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Summary 
The complexity of the BAFF forms and their functional implications 

Elevated expression of ‘B cell activating factor’ (BAFF), a potent B cell survival factor 

contributes to the expansion of low-affinity self-reactive B cells during the establishment of tolerance. 

However, mechanisms leading to BAFF over-expression in autoimmune diseases are not understood. 

We reported the discovery of a new variant for BAFF, �4BAFF in humans (in which exon 4 is 

excised) or �5BAFF in mice (in which exon 5 is excised), which acts as a transcription factor of the 

full-length form of BAFF, and which is preferentially found in cells isolated from patients with 

autoimmune diseases. When transfected in human B cells, ∆4BAFF upregulates a large number of 

genes associated with immune response and especially innate immunity and regulation of apoptotis. 

Furthermore ∆4BAFF acts, in association with p50 from the NF-�B pathway, as a transcription factor 

for its own parent gene. Another important finding is that �4BAFF is an important component of the 

efficacy of regulatory B cell activity. Our work introduces an entirely novel concept in biology 

suggesting that a human cytokine gene can be transcriptionally regulated by the activity of one of its 

own splice variants. 

We have also tried to understand the complexity of the various forms of BAFF. We observed 

that epithelial cells expressed BAFF-receptor (BR3) and produce BAFF suggesting autocrine 

properties. Blocking BR3 results in nuclear translocation of PKC� promoting epithelial cell apoptosis. 

Furthermore, only some forms of BAFF are required for epithelial cell survival. 

Finally, we studied the consequences of the expression of TLR9 on the B cell surface and 

demonstrated that TLR9 acts as a co-receptor of the B cell receptor to influence B cell fate 

independently of CpG binding. We show that CpG activation of B cells, acting synergistically with 

BCR signals, was inhibited by anti-TLR9 stimulation. Induction of CD25 expression and proliferation 

of B cells were thus down-regulated by engagement of cell surface TLR9. Overall, our results indicate 

that TLR9 expressed on B cell plasma membrane might be a negative regulator of endosomal TLR9, 

and could provide a novel control by which activation of autoreactive B cells is restrained. All these 

findings contribute to a better understanding on immunopathology of autoimmune diseases with 

potential applications in therapy. 
 
Résumé 
La complexité des différentes formes de BAFF et leurs incidences fonctionnelles 

BAFF, «facteur d'activation des lymphocytes B (LB) » contribue à l'expansion des LB 

autoréactifs de faible affinité lors de la mise en place de la tolérance. Cependant, les mécanismes 

menant à la surexpression de BAFF dans les maladies auto-immunes ne sont pas compris. Nous avons 

découvert un nouveau variant de BAFF, �4BAFF (dans lequel l'exon 4 est épissé), qui agit comme un 

facteur de transcription de son propre gène et participe à sa régulation. Ainsi, �4BAFF est 

préférentiellement observé dans les cellules isolées de patients atteints de maladies auto-immunes. De 

plus, �4BAFF régule un grand nombre de gènes associés à la réponse immunitaire innée et à la 

régulation de l’apoptose. Une autre constatation importante est que �4BAFF est un élément clé pour 

comprendre l’activité des LB régulateurs. Notre travail présente un concept entièrement nouveau 

suggérant qu'une cytokine peut être régulée par l'activité de l'un de ses variants d'épissage.  

Par ailleurs, nous avons observé que les cellules épithéliales expriment le récepteur de BAFF : 

BR3. Le blocage de BR3 se traduit par la translocation nucléaire de PKC� et l'apoptose des cellules 

épithéliales. Par un effet autocrine, nous démontrons que seules certaines formes de BAFF participent 

à la survie des cellules épithéliales. 

Enfin , nous avons étudié les conséquences de l'expression du TLR9 à la surface des LB et 

démontrons que ce TLR9 membranaire ne fixe pas le CpG et agit comme un co-récepteur négatif du 

BCR. En effet, l'activation des LB par le CpG capté au niveau endosomal, est inhibée par l’action 

d’un anticorps anti-TLR9 se fixant au niveau membranaire. Tous ces résultats contribuent à une 

meilleure compréhension des mécanismes impliqués dans l'immunopathologie des maladies auto-

immunes avec des applications potentielles en thérapeutique. 

MOTS CLES : BAFF, autoimmunité, variant, syndrome de Gougerot-Sjögren, TLR9   
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PREAMBLE 
 

 

People who treat autoimmune diseases such as systemic lupus erythematosus 

(SLE), rheumatoid arthritis (RA), and primary Sjögren’s syndrome (pSS) dream of finding 

the diseases’ Achilles heel: a protein that plays some causative role, that is required for 

disease persistence, and that can be targeted therapeutically without causing widespread side 

effects. Experiments on ‘B cell activating factor belonging to the tumor necrosis factor 

family’ BAFF (also known as BlyS), are generating enormous excitement because they 

suggest that these dreams just might come true. Here, at last, is an example of a molecule that 

appears to be involved in common human autoimmune diseases, rather than just the ever-so-

rare eponymous syndromes. Moreover, experiments in animals suggest that therapies based 

on antagonizing BAFF may make a real difference clinically. The most promising studies in 

humans were BLISS-52 and BLISS-76, large phase III studies that demonstrated measurable 

efficacy for belimumab, a monoclonal antibody against BAFF in SLE. 

However, BAFF appears as a very complex molecule and there exists the 

issues of why the concentration of BAFF remains within normal range in a proportion of 

patients with autoimmune diseases and why increased BAFF production has been associated 

with autoantibody by some, but not other patients. This could be due to the existence of 

different forms of BAFF or posttranslational modifications that may alter its structure and 

thereby its recognition by the antibodies used. 

Because BAFF is a novel therapeutic target, differences in the distribution of 

the forms of BAFF denote the potential of patients to respond, or to resist BAFF blockade. 

Reliable indicators for predicting such behavior are therefore becoming increasingly 

important. 

This thesis will deal on the different forms of BAFF and will try to identify 

their functional implications. 
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I. INTRODUCTION
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1. BAFF  

The B cell activating factor belonging to the TNF (Tumor necrosis factor) 

family (BAFF) also known as BLyS for B-Lymphocyte Stimulator (or TALL-1, THANK, 

TNFSF13B, zTNF4, CD257), has become significant in B cell biology because this cytokine 

is responsible for B cell survival and maturation during the early transitional stages. BAFF 

has also been associated with the control of tolerance and malignancy (Mackay and 

Schneider 2009).  

BAFF’s influence is widespread and its effects are as numerous as they are 

varied. In fact, BAFF offers a range of variants, membrane-bound or soluble, glycosylated or 

non glycosylated forms, monomer or trimers, homotrimers or heterotrimers, heterotrimers 

with another TNF APRIL (a proliferation inducing ligand) or heterotrimers with BAFF 

variants, or even virus-like aggregates of 60 monomers. We will review the complexity of the 

various forms of BAFF by focusing on the different structural aspects of the molecule (Figure 

1). A review entitled “The complexity of the BAFF TNF family members: implications for 

autoimmunity”, was published in the Journal of Autoimmunity and can be found in Appendix 

1. 

sBAFF BAFF ∆∆∆∆BAFF sAPRIL APRIL TWE-PRIL TWEAK

NucleusGolgi

60 mer

 

Figure 1 Different forms of BAFF.  
BAFF offers a bunch of variants: membrane-bound or soluble, monomer or trimers, 

homotrimers or heterotrimers, herotrimers with APRIL or heterotrimers with TWEAK, or 

even virus-like aggregates of 60 monomers. 
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1.1. BAFF forms: from the gene to the protein 

1.1.1. Genetics of BAFF 

1.1.1.1. BAFF gene an overview  

In humans, the BAFF gene is mapped on the chromosome 13 in the q33.3 

region. It contains 6 exons and 5 introns corresponding to 39 Kilobase (kb) (Schneider, 

MacKay et al. 1999) (Figure 2A). The main BAFF transcript encoded by the gene contains 

1204 base pairs (bp) with an open reading frame (ORF) of 858 bp (Genbank acession number 

is NM_006573). 

In mice, Baff gene is mapped on chromose 8 A1.1 (in contig AC 

138397.4.1.246.976) and contains 7 exons and 6 introns corresponding to 31 kb (Figure 2B). 

The main Baff transcript encoded by this gene contains 1710 bp with an ORF 

of 930 bp (Genbank accession number is NM_033622). 

A

B

 

Figure 2 BAFF genes organization in human (A) and mice (B).  
Exons are represented as boxes and colors are conserved between human and mouse in 

accordance with exon homology. The size of each exon is indicated below it and the size 

of each intron are also indicated (thin line). Alternative splicing events are shown and the 

name of corresponding transcripts is indicated. Bp: base pairs; kb: kilo base (Annexe 1: 

Lahiri, Pochard et al., 2012). 

1.1.1.2. Promoter and transcription factors for BAFF  

The promoter of 1020 bp (GenBank accession number AY129225) can be 

activated by many transcription factors (Figure 3). NFAT (nuclear factor of activated T cells) 

members (c1 and c2) bind between position -1018 to -1007 and position -505 to -494 on the 
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BAFF promoter. NF-�B members (p50, p52, c-Rel and to a lesser extent p65) are also 

reported to bind at a NF-�B binding site (-869 to -858) on the BAFF promoter (Fu, Lin-Lee 

et al. 2006). Two other transcription factors for BAFF have been described. They belong to 

the TNF-receptor family and are CD40 and BR3 (BAFF-receptor 3) with a binding at 

position -1001 to -802 (Lin-Lee, Pham et al. 2006; Fu, Lin-Lee et al. 2009). CD40 and BR3 

interact with c-Rel and form a complex on the promoter of BAFF to activate BAFF 

transcription (Zhou, Pham et al. 2007; Fu, Lin-Lee et al. 2009). In human intestinal epithelial 

cells (EC), IFN-� can induce the production of both soluble and membrane-bound BAFF, by 

JAK/STAT activation pathway and binding of phosphorylated STAT-1 to the IFN-� activated 

site (GAS) element at position -481 to -473 on the BAFF promoter (Woo, Im et al. 2013).  

 

NFAT binding sites GAS (STAT1)NFkB binding site

1

ATG
339

606

- 1081

- 1018 à - 1007
- 869 à - 858

- 505 à - 494
- 481 à - 473

CD40 (+c-Rel)

BR3 (+c-Rel)

- 1001 à - 802

 
GAS: gamma-interferon activated site 

 

 

Figure 3 Schematic representation of BAFF promoter (human and its 
transcription factor binding sites. 

1.1.1.3. Polymorphism  

Many single nucleotide polymorphisms of BAFF have been described and 

were found to be associated with diseases.  

Polymorphism screening by Kawasaki et al. on human BAFF, detected four 

single nucleotide polymorphisms (SNPs) in the promoter, (-1283G	A, -871C	T, -

514T	C and -353G	C), one SNP in intron 1 (IVSI-45 C	G), and one rare non-

synonymous substitution in the coding region (Kawasaki, Tsuchiya et al. 2002). The -

871C	T (rs9514828) SNP has been more extensively studied and was found to increase 

BAFF transcription in chronic lymphocytic leukemia (CLL) cells (Novak, Grote et al. 2006). 
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This SNP was associated with risks of non-Hodgkin lymphoma (Novak, Slager et al. 2009), 

T-cell lymphoma survival (Zhai, Tian et al. 2012), increased risks of chronic idiopathic 

thrombocytopenic purpura (Abdel-Hamid and Al-Lithy 2011), and primary Sjögren’s 

syndrome (pSS) (Nossent, Lester et al. 2008). Recently, it was reported as exerting a positive 

influence on rituximab treatment in rheumatoid arthritis (RA) patients (Ruyssen-Witrand, 

Rouanet et al. 2013). A few more SNPs featuring haplotype block in the 5' regulatory region 

of the BAFF gene were investigated in Caucasian patients with pSS. Three other SNPs were 

also identified -2841T	C, -2704T	C, -2701T	A. Disease susceptibility for Ro/La-

positive pSS is increased with the CTAT haplotype, but is not associated with the TTTT 

haplotype. While both haplotypes carry the -871T allele, this allele was not independently 

associated with disease susceptibility (Nossent, Lester et al. 2008). In RA patients, the TTTT 

haplotype is linked to the outcome of the rituximab treatment. Patients with this haplotype 

showed increased positive response in rituximab therapy after anti-TNF therapy had failed to 

improve the disease condition (Fabris, Quartuccio et al. 2013). 

1.1.2. Variants of BAFF 

1.1.2.1. � BAFF  

� BAFF was identified in the human myeloid cell lines, but its sequencing 

revealed this transcript to be non-functional because of an incomplete splicing of the intronic 

sequences leading to the formation of premature stop codon (Gavin, Ait-Azzouzene et al. 

2003). 

1.1.2.2. �BAFF 

Discovered in 2003, this isoform lacks the exon 3 of BAFF in humans and 

exon 4 in mice (Gavin, Ait-Azzouzene et al. 2003). It is co-expressed with BAFF transcript in 

many myeloid cells. The loss of 57 bp maintains the reading frame. In mice, the junction of 

exon 3 and 5 results in an additional N-linked glycosylation (N
155

) (Figure 4). Mouse �Baff, 

which lacks the region between I
156

 and K
184

 and G
185

 is substituted wint an R. This part 

corresponds to the A-A1 loop, fails to bind to BAFF receptors TACI (transmembrane 

activator and calcium modulator ligand interactor) and BAFF-R (BAFF receptor), indicating 

that the skipping of exon 4 during splicing blocks the BAFF function (BAFF receptors have 

been developed in 1.4 BAFF receptors). Furthermore, �BAFF physically associates with 

BAFF in disulfide-bounded heteromultimers and these mixed molecules bind poorly to 
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receptors compared to the homomultimers of BAFF (Gavin, Ait-Azzouzene et al. 2003). The 

co-expression of BAFF and �BAFF on the same cell shows a decrease in the secretion and 

the cleavage of BAFF on the cell surface (Gavin, Ait-Azzouzene et al. 2003). Thus, �BAFF 

suppresses the BAFF function by competitive co-association, limiting BAFF 

homotrimerization and BAFF release in the process. The analysis of �BAFF transgenic mice 

reveals that �BAFF and BAFF have opposing effects on B cell survival (Gavin, Duong et al. 

2005). �BAFF transgenic mice have reduced numbers of B cells and T cell-dependent 

antibody (Ab) responses, but normal pre-immune serum immunoglobulin levels. These 

normal immunoglobulin levels can be ascribed to either one of these two possibilities: either 

T cells stimulate BAFF expression in antigen presenting cells (APC) or BAFF acts directly 

on T cells to affect the immune response (Ng, Sutherland et al. 2004; Ye, Wang et al. 2004). 

Identical results were obtained in 3H9 mice, in which B cells recognized DNA and chromatin 

when they expressed some endogenous L chains, by introducing transgenes expressing either 

BAFF or �BAFF (Ota, Duong et al. 2010). Consequently, �BAFF seems to play a regulatory 

role in BAFF production.  This production governs the balance between the survival of B 

cells and the regulation of the immune tolerance threshold. However, in humans, although the 

�BAFF transcript was found in some tissues (Krumbholz, Theil et al. 2005), its 

corresponding protein has not yet been detected. 

Human Mouse

� �

 

Figure 4 Schematic representation of BAFF and Baff transcripts. 
 (A)- BAFF, �BAFF and �4BAFF in human. (B)- Baff, �Baff and �5Baff in mice. The 

number of base pairs (bp) in the open reading frame is indicated next to each transcript 

(Corrected from annexe 1 : Lahiri, Pochard et al., 2012) 
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1.1.2.3. �4BAFF  

1.1.2.3.1. Genetics  

As previously described BAFF has many variants. We recently identified 

another functional variant of the BAFF gene in humans and mice (Appendix 2). This new 

variant lacks exon 4 in humans and exon 5 in mice (which is almost 90% similar to exon 4 in 

humans). It has a ORF of 495 bp in humans because it lacks 113 bp (encoding the predicted 

exon 4) hence its designation: �4BAFF. Whereas the part between exon 1 and exon 3 is 

intact, exon 5 starts directly after exon 3 (exon 3’s last nucleotide at position 748 is linked to 

the first base at position 862, within exon 5). During splicing, a new in-frame stop codon 

(TGA) is generated. In Balb/c and Swiss mice splenocytes the same observation was made, 

i.e. exon 5 is spliced out. In mice, the splicing process generates a stop codon further in exon 

7 resulting in an ORF of 732 nucleotides (Figure 4). In humans, the sites for the N-

glycosylation (N124) and furin cleavage are maintained in this variant.  

1.1.2.3.2. Protein localization and expression  

The protein is localized in the organelles, especially the endoplasmic 

reticulum. It can also be found on the nuclear membrane and in the nucleus of �4BAFF-

transfected B cells. Transfection with the unglycosylated �4
[N124	D]

BAFF leads to a similar 

localization pattern but, in that case, the protein is no longer present in the nucleus. 

1.1.2.3.3. Splicing regulation of �4BAFF 

�4BAFF is induced after INF-� stimulation. INF-� stimulation modifies the 

functions of SR protein SC35 that binds to the positive regulatory motif known as Exonic 

Splicing Enhancers (ESEs) (Cartegni, Chew et al. 2002) and Intronic Splicing Enhancers 

(ISEs). We also reported that IFN-� stimulation was responsible for an increased nuclear 

expression of heterologous nuclear ribonucleoprotein hnRNP C1/C2 that binds to negative 

splicing regulatory motifs known as Exonic Splicing Silencers (ESSs) and Intronic Splicing 

Silencers (ISSs) and consequently favors exon 4 skipping. 

One of the objects of our thesis will be to understand the role of this new 

alternative spliced isoform of BAFF. 
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1.1.3. BAFF protein 

1.1.3.1. Introduction 

BAFF is a type II membrane protein (31.2 kDa) that is released as a soluble 

protein (17.2 kDa) after proteolytic cleavage by furin in the membrane proximal stalk region. 

Soluble BAFF acts as a cytokine through the regulation of the survival of B cells. BAFF 

protein can form trimers or 60–mers (virus-like protein structures formed by the association 

of 20 trimers in basic conditions); depending on the pH. The 60-mers structure is biologically 

active but its proper function is still unclear. One of the most interesting aspects of the BAFF 

protein lies in the fact that its expression varies according to its forms. For instance, Shu et al. 

found in the U937 cell line a BAFF expression at 52 kDa (Shu, Hu et al. 1999) because of the 

post–translational glycosylation. Tribouley et al. found the presence of full-length BAFF as a 

45 kDa protein form (Tribouley, Wallroth et al. 1999), making it more complicated to detect 

in different autoimmune diseases. 

1.1.3.2. Primary structure 

Human and murine BAFF are type II transmembrane proteins that contain 

285 amino acids (aa) (31.2 kDa) in humans and 309 aa (34.2 kDa) in mice (Figure 5). Some 

domains are conserved between the two of them: 

the transmembrane domain, encoded by exon 1, from L
47

 to Y
67

 for human 

BAFF and from L
48

 to Y
68

 for mouse;  

the cleavage site, encoded by exon 2, after R
133

 for human and after R
126

 for 

mouse;  

the C-terminal domain, encoded by the last 4 exons (3, 4, 5, 6 for human and 

4, 5, 6, 7 for mouse), called the TNF Homology Domain (THD) and mainly involved in the 

organization of the secondary and tertiary structures.  
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Figure 5 Schematic representation of BAFF protein in humans (A) and 
mice (B).  
Color of boxes correspond to exons of genes and transcripts described in figure 1 and 

figure 3 respectively. When an amino-acid (aa) is encoded by the juntion of 2 exons, its 

position in the region sequence is indicated (for example: Valine in position 142 in human 

BAFF is V142). The hatched area represents the transmembrane region. The vertical 

arrow shows the cleavage site for furin and the horizontal arrow represents the TNF 

homology domain (THD). The number of aa and predicted molecular weight in kilo 

Daltons (kDa) for each protein are also indicated (from annexe 1:  Lahiri, Pochard et al., 

2012). 

BAFF is expressed on the membrane and can be cleaved by a furin-like 

enzyme that belongs to the protein convertase family. This family consensus sequence for 

cleavage is: 
R
/KXnR



 (n = 0, 2, 4 or 6 and X = any aa but never C and rarely P). The 

consensus sequence of cleavage for furin is: n = 2 within RX
K
/RR
. The sequence is 

RNKR
133

 for human BAFF and RNRR
126

 for mouse (Schneider, MacKay et al. 1999; Gavin, 

Ait-Azzouzene et al. 2003). Soluble BAFF contains 152 aa (from A
134

 to L
285

) (17.2 kDa) in 

humans and 183 aa (from A
127

 to L
309

) (20.6 kDa) in mice. In humans, the THD is the soluble 

BAFF. This domain is highly conserved during species evolution because the human soluble 

BAFF shares a strong homology with porcine BAFF (Guan, Dan et al. 2007), dove BAFF 

(Lu, Cao et al. 2009), duck BAFF (Guan, Ye et al. 2007) and chicken BAFF (Schneider, 

Kothlow et al. 2004). The main aa implicated in some receptor interactions are conserved 

across all species. As a result all these soluble BAFF can stimulate human B cells.  

1.1.3.3. Secondary and tertiary structure 

The structure of the human soluble BAFF consists of two layered antiparallel 

� strands that form a typical jellyroll-like � sandwich, like other members of the TNF ligand 

family (Liu, Xu et al. 2002; Oren, Li et al. 2002). This structure contains 12 strands called: A 
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(aa146-151), A’’’ (aa158-160), A’’ (aa 163-165), A’ (aa 168-174), B’ (aa 178-181), B (184-

187), C (aa191-201), D (aa 208-215), E (aa 226-235), F (aa 245-253), G (aa 258-262) and H 

(aa 270-283) that are organized in two � sheets (Karpusas, Cachero et al. 2002; Liu, Xu et al. 

2002) (Figure 6). The first anti-parallel sheet forming the jellyroll comprises strands A’ , A, 

H, C and F and the second, strands B’, B, G, D and E. Homologies between BAFF and some 

members of the TNF-L family (TNF-
��TRAIL occur in � strands C, D, F, G and H which 

constitute the core of the jellyroll fold, whereas the loop regions AA’, CD, DE, EF and GH 

are the most divergent regions among the TNF family ligands (Liu, Xu et al. 2002; Oren, Li 

et al. 2002). Soluble BAFF presents characteristic of other TNF-ligand family members:  

its structure in loops CD and EF;  

the AA’ loop has an insertion of two short � strands, A’’’ and A’’, that form a 

hairpin motif called the “Elbow region”. The AA’ loop, contains a large insert between 

strands D and E: the “FLAP region” which is unique to soluble BAFF. 

B

A C

60mer

 

Figure 6 Secondary, tertiary and quaternary structure of BAFF. 
(A)- Monomer of BAFF with the 12 strands see text for details). (B)- BAFF trimer. (C)- 

BAFF 60-mers (Bossen and Schneider, 2006; Liu, Xu et al., 2002). 



 

-20- 

A feature of these three-dimensional structures is common between BAFF, 

APRIL and TWEAK: a disulfide bridge between C
232

 on strand E and C
245

 on strand F 

(Bodmer, Meier et al. 2000). 

1.1.3.4. Quaternary structure 

Like all TNF-ligands (Smith and Baglioni 1987), the biological form of 

BAFF is a trimer. The interface that forms this trimer mainly consists of layered aromatic 

residues including the F
194

, Y
196

 and Y
246

 monomers. Two hydrophobic interactions are 

involved in this BAFF-trimer formation, mediated on one hand by the Q
144

 from each 

monomer (hydrogen bond) and on the other hand by the three last residues L
282,284,285 

from the 

C-terminus of three monomers (Liu, Xu et al. 2002). The unique FLAP region (DE loop) of 

BAFF allows trimer-to-trimer interaction leading to a virus-like assembly of the soluble 

trimers (Liu, Xu et al. 2002). This structure contains 20 trimers associated with each other by 

hydrogen bonds and hydrophobic bonds involving 4 residues: Y
192

, K
252

, E
254

 and H
218

. H
218

 

from the FLAP region seems decisive for the formation of oligomers. Indeed, when histidine 

in position 218 is replaced by an alanine, BAFF cannot oligomerize at pH 7 (Cachero, 

Schwartz et al. 2006). At pH 6.0, BAFF exists only in a trimeric form. At pH 6.5, the ratio 

oligomers/trimers is 1:2 and 1:1 at pH 7.0. At pH 7.4, only the oligomeric form is present. 

The oligomeric form can also induce the proliferation of B cells in vitro with the same 

efficiency as the trimeric forms. These structural forms were detected in the supernatants of 

several cell lines, demonstrating their existence (Cachero, Schwartz et al. 2006). However, 

their physiological role has not yet been clearly demonstrated. 

1.1.4. Glycosylation 

BAFF has two potential sites for N-glycosylation formed by two asparagines 

at position 124 and 242. According to Schneider et al., the complete form of BAFF is N-

glycosylated on N
124 

but not on N
242

 (Schneider, MacKay et al. 1999). After treatment with 

N-glycanase F, the molecular weight of BAFF decreases. The absence of glycosylation on 

N
242

 could be due to the secondary structure of the protein because this residue is present at 

the beginning of the strand F. The cleaved form of the soluble BAFF should not be N-

glycosylated because the cleavage site is downstream N
124

. However, another team showed 

that the cleaved form of BAFF was glycosylated on N
242

 after expression of this soluble form 

in Pichia pastoris (Diao, Ye et al. 2007). The molecular weight of soluble BAFF was then 

found to have increased from 17 kDa to 20 kDa. 
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1.2. BAFF-producing cells 

BAFF is mainly expressed by mononuclear cells from blood, spleen and 

lymph nodes, although low expression exists in the placenta, the thymus and the heart 

(Moore, Belvedere et al. 1999; Mukhopadhyay, Ni et al. 1999; Schneider, MacKay et al. 

1999; Shu, Hu et al. 1999; Alsaleh, Messer et al. 2007; Langat, Wheaton et al. 2008).  

The main innate immune cells that express BAFF are monocytes, 

macrophages, neutrophils and follicular dendritic cells (DC) (Hase, Kanno et al. 2004). 

Activated T and B cells also produce BAFF (Huard, Arlettaz et al. 2004; Kern, Cornuel et al. 

2004; Daridon, Devauchelle et al. 2007).  

Other cell types also express BAFF (Mackay, Silveira et al. 2007): stromal 

cells from the bone marrow (Schaumann, Tuischer et al. 2007), (Ohata, Zvaifler et al. 2005), 

astrocytes (Krumbholz, Theil et al. 2005), and EC (Daridon, Pers et al. 2006). BAFF was also 

found in the synovium of patients with rheumatoid arthritis (RA) (Rochas, Hillion et al. 

2009). 

