime platform. As
the deployment process involves several complicated actions on the target machine, its
automation is equally crucial for ensuring the correctness of the system. Requirements
related to the dynamism are especially challenging for deployment of pervasive systems.

36 Chapter 2. Pervasive Computing

Among other challenges, the deployment process must ensure the adaptability of the soft-
ware according to the changes in the context. The software deployment constitutes the
main subject of this thesis and the following two chapters present the software deploy-
ment domain in more details.

The monitoring of computing systems is essential for tracing the evolution of the sys-
tem and produce useful feedback on problems of software and hardware. This is enabled
via sensors that are carefully placed on the software system, collecting the information
produced and reporting those for analysis. The analysis of monitoring data can involve
detecting correlations and calculating business metrics. In pervasive systems, monitor-
ing must include the pervasive context, i.e. the information that the system has about
its physical and user environment. In addition to that, the dynamism exhibited by the
pervasive system means that rapid changes that occur in the system should be reported
in the same manner, resulting in producing monitoring data more frequently.

2.5. Conclusion 37

2.5 Conclusion

Pervasive computing is not some obscure idea that is waiting to be implemented in some
distant future. It is a technology that is already here and gaining growth, bringing with
it a myriad of complicated interactions and perhaps unforeseen consequences in regards
to social uses. For computer science though the pervasive computing field brings a whole
new set of possibilities and also challenges to overcome.

This chapter presents the idea behind the vision of pervasive computing and the char-
acteristics of the computing system it entails. From the beginning, it is underlined that
context-awareness is an inseparable property of pervasive systems. A pervasive comput-
ing system integrates with three intertwined environments, namely the users, physical
spaces and the computing resources. The principal goal of applications running in this
context is to provide useful services to the users, in a transparent manner. This is made
possible by using information gathered from the environment and coordinating harmo-
niously the available devices and services. The understanding of pervasive application
scenarios has evolved throughout the years. Lately, more and more application scenar-
ios leverage both local devices situated in user environments and remote computing re-
sources, especially using the Cloud Computing.

The chapter continues on by discussing the characteristics of pervasive environments
and applications. These discussions point out new challenges brought by pervasive com-
puting as well as how the existing ones are affected. Among the main challenges, handling
dynamism of pervasive environments is undoubtedly one of the most concerning. Per-
vasive environments are subject to constant evolution. The applications concerned with
such environments are required to change according to circumstances and adapt to match
the surrounding environment and the needs of users. Without dynamically adaptable ap-
plications, pervasive systems cannot offer the flexibility to blend into the real environ-
ments.

The final part of this chapter adopts a software engineering point of view in order to
take a closer look at the development of pervasive applications. It briefly presents different
approaches for tackling the complexity of building applications for the pervasive context.
Three categories of software engineering tools are presented as development tools, run-
time tools and management tools. While there are many middleware solutions that tackle
the challenges of developing and executing applications in pervasive environments, the
same cannot be said for the management tools.

The goal of this work is to study the deployment requirements for pervasive applica-
tions and provide a solution that manages software deployment in dynamically changing
environments. The following chapter introduces the general concepts of software deploy-
ment.

Chapter 3

Software Deployment

“Education consists mainly in what we have
unlearned. ”

— Mark Twain
Contents
3.1 Introduction 40
3.1.1 Software Development Life Cycle 40
3.1.2 Development Process Models 42
33 0 Summary ... 45
3.2 Software Deployment 46
32.1 TwoPFacesof Evolution, 46
322 DefInitions . v v v v v v v e e e e e e e e e e e 48
323 CONCEPLS & v v vt i e 49
324 Deployment Activities oo v v vt 52
325 DeploymentRoles 54
3.3 Issues on Software Deployment 55
3.3.1 Managing Dynamic Evolution 55
3.3.2 Maintaining Metadata Throughout the Life Cycle 56
3.3.3 Managing Heterogeneous Environments 57
3.3.4 Managing Dependencies L L., 58
3.3.5 Planning and Coordinating Deployment Activities 58
33.6 EnsuringSecurityt 59
3.4 Software Deployment and Other Research Fields 60
3.4.1 Software Architectures. 60
3.4.2 Software Product Lines u... 61
343 Self-adaptive Software Systems 62
344 System Administration, 63
345 Summary 64
3.5 Software Deployment Facilities. 65
3.5.1 Characterization Framework 65
35.2 Evaluation Criteria . . « v v v v v v v e e e e e e e e e e e e e e 68
3.5.3 Single Target Deployment. 69
3.5.4 Modular Execution Platforms 72
3.5.5 Distributed Deployment 75
35.6 CloudDeployment, 79
3.6 Conclusiono 83

40 Chapter 3. Software Deployment

3.1 Introduction

In order to be in use, any software must be installed and configured. This process is
called software deployment and it consists in the activities that carry software from
development into execution.

This chapter introduces the process of software deployment, its terminology and the
fundamental concepts. Then, it discusses common issues of software deployment and
adjacent domains of software engineering that can be used to address these issues. Finally,
the chapter concludes by presenting different approaches that automates the deployment
process and comparing them against defined evaluation criteria.

3.1.1 Software Development Life Cycle

Before introducing software deployment, it is important to recognize the broader context
in which the deployment is situated: the Software Development Life Cycle (SDLC). Ad-
vances in software engineering have radically changed the way software is developed.
Previously software was created in two phases, analysis and development. Currently the
process of software production has become more methodological and divided into several
steps with distinct characteristics. Each step requires specific skill sets, endowed by ac-
tors specialized in performing different activities of a software development project. As a
result, the software can be seen as a living entity, changing and evolving during its life-
time through a series of activities. SDLC aims to define the tasks, activities and processes
required for developing and maintaining software.

The IEEE standard on Software life cycle processes (ISO/IEC 12207-2008) [IEE 2008]
defines an exhaustive list of the processes applied during the life cycle of software devel-
opment. These processes are classified into different groups such as agreement processes,
organizational project-enabling processes, project processes and technical processes. The
domain of software engineering is mostly interested in technical processes and these are
defined as the following.

Requirements analysis aims to define the objectives of the project. It identifies the stake-
holders that are involved in the system throughout its life cycle, together with their
needs and desires. Then, those are analyzed and reduced into a common set of re-
quirements that expresses intended operation of the system. As in non-software
projects, this analysis can be supported by a market research and feasibility study
to identify the requirements of stakeholders and if they may be satisfied. Lastly the
requirements are transformed into a set of technical requirements that will guide
the design of the system.

Design process focuses on creating the skeleton of the software: its architectural design.
The system is divided into several elements, and identifies which system require-

3.1. Introduction 41

ments should be addressed by which element of the system. Each element is speci-
fied in terms of expected operations, as well as the relationships between different
elements. Architectural design specification acts as a blueprint and eases the future
phases of development. It increases the predictability of the project in terms of cost

and time.

Implementation consists of the realization of the specified system elements, established
during design phase. It consists primarily of programming activity. Resulting soft-
ware elements must conform to the designated architectural specifications. Individ-
ual elements of the software can often be developed in parallel and independently.

Integration process puts system elements together (including software, hardware, other
third party systems, etc.) in order to produce a complete system that will satisfy the
system design and requirements. This step usually includes the build process, which
constructs executable software from the source code. The build process applies
operations such as compilation and linking depending on the technology in which
the software elements are implemented. At the end of the integration process, the

system is ready to be tested as a whole for verifying its quality.

Testing processes are performed transversally to the other phases of the SDLC for ver-
ifying and assessing the produced software. Different types of tests validate the
system for compliance with the design specifications and requirements. They usu-
ally define criteria for assessing the system for delivery. Unit tests check if the
implementation of each system element performs conforming to the design spec-
ification. Integration tests validate if the assembly of different elements behave
according to the expectations. User acceptance tests verify that the resulting soft-

ware is suitable for the user.

Installation is the set of activities for bringing the software to the target environment
and making necessary configurations for the software to run on existing infrastruc-
tures. Depending on the environments targeted by the software project, (personal
computers, enterprise servers, etc.), these activities can be included in the life cy-
cle (delivered with on-site installation), or left at the discretion of possible users. In
either case, the installation should make sure that the system is running expectedly.

Operation is the nominal functioning phase of the software. It represents the final out-
come of the software product, operating in its intended environments. This phase
is unstable, as the software may stop working or require changes. These problems
must be addressed in parallel with the execution of the software in the maintenance
phase.

Maintenance process aims to keep the software in a state of optimal performance after
its delivery. Software in operation is subject to malfunctions and changes. This
may be due to an error in the development phase (e.g. bug), or a missing feature.

42 Chapter 3. Software Deployment

Once the problem is reported, a maintenance team will have to correct the problem,
propose a fix and update the application.

Disposal process ends the existence of a software system. It terminates the active support
by the operation and maintenance processes, deactivates and removes the product
from the target environments. It should leave the environments in an acceptable
condition, in accordance with predefined requirements and agreements.

Important point to note is that the entire IEEE standard document does not define or
refer to the notion of deployment. Nevertheless, installation, operation, maintenance and
disposal processes are described as occurring at the target environment where the soft-
ware operates. The deployment process presented in this chapter corresponds vaguely to
these activities. These technical lifecycle processes outline a linear development for the
software project, where each process succeeds the previous one. It is equally acknowl-
edged that software producer organizations are free to make customizations and adjust-
ments to those processes and the way they are applied. The following section presents
several well-known development models that propose organization principles on how
development processes are applied.

3.1.2 Development Process Models

In spite of the standardization efforts, the definition and coordination of software devel-
opment activities depend largely on the organization that creates the software. The IEEE
standard recognizes this fact and allows customization of their processes definitions. It
also recognizes that, above all, software development is a project management challenge.
Its foremost problem is to find an efficient way to organize a group of people to create and
maintain a reliable, high quality software product, based on customer requirements, such
as required features, cost and time constraints. For this reason solutions and practices for
developing software depend, to a great extent, on the structure of the organization that
develops the software. As expressed by Conway’s Law [Conway 1968], the quality of the
software is correlated with the quality of the organization structure producing it.

A software development process model describes the activities performed at each
stage of a software development project. These models also contain methods, principles
and best practices for streamlining the development process. Throughout the years vari-
ous models have been proposed, bringing adjustments to the development process. New
development models allow developers to use the potential of latest paradigms in software
engineering and consequently respond to requirements of the software industry. This
section describes well-known development process models, comparing the deployment
activities considered within.

3.1. Introduction 43

a. Waterfall Model

Waterfall model is the most basic and oldest of all development processes that formalize
the steps of software development life cycle. It involves successive application of devel-
opment phases as requirements analysis, design, implementation, test, installation and
maintenance (Figure 3.1). A phase starts once the previous one is finished. The main
convenience of the waterfall model is that it is easy to understand. It lets inexperienced
developers to work according to a well-defined, rigid structure. The project requirements
are fixed early in the project lifetime, so they are well known upfront by developers and
stakeholders. However, the waterfall model is inapt for many of the software projects
because of its inflexible structure. It is difficult to respond when the implementation en-
counters a problem or some of the requirements change at the course of the project. Addi-
tionally, passing a lot of time analyzing requirements that are susceptible to change slows
down the software creation.

Requirements
Analysis j
\
Design 1

Implementation w
e

Tests

- - e e e

Installation ll Deployment
i
1

Operation &
Maintenance § !

- e e A e e e B ke e

Figure 3.1: Waterfall Model

In the waterfall model, the deployment process is not explicitly described. The soft-
ware product is delivered once it is entirely developed and tested, meaning that the de-
ployment step happens at the end of the project. It corresponds to the installation, oper-
ation and maintenance activities.

b. Iterative Development Model

Iterative development model aims to revise and improve the software product by applying
multiple development cycles until it is decided that the software satisfies its requirements
(Figure 3.2). Each cycle involves the same sequence of steps as the Waterfall model. Devel-
opment is done iteratively until the software product is perfected and ready to be released.
This way important functions with higher risk factors are developed early in the project,
delivered to the customers and receive more feedback for new iterations. Because each re-
lease delivers an operational product to the customers, the initial delivery time is reduced.
With frequent releases, the development team can react to changing requirements, and
adjust the software accordingly for the upcoming release.

44 Chapter 3. Software Deployment

Initial Requirements > Analysis & Design

Planning \
> Cycle /

\ g/Mplementation
PlanningA

Deployment

>

Evaluation Testing

Figure 3.2: Iterative Development Model

In iterative development model the deployment occurs only at the end of certain cy-
cles, when a release is decided to be delivered to the customer. Compared to the waterfall
model, the product is deployed much more frequently. Even so, details of the deployment
process are not explained in the model.

c. Agile Methods

Agile software development is a group of methods that are based on incremental and
iterative development. It combines aforementioned iterative development cycle with in-
cremental build model. Incremental build model proceeds by dividing the system into
parts that implement and offer required functions. Then the efforts of development teams
are allocated over the set of parts with high priority. Contrary to the monolithic approach
where all the different parts are assembled at product release, in incremental development
each part is constantly integrated to the whole system as soon as it is completed. Figure 3.3
illustrates this dual functioning'.

Figure 3.3: Incremental and Iterative Development

Agile manifesto? is initiated on the recognition that over planning and over formal-

'Original illustrations created by Jeff Patton: http://www.agileproductdesign.com/jeff patton.html
2 Agile manifesto: http://agilemanifesto.org

http://www.agileproductdesign.com/jeff_patton.html
http://agilemanifesto.org/

3.1. Introduction 45

izing hinders the development process, which as a result delays the release of working
software products. In order to prevent this, agile software development promotes evolu-
tionary development approach with shorter iteration times. Instead of passing time on
planning how to make big design decisions, agile methodology encourages working with
the customers closely for understanding their needs and rapidly reacting to the changes.
The goal of the development team is to deliver early versions of working software prod-
ucts to the customers, and keep the software in working condition. The deployment gains
importance because each development iteration is likely to finish in working software.

In agile development working software is promoted over exhaustive planning and
comprehensive documentation. This provokes many critics, arguing that agile meth-
ods lack the discipline for developing large-scale software. In [Boehm 2003], Boehm and
Turner discuss the dichotomy between discipline and agility. They argue that discipline
without agility leads to bureaucracy and slowness, whereas agility without discipline
leads to uncontrolled and insignificant enthusiasm. They present agility as a value that
augments discipline, for being inventive and adaptive. In fact, compared to more struc-
tured, plan-driven development methodologies, agile development requires experienced
development teams to adapt to changing requirements and conditions. Development of
modern applications that are both critical and dynamic would need to reconcile between
agility and discipline.

There are different methods that organize development teams for applying agile prin-
ciples. Some of the well-known examples include eXtreme programming, Lean Software
Development, Scrum and Kanban. Each one of these methods concentrates on different
parts of the SDLC. For example, eXtreme programming organizes developers to be more
productive in developing high-quality software. It includes practices like pair program-
ming, peer review, extensive testing and minimal documentation. However, it does not
describe any constraints or guidelines about the deployment. Scrum provides a frame-
work for organizing requirements definition, development cycles and team meetings. The
scrum process relies on the concept of sprint, a two to four week effort focused on devel-
oping, testing and deploying a specific functionality. At the beginning of each sprint, the
customer can intervene and reprioritize and change requirements of the project. Kanban
is another agile methodology that aims to establish a workflow for continuously improv-
ing the working product. It is based on a board on which visually represents the state of
feature development. This allows tracking and getting feedback from the advancement
of specific tasks and the overall project.

3.1.3 Summary

In addition to the ones presented in this section, there are many other software devel-
opment methodologies, such as Spiral, V-model and Y-model. In [Larman 2003] authors
track down the origins of incremental and iterative software development. They point
out a historical shift from strict development models such as waterfall, to iterative and

46 Chapter 3. Software Deployment

evolutionary methods, which eventually gave rise to the agile methodology. This shift
can be seen as an indicator of the acceleration of software development speed. Despite
the known advantages of rigorous documentation and planning in other engineering do-
mains, software development took a turn for rapidity, and frequent release. For instance,
a project that applies waterfall method for software development delivers the resulting
product at the end of the project, typically after several months of development. Recent
agile methods, on the other hand, encourage releasing a version of the product frequently,
several times a week, sometimes even at each modification of the source code. In order
to cope with this increasing workload, developers are increasingly using more tools to
automate their tasks for programming, building, packaging and releasing software.

While software development methods keep accelerating their pace and shortening their
iteration cycle, the deployment process needs to keep up with the need for frequent

software delivery.

While software development methods keep accelerating and producing software at
a higher pace; there is an increasing need for maintaining this flow until the operation,
delivering the newly released software to the customers as soon as possible. The research
practices in the software deployment process try to answer this problematic. They study
activities and models for providing tools that automate and streamline the deployment

process.

3.2 Software Deployment

In the previous section the software development life cycle and different methodologies
for development are presented. It is shown that recently, software development is seen not
as a one-time procedure, but an iterative process that improves the software product and
evolves it against changing requirements. This section focuses on the process of software
deployment, which is the main subject of this chapter.

3.2.1 Two Faces of Evolution

Software development life cycle paints a vision of software that evolves through its life-
time. The goal of software evolution is to prevent exponential growth of software com-
plexity, in a time computing environments continue to evolve. This evolution leads to con-
secutive cycles of software design, development and maintenance that continue through-
out the lifespan of the software. Such iterative cycles are more and more included in
software development processes. As it is discussed in the previous section, agile software
development methodologies are built on evolutionary view of software.

3.2. Software Deployment 47

New Oxford American Dictionary defines the term evolution as ‘the gradual develop-
ment of something, especially from a simple to a more complex form’ [Stevenson 2010].
Even though evolution is most commonly employed in biology, it is a broader concept
that implies changes over time in the characteristics, attributes or properties of an entity
or a system [Lehman 1980]. Lehman et al. studied the ‘software evolution’ to explain
the tendency of software programs to steadily increase in size and complexity, becoming
harder to adapt. They later described two working areas around this concept, first for
understanding the causes, processes and effects of this evolution and second for devel-
oping software engineering activities (design, maintenance, refactoring, etc.) to manage
effects of it. Lehman et al. classify these modern software programs as evolving-type
programs, as opposed to specification-type programs that are not subject to changes.
Evolving programs must be adapted to match any changes in the real world that affect
whether the program satisfies its stakeholders’ objectives. Since the requirements change
constantly, the program must be adapted to continue its correct operation, conforming to
its operating environment and stakeholders’ requirements. Consequently, unless noth-
ing is done to counter its effects, the software will become more and more complex and
unpredictable.

The problem of managing software evolution is addressed at different stages of SDLC.
As mentioned previously, agile development methods address the problem of evolution
by applying successive development cycles, for changing and improving the delivered
product. However, it is also necessary to deliver these changes to the customers through
new versions of executing software. On that account, there are two faces of how the evo-
lution is managed, first at development time by managing different versions of developed
software, and the second at execution time by delivering the changes to the execution.

The software evolution is handled at two levels; during development by managing the
changes on the developed software and during execution, by managing the executing
software.

For managing the evolution during development, changes brought to the software
should be under control. Software Configuration Management is a discipline that al-
lows supervising the changes in the software, which in turn serves to control the evolution
of the software. The software deployment was initially regarded as a simple extension of
configuration management and was not considered a respectable subject of study. Deploy-
ment tools were built ad hoc, in the form of scripts that install the software via low-level
actions. As the complexity of computing environments increases, the deployment pro-
cess became an important process of the SDLC. Thus, the transition of the software from
development to the execution is covered by the deployment process (Figure 3.4).

This chapter is dedicated to the software deployment. It presents concepts and differ-
ent approaches and discusses how this restrictive vision of deployment is evolved towards

48 Chapter 3. Software Deployment

Development Deployment Execution

>!ég—--—9§

Figure 3.4: Software Deployment

a critical domain which manages software evolution at execution. The following section
aims to define the notion of software deployment in general and the concepts used in this
domain.

3.2.2 Definitions

Software deployment is a discipline that manages the evolution of a software product
after it has been developed. This section refines the general vision of deployment by
looking at how it is defined by different researchers. There are different understandings
of software deployment according to the domain of interest of the author. Fortunately
their definitions do not diverge radically, but emphasize different aspects. For the start,
Szypersky confronts the problem of deployment in the context of component-based sys-
tems [Szyperski 2003]:

“Deployment is the process of readying such a component for installation
in a specific environment. The degrees of deployment freedom are typically
captured in deployment descriptors, where deployment corresponds to filling
in parameters of a deployment descriptor”

This definition underlines the importance of componentization in software deploy-
ment and introduces the concept of deployment descriptor. For Szypersky, the de-
ployment is installation and configuration of components in an environment. The
deployment descriptor can include parameters that serve to configure the compo-
nents selected with a varying degree of liberty. Object Management Group’s De-
ployment and Configuration of Component-based Distributed Applications Specifica-
tion [Object Management Group 2006b] (OMG D&C) is a widely admitted reference in
software deployment, which describes entities and actors that are involved in the process
of deployment. OMG D&C defines the deployment as the following:

“Deployment is defined as the processes between acquisition of soft-
ware and execution of software. [..] In order to instantiate, or deploy, a
component-based application, instances of each subcomponent must first be
created, then interconnected and configured.”

This description is conform to the process view of deployment and sees the deployment

of a component-based application as the instantiation, configuration and interconnection

3.2. Software Deployment 49

of constituting components. Carzinga et al. propose a more general definition of deploy-
ment [Carzaniga 1997]:

“Informally, the term software deployment refers to all the activities that
make a software system available for use. [...] The delivery, assembly and
management at a site of the resources necessary to use a version of a software
system.”

In this definition Carzinga et al. acknowledge that the deployment is a set of activities
but adds the notion of management to the mix, alongside with delivery and assembly.
Moreover it emphasizes that those activities are applied on resources on a site, in order
to set up a particular version of a software system among possible others. Lastly Hall et
al. details the activities of the same vision in [Hall 1999]:

“Software deployment is actually a collection of interrelated activities that
form the software deployment life cycle. The software deployment life cycle,
as we have defined it, is an evolving definition that consists of the follow-
ing processes: release, retire, install, activate, deactivate, reconfigure, update,
adapt, and remove.”

Above definitions converge towards a common understanding of the notion of software
deployment. The deployment is a process that carries the software product from devel-
opment to the execution. It consists of various activities which form a lifecycle of the
software system.

Definition 3: Software Deployment

Software deployment is the process between the production and the execution of soft-
ware systems, which involves a set of correlated activities that consists of making con-
figurations and bringing the software to its desired execution state. This process can
continue along the lifetime of the software system in order to bring it to a new state
via reconfigurations and updates.

3.2.3 Concepts

Following three sections aim to establish a common understanding of software deploy-
ment. It presents roles, entities and activities involved in the deployment process. This
section, the concepts of deployment, introduces common terms used in most of the de-
ployment systems. Along the introduction of these terms, illustrations enhance and refine

the previously mentioned vision of deployment for a more precise description.

50 Chapter 3. Software Deployment

a. Component

In [Szyperski 2003], a component is defined to be a unit of composition with contrac-
tually specified interfaces and explicit context dependencies. A component defines its
behavior in terms of provided and required interfaces. Deployment plays a central role in
Szyperski’s definition of component. The first property of components is to be a unit of
deployment that is executable in an execution environment context. Moreover compo-
nents are a unit of versioning and replacement that is to encapsulate the state they repre-
sent. In order to deploy a component it must be instantiated, supplied with instances of
components on which it depends and is configured.

b. Assembly - Application

An assembly is a set of interconnected components. It can itself be viewed as a com-
ponent made up of subcomponents, and offering and requiring interfaces. The required
interfaces of the components in an assembly may be satisfied either by other components
in the assembly or be required from the environment in which the assembly is deployed.
An application is simply an assembly of components that are related to each other in
order to perform some function. Similarly, in [Carzaniga 1997] a software system is de-
fined as a coherent collection of artifacts, such as executable, source code, data files and
documentation, that are needed at a site to offer some functionality to end users. The
Figure 3.5 shows a component-based software is released as an assembly.

Development Deployment Execution
= > €14 —> I
=l (}*"i - .
Component

Assembly

Figure 3.5: Software Deployment - Componentization

c. Deployment Descriptor

A deployment descriptor captures and describes the artifacts, their configuration pa-
rameters, their requirements and relationships, and deployment instructions. It serves
to transmit a request of deployment. For example, the deployment descriptor for an ap-
plication would consist of the components that are included, their relationships, config-
urations, executable files for those components and specific actions to be taken during
the deployment. As shown in figure 3.6, the deployment request is transmitted in the
deployment descriptor.

3.2. Software Deployment 51

Development Deployment Execution

ERlCE 2 &
—Eyp—m

Component Descriptor
Assembly

Figure 3.6: Software Deployment - Deployment Descriptor

d. Resource

A resource is anything needed to enable the use of a software system at a site (both
hardware, software and system artifacts). Examples include IP port numbers, memory,
disk space and other systems. Some resources may be shared, while others can be used
by one system at a time.

e. Site - Target Environment

A siterefers to a single computer that hosts resources. It is part of a network of computers
that are administered identically. In OMG D&C [Object Management Group 2006b], the
target environment is termed a domain and is comprised of nodes (computers), intercon-
nects (network connections) and bridges (routes between interconnects). As previously
mentioned, components are required to execute within a controlled environment known
as the execution environment or the container. At the execution side, the deployment
is performed on multiple sites, as shown in Figure 3.7. Each one of these sites constitutes
a software system, accommodating a number of resources.

Development Deployment Execution

55

D
- Cira:
—| o
Deployment f.}d

Component Descriptor
Assembly

Figure 3.7: Software Deployment - Target Environments

f. Version

A wversion of a component refers to time ordered revisions of a component or an ap-
plication and to platform-specific and/or functional variants [Carzaniga 1997]. Version
control systems (VCS) controls, registers and attributes a version to every change made
to the documents under its control. This way any change made on development artifacts

52 Chapter 3. Software Deployment

are documented, traceable and reversible. As opposed to repository managers, which
mostly version deployable artifacts; these systems mostly aim to track the changes made
on source documents. Tools like SVN;, Git or Mercurial are among most commonly used
VCSs.

g. Repository

Deployable artifacts produced from these source documents, are versioned in artifact
repositories. A repository contains the artifacts to be deployed. The repository man-
ager stores and organizes deployable artifacts and meta information about these artifacts.
Repository managers are capable of archiving multiple versions of an artifact and an-
alyzing them according to policies indicating product quality such as dependability or
performance. They also allow publicly sharing artifact binaries with members of the de-
velopment team or third-party collaborators. The repository may be located on a central
site, which may or not be part of the target platform; or it may be distributed on the sites
of the target platform. Regardless of the physical setup, the important point is the logical
distinction between the repository and the target. Finally, the Figure 3.8 illustrates how
multiple versions of components are handled by the repository and used by the deploy-
ment process.

Development Deployment Execution

1|
=l

Component
Assembly

a

Deployment ."
Descriptor ,\

L0

Repository

Figure 3.8: Software Deployment (Repository)

3.2.4 Deployment Activities

The process definition of the deployment concept entails the existence of distinct activi-
ties. Different studies referenced above, and some others [Dearle 2007, Liu 2006] tried to
identify the activities that cover the deployment process as a whole.

Szyperski focuses on the activities for the deployment of particular components.
Szyperski identifies four activities for component deployment as acquisition, deployment,
installation and loading. The acquisition refers to obtaining the software component to
be deployed. The deployment readies the component for installation in a specific envi-
ronment by configuring the parameters. Then the installation makes the component

3.2. Software Deployment 53

available on a particular host of an environment. And lastly loading enables installed
component in a particular runtime context.

Although activities identified by Szyperski are valid for deployment of components,
they present a view of a one-time deployment. However, previous sections showed that
deployment is an ongoing process that manages the evolution of deployed software.
Carzinga et al. propose a more complete view, including activities such as update and
adaptation that are intended for evolving the deployed software. Figure 3.9 illustrates
these activities. Notice that release and de-release activities involve decisions of develop-
ment, while other activities occur at the target environment of the software.

Update

Release) (Install
[—> Activate

Advertise]—o[Package] [Transfer]—O[Configure]
A\ 4 lV

De-release
Uninstall

Figure 3.9: Software Deployment Activities

De-activate

Release is the interface between developers and the actors in the remainder of the soft-
ware life cycle. At this point the software is assembled into packages containing
sufficient metadata to describe the resources on which it depends. These packages
become thus the units of deployment. Released packages can be registered on a
repository, which will attribute the package with a version, archive it and make the
software eligible for access.

Installation is the activity that covers the initial insertion of a system into the consumer
site. Usually, it is the most complex of the deployment activities because it deals
with the proper assembly of all the resources needed to use a system. It refers to
two distinct activities; transfer and configuration.

Activation is the process of starting the software executing or putting in place triggers
that will execute the software at an appropriate time. This is sometimes achieved
by using graphical interfaces or with scripts or daemon processes.

De-Activation is the opposite of activation, and refers to the activity of shutting down
any executing components of an installed system. In general de-activation is re-
quired for other activities such as update.

Update is the process of changing a piece of installed software usually triggered by the
release of a new version by the developers. Update is a special case of installation
but may require installed software to be deactivated prior to update and reactivated
after reconfiguration.

54 Chapter 3. Software Deployment

Adaptation activity involves modifying a software system that has been previously in-
stalled. Adaptation differs from update in that the update activity is initiated by
remote stimuli, such as a software producer releasing an update, whereas adap-
tations are initiated by local stimuli, such as a change in the environment of the
consumer site. An adaptation activity may be initiated to take corrective action to
maintain the operational correctness of the deployed software system.

Uninstallation activity happens when a software system is no longer required at a given
consumer site and can be removed. It presumes the system is already deactivated.
The uninstallation activity possibly involves some reconfiguration of other systems

in addition to the removal of the uninstalled systems artifacts.

De-release withdraws the system as it is judged obsolete by the producer. As with unin-
stallation, care must be taken to ensure that the withdrawal will not cause difficul-
ties. This requires the withdrawal to be advertised to all known consumers of the

system.

3.2.5 Deployment Roles

Software deployment process happens between the production and execution of soft-
ware. Therefore two natural roles can be identified; one party that produces the
software, the producer, and the other one who consumes and executes it, the con-
sumer [Carzaniga 1997, Szyperski 2003]. The producer is basically the role in charge
of developing and releasing the software. It is situated at the development side of the
software life cycle. Within the organization of the producer role, there are some internal
roles that can be relevant for deployment, these are:

Specifier creates the specification of the software to develop. It is a role involved pri-
marily in the design phase, creating the system architecture, including component
definitions and relationships. In many organizations the specifier is a senior devel-
oper or an architect.

Developer creates the implementations of the specifications. Developers program and
produce source code for the implementing components.

Assembler decides on component configurations and interconnections that constitute
the software. Those are majorly defined in the architecture specification. The As-
semblers job is to choose which implementations will concretely compose the soft-

ware product.

Packager produces one or more packages that wrap software elements. Granularity of
these packages change depending on the technology and the design decisions. Soft-
ware products may be packaged in an archive file or in a directory that contains all

3.3. Issues on Software Deployment 55

necessary artifacts. Otherwise, each artifact may be packaged separately and as-
sembled at deployment time.

In parallel to these roles, the Repository Administrator is in charge of maintaining
the repository manager for storing packaged artifacts for later delivery to consumer sites.
Repository administrators can be software producers, consumers or third parties who
assemble artifacts from different producers.

The consumer is the general term for the party who receives and executes the soft-
ware. It is the consumer-side where almost all of the deployment activities happen. The
consumer oversees the functioning of the physical machines of hosts, the execution en-
vironments and the software that executes on top of those. The consumer can be refined
into these internal roles:

Infrastructure Administrator who operates the physical infrastructures of deployment
sites, and in charge of guaranteeing physical resources required by deployed soft-

ware.

Execution Environment Administrator (or Platform Operator) operates one or
more execution environments that are found on the deployment sites. The plat-
form operator is in charge of providing software resources required by the software
deployed on the execution environment, such as applications.

Deployer is in charge of applying deployment activities (installation, activation, de-
activation, update, adaptation and uninstallation) according to deployment re-
quests. In OMG D&C [Object Management Group 2006b] deployer roles are re-
fined as the Planner, who creates a deployment plan describing the actions to be
taken for the deployment process; and the Executor, who executes these actions.

3.3 Issues on Software Deployment

Concepts, activities and roles presented in the previous sections establish a basic termi-
nology for studying the software deployment process. This section raises a set of issues
and problems that are commonly addressed by current practices of software deployment.

3.3.1 Managing Dynamic Evolution

The evolution of software systems is both natural and inevitable. The evolution is due to
the changes in both the software system and its execution environment. Some of these
changes can be planned by involved actors, and then executed on the system as such.
For example, installation of a new hardware component, such as a network interface, can
induce the need for an update of the corresponding driver. A newer version of that driver

56 Chapter 3. Software Deployment

can make use of the new component, improving performance and security. Similarly,
adding a new feature in an application may require applying deployment actions on dif-
ferent software systems on which the application depends. Nevertheless, in most of the
cases, changes are involuntary and unpredictable. A hardware failure (i.e. storage disk
failures) or an error of software component (i.e. software bugs) can cause some resources
to become unavailable. In such cases the software system may fail, or it can be adapted
and reconfigured to function with actual condition of resources.

Emergence of new computing domains, such as Cloud Computing and Pervasive Com-
puting, increases the need for applying deployment activities without disrupting the ser-
vices provided by the system. Software systems needed for these new domains require
to function with high availability while resources are dynamic and volatile. In perva-
sive systems for instance, communication and integration with devices that are present
in an environment is problematic, as these devices can appear and disappear dynamically,
without notice. However, this should not interrupt running applications, on the contrary,
applications running on a pervasive system should use these changes to their advantage,
in order to optimize their behavior.

Managing dynamic evolution is challenging for the deployment process as well as for
the execution environment. The ability to apply deployment activities without disrupting
the whole system depends on the capabilities supported by the execution environment.
Yet, some of the changes brought by deployment activities can occur at runtime, while
others may require restarting the system, for the changes to take effect. Consequently,
the deployment process should automatically react to the dynamic changes and function
with a minimum of human intervention.

3.3.2 Maintaining Metadata Throughout the Life Cycle

As in any design and development process, software producers make decisions through-
out the development life cycle. These decisions may include choice of using a program-
ming language, a container, or a software library over another; the description of com-
ponents and modules, organization and versioning of the source code, structure of other
artifacts that are necessary for execution, etc. Such metadata may affect the resulting
software product as much as the source code itself. Although developers and software
producers in general have valid arguments on why and how they made their decisions,
those choices are loosely documented, if at all. Eventually, the information about these
design decisions are lost.

One of the ways to overcome this difficulty is to manage every development artifact,
source code and design document, using a configuration management system . Along with
source and artifact repositories, a configuration management system can be extended to
include a metadata repository for storing design decisions. Indeed, a new class of ap-
plications called Application Lifecycle Management (ALM) is emerging to propose such

3.3. Issues on Software Deployment 57

integrated solutions. An ALM goes beyond simple configuration management, by au-
tomating workflows and processes performed in the SDLC. It helps creating, assigning
and tracking tasks; sharing information between team members and documenting all the
inputs made to the software. Using such systems design decisions become visible and
their correspondence with functional artifacts are tracked.

Once the software is to be built, released and deployed into execution environment, it
is particularly difficult to keep the links between the development artifacts and the actual
software at execution. Preserving a direct correspondence between development and exe-
cution would help to maintain the software, whether to correct bugs, seek security threats
or apply updates. It is thus crucial to maintain the correspondence between development
artifacts and the deployed system. The deployment process should confirm which version
of which artifact is deployed and effective at runtime, as well as be aware of subsequent
changes during the execution.

3.3.3 Managing Heterogeneous Environments

As discussed in section 3.2.5, software life cycle involves many actors comprising end
users, software producers and other stakeholders such as platform operators. In mod-
ern computing environments it seems impossible to impose a particular configuration of
an environment on all the sites that the software is expected to run. For example, the
developer team producing the software may work on the Windows platform, while the
resulting source code is compiled and integrated on a Linux Server and than at last run
on the Linux desktop environment. Additionally, a software product is rarely developed
for only a single platform; usually it is destined to run on multiple target environments
that have different properties and resources.

Thanks to distributed, large-scale networks, heterogeneous hardware platforms such
as servers, personal workstations and mobile devices more and more coexist in same com-
puting infrastructures. These hardware platforms can host software systems that are con-
nected to each other through standard communication protocols. Even if these environ-
ments share a major number of properties (i.e. hardware configuration, operating system,
...), each system is unique with different software dispositions.

Heterogeneous target environments challenge deployment in various fronts. First
of all, the software that supports deployment has to function in every target platform.
This means that the deployment software must recognize every type of resource in those
environments and know how to deploy (install, reconfigure, uninstall) resources. More-
over, deployment procedures of similar resources can be different in different platforms.
The software that automates the deployment should be generalized enough for handling
similar resources, but also specialized enough for managing heterogeneity of platforms.
Often, it is necessary to extend the deployment to able to handle new types of resources
and software systems.

58 Chapter 3. Software Deployment

3.3.4 Managing Dependencies

Reutilization and modular design has become de-facto principles of software develop-
ment. Recently, with the proliferation of the Internet and web technologies, any non-
trivial software system consists of multiple modules with dependencies to applications
or external libraries. Installing an application composed of multiple components requires
installing all components and ensuring that they can function properly, i.e. all of their
dependencies are satisfied.

There are different types of dependencies that software systems are subject to. First, in
a software system, components constituting the system may have dependencies between
each other. Resolving such dependencies and managing them at execution time requires
efforts on both development and the deployment process. Components may manifest de-
pendencies during different life cycle stages. For instance, a component may not have any
dependencies for its installation, but may need the functionality proposed by another for
its correct execution. Secondly, software systems may have dependencies to the resources
or functionalities provided by the target execution environment. An application requir-
ing access to a file in the filesystem is an example to this use case. Thirdly, there may be
dependencies between software systems. For example, a flight booking application would
need to access to another application, possibly managing a database, for querying avail-
able seats and the prices. In this respect, the deployment process should ensure, before
deploying the booking application, that the database application is available on site or
remotely; and configure both systems for guaranteeing the communication between the
two.

The promise of modular programming is to separate the concerns such that different
modules perform discrete functions. Separated into modules, the code base of software
is easier to maintain, that is to develop, debug and update. It is also easier to reuse these
modules in other software products. However, in a modular system interactions between
modules pose several problems. Module dependencies significantly increase the complex-
ity of the assembly and the deployment process. The deployment process should resolve
dependencies of each module, assemble needed versions of those, deploy them separately
and ensure that they are linked together to form the expected software.

3.3.5 Planning and Coordinating Deployment Activities

A significant concern is regarding the planning and coordination of the deployment pro-
cess. Deployment planning is the operation that decides the actions to be taken during the
deployment process. The plan is calculated with the given deployment descriptor and the
state of the resources of the target environment on which the software will be executed.
Once the deployment plan is constructed, the deployment process should coordinate the
decided actions, possibly by targeting distributed sites, in order to successfully execute
the deployment process.

3.3. Issues on Software Deployment 59

The calculated deployment plan is the outline of the actions to be applied during the
deployment process. It should answer several questions regarding how the deployment
will proceed:

— What: What are the artifacts (components, files, etc.) that will be brought to the
target environment and installed? What are the resources that are already on the
target sites but needs reconfiguring or adapting?

— Where: Where the software system and its components will be placed? Which
component will be placed on which target site?

— When: When will the deployment actions occur? Is there a need for synchronizing
different actions, or can any two tasks be executed at the same time?

Calculating answers to those questions is challenging, especially when there is a large
number of component and target site combination. In fact, without any indications set
by the deployment descriptor, this component placement problem is a special case of
quadratic assignment problem, which is NP-hard [Garey 1979]. For this reason solutions
for a deployment plan require a degree of guidance to restrict the possibilities. This in-
formation can be acquired as policies described in the deployment descriptor, deployable
artifact or target site description.

Once the deployment plan is decided on, it is to the deployment system to coordi-
nate the actions on possibly multiple sites for accomplishing the process. In general,
most deployment activities take place at the consumer site. They make use of system
resources and often require exclusive access to system components. Also, a deployment
action might introduce conflicts with installed or running software.

3.3.6 Ensuring Security

The capabilities of a deployment system are in vain if they compromise the security of the
deployed software and the target site. In an enterprise environment, computer security
is a prime concern, especially when it is about the management of distributed network of
machines. There are three aspects of computer security that are critical with respect to
software deployment: authorization, privacy and integrity.

Deployment actions require usually access to critical resources of the system. Re-
liable authentication procedures must be in place to ensure that deployment processes
are started and conducted only by authorized actors. The organizations are rightfully
concerned about the privacy of the information they transmit into the network. In the
case of deployment, transferred deployment artifacts (for instance, database files, data
structures, etc.) may contain sensible information that the organization wants to make it
private. Providing this level of privacy may require several things. First of all, deployment
process must make sure that the connection between the two parties of the file transfer

60 Chapter 3. Software Deployment

is authentic. Secondly, signatures and encryption can be necessary to guarantee both the
authenticity and privacy of the artifacts content. These prevent a third-party to look or
change the contents of the transferred artifact, which is valid for a file as well as for an
executable component.

Even if the transfer of software is carried out in a secure way, there might still be
security concerns related to the installation of software in the final target environment.
In particular, it is important to guarantee the integrity of the organization’s data against
the execution of malicious or incorrect procedures that may cause corruption or loss of
data during installation or update.

3.4 Software Deployment and Other Research Fields

Like most of the domains of software engineering software deployment is not an isolated
research domain. As it is situated between the development and execution, the techniques
and methods employed for deploying software is highly influenced by the advances in
development and execution platforms. Therefore it is impossible to study software de-
ployment without understanding these adjacent domains. Different domains of software
engineering have addressed issues discussed above, and these domains have contributed
on how the deployment process is conducted. This section presents these domains and
how they contribute to the deployment process.

3.4.1 Software Architectures

Software architecture is a design artifact that records and justifies important design de-
cisions of a software system. It abstracts information on different views of the software
system, notably regarding its structure and evolution. The architecture is a description
of the expected system, including components, relationships between them, constraints
on their execution, etc. But also it is a prescription of how the system can evolve; princi-
ples, restrictions and guidelines that may be presented as architectural patterns and styles.
While historically software architectures are design artifacts created in development, their
usage increasingly shifts to the heart of execution [Baresi 2010].

The research community studies the usage of specific languages for describing and
manipulating software architectures, named Architecture Description Languages (ADL).
ADLs intend to represent one or more architectural views focusing on a particular con-
cern. An ADL can be designed in different forms; as informal (e.g. use of schemas), as
semi-formal (e.g. UML) or as formal. Architecture described using a formal ADL can be
interpreted by a machine for evaluating and automating certain aspects, such as design,
deployment and execution [Medvidovic 2000].

In software deployment field, architecture-based deployment is a common term for
describing the usage of architectural description as deployment descriptor that guides

3.4. Software Deployment and Other Research Fields 61

the deployment process. Architectural models are adequate for this because they already
contain information about the elements contained in the software and their relationships.
The architecture of a system can be served as a base model for associating metadata about
deployable artifacts. This information can then be leveraged throughout the deployment
as discussed in section 3.3.2. As for relationships, they usually represent a kind of use
relation between the elements they involve. Therefore, they can be interpreted as depen-
dencies between software elements. The issue about managing dependencies is discussed
in section 3.3.4. Dependency information contained in architectural models can also be
used in the deployment process.

The software deployment process is about maintaining evolution of the software sys-
tem at execution time. A more recent class of ADLs addresses this issue by allowing
dynamic architectural manipulation. C2, Rapide, Darwin and Weaves are some of the ex-
amples for Dynamic ADLs. These provide operations and languages for modifying the ar-
chitectures by adding, removing and rewiring elements at runtime. However, many of the
current ADL’s does not cope well with expressing dynamic changes [Medvidovic 1996].
Changing a software specification written with an ADL introduces many problems related
to the deployment. Migrating the system into a new architectural specification triggers
a set of adaptation and update activities in which components can be created, destroyed,
reconfigured while sometimes saving their internal state. In [Dearle 2007], Dearle states
that such activities do not only require languages to express these operations, but they
also need to be capable of expressing the complex temporal and transactional state space
that occur during reconfiguration.

3.4.2 Software Product Lines

A software product line (SPL) is a set of engineering techniques for developing software
systems. It favors reuse of artifacts by defining product families that share common fea-
tures [Bosch 2000]. Like in industrial product lining, in SPLs, software products are di-
vided into groups of closely related products, to offer them separately in different situ-
ations. The concept of a product family defines the whole of the configuration space,
including points of variability over possible products. A software product can be seen as
a particular configuration of reusable artifacts, composed in accordance with a number
of constraints and preferences. SPLs aim to improve the time to market, productivity and
quality of software products by promoting reusability.

The deployment process is involved in this when the product, meaning the resulting
application configuration, is released and delivered to the consumers. Once released, the
products can be delivered rapidly using an automated deployment process placed at the
end of the product line. Releasing an application from a product family requires decid-
ing on an application configuration. In component-based, modular systems the choice of
assembled components can define the application configuration. Whereas in monolithic
systems, these configurations are made when the software is built through a customiz-

62 Chapter 3. Software Deployment

able build process. For example, tools like Maven and make files allow to define such
custom build processes and releasing software for different target environments. These
techniques applied in product line practices allow software producers to address hetero-

geneous target environments discussed in section 3.3.3.

The variability over possible choices in a product family is represented in models
called reference architecture. Reference architectures include shared architecture of a
product family and additional information for variable features. When constructing an
application, the SPL is confronted with the problem of resolving dependencies of the ex-
pected product configuration (discussed in section 3.3.4). Reference architectures can be
refined with choices made on the product release to calculate the effective architecture of
a particular application and resolve the dependencies of the application.

Traditional SPL engineering advocated that variation points are bound before the de-
livery of the software. More recently Dynamic SPLs (DSPL) emerged, where selection and
binding of the variation points are realized dynamically at runtime [Hallsteinsen 2008,
Bencomo 2010]. These systems use the variability model that is expressed in the reference
architecture for adapting the running system. The deployment process of such systems
should evaluate the variability model in permanence in order to change chosen variation

configurations.

In [Cetina 2008] Cetina et al. presents a discussion interesting from the point of view
of deployment process. In this paper authors define the difference between two architec-
tures of DSPLs as connected and disconnected. In the connected DSPL architecture, the
configurable product is always coupled with a product line, from which it receives adap-
tation requests. In a disconnected DSPL architecture the configurable product is more
autonomous. It embeds the product line model (reference architecture) and applies adap-
tations by making decisions based on this model. These approaches indeed show two
visions of deployment. First, the deployment is decided remotely and guided by requests
sent to target sites. Second, the deployment is decided and conducted essentially on local
site.

3.4.3 Self-adaptive Software Systems

Installed systems must evolve to address changes in both the environment in which they
operate and the requirements they fulfill. As presented above in software architectures
and product lines, the ability to change software systems dynamically is a demanded prop-
erty for coping with planned and unplanned evolution. Self-adaptive software systems are
able to adjust their behavior in response to their perception of the environment and the
system itself. Engineering self-adaptive systems pose major challenges. These systems
should be aware of the environment, take decisions and be able to change their execution
accordingly.

Self-adaptive systems propose the primitives for a deployment that covers the adap-

3.4. Software Deployment and Other Research Fields 63

tation activity. Deployment on a self-adaptive target would decide on the actions to be
taken, and coordinate the execution of these actions on the system. In [Oreizy 1999] Or-
eizy et al. distinguish these two processes in self-adaptive systems as evolution manage-
ment and adaptation management. On one hand the evolution management aims to
maintain the consistency and integrity of the system over time based on architectural
models. On the other hand, changes and observations needed by the evolution manage-
ment are applied by the adaptation management (issue 3.3.1). The adaptation manage-
ment is in charge of detecting the inconsistencies, planning and deploying modifications
(issue 3.3.5).

With these operations, a self-adaptive system can be seen as a closed-loop system
with feedback from the environment and itself. Autonomic computing [Kephart 2003]
proposes the MAPE-K architecture for implementing this adaptation loop, including Mon-
itoring, Analyzing, Planning functions and a shared Knowledge-base. Autonomic man-
agers that interact with the managed system via sensors and actuators implement this
architecture.

There are a number of obstacles to overcome for engineering the execution environ-
ment for self-adaptive systems. First, a self-adaptive system should be aware of itself and
its environment, monitoring the changes and being notified about them. This includes
an introspectable execution environment, meaning that it should provide means for in-
specting its architecture. Additionally, information about its environment context should
be gathered and modeled within the system. Second, the information about the system
should be analyzed, and the self-adaptive system should make decisions on the actions
to take. Many approaches are invented and borrowed from other domains for analysis
and decision functions [Salehie 2009]. Policies, rules, QoS definitions and artificial in-
telligence techniques are some of the approaches most commonly used. Lastly, decided
actions should be effectuated through an infrastructure that allows managing the system
and making changes at runtime.

