
Aix-Marseille Université

École doctorale 184

UFR sciences

Institut de Mathématiques de Marseille

Thèse présentée pour obtenir le grade universitaire de docteur

Spécialité: Mathématiques

On the Resolution Semiring
Marc Bagnol

Jury:

Pierre-Louis Curien Université Paris Diderot
Jean-Yves Girard Aix-Marseille Université (directeur)
Ugo dal Lago Università di Bologna (rapporteur)
Paul-André Melliès Université Paris Diderot
Myriam Quatrini Aix-Marseille Université
Ulrich Schöpp LMU München
Philip Scott University of Ottawa (rapporteur)
Kazushige Terui Kyoto University

Soutenue le 4/12/2014 à Marseille.

This thesis is licensed under a Attribution-NonCommercial-ShareAlike 4.0 International licence.

http://creativecommons.org/licenses/by-nc-sa/4.0/

Résumé

On étudie dans cette thèse une structure de semi-anneau dont le produit est basé
sur la règle de résolution de la programmation logique. Cet objet mathématique
a été initialement introduit dans le but de modéliser la procédure d’élimination
des coupures de la logique linéaire, dans le cadre du programme de géométrie
de l’interaction. Il fournit un cadre algébrique et abstrait, tout en étant présenté
sous une forme syntaxique et concrète, dans lequel mener une étude théorique
du calcul.

On reviendra dans un premier temps sur l’interprétation interactive de
la théorie de la démonstration dans ce semi-anneau, via l’axiomatisation
catégorique de l’approche de la géométrie de l’interaction. Cette interprétation
établit une traduction des programmes fonctionnels vers une forme très simple
de programmes logiques.

Dans un deuxième temps, on abordera des problématiques de théorie de la
complexité: bien que le problème de la nilpotence dans le semi-anneau étudié
soit indécidable en général, on fera apparaître des restrictions qui permettent de
caractériser le calcul en espace logarithmique (déterministe et non-déterministe)
et en temps polynomial (déterministe).

Mots-clés: Résolution, Programmation Logique, Complexité Implicite, Géométrie de
l’Interaction, Catégories à Trace, Automates, Algèbre.

Abstract

In this thesis, we study a semiring structure with a product based on the
resolution rule of logic programming. This mathematical object was introduced
initially in the setting of the geometry of interaction program in order to model
the cut-elimination procedure of linear logic. It provides us with an algebraic
and abstract setting, while being presented in a syntactic and concrete way, in
which a theoretical study of computation can be carried on.

We will review first the interactive interpretation of proof theory within
this semiring via the categorical axiomatization of the geometry of interaction
approach. This interpretation establishes a way to translate functional programs
into a very simple form of logic programs.

Secondly, complexity theory problematics will be considered: while the
nilpotency problem in the semiring we study is undecidable in general, it will
appear that certain restrictions allow for characterizations of (deterministic
and non-deterministic) logarithmic space and (deterministic) polynomial time
computation.

Keywords: Resolution, Logic Programming, Implicit Complexity, Geometry of
Interaction, Traced Categories, Automata, Algebra.

Remerciements

Mes premiers remerciements vont à Jean-Yves Girard, mon directeur de thèse,
sans qui ce document n’aurait évidemment jamais existé. Il a su me laisser une
grande liberté dans mon travail tout en me donnant de précieux conseils quand
mon inspiration faisait défaut. La radicalité de son approche à la logique et à la
science en général restera une inspiration, je l’espère, pour ma future vie de
chercheur.

Je remercie également Ugo dal Lago et Philip Scott d’avoir accepté d’être
rapporteurs de ce texte ainsi que tous les membres du jury, dont certains se
sont déplacés de loin pour en faire partie.

Merci à Clément Aubert et Adrien Guatto1 pour leur relecture de ce texte.
Je tiens à remercier les personnes avec qui j’ai eu l’occasion de collaborer,

et d’écrire des articles pour certains, durant ces trois années: Alois Brunel et
Damiano Mazza; Amina Doumane et Alexis Saurin; Clément Aubert, Paolo
Pistone et Thomas Seiller. Il serait difficile de surestimer le rôle décisif que ces
trois derniers ont joué dans une période ou mon travail n’avançait plus.

Merci également à Caudia Faggian pour l’énergie qu’elle a consacré au
fonctionnement du projet LOGOI, au sein duquel j’ai évolué, appris et suis
entré dans le monde de la recherche.

Merci aux permanents de l’équipe LDP qui m’on accueilli et accompagné
pendant ma thèse: Emmanuel Beffara, Yves Lafont, Myriam Quatrini, Laurent
Regnier et Lionel Vaux.

Merci aux thésards (passés, présents et assimilés) de l’IML qui, non contents
de m’avoir enseigné l’art de la Belote contrée et d’avoir été des coéquipiers de
football mémorables, on fait que les longues journées dans les murs du TPR2

soient un peu plus agréables: Anna, Danilo, Eugenia, Émilie, Étienne, Florent,
Florian, Francesca, Hamish, Irene, Joël, Jordi, Julia, Lionel, Marc, Marcelo,
Mathias, Matteo, Michele, Paolo, Pierro, Sarah, Stéphanie, Virgile. . . à cette
liste il faut bien sûr ajouter Jean-Baptiste, avec qui j’ai eu le plaisir de partager
un bureau pendant trois ans.

Merci aux membres et assimilés, anciens et nouveaux, du groupe du Groupe
de Travail Logique de l’ENS avec qui j’ai beaucoup appris, beaucoup discuté,
beaucoup ri (comme quoi la logique peut parfois être fun): Alois Brunel,

1Cela vaut bien une footnote, pour ta collection.

Adrien Guatto, Charles Grellois, Marie Kerjean, Guillaume Munch-Maccagnoni,
Pierre-Marie Pédrot, Maël Pégny, Luc Pellissier, Pablo Rauzy, Silvain Rideau,
Gabriel Scherer, Anne-Sophie de Suzzoni, et bien d’autres.

J’ai également une pensée toute particulière pour ceux qui m’ont hébergé
durant mes nombreux passages à Paris, au premiers rangs desquels les
colocataires de Corentin Cariou et Marcel Sembat, dont la chaleur de
l’accueil et le confort du canapé ne sont plus à démontrer.

Merci à mes amis, anciens et moins anciens, qui n’ont rien à voir avec le
monde de la logique ou le campus de Luminy: Adrien, Alex, Alice, Amélie,
Anne-Camille, Arthur, Benoît, Benoît, Bonnie, Camille, Chloé, Christophe,
Clément, David, Delphine, Édouard, Éric, Flora, Hugo, Hugo, Jean-Cyril,
Judith, Julien, Laélia, Laurie, Marc, Marie, Matthieu, Michaël, Micka, Nicolas,
Paul, Pauline, Péva, Rémi, Rémi, Renaud, Robin, Sébastien, Sébastien, Sihem,
Vincent. Bien que vous n’en lirez probablement jamais une ligne, cette thèse
vous doit beaucoup.

Salut à mes camarades de la lutte pour la titularisation des précaires de
l’ENS et à ceux de SUD Étudiant Aix-Marseille. C’est à regret que je réalise à
quel point je me suis éloigné de la plupart d’entre vous en me rapprochant du
monde de la recherche.

Merci à toute ma famille pour son soutien sans faille, et ce malgré mon
mauvais caractère.

Merci à Eugenia.

... à Caroline

Contents

Introduction 7

I Background 9
I.1 From sequent calculus to the resolution algebra 11

I.2 Unification . 15

I.3 Traced categories and geometry of interaction 20

II The Resolution Semiring 31
II.1 Flows and wirings . 33

II.2 Semirings constructions . 37

II.3 The balanced semiring . 39

II.4 The stack semiring . 43

III Geometry of Interaction in R 53
III.1 A traced category of logic programs 55

III.2 A GoI situation . 58

III.3 GoI and logic programming . 60

IV Complexity 63
IV.1 Representation of words . 65

IV.2 Acceptance and normativity . 67

IV.3 Logarithmic space . 69

IV.4 Polynomial Time . 73

Perspectives 79

Appendix: GoI interpretation 83

Bibliography 94

7

Introduction

Unification, the theory of formal solving of equations, is a fundamental subject
of study in computer science and its wide application range include type
inference algorithms as well as automated theorem proving. Indeed, the
resolution technique introduced by J. A. Robinson [Rob65] is a core component
of logic programming.

We study in this thesis an algebraic structure with a product based on the
resolution rule: a restricted class of logic programs, which we call wirings,
happens to enjoy a semiring structure, which enables the use of tools and
vocabulary of abstract algebra for reasoning about logic and computer science.

The origins of this semiring are rooted in the geometry of interaction (GoI)
research program [Gir89b], which aims at giving a semantical account of the
dynamics of proofs and programs, while abstracting away from proof systems.
The resolution algebra was first introduced by J.-Y. Girard [Gir95a] to build a
concrete interpretation of linear logic in this perspective.

The variant we consider is a semiring instead of an algebra, obtained by
avoiding the introduction of complex coefficients and considering a discrete
structure. Our goal will be to explore how this hybrid mathematical object can
be used to study logic and computation, with a focus on complexity issues.

We will see through the categorical axiomatization of the GoI program
that any term of the pure λ-calculus can be represented as an element of
the resolution semiring. In that respect, the syntactical and concrete nature of
the semiring, when compared with the operator algebras used in the original
approach [Gir89a, Gir90], yields some advantages: first, the construction should
be more accessible to computer scientists as it does not require a background
in functional analysis; second, this establishes a link between GoI, proof theory
and logic programming; third, the study of computation, and in particular its
space and time complexity, is more natural in this setting.

The study of complexity theory we will carry on in this semiring is
motivated by the following idea: as the dynamics of proofs and programs
can be modeled by the GoI approach, and more specifically in the resolution
semiring, then it should be possible and fruitful to give an account of complexity
theory in this setting, especially in view of the work relating linear logic and
implicit computational complexity [DL12, Bai08] we have seen in the last two
decades. Moreover, the complexity of the unification problem is a very well

8

studied subject: it is known to be Ptime-complete in general, and some subcases
of interest are known to belong to smaller classes.

We will set up tools to achieve some first results in this direction and we will
see that it is indeed possible to obtain characterizations of standard complexity
classes such as (N)Logspace [AB14, ABPS14] and Ptime, the main contribution
of this thesis.

Outline of the thesis

The first chapter contains background material on the origins of the resolution
algebra, unification theory and traced monoidal categories.

The second chapter is a general study of the properties of the resolution
semiring and some restricted semirings. We will start by setting the basic
definitions, notations and constructions, then the last two sections will detail
the specific properties of the two restricted semirings that will be at work in
the characterizations of complexity classes.

In the third chapter we show that the resolution semiring provides a setting
where one can model the dynamics of pure λ-calculus, by proving that it
satisfies the categorical axiomatization of the geometry of interaction introduced
in chapter I. The chapter ends with a brief discussion of the link this establishes
between logic programming and proof theory.

The last chapter is devoted to complexity theory. We set up the general
framework, in particular the representation of inputs, in which we will
characterize complexity classes. The results of chapter II are then put to
work in order to obtain characterizations of logarithmic space and polynomial
time computation.

Notations of complexity classes

Logspace Languages recognizable in logarithmic space by a determin-
istic Turing machine.

NLogspace The non-deterministic variant of the class above.

coNLogspace Languages with their complementary in NLogspace.

FLogspace Functions computable in logarithmic space by a deterministic
Turing machine.

Ptime Languages recognizable in polynomial time by a determinis-
tic Turing machine.

FPtime Functions computable in polynomial time by a deterministic
Turing machine.

NC Languages recognizable in polylogarithmic time on a parallel
computer with a polynomial number of processors.

9

Chapter I

Background

The purpose of this chapter is to set some elements of technical and historical
background that will hopefully ease the reading of the thesis. It also provides
some further references.

We begin by retracing the origins of the resolution semiring. We will see
that the want for a fine-grained analysis of the dynamics of logic, after the
work of Gentzen, led J.-Y. Girard to introduce linear logic and the geometry of
interaction (GoI) research program [Gir89b]. This led in turn to the introduction
of an algebra with a product based on the resolution rule, in order to be able
to manipulate by means of finite mathematical objects the potential infinity at
work in this dynamics.

Unification theory [Kni89] is a cornerstone of both theoretical and practical
computer science, and is at work in the resolution rule our semiring is based
on. In the second section, we provide the reader with a brief reminder of the
subject, settling notations and reviewing some significant complexity results.

We present in the last section the framework of traced categories and
unique decomposition categories [HS06], the result of the work of various
authors aimed at giving a categorical axiomatization of the GoI interpretation
of proof theory. We will use this framework in chapter III to establish that the
pure λ-calculus can be interpreted in the resolution semiring without needing
to prove from scratches the crucial properties of this interpretation.

Contents
I.1 From sequent calculus to the resolution algebra 11
I.2 Unification . 15
I.3 Traced categories and geometry of interaction 20

10 .

CHAPTER I. BACKGROUND 11

I.1 From sequent calculus to the resolution algebra

Proof theory is the domain of logic which focuses on the study of proofs and
their formation, rewriting, equivalences, rather than provability or validity
of propositions. In this perspective, the way proofs are built, described and
manipulated becomes of great importance. We draw in this section a short
history of the line of ideas that led to the introduction of an algebra based on
the resolution rule as a tool to describe proofs.

Sequent calculus

Following the work of Gentzen on logical formalisms [Gen34b] and the
consistency of arithmetics [Gen34a], two tools became of widespread use in
proof theory: natural deduction and sequent calculus. These emphasize on the
geometrical structure of proofs, seen as trees whose nodes are rules of the logic
under consideration.

More precisely, a sequent is an expression of the form

S = H1, . . . , Hn ` C1, . . . , Cm

that is, two multisets of formulas, the hypothesis and the conclusions of the
sequent S. The informal meaning of a sequent would be “under the hypotheses
H1, . . . , Hn at least one of the C1, . . . , Cm holds”.

A rule of sequent calculus is an expression of the form

P1 · · · Pn
R

C

where P1, . . . , Pn and C are sequents, the premises and the conclusion of the rule,
respectively. A prooftree is then a tree labeled by sequents, built by applying
rules, the conclusion of the proof is the sequent that is the conclusion of its
downmost rule.

Among rules of sequent calculus for, say, classical logic, the cut rule

Γ ` A, ∆ Γ′, A ` ∆′
cut

Γ, Γ′ ` ∆, ∆′

plays a specific role: it enables deductive reasoning; in operational terms, the
possibility to compose proofs. Indeed a particular case of the rule

A ` B B ` C
cut

A ` C

simply says that from A⇒ B and B⇒ C, one can deduce A⇒ C.
One of the main results of Gentzen was that in certain systems, among

which the sequent calculus for classical logic (LK), the cut rule is redundant.

12 I.1. From sequent calculus to the resolution algebra

Theorem I.1 (Hauptsatz [Gen34b, § 2.5])
Any proof π of LK can be rewritten in a cut-free proof π′ with the same
conclusions.

This result has important consequences on the logical system, as cut-free proofs
are much easier to manipulate and study due to a number of structuring
properties they enjoy, such as the subformula property1 in the case of LK.

The consistency of LK immediately derives from this theorem.

Linear logic

The results of Gentzen initiated a shift in the focus of proof theory, towards
a more operational point of view. The starting point is the remark that the
rewriting of proofs introduced in the cut-elimination theorem can be regarded
as a computation system.

From this perspective, a proof of A ` B can be seen as a program that
inputs (through the cut rule) a proof of A and outputs (via the cut-elimination
procedure) a cut-free proof of B. This point of view is known as the Curry-
Howard correspondence [Gal95], or the proofs-as-programs/propositions-as-
types interpretation.

One of the products of this point of view on logic is linear logic, a system
introduced by J.-Y. Girard [Gir87a] in order to carry on a finer analysis of the
cut-elimination procedure.

Among other things, linear logic makes apparent the distinction between
data that can or cannot be copied and erased via its exponential modalities !, ? and
retains the symmetry of classical logic: the linear negation (·)⊥ is an involutive
operation, which allows for a one-sided sequent presentation. In this setting,
the cut rule becomes

` A, Γ ` A⊥, ∆
cut

` Γ, ∆

As a case study, let us give the rules of two dual connectives of linear logic:

` A, Γ ` B, ∆ ⊗
` A⊗ B, Γ, ∆

` A, B, Γ
O

` AOB, Γ

and an associated elimination step (the πi denote a proof tree with the
corresponding sequent as a conclusion):

... π1

` A⊥, B⊥, Ω
O

` A⊥OB⊥, Ω

... π2

` A, Γ

... π3

` B, ∆ ⊗
` A⊗ B, Γ, ∆

cut
` Ω, Γ, ∆,

→

... π1

` A⊥, B⊥, Ω

... π2

` A, Γ
cut

` B⊥, Ω, Γ

... π3

` B, ∆
cut

` Ω, Γ, ∆

1Any formula that occur in a cut-free proof is a subformula of the conclusions of the proof.

CHAPTER I. BACKGROUND 13

This example is typical of the principle behind the cut-elimination proce-
dure: transform a cut on a pair of formulas into “simpler” cut rules on their
subformulas, thus lifting up the cut rules of the proof until its leaves.

But then, defining and studying the full cut-elimination procedure in the
context of sequent calculus, one stumbles upon a difficulty: it may happen
that the configuration described above does not occur because the cut does not
follow two dual rules, for instance in the situation

...
` A⊥, B⊥, C, D, Ω

O
` A⊥OB⊥, C, D, Ω

O
` A⊥OB⊥, COD, Ω

...
` A, Γ

...
` B, ∆ ⊗

` A⊗ B, Γ, ∆
cut

` COD, Ω, Γ, ∆

the elimination step is not immediately possible and one has to commute the cut
rule and the O rule to recover a situation where the elimination step applies:

...
` A⊥, B⊥, C, D, Ω

O
` A⊥OB⊥, C, D, Ω

...
` A, Γ

...
` B, ∆ ⊗

` A⊗ B, Γ, ∆
cut

` C, D, Ω, Γ, ∆
O

` COD, Ω, Γ, ∆

These commutation situations make the study of the cut elimination
procedure much more complex, as one needs to work modulo commutations,
an equivalence on proofs that is not orientable into a rewriting procedure in an
obvious way. Consider for instance the commutation:

... π1

` A⊥, B⊥, Γ

... π2

` A, ∆
cut

` B⊥, Γ, ∆

... π3

` B, Ω
cut

` Γ, ∆, Ω

↔

... π1

` A⊥, B⊥, Γ

... π3

` B, Ω
cut

` A⊥, Γ, Ω

... π2

` A, ∆
cut

` Γ, Ω, ∆

Here it is not possible to favor a side of this equivalence without further
non-local knowledge of the proof.

Proofnets and the Geometry of Interaction approach

It appears after the discussion above that the study of the cut-elimination
procedure in sequent calculus is a delicate matter. The point is that, as a
language for describing proofs, sequent calculus is somewhat too explicit. For
instance, the fact the the following two proofs

14 I.1. From sequent calculus to the resolution algebra

... π

` A, B, C, D, Γ
O

` AOB, C, D, Γ
O

` AOB, COD, Γ

and

... π

` A, B, C, D, Γ
O

` A, B, COD, Γ
O

` AOB, COD, Γ

are different objects from the point of view of sequent calculus generates the
first commutation situation we saw above.

A solution to this issue is to look for more intrinsic description of proofs,
to find a language that is more synthetic; if possible to the point where
commutation situations disappear.

Introduced at the same time as linear logic, the theory of proofnets [Gir87a,
Gir96] partially addresses this issue. The basic idea is to describe proofs as
graphs rather than trees, where application of logical rules become local graph
construction, thus erasing some inessential sequential informationsf. Indeed,
the two proofs above translate into the same proofnet:

JπK

ΓDCBA
O

AOB

O

COD

(where JπK is the proofnet translation of the rest of the proof) and the
corresponding commutation situation disappear.

For the multiplicative fragment of linear logic, proofnets yield an entirely
satisfactory solution to the problem of proof description through a language
that relies only on local operations. This is no longer true with wider fragments
of linear logic, indeed as soon as erasing and copying are involved.