1.3. BAFF-induced production 

Myeloid cells such as monocytes, macrophages and monocyte-derived DC 

release BAFF after IFN-�, IFN-� and CD40 ligand (CD40L) stimulations (Litinskiy, Nardelli 

et al. 2002). In these cells, membrane-bound BAFF can be cleaved by a furin convertase to 

produce a soluble form (Nardelli, Belvedere et al. 2001). However, neutrophils do not 

express BAFF on their surface and show a special mechanism for BAFF secretion upon 

stimulation with G-CSF (granulocyte-colony stimulating factor) and IFN-� (Scapini, Nardelli 

et al. 2003). So, whereas BAFF is cleaved at the membrane in other cell types of cells; in 

neutrophils, it is cleaved intracellularly. Additionally, macrophages, DC and neutrophils 

synthesize BAFF after IFN-� and lypopolysaccharide (LPS) stimulation through the 

production of reactive oxygens (Moon, Lee et al. 2006). On the contrary, IL-4 inhibits the 

expression of BAFF in monocytes (Nardelli, Belvedere et al. 2001; Scapini, Nardelli et al. 

2003). TGF-� upregulates BAFF expression by macrophages. In mouse macrophages, TGF-� 

�has been shown to increase BAFF expression through the TGF-� �signalling pathway where 

Smad3 and Smad4 promoted BAFF promoter activity. In the same study, IFN-� stimulation 

further increased TGF-�-induced BAFF expression through the phosphorylation of CREB, 

and involved the PKA/CREB pathway in the IFN-� induced BAFF expression (Kim, Jeon et 
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al. 2008).  

In human intestinal EC, IFN-� induces the production of both soluble and 

membrane bound BAFF through the JAK/STAT signalling pathway and through the binding 

of phosphorylated STAT-1 to the BAFF promoter (Woo, Im et al. 2013). SOCS3 plays an 

important role in the induction of BAFF by gut EC because of the IFN-� stimulation. 

Upregulation of SOCS3 blocks the JAK/STAT pathway signalling which in turn suppresses 

the production of BAFF by IFN-� stimulation (Do, Choi et al. 2013). 

CD40L and anti-IgM stimulations induce BAFF expression in normal human 

B cells by activating both the NF-kB and the NFAT binding to the BAFF promoter (Fu, Lin-

Lee et al. 2006). 

1.4. BAFF Receptors  

1.4.1. BAFF-R  

Discovered in 2001, the BAFF receptor (BAFF-R, TNFRSF13C, or BR3) is 

specific to BAFF. BAFF-R is expressed in spleen, lymph nodes, peripheral blood leukocytes 

and thymus. BAFF-R is differentially expressed during B cell ontogeny (Figure 7). 

  

Figure 7 BAFF receptor expression (BR3, TACI and BCMA) and self-
tolerance during B cell ontogenesis.  
Data indicate the proportion of self-reactive B cells at specific B-cell stages bafore or after 

check points as determined in the anti-HEL/HEL transgenic mouse model. Fo: follicular; 

GC: germinal center; Imm; immature; MZ: marginal zone; Pre: precursor; T1 or 2: 

transitionnal type 1 or 2; SS: Sjögren’s syndrome and Plasma: plasma cell. 
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The BAFF-R gene is located on the 22q13.1 chromosome. It is a type III 

transmembrane protein, in which exon 1 is the ligand-binding domain; exon 2, the 

transmembrane; and exon 3, the intracellular domain. It is the smallest cysteine-rich domain 

protein, containing only one Cys-rich ligand binding domain (Thompson, Bixler et al. 2001; 

Yan, Brady et al. 2001). The murine BAFF-R protein and its human counterpart are about 

56% homologous. The BAFF-R protein is present in the cytoplasm, the plasma membrane 

and the nucleus of B cells (Thompson, Bixler et al. 2001).  

In mature B cells, pro-survival signalling is mediated by BAFF-R stimulation 

then NF-�B signalling pathway activation. In response to various cellular stimuli, the cells 

activate a series of genes that play a role in the inflammatory and immune responses; under 

the control of the NF-�B transcription factor. The activation of this regulatory cascade is 

modulated by the I�B kinase (IKK) complex. The IKK complex contains two kinases and a 

regulatory subunit NEMO (NF-kB Essential Modulator) which is essential for the kinase 

activation. The classical activation requires NEMO, whereas the noncanonical pathway is 

NEMO-independent. The binding of BAFF and BAFF-R results in the activation of both the 

classic and the noncanonical NF-�B signalling pathways (Figure 8). However, the activation 

of the alternate NF-�B pathway (which results from the processing of NF-kB2 and the 

nuclear translocation of p52/Rel B heterodimers) is a major outcome of BAFF-R stimulation 

(Kayagaki, Yan et al. 2002). The importance of the alternate pathway, downstream of BAFF-

R, has been demonstrated in vivo. Mice deficient for p52 show a reduction in mature B cells. 

Bone marrow-derived p52-deficient transitional T1 B cells respond but weakly to BAFF 

(Claudio, Brown et al. 2002). The identity of the relevant NF-�B regulated genes expressed 

in response to BAFF-R signalling remains unclear. BAFF induces the upregulation of anti-

apoptotic Bcl-2 members such as Bcl-xL or Bcl-2, allowing cells to survive. Bcl-xL (but not 

Bcl-2) is a well-documented target of the classical NF-�B pathway (Chen, Edelstein et al. 

2000). Bcl-2 may be a target of the alternate pathway that is induced by BAFF in B cells. 

BAFF-R can activate the classical part of the NF-κB pathway through Btk and phospholipase 

C-γ2 and is able to enhance the signalling pathway (NF-�B1) via the phosphorylation of 

IKKβ and the degradation of I�Bα. BAFF-R can also signal through the activation of Akt or 

through 4E-BP1 via Pim-2. BAFF-R can transcriptionally regulate the proliferation of B cells 

by manipulating the functions of NF-�B/cRel and NF-�B-targeted promoters including BAFF 

(Fu, Lin-Lee et al. 2009).  
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BAFF-R also interacts with the TNFR-associated factor (TRAF)-3 and with 

TRAF-6 in B cells. TRAF-3 is able to negatively regulate the function of BAFF-R by 

inhibiting BAFF-R mediated NF-�B activation and IL-10 production (Xu and Shu 2002; 

Hildebrand, Luo et al. 2010). Specific gene deletion of this receptor results in the reduction of 

transitional and mature B cells in the spleen. In a recent study, BAFF-R deficiency in mice 

was shown to reduce the development of atherosclerosis by altering the mature B2 cell-

dependent immune response (Sage, Tsiantoulas et al. 2012). In another report, Hildebrand et 

al. showed a subset of patients with non-Hodgkin lymphoma whose BAFF-R gene tail, near 

the TRAF-3 binding motif, had mutated. This resulted is increased NF-κB1 and NF-κB2 

signalling and enhanced production of IgM (Hildebrand, Luo et al. 2010). Warnatz et al. 

showed that in different Common variable immunodeficiency (CVID) patient, their siblings 

had mutation in TNFRSF13C. This mutation is due to a homozygous deletion in the 

TNFRSF13C gene that removes part of the BAFF-R transmembrane domain. These patients 

showed almost all of the symptoms of CVID patients, including reduced IgG and IgM levels 

in serum, but showed normal IgA levels (Warnatz, Salzer et al. 2009).  

 

Figure 8 Signalling pathway through BAFF receptors.  
Molecular events downstream the three BAFF receptors BAFF-R, TACI and BCMA are 

summarized here (Bossen and Schneider, 2006). 



 

-25- 

1.4.2. TACI  

TACI (transmembrane activator and calcium modulator ligand interactor) is 

another receptor for BAFF and APRIL that can also bind heparin sulfate proteoglycan 

syndecan-2 (Bischof, Elsawa et al. 2006). The human TACI gene has 5 exons (Hymowitz, 

Patel et al. 2005). In humans, this gene can arrange itself into a short form of TACI by 

skipping exon 2. This variant, just like its normal form, is able to bind BAFF and APRIL 

(Bossen and Schneider 2006). TACI is a type III transmembrane protein. Conflicting results 

have been reported regarding the expression of TACI on T cells (Ng, Sutherland et al. 2004; 

Bossen and Schneider 2006; Mackay and Leung 2006). This receptor is also expressed in 

mature and transitional B cells, but also in human macrophages and plasma cells (Chang, 

Arendt et al. 2006). Membrane-bound and oligomeric forms of BAFF can bind to this 

receptor (Bossen and Schneider 2006). While BAFF-R is able to bind any form of BAFF, 

TACI cannot bind to soluble BAFF trimers (Bossen, Cachero et al. 2008).  

TACI-deficient mice show deficiencies in B cell homeostasis with increased 

levels of hyper-reactive B cells and an increased splenic B cell component that lead to 

autoimmunity and lymphoma (Mackay and Schneider 2008). The requisiteness of TACI is 

obvious for T cell-independent type II humoral immunity as TACI deficient mice do not 

mount a normal T cell-independent type 2 immune response (von Bulow, van Deursen et al. 

2001). TACI can interact with TRAF 2,3,5 and 6; and is able to activate the classic part of the 

NF-κB signalling pathway and the AP-1, NF-AT transcription factors (Figure 8) (Xia, 

Treanor et al. 2000). Phosphorylation of the NF-�B inhibitor by the IKK complex allows the 

cytoplasmic NF-�B proteins p65 and p50 to translocate to the nucleus when their nuclear 

localization sequence (NLS) is exposed. NF-�B proteins bind to a specific consensus 

sequence in the DNA and subsequently activate downstream genes. 

Studies on TACI knock-out mice lead one to posit that TACI can 

inhibit/suppress B cell proliferation and activation in normal B cells and maintain 

immunological homeostasis. These TACI
–/–

 mice develop splenomegaly and accumulate B 

cells. B cells collected from these mice hyper-proliferate in response to various stimuli. These 

mice also show increased concentrations of serum Igs and, in response to antigen challenge, 

increased antibodies. This accumulation of B cells and the hyper-responsiveness of B cells to 

antigenic challenge, both in vitro and in vivo, support the fact that TACI plays a critical role 

in the downregulation of B cell activation and the maintenance of immunological 
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homeostasis (Yan, Wang et al. 2001; Bossen and Schneider 2006).  

TACI is also involved in plasma cell differentiation and survival in response 

to T-independent type 2 antigens (Mantchev, Cortesao et al. 2007). A reduction in IgA serum 

leves was observed in TACI-deficient mice (von Bulow, van Deursen et al. 2001). When the 

mechanism of class-switching induced by TACI was investigated, it was found that the 

cytoplasmic domain of TACI encompasses a conserved motif that bound myeloid 

differentiation primary response gene 88 (MyD88), an adaptor protein that activates the NF-

�B signalling pathways via a Toll-interleukin-1 receptor (TIR) domain. It was also shown 

that BAFF and APRIL promoted the recruitment of MyD88 to said conserved cytoplasmic 

motif of TACI which is distinct from the TIR domain of toll-like receptors (TLRs). Although 

TACI lacks a TIR domain, it triggers class-switch recombination (CSR) via the activation-

induced deaminase (AID) (Bing, Siyi et al. 2010). There might be some relation between 

different TLRs and TACI signalling (TLRs signalling will be developed in 3. Toll-like 

receptors). The activation of TLR4 by LPS and the activation of TLR7 and TLR9 by 

unmethylated CpG DNA can increase TACI expression in B cells (Mackay and Schneider 

2008). In CVID patients, there exists a common mutation in the TACI gene (C104R). This 

mutation is responsible for inhibiting BAFF-binding to TACI (Bacchelli, Buckridge et al. 

2007). In another report, the authors described two mutations (S144X and C104R) on the 

TNFRSF13B gene in CVID patients that result in TACI function loss as well as B cell 

dysfunction such as class-switching inability. A few other aa substitutions (A181E and 

R202H) were also reported but, unlike C104R mutation, BAFF ligand-binding was 

unaffected (Castigli, Wilson et al. 2005; Salzer and Grimbacher 2005). 

1.4.3. BCMA 

The B cell maturation antigen (BCMA), a type III membrane protein, also 

binds BAFF and APRIL. This BAFF receptor shares a similar structure with BAFF-R. 

BCMA contains a short 18-aa sequence analog to BAFF-R and possesses a TRAF binding 

site (Figure 8). BCMA is located on the 16p13.1 chromosome and contains 3 exons. In 2008, 

Smirnova et al. discovered three new transcript variants for BCMA: one with partial deletion 

of exon 1, one with deletion of exon 2 and another one with a new cryptic exon in intron 2 

(Smirnova, Andrade-Oliveira et al. 2008). The lack of exon 2 induces the generation of this 

protein’s soluble form, which remains in the cytoplasm because there is no signal peptide. 

BCMA is highly expressed on long-lived plasma cells, plasmablasts (Avery, Kalled et al. 



 

-27- 

2003). It is likely that BCMA becomes important after the differentiation of activated B cells 

because it is expressed by plasmablasts (Avery, Kalled et al. 2003; O'Connor, Raman et al. 

2004; Tangye, Bryant et al. 2006).  

If we compare the affinities of BCMA to BAFF and APRIL, we notice that 

BCMA has a lesser affinity with BAFF than it has with APRIL. The binding of BAFF to this 

receptor activates NF-κB which increases Bcl-2 expression and inhibits the apoptosis. BCMA 

regulates the expression of CD80, CD86, CD40, MHC-II and ICAM-1 and activates antigen 

presentation in B cells through a NF-κB dependent manner (Yang, Hase et al. 2005). BCMA 

can also activate the c-Jun N-terminal kinases (JNK) pathway to induce antigen presentation. 

Indeed, blocking the JNK pathway inhibits the antigen presentation through BCMA 

signalling (Bossen and Schneider 2006);(Yang, Hase et al. 2005). BAFF influences the 

normal development of B cells independently of BCMA. BCMA is not implicated in the 

survival of B cells until they reached the immature transitional stage. Indeed, BCMA-

deficient mice show normal B cell counts just like their wild counterpart (Schiemann, 

Gommerman et al. 2001). However, BCMA was found to be implicated in the last stage of B 

cell differentiation and is important for the survival of bone marrow plasma cells, and the 

survival of plasmablasts (Avery, Kalled et al. 2003; O'Connor, Raman et al. 2004). In B cells 

of systemic lupus erythematosus (SLE) patients, particularly on memory cells and 

plasmablasts, the expression of BCMA is significantly higher than control. This increase in 

BCMA expression is co-related with enhanced CD19 and CD86 expression indicating an 

activated B cell state (Kim, Gross et al. 2011).  

Thus, we can conclude that the expression of BCMA, TACI, and BAFF-R in 

various cell lines is highly variable and the differential extent to which each one of them co-

ordinates with one another in maintaining B cell function is crucial for the immune 

regulation.  

1.5. Functions of BAFF 

1.5.1. B cells  

BAFF was described as playing different roles in the homeostasis and the 

activation of B cells through its binding to its different receptors. BAFF-R, TACI and BCMA 

present different expression pattern during B cell ontongeny (Figure 7). BAFF-deficient 

mice, or mice in which BAFF activity has been reduced, demonstrate a marked reduction in 
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the number of peripheral B cells and an abnormal reduction in serum immunoglobulin. Fifty 

to 75% of the generated B cells in the bone marrow are self-reactive. So, in order to avoid the 

generation of pathogenic auto-Abs, self-reactive B cells have to be deleted or anergized 

during successive checkpoints throughout the B-cell development (Gauld, Benschop et al. 

2005). In BAFF-deficient models, B cells are stopped at the transitional type 1 (T1) stage, 

though the release of B cells from the bone marrow remains normal. BAFF is essential for the 

survival of transitional type 2 (T2) cells that express high levels of BAFF-R. In fact, T2 B 

cells are mostly dependent on BAFF for their pro-survival activity and BAFF is necessary to 

prevent T2 apoptosis. This was demonstrated in models where BAFF or BAFF-R are lacking, 

and where the maturation of MZ or follicular zone B cells is impaired beyond the T1 stage 

(Schiemann, Gommerman et al. 2001; Mackay, Schneider et al. 2003). In transgenic mice, in 

which BAFF activity is blocked, the maturation of B cells is stopped between the T1 and T2 

stages (Batten, Groom et al. 2000). In addition to a functional B cell receptor (BCR), 

immature B cells need a BAFF-mediated signal to survive and to become mature. As a result, 

BAFF-deficient models are unable to provide a humoral antibody response because these 

models show substantial reduction in mature and MZ B cells and in follicular B cells. Gain-

of-function experiments confirm BAFF’s ability to promote B cell survival by providing 

protection against apoptotic signals. Mice harboring BAFF as a transgene, show increased 

numbers of peripheral blood B cells, along with a spleen and lymph nodes that are greatly 

enlarged and Payer’s patches with increased B cell numbers (Mackay, Woodcock et al. 1999; 

Gross, Johnston et al. 2000; Khare, Sarosi et al. 2000). Similar results are also obtained when 

mice are treated with recombinant BAFF (Parry, Riccobene et al. 2001) and in ex-vivo B cell 

cultures (Batten, Groom et al. 2000).  

Deletion of BAFF results in the loss of 90% of the mature B cells. B-cell 

survival by BAFF depends on the NF-κB-mediated upregulation of the anti-apoptotic Bcl-2 

family proteins and downregulation of anti-apoptotic proteins. In addition, the inhibition of 

the nuclear translocation of the pro-apoptotic protein kinase Cδ (PKCδ), appears to be an 

important mediator of the BAFF-induced survival of B cells (Mecklenbrauker, Kalled et al. 

2004). BAFF activates TRAF-3 that is responsible for triggering the NF-�B activation 

through the induction of both canonical (NF-�B1) and non-canonical (NF-�B2), NF-�B 

pathways. BAFF-mediated NF-�B induction upregulates various anti-apoptotic proteins, 

including A1/Bfl-1, Bcl-xL, and Bcl-2, and downregulates the pro-apoptotic protein Bim 

(Claudio, Brown et al. 2002; Tardivel, Tinel et al. 2004; Zarnegar, He et al. 2004; Craxton, 



 

-29- 

Draves et al. 2005).  

BAFF-R is the key receptor through which BAFF exerts its survival function. 

Mice with a naturally-occurring mutation on theBR3 gene, or BR3-deficient mice, show 

severe loss of peripheral B cells and decreased circulating Ig. These results are similar to 

those obtained with BAFF-deficient mice (Sasaki, Casola et al. 2004; Shulga-Morskaya, 

Dobles et al. 2004). In addition, neither TACI nor BCMA knock-out mice show impaired B 

cell survival (Yan, Wang et al. 2001). Moreover, mice that lack both BCMA and TACI 

possess a normal B cell compartment. This confirms the role of BAFF-R in BAFF-mediated 

B cell survival (Shulga-Morskaya, Dobles et al. 2004). Act1 is another signalling molecule 

known to be recruited by BR3 (Qian, Qin et al. 2004). It acts as a negative regulator of 

BAFF-mediated B cell survival. However, its mechanism of action remains unclear.  

Furthermore, BAFF influences class-switching and the secretion of Abs. BAFF 

enhances B cell response through Pax-5 activation and the high ability of BCR to 

phosphorylate CD19 (BCR coreceptor) which in turn amplifies BCR signalling (Hase, Kanno 

et al. 2004). BAFF brings about the AID expression which is required for CSR (Litinskiy, 

Nardelli et al. 2002; Yamada, Zhang et al. 2005). BAFF produced by DC and macrophages 

induces switching to IgG, IgA, and IgE isotypes independently of CD40 (Litinskiy, Nardelli 

et al. 2002). In mice that receive excessive quantities of BAFF, either exogenously or as a 

transgene, we see an increase in the circulating levels of IgE, IgA, and all of the IgG sub-

isotypes, and in IgM as well (Parry, Bouhana et al. 2000; Mackay and Schneider 2009). BAFF-

deficient mice fail to develop a proper follicular dendritic cell network and instead build up 

smaller and unstable germinal centers (GC) in which class-switching and somatic 

hypermutation still occur, but with diminished IgG and secondary responses (Rahman, Rao et 

al. 2003). 

BAFF controls the activation of the eukaryotic translation initiation factor 4E 

and induces the phosphorylation of the S6 ribosomal proteins required for translation. This 

suggests its role in protein synthesis. Indeed, BAFF elevates cell cycle progression proteins 

such as cyclin D and cyclin E, Cdk4, Mcm2 and 3 (Patke, Mecklenbrauker et al. 2006). 

The T cell-independent type II response requires the interaction of BAFF 60-

mers, or membrane BAFF, with TACI. The interaction of BAFF with its receptor BAFF-R 

occurs mainly to that end, since the action of blocking BAFF-R induces an impaired primary 
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immune response to T dependent antigens with decreased IgG levels. This interaction is also 

crucial for T cell-dependent IgM responses (von Bulow, van Deursen et al. 2001; Shulga-

Morskaya, Dobles et al. 2004).  

1.5.2. T cells 

Conflicting reports exist regarding the presence of varied BAFF receptors in 

T cells. The presence of TACI on activated T cells has been demonstrated by some, whereas 

in other studies, no or minimal expression was found (von Bulow, Russell et al. 2000; Ng, 

Sutherland et al. 2004). The expression of BAFF-R on T cells is also controversial because 

according to various reports on activated CD4
+
 T cells, either increased or decreased 

expression levels were found (Yan, Brady et al. 2001; Ng, Sutherland et al. 2004) or (Yan, 

Wang et al. 2001). In contrast, BCMA is not present on T cells. Thus, the role that BAFF 

plays on T cells is also controversial. 

In vitro studies have shown that BAFF can co-stimulate human T cell 

activation and induce IL-2 secretion (Huard, Schneider et al. 2001). Moreover, higher 

numbers of activated T cells were detected in BAFF transgenic mice (Mackay, Woodcock et 

al. 1999). The exogenous stimulation of soluble BAFF increases the percentage of CD4
+
 T 

cells in a dose-dependent manner but does not affect CD8
+
 T cells (Shan, Chen et al. 2006). 

Both BAFF-transgenic mice CD4
+
 and CD8

+
 T cells are activated in the spleen and T cell 

numbers increase, with effector T cells in greater proportion (Mackay, Woodcock et al. 1999; 

Shan, Chen et al. 2006). This increases even further with the addition of IL-2 and IFN-�. This 

suggests that these cytokines play the role of additive in the BAFF-stimulated proliferation of 

CD4
+
 T cells. BAFF also acts as a T helper 1 (Th1) response-promoting cytokine because the 

stimulation with BAFF induces T cells to secrete more and also speeds up the differentiation 

into effector T cells. Inhibiting the interaction of BAFF-BAFF-R on T cells can reduce the 

proliferation of T cells. A defective BAFF-R in T cells is characterized by its inability to 

respond to BAFF mediated co-stimulation, which indicates that BAFF-R is a main receptor 

for BAFF, involved in the BAFF mediating stimulation on T cells. However TACI-deficient 

T cells respond normally to BAFF-mediated co-stimulation (Ng, Sutherland et al. 2004). 

BAFF stimulation, along with T cell receptor (TCR) engagement, upregulates the anti-

apoptotic factor Bcl-2 in activated T cells which may indicate its role as a survival factor (Ng, 

Sutherland et al. 2004). BAFF increases CD25 on T cell (Ye, Wang et al. 2004). 
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1.5.3. Macrophage and Dendritic cells 

BAFF expression is detected on the surface of human DC and macrophages 

along with its secretion as a soluble form into culture supernatants. IFN�, IFN�, IL-10, 

CD40L, LPS, and peptidoglycan can induce BAFF in these models (Nardelli, Belvedere et al. 

2001). Both cells found in the splenic MZ can produce and secrete BAFF (Balazs, Martin et 

al. 2002). However, the information regarding BAFF production by murine myeloid cell 

types is more limited and controversial. TLR agonists such as LPS and CpG 

oligodeoxynucleotides do not induce BAFF secretion by murine DC (Boule, Broughton et al. 

2004). However, in another study, the LPS-induced surface expression of BAFF on DC could 

be observed (Diaz-de-Durana, Mantchev et al. 2006). BAFF induces DC activation and 

maturation. BAFF activates DC in order to secrete inflammatory cytokines like IL-6, IL-1�, 

TNF-� and to induce the proliferation of naïve CD4
+ 

T cell and their differentiation into 

effector CD4 T cells so as to modulate the immune response (Chang, Mihalcik et al. 2008). 

Unlike APRIL, BAFF secreted by these two cells is more effective to induce the 

costimulation for B cell proliferation through a BCR-dependent pathway (Craxton, Draves et 

al. 2005). BAFF from macrophages and DC regulates B cell function by enhancing the 

proliferation, the antibody secretion and by inducing Ig class-switching. In mice, BAFF 

affects the maturation of follicular DC and, as in BAFF-deficient mice, the mature follicular 

dendritic network is affected (Rahman, Rao et al. 2003). BAFF also causes dendritic cells to 

produce various inflammatory cytokines like IL-6, TNF-�. During this process, BAFF can 

induce the proliferation of naïve CD4
+
 T cells and regulate the differentiation of CD4

+
 T cells 

into CD4
+
 Th1 cells in a DC-mediated manner. And finally, BAFF also elevates the 

activation and maturation of DC and plays an indirect role in modulating the adaptive 

immune system (Chang, Mihalcik et al. 2008).  

1.6. BAFF as a therapeutic target 

The importance of BAFF in the mouse model of autoimmunity, the 

implications of BAFF in the survival of lymphoma cells, and the increased BAFF levels in 

various diseases have propelled the role of BAFF as a therapeutic target. Several strategies 

have been developed to block BAFF. Selective inhibition of BAFF is achieved with either 

soluble BAFF-R or with antibodies to BAFF (Moisini and Davidson 2009). 

Selective BAFF blockers prevent BAFF from interacting with its receptors, 

leaving APRIL free to interact with TACI and BCMA. A clinical program led by Human 
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Genome Sciences in partnership with GlaxoSmithKline has led to the development of a fully 

human BAFF-specific monoclonal antibody (belimumab; Lymphostat-B) (Baker, Edwards et 

al. 2003). A fusion protein consisting of human Ig Fc and of the extracellular BR3 domain 

(Briobacept, for BAFF-R-Ig) has also been developed. Non-selective BAFF blockers abolish 

the interactions of both BAFF and APRIL with all their receptors. To date, there is one drug 

in this class (Seshasayee, Valdez et al. 2003). It is based on human Ig Fc fused to the 

extracellular TACI domain (Atacicept, TACI-Ig). Atacicept has completed its phase I clinical 

trial and is now being tested in phase II and III clinical trials in the treatment of SLE, RA and 

relapsing multiple sclerosis. It yields good results with a good safety profile in the treatment 

of SLE and RA (Carbonatto, Yu et al. 2008). In a recent study, lupus nephritis patients treated 

with Atacicept showed an unexpected decrease in serum IgG levels, severe proteinuria and 

increased rates of infection. These results brought the trials to an end (Ginzler, Wax et al. 

2012). 

The various secreted form of BAFF, caused by translational modifications 

and heterogeneity, make it difficult to analyze their concentrations in patients. This has led to 

ongoing controversies because in some groups of patients the serum concentration of BAFF 

remains within normal range. Hence, monitoring the BAFF levels before and after treatment 

remains a thorny issue (Mariette, Roux et al. 2003; Collins, Gavin et al. 2006). Additionally, 

the glycosylation is also problematic because it seems to alter the epitope recognition by anti-

BAFF Abs.  