3.4.4 System Administration

The correct execution of a software system depends on its stability and harmony with its
environment. The goal of the system administration is to ensure the stability of execution
of computing systems both hardware and software.

System administrators are in charge of supervising the whole system hardware and
software. They make sure that the system provides resources needed for the execution
of the applications and services. Their goal is to ensure that the computing system is op-
erating with optimal performance and uncompromised security, without exceeding the
requirements of maintenance costs. The domain of system administration (also called IT
administration or operations) is decoupled from the development of the software. The
software development seeks developing new features, optimizing existing ones and fixing

64 Chapter 3. Software Deployment

bugs thus evolving the software system. While the system administration is about trying
to keep the system as-is, once it is at good operation, and is interested in evolving the
ecosystem in which the software system lives. This may involve tasks such as migrat-
ing systems to new environments, running back-up procedures and troubleshooting the

€rrors.

In order to accomplish these tasks, system administrators usually execute one or many
activities of the deployment process. However, historically they are used to interact with
the systems via low-level tools. They usually run commands via command-line interface,
or in some cases use ad-hoc scripts they have written for automating some recurrent tasks.
Supporting the tasks of system administrators with well-defined deployment processes
would not only automate these tasks but also reduce human errors that occur during
deployment activities.

3.4.5 Summary

The previous section discusses the issues encountered in the software deployment pro-
cess. The problem of software deployment stands out as a collection of intricate issues
that involve many research fields in software engineering. This section presented the
fields that already address aforementioned issues. An important point to remark is that
software deployment has two-way relationships with those domains. Meaning that all of
these domains involve and apply deployment processes and they also contribute to the
way the deployment is conducted by resolving issues. The table 3.1 shows a summary
of tackled issues by these research fields. The following section presents existing efforts,
both academic and industrial, that tackle these issues. Some of the important deployment
automation solutions are evaluated against criteria that are also presented.

Table 3.1: Software engineering fields responses to issues

Software Software Self-Adaptive System

Issues . . .
Architectures Product Lines Systems Administration

Managing Dynamic v
Evolution

Maintaining Metadata v
Throughout the Life Cycle

Managing Heterogeneous v
Environments

Managing Dependencies v v

Planning and Coordinating
Deployment v v

Ensuring Security v

3.5. Software Deployment Facilities 65

3.5 Software Deployment Facilities

Automating the software deployment process is the only way to cope with increasing
speed of the cycle of development, release and delivery. There are a large variety of tools
to help producers and consumers to deploy their software. These tools provide different
degrees of automation over deployment activities presented in the subsection 3.2.4. All
the same, regarding automation, it is important to recognize that the deployment process
is a part of the SDLC, where human participants conduct most of creative tasks in different
processes. For example, developers are in charge of producing the creative content (code,
configuration files, etc.) although tools of modeling and programming aid them.

Software deployment is about organization of human processes, as much as it is about
the tools that help its actual process. Therefore the models used to represent the process
and the practices employed during it are as important as the tools themselves. It is useful
to define a concept that includes all conceptual and software tools that helps automat-
ing the deployment process. The following definition describes this concept of software
deployment facilities.

Definition 4: Software Deployment Facilities

Software deployment facilities defines the group of models, processes and tools em-
ployed by an organization for handling deployment processes by optimizing and au-
tomating its tasks.

3.5.1 Characterization Framework

Before presenting different technologies and academic works that propose software de-
ployment facilities, this subsection is dedicated to the conceptual framework that is sug-
gested by Heimbigner et al. [Heimbigner 1998]. This conceptual framework aims to char-
acterize different capabilities expected from a deployment facility and used by the authors
to classify existing technologies. Presenting these capabilities serves for evaluating dif-
ferent deployment facilities presented in this section.

a. Process Coverage

The first characterization criterion is the process coverage, the degree to which a deploy-
ment system covers each of the deployment activities of the process. The subsection 3.2.4
describes activities that constitutes the software deployment process. An activity is cov-
ered if the deployment system provides full support, meaning that it implements at least a
default version of the activity and describes how it can be integrated to the whole process.
An activity is partially covered when the deployment system does not provide an imple-
mentation but recognizes the existence of the particular activity and provides means to

66 Chapter 3. Software Deployment

the user for implementing and integrating the activity to the process. The process cover-
age criterion evaluates the completeness of the deployment automation solution. Finally
an activity is not covered by the deployment system if it does not explicitly recognizes as
part of the process.

b. Process Changeability

The second of characterization criterion is the changeability of the deployment process.
It is difficult to define and implement a deployment process for every possible use of soft-
ware product and consumer site. Typically, a particular product can require a special
procedure for deployment, or a consumer site may need to run specific test before val-
idating the deployment. This implies that a rigid, non-changing deployment process is
not applicable to all possible use cases. Process changeability indicates the ability of the
process to be changed and be customized after definition. A changeable deployment sys-
tem should allow customizing the deployment process per consumer in order to include
additional steps to some deployment activity.

c. Interprocess Coordination

A complete deployment process would most possibly include coordination of various de-
ployment activities on different software systems. Additionally these systems can be dis-
tributed over different sites and should be synchronized for the sake of the coherence of
whole deployment process. For example, updating a component may require, first to de-
activate other components that depend on it, then updating the first component and only
after that reactivating its dependencies. The interprocess coordination criterion evalu-
ates the deployment system’s ability to coordinate activities and synchronize between
distributed processes.

d. Site, Product, Policy Abstraction

The final characterization criterion is about how activities are described in the process
definition. A deployment activity can be seen as a procedure for controlling execution
of actions that manipulate resources on consumer sites. Therefore an activity can be
described in terms of the consumer site, the product or components of the product and a
set of execution policy constraints.

There are many ways to program deployment activities for implementing a deploy-
ment system that automates the deployment process. The straightforward way of de-
scribing a deployment activity is to program execution procedures for each combina-
tion of product and consumer site with every kind of execution policy. These execu-
tion procedures are usually developed with general-purpose scripting languages such as
Per], Python and Ruby. Clearly this can lead to a large number of such scripts and the
consequent high cost of their individual development and maintenance. Another way of
describing deployment activities is to factor out common information about product, con-
sumer site and policies inside abstract models. Modeling information about these entities

3.5. Software Deployment Facilities 67

reduces the effort required to define deployment processes, and allows to use the same
abstractions in different range of situations. Thus, the deployment procedures themselves
become generic, reducing the total number of deployment procedures that must be de-
fined. These generic models can then be parameterized with information specific to the

particular deployment process.

The site model, the product model, and the policy model characterize a deployment
systems ability to describe information about the deployment activities. The following
are more detailed descriptions of these models.

The Site Model The site model is a standardized way of describing or abstracting a con-
sumer site’s resources and configuration. A site model for a single computer would
contain information such as the machine type, the operating system, the available
hardware and software resources.

The site model enables all consumer sites to be treated in the same manner, re-
gardless of their nature. This way all consumer sites can be treated in the same
manner, regardless of their particularities. A unified model would provide standard
methods to access the site’s configuration and to manipulate required resources for
performing deployment activities. The deployment system then can ignore differ-
ences between consumer-sites. In this respect the site model specifically addresses
the issue of heterogeneity discussed in section 3.3.3.

With a site model the deployment activities are greatly simplified, since a deploy-
ment system can access the common information from the site model to use in
deployment activities. Autoconf and Windows Registry are two examples of sim-
ple site models for respectively Linux and Windows platforms. Autoconf is used to
produce procedural shell scripts from configurations by dynamically computing the
site abstraction. Windows Registry, in contrast, is a passive repository containing
the site abstraction.

The Product Model The product model describes the constraints and dependencies of
the system to be deployed. The deployment system uses this model to reason about
all deployable and deployed products, in order to ensure that the target site is consis-
tent. The product model should include information about the content of the prod-
uct, such as the set of required files and components, dependency specifications,
general information about the producer and documentation. The deployment de-
scriptor defined in 3.2.3 usually contains the product model, or enough information
to construct the product model. Constructing the product model can be straight-
forward for a monolithic system, whereas modular products that will be deployed
in distributed environments increase the need for more expressive models.

Throughout the deployment process, the product model is queried by the deploy-
ment system for gathering the information needed to execute deployment activities.
It is often the case that the product information is integrated into the site informa-

68

Chapter 3. Software Deployment

tion once a system is installed. In section 3.2.1, it is discussed that configuration
management tools also schematize information about the software products. This
integration indicates the link between configuration management and deployment

systems.

The Policy Model A deployment policy is a particular way of customizing the execu-

tion of a deployment activity. It defines how the standard deployment activity is
changed for that particular deployment. The policy model can include informa-
tion describing aspects such as scheduling deployment requests, preferences, and
security control. For example, in case of a modular product, the integrity and com-
patibility of constituent components should be verified. A strict policy would be
to perform these checks beforehand, and consider starting the deployment accord-
ingly. Or a looser policy would start the installation with a minimum of verification
and then validate the deployment once all components are in place. Another exam-
ple of alternative policies for the same activity concerns whether updates should be
pushed or pulled. Under both the push and pull policies, the installation activities
are essentially the same, differing only in when and how updates are triggered.

Usually different policies are hard-coded within the deployment system and not
externalized in policy models. It is difficult to construct a deployment system that
can be extended with new policies. Instead of modeling various policies, many
deployment facilities choose to provide hooks for developers (either for product
developers or consumers) to react to different stages of the standard deployment

process.

3.5.2 Evaluation Criteria

Creating abstract models of these aspects is of major importance for automating the de-

ployment process. This is particularly apparent in distributed environments, where het-

erogeneity and coordination issues should be handled in order to provide a successful

deployment environment. Previous section presents the characterization framework pro-

posed by Heimbigner et al. [Heimbigner 1998]. Authors use this framework for evaluating

some of industrial solutions. However, their evaluation lacks concrete indicators of ca-

pabilities expected from deployment solutions. To serve as evaluation criteria, here a

number of indicators are identified and grouped into three categories:

Deployment Platform defines the technology stack on which the consumer sites are

constructed. The characteristics of the deployment platform are as important as
the deployment system itself. The capabilities of deployment solutions are naturally
limited by those of the deployment platform.

— Deployment Unit: The kind and granularity of the deployment unit.

3.5. Software Deployment Facilities 69

— Modularity: Whether the platform provides a modularity layer that allows
to load and unload modules.

— Site Representation: Whether the platform provides a representation of the
resources available on the platform and site in general.

Deployment Process defines the characteristics of the process proposed by the deploy-
ment facility.

— Deployment Activities: The set of activities defined by the process for eval-
uating the process coverage.

— Process Hooks: Whether and where the process defines places in the process
to attach customization policies.

- Distributed Coordination: Whether the deployment process can be coordi-
nated on multiple distributed sites.

Deployment Description defines the kind of deployment description and the capabili-
ties enabled by it.

- Deployment Descriptor: The kind of deployment description artifact.

— Descriptor Placement: Whether there is an independent descriptor artifact
or if not, how does the deployment descriptor is kept.

- Policy Description: Whether the descriptor lets defining custom deployment
policies for extending default deployment process.

The rest of this section presents software deployment facilities proposed by industrial
products and the research community. They are divided into four categories according to
their operation scope. At the end of each category some of the solutions characterizing
that category are evaluated against these criteria.

3.5.3 Single Target Deployment

Single target deployment comprises technologies that consider a single machine as their
target consumer site. Automating the deployment process is relatively unchallenging, as
the deployment system does not need to deal with issues like heterogeneity, planning and
coordination on distributed environments. Additionally, automation requirements are
less elaborated as the main goal of these systems is to help end-users install applications.
Nevertheless, numerous tools proposed in this field have constituted the foundational
effort for deployment automation in general. These technologies are studied in three
categories.

70 Chapter 3. Software Deployment

a. Package Managers

RPM Package Manager (RPM) [Bailey 1997] and dpkg are examples of package man-
agers, widely used low-level deployment tools for Linux and UNIX-like operating sys-
tems. These utilities are capable of querying, verifying, installing, uninstalling and updat-
ing software packages. They propose command-line interfaces for accessing information
about packages and executing deployment actions. A package is defined as a collection
of files, configurations, documentation and metadata such as description and signature.
In general, packages are required to be associated with a version, which allows to han-
dle multiple revisions of the same package. Package managers use repositories where
packages are stored and indexed. A package repository is a remote database contain-
ing metadata about available packages. A local database is also used to register that are
changed and created when a package is installed. This can revert the changes and remove
an installed package, without breaking existing ones.

For handling the deployment of multiple packages, package managers model appli-
cations as a graph of interdependent packages. This brings the problem of managing de-
pendencies of package to be installed. Numerous higher-level tools for software package
maintenance exist such as Yellowdog Updater Modified (YUM) and Advanced Packaging
Tool (APT). Their automated deployment operations such as retrieving, installing, updat-
ing, and uninstaling applications, calculating the tree of dependencies.

Package managers are the most common way of delivering software in general. There
are many examples of package managers, each specialized in deploying packages required
for the respective technologies. NPM? for Node.js, Ruby Gems* for Ruby, NuGet® for .Net
are some examples of package managers specialized per execution environment. NPM,
for instance, allows the deployed software to declare scripts that will be called on certain
deployment stages such as pre- install, post- install, pre- start, etc. Homebrew?® is another
tool that is specialized for installing Unix-like packages in Mac OS environments. It is
based on package descriptions called formula. A formula can cite other packages it de-
pends, resources it needs to download and finally a script (written in Ruby) that applies
the installation. This lets Homebrew to download directly the source code of the program
and compile it on-site.

b. Application Installers

Compared to the package managers, Application Installers provide an application-centric
deployment model. Tools such as Windows Installer and InstallShield handle applications
on the basis of features and components. A feature represents an application function-
ality that users may or may not decide to install. Features can be installed independently
from each other. A component is the part of an application to be installed which is hidden

*Node Packaged Modules: https://www.npmjs.org/
*Ruby Gems: https://rubygems.org/

SNuget: https://www.nuget.org/

®Homebrew: http://brew.sh/

https://www.npmjs.org/
https://rubygems.org/
https://www.nuget.org/
http://brew.sh/

3.5. Software Deployment Facilities 71

from the user. Applications installers usually propose a standardized user interface, where
the user can choose one or more features for installation. Then the installer determines
which components must be installed in order to install that feature. It is up to application
developers to decide how to divide their application into features and components.

Application installers also use a local database for tracking which applications require
a particular component, which files comprise each component, where each file is installed
in the system, and where component sources are located. The deployment process con-
sists of acquisition of features to be deployed, calculation of components to be installed
and execution of component installation. The installation phase comprise the execution
of predefined scripts of installation. If the installation process fails, a rollback process can
revert the changes.

Comparably, IzPack” is a tool that applies principles of application installers, which
are predominantly in Windows environments, to applications running on the Java tech-
nology. IzPack allows developers to create customizable software packages that can be
deployed in multiple environments. It lets application developers to specify deployment
policies that are conditional on the parameters that differ from one target environment to
another.

c. Web-centric Deployers

Web-centric Deployers emerged with the proliferation of Internet, for transfer-
ring software in a controlled, secure way. Several technologies support the
web-centric deployment model. Java Applets, ActiveX components, Java Web
Start [Sun Microsystems 2006a] (a reference implementation of Java Network Launch-
ing Protocol (JNLP) standard), .Net ClickOnce® and Zerolnstall’ are such examples of
web-centric deployment technologies. The web-centric deployment aims to transparently
transfer executable software artifacts from a web server to the computer of the end-user.
As security is a major preoccupation in web technologies, unless trusted, applications
run in a protective environment, a sandbox, with restricted access to local deployment
site resources.

Web-centric deployment techniques can divide software into smaller components.
This enables incremental retrieve and update but is prone to the dependency management
issue. In order to overcome this problem, web-centric applications are usually packaged
independently. Instead of sharing their components, artifacts of each application is down-
loaded and stored separately. Another functionality proposed by web-centric deployers
is the ability to detect missing runtime environments (Java Runtime Environment (JRE)
or Common Language Runtime (CLR)) and automatically installing the required runtime.
This brings increased transparency for the users, though it is prone to conflicts between

"TzPack: http://izpack.org/

$MS .Net ClickOnce: http://msdn.microsoft.com/en-us/library/t71a733d (v=
vs.80) .ASPX

9Zero Install: http://0install.net/

http://izpack.org/
http://msdn.microsoft.com/en-us/library/t71a733d(v=vs.80).ASPX
http://msdn.microsoft.com/en-us/library/t71a733d(v=vs.80).ASPX
http://0install.net/

72 Chapter 3. Software Deployment

runtimes needed by different applications.

To conclude single target deployment, the web-centric model ensures significant au-
tomation of the deployment process for single computer machine. The presented mech-
anisms find their use also for more complex execution environments. In such a case,
however, they need to be supported by additional deployment tools to provide full de-
ployment automation. In the following subsection we present execution platforms that
enable deployment of independent modules.

Table 3.2: Comparison of single target deployment facilities

Criteria | npm | IzPack | Java Web Start
Deployment Pa.ckage, compresse.d folder Pack, files grouped under a Resource, set resources _such
. with package descriptor as Jar files, native libraries
Unit . package ID .
about dependencies and system properties
Modularity Node.js module structure Standard Java modularity Standard Java modularity
. Envi t variables,
. Installed packages, Key-value properties, FIVITOnMEnt variabies
Site . . . operating system, processor
. Key-value properties, environment variables, .
Representation architecture, JVM
environment variables Windows Registry
arguments
Publish, install, remove, Parameter collection, Install
Deployment restart, start, stop, update (file co; arse, execute) -
Activities ’ » SLOP, Apaate; PY, Parse, ’

uninstall, unpublish

Uninstall, Reporting

Process Hooks

Script hooks on test, start,
restart, stop

Listeners before/after install
and uninstall

No coordination, network

No coordination, network

Distributed

Coordination connection between client No coordination connection between client
and package registry and web server
Descriptor File package.json citing Installation description Jnlp file (XML)
. nlp file
P dependencies (XML) p
Descriptor . Used f ting th
P Contained in packages _sec o creating the Independent from resources
Placement installer
Policy Scripts other than process .
Cust t -
Description hooks ustom actions

3.5.4 Modular Execution Platforms

Deployment of traditional applications depends on external deployer facilities, such as
the ones presented in the preceding section. A deployment system needs to calculate or
extract information on applications such as dependencies, geographical distribution on
target sites, availability of required resources on these sites etc.

In a broader view component-based programming is based on the modular design
principles for software development. With component-based programming a major effort
was made to facilitate the deployment of component-based applications, the objective be-
ing to predict the phase of the deployment during the development. That is to say, in com-
ponent execution platforms, models explicitly provide means to describe components (or

3.5. Software Deployment Facilities 73

modules) and their dependencies. This section presents three important execution plat-
forms that promote developing modular software by providing execution environments
that host the components. More specifically, the emphasis of these discussions are on
how the modules or components are described and packaged, how does the deployment
descriptor of those is created and in which ways these platforms addressed previously
introduced issues.

a. CORBA Component Model

The Common Object Request Broker Architecture (CORBA) is a standard defined by
the OMG that enables software components written in different computer languages
and executing on multiple computers to work together. Corba Component Model

(CCM) [Object Management Group 2006a] is a component-based execution platform of
distributed CORBA.

In CCM, a component is defined by an interface and one or more implementations
of that interface. A CORBA component is a unit of deployment, that is to say it is the
basic element of the deployment. It consists of a zip archive containing the description of
the component files, the implementation binaries and a file to express the properties. An
assembly of CCM components is a set of logically interconnected components distributed
over multiple machines. During deployment, the assembly will be physically installed
on a given configuration machines by establishing connections between components. To
describe the assembly, CCM uses a descriptor file (.cad for "Component Assembly De-
scriptor”). An assembly description is composed of assembly packages that contain the
assembly handle and a set of component packages, containing the components involved
in assembly.

CORBA runtime provides tools to realize the deployment phase. The deployment
activities include transfer, installation, composition, instantiation and configuration of
components on targeted runtimes. CCM specifies a number of steps to take during the
deployment process: the definition and selection of deployment sites; installation of im-
plementations using the information contained in the descriptor software package, in-
stantiation of components and finally connection of components.

b. EJB

Enterprise JavaBeans (EJB) is a managed, server-side component architecture for modu-
lar construction of enterprise Java applications. The EJB specification is one of several
Java APIs in the Java EE specification [Sun Microsystems 2013a]. The EJB specification
intends to provide a standard way to implement the back-end ’business’ code typically
found in enterprise applications (as opposed to ’front-end’ interface code). Such code
addresses the same types of problems, and solutions to these problems are often repeat-
edly re-implemented by programmers. Enterprise JavaBeans are intended to handle such
common concerns as persistence, transactional integrity, and security in a standard way,

leaving programmers free to concentrate on the particular problem at hand.

74 Chapter 3. Software Deployment

EJB specification defines the installation, activation, deactivation and uninstall beans.
However, contrary to what could be expected, the bean is not the unit of deployment
that has been used. The deployment of beans or the applications based on beans are
defined via an archive file. These archives can contain an XML file playing the role of
deployment descriptor. This descriptor typically contains information required for each
bean in terms of transactions, security and persistence. Finally, it should be noted that
the archive format and content of the deployment descriptor are the main elements of the
standard defined by the EJB specification for units of deployment.

EJB specification does not address the problem of coordinated deployment of beans
on multiple distributed application servers.

c. OSGi

OSGi is a service platform specification, which delivers an open common architecture
for service providers, software developers and equipment vendors to develop, deploy and
manage services in a coordinated fashion [OSGi Alliance 2007]. It enables flexible and
managed deployment of services, based on a modularization model for Java Runtime En-
vironment (JRE). OSGi defines deployment units, called bundle that contain compiled
Java code and other resources. The OSGi platform allows to install, start, stop, update
and uninstall bundles at execution time without the need for restarting the whole plat-
form. Each bundle expresses its capabilities and requirements in terms of Java packages
and other resources. Therefore the platform calculates and manages connections between
bundles and assures the satisfaction of mandatory requirements of a bundle before exe-
cuting it.

The bundles in OSGi, as a set of shared, required and private Java packages or other
generic capabilities. OSGi bundles are deployed as a JAR (Java ARchive) file containing a
special descriptor file called manifest.mf. This descriptor allows developers to package
self-descriptive bundles. The information contained in this description about the bundle’s
unique identification, version, contents, provided capabilities and the ones it requires from
other bundles in order to work and more. Once a bundle is deployed to an OSGi frame-
work, the framework uses this description to resolve declared requirements of the bundle.
The resolving process involves matching and linking requirements of the deployed bun-
dle with the capabilities already available on the platform. This process results with the
construction of a class space in which the code contained on the deployed bundle will be
loaded and executed.

While an OSGi platform manages the lifecycle changes of each module it contains, it
does not provide a mechanism for deploying a software system (e.g. an application) with a
coordinated fashion. The closest to a deployment system specification is the Deployment
Admin Service specification that defines a deployment package as a collection of bundles
and other artifacts. The deployment procedure of a deployment package is well defined.

3.5. Software Deployment Facilities

75

Table 3.3: Comparison of modular platforms

| Criteria ccM | EJB | 0SGi
Component package, one or
Del t more implementations of Ear, jar archive containing Bundle, jar archive
eploymen . . RS .
PUr{’it components, component bean implementations and containing implementations
descriptors, assembly component descriptor files and manifest file
descriptions
. Language independent Java enterprise application Java modular execution
Modularity . .
modular execution platform | execution platform platform
. NDI naming service for .
Site I . & Bundle resources, Service
. - accessing resources, other .
Representation registry
beans
Installation, Configuration
Deployment .) guration, Installation, Activation, Install, Activate, Deactivate,
N Planification, Preparation,
Activities Deactivation, Uninstallation | Update, Uninstall

Launch, Uninstallation

Process Hooks

Listeners on bundle life
cycle changes

Coordination based on the

Distributed s of nod b
Coordination | concepts of node, assembly
and component
Different XML files
A)\ i .
Descriptor File Comp.onent ssembly according to component Manifest.mf
Descriptor types such as beans.xml,
ejb-jar.xml, web.xml
Separate descriptors for
D ipt ipti
escriptor component description, Inside the ear archive Inside the bundle archive
Placement component package,
component assembly
Policy No custom deployment No custom deployment No custom deployment
Description policies policies policies

3.5.5 Distributed Deployment

Computing environments are more and more distributed over multiple machines. Dis-
tributed deployment consists of the problem of that conducting the deployment process
over multiple distributed machines, connected over the network. Software deployment
in a distributed system aggravates the complications and issues discussed in this chapter.
One of the main problems is the heterogeneity of resources, which generates the need for
modeling different types of target sites, the resources that they contain. The other impor-
tant issue is the planning and coordination of deployment actions of many components
that the software product is composed of. In addition, the issue of dependency manage-
ment is more complicated because of the physical disparity of target sites and the compo-
nents that they will host. Last but not least, accessing physical machines dispersed over
the network and executing commands remotely is prone to errors and security breaches.

All these issues indicate that it is difficult to deal with the problem of distributed de-
ployment manually. Distributed deployment requires support by some kind of automa-
tion tool that should cover as much of deployment activities as possible. The deploy-

76 Chapter 3. Software Deployment

ment solutions in distributed environments are studied in three categories as script-based,
language-based and model based deployment [Talwar 2005]. In this article, authors ar-
gue the trade-offs between these different approaches, represented in this diagram 3.10.
As shown, language-based and model-based approaches require more investment to es-
tablish but can scale easily and handle deployment of complex systems.

A Human investment (time) over the
life time of package deployment

M |
anua Script-based
Language-based

Model-based

Scale and complexity

y
>

Figure 3.10: Tradeoffs between distributed deployment approaches (from [Talwar 2005])

a. Scripted Deployment

Script-based approach use existing tools and technologies for applying deployment ac-
tions on disributed environments. This method makes use of a number of scripts, for
example bash scripts) that coordinate existing tools for conducting common deployment
activities. These scripts can copy files using tools such as scp over ssh, for applying prede-
fined configuration files. They can also invoke package managers for installing software
packages.

At first sight, this approach seems convenient for system administrators who are fa-
miliar with these tools. After all it is fully customizable and the process is fairly straight-
forward. However, it is not suitable for more complex use cases, where managing ap-
plications and execution environments with scripts becomes long and difficult to main-
tain. Site and product models do not exist or are limited to simple ad-hoc models. It has
also limited expressiveness regarding to resource description what makes the automation
not always achievable. The most important problem with leaving system administrators
for deploying systems via scripts is the lack of traceability of their actions. Script-based
deployment processes are susceptible of human errors, which can harm the distributed
computing infrastructure.

b. Language-based Deployment

Language-based deployment improves on some of the limitations of script-based ap-
proaches. This approach uses a configuration language, parsers and tools to perform
deployment tasks. A number of deployment methods follow this approach such as Smart-
Frog [Goldsack 2003] and [Wang 2006]. Specialized deployment language offers an easier

3.5. Software Deployment Facilities 77

usage for these tools. However, apart from the specialized language the execution of the
deployment process is similar with scripted deployment approaches.

Language-based deployment frameworks usually include a distributed deployment
management runtime. The language they propose serves to describe the system configu-
ration and the deployment workflow. This language defines an abstraction layer for man-
aging the configurations of deployed software. Using the provided workflow, a dedicated
deployment agent can coordinate deployment tasks. A prepared deployment workflow is
then executed by the distributed deployment engine that enacts the workflow to achieve
and maintain the desired application state.

Using the language-based deployment approach brings several advantages. Mainly,
having a language proposes higher-level abstractions for developers that specify the ac-
tions of the deployment process, compared to the script-based approaches. This enables
associating management strategies like software reconfiguration, automated updates and
on-demand deployment. However, language-based deployment modeling does not allow
for full deployment automation. The language facilitates specifying the deployment but
it is still difficult to associate custom automation policies and enhance the deployment
process. With language-based approach it is also difficult to address heterogeneity of re-
sources and components, as the engine that executes the language should still cope with
heterogeneous product and site models. These remaining issues are addressed by model-
based deployment techniques.

c. Model-based Deployment

Model-based deployment systems leverage architectural models for modeling structure
of a software application together with the target execution environment. Architectural
models explicitly represent components, connectors, component configurations and their
requirements on one side, and execution nodes, network connections and resources on
the other. This separation between software and environment models is one of the key
advantages of the model-based approach. In such models, the relationship between ap-
plications and the target environment are also represented. Usually target environment
descriptions include features and resources exposed by the runtime while, the applica-
tions, or more specifically composing components, declare their requirements on the for-
mer. This improves reusability and enables full automation of the process. The model
of a software product can be reused when the software is deployed in different execu-
tion environments. Similarly, the model of an execution environment may be reused for
deployment of many different applications. Moreover, when component-based systems
are considered, the architectural model created during development, can be the basis for
a definition of the software deployment model. Therefore, the model-based approach is
especially suitable for the component-based systems.

Research community showed special interest on model-based deployment solu-
tions. Software Dock [Hall 1999] Prism [Mikic-Rakic 2002], ADME [Dearle 2004],

78 Chapter 3. Software Deployment

DAnCE [Wang 2003], JADE [Bouchenak 2006], DeployWare [Flissi 2008], and
DACAR [Dubus 2007] are some of the important examples. These frameworks are
based on two key features: A common model for representing the software product
and target environment, and a set of model-driven engineering techniques that are
used to enhance the common model with different aspects. For instance, Quality of
Service (QoS) information can be associated with each component implementation of the
software product for a more efficient dependency resolution. With these new aspects,
capabilities of the deployment system can be augmented by providing better decisions
for deployment activities, be it installation, configuration or update.

Software Dock is a system of loosely coupled, cooperating, distributed components. It
supports software producers by providing a Release Dock and a Field Dock. The
Release Dock acts as a repository of software system releases. The Field Dock sup-
ports a software consumer by providing an interface to the consumer’s resources,
configuration, and deployed software systems. The Software Dock employs agents
that travel from a Release Dock to a Field Dock in order to perform specific soft-
ware deployment tasks. A wide area event system connects Release Docks to Field
Docks.

Prism is a deployment approach based directly on an architectural model. It is des-
tined for resource-constrained, mobile target environments, addressing distribu-
tion, heterogeneity and wireless communication issues. Authors present two dif-
ferent modes of deployment process; with and without centralized ownership. In
centralized ownership process, a central site continuously analyzes the architec-
tural models of target sites and ensures that they are valid. If it is not the case, the
central site prepares a deployment package, with binary components, and sends
them to local sites. Each local site is responsible for applying architectural changes
and informing the central site once the deployment is successful. In the case of
distributed ownership, each local site decides when and what they need in terms of
deployment and demands it from the central site.

ADME is aframework for deployment and management of distributed component-based
applications. Authors applied an autonomic computing approach using a declar-
ative constraint definition language for specifying high-level goals. Deployment
goals are specified in terms of components, deployment sites and available re-
sources. Constraints restrict the deployment process by mapping components to
sites and applying topological constraints. A constraint resolver engine evaluates
the application configurations and current state of the deployment sites and decides
on a mapping between components, deployment sites and connection between
those. Deployed applications and deployment sites are monitored by the centralized
deployment framework, as so if a constraint is no longer satisfied, the deployment
process is relaunched for finding another mapping satisfying constraints.

3.5. Software Deployment Facilities 79

DAnCE addresses deployment of CCM applications. It is based on the OMG D&C spec-
ification that standardizes many aspects of configuration and deployment for com-
ponent-based systems. DAnCE enhances the D&C data models to describe deploy-
ment concerns related to real-time QoS requirements of applications and configu-
rations of middleware services.

DeployWare is based on the Fractal component model and abstracts concepts of the de-
ployment independently of the underlying paradigm and technology. It provides a
domain-specific modeling language and a metamodel to mask software heterogene-
ity. Every notion in DeployWare is being modeled as a component: properties are
represented as a composite component that contains the configurable properties of
a software, dependencies are composites that contain references to other software
components, even procedures, such as install, configure or start, are represented as
components symbolizing the instructions. These instructions are runnable compo-
nents that use the DeployWare libraries to realize elementary deployment tasks.

DACAR is another deployment system that is based on OMG D&C specification for
CCM applications. Authors propose using Event-Condition-Action rules for ex-
pressing deployment concerns. These rules express what should be monitored
on the execution environment (observation rules), how architectural changes are
decided (architectural rules) and how the deployments will proceed (deployment
rules). These rules are executed in order to construct an autonomic control loop.

Study of these examples show that a multitude of approaches can be associated with
models for providing deployment solutions. They use proprietary architectural models or
the OMG D&C component model as a common model, but they choose to construct the
deployment process using different approaches such as mobile-agents, constraint solvers
and rules. Table 3.4 compares three of these frameworks according to evaluation criteria.

3.5.6 Cloud Deployment

Cloud Computing is a model for enabling access to a shared pool of configurable com-
puting resources [Peter Mell and Tim Grance 2011]. It relies on the premise that sharing
resources over effectively constructed computing infrastructures would reduce the overall
cost of construction, operation and maintenance of software services. Cloud Computing
is the result of evolution and adoption of existing technologies and paradigms, such as
virtualization, autonomic computing, service-oriented computing and grid computing.
Outsourcing computer infrastructures allows companies to benefit from these technolo-
gies without the need of costly investments on knowledge and expertise. This helps them
to focus on their business, and easily adjust their need for computing resources according
to their changing demands.

80 Chapter 3. Software Deployment
Table 3.4: Comparison of model-based deployment facilities
Criteria Software Dock Prism | ADME
. Comp Onemco.m.em’ . Bundle, XML-encoded
Package, containing messages containing mobile
Deployment . . . closure of code and data
. deployment artifacts and the | code and information about R
Unit : . together with bindings
descriptor the target location of the .
naming the data
component
o Modular architectural Platform that is capable of
. Monolithic software . . .
Modularity model with components and | executing multiple bundles
systems Lo
connectors within isolation
Hierarchically organized . _
. : . . Site configuration in terms
Site key-value registry Partial architectural model .
. S . . of currently running
Representation | containing information of the site
. components
about sites
Release, Installation,
Deployment Activation, DeActivation, (Request, Receive), Add, Plan, Install, Instantiate,
Activities Update, Adapt, Weld, Upgrade, Start Wire

Delnstallation, DeRelease

Process Hooks

Distributed coordination

Autonomic control of

deployment descriptor

C]?)los':;lilt’:;:::n }:{oecr)?:i)itrela(iieg rlloyment but no with centralized or distributed hosts based on
distributed ownership constraint solving
Deployable Software ADL (C2SADEL), .
Descriptor File | Description (DSD), transmitted with (%)e?:g:;)n t-based language
Declarative language ArchitecturalModel message
ArchitecturalModel
Descriptor Inside the deployment messages are transmitted
Placement ackace separately from Independent
packag ComponentContent
messages
Polic Different policies can be
<y defined inside the - -
Description

A number of characteristics are identified by widely accepted definition document of
NIST [Peter Mell and Tim Grance 2011]. These are easy access to standardized mecha-
nisms, resource pooling, multi-tenancy, rapid elasticity and the measured service.
Looking from the deployment perspective, these characteristics can be resumed into fol-

lowing points that are important for the software deployment process.

— Virtualization: The main enabling technology for cloud computing is virtualiza-
tion. The fundamental idea behind the virtualization is to generalize physical in-
frastructures, transparently mapping those to virtual resources that are easy to use
and manage. For software deployment, virtualization helps eliminating the prob-
lem of resource heterogeneity by providing uniform interface. In addition, virtual
resources can hide some of the complexities of the underlying resources.

— Multi-tenancy: In Cloud Computing, resources are shared between multiple ten-

ants, and assigned exclusively at run time to one consumer at a time. Assigning

3.5. Software Deployment Facilities 81

resources is done dynamically based on the consumers’ needs. Sharing resources
can help increase utilization, and hence significantly reduce the operation cost.

- Elasticity: Elasticity is the ability to scale in and out by provisioning resources and
releasing them. Cloud Computing should provide mechanisms to allow quick and
automatic elasticity. The large pool of resources in cloud infrastructures gives the
illusion of infinite resources to the consumers, and elasticity provides the flexibility
to provision these recourses on-demand.

- Volatility: In counterpart of elasticity, virtualized resources can be unprovisioned
in any time, for leaving physical resources to other demands. To balance the relia-
bility of resources, consumers can provide multiple redundant services for the sake

of service continuity.

— Monitoring: Cloud computing provide mechanisms to measure service usage as
well as to monitor the health of services. Measuring services enables optimizing
resources and provides transparency for both consumers and providers, allowing
them to better utilize the service. Measured services can help in building closed-
loop cloud systems that are fully automated.

Cloud computing promises agility to the consumers, by giving the ability of provi-
sioning on-demand services. Cloud computing providers offer their services according to

three major service models.

Software-as-a-Service (SaaS) refers to the service model in which a service is a software
service that allows the consumer (end user) to access and use a provider software
application that is hosted, deployed, and managed by the provider. Consumers have
limited control over the application, and are restricted in how they can use and in-
teract with the application. The application is usually accessed via a thin client (i.e.,
Web browser), through which consumers can input data and get output. Exam-
ples of SaaS$ are email services (i.e., Gmail), business applications such as customer
relationship management applications (i.e., Salesforce), and data storage services
(Hosted SQL or NoSQL Databases). Because consumers have limited control over
Saa$ applications, this service model has little interest for the software deployment
process. Nevertheless, any deployed software can depend on some SaaS, so the
deployment coordination may involve sending appropriate configuration to a SaaS.

Platform-as-a-Service (PaaS) refers to the service model that offers a platform service
on which consumers can define, develop, configure, deploy, manage, and moni-
tor cloud software. Mostly, PaaS provides a managed infrastructure and low-level
software (operating system and an execution platform) on which consumers can
build their software. Although consumers can control their deployed software,
PaaS providers do not give direct control over the underlying cloud infrastructure.

82

Chapter 3. Software Deployment

Instead consumers are given the choice of customizing the platform service with
access to physical resources and other software services such as event distribution
and data storage. Windows Azure, Google App Engine and Heroku are examples
of PaaS providers.

The advantage of such platforms for deployment is that they abstract the commu-
nications with the lower-level infrastructure and provide easy to access and easy to
use interfaces for managing software deployment. Independent from the technol-
ogy of the underlying execution platform, deployment activities can be commanded
via graphic user interfaces (GUI) or automated via application programming in-
terfaces (APIs). In addition, some PaaS providers allow consumers to push code
directly to the platform using distributed source revision systems such as Git.

Infrastructure-as-a-Service (IaaS) refers to the service model, which allows the service

consumer to lease infrastructure capabilities based on demand. The infrastructure
capabilities include processing, storage, network, or any other basic computing re-
sources that can be used to deploy and run execution platforms (i.e., operating sys-
tems, management tools, development tools, and monitoring tools) and the applica-
tions developed on top of the platforms. IaaS consumers are not given direct access
to resources but have the ability to select and configure resources as required based
on their needs.

IaaS is very close to the virtualization, since it serves from virtualization tech-
nologies to partition physical resources, in order to provide the consumers with
a pool of storage and computing resources. Indeed in many cases consumers are
provided with a preconfigured operating system. Operating system configurations
are created as hard drive images of a system snapshot. Using virtualization tech-
niques enables provisioning rapidly different instances of this machine image. This
paradigm is interesting for the software deployment, because it lets developers re-
lease software bundled into images, preconfigured with the execution environment,
ready to execute. For instance, Amazon Elastic Compute Cloud service accepts
Amazon Machine Image (AMI) as deployment unit to provision virtual machines.

Lastly, the physical infrastructures of Cloud Computing providers can be installed

in different environments. There are different types of deployment environments are

known as deployment models and differ according to the physical location, the platform

constraints and overall access to the facilities. A public cloud refers to an installment

of physical infrastructure facilities that are provided by a third party. The public cloud is

shared between multiple organizations or consumers. It is the least expensive amongst

other models but suffers from the lack of a trust model between providers and consumers.

On the contrary a private cloud is owned by a cloud provider but installed entirely on the

premises of consumer, which is the software service provider. This eliminates the trust

issue and provides more flexibility, as organizations can implement their own privacy, se-

curity and access policies. However, this option is the most expensive one in terms of cost

3.6. Conclusion 83

of operation and maintenance. There are hybrid cloud models that makes compromises
between public and private models by establishing trust policies between providers and
consumers, partitioning critical resources and other support services.

3.6 Conclusion

This chapter presented the notion of software deployment; the process of delivering the
software from its production, i.e. the development, until its execution. Contrary to the
early assumptions, the deployment is a process, which involves a set of correlated ac-
tivities for configuring and bringing the software to its desired state at execution. This
process can continue along the lifetime of a software system, forming a bridge between
the development to the execution. The bridge between two worlds gains more and more
importance in recent years, with the increasing need to manage software evolution at
execution via software reconfigurations and adaptations.

This chapter presented some of the important issues that need to address in order to
provide deployment solutions. To tackle these issues software deployment domain is in
close relationship with other domains of software engineering. From software architec-
tures to software product lines and self-adaptive systems, these domains not only showed
solutions for these issues but also expanded the scope of software deployment.

Involving many actors, the deployment process includes not only tools for automating
activities but also a set of models and process definitions that serve to model and opti-
mize deployment tasks. Corresponding to this view, this chapter introduced the notion
of software deployment facilities as the group of models, processes and tools employed
by an organization for handling deployment processes by optimizing and automating its
tasks. Later, many examples of deployment facilities from different approaches have been
introduced briefly and compared against a set of evaluation criteria.

To conclude this chapter, there are two major reasons for that automated software
deployment facilities are needed more than ever. First, automated processes are needed
for deployment because software development keeps accelerating and software produc-
ers need to push changes into execution environments as rapidly as possible. Second,
propelled with the emergence of new computing domains such as cloud computing and
pervasive computing, dynamically evolving systems makes it impossible for producers to
deploy software by hand, with human processes. Instead software deployment processes
automated with appropriate tools should continuously deploy software into execution,
reacting to the dynamic changes in environments and requirements. This newly applied
paradigm, continuous deployment is the subject of the next chapter.

Chapter 4

Continuous Deployment

“Loneliness doesn’t come from having no one
around you, but from being unable to communicate
the things that are important to you. ”

— Carl Jung
Contents
4.1 Introductiont 86
4.1.1 From Lean Development to Continuous Delivery 86
4.1.2 Value Stream in Software Lifecycle 87
4.1.3 Deployment Pipeline. 88
4.2 Enabling Technologies for Continuous Deployment 90
42.1 Source Code Management.couuueno... 90
422 AutomatedBuild L o Lo 91
423 Continuous Integration 91
424 Artifact Management. 93
425 Automated Deployment. 93
4.2.6 Monitoring & ControlLoop 94
4.3 Requirements for Continuous Deployment 98
4.3.1 Platform Requirementsvouo.... 98
432 ProcessRequirements 100
433 Language Requirements 104
4.4 Positioning of Related Works 106
4.4.1 Evaluation of Deployment Platforms 106
4.42 Evaluation of Deployment Processes 107
4.4.3 Evaluation on Deployment Descriptors 108
45 Conclusion 110

86 Chapter 4. Continuous Deployment

4.1 Introduction

The goal of software deployment is to construct executing software using artifacts created
in the development. The previous chapter introduces the software deployment process
in detail and discusses the need for its automation. It concludes by stating that auto-
mated deployment facilities are needed to cope with accelerating software development
and dynamism of novel execution environments. This chapter focuses on a recent trend,
radically changing the way software is deployed: continuous deployment.

Before going into details, let’s first define continuous delivery and continuous de-
ployment. Continuous delivery (Cd) is a set of practices that transforms the software
development lifecycle. It can roughly be summarized by the phrase “Every commit trig-
gers a release” So every change made by a developer is integrated into a new software
release, ready to be installed. Continuous Deployment (CD) extends this principle to the
actual deployment of the created release. Pushed to its limit, it means that every commit
is pushed to production.

Obviously both Cd and CD require rigorous methods and sophisticated tools. There
are many different ways to achieve Cd and CD but most of them rely on the idea of de-
ployment pipeline. This pipeline represents the journey from the development to the
release repository or the production environment.

The goal of this chapter is twofold. First, it aims to introduce the general idea behind
continuous deployment. For that matter, this chapter starts by presenting the concepts
of lean development and deployment pipeline. Then in the following section it discusses
the current practices that are used for implementing deployment pipelines. The concerns
addressed by these technologies involve a large range of software lifecycle phases that
exceed the subject of this thesis. This is why the second part of this chapter focuses par-
ticularly on the execution platforms and the deployment process. It studies the require-
ments for implementing deployment facilities that support continuous deployment. Each
one of these requirements is detailed in order to establish a characterization framework
for continuous deployment facilities.

4.1.1 From Lean Development to Continuous Delivery

The Agile Manifesto affirms that responding to change is more important than following a
strict project plan. Development processes evolving around this vision acknowledge that
changes are inevitable throughout the project and that investing in immutable system
designs is counterproductive. However, this does not mean that the software producers
must compromise on the quality of the software systems and the rigor of the process that
produces these systems. On the contrary, different stages of the software lifecycle require
optimizations more than ever, to be able to cope with the change and still provide quality
software.

4.1. Introduction 87

Lean software development (LSD) is the application of Lean manufacturing princi-
ples to software lifecycle processes. Lean as a manufacturing and production practice,
aims to create value with less work. The value concept is defined as any action or pro-
cess that brings added value to the product or service. Lean manufacturing is based on
optimizing value-creating flows in order to increase efficiency and decrease the waste.
The goal of LSD is to reduce the time and effort wasted for producing, releasing and
deploying software. This is enabled by setting rigorous practices and processes that con-
tinuously reflects produced value over the software product. Continuous Delivery applies
this principle by turning every value created by developers to a software release, all by
guaranteeing the quality of the released product.

Kanban, presented briefly in the previous chapter in the section 3.1.2, is a method for
keeping track of the work-in-progress and managing flow. It provides a good framework
for organizations to apply lean principles [Poppendieck 2012]. The Kanban board rep-
resents the stream of values that are being created. The value stream represents the
work-in-progress values that pass through different states and enter into the responsi-
bility of different teams (see figure 4.1). The key to a Kanban system is that within any
value-adding activity the total amount of active work is limited. Therefore the entire
value stream contains a limited amount of work. This pushes the incentive for the teams
to consider optimizing and adapting the value stream activities to avoid bottlenecks.

Kanban board

Design /
Architecture

Tickets Requirements Development Testing In Production

i Ready Lo Ready - Ready] Ready
progress progress progress progress

Waiting

Figure 4.1: Kanban Board

4.1.2 Value Stream in Software Lifecycle

The value produced in software lifecycle manifests itself under different forms. The most
obvious type of software value is the source code, which is built into executable binaries.
But most of the time binaries are not enough for executing the system. Correct execution
of a software system requires other assets. One type of value that is usually needed is
the set of configurations to execute the software. Software systems execute on software
and hardware infrastructures that are meticulously determined in order to guarantee the

88 Chapter 4. Continuous Deployment

correct execution of the system. Operations teams create these execution environments
as descriptions or the disk images. Finally, applications usually require data. For example,
the database schemas are values produced during the development. The figure 4.2 depicts
these four types of value.

Configuration

Environment

Figure 4.2: Software Values

To be able to track the evolution of the system each value, changes made to these
assets must be versioned and archived. A commit represents the identified, versioned
record of change that is brought to the system. In a continuous delivery (Cd) system
every commit — therefore added value - triggers a set of processes to test and validate the
change and produce a release of the system. Continuous deployment (CD) pushes this
further by deploying each commit to the production environments.

The ultimate goal of software producers is to deliver high-quality, valuable software in
an efficient, fast and reliable way. Rationally each commit passes through different phases
until it is a part of the running system. The term cycle time refers to the time it takes
inside an organization from deciding to make a change in the system to making it available
to the users. When a new feature is developed or a bug is fixed by the development team,
it passes through a set of quality gates, which validates its conformity and quality. The
system is ready to be delivered to the consumers, once an overall quality and confidence

is guaranteed.

A lean delivery process encourages development teams to work in an empirical ap-
proach, in which they can test new ideas and get early feedback from automated tests
and customers. Cd and CD are enabled by a streamlined process that continuously eval-
uates the reliability of the software system at each commit, such that the latest reliable
version of the software system is always available. The following section presents the
deployment pipeline that implements this process.

4.1.3 Deployment Pipeline

The deployment pipeline proposes a solution for the problem of continuous delivery. It
provides an end-to-end approach to delivering software by automating all the processes
from version control until execution. In this pipeline every change to the software goes

4.1. Introduction 89

through a complex process on its way to being released. The process involves building
the software, followed by the progress of these builds through multiple stages of testing,
deployment into different environments and finally the release [Humble 2010].

Definition 5: Deployment Pipeline

A deployment pipeline is a holistic process that automates certain software lifecycle
activities such as build, test, deployment and release; which enables tracking each
value from the it’s conception at development until it’s inception in the system.