The geometry of interaction research program [Gir89b] aims at extending
the situation of multiplicative linear logic to wider fragments, implementing
them by local operations. The first step in that direction was to give an algebraic
account of proofnets, in terms of finite permutations [Gir87b].

But to be able to implement the exponential connectives of linear logic, that
allow for an unbounded reuse of the same resource, an infinite space becomes
necessary. This led to constructions formulated in terms of C∗-algebras [Gir89a,
Gir95a] and von Neumann algebras [Gir06, Gir11].

The resolution algebra

In this picture, the resolution algebra holds a rather in-between position, being
both an object of algebraic and syntactical nature.

CHAPTER I. BACKGROUND 15

The basic idea is to build an algebra (in this thesis: a semiring) whose
composition law is the resolution rule, a key component of logic programming.
This allows for a finite description of potentially infinite sets involved in the
cut-elimination procedure.

An interpretation of full linear logic has been given by Girard within this
algebra [Gir95a] and investigations in terms of complexity were also carried on
by P. Baillot and M. Pedicini [BP01]. The syntactical nature of this algebra is at
work in the complexity studies, as one can naturally speak about the size of
objects involved or the cost of performing the operations of the algebra.

I.2 Unification

Unification can be generally thought of as the theory of formal solving of
equations. The topic was introduced originally by Herbrand, but became really
widespread after the work of J. A. Robinson [Rob65] on automated theorem
proving. The unification theory is also at the core of logic programming and
type inference for functional programming languages.

This section provides a brief technical reminder of the subject.

Unification, matching and Most General Unifiers

Specifically, unification theory is concerned with the following problem:

Does the equation t = u have a formal solution?

Let us first settle some notations and basic concepts about terms.

Notation (terms)
We consider first-order terms which we write t, u, v, . . . seen as labeled trees,
built with variables (that can therefore occur only at leaves) and function
symbols which have an assigned finite arity. The symbols of arity 0 will be
called constants.
We assume the set of variables and the sets of function symbols of each
arity are infinite. We will write variables as x, y, z, xi, . . . (in italics font) and
function symbols as c, f(·), g(·, ·), . . . (in typewriter font).
We distinguish a binary function symbol • (written in infix notation) and a
constant symbol ?.
The symbol • is not associative. However, we will write it as right associating
by convention, to lighten notations, that is t •u •v := t • (u •v).
We write var(t) the set of variables occurring in the term t, and we say
that t is closed when var(t) = ∅. The height h (t) of a term t is the maximal
distance from the root to any leaf, and likewise the height of a variable
occurrence is its distance from root.

16 I.2. Unification

The variable replacements are handled by means of the standard notion of
substitution.

Definition I.2 (substitution)
A substitution is a map θ from variables to terms such that θx = x for all but
finitely many x. We will write { x1 7→ t1, . . . , xn 7→ tn } the substitution θ
such that θxi = ti for all i, and that is the identity on the other variables.
Substitutions act on terms and can be composed (we write the composition
of substitutions omitting the ◦ symbol) the usual way, so that θ(ψt) = (θψ)t.
We say that a substitution ψ is an instance of θ if there exists a substitution σ
such that ψ = σθ.

Renamings form a subclass of substitutions that only change the names of the
variables.

Definition I.3 (renaming)
A renaming is a substitution that maps variables to variables and is bijective.
A term t is a renaming of u if there is some renaming α such that t = αu.
Two substitutions θ, ψ are equal up to renaming if there is a renaming α such
that θ = αψ.

Remark I.4. If θ is an instance of ψ and ψ is an instance of θ, then they are equal
up to renaming.

Let us now introduce the vocabulary for various situations where terms can
be equated or not by substitutions.

Definition I.5 (unification, matching)
The pair of terms t = u is:

◦ Unifiable when there is a substitution θ such that θt = θu. In that case,
θ is called a unifier of t = u. If moreover any other unifier of t = u is an
instance of θ, then it is called a most general unifier (MGU) of t = u.

◦ Matchable if t′ = u′ is unifiable, where t′, u′ are two respective renamings
of t, u such that var(t′) ∩ var(u′) = ∅.

◦ Disjoint when it is not matchable.

Remark I.6. As a consequence of remark I.4, two MGUs of a pair of terms must
be equal up to renaming.

Example I.7.
f(x) = f(c) is unified by {x 7→ c}.

CHAPTER I. BACKGROUND 17

g(c, x) = h(c, x) is not unifiable.
x •v = u •y (where u, v can be any terms) is unified by {x 7→ u , y 7→ v}.
x = f(x) is not unifiable, but it is matchable by first renaming f(x) as f(y).
f(x) = f(c • y) is unified by both {x 7→ c •f(c) , y 7→ f(c)} (which is not a

MGU) and {x 7→ c •z , y 7→ z} (which is a MGU).

The crucial result about unification of first order terms is the existence of
MGUs, and the possibility to effectively compute them.

Theorem I.8 (MGU)
If two terms are unifiable, they have a MGU.
Whether two terms are unifiable and, in case they are, finding a MGU is a
decidable problem.

Unification procedure

We give in this section a naive unification procedure, proving theorem I.8, which
will be useful in section II.3 to prove that certain properties are preserved by
unification simply remarking that they are preserved by the basic steps of the
procedure. We follow the presentation of A. Martelli and U. Montanari [MM82],
the reader can consult the original article for more detailed proofs.

To allow for an easier manipulation, the problem of unifying two terms
needs to be generalized into the problem of simultaneously unifying several
pairs of terms.

Definition I.9 (unification problem)
A unification problem is a finite set of equations P = { t1 = u1 , . . . , tn = un }.
It is in solved form if P = { x1 = t1 , . . . , xn = tn } with the xi pairwise distinct
variables.
A unifier of P is a substitution θ such that θti = θui for all i, it is a most
general unifier of P if any other unifier of P is an instance of θ.
Two unification problems are equivalent if they have the same unifiers.

We first notice that a unification problem P = { x1 = t1 , . . . , xn = tn } in solved
form has an obvious MGU { x1 7→ t1 , . . . , xn 7→ tn }.

The following two operations allow to simplify a unification problem into
another equivalent one.

Notation
If P = { t1 = u1 , . . . , tn = un } is a unification problem and θ a substitution,
we write θP = { θt1 = θu1 , . . . , θtn = θun }

18 I.2. Unification

Lemma I.10 (variable reduction)
If e ∈ P is x = t or t = x, let P′ := P \ {e}. We have either:

◦ t = x, then P is equivalent to P′.

◦ t 6= x and x ∈ var(t), then P is not unifiable.

◦ t 6= x and x 6∈ var(t), then P is equivalent to {e} ∪
(
{x 7→ t}P′

)
.

Lemma I.11 (function reduction)
If e = p(u1, . . . , un) = q(t1, . . . , tk) ∈ P, let P′ := P \ {e}. We have either:

◦ p 6= q, then P has no unifier.

◦ p = q, then n = k and P is equivalent to P′ ∪ { u1 = t1 , . . . , un = tn }.

These two lemmas can be combined to design the following algorithm, that
inputs a unification problem P and determines if it is unifiable and outputs an
equivalent problem S in solved form in that case:

1: S := ∅
2: while P 6= ∅ do
3: pick an equation e ∈ P
4: if e is x = x for some variable x then
5: P := P \ {e}
6: else if e is t = x or x = t for some variable x then
7: if x occurs in t then
8: return non-unifiable: cyclic
9: else

10: P := P \ {e}
11: P := {x 7→ t}P
12: S := {x 7→ t}S
13: S := S ∪ {x = t}
14: end if
15: else if e is p(u1, . . . , un) = p(t1, . . . , tn) then
16: P := P \ {e}
17: P := P ∪ { u1 = t1 , . . . , un = tn }
18: else
19: return non-unifiable: symbol clash
20: end if
21: end while
22: return S

Proof (of theorem I.8) I The correctness of the algorithm follows from the two
lemmas: after any iteration of the while loop, P ∪ S is equivalent to the
original problem, and S is in solved form. The termination follows from
a lexicographical well-ordering of P by: number of distinct variables, total
number of function symbols and number of equations. J

CHAPTER I. BACKGROUND 19

We just saw that we can determine if a unification problem has a solution.
We note the following fact, that will imply the associativity property of the
resolution semiring: solving a unification problem can be done incrementally.

Lemma I.12
Let P = Q ∪ R be a unification problem. The following statements are
equivalent:

◦ P is unifiable.

◦ Q has a MGU θ and θR has a MGU ψ.

In that case, we have moreover that ψθ is a MGU of P.

Indeed, the algorithm in the above proof is non-deterministic in its choice of a
pair to treat at line 3. But, as the induction measure strictly decreases no matter
what choice is made, one can force a particular strategy. We can therefore have
the procedure always selecting an equation from Q (or one of its descendant),
so that the problem Q will be solved first, yielding the MGU θ if it is unifiable
and leaving the variable P containing θR.

Complexity

In his article introducing the resolution method, Robinson gave a procedure to
compute the MGU of two terms if it exists, basically the naive one we presented
above.

This procedure is however quite inefficient, with potential exponential
blowups in some cases. This can easily be seen by considering the following
unification problem:

P := { x1 = x2 •x2 , x2 = x3 •x3 , . . . , xn = xn+1 •xn+1 }

which has a linear size in n, but with a MGU of exponential size in n. Hence
one needs at least a more efficient representation of substitutions to improve
the algorithm.

It turns out that the general unification problem can be solved in linear
time [PW78, MM82]. A lower bound was also established, ruling out the
potentiality for efficient parallel unification algorithms: the problem is Ptime-
complete [DKM84], and remains so even under all sorts of restrictions: bounded
arity of function symbols or height of the terms [OYY87, Theorems 4.2.1 and
4.3.1], linearity or absence of shared variables [DKM84, DKS88].

More recently, a constraint on variables helped to discover an upper bound
of the unification classes that are proven to be in NC [BO03].

Regarding space complexity, we will be using the result stating that the
closed matching problem is in Logspace [DKM84] which we recall here.

20 I.3. Traced categories and geometry of interaction

Theorem I.13 (closed matching is in Logspace [DKM84, p. 49])
Given two terms t and u such that either t or u is closed, deciding if they are
unifiable, and if so finding a MGU, can be done within logarithmic space.

The resolution rule

We expose briefly one of the key ideas of logic programming: the resolution rule,
which gives its name to the semiring we introduce in the next chapter.

To make a long story short, a logic program is defined as a set of Horn clauses,
which are written as (reverted) sequents:

H a B1, . . . , Bn

where the formulas H, B1, . . . , Bn are atoms of the form u(t1, . . . , tk), the
t1, . . . , tk being terms as above and u being a predicate symbol. The formula
H is called the head of the clause, while the B1, . . . , Bn constitute its body. The
clause is said to be safe if var(H) ⊆ var(B1, . . . , Bn). A safe clause with an
empty body is called a fact, while a clause with no head is called a goal.

The notion of unifiability obviously extends to such atoms, which allows to
formulate the following rule:

H a B1, . . . , Bn, U V a T1, . . . , Tn θ is a MGU of U, V
Res

θH a θB1, . . . , θBn, θT1, . . . , θTn

This rule generalizes in the case of Horn clauses the cut rule we presented
in the previous section which allows for a composition of implication that
incorporates the unification mechanism.

Then, a technique used to look for a derivation of a goal a G1, . . . , Gn from
a set of facts F and a logic program P consists in choosing a Gi and try to unify
it with one of the heads of the Horn clauses in either P of F. If this succeeds,
then the resolution rule can be applied and this leads to an updated goal. The
procedure continues until the goal to derive is empty, backtracking if it has
made the wrong choices. This is only a semi-decision procedure: depending
on the strategy employed, it can enter loops (for instance unifying repeatedly
the goal u(t) with the clause u(x) a u(x)) with no way to decide when to stop.
The problem is indeed only semi-decidable in general [DEGV01].

I.3 Traced categories and geometry of interaction

After the early work by Girard, various authors have been working on pinning
down the basic requirements for a mathematical structure that allows for a GoI
interpretation of logic, and more specifically of pure λ-calculus.

A first approach to this problem was the notion of dynamic algebra [Dan90].

CHAPTER I. BACKGROUND 21

Definition I.14 (dynamic algebra)
A dynamic algebra is a monoid M (with unit I) endowed with operations
(·)† , !(·) : M← M and an absorbing element 0 satisfying

1. (·)† is an involution: for all x, (x†)† = x.
2. !0 = 0† = 0.
3. !I = I† = I.
4. For any x, !(x†) = (!x)†.
5. For any x, y, !(xy) = !x!y and (xy)† = y†x†.

together with distinguished elements p, q, r, s, t, d satisfying

6. pp† = qq† = rr† = ss† = dd† = tt† = I.
7. p†q = q† p = r†s = s†r = 0.
8. For any x, (!x)r = r(!x) and (!x)s = s(!x).
9. For any x, (!x)t = t(!!x) and (!x)d = dx.

However this setting turns out to be slightly too strict for our purposes. In
particular we will not be able to satisfy the property !I = I in the resolution
semiring, but only a weaker variant of it.

More generally, some settings where a GoI construction can be carried
on happen not to fit in the axioms of dynamic algebras, which led to further
investigations towards a more flexible framework based on category theory.

The starting point in that direction was the original article on traced monoidal
categories [JSV96], which already observed the connection between the notion
of trace and Girard’s execution formula [Gir89a]. This observation has been
formalized in a series of papers [AJ94, Hag00b, AHS02, HS06] and investigated
in depth in E. Haghverdi’s thesis [Hag00a].

Traced categories

We review here the notion of traced monoidal category [JSV96] in a very specific
case: namely the case where most of the notions are strict and the underlying
monoidal category is symmetric, as we will be in this situation in section III.1
and it will spare us a lot of coherence diagrams checking. The general non-strict
definitions can be found in the literature [ML71, Mel09].

Notation
We will abbreviate “ f is a morphism from A to B” into f : B← A. We use
the same convention for functors and natural transformations.
We often omit the parenthesis when writing the application of a functor F
to either an object or a morphism, which gives for instance F f : FB← FA.
Moreover, we omit the composition operator of morphisms: if we have
g : C ← B and f : B← A, then g f : C ← A.

22 I.3. Traced categories and geometry of interaction

The basic setting is that of a symmetric monoidal category, in which one finds a
very primitive notion of product, and swapping operations.

Definition I.15 (symmetric monoidal category)
A monoidal category is a category C together with a bifunctor ⊕ : C← C× C
and a distinguished object 0 satisfying:

◦ The functor ⊕ is associative: for any objects A, B, C of C, we have that
A⊕ (B⊕ C) = (A⊕ B)⊕ C, which we then write A⊕ B⊕ C, and the
same holds for morphisms.

◦ The object 0 is neutral for ⊕: for any object A, A⊕ 0 = 0⊕ A = A, and
Id0 ⊕ f = f ⊕ Id0 = f for any f .

It is called a symmetric monoidal category if it moreover enjoys a natural
family of isomorphisms σA,B : B⊕ A← A⊕ B (which we call symmetries)
such that σ−1

B,A = σA,B and σA⊕B,C = (σA,C ⊕ IdB)(IdA ⊕ σB,C).

Remark I.16. The most standard notation for the monoidal product would be
“⊗” but the choice of ⊕ fits better the algebraic intuition in the category we
will study in chapter III: the monoidal product in section III.1 is similar to a
direct sum in the language of linear algebra.

Example I.17. Classic example of (non-strict) symmetric monoidal categories
include the category of sets equipped with either the cartesian product or the
disjoint union and the category of vector spaces over a field equipped with the
usual algebraic tensor product of vector spaces.

More generally, a category with finite products (resp. co-products) is always
symmetric monoidal: the universal properties imply the required functoriality
and the empty (co)product provides a terminal (resp. initial) object that can
play the role of 0.

Symmetric monoidal categories enjoy nice presentations in terms of
graphical language [Sel11]. This idea was introduced along the notion of
trace and makes its presentation very natural.

Although the idea of a graphical language can be made totally rigorous, we
will use it here only as a guide for intuition.

The principle is that a morphism f : B1 ⊕ · · · ⊕ Bn ← A1 ⊕ · · · ⊕ Am is
depicted as a box

B1 A1

...
...

Bm An

f

CHAPTER I. BACKGROUND 23

the identity morphisms and symmetries as wires (dotted when involving the
object 0)

IdA : A A

B A
σA,B :

A B

Id0 : 0 0

0 A
σA,0 :

A 0

the composition is depicted as plugging boxes

C f g A = C f B g A

and the action of the bifunctor is depicted as putting boxes side by side

B A B f A

=

D C D g C

f ⊕ g

This notation allows in particular for an intuitive representation of the
naturality of the family of symmetries:

B A′ f A B A

=

A′ B A′ f A B

With this language of circuits and wires in mind, it is easy to formulate the
idea behind the notion of trace: one wants to make sense of the picture below

TrU(f) : U U

B A
f

24 I.3. Traced categories and geometry of interaction

where a wire connects an output to an input of the morphism f , these interfaces
becoming internal.

The concept of trace in a symmetric monoidal category thus axiomatizes
categorically the notion of feedback: we may think of a flow of information that
is indeed fed back from the output to the input.

Definition I.18 (trace)
A trace in a symmetric monoidal category is an operation on morphisms
(parametrized by an object U) TrU(·) such that if we start with a morphism
f : U ⊕ B← U ⊕ A, we obtain TrU(f) : B← A. It must moreover satisfy
the following axioms (followed by their graphical counterparts):

1. Superposing: for all f : U ⊕ B← U ⊕ A and g : D ← C, we have

TrU(f ⊕ g) = TrU(f)⊕ g : B⊕ D ← A⊕ C

U U U U

B A = B A

D C D C

f

g

f

g

2. Tightening: for all f : U⊕ B← U⊕ A, g : A← A′ and h : B′ ← B, we
have

TrU((IdU ⊕ h) f (IdU ⊕ g)
)
= (IdU ⊕ h)TrU(f)(IdU ⊕ g) : B← A

U U = U U

B′ h B A g A′ B′ h B A g A′
f f

3. Sliding: for all f : U ⊕ B← U′ ⊕ A and g : U′ ← U, we have

TrU′((g⊕ IdB) f
)

: B← A = TrU(f (g⊕ IdA)
)

U′ g U U′ = U U′ g U

B A B A
f f

4. Vanishing: for all f = Id0 ⊕ f : 0⊕ B← 0⊕ A, we have

Tr0(f) = f : B← A

CHAPTER I. BACKGROUND 25

0 0

B A = B Af f

5. Associativity: for all f : U ⊕V ⊕ B← U ⊕V ⊕ A, we have

TrU⊕V(f) = TrV(TrU(f)
)

: B← A

U U

U ⊕V U ⊕V V V

=

B A B A

f
f

6. Yanking: for any object A, we have

TrA(σA,A) = IdA

A A

A A = A A

A symmetric monoidal category equipped with a notion of trace will be
called a traced category.

With these notions of categories come notions of functor and natural transfor-
mations that preserves their structure.

Definition I.19 (traced functor)
A monoidal functor F : D← C between monoidal categories is a functor that
satisfies for any A, B, f , g (we use superscripts to indicate in which category
operations occur):

◦ F(0C) = 0D.
◦ F(A⊕C B) = FA⊕D FB and F(f ⊕C g) = F f ⊕D Fg.

when the categories are symmetric, we say that F is a symmetric monoidal
functor if it moreover satisfies

◦ F(σC
A,B) = σD

FA,FB.

and if the categories are traced, F is a traced functor if it moreover satisfies

◦ F
(
TrU(f)

)
= TrFU(F f) for any f : U ⊕ B← U ⊕ A.

26 I.3. Traced categories and geometry of interaction

Definition I.20 (monoidal natural transformation)
A natural transformation α between monoidal functors is called monoidal
whenever αA⊕B = αA ⊕ αB and α0 = Id0.

Again, we gave the notions in their strict variant that are simpler to formulate
and which will be enough in our case.

GoI situations

We now have at hand an abstract way to make sense of the notion of feedback,
and this is enough for building GoI models of multiplicative linear logic.

Still, if we want to interpret exponential modalities of linear logic or the pure
λ-calculus, where erasing and duplication may occur, some further structure
will be required: this leads to GoI situations [HS06] which rely on the notion of
retraction. The basic idea is that a retraction can be seen as a sort of embedding
of an object into another, and this will be at work for instance to interpret the
contraction rule: two copies of the same object !A⊕ !A can be embedded in
one !A.