2. REGULATORY B CELL 

2.1. History of regulatory B cells 

In 1968, Morris et al, first suggested that the suppressive function of B cells 

was mainly restricted to their ability to produce ‘inhibitory’ Abs (Morris A et al 1968). This 

finding was then followed by reports linking B cell’s suppressive effect to the induction of 

tolerance and differentiation of suppressor T cells (L'Age-Stehr, Teichmann et al. 1980; 

Shimamura, Habu et al. 1984).  

In experimental autoimmune encephalomyelitis (EAE) model, mice lacking 

mature B cells were unable to recover from the disease whereas normal mice could. The poor 

recovery potential of these B cell-deficient mice proves undeniably that B cells play a role in 

the suppression of EAE (Wolf, Dittel et al. 1996). 
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In 2000, Moulin et al. showed that B cells regulate the Th1/Th2 polarization. 

Indeed B cells promote the production of IL-4 by T cells. In �MT mice (lacking B cells) the 

production of Th1 cytokines, such as IFN-�� was increased. B cells modify the antigen-

presenting capacity of DC, including the Th1 differentiation through the production of IL-12. 

Also, IL-10 is involved in the inhibition of IL-12 secretion. In �MT mice, since there is less 

IL-10 production, an increase of IL-12 production by DC can be observed. This augmentation 

further regulates the production of IL-4 from T cells (Moulin, Andris et al. 2000). Fillatreau 

et al. showed in the EAE model that B cells play an important role in the protection against 

disease. In �MT mice, severe clinical signs were still present whereas B cell-sufficient mice 

had entered remission. The recovery from EAE needs IL-10 production by B cells that are 

activated in a T cell-dependent manner. Indeed, chimeric mice (reconstituted with 80%��MT 

bone marrow + 20% IL-10
-/- 

bone marrow) do not recover from EAE (Fillatreau, Sweenie et 

al. 2002). 

In 1997, Mizoguchi et al. studied the putative pathogenic role of B cells in the 

development of colitis. They observed an attenuation of colitis in TCR�−/−
 �MT mice after 

the administration of purified immunoglobulin from TCR�−/−
 mice. The amelioration 

observed in these mice was echoed by an increase in the clearance of apoptotic cells, 

suggesting an autoantibody-mediated protective mechanism (Mizoguchi, Mizoguchi et al. 

1997). In 2002, they reported the presence of regulatory B (Breg) cells expressing CD1d and 

producing IL-10 that appear after a chronic intestinal inflammation and take part in the 

suppressive phase of the disease. Transferring Breg cells in diseased mice helps downregulate 

the inflammation (Mizoguchi, Mizoguchi et al. 2002). 

2.2. Development and activation of regulatory B cells 

B cells with regulatory properties have been identified in several autoimmune 

diseases, during inflammation, infection and upon different stimuli. It can be assumed that the 

development and activation of Breg cells in different models need different activation signals. 

According to the existing literature, many signals have been reported that induce regulatory 

properties in B cells and favor the production of IL-10. The main common factors regulating 

the development and activation of Breg cells include the stimulation through CD40, the 

engagement of BCR and the TLRs. 
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2.2.1. CD40 signalling  

CD40 belongs to the TNF receptor superfamily found on the surface of B 

cells, DC, follicular DC and hematopoietic progenitor cells. The CD40–CD40L (CD40L or 

CD154) interaction is crucial for the development of T cell-dependent immune responses. In 

the model of chronic colitis, signs of the disease increase as B cells are treated with anti-

CD40 blocking Ab. Blocking CD40 decreased B cell’s ability to regulate the number of 

pathogenic CD4
+
 TCR�-

 �+ T cell in diseased mice. The need for CD40 signal is further 

established when B cells from CD40
-/-

 mice also show decreased regulatory properties 

(Mizoguchi, Mizoguchi et al. 2000).  

At the same time the role of CD40 on arthritis regulation has been evaluated 

in DBA/1-TCR-�� transgenic�mice. These mice develop chronic arthritis upon immunization 

with collagen type II (CII).Treatment of these mice with an agonist of CD40 results in a 

decrease of the symptom severity as compared with isotype treatment. The therapeutic effects 

of an anti-CD40 monoclonal Ab are correlated with reduced joint damage and intact bone 

architecture. Splenocytes of treated mice show an increased production of IL-10 and a 

decreased production of IFN-�. All these observations support the notion of a protective role 

of CD40 in the model of arthritis (Mauri, Mars et al. 2000). B cells stimulated with agonistic 

CD40 and antigen produce more IL-10 and less IFN-�� preventing the development of 

arthritis when transferred in CII-induced arthritis mice showing a B-cell mediated protection 

(Mauri, Gray et al. 2003). In Mrl/lpr mice, the transfer of in vitro-stimulated anti-CD40 Ab 

T2 B cells (T2-like-Bregs), significantly improve renal disease and survival through an IL-

10-dependent mechanism (Blair, Chavez-Rueda et al. 2009). 

B cells from B6 mice that had recovered from EAE produced IL-10 when 

stimulated with the autoantigen and anti-CD40 Ab. Bone marrow−chimeric mice in which 

CD40 deficiency was restricted to the B cell compartment failed to recover from EAE and 

suffered severe unremitting EAE (Fillatreau, Sweenie et al. 2002). 

In humans, peripheral blood B cells expressing CD38 and CD24 can act as 

Breg cells and suppress the differentiation of Th1 cells. The mechanism involved CD40 

stimulation through a pathway partially dependent on IL-10. In SLE patients, the same 

number of these B cells was observed but with an impaired IL-10 production leading to a 

defect in the regulatory properties. This absence of regulatory properties in SLE was also 
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correlated with an abnormal CD40 signalling pathway associated with lower levels of STAT-

3 phosphorylation (Blair, Chavez-Rueda et al. 2009).  

The role of the CD40-CD40L signalling on the induction of Breg cell 

properties was further evaluated by our group. Blocking this signalling pathway in the 

presence of T cells reduces the suppressive effect of B cells on anti-CD3 and anti-CD28 Ab-

induced proliferation of T cells. This theory is further strengthened with the evidence that pre 

incubated B cells with human CD40L transfected murine fibroblast show more regulatory 

properties on the inhibition of T cell proliferation (Lemoine, Morva et al. 2011). 

2.2.2. BCR engagement  

Another important signalling pathway leading to the differentiation and 

activation of regulatory B cells is the engagement of the BCR. Signal transduction through 

the BCR is functionally interrelated to cell-surface receptors, such as CD19, CD21, CD22, 

CD40, CD72, and Fc�RIIb. CD19 functions as a specialized adapter protein regulating the 

Src family protein tyrosine kinases, the phosphatidylinositol 3-kinase, and Vav. Thus, it acts 

as a key molecule for multiple signalling pathways that are crucial for modulating the basal 

and the BCR-induced signals (Tsubata 1999). Since CD19 is a co-receptor for the BCR 

signalling, it can be presumed that BCR signalling is one of the factors influencing the 

production of Breg cells (Watanabe, Fujimoto et al. 2007). 

In CD19-deficient mice, T cell mediated inflammation is amplified whereas 

this inflammation is reduced in CD19 transgenic mice. A subset of CD5
+
 CD1d

hi 
B cells 

which possesses regulatory capacities reduces T cell-mediated inflammation in CD19 

overexpressing mice through IL-10 production (Yanaba, Bouaziz et al. 2008). 

BCR engagement also gives protection in the type 1 diabete model. 

Transfusion of BCR-stimulated B cells protects recipient non-obese diabetic (NOD) mice 

from type 1 diabete in an IL-10 dependent- manner. B cells produce more IL-10 when 

receiving a BCR activation signal. The transfer of BCR-stimulated B cells from IL-10 

deficient NOD mice failed to confer any protection from type 1 diabetes in recipient NOD 

mice (Hussain and Delovitch 2007). 

One of the effects of BCR stimulation is to increase intracellular Ca
2+

. The 

sensor stromal molecule 1 and 2 (STIM1 and STIM2) molecules are essential for the 
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regulatory properties of B cells because the deletion of these two molecules on B cells 

increases EAE and decreases IL-10, involving NFAT activation. Although peak IL-10 

production is found in B cells isolated from wild-type mice upon simultaneous activation 

with anti-CD40 and the auto-antigen myelin oligodendrocyte glycoprotein during the 

recovery phase of EAE, this response is lost in mice with STIM1 and STIM2 deficient B cells 

(Matsumoto, Fujii et al. 2011). 

2.2.3. Toll-like receptors  

TLRs are type I transmembrane glycoproteins composed of an extracellular 

transmembrane and an intracellular signalling domain (Gay and Gangloff 2007). 

Extracellular TLR domains have reiterated leucine-rich repeat modules bearing pathogen-

associated molecular patterns able to recognize a wide range of microbial products. As such, 

they can alert the host about the presence of danger signals (Medzhitov 2001).  

In NOD diabetic mice, B cells which are activated by LPS, a ligand for TLR4, 

secrete TGF-�. These activated cells can downregulate pathogenic Th1 immunity and confer 

a delayed onset of the disease (Tian, Zekzer et al. 2001). 

The role of TLRs was evaluated in lupus prone Palmerston North (PN) for the 

initiation of Breg cell properties. Stimulation through TLR9 produces more IL-10 than 

control in these mice. TLR9-activated B cells downregulate the production of pro-

inflammatory cytokines such as IL-12. B cells with regulatory properties display MZ-like B 

cell phenotypes and control the production of pro-inflammatory cytokines in an IL-10-

dependent manner after activation by TLR9 (Brummel and Lenert 2005; Lenert, Brummel et 

al. 2005). 

CD5
+
 B cells play an important role in regulating inflammation. The absence 

of CD5
+
 B cells is associated with the development of a stronger inflammatory response in 

neonatal mice that become lethally susceptible to CpG challenge. After TLR9 stimulation 

neonatal B cells effectively control the production of proinflammatory cytokines by neonatal 

plasmacytoïd and conventional DC, through the secretion of IL-10 (Zhang, Deriaud et al. 

2007). Furthermore, during potentially harmful systemic inflammations, once neonatal B 

cells have been triggered by TLR-, they produce high concentrations of IL-10 and so on 

prevent optimal IL-12 secretion by neonatal DC, and thus Th1 priming. Although both CD5
+
 

and CD5
-
 B cell subsets respond to CpG-ODN stimulation, only CD5

+
 B cells produce IL-10 
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(Sun, Deriaud et al. 2005). 

Another study by Lampropoulou et al. describes the role of TLR-activated B 

cells on T cell-mediated EAE. In mice with B cell-restricted deficiencies in MyD88, all B cell 

subsets produce IL-10 when TLR4 and TLR9 are engaged with LPS or CpG respectively. 

Interestingly, distinct TLR have different roles during EAE. The authors of this study found 

that mice with B cell-restricted deficiencies in TLR2 and TLR4 develop chronic EAE, while 

mice carrying TLR9-deficient B cells recover from disease similarly to mice with wild-type 

B cells. The absence of MyD88 in B cells resulted in a chronic form of EAE and heightened 

T cell responses of Th1 and T helper 17 (Th17) types, suggesting that B cells facilitate 

disease resolution by suppressing these pathogenic T cells (Lampropoulou, Hoehlig et al. 

2008). Similarly, B cells activated with Helicobacter felis, which also signals through TLR2 

and MyD88, hinder the development of severe gastric pathology by limiting the Th1 response 

(Sayi, Kohler et al. 2011). The presence of MyD88 on B cells acts as an important factor for 

B cells’ regulatory functions because TLR engagement on DC or on monocytes induces 

proinflammatory responses.  

In helminth infection, TLR2-stimulated B cells (with Pam3Cys) successfully 

inhibit CD4+ T cell proliferation and IFN-�. These cells also inhibit IL-17 production in 

multiple sclerosis (MS) patients. It is worth noting that this procedure is also IL-10-dependent 

which highlights the fact that TLRs are required to induce regulatory properties in B cells 

(Correale and Farez 2009). 

Altogether, these data suggest that TLRs are essential for the initiation of 

regulatory properties in B cells. Consequently, some microbial products could induce B cells 

suppressive properties. 

It is evident that the co-engagement of different stimulations more effectively 

induces the B cell regulatory properties. IL-10 production by B cells increases when B cells 

are activated with both anti-CD40Ab and TLR9 stimulations (Lemoine, Morva et al. 2011). 

This phenomenon clearly indicates that some highly controlled and different signalling 

pathways are needed for the regulatory properties of B cells. 

2.2.4. CD80 and CD86 

CD80 and CD86 known ligands are CD28 and CTLA-4, both expressed on T 



 

-38- 

cells. These two co-stimulatory molecules also have some reported effects on the 

development and activation of Breg cells. The role of CD86 is evident in a mouse model of 

inflammatory bowel disease. In this model, the transfer of anti-CD86 mAb-treated B cells 

reduces the number of infiltrating T cells in the Lamina propria and reduces the development 

of colitis in recipient TCR-� deficient mice (Mizoguchi, Mizoguchi et al. 2000). 

CD80 and CD86 were also reported to have an important role in B cell 

regulation when B7 deficient mice were used. The co-adoptive transfer of encephalitogenic T 

cells into chimeric mice (�MT mice reconstructed with B7-deficient mice bone marrow) fails 

to protect from EAE. Since B7-deficient mice were used, it was not possible to understand 

the specific role of CD80 and CD86. Moreover B7-deficient B cells show a delayed 

expression of IL-10 (Mann, Maresz et al. 2007). 

2.2.5. Other signals inducing regulatory properties of B cells 

Save for the previously mentioned factors there are few other factors that 

influence the regulatory properties of B cells. Apoptotic cells can provide some endogenous 

signals which in a direct way increase the production of IL-10 by B cells. The transfer of B 

cells from apoptotic cell-treated mice provided protection from collagen-induced arthritis 

(CIA) (Gray, Miles et al. 2007). 

The platelet activating factor and serotine are implicated in contact 

hypersensitivity (CHS) and induce Breg cells after skin exposure to ultraviolet (UV) 

irradiation. In this model, the authors demonstrated that CD220
+
CD19

+
 B cells from UV light 

irradiated mice can confer protection to CHS in recipient mice through the production of 

increased levels of IL-10 (Matsumura, Byrne et al. 2006). 

The initiation of the B cell regulatory properties requires a multistep process. 

TLRs are needed for the induction phase which is followed by BCR recognition and the 

CD40 engagement phase (Lampropoulou, Calderon-Gomez et al. 2010). 

2.2.6. Phenotype of regulatory B cells 

Breg cells were first described as CD1d
hi

 CD23
hi 

CD21
int

. That phenotype 

appears after the development of chronic intestinal inflammation and these cells were able to 

suppress the progress of the inflammation and to produce IL-10 (Mizoguchi, Mizoguchi et al. 

2002). Then, CD1d appears as an important marker of regulatory B cells, although 
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controversies persist because both marginal zone (MZ) precursor B cells and MZ B cell are 

CD1d positive whereas MZ B cells hardly show any regulatory effect. These subsets of IL-

10-producing MZ precursor B cells are increased during the remission phase of CIA and 

show a typical transitional type 2-MZ precursor B cell phenotype: CD21
hi

 and CD23
hi

. In 

CIA, AA4
+
 CD21

hi
CD23

+
CD24

hi
IgM

hi
IgD

+
CD1d

+
 B cells contribute to the remission of the 

disease (Evans, Chavez-Rueda et al. 2007). Moreover in MRL/lpr mice (generating a lupus 

like disease) transitional type 2-MZ precursor B cells must have a protective role to suppress 

renal disease and increase survival (Blair, Chavez-Rueda et al. 2009). The transfer of MZ B 

cells reduces CHS in CD19 deficient mice. Protection was mediated by CD5
+
 and CD1d

+
 

cells. This cell population was found to be absent in CD19
-/- 

mice but present in CD19 

transgenic mice (Yanaba, Bouaziz et al. 2008). 

CD5 positive B cells are a source of IL-10 production. However, as described 

previously in neonatal conditions, CD5
+
 and CD5

-
 cells presence notwithstanding, only CD5

+
 

B cells produce IL-10 (Sun, Deriaud et al. 2005). The CD5
+
CD1d

+ 
IL-10 producing cells 

(B10 cells) show regulatory properties in the experimental mouse model of EAE and the 

depletion of this population increases the signs of the disease (Matsushita, Yanaba et al. 

2008). 

Immature transitional CD19
+
CD24

hi
CD38

hi
 B cells have been found in the 

peripheral blood of healthy individuals and patients with lupus. In healthy individuals, this 

population produces IL-10 and can regulate the immune response. In lupus, these cells have a 

deficient production of IL-10 (Blair, Norena et al. 2010). However, in a mouse model of 

lupus, upon TLR9 activation, these IL-10-producing B cells modulate the T cell-mediated 

immune response (Lenert, Brummel et al. 2005).  

The B10 B cells (IL-10 producing B cells) have also been characterized in 

humans. These cells are mainly CD24
hi

CD27
+ 

memory B cells and were described in 

autoimmune disease patients (Iwata, Matsushita et al. 2011). They regulate the CD4
+
 T cell 

activation (Bouaziz, Calbo et al. 2010). 

2.3. BAFF and regulatory B cells 

Generally BAFF is viewed as a survival factor for B cell but also as a pro-

inflammatory cytokine (Gross, Johnston et al. 2000; Groom, Fletcher et al. 2007). BAFF is 

also implicated in the T cell-dependent immune reaction (Huard, Schneider et al. 2001; Ye, 



 

-40- 

Wang et al. 2004). In BAFF-Tg mice where high levels of circulating BAFF are found in the 

serum (Walters, Webster et al. 2009) increased numbers of circulating CD4
+
Foxp3

+
 

regulatory T cells were described. Because these BAFF-Tg mice harbor more regulatory T 

cells than control, the T cell effector response is immunocompromised and these mice accept 

tissue allograft easily. 

In another report, the role of BAFF in the induction of B10 B cells was 

demonstrated (Yang, Sun et al. 2010). The authors reported a population of CD5
+
CD1d

hi
 B 

cells which derived mainly from MZ B cells in BAFF-stimulated cells. BAFF activates the 

transcription factor AP-1 favoring the increase of IL-10 production by B cells. BAFF-induced 

CD5
+
CD1d

hi
 B cells suppress the T cell proliferation and the Th1 cytokine production. 

Furthermore, BAFF induced CD5
+
 CD1d 

hi 
B cells inhibit the CIA development in mice. 

Injecting BAFF in mice increases the number and frequency of B10 B cells. 

However, BAFF-induced Breg cell production was terminated with the use of 

TACI- Fc. One possible explanation could be that MZ B cells show a different expression of 

BAFF receptors with a high TACI expression compared to follicular B cells, suggesting that 

BAFF receptors mediating the B cell regulatory function play different roles (Mantchev, 

Cortesao et al. 2007). 

2.4. Function of regulatory B cells . How do they work ? 

Breg cells are key players in the regulation of the immune response. Breg 

cells exert their regulatory functions during the immune response through several direct and 

indirect mechanisms. The regulatory function of these B cells is exerted through the 

production of regulatory cytokines, such as IL-10 and TGF-�. These cytokines have the 

ability to express inhibitory molecules that suppress pathogenic T cells and autoreactive B 

cells. IL-10 is one of the cytokines of Breg cells. It is induced after various immune 

stimulations, such as the TLR pathway activation. However, B cells also require CD40 and 

BCR ligation to enable further IL-10 production. IL-10 can then directly subdue the harmful 

immune response by regulating the Th1/Th2 balance and in so doing, decrease the innate 

cell-mediated inflammatory immune response (Fiorentino, Zlotnik et al. 1991). IL-10 

suppresses both the proliferation and the cytokine production (IFN-� and TNF-�) by Th1 and 

Th17cells (IL-17). Furthermore, IL-10 also inhibits the TNF� production by monocytes. This 

inhibition leads to a decreased inflammation. Not only can Breg cells suppress the Th1-
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mediated immune responses, they can also convert effector T cells into regulatory T cells 

(Treg), which leads to a decreased Th1 response and results in immune regulation at the site 

of inflammation; such as a joint and the central nervous system. It has been demonstrated that 

endogenous IL-10-producing B cell-deficient mice develop an exacerbated case of arthritis 

and exhibit an increased frequency of Th1/Th17 pro-inflammatory cells, but a decreased 

frequency of Treg cells. In line with these findings, B10 cells induced in vitro could suppress 

the Th17 cell differentiation by decreasing the phosphorylation level of Stat3, which 

subsequently reduces the levels of ROR�t, and partially inhibits the Th17 cell population in 

an IL-10-dependent manner (Yang, Deng et al. 2012). Breg cells are also capable of 

inhibiting the CD8
+
 T cell function. This can lead to an impaired clearance of tumors. B cells 

can also promote DC to not only secrete IL-4 but also to downregulate IL-12, which affects 

the Th1/Th2 balance. In addition to IL-10-producing Breg cells, TGF-�1-producing Breg 

cells have been identified in response to LPS stimulation in vitro. These B cells can trigger 

pathogenic Th1 cells to undergo apoptosis through Fas–FasL interactions and/or the 

inhibition of antigen-presenting cell activity via the secretion of TGF-�1. 

The mechanisms for regulating the immune response by B cells are also 

dependent on the promotion of the activation-induced cell death (or apoptosis), which is 

mediated by death-inducing ligands, such as FasL, TNF-related apoptosis-inducing ligand, 

programmed death ligands 1 and 2 (PD-L1 and PD-L2), etc. B cells can express FasL and 

other death-inducing ligands under many circumstances. Both FasL and IL-10 are highly 

expressed in the CD5+
 B-cell population, which indicates that CD5+

 B cells may exert 

regulatory effects through their killing ability. Interestingly, a recent study suggested that B 

cells can induce the proliferation of Treg cells in the central nervous system during the 

development of EAE via the expression of glucocorticoid-induced TNF receptor ligand rather 

than IL-10. Breg cells can directly induce the apoptosis of effector B and T cells by Fas-FasL 

interaction. This leads to a decreased inflammation at the site of infection (Mizoguchi and 

Bhan 2006). 

Apart from the cytokine-mediated and apoptosis mediated immune 

suppression, B cells can also exert their regulatory effects by cellular interactions. Both B10 

and T2-MZ precursor Breg cells share the phenotype high CD1d, which is a MZ B cell 

marker. CD1d-expressing MZ B cells have been shown to activate invariant natural killer T 

(iNKT) cells in the presence of DC and help set up peripheral tolerance through the induction 
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of Treg cells. Moreover, CD1d
hi

 MZ B cells are able of present glycolipids through CD1d. 

These glycolipids are recognized by iNKT cells, which are cells that are known to play 

important roles in the autoimmune development. It has been shown that EAE is exacerbated 

in CD1d−/− mice, which lack iNKT cells. Recently, human transitional B cells 

(CD19
+
CD24

hi
CD38

hi
) were found to play an essential role in the iNKT cell expansion and 

activation in healthy individuals, but not in SLE patients because transitional B cells from 

SLE patients are defective in recycling CD1d. Thus, CD1d-expressing Breg cells can also 

exert their regulatory functions by activating NKT cells (Yang, Rui et al. 2013). In summary, 

Breg cells can exert their suppressive effects by secreting anti-inflammatory cytokines, such 

as IL-10 and TGF-�, and by engaging in cell-to-cell contact through the activation of cell 

death markers or costimulatory molecules. In the following section, the role of Breg cells in 

various autoimmune diseases, including SLE will be exposed. 

3. TOLL-LIKE RECEPTORS 

3.1. Introduction 

Toll-like receptors represent a family of evolutionary conserved innate 

immune receptors and are important to mediate the first line of defense against pathogens. 

These pattern recognition receptors (PRR) recognize an essential component for the survival 

of the pathogens known as the pathogen-associated molecular pattern (PAMPs). TLRs were 

first identified in drosophila and noticed for their involvement in embryogenesis. Later, they 

were seen as playing a major role in fungal infection (Hashimoto, Hudson et al. 1988; 

Lemaitre, Nicolas et al. 1996). At as of today, 10 TLR subtypes have been identified in 

humans (Figure 8) and 12 in mice, each one of them possesses its own specific ligands, 

cellular localization and expression profile (Santegoets, van Bon et al. 2011). TLRs are 

expressed in various immune cells including DC, natural killer cells, neutrophils, 

macrophages, B cells and T cells (Zarember and Godowski 2002; Michallet, Rota et al. 

2013). 
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Figure 9 The different human Toll-like receptors.  
The Toll-like receptors (TLR) are constituted of an extracellular domain enriched in 

leucines, called Leucine Rich Repeat (LRR) domain, and an intracellular domain 

containing a conserved region of 200 amino-acid, called Toll/IL-1R (TIR) domain. TLRs 

are associated as homo- or heterodimers to bind ligands such as proteins, lipids, 

carbohydrates or nucleotides. They are located either on the plasma membrane (TLR 1, 2, 

4, 5, 6, and 10) or on the endosomal membrane (TLR 3, 7, 8, and 9) with their TIR domain 

present within the cytoplasm allowing the signal transduction. LPS: lipopolysaccharide; ss 

and dsRNA: single stranded and double stranded RNA; CpG DNA: CpG-enriched DNA. 

3.2. Structure 

TLRs are type I integral membrane glycoproteins with a trimodular structure. 

TLRs include a N-terminal ligand recognition domain, a single transmembrane helix, and a 

C-terminal cytoplasmic signalling domain (Bell, Mullen et al. 2003). The extracellular N-

terminal domain consists of leucine rich repeats (LRRs). However, the number of LRRs 

varies between each TLR. In humans, the number of LRRs varies between 19 and 25 per 

TLR (20-30 aa in each repeat) folded in � strand and � helix that are linked by a loop (Jin and 

Lee 2008). When assembled into a protein, multiple consecutive LRRs form a solenoid 

structure, where the consensus hydrophobic residues point towards the interior to make a 

stable core and the �-strands align to form a hydrogen-bonded parallel � sheet. These motifs 
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form a horseshoe structure with both a concave and convex surface, the concave surface 

being involved in ligand recognition (Botos, Wu et al. 2001). The intracellular signalling 

domain is called Toll-receptor domain and displays a homology with the IL-1 receptor. It 

contains approximately 200 aa. This domain is required for the interaction and recruitment of 

various adapter molecules to activate the downstream pathway (Kumar, Kawai et al. 2009). 

3.3. Expression and Ligands 

These innate immune receptors recognize a wide variety of microbial 

molecular motifs, PAMPs. Moreover TLRs can also be activated by damage associated 

molecular pattern (DAMPs) which are produced in case of aggression or tissue damage. The 

activation of the TLR signalling pathway initiates innate immune responses. Furthermore, the 

responses of the innate immune system are important not only to eliminate pathogens but also 

to develop a pathogen-specific adaptive immunity, thus forming a bridge between innate and 

adaptive immunity (Pasare and Medzhitov 2004). TLRs are expressed in distinct cellular 

compartments. TLR1, TLR2, TLR4, TLR5, TLR6, and TLR10 are expressed on the cell 

surface whereas TLR3, TLR7, TLR8, TLR9 are expressed in the intracellular vesicles such as 

the endosome and the endoplasmic reticulum. The ligands for TLR family vary from one 

another. 