The deployment pipeline provides visibility into the production readiness of software
by observing and controling the progress of each change through different activities. As
presented in the previous chapter (see 3.2.5), software lifecycle requires the involvement
and collaboration of many different actors, such as developers, testers and operations
personel. Having a holistic deployment pipeline enhances how many individuals from
different teams work together effectively.

The deployment pipeline is a pull-based system [Poppendieck 2009]. Rather that
pushing changes to different actors, the changes produced by the developers are built
and stored in artifact repositories. This way changes are built once and generated arti-
facts can be associated with the change version. Only then different actors such as testing
teams and operations can pull these builds as they need in the continuous flow. The cen-
tral enabler of the pipeline is a repeatable, reliable and automated deployment process
that produces deterministic results.

Using this deployment process, overall cost and risk of releasing and deploying soft-
ware is reduced. Quality assurance teams can pull and deploy builds into testing environ-
ments. Similarly, operations can deploy builds into staging and production environments.
The figure 4.3 depicts a generic deployment pipeline. The actual implementations of this
model depend on the structure and requirements of the organization.

Since the deployment process (whether to a development machine or for production)
is automated, it can be executed and tested regularly. Indeed for each change (on code or
configuration) there can be a deployment on a testing environment. As a result, involved
teams can get rapid feedback on the code and the deployment process. The idea of trans-
ferring knowledge regularly from the deployment process to the development team gave
rise to a new movement called DevOps [Humble 2011]. The idea behind DevOps move-
ment is to encourage the close relationship between different actors; developers, opera-
tions and testers (or quality assurance), involved in the software production, who belong
traditionally to different backgrounds. The continuous feedback provided by deployment
pipeline bring together the developers, who are in charge of requirement analysis, design
and development with operations teams, who supervise the deployment, execution and
maintenance.

90 Chapter 4. Continuous Deployment

PR e S ——

.
]
1
1
1
1
1
1
1
1
1
1
1

<
™
P
@
s
3
S
3 3
S
2
1
o
1
1
1
1
1
1
1
1
1
1
1
1
iy
=
g
>
ki
1
1
1
1
e

__ ’
UAT
Testers Configure environment f¢—
Self-service Deploy binaries
Developers deployments Smoke test
see code metrics
and test failures
Commit stage Acceptance stage Staging
Compile Configure environment Configure environment f—
Commit tests Deploy binaries Deploy binaries
Assemble Smoke test Smoke test >
Code analysis Acceptance tests Capacity tests
Production
Operations Configure environment f—
perform Deploy binaries
push-button Smoke test >
reports releases
binaries reports reports
metadata binaries metadata binaries b metadata

Y

Figure 4.3: Deployment Pipeline (adapted from [Humble 2010])

4.2 Enabling Technologies for Continuous Deployment

The continuous deployment, as seen in the previous section is built upon a set of best
practices around the pivotal concept of deployment pipeline. The deployment pipeline
is made possible by a set of tools and indeed, accommodating right tools helps to es-
tablish best practices inside an organization. This section presents briefly the practices
that are essential to establish a continuous deployment pipeline. These are source code
management, automated build, continuous integration, artifact management, automated
deployment and autonomic control loop.

4.2.1 Source Code Management

Version control systems (VCS), also known as source code management (SCM) sys-
tems, are a mechanism for keeping multiple versions of files, so that each modification
is archived and previous versions of files are accessible. Beyond that, they are tools
through which people involved in software delivery can collaborate. These tools provide

a workspace for collaborating and creating new value from existing ones.

VCSs help teams to avoid (and resolve) conflicts that may appear during development
by keeping track of changes made on controlled files. Indeed, this is valid not only for
source code files but for every single artifact related to value creation. These artifacts
may include source code, documentation, configuration files, files related to the build or
even virtual machine images. Each change to these files is identified by a commit that
represents a a particular version of the software. More recently, with the emergence of

4.2. Enabling Technologies for Continuous Deployment 91

systems that automate deployment process, the deployment configuration of applications
and the description of the runtime environments are equally included in version control
as code. The trend to treat those artifacts as code and put them into version control is
known as the infrastructure-as-code [Spinellis 2012].

There can be different types of VCSs depending on the type of the stored artifacts.
Git! is an example VCS for source code and configuration files. Distributed VCSs like Git
provide entire history of the source repository to each user. They allow developers to
easily create local and remote branches, work offline, merge changes and push them to
other users. They also enable advanced collaboration scenarios such as code reviews.

4.2.2 Automated Build

A build process is a sequence of tasks that transforms development artifacts (source code,
configurations etc.) to deliverables (executable binaries, distributions etc.). Depend-
ing on the technology, this process can include steps such as dependency calculation,
environment-specific compilation, different kinds of tests and packaging.

While the value is created as raw artifacts, the focus of a deployment pipeline is de-
liverables. This is why it is crucial for the coherence of the pipeline that the build process
is automated in a way to produce deterministic deliverables. Automated tests attached
to the build process verify each build in order to detect errors as soon as possible. Tests
are particularly important, because they validate the correctness and quality of resulting
deliverables. They are focused on asserting that the code compiles successfully and passes
a body of unit and acceptance tests. There are many tools that allow build automation,
such as MakeZ, Apache Ant?, Apache Maven*, Gradle’, and MsBuild®.

4.2.3 Continuous Integration

Continuous Integration is a software development practice where members of a team
integrate their work frequently, leading to daily integrations of projects. Frequent inte-
grations are enabled by an automated build process that rebuilds and tests the system
at each change. Continuous integration ensures that teams working together to create
complex systems can do so with a higher level of confidence.

A continuous integration tool provides a bridge between different other tools. It is
based on the notion of job that executes and integrates different tools (see figure 4.4).
A change in the source code, a dependency or a fixed period can trigger the execution

IGit: http://git—-scm.com/

Make: http://www.gnu.org/software/make/

3Apache Ant: http://ant.apache.org/

*Apache Maven: http://maven.apache.org/

5Gradle: http://www.gradle.org/

®MsBuild: http://msdn.microsoft.com/en-us/library/dd393574.aspx

http://git-scm.com/
http://www.gnu.org/software/make/
http://ant.apache.org/
http://maven.apache.org/
http://www.gradle.org/
http://msdn.microsoft.com/en-us/library/dd393574.aspx

92 Chapter 4. Continuous Deployment

of jobs. Usually the job execution merges the changes from the VCS, invokes the build
process and test suites. Indeed in a deployment pipeline, it is crucial that every change
(every commit to the VCS) triggers a build process in order to detect early conflicts and
errors. This allows teams to follow the state of the software product at each commit. If
the build process and all the tests finish without errors, the job ends by producing binaries
and often by publishing them into an artifact repository. It is essential in the context of
a deployment pipeline to produce executable binaries exactly once for each commit and
keep the track of which commit produced which set of binaries.

g -

Sz Last Success Last Failure Last Duration
e ’ ‘ Imo 24 i R
&5 Chesk File Fingeranint & .
& e views =
Build Queue =
No Bulds in the queve. O ¥ (2010 - sandier - Yemooral - A 1yromo- £} P EREn PERTEY,
Build Executor Stet —
T Q : =
1 idie
2 tdie
e 3mo 23 d ~
e ™o 15 ¢
: ¢ " 9 min 20 se:
= WA .
WA .
o 1m0 19 gy 22 mi
Q . - :
: VA A o
< " i 9 m

Figure 4.4: Jenkins Job List

Another type of job can connect code metrics and profiling utilities that evaluate
source code and generate reports about its quality. However, for the rapidity of builds, the
build and test process should not be exceedingly long. Usually 10 minutes is an acceptable
time for project build and unit tests to be completed.

Continuous integration mainly focuses on development teams. The output of the
continuous integration system, therefore the binaries and build reports, normally forms
the input to the manual testing process and to the rest of the release process. The goal
of the deployment pipeline is to continue automating the rest of this process. There are
many tools that lets implementing continuous integration such as Jenkins CI” and Travis
CI®.

"Tenkins CI: http://jenkins-ci.org/
$Travis Cl: https://travis—ci.org/

http://jenkins-ci.org/
https://travis-ci.org/

4.2. Enabling Technologies for Continuous Deployment 93

4.2.4 Artifact Management

Artifacts are assembled pieces of software that include packaged, deliverable application
code, application assets, virtual machine images, and (typically) configuration data. An
artifact is identifiable with a unique name and version. Fach identified artifact is also
immutable. An artifact repository manager stores and organizes artifacts and metadata
about those. Repository managers are capable of archiving multiple versions of artifacts
and analyzing those according to policies indicating product quality such as dependabil-
ity or performance. They allow to publicly share binaries with members of the team or

third-party collaborators. Sonatype Nexus’

is an example of repository managers that is
widely used by developers to archive and publish software artifacts. Another example of
repository manager is a service called Bintray'®. It provides social services for developers
to store, publish, share and download software artifacts, and receive feedback over users

of their packages.

4.2.5 Automated Deployment

As expressed above, deployment automation is a must for the deployment pipeline. The
previous chapter studied software deployment in details, and presented different ap-
proaches to automate the deployment process. Throughout the course of the deployment
pipeline the deployment process is invoked in different stages for deploying applications
into testing, staging and production environments.

The deployment automation takes care of two distinct but complementary deploy-
ment requirements. Firstly, teams need to create runtime environments on-demand by
using tools that can provision machines (possibly virtual machines) and configure those
with prescribed environment templates. Such environments are usually software stacks
consisting of the operating system, required services and the middleware. Vagrant!! and
Docker'? are examples of tools that allows defining runtime infrastructures. Then, sec-
ondly, using the provisioned environment as a basis, applications can be deployed by
retrieving binaries from the artifact repository and application configurations. Such tools
include Chef!®, CFEngine'* and Puppet!®.

The whole process of provisioning the runtime environment and deploying the appli-
cation must be automated, easy to invoke and deterministic. For example, if a script is
realizing the application deployment, it must be accessible to everyone through version
control and give the same result in same conditions no matter where it is deployed. This

?Sonatype Nexus: http://www.sonatype.org/nexus/
Bintray: http://bintray.com/

"Vagrant: http://www.vagrantup.com/

2Docker: http://www.docker.com/

BChef: http://www.getchef.com/

"“CFEnginge: http://cfengine.com/

BPuppet: http://puppetlabs.com/

http://www.sonatype.org/nexus/
http://bintray.com/
http://www.vagrantup.com/
http://www.docker.com/
http://www.getchef.com/
http://cfengine.com/
http://puppetlabs.com/

94 Chapter 4. Continuous Deployment

is required to make sure that the software tested throughout the pipeline is the same as
the system released into production. Together with the automated build, this property
ensures that artifacts built on the development machines are the same as the one that
reaches the production.

The deployment pipeline depends on the ability of different teams to reproduce run-
time environments and applications. Each time a commit passes the build process and
automated tests, a well-defined deployment process can be invoked automatically. The
automated deployment process pulls the latest changes, deploys and executes the soft-
ware for acceptance tests and staging. Here the software system runs on configurations
as close as possible to the production. It is subjected to different kinds of functional and
performance tests. Tools that test application behavior include Apache JMeter!® and Cu-
cumber!” | whereas LoadUI'® is a tool for performance testing. Only if the functions are
qualified, the new system containing the changes of the commit can be released to the
production.

It is possible to implement different release policies for the delivery of the software
into the production environments. Cd and CD are distinguished in this respect. If the de-
ployment pipeline applies CD, the deployment into production occurs at each commit. A
common practice is to deploy changes to production by promoting staging environments
into production. This way deploying a new release, for example of a web application, can
be as easy as switching requests from old production machine to the new one. Other de-
ployment patterns include canary releases, where multiple versions of the same product
coexists or yet, blue/green deployments in which new release takes over to the old one
gradually.

In these use cases automated deployment must not only conduct deployment actions
in one deployment host, but also coordinate deployment processes in multiple hosts. Re-
mote administration tools such as Capistrano!” and Fabric®® help realizing such tasks.
However, in some environments such redundancy is not permitted. For example, in per-
vasive environments machines are not replaceable due to physical location concerns. In-
stead, new releases should reconfigure and adapt existing production environments in
order to deploy the new release.

4.2.6 Monitoring & Control Loop

In lean software development it is pivotal to continuously improve applied processes by
rapid feedbacks. Throughout the deployment pipeline feedbacks are constantly gathered
from build and test reports. When a problem is detected, the instance of the deployment

16 Apache JMeter: http://Jjmeter.apache.org/
YCucumber: http://cukes.info/

BLoadUL http://www.loadui.org/
YCapistrano: http://capistranorb.com/
OFabric: http://www.fabfile.org/

http://jmeter.apache.org/
http://cukes.info/
http://www.loadui.org/
http://capistranorb.com/
http://www.fabfile.org/

4.2. Enabling Technologies for Continuous Deployment 95

pipeline is stopped and error reports are transferred to the developers. On the other hand,
in addition to different kinds of tests (unit, integration, acceptance, functional, etc.) it is
also important to monitor running systems for errors and unexpected behavior. As soon
as a problem is detected on the production system, development and operations teams act
on to resolve the issue and push a change to the deployment pipeline that fixes it.

Analyzing system logs is still one of the essential ways of spotting problems at run-
time. For systems running on multiple machines, logs should be collected from each ma-
chine, stored and indexed for search. For system monitoring, tools such as Nagios?*' and
Collectd?? provide metrics and auditing on system health and performance. For moni-
toring applications, each middleware technology provides touch points for monitoring
the aspects they handle. More generic approaches also exist. CIM [Dis 2014] is an open
standard that provides a common definition of management information for systems, net-
works, applications and services. It enables consistent information exchange between
multiple parties about managed systems. JMX [Sun Microsystems 2006b] specification
provides a standard way for monitoring and managing Java Virtual Machine. The .Net
Framework provides monitoring management interfaces through Windows Management
Instrumentation (WMI) [Microsoft 1998].

In spite of many possibilities for monitoring running systems, it is still difficult for
operations teams to make decisions and take actions depending on low-level information
such as logs. Graphite?’ is a visualization tool that aggregates different monitoring metrics
and provides meaningful graphs to system administrators. In most cases operations teams
- including system administrators — need to run in-depth system diagnostics to detect
root cause of errors. Such diagnostics may require a post-mortem analysis of the system
state (memory, disk space etc.) at the time the error has occurred. Similarly, system
optimization requires comprehensive reports over a period of time, in order to detect
performance bottlenecks, security soft spots and memory leaks. In order to obtain high-
level indicators for the system’s health and performance, system administrators need to
store monitoring data historically and then run analysis on it.

Once operations teams are capable of analyzing running systems and detecting er-
rors, they can take relevant actions in order to circumvent errors and/or to optimize the
system. Most of the time these actions involve a deployment process of reconfigurations
and updates. Similar to the monitoring, these actions are effectuated through a number of
touch-points from different layers of the system. The key for achieving CD is to minimize
the time between the problem detection and the propagation of the solution that fixes the
problem. Therefore for fast response times system operators need to establish a control
system by automating both the monitoring and the deployment actions.

The idea of autonomic computing, initiated by IBM in a manifesto [Horn 2001], pro-

2'Nagios: http://www.nagios.org/
2Collectd: https://collectd.org/
BGraphite: http://graphite.wikidot.com

http://www.nagios.org/
https://collectd.org/
http://graphite.wikidot.com

96 Chapter 4. Continuous Deployment

poses a solution for this problem. Autonomic Computing aims to develop self-managing
software systems in order to minimize human intervention during their operation. IBM

identify four properties for self-managed, autonomic systems:

— Self-configuration: The system has the capacity to configure itself and its compo-
nents in an automated way, guided by high-level policies and goals.

— Self-optimization: The system and its components have the capacity to optimally
use the available resources. It continually seeks to improve its own performance

and efficiency.

— Self-protection: The system automatically defends against malicious attacks or
cascading failures. To protect itself, the system must detect (or anticipate) risky
situations by using early warning and prevent systemwide failures.

— Self-healing: The system automatically detects, diagnoses and repairs software
and hardware problems. The goal of the system is to increase fault-tolerance and

the availability of the system and its services.

Autonomic systems are made of collections if autonomic elements, which manage its
own behavior and its relationships with other elements, in accordance with policies es-
tablished by humans and other authorities. Inside an autonomic system, elements that are
managed can be in many levels. At low-level, the managed element could be a hardware
resource, such as storage, a CPU, or a printer. At this level autonomic abilities of indi-
vidual components are relatively limited and hard-coded. Particularly well-established
techniques are used for providing fault-tolerance. At higher levels, software resources of
different scales can also be managed, such as databases, legacy systems, software compo-
nents, application services and third-party software utilities. Usually software manage-
ment allows increased dynamism and flexibility. Autonomic aspects can be expressed in
more high-level, goal-oriented terms, leaving the rest to the autonomic capabilities of the
element.

Autonomic elements need to continuously sense and respond to the environment in
which they are situated. Constructing autonomic elements requires to implement, im-
plicitly or explicitly, one or more feedback loops that will gather information and act on
the system and its environment in order to meet the established goals. In a classical sense
a control loop includes at least three steps: information gathering, decision=making and
action. Based on the information collected in the environment and its internal state, the
system determines the necessary actions to comply with a set of objectives and acts ac-
cordingly.

IBM proposes a logical architecture for the implementation of this control loop, iden-
tifying four distinct activities performed by an autonomic loop control [Kephart 2003].
The reference model for an autonomic manager is composed of five parts (see figure 4.5),
known as MAPE-K:

4.2. Enabling Technologies for Continuous Deployment 97

=

J <
e ——
I e

Analyze| | Plan

ﬂu

Monitor Execute
Knowledge

e J

Figure 4.5: Autonomic Managers

— Monitor: This module is in charge of collecting information coming from moni-
toring touchpoints. It prepares an activity report by filtering and aggregating the
gathered information. Usually it takes into account information in temporal win-
dows for including temporal relevance of gathered data.

— Analyze: This module determines if changes are required according to the reports
provided by the monitoring. It can diagnose problems by detecting correlations and
anticipating situations that can occur. As a result, it produces a list of problems to
resolve.

— Plan: Planning resolves the identified problems. It accomplishes this by proposing
an action plan, a series of operations that allows to attain a particular state, that
will resolve the problem.

— Execute: 1t applies the problem resolution. It acts on the managed element using
action touchpoints for applying actions fixed by the plan.

- Knowledge: Knowledge base allows different modules to exchange messages and
persist the information they produce, for example, measured values or a history of
these last, as well as information on policies and high-level objectives. It is contin-
uously updated to trace the evolution of the state of the system.

The foremost advantage of this separation lies in the increased maintainability and
reusability. Modular design and well-defined interfaces between different modules, as
recommended by the reference model, allows to use different tools and technologies for
each activity. These tools can be implemented separately by different companies or groups
who can focus on a particular aspect.

98 Chapter 4. Continuous Deployment

4.3 Requirements for Continuous Deployment

Previous sections of this chapter introduced lean software development and discussed the
practice of continuous deployment in more details. The remainder of this chapter con-
centrates on the continuous deployment in modern, dynamic execution environments,
such as pervasive and Cloud computing. This section discusses the requirements for con-
structing deployment facilities that are able to apply continuous deployment in dynamic
execution environments. The previous chapter of software deployment evaluated certain
existing works against a number of criteria (see section 3.5.2), which are derived from
the characterization framework of [Heimbigner 1998]. The requirements studied in this
section aim specifically to identify challenges brought by dynamic environments to the
problem of continuous software deployment. The most apparent characteristics of such
environments are the unanticipated, continuous change and the fact that deployment re-
quests can originate from different sources. Similar to the previous chapter, here also
the requirements are studied in three categories, requirements linked to the deployment
platform, requirements regarding the deployment process, and the requirements for the
language that describes the deployment. A preliminary version of this study is published
in [Escoffier 2013b].

4.3.1 Platform Requirements

The first category of requirements focuses on the deployment platform, i.e. the capa-
bilities that must be provided by the execution environment to support the continuous
deployment of pervasive applications. First of all, the platform must be able to deploy
components separately at runtime. Because of the dynamism exhibited by pervasive en-
vironments, the platform must also provide configurability, reflection, architectural re-
configuration and context access capabilities.

a. Configurability

The deployment process is not limited to transfer software resources to the execution
environment; it also includes configurations. This requirement is particularly important
in pervasive applications as the configuration is one of the most used levers to handle
adaptations [McKinley 2004]. Because of the dynamic adaptations required by pervasive
systems, the configurations must be updatable at runtime.

— Execution Platform Configurations: The configurations to initialize the execu-
tion platform at start-up.

— Load-time Configuration & Composition: The ability to configure code at load-
time. For modular platforms this may also include the composition and binding
configurations of modules and components.

4.3. Requirements for Continuous Deployment 99

b. Modular Dynamic Execution Platform

In order to adapt themselves to unanticipated situations, pervasive applications must be
modular [Kramer 2007]. The platforms and applications must be composed of distinct
modules that can be installed, updated and uninstalled individually. Modularity may also
involve dependency management. Modules could declare dependencies that must be re-
solved by the deployment process. The targeted entities can be another module, or be
more abstract in order to introduce variability and constraints.

- Loading/Unloading code: The ability to both load and unload modules dynami-
cally at runtime.

— Dependency expression and resolution: The type of dependency expressions and
how they are resolved and satisfied on the execution platform.

- Dynamic programming languages: Some execution platforms allow dynami-
cally loading code using dynamic programming languages.

c. Reflection

Managing modules and configurations is not enough. The platform must also provide in-
formation about the current modules, their states, and configurations, and allow to change
these when needed. The capability to change represented aspects, i.e. intercession, is a
must for the deployment process to modify the execution platform. Having introspec-
tion facilities is an also absolute requirement to let the deployment process determines
changes to apply on the system. The introspection data must not be limited to deployment
information, but also represent system specificities, available services, computational re-
sources and any data required by the deployment agent to drive the deployment process
successfully.

— Structural reflection: The platforms capability to reflect its static structure, such
as modules, packages, configurations.

— Behavioral reflection: The platforms capability to reflect its execution such as
processes, variables and threads.

— Call interception: The platforms ability to intercept calls, such as method invoca-
tions and variable accesses. The interception can change the content of the invoca-
tion.

- Binding interception: The platforms ability to change and customize the default
policies for binding module and component dependencies.

100 Chapter 4. Continuous Deployment

d. Architectural Reconfiguration Support

The dynamism of the pervasive environment influences the architecture of pervasive ap-
plications [Oreizy 1999]. For instance, a new resource can become available, while another
disappears. These events can involve dynamic architectural reconfiguration. In order to
make these adaptations possible the platform must provide primitives on which the de-
ployment agent can rely.

— Architectural script: The execution platform can provide basic operations and
scripts on top of those in order to enable architectural reconfiguration.

— Service-orientation in component binding: The service-orientation in compo-
nent interfaces and binding mechanisms allows architectural reconfiguration to be

seamless during execution.

— Tranquility: The platform can provide tranquility (sometimes called quiescence)
of components during architectural reconfiguration. This may involve deactivating
the component, saving its current execution state and restoring that state at the end
of the reconfiguration.

e. Context access

The fluctuations of the environment in which the pervasive applications are executed
are also posing problems in terms of deployment. Contextual changes have an effect on
the deployment process. To implement the continuous loop required to deploy pervasive
systems and keep them effective when facing new situations, the deployment agent must
be able to monitor the environment. For this reason, the platform must offer context
mining, and observation features. This requirement does not define the scheme or the type
of represented context data. However, every piece of information required to optimally
drive the deployment process should be accessible by the agent.

— Flexible context model: A flexible context model can be extensible with new con-
text information and clients of this model can choose to consume different views.

- Context mining: The context mining involves the ability to discover new infor-
mation from the represented context. It may involve correlation analysis of certain
context data inside a temporal window.

4.3.2 Process Requirements

The second category of requirements focuses on the deployment process itself. Dynamic
environments impose several characteristics to the deployment process. Whether it is for
an installation, update or uninstallation, the deployment process is initiated either from

4.3. Requirements for Continuous Deployment 101

the system or externally. Then, it analyzes the deployment request and defines a deploy-
ment plan listing all the actions. This process includes the selection and/or refinement of
the components to deploy. Because of the pervasive environment characteristics, the de-
cisions taken during the deployment process may become invalid, and adaptations must
be applied to keep the applications in an operational state.

a. Pull/Push

The deployment process may be triggered either by the system itself or push from ex-
ternally. In the first case, the system discovers a new required resource, such as a device
driver and asks the deployment agent to install the required artifacts. In the second case,
the deployment process is triggered by an external entity. It can be the user having pur-
chased a new application on a store, an application update pushed by the application ven-
dor or the platform operator updating technical services. The openness and uncertainty
of the pervasive environment requires that both the pull and push modes be supported.
More interestingly, the source of the push is not unique. Having multiple sources makes
the scheduling and prioritization of deployment requests more complex.

— Push: The deployment request is pushed to the platform start a deployment pro-
cess. Multiple deployment processes on remote machines can be coordinated with
the push approach.

— Pull: An internal change from the platform can trigger a deployment request that
pulls the changes to deploy and executes the deployment process locally.

— Both: The deployment request can be pushed from an external authority or pulled
by the initiative of the platform.

b. Determinism & Idempotence

Determinism is an essential property to make pervasive system deployment reproducible.
For a particular environment, on a specific platform, a singular deployment process must
always result to the same system. Such a capability is critical for making the deployment
process testable, and improves the reliability of the deployment infrastructure.

Idempotence implies that the deployment will not change the system if it is already in
a desired state. This is important because running the deployment process multiple times
will only change resources that are necessary to change, without touching others. This
property is rarely supported in traditional deployment tools. Unfortunately, the multiplic-
ity of deployment sources makes the idempotence a requirement necessary but difficult
to satisfy.

— Idempotence: The actions taken during the deployment and the overall deployment
process is idempotent. For example, deploying an already deployed artifact won’t
modify the system.

102 Chapter 4. Continuous Deployment

— Deterministic: The decisions made during the deployment process are result of

deterministic processes and algorithms.

— Probabilistic: The deployment facilities employ probabilistic algorithms during
deployment.

- Heuristic: The process use heuristics to decide on the actions taken during the

deployment.

c. Fault-tolerance

The deployment process is constituted from a set of actions that change the pervasive
system. However, one or more of these deployment actions can fail. In this case, it is es-
sential to rollback to an operational state, avoiding stale situations. As a consequence, all
the deployment activities must be executed inside a transaction [Coghlan 2005]. Many
deployment technologies are supporting transactions, however in case of dynamic en-
vironments transactions are not only impacted by the deployment process but also by
external events. This aspect makes the transaction support very complex to implement.

- Concurrency Atomicity: Two concurrent deployment processes does not effect
one another. This is also called isolation.

— Failure Atomicity: A failure atomic deployment process performs either a deploy-
ment entirely or, in case of a failure, not at all.

- Consistency: A consistent process assures the integrity of the constraints on the
platform state. These are invariant properties of the platform resources and de-
ployed applications.

— Durability: Durability property states that if a deployment process succeeds, the
changes it brought to the platform are permanent, until another deployment pro-
cess. In certain environments, where some changes are contingent and uncontrol-

lable; assuring durability is not an option.

d. Customizability

One of the main differences between traditional deployment and pervasive system de-
ployment is the unknown environment in which the applications are deployed. The con-
stantly changing target site entails the process to adapt itself. These adaptations include
variability in resource selection, extension of the process for error handling and adaptive

algorithms for resolving resource dependencies.

In addition, the platform is actively involved in the deployment process. It often needs
to participate to the resolution and decision making process to adapt the deployed re-
sources and their configurations. The deployment process should be customizable ac-
cording to platforms changing requirements and constraints. For instance, the platform

4.3. Requirements for Continuous Deployment 103

may provide the process with configuration data and influence dependency resolution to
fit the underlying system constraints.

— Policy customization: The ability of the process to allow customization of deploy-
ment policies. Custom policies are useful in cases of error and conflict.

— Resource type extensibility: The ability of the deployment process to be extended
for covering different types of resources.

e. Continuous Adaptation

Deployment process adaptation does not only happen during the initial deploy-
ment. Throughout the lifetime of the system, adaptations are required such as
in [Medvidovic 2007]. Environmental changes may require adapting already installed re-
sources. Newly installed applications may also ask for optimizations or reconfigurations
on technical services provided by the platform.

This continuous adaptation process is similar to the autonomic computing loop pro-
posed by [Kephart 2003]. In such paradigm, the deployment agent would be an autonomic
manager handling deployment requests, and adapting applications when changes influ-
ence the component selection and/or configuration. Notice that pervasive applications
are often autonomic [Parashar 2006, Diaconescu 2008] and collaboration between an au-

tonomic manager and a deployment agent is proposed in [Maurel 2010].

— Policy based: Adaptation logic are developed as code in policies that decides on
the deployment actions to take and executes the adaptation process.

— Constraint based: Adaptations are described as constraints on the platform state.
A constraint solver (usually a SAT-based solver) must decide in which state the

platform must be, and triggers the deployment process for the suitable change.

— Rule based: A set of rules constitute the adaptation logic. A rule can be described
with conditions on certain platform state or events and the actions to take once

these conditions are valid.

— Planning based: Adaptations are generated as a result of a Al planning algorithm
(for example LPG [Kvarnstrom 2001]) continually working to satisfy given domain
knowledge and constraints.

It is important to note that constraint solvers, rule-based systems and planning algo-
rithms that use heuristics do not produce deterministic results for obtaining adaptation
logic.

104 Chapter 4. Continuous Deployment

4.3.3 Language Requirements

The third category of requirements includes the criteria on the descriptor language that
defines the deployment. The deployment descriptor language is the interface between
users (such as developers and operations) and the deployment facilities that conduct the
deployment process. It structures and limits the information that can be introduced into
the deployment process.

a. Expressivity

The deployment descriptor thus has a pivotal role in the deployment process. Not only it
specifies the first deployment of the system but it is also needed for guiding continuous
adaptations during its lifetime. Expressivity defines the elements that can be described
by the deployment descriptor.

- Entities and their relationships: The descriptor language allows describing enti-
ties to be deployed and the relationships between those, such as dependencies and
inclusions.

— Platform constraints and requirements: The deployment descriptor includes
information about the invariants of the deployment platform and the connections
between the platform and deployed applications.

— Process customizations: The deployment language allows to describe custom
policies for that the deployment process is customized for a particular instance of

deployment.

b. Extensibility

Open environments such as in pervasive computing, deal with a vast heterogeneity of
types of entities and artifacts. The deployment of each different type of entity may re-
quire different information and procedures. The deployment descriptor language must be
able to express a variety of resources, and be extensible with new eventual types. In addi-
tion, for a deployment process that is extensible for handling new types of resources, the
descriptor language must also describe how the process is extended for handling them.

— New entity type: The deployment descriptor language allows integrating new en-

tity types.

— Inheritance: New entity descriptions can be created by inheriting from existing
ones, adding other properties.

— Substitution: The language allows redefining existing entity descriptions accord-
ing to a well-defined contract [Liskov 1994].

4.3. Requirements for Continuous Deployment 105

c. Variability

The traditional vision of deployment favors precise description of the system to deploy.
Precisely described system deployment does not leave any ambiguities nor choices and
leverages determinism of the resulted system. Static, precise deployment descriptions are
inadequate to be used for deploying software in dynamic environments. While target
environment is unknown and dynamically changing, the deployment descriptor must al-
low certain amount of variability. The notion of variability is studied in software product
lines [Bosch 2002], which is a static, predefined variability. The description of a per-
vasive deployment must support a higher level of variability, where resource selection,
resolution and activation are done at runtime regarding state of dynamically evolving
environment. Dynamic product lines address this problem by calculating and deploying
new configurations of the system at runtime [Cetina 2008, Parra 2009].

— Resource selection: The variability described by the descriptor includes informa-
tion for the adaptation process to choose the changes for applying the variability.

— Architectural configuration: The deployment descriptor describes different ar-
chitectural configurations each variability contains.

— Dynamic reconfiguration: The deployment descriptor language includes in-
formation that enables dynamically reconfiguring between different variability
choices.

d. Usability

Specifying a deployment is a delicate work, which usually needs high precision and at-
tention. Deployment descriptors are development artifacts, and as any other code must
be versioned and tested [Spinellis 2012]. The language of deployment descriptor should
be easy to develop in order to simplify the work of platform operators and application
developers. Usually reducing the number of concepts would result in a simpler language.
However this should not compromise on the expressive power and completeness of the
specified program. A better way to quantify this may be the learning curve for new de-
velopers and ease of adoption for organizations. Also, as for any code, reuse of already
specified descriptors would ease development. The language for deployment descriptor
must provide constructs like code inclusion, inheritance or composition.

— Declarative language: The language describes the structure of the entities and
artifacts involved in the described deployment process, instead of expressing the
execution flow of the process.

— Imperative language: The language describes the execution of the deployment
process, in terms of sequences of actions to perform.

106 Chapter 4. Continuous Deployment

- Language constructs: Language structures such as including and referencing
other descriptions allow reuse and composition of deployment descriptors.

4.4 Positioning of Related Works

4.4.1 Evaluation of Deployment Platforms

In this section, we position well known platforms and academic works against presented
platform requirements and compare them (Table 5.2). Nearly all deployment solutions are
built on existing platforms. They enhance standard functionalities on these platforms for
providing deployment operations.

Table 4.1: Positioning for deployment platform requirements

Tools | PE1 | PE2 | PE3 | PF4 PE5
RPM + Linux (] ([[O O
Puppet + Linux [[(] o ()
Chef + Linux o o] O O
JVM O o (D) O O
0SGi™ o [[(D) O
JDrums o [] O O
PCOM [[o o O
Sofa 2.0 o [[o O
GatorTech (] o o © o
Socam o o o [D) o
H-omega o o o o o

Package managers, such as RPM [Bailey 1997] built on Linux systems, are heavily
used in the provisioning of industrial applications. The combination of the underlying
operating system and the package manager allow the installation, update and removal
of packages dynamically. The package structure, their customization and how depen-
dencies are expressed make them an interesting approach to build Linux-based pervasive
systems. With the rise of Cloud Computing, new tools have emerged to ease large-scale
deployment [Turnbull 2011, Nelson-Smith 2011]. Infrastructure-as-code facilitates creating
deployment descriptions. These systems support configuration and reconfiguration of dif-
ferent types of systems. However, they do not support architectural reconfiguration and
often rely on packaging systems. Their context management is also limited to predefined
data.

The OSGi service platform has become the de-facto modular layer for the Java Virtual
Machine. OSGi™ defines a dynamic deployment platform fulfilling most of the platform
criteria. With modular deployment capabilities, OSGi constitutes an important founda-
tion for building Java-based deployment platforms. OSGi proposes technics to support ar-
chitectural reconfiguration by promoting service-orientation. However it involves very

4.4. Positioning of Related Works 107

complex code to manage it correctly. In addition it does not provide any context sup-
port. Many pervasive platforms, such as H-Omega, GatorTech and SOCAM, are relying
on OSGi to deploy applications. They offer a context service responsible for collecting and
maintaining contextual data. In addition, H-Omega is based on the Apache Felix iPOJO
component model offering dynamic architectural reconfiguration support. But this sup-
port is too limited to cover all cases, such as global constraints or contextual bindings.

In academia, early works such as [Andersson 2000] concentrated on defining bases
of deployment platforms and stressed importance of modularity and the dynamic update
of modules. Later, platforms that provide dynamic reconfigurability feature [Bures 2006,
Hoareau 2008] gained focus as foundations for deployment in pervasive environments.
Especially, the combination of PCOM [Becker 2004] and BASE [Becker 2003] provides a
pervasive platform with architectural reconfiguration capabilities.

By default, all of these systems satisfy configurability and introspection requirements,
which is absolutely necessary for any kind of deployment.

4.4.2 Evaluation of Deployment Processes

In this section, we position well-known platforms and academic works against the pre-
sented process requirements. Table 4.2 summarizes this study.

Table 4.2: Positioning for deployment process requirements

Tools PP1 PP2 PP3 PP4 PP5
RPM + Linux Pull o o] O
Puppet + Linux o o O o O
Chef + Linux o © ([o O
Java Web Start Pull o O O O
0sGi™ Pull © O O O
:TM
gesﬁcl)ymz_nt Admin Pull o o ¢ O
0S$Gi™4 OBR / P2 Pull O O (] O
AOCSEiTM+ Apache Push o [o O
Software Dock o o O [O
OMG D&C Push O O L O
Nix []] o O O
PCOM Pull O O L J L4
Planning-based Push O O O o
Constraint-based Pull @) O o L))

Package managers enhancing the operating system are providing very customizable
transactional deployment processes. Every module can extend the process with pre- and
post- actions. Unfortunately, they need to be extended in order to support external push.
In addition, they do not support any continuous adaptation.

108 Chapter 4. Continuous Deployment

Tools like Puppet or Chef generally adopt a centralized master server, triggering de-
ployment on remote targets. These targets can impact the deployment process, such as
the resource selection. Thanks to the resource-state model promoted by Puppet, it also
supports idempotence. However this feature makes the usage of Puppet much more com-
plex for administrators, requiring to shift their mind to this new descriptive model.

Many tools rely on OSGi to enhance their deployment capabilities. OBR and P2 are
proposing advanced provisioning functionalities on the top of OSGi. They extend stan-
dard OSGi deployment features with advanced dependency management and constraint
solving. Deployment admin specification provides a transactional deployment model.
Apache Ace is based on the deployment admin and allows deployments from a remote
server. However, they do not provide enough flexibility to support continuous adapta-
tions needed for pervasive deployment.

OMG D&C [Object Management Group 2006b] specification defines rigorous princi-
ples, actors and actions included in a standard deployment process. It specifies a push
model, where released software is configured on target platforms according to a deploy-
ment plan. Software Docks [Hall 1999] proposes a deployment agent supporting a very
customizable process. It can adapt deployed components to the current environment, and
install additional components according to the current constraints. Unfortunately, they
do not support continuous adaptation, and do not natively provide a dynamic deployment
platform.

Several projects have proposed autonomic deployment process such as
ADME [Dearle 2004] and j-ASD [Hoareau 2008]. These approaches are based
on constraint-solving to select the components to install. Other projects such as
Planlt [Arshad 2001] and PLASMA [Tajalli 2010] use planning algorithms for calculating
deployment plans. PCOM [Becker 2004] also applies adaptation on architecture level
for a customizable, continuous deployment process. However, any of these approaches
support transactions and their support of the continuous adaptation is not deterministic.

Lastly, Nix [van der Burg 2011] stands apart from other projects as it stresses the im-
portance of transactional deployments. However, it renounces dynamic adaptations in
order to provide safer transactions.

4.4.3 Evaluation on Deployment Descriptors

In this section, we position deployment descriptor languages employed by deployment
tools against presented requirements. Table 4.3 outlines this positioning. Note that we
did not included deployment script languages in our study.

As an early approach to deliver Java applications to Internet clients, Java Web Start
provides an XML-based description language, is relatively accessible to developers. How-
ever, it doesn’t provide any variability over the resources, nor let users express require-
ments for applications. Puppet and Chef provide domain-specific languages (DSL) for

4.4. Positioning of Related Works 109

Table 4.3: Positioning for deployment descriptor requirements
Tools PD1 PD2 PD3 PD4

Puppet + Linux
Chef + Linux
Java Web Start
0SGi™4 OBR / P2
Software Dock
OMG D&C
Nix
PCOM

Planning-based

sl 000000
Ole e oo e e e e
o OCl@e0O|®s00 s =
O|0|0O|0|0|0|0| o @ @

Constraint-based

declaring expected system. These languages are based on resources found on operating
systems extensible with new types of resources. They provide very little, predefined vari-
ability. OSGi provisioning systems, OBR and P2, are based on generic resource model
with capabilities and requirements. There is usually a high barrier between these systems
and users in terms of usability.

In academia, the description language provided by Software Dock [Hall 1999] is ca-
pable of expressing all necessary aspects such as constraints, artifacts, dependen-
cies, configurations and activities. It lets describing software families, providing a
static variability to the description. Projects that use planning algorithms [Arshad 2001,
Tajalli 2010] take as input 'facts’ such as resource descriptions and constraints. These
descriptions are based on generic, extensible models. They let expressing variability but
those are hidden implicitly in constraints. Constraint-based approaches [Dearle 2004,
Hoareau 2008] provide less extensibility but more explicit variability. Developing and
maintaining constraints and rules are difficult. Nix [van der Burg 2011] provides a func-
tional language to describe deployments. Functional programming is useful for the im-
plementing an idempotent deployment process, but it is difficult for developers to debug
their descriptions.

110 Chapter 4. Continuous Deployment

4.5 Conclusion

This chapter presents the ideas behind the recent trend of continuous deployment; in
which every change created by the software producers is deployed into consumer en-
vironments. Continuous deployment is an end result of applying Lean manufacturing
principles into software development. The goal of Lean is to create value-added prod-
ucts by less work. For this, it focuses on optimizing the production process in order to
eliminate the waste, i.e. the work that do not make it to consumers.

Lean principles are applied in the software development through the concept of de-
ployment pipeline. The deployment pipeline is a pull-based system that automates certain
activities of software lifecycle, such as build, tests and deployment. During the process, it
ensures that each change included in the development is traced and tested before being
delivered to the consumers. Deployment pipeline also implements error reporting and
feedback loops in every stage of software delivery. This allows software producer teams
(developers, operations, etc.) to work empirically, seeing real repercussions of their effect
on the system. Once the deployment pipeline is in place, releasing versions of the software
and deploying continuously depends on the automation capacity of the pipeline.

Later, this chapter briefly presents the technologies that are essential to implement the
deployment pipeline. Some of these are traditional tools used in software lifecycle, such
as version control systems, build automation and artifact management. Others comprise
more advanced and recent technologies as continuous integration, deployment automa-
tion and testing and finally the monitoring and autonomic control.

The second part of this chapter presents the requirements for enabling continuous
deployment, specifically in dynamic execution environments. Similar to the previous
chapter’s deployment evaluation, requirements are regrouped into three categories, as
platform, process and language. Each identified requirement is explained in detail for
studying different possibilities in which they are satisfied. Lastly, these requirements
serve to evaluate existing work. The result of this evaluation shows which requirements
are not yet satisfied by the existing work. For deployment platforms, in spite of some
proprietary works, most of the existing platforms lack the capability of providing access
to flexible context models. For deployment processes, deployment tools that provide
deterministic and fault-tolerant deployment processes do not extend these properties to
provide continuous adaptation properties. On the opposite end, works that concentrate
on providing continuous adaptation lack on satisfying other requirements. For deploy-
ment descriptor, existing deployment tools lack the language support for describing a

variable deployment process.

The next chapter presents the proposition of this thesis for addressing a set of well-
identified objectives in order to provide continuous deployment facilities for dynamic

execution environments.

Chapter 5

Proposition

“When you cease to make a contribution, you begin

to die. ”
— Eleanor Roosevelt
Contents
5.1 Introduction 112
5.1.1 Problem Statement 112
5.1.2 Research Objectives 114
513 Approach........ 116
5.2 Formalization of Deployment Concepts 118
5.2.1 Resource Related Conceptso, 118
5.2.2 Assembly Related Concepts 123
523 Application Related Concepts 138
5.3 DeploymentProcess 142
5.4 DISCUSSIONS « « v v v v vt et et e e e e e 144
5.4.1 Actualvs. ObservedState 144
5.4.2 Idempotence & Determinism« oo v v v v e 144
5.4.3 Traceability & Fault-tolerance 145
54.4 Reproducibility L . 145
5.4.5 Application Compatibility 146
5.4.6 Dependency Managemento.vuvunenen ... 147
54.7 Undeployment, 148
5.4.8 Continuous Adaptation, 149
5.5 Reference Architecture L 151
5.5.1 Context Representation 151
5.5.2 Deployment Managerouuiienon... 155
5.6 DescriptionLanguage. 162
5.6.1 Basics e 162
562 Repository 163
5.6.3 Resource& Assembly 163
5.6.4 Condition & Conditional Assembly 164
565 Application 166
57 Evaluation 168
5.7.1 Comparison of formalisms 168
5.7.2 Evaluation for Continuous Deployment Requirements 171

573 Conclusion 173

112 Chapter 5. Proposition

5.1 Introduction

The first part of this document introduces the context of this work and presents the state of
the art on software deployment in general. Then the previous chapter studies the require-
ments for the continuous deployment of software systems. This chapter is dedicated to
the propositions of this thesis. To begin with, this section starts by spelling out the prob-
lems addressed by this research and clarifying the objectives pursued. Then it continues
on by presenting the adopted approach and summarizing the overall proposition. After
this introduction, different parts of the proposition are presented in detail, together with
corresponding discussions. Finally this chapter concludes by evaluating the contributions
of this proposition.

5.1.1 Problem Statement

Modern applications raise new challenges for the developers and other stakeholders who
participate in the development process. Developing dynamic, scalable software systems
that run on distributed and heterogeneous environments goes beyond the realm of pro-
gramming. From the technical point of view, this requires integrating hardware and soft-
ware solutions in order to make services available to the use of users. Besides, from the
industrial point of view, service and application providers want to maintain these solu-
tions and keep providing users with new and better versions of their services, as fast as
possible. Therefore, modern application development is first of all a software engineering
challenge, one that requires supplying developers coherent tools and processes to make
sure of agile and continuous software delivery.

Considering its particular case, dynamism is one of the requirements and main en-
ablers of this vision. It is a property that is increasingly expected from modern applica-
tions. After having been limited to a few domains such as operating systems [Fabry 1976]
or pervasive computing [Satyanarayanan 2001]; most recently, dynamism is increasingly
expected from modern applications. For instance, applications running on Cloud envi-
ronments have access to dynamically allocated computing resources that can change at
anytime. Similarly, as a next step of modularization of software systems, so-called tra-
ditional enterprise application providers start to show interest to dynamism. Dynamism
allows to handle asynchronous evolution of individual modules separately and without
disrupting provided services.

The need for dynamic evolution of modern applications stems from different sources.
Three sources that trigger the change can be distinguished [Escoffier 2008]. The first type
of change is initialized in a controlled manner, externally and consciously by administra-
tor or configuration of user. Usually, this kind of change is anticipated and planned in
advance. The second type of change is due to a decision taken by the application itself.
This kind of change is seen in self-adaptive applications. It can be triggered due to a self-
optimization or reaction to a change in the internal context of the application, such as

5.1. Introduction 113

detection of an error. And the third sort of change is due to events external to the ap-
plication, originating from the execution environment or the surrounding context. This
kind of change is usually unanticipated, i.e. happens without the knowledge of the users
and the administrators. Nonetheless unexpected things happen very often due to external
conditions, such as network disruption or hardware fail. After such change, it is difficult
to verify the integrity of the application and decide on which state it supposed to have.

In parallel, it is also important to recognize the administration aspect of these execu-
tion environments, regarding the ways software are being delivered to those. The recent
years have witnessed the proliferation of application platforms. In not so distant past, only
the operating systems of personal computers allowed users to easily install applications.
Now different domains, such as Cloud, mobile and more recently pervasive environments,
see stakeholders providing execution platforms and application stores that allow delivery
and execution of applications easily over Internet. On the system administration front,
this creates a duality over type and control over the software management. On one hand,
the platform providers need to make sure that the software platform that provides sup-
port (APIs, access to resources, etc.) for applications is working as expected. This requires
exhaustive testing of those platforms, against many scenarios and thus relatively little
and slow evolution of the software. On the other hand, the application developers want
to continue reaching users in different conditions, but also push new functionalities as
early as possible. So the applications need evolving more rapidly and dynamically to the
changes. As a consequence the development process of applications running in dynamic
environments is hindered by the lack of tools that rapidly and automatically reproduce
runtime environments used for testing, production, etc.

In this picture, the deployment process gains importance for the software delivery,
as it is the crucial step that transforms passive code into an active entity. However, de-
spite many in-depth studies on this domain, traditional approaches fail to address the
above-mentioned challenges of dynamic systems. Often reduced to a process executed
once and for all, current deployment solutions need to be extended for dynamic environ-
ments. The recently emerging field of continuous deployment is a promising candidate
for responding to the deployment needs of dynamic environments. It incorporates a set
of practices aiming to provide a process for deploying software rapidly and predictably;
whether for the first provisioning of the system or for the adaptation of the running appli-
cations. The previous chapter studies requirements for enabling continuous deployment
on dynamic environments and concludes that current deployment facilities fall short on
satisfying those. For this kind of environments and applications the continuous deploy-
ment features need to take into account different requirements of the execution platform
and applications, updates of separate modules, as well as their reconfigurations to cope
with the evolving context.

114 Chapter 5. Proposition

5.1.2 Research Objectives

The main goal of this research is to enable continuous deployment on dynamic exe-
cution environments, so that software systems continuously get updated and adapt to
the changes of their internal configurations and external context. Particularly, this the-
sis proposes a set of deployment facilities that are adequate for reaching this goal and
demonstrate how these facilities can be implemented and used. These facilities comprise;

— the process definition that allows continuous deployments,
— the reference architecture for a deployment manager and

- the domain-specific language for describing deployment tasks.