Definition I.21 (retraction)
A retraction between two objects A, B of a category is a pair of morphisms
f : A← B and g : B← A such that f g = IdA. We abbreviate this as

(f , g) : A C B

A natural retraction between two functors F and G is a pair of natural
transformations α : F ← G and β : G ← F such that for any object A,
(αA, βA) : FA C GA. We abbreviate this as

(α, β) : F C G

If moreover the functors are monoidal and the natural transformations are
monoidal, we say that we have a monoidal retraction.

Example I.22. In the category of sets and functions, the notion of retraction
corresponds to the pairs (f , g) where g is an injective function and f is such
that f ◦ g = Id.

In this category, consider the functor FA := · × A that builds the cartesian
product with some fixed set A and acts on morphisms as FA f := f × IdA. Any
retraction (a, b) : A C B induces a natural retraction (α, β) : FA C FB defined
as αX := IdX × a and βX := IdX × b.

CHAPTER I. BACKGROUND 27

Definition I.23 (GoI situation)
A GoI situation is a triple (C, !, U), where

◦ C is a traced category.

◦ ! is a traced functor with the following monoidal retractions:

1. Digging retraction (t, t′) : !! C !

2. Contraction retraction (c, c′) : !⊕ ! C !

3. Weakening retraction (w, w′) : 0 C !

4. Dereliction retraction (d, d′) : Id C !

◦ U is an object of C with retractions

1. (a, a′) : !U C U

2. (b, b′) : U ⊕U C U

3. (c, c′) : 0 C U

In that case U is called the reflexive object of the triple.

These retraction pairs enable the interpretation of the structural rules (with the
corresponding names) of linear logic, in charge of the non-linear manipulation
of data. As the Tr(·) operation corresponds to the cut rule in the GoI
interpretation, the traced nature of ! reflects the possibility to commute a
promotion rule with a cut rule in the course of the cut-elimination procedure.
Also, the naturality of these families of morphisms correspond to the other
cut-elimination steps of exponential connectives. This becomes particularly
apparent when drawing the naturality equations in the graphical language.

Remark I.24. As soon as a functor ! is defined, the image !X of any object
is a potential reflexive object, the monoidal retractions giving the particular
retractions for !X automatically. In particular the choice of a reflexive object is
not unique.

Remark I.25. The interpretation of λ-calculus in such a category only makes
use of the structure we exposed so far. That is, the interpretation of a
λ-term will always be a combination of the identity, symmetry and retraction
morphisms and their images through the trace operation and the ! and ⊕
functors. Moreover, the interpretation of the linear fragment of linear logic (or
the linear λ-calculus) would make no use of the ! functor and rely only on
(b, b′) : U ⊕U C U among the retractions.

The reader will find in the appendix a summary of the GoI interpretation
of λ-calculus that can be carried on as soon as a GoI situation is available.

28 I.3. Traced categories and geometry of interaction

Unique decomposition categories

In order to have an axiomatization that is closer to Girard’s approach, Haghverdi
introduced unique decomposition categories, inspired from earlier categorical
analysis of programming [MA86]. The purpose is to capture the notion of
matrix in a categorical framework.

The interest for us is that it gives a straightforward way to show that
a category is traced: as we shall see, in the variant we consider, unique
decomposition categories are automatically traced. This will spare us in
section III.1 the tedious one-by-one checking of the axioms of definition I.18.

Basically, unique decomposition categories are symmetric monoidal cat-
egories where one can take sums of morphisms and where composition
distributes over sums, together with projection and injection morphisms
associated to the ⊕ functor. In these categories morphisms between products
of objects can be decomposed into components.

Definition I.26 (∑-monoid)
A ∑-monoid is a set X together with a map ∑ that associates to any family
(Ai)i∈I of elements of X an element ∑i∈I Ai (the sum of the family) of X
satisfying:

◦ For any one element family (A0), ∑i∈{0} Ai = A0.

◦ For any family (Ai)i∈I and any partition (Jk)k∈K of I,

∑
k∈K

∑
j∈Jk

Aj = ∑
i∈I

Ai

The sum of the empty family will be written as 0.

It is easy to see that any powerset is an example of this notion.

Lemma I.27
For any set X, P(X) with union as a ∑ operator is a ∑-monoid.

Remark I.28. In general, ∑-monoids can have a partially defined sum oper-
ator, yielding a partially traced category [MSS12] through the full version of
theorem I.32. Also, the families that are summed are usually required to be
denumerable.

In our case (section III.1), the sums will always be defined and the
denumerability will not matter (indeed we will be in the situation of the
above lemma) so we chose to give a simpler variant here.

CHAPTER I. BACKGROUND 29

Definition I.29 (unique decomposition category)
A unique decomposition category (UDC) is a symmetric monoidal category
where for any object A, B the set of morphisms from A to B has a structure
of ∑-monoid, satisfying a distributivity property: for all (fi) : C ← B and
(gj) : B← A we have (

∑
i

fi
)(

∑
j

gj
)
= ∑

i,j
figj

moreover, for any finite product A1 ⊕ · · · ⊕ An there are morphisms (which
are respectively called injections and projections)

ιi : A1 ⊕ · · · ⊕ An ← Ai πi : Ai ← A1 ⊕ · · · ⊕ An

such that

πiιi = IdAi πiιj = 0 if i 6= j ∑
i

ιiπi = IdA1⊕···⊕An

The theory of unique decomposition categories and the GoI interpretation in
this setting is studied in details in Haghverdi’s thesis [Hag00a]. They are related
to traced categories through their decomposition property and the execution
formula.

The decomposition property expresses the expected fact that morphisms of
a UDC can be seen as matrices, and therefore decomposed into components.
We give only the case of interest for the execution formula defined just after.

Proposition I.30 (decomposition property [HS06, proposition 5])
Any morphism f : U ⊕ A← U ⊕ B of a UDC can be decomposed as:

f = fB,A + fU,A + fB,U + fU,U

where fY,X := ιY f πX : Y ← X for Y ∈ {U, B} and X ∈ {U, A}.

The execution of a morphism is then defined by iterating its fU,U component,
which fits the intuition behind the diagrams of trace we have seen before.

Definition I.31 (execution formula)
In a UDC, the iteration of a morphism g : U ← U is defined as the sum of
the family (gn)n∈N, where gn is the composition of n copies of g:

IT(g) := ∑
n∈N

gn

Given a morphism f : U ⊕ A← U ⊕ B its execution is defined as

EXU(f) := fB,A + fB,U IT(fU,U) fU,A

If fU,U is nilpotent,2 we say that the execution of f with respect to U is finite.
2Anticipating on definition II.13: fU,U is nilpotent if there is an integer n such that (fU,U)n = 0.

30 I.3. Traced categories and geometry of interaction

Then, we automatically get a traced category with the execution formula as a
trace.

Theorem I.32 (execution and trace [HS06, proposition 6])
A UDC is a traced category with EX(·) as a trace.

Remember (remark I.28) that this holds only for our restricted definition of
UDC: in case not all sums are defined, the execution formula only yields a
partial trace.

Moreover, in this situation, functors can be showed to be traced very easily:
a sufficient condition is that they are additive, a version of linearity compatible
with infinite sums.

Definition I.33 (additive functor)
A symmetric monoidal functor F between UDCs is called additive if for any
family of morphisms (fi) : Y ← X we have

F
(
∑

i
fi
)
= ∑

i
F fi

Lemma I.34 (traced and additive functors [Hag00a, lemma 8.1.1])
An additive functor between UDC is traced.

31

Chapter II

The Resolution Semiring

We turn now to the definition and study of the announced resolution semiring,
introduced by J.-Y. Girard [Gir95a] to build a GoI interpretation of linear logic.
As we already said, this semiring will use the resolution rule (page 20) as its
product, hence its name.

The first two sections define the semiring, settle some notations and review
a few basic constructions that will be used throughout the thesis.

Then, in view of chapter IV and the complexity results, we introduce two
specific restricted semirings: the balanced semiring Rb and the Stack semiring.
We explore their algebraic properties related to the notion of nilpotency, which
will be used as an acceptance condition when characterizing the complexity
classes Logspace, NLogspace and Ptime.

Contents
II.1 Flows and wirings . 33
II.2 Semirings constructions . 37
II.3 The balanced semiring . 39
II.4 The stack semiring . 43

32 .

CHAPTER II. THE RESOLUTION SEMIRING 33

II.1 Flows and wirings

Flows are very specific Horn clauses: safe (the variables of the head must occur
in the body) clauses with exactly one atom in the body.

As it is not relevant for the moment, we make no difference between
predicate symbols and function symbols, for it makes the presentation easier.

Definition II.1 (flow)
A flow is a pair f of terms, which we write t ↼ u, with var(t) ⊆ var(u). If
moreover var(t) = var(u), we define the adjoint f † := u ↼ t of f . Flows
are considered up to renaming: for any renaming α, t ↼ u = αt ↼ αu.

Facts, that are usually defined as closed clauses with an empty body, can still
be represented as a special kind of flows.

Definition II.2 (fact)
A fact is a flow of the form t ↼ ? (remember ? is a fixed constant symbol).

Remark II.3. Note that this implies that t is closed.

The main interest of the restriction to flows is that it yields an algebraic
structure: a monoid with a partially defined product.

Definition II.4 (product of flows)
Let t ↼ u and v ↼ w be two flows. Suppose we picked representatives of
the renaming classes such that var(u) ∩ var(v) = ∅.
The product of t ↼ u and v ↼ w is defined, if u = v is unifiable with MGU θ,
as (t ↼ u)(v ↼ w) := θt ↼ θw.

Remark II.5. The specific choice of a MGU does not matter because of remark I.6.
Moreover, the product is associative, a consequence of lemma I.12.

Remark II.6. The condition on variables ensures that facts form a “left ideal”
of the set of flows: if u is a fact and f a flow, then f u is a fact whenever it is
defined.

The product of flows is the resolution rule: given two flows t ↼ u and
v ↼ w with u and v matchable, seen as clauses t a u and v a w, the resolution
rule applied to t ↼ u and v ↼ w would yield the clause that is the result of the
product (t ↼ u)(v ↼ w).

Example II.7. Let us illustrate the above definitions with some computations:

34 II.1. Flows and wirings

(
f(x) ↼ x

)(
f(y) ↼ g(y)

)
= f(f(y)) ↼ g(y)(

c ↼ (x •x)
)(
(c •y) ↼ f(y)

)
= c ↼ f(c)(

f(x •c) ↼ x •d
)(
d •d ↼ ?

)
= f(d •c) ↼ ?(

f(x) ↼ g(x)
)
(f(x) ↼ x •c) is undefined

We will need to consider formal sums of flows or, in other words, a basic
structure of semiring. The simplest way to obtain this is to consider sets of
flows, which we call wirings. Wirings therefore correspond to logic programs.

Definition II.8 (wiring)
Wirings are (possibly infinite) sets of flows. The product of wirings is
defined as

FG := { f g | f ∈ F, g ∈ G, f g defined }
We write R the set of wirings and refer to it as the resolution semiring.

Note that the product (of wirings) is then a total operation, as we added the
empty set as a representative of the failure of unification: we have for instance
{ f(x) ↼ g(x) }{ h(x) ↼ f(x) } = ∅.

The set of wirings R is indeed a semiring: a structure similar to a ring, but
with no negative elements.

More precisely, let us recall that a semiring is a set R equipped with two
operations + (the sum) and × (the product, whose symbol is usually omitted),
together with an element 0 ∈ R such that: (R,+, 0) is a commutative monoid;
(R,×) is a semigroup, i.e. a monoid without a neutral element; the product
distributes over the sum; the element 0 is absorbent: 0r = r0 = 0 for all r ∈ R.

We will use an additive notation for sets of flows to highlight this situation:

◦ The symbol + will be used in place of ∪.

◦ We write sets as the sum of their elements: { f1, . . . , fn } := f1 + · · ·+ fn.

◦ We write 0 for the empty set.

◦ Moreover, we have a neutral element for the product, the unit I := x ↼ x.

Example II.9. The wirings written W = I + x ↼ f(x) and W ′ = f(x) ↼ f(x)
respectively stand for the sets { x ↼ x , x ↼ f(x) } and { f(x) ↼ f(x) }. We
can compute their product

WW ′ =
(
x ↼ x + x ↼ f(x)

)(
f(x) ↼ f(x)

)
= (x ↼ x)

(
f(x) ↼ f(x)

)
+
(
x ↼ f(x)

)(
f(x) ↼ f(x)

)
= f(x) ↼ f(x) + f(x) ↼ f(f(x))

Subsets of R inherit its semigroup/semiring structure when they are stable
by the corresponding operations, as is usual with algebraic structures.

CHAPTER II. THE RESOLUTION SEMIRING 35

Proposition II.10 (semigroup, semiring)
A subset A of R is a semigroup iff. it satisfies:

1. If F ∈ A and G ∈ A then FG ∈ A.

It is a semiring iff. it moreover satisfies:

2. 0 ∈ A
3. If F, G ∈ A, then F + G ∈ A.

As we will always be working within R, “semigroup” and “semiring” will
always mean respectively “subsemigroup of R” and “subsemiring of R”.

The notion of adjoint is then extended to wirings as (∑i fi)
† := ∑i f †

i when
f †
i is defined for all i.

Note that we allow infinite sets in the definition of wirings, which will give a
Σ-monoid (definition I.26) structure to wirings. However, wirings coming from
the interpretation of terminating programs (theorem III.18) or representing
bounded complexity computation (chapter IV) will always be finite.

Remark II.11. Now that we have introduced some material, we can state more
precisely what we meant by “a finite description of an infinite set” in section I.1.
Indeed, to any f = t ↼ u we can associate its closure [f], defined as

[f] := ∑
θ | θx is closed

for all x∈var(u)

θt ↼ θu

This sum is infinite as soon as var(u) 6= ∅, and the operation is compatible
with the product of flows: we have [f g] = [f][g] for all f and g. Moreover, for
any wiring F and any fact u, we have (extending [·] to wirings by linearity)
[F]u = Fu, so that this operation preserves the action on facts.

Definition II.12 (height)
The height h (f) of a flow f = t ↼ u is max {h (t), h (u)}. The height h (F)
of a finite wiring F is the maximal height of flows in it, by convention the
height of the empty wiring is 0.

Nilpotency is a standard algebraic concept which will appear in various places
of the thesis. In the geometry of interaction approach, it corresponds to strong
normalization. From the logic programming point of view, it is related to the
notion of boundedness [DEGV01]. We will come back to this in section III.3.

Definition II.13 (nilpotency)
A wiring F is nilpotent if Fn = 0 for some n ∈N.

36 II.1. Flows and wirings

Example II.14. The wiring F = g(x) ↼ f(f(x)) + h(x) ↼ g(x) is nilpotent, as
F2 = h(x) ↼ f(f(x)) and F3 = 0.

On the other hand G = f(x) ↼ g(x) + g(x) ↼ f(x) is not nilpotent, as
G2n = f(x) ↼ f(x) + g(x) ↼ g(x) and G2n+1 = G.

Among wirings, those that will produce at most one fact from any fact will
be of interest when considering deterministic vs. non-deterministic computation
in section IV.3.

Definition II.15 (deterministic wirings)
A wiring F is deterministic if given any fact u, card(Fu) ≤ 1.

Remark II.16. It is clear from the definition that if A is a semigroup, then the set
of deterministic wirings of A is also a semigroup.

The lemma below provides a class of wirings that are deterministic and
easy to characterize, due to a more syntactic definition.

Lemma II.17
Let F = ∑i ti ↼ ui. If the ui are pairwise disjoint (definition I.5) then F is
deterministic.

Proof I Given a closed term t, there is at most one of the ui that matches t,
therefore F(t ↼ ?) is either a single fact or 0. J

Example II.18. The wiring x ↼ f(x) + x ↼ g(x) is deterministic because of the
above lemma.

The converse of the lemma does not hold: x • x ↼ x • x + x •y ↼ x •y is also
deterministic, but does not satisfy the hypothesis of lemma II.17.

We can define a stronger variant of deterministic wirings, which will
correspond to the interpretations of λ-terms (chapter III).

Definition II.19 (isometry)
An isometry is a wiring ∑i ti ↼ ui such that all the ti ↼ ui are linear (that is,
var(ti) = var(ui) and any variable occurs exactly once in each term), the ti
are pairwise disjoint and the ui are pairwise disjoint.

Remark II.20. Again if A is a semigroup, then the set of isometries of A is also a
semigroup. This case is less obvious because of the more syntactical definition
of isometries, but is established by some easy computations.

CHAPTER II. THE RESOLUTION SEMIRING 37

Finally, let us consider a class of wirings that behave as partial identities.

Definition II.21 (projection)
A projection is a wiring of the form P = ∑i ti ↼ ti.

Proposition II.22
Let P, Q be a projections, we have that

◦ PQ is a projection.
◦ For any fact u, either Pu = u or Pu = 0. (we call the domain of P the set

of facts such that Pu = u)
◦ For any nilpotent wiring F, PF is also nilpotent.

Proof I The first two assertions are obvious. As for the third one, anticipating
on remark II.35, we have that for any wiring G, G = 0 iff. Gu = 0 for any fact u.
Therefore Fn = 0 implies that for any u, Fnu = 0 which gives (PF)nu = 0 by
the second assertion. J

II.2 Semirings constructions

In this section, we define various ways to build semirings that will serve later
on, specifically in chapter IV to define the semirings used to capture complexity
classes.

Notation
If E is a set of wirings we write

◦ vect(E) the set of all finite sums of elements of E.
◦ sgroup(E) the set of all finite products of elements of E.
◦ sring(E) := vect

(
sgroup(E)

)
, the semiring spawned by E.

It is possible to combine together semirings into a new one, using function
symbols. This construction is the syntactical counterpart of the standard
algebraic notion of tensor product.

Definition II.23
Let g be a n-ary function symbol and A1, . . . ,An be semirings.
If t1 ↼ u1, . . . , tn ↼ un are flows (with representatives of the renaming
classes that share no variables), we define the flow

g(t1 ↼ u1 , . . . , tn ↼ un) := g(t1, . . . , tn) ↼ g(u1, . . . , un)

and this is extended to wirings by linearity.

38 II.2. Semirings constructions

The semiring g(A1, . . . ,An) is then defined as

sring
(
{ g(F1, . . . , Fn) | Fi ∈ Ai }

)
Notation

In case the function symbol is the binary symbol •we will carry on with the
convention for terms and write it in infix notation and as right associating:
A •B •C := A • (B •C).

Note that this operation is compatible with the product of wirings, in the
following sense: g(F1, . . . , Fn)g(G1, . . . , Gn) = g(F1G1, . . . , FnGn). This implies
that we have

sring
(
{ g(F1, . . . , Fn) | Fi ∈ Ai }

)
= vect

(
{ g(F1, . . . , Fn) | Fi ∈ Ai }

)
so we could have used vect instead of sring in the above definition.

Example II.24. Considering f = c ↼ f(x), g = g(y) ↼ y and h = d ↼ f(c), we
get f • (g + h) = f • g + f •h = c •g(y) ↼ f(x) •y + c •d ↼ f(x) •f(c).

We also introduce a notation for the semiring containing only the unit and
zero elements.

Definition II.25 (unit semiring)
The unit semiring is defined as the set I := {0, I}.

Any set of closed terms induces a semiring: in this case there is no unification
involved, only equalities, which ensures that no new term is created by a
product (hence we are again in the situation where we can use either sring or
vect in the definition below).

Definition II.26 (closed semiring)
If E is a set of closed terms, we define the semiring

E� := sring
(
{ t ↼ u | t, u ∈ E }

)
Example II.27. Putting the above definition together, we can compute the
semiring {c}� = {0, c ↼ c} and then I •{c}� = {0, x •c ↼ x •c}.

Finally, one can create new semirings by restricting the use of certain
symbols.

Definition II.28 (restriction semiring)
Given P a set of symbols and a semiring A, we define the semiring A\P as
the semiring of elements of A that do not use any of the symbols in P.

CHAPTER II. THE RESOLUTION SEMIRING 39

All these constructions will be used in chapter IV to define the setting in which
we will represent computation and capture complexity classes.