3.3.1. Bacterial PAMPs recognized by TLRs  

TLRs can sense various components of the bacterial cell wall. TLR4, the first 

identified mammalian TLR, is responsible for sensing bacterial endotoxin LPS (Medzhitov, 

Preston-Hurlburt et al. 1997). TLR2 recognizes peptidoglycan from gram-positive bacteria. 

The gram-negative bacterial membrane protein ompA also activates TLR2. Flagellin, the 

major protein in bacterial flagella is recognized by TLR5. Lipoarabinomannan from 

mycobacteria is recognized by TLR2 and diacyl or triacyl lipopeptides from bacteria, 

mycobacteria and mycoplasma are recognized by TLR1/2 or TLR2/6. Genomic DNA from 

bacteria rich in unmethylated CpG DNA is recognized by TLR9. TLR11, which is 

exclusively expressed in mice, is associated with sensing uropathogenic bacterial product 

(Zhang, Zhang et al. 2004). 

3.3.2. Viral PAMPs recognized by TLRs 

The envelope proteins from viruses such as the respiratory syncytial virus and 

the mouse mammary tumor virus are recognized by TLR4, TLR2 and TLR6 (Murawski, 
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Bowen et al. 2009). Furthermore, the hemagglutinin protein of the Measles virus is also 

recognized by TLR2. Virus nucleic acids are also important PAMPs. The genome of DNA 

viruses such as the herpes simplex virus and the murine cytomegalovirus contains 

unmethylated CpG DNA, recognized by TLR9. The genome of RNA viruses contains single 

strand RNA (ssRNA), which is rich in uridine or uridine/ guanosine and is recognized by 

TLR7 and TLR8 (in humans only). The double-strand RNA (dsRNA) are sensed by TLR3. 

Furthermore, the synthetic analog of dsRNA, poly IC, is also recognized by TLR3 (Kumar, 

Zhang et al. 2006). Guanosine-rich and uridine-rich ssRNA derived from virus, synthetic 

polyuridine ssRNA acts as ligand for TLR7 (Diebold, Kaisho et al. 2004). 

3.3.3. Fungal and protozoal PAMPs recognized by TLRs  

TLR2 recognizes phospholipomannans from fungi and specific proteins from 

protozoa (Akira S. et al. 2006). Lipophosphoglycan and genomic DNA are recognized by 

TLR2 and TLR9 respectively (Kumar H. et al.2009). TLR2 also detects zymosan, which is 

found in cell wall of yeast. 

3.3.4. Endogenous ligands recognized by TLRs 

TLR2 and TLR4 are also implicated in the recognition of endogenous 

molecules. Among the DAMP, the Heat-Shock Protein 70, 60 and B8 some fragments of the 

extracellular matrix protein fibronectin, bind to TLR2 and/or TLR4 (Vabulas, Wagner et al. 

2002). TLR2 and TLR4 also detect the High-mobility group box 1 protein (Park, 

Svetkauskaite et al. 2004). Extracellular matrix components, like hyaluronic acid 

oligosaccharides from damaged cells, also bind TLR4. In addition, oxidized low-density 

lipoproteins and fatty acids are recognized by TLR4 (Marshak-Rothstein and Rifkin 2007). 

TLR3 activation by dsDNA and RNA fragments from necrotic cells have been found in RA 

(Brentano, Schorr et al. 2005). 

3.4. Signaling pathways 
 

The recognition of ligands initiates signaling throughout various TIR domains 

containing adapter molecules like MyD88, TIRAP, TRIF and TRAM (Figure 10). The 

engagement of TLR1, TLR2, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9 and TLR11, and 

their respective ligands, recruit MyD88. MyD88, TLR1, TLR2, TLR4 and TLR6 further 

recruit TIRAP, which serves as a linker adapter between the TIR domain of TLRs and 
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MyD88. The binding of ligand with TLR3 and TLR4 recruits TRIF. 
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Figure 10 Toll-like receptors signaling pathways.  
Schematic representation of MyD88-dependent (left) and MyD88-independent (right) 

cascades following binding of ligands on TLR dimers leading to the production of pro-

inflammatory cytokines and type I interferon. 

MyD88 is required for the functionality of all TLRs except TLR3. MyD88 

enables the recruitment and activation of the IL-1R-Associated Kinase (IRAK)-1 and IRAK-

4 leading to the activation of TRAF6 (Ringwood and Li 2008). TRAF6 activates the 

transforming growth factor �-activated kinase-1 (TAK1) via K63-linked polyubiquitination, 

resulting in the activation of the NF-�B transcription factor (Wang, Deng et al. 2001; Kawai 

and Akira 2006). Signalling through MyD88 activates some transcription factors of the 

Interferon-Regulatory Factor (IRF) family, and the activation of the Mitogen-Activated 

Protein (MAP) kinases such as p38, the JNK, and the extracellular signal-regulated kinase ½ 

(ERK1/2) which subsequently enables the activation of the AP-1 transcription factor. The 

subsequent activation of NF-�B and AP-1 induces an inflammatory response through the 

production of inflammatory cytokines such as TNF-�, IL-6, IL-1�, IL-12 (Kawai and Akira 
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2006). Moreover, TLR4, TLR7, TLR8 and TLR9 induce an antiviral response by promoting 

IFN� and IFN� synthesis. Indeed, MyD88-dependent signalling downstream of TLR7 and 

TLR9 induce the production of type I IFN (IFN-� and IFN-�). This response is specific to 

plasmacytoid DC, which express high levels of TLR7 and TLR9 and produce high levels of 

IFN-�. After activation, the TIR domains of TLR7 and TLR9 recruit a complex consisting of 

MyD88, IRAK-4, IRAK-1, and TRAF6 (Honda, Yanai et al. 2004), which binds and 

activates the transcription factor IRF-7, inducing expression of type I IFN (Kawai, Sato et al. 

2004). 

However, the MyD88-dependent activation of NF-�B can also be induced by 

the TAK1-independent pathway. Two candidates for this TAK1-independent pathway are the 

mitogen-activated protein kinase kinase 3 (MEKK3) and the atypical Protein kinase C (PKC) 

- (Sanz, Diaz-Meco et al. 2000; Yao, Kim et al. 2007). 

The signalling pathway triggered by TLR3 is MyD88-independent and 

requires a TIR domain-containing adapter that induces IFN-� (TRIF) as an adapter molecule. 

The association of TRIF with the receptor-interacting protein 1 are responsible for the 

activation of NF-�B (Meylan, Burns et al. 2004). The TLR4-dependent signal transduction 

can be either MyD88-dependent or MyD88-independent. When TLR4 stimulation begins, at 

the membrane level, MyD88 comes into play. Then, once TLR4 and its ligand have been 

internalized in the endosomal compartment, TRIF becomes involved (Kagan, Su et al. 2008). 

The MyD88-independent signalling that follows the TLR4 stimulation needs the recruitment 

of TRAM, which is essential for TRIF-TLR4 interaction. TLR4 first induces MyD88 adapter-

like/TIRAP-MyD88 signalling at the plasma membrane. Then, after endocytosis into 

endosomes, TLR4 activates the TRAM-TRIF signalling. Once recruited to the receptor, TRIF 

interacts with TRAF3 to activate the noncanonical IKKs, TBK1 and IKK�, resulting in the 

activation of IRF3 and the transcription of IFN� and IFN-inducible genes (Yamamoto, Sato 

et al. 2003). 

Plasmacytoid DC, produce large amounts of type I IFN in response to TLR7/8 

and TLR9 activation (Colonna, Trinchieri et al. 2004). The IRF members play an important 

role in this regard. The activation of TLR9 and TLR7/8 causes the nuclear translocation of 

IRF7, a transcription factor that regulates the type I IFN induction in plasmacytoid DC. 

Following TLR activation IRF7 interacts with MyD88, IRAK1 and TRAF6 to form a 

signalling complex and to subsequently induce type I IFN production (Honda, Yanai et al. 
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2004; Kawai, Sato et al. 2004). 

3.5. TLRs and B cells 

B cell expresses a distinct subset of TLRs. This determines their ability to 

respond after activation (either exogenous or endogenous). Naïve human B cells express low 

levels of TLRs, regardless of their activation status, and memory B cells display higher levels 

of TLR1, TLR6, TLR7, TLR9,TLR10 and low levels of TLR2 (Hornung, Rothenfusser et al. 

2002; Mansson, Adner et al. 2006; Agrawal and Gupta 2011). 

TLR expression and responsiveness vary in mice B cells. The expression of 

TLR1, TLR7 and TLR9 is predominant in peritoneal B-1a, B-1b cells and also in splenic 

follicular and MZ B cells. The expression of TLR2, TLR3, TLR4 and TLR6 is expressed at 

intermediate levels. The functional analysis of TLR responsiveness shows a proliferative 

response upon the activation of TLR2, TLR7, TLR9 in follicular and MZ zone B cells. MZ 

and B-1 B cells display stronger functional responses to TLR ligands than follicular B cells 

(Oliver, Martin et al. 1999; Genestier, Taillardet et al. 2007). Moreover, MZ B cells show a 

greater potential to act as APC than follicular B cells in response to TLR stimulations (Oliver, 

Martin et al. 1999). 

Triggering TLR4 induces the proliferation of MZ B cells. Moreover, the 

activation of TLR2, TLR4, TLR7 and TLR8 induces IgM production and the induction of the 

Blimp-1 transcription factor by B-1 B cells. Furthermore, TLR9- induced differentiation was 

found in B-1 and MZ B-cell subsets (Genestier, Taillardet et al. 2007). Murine B cells 

constitutively express TLR4, and the activation of TLR4 induces proliferation, cytokine 

secretion and class switch recombination (Bekeredjian-Ding and Jego 2009). 

In humans, MZ-like B cells are highly sensitive to TLR stimulation 

(Bernasconi, Traggiai et al. 2002). Furthermore, the stimulation of human memory B cells by 

TLR7 and 9 is much more noticeable than the stimulation of naive B cells (Bernasconi, 

Traggiai et al. 2002; Bekeredjian-Ding, Wagner et al. 2005). However, the human local 

environment can be a factor for TLR expression and responsiveness. The expression and 

responsiveness of TLR2, TLR3 and TLR9 are higher in tonsilar B cells than in peripheral 

blood B cells (Ganley-Leal, Liu et al. 2006; Mansson, Adner et al. 2006). 

The expression of TLRs in B cells is regulated by the action of cytokines as 
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well as by signalling from the BCR. TLR3 and TLR7 are upregulated in murine B cells by 

IFN-� (Chang, Coro et al. 2007) and by stimulation of the BCR (Sato, Sanjo et al. 2005) The 

expression of TLR7 in human B cells is also strongly upregulated by type 1 IFN 

(Bekeredjian-Ding, Wagner et al. 2005). 

Studies have showed that TLR signalling interacts with the BCR stimulation 

or the stimulation by the CD40L (Jain, Chodisetti et al. 2011) for B cell activation. However, 

co-stimulation through the BCR or CD40L implies specialized roles for different TLRs. BCR 

or CD40 stimulation in combination with TLRs (TLR3, TLR4 or TLR9) promotes 

proliferation and activation, whereas others (TLR1/2, TLR2/6, TLR4 and TLR7) promote 

development into Ab-secreting cells (Boeglin, Smulski et al. 2011). The BCR provides an 

efficient endocytosis of the intracellular TLR ligands by B cells (Lanzavecchia and Sallusto 

2007). The BCR activation also causes intracellular TLRs to move from the early endosomes 

where they can be found at a basal level to the late endosomes. There, they co-localize with 

the BCR, its antigen and so, possibly, with microbial DNA (Chaturvedi, Dorward et al. 

2008). Although, triggering TLR9 alone can activate naïve B cells (Huggins, Pellegrin et al. 

2007; Jiang, Lederman et al. 2007; Bekeredjian-Ding, Doster et al. 2008)  

Various cytokines also play an important role in the TLR-induced B cell 

stimulation. IFN-� amplifies the action of the TLR7 ligands and provides an efficient 

response even without BCR stimulation (Douagi, Gujer et al. 2009).  

After exposure to the TLR9 ligand, B cells induce the expression of various 

activation markers such as CD69, CD86, CD80 and an increased expression of the MHC 

class II molecules (Jiang, Lederman et al. 2007; Capolunghi, Cascioli et al. 2008).  

TLR activation induces cytokine secretion from B cells. TLR7 and TLR9-

stimulated B cells produce different array of cytokines and chemokines such as IL-1�, IL-1�, 

IL-6, TNF-�, IL-13, IL-10. Different chemokines like MIP-1�, MIP-1�, MCP-1 and IP-10 

are also produced. Triggering TLR2 predominantly induces the production of granulocyte 

macrophage colony stimulating factor (GM-CSF) and G-CSF. However this response occurs 

more often in memory B cells than in naïve B cells (Agrawal and Gupta 2011). 

In mice, different B cell subsets show specialized cytokine secretion profiles. 

The activation of TLR2, TLR4, and TLR9 induces IL-10, IFN-� and IL-6 secretion from B 

cells. However, IL-10 is mainly secreted by MZ and B1 B cells, whereas follicular B cells are 
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the main source for IFN-� secretion. Nonetheless, the secretion of IL-6 was found to come 

from both B-cell subsets (Barr, Brown et al. 2007). 

By transferring wild-type, TLR4-deficient, or Myd88-deficient B cells to 

mice lacking endogenous B cells, it was found that TLR signalling is required in B cells to 

promote Ab response (Pasare and Medzhitov 2005). 

TLRs expressed by B cells are involved in the induction of T-dependent and 

T-independent isotype class switching. They also play a role in their orientation towards one 

isotype or another. TLR9 in human B cells participates in the T-dependent class-switching 

towards the IgG and IgA isotypes while inhibiting the production of IgE (Gantner, Hermann 

et al. 2003; Ruprecht and Lanzavecchia 2006). In addition, TLRs in B cells enable T-

independent class switching towards the IgA, IgG1, IgG2 and IgG3 isotypes in association 

with IL-10 and BAFF or APRIL cytokines.  

Moreover, in mice, the mobilization of TLR9 in B cells facilitates the T-

dependent class switching towards the Th1 IgG2a isotype. The transcription factor T-bet is 

required for this process to occur. In contrast, the activation of TLR9 in B cells inhibits the 

orientation towards the Th2 IgE and IgG1 isotypes (Liu, Ohnishi et al. 2003; Jegerlehner, 

Maurer et al. 2007). During influenza virus infection, TLR7 and MyD88 play an important 

role in regulating Ab production. TLR7 and MyD88-deficient mice show increased levels of 

influenza-specific IgG1. Moreover, they exhibit decreased IgG2a/c class-switching thereby 

indicating that TLR7 -and its signalling molecule MyD88- have an impact on the induction of 

the B cell class-switching to the IgG isotype (Heer, Shamshiev et al. 2007). 

TLR signalling also plays an important role in the regulation of the 

localization and migration of the B-1 and MZ B cells. Although localized in splenic MZ, 

these cells also circulate between splenic follicles and MZ to capture and transfer blood-

borne antigens to follicular DC (Groeneveld, Erich et al. 1985; Martin and Kearney 2002). 

TLR2, TLR3 and TLR7 ligands promote MZ B cell migration (Rubtsov, Swanson et al. 

2008). The sphingosine-1-phosphate receptor 1 (S1PR1) acts as a regulator of MZ B cell 

retention and upon blocking of the S1PR1, MZ B cells migrate to the follicles. The activation 

of TLR4 downregulates S1PR1, leading to a reduction in the chemotactic responsiveness of 

the MZ B cells (Cinamon, Matloubian et al. 2004; Rubtsov, Swanson et al. 2008). The TLR 

stimulation induces the rapid downregulation of integrin and CD9 leading to the detachment 
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of B-1 cells from the local matrix of the peritonial cavity. This detachment hints at a 

mechanism in which B cell-intrinsic TLR signalling can alter the B-1 cell responsiveness, 

thereby directing the migration of these cells to locations where rapid local antibody 

responses help limit the pathogen growth (Ha, Tsuji et al. 2006). 

3.6. Role of TLRs in autoimmunity  

TLRs alert the host at the first signs of microbial infection and activate the 

initial line of immune defense. However, TLRs also recognize self-epitopes released from 

dying or damaged cells as well as self-epitopes present at the surface of apoptotic cells or 

apoptotic bodies. TLR7, TLR8, TLR9 recognize bacterial and viral DNA or RNA, but many 

studies have shown that these TLRs can also be activated by host RNA, DNA or associated 

proteins. TLR7 and TLR9 are constitutively expressed in B cells and plasmacytoid DC. 

Furthermore these cell types are closely linked to disease pathogenesis in different 

autoimmune diseases like SLE, through the production of autoAbs and IFN-� (Palucka, 

Banchereau et al. 2002; Jego, Palucka et al. 2003). 

Ligands for TLR7, TLR8 and TLR9 must be internalized into the 

endolysosomes, i.e. into the site of these receptors leading to the induction of inflammatory 

responses in various autoimmune diseases (Marshak-Rothstein and Rifkin 2007). This 

internalization mechanism was first described using self-reactive B cells from AM14 mouse 

(expressing a BCR, which recognizes rhumatoid factor-like autoAb with IgG2a
a/j

 specificity). 

B cells from these mice proliferate upon stimulation with immune complexes formed with 

IgG2a type monoclonal antibodies and DNA or RNA fragments. The proliferative effect on B 

cell is ceases with the use of TLR7 or TLR9 inhibitors. Moreover, this phenomenon was not 

observed in TLR7 or TLR9 knock-out mice. The AM14 BCR recognizes –via IgG2- a DNA 

or RNA fragment that contains an immune complex at the cell surface and allows transport to 

the endosome, where TLR7 and TLR9 are activated. This suggests a mechanism where 

immune complex containing DNA or RNA fragments (which may derive from apoptotic or 

necrotic cells) form a complex with anti-DNA IgG autoantibodies and can stimulate B cells 

via the BCR and TLR9, (Leadbetter, Rifkin et al. 2002; Lau, Broughton et al. 2005) thus 

affecting the B cell-driven autoimmunity. 

Fc�Rs located on dendritic cells also recognize immune complexes containing 

DNA or RNA fragments and induce TNF-� production from DC in the presence of GM-CSF. 
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This pathway requires the presence of Fc�RIIIB and interaction with TLR9, because blocking 

TLR9 or TLR9
-/-

 DCs inhibits the production of TNF-� (Boule, Broughton et al. 2004; 

Marshak-Rothstein and Rifkin 2007). The serum of SLE patients also triggers the TLR9 

function through a mechanism involving Fc�RIIa. It also enables the production of IFN-� 

(Means TK. et al. 2005). Moreover, this production of IFN-� from plasmacytoid DC is 

dependent on the presence of TLR7. When stimulated with the serum of SLE patients, TLR7
-

/-
 plasmacytoid DC do not produce IFN-�, which depends on the presence of anti Sm/RNP 

Abs (Savarese, Chae et al. 2006). 

In a spontaneous lupus model deficiency, TLR7 and TLR9 do not have the 

same effect on the tissue-specific disease manifestation. TLR7 knock-out mice display less 

severe nephritis than control whereas TLR9 knock-out mice are severely affected by nephritis 

and skin disease, suggesting that TLR9 plays a protective role (Christensen, Shupe et al. 

2006). However, in chronic graft-versus-host disease, TLR9 knock-out mice shows less 

nephritis (Ma, Chen et al. 2006).  

In case of psoriasis, the antimicrobial peptide LL37 (an endogenous 

antimicrobial peptide) forms a condensed and aggregated structure with self-DNA and is 

translocated to the early endocytic compartment of plasmacytoid DC by a mechanism that 

involves lipid rafts and proteoglycans. This DNA complex activates TLR9 and induces IFN 

production by plasmacytoid DC (Lande, Gregorio et al. 2007).  

Transgenic mice overexpressing TLR7 (Male BxSB mice with Yaa mutation 

having two copies of the TLR7 gene) display more severe and accelerated lupus than their 

normal counterparts. The overexpression of TRL7 also develops anti-RNA autoAbs and 

glomerulonephritis (Subramanian, Tus et al. 2006). 

The activation of TLR3 by adding the TLR3 ligand poly(I :C) increases 

severe glomerulonephritis in Mrl
lpr/lpr

 mice (Patole, Grone et al. 2005). Repeated 

administrations of LPS, the TLR4 ligand, in lupus-prone mice, accelerates the disease, 

including the production of autoAbs. Moreover, C57BL/6
lpr/lpr

 mice show a less severe 

disease compared to their TLR4-producing counterpart. These C57BL/6 lpr/lpr mice show 

lower AutoAb levels and produce less IFN-� and IL-6 which results in a decreased renal 

disease (Hang, Slack et al. 1983; Liu, Yang et al. 2006; Lartigue, Colliou et al. 2009). 

In purified plasmacytoid DC from SLE patients, the TLR7 and TLR9 
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inhibitors block the production of IFN-�, after being stimulated with various viral proteins or 

anti-ds DNA/anti-RNP immune complexes from SLE patients (Barrat, Meeker et al. 2005). 
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4. PRIMARY SJÖGREN’S SYNDROME 

4.1. Introduction  

SS is a systemic multiorgan autoimmune disease with both a chronic and a progressive 

course. It was named after Henrik Sjögren who, in his 1933 report, described findings of dry mouth 

and eyes (Igoe and Scofield 2013). The symptoms were linked to the destruction of the exocrine 

glands and EC (Moutsopoulos 1994). The disease can occur alone (as primary SS: pSS) or in 

association with other autoimmune disorders (as secondary SS). The disease is characterized by: the 

lymphocytic infiltration of exocrine glands (lacrimal and salivary) which reduces their secretory 

function (Kassan and Moutsopoulos 2004), keratoconjunctivitis sicca (i.e. consequence of dry eyes), 

and xerostomia (dry mouth caused by salivary gland (SG) dysfunction). SS then spreads out from an 

organ-specific autoimmune disorder (referred to as an autoimmune exocrinopathy) to a systemic 

process involving the musculoskeletal system, the nervous system, the lungs, the kidneys and the 

blood vessels (Tzioufas and Voulgarelis 2007).  

4.2. Epidemiology of the disease  

SS primarily affects women in the 4th and 5th decade of their life (9 women for 1 

man) (Tzioufas and Voulgarelis 2007). In various epidemiology studies, the prevalence of the disease 

ranges from 0.1 to 4.8% showing highly heterogeneous results (Mavragani and Moutsopoulos 2010). 

These results are probably caused by differences in the set of criteria used to establish a diagnostic and 

the design of the study. As a result, the prevalence and incidence of pSS in the general population 

remains unclear (Binard, Devauchelle-Pensec et al. 2007). 

4.3. Clinical symptoms and diagnosis  

pSS usually has a slow course, characterized by non-specific clinical manifestations 

and a lapse of approximately 6 years till diagnosis (Pavlidis, Karsh et al. 1982).  

4.3.1. Sicca syndrome  

The keratoconjunctivitis symptoms include a decreased production of tears leading to 

the destruction of the corneal and bulbar conjunctival epithelium. Sensations like burning, itchiness or 

the feeling of having sand in one’s eyes as well as photosensitivity and bloodshot eyes are common 

(Al-Hashimi, Khuder et al. 2001). 

Additionally, the decreased production of saliva is responsible for xerostomia and 

ensuing manifestations such as dental caries, oral candidiasis, bacterial sialadenitis, and oral ulcers. 

Patients report difficulties in swallowing food, the inability to speak continuously, changes in 
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gustatory perception and a burning sensation in the mouth. Dryness affects the upper respiratory tract 

and the pulmonary tissue, causing hoarseness, recurrent bronchitis and pneumonitis (Boutsi, Paikos et 

al. 2000). The enlargement of the SG is also rather common and affects more than half of the patients 

(Tzioufas and Voulgarelis 2007).  

4.3.2. Extraglandular manifestations  

The systemic manifestations occur in approximately half of the patients. They include 

general constitutional symptoms, such as fatigability, low-grade fever, myalgia, arthralgia and the 

involvement of other organs. Fatigue is one of the most frequent complaints and occurs in around 50% 

of the cases (Tzioufas and Voulgarelis 2007). Around 20% of patients develop neurological problems 

linked to the central and peripheral nervous system such as movement disorders, seizures, motor and 

sensory loss. In some patients, the liver can also be affected with an increase in liver enzymes and 

stage I primary biliary cirrhosis histopathological lesions. The presence of anti-mitochondrial 

antibodies in liver samples is evident. B cell lymphoma have also been reported (Mavragani, 

Moutsopoulos et al. 2006). 

The multiple aspects of the disease make it difficult to diagnose, which results in 

delayed diagnosis, or lack thereof, although an early detection is clinically propitious for therapeutic 

intervention and disease recovery (Novljan, Rozman et al. 2006).  

4.3.3. Classification criteria  

As stated earlier, SS does not have a single diagnostic criterion but the diagnosis is 

generally made through a combination of clinical and laboratory findings. The American-European 

Community Study Group (AECG) has defined these criteria for diagnosing SS (Vitali, Bombardieri et 

al. 2002) (Table 1).  

Primary SS definition: 

a. Presence of any 4 criteria out of 6 and either histopathology (IV) or serology (VI) is 

positive. 

b. Presence of any 3 out of 4 objective criteria (criterion III, IV, V, and VI). 

Secondary SS definition: patients with a potentially associated disease (such as another 

well-defined connective tissue disease), the presence of criterion I or II and positive testing for 2 

criteria out of 3 (either III, IV and V) may be considered as an indication of secondary SS (Table 1). 

Exclusion criteria for this classification: Past head and neck radiation treatment, 
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Hepatitis C infection, AIDS, Sarcoidosis, Graft versus Host disease, pre-existing lymphoma, use of 

anticholinergic drugs (within a time frame inferior to 4 times the drug’s half-life).  
drugs.

<

 

Table 1. American-European classification criteria for Sjögren’s syndrome (Vitali, 

Bombardieri et al., 2002). Exclusion criteria: past head and neck radiation 

treatment, hepatitis C infection, AIDS, pre-existing lymphoma, sarcoidosis, graft 

versus host disease and use of anticholinergic drugs. 

4.4. Immunopathology of the disease 

4.4.1. Introduction 

The histopathologic lesions of the exocrine glands consist of lymphocytic infiltrates. 

Mild focal infiltrates do not significantly impair the gland organization. However, diffuse severe 

lesions are associated with a significant loss of the epithelial structure and tissue architecture. The 

mechanism leading to the accumulation of infiltrating cells is still unclear. These cells interfere with 

glandular secretion and alter their structure. They secrete cytokines that activate the type 1-IFN 

regulated pathway like JAK-STAT and produce anti-SSA and anti-SSB autoAbs (Vakaloglou and 

Mavragani 2011; Yao, Liu et al. 2013). T and B cells form the vast majority of infiltrating 

mononuclear cells in SG. Most of the infiltrating T cells are CD4
+ 

(50-70% of the total infiltrating T 

cell population) (Christodoulou, Kapsogeorgou et al. 2010). CD8
+
 T cells with cytotoxic activity, 

characterized by their expression of granzymes average 10% of the infiltrating cells. Macrophages, 

DC, and natural killer (NK) cells amount to only a small portion (5-10%). T cells predominate in mild 

lesions (up to 60% of total infiltrating mononuclear cells) and B cells predominate in advanced lesions 

(up to 50% of total infiltrating mononuclear cells). The number of infiltrating T cells and 
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interdigitating DC is inversely correlated to the stage of the infiltration process (Christodoulou, 

Kapsogeorgou et al. 2010).  