The requirements for achieving continuous deployment are already listed and ex-
plained in the chapter 4. In addition to the satisfaction of those requirements, the contri-
bution of this thesis pursues four major objectives for the proposed solution and discusses
their implications along this chapter. These objectives are: reproducibility and fault-
tolerance of the deployment process, providing means for continuous adaptation and
the tooling support for the proposed facilities. Each objective address a number of un-
derlying challenges, as shown in the Table 5.1.

Table 5.1: Research objectives and addressed challenges

Objectives Challenges
Reproducibility Scalability, Heterogeneity
Fault-tolerance Distribution, Industrialization

Continuous Adaptation | Dynamism, Context-awareness

Tooling Automatization, Testability

Reproducibility — For build systems that produce executable software artifacts from
the source code, reproducibility is a common practice: It is expected that every time
same source code is built, the resulting artifacts will be the same. As for the deploy-
ment facilities, they produce executing software from software artifacts. Similarly
a deployment process must ensure that repeating the same deployment operation
in different deployment sites produces the same result on every site. If a deploy-
ment facility ensures reproducible process, only then it can be used to deploy on
large scale, with many deployment sites. Total reproducibility is difficult to achieve
because every deployment site is different in its actual state, which is sometimes
unobservable. On the upside, it is possible to achieve a partial reproducibility,
meaning that the system guarantees that a local, well-defined part of the system
configuration is as expected. This, in turn, gives the ability to deploy software on

heterogeneous environments.

5.1. Introduction 115

Fault-tolerance — One of the essential properties of software is the fault-tolerance,
which is the ability to continue functioning under the conditions that are not ex-
pected. Yet it is seldom possible to provide a full coverage of faults and errors that
may occur in real-world systems. Any software system needs to guarantee a min-
imum of fault-tolerance to be used in industrial scales. Moreover, attaining fault-
tolerance is even more challenging in distributed systems, because of the unpre-
dictable nature and scale of underlying network infrastructures. In modern appli-
cations coordinating distributed computing elements has became mundanely com-
mon. Deployment is a critical process that is liable for failures, because of the fact
that it changes the state of possibly already running systems. Because of these rea-
sons, it is even more difficult to coordinate the deployment on multiple machines
found in distributed systems. Providing industrial-scale, distributed solutions for
deployment depends on the ability of the deployment process to be fault-tolerant.

Continuous Adaptation — As expressed in the beginning of this chapter, the environ-
ments targeted in this work are characterized by their unpredictable, dynamic evo-
lution. The successful introduction of a software system in such environments is
not the end of the deployment, but it marks the beginning of the runtime man-
agement of the deployed system. Managing the system at runtime requires mon-
itoring its state and continuously adapting it through deployment actions such as
updates and reconfigurations. Continuous adaptation allows applications to han-
dle dynamic changes. This way, applications can continue to be operational despite
unexpected side effects of dynamism. Moreover, such adaptation capabilities are
the foremost prerequisite for creating context-aware applications. Context-aware
applications can deliberately alter their configuration and behavior according to the
current state of their environments.

Tooling — The adoption of a software solution is directly related to its ease of use, the
more so when the target domain is complex. The ease of use is reflected through
the mechanisms implemented to simplify the work of developers for performing
tasks in hand. Tools help reducing the complexity by performing certain tasks au-
tomatically. Two important tasks that constitute deployment are the specification
of the deployment and the execution of the deployment process according this spec-
ification. Deployment facilities are, by definition, about automation of deployment
operations. Yet this is, in general, confined to the execution of the deployment
process. Specification of the deployment is all so important and can get very com-
plex for even small-sized systems. Easy to use deployment facilities are crucial to
increase manageability of the deployment process, therefore that of the deployed
system. Another aspect that increases the ease of use of the proposed system is its
testability. The management of complex software systems is not possible without
tools that allow to test deployment specifications.

116 Chapter 5. Proposition

5.1.3 Approach

The state of the art on continuous deployment presented in the previous chapter 4 con-
cludes that the existing works fall short on satisfying all the necessary requirements for
the deployment process. The contribution of this thesis concentrates, in the first place, on
providing a deployment process that satisfies the mentioned requirements. In order to do
so, the following definition of the deployment process is used throughout this proposition.

Definition 6: Software Deployment Process

The software deployment process is a coordination of operations that brings a software
system from its actual state to a target state.

This definition is chosen explicitly to put emphasis on the coordination and state tran-
sition aspects of the deployment process. The first step of this approach, therefore, is to
formally define the problem domain of the software deployment process. Three parts can
be extracted from this definition namely, (1) the current state of a software system, (2) the
target state expected to be effective on the system and (3) the transition process that applies
the expected state onto the actual execution environment.

Before proceeding further, it merits noticing that the contribution of this work does
not handle distributed deployment. For concentrating on mentioned aspects, it is re-
stricted to the deployment of applications running on a single site. Nevertheless, these
applications can, and often does rely on remote services.

The first part of this proposition, presented in section 5.2, consists of providing a for-
mal framework for these concepts. This framework is based on the generic concept of
resource to represent current and target states of the platform. Resource concept allows
the deployment process to be extensible for covering different kinds of entities that can
be deployed on deployment sites. In addition to this, the target state of the system can
be described as a resource graph, this time with different levels of precision and variabil-
ity. This allows expressing possible configurations of the applications regarding differ-
ent states of the execution environment. This declarative approach is advocated by the
Infrastructure-as-Code approach and the DevOps movement [Spinellis 2012].

The next step of this approach is to define a deployment process on the top of state de-
scriptions. This process is based on a transformation operation on resource graphs, which
provides means to combine multiple descriptions into one. In other words, it describes
the coordination of resource state transitions that occur during a deployment process.
The section 5.3 outlines how the operation serves to define the deployment of a target
description on an execution platform. This operation holds certain formal properties, in-
cluding idempotence. Later discussions in the section 5.4 argues how the fault-tolerance
and reproducibility are granted to the deployment process thanks to these properties.

5.1. Introduction 117

Then the second part of this proposition, presented in the section 5.5, consists of de-
signing the reference architecture for a deployment manager that implements the for-
mally described deployment process. This architecture aims to complete the promise of
the deployment process by providing continuous deployment facilities for dynamic envi-
ronments. The figure 5.1 shows the overview of this architecture.

Application Application

Y

A ’"7
Technical Services e

- ¥ Deployment Manager

———— « G B
1
Platform Deployment ', Context Representation € —> ’
Operator pD%L * & @ = m

External

Execution Platform
Environment

Figure 5.1: Proposition Overview

The context representation is in charge of modeling the current state of the platform.
It provides a resource-based representation, on which each represented entity (resource)
yields interfaces for observing and manipulating its state. This representation is exten-
sible with different kinds of entities in order to cover possible resource heterogeneity on
dynamic environments, notably in pervasive environments.

The deployment manager treats deployment requests triggered from different sources
and, if necessary, plans and executes the deployment process. The execution of the
deployment process is implemented inside local transactions for ensuring the fault-
tolerance. In addition to the implementation of the deployment process, the deployment
manager provides management support for applications. Depending on the capabilities of
the underlying context representation, it activates monitoring policies for each deployed
application. Together with custom adaptation policies, it is capable of continuously adapt-
ing managed applications according to the changes on the platform state.

The third and last part of this proposition, presented in the section 5.6, involves the
design of a domain-specific language (DSL) for describing the target state, as determined
by the formal framework. This language allows to design deployment descriptors for
applications containing variability. It constitutes a basis for the tool support and ensures
the ease of use of the proposed deployment facility.

In the remaining sections of this chapter each one of these contributions are presented
in detail. Finally the last section of this chapter concludes this proposition by evaluating
these contributions in relation with the research objectives.

118 Chapter 5. Proposition

5.2 Formalization of Deployment Concepts

This section aims to present the conceptual framework, which guides the main proposi-
tions of this thesis. The framework formally defines the concepts of software deployment
based on the Set Theory and the Graph Theory. The concepts are presented in three
groups as; resource related concepts, assembly related concepts and application related
concepts. Each concept is defined together with the rules and operations they participate
in. Finally, these concepts allow to describe the algorithms used during the deployment

process.

5.2.1 Resource Related Concepts

The resource is the elementary concept manipulated during the deployment process. A
resource describes an entity state. This entity is intended to be found on a deployment site
in the given state. This way a deployment site is composed of a set of resources, which
represent all the relevant information of the environment. Resources contain sufficient
information to represent the knowledge of state and configuration of each entity. The
state of the entity is modeled by a set of properties.

a. Property

The first concept of the formalization is the property. Let k a name and v a value, then
property p is defined as a pair of name and value (See equation 5.1).

p=(,v)|keK and vevV
K = {Set of all valid property names},

] (5.1)
V = {Set of all valid values}

Notice that here the value type of properties is omitted in the definition for the sake of
simplicity. One can simply extend the definition of property by defining data types and
valid values for each types, such as Boolean, Integer, String, etc. The real set containing K
is also simplified for the same reason.

b. Resource Type

The generic concept of resource covers a large spectrum of entities like services, files,
executable binaries, their configuration, code libraries like DIl and Jar files, hardware re-
sources like network ports, disk space, available memory, available peripherals etc. To be
able to manage this heterogeneity different types of resources are defined by the resource
type concept.

The resource type determines the set of property names that are valid for resource
descriptions. Each resource type identifies three sets of property names that are used to

5.2. Formalization of Deployment Concepts 119

File Component
S: filesystem path S: component id
I: owner, I: type,
rights, version,
name pattern, configuration..

path pattern

C:binary url
C: source url

=1 destroyed

= not exists

Figure 5.2: Resource Type Examples

describe resources belonging to that type!. Different kinds of properties serve to identify
the resource description level, which is discussed below. In addition to that, each resource
type defines a special property that describes the state of absence, called negative prop-
erty, which is also discussed below in detail. And finally a function f that prescribes the
operations to be performed on the deployment site for changing resource state. The in-
ternal modeling of the state changing functions is out of the scope of this work. To give
an idea, they can be thought as functions that take initial state and target state as resource
descriptions and perform a set of operations. An example signature for a state transition

function would be f = (Finitiar, Ttarget)-

Let I is a finite set of property names called Inquiring, S is a subset of I defining
property names called Specifying, C is a finite set of property names defining property
names called Constructing, — the negative state property and the function f the state
transition function. Then the resource type t is defined with the following equation 5.2.

t=(I1,C,S,~,f)|SCIandCNI=0
I, C = {Finite set of property names }, (5.2)
=(k,v)|kel

Notice that including valid property values for each property name defined by the re-
source type can enhance this definition This is also left out in this formalization because

is not the core of this work.

c. Resource

The resource concept delineates the state of entities found on deployment sites. Ac-
cording to the type of the resource, the deployment process applies different actions for
bringing resources to their intended states. For example, for a resource of type file, the
deployment process should first identify the hypothetical file described by the resource
and then make sure that the actual file exists on given location, possessing described
properties and content. If the file does not already comply with the described state, the
deployment process should use the information given by the resource description (file
path, file source, content, permissions, etc.) in order to apply necessary actions for cre-
ating or updating the file. On the other hand, there are resources, like available memory,

"These set of property names do not contain duplicate names.

120 Chapter 5. Proposition

that the deployment process does not have direct access on. These types of resources are
still relevant for the deployment but all the deployment process can do is to check if an
entity exists with the state described by the resource.

A resource is defined with its type and the set of properties that describes its state.
Let t is a resource type and P is a finite set of properties, the resource r is defined as the
pair type and properties (See equation 5.3).

r=(t,P)|t=(CS,~f)eT,VpeP|p=(kv), ke(CUI)
T = { Set of resource types}, (5.3)
P = {Finite set of properties }
An alternative but equivalent definition of the resource concept would be defining the
properties into separate sets according to different types of properties (See equation 5.4).

r:(t,PI,Pc,Ps) | t:(I)CJSJ—‘Jf)ET’
VpEIDI| p:(k,v))kEI)

(5.4)
VpePc| p=(kv),keC,
VpePs| p=(k,v),keES,
Universal set of all possible resources is noted as R.
R = {Set of all resources } (5.5)

For a given resource r, its type is noted typeOf(r) and its property set is noted
propertiesOf(r).

VxeR, x=(t.,P)]| t, =typeOf(x)and P, = propertiesOf (x) (5.6)

d. Resource Description Levels

As defined by the resource type, properties included in a resource description can be in-
quiring, specifying or constructive. This gives the possibility to describe resource state in
various levels, conforming to the type it belongs. Three rules are defined on the resource
concept that decides the level of description of resources. These rules give rise to four
subsets of the universal resource set, noted S, I, C and .

Specified resource refers to a resource description that includes necessary information
to be matched with a specific entity. For example, given a file resource type, a
specified resource should include the file’s canonical path to be able to point to the
exact file on the deployment site’s filesystem. Let resource r = (t, P) with resource
type t = (I,C,S), r is called specified resource if all the specifying property names
defined by the t are included in the properties of r. A specified resource is thus
quantified as shown in the equation 5.7.

VreS|r=(t,P),t=(,C,S,~f)

(5.7)
VkeS,dpeP|p=(k,v)

5.2. Formalization of Deployment Concepts 121

Constructive resource refers to a resource description that includes enough information
to construct the given resource in case it is necessary for the deployment process.
Following the example on file resource type, a constructive resource would include
the source identifier of the file or the content, along with the path that is intended
to be placed on the filesystem. Notice that some resource types may not define
any constructive property names, thus it is not possible to construct resources of
that type. An example for these resources are hardware interfaces. A deployment
system can check if a hardware interface, a USB device for instance, is present on
the system but cannot construct it. Let resource r = (t, P) with resource type t =
(1,C,S), r is called constructive resource if all the constructive property names
defined by the t are included in the properties of r. It can be quantified as in the

equation 5.8.

VreClr=(t,P), t=(I,C,S,~,f)
VkecC,IpeP|p=(k,v) G8)
Inquiring resource refers to a resource description that neither specified nor construc-
tive, but describes the state of an hypothetical resource entity that exist on the
deployment site. Instead of referring to a particular resource entity, inquiring re-
sources describe a query on the deployment site, whether such resource described
by the properties exists. An inquiring resource of type file, for example, may de-
scribe a file that is located under a particular directory, with a particular file exten-
sion, owner or access rights. This knowledge is not enough to create the file if it
does not exist, or check its exact state, such as its content. Let resource r = (t, P)
with resource type t = (I,C,S), r is called inquiry resource if all properties of
resource r are inquiry property names defined in t. It can be quantified as shown
in the equation 5.9.

Vrel|r=(t,P), t=(,C,S,~,f) 9

VpeP,dkel|p=(kv) G9)

Negative resource refers to a resource description that describes the absence of the de-
scribed entity. Each resource type defines a negative property — that describes a

state of the resource in which it does not exist on the deployment site. For a re-
source type file, it can be the state "deleted" or simply "absent". Notice that the value

of this property is usually a String or a Boolean that represents the non-presence se-
mantic depending on the resource type. For example, a system service’s negative
property can be defined either as "not present” or "not started". A negative resource

can be quantified by the equation 5.10.

Vr €N| I”Z(t,P),f:(I,C,S,_‘,f)

(5.10)
dpeP|p=-

122 Chapter 5. Proposition

It is possible for a resource state to have mixed description levels. For example, a
specified resource can include a number of inquiry properties that narrows down and
describes more precisely the state of the resource. Constructive resources can also include
inquiring and specifying properties to describe and specify the resource to be constructed.
Relationships between different description levels are illustrated in the schema 5.3. To

r
Inauir Specified
quiry ‘ inquiry
-
Constructive Specified
inquiry constructive
Negative
J y
Constructive

Figure 5.3: Resource Description Levels

summarize resource description levels, inquiry properties comprise the description of the
expected state of the resource; specifying properties hold the information for pointing to
a specific entity and constructive properties hold the information whether the resource
will be constructed, if yes how. And these three types of properties can be used together
in a resource description (see Figure 5.4). In parallel to these three description levels, a
negative resource designates the state of absence of the described resource.

abc.Component
bash_profile:File binary: mvn://../../abc/1.0.1
path: ~/.bash_profile type: xyz-abc
source: ftp://../../profile version: 1.0.1
owner: root configuration: threadsize=10;

reference=serviceA

rights: 777 state: valid

state: exists

gcc:Package

index-worker.Service T e
id: index-worker-service version-range: [4.1-4.4]
state: running state: not installed

Figure 5.4: Resource Examples

e. Resource Comparison

Based on resource properties and description levels, it is possible to compare resources.
Following rules lay out concepts of equivalence, inclusion and conflict between resources.

5.2. Formalization of Deployment Concepts 123

Resource Equivalence Two resources are said equivalent if they belong to the same
type and their property set are the same, i,e. they have exactly the same properties,
including name and values. In order words, let r; and r, two resources. r; and r, are
equivalent if their type and property sets are equal (See equation 5.11). Equivalence
between r; and r, would be noted as r; = 1.

Vri, 1 €R

typeOf(r) =typeOf(ry) (5.11)
propertiesOf(r;) = propertiesOf(r,) & ry =1y

Resource Subsumption A resource is subsumed into another if they are the same type
and one’s properties completely includes the other’s. Let r; and r, two resources.
r1 is subsumed into ry if they are the same type and the property set P(r;) of rq
is a subset of property set P(r,) of r, (See equation 5.12). Subsumption between r;
and ry is noted as ry 2 ry, or ry E 1.

Vri, 1 €R

t(r) = t(ry) (5.12)
P(r))CP(ry) e 3

If two resources are equivalent, they are subsumed into each other.

nEry&rErpandr, 3 (5.13)

Resource Conflict Two resources are in conflict if they refer to the same specific re-
source entity but describe different states via their properties. Let r; and ry two
resources. r; and ry are conflicting if their type and their specifying properties are
equal, they do not subsume one another and their entire set of properties are not
equal (See equation 5.14). Conflict between r; and r, would be noted as r; >4 15.

Vri,r, €R
t(rl) = t(rZ) = (I: C:S: _'af)
VkeS,Ip=(k,v)| p€P(ri), p €P(ry)

rnZry, 11 AryP(r), ZP(ry) & ri>ar,

(5.14)

5.2.2 Assembly Related Concepts

Resources are regrouped together inside assembly structures. Inside an assembly, rela-
tionships can be expressed between resources. Assembly structures allow to bring re-
sources that have associations relevant to the context of deployment.

124 Chapter 5. Proposition

a. Dependency

Naturally resources depend on each other to be able to function properly. A basic exam-
ple would be a software component requiring a file to read and write data. In this case
the component depends on the file. Dependency is a kind of "use” relationship between
two resources. Resources can use, thus depend on, one another in various stages of soft-
ware life-cycle, such as development time, deployment time and finally at runtime. In the
previous example (figure 5.4), although the component depends on the file, the absence
of the file probably won’t pose any problems during the installation of the component.
However, at execution, the absence of the file may have an effect on the operation of
the component. In return a software component can also depend on another component,
which it requires during deployment and execution. The concept of dependency is not
equivalent nor do cover the notion of binding, a term that usually refers to the runtime
references between software components. Instead, the dependency relationship models
the requirements of a particular resource to attain the state described by its properties.

Let R is a finite set of resources, dependency is an asymmetric, intransitive binary
relation in R. For rq, 75 € R dependency relation would be noted r; — r,. It is said that

& ®

Figure 5.5: Resource Dependency

r, depends on 1.

It is important to note that the dependency concept here represents only mandatory
requirements, as opposed to the concept of oeptional dependencies. The concept of op-
tional dependency appears in many dependency systems. It describes the cases where
an entity will continue to operate in the absence of its optional dependencies but in a
different manner.

® 6 O
Figure 5.6: Optional Dependency System

In this formalization framework such a special case is not needed because resources
describe the state of entities. Indeed, an entity having an optional dependency can be
represented as two resources with different states, representing the same entity, and one
having an additional dependency for the case of optional dependency. There are pros and
cons of such a modeling preference. On the downside, representing entities having multi-
ple optional dependencies is difficult. This will cause as much different resources as there
are combinations of availability of optional dependencies. On the upside, the resources
represent entities in a precise manner. Each case of availability and unavailability of an

5.2. Formalization of Deployment Concepts 125

optional dependency is represented with a resource state. Representing an entity with
two optional dependencies (noted here with ~») would be like the following.

Let r,s,m, x and y are resources

S—r S—r

sy, s—Ty, xJ
r—m s — 1y Tyy =M
= & ry,—->m & r,—-m & (5.15)
e X rg—m Tyy = X
ry =X ry—y
r—=y Ty =Y
Graph Theory

A graph G is defined as a pair of sets G = (V, E), where V is the set of vertices and
E is the set of edges, formed by pair of vertices.

An alternative definition defines explicitly the direction of the edges is G =
(V,E,s, t), wheres, t : E — V are two relations indicating source and target vertices
of edges. If sources and targets of edges are differentiated, these graphs are called
directed graphs, noted G d

A graph is called simple if there is no loops and no multiple edges between
two distinct vertices. A graph is connected if there is a path between every pair
of vertices in the graph. If a graph is not connected, than each subset of vertices
that are connected with each other with edges are called components (not to be
confused with software components).

Directed Acyclic Graph or a DAG is a directed graph with no directed cycles,
noted Qg. That is, when traversing vertexes in the direction of edges, there is no
way of passing from the same vertex a second time.

b. Assembly

The highly generic concept of resource and simple dependencies leave many possibilities
to express complicated dependency systems. A resource, for example a software com-
ponent, can express its requirements for other software components and services, which
are another resources; on a file, which is another resource; requirement on a container
property, and yet on a feature of the operating system, which can also be described as

resources.

The concept of assembly models a dependency system with a set of resources and
dependency relations between those. Let R a finite set of resources and D a dependency

relation defined on top of R, an assembly is defined as in the equation 5.16.

A=(R,D)| RCR, D SRXR. (5.16)

126 Chapter 5. Proposition

This assembly definition is equivalent to that of a directed graph, with vertices as
resources and edges as dependencies. Resources as assembly vertices already contain
properties. Indeed a more specific equivalence would be to the concept of property graph,
in which each vertex and edge are associated with a set of key/value properties, as defined
in the concept of property.

Component

binary = mvn://../../abc/1.0.1

Package
type = xyz-abc
version = 1.0.1 name = index-lib
threadsize = 10 version= 1.0.1

reference = index-service

File
Component path = /.bash_profile
source = ftp://../../profile

type = compiler Service owner = root

version = 2.2 id = index-worker rights =777

Package

name = gcc-base
version-range = [4.1-4.4]

Figure 5.7: Assembly Example

The universal set of all possible assemblies is noted as A. In its definition, a graph
does not exist with an empty set of vertices. For this, an empty assembly is defined as ¢,
as a theoretical assembly without resources and dependencies, defined in equation 5.17.

e=(R,D)|R, D=0
A = {Set of all assemblies } (5.17)
A=¢%u{e}

For an assembly A, the set of resources it contains is noted resourcesOf(A)

and the set containing dependency relations between these resources is noted as
dependenciesOf (A) (See equation 5.18).

VM e A,M =(Ry;,Dy) | Ry =resourcesOf (M) and D,; =dependenciesOf (M)
(5.18)

Assembly Validity An assembly is called "valid" if there is no conflict between its re-
sources and dependencies between resources does not form a cycle. The set of valid
assemblies is noted as A*. Given the acyclic nature of the dependency relations in
valid assemblies, the graph representing a valid assembly is a directed acyclic graph
or a DAG, noted gg. Assembly validity is defined in equation 5.19.

VA€ A*| A€ GY, Fry,ry | 1y >4y, where

A" = {Set of all valid assemblies } (5.19)
A*c gt

5.2. Formalization of Deployment Concepts 127

An assembly is defined non-valid when it contains dependency cycles or resource
conflicts. However, when an assembly contains resources that are equivalent with
each other, or that subsumes one another, it is still deemed valid. This is because
such assemblies can be reduced by eliminating resources that are equivalent or that
subsume each other; without loosing information.

Assembly Completeness An assembly is called "complete” if it is valid and for each in-
quiry resource of the assembly is found at least one specific resource that subsumes
the inquiry resource. It is said that all inquiry resources are resolved inside the as-
sembly. The set of complete assemblies is noted as A™. Note that although all com-
plete assemblies are valid by definition, a valid assembly is not necessarily complete.
Assembly completeness is defined in the following equation 5.20.

VAe AT | A€ A", ry,ry EresourcesOf(A),Vr; €l,3r, €S| r, &y (5.20)

The above remark about reducing assemblies is also viable for complete assem-
blies. Eliminating subsumed inquiry resources such that all remaining resources
are specified or constructive can reduce a complete assembly. Such operations on
assemblies are defined in the following section.

Following are a suite of concepts that are linked to the graph theory and graph trans-
formations. These theories are used to define the deployment process and the algorithms
that can be used for coordinating this process. The properties shown by means of these
theories are later discussed and serve to discuss that the approach presented in this thesis
meets its objectives.

128 Chapter 5. Proposition

Graph Operations

Graph operations produce new graphs from input graphs. The changes to a
graph as a result of an operation is represented using graph morphisms. Let
G = (Vy, Ey, sy, ty) and H = (Vy, Eg, Sy, ty) are two graphs, a graph morphism
is defined by a function f : G — H, f = (fy, fg) , which consists of two functions
fv : Vg = Vg and fy : E; — Ep such that fp and f;, are compatible with source
and target mappings, with f; os; =sg o fg and fy, ot =ty o f5.

The composition of two morphims g = (gy, gg) and f = (fy, fr) is noted as
gof=(gyvofv,8e°frg):G—Iwithf:G—Handg:H —I.

Using graph morphism, it is straightforward to define simple, local changes to
graphs, such as addition or deletion of vertexes and edges.

A useful elementary operation is vertex contraction (identification), where two
vertices of a graph are identified and merged into one vertex, assembling the edges
into that merged vertex. Let G = (V, E,s, t) is a graph, vertices x,xy € V, then it
is noted contraction(G,x;,x5) : G — G'.

The vertex contraction operation is used in the construction of quotient
graphs. A quotient graph is constructed from a graph G with vertex set V and
an equivalence relation ~: V' — V such that all relations in ~ are identified and
contracted in G. Quotient graph of G according to the equivalence class ~ is noted
G/N.

A common binary operation is the disjoint union of two graphs. For two
graphs G = (Vg,Eg) and H = (Vy, Ey), their disjoint union is G @ H = (V5 U
Vi, Eg U E).

Using quotient graphs and disjoint union, it is possible to write another binary
operation which glues two graphs to each other. Gluing of two graphs G and H is
simply the quotient graph of the disjoint union of two graphs, (G ® H),.. Gluing
constructions of graphs gave rise to the domain of graph transformations by the
seminal work of [Ehrig 1973].

c. Unary Operations on Assemblies

The fact that assemblies are defined as graphs allows to use graph operations and graph
theory methods to analyze and manipulate assemblies. This section defines two opera-
tions, resource identification and resource subsumption built upon already existing oper-
ations on graphs.

Resource Identification is an unary operation defined on assemblies. It manipulates
the given assembly, contracting resources that are equivalent. The resulting

5.2. Formalization of Deployment Concepts 129

assembly does not have any resources that are equivalent to each other. Re-
source identification over an assembly A is noted as identif y(A). It is in-
deed a quotient graph of A over the equivalence relation =, which can be noted
A/=. An algorithmic definition of the operation would be like the following.

Procedure identify(assembly A)

Input: A= (V,E) € A.

Result: A= (V’,E’) € A with V/ C V such that Ary,ry € V' |1 =1y
1 forall the ri,r, €A|r; =ry,do
2 t A« contraction(A,rq,75) // contract equivalent

3 return A

— Non-closure Let assembly A = (R, D) € A*, resource identification operation
is not closed on the set of valid assemblies. Identification operation can result
in cycles in the dependencies (Equation 5.21).

JA€e A*| identify(A) ¢GY (5.21)

- Idempotence Let assembly A = (R, D), resource contraction operation is
idempotent. Applying resource contraction multiple times has no effect on
the resulting assembly (Equation 5.22).

VA€G?, identify(identify(A))=identify(A) (5.22)

Resource Subsumption is another unary operation defined on assemblies. Given an
assembly, it merges resources that subsume each other for eliminating multiple
declaration of a specified resource. Resource descriptions and assemblies describe
final expected state of resource entities. An assembly containing two resources,
one subsuming another, means that same specific resource entity is described with
two different levels of detail. Therefore this information is redundant. Resource
subsumption eliminates this redundancy by merging subsumed resources into the
upper resource, gathering dependencies into that upper resource. The algorithmic
description of this procedure is defined as the following.

Procedure subsume(assembly A)

Input: A= (V,E) € A.

Result: A= (V’,E’) € A with V/ C V such that Ar;,r, € V' |r; T 1y
1 forall the r{,r, €A|r;Cry, r; Z1r5do
2 t A« contraction(A,rq,79) // contract subsuming

3 return A

Like the resource identification operation, resource subsumption is also non-closed
on the set of valid assemblies and idempotent.

130 Chapter 5. Proposition

Graph Transformation

Graph transformation or graph rewriting consists of techniques that aim to create a
new graph out of an original graph algorithmically. There are different approaches
for transforming graphs, such as algebraic-categorical approach, term graph rewrit-
ing and matrix graph grammars. In the context of this work, algebraic-categorical
approach is presented in more details.

The gluing construction of two graphs was defined previously in a set-
theoretical way, using quotient graphs, in the form (A @ B)/=. Starting from the
gluing construction algebraic approach for graph grammars aims to generalize the
notion of Chomsky grammars for constructing graph grammars that apply trans-
formations [Ehrig 1979]. Like for Chomsky grammars, a graph transformation sys-
tem is based on production rules that describes the kind of change that will trans-
form certain graphs into others. For the case of graph grammars a production rule
describes graph morphisms. In the double-pushout approach (DPO), a production
rule, or a rewriting rule, r = (L < K — R) consists of two graph morphisms, where
K — L is injective. Briefly explained, in DPO a production rule describes the part
of the graph to be deleted (the left-hand side K — L) and the part of the graph to
be inserted (the right-hand side K — R). The application of the rule r on the initial
graph G to form the target graph H is noted G =, H.

1

G =, H is called a direct derivation via r, based on K — L. A derivation G =, H
means G is transformed into H as a result of a sequence of finite direct derivations

G:GO :>p1 Gl :>p2 ”.:>pn—1 Gn:H

d. Monoid on Assemblies

In this section a monoid structure on the set of assemblies is defined. A monoid is an
algebraic structure with a single binary operation that is associative and that has an

identity element. This section presents the join operation and discusses its properties.

The assembly monoid is defined over the binary operation assembly join. This op-
eration aims to glue two valid assemblies all by preserving the validity of the resulting
assembly. The join of two valid assemblies A and B is noted A@B. As discussed previ-
ously, a gluing operation consists of applying a disjoint union of two graphs and then
contracting the resulting graph according to an equivalence class. In the case of assem-
blies there are two equivalence classes; resource equivalence and resource subsumption

5.2. Formalization of Deployment Concepts 131

(as explained previously in the Concept: Unary Operations). However as a result of such
an operation, two criteria for assembly validity can be breached :

- Acyclic condition: Even though operand assemblies were valid, the quotient as-
sembly containing merged resource dependencies can form cycles,

- Conflict condition: The union assembly containing resources and dependencies
from the operand assemblies can have conflicting resources.

For the acyclic condition, the unary operations that contract equivalent or subsumed
resources are already not closed on valid assemblies set A*, because of this condition.
The problems caused by this property and their consequences are discussed later in this
chapter. But for the sake of simplicity the cases join operation produces cyclic assemblies
are omitted.

For the resource conflict condition, the join operation resolves such conflicts by re-
placing the conflicting resource in the right-hand operand with its counterpart in the
left-hand operand. In a sense, as a result of the operation A@B the assembly A is joined
into the assembly B, and in case of resource conflict the resource description contained
in A prevails over the resource description in B. In the context of the join operation, the
second operand, assembly B is called the base assembly and the first operand, assembly
A s called the joined assembly.

The following procedure describes a possible implementation of join operation be-
tween two assemblies. Notice that before gluing two assemblies conflicting resources are
registered and then they are contracted accordingly during the gluing phase.

Procedure join(assembly A, assembly B)
Input: A= (Vy,E,), B=(V3,Ep) €A™
Result: R = (V’,E’) € A* with V/ € V, U Vj such that #ir;, 7, € V/ | ry by,
1 forall the r; € Vydo // First register conflicting resource pairs
2 forall the r, € V5 do
3 if r; >y then
4 LC<—CU(r1,r2)

5 R—A®B // disjoint union of A and B

¢ forall the (rl,rz) €Cdo // contract conflicting resources in R
7 t R — contraction(R,ry,15)

8 R« identif y(R)

9 R « subsume(R)

0 return R

—_

The algorithmic description gives an idea on what the join operation does and how it
can be implemented but it is not adequate for further analyzing the properties of the op-

eration. Instead, it is then useful to describe the join operation using algebraic-categorical

132 Chapter 5. Proposition

approach. The operation can be defined as a graph morphism. Let A and B valid assem-
blies, there exists a graph morphism 7 : A* — A*, for transition, that transforms B to
A@B.

Furthermore for each graph morphism 7 that transforms B to A@B, a graph trans-
formation system can be defined, guided by a set of production rules called T. The
graph derivation B => A@B can be decomposed into a sequence of direct derivations
B = By =, By =, --» =>,_, B, = A@B such that the set of production rules T
consists of {t1,ty, -, t,_1}.

Given that the join operation is applied on valid assemblies and supposing that the
resource identification and subsumption operations are applied beforehand on both
of the operand assemblies, the join operation can thus be reduced into the sequence of
transformations that glue assembly A into assembly B, overriding conflicting resources.
One can identify the types of production rules that are included in such a transformation
system:

1. replace(r,r’): pg._,,; = (L «<— K — R). The production rule is described with
reLandr’ €Rsuchthatr’ =r orr’ >ar orr’ C r. The graph R consists of r’
and the edges (dependencies) of r’ that are to be included in the target graph. The
graph L consists of r and the edges of r that are needed to be in the original graph,
to be able to apply the rule.

T o ot
§<@ o §<@

Figure 5.8: Example Production Rule for replace: py, .,

2. insert(r’): p;; = (L «— K — R). The production rule is described with r’ ¢ L
and r’ € R. The graph R and L both include the edges of r, meaning that all the
dependencies of r are already included in the original graph except r.

o 0 o0

Figure 5.9: Example Production Rule for insert: pyy

5.2. Formalization of Deployment Concepts 133

Using these two types of production rules, a transformation system can be constructed
such that each derivation =, via the production rule p involves only one resource from
the joined assembly. In each step of derivation, a resource of the joined assembly is joined
into the base assembly. As a consequence, the set of production rules T and the order in
which they are applied depends on the joined assembly i.e. the first operand, A in the
example. This means that the transition function 7 can be generated from the joined
assembly and thus it can be noted 74 such that 74(B) = A@B (See equation 5.23).

ABeA*, AT, : A" - A" | T,(B) = A@B (5.23)

Sequential & Parallel Graph Transformation

In graph transformation systems an applicability condition describes if the produc-
tion rule can be applied to a given graph. The applicability of a production rule
(L «— K — R) is defined by the left-hand side graph L. If the graph L is not
contained in the original graph G, then the rule is not applicable onto graph G. Ac-
cording to the applicability rules, it is possible to speak of sequentially dependent
and parallel independent production rules. Between parallel independent transfor-
mations the transformation system is locally confluent, meaning that independent
from the order of application of those rules, the system will converge to the same
result. Convergence and confluence of abstract rewriting systems are described in
in [Church 1936] known as the Church-Rosser property.

In order to explain briefly, two production rules are sequentially dependent if
one’s applicability condition L involves vertices or edges created by the second
rule. Similarly, they are parallel independent if their context graph K is disjoint
(their applicability condition L and the inclusion graph R are disjoint).

Generating the production rule set is indeed straightforward, because for each re-
source in the joined assembly there will be a production rule.

The application order of these direct derivations is more complicated. Both of the
above-mentioned production rule types allow generating rules that define non-empty left-
hand side graphs. Naturally, the dependencies between generated production rules are
same as the dependencies included in the joined assembly. For example, in the context of
the operation A@B, a resource r contained in A, can be joined into B if and only if all of
the resources on which r depends are already joined into B.

Given that the join operation is defined on the valid assembly set A*, the joined as-
sembly is whether a directed acyclic graph gg (DAG) or the empty assembly ¢. In case of
it is an empty assembly the transition function simply does no derivations. That is why

134 Chapter 5. Proposition

the ¢ is described as the identity element (see below). In case of a DAG, the order of the
derivation sequence can be the strict partial order that is calculated by finding one of the
transitive closures of the DAG according to dependency relations of the assembly. There
are many well-known algorithms for finding partial orders of DAGs, especially used in
scheduling, such as topological sorting algorithms. In the following example 5.10, assem-
bly on the right is rearranged according to the distance of each node to the sink. An
example derivation sequence would then be the {6,4,5,3,2,1}.

G

Mo U § 4

Figure 5.10: Calculation of Derivation Sequence

Note that there can be many different transitive closures that satisfy the dependency
relation orders. Choosing one over another would not change the result of the operation.
Depending on the dependency relations over the joined assembly graph, there can be
derivations that are parallel independent, meaning that they can be applied in the same
time, without any effect on the application of one another. In the previous example, us-
ing the parallel independence between resources of the same level, derivations can be

regrouped as [{6,4}, {5,3}, {2}, {1}].

A corollary of defining join operation as a sequence of transformations generated us-
ing the joined assembly is that at each application of direct derivation rule, the obtained
result is still a valid assembly. This means that for every join operation A@B via the tran-
sition function 7, there exists a transition function for each of the direct derivations such
that its result is a valid assembly (See equation 5.24).

ABeA*, r,eRA), VT, | TA(B)=A@B,
Ta=T. 0T, o-oT, 0T, (5.24)
TaB) =T, (T, - T, (B))
Each one of these direct derivations 7,. corresponds to the operation of the state transition

function f defined resource types. With this algebraic definition of the assembly join
operation in mind, the join procedure can be rewritten algorithmically as in the join«*

5.2. Formalization of Deployment Concepts 135

operation.

Procedure join*(assembly A, assembly B)

1
2
3
4
5
6
7
8
9

10
11

12

Input: A= (Vy,E,),B = (V3,Ep) € A"
Result: R = (V’,E’) € A* with V/ € V, U Vp such that Ary, 7, € V/ | 1y > 1.
/+ First identify and subsume A and B */
A<—identif y(A)
A «— subsume(A)
B «—identif y(B)
B «— subsume(B)
O < partialorder(A) // Partial order of A
R<B // Start from B
forall the r; € 0 do
if r; € V5 then
‘ R < replace(r,r’,R) // BApply replace rule
else
L R « insert(r,R) // BApply insert rule

return R

Identity Element The identity element of the join monoid is the empty assembly, noted

by €. Joining an empty assembly with any other base assembly will result with the
original base assembly as the derivation sequence will be empty (See equation 5.25).
Similarly, if the base assembly is an empty assembly, the sequence of derivations
will result with the joined assembly.

VAc A, c¢@A=A and A@ec=A (5.25)

Associativity The assembly join operation is associative, meaning that the order in

which the operations are applied does not matter, as long as the sequence of the
assemblies is not changed. The definition of this associativity is shown in equa-
tion 5.26.

A,B,C € A*, (A@B)@C = A@(B@C) (5.26)

The proof of the associativity can be found in Appendix A. According to the general
associativity theorem, the use of parentheses can be omitted for writing a given
sequence of operands, such as A@QB@C@--- @D.

Partial Commutativity The assembly join operation is not commutative, meaning that

the sequence of operand assemblies changes the resulting assembly. This is rea-
sonable considering the definition of the assembly join; because it overrides the

136 Chapter 5. Proposition

conflicting resources from the left operand. The definition of this commutativity is

shown in equation 5.27.
ABeA*, A@B # B@A (5.27)

In spite of that, in case of no conflict between A and B, the join operation is com-
mutative. The proof of this is straightforward; without conflicts, the join operation
is reduced to a gluing operation over identification and subsumption equivalence
classes, which is commutative. This is shown in the following equation 5.28.

ABeA* fr €A, r,€B|r r,=A@B=B@A (5.28)

Together with the associativity, partial commutativity means that in case of there
are not any conflicts between operand assemblies join operations can be applied in

any sequence and order.

Idempotence The assembly join operation provides idempotence, meaning that any as-
sembly joined with itself produces itself as the result (See equation 5.29).

VA€ A", A@A=A (5.29)

The idempotence property is obvious. The transition function generated by the
assembly A would contain a series of transitions that for each resource they involve,
there will be the same exact resource in A. The join operation will be reduced to
a series of replace rules with same resources, which will leave the base assembly
unchanged.

A corollary of the idempotence is that if the joined assembly is already contained
in the base assembly, the operation would give the base assembly as the result.
Another way of expressing this containment is that there exists two non-conflicting
assemblies X and A such that the base assembly B is the join of these two assemblies.
Than it is said that A or X is contained in B, and B will stay unchanged if it is joined
with one of these assemblies (See equation 5.30).

ABeA",IX € A" |B=Tx(4A),
(5.30)
dri€A, reX|ry>r,=>A@B =B

The assembly join operation presented here forms a monoid with idempotent, par-
tially commutative and associative properties. These types of monoids are also called
history monoids and they are often employed in computer science to model systems
with a sequence of state changes. The sequential aspect of the join operation grant de-
sired attributes to the deployment process and discussed later in this chapter.

Before proceeding to the next concept, a final point should be made about the acyclic
condition of assembly validity. As stated before, a join operation between two assemblies

5.2. Formalization of Deployment Concepts 137

can create a cyclic assembly, even though neither one of the assemblies contained cycles.
This is not an obstacle for the application of the join, because only the acyclic condition of
the joined operation is needed for finding a sequence of transformations. Moreover there
exist algorithms to break a cyclic graph into two or more acyclic graphs. Obtaining a cycle
means that the resulting assembly cannot be joined later into another, which invalidates
the associativity.

e. Platform

In the context of deployment, it is useful to define the concept of the deployment plat-
form, also called the deployment site, on which the assemblies are deployed. A platform
is a specialization of the assembly concept, containing resources and the dependency re-
lationships. The special case for platforms is that they are valid assemblies and all of their
resources are specified. The platform is defined in the following equation 5.31.

P | PeA* and VreresourcesOf(P),res (5.31)

This broad definition of the platform concept allows to describe the deployment process
in terms of assembly operations. The deployment process is, for the most part, a join
operation between a platform and an assembly to be deployed. What sets the deployment
apart from the join operation is that its result is a platform, meaning that all of its resources
are specified. Yet a simple join operation glues two assemblies, contracting equivalent
and conflicting resources but preserving any other type of resources such as inquiry and
constructive. Instead, the deployment process includes an additional step to transform
inquiry and constructive resources into specific resources before joining them into the
platform. For the generated derivation sequence of each resource r contained in the joined

assembly,

— if r is an inquiry resource, the deployment process must find in the platform at

least one specific resource that subsumes r.

- if r is a constructive resource, the deployment process must find a specific resource
that is equivalent to r, or it must construct the resource by applying necessary
actions (such as install, configure, update, create) on the execution platform and
eventually join the resource r’, which subsumes r, into the platform assembly.

138 Chapter 5. Proposition

If any one of these actions cannot be done, the deployment process fails. The proce-
dure implementing this process is given in the procedure deploy.

Procedure deploy(assembly A, platform P)
Input: A= (V,,E,) € A%, P = (Vp, Ep) € P.
Result: P = (V' E) eP

1 A—identif y(A)

2 A« subsume(A)

3 O < partialorder(A)

4 PP—P

forall the r; € 0 do

if r; €I then

if Ar, € V' | ry C r; then

L return f ail

5
6
7
8

9 else if r; € C then

10 if #r, € V' | ry C r; then
11 r’ — construct(ry)
12 P’ —insert(P’,r")

13 return P’

The platform concept represents the current state of the deployment site. At the end
of each deployment process the deployed assembly is joined into the platform. So that
the resulting platform is the latest actualized state of the deployment site. More exactly,
the platform stays always a complete assembly, meaning that the dependencies are nec-
essarily satisfied inside the platform.

The idempotence property is pivotal in the construction of the platform. The idem-
potent join operation makes it possible to know the exact state of the platform over the
course of multiple deployment processes. In case a resource description cannot be con-
structed inside the platform, the deployment can be invalidated, knowing at which point
the process is halted. The consequences engendered by this property are detailed below
in the discussions.

5.2.3 Application Related Concepts

Concepts presented until here describe the algorithms that are used to deploy an assembly
on a platform. These algorithms constitute the basis for the coordination of the deploy-
ment process. But the goal of this formalization framework is also to define a deployment
process that is capable of adapting software with continuous deployments. The appli-
cation and related concepts enable expressing variability on deployment and define the
management of applications at runtime.

5.2. Formalization of Deployment Concepts 139

a. Condition

A condition is a predicate on a given inquiry resource whether it can be specified in a
given assembly, most often in a platform. It consists of a Boolean value (true,false) and an
inquiry resource r; (See equation 5.32).

c=(b,r;) | b= (true,false), r; €l (5.32)

Conditions are useful to validate an assembly, according to the state of resources con-
tained within.

b. Repository

A repository is defined as a knowledge base that is capable of responding to queries com-
posed of constructive resources, by returning deployable and/or configurable software
artifacts, as depicted in Figure 5.11. In a sense it manages a one-to-one index of construc-
tive resource descriptions and software artifacts. An example for this kind of repositories
would be Maven artifact repositories, where coordinates of group id, artifact id and ver-
sion are associated with artifacts.

¢ Cconstructive

< e

Repository

Figure 5.11: Repository

It is important to note that there are also repository implementations that incorpo-
rate dependency resolution capabilities. Such that, in terms of the concepts used in this
conceptual framework, they are able to respond to queries composed of inquiry resources
by returning an assembly, which contains all the dependencies transitively. OSGi Reposi-
tory Admin, Eclipse p2 and YUM are examples of such repositories that are able to resolve
dependencies.

The problem of dependency resolution is out of the context of this work; therefore
this capability is deliberately excluded from the repository definition in this framework.
Nonetheless such a mechanism can be used in tandem with the framework presented here
as a means to complete assemblies that lack dependency information.

The artifact repositories are relevant in the context of application stores. A deploy-
ment system that allows to install software through an application store requires reposi-
tories for software artifacts and for application descriptions.

140 Chapter 5. Proposition

c. Application

The last concept of this formalization is the application. An application description is
defined to contain the information necessary for a deployment manager to deploy the
application and also to manage its evolution later, during its execution. An application a
is defined as a quadruple a = (R, Cp,, Cpost»Ac), composed of:

R: A set of repositories. These repositories are to be queried by the deployment
process to gather software artifacts to install or configure.

— Cpye: A first set of conditions called pre-conditions. These conditions should be
valid for that the deployment of the application can proceed.

— Cpyst: A second set of conditions called post-conditions. These conditions should
be valid at the end of the deployment and should continue to be valid along the
lifetime of the application.

- Ac: A set of pairs of conditions and assembly (C,A) called conditional assem-
blies. Conditional assemblies are deployed depending on whether the conditions
associated with them are valid.

app 1:Application

s "
preconditions
conditional assemblies
¢ V(& Y[&
® () ®
() () /(D
® O]
OO
L postconditions

Figure 5.12: Application Example

In an application condition sets associated with each conditional assembly are neither
disjoint nor exclusive. This implies that conditional assemblies of an application form
a decision tree. At a given time, there can be several conditional assemblies for which
all the conditions are valid. Deployment of an application requires obtaining a coherent
assembly from all the conditional assemblies described by the application. This operation
is called flattening, and realized by joining together the assemblies with valid condition
sets. Flattening operation is not possible if there are conflicting resources in different
assemblies. Once a flat assembly is obtained, the deployment of the application proceeds
by deploying the flattened assembly onto the platform. For an application deployment to
take place there are a number of prerequisites:

5.2. Formalization of Deployment Concepts 141

— All pre-conditions associated with the application are valid.

- Post-conditions of the application do not contain a condition contradicting with
post-conditions of existing applications.

- Flattening conditioned assemblies is possible and flattened assembly is valid and
not empty.

- Existing pre-conditions does not contradict with the flattened assembly to be de-
ployed.

The application concept augments the assembly concept in two ways. First and fore-
most, conditional assemblies contained in an application allow applications to change the
way they are deployed according to the current state of the deployment site (i.e. actual
state of the resources of the platform). This adds variability to the application descrip-
tion and allows to reevaluate this description for further evolution of the application. In
this respect the variability proposed by the application concept is very close to the ones
studied in software product lines.

Secondly, pre- and post- conditions serve to describe constraints on the deployment
of the application. Pre-conditions designate constraints on the first deployment of the
application onto a platform. As for the post-conditions, they become the invariants of
the platform and validate the state of the resources of applications that are already de-
ployed. Using post-conditions, for instance, it is possible to express that the state of a
given resource will not be modified during execution. This guarantees that application
deployments that occur afterwards will not alter the state of these resources.