II.3 The balanced semiring

In this section, we study a syntactical constraint on variable height of flows
which we call balance. This syntactic constraint may be compared with similar
ones proposed in order to obtain logic programs that are finitely ground [CCIL08,
LL09]. Balanced wirings will enjoy properties that will allow us to decide their
nilpotency efficiently in terms of space.

Definition II.29 (balance)
A flow f = t ↼ u is balanced if for any variable x ∈ var(u) all occurrences
of x in either t or u have the same height (recall notations page 15).
A wiring F is balanced if it is a sum of balanced flows.
We write Rb the set of balanced wirings and refer to it as the balanced
semiring.

Example II.30. The flows f(x) ↼ g(x) and f(x • x) ↼ g(y) • g(x) are balanced,
while f(x) ↼ x and f(x) •y ↼ y •x are not. Note that in example II.7, only the
second product is a product of balanced flows.

Remark II.31. The type of flows rejected by this definition may help to
understand why this semiring is related to bounded space computation: flows
of the form f(x) ↼ x could be used to store information by pushing the
information x we already have under a new symbol f, while with balanced
flows one can only move around, compare, erase, etc. information that is already
available. Intuitively, this is the type of handling of information that is possible
when manipulating read-only data.

The following lemma summarizes the properties that are preserved by the
product of balanced flows. It implies in particular that Rb is indeed a semiring.

Lemma II.32
When it is defined, the product f g of two balanced flows f and g is still
balanced and its height (definition II.12) is at most max {h (f), h (g)}.

Proof I We show that the variable height condition and the global height are
both preserved by the basic steps of the unification procedure (see the proof of
theorem I.8).

Let f = t ↼ u and g = v ↼ w We tweak the procedure by

◦ Adding two variables H, B initialized as H := t and B := w and initializing

40 II.3. The balanced semiring

P as P := {u = v}.

◦ Each time a substitution is applied to S (line 12) also apply it to H and B.

◦ Associating to each pair in P an integer that remembers the “height of the
equation”: initially associate 0 to u = v, and increment this integer for any
new pair produced by a function reduction (lemma I.11).

◦ Given an element u′ = v′ of P we call the corrected height of a leaf in u′ (resp.
v′) the sum of its height in the term u′ (resp. v′) and the integer associated
to the equation u′ = v′.

At any point of the procedure, the corrected height of any leaf has not varied.
Therefore, for any variable, the corrected height of all its occurrences in any
term is the same. Also, the maximal corrected height of any leaf can never
increase.

Moreover, if the procedure succeeds, the terms stored in H and B provide
the result of the product: f g = H ↼ B and by the invariant on the height of
leaves, we have therefore that f g is balanced and that its height cannot be more
than that of f or g. J

Corollary II.33 (balanced semiring)
Rb is a semiring.

The interest of balanced wirings in terms of complexity is that we have an
indirect way to determine their nilpotency: from a (finite) balanced wiring, we
are able to build a (finite) graph containing enough information to solve the
problem. Therefore, given a balanced wiring F, one will have the possibility
to look at this graph rather than computing the iterations Fn until eventually
obtaining 0 as a result, which would be a naive semi-decision procedure.

In what follows we focus on the algebraic aspects of this technique, and
leave the complexity issues to section IV.3.

The notion of separating space is reminiscent of the notion of separating
vector of functional analysis,1 but needs to be tweaked a little to work properly
in our setting.

Definition II.34 (separating space)
A separating space for a wiring F is a set of facts U such that

◦ FU ⊆ U.

◦ For all f1, . . . , fn ∈ F, (f1 · · · fn)U = 0 implies f1 · · · fn = 0.

1A separating vector v for an operator algebra A is such that for all H ∈ A one has that
H(v) = 0 implies H = 0 or equivalently H(v) = G(v) implies H = G: the action on this vector
provides enough information to separate elements of A.

CHAPTER II. THE RESOLUTION SEMIRING 41

Remark II.35. Note that the set of all facts is separating for any wiring and that
if U is separating for F and G ⊆ F, then U is separating for G.

Also, U separating for F immediately implies the following property: if
FnU = 0, then Fn = 0.

A separating space can be thought of as a subset of the Herbrand
universe [DEGV01] associated to a logic program, stable by resolution with rules
of the program and large enough to determine if a sequence of composition of
clauses has a null product.

We can define such a space for balanced wirings with lemma II.32 in mind:
balanced wirings behave well with respect to the height of terms.

Definition II.36 (computation space)
Given a wiring F, we define its computation space Comp(F) as the set of
facts of height at most h (F), built using only the symbols appearing in F
and the constant symbol ?.

Lemma II.37 (separation)
If F is balanced, then Comp(F) is separating for F.

Proof I By lemma II.32, F Comp(F) is of height at most h (F) and it contains
only symbols occurring in F and ?, therefore F Comp(F) ⊆ Comp(F).

By lemma II.32 again, if f1, . . . , fn ∈ F then the product f1 · · · fn is still of
height at most h (F). If (f1 · · · fn)Comp(F) = 0, it means that f1 · · · fn does
not match any closed term of height at most h (F) built with the symbols of F
and ?. This is only possible if f1 · · · fn = 0. J

If F is a finite wiring, thus built with finitely many symbols, Comp(F) is
also a finite set. We can be a little more precise and give a bound to its cardinal.
This gives an idea of the amount of space needed to enumerate the elements of
Comp(F), a crucial point in the proof of lemma IV.11.

Proposition II.38 (cardinality)
Let F be a balanced and finite wiring, A the maximal arity of function
symbols occurring in F and S the number of distinct symbols occurring in
F, then

card
(
Comp(F)

)
≤ (S + 1)Ph (F)(A)

where Ph(X) = 1 + X + · · ·+ Xh.

Proof I The number of terms of height h (F) built over the set of symbols
S ∪ {?} of arity at most A is bounded by the number of complete trees of
degree A and height h (F) (that is, trees where nodes of height less than h (F)

42 II.3. The balanced semiring

have exactly A childs) with nodes labeled by elements of S ∪ {?}. J

Then, we can encode in a directed graph2 the action of the wiring on its
computation space.

Definition II.39 (computation graph)
If F is a balanced wiring, we define its computation graph G(F) as the directed
graph:

◦ The vertices of G(F) are the elements of Comp(F).

◦ There is an edge from u to v in G(F) if v ∈ Fu.

Indeed the computation graph of a wiring contains enough information on
the latter to determine its nilpotency. This will be a key ingredient in the
logarithmic space decision procedure of section IV.3, as the search for paths
and cycles in graphs are problems that are well-known to be solvable within
logarithmic space.

Theorem II.40
A finite and balanced wiring F is nilpotent (definition II.13) iff. G(F) is
acyclic.

Proof I Suppose there is a cycle of length n in G(F), and let u be the label of a
vertex which is part of this cycle. By definition of G(F), u ∈ (Fn)ku for all k,
which means that (Fn)k 6= 0 for all k and therefore F cannot be nilpotent.

Conversely, suppose there is no cycle in G(F). As it is a finite graph, this
entails a maximal length N of paths in G(F). By definition of G(F), this
means that FN+1u = 0 for all u ∈ Comp(F). As Comp(F) is separating for F
(lemma II.37) we get FN+1 = 0 by remark II.35. J

Moreover, the computation graph of a deterministic wiring (definition II.15)
has a specific shape, which will in turn induce a deterministic decision
procedure in this case.

Lemma II.41
If F is a balanced and deterministic (definition II.15) wiring, G(F) has an
out-degree bounded by 1.

Proof I A direct consequence of the definitions of G(F) and determinism. J

2Here by directed graph we mean the standard notion: a set of vertices V together with a set
of edges E ⊆ V ×V. The source of an edge (e, f) is e and its target is f . We say that there is an
edge from e ∈ V to f ∈ V when (e, f) ∈ E. The out-degree of a graph is the maximal number of
edges a vertex can be the source of.

CHAPTER II. THE RESOLUTION SEMIRING 43

Let us illustrate the technique above on a simple example. Consider the
balanced flow

F := h(x) •h(x) ↼ f(x) •f(x)
+ f(c) •f(c) ↼ f(x •x)
+ f(x •x) ↼ h(x) •h(x)

Its computation space is the set of terms of height at most 2 built with
the symbols f, h, •, c, ?. We draw below G(F), omitting vertices connected to
no edges. We draw the edges induced by the first flow as plain lines, those
induced by the second one as dotted lines and those induced by the third one
as dashed lines. We also highlight the cycle in the graph using thicker lines.

f(c •c) f(? •?)

f(c) •f(c) f(?) •f(?)

h(c) •h(c) h(?) •h(?)

The cycle in this graph corresponds to the fact that F3(f(c •c) ↼ ?
)

contains
f(c •c) ↼ ?. Note that F being deterministic by lemma II.17, we obtain a graph
with an out-degree 1 as an illustration of lemma II.41.

II.4 The stack semiring

We saw that the typical example of a non-balanced flow is f(x) ↼ x. In this
section, we study the semiring of flows built only with unary function symbols
and a variable, thought as manipulations of a “stack” of symbols.

The restriction to unary function symbols implies a number of properties
with respect to product, and therefore nilpotency, that we will use in section IV.4
to build a polynomial time decision procedure for their nilpotency problem.

Definition II.42 (Stack semiring)
A unary flow is a flow t ↼ u built using only unary function symbols and a
unique variable, occurring both in t and u.
The semiring Stack is the set of wirings of the form ∑i ti ↼ ui where the
ti ↼ ui are all unary flows.

Example II.43. The flows f(f(x)) ↼ g(x) and x ↼ g(h(x)) are unary, while
f(c) ↼ g(x) and x •f(x) ↼ g(x) are not.

Let us fix some notations for elements of this semiring.

44 II.4. The stack semiring

Notation (stack operations)
If τ = f1, . . . , fn is a finite sequence of unary function symbols and t is a
term, we write τ(t) := f1

(
f2(· · · fn(t) · · ·

)
.

Given two sequences τ and σ we define the flow:

opτ, σ := τ(x) ↼ σ(x)

which we call a stack operation.
Finally, τσ will denote the concatenation of the sequences τ and σ.

By definition, any element of Stack is a sum of stack operations. Moreover,
it is clear that any opτ, σ can be decomposed as a product of elements of the
form pushf := f(x) ↼ x and popf := x ↼ f(x), hence the name name of this
semiring.

This type of flows have already been studied in an article on elementary
complexity and geometry of interaction [BP01].3 We can therefore borrow
a result from this work and state it in our setting. For this purpose, let us
introduce the notion of cyclicity.

Definition II.44 (cyclicity)
A flow t ↼ u is a cycle if t and u are matchable (definition I.5).
A wiring F is cyclic if there is a n such that Fn contains a cycle.4

Let~s = f1, . . . , fn be a sequence of stack operations. We define:

◦ The height of the sequence as h (~s) := max i
{
h (fi)

}
(the notation h (·)

coming from definition II.12).
◦ The cardinality of the sequence as card(~s) := card{ fi | 1 ≤ i ≤ n }. That

is, the number of distinct stack operations appearing in~s.
◦ We write p(~s) the result of the product f1 · · · fn.

The sequence~s is said to be cyclic if there is a sub-sequence~si,j = fi, . . . , f j
with 1 ≤ i ≤ j ≤ n such that p(~si,j) is a cycle.

Remark II.45. It is immediate that a flow f is a cycle iff. f 2 6= 0.

Example II.46. The flow f(x) ↼ x is a cycle with (f(x) ↼ x)2 = f(f(x)) ↼ x.
Consider the sequence

~s := h(h(x)) ↼ g(x) , f(x) ↼ h(x) , h(h(x)) ↼ g(x) , g(x) ↼ f(x)

which is such that h (~s) = 2 and card(~s) = 3, as~s is of length 4 but its first and
third elements are equal.

3In this article, flows of the form u(t1, . . . , tn) ↼ v(u1, . . . , um) with the ti and uj unary
satisfying some additional properties are considered. Unary flows correspond to the special case
where both u and v are unary.

4Note that the wiring 0 is therefore acyclic.

CHAPTER II. THE RESOLUTION SEMIRING 45

Because
(
x ↼ g(x)

)(
f(x) ↼ h(x)

)
= 0 we have p(~s) = 0. Still, ~s is cyclic

because its sub-sequence

~r := f(x) ↼ h(x) , h(h(x)) ↼ g(x) , g(x) ↼ f(x)

is such that p(~r) = f(h(x)) ↼ f(x).

The following lemma gives a bound for the maximal height the product of
a sequence can reach without the sequence being cyclic. This bound depends
on the height and cardinal of the sequence.

Lemma II.47 (acyclic sequence [BP01, lemma 5.3])
Let~s be a sequence of stack operations.
If~s is acyclic, then h

(
p(~s)

)
≤ h (~s)(card(~s) + 1).

The interest of the notion of cyclicity is that in the case of stack operations
(i.e. when manipulating unary function symbols) a cycle can be composed with
itself indefinitely, thus being non-nilpotent.

This relies on the fact that stack operations behave in a particular way with
respect to product. Indeed when a unification succeeds for two flows of this
form, only one of them is modified by the resulting MGU in order to match the
other.

Proposition II.48 (product of stack elements)
Given two stack operations opτ, σ and opρ, χ, such that opτ, σopρ, χ 6= 0, we
have a sequence µ such that either

opτ, σopρ, χ = opτ, χµ or opτ, σopρ, χ = opτµ, χ

Proof I If opτ, σopρ, χ 6= 0, then σ(x) and ρ(x) are matchable and we have a µ
such that either σ = ρµ or σµ = ρ. J

Corollary II.49
If the stack operation opτ, σ is a cycle, then (opτ, σ)n 6= 0 for all n.

Proof I If opτ, σ is a cycle then there is a µ such that either σµ = τ or σ = τµ.
Suppose for instance we are in the first situation (the second being symmetric).
Then we can compute (opτ, σ)n+1 = opτµn, σ 6= 0. J

Example II.50. For instance with the flow f := f(h(x)) ↼ f(x), we have τ = fh,
σ = f and therefore σµ = τ with µ = h.

This gives the iterations f n+1 = f(h(h(· · · h︸ ︷︷ ︸
n times

(x) · · ·))) ↼ f(x).

46 II.4. The stack semiring

Remark II.51. This property does not hold in general: consider f = x •c ↼ d •x,
this flow is a cycle as f 2 = c •c ↼ d •d 6= 0 (here we rely on remark II.45) but
f 3 = (x •c ↼ d •x)(c •c ↼ d •d) = 0. Note that the use of a binary symbol is
crucial to obtain this situation.

One of the key consequences of lemma II.47 is that cyclicity turns out to be
the only way for finite elements of Stack not to be nilpotent.

Theorem II.52 (nilpotency in Stack)
A finite wiring F ∈ Stack is not nilpotent iff. it is cyclic.

Proof I Suppose F is not nilpotent, so that there is at least one stack operation
f ∈ Fn for any n and let S be the number of different function symbols
appearing in F.

We set k := (Sh (F)(card(F)+1) + Sh (F)(card(F)+1)−1 + · · · + 1)2, which is the
cardinal of the set of flows of height at most h (F)(card(F) + 1) using the
function symbols appearing in F.

Let f 6= 0 be an element of Fk+1, it is the product p(~s) of a sequence
~s = f1, . . . , fk+1 of stack operations that belong to F. We show by contradiction
that this sequence must be cyclic, so let us suppose it is not. By lemma II.47,
we know that for any i > 0, setting~si := f1, . . . , fi we have

h
(
p(~si)

)
≤ h (~si)(card(~si) + 1) ≤ h (F)(card(F) + 1)

Therefore for any i > 0 the flow p(~si) is of height at most h (F)(card(F) + 1)
and uses only symbols appearing in F, i.e. it wanders in a set of cardinal k, so
there must be 1 ≤ i < j ≤ k + 1 such that p(~si) = p(~sj).

Now, setting~si+1,j := fi+1, . . . , f j we have that p(~si)p(~si+1,j) = p(~sj) = p(~si)
hence p(~si)p(~si+1,j)

2 = p(~si) 6= 0 and thus p(~si+1,j)
2 6= 0. That is, p(~si+1,j) is a

cycle.
As p(~si+1,j) ∈ Fj−i we can conclude that F is cyclic.
The converse immediately follows from corollary II.49. J

Example II.53. Consider the wiring

F := f1(x) ↼ f0(x)
+ f0(f1(x)) ↼ f1(f0(x))
+ f0(f0(f1(x))) ↼ f1(f1(f0(x)))
+ f0(f0(f0(x))) ↼ f1(f1(f1(x)))

which implements a sort of counter from 0 to 7 in binary notation (we see the
sequence fxfyfz as the integer x + 2y + 4z) that resets to 0 when it reaches 8.

It is quite clear with this intuition in mind that this wiring is cyclic. Indeed,
an easy computation shows that f0(f0(f0(x))) ↼ f0(f0(f0(x))) ∈ F8.

CHAPTER II. THE RESOLUTION SEMIRING 47

If we lift this example to the case of a counter from 0 to 2n − 1 that resets
to 0 when it reaches 2n, we obtain an example of a wiring F of cardinal n and
height n− 1 such that F2n

contains a cycle, but F2n−1 does not. Even if this does
not fully reach the bound we used in the above proof, it shows that the number
of iterations needed to find a cycle may be exponential in the height and the
cardinal of F, which rules out a polynomial time decision procedure for the
nilpotency problem that would simply compute the iterations of F until it finds
a cycle in it.

Note moreover that the flow F is balanced (definition II.29), therefore
balanced flows are also concerned with these remarks.

With this result we obtained a first reduction of nilpotency to a simpler
property: acyclicity. As we saw in the above example, we need to go further
than this if we want to be able to decide the problem in polynomial time.

The first step in this direction is to remark that under certain conditions,
the product of two stack operations does not grow in height.

Notation
If h

(
τ(x)

)
≥ h

(
σ(x)

)
we say that opτ, σ is increasing.

If h
(
τ(x)

)
≤ h

(
σ(x)

)
we say it is decreasing.

Lemma II.54
Let f = opτ, σ and g = opρ, χ. If f is decreasing and g is increasing, then we
have h (f g) ≤ max {h (f), h (g)}.

Proof I If f g = 0, the property is satisfied because h (0) = 0. Otherwise, we
have either σ = ρµ or σµ = ρ.

Suppose we are in the first case (the second being symmetric). Then we
have f g = opτ, χµ and h (σ) = h (ρµ). As g is increasing, h (χ) ≤ h (ρ) and
therefore h (χµ) ≤ h (ρµ) = h (σ) ≤ h (f) ≤ max {h (f), h (g)}. J

Example II.55. We have that(
f(x) ↼ h(f(x))

)(
h(f(f(x))) ↼ x

)
= f(f(x)) ↼ x

Note that the lemma does not give any information on the increasing or
decreasing nature of the result, only its height.

The reversed property (when increasing and decreasing are swapped) does
not hold. For instance if we revert the product above, we get(

h(f(f(x))) ↼ x
)(
f(x) ↼ h(f(x))

)
= h(f(f(f(x)))) ↼ h(f(x))

which is a product of flows of height 3 and 2 that yields a result of height 4.

48 II.4. The stack semiring

With this lemma in mind we can define a notion of saturation of an element of
Stack, by recursively composing its decreasing and increasing stack operations.

Definition II.56 (saturation)
If F ∈ Stack we define the subsets F↑ := { f ∈ F | f is increasing } and
F↓ := { f ∈ F | f is decreasing }.
We set the shortcut operation short (F) := F + F↓F↑ and its least fixpoint

sat (F) := ∑
n∈N

short n(F) (where shortn denotes the nth iteration of short)

which we call the saturation of F.

It is a direct consequence of lemma II.54 that if F is finite the fixpoint is reached
in a finite number of steps.

Proposition II.57
Let F ∈ Stack be a finite wiring and S the number of distinct function
symbols appearing in F. For any n we have that h

(
short n(F)

)
= h (F).

Moreover if n ≥ (Sh (F) + Sh (F)−1 + · · ·+ 1)2 then short n(F) = sat (F).

Proof I By lemma II.54 we have that h (F↓F↑) ≤ max {h (F↓), h (F↑)} = h (F)
therefore h

(
short (F)

)
= h (F) and we get the first property by induction.