4.4.2. Epithelial cells regulate autoimmune epithelitis 

The immunohistochemical analysis of the inflamed SG tissues of SS patients shows 

that salivary gland EC (SGEC) display high levels of several immunoactive molecules that are known 

to mediate lymphoid cell homing, antigen presentation, and the amplification of epithelial-immune 

cell interactions. 

 

Process Molecule expressed by SGEC Reference 

T cell activation MHC class-I 

MHC class-II 

Costimulatory 

 

 

HLA-ABC 

HLA –DR 

CD80,CD86 

(Speight, Cruchley et al. 1989; 

Manoussakis, Dimitriou et al. 

1999)  
 

(Kapsogeorgou, Moutsopoulos et 

al. 2001; Tsunawaki, Nakamura et 

al. 2002) 

B cell survival, 

maturation and 

differentiation,  

BAFF (Daridon, Devauchelle et al. 2007) 

Immune- cell homing Adhesion ICAM1,VCAM,E-

selectin 

(Tsunawaki, Nakamura et al. 2002) 

Innate immunity related Toll-like receptors TLR-2,TLR-3,TLR-

4,TLR-7,TLR-9 

(Spachidou, Bourazopoulou et al. 

2007; Zheng, Zhang et al. 2010) 

Apoptosis related Fas, Fas ligand (Kong, Ogawa et al. 1997) 

Table 2. Process involving epithelial cells in pSS 
 

An elevated epithelial apoptosis and an increased expression of apoptosis-related 

molecules (Fas-FasL, Perforin, granzymes) have been detected in minor SG lesions suggesting that 

this pathway plays an important role in the disease by destructing EC (Polihronis, Tapinos et al. 

1998). EC apoptosis represents a pathway for the generation of autoimmune responses in SS. During 

apoptosis, the autoantigenic La(SSB) proteins have been shown to be diffusely redistributed into the 

cytoplasm, whereas both Ro(SSA) and La(SSB) autoantigens are led to the surface apoptotic blebs 

and bodies (Rosen, Casciola-Rosen et al. 1995). Thus, because of apoptosis, nuclear antigens, such as 

the autoantigenic Ro(SSA) and La(SSB) ribonucleoproteins, are exposed to the surface which leads to 

the autoAb responses in SS (Ohlsson, Jonsson et al. 2002). Kong et al. demonstrated that acinar EC 

from pSS express Fas and FasL. By contrast, the majority of the infiltrating lymphocytes in SS are 

Fas
+
 and Bcl-2

+
, but FasL negative, and present a minimal amount of dead cells, particularly in the 

dense periductal foci due to the presence of anti-apoptotic Bcl-2 (Kong, Ogawa et al. 1997). EC are 

particularly susceptible to Fas-mediated apoptosis after IFN-� stimulation, via downregulation of the 

apoptosis inhibitor protein c-FLIP and Bcl-2 (Abu-Helu, Dimitriou et al. 2001). Recently, a report 

from our group evaluated the role of B cells in inducing EC apoptosis. In co-culture experiments with 



 

-58- 

the human salivary gland (HSG) cell line and tonsilar B cells, B cells induced the apoptosis of EC. 

Cell death could not be ascribed to Fas–Fas ligand interactions but required caspase 3 activation and 

the translocation of the PKC � into the nucleus of EC. These results suggest a mechanism of B cell 

induced EC apoptosis (Varin, Guerrier et al. 2012). 

Subjected to the environment, EC could be modified into non-professional APC, 

expressing MHC I & II, CD80, CD86 and CD40. CD80 and CD86 proteins are typically expressed by 

classic APC and are important for the polarization of naïve T-cells. SGEC-expressing CD86 have 

been shown to present binding properties denoted by the functional interaction with the stimulating 

CD28-receptor and reduced binding to the negative regulator of immune responses CTLA-4 

(Kapsogeorgou, Moutsopoulos et al. 2001). IFN-� increases the expression of HLA-II by EC, 

inducing an important role in their shift towards APC. The functional expression of these 

immunoreactive molecules indicates that SGEC are, in all likelihood, able to mediate the presentation 

of antigen peptides and the transmission of activation signals to T cells. The expression of CD40 is 

also induced by IFN-� and IL-1� in cultured EC showing the effect of cytokines in the activation of 

EC (Dimitriou, Kapsogeorgou et al. 2002). 

Several TLRs are expressed by EC in SG tissues (TLR1, TLR2, TLR3, TLR4, TLR7) 

(Kawakami, Nakashima et al. 2007; Spachidou, Bourazopoulou et al. 2007; Zheng, Zhang et al. 

2010). In cultured HSG cells, a similar expression pattern has been observed, and TLR ligands 

increased the ICAM-1 expression and the IL-6 production. TLR signalling in SGEC results in the 

upregulation of MHC-I, CD54/ICAM-I, CD40, and CD95/Fas proteins expression, and in so doing, 

link the innate and adaptive immune responses (Spachidou, Bourazopoulou et al. 2007). The 

constitutive expression of functional TLRs and CD91 molecules by cultured EC suggests that they are 

implicated in the induction of the local immune response.  

EC participate in the release of the Ro/SS-A, La/SS-B autoantigenic proteins through 

the formation of small vesicles called exosomes in T cells and DC (Thery, Zitvogel et al. 2002; 

Kapsogeorgou, Abu-Helu et al. 2005). 

Not only is BAFF produced by EC in culture from SS-affected patients, the level of 

BAFF is also increased in the serum and saliva of these patients. The expression level of membrane-

bound BAFF does not differ significantly from healthy individuals (Daridon, Devauchelle et al. 2007; 

Pers, Devauchelle et al. 2007). The production of BAFF from EC also influences the disease by 

altering B cell differentiation and the formation of ectopic germinal center-like structures (Groom, 

Kalled et al. 2002; Jonsson, Szodoray et al. 2005). TNF-� is another important cytokine produced by 

EC that is able to up-regulate the Fas receptor (Matsumura, Umemiya et al. 2002). IFN-� upregulates 
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the expression of CD40 in EC which increases the susceptibility of these cells to apoptosis (Ping, 

Ogawa et al. 2005; Kulkarni, Selesniemi et al. 2006). FLT3-L (FMS like tyrosine kinase Ligand), a 

cytokine implicated in B cell ontogenesis, is expressed by EC (Tobon, Renaudineau et al. 2010) and 

contributes to B cell survival in SG infiltrates. Furthermore, CXCL12 and IL-6, also produced by EC, 

improve the chances of survival of infiltrating auto-Abs-producing plasma cells (Szyszko, Brokstad et 

al. 2011). 

4.4.3. Role of T cells in SS 

Various studies have demonstrated that T cells are present in the infiltrates. Mainly 

CD4
+
 IFN-� producing Th1 cells and CD8

+ 
T cells were found. CD4

+
 Th17 memory cells were also 

described (Nguyen, Hu et al. 2008; Sakai, Sugawara et al. 2008). The T-cell repertoire is similar in 

lacrimal and SG from pSS patients. In addition, certain TCR variable (V) region genes (V�2, V�11.1, 

V�17.1, V�2 and V�13) are predominantly expressed, suggesting a limited heterogeneity of the 

infiltrating T cells (Sumida, Kita et al. 1994; Matsumoto, Tsubota et al. 1996; Ohyama, Nakamura et 

al. 1996). Th1 cells produce IFN-�, TNF-� and IL-2 which regulates cell-mediated immunity by 

activating macrophages, natural killer cells and CD8
+
T cells. IFN-� induces glandular adhesion 

molecules such as the vascular cell adhesion molecule-1 (VCAM-1), the �4�1 integrin, the peripheral 

node addressin, the L-selectin, and the LFA-1, which allows the influx of inflammatory cells into 

glands (Harris, Haynes et al. 2000; Nguyen, Sharma et al. 2009). 

Different clinical manifestations in SS are mediated by the hyperactivity of B cells. 

Therefore, cytokines produced by Th2 cells are important for maintaining the B cell function. The Th2 

cells produce a large array of cytokines including IL-4, IL-5, IL-6 and IL-13. IL-4
-/-

 mice show a 

restoration in SG secretion despite the presence of a leukocyte infiltration in exocrine glands and the 

production of autoAbs (Brayer, Cha et al. 2001; Gao, Killedar et al. 2006). IL-4 is also involved in 

isotype switching mechanisms and promotes the production of pathogenic IgG1 autoAbs (Gao, 

Killedar et al. 2006). 

The production of IL-17A and IL-17F from Th17 cells can induce the proliferation, 

maturation and recruitment of neutrophils and can also mediate the local inflammatory response 

(Kastelein, Hunter et al. 2007). TGF-�, IL-6 and IL-23 inducing Th17 differentiation are present in 

SG (Nguyen, Hu et al. 2008). High levels of IL-17 in serum and saliva have been reported and IL-17-

producing T and EC were found in the inflammatory lesions of SS patients (Ito, Hanabuchi et al. 

2008; Nguyen, Hu et al. 2008; Sakai, Sugawara et al. 2008; Katsifis, Rekka et al. 2009). Recently, the 

expression of IL-17 in the disease initiation has been gaining importance. For example, Jin. et al. 

showed that the conditional expression of IL-17 in mice induces a SS-like syndrome with decreased 
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salivary production, changes in cytoplasmic/nuclear patterns to homogenous nuclear staining that 

match anti-Ro/La Abs (Jin, Kawai et al. 2013). 

Foxp3
+
 Treg cells are seen as playing an important role in controlling autoimmunity. 

The occurrences of Foxp3
+
 Treg in minor SG lesions in SS were found to be comparable to those in 

non-SS sialadenitis controls suggesting that the number of Foxp3
+
 Treg cells is not defective in SS. 

However, Foxp3
+
 T cells circulating in the blood inversely correlate with those infiltrating the SG 

(Christodoulou, Kapsogeorgou et al. 2008). The fact that there are fewer Treg cells in advanced than 

in mild SG infiltrates supports the view that DC-derived TGF-� induces Foxp3 in naïve T cells and 

switches T cell differentiation from the defective Treg cell pathway to a Th17 differentiation pathway 

in the presence of IL-6 (Bettelli, Carrier et al. 2006; Mangan, Harrington et al. 2006). 

4.4.4. Role of B cells in SS 

The hyperactivity of B cells is one of the main features of SS. B cells have been shown 

to produce autoAbs, cytokines and to act as APC (Le Pottier, Devauchelle et al. 2009). An increase in 

Bm2 (CD38
+
IgD

+
)/Bm2’ (CD38

++
IgD

+
) cells and a decrease in early Bm5 (CD38

+
IgD

-
) and Bm5 

(CD38
-
IgD

-
) cells is a characteristic of the disease (Bohnhorst, Bjorgan et al. 2001; Hansen, Odendahl 

et al. 2002). Together with a decrease of memory B cells in peripheral blood, memory B cells (CD20
+
, 

CD27
+
) are observed in the SGs of pSS (Hansen, Odendahl et al. 2002). This distribution of B cells 

can act as a potential diagnostic procedure and our group has shown that a high 

(Bm2+Bm2’)/(eBm5+Bm5) ratio (�5) is strongly correlated with a diagnosis of pSS compared to RA, 

SLE patients or healthy controls (Binard, Le Pottier et al. 2009). In addition to this abnormal 

distribution, the membrane expression of CD72, a transmembrane lectin, that is expressed during B 

cell maturation, and which can both positively and negatively modulate BCR-mediated signalling, is 

upregulated in B cells from pSS patients (Smith, Gordon et al. 2004). 

A high expression of IgA is common among patients and is associated with 

rheumatoid factor. Moreover, circulating IgA that contain immune complexes are common and 

associated with abnormal SG biopsy (Bendaoud, Pennec et al. 1991; Basset, Pers et al. 1997). In 

addition, elevated levels of BAFF, which prevent the apoptosis of autoreactive B cells, are also found 

in SS patients. 

The analysis of SG in SS-affected patients reveals the presence of T1 and T2 B cells, 

which implies that B cells play a part in the local production of autoAbs (Daridon, Pers et al. 2006). 

Furthermore, T2 and MZ-like B cells form aggregates that resemble GC. Although these aggregates 

look like GC, real GC are less common in primary SS since these B cells aggregates lack the GC B 

cell-associated CD10 and CD38 markers and also devoid of the AID (Le Pottier, Devauchelle et al. 
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2009; Guerrier, Le Pottier et al. 2012). 

A high percentage of patients displays anti-nuclear Abs like anti-SSA/Ro and anti-

SSB/La auto-Abs. This is one of the main criteria for identifying the disease (Salomonsson and 

Wahren-Herlenius 2003). 

Elevated levels of BAFF and APRIL can be found in the serum of patients. These high 

levels are correlated with the titer of autoAbs (Groom, Kalled et al. 2002; Pers, Daridon et al. 2005). B 

cells in the SG of patients produce and secrete BAFF (Daridon, Pers et al. 2006). BAFF is critical for 

the survival of B cells in the periphery. BAFF is also involved in the selection of B-cells by promoting 

transitional B cells’ resistance to apoptosis. BAFF acts as a survival factor for human plasmablasts 

generated from memory B cells (Avery, Ellyard et al. 2005). The prepotency of memory B cells and 

activated T cells in the SG (Hansen, Lipsky et al. 2007), coupled with the increased serum levels of 

IL-10 in SS patients (Avery, Ellyard et al. 2005); (Llorente, Richaud-Patin et al. 1994; Szodoray, Alex 

et al. 2005), could provide a favorable environment for the production of autoAb-producing 

plasmablasts.  

The local production of BAFF contributes to deleterious effects on activated B cells by 

raising their expression of CD19 molecules (Hase, Kanno et al. 2004), thus ensuring the survival of B 

cell aggregates, and Ab isotype-switching both inside and outside GC (Le Pottier, Devauchelle et al. 

2009). SS patients are prone to B cell malignancies (Szodoray, Alex et al. 2005). In B cell 

malignancies, patients show increased serum BAFF levels. Therefore, increased BAFF levels may 

conduce to B cell malignancy in SS patients. Moreover, BAFF-transgenic mice do not develop anti-

SSA/Ro and anti-SSB/La auto-Abs. 

4.4.5. Role of BAFF in SS 

The implication of BAFF as one of the major cytokines contributing to the 

pathogenesis of pSS was shown in BAFF-transgenic mice. Mice overexpressing BAFF develop 

various clinical features of SS, such as inflammation of SG (Mackay, Woodcock et al. 1999). BAFF 

levels are higher in the serum of SS patients. These high levels are associated with increased 

production of autoAbs such as anti-SSA, anti-SSB, and rheumatoid factor (Mariette, Roux et al. 2003; 

Pers, Daridon et al. 2005). Moreover, higher levels of BAFF are present in the SG of diseased 

patients. Not only is BAFF produced by monocytes, DC and macrophages, it is also produced by B 

cells and EC which suggests that EC act as a contributor that promotes over-activation of the immune 

system in pSS (Daridon, Devauchelle et al. 2007; Ittah, Miceli-Richard et al. 2008). 

Furthermore, most lymphomas associated with SS find their origin in B cells, 
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indicating that BAFF plays a role in the pathogenesis of SS (Mavragani, Moutsopoulos et al. 2006). 

SS patients with lymphoma have higher levels of BAFF in their serum than patients without 

lymphoma (Gottenberg, Seror et al. 2013; Quartuccio, Salvin et al. 2013). This difference shows the 

importance of BAFF in the pathogenesis of the disease. 

The survival and maturation of B cells depend on the balance between survival signals 

and death signals. If survival signals -induced by BAFF- are able to counterbalance the pro-apoptotic 

signals sent by the BCR, then the result will be the survival of B cells. But, overexpression of BAFF 

may interfere with this equation. Thus, B cells might be able to survive to stronger death signals 

triggered by autoantigens, which would then lead to the formation of autoreactive B cells. Thus, the 

local expression of BAFF by EC, by infiltrating T cells and macrophages, could trigger B cell 

hyperactivation and autoAb production. This BAFF-mediated survival is also evident in the peripheral 

blood B cells of SS patients. Significantly fewer occurrences of apoptosis were found in the Bcl-2/Bax 

positive B cell population of SS patients, hinting at the anti-apoptotic and extended survival effects of 

BAFF in SS patients (Szodoray, Alex et al. 2005). BAFF and the BAFF-receptor are important for the 

transition of T1 B cells to T2 B cells and for their further maturation. BAFF transgenic mice show an 

excess of MZ B cells with a high BAFF receptor. The excess of T2 and MZ B cells has also been 

observed in the SG of SS patients (Mackay, Woodcock et al. 1999; Daridon, Pers et al. 2006). 

BAFF is important for the formation of ectopic germinal centers and for setting up 

follicular DC networks which are capable of retaining immune complexes in the SG of SS patients 

(Rahman, Rao et al. 2003; Vora, Wang et al. 2003).  

IL-6 is one of the cytokine that influences the pathogenesis of SS by participating in 

the generation and function of Th17 cells (Hsu, Yang et al. 2008; Youinou and Pers 2011). In pSS, the 

production of IL-6 is partly mediated by BAFF. BAFF produced by monocytes acts in an autocrine 

fashion to induce the production of IL-6. This BAFF mediated production of IL-6 by monocytes from 

pSS patients requires the interaction between BAFF and the BAFF-receptor (Yoshimoto, Tanaka et al. 

2011). 

BAFF also mediates the deleterious effects of activated B cells by upregulating their 

CD19 expression. SS patients show an increase in naïve Bm2/Bm2’ cells in their blood with increased 

CD19 molecules (Sato, Hasegawa et al. 2000; d'Arbonneau, Pers et al. 2006; Le Pottier, Devauchelle 

et al. 2009) (Figure 11). 
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Figure 11 Pathogenic model of lymphoepithelial lesions in the salivary glands of 
patients with primary Sjögren’s syndrome.  
A vicious circle of aberrant activation of epithelial cells (EC), persistant antigen presentation to T 

and B cells and EC apoptosis may explain the induction and/or maintenance of focal lymphocytic 

aggregates and destruction of epithelia. The activated EC produce, either physiologically (exosomes) 

or by apoptosis, vesicules that contain  intracellular antigens. These vesicules may be captured by 

antigen-presenting cells, and subsequently the activation of T- and B-cell. An exogeneous infectious 

agent, such as an epitheliotropic virus may be responsible for the chronic activation of epithelium. 
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1. SPECIFIC FORMS OF BAFF FAVOR BAFF RECEPTOR-MEDIATED 
EPITHELIAL CELL SURVIVAL 
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SS is a slowly progressive, chronic inflammatory process affecting middle-aged 

persons. It is primarily characterized by the inflammation of the exocrine glands. The disease can 

appear alone or can be expressed with other systemic disorders. EC play an important role in the 

pathogenesis of the disease and can present auto-antigens to T and B cells. The B cell activating factor 

belonging to the TNF family (BAFF) is produced by infiltrating B and T cells in SS patients. An 

increased level of BAFF is associated with autoantibody production, B cell tolerance breakdown and 

abnormal distribution of B cell subsets in patients. Among the three BAFF receptors, BR3 is the most 

specific and the interaction between BAFF and BR3 leads to B cell survival. In this study, our 

objective was to evaluate the presence of BR3 on EC and the functional outcome of BAFF and BR3 

interaction in these cells. We observed that EC from the SG of SS patients express BAFF and BR3 but 

none of the other BAFF receptors. The HSG cell-line cells resemble the EC of diseased patients and 

controls, and also express BAFF and BR3. To further evaluate the role of BAFF and BR3, HSG cells 

were incubated with anti-BR3 blocking antibody and human recombinant BAFF. Blocking BR3 

decreased the EC proliferation and induced apoptosis, suggesting that BR3 plays a role in EC survival. 

However, human recombinant BAFF did not show any significant effect on EC proliferation or 

apoptosis. To understand the role of BR3 on EC survival, a BR3 specific siRNA inhibitor was used. A 

decreased survival of HSG cells was observed upon siBR3 transfection, confirming the role of BR3 in 

EC survival. This survival is PKC�-dependent because blocking BR3 causes PKC� to translocate to 

the nucleus of EC. Furthermore, the neutralization of BAFF with polyclonal rabbit anti-BAFF 

antibody and mouse monoclonal anti-BAFF antibody leads to different results. The neutralization of 

BAFF by polyclonal rabbit anti-BAFF antibody reduces the survival of EC, whereas its neutralization 

with monoclonal anti-BAFF antibody did not show any effect on cell survival. Consequently, some 

but not all forms of BAFF are involved in EC survival. To investigate this fact, we found that rabbit 

anti-BAFF Ab can recognize two forms of BAFF produced by EC at 21kDa and at 17kDa, whereas 

mouse monoclonal anti-BAFF Ab only recognizes the 21kDa form. These results suggest that many 

forms of BAFF are produced by EC but only few forms take part in EC survival by binding to BR3. 

Altogether, these results show the importance of BR3 in EC survival. In addition, the effects of the 

interaction between BR3 and specific BAFF forms are essential for the BR3-mediated survival of EC. 
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ABSTRACT 
Although B cell activating factor (BAFF) and its receptor BR3 are produced and expressed by 

many cells, their role has been restricted to the lymphocyte lineage. Using various techniques 

(RT-PCR, indirect immunofluorescence, flow cytometry analysis), we observed the 

expression of BR3 and the production of BAFF by the human salivary gland cell line, by EC 

from biopsies of SS patients and their controls, but also by salivary gland EC in culture. To 

decipher the role of BAFF and BR3 on EC, BAFF and BR3 were neutralized by blocking 

antibodies or RNA specific inhibitor (siBR3) and epithelial cell survival was analyzed. 

Blocking BR3 promotes epithelial cell apoptosis in vitro. This apoptosis resulted in the 

nuclear translocation of PKCδ. BAFF neutralization by various anti-BAFF antibodies leads to 

different effects depending on the antibody used suggesting that only some forms of BAFF are 

required for epithelial cell survival. Our study demonstrates that BR3 is involved in the 

survival of cultured EC due to an autocrine effect of BAFF. It also suggests that EC produce 

different forms of BAFF and that only some of them are responsible for this effect. 

 

Keywords: BAFF, BR3, epithelial cells, salivary glands, Sjögren’s Syndrome, protein kinase 

C δ, glycosilation. 
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INTRODUCTION 

Moutsopoulos defines SS as an auto-immune epithelitis (Youinou 2010) and considers the 

activation of epithelial cell (EC) as the main immune-pathologic process in the development 

of SS. ECs express type II HLA in the presence of INFγ (Giroux, Schmidt et al. 2003), thus 

constituting a pool of antigen-presenting cells (Germain 1994) that are able to present auto-

antigens to T and B cells. In SS, ECs produce IFNγ (Hayashi, Arakaki et al. 2009), which in 

turn has been described to promote the B cell activating factor belonging to the TNF family 

(BAFF) production (Litinskiy, Nardelli et al. 2002). BAFF was identified as essential for the 

development and differentiation of B cells (Schneider, MacKay et al. 1999; Huard, Arlettaz et 

al. 2004). It interacts with three different receptors, BR3 (or BAFF-R), the transmembrane 

activator and CAML interactor (TACI) and the B-cell maturation antigen (BCMA) (Vincent, 

Saulep-Easton et al. 2013). 

BAFF is produced in lymphoid organs by several cell types (Schneider, MacKay et al. 1999) 

such as monocytes, macrophages, dendritic cells, T cells and neutrophil polynuclear cells 

(Nardelli, Belvedere et al. 2001; Huard, Arlettaz et al. 2004). BAFF synthesis can be induced 

by cytokines such as interferon (IFN)α, IFNγ, interleukin (IL)-10 and CD40L (Litinskiy, 

Nardelli et al. 2002). Follicular dendritic cells are also a potential source of BAFF (Hase, 

Kanno et al. 2004) and a weak production of BAFF was observed by activated T cells (Huard, 

Arlettaz et al. 2004) providing co-stimulatory signals for B-cell selection. Furthermore, bone 

marrow stromal cells massively express BAFF in order to maintain B cell homeostasis 

(Gorelik, Gilbride et al. 2003). Finally, production of BAFF is up-regulated in several 

pathologies. Indeed, BAFF is highly produced by B cells from chronic lymphocytic leukemia 

patients (Kern, Cornuel et al. 2004) and increased amounts of soluble BAFF have been 

detected in the serum of patients with myeloma (Moreaux, Legouffe et al. 2004). Likewise, 

increased concentrations of BAFF were observed in the serum of patients with auto-immune 

diseases (AID), such as SLE, RA and SS (Pers, Daridon et al. 2005). In SS, infiltrating B and 

T cells produce BAFF (Daridon, Devauchelle et al. 2007), and more surprisingly, astrocytes in 

multiple sclerosis secrete BAFF (Krumbholz, Theil et al. 2005). 

Clearly, BAFF is essential for the survival of B cells because of its interaction with BR3. 

(Thompson, Bixler et al. 2001). BR3 signalling activates PI3K as well as non-canonical NF-

κB signalling in B cells. Following BAFF engagement, BR3 induces the recruitment of 

TNFα-associated factor (TRAF)2 and TRAF3, leading to the release of NF-κB-inducing 
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kinase (NIK). Consequently, NIK phosphorylates IKK1 leading to the processing of p100 into 

p52 and to the activation of non-canonical NF-�B pathway which then results in B cell 

survival (Claudio, Brown et al. 2002). BR3 pathway is negatively regulated by Act-1 that has 

binding sites to TRAF molecules and inhibits TRAF recruitment (Qian, Qin et al. 2004). BR3 

stimulation has also been linked to the negative regulation of PKCδ (Mecklenbrauker, Kalled 

et al. 2004). PKCδ is a target for caspase 3 cleavage that generates an active form of the 

kinase that operates in the nucleus and contributes to apoptosis (DeVries-Seimon, Ohm et al. 

2007). However, nuclear substrates for this pro-apoptotic function of PKC� have not been 

identified. 

Among BAFF receptors, BR3 is the most specific, mainly expressed by transitional and 

mature B cells. In SS, we previously observed that BR3 was present on infiltrating B cells but 

not on T cells (Daridon, Devauchelle et al. 2007). Regulation of the BAFF/BR3 axis in B cells 

is crucial to prevent autoimmune manifestations (Varin, Le Pottier et al. 2010) . BAFF 

overexpression in mice transgenic for BAFF, promotes autoimmune-like manifestations such 

as systemic lupus erythematosus and SS in the presence of high levels of anti-ssDNA and anti-

dsDNA autoantibodies, circulating immune complexes, and immunoglobulin deposition in the 

kidneys. These mice have also vastly increased numbers of mature B cells with high 

proportion of MZ B cells (Schneider, MacKay et al. 1999).  