142 Chapter 5. Proposition

5.3 Deployment Process

This section presents how all the concepts that are presented in the previous section is
brought together in a process of application deployment. Lets consider the case of an
application a = (R, Cp,., Cpost»Ac), being deployed on the platform P = (Vp, Ep). And a
set of existing post conditions Cp that are already associated with the platform P. Then
the following steps are an example flow for the first deployment of the application a on
the platform P.

1. The platform P represents the current state of the execution platform, i.e. the de-
ployment site. The actual state of the execution platform is obtained either from a
first provisioning of the deployment site or as a result of a sequence of deployments.
The post-conditions Cp associated with the platform is the union of post-conditions
of previously deployed applications and the constraints imposed by the platform
operator in order to guarantee the integrity of the platform resources.

2. The application description a is composed of links to repositories, pre-conditions,
post-conditions and conditional assemblies as expressed in concept 5.2.3.c. For a
more controlled and secure deployment the developer company or some trusted
partner maintains the linked repositories. These are to be used to gather the arti-
facts needed to construct resources. However, in another scenario the artifacts of
the constructive resources can be bundled together with the description and trans-
ferred to the deployment site. Then one can imagine an earlier step that unbundles
these artifacts along with the description.

3. The application description a is introduced into the platform P.

4. The first step of the deployment, is to check the eligibility of the platform towards
the application. This is represented by the pre-conditions of the application. If all
the pre-conditions return valid against the platform state, then the deployment can
proceed.

5. Next the existing post-conditions Cp associated with the platform are checked
against the post-conditions of the application. The deployment can proceed if no
conflicts is found within these two sets of conditions.

6. In this step the deployment manager analyzes the conditional assemblies defined
inside the application in order to decide which assemblies will be included for the
deployment. This analysis produces a subset of conditional assemblies choosing the
ones with all the conditions valid.

7. Next step is to produce a single coherent assembly from the set of assemblies cho-
sen in the previous step. This operation, called flattening, checks first if there are
conflicting resources in gathered assemblies and if there are not any, proceeds by

5.3. Deployment Process

143

joining them together. For example, if the set of assemblies chosen as valid is

{A,B, C, D} then the flattened assembly would be F = A@B@C@D.

. Before deploying the flattened assembly F the deployment checks whether it is

valid. If the flattening did not reproduced a valid assembly, the deployment process

return back to the step 6 and choose a new set of assemblies to be deployed.

Finally the deployment occurs as described in the platform deployment (see pro-

cedure deploy). The given set of repositories R are used to gather artifacts for the

constructive resources. The new state of the platform is actualized as P’ = F@P.

The post-conditions of the application Cp,,; are also added to the post-conditions

of the platform Cp.

Procedure deployApplication(Application a, Platform P, Set of conditions Cp)

20

Input: a = (R, Cpe, Cpost»Ac), P = (Vp, Ep) €, Cp = {c = (b, 1)}
forall the c € Cp,, do
if check(P,c) then
‘ continue
else
‘ return fail // check preconditions

forall the ¢ € Cpy, do

forall the p € Cp do
if check(p, c) then
‘ continue
else
‘ return fail // check postconditions
list[A] < chooseAssemblies(Ac) // choose assemblies to deploy
Feg¢
forall the B e list[A] do
t F —F@B // flatten chosen assemblies
forall the ry,r, € Vi do
if (r; C ry)||(r; = r5) then
L L F «— contraction(F,ry,r5) // contract flat assembly
P — deploy(F,P) // proceed to deploy
Cp < Cp U Cpyy; // update platform conditions

144 Chapter 5. Proposition

5.4 Discussions

Using concepts presented above, this formalization serves to outline a framework to de-
fine and implement the deployment process. It proposes concepts to represent the actual
state of a deployment site, the expected state of what will be deployed and defines the de-
ployment process that coordinates the actions to be taken to apply the expected new state.
There are a number of choices that are made throughout the construction of this frame-
work and of course these choices produce some desired characteristics and limitations.
The following are the discussions on these choices, their consequences and limitations.

5.4.1 Actual vs. Observed State

Every deployment site, i.e. platform possibly contains a very large number of entities
that constitute the actual state. In dynamic environments such as in pervasive comput-
ing, the states of entities are contingent and likely to change dynamically. Representing
this state via platform and resources, like explained in this framework, requires continu-
ous monitoring and reporting of the state of all the entities and building continuously the
corresponding models that validate those. Constructing such models in computer mem-
ory can become very expensive and can easily disrupt the functional execution of the
platforms business intent, notably deployed applications.

The deployment process relies on queries of whether the platform includes an entity
that corresponds to some resource descriptions. Without a complete representation of the
platform graph, the deployment process requires a framework that is capable of respond-
ing to such queries. This framework should be able to manage different types of resources
and the state models associated with each resource. The implementation of the deploy-
ment process depends heavily on the capabilities of this framework representing resource
states. The following section presents in detail this resource representation framework
that is proposed for this purpose.

5.4.2 Idempotence & Determinism

It is previously argued that the assembly join operation is idempotent. For the deploy-
ment process this ensures that the coordination of actions that change the state of re-
sources is idempotent. Still, in order to provide an idempotent deployment process each
state transition f defined by resource types must also be idempotent. To recall, f is the
transition function defined by each resource type to change the state of resources. State
transition functions may involve multiple operations. For example, making sure that a
software component is active may require first to transfer the executable binary, then in-
stall the component to the platform, and then configure it to active state. Resource type
functions should at least guarantee that each state transition is sequence idempotent.

5.4. Discussions 145

This characteristic must be taken into account by the implementations of the function f
provided by resource types.

Determinism can be guaranteed as soon as every algorithm used in the deployment
process is deterministic i.e. returns the same value every time it is invoked with same
input. This involves the resource type state transition functions, algorithms to analyze an
application, algorithm to calculate the derivation sequence of deployment etc.

5.4.3 Traceability & Fault-tolerance

A process is traceable if every step and action taken in it can be identified and recorded
chronologically. The fact that every state transition is well known in the deployment
process makes it traceable. The sequential aspect of the join operation is crucial in this
respect, because each transformation changes the state of the base assembly, by passing
through valid, well known states. Regarding the deployment process, instead of applying
state changes in a random order, the derivation sequence ensures that at each step a re-
source state described in the joined assembly is integrated as a specified resource in the
platform. With this in place, platform operators can trace the evolution of the platform.

Determinism, idempotence and the traceability increase the fault-tolerance of the de-
ployment process. Leveraging the traceability property, deployment actions can be coor-
dinated inside a transaction-like construction where in case of an error; rollback actions
can be applied in order to return resources to the previous state. Here, the term transac-
tion is used in caution because ACID properties may not be satisfied in all instances. Con-
trary to the data-oriented systems like databases and filesystems, resources in dynamic
execution environments (such as pervasive environments) are contingent, therefore not
durable. Even though the deployment process ensures the atomicity (both the isolation
atomicity and the failure atomicity) of state transition operations and their consistency;
the state change can happen at anytime.

General idempotence of the deployment process also plays a role in providing a fault-
tolerant deployment. Reapplying idempotent operations have no unwanted effects on
the platform. So if the deployment fails due to an unhandled error, and the platform
is in an unknown state, the deployment facility can restart the process. This approach
can constitute the basis of distributed deployment system, in which idempotent deploy-
ment commands are coordinated for fault-tolerant deployment in distributed environ-
ments [Ramalingam 2013].

5.4.4 Reproducibility

A reproducible deployment process means that for a given target state, the deployment
process can be applied in different starting conditions and will still produce the same
state of the platform. Reproducing the same results (i.e. the same target state) with de-

146 Chapter 5. Proposition

ployments in different conditions is extremely important for deployment facilities. Every
deployment site is different with unique disposition of resources. It is unfeasible to cus-
tomize deployment requests for every other deployment site, especially when the scalabil-
ity is at stake. In the continuous deployment paradigm, the same deployment description
is deployed in multiple different target sites, like many testing, staging and production
environments. The deployment process should reproduce the expected state described by
assemblies, in spite of the heterogeneity of these environments.

The goal of achieving the target state should be evaluated in terms of the previous
discussion on the "Actual vs. Observed state" (see 5.4.1). It is considered that a deploy-
ment is reproducible, or a deployment process is capable of reproducing its results, in
the extent that it can produce platforms on different conditions but give same target state
when observed. Other than that reproducing the actual state is unreasonable because each
execution environment would contain uncontrollable parameters and characteristics.

There are two ways of ensuring that deployments are reproducible. First way is to
calculate a proper set of operations on each of the different platform states so that the
result of application of those will converge to the target state. Problem with this approach
is to find the set of coherent, semantically and syntactically composable operations that
will converge into the target state. It involves calculating all the possible configurations
and distinguishes the paths that lead to the target state.

A second way is to make sure that each one of the different platforms undergo the
same idempotent and deterministic state changes that represent the expected, target state.
This second way is possible as long as the target state has a traceable path of state changes.
The deployment process defined in this formalization achieves reproducibility using the
second approach.

5.4.5 Application Compatibility

Every deployment facility should ensure two fundamental properties when it comes to
the deployment of applications.

— Correctness: At each deployment request, the deployment process should make
sure that the resulting state corresponds with the expected state of the application.

— Safeness: At the end of each deployment, the deployment process should make
sure that the new deployment did not make any changes that invalidate or disrupt
the correct execution of existing applications.

For correctness, the application concept defined in this framework ensures that a co-
herent configuration of the application (join of valid conditional assemblies) is deployed
and that the post-conditions defined by the application are valid.

5.4. Discussions 147

For the safeness of the existing applications, each deployment makes sure that none
of the post-conditions will be invalidated at the end of the deployment process. Another
way of putting this is that validity of the application against the future evolution of other
resources on the platform can be guaranteed by post-conditions. For example, with post-
conditions, an application can express that even though it includes a software component
resource of a certain version, it will be still valid if that resource is updated, or down-
graded inside a certain version range. This notion is often known as backward and for-
ward compatibility. Likewise the application can also specify a post-condition to indicate
that a particular resource should not be modified afterwards and keep the specified state.
This kind of constraints are very common in platforms that contain core technical ser-
vices that should not be modified by application deployments as in pervasive platforms
or application servers.

5.4.6 Dependency Management

Dependency is a key concept in this formalization framework and there are important dis-
cussions about what kind of knowledge it can represent and how this knowledge can be
obtained. During the presentation of the dependency concept it was already pointed out
that dependencies only model the mandatory requirements of resources. But the seman-
tic behind the notion of requirements can be various, depending on the types of source
and target of the dependency. An example often appearing in other dependency systems
is different dependencies software components are involved in. A software component
may require services, executable binaries, software modules, but also may depend on a
particular configuration of the container or execution environment on which they will
execute. All these requirements of software components are indeed entities of execution
environment and represented as resources in this formalization framework. Here the de-
pendency relationship between the component and a particular container state represents
a constraint on the execution of the component. Whereas dependency between two com-
ponents represent a use relationship. It merits to be noted again that the deployment
process does not actually wire links between dependent resources. This is delegated to
the execution platform. All it does is to guarantee that the dependency will be resolved
with a resource because it exists at a given required state.

The other important discussion about the dependency management, and the assem-
blies in general, is how does the knowledge about the dependencies is produced. During
the development phase most of the executable software artifacts are created and packaged
along with the metadata of their requirements at execution, such as execution constraints,
required services and code libraries etc. Most of those dependencies can be extracted and
resolved from those metadata. In some cases this information is not explicit and requires
to be completed by human actors. For instance, a software component that needs a to read
and write to a file, or to serial port requires that these resources are available for access.

Another case of the need for human intervention is when there are multiple solutions

148 Chapter 5. Proposition

for the target of a dependency. For the sake of determinism, the actor who specifies the
deployment (usually developers or operators) should make decisions and create condi-
tional assemblies that describe possible configurations of the application. As discussed
previously in repository concept, resolving transitive dependencies for the target of a de-
pendency is out of the context of this work. Most repository technologies incorporate
mechanisms that resolve and return the transitive set of dependencies. Apache Maven,
Eclipse p2, OSGi Repository Admin Specification and YUM are examples of such tech-
nologies. The deployment process assumes that all the dependencies are complete in the
described assemblies.

5.4.7 Undeployment

Notice that there are no constructs or algorithms defined in the formalization framework
to undeploy an assembly once it is joined into a platform. The terms undeployment or
application uninstallation loose their conventional meaning because the deployment
process is defined as a change of state of resources of a platform. Hence these terms
need redefining. In terms of this formalization the undeployment of an assembly A can be
defined as the join of another assembly —A that undoes the changes made by the assembly
A. Then the open question is how to calculate this —A given that the platform could have
undergone different deployments between the deployment of A and —A.

A naive approach to create this =A would be to include the negative resources of
only the constructive resources of A. It seems like this would uninstall all the resources
brought (constructed) by A. This is fine as long as the assembly A’s constructive resources
are disjoint from all other resources of the platform, including other already installed
applications. However, if the deployment of A reconfigures or assumes some already ex-
isting resource, as a result of a constructive resource it contains, then this approach is no
longer reliable. The deployment of such —A would compromise the safeness of the plat-
form. An example to this case is the resources shared among different applications. Take
the case of a platform P with two valid assemblies A and B representing two applications.
If they do not contain any conflicting resources in between and with the platform, then A
and B can be deployed with any order (conforming to the partial commutativity property
described above). So the naive approach of undeployment would work without compro-
mising the safeness of the platform. This case can be interpreted as if applications are
isolated, sharing only the platform resources via inquiry resources.

Even though it is out of the context of this work, resource sharing and application
isolation are mechanisms that can be built on top of this conceptual framework. Sharing
resources between applications, all by guaranteeing a safe undeployment process, would
require extending the resource concept with properties expressing sharing policies. These
policies then can be interpreted by a deployment process which will deploy applications

in isolation, but also share resources between them as indicated.

5.4. Discussions 149

Current industrial approaches of undeployment do not propose satisfying solutions to
this problem. An early approach is to use defensive undeployment scripts. These scripts
would uninstall applications, but leave any artifact that is likely to be shared. This is
equivalent to writing assemblies by hand that uninstalls and deletes certain resources
within a certain logic to undeploy one or several applications. In Apple Mac OS, applica-
tion files are bundled into special packages. In theory the user can uninstall the applica-
tion only by deleting this package file. However, in addition to execution processes, most
of the running applications create files in different places of the filesystem for extensions,
preferences, cache files etc. These files stay in the filesystem even though the application
is uninstalled. A similar problem occurs in Microsoft Windows OS with registry entries
and files. There are third-party applications that try to resolve this issue by finding and
deleting related files.

5.4.8 Continuous Adaptation

The primary purpose of the application concept is to represent the notion of application
at runtime. An application contains the necessary information to perform the first de-
ployment and afterwards manage the application configuration during execution. The
constraints on how the first deployment should be carried out is already discussed in
application compatibility, section 5.4.5. As for the management of the application at run-
time, it involves activities of deployment (creating new resources or changing the state of
existing ones) and should be handled by the deployment facility.

In addition to the standard deployment process which alters the state of resources
on the platform, runtime management of applications requires three important capabili-
ties [Dearle 2007]. First is the ability to describe the resource configurations in which the
application is still valid, or considered operating correctly. Instead of defining the applica-
tion configuration as a static resource disposition, the application descriptor describes the
variability of the application configuration depending on the conditions of the platform.
This formalization allows two levels of variability:

— On assembly level, inquiry resources express the external dependencies. An inquiry
resource can be described without precision, in order to accept many possibilities.
For example an inquiry resource of type package can define a version range to
accept packages of several versions.

— On application level, conditional assemblies allow to express different configura-
tions of the application, depending on conditions, i.e. the current state of the plat-
form. For example, a particular application feature can be installed or activated only
if the platform is capable of executing it, or only if the user payed for such feature.

Second important capability is the ability to monitor the state of deployed applica-
tions. The application concept of this formalization framework does not define explicitly

150 Chapter 5. Proposition

a lifecycle, neither a state for applications. Given that each application is described with
its own variability, it is not possible to define a common lifecycle and state for all possi-
ble applications. Then observing application state becomes synonymous with observing
resources on which the application executes. Adequate monitoring policies are needed to
decide which resources are to be monitored. A straight-out policy would be to monitor all
the resources that the application description includes. However, not only this is not op-
timal, but also states of some of the resources are expected to change during execution. A
monitoring policy advocated in this thesis is to monitor two aspects. First, the application
post-conditions should be monitored for changes, because these are the invariants of the
application and as soon as a post-condition is no longer valid, the application is invalid.
Secondly, the changes in the resources involves in choosing the variants in conditional
assemblies should be monitored to decide whether a conditional assembly is no longer
valid or a new one become eligible. The implementation of resource monitoring is also
problematic. Depending on the resource type, some resources may be capable of notify-
ing on state change, while others need periodic checks whether their state have changed

or not.

The third capability required for runtime management is the reevaluation of the ap-
plication description. The application description with variability allows many different
configurations for the application. A decision policy is needed to reevaluate different pos-
sibilities the variable application description proposes. This policy decides on a particular
configuration and applies necessary deployment actions to change the application config-
uration. Once the monitoring detected a change, the application description containing
variability should be reanalyzed, in order to choose another configuration. Here also there
can be many policies that choose to deploy or not conditional assemblies. As expressed
before, condition sets on conditional assemblies of an application form a decision tree.

This is very close to the autonomic control loop. Indeed the reference architecture
presented in the next section is inspired by the MAPE-K architecture of autonomic com-
puting [Kephart 2003].

5.5. Reference Architecture 151

5.5 Reference Architecture

This section presents the proposal for the reference architecture to implement the deploy-
ment process introduced in the section 5.3, using the concepts and operations presented
beforehand in the formalization. The proposed reference architecture comprises two sep-
arate but complementary parts. The first is the context representation framework that
serves to provide the current state of the execution platform. This module sits on top of
the execution platform. The second is the deployment manager, which implements the
described deployment process by using the representation provided by the underlying
framework. Design details of these two entities and their primary functions are presented
in their respective sections.

External Context

Deployment Manager ’J ------- ﬁ

! 5 ..

Context Representation €——> 8 l

G ‘‘‘‘‘‘ 7

Execution Platform) ﬁ

Figure 5.13: Layers of the Reference Architecture

Before presenting details of the architecture it is crucial to characterize the execution
platform on which the reference architecture is based. The requirements on deployment
platforms for implementing continuous deployment facilities are already presented in the
previous chapter 4, as well as in the paper [Escoffier 2013b]. The modularity and config-
urability of the execution platform stands as fundamental properties required to imple-
ment this reference architecture. Then the continuous adaptation aspect of applications
requires an introspectable platform monitoring, and the ability to make state changes
by dynamically loading and unloading modules and reconfiguration on architecture-
level. The context representation however is considered inside the reference architec-
ture. It provides the necessary information, such as the current state of the platform
resources for the deployment process.

5.5.1 Context Representation

Notions of context and context-awareness are introduced in the chapter 2. To recall, a
general definition of the notion of context is “any kind of information that is relevant to
characterize the situation of an entity” [Dey 2001]. In dynamic environments, entities can
be regrouped into three types of context entities, identified as computing environment,
user environment and physical environment [Coutaz 2005]. The foremost challenge for
reaching context-awareness in those environments is the construction of a representation

152 Chapter 5. Proposition

of the context and propagating changes to interested parties.

The context representation framework aims to provide an easy to use and uniform
model for context sources to represent any type of context entity. Conforming to the
deployment process concepts, these entities are represented and mapped as resources.
Resource’s state, relationships with others, as well as actions to manipulate them are in-
cluded in the resource representation. It allows context consumers to uniformly access the
context, through resource representations, without any prior knowledge about the type
of manipulated entities. To cope with dynamically changing context entities, it adopts the
REST architectural style [Fielding 2000]. This section discusses advantages of this choice,
followed by the details of the context model and the representation framework.

a. REST Architectural Style

REST is a software architecture style for distributed hypermedia systems such as the
World Wide Web. It is based on a number of constraints for reflecting the properties
of modern web applications such as scalability, fault-tolerance, recoverability, security
and loose-coupling. While not undermining utility of these principles, the main interest
is the uniform interface principle proposed by REST. According to this constraint, clients
access resource representations through a simplified, uniform interface. However, this
oversimplification may not suit to any application needs. In order to properly implement

uniform interfaces, there are some constraints on the overall model:

— Resource identification: A particular resource can be referenced by an identifier,

regardless of its type or location.

— Resource manipulation: Resource representations allow to retrieve the state of
the represented entity as well as manipulating it.

— Self-descriptive messages: Resource representations are self-descriptive; mean-
ing they contain not only information about the resource, but also metadata that
describes how the representation can be manipulated.

- HATEOAS (Hypermedia As The Engine Of Application State): Corollary to the
previous constraint, client applications can examine resource representations that
contain metadata about the state transitions and choose from alternative possible
states, without prior knowledge about the type nor the structure of the resources.

— CRUD: REST architecture style relies on the transfer of resource states. Even
though it is not specified in [Fielding 2000], it is easier to guarantee state trans-
fer and the interface uniformity, with a restricted set of operations. CRUD (Create,
Read, Update, Delete) operations are chosen for a simple and universal way to allow
both retrieval and alteration of those states.

5.5. Reference Architecture 153

Adopting REST provides a number of advantages for addressing the discussed re-
quirements. Universal access and usability are greatly improved by the uniform interface.
Self-descriptive resource representations enable providing a description of possible ac-
tions to manipulate the resource. Context providers can serve multiple versions of the
context model, evolving and extending the context model without breaking existing con-
sumers. Aside from these advantages, RESTful interfaces (CRUD operations or Put, Post,
Get, Delete operations) are used commonly in development of Web APIs. This will create
a positive incentive for developers towards implementing context representations.

b. Resource Model

The context representations are based on a resource model that represents dynamic con-
text entities. A resource can be any context data. It serves as a representation of the state
of the entity at a moment in time. The properties of the state are contained in the meta-
data of the resource, as key/value pairs. Resources are identified through their Path. The
hierarchical nature of paths creates a hierarchical composition of resources, meaning that
every resource has a parent and may have subresources (children) logically attached to
it. Therefore resources are organized into a tree structure starting from the root, all the

-~

UPDATE “self”

4,/

way down to the leafs (Figure 5.14).

/

\

\

g ©
Figure 5.14: Resource Graph

The most important aspect for implementing a HATEOAS is the inclusion of links
between resources that describe the state transitions. Just as web pages that contain hy-
perlinks, resources have relations describing links to other resources or themselves. Thus
utility of relations is twofold: they describe how a resource should be manipulated, indi-
cating operation type and parameters expected by the resource representation to apply
this action. Also, they serve to link other resources, which constitute a virtual directed
graph, where vertices are resources and edges are relations. It is possible to traverse this
graph by retrieving the resources referenced by relations.

154 Chapter 5. Proposition

c. Resource Resolution & Observation

The main purpose of offering a context representation is to allow retrieving and modifying
context state by applications. As depicted by figure 5.15, applications have two ways to
interact with the context representation framework: requests and events.

—> Application Application Application

Event request / response
Bus

Framework Core

Figure 5.15: EveREST Framework Overview

Requests are sent by applications in order to retrieve the state of the context, or to
impact it. Each request contains the intention of the requester to interact (using one of
the CRUD operations) with a specific resource, identified by its path. The framework is in
charge of the resolution of the resource, based on the provided path, and the application
of the requested operation. Such operations may retrieve/alter the state of the targeted
resources: their metadata and their relations. Therefore, requests offer applications a
simple and unified way to interact with the context. Navigability through the context
graph, using resource tree’s natural hierarchy or customizable relations, is favored by the
simplicity of the resource model.

While requests are a powerful way to interface with the context, they do not permit to
capture all its dynamics. To achieve this crucial need, the framework augments the REST
architectural style by emitting events on context changes. The framework can therefore
notify applications that are interested in these changes, when such changes occur. Events
are sent each time a resource is created, updated or deleted. Requests and events al-
low to impact on resource’s state and to observe its changes, offering a fully dynamic
representation of the context.

To improve the usability of the framework, requests and events can also use queries
to select a set of resources. This feature gives the ability to mine inside the whole context
to retrieve the adequate set of data. In addition, an application can be notified when a
resource starts or stops matching a query.

5.5. Reference Architecture 155

d. Resource Extension & Transformation

The inherent simplicity of the resource model favors its usability. But much simplicity
produces disadvantages, limiting the context evolution and flexibility. The framework
provides two mechanisms to overstep these limitations: extension and resource trans-
formation. Addressing extensibility, it offers applications the ability to enrich the context
representation by adding new resource spaces. By this way, applications can contribute
to the context by providing new resources, accessible by other applications.

In addition to providing resources, applications can transform the metadata and the
relations of resources to meet their own model. Such transformation can be contributed
to the context, and kept private. The transformations are applied when a resource is
referenced by a request of sent by an event.

Moreover, even though resources are untyped, which favors discoverability, it is some-
times useful to adapt the representation to the represented entity. Some resources give
access to the underlying entity. Obviously, not all resources have this capability, but such
feature promotes the connectivity between the context representation and its underlying
objects.

5.5.2 Deployment Manager

The deployment manager implements the deployment process described formally in pre-
vious sections. It unites two main functions of the deployment process, namely, the analy-
sis of the application descriptions and the coordination of the deployment actions. These
two concerns of the deployment process are handled separately inside the deployment
manager architecture, in Analyzer (section 5.5.2.b) and Planner (section 5.5.2.c) modules.
To be able to provide these functions in a generic manner, the deployment manager also
separates the modules that know how to execute deployment actions and how to observe
and compare resource states. Resource Processors (section 5.5.2.a) are the extensions of
the deployment manager that implement these resource interactions. The monitors and
executors are created by the resource processors to interact with the context entities.

The context representation framework, presented in the previous section 5.5.1,
sits between the actual execution platform and the deployment manager. It provides
a resource-based, unified interface to manage the entities of the deployment site. The
Figure 5.16 presents the architecture of the deployment manager, alongside the context
representation framework.

It is important to emphasize that the reference architecture adopts the MAPE-K archi-
tecture commonly used in autonomic computing and self-adaptive software systems. In
terms of this architecture, the context representation framework constitutes the knowl-
edge base. It provides the necessary information, such as the current state of the platform
resources for the deployment process. Whereas the MAPE control loop, implemented
by the deployment manager, ensures the deployment process and the runtime manage-

156 Chapter 5. Proposition

Deployment Manager

---------- ¥ Analyzer ————p Planner
Deployment Assembly
Request ! J 3/

Application
(Application) “ Monitors Executors

Resource Resource
Prosessors Prosessors

Figure 5.16: Deployment Manager

ment of applications. The figure depicts how the deployment manager’s architecture uses
MAPE-K as model architecture. This section continues by presenting the functionalities
performed by different modules of the deployment manager.

a. Resource Processors

Resource processors are extensions to the deployment manager that are capable of ma-
nipulating resource states. Each resource processor is associated with a resource type. It
is in charge of querying the context representation for resources and changing the state of
resources of that type. Diffrent modules of a resource processor is shown in the figure 5.17.
The primary function implemented by the resource processor is the state transition func-
tion, f, which is introduced previously in formalization concept 5.2.1.b). Resource proces-
sors also implement other type-specific functions needed during the deployment process.
They provide two types of stateful components that are created and used during the de-
ployment process and afterwards for the monitoring. These are deployment participants
and resource monitors. Lastly, they provide extensions for the deployment descriptor

language.

Resource Processor

Type- Deployment Resource
specific Participant Monitor
functions Factory Factory

Language
Extension

Figure 5.17: Resource Processor

Type-specific Functions Resource processors implement any function needed during the
deployment process, the implementation of which is specific to each resource type.
These functions include the resource subsumption, detection of resource conflict
and fetching deployment artifacts and metadata of those, from given constructive
properties.

Deployment Participants They are executor components that apply state transition

5.5. Reference Architecture 157

function f defined by the resource processor. Deployment participants are created
and coordinated by the planner module. At each instance of deployment process, a
number of deployment participants are created to apply unitary state transition on
resources. Each deployment participant is therefore created with a target resource
description and its state is only valid during the deployment process to which it
belongs. It is responsible for ensuring that the given target state is attained by at
least one specific resource. Their lifecycle is presented in the section 5.5.2.c.

Resource Monitors Resource monitors are components that observe and validate state
of resources. The analyzer module creates resource monitors to validate particu-
lar application configurations and conditional assemblies. Each resource monitor is
created with a condition. Depending on the type of the resource, it applies a mon-
itoring policy on resources of context representation framework. They notify the

analyzer if the given condition is no longer valid.

Language Extensions Language extensions are necessary for providing a deployment
description language with different resource types. These extensions define valid

properties and parsers for descriptors using processed resource type.

b. Analyzer Operations

The primary goal of the analyzer module is to treat deployment requests and calculate
the assembly for deployment. Deployment requests can originate from the demand of
new application deployment or for adapting existing applications. The analyzer module
handles each application description separately to be able to apply the first deployment.
Once deployed, the application is monitored and new deployment actions are calculated
for adapting the application according to the dynamically changing context. The archi-
tecture of the analyzer is shown in the figure 5.18.

Analyzer
App A App B

2
Deployment
Request /O/? /O o O@
(Application)
o O O

w Adaptation Policy Adaptation Policy
’

Assembly

o)}
£

c

O
2
=
ke
o

y Monitoring Monitoring
N AN

Resource Monitors

Figure 5.18: Analyzer Module

New Application Deployment Each deployment request contains one or more applica-
tion descriptions. The deployment analyzer receives deployment requests and ana-
lyzes them to decide whether to start a deployment process or not. As described in

158 Chapter 5. Proposition

the deployment process, the analyzer first decides whether application description
is eligible for deployment. This analysis includes checking pre-conditions of the ap-
plication and choosing a subset of conditional assemblies defined inside application
description. Here the analyzer is customizable with custom policies for each appli-
cation. The adaptation policy is responsible for choosing a subset of conditional
assemblies defined inside the application definition to be deployed. Then a flat as-
sembly is calculated using chosen conditional assemblies. If a valid flat assembly is
possible, this assembly is transferred to the planner module for deployment.

Application Monitoring As soon as the deployment of the flat assembly is started, the
analyzer activates resource monitors necessary for observing the state of the de-
ployed application. The analyzer associates a number of resource monitors for each
managed application. As discussed previously in discussion 5.4.8, the resources to
be observed are, by default, the resources that are involved in conditions of con-
ditional assemblies and the post-conditions of the application. The resource mon-
itors notify back the analyzer if a condition changes state from valid to invalid or
vice versa. Depending on the type of the resource to observe, the resource mon-
itor whether subscribes to the events of one or more resource entities, or checks
periodically if the condition changed it’s state.

Application Adaptation In case of condition changes, the analyzer handles the notifi-
cation from the resource monitor and starts the adaptation process. This analysis
comprises the reevaluation of conditional assemblies in the application description
depending on the current, latest state of the platform. It calculates an assembly to
deploy, which adapts the application to the current conditions of the platform, i.e.
the context.

The main goal of application adaptation is to decide on a different application con-
figuration, in terms of conditional assemblies that are effective, i.e. deployed on
the platform. There are two important aspects to consider in the implementation of
the adaptation functionality. The first aspect is the set of policies that the analyzer
will use to decide which conditional assemblies to include in for deployment. Self-
adaptive systems and autonomic computing community studies self-star policies
for optimizing, reconfiguring, repairing applications [Miller]. Analyzer enables
implementing these policies inside the customizable adaptation policy associated
with each application. In some cases, the adaptation policy can be unable to choose
any valid assembly to apply onto the platform. This can either mean the application
is unable to function in the current state of the execution platform, or it has fallen

into an unrepairable state.

The second important aspect is the way the deployment manager transmits the ap-
plication state from one configuration to another. To illustrate this, lets consider an
application a that has four conditional assemblies, {A, B, C, D}, which is already de-
ployed with the configuration F = A@B@C. And as the result of the reevaluation,

5.5. Reference Architecture 159

the adaptation policy decides on a new configuration that is F/ = A@D@C. The
deployment process should apply the state transition F = F’ so that the assembly
B should be removed from the platform and replaced by the assembly D. Then the
analyzer should calculate an assembly G to deploy on top of F, such that F/ = G@F.
Indeed, the main problem of obtaining the assembly G is not with including D but
removing B from the platform. This is partially an operation of undeployment.

Undeployment The problem of undeployment is already discussed previously in the dis-
cussions (see discussion 5.4.7). A solution is proposed in this reference architecture
for undeployment of applications. Continuing from the previous example, unde-
ployment involves constructing the assembly G as G = F'@(—F). The negative
function (=) being a function that takes only the constructive resources contained
in an assembly, and makes each of those resources negative by adding — property.
Then joining the negative of F with F’ serves to override any resources shared
in both F and F’ along with the dependency relations described in F’. This way
the resources of F’ can be deployed using the correct dependency order, and the
resources that were only constructed for the B can be undeployed. To achieve a

complete undeployment of the application a, the same operation is applied with
the F' =¢.

c. Planning Operations

The deployment planner module is in charge of executing the deployment command of an
assembly. It receives assemblies to be deployed, enqueues them to the deployment queue
and executes the deployment inside a transaction.

Planner

SN ... o S
Assembly Deployment
PUSTR Deployment
Queue
© Deployment
Assembly A Transaction

©<©/‘/1)/<§ \O

Deployment Participants

Figure 5.19: Planner Module

The execution of deployment starts by calculating the deployment plan, which is cre-
ated in the basis of the transitive closure of the input assembly. Given that the input
assembly is valid, meaning contains no cycles; it is always possible to find a plan. A de-
ployment plan consists of a sequence of list of resource descriptions. At each stage of
the sequence, state transitions of the resource list are parallel independent, so they can
be executed in parallel. As discussed earlier in the assembly concept, there are different

160 Chapter 5. Proposition

algorithms to calculate this deployment plan. Here it is important for the sake of de-
terminism to employ deterministic algorithms. A deterministic algorithm will result in
exactly the same deployment plan, each time it is given the same assembly. The planner
module allows to customize this algorithm, implemented by the resolver component.

Once the deployment plan is calculated for the assembly, the planner creates deploy-
ment participants with each resource description, using the resource processors respec-
tive to their resource types. Then the deployment participants are coordinated inside a
deployment transaction according to the deployment plan.

Deployment Transaction Difficulties of implementing a transactional deployment are
previously discussed in 5.4.3. Several assumptions are made in order to implement
transactional coordination of the deployment inside the planner module. In an ideal
transaction management system, transactions involve a sequence of atomic elemen-
tary actions. These actions are indivisible and either end successfully or fail. In the
context of this work, instead of atomic actions, coordination elements are resource
state transitions. So the first of the assumptions is that resource processors are im-
plemented in a way that each state transition function f is a set of sequentially
idempotent and fail-stop actions. This way the state transition is idempotent and
its execution fails and stops the transition as soon as it encounters an error.

Other important point is the concurrency of transactions. Transaction manage-
ment systems runs multiple transactions simultaneously by isolating their execu-
tion. Concurrency control of transactions requires serializing actions and managing
their access to the resources via locking mechanism. The resource-based formal-
ization allows applying these concepts to the deployment domain. Implementing
locking mechanisms for entities in dynamic execution environments is difficult be-
cause of contingent nature of resources. Such mechanisms are outside the context
of this work. Nevertheless, assuming that context representation framework pro-
vides such mechanisms; treating inquiry resources would need to acquire read ac-
cesses, while constructive resources would require write accesses. Without proper
resource locking mechanisms, the second assumption is that there is only one de-
ployment transaction executing on a platform. For this purpose the planner module
employs a deployment queue, which ensures treating one assembly deployment
at a time (see figure 5.19).

Under these assumptions, the goal of deployment transactions is to extend the
atomicity property over the deployment process. The atomicity property (in our
case the failure atomicity) allows limiting the uncertainty about the outcome of
the execution of a transaction in the presence of failures [Krakowiak 2007]. A de-
ployment transaction is thus defined for enabling recovery operations. It is modeled
following the two-phase commit transaction protocol (see figure 5.20).

First the transaction coordinator calls all the deployment participants to prepare
for transaction. At this phase participants decide whether the state transition is

5.5. Reference Architecture 161

[commit

cancel end success]
prepared committing success

/'y
[prepare [commit
success] failed]

[rollback
v v

prepare success]
.—»@—»@armg) (roliback failed

[prepare [rollback
failed] y failed]

Figure 5.20: Deployment Transaction State Transition

possible (for constructive resources) and if it involves a specific resource, taking a
backup the current state of the resource. If one of the participants cannot prepare
the resource then the deployment transaction fails and all the participants that are
prepared until that point are called to cleanup for aborting the transaction. If all
participants prepared successfully then they are called to commit the state transi-
tion. Again if a state transition fails for one of the participants, or an inquiry returns
with no results, the transaction fails. In this case the transaction enters the rollback
phase, where all participants until the failed participant are called to rollback the
resource to the previous state.

Error Handling Handling deployment failures is crucial for providing fault-tolerance.
The deployment transaction ensures tracing the source of the fail and reporting
it to the analyzer for further investigation. The transaction already includes the
default behavior for handling deployment fails, which is the rollback phase. During
rollback, the deployment participants try to recover from the modifications they
made to the resources by undoing their actions. Therefore deployment participants
need to save the initial resource state during the prepare phase. If all the participants
rollback successfully, then the platform should be at its previous state. However,
contrary to database management systems, in execution platforms rollback actions
are not always possible, or they could also fail.

In both of these cases, the planner notifies the analyzer, the party who ordered the
deployment of an assembly, with the state of the deployment, if it was success-
ful or unsuccessful, detailing the cause of the failure if there is one. In case of
successful deployment, the default action of the analyzer is to activate monitoring
components for observing the state of post-conditions. If the deployment was un-
successful however, the analyzer can recalculate a new assembly, using the current
state of the platform and the results of previous deployment attempts. This is an
example of roll-forward and continuous software adaptation using information
on historical deployment events. Such information facilitate developing autonomic
policies that enhance applications with self-repair and self-optimization properties.

162 Chapter 5. Proposition

5.6 Description Language

The last part of the contribution is the proposition of a domain-specific language (DSL)
for describing the deployment of applications. This declarative language allows to ex-
press the concepts presented in the formalization until the description of applications.
Application descriptions written in this language serve as an input for the deployment
manager. Obviously on the basis of the proposed formalization, it possible to design dif-
ferent languages that describe the same concepts, using various constructs. Indeed, in
the following chapter 6, in the context of this work two different implementations of this
language is developed, each one with its advantages. However, they handle same kind
of concepts. For illustration purposes the grammar syntax for one of these languages is
presented here.

The deployment description language allows developers to codify the deployment
process and treating deployment descriptors as first-class development artifacts. The de-
scription is stored in a file and archived on a version control system. It can then be ana-
lyzed for syntactic and semantic errors and transferred to the execution platform. This ar-
tifact is transferred to the deployment manager and treated as a deployment request. This
practice establishes the basis for the infrastructure-as-code movement and favors the
continuous deployment [Spinellis 2012]. Leveraging the deployment process presented
above, deployment events and results can be traced back to the deployment code devel-
oped in this language. Such development characteristics enable debugging and testing of

deployment descriptors.

5.6.1 Basics

The description language is based on a number of syntactic atoms, which facilitate the
definition of following constructs. First one of these elementary constructs is the property
(Figure 5.21). It serves to define key, value properties as described in the property concept.

Property
StringLiteral ‘ StringLiteral
Properties

o

Figure 5.21: Property

For the sake of simplicity the concepts such as resources and assemblies in the formal-
ization do not contain unique identificators. In the descriptor language, the Id construct

5.6. Description Language 163

Id
Type

Name

StringLiteral

name

L
S
Q
o

state ‘ StringLiteral

Version

version

VersionLiteral }7

Figure 5.22: Id, Type, Name and State

is used to attribute identificators to some of the concepts (Figure 5.22). It is necessary to
create references to language elements.

Similarly, the Type is also used to identify the resource types. Two common resource
properties are also identified as Name and State. The Version is also a common prop-
erty required in deployment systems. There are many conventions about the versioning
schemes. In this case the VersionLiteral can any expression that allows totally ordered

versions.

5.6.2 Repository

The repository construct contains the name and remote access URL for a repository, de-
fined in the repository concept. The diagram in 5.23 shows the syntax of repositories
and set of repositories. Again for the sake of simplicity, the security issues are left aside
from this description. Thus the configurations needed for authentifications and secure
repositories connections are omitted.

5.6.3 Resource & Assembly

As described in the resource concept, property names of resource descriptions are dif-
ferent for each resource type. The description language defines the syntax of resource
description for a generic resource type, shown in the diagram in 5.24. The Name and

164 Chapter 5. Proposition

Repository
Repositories
O—® D~

‘N

14

Figure 5.23: Syntax Diagram of Repository

State are common information for resource descriptions. To extend this language syn-
tax, each resource processor defines the name of Type it handles and the names of its

Properties.

GenericResource

—(O{ Tyee

O [Name) [Sme

(- [Properin (1)

Figure 5.24: Syntax Diagram of Generic Resource

To form an assembly resource descriptions are declared and linked to each other by
dependency relationships. The syntax of resource declarations and assemblies are shown
in the diagram 5.25. Resource declarations attribute an identificator, Id, to the resource
descriptions. This identificator is unique for the resource declaration inside the assembly
it is included.

Resource declarations comprise either a resource description or the identificator of
an already included resource and refer to several other resource identificators as its de-
pendencies. The dependsOn keyword is used to express the dependency relationship.
Resource declarations are included inside an assembly by the resource keyword. This
way inside an assembly description, dependencies can be either inline with resource state
descriptions or they can be included all at once by referring to already described resources.

5.6.4 Condition & Conditional Assembly

As introduced in the formalization the condition concept, a condition is composed of
a resource state description and a fact, which is either true or false. The syntax of a
condition contains a generic resource and a fact (Figure 5.26).

5.6. Description Language 165

ResourceDeclaration

(741
W]
GenericResource

Assembly

7(r esourc eH ResourceDeclaration FT
N

%

dependsOn

Figure 5.25: Syntax Diagram of Resource Declaration and Assembly

Fact
Condition

—{ GenericResource ° Fact

Conditions

(O (O [Condiion |~

‘N
L/

Figure 5.26: Syntax Diagram of Condition

Each application contains assemblies grouped inside a number of conditional assem-
blies, described in the application concept. A conditional assembly regroups a set of con-
ditions and an assembly in order to include the assembly to the application. There is also
the case when the condition set of a conditional assembly is empty. This means that the
assembly is unconditionally added to the application. Therefore, the syntax for condi-
tional assemblies considers these two cases. First the case with, which includes the as-
sembly to the application without conditions. And second the case when, which includes
the assembly described after then, with the given non-empty condition set. The syntax
describing these two options are shown in the diagram 5.27. Notice that this construct
enable creating applications with variability.

166 Chapter 5. Proposition

Conditional Assembly

‘ Conditions }—(then “ 0

Figure 5.27: Syntax Diagram of Conditional Assembly

5.6.5 Application

Finally the parent construct for this descriptor language is the application. As mentioned
earlier an application forms a deployment request for the deployment manager. A unique
Id identifies each application description. Applications contain also a human readable

Name and a Version.

Depending on the policy of the deployment manager the (Id, Version) pair can also
be used as a unique identificator for the management of applications. Then it is up to the
deployment manager to handle cases such as different applications descriptors with the
same Id, multiple application descriptors with the same Id but different versions etc. These
choices are deliberately excluded from the reference architecture, because they depend on
the design decisions and the capabilities of the execution platform.

Conforming to the formalization in the (application concept), an application is com-
posed of a set of repositories, pre- and post- conditions, and a set of conditional assemblies.
The syntactic definition of an application is shown in the diagram 5.28.

Application

—GpTisation) [-(D-{Name]- () ©

Repositories

Conditional Assembly T@i
V)

N

Figure 5.28: Syntax Diagram of Application

Ideally each descriptor file describes one application only. New deployment requests
for an application (application update for example) can be described inside new descrip-

21

25

29

33

37

5.6. Description Language 167

tor files referring to the application by its identificator. It is also possible using default
language constructs to reference and include code from other files. This lets developers
to write common assembly descriptions, stock them inside separate files and reuse those
by including them to their application descriptor file. The grammar in EBNF language
can be found in the Appendix B.

The following example describes a simple application with two included assemblies:

application "MyApp" , name: "My Application", wversion:"1.0.1",
repos : [
{name: "maven-central",
url:"http://oss.sonatype.org/content/repositories/releases/"}
]I
pre: [] ,
post: [] ,
{
when [
{{file state:"exists", path:"/etc/bash_rc"}:true},
{{bundle state:"ACTIVE",
"bundle-symbolic—-name’ : "org.apache.felix.eventadmin",
version:"1.3.0" }:false}
1
then {
resource eventadmin { bundle
"bundle-symbolic—-name’ "org.apache.felix.eventadmin”
state "ACTIVE"
"bundle-version’ "1.3.2"

}
}
with {
resource eventadmin { bundle
"bundle-symbolic—name’ "org.apache.felix.eventadmin"
state "ACTIVE"
"bundle-version’ "1.3.2"
}
resource log { bundle
"bundle-symbolic—-name’ "org.apache.felix.log"
source "mvn:org.apache.felix/org.apache.felix.log/1.0.1"
state "ACTIVE"
"bundle-version’ "1.0.1"
} dependsOn (eventadmin)
resource logPackage { pkcg
id "org.osgi.service.log"
version "1.0.1"
} dependsOn (log)
}

Listing 5.1: Example of an application description

168 Chapter 5. Proposition

5.7 Evaluation

To conclude the proposition chapter, this section evaluates the presented contributions
against other works in software deployment domain. In the first evaluation section, the
formalization proposed in this work is compared to the previous studies that proposed
formal frameworks. Secondly, major contributions of this work; the deployment process,
the reference architecture and the description language are evaluated against the charac-
terization framework, established in the chapter 4. And lastly this chapter concludes by
summarizing the contributions of this work.

5.7.1 Comparison of formalisms

In this section a number of studies that propose formalization of deployment concepts
are presented and compared to the proposition of this work. These studies are chosen for
the evaluation particularly because they focus on solving different problems and thus for
some employ different models for deployment concepts. The goal of this evaluation is to
identify the similarities and differences of these approaches.

1. Firstin [Parrish 2001], authors lay out the general concepts for deployment of com-
ponent based applications. They model components, applications, the current
state of an execution platform (configuration as called in the paper) and instal-
lations, which is the deployment process for applications. Authors focus on man-
aging different versions (or different implementations) of components and examine
different strategies for replacing components. They identify these strategies as Re-
place Always, Replace Only If Newer and Never Replace. Then two installation
properties are defined, as successful and safe. A successful installation implies
that the installed application works properly. A safe installation implies that ex-
isting applications continue to work after the installation is applied. The authors
continue by defining backward and forward compatibility for components. And fi-
nally they link installation strategies with those in order to define the conditions for
safe and successful installations. While this work defines many important concepts,
it lacks the concept of dependency between components. There are no definitions
or rules for the deployment process and the execution of applications.

2. In [Buckley 2005], Buckley provides a framework to resolve code dependencies and
load those dynamically, specifically on the CLR (.Net) execution environment. The
paper defines the assembly (a CLR core concept) structure that contains executable
binaries and associated with metadata such as name and version and dependencies.
The formal framework defines the deployment process of a module (an assembly)
by resolving its dependencies, locating those and finally executing the module by
making necessary bindings inside the execution context. The author details the

5.7. Evaluation 169

process of loading the assembly to the execution environment. Here each success-
ful load operation changes the state of the execution context. During the loading
of an assembly, if a dependency resolution fails to find a corresponding assem-
bly, the install operation tries to gather it externally (from the end user), and tries
to load that assembly on demand. If the system fails to make necessary bindings
the installation fails, leaving the environment unchanged. This work concentrates
on the internals of the runtime environment for resolving module dependencies by
names and linking them. However, it does not address the evolution of applications.
Similarly in [Escoffier 2006], authors explore dynamic code loading and unloading
capabilities of .Net platforms.

3. Liu et al. propose a formal framework for modeling the deployment of compo-
nent based applications [Liu 2006]. Their formal framework models the whole of
the component deployment lifecycle, from building and assembling components
through shipping the system from the development site, installation of the system
at the deployment site, reconfiguring the system in response to changes and execut-
ing the system. The proposed formalism is based on the concept of application
buildbox, which is the resolution space for component dependency constraints.
The labeled transition system they propose defines the state changes of this build-
box, therefore the evolution of the application. Their component definition let con-
sidering static and dynamic dependencies. At development time, components are
packaged into assemblages, which are modules with interfaces. Then the goal of
the formalism is to ensure that the application builbox (thus the deployment site)
is well-formed, meaning that all the constraints on components and their depen-
dencies are satisfied.