For any n the elements of short n(F) are stack operations of height at most
h (F) built with the function symbols from F. As this set of stack operations is
of cardinal k := (Sh (F) + Sh (F)−1 + · · ·+ 1)2 and G ⊆ short (G) for all G, the
iteration of short (·) on F is stable after at most k steps. J

Remark II.58. The idea of the short (·) operation is very close in spirit with
the idea of “exponentiation by squaring”. Indeed F↓F↑ is a subset of F2 that
contains only terms of height at most h (F). This allows to reach much faster
some elements that belong to exponential iterations of F.

Even if the general situation might be slightly more complex, we can see for
instance that in the case of example II.53, short n(F) already contains a cycle
that would normally be found in F2n

.

The saturation operation allows for a further reduction of the nilpotency
problem to the acyclicity of wirings that contains operations that are all
increasing or all decreasing.

CHAPTER II. THE RESOLUTION SEMIRING 49

Lemma II.59 (rotation)
Let f and g be stack operations, we have that f g is a cycle iff. g f is a cycle.

Proof I If f g is a cycle, then (f g)n 6= 0 for any n by corollary II.49. In particular
(f g)3 6= 0 and as (f g)3 = f (g f)(g f)g we get (g f)2 6= 0, i.e. g f is a cycle. J

Theorem II.60
Any finite F ∈ Stack is cyclic iff. either sat (F)↑ or sat (F)↓ is.

Proof I The cyclicity of sat (F)↑ or sat (F)↓ obviously implies that of F because
short (F) ⊆ F + F2, hence sat (F) ⊆ ∑n∈N Fn.

Conversely, suppose F is cyclic and let ~s = f1, . . . , fn ∈ F such that the
product p(~s) ∈ Fn is a cycle.

We are going to produce from ~s a sequence of elements of sat (F)↑ or
sat (F)↓ which product is a cycle. For this we apply to the sequence the
following rewriting procedure:

1. If there are fi and fi+1 such that fi is decreasing and fi+1 is increasing, then
rewrite~s as f1, . . . , fi fi+1 , . . . , fn.

2. If step 1 does not apply and~s = ~s1~s2 (~s1 and~s2 both non-empty) with all
elements of~s1 increasing and all elements of~s2 decreasing, then rewrite~s
as~s2~s1.

This rewriting procedure preserves the following invariants:

◦ All elements of the sequence are in sat (F): step 2 does not affect the
elements of the sequence (only their order) and step 1 replaces the flows
fi ∈ sat (F)↓ and fi+1 ∈ sat (F)↑ by fi fi+1 ∈ sat (F).

◦ The product p(~s) of the sequence is a cycle: step 1 does not alter p(~s) and
step 2 does not alter the fact that p(~s) is a cycle by lemma II.59.

The rewriting terminates as step 1 strictly reduces the length of the sequence
and step 2 can never be applied twice in a row (it can be applied only when
step 1 is impossible and its application makes step 1 possible). Let g1, . . . , gn
be the resulting sequence. As g1, . . . , gn cannot be reduced, the gi must be
either all increasing or all decreasing.

Therefore, by the invariants above g1, . . . , gn is either a sequence of elements
of sat (F)↓ or sat (F)↑ such that the product g1 · · · gn is a cycle. J

We can give a graphical account of the above rewriting procedure: if we
depict an increasing stack operation as an arrow going up↖ and a decreasing

50 II.4. The stack semiring

one as an arrow going down ↙, we can then depict a sequence of stack
operation a sort of mountainous landscape

↙↖
↙ ↖↙↖

↖ ↙ ↖
↖↙

and the step 1 of the reduction the appears as “pruning the peaks” of the
landscape. For instance, suppose we prune the highlighted peak above (drawing
the result as a ← as it can be either increasing or decreasing) the landscape
would become

←
↙ ↖↙↖

↖ ↙ ↖
↖↙

if step 1 cannot be applied, it must be that there are no peaks, and therefore
the landscape looks like

↖
↖ ↙
↖ ↙
↖↙

and applying step 2 would yield

↙↖
↙ ↖

↙ ↖
↖

thus creating a new peak and allowing to perform step 1 anew.
Finally, we study the special case of wirings that contain operations that are

either all increasing or all decreasing, showing that this case can be reduced to
the balanced wirings of the previous section.

Notation
Given a set of unary function symbols E and an integer h, we define the
associated truncation wiring as

tr[E,h] := ∑
τ=f1, ... ,fh∈E

τ(?) ↼ τ(x)

The action of τ(?) ↼ τ(x) can be intuitively understood as follows: take a stack
that start by τ and remove its bottom, replacing it with the constant symbol ?.

CHAPTER II. THE RESOLUTION SEMIRING 51

Theorem II.61
Let F ∈ Stack be a wiring containing only increasing stack operations, E the
set of function symbols used in F and h ≥ h (F) an integer.
The wiring tr[E,h]F is balanced (definition II.29) and h (tr[E,h]F) = h.
Moreover, F is nilpotent iff. tr[E,h]F is nilpotent.

Proof I It is clear that tr[E,h]F is balanced as it contains only flows of the form
τ(?) ↼ σ(x), with only one variable.

An easy computation shows that (tr[E,h]F)(tr[E,h]F) = tr[E,h]F2 and
therefore (tr[E,h]F)n = tr[E,h]Fn; moreover if τ and σ contain only symbols
from E then tr[E,h]opτ, σ 6= 0 therefore tr[E,h]Fn = 0 iff. Fn = 0.

Finally we get (tr[E,h]F)n = 0 iff. Fn = 0, that is (tr[E,h]F) is nilpotent iff. F
is nilpotent. J

Remark II.62. The decreasing case can be treated by symmetry: if F contains
only decreasing stack operations, then its adjoint F† contains only increasing
stack operations and is nilpotent iff. F is nilpotent, because (F†)n = (Fn)†.

52 II.4. The stack semiring

53

Chapter III

Geometry of Interaction in R

The GoI interpretation of linear logic in the resolution semiring was first studied
as a direct construction by J.-Y. Girard [Gir89a, Gir95a] and its fundamental
properties were proven directly. For instance the associativity axiom of the
trace (definition I.18, item 5), which corresponds to the Church-Rosser property,
might be delicate to prove directly while it holds automatically in a UDC.

In this chapter we carry on a more abstract proof of the possibility
of interpreting linear logic (and even pure λ-calculus), by means of the
categorical framework introduced in section I.3: we will show that a unique
decomposition category R can be built within the resolution semiring, and that
this category yields a GoI situation. This automatically implies that R has all
the required structures to interpret the dynamics of the pure λ-calculus.

We provide the reader with a reminder of how the interpretation goes in a
category with a GoI situation in the appendix.

The third section of this chapter discusses briefly the connection with logic
programming this interpretation entails. This point was already evoked in
Girard’s work [Gir89b, Gir95a] but has not been explored much further since
then. We will see in particular that the notion of boundedness of logic programs
is related to the algebraic notion of nilpotency and that the ability to model
the dynamics of λ-calculus yields an undecidability result for the nilpotency
problem of the resolution semiring.

Contents
III.1 A traced category of logic programs 55
III.2 A GoI situation . 58
III.3 GoI and logic programming 60

54 .

CHAPTER III. GEOMETRY OF INTERACTION IN R 55

III.1 A traced category of logic programs

We begin by showing that a concrete traced category can be built within the
resolution semiring.

We start by restricting to a specific class of wirings, that correspond more
closely to the notion of logic programs, as we reintroduce a distinction between
predicate symbols (that can occur only at top-level) and usual function symbols.

Definition III.1 (clause wiring)
We assume a denumerable family of function symbols (which we call
predicate symbols) un[i] for n ∈ Z and i ∈N, with un[i] of arity i.
A clause is then a flow of the form

l = un[i](t1, . . . , ti) ↼ um[j](u1, . . . , uj)

The input symbol in(l) of l is the predicate symbol um[j], its output symbol
out(l) is the predicate symbol un[i].
A clause wiring is a wiring F containing only clauses, its set of input in(F)
(resp. output, out(F)) symbols is the set of input (resp. output) symbols of
the clauses in it.

Notation
We will write the clause un[i](x1, . . . , xi) ↼ un[i](x1, . . . , xi) simply as
un[i] ↼ un[i].

Then, our category will have interface specifications as objects and clause
wirings satisfying the specifications as morphisms.

Definition III.2 (resolution category)
The resolution category R is defined as:

◦ Objects: finite (possibly empty) sequences of integers 〈i1, . . . , in〉. We
write l(A) the length of the sequence A.

◦ Morphisms: a morphism from 〈j1, . . . , jm〉 to 〈i1, . . . , in〉 is a clause
wiring F with

in(F) ⊆ { u1[j1] , . . . , um[jn] } and out(F) ⊆ { u1[i1] , . . . , un[in] }

The composition in R is the product of wirings, the identities are defined as

Id〈i1 , ... , in〉 := u1[i1] ↼ u1[i1] + · · · + un[in] ↼ un[in]

The associativity of composition comes directly from the associativity of product
of flows and the fact that identities behave as expected follows from an easy
computation.

56 III.1. A traced category of logic programs

The semiring structure of R transfers to R as a Σ-monoid structure for the
sets of morphisms, with a distributivity property of the product over the sum,
two requirements of definition I.29.

Remark III.3. Here as we chose to consider plain sets of flows with no topology,
any infinite sum makes sense, which is a delicate point in operator algebraic
approaches.

There are two options when facing this situation: one can either choose
to work with partially defined infinite sums [MSS12] or look for a specific
structure where a total trace can still be defined [Gir90, Gir06].

The resolution category can be endowed with a monoidal structure in a
very straightforward way, by shifting interfaces to avoid undesired interferences
between clauses.

Notation
The shift wirings are defined for all k ∈ Z as Sk := ∑

n∈Z,i∈N

u(n+k)[i] ↼ un[i].

Definition III.4 (symmetric monoidal structure)
If we have A = 〈i1, . . . , in〉 and B = 〈j1, . . . , jm〉 two objects of R, we define
A⊕ B := 〈i1, . . . , in, j1, . . . , jm〉 (i.e. the concatenation of the two sequences).
If we have F : B1 ← A1 and G : B2 ← A2, then F⊕G : B1⊕ B2 ← A1⊕ A2
is defined as

F⊕ G := F + Sl(B1) G S−l(A1)

The unit object is defined as the empty sequence 0 := 〈 〉.
The symmetries are defined as σA,B := Sl(B)IdA + IdBS−l(A).

Note that any morphism from or to the unit object is necessarily 0.

Example III.5. Let us do a little example to fix the ideas: consider the objects
A := 〈2, 1〉 and B := 〈3〉. We have A⊕ B = 〈2, 1, 3〉 and

IdA ⊕ IdB = IdA + S2 IdB S−2
= u1[2] ↼ u1[2] + u2[1] ↼ u2[1] + S2(u1[3] ↼ u1[3])S−2

= u1[2] ↼ u1[2] + u2[1] ↼ u2[1] + u3[3] ↼ u3[3]
= IdA⊕B

Moreover we can compute

σA,B = S1 IdA + IdBS−2
= S1(u1[2] ↼ u1[2] + u2[1] ↼ u2[1]) + (u1[3] ↼ u1[3])S−2

= u2[2] ↼ u1[2] + u3[1] ↼ u2[1] + u1[3] ↼ u3[3]

CHAPTER III. GEOMETRY OF INTERACTION IN R 57

Also, we can see that in general we have

σB,AσA,B = (Sl(A)IdB + IdAS−l(A))(Sl(B)IdA + IdBS−l(A))
= Sl(A)IdBIdBS−l(A) + IdAS−l(A)Sl(B)IdA
= IdA + Sl(A)IdBS−l(A)

= IdA ⊕ IdB = IdA⊕B

To show that R has a unique decomposition structure (as we already noted
that the ∑-monoid structure and the distributivity property hold) we still
need to give injections and projections (definition I.29) for any finite monoidal
product.

Proposition III.6
Given a finite monoidal product A1 ⊕ · · · ⊕ An and writing (with l1 := 0)
li = l(A1) + · · ·+ l(Ai−1), we have that the morphisms

◦ πi := IdAi S−li : Ai ← A1 ⊕ · · · ⊕ An

◦ ιi := Sli IdAi : A1 ⊕ · · · ⊕ An ← Ai

satisfy the following equations:

πiιi = IdAi

πiιj = 0 if i 6= j

∑i ιiπi = IdA1⊕···⊕An

Example III.7. Carrying on the previous example, the unique decomposition
structure of A⊕ B would be given by the projections

πA = IdAS0 = IdA and πB = IdBS−2 = (u1[3] ↼ u1[3])S−2 = u1[3] ↼ u3[3]

and injections

ιA = S0 IdA = IdA and ιB = S2 IdB = S2(u1[3] ↼ u1[3]) = u3[3] ↼ u1[3]

We can check that indeed that πAιA = IdAIdA = IdA, πBιB = IdB etc.

Corollary III.8
The resolution category R has a unique decomposition structure.

Now, we saw in section I.3 that a unique decomposition category where all
sums are defined automatically yields a traced category. As we are in such a
configuration, we finally obtain the first ingredient of the GoI interpretation.

Corollary III.9
The resolution category R has a traced structure, with EX(·) (definition I.31)
as a trace.

58 III.2. A GoI situation

III.2 A GoI situation

We complete the proof that an interpretation of the dynamics of λ-calculus

can be built within R by showing that we can set up a GoI situation [HS06] in
the category described above.

Remember from the first chapter that we need to find a traced functor ! with
a number of associated monoidal retractions and an object U, called a reflexive
object, with its specific retraction pairs.

Let us first describe the traced functor. Informally, its action is to add a
variable which allows for an interaction with different flows using the same
interface.

Definition III.10 (promotion functor)
Let l = un[i](t1, . . . , ti) ↼ um[j](u1, . . . , uj) be a clause. The promotion of l is
defined as

!l := un[i+1](t1, . . . , ti , y) ↼ um[j+1](u1, . . . , uj , y) (where y is a fresh variable)

On objects, the functor ! is defined as:

!〈i1, . . . , in〉 := 〈i1 + 1, . . . , in + 1〉

Finally, if F = ∑i li is a morphism, then

!F := ∑
i

!li

It is plain that this defines a functor. Its traced nature derives (by lemma I.34)
from the fact that ! ∑i Fi = ∑i !Fi (obvious by the definition of !), i.e. the functor
is additive. This functor is also compatible with the adjoint operation induced
by R: for any F we have that !(F†) = (!F)† whenever F† is defined.

Definition III.11 (retraction pairs)
The promotion functor enjoys the following monoidal retraction pairs,
parametrized by an object A = 〈i1, . . . , in〉:

◦ The digging retraction (TA, T†
A) : !!A C !A is given by

TA := u1[i1+2](x1, . . . , xi1+1, xi1+2) ↼ u1[i1+1](x1, . . . , xi1+1 •xi1+2)
+ · · ·
+ un[in+2](x1, . . . , xin+1, xin+2) ↼ un[in+1](x1, . . . , xin+1 •xin+2)

◦ The dereliction retraction (DA, D†
A) : A C !A is given by

DA := u1[i1](x1, . . . , xi1) ↼ u1[i1+1](x1, . . . , xi1 , ?)
+ · · ·
+ un[in](x1, . . . , xin) ↼ un[in+1](x1, . . . , xin , ?)

CHAPTER III. GEOMETRY OF INTERACTION IN R 59

◦ The contraction retraction (CA, C†
A) : !A⊕ !A C !A is given by the sum

CA := LA + Sl(A)RA (S being the shift morphism from the previous
section), where

LA := u1[i1](x1, . . . , xi1) ↼ u1[i1](x1, . . . , f(xi1))
+ · · ·
+ un[in](x1, . . . , xin) ↼ un[in](x1, . . . , f(xin))

RA := u1[i1](x1, . . . , xi1) ↼ u1[i1](x1, . . . , g(xi1))
+ · · ·
+ un[in](x1, . . . , xin) ↼ un[in](x1, . . . , g(xin))

◦ The weakening retraction (WA, W†
A) : 0 C !A is given by WA := 0.

These families of morphism are all natural in A, a tedious but straightforward
verification which amounts to checking that for all F : B← A we have

◦ !!F TA = TB !F

◦ F DA = DB !F (and the corresponding equations for the adjoints)

◦ (!F⊕ !F)CA = CB !F

◦ 0 WA = WB !F

which is reminiscent of the equations of dynamic algebras (definition I.14). Note
that the naturality of the second members of each pairs (when the morphism F
has an adjoint, otherwise some further computation is needed) derives from
their being adjoints and the compatibility of ! and (·)†.

For instance, T†
A!!F = (!!F†TA)

† = (TB !F†)† = !F T†
B. Here we take

advantage of the extra dagger structure [Sel07] we have in our category.
The fact that they form retraction pairs is immediate. The monoidality

property simply amounts to the equations TA⊕B = TA ⊕TB, DA⊕B = DA ⊕DB,
CA⊕B = CA ⊕CB and WA⊕B = WA ⊕WB, and their adjoint version.

Finally, we take as our reflexive object the image of some object by the
functor !, following remark I.24. We avoid the object 0, as we have equations
!0 = 0 and 0⊕ 0 = 0 and the fact that a morphism from or to the object 0 is
necessarily 0, this choice would lead to a trivial interpretation.

Proposition III.12 (reflexive object)
The object 〈1〉 (= !〈0〉) is a reflexive object, with retractions:

◦
(
C〈0〉, C†

〈0〉
)

: 〈1〉 ⊕ 〈1〉 C 〈1〉

◦
(
W〈0〉, W†

〈0〉
)

: 0 C 〈1〉

◦
(
T〈0〉, T†

〈0〉
)

: !〈1〉 C 〈1〉

60 III.3. GoI and logic programming

We obtain therefore our GoI situation.

Theorem III.13
The triple

(
R , ! , 〈1〉

)
is a GoI situation.

Remark III.14. Pursuing on remark I.25, let us say a word about the type of
wirings we obtain interpreting λ-calculus. Indeed, the only part of R actually
used in the interpretation comes from combinations of identity, symmetry and
retraction morphisms and their images through the trace operation and the !
and ⊕ functors.

It is easy to see that this yields only wirings that are isometries (defini-
tion II.19) and use only the constant symbol ?, the two unary symbols f, g
and the binary symbol •. Note that this relies on the fact that isometries do
compose.

Moreover, the interpretation of linear λ-calculus makes no use of the !
functor and relies only on

(
C〈0〉, C†

〈0〉
)

: 〈1〉 ⊕ 〈1〉 C 〈1〉 among the retractions.
It is not hard to see that this would yield only elements of the Stack semiring.

III.3 GoI and logic programming

We now discuss briefly the relation between the GoI construction in the
resolution semiring and logic programming that follows from the categorical
structure we exposed.

Functional programs and logic programs

The morphisms of the category we defined in the above sections can be looked
at as a particular type of logic programs, where clauses are required to be
safe (this is the condition on variables from definition II.1) and have exactly
one atom in the body. Moreover, from that perspective the product of wirings
corresponds to the resolution rule as we already remarked in section II.1.

Let us now consider the fixpoint semantics [DEGV01] of logic programs, of
which we can give a simplified definition in our restricted case.

Definition III.15 (fixpoint)
Let F be a clause wiring and U a set of facts. The consequence operator CF of
F acts on sets of facts the following way

CF(U) := { u | u ∈ FU or u ∈ U }

and the fixpoint operator C∞
F of F acts on facts the following way:

C∞
F (U) :=

⋃
n∈N

Cn
F(U) (where C n

F denotes the nth iteration of CF)

CHAPTER III. GEOMETRY OF INTERACTION IN R 61

We formulated it this way to keep close to the more usual definition of this
notion in logic programming, but it should be quite clear that we already
encountered them:

◦ The consequence operator is simply a multiplication: CF(U) = (I + F)U.

◦ The fixpoint operator is multiplication by the iteration: C∞
F (U) = IT(F)U

(remember definition I.31).

This establishes a link between iteration/execution of wirings and the fixpoint
semantics of logic programs. The results the previous chapter yield therefore
a translation from λ-calculus to logic programs where the β-reduction
corresponds to the fixpoint semantics of the program: a sort of Curry-Howard
correspondence involving logic programming.

This connexion was already considered in early work on the subject [Gir89b,
Gir95a] but still needs to be explored, especially in view of complexity results
which will be the subject of the next chapter.