Act-1 functions as a negative regulator of CD40- and BAFF-mediated B cell survival (Qian, 

Qin et al. 2004). Mice deficient in Act-1 developed also systemic autoimmune disease with 

histological and serological features of human SS, in association with systemic lupus 

erythematosus-like nephritis (Qian, Giltiay et al. 2008). Histological analyses revealed 

profound lymphocyte infiltration in lacrimal, parotid and submaxillary glands. The majority of 

the infiltrated B cells displayed a phenotype resembling MZ-like B cells. High titers of anti-

SSA/Ro and anti-SSB/La in association with anti-ssDNA and anti-dsDNA were detected in 

sera of Act-1 deficient mice. These two mouse models emphasize the pivotal role of the 

BAFF/BR3 axis in B cell tolerance. 

Meanwhile, we also demonstrated that BR3 was expressed by ECs without being able to 

explain the reason for this expression. The aim of the present study was to decipher the role of 

BAFF and BR3 on ECs in SS. 
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MATERIAL AND METHODS  

Patients and cell line 

Salivary gland (SG) biopsies were obtained from 18 patients (3 men and 15 women; ages 32-

77 years) fulfilling the American-European Consensus Group criteria (Vitali, Bombardieri et 

al. 2002) for SS. All had a focus score � 1. Control samples consisted of 15 SG specimens 

from patients who did not meet the criteria for primary SS (4 men and 11 women: ages 39-74 

years), but they had presented sicca symptoms and, as such, had undergone a SG biopsy. All 

SS patients and controls gave their consent and the study was approved by the Brest CHRU 

Ethics Committee. To summarize, sections were cut into small fragments and incubated in 

Supplemented Basal Epithelial Medium (SBEM). SBEM medium contains three volumes of 

Ham’s F12 medium (Invitrogen), one volume of Dulbecco’s Modified Eagle Medium 

(DMEM) (Lonza, Verviers, Belgium), 2.5% of Fetal Calf Serum (FCS) (Eurobio, 

Courtaboeuf, France), 2 mM of L-glutamine, 10 ng/ml of EGF (Epidermal Growth Factor) 

(Promega, Madison, WI, USA), 0.5 µg/ml of insulin (Novo-Nordisk, Küsnacht, Switzerland) 

and 0.4 µg/ml of hydrocortisone (Sigma-Aldrich, Saint-Quentin-Fallavier, France). Cells were 

incubated at 37°C with 5% CO2. The HSG cell line was incubated in DMEM, supplemented 

with 10% FCS, 2mM L-glutamine (Gibco, Invitrogen, Auckland, New Zealand), 1% non-

essential amino acids (Sigma-Aldrich, St Louis, MO), 100 IU/ml penicillin (Panpharma, 

Fougères, France) and 100 µg/ml streptomycin (Panpharma). 

Detection of BAFF and its receptors  

Total RNA was extracted by the RNAble
®

 method (Eurobio, Les Ulis, France) according to 

the supplier’s instructions. One µg of total isolated RNA was converted to cDNA using 

SuperScript II reverse transcriptase (Invitrogen), according to the manufacturer's instructions. 

PCR was performed using GoTaq polymerase (Promega) under the following conditions: 

initial denaturation at 94°C for 5 mins, followed by 5 cycles at 94°C for 30 secs, 1 min at 

61°C and 1 min at 72°C, then 40 cycles at 94°C for 30 secs, 40 secs at 56°C and 1 min at 

72°C, and finally a final extension at 72°C for 10 mins. PCR products were separated on a 2% 

agarose gel (Interchim, Montluçon, France) containing GelRed
TM 

Nucleic Acid gel Stain 

(Interchim) and analyzed using Quantity One
®

 software (version 4.6.3, Biorad, Marnes-la-

Coquette, France). Primers used for PCR are  : GAPDH (5’-

CTTAGCACCCCTGGCCAAGG-3’ and 5’-CTTACTCCTTGGAGGCCATG-3’), BAFF (5’-

TTGCAGACAGTGAAACA-CCAACT-3’and 5’TTCATCTCCTTCTTCCAGTTTTGC-3’), 
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BR3 (5’-CTGGTCCTGGTGGGTCTG-3’and 5’-TCTTGGTGGTCACCAGTTCA-3’), TACI 

(5’-AGTGGCCTGGGCCGGAG-3’ and 5’-CTCCTTGCGGCAGC-TGAGTGAC-3’), BCMA 

(5’-CTCCTCTAACATGTCAGCGTTATTGTA-ATG-3’and 5’-

GTCAATGTTAGCCATGCCCAGGGA-3’). 

OCT-embedded (Miles, Naperville, IL) SG biopsies were snap-frozen in isopentane (Sigma-

Aldrich). 4µm-thick cryostat sections were cut from the blocks and mounted onto poly-L 

lysine-coated slides (Thermo Scientific, St Herblain, France). The slides were then incubated 

for 40 mins at room temperature with a rabbit anti-BAFF Ab (Upstate Lake Placid, NY) alone 

and with fluorescein isothiocyanate (FITC)-conjugated mouse anti-cytokeratin (CK) 18 Ab 

(Sigma-Aldrich), in combination with either a rabbit anti-BR3 Ab (ProSci, Poway, CA) or a 

rabbit anti-CD20 Ab (Thermo Scientific). After three washes in PBS, the slides were 

incubated for another 40 minutes with FITC-conjugated polyclonal donkey anti-rabbit IgG Ab 

(Jackson ImmunoResearch, West Grove, PA) or tetramethyl rhodamine isothiocyanate 

(TRITC)-conjugated donkey anti-rabbit IgG Ab (Jackson ImmunoReserarch), in PBS 

supplemented with 2% donkey serum (Sigma-Aldrich). After five washes, the sections were 

fixed with 4% cold paraformaldehyde (Sigma-Aldrich) and analyzed with the TCS-NT Leica 

confocal imaging system (Leica Microsystems, Wetzlar, Germany). FITC-conjugated donkey 

anti-rabbit IgG Ab and TRITC-conjugated donkey anti-rabbit IgG served as negative controls 

and did not show any fluorescence. 

HSG cells were incubated with a mouse anti-BAFF mAb (R&D System, Minneapolis, MN), a 

rabbit anti-BR3 Ab, a goat anti-TACI Ab (Peprotech, Rocky Hill, NJ) or a goat anti-BCMA 

Ab (R&D Systems) for 40 mins at room temperature. After 3 washes in PBS, the cells were 

incubated with a FITC-conjugated donkey anti-mouse IgG Ab, a TRITC-conjugated donkey 

anti-rabbit IgG Ab or a TRITC-conjugated donkey anti-goat IgG Ab (Jackson 

ImmunoResearch) for 30 mins at room temperature. Cells were then analyzed by confocal 

microscopy. For PKCδ localization, HSG cells were stained with a mouse anti-PKCδ mAb 

(BD Biosciences, Franklin Lakes, NJ) revealed by a FITC-conjugated donkey anti-mouse IgG 

Ab (Jackson ImmunoResearch). Cell nuclei were labeled with propidium iodide (PI) for 20 

minutes at 4°C. After 3 washes in PBS, HSG cells were observed by confocal microscopy.  

After trypsination and washing at 1200 rpm for 10 mins, HSG cells or ECs purified from SG 

biopsies were incubated with a mouse anti-BAFF mAb, a rabbit anti-BR3 Ab, a goat anti-

TACI Ab or a goat anti-BCMA Ab, for 30 mins at 4°C. After 3 washes in PBS, stainings were 
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revealed with a FITC-conjugated donkey anti-mouse IgG Ab, a FITC-conjugated donkey anti-

rabbit IgG or with a FITC-conjugated donkey anti-goat IgG (all from Jackson 

ImmunoResearch) for 30 mins at 4°C. Corresponding FITC-conjugated isotypes were used as 

controls and cells were analyzed by flow cytometry (EPICS
®

 XL-MCL, Coulter). Antibodies 

used for immunofluorescence and flow cytometry analyses are shown in Table 2. 

Cell stimulation 

HSG cells were removed from the flask using trypsin (PAN-biotech GmbH, Aidenbach, 

Germany), washed in PBS and incubated on 10-well slides (Thermo Scientific, Pittsburg, PA) 

the day before the experiment. They were stimulated for 24 hours with a rabbit anti-BR3 

(from 1 to 20 µg/ml) Ab or with human recombinant BAFF (hrBAFF, Immunotools, 

Friesoythe, Germany) (from 25 to 1000 ng). A positive control for apoptosis was used by 

stimulating cells with 200 µM etoposide (Teva, Paris la Défense, France). The viability of 

HSG cells was assessed by flow cytometry using FITC-labeled annexin V and PI 

(Immunotech, Beckman Coulter, Marseille, France). 

The day before the experiment, primary ECs purified from SG biopsies were trypsinated, 

washed in PBS and seeded into a 96-well flat-bottomed culture plate (Nunc, Roskilde, 

Denmark). ECs were stimulated for 24 hours with 20 µg/ml mouse anti-BAFF Ab or rabbit 

anti-BAFF Ab. As a negative control, ECs were incubated with mouse (Immunotech, 

Marseille, France) or rabbit (SouthernBiotech, Birmingham, AL) IgG isotypes. In order to 

visualize proliferating cells, HSG cells were incubated with a FITC-conjugated mouse anti-Ki-

67 mAb (Dako, Glostrup, Denmark) and observed by confocal microscopy. 

TdT-mediated dUTP-biotin nick end labelling (TUNEL) assay 

After 24 hours of stimulation, ECs were cytospined on glass cover ships and labeled with the 

TUNEL kit (MEBSTAIN Apoptosis kit II, Immunotech) according to the supplier’s 

instructions. In brief, cells were fixed for 15 minutes at 4°C with 0.1 M NaH2PO4 pH 7.4 

solution containing 4% PFA. Then, ECs were permeabilized for 15 mins at room temperature 

with 0.5% PBS-T (Tween 20 and 0.2% BSA). After three washes in distilled water, cells were 

incubated with TdT solution for 1 hour at 37°C, washed and further incubated for 10 minutes 

with a blocking solution. Finally, the avidin-FITC solution was incubated for 30 mins, at room 

temperature, and after 3 washes in PBS, nuclei were labelled with PI for 20 mins at 4°C. The 

slides were mounted with Vectashield (Vector Laboratories, Burlingame, CA) and analyzed 

by confocal microscopy. 
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Cell transfection with siRNA 

Short interference RNAs (siRNAs) of BR3 and positive and negative controls (Applied 

Biosystems, Ambion, Austin, TX) were coupled with FAM fluorescein using the Silencer 

siRNA labeling kit (Applied Biosystems) according to the supplier’s instructions. In brief, 5 

µg of 20 µM siRNA were incubated with a labeling buffer, FAM labeling reagent and 

nuclease-free water for 1 hour at 37°C, in the dark. That mix was then precipitated with 0.1 

volume of 5 M NaCl and 2.5 volumes of absolute ethanol (Carlo Erba Reagents, Rodano, 

Italy) for 1 hour at -20°C. After centrifugation at 14000g for 20 minutes at 4°C, the 

supernatant was removed and the siRNA pellet was washed with 70% ethanol by a 5 minute 

centrifugation at 14000g at 4°C. The supernatant was removed and the pellet was dried at 

room temperature for 10 minutes then re-suspended in nuclease-free water to reach a final 

concentration of 20 µM. 

2.10
4
 cells from the HSG cell line were cultured the day before the experiment in a 96-well 

plate at 37°C in 5% CO2 atmosphere. Specific siRNAs for BR3 or a control siRNA were 

incubated for 15 mins with FuGENE HD transfection reagent (Promega) and OptiMEM 

medium (Gibco) at 3:1 ratio (3 µl FuGENE HD for 1 µg siRNA). FuGENE HD/siRNA mix 

was then added to the cells. Cell survival was evaluated by flow cytometry after PI labeling. In 

order to strenghten BR3 gene extinction by siRNA, HSG cells were co-transfected with three 

different BR3 siRNAs (s225507, s41837, s41838, Ambion Life technologies).  

BAFF forms analysis byWestern-blotting 

Supernatants of primary EC cultures were concentrated with the Microcon® centrifugal filter 

device kit (Millipore, Bellerica, MA, USA) before analysis by 13% SDS-PAGE. After electro-

blotting (Bio-Rad, Marnes-la-coquette, France), the PVDF membrane was saturated for 1 hour 

at room temperature with 5% non-fat dry milk. Two primary anti-BAFF Abs were used for 

staining: mouse anti-BAFF mAb at 1 µg/mL and rabbit anti-BAFF pAb at 2 µg/mL that were 

revealed with a goat anti-mouse IgG-horseradish Peroxidase (GE Healthcare, Velizy-

Villacoublay, France) and a donkey anti-rabbit IgG-horseradish Peroxidase (GE Healthcare), 

respectively. Membranes were visualized by chemiluminescence using ECL advance Western 

blotting detection kit (GE Healthcare). 

Statistics 

All results are expressed as the mean ± standard deviation. Comparisons were made using the 

Mann-Whitney U test for unpaired data. 
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RESULTS 

Epithelial cells express BAFF and BR3 

BAFF expression was observed in the SG biopsies of the 18 SS patients we tested but also in 

those from the 15 tested control subjects (Figure 1A). Immunofluorescence revealed intense 

BAFF staining on ductal ECs but also on lymphocyte infiltrating cells in SS patients. The 

expression of BAFF on the plasma membrane of ECs suggests that these cells produce BAFF, 

although it may be possible that BAFF has been inserted into its receptor. Thus, we explored 

the expression of BAFF and BAFF receptors by RT-PCR in cultured ECs from healthy 

controls and SS patients. Transcripts for BAFF were found both in cultured EC from healthy 

controls and from SS patients. Among BAFF receptors, only BR3 transcripts were detected 

(Figure 1B). The presence of BR3 at the protein level was also demonstrated by 

immunofluorescence on ductal ECs from SG biopsies in controls (Figure 1C, left panel) and 

SS patients (Figure 1C, right panel) and on infiltrating B cells from SS patients (Figure 1C, 

middle panel). 

To further study the role of BR3 on ECs, we decided to use the HSG cell line after having 

confirmed that BR3 was also expressed. Using flow cytometry and immunofluoresence 

analyses, we demonstrated that the HSG cell line displayed the same characteristics, i.e. the 

expression of BAFF and BR3 on the cell membrane and the absence of TACI and BCMA 

(Figure 1D). 

Blocking BR3 promotes EC apoptosis in vitro 

In order to identify the role of BR3 on EC, HSG cells were incubated with hrBAFF or a 

blocking anti-BR3 Ab for 24 hours. EC proliferation (Ki-67 labeling) and apoptosis (TUNEL 

method) were evaluated. Increasing concentrations of hrBAFF had no effect on either the EC 

proliferation (Figure 2A) or on apoptosis (Figure 2B). However, blocking BR3 with increasing 

concentrations of anti-BR3 Ab induced a strong reduction in HSG cell proliferation (Figure 

2A) and an increase in HSG cell apoptosis (Figure 2B). The controls, i.e. HSG cells treated 

with etoposide, showed absence of proliferation and strong apoptosis.  

PKCδ has been implicated in the regulation of apoptotic cell death in ECs (Matassa, Kalkofen 

et al. 2003). Also, we have recently described that PKCδ translocation inside the nucleus was 

associated with EC apoptosis in SGs from SS patients (Varin, Guerrier et al. 2012). Thus, we 

analyzed PKCδ location in HSG cell line incubated with increasing concentrations of anti-
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BR3 Ab. BR3 blockade resulted in PKCδ translocation from the cytoplasm to the nucleus 

(Figure 3), in accordance with the role of PKCδ in EC apoptosis. 

To confirm the importance of BR3 in EC survival, HSG cells were transfected with BR3 

specific RNA inhibitor (siBR3). The survival of siBR3-transfected cells decreased over time 

(Figure 4A), compared to HSG cells transfected with the control siRNA (32.0±4.3% vs. 

68.1±7.2%, respectively at 72 hours, p<0.05). All these results demonstrate the importance of 

BR3 in the survival of ECs. 

Effect of BAFF neutralization on EC survival 

To observe the impact of BAFF/BR3 interaction on EC survival, BAFF was neutralized by 

incubating ECs from healthy controls with a saturating concentration of different anti-BAFF 

Abs (Figure 4B). Whereas the mouse monoclonal anti-BAFF Ab had no effect (75.4±9.2% of 

survival vs. 73.5±5.3% of survival in medium), the blockade of BAFF with the polyclonal 

rabbit anti-BAFF Ab decreased the survival of ECs (31.9±14.0% of survival, p<0.05).  

Some forms of BAFF are involved in the survival of epithelial cells 

We were wondering whether different forms of BAFF were produced by ECs and whether one 

of these forms preferentially promoted EC survival. The supernatants of ECs were analyzed 

by Western-blot (Figure 4C). Unlike the mouse anti-BAFF mAb which recognizes only the 21 

kilodalton (kDa) form of BAFF, the polyclonal rabbit anti-BAFF Ab also recognizes a 

supplementary form of BAFF at 17 kDa. Taken together with the above results, these data 

suggest that only the 17kDa forms of BAFF participate to EC survival by binding to BR3. 
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DISCUSSION 

We had already observed that the majority of ELISA kits available for BAFF were not able to 

recognize all the forms of BAFF in the serum (Le Pottier, Bendaoud et al. 2009). We indeed 

observed that only some polyclonal Ab could recognize the 2 forms of BAFF at 28 and 21 

kDa, whereas the monoclonal mouse Ab only recognized the 28 kDa glycosylated form. The 

importance of the glycosylation status has also been described by Shu et al. (Shu, Hu et al. 

1999) and Tribouley et al. (Tribouley, Wallroth et al. 1999), who observed several BAFF 

isoforms with different degrees of glycosylation. These authors had already considered the 

consequences in terms of oligomerization and receptor-binding affinity. However, this is the 

first time that a different functional role is described for one particular form of BAFF. A more 

detailed analysis of the functional 17 kDa form of BAFF is needed to better understand the 

importance of post-translational modifications in the survival effect that we observed. In this 

context, it will be determinant to determine what are the forms of BAFF recognized by 

antibodies used in anti-BAFF immunotherapies. Three inhibitors have been recently used in 

systemic lupus erythematosus and rheumatoid arthritis: belimumab, tabalumab and atacicept. 

Belimumab (Benlysta®) is a recombinant fully humanized IgG1-λ monoclonal Ab that blocks 

the binding of soluble BAFF to its receptors. BAFF forms recognized by belimumab are 

soluble homotrimers and oligomers of BAFF (60 mers) (Fairfax, Mackay et al. 2012). 

Tabalumab (LY2127399) is a fully humanized monoclonal Ab that was designed to have 

neutralizing activity against both membrane-bound and soluble BAFF (Vincent, Saulep-

Easton et al. 2013). Tabalumab recognizes soluble homotrimers and oligomers of BAFF but 

also membrane-bound BAFF. Atacicept is a chimeric recombinant fusion protein comprising 

the extra-cellular domain of TACI linked to a human IgG1 Fc domain (Fairfax, Mackay et al. 

2012). Atacicept could completely block the BAFF/APRIL (a proliferation-inducing ligand) 

system. APRIL can form with BAFF active heterotrimers (Roschke, Sosnovtseva et al. 2002) 

which are also recognized by atacicept (Dillon, Harder et al. 2010). This inhibitor could also 

link homotrimers of BAFF (soluble and membrane-bound), oligomers of BAFF and 

homotrimers between BAFF and APRIL. Nevertheless, recognition tests for these inhibitors 

always used ELISA calibrated with recombinant protein and no information is provided 

regarding glycosylated isoforms binding. It would be more interesting to test these inhibitors 

by Western blot using sera from patients with autoimmune diseases and healthy volunteers. 
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BAFF/BR3 interactions leading to EC survival seem to maintain PKCδ outside the nucleus 

(Figure 3). This pathway has already been described in B cells (Mecklenbrauker, Kalled et al. 

2004) where B cell treatment by BAFF prevented PKCδ nuclear localization. This PKCδ is 

already known as a common intermediate agent for EC apoptosis induced by several drugs 

(Matassa, Carpenter et al. 2001). The location of PKCδ in the nucleus is necessary for the 

induction of apoptosis in EC and, under normal conditions, active regulation of the nuclear 

presence of PKCδ is essential for survival (Reyland 2007). Furthermore, our results have shed 

light on our previous observations on EC apoptosis induced by co-culture with B cells (Varin, 

Guerrier et al. 2012). EC apoptosis was also associated with PKCδ translocation into the 

nucleus. This PKCδ activation was associated with histone H2B phosphorylation on Ser 14 

and PARP cleavage. Recently, Park and Kim demonstrated that PKCδ have an other effect on 

chromatine during apoptosis. PKCδ robustly phosphorylates histone H3 on Ser 10 and 

expression of catalytically active PKCδ efficiently induces condensed chromatine structure in 

the nucleus. Collectively, these findings suggest that PKCδ is the kinase responsible for H3 

Ser-10 phosphorylation during apoptosis and thus contributes to chromatin condensation 

together with other apoptosis-related histone modifications (Park and Kim 2012). 

Our previous results described an aberrant expression of BAFF in salivary glands of patients 

with SS (Daridon, Devauchelle et al. 2007). How do ECs undergo apoptosis in salivary 

glands? Our hypothesis is that infiltrated B cell expressing BR3 could likely compete with EC 

to capture BAFF. We have already described that infiltrated B cells in salivary glands in SS 

are phenotypicaly transitional type 2 and MZ-like B cells (Le Pottier, Devauchelle et al. 

2009). These subsets of B cells highly express BR3 and require high levels of BAFF for their 

survival. This hypothesis is in accordance with observations showing that B cell infiltration 

increases with the severity of tissue lesions (Christodoulou, Kapsogeorgou et al. 2010). 

Therefore, B cell-induced EC apoptosis could likely be due to a defective signal received by 

BR3 on EC, leading to PKCδ activation and its nuclear localization. 

It is interesting to note that BR3 has recently been detected in microtubule-associated protein 

2-positive primary cultured neurons, spinal cord motor neurons and Neuro2a cells, a mouse 

neuroblastoma cell line (Tada, Yasui et al. 2013). This study revealed that both BAFF and 

BR3 are expressed on neuronal cells and play a role in neuronal survival. BR3 signals on 

neurons also appear to be necessary for neuroprotection in vivo. BR3 was also already 

observed on mammary gland ECs during gland involution at the end of lactation (Jung, Bong 
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et al. 2004). This post-lacteal regression is also accompanied by an acute inflammatory 

response and authors described an increase in the production of IFNγ and BAFF. The role of 

BAFF and BR3 was however not demonstrated. This stage is characterized by massive EC 

apoptosis and tissue remodeling (Strange, Li et al. 1992). Tissue involution is a postnatal 

process that allows to study physiological cell death. The first stage of this process, starting 

immediately after weaning, is marked by increased pro-apoptotic factors and can be reversed 

by re-induction of suckling. So, this mechanism of involution is closely regulated. A recent 

study demonstrated that PKCδ  is involved in EC apoptosis during mammary gland involution 

(Allen-Petersen, Miller et al. 2010). In this study, they compared early involution between 

wild-type mice and PKCδ-deficient mice. When PKC� is deficient, mammary gland 

involution is delayed. Nevertheless, in view of our findings, transient expression of BAFF 

could represent a mechanism for the regulation of EC apoptosis during mammary gland 

involution. Further careful studies may be required to determine the potential role of BAFF-

BR3 axis in organs other than the immune system. 

ECs express Toll-like receptors (TLRs) especially TLR2, TLR3 and TLR4 in SS (Kawakami, 

Nakashima et al. 2007). ECs can thus be activated by lipopeptides from gram-positive 

bacteria, dsRNA from viruses or LPS from gram-negative bacteria, respectively (Guerrier, Le 

Pottier et al. 2012). ECs from salivary glands highly expressed TLR3 suggesting that they may 

be strikingly sensitive to stimulation by virus PAMP. Thus, activation of ECs after TLR3 

stimulation with the synthetic analogue of viral dsRNA poly-inosinic acid (poly I:C) induces 

secretion of chimiokines (Li, Jeong et al. 2010) allowing the recruitment of lymphocytes and 

the production of IL-6 and IFN-� (Manoussakis and Kapsogeorgou 2010). Moreover, in vitro 

stimulation of TLR-3 by poly I:C induced EC to express and secrete high levels of BAFF. 

Apart from the induction of activation molecules, TLR3 triggering was also found to induce 

severe detachment of salivary gland ECs from substrate and subsequent induction of 

apoptosis, a phenomenon suggestive of anoikis (Manoussakis, Spachidou et al. 2010). TLR3 

induced EC apoptosis is mediated via the PI3K-Akt signalling pathway and induced caspase 3 

cleavage (Nakamura, Horai et al. 2013). 

 

CONCLUSION 

Our study demonstrates for the first time that BR3 plays a role in the survival of ECs in vitro. 

It also shows the importance of some forms of BAFF (17kDa) in the functional effects we 
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observed. In addition, the expression of BR3 on ECs was not related to SS since we also 

detected it in ECs from healthy controls. Finally, our results suggest unexpected effects on the 

use of anti-BAFF immunotherapy for SS treatment. Indeed, in addition to depriving B cells of 

their survival factor, anti-BAFF Ab treatment will also deprive EC in BAFF promoting 

apoptosis. Therefore, it is essential to evaluate the forms of BAFF recognized by Abs that 

might be used in anti-BAFF immunotherapy to avoid deleterious effects on ECs. 
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FIGURE LEGENDS 

Figure 1 BAFF and BR3 are expressed by epithelial cells (ECs). A- BAFF expression 

was assessed by confocal microscopy using a rabbit anti-BAFF antibody (Ab) 

developed with fluorescein-isothiocyanate (FITC)-conjugated donkey anti-

rabbit Ab on sections of salivary gland (SG) biopsies from Sjögren’s 

syndrome (SS) patients and healthy controls. B- Expression of BAFF and 

BAFF receptor (BR3, TACI and BCMA) genes were assessed by RT-PCR on 

EC cultured from SG biopsies of patients with SS and healthy controls. C- 

BR3 expression in biopsy sections of SGs from controls and SS patients was 

determined using rabbit anti-BR3 Ab revealed by tetramethylrhodamine 

isotiocyanate (TRITC) conjugated donkey anti-rabbit Ab or FITC-conjugated 

donkey anti-rabbit Ab. Mouse anti-cytokeratin 18 Ab developed with FITC-

conjugated donkey anti-mouse Ab and anti-CD20 developed with TRITC-

conjugated donkey anti-mouse Ab were used to identify ECs and B cells, 

respectively. D- The expression of BAFF and its receptors BR3, TACI and 

BCMA were evaluated by flow cytometry and immunofluorescence on HSG 

cell line. Representative experiments of 6. 

Figure 2 Blockade of BR3 promotes EC apoptosis in culture. The HSG cell line was 

incubated with different concentrations of human recombinant BAFF 

(hrBAFF) or anti-BR3 blocking antibody (Ab) (anti-BR3). A- Proliferation 

was analyzed by indirect immuno-fluoresence using the Ki-67 labeling. B- 

Apoptotic cells were assessed by the TUNEL method (green labeling) and 

dead cells by propidium iodide (red labeling). Etoposide was used as a 

positive control for apoptosis. Results are expressed as mean ± standard 

deviation of 6 different experiments. 