4. In [Belguidoum 2008] authors propose a formalization of component substitutabil-
ity. Their goal is to provide a safe and flexible upgrade operation per component.
The proposed formalization compares the dependencies of components as service
interfaces and context descriptions. Components are described with mandatory,
optional and negative dependency declarations. Then at runtime, wires between
components satisfy these requirements. The context is defined as the current state
of the execution environment. The work focuses on ensuring the safety of the sys-
tem. To achieve this, the paper proposes verifying tthe requirements, the effect of
the substitution and preserving invariants of services, components and context.

5. Lastly in his doctoral thesis, Sun examines the complexity of configuration man-
agement [Sun 2006]. The author proposes a state machine model for configuration
management systems. On this model the reproducibility and composability of op-
erations are studied. The proposition studies properties such as idempotence, se-
quence idempotence, commutativity and convergence of operations composed
of atomic actions. Using this formalism, it is proven that in general cases system
management processes are NP-complete and NP-hard. Then the process of depen-

170 Chapter 5. Proposition

dency analysis between managed entities and operations is described. Here the
distinction between two types of entities is made. In the black-box approach, only
information on external behavior is available. As for the white-box approach, en-
tities contain some representation of content that is available for analysis. High
complexity of these processes causes for the configuration management to be non-
deterministic and intractable for system administrators.

Compared to those formalisms, the proposition in this work stands out in several
aspects. To begin with, the formalism in this work specifically aims to coordinate the
deployment operations. In this respect, the core concept is chosen as the resource to
be able to cover different kinds of entities that can be found on deployment sites. Other
formalisms except the 5 are limited with component-based deployments.

Continuing from the coordination aspect, the studies in items 2, 3, 4 specify the in-
ternal operations of the execution platform required for installing and executing compo-
nents. However, this work proposes to delegate that concern to the underlying platform
and only command state changes of resources. Specifically the details discussed in the
work 3 for component installation can be used to implement the resource processor for
components.

This work adopts the declarative approach for describing the deployment of multi-
ple entities. So users provide the deployment descriptor that designates the expected state
of one portion of the execution platform. The state transition process that makes this hap-
pen is then deduced from this description. As argued in 2, this is the ideal approach for
verifying the state of the platform. Other works, while describing also components, con-
centrate primarily to resolve the deployment concerns on the basis of single components.

Contrary to the 3 and 4, where dependencies can have different types and contain
constraints, this work, as like the one in 2, consider only simple dependency descriptions.
This reduces the complexity of graph operations, because constraints on entities are only
described in resources.

The formalisms in 2, 3 and 4 concentrate on resolving dependencies with constraint-
solving and name matching. The complexity of such algorithms that choose compo-
nents by constraint-solving is studied in 5. Constraint satisfaction algorithms often use
heuristics for limiting and reducing the resolution time and therefore not deterministic. In
this work most of the dependency choices are made beforehand, when the deployment de-
scriptor is created. Surely the application description contains different conditions, which
are constraints on the platform state. But the resolution of those constraints and decisions
on application variability are confined to the analyzer module. The current algorithms can
be replaced by sophisticated constraint solvers such as SAT-based engine with or without
backtracking.

Lastly, the ability to describe variability allows applications to adapt to the changes
on the platform state, and evolve on the long-term. Continuous adaptation proposed in

5.7. Evaluation 171

this work eliminates the restriction of declarative approaches, which is also expressed in
the work 4.

5.7.2 Evaluation for Continuous Deployment Requirements

Following the formalism comparison, this section evaluates the continuous deployment
requirements satisfied by as the result of this work. To recall, in the previous chapter 4
requirements for continuous deployment are presented in three groups, deployment plat-
form requirements, deployment process requirements and language requirements.

Platform Requirements As it is discussed previously in the section 5.5 that the pro-
posed reference architecture presumes an underlying execution platform. This ex-
ecution platform is supposed to be configurable, introspectable, modular, dynamic
and capable of applying architectural reconfigurations. Therefore, the requirements
defined by the characterization be present on the platform, except the context-
representation. This last requirement is satisfied by the reference architecture by
the proposition of context representation framework presented in section 5.5.1.

Process Requirements The notion of deployment request appears in the proposed ar-
chitecture as the application description. Application descriptions trigger analysis
and then the execution of deployment inside deployment manager. The deploy-
ment request can be introduced to the deployment manager (more specifically to
the analyzer module) either from outside by installing or updating an application
(push), or from inside the deployment manager, as a result of change demands of
a already installed application (pull).

The proposed deployment process determinisim, idempotence and fault-
tolerance properties are already argued in corresponding discussions 5.4.2
and 5.4.3. These reflections are then transferred into the reference architecture for
the proposition of idempotent resource processors, deterministic deployment plans
and transactional process execution.

The proposed process and architecture are customizable in many points. The
generic process allows to integrate new resource types, and this is also ratified in
the reference architecture by the resource processors. Algorithms and policies with
many possible implementations are left customizable inside the deployment man-
ager architecture.

The reference architecture is proposed specifically to support the continuous
adaptation of applications. Each deployed application is monitored automati-
cally and changes are notified to custom application policy for adaptation decision.
Changes decided by the adaptation policies also pass from the same coordination
process as regular deployments.

Chapter 5. Proposition

Language Requirements The description language proposed in the section 5.6 allows to

express resource descriptions according to the concepts defined in the formaliza-
tion. As a result, the language allows to describe resource states and their depen-
dencies. Leveraging the use of different description levels, the description language
lets users define their applications with more or less precision.

The language is extensible with different resource types. Resource processors are
in charge of providing implementations of language extensions for the resource
type they manage.

Aligned with the application concept in the formalization, the description language
allows describing conditional assemblies inside application descriptions. This en-
ables variability over descriptions and is necessary for continuous adaptation.

Using standard language constructs, assembly descriptions can be referenced from
different source codes. This eases the management of the deployment description
codes and allows reuse of common portions of application descriptions.

The following table summarizes the evaluation of the proposition against these re-

quirements. The @ signifies that these characteristics are inherited from already existing

work. The ¥ represents the requirements to which this thesis have proposed contribu-

Table 5.2: Positioning against continuous deployment requirements

Platform | Process | Language |
Configurability ® Pull/Push v Expressivity v
Reflection o Determinism & v Extensibility 4

Idempotence
Modul D 1 C e
odu ar+ Dynamic (Fault-tolerance v Variability 4
Execution
Archi 1 N .
rehitectural o Customizability v Usability v
Reconfiguration
Context access v Contmu.ous v
Adaptation

5.7. Evaluation 173

5.7.3 Conclusion

This evaluation concludes the proposition of this thesis.

In order to summarize, the section 5.2 proposes a formalization framework for de-
ployment concepts. This framework describes algorithms that coordinate deployment
actions. The discussions in the section 5.4 explained the consequences of this deployment
process. Concepts along with the deployment process are embodied inside the refer-
ence architecture, presented in the section 5.5. The reference architecture describes the
context representation framework and the deployment manager which implements the
proposed process. Finally, a deployment description DSL is proposed in the section 5.6.
This language allows to code deployment descriptions that serve as deployment requests
for the deployment manager.

In the beginning of this chapter a number of objectives are presented to be addressed
by this work. This evaluation explains how presented contributions satisfy their objec-
tives. Following table 5.3 summarizes of the research objectives and corresponding con-
tributions.

Table 5.3: Research objectives and contributions of the proposition

Objectives Contributions

Reproducibility | Traceability 5.4.3, Determinism 5.4.2

Fault-tolerance | Transactions 5.5.2.c, Idempotence & Determinism 5.4.2

Continuous Application Description with Variability 5.2.3.c,
Adaptation Reference Architecture 5.5.2.b,

Tooling Description Language 5.6

Chapter 6

Implementation and Usage

“I hear and I forget. I see and I remember. I do and I

understand. ”
— Confucius

Contents
6.1 Introductionttt 176
6.2 Implementationttt 176
6.2.1 Global Architecture 176
6.22 EveREST e 178
623 RondoCoreo v it 182
6.24 RondoDeployer 184
6.2.5 ReSOIVErs . . v v v vttt e e 188
626 RondoCloner 190
63 Usage 190
63.1 Installation 190
632 JavaDSL 192
633 GroovyDSL 194
6.3.4 Resource Processor Development 194
6.4 Conclusion i 198

176 Chapter 6. Implementation and Usage

6.1 Introduction

The goal of this chapter is to present how the propositions of the previous chapter are
implemented. Specifically, it presents the development projects of the context represen-
tation framework, EveREST, and the deployment framework that is developed to validate
the contributions of this thesis, Rondo. The tools provided by Rondo includes the deploy-
ment manager that implements the reference architecture and the DSLs (domain-specific
languages) for describing deployment of applications. Both of these projects, Rondo and
EveREST, are developed on top of OSGi™ and Apache Felix iPOJO™ technologies. They
are available as open source and are fully operational at their current state.

The following section presents the implementation details of the EveREST framework
and different tools developed within Rondo tool suite.

6.2 Implementation

This section presents EveREST and Rondo frameworks, the global architecture they are
used in, and later details each one of these projects. The EveREST project contains EveR-
EST Core, EveREST OSGi, EveREST iPOJO, EveREST System and EveREST Filesystem.
The Rondo project implements tools for the deployment, including the Rondo Core, Rondo
Deployer, different Resolvers, Rondo Cloner and DSLs in Java and Groovyy languages.

6.2.1 Global Architecture

The main solution developed in the context of this work is the deployment framework
called Rondo. Rondo framework proposes a set of tools that implement the contributions
presented during the previous chapter. These tools are developed for obtaining exper-
imental results and for validating the approach of this work. The central tool of this
approach is the deployment manager, implemented in the Rondo Deployer module. As
proposed in the reference architecture, the deployment manager depends on a context
representation framework for observing and manipulating the actual state of the plat-
form. This context representation framework is developed in a separate development
project called EveREST. This section presents briefly the EveREST framework, followed
by the details of different modules and tools proposed by Rondo framework.

Both of these projects are based on OSGi' and Apache Felix iPOJO? technologies. The
OSGi is a modular service execution platform on Java technology. As discussed previously
in 3.5.4, it is used as the basis of many deployment solutions. However, the evaluation of
existing deployment solutions in chapter 4 concluded that the OSGi lacks the architec-
tural reconfiguration support and a proper context representation. iPOJO addresses one

http://www.osgi.org
http://www.ipojo.org

http://www.osgi.org
http://www.ipojo.org

6.2. Implementation 177

of these issues, the architectural reconfiguration, by providing a service-oriented compo-
nent model on top of OSGi service and module layer. The component model proposed
by iPOJO manages the lifecycle of components, component instances, their configura-
tion, execution and reconfiguration. It provides a simple programming model, hiding the
complexity of the dynamism management [Escoffier 2013a]. iPOJO allows to configure
instances with extensible mechanisms that select and inject service dependencies. These
changes are applied transparently to the component code, at the architectural level. The
following schema displays basics of iPOJO component model (see figure 6.1).

Serwce

Reg|stry
publication
W

business ;i:;’;e iPOJO
logic POJO ------.9.--- POJO container

provided required

tracking

service service

Figure 6.1: Apache Felix iPOJO component model

The other platform requirement lacking from OSGi is the context representation,
which is addressed by the reference architecture proposed in the contributions and im-
plemented by EveREST framework.

The deployment tools proposed by Rondo framework address primarily the applica-
tions running on OSGi and iPOJO. But as it is explained later in this chapter, the archi-
tecture of these tools allow to be extended with different types of resources and thus are
not limited to this environment. This way Rondo and EveREST can be used in different
domains without much effort. Following are the different sub-projects that are developed
within Rondo framework. The diagram in figure 6.2 shows their interdependencies.

Briefly Rondo framework includes following projects:

— The rondo-core project provides the implementations of the resource and assembly
models for the deployment descriptor. It proposes a fluent API for creating these
models, which constitutes the Java DSL for the deployment descriptor.

— The deployment manager is implemented by the rondo-deployer project. This
module provides all the necessary components for handling new deployment re-
quest programmed in DSLs and, for handling the deployment and management of

applications.

178 Chapter 6. Implementation and Usage

cloner

everest-ipojo

everest-osgi | core | | command |
everest-core \ T

Everest | deployer

Extensions Resolvers

1
\

|

groovy-lang |

/'

Figure 6.2: Project Dependency Graph

— The rondo-cloner module proposes a reverse-engineering tool for extracting the
current state of a platform into a deployment descriptor. This descriptor can than
be used as a basis for reproducing the same conditions of the platform.

— Certain resource types that are already built-in the core and the deployer modules
allowing for their description and deployment. Extensions augment the descrip-
tion language and the deployment manager with other resource types.

— As expressed earlier in the proposition, there are many ways to calculate a de-
ployment plan from a given deployment descriptor. Resolvers provide different
algorithms for this important operation inside the deployment process.

— The rondo-command module proposes useful commands to the user for intro-
specting managed applications and the state of deployments, starting new deploy-
ments or cloning the platform state. It is useful for debugging purposes, rather than
a tool for production.

— The groovy-lang module provides the deployment descriptor DSL on the Groovy
language support. Groovy enable compiling and loading the code at runtime. Also
it provides a more cleaner language syntax.

This chapter explains some of these projects in more detail, starting from the EveREST
framework.

6.2.2 FEveREST

The EveREST framework implements the context representation required by the deploy-
ment manager. The reference architecture of this framework is already presented pre-
viously in the section 5.5.1. The EveREST framework is composed of a core module and

6.2. Implementation 179

several domains that extend this core. Domains provide resource representations of dif-
ferent kinds of entities. In its current state, the EveREST project contains domains for
representing the execution environment of the platform it runs on. Having runtime mod-
els of the execution is pivotal for the implementation of the deployment facilities. These
domains are OSGi, iPOJO, Java Runtime Environment and the Filesystem.

a. EveREST Core

The EveREST core provides the resource model that allows to apply REST architectural
style to context representations. It is the essential part of the framework that serves as
a bridge between domains and external applications that want to access and manipulate
the context. EveREST maintains a common access point for external applications to make
requests to resources. The EveRESTService interface allows applications to transfer
requests to resources. A Request is composed of an action, a target path and a set of
parameters. EveREST guarantees the tree structure of resources for that requests can
reach addressed resource representations. To enable this, each Resource implements
a process method, which by default delegates the request until its destination where
it is finally treated and applied.

Each resource is an object that allows to obtain and manipulate the state of the en-
tity it represents. Resources describe their own capabilities via relations they possess.
A Relation is described with a name, a target Path, an Action and a set of pa-
rameter descriptions. In addition to that, some of the resources can produce notifications
that inform applications of their state changes. EveREST allows resources to publish syn-
chronous and asynchronous notifications, which relies on OSGi Event Admin messaging
backend.

Domains provide implementations of the Re source interface for different kinds of
entities they model. Each domain must identify itself with a root resource, which identifies
the entry point to the domain. EveREST provides default implementations of the resource
model. By extending these default implementations, domain developers can inherit the
default behavior and structure of resources. This way they can concentrate on the model
of their resource representations. Each domain model must design carefully the informa-
tion they need to include, its resource structure and the relationships that resources will

have.

b. EveREST OSGi

The OSGi domain models entities found in standard OSGi platforms. The entities modeled
as resources include the configurations of the OSGi framework itself, bundles, packages,
services, Configuration Admin configurations, log entries and Deployment Admin deploy-
ment packages. Resource models also include the relationship between different types of
resources. For example, a bundle resource is linked to package and service resources it
provides and requires. The listing 6.1 shows a bundle representation in Json. Deploy-
ment packages are linked to the bundles it contains. In addition to representing the state

20

180 Chapter 6. Implementation and Usage

of these entities, some resources let manipulating the state of resources. OSGi domain
let installing new bundles and deployment packages, changing the state of bundles and
creating and updating configurations.

{
"bundle-id": 1,
"bundle-state": "ACTIVE",
"bundle-symbolic—name": "org.apache.felix.configadmin",
"bundle-version": {
"major": 1,
"minor": 8,
"micro": O,
"qualifier": ""
}I
"bundle-location": ".../org.apache.felix.configadmin-1.8.0.jar",
"bundle-last-modified": 1403801594012,
"bundle-fragment": false,
" _observable": true,
" relations": {
"Child:services": {
"href": "http://localhost:8080/everest/osgi/bundles/1/services",
"action": "READ",
"name": "Child:services",
"description": "Get the child \"services\"",
"parameters": []
}I

Listing 6.1: Resource representation of a bundle

c. EveREST iPOJO

The iPOJO domain models the entities found in the iPOJO component model such as
component factories, component instances, handlers and declarations. iPOJO domain is an
example of how an EveREST domain can extend another. Resources in iPOJO domain
contain relations to the resources of OSGi domain. The component factories and handler
reference the bundle they are defined inside. Component instances reference the OSGi
services they require and provide. It is possible therefore traverse the complete resource
graph following these cross-domain relations.

iPOJO domain allows to create, reconfiguring and destroying component instances.
The following instance representation in listing 6.2 contains relations for reconfiguring
and destroying the instance. The important difference compared to architectural recon-
figuration mechanisms is that the changes in EveREST resources are expressed as new
resource states and not actions. Each resource representing the entity decides the actions
to perform based on the current state and requested target state.

{

"name": "org.ow2.chameleon.everest.core.Everest-0",
"factory.name": "org.ow2.chameleon.everest.core.Everest",

22

26

30

34

6.2. Implementation 181

"factory.version": null,

"state": "valid",
"configuration": {},
" __observable": true,
" relations": {
"reconfigure": {
"href": ".../org.ow2.chameleon.everest.core.Everest-0",
"action": "UPDATE",
"name": "reconfigure",
"description": "Reconfigure this component instance",
"parameters": [
{
"name": "state",
"type": "java.lang.String",
"description": "The state of the component instance",
"optional": true
}I
{
"name": "configuration",
"type": "java.util.Map",
"description": "The configuration of the component instance",
"optional": true
}
1
},
"delete": {
"href": ".../org.ow2.chameleon.everest.core.Everest-0",
"action": "DELETE",
"name": "delete",
"description": "Destroy this component instance",
"parameters": []
}I

Listing 6.2: Resource representation of an iPOJO instance

d. EveREST System

The System domain represents the properties obtained from the operating system and
the standard Management Beans offered by the JVM, according to the JMX specifica-
tion [Sun Microsystems 2006b]. System and environment properties, information on the
operating system, memory and processor load and Java threads are represented as re-
sources inside the System domain. Most of these resources are for monitoring purposes
so they are read-only.

e. EveREST FS

The filesystem domain represents the local files and directories accessible by the platform.
It presents an example on how the resources representing underlying entities can be cre-
ated on demand, according to the request. Searching and creating every file and directory

182 Chapter 6. Implementation and Usage

on the filesystem is inconceivably inefficient. Filesystem domain creates the resource and
its tree hierarchy once it receives a request for a resource. The issue of loading big re-
source graphs into memory can appear in different domains. The optimization used by

filesystem domain is an example to circumvent this issue.

Before continuing to the implementation of Rondo framework, it merits noticing that
the resource models offered by EveREST domains remarkably help implementing context-
aware applications. The deployment facility provided by Rondo is an example for context-
aware application. Rondo deployment manager deploys applications according to the cur-
rent state of platform, represented by EveREST. The generic Resource interface allows
to manipulate entities through a uniform interface, without necessarily knowing how to
change resource states of different types of entities. Applications accessing context infor-
mation concentrate on the information they possess, not the actions they should apply
in order to obtain and change the state of entities. Using cross-domain relationships, it
is easier to extract the information hidden inside links between different types of enti-
ties. All these elements ease the implementation of deployment tools provided by Rondo,

which is presented in following sections.

6.2.3 Rondo Core

Rondo Core project implements the model of concepts presented in the previous chapter.
This model enables creating the deployment description that holds information about
applications, assemblies and resources. The diagram in Figure 6.3 presents this model.

Property
Tkey():String dependencies
+value():0Object | 1 * i
* ResourceReference Dependency
properties +type():Class +provider():ResourceReference
+id():String +requirer():ResourceReference
(A
- | 1 providings * T
<<interface>> *
ResourceDeclaration | '« references
+id():String
+name():String 1@
+state():Strin resources 1
o € Assembly

1 +name():String

declaration

preconditions

1]]|
ors H : 1 contains *
Condition Application ¢—>| ConditionalAssembly

+fact():Boolean +repo():List
1

* * shs 1
postconditions

conditions

Figure 6.3: Rondo Core Model

The resource concept is modeled using the ResourceDeclaration interface.
It is a common interface for all types of resources. The ResourceDeclaration in-

6.2. Implementation 183

terface defines name, 1d and st ate properties. Different resource types are defined by
extending this interface and declaring the additional properties. For example, the interface
describing the Bund1le resource type is shown in listing 6.3. The types of resource decla-
rations are extracted from such interfaces that extend the ResourceDeclaration.
The implementations of these interfaces constitute actual resource declarations. Resource
declaration implementations must build the set of properties the resource describes. It
is recommended that resource declaration implementations are developed regarding the
resource property types; inquiry, specific and constructive of the conceptual model pre-
sented in the previous chapter.

public interface Bundle extends ResourceDeclaration {

public String source();
public String symbolicName () ;
public String version();

Listing 6.3: Bundle resource type

Here in the example of bundle resource, the source is a constructive property,
whereas the symbolicName and version properties are specific properties. The
Rondo Core defines and implements resource types commonly found in an execution en-
vironment with OSGi and iPOJO: bundles, packages, services, configurations, files, com-
ponent factories, component instances, etc.

The Assembly class regroups a set of ResourceDeclarations and allows
to define dependencies between them. The type and id pair of a resource declaration
constitutes its unique identifier inside an Assembly. This means that an assem-
bly cannot contain two resource declarations with the same type and the same id. A
ResourceReference contains a type and a id for referring to a declaration. It al-
lows to define the dependencies between resources. The Dependency class represents
this relationship and enables navigation of the assembly graph.

The Application and ConditionalAssembly extend the assembly class.
An application being an assembly itself, defines the resources and their dependen-
cies that are unconditional. It contains a set of conditional assemblies, pre-conditions,
post-conditions and links to repositories. Lastly, the Condition class contains a
ResourceDeclaration and a fact, which is a boolean value.

The Rondo Core also provides generic functions for analyzing and manipulating as-
semblies. These are the functions that are not dependent to resource types such as calcu-
lating dependency closures of resources, the join operation or the relative complement
operation between two assemblies.

Finally, the core model provides a fluent API developed in Java, which constitutes the
basis of the Java DSL. It allows to code, in plain Java, application descriptions with re-

184 Chapter 6. Implementation and Usage

source declarations, dependencies, conditional assemblies and pre- and post- conditions.
The usage of the Java DSL is detailed in the usage section (see 6.3).

6.2.4 Rondo Deployer

The Rondo Deployer project implements the deployment manager, whose architecture is
presented in the section 5.5.2. It receives deployment requests of applications, manages
them continuously and executes the deployment process when necessary. The deployer
is composed of three types of service-oriented components; the resource processors, the
analyzer and the executor. The analyzer and the executor components are singleton and
static, meaning that even though they are service-oriented components, they are not re-
placeable at runtime. But resource processors are dynamic, the Rondo Deployer can be
extended with new types of resource processors, taken into account dynamically at run-
time. Service interfaces published by the components to the OSGi service registry are
noted with the «servicex.

a. Resource Processors

As described earlier in the section 5.5, the deployment managers architecture allows to ex-
tend the scope of resource types it can manipulate. A resource processor implements the
interactions with resource of a particular type. Stateful resource interactions happen in
the DeploymentParticipant andthe ResourceMonitor created by the pro-
cessor. Any other resource specific function is provided by the ResourceProcessor
implementation. The diagram 6.4 shows these interfaces and their relationships.

<<service>> creates N <<interface>>
ResourceProcessor DeploymentParticipant
+getResourceType():Class +prepare():void
+process(resource, context) :DeploymentParticipant +commit():void
+monitor(resource,context):ResourceMonitor +cleanup():void
+check(resource) :boolean +rollback():void
+contract(resource,resource):ResourceDeclaration
+implicitDependency(assembly,context):void
|
creates
v
. tifi .
<<interface>> ! notities ! <<interface>>
ResourceMonitor ResourceStateListener
+getMonitored() :ResourceDeclaration +stateChanged() :void

+open():void
+open():void

+check() :boolean
+initialFact():boolean

Figure 6.4: Resource Processor Model

The process and monitor methods of the processor are the factory methods for
creating deployment participants and resource monitors. Resource monitors are used by
the analyzer for monitoring deployed applications. Deployment participants are coordi-
nated by the executor inside deployment transactions. The implementations of resource
processor can check a given resource state whether it is fulfilled by the platform or not.

6.2. Implementation 185

It provides the method cont ract which for given two resources, returns a contracted
resource if possible. The resource contraction is possible if two resources are equivalent
or one subsumes the other. Finally the resource processor implementation can provide a
function for calculating implicit dependencies inside an assembly.

The Rondo Deployer provides implementations of the resource processors for the de-
fault resource types defined in the core. These implementations are based on the EveREST
framework.

The capabilities of the deployment manager can be augmented by providing cus-
tom resource processors for different resource types. These extensions provide the re-
source declarations for the resource types they manage. They must also implement the
ResourceProcessor interface and publish it in the OSGi service registry. Other
deployer components associate resource processors with the resource type they manage
and use them during deployment analysis and execution.

b. Analyzer

The analyzer is a singleton component that analyzes deployment requests and manages
deployed applications. It is in charge of continuously monitoring deployed applications
and calculating the assembly to deploy. It provides the DeploymentAnalyzer inter-
face as an OSGi service. New deployment requests, including new applications or updates
for existing ones are introduced into the deployment manager through this service. The
diagram 6.5 shows the implementation of the analyzer.

<<service>>
DeploymentAnalyzer

+analyze(deploymentRequest):void
+unmanage (requestName) :void
+getManagedInfrastructures():Collection

x
I

<<service>> 1 uses 1 1 manages *
€ — — — —| DeploymentAnaylzerimpl |0—>|InfrastructureManager
DeploymentExecutor T T r
1 1

discovers |
- e = - = = = = - creates

v

* uses 1 1 has
AnalysisC t

<<service>>

ResourceProcessor
+analyze(deploymentRequest):void
+handleDeployment(assembly):void
+checkCondition(condition):boolean
+checkvalidity(assembly):boolean

Figure 6.5: Analyzer Model

The analyzer assigns an InfrastructureManager to each application to
manage its continuous deployment. Infrastructure managers are provided with an
AnalysisContext, through which they can access necessary information about the
current state of the platform. The analysis context is initialized by the anaylzer with the
resource processors discovered through the OSGi registry. It provides common methods
used during the deployment analysis for checking conditions and validating assemblies.

186 Chapter 6. Implementation and Usage

It can also access the DeploymentExecutor service for requesting the deployment
of an assembly (presented in the following part of this section).

These functions provided by the analysis context are used in the analysis of the infras-
tructure managers for new deployment requests and for adapting running applications.
The InfrastructureManager is in charge of conducting analysis operations for
the application they manage. On one hand, it evaluates the deployment requests, for the
first time an application is to be deployed and later for the pushed updates. Each deploy-

ment request contains the application management information it targets.

On the other hand, once deployed, the infrastructure manager oversees the moni-
toring mechanism to trigger adaptations when necessary. The implementation of the
InfrastructureManager is depicted in the diagram 6.6.

<<interface>> <<interface>>
ResourceStateListener DeploymentListener
+stateChanged(resource):void +handleEvent(event):void

<<service>> <<interface>>
Managedinfrastructure InfrastructureMonitor
+getEffectiveAssembly():Assembly +open():void
+getDeploymentRequest() :DeploymentRequest +close():void
+getDeploymentHandles():List +getResourceMonitors():Collection
| |
|
1 1 1 contains 1 -
AbstractinfrastructureManager [@ 1 AnalysisContext
1
accesses
1
1 delegates 1 <<interface>>
InfrastructureManager - - = = > . "
AdaptationPolicy
+addDeploymentRequest(request):void -
+setAdaptationPolicy(policy):void +chooseToDeploy(assembly):void
-evaluate():void +stateChanged(resource,managedInfra):boolean
-contract():void +deploymentSuccessful(managedInfra):void
-addImplicitDependencies():void +deploymentUnsuccessful(managedInfra):void

Figure 6.6: Infrastructure Manager Model

The analyzer component starts the infrastructure manager with an initial deployment
request and later on with each new deployment request, analyzer redirects it to the corre-
sponding infrastructure manager. The infrastructure manager holds the information on
the effective assembly deployed and the chronological order of the deployment handles
(also presented in the following part of this section).

The infrastructure manager starts and maintains the monitoring mechanism for the
deployed application. It creates the ResourceMonitors using appropriate resource
processors and adds itself as listener for resource state changes.

Together with the deployment request, it is possible to set a custom adaptation pol-

6.2. Implementation 187

icy for each application by providing a class implementing the AdaptationPolicy
interface. The adaptation policy has access to the AnalysisContext of the man-
aged infrastructure. It implements the chooseToDeploy method to decide on which
contained assemblies are going to be chosen for deployment. The infrastructure man-
ager delegates deployment events and resource state changes to the adaptation policy, for
that the policy can decide whether to trigger a deployment process. The analyzer already
provides a default implementation of this interface to be used when no custom policy is
set.

c. Executor

The executor component implements the planner module of the reference architecture. It
is a singleton component that implements the DeploymentExecutor interface and
publishes it in the OSGi registry. The main method of this interface, handle, takes an
assembly to deploy as input, plans and executes its deployment. The diagram 6.7 shows
the architecture of the executor component.

<<service>>
DeploymentExecutor

+handle(assembly) :DeploymentHandle
+getCurrentHandle() :DeploymentHandle
+getCoordinator() :DeploymentCoordinator

<<service>> <_1 invokes
DeploymentResolver | |
+resolve(assembly) :DeploymentPlan 1 | creates
DeploymentExecutorimpl l— - = = =) DeploymentHandle
11 | +getPlan():DeploymentPlan
; * discovers +getState() :DeploymentState
<< >>
service € — — — — — — | lcreates +getFailure():Throwable
ResourceProcessor | +apply():void
T +dryRun() :void
1 +cancel():void
| creates 3 T
1 1
uses 1 V 1 has
|
DeploymentContext |
| +getAssembly () :Assembly] calls
| +openSession():DeploymentSession
+closeSession():void |
| +getTransaction():DeploymentTransaction |
*
[1 y
: manages <<service>>
‘l' * invokes 1 T ! DeploymentCustomizer
DeploymentParticipant 1 DeploymentTransaction +preDeployment (handle) :DeploymentPlan
+prepare() :void +postDeployment(handle):void
+commit():void +onRollback(handle):DeploymentPlan

+cleanup():void
+rollback():void

Figure 6.7: Executor Model

The handle method returns a Deployment Handle immediately after creating the
deployment plan for the assembly. As discussed earlier there are many possible imple-
mentations for creating the deployment plan. Therefore the DeploymentResolver
implementations are separated from the executor. The executor depends strictly on a
resolver service it discovers from OSGi registry for resolving deployment plans.

The executor maintains the deployment queue, which ensures that there is only a
single deployment process executing on the platform. If the resolver returns a deploy-

188 Chapter 6. Implementation and Usage

ment plan, the executor enqueues the plan for deployment. A single thread handles the
assemblies on the queue one by one in the order of arrival.

The DeploymentHandle represents a specific deployment process. It is created
with the deployment plan, the deployment context and aDeploymentCustomizer
if available. It allows to start the deployment proces or cancel an ongoing one. It also
allows to make a dry run, which tests only the prepare phase of the deployment. The
handle of a deployment enables the introspection of the process, offering the deployment
state and the failure, if the deployment failed. Possible states for a deployment process
are as the following:

- CREATED: Deployment enqueued, but not yet started.

— DRYRUNNING: Deployment running on dry mode. The execution won’t affect the
platform and prepared resources will be cleaned up.

— RUNNING: Deployment created and started running.

- UNSUCCESSFUL: Deployment finished but was unsuccessful. The
getFailure method returns the root reason of failure as a Throwable.

— SUCCESSFUL: Deployment finished and was successful.

The state changes are notified to the DeploymentListeners that can be reg-
istered to the deployment handle. For example, InfrastructureManagers are
registered to the deployment handles they requested.

The DeploymentCustomizer is a service discovered from the OSGi service
registry by the executor. It is called by the handle before, after and on rollback of deploy-
ment. The customizer can return a modified deployment plan on the predeployment
callback. Similarly, onRol1lback callback can return a deployment plan to recompen-
sate on the failure and continue the deployment with the alternative plan.

The DeploymentContext manages the deployment session as well as the de-
ployment transaction. The deployment handle prepares the deployment transaction by
creating DeploymentParticipants from corresponding processors and adding
those to the transaction according to the deployment plan. Deployment participants have
access to the deployment context for using configurations of the particular deployment.
They are coordinated by the DeploymentTransaction, as explained before in the
reference architecture 5.5.2.c.

6.2.5 Resolvers

As explained above, there are many possible algorithms to calculate the deployment plan,
thus there are different implementations of the DeploymentResolver interface. A

6.2. Implementation 189

resolver is in charge of calculating the deployment plan but also reporting that a plan
cannot be calculated in case of a cyclic assembly. Rondo proposes three functional im-
plementations of the resolver, each with different characteristics; breadth-first resolver,
depth-first resolver and the topological ordering resolver. The following chapter evaluates
the performances of these different algorithms.

a. Breadth-first Resolver

The first resolver implementation applies a breadth-first search (BFS) on the assembly
graph for constructing the deployment plan. It implements the BFS iteratively from bot-
tom of the tree, up to roots. Starting from resources without dependency, in each itera-
tion, resource declarations that all the requirements are already visited are added to the
deployment plan.

This resolver is the only one that creates parallel resource declarations to the deploy-
ment plan. However, it does not provide detailed error information if the assembly is
cyclic.

b. Depth-first Resolver

The second resolver implementation applies a depth-first search (DFS) on the assembly
graph. The search starts from an arbitrary resource declaration and drills down to its
dependencies recursively. It creates the resource order according to the preordering, i.e.
the order they are visited by the DFS. If all the dependencies are already in the deployment
plan, then the visited resource is added next in the plan. If there are still resources that are
not visited, the search continues on by choosing one of them and recursively searching
its dependencies.

Notice that this implementation choses arbitrarily resource to search in depth, mean-
ing that the order of resources is arbitrary. This is a weakness for the implementation,
because it is not deterministic. For its advantage it can detect cycles giving more detail
about the detected cycle.

c. Topological Ordering Resolver

The last resolver implementation applies a topological sort algorithm. The resolver uses
JGrapht® library for detecting cycles and calculating the topological order. The topolog-
ical ordering creates a reverse postordered resource list, meaning that resources in the
deployment plan are ordered in the inverse of the last visit order during a DFS. Instead
of handling resources in arbitrary order like the DFS, the topological ordering can lexico-
graphically order the dependencies according to ids of resource declarations.

Using the JGrapht library, the detection of cycles is more detailed. The library of-
fers a tool for detecting all of the cycles in a given DAG. With lexicographically ordered
topological sort, the deployment plan calculcated is deterministic.

*http://jgrapht.org/

http://jgrapht.org/

190 Chapter 6. Implementation and Usage

6.2.6 Rondo Cloner

The Rondo Cloner is an reverse-engineering tool, which allows to create the deployment
descriptor from an already executing OSGi platform. Using the graph of resources repre-
sented by EveREST framework it creates the Rondo model as an assembly and writes the

deployment descriptor into a file with the Java DSL.

The tool is called cloner because the descriptor written into the Java source code
can then be compiled and deployed to another platform in order to reproduce the cloned

platform (see figure 6.8).

(y.]
Rondo Cloner > bd® } Rondo Deployer
> Description (
C% in Java DSL ; E
Everest Everest
Execution Platform Execution Platform

Figure 6.8: Rondo Cloner

The cloner follows the extensible architecture of Rondo and EveREST. Resource pro-
cessors can provide a ResourceWriter interface as service which writes the decla-
rations of different types of resources into descriptor source code. As example follows,
the cloner provides writer for the core resource types, and discover other resource writer

from the OSGi registry.

6.3 Usage

This section explains the installation and usage of Rondo tools, as well as the examples for
coding deployment descriptors using Rondo DSLs. It also details how to develop resource

processors for custom resource types.

6.3.1 Installation

As expressed previously, Rondo is executed on OSGi platforms. It is developed using the
iPOJO component model and depends on the EveREST framework. The basis for an OSGi
platform that is configured with Rondo tools contain following bundles.

- Apache Felix iPOJO: iPOJO is needed both for EveREST and Rondo bundles as
they are designed and developed as several service-oriented components, presented

in the previous section.

6.3. Usage 191

— EveREST Bundles: EveREST bundles include the EveREST-core, EveREST-osgi,
EveREST-ipojo and any other EveREST domain. EveREST OSGi domain has op-
tional dependencies to OSGi Configuration Admin and Deployment Admin Pack-
age services for representing these domains.

- OSGi Event Admin: The OSGi Event Admin is used for delivering EveREST event
for resource notifications. A stable and compliant implementation such as Apache
Felix Event Admin is recommended for use.

- Rondo Bundles: Rondo bundles necessary for the deployment manager are the
core, the deployer and a resolver. The core bundle provides the model and some ab-
stract classes for developing new resource types. The deployer bundle provides the
components of the deployment manager, resource processors for standard EveREST
domains and the abstract classes useful for developing other resource processors.
A resolver implementation is required for the deployment system to function. In
addition to those, the command bundle provides OSGi console commands that in-
tegrates to the Apache Felix Gogo Runtime. These commands serve to introspect
the deployment system, managed applications and clone the platform. Finally, a de-
ployment customizer can be provided per platform for customizing the deployment
process.

- Rondo Extensions: Rondo can be extended with resource processors for different
resource types. The system extension is an example for Rondo extensions, which
depends on the EveREST domain with the same name.

- Rondo Cloner: The cloner component is packaged in a separate bundle from the
deployer. It only depends on the core and it is not required by the deployment
manager.

- Rondo Groovy DSL Bundles: The Groovy DSL support is provided by the Groovy
Script Deployer bundle. It requires the Groovy Runtime to be installed on the OSGi
platform. The usage of the Groovy DSL is explained later in this section.

— URL Handlers: The resource processors that construct resources on the platform
usually need to fetch artifacts (bundles, jars or any other files) from remote filesys-
tems or repositories. As explained earlier, Rondo does not deal with resolution of
artifacts from software repositories. Instead, it delegates this to the resource pro-
cessors capabilities to fetch artifacts. An example to this by relying on the URL han-
dlers of OSGi platform. For example, OPS4J Pax Url Handler* for Apache Maven
URLSs resolves the mvn: // . . links inside given Maven artifact repositories.

In addition to the installation of bundles to the OSGi platform, Rondo does not need
any other configurations. Once installed Rondo Deployer is ready for accepting deploy-

*http://github.com/ops4j/org.opsdj.pax.url

http://github.com/ops4j/org.ops4j.pax.url

192 Chapter 6. Implementation and Usage

ment requests written in Java or Groovy DSLs. Following sections explain how to develop
deployment descriptors using these DSLs.

6.3.2 Java DSL

The Java DSL consists of a fluent API, provided by the Rondo core. The concept of flu-
ent API is described by Martin Fowler and serves, among other things, to write a type
of DSL called Embedded DSL. An Embedded DSL is written using another programming
language for leveraging the constructs and also the already existing tools of that program-
ming language.

Rondo Java DSL is embedded inside Java. It is based on the fluent API provided by
the Rondo Core for creating application descriptions with assemblies and resource decla-
rations. Despite of being a based on a fluent API, the description language is declarative.
The descriptions written using this DSL are compiled using standard Java compiler and
need only the Rondo Core in the classpath. The compilation phase grants the syntactic
checking of Java to the descriptor. It also enables establishing a build process with other
model checking mechanisms for consistency and coherence of the coded descriptor.

Application descriptions written in Java DSL are annotated with @Application
or @Infrastructure annotations, compiled and packaged into OSGi bundles. The
deployer provides a mechanism for processing bundles, extracting the annotated classes,
creating the descriptions and transferring those to the analyzer as deployment requests.
Following are the portions of code for illustrating the usage of the Rondo Java DSL.

@Application(id = "example-application", wversion = "1.0.0")
public class ExampleApplication {

AssemblyImpl app = assembly();

Listing 6.4: Application description - Java DSL

In this example the ExampleApplication class is annotated with the Application an-
notation, specifying the identifier and the version of the application. Then the assembly
model is initiated with the assembly method.

app.resource (pckg("config—admin")
.name ("org.apache.felix.config.admin™)
.version("1.2.6"))

.resource (bundle ("icasa-bundle")

. symbolicName (name)
.version (bundleVersion)
.state ("ACTIVE")
.source("mvn:fr.liglab.adele.icasa/"+name+"/"+version))

Listing 6.5: Resource Declaration - Java DSL

6.3. Usage 193

Once the assembly model is initiated, the resources can be added by calling
resource method, which takes a ResourceDeclaration as parameter. In this example
resources of configuration, package and bundle are added to the assembly.

.resource (Bundle.class, "icasa-bundle")
2 .dependsOn (Package.class, "config-admin™)
.resource (Configuration.class, "conf")
.dependsOn (Bundle.class, "icasa-bundle");

Listing 6.6: Resource Dependencies - Java DSL

Dependencies between resources are added to the assembly by calling its resource
method, which in this case takes a resource type and a resource id. It returns a
ResourceReference, to which dependencies are added calling the dependsOn
method.

app.when (condition (configuration ()
.pid("org.ops4j.pax.url.mvn"))
.isTrue())
5 .then("appfragment", appFragment ()) ;

Listing 6.7: Conditional Assembly - Java DSL

This illustrates how to add conditional assemblies to the assembly. The when
method allow specifying the condition set of the conditional assembly. Conditions
are created using the condition method, which creates a condition with the given
ResourceDeclaration. The condition designates the fact of the condition by
isTrue or isFalse methods. Finally, the then method adds the assembly in its
parameter to the main assembly.

public Assembly appFragment () {
return assembly ()
3 .resource (zigbeedevice ("discovery"))
.resource (zigbeedevice ("factories"))
.resource (zigbeedevice ("importer"))
.resource (zigbeedriver ("api"))
7 .resource (zigbeedriver ("impl"));

Listing 6.8: Method returning an assembly - Java DSL

This example shows the appFragment method called in the conditional assembly
of the previous example. The descriptor code is still standard Java, which allows includ-
ing other libraries to the code, possibly referring to other assembly descriptions. In this
case, the method returns an assembly including five resources that are constructed using
different methods.

—_

21

194 Chapter 6. Implementation and Usage

6.3.3 Groovy DSL

The descriptors written in Java DSL need a compilation phase and are introduced to the
deployment manager as OSGi bundles. Groovy DSL, on the other hand, is written as
scripts and compiled directly on the execution platform. The syntax of the Groovy DSL
is detailed previously in the section 5.6.

Scripts written in Groovy DSL are saved into files with . rondo extension. The
Groovy Script Deployer component handles these files, executes the script, which creates
deployment requests. By default, the script deployer monitors a directory in the local
filesystem for changes and each time there is a change, the deployment description is
reconstructed and transferred to the analyzer. Similarly to the Java DSL, these scripts
leverage Groovy language. It is possible to create methods and assign variables. The
following example shows a simple application written in Groovy DSL.

package fr.liglab.adele.rondo

def infra = assembly "icasacommon", false, false, {
resource icasacommon { bundle
"bundle-symbolic-name’ "fr.liglab.adele.icasa.common"
state "ACTIVE"
"bundle-version’ "1.2.6.SNAPSHOT"
source "mvn:fr.liglab.adele.icasa/common/1.2.6-SNAPSHOT"

application id:"example-appliction"”, name:"example",
version:"0.0.1", wvendor:"ozan", {

with infra
resource dashboard { bundle

"bundle-symbolic—-name’ "fr.liglab.adele.icasa.dashboard.web.instance"

state "ACTIVE"
"bundle-version’ "1.2.6.SNAPSHOT"

source "mvn:fr.liglab.adele.icasa/dashboard.web.instance/1.2.6-SNAPSHOT"

Listing 6.9: Application example - Groovy DSL

Moreover, the script deployer handles together different scripts that have the same
package name.

6.3.4 Resource Processor Development

The deployer project already provides resource processor implementations for common
resource types in the context of this work. As expressed earlier Rondo tools are extensible
with new resource types. Development of these resource processors is crucial for the char-

acteristics guaranteed by the deployment process, notably the determinism and idempo-

6.3. Usage 195

tence. Therefore, it is also necessary to help developers program new resource processors
and integrate those to development tools provided by Rondo. This section demonstrates
resource processor development by presenting two use cases: the fragment and parallel

resource types.

a. Fragment Resource Processor

Fragments are special type of bundles in the OSGi specification. They are attached to one
or more host bundles, as part of the package resolution. The framework appends defi-
nitions of the fragment to the host bundle, before the resolution of the host. Fragments
are therefore treated as part of the host when loading classes or accessing other Java re-
sources. Contrary to the standard bundles, fragments are never activated but only resolved
if and only if they are attached to a host.

This mechanism enforces a constraint on the deployment of fragments. The host of
the fragment must already be installed before the fragment, therefore the fragment de-
pends on its host. But even though it is not explicit, in most of the cases the host bundles
resolution depends on the existence of fragments. Indeed this results in a cyclic depen-
dency system between fragments and their host bundles. A general practice for deploying
fragment bundles is to install them in two steps. Host bundles are installed without re-
solving before the installation of fragments. Then once the fragments are installed and
attached to the hosts, hosts are resolved and started.

The cyclic dependency poses a problem for the deployment plan resolution in Rondo.
But above all the previous general practice is not applicable neither. Notice that the Rondo
deployment descriptors declare the expected, final state of resources, not the deployment
process. The deployment process and the actions it contains are inferred from that target
state. Therefore describing the previous process results in creating two resource states
for the host bundle such as INSTALLED and ACT IVE, which are obviously conflicting.

This is why the development of fragment resource processor is an important use case
for understanding the expected state described by resource declarations and the idempo-
tence of resource processor implementations. The solution implemented in the Rondo
Deployer project is presented here.

The fragment resource declaration is similar to the one of bundles, describing the
symbolic name, the version the state and the source of the fragment. In addition to that,
fragment declaration includes a declaration of the host bundle. The following example
shows an example of fragment declaration.

fragment ("slf4j.simple")
.source ("mvn:org.slfdj/slfdj-simple/1.6.6")
.symbolicName ("org.slf4j.simple")
.version("1.6.6")
.state ("RESOLVED")
.host (bundle ("s1f4j-api")

196 Chapter 6. Implementation and Usage

.source ("mvn:org.slf4j/slfdj-api/1.6.6")
.symbolicName ("org.slf4j.api")
.version("1.6.6"));

Listing 6.10: Fragment Declaration Example

The deployer project provides the AbstractDeploymentParticipant ab-
stract class for facilitating deployment participant development. The abstract class gives
access to the involved resource declaration and the deployment context. The deploy-
ment participant for fragment resources extend this class and implement the methods
for participating to the transaction. The following resumes the implementation of these
methods:

- prepare: The prepare method first checks whether the given resource declara-
tion is well-formed or not. In case of fragments, this is done for both the fragment
and the host definition. Then it checks if in the current state of the platform, one or
more resources correspond to this declaration. If found it backs up the state repre-
sentation of these resources. In case of fragments, the state of the fragment and the
host bundle, and their source (using the bundle-location property) are backed up.
This is one of the reasons why deployment participants are stateful objects. If any
resource exists corresponding to the declaration and the given declaration is not
constructive, the prepare throws an exception. If the declaration is constructive, it
prepares necessary files or configurations for constructing the resource in the next
phase. For fragments and bundles, the prepare method downloads the bundle
file and checks if the manifest information corresponds to the given declaration.

— commit: The commit method is in charge of making the changes on resource
states, if necessary, and checking if these changes are applied. Fragment deploy-
ment participant first makes sure the host bundle is at least installed, and then
proceeds with installation of the fragment bundle. If any bundle installations are
needed it uses the files and configurations prepared in the prepare phase. Finally, it
makes a last check of the state of resources.

- cleanup: The cleanup method is called if the transaction fails after or during the
prepare phase. In case of fragments, it makes sure the downloaded and prepared
files are deleted.

- rollback: The rollback is called if the transaction fails during the commit phase.
It makes best effort to restore the backed up state of resources. In case of bundles and
fragments it reinstalls the bundle to the OSGi with the backed up file, if necessary.

The deployment participant code involves a lot of error handling. Fragment resource
processor leverages the EveREST framework for gathering the state and manipulating the

6.3. Usage 197

bundles. This results in uniform interfaces and exception handling in the implementation
of deployment participant.