Nilpotency

The boundedness property for logic programs states that the iteration of the
consequence operator described above eventually reaches its fixpoint after a
finite number of iterations, independently of the set of facts it is acting on.

Definition III.16 (boundedness)
A wiring is bounded (of rank k) if there is an integer k such that for any set
of facts U, we have C∞

F (U) = Ck
FU.

Nilpotency obviously implies boundedness. Note that the converse is not true:
the unit is not nilpotent since In = I for all n, but it is bounded.

Anyway, we can use these remarks to transport results between proof theory
and logic programming. For instance, consider the nilpotency result for the
interpretation of System F, the polymorphic λ-calculus [GLT89]:

Theorem III.17 (nilpotency theorem[Gir89a, theorem 1])
If t is a λ-term typable in System F, then its GoI interpretation has a finite
execution (definition I.31).

This applies to any unique decomposition category with a GoI situation, and
therefore we can read this result as a way to translate λ-terms of System F as
nilpotent (thus bounded) logic programs of the form described in remark III.14,
while boundedness is a property that is usually difficult to guarantee for logic
programs using function symbols.

More generally we have the following result by V. Danos and L. Regnier:

62 III.3. GoI and logic programming

Theorem III.18 (nilpotency and strong normalization [DR95, theorem 3])
Let t be a λ-term, the GoI interpretation of t has a finite execution iff. t is
strongly normalizing.

This also applies to any unique decomposition category with a GoI situation
and leads to an undecidability result for the nilpotency problem in R, and
more precisely for the aforementioned restricted class of logic programs.

Corollary III.19 (undecidability of nilpotency)
The nilpotency problem for wirings is undecidable.
It remains undecidable if we restrict to clause wirings (definition III.1) that
are isometries (definition II.19) and use only a constant symbol, two unary
and one binary function symbols.

Indeed, the GoI interpretation yields only wirings of the required form and
Theorem III.18 tells us a term t is strongly normalizing iff. some wiring is
nilpotent. Therefore a procedure deciding the nilpotency problem would yield
a procedure deciding the strong normalization of λ-terms while this problem
is well known to be undecidable [Urz03].

This result may be compared to other undecidability results for the
boundedness problem in logic programming [DEGV01, Bla82, Fit87].

In the next chapter we are going to build a setting for capturing complexity
classes, using nilpotency as an acceptance condition. In order to make this
problem tractable, we see already that we will need to restrict to specific classes
of wirings, and that for instance the linearity constraint is certainly not enough
in that perspective.

63

Chapter IV

Complexity

The aim of implicit computational complexity theory [DL12] is to give
characterizations of complexity classes without any reference to cost bounds,
for instance by a type system of a restricted recursion scheme.

The last two decades have seen various works relating proof theory and
implicit computational complexity [Bai08], the basic idea being to look for
restricted fragments of linear logic with an expressiveness that corresponds
exactly to some complexity class. Various syntactic restrictions, most often
concerning the rules of the exponential modalities of linear logic, produced
systems with a less complex cut-elimination procedure. Also, a study of
elementary complexity in terms of the resolution algebra had already been
pursued [BP01].

More specifically, let us mention classical work on implicit characterizations
of the complexity classes we study in this thesis:

As for Ptime, characterizations have been obtained as restrictions on
recursion [BC92, Lei93] and via a simply typed λ-calculus manipulating
words [LM93]. On the proof-theoretic side, the original article by J.-Y. Girard
on light linear logic [Gir95b] initiated the investigation of the expressive power
of fragments of linear logic and λ-calculus with linear types, leading to
characterizations of polynomial time [Laf04, BT04].

Concerning Logspace, a characterization in terms of restricted recur-
sion [Nee04] has been given, while the proof-theoretic approach of the question
relies on a bidirectional view of computation [Sch07, LS10] to represent the
composition of logarithmic space programs, which is related to the geometry
of interaction view of the dynamics of logic.

The complexity of other problems concerning linear logic has also been
investigated, including the cut-elimination problem [MT03]: “given two
proofnets, are they equivalent modulo the cut-elimination procedure?” In
the case of multiplicative linear logic (or equivalently linear λ-calculus) this
problem has been proven to be Ptime-complete [Mai04]. This result was actually

64 .

the intuitive starting point of our characterization of Ptime in section IV.4: by
remark III.14, we know the GoI interpretation of linear λ-calculus can be
done in the semiring Stack and it appears therefore natural to wonder if this
semiring can be related to polynomial time in our approach.

In this last chapter, we characterize complexity classes in terms of restricted
semirings of R. This approach relates naturally to the work on implicit
computational complexity mentioned above via the GoI interpretation of linear
logic, although this connexion remains mostly to be explored.

We will set up in the first two sections the general framework in which our
characterizations take place: we expose first the representation of data we use,
which is inspired by the representation of words in linear logic, then the notion
of acceptance of an input by an observation, the counterpart of a program in
our construction.

The last two sections are devoted to the characterization of the complexity
classes Logspace, NLogspace, and Ptime, making use of the results of
section II.3 and section II.4 on nilpotency in the semirings Rb and Stack.
The completeness part of these result rely on an encoding of devices we call
pointer machines and stack machines which are classical characterizations of the
complexity classes we consider, characterizing them by the type of memory
involved.

Contents
IV.1 Representation of words . 65
IV.2 Acceptance and normativity 67
IV.3 Logarithmic space . 69
IV.4 Polynomial Time . 73

CHAPTER IV. COMPLEXITY 65

IV.1 Representation of words

We begin by setting up the framework we will use to capture complexity classes
in the resolution semiring.

We will define the notion of representation of words as wirings which
is inspired from the representation of words in linear logic and their image
through the GoI interpretation. The notion of observation will be given in the
next section. It constitutes the counterpart of programs accepting and rejecting
words in the construction.

Note however that this distinction data vs. program is different than the
one usually assumed in logic programming: the representation of words is
itself a program which interacts with another program, the observation. This
computation model will prove particularly suitable for capturing logarithmic
space complexity in section IV.3 as the amount of space needed to perform
the computation will correspond to the size of the “messages” (indeed closed
terms) exchanged between the two programs.

The construction relies on two semirings: one for word representations,
one for observations. The choice of these parameters sets the operations that
can be performed by the programs, and they will be required to satisfy some
disjointness property (see section IV.2).

The following construction will be used to give a very basic common
formatting to these objects.

Notation
We fix from now on two constant symbols l, r, the set lr := {l, r} and
an infinite set P of constant symbols which we call position constants and a
unary function symbol head. We write head(P) the set of terms of the form
head(p) with p ∈ P.

Definition IV.1
Given an alphabet Σ and semirings A and B we define, using definition II.23

and definition II.26, the semiring

MΣ(A , B) := (Σ ∪ {?})� •lr� •A •B

We can then fix a notion of representation of words that will serve for the
characterizations of Logspace, NLogspace and Ptime in the next sections.

These representations are elements of the semiring

MΣ
(
I , I •head(P)�

)
so that the interaction between the observation and the word representation will
really take place in the second parameter ofMΣ(· , ·), the first parameter being
for internal operations of the observation on which the word representation
acts trivially.

66 IV.1. Representation of words

Notation
We write u� v for u ↼ v + v ↼ u.

Definition IV.2 (word representation)
Let W = c1 . . . cn be a word over an alphabet Σ and ~p = p0, p1, . . . , pn be
pairwise distinct elements of P.
The representation of W associated with ~p is the following element of the
semiringMΣ

(
I , I •head(P)�

)
W[~p] := ? •r •x •y •head(p0)� c1 •l •x •y •head(p1)

+ c1 •r •x •y •head(p1)� c2 •l •x •y •head(p2)
+ · · ·
+ cn •r •x •y •head(pn)� ? •l •x •y •head(p0)

This can be summarized in the following picture, which is reminiscent of a
representation of words as proofnets.

? •r•l
head(p0)

c1 •r•l
head(p1)

c2 •r•l
head(p2)

. . . cn •r•l
head(pn)

Another intuition, that will be at use in the completeness proofs of
section IV.3 and section IV.4, is to see the flows of the sum in definition IV.2 as
the description of transitions from a configuration to another in a computation
made by some kind of automaton. From this point of view, the term
c •l • s •m •head(P) is to be understood as:

◦ c is the symbol that is read by the reading head of the machine.

◦ l (resp. r) tells the direction of the next move of the reading head.

◦ s describes the internal state the machine is in.

◦ m describes the memory of the machine.

◦ head(p) gives the position of the reading head of the machine.

Remember we said that the word representation is itself a program interacting
with the observation. The role it has in this interaction, seen as the computation
an automaton, can be understood as follows: the word representation is moving
the head, providing a new symbol and a new position according to the previous
symbol and the direction in which it is asked to move the head. In a flow

c •l •x •y •head(p) ↼ c′ •r •x •y •head(p′)

we start from a situation where the reading head was at position p′, reading the
symbol c′ and we go to (moving the reading head to the right) to a situation

CHAPTER IV. COMPLEXITY 67

where the reading head is at position p, reading the symbol c. The variables x
and y account for the fact that the word representation does neither modify the
internal state nor the memory of the abstract machine.

Note that word representations are balanced (definition II.29) wirings, with
fixed height, fixed arity and use a number of symbols proportional to the length
of the word they represent. We get, as a consequence of lemma II.17, that they
are also deterministic. Let us summarize this in a lemma:

Lemma IV.3
Let W be a word of length n and~p be n distinct position constants. Let W[~p]
be the associated representation. We have:

◦ W[~p] is deterministic (definition II.15).

◦ MΣ
(
I , I •head(P)�

)
⊆ Rb, therefore W[~p] is balanced.

◦ Its height (definition II.12) is h (W[~p]) = 5.

◦ It uses n + 5 distinct symbols (n + 1 position constants, together with
the •, l, r, head symbols) with maximal arity A = 2.

IV.2 Acceptance and normativity

The goal of this section is to define the acceptance condition for observations.
The basic idea is to say that an observation (definition IV.4 below) O accepts a
word W if OW[~p] is nilpotent for some representation of the word.

However, we need to make sure that the nilpotency of OW[~p] does not
depend on~p if we want the notion to be well defined: acceptance should not
depend on the specific choice of a representation of W. This leads to the notion
of normativity introduced by J.-Y. Girard [Gir12].

In short, one should ensure that the choice of semirings in which rep-
resentations and observations live are sufficiently “disjoint” to ensure the
aforementioned independence property. In order to state it, let us introduce the
two observation semirings we will consider in the next sections.

Definition IV.4 (observation semirings)
We fix an infinite set of state constants S that we suppose disjoint from the
set of position constants.
A balanced observation is a finite element of the semiring

Ob
Σ :=MΣ

(
S� , Rb

\P
)

An observation with stack is a finite element of the semiring

Os
Σ :=MΣ

(
S�•Stack , Rb

\P
)

68 IV.2. Acceptance and normativity

As we already said, the first parameters of MΣ(· , ·) concerns internal
operations of the observation, while the second corresponds to the part that
interacts with the input.

The fact that second parameters of these two constructions are equal can be
related to the automaton intuition we will use in the completeness proofs of
the next sections: the interaction with the input can be understood as a reading
head that can move on the input together with a number of read-only pointers
that can store positions. This is algebraically captured by the balanced semiring
as already evoked in remark II.31.

On the other hand, the first parameters differs and this corresponds to the
fact that the internal operations allowed by the semirings differ: Ob

Σ allows only
a (finite) set of states while Os

Σ adds the possibility to store information in a
pushdown store. This will result into a different level of expressivity, as we
shall see in the next sections.

Anyway, before we turn to this, we need a well defined notion of acceptance
which is provided by the following theorem.

Theorem IV.5 (normativity)
Let W be a word on an alphabet Σ, O a balanced observation. Then if OW[~p]
(definition IV.2) is nilpotent for some~p, it is nilpotent for any~p.
The same holds when O is an observation with stack.

This is due to the fact that observations cannot use the position constants, which
avoids any interference of the choice of constants into the computation.

Before we prove this theorem, let us use it to define a notion of acceptance
and rejection.

Definition IV.6 (language of an observation)
Let O be a balanced observation (resp. observation with stack), the language
recognized by O is the set of words

L(O) := {W | OW[~p] is nilpotent for any~p }

For instance, the observation 0 will accept any word, while the observation
I will refuse any word because W[~p] is never nilpotent and IW[~p] = W[~p].
However, the notion of acceptance is undecidable a priori as we saw in the end
of section III.3.

With these definitions at hand, we will be able to state our complexity
results, relating type of observations and complexity classes.

Proof (of theorem IV.5) I Let O be an observation in either Ob
Σ or Os

Σ, W[~p] and
W[~q] be two representations of the same word. We define ϕ the function from
terms to terms that replaces any occurrence of a pi by its corresponding qi, and

CHAPTER IV. COMPLEXITY 69

conversely. It extends naturally to flows by ϕ(t ↼ u) := ϕ(t) ↼ ϕ(u) and then
to wirings by linearity.

This function ϕ is such that ϕ(FG) = ϕ(F)ϕ(G) for all F, G because
replacing constant symbols in a term before or after performing their unification
yields the same result. It is also a bijective function, and this means in particular
that ϕ(F) = 0 iff. F = 0.

Now, note that on elements of Ob
Σ and Os

Σ, ϕ acts as the identity because
these cannot use any of the symbols in P, in particular we have ϕ(O) = O.
Moreover ϕ was defined so that ϕ(W[~p]) = W[~q].

Let us consider the product OW[~q], we have

(OW[~q])n =
(

ϕ(O)ϕ(W[~p])
)n

=
(

ϕ(OW[~p])
)n

= ϕ
(
(OW[~p])n)

by the properties of ϕ we saw above.
Then, as ϕ is bijective, we have that (OW[~q])n = 0 iff. (OW[~p])n = 0, that is

to say OW[~q] is nilpotent iff. OW[~p] is. J

IV.3 Logarithmic space

This section is devoted to the proof that balanced observations correspond to
logarithmic space computation, either deterministic or not depending on the
determinism (definition II.15) of the observation.

Completeness

We begin by expanding the remarks on automata of section IV.1 to the point
where it will give us a lower bound for the expressivity of balanced wirings.
Indeed, by borrowing some classical results on two-ways multihead finite automata
(we will consider a variant which we will call pointer machines) we will see that
balanced observations can decide any logarithmic space problem:

Theorem IV.7
If L ∈ coNLogspace, then there is a balanced observation O ∈ Ob

Σ such that
L(O) = L. Moreover, if L ∈ Logspace then O can be chosen deterministic.

Pointer machines. It is a classical result in automata theory that two-ways
multihead finite automata characterize logarithmic space computation [Har72,
WW86]. This model of computation is tolerant to a lot of modifications [Pig13]
that do not affect the class of languages it captures (though simulations may
cost an explosion of the number of heads and states) and thus many variant of
it have been defined.

We will call a pointer machine an automaton with:

70 IV.3. Logarithmic space

◦ A reading head that can move both ways and comes back to the beginning
of the input when reaching its end.

◦ A finite number of states.

◦ A finite number of auxiliary pointers that can store positions on the input.

which is just another variation of the same model, therefore characterizing
logarithmic space computation, (non-)deterministic automata corresponding to
(non-)deterministic logarithmic space. Such a machine is said to be deterministic
if its transition relation turns out to be the graph of a partial function.

Theorem IV.8 (pointer machines [WW86, theorem 13.2])
If L ∈ NLogspace then there is a pointer machine M that recognizes L.
If L ∈ Logspace then M can be chosen deterministic.

Encoding as balanced observations. We already explained in section IV.1
that once we read a term

c •l/r • s •m •head(p)

as the description of a configuration of an automaton, the action of W[~p] can be
understood as “moving the reading head in the asked direction”. The s and m
part of this term can be used by the observation to perform various operations.

If in place of m we have terms of the form auxn(p1, . . . , pn) that are
understood as the positions of n auxiliary pointers. Then, the following flow:

· · · •auxn(x1, . . . , xn) •head(x) ↼ · · · •auxn(y1, . . . , yn) •head(y)

(with { x1, . . . , xn, x } ⊆ { y1, . . . , yn, y } to respect the safety condition)
implements a transition where the position of the auxiliary pointers and the
reading head may be rearranged. In particular yi = yj would require that the
two pointers are at the same position to perform the transition, while xi = xj
would equate the positions of the two pointers after the transition.

For instance, the flow

· · · •auxn(x, . . . , x) •head(x) ↼ · · · •auxn(y1, . . . , yn) •head(x)

corresponds to a transition where all the pointers are moved to the position of
the reading head, no matter what their position was before.

If moreover in place of s we have state constants from the set S we can
implement state change as

· · · •s′ • · · · ↼ · · · •s • · · ·

The control over the direction of the reading head can be implemented as

· · · •l • · · · ↼ · · · •r • · · ·

CHAPTER IV. COMPLEXITY 71

· · · •r • · · · ↼ · · · •l • · · ·

With these ideas at hand, it is easy to encode the transitions of a pointer
machine M as a balanced observation OM which is deterministic when M is.

Acceptance. The nilpotency of OMW[~p] is then equivalent to the absence of
non-terminating sequence of transitions when starting from any configuration.
This quite odd acceptance condition turns out to be equivalent to more
usual ones (with initial, accepting and rejecting states for instance) by
translating rejection as reinitialization, and acceptance as stopping computation
[AS14, Aub13, Sei12]. Moreover, the fact that the result on pointer machines is
formulated with the class NLogspace is not problematic in view of the classical
result NLogspace =coNLogspace [Imm88, Sze88].

Theorem IV.9 (encoding)
Any pointer machine M can be encoded as a balanced observation OM ∈ Ob

Σ
in a way that L(M) = L(OM) and OM is deterministic iff. M is deterministic.

Combining theorem IV.9 and theorem IV.8, we get the expected result.

Soundness

We now use the results of section II.3 to design a procedure that decides whether
a word belongs to the language recognized by a balanced observation within
logarithmic space.1 This procedure relies on a simulation principle, reducing
the problem to the acyclicity of a graph using theorem II.40: we are not going
to compute the iterations of OW[~p] until we eventually reach 0, which would
require too much space.

We first show that the computation graph (definition II.39) of the product
OW[~p] can be constructed by a deterministic procedure using only logarithmic
space.

Then, we show that testing the acyclicity of such a graph can be done within
the same bounds. Here the procedure will be deterministic or not depending
on the shape of the graph (which is itself affected by the determinism of the
wiring, recall lemma II.41).

Since logarithmic space algorithms do compose,2 we will obtain the expected
result:

Theorem IV.10
If O ∈ Ob

Σ is a balanced observation, then L(O) ∈ coNLogspace.
If moreover O is deterministic, then L(O) ∈ Logspace.

1When not stated explicitly, when we write “logarithmic space” it should read “logarithmic
space in the length of the input”.

2Which is a classical, though quite non-trivial, result [Sav98, Fig. 8.10].

72 IV.3. Logarithmic space

We know by lemma IV.3 that any W[~p] is balanced and that its height and
maximal arity of function symbol do not depend on W. Therefore the product
OW[~p] with a balanced observation is still balanced (lemma II.32) and its height
and maximal arity do not vary when W does.

Building the computation graph. Given a word W of length n, building a
representation W[~p] is doable within logarithmic space: after the discussion
of section IV.2, we know that the choice of ~p is irrelevant to the outcome of
the computation, and we can safely choose p1, . . . , pn, identified by their index
that can be stored within logarithmic space with a binary encoding; then, each
flow in W[~p] depends only on two consecutive symbols of W, so we can build
them scanning W locally. We have therefore a function Rep(·) ∈ FLogspace

that inputs a word W and outputs a representation W[~p].
Now, to build the computation graph (definition II.39) of OW[~p] we need

to: first, enumerate the edges (i.e. the elements of the computation space
Comp(OW[~p]), Definition II.36). Second, determine whether there is an edge
between two vertices.

The elements of Comp(OW[~p]) are trees of height and maximal arity
bounded by integers that do not depend on W, so there is a fixed number
of tree shapes they can take. These trees are in turn labeled by symbols stored
as integers ranging from 1 to S and S is linearly growing with the length of W.