Figure 3 Blockade of BR3 induces nuclear translocation of PKC� in epithelial cells. The 

HSG cell line was incubated with increasing concentrations of anti-BR3 

blocking antibody (Ab) (anti-BR3) and the PKC� localization was determined 

by confocal microscopy using a fluorescein-isothiocyanate (FITC)-conjugated 

anti-PKC� Ab. The nuclei were labeled in red by propidium iodide (PI). 

Representative experiments of 6. 
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Figure 4 Some forms of BAFF are involved in in vitro epithelial cell (EC) survival. A- 

The expression of BR3 on the HSG cell line was inhibited with specific RNA 

inhibitor (siBR3) and EC survival was estimated at 24, 48 and 72 hours after 

siBR3 transfection. Untransfected or control siRNA-transfected cells were 

used as controls (mean ± standard deviation of 6 different experiments). B- 

Healthy control ECs were incubated for 24 hours with mouse anti-BAFF or 

rabbit anti-BAFF antibodies (Abs). EC survival was evaluated by flow 

cytometry after fluorescein-isothiocyanate-conjugated annexin V and 

propidium iodide labeling. Mouse and rabbit IgG were used as controls (mean 

± standard deviation of 6 different experiments). C- EC supernatant was 

analyzed by Western-blot after migration on SDS-PAGE. The different forms 

of BAFF were revealed by the mouse and the rabbit anti-BAFF Abs.  
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Figure 2
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2. DELTA 4 BAFF IS A TRANSCRIPTION FACTOR ENHANCING 
THE PRODUCTION OF BAFF AND CONTROLLING 
REGULATORY B CELL FUNCTIONS 
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Excess of BAFF rescues auto-reactive B cells from apoptosis, thus 

contributing to the expansion of low-affinity self-reactive B-cells during the establishment of 

tolerance. We had previously reported (Annexe 2) the discovery of a new transcriptional 

variant for BAFF, �4BAFF in humans in which exon 4 is excised. We demonstrated that this 

new BAFF spliced isoform lacks also exon 6 and consequently the encoded protein will 

unlikely form trimers or bind to BAFF receptors. In this study we investigated the functions 

of �4BAFF in B cells. We showed that �4BAFF acts as a transcription factor for its own 

parent gene and modifies the regulatory properties of B cells. We found that �4BAFF protein 

is glycosylated and �4BAFF transfection in B cells induces an increased expression of full 

length BAFF. We also found that �4BAFF can bind the 1040-840 region (consensus NF-κB 

binding site) of the BAFF promoter. Moreover, in gel-shift assay when we incubated nuclear 

extract of �4BAFF transfected B cells with the NF-κB binding probe we observed a DNA-

protein complex confirming the binding of �4BAFF to the NF-κB binding region. However, 

we also observed a further shift of the DNA-protein complex with an anti-p50 antibody was 

associated mouse anti-BAFF antibody. Co-immunoprecipitation experiments confirmed that 

�4BAFF interacts with the NF-κB family member p50, as these two molecules co-

immunoprecipitated each other. All these results confirmed the hypothesis that �4BAFF can 

function as a transcription factor for its parent gene and �4BAFF associations p50 provides a 

mechanism by which �4BAFF gets translocated to the nucleus. We also did microarray 

experiment and found that almost 6000 genes have their expression specifically modified by 

�4BAFF transfection in RAMOS B cells. This observation suggests a direct or indirect role 

of �4BAFF as an inducer of gene transcription. Having shown that �4BAFF can be induced 

by CD40 and TLR9 co-stimulation in B cells from healthy controls, and that this co-

stimulation was also involved in the induction of efficient regulatory functions in B cells, we 

hypothesise that �4BAFF could be involved in the emergence of Breg capacities. To assess 

the impact of �4BAFF on B cell regulatory property we used �4BAFF specific si RNA 

transfection in B cells. Si �4BAFF transfected B cells had a significantly lower suppressive 

activity on T cell proliferation. We also demonstrated a reduction of both CD4
+
CD25

+
FoxP3

+
 

regulatory T cells and production of TGF-β which are important for the suppressive activity 

of regulatory B cells on T cell proliferation. These results suggest that �4BAFF, acting as a 

transcription factor, is responsible for the emergence of regulatory properties in B cells. In 
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this work we showed that a human cytokine gene can be transcriptionally regulated by the 

activity of one of its own splice variants and can control B cell regulatory properties. 
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ABSTRACT  

Elevated expression of ‘B cell activating factor’ (BAFF), a potent B-cell survival cytokine, contributes to 

the expansion of low-affinity self-reactive B cells during the establishment of tolerance. We have 

previously reported the discovery of a new transcriptional variant for BAFF, ∆4BAFF in humans (in which 

exon 4 is excised) that was induced by interferon-�. Here we demonstrate that the transfection of 

glycosylated form of ∆4BAFF in human B cells resulted in upregulation of a large number of genes 

associated with the innate immune response and regulation of apoptosis. Furthermore, ∆4BAFF acts, in 

association with p50 from the NF-�B pathway, as a transcription factor for its own parent gene. Finally, 

∆4BAFF expression appears to be critical in regulatory B cell function. In the absence of �4BAFF, B cells 

were indeed unable to inhibit T cell proliferation, to produce TGF-� and to induce the expansion of Foxp3 

regulatory T cells. This work introduces an entirely novel concept in biology suggesting that a human 

cytokine gene can be transcriptionally regulated by the activity of one of its own splice variants. 
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INTRODUCTION  

Whereas "B cell activating factor belonging to the tumor necrosis factor family" (BAFF) 

has an indisputable role in modulating the survival and function of B cells in autoimmune 

diseases (Mackay and Schneider 2009), mechanisms involved in the regulation of this cytokine 

remain misunderstood. 

BAFF expression requires NF-κB components that act as pivotal transcription factors 

(Fu, Lin-Lee et al. 2006). NF-κB component, c-Rel, can exert its function on the promoter of 

BAFF gene by recruiting unusual factors such as CD40 (Zhou, Pham et al. 2007) and BAFF-

receptor (Fu, Lin-Lee et al. 2009). Various cytokines such as IL-10, IFN-α and IFN-γ increase 

BAFF production by monocytes, macrophages and dendritic cells (Litinskiy, Nardelli et al. 

2002). Although IFN-γ is a potent inducer of BAFF expression, the relationship between IFN-γ 

and the activation of BAFF gene expression remains unclear. While IFN-γ response is mainly 

mediated via Jak-Stat, it seems that the protein kinase A/CREB is the dominant pathway to 

explain BAFF induction (Kim, Jeon et al. 2008). 

The BAFF gene is mapped to human chromosome 13q33.3 and contains six exons in 

humans (Schneider, MacKay et al. 1999) (chromosome 8 and seven exons in mice). This gene 

encodes three different mRNAs: the well-characterized full-length BAFF, a longer variant called 

�BAFF, and a shorter variant designated �BAFF (Gavin, Ait-Azzouzene et al. 2003). The larger 

transcript �BAFF was identified in the human cell lines HL-60 and U937, but sequencing proved 

this transcript to be non-functional because of incomplete splicing of intronic sequences leading 

to formation of premature stop codon (Gavin, Ait-Azzouzene et al. 2003). The smaller transcript 
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∆BAFF, which lacks exon 3 in humans (exon 4 in mice), appears to negatively regulate Baff in 

mice, by forming non-functional heterotrimers with full-length BAFF (Gavin, Duong et al. 

2005). We have recently identified a new transcriptional variant for BAFF (Le Pottier et al, 

submitted), ∆4BAFF in which exon 4 is excised. We observed that ∆4BAFF was located in the 

endoplasmic reticulum and the nucleus and that its N-Glycosylation was required for nuclear 

entry. Furthermore, ∆4BAFF expression was induced after IFN� stimulation and the effects of 

IFN-� on alternative splicing phenomena have been already described (Liu, Shue et al. 2004). 

We demonstrated that IFN-� stimulation induced an increased expression of heterologous 

nuclear ribonucleoprotein (hnRNP) C1/C2 able to bind to silencer sequences inhibiting the 

transacting factor SR protein SC35 (SRSF2) binding to BAFF exon 4 exonic silencing 

enhancers, forcing a shift of splicing to a distal splicing site favoring ∆4BAFF induction.  

One report described that treating immune B cells with BAFF was leading to the 

development of IL-10 secreting B cells with regulatory functions (Yang, Sun et al. 2010), 

suggesting the involvement of BAFF in the control of regulatory B cells. We have observed that 

CpG stimulation, along with CD40-CD154 interaction was enhancing the regulatory effect of 

human B cells on T lymphocytes (Lemoine, Morva et al. 2011) and on dendritic cells (Morva, 

Lemoine et al. 2012). Regulatory B cells strongly regulate allogenic T cell proliferation through 

the induction and expansion of the Foxp3
+
, CD4

+
, CD25

+
 regulatory T cells independently of IL-

10 secretion (Lemoine, Morva et al. 2011). While regulation of proliferation requires cell-to-cell 

contact involving CD40 engagement without IL-10, Th1 cell differentiation is dependent on 

CD80 and CD86 interactions and on the production of IL-10. We hypothesized a pivotal role of 

∆4BAFF in the control of BAFF expression and the raise of regulatory functions in B cells. 
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Here, we report that ∆4BAFF acts, in association with p50 from the NF-κB pathway, as a 

transcription factor for its own parent gene. Through comparative analysis by microarray, the 

transfection of �4BAFF in RAMOS B cells resulted in differential expression of a large number 

of genes. The up-regulated genes belong to different families involved in innate immune 

response and regulation of apoptosis. Furthermore, we observed that ∆4BAFF expression was 

required for the acquisition of regulatory functions by B cells. All these data contribute to a 

better understanding of complex physiologic mechanisms involved in B cell survival, as well as 

in pathophysiology of B cells in diseases. 
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MATERIEL AND METHODS 

CELL AND PATIENTS 

All healthy donors gave informed consent and the study was approved by the ethical committee 

at the Brest university medical school hospital. B lymphocytes were isolated from tonsil of 

healthy donors, centrifugated on Ficoll-Hypaque (PAA laboratories, Pasching, Austria), followed 

by 2 rounds of rosetting with neuraminidase-treated sheep erythrocytes (TCS Bioscience, 

Buckingham, UK). Ultimately, B cells were further purified using the human B cell enrichment 

kit according to manufacturer instructions (Stem-Cell-Technologies, Grenoble, France). Purity of 

B lymphocytes was checked by FACS analysis (EPICS®Elite, Beckman-Coulter) using 

fluorescein-isothiocyanate (FITC) conjugated anti-CD19 mAb staining (Clone J4.119, 

Immunotech, Marseille, France). B lymphocyte purity was more than 99%. T lymphocytes were 

isolated from peripheral blood of healthy donors, centrifugated on Ficoll-Hypaque, followed by 2 

rounds of rosetting with sheep erythrocytes. Monocytes were isolated from peripheral blood of 

healthy donors by EasySep®-human-CD14-positive-selection-kit (Stem-Cell-technologies) 

acccording to the manufacturer instructions. Polymorphonuclear neutrophils were isolated by 

dextran (GE-Healthcare, Velizy-Villacoublay, France) sedimentation followed by centrifugation 

on Ficoll-Hypaque. 

RAMOS B cell line was cultured in RPMI 1640 medium (Lonza, Cologne, Germany) 

supplemented with 10% heat-inactivated fetal calf serum (FCS), 2 mM glutamine (Invitrogen, 

Cergy-Pontoise, France), 200 U/ml penicillin and 100 µg/ml streptomycin (Panpharma, 

Fougères, France). 
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BAFF PCR 

50 ng of cDNA was amplified by PCR using Taq DNA polymerase (Promega, Charbonnières, 

France). For BAFF and �4BAFF primer pairs used were LLP2008/LLP2009. Primer pairs used 

for �4BAFF specific amplification were �4BAFF forward (Exon 3-5) and �4BAFF reverse 

(Exon 5-6) (Supplementary Table 1).  

CLONING HUMAN �4BAFF  

50 ng of cDNA from tonsillar B cells were used as template for the amplification of �4BAFF as 

previously described (Le Pottier et al., submitted). 

Plasmid construction and site-directed mutagenesis  

The construction of p�4BAFF-IRES2-EGFP and p�4BAFF –EGFP have been previuously 

described (Le Pottier et al., submitted).  

Transient transfection of �4BAFF  

RAMOS cells was transiently transfected with 10 µg of pIRES2-EGFP (or p�4BAFF-

IRES2-EGFP or p∆4
[N124	D]

BAFF-IRES2-EGFP) or with 5 µg of pEGFP (or p�4BAFF-EGFP 

or p∆4
[N124	D]

BAFF-EGFP) using a V kit VCA-1003 (Lonza), according to kit instructions. The 

cells were cultured for 24 h or 40 h in supplemented RPMI medium at 37°C with 5% CO2. 

Stable transfection of �4BAFF in RAMOS cell line 

RAMOS cell-line cells were transfected with pIRES2-EGFP or p�4BAFF-IRES2-EGFP 

or p�4[N124	D]BAFF-IRES2-EGFP as described in “transient transfection of �4BAFF”. 

Twenty-four hours after transfection, RAMOS GFP positive, in each conditions, were selected 
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by FACS cell sorting. Cells were cultured in RPMI 1640 supplemented medium with G418, 

selective antibiotic for Neomycin resistance (PAA laboratories). Once a week, GFP positive cells 

were sorted by FACS until 3 stably transfected cell lines were obtained. The new cell lines were 

called: Control (pIRES2-GFP), Delta4BAFF (p�4BAFF-IRES2-EGFP) and Mutated 

Delta4BAFF (p�4[N124	D]BAFF-IRES2-EGFP). 

 

Reporter of Gene Expression 

The pBAFFpromoter-DsRed was constructed by first PCR amplifying the BAFF 

promoter (region 1) and then ligating the purified PCR product into pDsRed-Express1 (Clontech, 

Mountain View, CA) (map in Supplementary Figure 1) at the XhoI and HindIII sites.  

After transient transfection of pBAFFpromoter-DsRed into 3 stably transfected RAMOS 

cells, BAFF promoter expression was monitored at 24 hours after transfection using flow 

cytometry and confocal microscopy. 

Western blot analysis of BAFF 

Equal amounts of proteins from total cell lyses extracts were separated on 12% SDS–

polyacrylamide gel electrophoresis (Bio-Rad, Marnes-la-Coquette, France) in reducing 

conditions and transferred. Unoccupied sites were blocked by incubation in PBS containing 

0.1% Tween-20 and 5% non-fat milk for 1 hr. Membranes were probed with anti-�-actin mAb 

(1:10000), anti-BAFF mAb (clone 137314, R&D systems, Minneapolis, MN) or with rabbit 

polyclonal anti-BAFF (Upstate Biotechnology, Lake Placid, NY) overnight at 4°C. Bound 

antibodies were developed with Horse radish peroxydase-secondary antibodies (GE 
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Healthcare), and visualized using the enhanced chemiluminescence system (ECL advance, GE 

healthcare). The intensity of each protein was expressed relative to �-actin.  

Microarray analysis 

Data analysis 

After cDNA labeling and hybridization, data were normalized by quantile normalization 

using Genespring 12.0 (Agilent Technologies, Les Ulis, France). After this preliminary analysis, 

we kept the three best samples (in quadruplicate) in each condition (9 samples selected). The 

selected data files (raw and normalized) have been deposited in MIAME-compliant format and 

are available in the ArrayExpress database (www.ebi.ac.uk/arrayexpress) under number E-

MEXP-3595. 

Normalized data were grouped in each condition like this: Control (RAMOS transfected 

with pIRES2-EGFP), Delta4BAFF (RAMOS transfected with p�4BAFF-IRES2-EGFP) and 

Mutated-Delta4BAFF (RAMOS transfected with p�4
[N124�D]

BAFF-IRES2-EGFP) and the 

average intensity values across replicates were used for visualization and analysis. One-Way 

ANOVA (corrected p-value cut-off � 0.01) with Benjamini-Hochberg multiple testing correction 

was used to identify genes whose expression changed significantly when �4BAFF is 

overexpressed compared to Control and Mutated-Delta4BAFF.  

Functional annotation analysis 

DAVID (Database for Annotation Visualization and Integrated Discovery) analysis was 

used to identify biological functions and pathways that were over-represented by any 
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differentially expressed genes (Huang da, Sherman et al. 2009). Functional annotation clustering 

was performed to identify relationships between enriched ontologies, thereby enabling the 

identification of gene subsets associated with similar biological processes. 

Real-time PCR 

1 µg of total RNA isolated for microarray was converted to cDNA using SuperScript®II-

RT according to the manufacturer’s instructions. All amplifications used SYBR-Green®-PCR 

Master-Mix, except for TBX21 (Hs00203436), we used TaqMan®-Gene-Expression-Master-

Mix (Applied Biosystems®Life Technologies, Saint Aubin, France). For miR155 expression 

assay we used specific protocol: reverse transcription was done by the TaqMan-MicroRNA-

reverse-transcription-kit (Applied Biosystems) according to the manufacturer’s instructions and 

Applied Biosystems TaqMan®-assay. Real-time PCR was performed with a 7300 Real-time 

PCR system (Applied Biosystems) with the following conditions: 50°C for 2 min and 95°C for 

10 min followed by 40 cycles of 95°C for15 s and 60°C for 1 min. All reactions were performed 

in duplicate. Gene expression level was calculated with the 2(-�C(T)) method (Schmittgen and 

Livak 2008). Target gene expression was normalized to GAPDH expression. All primers used 

are listed in Supplementary Table 1. 

Electrophoresis Mobility Shift Assay (EMSA) 

Nuclear proteins (5 µg) were incubated with DIG probe (50 ng/µL). 20X of unlabeled 

probe were added for competition. For supershift analysis, 1µg of the following Abs was 

incubated before adding labeled probe in order to determine the specific reactions: mouse anti-

BAFF (clone 137314), rabbit polyclonal anti-BAFF, mouse anti-p50 (clone 285412, R&D 
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Systems), rabbit anti-p52 (Cell Signaling Technology, Boston, MA), rabbit anti-p65 (clone 

C22B4, Cell Signaling Technology), rabbit anti-Rel B (Cell Signaling Technology), rabbit anti-

c-Rel (Upstate) and rabbit anti-p300 (N15, Santa Cruz Biotechnology, Santa Cruz, CA). Binding 

reaction was then performed at room temperature for 20 min. 

The DNA-protein complexes (without any dyes) were resolved by electrophoresis on a 

4% non-denaturing-PAGE and then electro-blotted to nylon membrane positively charged (Bio-

Rad), for 30 min at 300mA. After washing, the membrane was blocked 30 min at room 

temperature in 2% ECL blocking agent. After blocking unspecific binding sites on the 

membrane, anti-DIG-POD Fab fragments (Roche Applied Science, Meylan, France) was added 

and incubated for 30 min at room temperature. The complex was visualized by 

chemiluminescence (ECL advance western blotting detection). 

Chromatin immunoprecipitation assay (ChIP)  

ChIP assays were performed using the protocol provided by MACS Miltenyi Biotec 

(Auburn, CA) as described previously. Nuclei isolated from 1% formaldehyde-fixed RAMOS 

stably transfected cells were sonicated for eleven 20-s intervals. After incubation with mouse 

anti-BAFF mAb (clone 137314), and rabbit anti-BAFF pAb, DNA fragments were purified for 

PCR according to manufacturer’s instructions. Two BAFF promoter regions were amplified 

using the following primers on the GenBank file AF 186114 for BAFF gene: region1 located at -

1040 and -840 and region 2 located at -681 and -375. BAFF promoter upstream sequence was 

used as control. PCR was performed using 32 cycles of 94°C for 30 sec, 60°C for 1 min and 

72°C for 1 min. The PCR product was visualized on a 1.5 % agarose gel. Primers used were 

listed in Supplementary Table 1. 
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Co-immunoprecipitation of complexes and Western Blot Analysis 

Lysates of p�4BAFF -EGFP or pEGFP transiently transfected RAMOS B cell line cells 

were analyzed by co-immunoprecipitation using the µMACSTM protein A/G microbeads kit and 

µMACSTM Epitope Tag Protein Isolation Kits (Miltenyi Biotec), according to manufacturer’s 

protocol. Anti-p50, p52 and p65 antibodies were used at 1 mg/ml concentration. The eluted 

immunoprecipitate is colleted and analyzed by SDS-PAGE, as described below. Membranes 

were subsequently immunoblotted with antibodies to GFP-horseradish peroxidase conjugated 

(1:1000), p50 (1:1000), p52 (1:1000) or p65 (1:1000) antibodies. Bound antibodies were 

developed with horse-radish-peroxydase secondary antibodies (GE Healthcare), except anti-GFP 

which was already coupled with horse radish peroxidase. All membranes were analyzed using a 

chemiluminescence. 

Generation of ∆∆∆∆4BAFF-deficient cells by siRNA transfection  

3 x 106 B cells/well in a 6-well plate were transfected with 12.5 pmol of a specific 

∆4BAFF siRNA (Sequence CUAUACAAAAGGUUUUAUtt). Mice negative control siRNA 

was used as control (Applied Biosystems®Life Technologies).  

B cell culture  

B cells were cultured for 2 days in 24-well plates in RPMI 1640 medium supplemented as 

previously described. For stimulation B cells were seeded at 1x10
6
 cell/ml on 5x10

5
 NIH-3T3 

fibroblast transfected with human CD40L gene and treated with mitomycin C (Sigma Aldrich, 

Saint Quentin Fallavier, France), with or without 0.25 µM CpG-ODN 2006 (Cayla-InvivoGen, 

Toulouse, France). 
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Co-culture model between T cells and regulatory B cells 

T cells were seeded at 2x105 cell/ml on anti-mouse IgG-Fc (Jackson Immunoresearch, 

Immunotech) coated 96-well plates in complet RPMI 1640 medium labeled with 5µM CFSE 

(Molecular probe®Invitrogen) and stimulated with 1g/ml anti-CD3 (Biolegend, London, UK) 

and anti-CD28 mAbs (Jackson Immunoresearch, Immunotech). B cells transfected with 12.5 

pmol of ∆4BAFF siRNA or with mice negative control siRNA, or nontransfected were added to 

T cells at ratio 1:1 for 4 days. Then, T cell proliferation was evaluated by flow cytometry on 

FC500 (Beckman Coulter) measuring the decrease in the mean fluorescence intensity (MFI) of 

CFSE. In co-culture experiments, cells were stained with PE-linked to cyanin 7 (Pc7)-conjugated 

anti-CD19 mAb (Immunotech), and CFSE MFI analyzed in CD19-negative cells. 

For cytokine production, mixed cells from coculture experiments were permeabilized 

using cytofix/cytoperin permeabilization kit (BD Biosciences, Franklin Lakes, NJ) and stained 

with Pc7-conjugated anti-CD19 in combination with PE-conjugated TGF� mAb or FITC-

conjugated anti-IL-10 in mAb (both from R&D Systems). 

The presence of regulatory T cells was evaluated after permeabilizing cells with 

transcription factor buffer set (BD BioSciences). T cells were stained with Pc7-conjugated anti-

CD4 mAb (Immunotech), FITC-conjugated anti-CD25 mAb (Immunotech) and PE-conjugated 

anti-FoxP3 mAb (BD BioSciences). 

Statistical analysis 

Data were expressed as mean ± standard deviation (SD). Comparisons were made with 

the t-student test or the Mann-Whitney’s test for unpaired data. 
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RESULTS 

∆∆∆∆4 BAFF expression induces up-regulation of full-length BAFF in RAMOS B cells 

Interestingly, the transient transfection of ∆4BAFF in RAMOS B cells (using p∆4BAFF-

IRES2-EGFP construct) induced an up-regulation of full-length BAFF as shown by the increase 

in the BAFF (32kDa)/β-actin ratio (Figure 1). The mean ± SD of BAFF (32kDa)/β-actin ratio in 

RAMOS expressing �4BAFF was higher than those transfected with empty vector (pIRES2-

EGFP) (1.44 ± 0.11 vs 0.87 ± 0.05 respectively, P<0.01, averages of 3 independent 

experiments). However, this ratio was not increased (0.82 ± 0.07) when RAMOS B cells were 

transfected with a mutated form of ∆4BAFF at N124 (p∆4[N124	D]BAFF-IRES2-EGFP) resulting 

in the expression of unglycosylated �4BAFF.  

∆∆∆∆4BAFF acts as a transcription factor of its own parent gene 

Since we had previously observed that glycosylated ∆4BAFF was distributed throughout 

the nucleus and led to the up-regulation of the full-length BAFF expression in RAMOS B cells, 

we then examined whether ∆4BAFF might function as a transcriptional regulator of the BAFF 

gene. To test this hypothesis, we performed a ChIP analysis within the BAFF promoter using 

anti-BAFF mAb (137314) and primers that amplified different regions in the promoter of BAFF. 

The first primers target a region located at –681 and –375 known for binding CD40 (Lin-Lee, 

Pham et al. 2006) and the second primers target a region located at –1040 and –840 chosen 

because of its capacity to bind NF-κB components (Fu, Lin-Lee et al. 2006). ∆4BAFF binds to 

the specific sequence located within the –1040 to –840 region of BAFF promoter but did not 

bind to DNA precipitated with the rabbit anti-BAFF pAb or an IgG control (Figure 2A). PCR 
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analysis using primers upstream of the BAFF promoter (located at -1474 to -1261) also did not 

show ∆4BAFF binding, indicating that the ∆4BAFF protein binds to a specific region within the 

BAFF promoter. To confirm whether ∆4BAFF exerts transcriptional regulatory functions on its 

own gene, the NF-κB component binding region of the BAFF gene promoter within -1040 to -

840 was cloned into pDsRed-Express1 reporter plasmid (Supplementary Figure 1), leading to a 

pBAFFpromoter-DsRed construct, and analyzed after transient transfection in RAMOS B cells 

stably transfected with pIRES2-EGFP, p∆4BAFF-IRES2-EGFP or p∆4
[N124	D]

BAFF-IRES2-

EGFP. By FACS, the mean fluorescence intensity of the pBAFFpromoter-DsRed construct 

increased greater than two-fold rising from a baseline value of 0.30 ± 0.01 with empty vector to 

0.65 ± 0.02 in p∆4BAFF-IRES2-EGFP RAMOS B cells (Figure 2B). Together, these results 

indicate that glycosylated ∆4BAFF acts as a transcription factor of its own parent gene and binds 

to the NF-κB component binding region of the BAFF promoter.  

∆∆∆∆4BAFF forms complexes with the transcription factor p50 from the NF-�B pathway 

The NF-κB components binding to the BAFF promoter in humans included 

predominantly p50, p52, c-Rel and to a lesser extent p65 (Fu, Lin-Lee et al. 2006). As a putative 

NLS sequence was absent, we hypothesized that ∆4BAFF can translocate to the nucleus in 

association with one of the NF-κB family members. We then synthesized digoxigenin-labelled 

consensus NF-κB binding oligonucleotides (–1040 to –840) and performed gel shift assays. 