For the implementation of resource monitors, another abstract -class,
AbstractResourceMonitor is provided by the deployer project. The im-
plementations that extend this class implement the open, close and check
methods. As explain earlier in this chapter, check method is also implemented by the
resource processor to check whether a declaration is true for the current state of the
platform. The open and close methods start and end the monitoring of the resource
state. The resource monitoring implementation must observe the resource state and calls
the stateChanged method provided by the abstract class to notify the state change.
For some resource types the push notifications can be obtained from the platform, but
for others the resource monitor should poll the resource periodically and for controlling
if the state has changed. For instance, the EveREST framework sends notifications for
state changes of any bundle type, including fragments. But such notifications are not
available for system properties in Java Runtime Environment.

b. Parallel Resource Processor

Depending on the resolver that constructs the deployment plan, Rondo deployer is capable
of running resource participants in parallel. This is made possible by implementing a
parallel resource processor. A parallel resource declaration is constructed with several
other declarations. The resource processor holds a thread pool for executing participant
tasks in parallel. The size of the thread pool can be configured according to the platform
machine, for example related to the number of processors. At each transaction phase, the
parallel deployment participant coordinates the participants it contains and invokes their
corresponding actions (see figure 6.9). The consequences and advantages of executing
some of the deployment actions in parallel are evaluated in the following chapter.

parallel resource
deployment deployment
participant participant

Figure 6.9: Parallel Deployment Participants

198 Chapter 6. Implementation and Usage

6.4 Conclusion

This chapter presented the important points about the implementation of the refer-
ence architecture, the Rondo deployment tools and the EveREST context representa-
tion framework. Both Rondo and EveREST are available as open source in GitHub
respectively at https://github.com/AdeleResearchGroup/Rondo and
https://github.com/ow2-chameleon/EveREST.

The EveREST project implements an extensible framework for representing context,
adapted for dynamic environments. This chapter shows how EveREST framework can
be extended for representing different types of context entities from the platform. Using
the context representation provided by EveREST, Rondo project implements various tools
for deployment facilities. This chapter studies in detail how these tools are implemented
and arguments different implementation choices. These tools are equally extensible for
taking into account different resource types available on a deployment site. This chapter
also presents guidelines for extending the capabilities of Rondo tools by implementing

resource processors.

Rondo and EveREST serve in the following chapter for testing and validating the con-
tributions of this thesis.

The following table (see table 6.1) indicates the lines of code and lines of test code in
each of the projects developed for Rondo deployment tools.

https://github.com/AdeleResearchGroup/Rondo
https://github.com/ow2-chameleon/EveREST

6.4. Conclusion

199

Table 6.1: Lines of code in Rondo project

Project | LOC | LOTC |
Model 136
Rondo Core Implementation 1219 329
Utils 135
Analyzer 494
Executor 443
Transaction 278
Rondo Deployer Resource Processors 2826 511
Utils 1821
Other 516
Rondo Cloner Cloner Sl 108
Writers 385
Rondo Command 270 -
Rondo Groovy Lang 550 44
Simple 59
Resolvers Recursive 48 92
Jgrapht 53
Extensions System 173 s
Framework 289 65
Shell 776
Descriptor Examples ICASA 7 -
Application 42
Infrastructure 42
Total 11648

Chapter 7

Validation

“To understand is to perceive patterns. ”

— Isaiah Berlin

Contents
7.1 Introduction oo i it e 202
7.2 ResolverEvaluation 202
7.3 Performance Evaluation 204
7.3.1 Test Application, 205
732 TestedPlatforms 206
733 TestResults& Remarks 207
7.4 Use of Rondo in Various Deployment Scenarios 209
741 1CASAPlatform 209
742 Wisdom Framework 214
7.5 Dynamic AdaptabilityinRondo 218
7.5.1 Application Adaptation L oL 218
752 Framework Update 220

7.6 Conclusion 222

202 Chapter 7. Validation

7.1 Introduction

The previous chapter describes the implementation details of the context representation
framework, Everest; and the set of deployment tools, which implement the main contri-
butions of this thesis, called Rondo. The previous chapter also gives instructions on how
to use principal functionalities of Rondo and how to extend it with different resource

processors.

This chapter provides validation for the deployment capabilities of Rondo framework.
First, in the next section, different resolver implementations are tested by calculating de-
ployment plans for different assemblies. Secondly, the chapter continues by presenting
different use cases in which the Rondo deployment manager is tested. Presented tests and
evaluations focus on validating four properties of Rondo framework:

— Performance and overhead acceptability: The comparative acceptability of de-
ployment process performance and the overhead on the idle platform.

— Deployment versatility: The ability to be used in different deployment scenarios,
including deployment of platform technical services and applications.

— Error handling and diagnosis: The reaction and flexibility offered in face of er-
rors during the deployment process.

- Dynamic adaptability: The deployment manager’s ability to adapt the deployed
applications dynamically according to the defined variability.

7.2 Resolver Evaluation

In the section 6.2.5 of the previous chapters presented three different implementations
of resolver components!. To recall briefly, the deployment plan designates the order of
which the deployment actions are applied by the deployment manager. The calculation
of this deployment plan is therefore a key step in the deployment process. The resolver
is in charge of resolving the graph of the assembly and producing a deployment plan
as a result. This first section presents the results of the performance tests performed in
order to evaluate and compare these different algorithms for deployment plan resolution.
These performance tests are executed on a MacBook Pro featuring 8 GB of RAM and an
Intel 2.53Ghz Core 2 Duo processor. It runs OS X 10.9.4 64-Bit operating system and Java
HotSpot version 1.8.0_05, 64-Bit Server virtual machine.

The resolver performance tests evaluate the execution time of deployment plan reso-
lution of different assemblies. The set of test assemblies is a mixture of assemblies that are
used for deployment; noted by Shelbie, iCASA and iCASA & Wisdom and other assemblies

!components which provide resolver service for calculating the deployment plan of assemblies

7.2. Resolver Evaluation 203

that are obtained from generated graphs. For instance, OW2 Shelbie? console is a textual
shell implementation for OSGi platforms. iCASA and Wisdom frameworks are introduced
later in this chapter. The assemblies Graph-150, Graph-300, Graph-487 and Graph-8oo are
generated randomly conforming to directed acyclic forest graphs. They are generated by
determining a fixed node size, in order to evaluate the performance changes of resolvers.

The table 7.1 shows the properties of these assemblies and execution times of three
resolvers; depth-first search (DFS), topological sorting (Topsort) and breadth-first search
(BES). The mean and median of execution times, measured in milliseconds, are calculated
as the result of 1000 iterations of resolution.

Table 7.1: Deployment plan resolution comparison

Assembly # of # of DFS Topsort BFS

nodes edges median | mean median | mean median mean
Shelbie 54 94 0 0.13 3 3.09 0 0.5
Graph-150 150 250 0 0.32 7 8.20 2 2.10
Graph-300 300 453 1 0.64 12 13.17 4 5.03
Graph-487 487 680 1 1.06 21 23.43 7 8.36
1CASA 487 879 1 1.20 23 24.57 7 7.33
Graph-800 800 1415 2 2.02 46 52.73 19 20.30
iCASA & Wisdom 1036 2177 3 3.26 78 91.05 39 44.52

The chart in the figure 7.1 summarizes the comparison of three resolver algorithms.

Deployment Plan Resolution
W DFS mTopsort M BFS
100
90
80
70
60
50
40

time (miliseconds)

30
20
10

Shelbie Graph-150 Graph-300 Graph-487 iCASA Graph-800 iCASA+Wisdom
(54 - 94) (150 - 250) (300 - 453) (487 - 680) (487 - 879) (800-1415) (1036-2177)

Assembly (# of nodes - # of edges)

Figure 7.1: Deployment Resolver Performance Comparison

All three of the algorithms produce acceptable calculation times, even for large as-
semblies containing thousand nodes. But otherwise, they fare differently according to

20W2 Shelbie: http://shelbie.ow2.0org/

http://shelbie.ow2.org/

204 Chapter 7. Validation

the properties of the assemblies they receive. The DFS resolver implementation is by far
the fastest among them. However, it produces sequential deployment plans. The BFS re-
solver, which produce parallel deployment plans, is slower than the DFS. The resolution
times increase linearly with relation to the size of the assembly. The Topsort resolver im-
plementation uses an external library, Jgrapht. This explains the higher execution times,
even for the smallest size assemblies, because the assembly models are transformed into
the Jgrapht graphs before running the topological sorting. But once this overhead is ac-
cepted, it produces acceptable resolution times.

Despite its secondary place in assembly resolution, the following tests mostly use the
BFS resolver implementation. The foremost reason for this choice is its ability to produce
deployment plans that enable parallel deployments. As the following section shows, exe-
cuting deployment actions in parallel greatly improves the execution time of deployment
processes. Furthermore, in platforms where parallel execution of deployment actions is
not favored, the BFS or Topsort resolver implementations are still a viable choice. In the
remaining sections of this chapter, the comparison between parallel and sequential de-
ployment plans are displayed through BFS and Topsort resolvers.

7.3 Performance Evaluation

The goal of this section is to evaluate the performance acceptability of Rondo with com-
parison to other currently used deployment methods on OSGi™ platforms. This evalua-
tion comprises a comparison of metrics for the deployment platform and the deployment
process. The metrics for the deployment platform measures the adoption cost of the de-
ployment tool. These metrics are:

— Start-up duration: The time it takes from the launch event of the deployment

platform until all of the resources are initialized and fully operational.

— Idle memory consumption: The memory consumption of the platform while it is
not active, i.e neither a deployment process nor any application is executing on the
platform.

On the other hand, following metrics measure the performance of the deployment
process:

— Deployment process duration: The time it takes from the request for deploying a
test application until all of the resources of this application are fully operational.

— Deployment process CPU consumption: The maximum CPU consumption during

the deployment process.

7.3. Performance Evaluation 205

7.3.1 Test Application

The deployment process is evaluated by deploying a test application that can execute on
all of the platforms. This test application is a simple service-based application that is
very common on OSGi platforms. The implementation uses iPOJO for defining compo-
nents, instances and providing OSGi services. It is composed of a library module, an API
module, a support component, a server component and a client component. The appli-
cation includes a single non-conditional assembly that is showed in the graph depicted
in the figure 7.3.1. To give an order of scale, this assembly declares 20 resources and 23
dependencies.

() : @@@ ()
A

Figure 7.2: Assembly Graph of the Test Application

The API module contains the service contracts, which are defined separately for a
better decoupling between client, server and support components. The server module
depends on the library for providing the main service of the application, with the help
of at least one or multiple support services. This exemplifies two kinds of dependencies
in the OSGi platforms, package level-dependency and service-level dependency. The be-
havior of the server in delivering its service changes according to the number of support
services it has in its disposition. Note that in the assembly graph, two initial instance
resources are declared for the support component. However, the server instance depends
on the existence of a support service. Lastly, the client component requires a service
provided by the server to be active and calling the server.

206 Chapter 7. Validation

7.3.2 Tested Platforms

As explained before, the performance acceptability tests involve comparing multiple plat-
forms with different deployment methods. Following are the brief descriptions of the
platforms tested in the context of this comparison:

Baseline framework - OW2 Chameleon Core: The test baseline is an OSGi frame-
work based on the Apache Felix implementation, version 4.4.0, structured with the
open source project OW2 Chameleon Core >. It simplifies the distribution of cus-
tomized OSGi based platforms. It includes a number of core technical services such
as interactive console, logging backend and OSGi Configuration Admin support.
Other platform configurations in this list are built upon this baseline platform.

Deployment Admin Package: The Deployment Admin Package is a specification first
included in the OSGi specification version 4.1 [OSGi Alliance 2007] for managing
runtime configurations of an OSGi platform. It is mentioned and described sev-
eral times in this document. The platform configuration for testing deployment
admin package deployment includes an implementation of the Deployment Admin
service and the Autoconf resource processor that serves processing OSGi Config-
uration Admin configurations from files. These implementations are open source
and provided by akquinet AG*.

Apache Felix File Install: The Apache Felix File Install is an utility for watching direc-
tories in the filesystem for managing the runtime configurations of an OSGi plat-
form. The content found in the watched directory constitutes the configuration of
the platform. It is capable of processing and installing OSGi bundles and creating
Configuration Admin configurations. File Install also allows adding new listeners
on the watched directory for handling custom artifact types. Mostly because of
its simplicity File Install is a widely used tool for conducting deployments in OSGi
platforms. This test configuration includes the Apache Felix File Install version
3.2.6.

Everest: The context representation framework Everest doesn’t conduct deployment
processes but is included in this test in order to evaluate the footprints of Ever-
est and Rondo frameworks.

Rondo - Topsort: The platform configuration includes Rondo deployment manager with
the Topsort resolver implementation and the system extension, without the Groovy
Language extension.

Rondo - BFS: The last platform configuration is same as the previous one, except that it
uses the BFS resolver implementation. This serves to recognize the effect of paral-
lelization of deployment actions on deployment process duration.

30OW2 Chameleon - Core: http://ow2-chameleon.github.io/core/snapshot/
“Deployment Admin: https://github.com/akquinet/osgi-deployment—-admin

http://ow2-chameleon.github.io/core/snapshot/
https://github.com/akquinet/osgi-deployment-admin

7.3. Performance Evaluation 207

Note that these platforms are instrumented for being able to execute measurement
tests. For measuring start-up and deployment durations, platforms are instrumented in
order to generate and capture events that signal the start and end of the durations. Start-
up times are measured by modifying the baseline framework for registering the events of
platform start and of bundle and service stability. Likewise, the durations of deployments
are registered using an iPOJO component that tracks an event for the start of the deploy-
ment and measures the time until the bundle and service stability. For low level metrics
such as CPU consumption and memory usage, YourKit profiling tool is used.

7.3.3 Test Results & Remarks

The table 7.2 presents the results of conducted comparative tests. All the performance
tests are executed on a MacBook Pro featuring 8 GB of RAM and an Intel 2.53Ghz Core
2 Duo processor. It runs OS X 10.9.4 64-Bit operating system and Java HotSpot version
1.8.0_05, 64-Bit Server virtual machine. It is useful to recall that this JVM uses G1 garbage
collector [Detlefs 2004] as default and does not have a PermGen memory space.

In the context of these tests prepared platforms are launched 10 times (following a
3 times warm up period) in order to measure the start-up durations. The idle memory
consumption shown is the sum of heap and non-heap used memory. The profiling tool
is used to measure the memory consumption at the 1-minute mark from the launch and
initialization of the framework, when there is no activity after a full garbage collection.
Then the test follows by deploying the test application and measuring the time between
the start event of the deployment and the moment there is no more bundle and service
activity in the framework. In the case of Rondo, the default deployment customizer of
Rondo provides the beginning and the end of the deployment process. During the de-
ployment process, the CPU consumption is measured using the profiling tool by tracing
the CPU percentage with 1-second intervals.

Table 7.2: Test application deployment comparison

Platform S?::t;)i Idle qui)r;lory DIe)I:JII(‘)ZItIillennt Max. CPU %
(ms) (ms)
Baseline - Chameleon Core 2694 35.87 - -
Deployment Admin Package 2978 37.74 1034 23
Apache Felix File Install 2867 36.49 1063 51
Everest 3549 40.65 - -
Rondo - Topsort 5876 46.85 1094 65
Rondo - BFS 5885 45.89 899 72

The results show that start-up durations and memory consumptions follow the com-
plexity of the deployment method. The Deployment Admin service and the Apache Felix

>YourKit: http://www.yourkit.com/

http://www.yourkit.com/

208 Chapter 7. Validation

File Install introduce small overhead on start-up and memory compared to the baseline.
The overhead of Rondo (combined with Everest framework) is higher but still would not
be significant in a larger system.

The deployment durations and CPU consumption of tested solutions are close but
comparable. The chart in figure 7.3 shows the distribution of deployment durations in
milliseconds. The deployment process of Deployment Admin service is slightly faster
and consumes less CPU than the File Install and Rondo with Topsort resolver. This can be
explained by the process of bundle activation. Both the Deployment Admin and the File
Install employ a two-step process to handle OSGi bundles. First they call the OSGi frame-
work to install the bundles that constitute the test application. At each bundle install, the
OSGi framework analyzes the dependencies of bundles and tries to resolve them. Once
all bundles are installed, Deployment Admin proceeds by activating all resolved bundles.
File Install, however, gets notified each time a bundle is resolved, and tries to activate the
bundle. This explains why all deployment experiments with Deployment Admin result
concentrated times. With comparison, the installing and activation of File Install depends
on the order the files are copied to the watched directory.

Deployment Duration

Average

1500

1300

time (ms)
S
o

==

900

700

Deployment Admin File Install Rondo - Topsort Rondo - BFS
Deployment Method

Figure 7.3: Deployment Execution Time Distributions

In case of Rondo deployment process, the dependencies are already declared inside the
deployment descriptor and a deployment plan is prepared by the resolver. The Topsort
resolver produces sequential deployment plans, in which only one deployment action is
executed at a time. This explains the longer deployment duration of Rondo with Topsort
resolver. However, Rondo using the BFS resolver produces faster deployments because,
the resolver produces deployment plans that contain parallel deployment actions. In turn
Rondo executes several deployment actions at the same time. As the deployment plan al-
ready takes into account the dependencies between resources, the dependency resolution
of bundles conducted by OSGi framework is much faster.

7.4. Use of Rondo in Various Deployment Scenarios 209

To conclude this section it is useful to compare the development effort for creating
descriptors of each deployment method. The table 7.3 compares the number of develop-
ment files, the number of deployment files, lines of code and lines of configuration need
for describing and deploying the test application with each deployment method.

Table 7.3: Test application development efforts

Deployment Method # oﬁfl;isev. # (glgsep' LOC LOConf
Deployment Admin Package 3 1 0 64
Apache Felix File Install 2 7 0 2
Rondo 2 1 112 46

The first thing to notice is that File Install method for deploying applications is merely
copying the bundles and configurations in a watched directory. So there is no deployment
descriptors only bundles and configurations for creating instances. The Deployment Ad-
min service uses special archive files called deployment package for packaging the bun-
dles and other artifacts. Deployment packages contain a manifest that lists their content.
This manifest is read and interpreted at runtime by the deployment agent. For creating
the deployment package for the test application, the same bundles and configurations are
used. An Apache Maven project uses a plugin for creating the deployment package. As
for Rondo, the deployment descriptor is coded using the Java DSL, compiled and pack-
aged as an OSGi bundle. The lines of codes corresponds to that of the Java descriptor and
the lines of configurations are for the Apache Maven project that creates the bundle. A
noticeable trait is that even for a small sized application, the Rondo descriptor contains
declarations for resources and dependencies; therefore it requires more lines of code.

7.4 Use of Rondo in Various Deployment Scenarios

This section presents several use cases in different projects where Rondo is used for
deployment. Rondo is integrated into execution platforms operating in pervasive and
web domains. The primary use cases are first to deploy the technical services that
constitute the platform and then on top of that, deploy several applications. Here
two projects, iCASA and Wisdom Framework, are presented. Additionally, Rondo is
tested on deployment of an Internet of Things gateway platform® through the BUTLER
project [FP7 BUTLER Project 2013].

7.4.1 1CASA Platform

Along with the development of Rondo and Everest frameworks, the work carried out dur-
ing this thesis and presented in the previous chapters contributed in the implementation

*http://open-platforms.eu/library/butler—smart-gateway/

http://open-platforms.eu/library/butler-smart-gateway/

210 Chapter 7. Validation

of a project for pervasive computing. The project, called iCASA, provides a development
and execution environment of pervasive applications, specialized in home automation.
iCASA is composed of two main parts: a simulator for home automation environment
and an execution platform for applications.

iCASA execution platform supports the deployment and execution of home automa-
tion applications by providing the following:

— Mechanisms for discovering and reifying physical devices as services using
RoSe [Bardin 2010].

— Technical services, such as service for task scheduling, recording user preferences
and persisting application data.

— Application development model, based on service-oriented components. In prac-
tice, OSGi and iPOJO frameworks are the technical basis for iCASA platform, and
this will allow us to directly use our proposal.

— Analysis and introspection tools used to manage running applications and detect
any deficiencies.

- A Web interface for viewing and administration of the platform and the applications
and services that it is composed of.

r

Figure 7.4: iCASA Home Simulator

The simulation environment, on the other hand, is used to test one or more appli-
cations by imitating a realistic pervasive runtime environment. The figure 7.4 shows an
example of such a simulated environment that is represented by this user interface. The

7.4. Use of Rondo in Various Deployment Scenarios 211

home context and devices shown in this figure are simulated for testing the LightFol-
lowMe application. To achieve this, iCASA provides:

— A virtual home automation environment, representing a house or apartment. This
environment includes a physics engine to measure certain characteristics of the
environment (light, temperature, noise, etc.). This virtual world also allows to rep-
resent the people, their actions, their movements, etc.

- A wide variety of devices that may be simulated and displaced placed in the virtual
environment as described above. These devices can directly affect the virtual en-
vironment by changing its physical characteristics. For example, a simulated lamp
which is lit will increase the brightness of the simulated room in which it is placed.

— A Web interface simulation, which represents graphically the simulated environ-
ment, the devices that are present and those who inhabit it. This interface allows to
interact directly with the simulated environment by adding new devices, moving
users or by activating certain features.

- A scripting language for creating simulation scenarios that tests applications on
different combination of configurations.

a. Platform Deployment

As expressed above, the first deployment scenario is the deployment of the platform itself,
i.e the technical services that constitute the iCASA framework. The tested platform con-
figuration of iCASA framework version 1.2.6-SNAPSHOT is based on OW2 Chameleon
Core and constituted of 107 OSGi bundles. The infrastructure assembly coded in Rondo
Java DSL defines 526 resources (including bundles, packages and files) and 1209 depen-
dencies.

The table 7.4 presents comparative results of this deployment. Along with the Base-
line framework and the Rondo platform configurations, the table compares a platform that
contains iCASA framework (iCASA on the table) and a platform of iCASA with Rondo
(iCASA + Rondo). The deployment duration indicates the deployment of iCASA plat-
form on top of Rondo using Topsort and BFS resolvers. As in the previous example these
durations are the arithmetic mean value of 10 deployment times.

As shown on the table, Rondo on top of the iCASA framework causes a slower plat-
form start-up, due to the number of bundles and component instances Rondo brings to
the platform. From the comparison of idle memory consumptions, an apparent result is
that the memory overhead of Rondo is increased but not significantly. This increase is
mostly due to the size of the system that is represented by the Everest framework. As
for the deployment durations, they reveal the difference between parallel and sequential
deployment processes.

212 Chapter 7. Validation

Table 7.4: iCASA Framework deployment measurements

Start-.up 1dle Memory Deployr'nent
Platform Duration Duration
(Mb)

(ms) (ms)
Baseline - Chameleon Core || 2694 35.87 || -
Rondo - Topsort 5876 46.85 20417
Rondo - BFS 5885 45.89 11213
1CASA 7585 81.41 -
iCASA + Rondo 8872 95.16 -

The assembly that describes the iCASA framework is obtained using the Rondo Cloner
(see previous chapter 6.2.6) on an already executing iCASA platform. The Rondo Cloner
generates a deployment descriptor that can be edited and build into deployable application
descriptions.

b. Application Deployment

The second deployment scenario is the deployment of modules and applications on top of
the platform. Leveraging the modular architecture enabled by the OSGi, iCASA project
disposes several technical service modules that can be included into the framework dy-
namically at runtime. In addition to these modules, there is a collection of pervasive
applications developed using the home context provided by iCASA.

Before the integration of Rondo, iCASA project experimented with different deploy-
ment methods for the installing technical service modules and applications. The first and
basic deployment method was using Apache Felix File Install for inserting OSGi bundles
and configurations into the platform. More recently, the iCASA project integrated a cus-
tom deployment process, which extends the default Deployment Admin Package process.
Inside this process, every module is packaged as a deployment package — an archive file
including the artifacts and a special manifest that lists the content of the package. Using
deployment admin package had several consequences on the life cycle of the project:

— Indevelopment, each module has a Apache Maven project that includes configura-
tion artifacts and builds the deployment package by gathering executable artifacts
(i.e. included bundles). The development of these modules was particularly chal-
lenging. First, the deployment admin packages do not contain any information for
specifying relations between included artifacts. This leads to invent custom mech-
anisms for circumventing this issue. Developed module often logically extended
existing modules. To resolve this issue, the development team invested in develop-
ing a build process that included the contents of the extended deployment packages
inside the new one.

- In deployment, the default deployment agent of deployment admin package is ex-
tended with a manager that extends and oversees the deployment process. Firstly,

7.4. Use of Rondo in Various Deployment Scenarios 213

the process is extended with a resource processor that handles configuration arti-
facts. These artifacts are extracted from the archive and treated as in the case for
File Install. Secondly, because the deployment description doesn’t include any rela-
tion between artifacts, often the installed bundles were not resolved and configured
at first try. To overcome this issue, the manager re-invoked the deployment pro-
cess after a predefined timeout, in order to retry the installation of the deployment
package.

The utilization of Rondo for deploying modules and application on iCASA was
straightforward. All types of resources needed for these modules — bundles, packages,
components, instances, configurations, files — are already included in Rondo Core. Then
all that is required is to program the deployment descriptions in Rondo DSL.

Here is a selection of technical service modules and applications that are tested for
deployment utilizing Rondo:

Zigbee Module: This module regroups necessary APIs, device proxy implementations,
communication and discovery mechanisms for integrating Zigbee devices into
iCASA framework. It includes nrjavaserial’ library for serial communication
through USB port, where the Zigbee radio dongle is plugged.

Philips Hue Module: This module includes Philips Hue SDK® and the discovery mech-
anism for importing Philips Hue lamps into iCASA framework as OSGi services.

Jersey Module: This module includes Jersey’ core and client bundles for importing and
exporting RESTful Web Services as OSGi services into iCASA framework.

Gas Detection Alarm Application: This application uses gas sensors present in the
home environment (simulated by iCASA) for detecting increased levels of CO, con-
centration in the air. When the concentration threshold is breached it triggers an
alarm using the lighting system (lamps, etc.). In addition to that it sends an e-mail
report to a designated person. For this it includes a E-mail API and Service.

Light Follow-Me Application: This application uses motion sensors present in the
home environment (simulated by iCASA) for detecting presence in rooms. It regu-
lates the lighting system inside rooms by turning on the lights for occupied rooms
and turning off the lights when the room is no longer occupied.

Actimetrics Application: This application registers the occupation rate of rooms and
sends the gathered data to a remote server using a RESTful Web Service. It includes
the Jersey Module for importing the remote Web Service and sending the actimetry
data.

"Nrjavaserial: https://github.com/NeuronRobotics/nrjavaserial
$Philips Hue SDK: http://developers.meethue.com/
Jersey: https://jersey.java.net

https://github.com/NeuronRobotics/nrjavaserial
http://developers.meethue.com/
https://jersey.java.net

214 Chapter 7. Validation

The following table (7.5) presents the comparison of development efforts between De-
ployment Admin package and Rondo. For Deployment Admin, the table indicates the
number of artifacts included inside the deployment package and the number of lines of
configuration for Apache Maven project. Rondo deployment descriptions of each module
and application are developed using Groovy DSL. The table shows the number of lines
of Groovy code developed and the number of resources and dependencies of resulting
assembly.

Table 7.5: iCASA Module deployment descriptor development efforts

Deployment Admin Rondo - Groovy
Hodule arrif(;fcts LOConf resfn(:fces dep:n(:ifency Loc
Zigbee 7 66 36 58 56
Philips Hue 3 46 33 40 21
Jersey 3 46 54 65 29
Gas Detection 4 66 25 34 30
Light Follow-Me 1 51 16 15 12
Actimetrics 3 61 81 106 39

The development experiments show that developing Rondo deployment descriptors
with Groovy DSL is straightforward. Despite the high complexity of dependencies be-
tween resources, the lines of code is restrained, thanks to the preprocessing of deploy-
ment. The preprocessing extracts the dependencies between bundles, packages and com-
ponents; including them into the assembly automatically. This lets developers to concen-
trate on the business-specific dependencies, such as files, instances and services.

Compared to the previous deployment method in iCASA framework, utilizing the
Rondo deployment manager for deployment of modules and applications eliminates the
disadvantages mentioned above. The deployment process is well-defined and deployment
errors are clearly reported to the user. Furthermore, applications enlisted for deployment
are managed at runtime and Rondo allows introspecting these. Any errors occured during
the deployment process are registered and available for diagnostics.

7.4.2 Wisdom Framework

The deployment capabilities of Rondo are tested inside another project called Wisdom
Framework!®. Wisdom is a framework for developing modular dynamic web applications.
It is based on non-blocking I/O (Netty'!) and an actor system (Akka'?), limiting thread
and CPU usage. Wisdom is built on top of OSGi, to enable modularity, and on Apache
Felix iPOJO, in order to handle the dynamism.

10Wisdom Framework: http://wisdom-framework.org/
"Netty: http://netty.io/
2Akka: http://akka.io/

http://wisdom-framework.org/
http://netty.io/
http://akka.io/

7.4. Use of Rondo in Various Deployment Scenarios 215

Wisdom integrates two ideas for development and runtime of web applications. Wis-
dom eases the complicated build process of modern web applications, which involves
HTML files, client-side code, Javascript libraries, stylesheets, templates and medias. It
proposes a simple build process that eases the development and testing of applications.
During the development process, each change triggers a Apache Maven build process,
which compiles, packages and deploys the application.

Secondly, Wisdom provides a modular and dynamic runtime, featuring a stack of tech-
nical services that simplifies the development and execution of web applications. This
modular stack comprises services such as template engine for static content, JSON li-
braries for exchanging easily JSON payload, bean validation, Web sockets support, dy-
namic internationalization support and scheduled and asynchronous task support.

a. Platform Deployment

Modularity and dynamism inherent to Wisdom applies to its own architecture as well as
to the applications developed on top of it. This makes Wisdom an adequate candidate
to test the capabilities of Rondo. Similar to the previous example, the first deployment
scenario is to deploy the platform itself, all of its technical services and configurations.
The tested platform configuration of Wisdom framework version 0.6.2 is deployed on
OW2 Chameleon Core and constituted of 55 OSGi bundles. The infrastructure assembly
developed in Rondo Java DSL declares 461 resources (including bundles, packages and
files) and 846 dependencies.

The table 7.6 presents the results of this deployment test. The table compares a plat-
form that contains Wisdom framework and a platform of Wisdom and Rondo. The de-
ployment duration indicates the deployment of Wisdom platform on top of Rondo using
Topsort and BFS resolvers. As in the previous example these durations are the arithmetic
mean value of 10 deployment times.

Table 7.6: Wisdom Framework deployment measurements

Start-.up 1dle Memory Deployr'nent
Platform Duration Duration
(Mb)

(ms) (ms)
Baseline - Chameleon Core || 2694 35.87 || -
Rondo - Topsort 5876 46.85 15894
Rondo - BFS 5885 45.89 9861
Wisdom 5149 75.76 -
Wisdom + Rondo 5181 83.72 -

As previous tests, the start-up and memory overheads are proportional to the size of
the platform. The deployment durations are also coherent with the previous tests. The
deployment plan created by the BFS resolver implementation fares better in terms of the
time it takes in comparison with the Topsort resolver.

216 Chapter 7. Validation

b. Application Deployment
As for application deployments, Rondo Groovy DSL is used to develop the deployment

descriptors of two applications.

Wisdom Monitor: This application provides an application for monitoring the execu-
tion platform. In addition to the application bundle, which provides the main web
application, it includes bundles for monitoring the JVM and the OSGi platform.

Wisdom Documentation: This application serves a web page of the Wisdom framework
documentation.

Again, thanks to the preprocessing of bundle dependencies, the deployment descrip-
tors are easy to develop, and still, the deployment process proceeds as expected. The
following table (see table 7.7) presents the development efforts for these applications.

Table 7.7: Wisdom application deployment descriptor development efforts

Rondo - Groovy
Module
of # of LOC
resources dependency
Wisdom Monitor 123 190 47
Wisdom Documentation 11 10 11

One of the returns of experience during the experiments with Wisdom framework
involved error diagnosis. The first attempt to deploy the Wisdom framework resulted
with an error due to unresolved dependencies of a bundle. Rondo deployment manager
reported the error back as the result of the deployment process was unsuccessful. A closer
inspection revealed that the bundle lack indeed proper manifest metadata for declaring
its dependencies. Then two options were possible to overcome this issue. In the im-
mediate, Rondo deployment descriptor for Wisdom framework was updated in order to
declare necessary dependencies. Then, the error is reported as a development issue and
subsequently the bundle is fixed with correct dependency metadata.

To conclude this section it is useful to present a recapitulation of previous experi-
mentations. The following chart in figure 7.5 outlines the impact of having Rondo on the
execution platform. The chart compares the idle memory consumption and start-up du-
rations of baseline, iCASA and Wisdom frameworks, against its counterparts with Rondo.

The start-up durations show a steady increase with the size of the framework in ques-
tion. The only exception for that is the case for Baseline framework with Rondo deploy-
ment manager. The mechanism iPOJO uses for starting component instances explains this
increase. iPOJO uses multiple threads to start components that are contained in bundles.
Default resource processors for Rondo are contained inside the deployer bundle, which
are in this case handled inside a same thread. Furthermore, the memory used by Rondo
increases constantly but negligibly with the framework size.

7.5. Dynamic Adaptability in Rondo 217

Rondo Overhead
i | dle Memory Start-up Duration
100 ; 9000
80 7000
w (%]
o o
> . £
2 60 5000 $
o °2
2 =
£ £
40 I 3000
20 J } } } } t 1000
Baseline Rondo Wisdom Wisdom + iCASA iCASA +
Rondo Rondo

Figure 7.5: Overhead of Rondo

7.5 Dynamic Adaptability in Rondo

In the last part of this section, dynamic adaptation capabilities granted by Rondo are
demonstrated using two adaptation scenarios. The first adaptation case involves the adap-
tation of an application, guided by its deployment description which includes variability.
The second case demonstrates a case for updating the technical services that constitute
the framework itself.

7.5.1 Application Adaptation

For the first adaptation scenario, consider the test application presented previously in sec-
tion 7.3.1 of this chapter. The application consisted of a single, non-conditional assembly
depicted in the figure 7.3.1. This served to describe the application in a static fashion that
did not define any dynamic adaptations. Leveraging its service-oriented modular design
and implementation, the application would survive service disruptions or an externally
triggered update on its dependencies. However, it would not autonomously change its
architecture reacting to the changes.

In order to add self-adaptive capabilities to this application the existing application
description is augmented with two conditional assemblies, as shown in the figure 7.6.

Recall that the main non-conditional assembly included one client instance, one server
instance and two support instances. The new version of the test application contains the
main non-conditional assembly as-is. In addition to that, the first conditional assembly
defines a third support instance, uniquely named support—3. Also a dependency
between this instance and the support component description noted cy,, is declared.

218 Chapter 7. Validation

test-application:Application

conditional assemblies

| W) [

name: support-3
state: valid

name: client-1
state: valid
period: 3000

name: support-3
state: disposed

Figure 7.6: Test Application Conditional Assemblies

The second conditional assembly redefines the client instance, named client-1,
already contained inside the main assembly, with a new instance configuration. This
instance declares its dependency to the client component description, noted c.j;. Fur-
thermore this second assembly redefines the support instance support—3 with a state
DISPOSED, which is the negative state for instance resource type. This explicit descrip-
tion denotes that the instance support—3 will not exist inside this assembly.

resource(instance().name(“support-2”)
.state(“VALID”))

resource(component () .name(“example.support”)

isTrue() > then .state(“VALID”))
resource(Instance.class,“support-2")
.dependsOn(Component.class, “example.support®)

condition(configuration()
when ——>| .pid(“port-active”)

.with(“port”).setto(“USB-1"))

resource(instance().name(“support-2”)
.state(“DISPOSED”))

resource(instance().name(“client-1”)
.with(“period”).setto(3000).state(“VALID”))

isFalse() —> then
resource(component().name(“example.client®)

.state(“VALID”))

resource(Instance.class,“client-1")
.dependsOn(Component.class,“example.client”))

Figure 7.7: Test Application Conditions

As for the conditions of these assemblies, they are defined as complementary and
mutually exclusive, i.e. when one is true, the second one is false. The conditions are
based on a resource of type configuration (OSGi Configuration Admin configuration).
This configuration resource is specified with an id and holds a property value. The schema
shown in the figure 7.7 explains the condition cases and assembly descriptions using the

portions of the Java DSL code.

As a result of these modifications the test application gained the ability to au-
tonomously adapt to the changes of the configuration. Considering that at the time of

7.5. Dynamic Adaptability in Rondo 219

first deployment of the application the configuration resource act ive—-pozrt, has the
expected value, a third support instance is included into the application. Then during
the course of execution, if the configuration resource does not hold the expected value
anymore, due to an internal or external event, the change is detected and a deployment
process is triggered to adapt the application. The adapted application includes only two
support instances and a different configuration for client instance. The inverse case is
also valid, according to the state of the condition, the effective application configuration
is changed back and forth.

A set of experiments is conducted in order to measure the time cost of these adapta-
tions. The table 7.8 lists the average durations in milliseconds of deployment processes
that apply corresponding changes.

Table 7.8: Application adaptation comparison

. New Configuration Instance Application
Action . New Instance .
Configuration Reconf. Reconf. Adaptation
Time(ms) | 9 | 1.16 | 82 | 143 | 236

The table compares creation and reconfiguration of iPOJO instances and Configura-
tion Admin configurations and the execution time of the deployment process that adapts
the test application. A general remark is that any application adaptation takes longer
then the actual changes brought by the deployment actions (new instance, reconfigura-
tion, etc.). This is because the whole application assembly is calculated and validated at
the analyze phase, resulting in a longer deployment process. Lastly, note that deploy-
ments describing the current state of the platform (for example instance declaration for
an already existing instance) take much significantly less time because of idempotence of
the deployment actions and process.

7.5.2 Framework Update

The second case that demonstrates the dynamic adaptability capabilities of Rondo is an
update scenario within Wisdom framework. Being in active development at the time of
writing of this manuscript, the Wisdom framework project made several releases. This
section briefly explains the return of experience of using Rondo for deploying and updat-
ing Wisdom framework.

With each release of Wisdom framework, the Rondo code that describes the frame-
work deployment is needed to be revised for the new version. This revision task is fairly
easy thanks to the use of standard programming language constructs such as fields, pa-
rameters and methods. For example, the release version that is shared by all of the Wis-
dom project artifacts is able to be parameterized into field. This is also valid for bundle
dependencies that constitute logical modules that share the same namespace and version.
As a result, for the case of updating the Wisdom framework version o0.5.1 to the 0.6.2, the

220 Chapter 7. Validation

revision task is in essence the change of a field denoting the framework version in the

description source code.

Once the new version of the deployment descriptor is produced, the stake is to push
this update to the platforms executing the old version (0.5.1) of the framework. Thanks
to the modular dynamic nature of Wisdom framework and applications, the update op-
eration can be applied at runtime. The deployment of new version (0.6.2) conducted by
Rondo deployment manager only updated the necessary bundles (14 of 43 bundles form-
ing the Wisdom Framework), leaving the matching resources unchanged. During the
deployment process, the update operation of critical technical services disrupted the ap-
plications, but once the new version of the framework is up and running, the applications
took over. However, only in seldom cases some of the platform services could not handle
the dynamism and stopped working.

The last remark about the deployment process is about the kind of utilized deploy-
ment plans. In spite of longer deployment durations produced by sequential deployment
plans, the framework update tests using the DFS or Topsort resolver implementations

fared better in terms of safety of the platform.

7.6. Conclusion 221

7.6 Conclusion

This chapter proposes a validation for the overall contribution of this thesis. Making use
of the proposed implementation — Rondo deployment tools — validation cases presented
in this chapter proves that the approach adopted in this thesis is pertinent. More specif-
ically, the validation cases evaluate four aspects; the performance, the ability to be used
in different deployment scenarios, its advantages for developers and finally the ability for
conducting dynamic adaptations.

From the performance acceptability point of view, two separate evaluations are ef-
fectuated. The resolver evaluation tested three resolver implementations against various
assembly cases and compared their performance. Then in the performance evaluation
section, capabilities of Rondo deployment manager is compared against other currently
used deployment methods. This section revealed an apparent but acceptable overhead
compared to the other methods. This overhead is compensated through improved results
in terms of the duration of deployment processes.

The chapter followed by presenting two projects, iCASA and Wisdom frameworks, in
which Rondo is tested as the method for deploying the framework and the applications.
Such use cases demonstrate the usability and easy adoption process of the approach. The
Rondo DSL for programming deployment descriptors plays a central role in this outcome.
Along these tests, return of experiences show that the deterministic and fault-tolerant
behavior provided by Rondo helps developers for reacting to errors that may occur inside
the deployment process.

Finally, the previous section demonstrates dynamic adaptation capabilities granted
by Rondo deployment manager. These are presented in two different use cases. The first
case illustrates the process of adding variability over an example application, using the
Rondo DSL. This simple example of application variability showcases the potential of the
proposed deployment process for elaborate continuous adaptation usages. The second
use case presents the experience of a framework update operation. This exemplifies how
the deployment process handles a large-scale runtime update task.

Chapter 8

Conclusion

“Je ne sais pas ce qui m’attend ni ce qui viendra
apreés tout ceci. ”

— Albert Camus, La peste

Contents
8.1 Introduction 224
8.2 ThesisSummary 224
8.2.1 Problem Statement 224
8.2.2 Contributions v vttt e 225
83 TFuture Work o 227
8.3.1 Improving Support for Applications 227
8.3.2 Mechanisms for Analyzing and Testing Deployments 227
8.3.3 Distributed Continuous Deployment. 228

834

Integration into Deployment Pipeline 229

224 Chapter 8. Conclusion

8.1 Introduction

This thesis studied the continuous deployment in dynamic environments and presented
in detail the contributions of this work. The presented contributions comprise the defi-
nition of a continuous deployment process, the reference architecture of the deployment
manager implementing this process, and a domain-specific language to describe deploy-
ments. This work also contributed to the development of a set of deployment tools, called
Rondo, which served to highlight and validate the points made throughout this thesis.
Rondo is a fully operational prototype and available as an open source project. Capa-
bilities of Rondo deployment manager are tested within different deployment scenarios,
using various software projects. This chapter summarizes these propositions and results
of this work.

This work gives birth to many research questions and perspectives. The second part
details future work possibilities. These involve, first of all, investigating runtime support
for applications in dynamic environments and secondly, enhancing existing tool ecosys-
tem to improve testability and ease of use.

8.2 Thesis Summary

This section highlights the contributions of this work. It summarizes the various points
raised in this thesis.

8.2.1 Problem Statement

The development of modern applications is a software engineering challenge. It requires
providing developers coherent tools and processes to make sure of correct execution and
fast software delivery. Dynamism is one of the requirements that is increasingly expected
from modern applications. Pervasive environments, for instance, require applications to
dynamically evolve at runtime in order for them to blend seamlessly into real environ-
ments. Adaptations are necessary to add new functionality to an application, but also to
improve quality or to adjust to a new execution context. However, the development of
such applications is complex and error-prone. Developers are usually obliged to sacrifice
software consistency and dependability in the expense of achieving dynamism.

Furthermore, recent years have witnessed the proliferation of application platforms.
This Platform-Application view creates a separation over the type and the control level
of software management. Platform providers want to make sure that their platform is
working as expected. This requires exhaustive testing of those platforms, against many
scenarios and thus exert relatively slow but confident evolution over the software. Con-
versely, application developers require attracting users with new functionalities as fast as
possible. So the applications need evolving more rapidly and dynamically to the changes.

8.2. Thesis Summary 225

The software development life cycle of applications running in dynamic environments
is hindered by the lack of tools that help delivering software rapidly and automatically
into environments used for development, testing and production. Traditional approaches
fail to address the deployment challenges of dynamic systems.

Emerging practices of continuous deployment is a promising candidate for responding
to the deployment needs of dynamic environments. It is based on a set of practices aim-
ing to provide a process for deploying software rapidly and predictably. The continuous
deployment for dynamic environments would need to respond to different requirements
of execution platforms and applications, updates of separate modules, as well as their
reconfigurations to cope with the evolving context.

8.2.2 Contributions

The main objective of this thesis is to enable continuous deployment on dynamic execu-
tion environments. The requirement analysis presented as part of this work showed that
existing works in this domain are inadequate. In addition to satisfying these requirements,
contributions of this work lean specifically on four points. These objectives address the
research challenges that are addressed in this thesis (see table 8.1).

Table 8.1: Research challenges and contributed objectives

Objectives Challenges
Reproducibility Scalability, Heterogeneity
Fault-tolerance Distribution, Industrialization

Continuous Adaptation | Dynamism, Context-awareness

Tooling Automatization, Testability

The first point is the reproducibility of deployed software systems. The deployment
process must ensure that repeating the same deployment operation in different deploy-
ment sites produces the same result on every site. A reproducible deployment process is
necessary for large-scale deployment of software systems.

The second point consists of the fault-tolerance of the deployment process. The
deployment includes a series of critical actions that are error-prone. Providing industrial-
scale, distributed solutions for deployment depends on the ability of the deployment pro-
cess to be fault-tolerant.

The third point involves the support of continuous adaptation of deployed soft-
ware. The successful deployment of a software system in dynamic environments is not
the end of the process, but the beginning of the runtime management of the deployed
system. Handling dynamism requires continuous runtime management and adaptation
of software.

226 Chapter 8. Conclusion

The last point is the tool ecosystem that facilitates the work of developers who specify
deployments. The specification of the deployment descriptors is a crucial but laborious
task. Tools help developers to create and test the deployments they specify.

In the light of these requirements, this work contributes to the specification and the

development of a set of deployment facicilities. These facilities comprise:

1. the process definition that allows continuous deployments,
2. the reference architecture for a deployment manager and

3. the domain-specific language for describing deployment tasks.

Central to the proposed deployment facilities is a formalization framework. This
framework models the expected state of applications (or any other software to be de-
ployed) and the current state of the deployment platform. These models are based on the
generic concept of resource. A resource describes the state of any kind of entity. Using
the graph theory, this framework formally describes the deployment process. The for-
malization framework includes the description of the deployment process, based on the
graph theory. This ensures the idempotence of the deployment process, which is crucial
for achieving fault-tolerance and reproducibility.

The contributions of this thesis include the reference architecture for the deployment
manager that implements the deployment process. The deployment manager specifies the
transactional deployment executor which coordinates deployment process. An analysis
component is in charge of the runtime management of applications. It enables continu-
ous adaptations by maintaining a monitoring infrastructure and triggering deployment
requests when needed.

Conforming to the formalization framework, adaptation requirements of applications
are described as variabilities. Variability descriptions are taken into account at application
runtime for adapting the application according to the context changes. If a context change
triggers an adaptation, the deployment process checks the validity of the application and
proceeds with its execution on the platform.

Finally the deployment facilities include a DSL for describing deployments. It consti-
tutes a basis for the tool support and ensures the ease of use of the proposed deployment
facility.

The contributions of this thesis are fully developed inside Rondo project. Rondo is
a tool suite containing the implementations of the formalization model, the deployment
manager and the deployment descriptor DSL. This work also presented the implemen-
tation details of Rondo tools. These tools are fully operational and available as open
source at https://github.com/AdeleResearchGroup/Rondo. In addi-
tion to serving for validating the approach and the contributions of this thesis, Rondo is

tested against deployment scenarios defined within industrial and research projects.

8.3. Future Work 227

8.3 Future Work

This work proposed an approach for enabling continuous deployment in dynamic execu-
tion environments. Nevertheless, there are many open research questions on the deploy-
ment solutions in dynamic environments and much to do to improve the contributions
of this thesis. This section looks into some of the perspectives that are revealed over this
study.

8.3.1 Improving Support for Applications

This thesis proposes an application description based on the deployment point-of-view.
Nevertheless, the notion of application in dynamic, open execution environments leaves
a lot more to investigate. The section 5.4.5 on application compatibility discusses the
basic conditions for multiple applications to cohabit on a platform. While this ensures
the coherence of application resources, no restriction is enforced for applications sharing,
accessing and using resources at runtime.

The resource-based application description proposed in this thesis is a good starting
point for describing the boundaries and access rights of each application. For example, in
Android OS access right to common platform services is based on declarations that come
with the application description. Users who authorize the installation of the application,
approve the access request. In dynamic execution environments, however, access rights
can be provisional and change according to the context. The description of provisional
access rights might seem trivial, but the enforcement of these should investigate advanced
security mechanims.

Furthermore, sharing application resources is another concern faced by execution
platforms. Recall that applications as defined in this work do not possess any belong-
ings towards resources. In this setting certainly applications can enforce constraints on
the evolution of resources (using post conditions) but this does not mean that a resource
belongs to one particular application. The common practice for cohabiting multiple ap-
plications is to isolate them in sandboxes. This highly restricts sharing of application
resources, although applications still have access to common platform resources. Explor-
ing isolation mechanisms for dynamic open execution environments would contribute to
resolve some of the problems encountered in this thesis, such as application undeploy-
ment.