This sets the stage for a enumeration within logarithmic space, so that we
have a function CompO(·) ∈ FLogspace that inputs a word W and outputs the
list of the elements of Comp(OW[~p]). Finally, remember that the matching
problem can be solved within logarithmic space (theorem I.13), which yields
a function Match(· , ·) ∈ FLogspace that inputs a flow f and a fact u and
outputs the fact f u.

Combining all these elements, we get a procedure that builds the computa-
tion graph within logarithmic space.

Lemma IV.11 (computation graph in FLogspace)
Given a balanced observation O, there is a function GraphO(·) ∈ FLogspace

that inputs a word W and outputs G(OW[~p]).

We can then end the proof of the main theorem of this section.

Proof (of theorem IV.10) I Let O be a balanced observation. It is a classic result
of complexity theory [Jon75, p. 83] that the cycle search on directed graphs is
in NLogspace, that is: there is a non-deterministic logarithmic space procedure
Cycl(·) that inputs a directed graph and accepts iff. it has a cycle.

We can briefly describe it as follows: to check whether there is a cycle
starting at some vertex v, one can non-deterministically explore the graph
(starting by v) remembering only a current vertex v′; at each step choosing an

CHAPTER IV. COMPLEXITY 73

edge that has source v′, going through this edge and checking whether we
reached v, otherwise updating v′. A counter remembering the number of steps
is also needed, to detect a cycle if we were able to do more steps than the
number of vertices in the graph. This procedure has then to be run starting at
any v, in case the graph is not connected.

Therefore, since Cycl ◦GraphO(·) accepts a word W whenever O rejects W
(theorem II.40), we have that L(O) ∈ coNLogspace.

Moreover, it is quite clear that with the additional assumption that the graph
has an out-degree bounded by 1, the Cycl(·) procedure becomes deterministic
because there is no longer any choice to be made when deciding which is the
next edge to follow. In case O is deterministic, OW[~p] is also deterministic
(by lemma IV.3 and remark II.16) and therefore Comp(OW[~p]) has an out-
degree bounded by 1 (lemma II.41). Then, Cycl ◦GraphO(·) is a deterministic
procedure and L(O) ∈ Logspace. J

The same argumentation as above in the case of a plain balanced wiring
without considering word representations and observations would give a
complexity result for the nilpotency problem of these wirings which we state
independently.

Theorem IV.12 (nilpotency in Rb)
Given two integers A, h, there is a procedure BNilpA,h(·) ∈ coNLogspace

that inputs a balanced wiring F built with function symbol of arity at most
A and such that h (F) ≤ h and accepts iff. F is nilpotent.
If we restrict to deterministic elements of Rb, then BNilpA,h(·) ∈ Logspace.

In this case, we mean logarithmic space in the size of F, defined as the total
number of symbols in it.

IV.4 Polynomial Time

We turn now to the study of polynomial time computation and show that it is
captured by observations with stack.

Here also

Completeness

We follow the pattern of the previous section and use a well-known type
of automata that capture polynomial time computation: auxiliary pushdown
automata, which we will call stack machines.

We will see in this section that observations with stack can decide any Ptime

language:

74 IV.4. Polynomial Time

Theorem IV.13
If L ∈ Ptime, then there exist an observation with stack O ∈ Os

Σ such that
L(O) = L.

Stack machines. S. Cook [Coo71] was one of the first to explore the expres-
sivity of automata equipped with a stack (or “pushdown store”) together with
either a logarithmically bounded tape or a fixed number of pointers.

We will call a stack machine an automaton with

◦ A reading head that can move both ways and comes back to the beginning
of the input when reaching its end.

◦ A finite number of states.

◦ A finite number of auxiliary pointers that can store positions on the input.

◦ A pushdown stack.

These machines work the same way as pointer machines to which a stack would
have been added, together with the usual “push, pop” operations: they can
manipulate the stack to add or remove symbols at the top of it.

Cook’s results and its various later reformulations have as a consequence
that these machines characterize polynomial time, which is now part of the
classical theorems in complexity theory.

Theorem IV.14 ([WW86, theorem 13.20])
If L ∈ Ptime, then there is a stack machine M that recognizes L.

Extending the encoding. We only need to show how we can extend the
encoding of the previous section to handle the addition of a stack to our model.
The flows pushf, popf we saw in section II.4 turn out to be exactly what we
need to do this. Compared to the above section, the only thing that changes is
that in a term

c •l/r • s •m •head(p)

the state s of the machine will no longer be represented simply as a state
constant s, but as a pair of a state constant and a stack s •τ(x).

We can then use the elements of the semiring Stack to encode stack-related
transitions. For instance a “push f” (without changing the state s) operation
would be implemented as

· · · •
(
s •f(x)

)
• · · · ↼ · · · •

(
s •x

)
• · · ·

while a “pop f” (again, without changing the state s) would be implemented as

· · · •
(
s •x

)
• · · · ↼ · · · •

(
s •f(x)

)
• · · ·

CHAPTER IV. COMPLEXITY 75

Empty stack symbol. The stack operations we have in Stack are not designed
to have a specific treatment of an empty stack, but it clearly can be simulated
by adding a specific unary function symbol when encoding a stack machine: a
stack with the special symbol on top is the same thing as an empty stack.

Then, modulo the same remarks as in the previous section, we get an
encoding of stack machines that implies theorem IV.13 via theorem IV.14.

Soundness

The actually delicate part is rather to give a polynomial time decision procedure
for balanced observations with stacks.

As in the above section, we are not going to compute directly the iterations
of OW[~p] (O is now an observation with stack) and see if they eventually reach
0, as the order of nilpotency of an element of Stack may be exponential in its
size, as we saw in example II.53.

In that respect, we are in a situation that is quite similar to what happens
with stack machines: Cook proved that it is possible to decide whether such a
machine accepts a word in polynomial time, while the actual run of the machine
may be of exponential length. We therefore need to speed up computation in a
similar way Cook managed to do with his memoization [Glü13] technique.

Most of the technical work has already been carried out in section II.4 and
we mainly need now to re-read it with complexity issues in mind. Before we
get started, let us state the main theorem we aim at proving in this section:

Theorem IV.15
If O ∈ Os

Σ is an observation with stack, then L(O) ∈ Ptime.

The proof goes in two steps: first we show that the nilpotency of an element of
Stack can be decided in polynomial time, then we show that given the product
OW[~p] of an observation and the representation of an integer, we can build in
polynomial time a wiring F ∈ Stack that is nilpotent iff. OW[~p] is nilpotent.

The size of wirings. The procedure will have wirings as data for its
intermediate steps, we must therefore state how the size of wirings is measured:
we will call the size of a wiring (notation |F|) the total number of occurrences
symbols in it.

Nilpotency in Stack. We already know from theorem II.60 that given a finite
F ∈ Stack, its nilpotency is equivalent to the acyclicity of sat (F)↓ and sat (F)↑.
Moreover, we know from theorem II.61 that given a sum F of stack operations
which are all increasing (or all decreasing) we can associate to it a balanced
wiring which is nilpotent iff. F is nilpotent.

First let us show that the saturation is computable in polynomial time.

76 IV.4. Polynomial Time

Proposition IV.16
Given any integer h, there is a function Sath(·) ∈ FPtime that inputs a finite
F ∈ Stack with h (F) ≤ h and outputs sat (F)↓, sat (F)↑.

Proof I We write S the number of different function symbols in F. Consider the
following algorithm:

1: H := F
2: while H↓H↑ 6⊆ H do
3: H := short (H) (definition II.56)
4: end while
5: return H↓, H↑

It is clear from proposition II.57 that this algorithm terminates in at
most (Sh (F) + Sh (F)−1 + · · · + 1)2 ≤ (|F|h + |F|h−1 + · · · + 1)2 steps and
outputs sat (F)↓, sat (F)↑. Moreover, the time cost of each step is that of
the computation of H↓H↑. We know by proposition II.57 that at any point
the total number of elements in H (hence in H↓ and H↑) is bounded by
(|F|h + |F|h−1 + · · · + 1)2 and that the terms involved are built with unary
function symbols and of height at most h (F), hence their size is at most h (F)
and each unification can be performed in linear time in |F|. Therefore the time
needed to compute the product H↓H↑ is polynomial in |F|. J

Remark IV.17. In remark II.58, we explained that the short (·) operation provides
an acceleration in the iterations of F we can reach.

This part of the procedure corresponds indeed to the memoization part of
the simulation of stack machines we evoked in the beginning of this section: the
program considered is augmented with transitions that are stored in sat (F)
and can then be used with the same time cost as any other, while they may
hide the composition of an exponential number of the original transitions.

Proposition IV.18
Given any integer h, there is procedure Incrh(·) ∈ Ptime that inputs a finite
sum F of increasing stack operations such that h (F) ≤ h and accepts iff. F
is nilpotent.

Proof I By theorem II.61 we know that F is nilpotent iff. F′ := tr[E,h]F is.
We can compute F′ from F in polynomial time, as it just means to compute

the product of F with a wiring which size is polynomial in |F| (tr[E,h] contains
card(E)2 h flows of size at most 2h).

Moreover, as F′ is balanced and h (F′) = h (theorem II.61), we deduce from
the previous section (theorem IV.12) that we can decide the nilpotency of F′ in
logarithmic space (hence polynomial time) in the size of F′ which is polynomial
in |F|. J

CHAPTER IV. COMPLEXITY 77

Combining these two results, we get:

Theorem IV.19
Given any integer h, there is procedure SNilph(·) ∈ Ptime that inputs a
finite F ∈ Stack such that h (F) ≤ h and accepts iff. F is nilpotent.

Acceptance of observations with stack. Now, to complete the proof of
theorem IV.15, we need to show that it is possible to transform a product
OW[~p] into an element of Stack in polynomial time, preserving its eventual
nilpotency.

For this we will rely on the fact that, apart for its stack part, OW[~p] is a
balanced flow. We will use the fact that balanced flows have a finite separating
space as we already used in the previous section, but as the stack part does not,
we need the following lemma to handle this mixed situation.

Lemma IV.20
Let U be a separating space (definition II.34) for a wiring F and P a projection
(definition II.21) such that Pu = u for any u ∈ U. We have that F is nilpotent
iff. PF is nilpotent.

Proof I The wiring P being a projection, F nilpotent implies PF nilpotent by
proposition II.22. Conversely, as Pu = u for any u ∈ U and FU ⊆ U we have
that FnU = (PF)nU and therefore (PF)n = 0 implies FnU = 0 which implies
Fn = 0 because U is separating for F. J

Proposition IV.21
Let O be an observation with stack.
There is a function RedO(·) ∈ FPtime that inputs a word W and outputs a
wiring F ∈ Stack with h (F) ≤ h (O) such that F is nilpotent iff. OW[~p] is for
any choice of~p.

Proof I First we can easily (by associativity/commutativity rearrangements
around •) turn OW[~p] into an element G of Rb • Stack of the same size and
height (eventually with a constant overhead), preserving its nilpotency.

Writing G = ∑i Bi •Si, we can consider B := ∑i Bi ∈ Rb and S := ∑i Si. We
can then apply lemma II.37 to get that Comp(B) is separating for B. Let us
write U the set of terms u such that u ↼ ? ∈ Comp(B). We have that card(U)
is polynomial in |G| via proposition II.38.

As G ⊆ B • S we have that (following remark II.35) the set of facts of the
form u • t ↼ ?, with u ∈ U and t any term, is separating for G. This means by
the previous lemma that if we set P := ∑u∈U u ↼ u and P′ := P • I, we have G
nilpotent iff. P′G nilpotent.

78 IV.4. Polynomial Time

Now we have P′G = ∑i ui •τ(x) ↼ vi •σ(x) with ui, vi ∈ U. If we associate
to each element u of U a distinct unary function symbol fu, we can consider
the wiring F := ∑i fui

(
τ(x)

)
↼ fvi

(
σ(x)

)
∈ Stack which is nilpotent iff. G is.

As for complexity of the transformation of OW[~p] into F, it is clear that
first G can be computed in linear time from OW[~p]. Then P′ is a wiring of
polynomial size (a consequence of proposition II.38 and the bounded height)
so that P′G is computed from G in polynomial time. Finally, going from P′G to
F is just a matter of associating symbol to closed terms and can be performed
in polynomial time because the cardinal of U is polynomial |G|. J

It only remains now to compose the results above to prove the main theorem
of this section.

Proof (of theorem IV.15) I Given an observation with stack O, the composition
of RedO(·) and SNilph (O)(·) yields a polynomial decision procedure for the
language L(O). J

79

Perspectives

Logic programming

We saw in chapter III that it is possible to build a traced category within the
resolution semiring and that this category has all the structures required to
interpret λ-calculus. It seems reasonable that the comments of section III.3
could be extended into a wider approach linking recent developments in proof
theory and logic programming, two domains that have been growing apart for
some time.

The complexity results of chapter IV should be related with the large amount
of work that has already been done on the complexity of logic programming.
In particular a study of the specific case of logic programs with unary functions
symbols with results of section II.4 and section IV.4 in mind might turn out
interesting.

In this perspective, we would need to further extend the framework and the
results, considering other problems than just nilpotency: although it is a very
natural notion from the algebraic point of view, logic programming is usually
more concerned with the reachability of a certain goal assuming a number of
facts.

Moreover, the restriction to flows (safe clauses with exactly one atom in the
body) is a strong restriction from the point of view of logic programming. Its
great interest is to allow us to work with algebraic intuitions and tools, but the
case of general logic programs may also be investigated. Some blueprinting
has already been done on a relaxed version of the framework with multiple
atoms in the body and the head of clauses [Gir13]. The extension of the results
on logarithmic space to this case should be straightforward, but the case of
polynomial time might be more delicate: one would need to extend the notion
of increasing and decreasing flow (page 47) which is a crucial element of the
soundness proof.

Relaxing the safety condition (the fact that in a flow t ↼ u one must have
var(t) ⊆ var(u)) is also a possibility: there do not seem to be any technical
difficulty in defining a semiring with the relaxed definition (though we may
loose certain nice properties like the ideal structure of the set of facts, remember
remark II.6). Note that this would introduce a form of non-determinism, as for
instance the flow x ↼ ? can be understood (following remark II.11) as the sum

80

of all the t ↼ ? with t closed, a flow that is non-deterministic.

Implicit computational complexity

We also aim at extending the correspondence between complexity classes and
restricted semirings of R. A first candidate would be the class Pspace, that
could benefit from the work already done on logarithmic space computation:
indeed the cardinality of Comp(F) (proposition II.38) indicates how much space
will be needed to solve the nilpotency problem. The fact that this number grows
polynomially with the number of different symbols involved was necessary in
order to characterize logarithmic space computation, but remark that it grows
exponentially with the maximal arity, indicating a polynomial space bound.
The NC hierarchy might be considered too, as some subcases of the unification
problem are known to lie within it.

Another direction is to deepen the relation with proof theory. Indeed
our approach comes from the geometry of interaction program and the work
relating complexity theory and linear logic we evoked in the introduction of
chapter IV. Thanks to the GoI interpretation of linear logic, any restricted proof
system can be translated in the resolution semiring, and this allows for a study
of its complexity in the framework we developed.

The question of the complexity of decision problems vs. the complexity
of computing functions is related to this. We have been concerned in this
thesis only with decision problems, but it should be possible to also obtain
characterizations of complexity classes of functions with the same methods. An
application of this would be to build an abstract proof of the compositionality
of FLogspace.

This idea may also work in the other direction: for instance one could look
for a proof system corresponding the balanced semiring of section II.3 and
therefore to logarithmic space computation.

Complexity and abstract algebra

Finally, we want to think of this thesis as a first step towards a possibly fruitful
relation between complexity theory and abstract algebra.

The decision procedure for the Stack semiring is a good illustration of this:
to solve the algebraic question of nilpotency, we imported and adapted ideas
used to handle pushdown automata in order to design our decision procedure.
This also sheds an original light on the memoization technique, which becomes
in our context a sort of exponentiation by squaring.

We believe an important next step would be to understand better what
are the algebraic principle at work in the characterizations we obtained so far.
Indeed, balance and the use of unary function symbols are syntactic restrictions
that do not make sense from an algebraic point of view, while for instance in
the case of Stack the fact that f 2 6= 0 implies f n 6= 0 for all n (corollary II.49) is

PERSPECTIVES 81

a key ingredient of the procedure and does not rely on syntax.
Among other possibilities, we could try to adapt the notion of finiteness of

the theory of von Neumann algebras [Tak01] in our setting: without working
out the details, imagine we say two projections (definition II.21) P, Q of a
semiring are equivalent if there is an isometry W of the semiring such that
P = WW† and Q = W†W, that P is (strictly) included in Q if the domain of P is
(strictly) included in the domain of Q. Then we can say that a projection is finite
if it is not equivalent to any projection strictly included in it. This adaptation of
Dedekind-finiteness is interesting as it is relative to the semiring we consider:
the projection (indeed its domain) may be infinite from a cardinality point of
view, but not from the algebraic point of view of the semiring. For instance,
consider a semiring containing f = f(x) ↼ x and f † = x ↼ f(x). It must also
contain the projections P = f † f and Q = f f †, with Q strictly included in P,
and P would hence be considered as infinite in this semiring.

This notion might be a tool to understand more abstractly logarithmic space
computation: in earlier works, instead of the notion of balance, the character-
ization of logarithmic space relied on a semiring of permutations [AB14]. A
common characteristics of these two semiring is that they would be finite in the
sense sketched above.

82

83

Appendix: GoI interpretation

We expose in this appendix the GoI interpretation of multiplicative linear logic
(MELL) and λ-calculus. Our objective is to provide a reference that is easy to
read. We will give the interpretation in the graphical language we introduced
in section I.3 and we won’t refrain from slight abuses of notation in order to
draw more readable pictures.

For further details, the reader should consult the literature [Reg92, HS06].

Linear logic and λ-calculus

Let us first recall the encoding of pure λ-calculus in MELL.3 Composing
this encoding with the GoI interpretation of MELL, one obtains the GoI
interpretation of pure λ-calculus. Note that the encoding we present is
the so-called “call by name” encoding, but there exist other encodings with
different features [Acc12].

We consider a variant of intuitionistic MELL with a specific formula U
and the equation !U (U = U (dually !U ⊗U⊥ = U⊥). A λ-term t, with
free variables among x1, . . . , xn will be translated as a proof of the sequent
!U, . . . , !U ` U. We abbreviate this as

x1 : !U, . . . , xn : !U ` t : U

The term x where we consider that there is no other free variable than x
corresponds to an axiom rule followed by a dereliction

Ax
U ` U d

x : !U ` x : U

The abstraction of a variable corresponds to a `(rule: the term λx.t is
encoded as

x1 : !U, . . . , xn : !U, x : !U ` t : U
`(

x1 : !U, . . . , xn : !U ` λx.t : U
3A more detailed account of this encoding, using the terminology of proofnets can be found

in L. Regnier’s thesis [Reg92]

84

The application is encoded using a combination of various rules, including
promotion (allowing the duplication of the argument) and cut rule: the term
(t)u (where we assume that the free variable of t and u are distinct, as we will
have a specific rule to handle this later) is encoded as

x1 : !U, . . . , xn : !U ` t : U

y1 : !U, . . . , ym : !U ` u : U
!

!!U, . . . , !!U `: !U
!!

!U, . . . , !U `: !U
Ax

U ` U
(`

!U, . . . , !U, !U(U ` U
cut

x1 : !U, . . . , xn : !U, y1 : !U, . . . , ym : !U ` (t)u : U

We chose to decompose the usual promotion rule (!) of linear logic into a
functorial promotion followed by a series of digging (??) rule to be more in line
with the interpretation of MELL we give below. Note also that in the cut rule,
we use the equation U = !U(U.

Then we have an encoding of manipulation of variables by structural rules:
adding an unused free variable x to the term t is encoded as a weakening

x1 : !U, . . . , xn : !U ` t : U
w

x1 : !U, . . . , xn : !U, x : !U ` t : U

and the merging of two distinct variable into one is encoded as a contraction

x1 : !U, . . . , xn : !U, x : !U, y : !U ` t : U
c

x1 : !U, . . . , xn : !U, z : !U ` {x 7→z , y 7→z}t : U

Interpretation of MELL

Let us suppose now that we dispose of a GoI situation (definition I.23) we
denote (C, !, U).