8.3.2 Mechanisms for Analyzing and Testing Deployments

The deployment process described in this thesis proposes simple analysis at runtime for
transforming applications into deployable entities, that is to assemblies. A major phase
inside this analysis consists of deciding which application fragments, conditional assem-
blies, are to be deployed. The analysis on different variabilities of the application is the

228 Chapter 8. Conclusion

heart of the continuous adaptability. As expressed earlier in this document, future work
is bound to investigate the possibilities for this decision function.

Similar research questions are already explored in the context of SPL feature mod-
els. A major question is what knowledge is needed by this decision function to be able
to choose between variabilities. This work paves the way for more advanced adaptation
scenarios by associating a well-defined deployment process with self-adaptation possi-
bilities. Autonomic Computing solutions can be employed to enhance the self-adaptable
applications with self-optimization, self-healing and self-protection functionalities.

The continuous adaptability implies analyzing application variabilities at runtime.
However, deployment descriptors can also be analyzed beforehand for testing purposes.
Using combinatorial testing methods application descriptions can be exposed against dif-
ferent platform configurations and state changes. This would allow testing the adaptation
logic contained inside variabilities.

The deployment process proposed in this thesis involves analyzing dependencies be-
tween resources, according to the deployment description, in order to calculate a deploy-
ment plan. Therefore all dependencies between resources are expected to be explicitly
included inside the deployment description. Even though this is needed for guaranteeing
the determinism of the deployment process, specifying all dependencies can be laborious
and it can hinder the development.

As argumented earlier, this process does not include a phase for resolving dependen-
cies by soliciting an artifact repository. Nevertheless, as discussed in the section 5.4.6,
such a mechanism can be integrated inside an development environment (IDE) that help
completing deployment descriptors with dependency resolution information.

8.3.3 Distributed Continuous Deployment

This work deliberately excluded the problem of deploying software to multiple target plat-
forms in distributed environments. Next logical step is looking for expanding this work
into distributed environments. Basically put, the distributed deployment is an orchestra-
tion of deployments in multiple target machines. As a matter of fact, many properties
ensured by this work, such as fault-tolerance, determinism and introspection are crucial
for distributed deployment.

Some of the works in this direction are already presented in section 3.5.5 of this docu-
ment. In order to provide continuous deployment in distributed environments, the plan-
ning function should be revised for taking into account spatial and temporal constraints
over target machines.

With the emergence of many Cloud computing providers, the possibilities for dis-
tributed deployment are increasing. Most of these providers offer APIs so that deployment
automation tools can manipulate Cloud resources as VMs, computing infrastructures or

8.3. Future Work 229

platforms. This unlocks new possibilities for easily managing distributed deployment.
There are many tools that already help developers and system administrators in this di-
rection. Docker (https://www.docker.com/) provides a lightweight runtime
based on Linux containers. It offers a set of tools for packaging applications and automat-
ing testing and deployment workflows. Roboconf (http://roboconf.net/)isan
automation tool for coordinating deployment to multiple Cloud targets.

Extending the approach proposed in this thesis with these capabilities would enable
dynamically adaptive deployment in distributed environments.

8.3.4 Integration into Deployment Pipeline

This work proposes a deployment solution capable of being used in continuous deploy-
ment scenarios. However, it does not provide the complete deployment pipeline. Inte-
grating the contributions of this thesis into an end-to-end software development process
would unlock the full potential of the promise of continuous deployment.

The deployment descriptor language provided in this work would play a pivotal role
inside such a deployment pipeline. Each commit during the development would trigger a
set of tests before being ready to be deployed into production environments. Differently
to the current testing practices, to enable the triggered updates, a testing platform, having
the same current state of production environments, would receive the update, in order to
test the update behavior and possible errors.

In the pervasive computing scenarios, platforms like iCASA that simulate physical
environments, can be used in the context of testing dynamic behavior of applications.
These tests can be automatized in part of the deployment pipeline.

https://www.docker.com/
http://roboconf.net/

Appendix A

Proof of Assembly Join
Associativity

Proof- Associativity property can be proven by induction. Consider a transition func-
tion of any non-empty assembly X, Ty = & such that 6(A@B) = 6(A)@B. Indeed this is
valid for every non-empty assembly X, as shown in following A.1.

A@B = Ty(B)
Tx(A@B) = Tx(Ta(B)
= Tx © Ta(B)
-

(A.1)

Tx o Ta(B)=Ty(B) =Y @B
=Tx(A@B
Then using the identity element and this transition & as the successor function, the asso-
ciativity can be proven by applying induction.
A,B,C € A",(A@B)@C = A@(B@C)

For the base case consider A = ¢,

(c@B)@C = ¢@(B@C)
(e@B)@C = (B)@C =B@C
=B@C =¢@(B@C)
For the induction case consider that the hypothesis is true, assuming that for an assembly
A A@(B@C) = (A@B)@C. Then,
5(A@(B@C) = (5(A@B)@C
6(A)@(B@C) =5(A@(B@C))
=6((A@B)@C) (A.2)
=6(A@B)@C
=(6(A)@B)@C

232 Appendix A. Proof of Assembly Join Associativity

Then the induction case is true for 6(A). Therefore the associativity property
(A@B)@C =A@(B@C) is true for all assemblies. O

Appendix B

Description Language Grammar

Property ::= StringlLiteral ’:’ StringlLiteral
Properties ::= Propertyx

Id ::= IdLiteral

Type ::= IdLiteral

Name ::= 'name’ ’:’ StringLiteral

State ::= ’state’ ’:’ Stringliteral

Version ::= ’'version’ ’:’ VersionLiteral

Repository ::= "{’ Name ’,’ ’‘url’” ’:’ UrlLiteral '}’
Repositories ::= ' [’ Repository (’,’ Repository)x ']’
GenericResource ::= ’'{’ Type (’',’ Name)?

(”,” State)? ’,’ Properties '}’
ResourceDeclaration ::= Id GenericResource? ’'dependsOn’ Id
Assembly ::= ’'resource’ ResourceDeclaration

("\\” ’"resource’ ResourceDeclaration)*
Fact ::= ('true’ | "false’)
Condition ::= ’{’ GenericResource ’':’ Fact '}’
Conditions ::= 7 [’ Condition (’,’ Condition)* "]’
ConditionalAssembly ::= (

("when” 7 :’ Conditions ’then’ ' {’ Assembly '}’)

| ("with’ 7 {’ Assembly ’"}’))
Application ::= Id ’,’ Name ’,’

I4

Id) *

Listing B.1: EBNF Grammar of the description language

Appendix C

Publications

- Escoffier, Clement; Gunalp Ozan; Lalanda, Philippe, “Requirements to Pervasive
System Continuous Deployment”, International Workshop on Self-Managing Per-
vasive Service Systems (SeMaPS), 2013

— Gurgen, Levent; Gunalp, Ozan; Benazzouz, Yazid; Gallissot, Mathieu, "Self-aware
cyber-physical systems and applications in smart buildings and cities,' Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE), 2013

- Gunalp, Ozan; Gurgen, Levent; Lestideau, Vincent; Lalanda Philippe, “Autonomic
Pervasive Applications Driven by Abstract Specifications”, International workshop
on Self-aware internet of things (Self-IoT), 2012

List of Figures

2.1
2.2
23
2.4
25
2.6
2.7

3.1
3.2
33
34
35
3.6
3.7
3.8
39
3.10

4.1
4.2
4.3
4.4
4.5

5.1
5.2
53
5.4
55
5.6
5.7
5.8

Evolution of Computer Systems (adapted from [Waldner 2007]) 11
Pervasive Computing Environment 16
Example for Smart-space Environment (from [Helal 2005]) 17
M2M Application Example (adapted from [Lalanda 2014]) 18
Smartlife Concept (adapted from [FP7 BUTLER Project 2013]) 19
Pervasive Computing Technology Stack 20
Application Tools L 33
Waterfall Model o 43
Iterative Development Model 44
Incremental and Iterative Development 44
Software Deployment 48
Software Deployment - Componentization 50
Software Deployment - Deployment Descriptor. 51
Software Deployment - Target Environments 51
Software Deployment (Repository) 52
Software Deployment Activities o v v v v i e 53
Tradeoffs between distributed deployment approaches

(from [Talwar 2005]) . .« o o vt e 76
KanbanBoard 87
Software Values 88
Deployment Pipeline (adapted from [Humble 2010]) 90
JenkinsJobListo 92
Autonomic Managers 97
Proposition OVerviewo it i it 117
Resource Type Examples L. 119
Resource Description Levels o ... 122
Resource Examples o 122
Resource Dependency L L 124
Optional Dependency System 124
Assembly Example L Lo 126

Example Production Rule for replace: pgrpy . - v oo v oo 132

238 List of Figures
5.9 Example Production Rule for insert: pg,p .o oo oo oL 132
5.10 Calculation of Derivation Sequence 134
511 RepoSItOry . . o v vt i e 139
5.12 Application Example o o 140
5.13 Layers of the Reference Architecture 151
5.14 Resource Graph 153
5.15 EveREST Framework Overview 154
5.16 Deployment Manager, 156
5.17 Resource Processor 156
5.18 AnalyzerModule L L 157
5.19 PlannerModule L L 159
5.20 Deployment Transaction State Transition 161
521 Property 162
5.22 Id, Type, Nameand State 163
5.23 Syntax Diagram of Repository 164
5.24 Syntax Diagram of Generic Resource 164
5.25 Syntax Diagram of Resource Declaration and Assembly 165
5.26 Syntax Diagram of Condition 165
5.27 Syntax Diagram of Conditional Assembly 166
5.28 Syntax Diagram of Application 166
6.1 Apache Felix iPOJO componentmodel 177
6.2 Project Dependency Graph 178
6.3 RondoCoreModel 182
6.4 Resource ProcessorModel L L L. 184
6.5 AnalyzerModel. L 185
6.6 Infrastructure Manager Model 186
6.7 ExecutorModel L 187
6.8 RondoCloner. 190
6.9 Parallel Deployment Participants 197
7.1 Deployment Resolver Performance Comparison 203
7.2 Assembly Graph of the Test Application 205
7.3 Deployment Execution Time Distributions 208
7.4 1CASA HomeSimulator 210
7.5 OverheadofRondo 218
7.6 Test Application Conditional Assemblies 219
7.7 Test Application Conditionso 219

List of Tables

3.1
3.2
33
34

4.1
4.2
4.3

5.1
5.2
53

6.1

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

8.1

Software engineering fields responses toissues 64
Comparison of single target deployment facilities 72
Comparison of modular platforms 75
Comparison of model-based deployment facilities 80
Positioning for deployment platform requirements 106
Positioning for deployment process requirements 107
Positioning for deployment descriptor requirements 109
Research objectives and addressed challenges 114
Positioning against continuous deployment requirements 172
Research objectives and contributions of the proposition. 173
Lines of code in Rondo project. oo i 199
Deployment plan resolution comparison 203
Test application deployment comparison 207
Test application development efforts 209
iCASA Framework deployment measurements. 212
1CASA Module deployment descriptor development efforts 214
Wisdom Framework deployment measurements 215
Wisdom application deployment descriptor development efforts 217
Application adaptation comparison 220

Research challenges and contributed objectives 225

List of Algorithms

Procedure identify(assembly A). L 129
Procedure subsume(assembly A) L. 129
Procedure join(assembly A, assembly B) 131
Procedure join*(assembly A, assembly B) 135
Procedure deploy(assembly A, platformP). 138

Procedure deployApplication(Application a, Platform P, Set of conditions Cp) 143

Bibliography

[Andersson 2000] J. Andersson. A deployment system for pervasive computing. In Soft-
ware Maintenance, 2000. Proceedings. International Conference on, pages 262—
270, 2000. (page 107.)

[Arshad 2001] Naveed Arshad, Dennis Heimbigner et Alexander L Wolf. Deployment and
dynamic reconfiguration planning for distributed software systems. pages 39—46,
July 2001. (pages 108 and 109.)

[Atzori 2010] Luigi Atzori, Antonio lera et Giacomo Morabito. The Internet of Things:
A survey. Computer Networks, vol. 54, no. 15, pages 2787-2805, October 2010.

(page 13.)

[Bailey 1997] Ed Bailey. Maximum RPM. Red Hat Software Inc., February 1997. (pages 70
and 106.)

[Baldauf 2007] Matthias Baldauf, Schahram Dustdar et Florian Rosenberg. A survey on
context-aware systems. International Journal of Ad Hoc and Ubiquitous Comput-
ing, vol. 2, no. 4, pages 263-277, June 2007. (page 14.)

[Banavar 2000] Guruduth Banavar, James Beck, Eugene Gluzberg, Jonathan Munson,
Jeremy Sussman et Deborra Zukowski. Challenges: An Application Model for Per-
vasive Computing. In Proceedings of the 6th Annual International Conference
on Mobile Computing and Networking, MobiCom ’00, pages 266—274, New York,
NY, USA, 2000. ACM. (page 33.)

[Bardin 2010] Jonathan Bardin, Clément Escoffier et Philippe Lalanda. Towards an Au-
tomatic Integration of Heterogeneous Services and Devices. In Proceedings of the
Services Computing Conference (APSCC), pages 171-178. IEEE Computer Society,
December 2010. (page 210.)

[Baresi 2010] L Baresi et C Ghezzi. The disappearing boundary between development-time
and run-time. Proceedings of the FSE/SDP workshop on Future of software engi-
neering research, 2010. (pages 4 and 60.)

[Bauer 2002] Martin Bauer, Christian Becker et Kurt Rothermel. Location models from
the perspective of context-aware applications and mobile ad hoc networks. Personal
and Ubiquitous Computing, vol. 6, no. 5, pages 322-328, 2002. (page 14.)

[Becker 2003] Christian Becker, Gregor Schiele, Holger Gubbels et Kurt Rothermel. Base-
a micro-broker-based middleware for pervasive computing. pages 443—451, 2003.

(pages 35 and 107.)

244 Bibliography

[Becker 2004] Christian Becker, Marcus Handte, Gregor Schiele et Kurt Rothermel.
Pcom-a component system for pervasive computing. pages 6776, 2004. (pages 35,
107 and 108.)

[Belguidoum 2008] Meriem Belguidoum et Fabien Dagnat. Formalization of Component
Substitutability. Electronic Notes in Theoretical Computer Science, vol. 215, pages
75-92, June 2008. (page 169.)

[Bencomo 2010] Nelly Bencomo, Jaejoon Lee et Svein Hallsteinsen. How dynamic is your
Dynamic Software Product Line? 2010. (page 62.)

[Bernstein 1996] Philip A. Bernstein. Middleware: A Model for Distributed System Services.
Commun. ACM, vol. 39, no. 2, pages 86—98, February 1996. (page 29.)

[Bertolino 2009] Antonia Bertolino, Guglielmo Angelis, Lars Frantzen et Andrea Polini.
The PLASTIC Framework and Tools for Testing Service-Oriented Applications. Soft-
ware Engineering, January 2009. (page 35.)

[Boehm 2003] B. Boehm et R Turner. Balancing Agility and Discipline: A Guide for the
Perplexed. Pearson Education, 2003. (page 45.)

[Bohn 2005] Jirgen Bohn, Vlad Coroami, Marc Langheinrich, Friedemann Mattern et
Michael Rohs. Social, economic, and ethical implications of ambient intelligence
and ubiquitous computing. In Ambient intelligence, pages 5-29. Springer, 2005.
(page 23.)

[Bosch 2000] Jan Bosch. Design and use of software architectures: adopting and evolving

a product-line approach. Pearson Education, 2000. (page 61.)

[Bosch 2002] Jan Bosch. Maturity and Evolution in Software Product Lines: Approaches,
Artefacts and Organization. In Gary]. Chastek, editeur, Software Product Lines,
volume 2379 of Lecture Notes in Computer Science, pages 257—271. Springer Berlin
Heidelberg, 2002. (page 105.)

[Bouchenak 2006] S Bouchenak, N De Palma, D Hagimont et C Taton. Autonomic man-
agement of clustered applications. 2006 IEEE International Conference on Cluster
Computing, pages 1-11, 2006. (page 78.)

[Broadband Forum 2013] Broadband Forum. TR-069 CPE WAN Management Protocol
(CWMP). Technical report, 2013. (page 35.)

[Bruneton 2004] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma et
Jean-Bernard Stefani. An open component model and its support in Java. In
Component-Based Software Engineering, pages 7—22. Springer, 2004. (page 35.)

[Buckley 2005] Alex Buckley. A Model of Dynamic Binding in .NET. In Alan Dearle et
Susan Eisenbach, editeurs, Component Deployment, volume 3798 of Lecture Notes
in Computer Science, pages 149—163. Springer Berlin Heidelberg, 2005. (page 168.)

Bibliography 245

[Bures 2006] T. Bures, P. Hnetynka et F. Plasil. SOFA z.o0: Balancing Advanced Features in
a Hierarchical Component Model. In Fourth International Conference on Software
Engineering Research, Management and Applications, 2006., pages 40-48, 2006.

(page 107.)

[Carzaniga 1997] Antonio Carzaniga. A Characterization of the Software Deployment Pro-
cess and a Survey of related Technologies. 1997. (pages 49, 50, 51 and 54.)

[Cassou 2010] Damien Cassou, Julien Bruneau et Charles Consel. A tool suite to prototype
pervasive computing applications. In 8th IEEE International Conference on Perva-
sive Computing and Communications Workshops (PERCOM Workshops), 2010,
pages 820—822, 2010. (page 35.)

[Cetina 2008] Carlos Cetina, Vicente Pelechano, Pablo Trinidad et Antonio Ruiz Cortés.
An Architectural Discussion on DSPL. In Software Product Lines, 12th International
Conference, SPLC 2008, Limerick, Ireland, September 8-12, 2008, Proceedings.
Second Volume (Workshops), pages 50-68, 2008. (pages 62 and 105.)

[Church 1936] Alonzo Church et J Barkley Rosser. Some properties of conversion. Trans-
actions of the American Mathematical Society, vol. 39, no. 3, pages 472—482, 1936.

(page 133.)

[Coghlan 2005] Brian Coghlan, John Walsh, Geoff Quigley, David O’Callaghan, Stephen
Childs et Eamonn Kenny. Principles of Transactional Grid Deployment. In Ad-
vances in Grid Computing - EGC 2005, volume 3470 of Lecture Notes in Computer
Science, pages 88—97. Springer Berlin Heidelberg, 2005. (page 102.)

[Conway 1968] Melvin E. Conway. How Do Committees Invent? Datamation, April 1968.
(page 42.)

[Coutaz 2005] Joélle Coutaz, James L Crowley, Simon Dobson et David Garlan. Context
is key. Communications of the ACM, vol. 48, no. 3, pages 49-53, 2005. (page 151.)

[Dearle 2004] A. Dearle, G. N C Kirby et AJ. McCarthy. A framework for constraint-
based development and autonomic management of distributed applications. In Au-
tonomic Computing, 2004. Proceedings. International Conference on, pages 300-
301, 2004. (pages 77, 108 and 109.)

[Dearle 2007] Alan Dearle. Software deployment, past, present and future. In 2007 Future
of Software Engineering, pages 269—284. IEEE Computer Society, 2007. (pages 52,
61 and 149.)

[Detlefs 2004] David Detlefs, Christine Flood, Steve Heller et Tony Printezis. Garbage-
first Garbage Collection. In Proceedings of the 4th International Symposium on
Memory Management, ISMM o4, pages 37-48, New York, NY, USA, 2004. ACM.

(page 207.)

246 Bibliography

[Dey 2001] Anind K Dey. Understanding and Using Context. Personal and Ubiquitous
Computing, vol. 5, no. 1, pages 4-7, 2001. (pages 15 and 151.)

[Diaconescu 2008] Ada Diaconescu, Johann Bourcier et Clement Escoffier. Autonomic
iPOJO: Towards Self-Managing Middleware for Ubiquitous Systems. Networking
and Communications, 2008. WIMOB ’08. IEEE International Conference on Wire-
less and Mobile Computing,, pages 472-477, 2008. (page 103.)

[Dijkstra 1974] Edsger W. Dijkstra. Self-stabilizing Systems in Spite of Distributed Control.
Commun. ACM, vol. 17, no. 11, pages 643-644, November 1974. (page 21.)

[Dis 2014] Distributed Management Task Force. Common Information Model (CIM) Spec-
ification, June 2014. (page 95.)

[Dowling 2001] Jim Dowling et Vinny Cahill. The K-Component Architecture Meta-Model
for Self-Adaptive Software. In Metalevel Architectures and Separation of Cross-
cutting Concerns, pages 81-88. Springer Berlin Heidelberg, Berlin, Heidelberg,

January 2001. (page 35.)

ruilhe 2013] Rémi Druilhe. cience Energétique des Services dans les Systémes Ré-

Druilh Rémi Druilhe. L’E Energétique des S dans les Sy. R
partis Hétérogénes et Dynamiques : Application d la Maison Numérique. These,
Université des Sciences et Technologie de Lille - Lille I, December 2013. (page 21.)

[Dubus 2007] J Dubus et P Merle. Applying omg d&c specification and eca rules for au-
tonomous distributed component-based systems. Models in Software Engineering,

pages 242-251, 2007. (page 78.)

[Ehrig 1973] Hartmut Ehrig, Michael Pfender et Hans Jirgen Schneider. Graph-
grammars: An algebraic approach. In Switching and Automata Theory, 1973.
SWAT’ 08. IEEE Conference Record of 14th Annual Symposium on, pages 167-180.
IEEE, 1973. (page 128.)

[Ehrig 1979] Hartmut Ehrig. Introduction to the algebraic theory of graph grammars (a
survey). In Graph-Grammars and Their Application to Computer Science and

Biology, pages 1-69. Springer, 1979. (page 130.)

[eMarketer 2014] eMarketer. Worldwide Mobile Phone Users: Hi 2014 Forecast and Com-
parative Estimates. Market research, 2014. (page 4.)

[Epstein 1998] Brian Epstein et Eli Zelkha. Ambient Intelligence. http://
www.epstein.org/brian/ambient_intelligence.htm, 1998.

(page 12.)

[Escoffier 2006] Clément Escoffier, Didier Donsez et Richard S Hall. Developing an OSGi-
like service platform for NET. IEEE Consumer Communications and Networking
Conference (CCNC’06), 2006. (page 169.)

http://www.epstein.org/brian/ambient_intelligence.htm
http://www.epstein.org/brian/ambient_intelligence.htm

Bibliography 247

[Escoffier 2008] Clement Escoffier. iPOJO : Un modéle a composant a service flexible pour
les systemes dynamiques. These, Université Joseph-Fourier - Grenoble I, December
2008. (pages 35 and 112.)

[Escoffier 2013a] Clément Escoffier, Pierre Bourret et Philippe Lalanda. Managing Dy-
namism in Service Dependencies. In IEEE International Conference on Services
Computing, Los Alamitos, CA, USA, June 2013. IEEE Computer Society. (page 177.)

[Escoffier 2013b] Clement Escoffier, Ozan Giinalp et Philippe Lalanda. Requirements to
Pervasive System Continuous Deployment. The 2nd International Workshop on
Self-Managing Pervasive Service Systems (SeMaPS 2013), 2013. (pages 98 and 151.)

[Evans 2007] Dave Evans. The Internet of Things: How the Next Evolution of the Internet
Is Changing Everything. april 2007. (page 5.)

[Fabry 1976] R S Fabry. How to design a system in which modules can be changed on the
fly. In ICSE ’76: Proceedings of the 2nd international conference on Software
engineering. IEEE Computer Society Press, October 1976. (page 112.)

[Fielding 2000] Roy Thomas Fielding. Architectural Styles and the Design of Network-
based Software Architectures. PhD thesis, University of California, Irvine, 2000.

(page 152.)

[Flissi 2008] Areski Flissi,] Dubus, Nicolas Dolet et Philippe Merle. Deploying on the
Grid with DeployWare. In 2008 8th IEEE International Symposium on Cluster
Computing and the Grid (CCGrid), pages 177-184. IEEE, October 2008. (page 78.)

[Floch 2006] J Floch, S Hallsteinsen, E Stav, F Eliassen, K Lund, E Gjorven, S ICT et
N Trondheim. Using architecture models for runtime adaptability. IEEE software,
vol. 23, no. 2, pages 62-70, 2006. (page 22.)

[Fouquet 2012] Frangois Fouquet, Erwan Daubert, Noél Plouzeau, Olivier Barais, Johann
Bourcier, Arnaud Blouinet al. Kevoree: une approche model@ runtime pour les
systémes ubiquitaires. In UbiMob2o12, 2012. (page 35.)

[FP7 BUTLER Project 2013] FP7 BUTLER Project. uBiquitous, secUre inTernet-of-things
with Location and contExt-awareness. Delivrable, 2013. (pages 19, 209 and 237.)

[Garey 1979] Michael R. Garey et David S. Johnson. Computers and intractability; a guide
to the theory of np-completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

(page 59.)

[Garlan 2002] David Garlan, Dan Siewiorek, Asim Smailagic et Peter Steenkiste. Project
Aura: Toward Distraction-Free Pervasive Computing. IEEE Pervasive Computing,
vol. 1, no. 2, April 2002. (page 34.)

248 Bibliography

[Goldsack 2003] Patrick Goldsack, Julio Guijarro, Antonio Lain, Guillaume Mecheneau,
Paul Murray et Peter Toft. SmartFrog: Configuration and Automatic Ignition of
Distributed Applications. In In: HP Openview University Association Conference
(HP OVUA, pages 1-9, 2003. (page 76.)

[Greenfield 2006] Adam Greenfield. Everyware : the dawning age of ubiquitous com-
puting. New Riders, Berkeley, CA, 2006. (page 12.)

[Grimm 2003] R Grimm. System support for pervasive applications. Future directions in
distributed computing, 2003. (page 13.)

[Hall 1999] Richard S. Hall, Dennis Heimbigner et Alexander L. Wolf. A Cooperative Ap-
proach to Support Software Deployment Using the Software Dock. In Proceedings
of the 21st International Conference on Software Engineering, ICSE ’99, pages
174183, New York, NY, USA, 1999. ACM. (pages 49, 77, 108 and 109.)

[Hallsteinsen 2008] S. Hallsteinsen, M. Hinchey, Sooyong Park et K. Schmid. Dynamic
Software Product Lines. Computer, vol. 41, no. 4, pages 93—95, 2008. (page 62.)

[Hallsteinsen 2012] S Hallsteinsen, K Geihs, N Paspallis, F Eliassen, G Horn, J Lorenzo,
A Mamelli et G A Papadopoulos. A development framework and methodology for
self-adapting applications in ubiquitous computing environments. Journal of Sys-
tems and Software, vol. 85, no. 12, pages 2840-2859, December 2012. (page 30.)

[Hansmann 2003] Uwe Hansmann. Pervasive computing : the mobile world. Springer,
Berlin New York, 2003. (page 12.)

[Hawley 1997] Michael Hawley, R Dunbar Poor et Manish Tuteja. Things that think. Per-
sonal Technologies, vol. 1, no. 1, pages 13-20, 1997. (page 12.)

[Heimbigner 1998] Dennis Heimbigner, Andre Van der Hoek, Richard S Hall, Alexander L
Wolf, Antonio Carzaniga et Alfonso Fuggetta. A Characterization Framework for
Software Deployment Technologies. 1998. (pages 65, 68 and 98.)

[Helal 2005] S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura et E. Jansen. The
Gator Tech Smart House: a programmable pervasive space. Computer, vol. 38, no. 3,
pages 50—-60, 2005. (pages 17, 24 and 237.)

[Hitcents 2014] Hitcents. Hanx Writer. http://www.hitcents.com/b2b/
work/hanx, 2014. Accessed: 2014-09-01. (page 4.)

[Hoareau 2008] Didier Hoareau et Yves Mahéo. Middleware support for the deployment
of ubiquitous software components. Personal and Ubiquitous Computing, vol. 12,
no. 2, pages 167-178, 2008. (pages 107, 108 and 109.)

[Horn 2001] P Horn. Autonomic computing: IBM’s perspective on the State of Informa-
tion Technology, October 2001. (page 95.)

http://www.hitcents.com/b2b/work/hanx
http://www.hitcents.com/b2b/work/hanx

Bibliography 249

[Huebscher 2004] MC Huebscher et JA McCann. Adaptive middleware for context-aware
applications in smart-homes. Proceedings of the 2nd workshop on Middleware for

pervasive and ad-hoc computing, pages 111-116, 2004. (page 30.)

[Humble 2010] Jez Humble et David Farley. Continuous Delivery: Reliable Software Re-
leases through Build, Test, and Deployment Automation. Addison-Wesley Profes-
sional, 1st édition, 2010. (pages 89, 90 and 237.)

[Humble 2011] Jez Humble et Joanne Molesky. Why Enterprises Must Adopt Devops to
Enable Continuous Delivery. Cutter IT Journal, vol. 24, no. 8, pages 6-12, August
2011. (page 89.)

[Hunkeler 2008] U. Hunkeler, Hong Linh Truong et A Stanford-Clark. MQTT-S — A pub-
lish/subscribe protocol for Wireless Sensor Networks. In Communication Systems
Software and Middleware and Workshops, 2008. COMSWARE 2008. 3rd Interna-
tional Conference on, pages 791-798, Jan 2008. (page 21.)

[IEE 2008] ISO/IEC/IEEE Standard for Systems and Software Engineering - Software Life
Cycle Processes. IEEE STD 12207-2008, pages c1-138, 2008. (page 40.)

[Kephart 2003] Jeffrey O. Kephart et David M. Chess. The Vision of Autonomic Computing.
Computer, vol. 36, no. 1, pages 41-50, January 2003. (pages 63, 96, 103 and 150.)

[Kidd 1999] Cory D Kidd, Robert Orr, Gregory D Abowd, Christopher G Atkeson, Irfan A
Essa, Blair MacIntyre, Elizabeth Mynatt, Thad E Starner et Wendy Newstetter. The
aware home: A living laboratory for ubiquitous computing research. In Cooperative

buildings. Integrating information, organizations, and architecture, pages 191-198.
Springer, 1999. (page 16.)

[King 2006] Jeffrey King, Raja Bose, Hen-I Yang, Steven Pickles et Abdelsalam Helal.
Atlas: A service-oriented sensor platform: Hardware and middleware to enable pro-
grammable pervasive spaces. In Local Computer Networks, Proceedings 2006 31st
IEEE Conference on, pages 630-638. IEEE, 2006. (pages 24 and 35.)

[Krakowiak 2007] Sacha Krakowiak. Middleware Architecture with Patterns and Frame-
works, 2007. (pages 28, 34 and 160.)

[Kramer 2007] Jeff Kramer et Jeff Magee. Self-managed systems: an architectural chal-
lenge. In Future of Software Engineering, 2007. FOSE’07, pages 259-268. IEEE,

2007. (page 99.)

[Kvarnstrom 2001] Jonas Kvarnstrom et Patrick Doherty. TALplanner: A Temporal Logic
Based Forward Chaining Planner. Annals of Mathematics and Artificial Intelli-
gence, vol. 30, no. 1-4, pages 119-169, Mars 2001. (page 103.)

250 Bibliography

[Lalanda 2014] Philippe Lalanda, Catherine Hamon et Clément Escoffier. Cilia: An auto-
nomic service bus for pervasive environments. Proceedings of the 11th IEEE Inter-
national Conference on Services Computing (SCC), 2014. (pages 18 and 237.)

[Laprie 1992] J C Laprie, A Avizienis et H Kopetz. Dependability: Basic Concepts and
Terminology. International Federation for Information Processing WG 10.4 on
Dependable Computing and Fault Tolerance, February 1992. (page 4.)

[Larman 2003] Craig Larman et Victor R Basili. Iterative and incremental developments.
a brief history. Computer, vol. 36, no. 6, pages 47-56, 2003. (page 45.)

[Lehman 1980] M M Lehman. Programs, life cycles, and laws of software evolution. In
Proceedings of the IEEE, pages 1060-1076, 1980. (page 47.)

[Lim 2012] Jong Hyun Lim, Andong Zhan, Evan Goldschmidt, JeongGil Ko, Marcus
Chang et Andreas Terzis. HealthOS: a platform for pervasive health applications.
In Proceedings of the Second ACM Workshop on Mobile Systems, Applications,
and Services for HealthCare, mHealthSys ’12, pages 41—-46, New York, NY, USA,
2012. ACM. (page 35.)

[Liskov 1994] Barbara H. Liskov et Jeannette M. Wing. A Behavioral Notion of Subtyping.
ACM Trans. Program. Lang. Syst., vol. 16, no. 6, pages 1811-1841, November 1994.

(page 104.)

[Liu 2006] Yu David Liu et Scott F. Smith. A Formal Framework for Component De-
ployment. In Proceedings of the 21st Annual ACM SIGPLAN Conference on
Object-oriented Programming Systems, Languages, and Applications, OOPSLA
‘06, pages 325-344, New York, NY, USA, 2006. ACM. (pages 52 and 169.)

[Mattern 2001] F Mattern. The vision and technical foundations of ubiquitous computing.
Upgrade European Online Magazine, pages 5-8, 2001. (page 13.)

[Mattern 2005] Friedemann Mattern. Ubiquitous Computing: Scenarios for an informa-
tized world, pages 145-163. Springer-Verlag, 2005. (page 12.)

[Maurel 2010] Y Maurel, Ada Diaconescu et Philippe Lalanda. CEYLON: A Service-
Oriented Framework for Building Autonomic Managers. 2010 Seventh IEEE Interna-
tional Conference and Workshops on Engineering of Autonomic and Autonomous
Systems, pages 3-11, 2010. (page 103.)

[McKinley 2004] P.K. McKinley, S.M. Sadjadi, E.P. Kasten et B.H.C. Cheng. Composing
adaptive software. Computer, vol. 37, no. 7, pages 56—64, 2004. (page 98.)

[Medvidovic 1996] Nenad Medvidovic. ADLs and dynamic architecture changes. In Joint
proceedings of the second international software architecture workshop (ISAW-
2) and international workshop on multiple perspectives in software development
(Viewpoints’ 96) on SIGSOFT 96 workshops, pages 24—27. ACM, 1996. (page 61.)

Bibliography 251

[Medvidovic 2000] Nenad Medvidovic et Richard N. Taylor. A classification and compar-
ison framework for software architecture description languages. IEEE Transactions
on Software Engineering, vol. 26, no. 1, pages 70-93, 2000. (page 60.)

[Medvidovic 2007] Nenad Medvidovic et Sam Malek. Software deployment architecture
and quality-of-service in pervasive environments. In International workshop on
Engineering of software services for pervasive environments: in conjunction with
the 6th ESEC/FSE joint meeting, pages 47-51, New York, NY, USA, 2007. ACM.

(page 103)

[Microsoft 1998] Microsoft. Windows Management Instrumentation (WMI).
http://msdn.microsoft.com/en-us/library/aa394582(v=vs.85).aspx, 1998. (page 95.)

[Mikic-Rakic 2002] Marija Mikic-Rakic et Nenad Medvidovic. Architecture-level support
for software component deployment in resource constrained environments. In Com-
ponent Deployment, pages 31-50. Springer, 2002. (page 77.)

[Miller] Brent Miller. Can you CHOP up autonomic computing?
http://www.ibm.com/developerworks/autonomic/library/ac-edge4/. (page 158.)

[Moore 1965] Gordon E Mooreet al. Cramming more components onto integrated circuits,
1965. (page 16.)

[Nelson-Smith 2011] Stephen Nelson-Smith. Test-Driven Infrastructure with Chef.
O’Reilly, 2011. (page 106.)

[Object Management Group 2006a] Object Management Group. The corba component
model specification - version 4.0. OMG, April 2006. (page 73.)

[Object Management Group 2006b] Object Management Group. Deployment & Config-
uration of Component-based Distributed Applications Specification - version 4.0.
OMG, April 2006. (pages 48, 51, 55 and 108.)

[Oreizy 1999] Peyman Oreizy, Michael M Gorlick, Richard N Taylor, Dennis Heimhigner,
Gregory Johnson, Nenad Medvidovic, Alex Quilici, David S Rosenblum et Alexan-
der L Wolf. An architecture-based approach to self-adaptive software. Intelligent
Systems and Their Applications, IEEE, vol. 14, no. 3, pages 54-62, 1999. (pages 63
and 100.)

[OSGi Alliance 2007] OSGi Alliance. OSGi Service Platform Release 4. [Online]. Available:
http://www.osgi.org/Main/HomePage., 2007. (pages 74 and 206.)

[Parashar 2006] M Parashar, H Liu, Z Li, V Matossian, C Schmidt, G Zhang et S Hariri.
AutoMate: Enabling Autonomic Applications on the Grid. Cluster Computing, vol. 9,
no. 2, pages 161-174, April 2006. (page 103.)

252 Bibliography

[Parra 2009] Carlos Parra, Xavier Blanc et Laurence Duchien. Context awareness for dy-
namic service-oriented product lines. In Proceedings of the 13th International Soft-
ware Product Line Conference, pages 131—-140. Carnegie Mellon University, 2009.

(page 105.)

[Parrish 2001] Allen Parrish, Brandon Dixon et David Cordes. A conceptual foundation for
component-based software deployment. Journal of Systems and Software, vol. 57,
no. 3, pages 193-200, 2001. (page 168.)

[Peter Mell and Tim Grance 2011] Peter Mell and Tim Grance. The NIST Definition of
Cloud Computing, 2011. (pages 79 and 80.)

[Poppendieck 2009] M Poppendieck et T Poppendieck. Leading Lean Software Develop-
ment: Results Are not the Point. Addison-Wesley Signature Series (Beck). Pearson
Education, 2009. (page 89.)

[Poppendieck 2012] Mary Poppendieck et Michael A Cusumano. Lean software develop-
ment: A tutorial. Software, IEEE, vol. 29, no. 5, pages 26—32, 2012. (page 87.)

[Ramalingam 2013] Ganesan Ramalingam et Kapil Vaswani. Fault tolerance via idem-
potence. In POPL ’13: Proceedings of the goth annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. ACM Request Permissions,

January 2013. (page 145.)

[Ratner 2003] M.A. Ratner et D. Ratner. Nanotechnology: A gentle introduction to the
next big idea. Safari Tech Books Online. Prentice Hall, 2003. (page 21.)

[Roméan 2002] M. Roméan, C. Hess, R. Cerqueira, A Ranganathan, RH. Campbell et
K. Nahrstedt. Gaia: a middleware platform for active spaces. ACM SIGMOBILE
Mobile Computing and Communications Review, vol. 6, no. 4, pages 65-67, 2002.

(page 34.)

[Ronzani 2009] D. Ronzani. The battle of concepts: Ubiquitous Computing, pervasive com-
puting and ambient intelligence in Mass Media. Ubiquitous Computing and Com-
munication Journal. v4 i2, 2009. (page 13.)

[Rouvoy 2009] Romain Rouvoy, Paolo Barone, Yun Ding, Frank Eliassen, Svein Hall-
steinsen, Jorge Lorenzo, Alessandro Mamelli et Ulrich Scholz. Software Engi-
neering for Self-Adaptive Systems. chapitre MUSIC: Middleware Support for Self-
Adaptation in Ubiquitous and Service-Oriented Environments, pages 164-182.
Springer-Verlag, Berlin, Heidelberg, 2009. (page 35.)

[Rudolph 2001] Larry Rudolph. Project oxygen: Pervasive, human-centric computing—an
initial experience. In Advanced Information Systems Engineering, pages 1-12.

Springer, 2001. (page 34.)

Bibliography 253

[Salehie 2009] Mazeiar Salehie et Ladan Tahvildari. Self-adaptive software: Landscape and
research challenges. ACM Trans. Auton. Adapt. Syst., vol. 4, no. 2, pages 14:1-14:42,
May 2009. (page 63.)

[Satyanarayanan 2001] M Satyanarayanan. Pervasive computing: vision and challenges.
Personal Communications, IEEE, vol. 8, no. 4, pages 10-17, 2001. (pages 12, 13
and 112.)

[Schiele 2010] Gregor Schiele, Marcus Handte et Christian Becker. Pervasive Comput-
ing Middleware. In Hideyuki Nakashima, Hamid Aghajan et JuanCarlos Augusto,
editeurs, Handbook of Ambient Intelligence and Smart Environments, pages 201—
227. Springer US, 2010. (page 22.)

[Schilit 1994] Bill Schilit, Norman Adams et Roy Want. Context-Aware Computing Appli-
cations. In First Workshop on Mobile Computing Systems and Applications, pages
85—90. IEEE, 1994. (pages 14 and 15.)

[Schreiber 2012] F.A. Schreiber, R. Camplani, M. Fortunato, M. Marelli et G. Rota. PerLa:
A Language and Middleware Architecture for Data Management and Integration
in Pervasive Information Systems. Software Engineering, IEEE Transactions on,
vol. 38, no. 2, pages 478-496, 2012. (page 35.)

[Shelby 2014] Z. Shelby, K. Hartke et C. Bormann. The Constrained Application Protocol
(CoAP). REC 7252 (Proposed Standard), June 2014. (page 21.)

[Spinellis 2012] D Spinellis. Don’t Install Software by Hand. Software, IEEE, vol. 29, no. 4,
pages 86—87, 2012. (pages 91, 105, 116 and 162.)

[Stevenson 2010] A. Stevenson et C.A. Lindberg. New oxford american dictionary, third
edition. Oxford University Press USA, 2010. evolution. (page 47.)

[Sudevalayam 2011] Sujesha Sudevalayam et Purushottam Kulkarni. Energy harvesting
sensor nodes: Survey and implications. Communications Surveys & Tutorials, IEEE,
vol. 13, no. 3, pages 443—461, 2011. (page 21.)

[Sun Microsystems 2006a] Sun Microsystems. Java Development Kit 6 Documentation,
Java JDK 6. Documentation, 2006. (page 71.)

[Sun Microsystems 2006b] Sun Microsystems. Java Management Extensions (JMX) Spec-
ification, version 1.4. Specification, 2006. (pages 95 and 181.)

[Sun Microsystems 2013a] Sun Microsystems. Enterprise JavaBeans, version 3.2. Specifi-
cation, 2013. (page 73.)

[Sun Microsystems 2013b] Sun Microsystems. Java Servlet Specification, version 3.1. Spec-
ification, 2013. (page 30.)

254 Bibliography

[Sun 2006] Yizhan Sun. Complexity of system configuration management. PhD thesis,
Tufts University, jun 2006. (page 169.)

[Szyperski 2003] C Szyperski. Component technology - what, where, and how? In Software
Engineering, 2003. Proceedings. 25th International Conference on, pages 684-693,
2003. (pages 48, 50 and 54.)

[Tajalli 2010] Hossein Tajalli, Joshua Garcia, George Edwards et Nenad Medvidovic.
PLASMA: A Plan-based Layered Architecture for Software Model-driven Adapta-
tion. In Proceedings of the IEEE/ACM International Conference on Automated
Software Engineering, ASE 10, pages 467-476, New York, NY, USA, 2010. ACM.
(pages 108 and 109.)

[Talwar 2005] V Talwar, D Milojicic, Qinyi Wu, C Pu, W Yan et G Jung. Approaches for
service deployment. Internet Computing, IEEE, vol. 9, no. 2, pages 70-80, 2005.

(pages 76 and 237.)

[Tigli 2009] JY Tigli, S Lavirotte, Gaetan Rey, V Hourdin, D Cheung-Foo-Wo, E Callegari
et M Riveill. WComp middleware for ubiquitous computing: Aspects and composite
event-based Web services. Annals of Telecommunications, vol. 64, no. 3, pages

197-214, 2009. (page 35.)
[Turnbull 2011] James Turnbull et Jeffrey McCune. Pro puppet. Apress, 2011. (page 106.)

[van der Burg 2011] Sander van der Burg et Eelco Dolstra. A self-adaptive deployment
framework for service-oriented systems. In Proceedings of the 6th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems,
SEAMS ’11, pages 208-217, New York, NY, USA, 2011. ACM. (pages 108 and 109.)

[Waldner 2007] Jean-Baptiste Waldner et Jean Baptiste Waldner. Nano-informatique et
intelligence ambiante: inventer 'ordinateur du xxie siecle. Hermes science pub-
lications, 2007. (pages 11 and 237.)

[Wang 2003] Nanbor Wang, Douglas C Schmidt, Aniruddha Gokhale, Craig Rodrigues,
Balachandran Natarajan, Joseph P Loyall, Richard E Schantz et Christopher D Gill.
QoS-enabled middleware. Middleware for Communications, vol. 20, pages 131-162,

2003. (page 78.)

[Wang 2006] Xiaoning Wang, Wei Li, Hong Liu et Zhiwei Xu. A Language-based Ap-
proach to Service Deployment. In Services Computing, 2006. SCC ’06. IEEE Inter-
national Conference on, pages 69—76, 2006. (page 76.)

[Weiser 1991] Mark Weiser. The computer for the zist century. Scientific American, 1991.
(pages 12 and 13.)

[Weiser 1996] Mark Weiser et John Seely Brown. Designing Calm Technology. POWER-
GRID JOURNAL, vol. 1, 1996. (pages 10 and 11.)

Bibliography 255

[Zave 1997] P Zave et M Jackson. Four dark corners of requirements engineering. ACM
Transactions on Software Engineering and Methodology (TOSEM), vol. 6, no. 1,

pages 1-30, 1997. (page 4.)

	Foreword
	Introduction
	Motivations
	Research Challenges
	Contribution
	Dissertation Structure

	Pervasive Computing
	Introduction
	Evolution of Computing Environments
	Pervasive Computing
	Context & Context-awareness
	Motivating Examples
	Research Domains

	Characteristics of Pervasive Environments
	Distribution
	Heterogeneity
	Openness & Plural Authority
	Dynamism
	Autonomy
	Summary

	Characteristics of Pervasive Applications
	Resource Management
	Data Orientation
	Notion of Context
	Adaptability
	Security
	Summary

	Building Pervasive Applications
	Development Tools
	Runtime Tools & Middlewares
	Management Tools

	Conclusion

	Software Deployment
	Introduction
	Software Development Life Cycle
	Development Process Models
	Summary

	Software Deployment
	Two Faces of Evolution
	Definitions
	Concepts
	Deployment Activities
	Deployment Roles

	Issues on Software Deployment
	Managing Dynamic Evolution
	Maintaining Metadata Throughout the Life Cycle
	Managing Heterogeneous Environments
	Managing Dependencies
	Planning and Coordinating Deployment Activities
	Ensuring Security

	Software Deployment and Other Research Fields
	Software Architectures
	Software Product Lines
	Self-adaptive Software Systems
	System Administration
	Summary

	Software Deployment Facilities
	Characterization Framework
	Evaluation Criteria
	Single Target Deployment
	Modular Execution Platforms
	Distributed Deployment
	Cloud Deployment

	Conclusion

	Continuous Deployment
	Introduction
	From Lean Development to Continuous Delivery
	Value Stream in Software Lifecycle
	Deployment Pipeline

	Enabling Technologies for Continuous Deployment
	Source Code Management
	Automated Build
	Continuous Integration
	Artifact Management
	Automated Deployment
	Monitoring & Control Loop

	Requirements for Continuous Deployment
	Platform Requirements
	Process Requirements
	Language Requirements

	Positioning of Related Works
	Evaluation of Deployment Platforms
	Evaluation of Deployment Processes
	Evaluation on Deployment Descriptors

	Conclusion

	Proposition
	Introduction
	Problem Statement
	Research Objectives
	Approach

	Formalization of Deployment Concepts
	Resource Related Concepts
	Assembly Related Concepts
	Application Related Concepts

	Deployment Process
	Discussions
	Actual vs. Observed State
	Idempotence & Determinism
	Traceability & Fault-tolerance
	Reproducibility
	Application Compatibility
	Dependency Management
	Undeployment
	Continuous Adaptation

	Reference Architecture
	Context Representation
	Deployment Manager

	Description Language
	Basics
	Repository
	Resource & Assembly
	Condition & Conditional Assembly
	Application

	Evaluation
	Comparison of formalisms
	Evaluation for Continuous Deployment Requirements
	Conclusion

	Implementation and Usage
	Introduction
	Implementation
	Global Architecture
	EveREST
	Rondo Core
	Rondo Deployer
	Resolvers
	Rondo Cloner

	Usage
	Installation
	Java DSL
	Groovy DSL
	Resource Processor Development

	Conclusion

	Validation
	Introduction
	Resolver Evaluation
	Performance Evaluation
	Test Application
	Tested Platforms
	Test Results & Remarks

	Use of Rondo in Various Deployment Scenarios
	iCASA Platform
	Wisdom Framework

	Dynamic Adaptability in Rondo
	Application Adaptation
	Framework Update

	Conclusion

	Conclusion
	Introduction
	Thesis Summary
	Problem Statement
	Contributions

	Future Work
	Improving Support for Applications
	Mechanisms for Analyzing and Testing Deployments
	Distributed Continuous Deployment
	Integration into Deployment Pipeline

	Proof of Assembly Join Associativity
	Description Language Grammar
	Publications
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