The interpretation of a proof π of the sequent ` A1, . . . , An will be a
morphism JπK : JA1K⊕ · · · ⊕ JAnK← JA1K⊕ · · · ⊕ JAnK, where JAK is defined
inductively by JαK = Jα⊥K := U for any atom α, J!AK = J?AK := !JAK and
JAOBK = JA⊗ BK := U.

JA1K JA1K

...
...

JAnK JAnK

JπK

Combining the retractions (t, t′) : !! C ! and (a, a′) : !U C U, we can obtain
retractions : !nU C U for any n. In what follows we will draw simply as (a, a′)
the retraction : JAK C U leaving implicit the actual objects involved.

APPENDIX 85

The application of the functor ! will be depicted as a box surrounding its
argument.

Note that the diagram we draw for the interpretation of the cut rule is
an abuse of notation: it is easy to imagine how to obtain something that is
equivalent and correct, but this would result in a quite unreadable diagram with
a lot of wires crossing, defeating the idea of an intuitive graphical presentation.

Axiom rule. Ax
` A⊥, A is interpreted as a symmetry morphism σJAK,JAK

JAK JAK

JAK JAK

Cut rule.

... π

` Γ, A

... ν

` A⊥, ∆
cut

` Γ, ∆

is interpreted using the trace structure

JΓK JΓK

J∆K J∆K

JπK

JνK

Exchange rule.

... π

` A1, . . . , An
σ

` Aσ(1), . . . , Aσ(n)

is interpreted using the permutation

morphisms σ and σ−1, built by combining symmetry morphisms

JAσ(1)K JAσ(1)K

...
...

...
...

JAσ(n)K JAσ(n)K

JπKσ−1 σ

86

Multiplicative rules

Tensor rule.

... π

` Γ, A

... ν

` B, ∆ ⊗
` Γ, A⊗ B, ∆

is interpreted as

JΓK JΓK

a′ a

a′ a

J∆K J∆K

U Ub′ b

JπK

JνK

Par rule.

... π

` A, B, ∆
O

` AOB, Γ

is interpreted as

a′ a

a′ a

JΓK JΓK

U Ub′ b
JπK

Exponential rules

Promotion rule.

... π

` A1, . . . , An, B
!

` ?A1, . . . , ?An, !B

is interpreted as

!JA1K JA1K JA1K !JA1K

...
...

...
...

!JBK JBK JBK !JBK

JπKJπK

Digging rule.

... π

` ??A, Γ
??

` ?A, Γ

is interpreted as

APPENDIX 87

!!JAK !!JAK

JΓK JΓK

!JAK !JAKtJAK
′ tJAK

JπK

Dereliction rule.

... π

` A, Γ
d

` ?A, Γ

is interpreted as

JAK JAK

JΓK JΓK

!JAK !JAKdJAK
′ dJAK

JπK

Contraction rule.

... π

` ?A, ?A, Γ
c

` ?A, Γ

is interpreted as

!JAK !JAK

!JAK !JAK

JΓK JΓK

!JAK !JAKcJAK
′ cJAK

JπK

Weakening rule.

... π

Γ w
` ?A, Γ

is interpreted as

!JAK wJAK
′ wJAK !JAK

JΓK JΓKJπK

88

89

Bibliography

[AB14] Clément Aubert and Marc Bagnol. Unification and logarithmic
space. In Gilles Dowek, editor, RTA-TLCA 2014, volume 8650 of
LNCS, pages 77–92. Springer, 2014. (cited on pp. 8 and 81)

[ABPS14] Clément Aubert, Marc Bagnol, Paolo Pistone, and Thomas Seiller.
Logic programming and logarithmic space. In Jacques Guarrigue,
editor, APLAS 2014, volume 8858 of LNCS, pages 39–57,. Springer,
2014. (cited on p. 8)

[Acc12] Beniamino Accattoli. Proof nets and the call-by-value lambda-
calculus. In Proceedings Seventh Workshop on Logical and Semantic
Frameworks, with Applications, LSFA 2012, Rio de Janeiro, Brazil,
September 29-30, 2012., pages 11–26, 2012. (cited on p. 83)

[AHS02] Samson Abramsky, Esfandiar Haghverdi, and Philip J. Scott. Geom-
etry of interaction and linear combinatory algebras. Mathematical
Structures in Computer Science, 12(5):625–665, 2002. (cited on p. 21)

[AJ94] Samson Abramsky and Radha Jagadeesan. New foundations for
the geometry of interaction. Inf. Comput., 111(1):53–119, May 1994.
(cited on p. 21)

[AS14] Clément Aubert and Thomas Seiller. Logarithmic space and
permutations. CoRR, abs/1301.3189, 2014. (cited on p. 71)

[Aub13] Clément Aubert. Linear Logic and Sub-polynomial Classes of Complexity.
PhD thesis, Université Paris 13–Sorbonne Paris Cité, November 2013.
(cited on p. 71)

[Bai08] Patrick Baillot. Linear logic, types and implicit computational
complexity, March 2008. (cited on pp. 7 and 63)

[BC92] Stephen J. Bellantoni and Stephen Arthur Cook. A new recursion-
theoretic characterization of the polytime functions (extended
abstract). In S. Rao Kosaraju, Mike Fellows, Avi Wigderson, and
John A. Ellis, editors, STOC, pages 283–93. ACM, 1992. (cited on
p. 63)

90

[Bla82] Howard A. Blair. The recursion-theoretical complexity of the
semantics of predicate logic as a programming language. Information
and Control, 54(1/2):25–47, 1982. (cited on p. 62)

[BO03] Marco Bellia and Maria Eugenia Occhiuto. N-axioms parallel
unification. Fund. Inform., 55(2):115–128, 2003. (cited on p. 19)

[BP01] Patrick Baillot and Marco Pedicini. Elementary complexity and
geometry of interaction. Fund. Inform., 45(1–2):1–31, 2001. (cited on
pp. 15, 44, 45, and 63)

[BT04] Patrick Baillot and Kazushige Terui. Light types for polynomial
time computation in lambda-calculus. In LICS, pages 266–275. IEEE
Computer Society, 2004. (cited on p. 63)

[CCIL08] Francesco Calimeri, Susanna Cozza, Giovambattista Ianni, and
Nicola Leone. Computable functions in ASP: Theory and
implementation. In Maria Garcia de la Banda and Enrico Pontelli,
editors, ICLP, volume 5366 of LNCS, pages 407–424. Springer, 2008.
(cited on p. 39)

[Coo71] Stephen A. Cook. Characterizations of pushdown machines in terms
of time-bounded computers. J. ACM, 18(1):4–18, 1971. (cited on p. 74)

[Dan90] Vincent Danos. La Logique Linéaire appliquée à l’étude de divers processus
de normalisation (principalement du λ-calcul). PhD thesis, Université
Paris VII, 1990. (cited on p. 20)

[DEGV01] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov.
Complexity and expressive power of logic programming. ACM
Comput. Surv., 33(3):374–425, 2001. (cited on pp. 20, 35, 41, 60, and 62)

[DKM84] Cynthia Dwork, Paris C. Kanellakis, and John C. Mitchell. On the
sequential nature of unification. J. Log. Program., 1(1):35–50, 1984.
(cited on pp. 19 and 20)

[DKS88] Cynthia Dwork, Paris C. Kanellakis, and Larry J. Stockmeyer.
Parallel algorithms for term matching. SIAM J. Comput., 17(4):711–
731, 1988. (cited on p. 19)

[DL12] Ugo Dal Lago. A short introduction to implicit computational
complexity. In Nick Bezhanishvili and Valentin Goranko, editors,
Lectures on Logic and Computation, volume 7388 of Lecture Notes in
Computer Science, pages 89–109. Springer Berlin Heidelberg, 2012.
(cited on pp. 7 and 63)

[DR95] Vincent Danos and Laurent Regnier. Proof-nets and the hilbert space.
In Jean-Yves Girard, Yves Lafont, and Laurent Regnier, editors,
Advances in Linear Logic, number 222 in London Math. Soc. Lecture
Note Ser., pages 307–328. CUP, June 1995. (cited on p. 62)

BIBLIOGRAPHY 91

[Fit87] Melvin Fitting. Computability Theory, Semantics, and Logic Program-
ming. Oxford University Press, Inc., New York, NY, USA, 1987. (cited
on p. 62)

[Gal95] Jean Gallier. On the correspondence between proofs and & λ-Terms.
In Philippe de Groote, editor, The Curry-Howard isomorphism, Cahiers
du Centre de Logique, pages 55–138. Academia, 1995. (cited on p. 12)

[Gen34a] Gerhard Gentzen. The consistency of elementary number theory.
In M.E. Szabo, editor, The Collected Works of Gerhard Gentzen, pages
132–213. North Holland, Amsterdam, 1934. 1968. (cited on p. 11)

[Gen34b] Gerhard Gentzen. Investigations into logical deduction. In M.E.
Szabo, editor, The Collected Works of Gerhard Gentzen, pages 68–129.
North Holland, Amsterdam, 1934. 1968. (cited on pp. 11 and 12)

[Gir87a] Jean-Yves Girard. Linear logic. Theoret. Comput. Sci., 50(1):1–101,
1987. (cited on pp. 12 and 14)

[Gir87b] Jean-Yves Girard. Multiplicatives. In G. Lolli, editor, Logic
and Computer Science: New Trends and Applications, pages 11–34.
Rosenberg & Sellier, 1987. (cited on p. 14)

[Gir89a] Jean-Yves Girard. Geometry of interaction 1: Interpretation of
system F. Studies in Logic and the Foundations of Mathematics, 127:221–
260, 1989. (cited on pp. 7, 14, 21, 53, and 61)

[Gir89b] Jean-Yves Girard. Towards a geometry of interaction. In John W.
Gray and Andre Ščedrov, editors, Proceedings of the AMS-IMS-SIAM
Joint Summer Research Conference held June 14-20, 1987, volume 92 of
Categories in Computer Science and Logic, pages 69–108. AMS, 1989.
(cited on pp. 7, 9, 14, 53, and 61)

[Gir90] Jean-Yves Girard. Geometry of interaction 2: Deadlock-free
algorithms. In Per Martin-Löf and Grigori Mints, editors, COLOG-
88, volume 417 of Lecture Notes in Computer Science, pages 76–93.
Springer Berlin Heidelberg, 1990. (cited on pp. 7 and 56)

[Gir95a] Jean-Yves Girard. Geometry of interaction III: accommodating the
additives. In Jean-Yves Girard, Yves Lafont, and Laurent Regnier,
editors, Advances in Linear Logic, number 222 in London Math. Soc.
Lecture Note Ser., pages 329–389. CUP, June 1995. (cited on pp. 7, 14,
15, 31, 53, and 61)

[Gir95b] Jean-Yves Girard. Light linear logic. In Daniel Leivant, editor, LCC,
volume 960 of LNCS, pages 145–176. Springer, 1995. (cited on p. 63)

[Gir96] Jean-Yves Girard. Proof-nets: The parallel syntax for proof-theory.
Logic and Algebra, 180:97–124, May 1996. (cited on p. 14)

92

[Gir06] Jean-Yves Girard. Geometry of interaction IV: the feedback equation.
In Stoltenberg-Hansen and Väänänen, editors, Logic Colloquium 2003,
pages 76–117. The Association for Symbolic Logic, 2006. (cited on
pp. 14 and 56)

[Gir11] Jean-Yves Girard. Geometry of interaction V: logic in the hyperfinite
factor. Theoret. Comput. Sci., 412(20):1860–1883, April 2011. (cited on
p. 14)

[Gir12] Jean-Yves Girard. Normativity in logic. In Peter Dybjer,
Sten Lindström, Erik Palmgren, and Göran Sundholm, editors,
Epistemology versus Ontology, volume 27 of Logic, Epistemology, and
the Unity of Science, pages 243–263. Springer, 2012. (cited on p. 67)

[Gir13] Jean-Yves Girard. Three lightings of logic. In Simona Ronchi
Della Rocca, editor, CSL, volume 23 of LIPIcs, pages 11–23. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2013. (cited on p. 79)

[GLT89] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types,
volume 7 of Cambridge Tracts in Theoretical Computer Science. CUP,
1989. (cited on p. 61)

[Glü13] Robert Glück. Simulation of two-way pushdown automata revisited.
In Semantics, Abstract Interpretation, and Reasoning about Programs:
Essays Dedicated to David A. Schmidt on the Occasion of his Sixtieth
Birthday, Manhattan, Kansas, USA, 19-20th September 2013., pages
250–258, 2013. (cited on p. 75)

[Hag00a] Esfandiar Haghverdi. A Categorical Approach to Linear Logic, Geometry
of Proofs and Full Completeness. PhD thesis, University of Ottawa,
2000. (cited on pp. 21, 29, and 30)

[Hag00b] Esfandiar Haghverdi. Unique decomposition categories, geometry
of interaction and combinatory logic. Mathematical Structures in
Computer Science, 10(2):205–230, 2000. (cited on p. 21)

[Har72] Juris Hartmanis. On non-determinancy in simple computing devices.
Acta Inform., 1(4):336–344, 1972. (cited on p. 69)

[HS06] Esfandiar Haghverdi and Philip Scott. A categorical model for the
geometry of interaction. Theoretical Computer Science, 350(2–3):252

– 274, 2006. Automata, Languages and Programming: Logic and
Semantics (ICALP-B 2004) Automata, Languages and Programming:
Logic and Semantics 2004. (cited on pp. 9, 21, 26, 29, 30, 58, and 83)

[Imm88] Neil Immerman. Nondeterministic space is closed under comple-
mentation. In CoCo, pages 112–115. IEEE Computer Society, 1988.
(cited on p. 71)

BIBLIOGRAPHY 93

[Jon75] Neil D. Jones. Space-bounded reducibility among combinatorial
problems. J. Comput. Syst. Sci., 11(1):68–85, 1975. (cited on p. 72)

[JSV96] André Joyal, Ross Street, and Dominic Verity. Traced monoidal
categories. Mathematical Proceedings of the Cambridge Philosophical
Society, 119:447–468, 4 1996. (cited on p. 21)

[Kni89] Kevin Knight. Unification: A multidisciplinary survey. ACM Comput.
Surv., 21(1):93–124, 1989. (cited on p. 9)

[Laf04] Yves Lafont. Soft linear logic and polynomial time. Theoret. Comput.
Sci., 318(1):163–180, 2004. (cited on p. 63)

[Lei93] Daniel Leivant. Stratified functional programs and computational
complexity. In Mary S. Van Deusen and Bernard Lang, editors,
POPL, pages 325–333. ACM Press, January 1993. (cited on p. 63)

[LL09] Yuliya Lierler and Vladimir Lifschitz. One more decidable class of
finitely ground programs. In Patricia M. Hill and David Scott
Warren, editors, ICLP, volume 5649 of LNCS, pages 489–493.
Springer, 2009. (cited on p. 39)

[LM93] Daniel Leivant and Jean-Yves Marion. Lambda calculus characteri-
zations of poly-time. In Marc Bezem and JanFriso Groote, editors,
Typed Lambda Calculi and Applications, volume 664 of Lecture Notes in
Computer Science, pages 274–288. Springer Berlin Heidelberg, 1993.
(cited on p. 63)

[LS10] Ugo Dal Lago and Ulrich Schöpp. Functional programming in
sublinear space. In Andrew D. Gordon, editor, Programming
Languages and Systems, 19th European Symposium on Programming,
ESOP 2010, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28,
2010. Proceedings, volume 6012 of Lecture Notes in Computer Science,
pages 205–225. Springer, 2010. (cited on p. 63)

[MA86] Ernest G. Manes and Michael A. Arbib, editors. Algebraic Approaches
to Program Semantics. Springer-Verlag New York, Inc., New York,
NY, USA, 1986. (cited on p. 28)

[Mai04] Harry Mairson. Linear lambda calculus and ptime-completeness. J.
Funct. Program., 14(6):623–633, November 2004. (cited on p. 63)

[Mel09] Paul-André Mellies. Categorical semantics of linear logic. In
Interactive models of computation and program behaviour. Société
Mathématique de France, 2009. (cited on p. 21)

[ML71] Saunders Mac Lane. Categories for the Working Mathematician.
Number 5 in Graduate Texts in Mathematics. Springer-Verlag, 1971.
(cited on p. 21)

94

[MM82] Alberto Martelli and Ugo Montanari. An efficient unification
algorithm. ACM Trans. Program. Lang. Syst., 4(2):258–282, 1982.
(cited on pp. 17 and 19)

[MSS12] Octavio Malherbe, Philip J. Scott, and Peter Selinger. Partially traced
categories. Journal of Pure and Applied Algebra, 216(12):2563 – 2585,
2012. (cited on pp. 28 and 56)

[MT03] Harry Mairson and Kazushige Terui. On the computational
complexity of cut-elimination in linear logic. Theoret. Comput. Sci.,
pages 23–36, 2003. (cited on p. 63)

[Nee04] Peter Møller Neergaard. A functional language for logarithmic
space. In In APLAS, pages 311–326, 2004. (cited on p. 63)

[OYY87] Masaaki Ohkubo, Hiroto Yasuura, and Shuzo Yajima. On parallel
computation time of unification for restricted terms. Technical
report, Kyoto University, May 1987. (cited on p. 19)

[Pig13] Giovanni Pighizzini. Two-way finite automata: Old and recent
results. Fund. Inform., 126(2–3):225–246, 2013. (cited on p. 69)

[PW78] Mike Paterson and Mark N. Wegman. Linear unification. J. Comput.
Syst. Sci., 16(2):158–167, 1978. (cited on p. 19)

[Reg92] Laurent Regnier. Lambda-calcul et réseaux. PhD thesis, Université
Paris 7, 1992. (cited on p. 83)

[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution
principle. Journal of the ACM, 12(1):23–41, 1965. (cited on pp. 7 and 15)

[Sav98] John E. Savage. Models of computation - exploring the power of
computing. Addison-Wesley, 1998. (cited on p. 71)

[Sch07] Ulrich Schöpp. Stratified bounded affine logic for logarithmic space.
In LICS, pages 411–420. IEEE Computer Society, 2007. (cited on p. 63)

[Sei12] Thomas Seiller. Logique dans le Facteur Hyperfini : Géometrie de
l’Interaction et Complexité. PhD thesis, Université de la Méditerranée,
2012. (cited on p. 71)

[Sel07] Peter Selinger. Dagger compact closed categories and completely
positive maps: (extended abstract). Electronic Notes in Theoretical
Computer Science, 170(0):139 – 163, 2007. Proceedings of the 3rd
International Workshop on Quantum Programming Languages
(QPL 2005). (cited on p. 59)

BIBLIOGRAPHY 95

[Sel11] Peter Selinger. A survey of graphical languages for monoidal
categories. In Bob Coecke, editor, New Structures for Physics, volume
813 of Lecture Notes in Physics, pages 289–355. Springer Berlin
Heidelberg, 2011. (cited on p. 22)

[Sze88] Róbert Szelepcsényi. The method of forced enumeration for
nondeterministic automata. Acta Inform., 26(3):279—-284, 1988. (cited
on p. 71)

[Tak01] Masamichi Takesaki. Theory of Operator Algebras 1, volume 124 of
Encyclopedia of Mathematical Sciences. Springer, 2001. (cited on p. 81)

[Urz03] PawełUrzyczyn. A simple proof of the undecidability of strong
normalisation. Mathematical. Structures in Comp. Sci., 13(1):5–13,
February 2003. (cited on p. 62)

[WW86] Klaus W. Wagner and Gerd Wechsung. Computational Complexity,
volume 21 of Mathematics and its Applications. Springer, 1986. (cited
on pp. 69, 70, and 74)

	Introduction
	I Background
	I.1 From sequent calculus to the resolution algebra
	I.2 Unification
	I.3 Traced categories and geometry of interaction

	II The Resolution Semiring
	II.1 Flows and wirings
	II.2 Semirings constructions
	II.3 The balanced semiring
	II.4 The stack semiring

	III Geometry of Interaction in R
	III.1 A traced category of logic programs
	III.2 A GoI situation
	III.3 GoI and logic programming

	IV Complexity
	IV.1 Representation of words
	IV.2 Acceptance and normativity
	IV.3 Logarithmic space
	IV.4 Polynomial Time

	Perspectives
	Appendix: GoI interpretation
	Bibliography