When nuclear extracts from p∆4BAFF-EGFP-transfected RAMOS B cells were incubated with 

the NF-κB binding probe, a protein DNA complex was visualized (Figure 2C) and the specificity 

of the binding was confirmed by competition with the excess (20 X) unlabeled oligo probe. A 

supershift was detected with addition of anti-BAFF mAb (clone 137314) but was not observed 
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with the rabbit anti-BAFF pAb, which is unable to bind ∆4BAFF. Addition of mouse or rabbit 

immunoglobulins did not supershift the complex (data not shown) and, remarkably, the 

combination of anti-p50 and anti-BAFF mAbs further shifted the complex. As expected, a 

supershift was also observed with anti-cRel, anti-p52, anti-p65 and anti-p300, confirming their 

ability to bind the BAFF promoter but none of these in combination with the anti-BAFF mAb 

was able to further shift the complex (Supplementary Figure 2). 

Co-immunoprecipitation experiments confirmed that ∆4BAFF interacts with p50 since 

these two molecules co-immunoprecipitated each other in nuclear lysates from p∆4BAFF-EGFP-

transfected RAMOS B cells (Figure 2D). Furthermore, only a weak association between 

∆4BAFF and p65 exists since ∆4BAFF coimmunoprecipitate with p65 whereas p65 did not 

coimmunoprecipitate with ∆4BAFF. Collectively these data suggest that ∆4BAFF and p50 bind 

together at the NF-κB consensus-binding site of the BAFF promoter providing ∆4BAFF with a 

mechanism to translocate to the nucleus where it can act as a transcription factor for its own 

parent gene. 

Gene expression profile of ∆∆∆∆4BAFF transfected RAMOS B cells 

We hypothesized that, since ∆4BAFF protein is distributed throughout the nucleus, 

∆4BAFF might function as a transcription regulator. The gene expression profiles of RAMOS B 

cells stably transfected with pIRES2-EGFP, p∆4BAFF-IRES2-EGFP or p∆4
[N124→D]

BAFF-

IRES2-EGFP was then carried out. 6303 genes were found to be differentially expressed 

between p∆4BAFF-IRES2-EGFP and pIRES2-EGFP transfected cells (2-fold difference, 

P<0.01). Interestingly, by applying the same ±2-fold cut-off, 6303 genes were also up- and 
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down-regulated between p∆4BAFF-IRES2-EGFP and p∆4
[N124→D]

BAFF-IRES2-EGFP 

transfected RAMOS B cells (P<0.01). A Venn diagram (Figure 3A) showed that 6155 RAMOS 

B cell genes have their expression specifically modified by ∆4BAFF transfection in comparison 

to ∆4
[N124→D]

BAFF and empty vector (pIRES2-EGFP) transfection. These observations 

suggested a direct or indirect role of ∆4BAFF as an inducer of gene transcription and the 

importance of the glycosylation state on N
124

 in the modulation of ∆4BAFF activity. 

Gene-lists were analyzed by functional annotation clustering using DAVID. This enabled 

the identification of common biological charts (Supplementary Table 2). Among the 6155 genes, 

2904 genes were up-regulated and 3251 genes were down-regulated by ∆4BAFF-expression 

compared to empty vector (pIRES2-EGFP) and unglycosylated ∆4
[N124→D]

BAFF transfection. 

Up-regulated genes were associated with immune response and especially innate immunity, 

protein localization processes, RNA processing, translation and regulation of apoptosis. Down-

regulated genes were involved predominantly in the regulation of transcription, immune response 

and cellular homeostasis.  

Real-time PCR validated the expression patterns of a subset of genes selected from the 

microarray patterns, which were up-regulated (TLR2, TLR6, TLR9, TLR10, AICDA, TBX21, 

miR155) or down-regulated (MBD2) after ∆4BAFF transfection in RAMOS B cells (Figure 3B).  

Defect in the suppressive activity of si ∆∆∆∆4BAFF transfected-B cells from healthy controls 

In order to induce ∆4BAFF expression in B cells from healthy controls, tonsilar B cells 

were seeded 3 days on NIH-3T3 fibroblasts transfected or not with human CD40L gene, with or 

without CpG-ODN 2006. CD40 and TLR9 co-stimulation was required to induce ∆4BAFF 
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production (Figure 4A). Interestingly, we had previously reported (Lemoine, Morva et al. 2011) 

that B cell activation through CD40 and TLR9 engagement leaded to the induction of B cells 

with highly efficient regulatory functions. Thus, CD40-TLR9-induced regulatory B cells 

inhibited T cell proliferation through the induction of regulatory Foxp3
+
CD4

+
CD25

+ 
T cells, and 

modulated Th1 differentiation through IL-10 production (Lemoine, Morva et al. 2011). To 

evaluate the impact of �4BAFF on regulatory properties of B cells, tonsilar B cells were 

transfected either with ∆4BAFF-specific-siRNA (si ∆4BAFF), or control siRNA and co-cultured 

with CFSE-labelled T cells stimulated with anti-CD3 and anti-CD28 mAbs as previously 

described (Lemoine, Morva et al. 2011). Efficiency of si ∆4BAFF was tested, in RAMOS B 

cells. As shown in Figure 4B, we confirmed that CD40 and TLR9 co-stimulation induced 

∆4BAFF expression and observed that ∆4BAFF mRNA expression levels were not detectable in 

cells transfected with si ∆4BAFF while the expression levels of BAFF mRNA were not affected. 

Si ∆4BAFF transfected B cells had a significantly lower suppressive activity than si control or 

untransfected B cells (26.7±8.2% of inhibition of T cell proliferation compared to 49.4±6.2%, 

P<0.01) for untransfected cells and 39.0±9.6% for si control transfected cells, P<0.01, Figure 

4C). 

This result suggests that �4BAFF may be responsible for the emergence of regulatory 

capacities. As we had already demonstrated that regulatory B cells inhibit T cell proliferation by 

the generation of CD4
+
CD25

+
Foxp3

+
 regulatory T cells and the production of cytokines such as 

IL-10 and TGF-� (Lemoine, Morva et al. 2011), we investigated if the neutralization of �4 BAFF 

will have any impact on those factors. As presented in Figure 4D, in comparison to the two 

control groups, the absence of �4BAFF is associated with impaired generation of regulatory T 

cells (3.7±1.6% obtained in cocultures performed with si �4BAFF transfected B cells compared 
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to 22.2±2.6%, P<0.05 with untransfected cells and 24.8±2.9%, P<0.05 with si control transfected 

B cells). This observation can be linked to the drastic decrease in the production of TGF-� by B 

cells (Figure 4E) when �4BAFF is neutralized (9.3±2.4% versus 48.2±10.3%, P<0.04 and 

43.6±7.4% P<0.03 with untransfected and si control-transfected B cells, respectively). 

Interestingly, �4 BAFF did not have any direct effect on IL-10 since its neutralization did not 

modify significantly its production by B cells (Figure 4F) when compared to si control 

transfected or untransfected B cells. Taking together, all these results, clearly, demonstrate that 

�4 BAFF, acting as a transcription factor, is responsible for the emergence of regulatory 

properties in B cell through the production of TGF-�. 
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DISCUSSION 

When transfected in RAMOS B cells, ∆4BAFF induces the differential expression of 

many genes involved in immune response. For example, TLRs (-2, -6, -9 and -10) were 

markedly increased as AICDA (AID gene) and miR-155. These genes have critical roles in the 

establishment and the control of tolerance (Isnardi, Ng et al. 2008; Tili, Croce et al. 2009; 

Meyers, Ng et al. 2011). Indeed, TLR ligation results in the production of pro-inflammatory 

cytokines, increased antigen expression, antibody production, proliferation and differentiation in 

B cells (Huggins, Pellegrin et al. 2007; Jiang, Lederman et al. 2007). We also described an 

entirely novel function of ∆4BAFF as a transcription factor that enhances expression of its own 

parent gene. This finding is of particular interest because BAFF overexpression is a central 

driver in autoimmune diseases and lymphoproliferation disorders and is also associated with B 

cell tolerance breakdown and autoantibody production (Varin, Le Pottier et al. 2010).  

We observed that N-glycosylation of ∆4BAFF was not only required for nuclear entry 

(Le Pottier et al, submitted) but also for promoter binding. The importance of the N-

glycosylation status for BAFF has been already described, particularly for the ∆Βaff variant 

(Gavin, Ait-Azzouzene et al. 2003), but also for the full-length form of BAFF in the serum of 

patients with autoimmune diseases (Le Pottier, Bendaoud et al. 2009). In this respect, a number 

of conflicting results have cast doubt on the reliability of the enzyme-linked immunosorbent 

assays (ELISA) presently in use for its quantification, most of them being unable to recognize 

the non-glycosylated form of BAFF (Le Pottier, Bendaoud et al. 2009). Furthermore, N-

glycosylation was recently described to be required for the full activation of the transcription 

factor cyclic AMP-responsive element-binding (CREB)-H. Unglycosylated or deglycosylated 
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CREB-H was retained in an inactive form in the endoplasmic reticulum and less capable of 

activating transcription by binding to its promoters (Chan, Mak et al. 2010). 

Cooperation between ∆4BAFF and p50 appears to be important in regulating BAFF 

expression. The interactions of NF-κB dimers or monomers with heterologous transcription 

factors through direct binding has been already described and profoundly influences 

transcriptional responses (Oeckinghaus, Hayden et al. 2011). NF-κB p50 lacks indeed a 

transactivation domain and therefore usually form a heterodimer to be transcriptionally active 

(Ghosh, May et al. 1998). However, we found that the �4BAFF sequence contains a perfect 

match between aa145 and aa153 corresponding to the 9aa transactivation domain (9aaTAD) 

which is common to a large number of yeast and animal transcription factors (Piskacek, Gregor 

et al. 2007). In vitro studies have shown that p50 can associate with other transcriptional 

activators such as Bcl-3 (Fujita, Nolan et al. 1993) or p300 (Deng and Wu 2003) to activate 

transcription. NF-kB p50 can also form a complex with the transcriptional co-activator CREB to 

activate IL-10 transcription in macrophages (Cao, Zhang et al. 2006). Interestingly, among the 

genes up-regulated after ∆4BAFF transfection, the promoter of the BIC gene encoding miR-155 

contains two putative NF-�B sites able to bind in vitro the NF-�B proteins p50 and p65 in 

nuclear extract from MC3 cells (Gatto, Rossi et al. 2008). Furthermore, p50 has a critical role in 

the induction of the AID gene expression as AID induction in B cells was impaired in p50
-/-

 mice 

(Snapper, Zelazowski et al. 1996). Finally by blocking ubiquitinilation of p50, Bcl-3 stabilizes a 

p50 complex that inhibits TLR gene transcription and limits the strength of the TLR responses 

(Carmody, Ruan et al. 2007). Consequently, the cooperation between ∆4BAFF and p50 may be 

an important regulatory mechanism for the transcription of a large number of genes. Further 

investigation of the role of ∆4BAFF and its interaction with p50 in the context of both 
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autoimmunity and B cell leukemia could provide novel therapies targeted at modulating its 

function. 

Many data point to the existence of regulatory B-cell subjects. CD40 engagement on B 

cells appears to be a requisite for the induction of functional Breg cells (Mizoguchi, Mizoguchi 

et al. 1997; Fillatreau, Sweenie et al. 2002). In systemic lupus erythematosus, stimulation of 

TLR9 is prerequisite to induce B cell regulation of inflammatory responses (Brummel and Lenert 

2005). We have also recently observed that CD40 and TLR9 associated stimulation was the best 

to induce functional regulatory B cells (Lemoine, Morva et al. 2011). Interestingly, this 

stimulation was also observed to induce �4BAFF expression. We thus hypothesized that 

regulatory activities of B cells depend on the presence of the transcription factor �4BAFF.  

Although regulatory B cell efficiency was mainly associated to their production of IL-10 

(Mizoguchi, Mizoguchi et al. 2002), then is also strong evidence that part of the 

immunosuppressive function of B cells is mediated by interactions with other regulatory cell 

population. Regulatory B cells can induce induce regulatory T cells to regulate T cell-dependent 

immune responses (Wei, Velazquez et al. 2005). The effectiveness of these regulatory B cells 

was linked to TGF-� expression by B cells but not IL-10 (Singh, Carson et al. 2008). 

IL-10 production was not downregulated after �4BAFF inhibition by si�4BAFF in 

contrast to TGF-� production and regulatory T cell induction. However, neutralizing �4BAFF in 

B cells resulted in a significant decrease of the inhibition of T cell proliferation. This result is in 

accordance with our previous results showing that human regulatory B cells can inhibit the 

proliferation of T cells through a mechanism independent of IL-10 but through the induction of 
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Foxp3 regulatory T cells, while the Th1 differentiation is controlled by an IL-10-dependent 

pathway (Lemoine, Morva et al. 2011). 

The pivotal role of ∆4BAFF as a transcription factor that controls BAFF expression and 

the control of immune response holds immense promise for the clinic. The potential for ∆4BAFF 

to be used as a therapeutic target will require further investigation into the scope of its role and 

potential as a transcriptional regulator of other genes, with ramifications for disease outcome and 

treatment strategies aimed at controlling BAFF production in autoimmunity and cancer. 
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FIGURE LEGENDS  

Figure 1: ∆∆∆∆4BAFF expression induces up-regulation of full-length BAFF. Whole cell 

lysates from RAMOS cells (non-transfected: NT), transfected RAMOS cells 

with pIRES2-EGFP (empty vector: ø), p∆∆∆∆4BAFF-IRES2-EGFP (�4) or 

P∆∆∆∆4[N124	D]BAFF-IRES2-EGFP (∆∆∆∆4[N124	D]) were analyzed by 

Western-blotting using either an anti-BAFF mAb (clone 137314) or rabbit anti-

BAFFpAb, unable to recognize ∆∆∆∆4BAFF. Anti �-actin mAb was used as 

control and the ratio of the full-length form of BAFF at 32 kD (revealed by the 

different anti-BAFF Abs) to �-actin were quantified and shown below each 

lane. Data are representative of three independent experiments. 

Figure 2: ∆4BAFF acts as a transcription factor of its own gene by binding to the 

promoter of the BAFF gene at its NF-κB binding region and forms complexes 

with p50 from the NF-κB1 pathway. (A) ChIP analysis within BAFF promoter 

was performed on RAMOS cells (non-transfected: NT) p∆4BAFF-IRES2-

EGFP (∆4) and p∆4[N124	D]BAFF-IRES2-EGFP stably transfected 

RAMOS cells. The indicated antibodies (Abs) were used to precipitate 

chromatin. PCR to detect the various promoter regions of BAFF (i.e. CD40 

binding region from –681 to –375; NF-κB binding region from –1040 to –840 

and a control region from –1474 to –1261) were performed on the precipitated 

DNA (GenBank file AF 186114). Mouse IgG was used as a non specific 

control. (B) The promoter of BAFF is active in p∆4BAFF-IRES2-EGFP stably 

transfected cells. pEGFP (empty vector: ø), p∆4BAFF-IRES2-EGFP (∆4) and 

p∆4[N124	D]BAFF-IRES2-EGFP (∆4[N124	D]) transfected RAMOS B 

cells were co-transfected with the –1040 to –840 BAFF promoter cloned in the 

pDsRed-express 1 reporter vector. pDsRed-575 nm emmission fluorescence 

was observed by FACS. (C) Supershift analysis of ∆4BAFF protein binding to 

the NF-κB site. Nuclear extracts of RAMOS cells transiently transfected with 

p∆4BAFF-EGFP were incubated with antibodies (Abs) against BAFF (clone 

137314 and rabbit) and the probe labeled to digoxygenin (DIG). Samples were 

analyzed by electrophoretic mobility shift assay. (D) Association of ∆4BAFF 

with p50 in transfected RAMOS cells with p∆4BAFF-EGFP. Nuclear extracts 

were used for immunoprecipitation with Abs to GFP, p50, p65 or p52 and 

subsequently analyzed by Western blot for GFP, BAFF, p50, p65 and p52 in 

pEGFP (empty vector: ø) or p∆4BAFF-EGFP-transfected RAMOS B cells 

(∆4). 

Figure 3: Gene expression profile of ∆4BAFF transfected RAMOS B cells and validation 

using real-time PCR. (A) Venn diagram to illustrate the overlapping expression 

of genes within genes differentially expressed between p∆4BAFF-IRES2-

EGFP(∆4), pIRES2-EGFP (empty vector: ø) and p∆4[N124	D]BAFF-IRES2-

EGFP (∆4[N124	D]) transfected RAMOS cells. (2 way ANOVA, P<0.01). 
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(B) Real-time PCR are presented in the column graphs as relative gene 

expression normalized to GAPDH.  

Figure 4: ∆4BAFF is induced in regulatory B cells and is required for their functions. (A) 

Reverse transcriptase (RT)-PCR analysis of ∆4BAFF transcript in tonsilar B 

cells from healthy controls. B cells were seeded on NIH-3T3 fibroblasts 

transfected or not with human CD40L gene and treated with mitomycin C, with 

or without CpG-ODN 2006. (B) RAMOS B cells transfected with ∆4BAFF si 

RNA (si∆4BAFF) or control siRNA were stimulated or not through CD40 and 

TLR9 as described in (A). RT-PCR analysis was performed in order to detect 

the presence of BAFF, ∆4BAFF or GAPDH mRNA (C) B cells were 

transfected either with siRNA against �4BAFF (Si �4) or control siRNA (Si 

Ctl) or non transfected (NT) and cocultured with anti-CD3 and anti-CD28 

antibody-stimulated T cells (ratio 1:1) in the presence of CpG for 4 days. T cell 

proliferation was evaluated by flow cytometry by measuring CFSE-staining 

dilution. (D) The presence of regulatory T cells was determined by flow 

cytometry using PE-Cy7-labelled anti –CD4, PE-labelled anti-FoxP3 and 

FITC-labelled anti-CD25 antibodies. The production of TGF-� (E) and IL-10 

(F) was measured by flow cytometry using PE-Cy7-labelled anti-CD19, FITC-

labelled anti-IL-10 and PE-labelled anti-CD19, FITC-labelled anti-IL-10 and 

PE-labelled anti-TGF-� antibodies. Each experiment was performed 3 times. 

Student t-test was used for statistical analysis. 
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Supplementary Table 1: Sequences of primers used in this study. 

Name Sequence Purpose 

BAFF LLP2008 (exon 3) forward TTGCAGACAGTGAAACACCAACT PCR 

BAFF LLP2009 (exon 6) reverse TTCATCTCCTTCTTCCAGTTTTGC PCR 

�4BAFF (exon 3-5) forward GACAGTGAAACACCAACTATACAAAAAGGTTTTATATAC PCR 

�4BAFF (exon 5-6) reverse CAGTTTTGCAATGCCAGCTGAA PCR 

GAPDH froward CTTAGCACCCCTGGCCAAGG PCR 

GAPDH reverse CTTACTCCTTGGAGGCCATG PCR 

BAFF promoter (region 1) forward GAGACAGAACTAAAGCTCACTATTCTT ChIP and EMSA 

BAFF promoter (region 1) reverse GACCTGTGAGGACTGTTGCA ChIP and EMSA 

BAFF promoter (region 2) forward AGGCAAGGCTGATTCTCCTC ChIP 

BAFF promoter (region 2) reverse GGAAGTGTGGAAGTAAGTCCACTG ChIP 

BAFF promoter (upstream) forward GACTTTAGGGACTCAGGGGAAAG ChIP 

BAFF promoter (upstream) reverse GAAACAAATTACATTTTGGATGC ChIP 

BAFF promoter forward ATCACTCGAGGGGTCTGGAGTTCTCCACTT-TGCAC Cloning in pDsRed-Express1 

BAFF promoter reverse GACTAAGCTTGACCTGTGAGGACTGTTGCA Cloning in pDsRed-Express1 

TLR2 froward CCACCGTTTCCATGGCCTGTG Real-time PCR 

TLR2 reverse GATGAAGTTCTCCAGCTCCTGCACC Real-time PCR 

TLR6 froward ATGTGGCAGCTTTCGCAGCCT Real-time PCR 

TLR6 reverse TTGAACTCATCTTCTGGCAGC Real-time PCR 

TLR9 forward TGAAGACTTCAGGCCCAACTG Real-time PCR 

TLR9 reverse TGCACGGTCACCAGGTTGT Real-time PCR 

TLR10 forward GTAAGGCTATCAAAAGGAGATGTGAGA Real-time PCR 

TLR10 reverse GAGGAGAAGCATAATGGACCTTTG Real-time PCR 

AICDA forward CCACTATGGACAGCCTCTTG Real-time PCR 

AICDA reverse CACTGTCACGCCTCTTCACT Real-time PCR 

MBD2 forward CCATGGAACTACCCAAAGGTCTT Real-time PCR 

MBD2 reverse CAGCAGATAAAAGGGTCTCATCATT Real-time PCR 

GAPDH forward TGCACCACCAACTGCTTAGC Real-time PCR 

GAPDH reverse GGCATGGACTGTGGTCATGAG Real-time PCR 



 

 

 

Supplementary Table 2: List of selected genes to illustrate the functional annotation analysis (DAVID). ∆∆∆∆4: RAMOS B cells stably transfected 
with p∆∆∆∆4BAFF-IRES2-EGFP, �4[N124�D]: RAMOS B cells stably transfected with p�4BAFF

[N124�D]-IRES2-EGFP, Ø: 
RAMOS B cells stably transfected with pIRES2-EGFP. 
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Supplementary Figure 1 : Map of vector used in this study.
pDsRed-Express1 vector was used to cloned BAFF promoter 
region 1.
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Supplementary Fig. 2 : EMSA analysis of ∆∆∆∆4BAFF and NF-κκκκB binding to the BAFF promoter.
Nuclear extracts from RAMOS cells stably transfected with p∆4BAFF-EGFP were incubated with 

digoxigenin-labeled BAFF-NF-κB binding site oligonucleotides. BAFF-NF-κB cold probe and 
antibodies (Abs)  to BAFF (the monoclonal Ab, clone 137314, able to recognize ∆4BAFF and the 
rabbit polyclonal Ab, unable to recognize ∆4BAFF), p50, p52, cRel, p65 or p300 were added to the 
binding reaction mixtures. Arrows indicate the digoxigenin-labeled probe, the DNA-protein complex, 
and the supershifted complexes. Remarkably, anti-p50 and anti-BAFF monoclonal Ab together further 

shifted the complex.
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3. TLR9 EXPRESSED ON PLASMA MEMBRANE ACTS AS A 
NEGATIVE REGULATOR OF HUMAN B CELL RESPONSE 
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Toll like receptors (TLRs) play an important role in the early detection of 

pathogen associated molecular patterns and are conductive to the activation of the innate 

immune responses and subsequently, of the adaptive immune system. In this report, we show 

the presence of TLR9 on the plasma membrane of B cells. The expression of TLR 9 is higher 

on peripheral blood B cells whereas tonsilar B cells show intermediate levels of expression. 

TLR 9 activation needs cleavage of its full form. Indeed, experiments showed the presence of 

cleaved TLR9 on plasma membrane of B cells. The presence of cleaved TLR9 on the plasma 

membrane suggests that TLR9 could be functionally operant. TLR9 present in the endosomal 

compartment co-localizes with the BCR leading to B cell hyper response. The complete and 

cleaved form of TLR9 located on the plasma membrane of B cells co-localize with the BCR 

in the lipid rafts after BCR stimulation. In contrast, without BCR stimulation, TLR9 is mostly 

found outside the lipid rafts, suggesting that cell surface TLR 9 could act as a co-receptor of 

the BCR and may be able to modulate the BCR activation response of B cells. However, the 

cell surface TLR9 does not bind to the endosomal TLR9 ligand CpG-B. The co-stimulation 

of BCR and cell surface TLR9 with anti-TLR9 antibody enhanced the phosphorylation 

profile of the lysate protein which in turn increased the activation of the MAP kinase ERK 

pathway. The activation of B cells, checked by CD25 expression, was downregulated after 

anti-TLR9 antibody and BCR co-stimulation in addition with IL-2. The proliferative response 

of B cells also varies according to the localization of TLR9. The stimulation of the cell 

surface TLR9 with anti-TLR9 antibody prevents BCR and IL-2 induced proliferation, 

suggesting that the cell surface TLR9 differs from the endosomal TLR9 and does not act 

synergistically with the BCR to promote the B cell response. Because signalling cascades can 

be initiated from the cell surface TLR9, the effects of the cell surface TLR9 were verified on 

the B cell responses that had been induced by endosomal TLR9 stimulation. The activation of 

B cells following endosomal TLR9 stimulation was inhibited in the presence of anti-TLR9 

Ab, leading to the downregulation of CD25. The synergistic effects of endosomal TLR9 and 

BCR-induced proliferation were also inhibited when cell surface TLR9 was stimulated; 

suggesting that cell surface TLR9 plays the role of negative regulator of the endosomal 

TLR9-induced human B cell response. In this report we described the presence of both full 

length and cleaved active form of TLR9 on the plasma membrane of human B cells. This cell 

surface TLR9 acts as a negative regulator of the endosomal TLR9- induced B cell response. 
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Abstract 
Toll like receptors (TLRs) are positioned at the interface between innate and adaptive 

immunity. Unlike others, those such as TLR9, that recognize nucleic acids, are 

confined to the endosomal compartment and are scarce on the cell surface. Here, we 

present evidence for TLR9 expression on the plasma membrane of B cells. In contrast 

to endosomal TLR9, cell surface TLR9 does not bind CpG-B oligodeoxynucleotides. 

After B cell-receptor (BCR) stimulation, TLR9 was translocated into lipid rafts with 

the BCR, suggesting that it could serve as a co-receptor for BCR. Nevertheless, 

stimulation of B cells with anti-TLR9 antibodies did not modify the BCR-induced 

responses despite up-regulation of tyrosine phosphorylation of proteins. However, 

CpG-B activation of B cells, acting synergistically with BCR signals, was inhibited by 

anti-TLR9 stimulation. Induction of CD25 expression and proliferation of B cells 

were thus down-regulated by the engagement of cell surface TLR9. Overall, our 

results indicate that TLR9 expressed on the plasma membrane of B cells might be a 

negative regulator of endosomal TLR9, and could provide a novel control by which 

activation of autoreactive B cells is restrained. 

 

 

 

 

Key words: B lymphocytes, TLR9, cell surface, CpG-B, stimulation, negative 

regulator 

Research highlights: 

� TLR9 is present on the B cell surface 

� CpG-B does not bind to plasma membrane TLR9 

� Cell surface TLR9 negatively regulates endosomal TLR9-induced B cell 

response 



 

 -141- 

Introduction 

The family of toll-like receptors (TLRs) stands at the junction between innate and 

adaptive immunity (Abdelsadik and Trad 2011). They are essential in the 

discrimination between self and non-self. They lead to the development of immune 

response against a wide variety of pathogens while avoiding abnormal response to 

endogenous ligands due to the presence of numerous negative regulators (Kawai and 

Akira 2007). 

TLRs are differentially expressed by the different subsets of B cells, conferring a large 

range of functional responses. Thus, transitional and MZ B cells are highly sensitive 

to TLR9 stimulation resulting in activation, proliferation and immunoglobulin 

production (Guerrier, Le Pottier et al. 2012). In these situations, paired BCR and TLR 

signals up-regulate gene products not induced by BCR or TLR9 alone and can 

cooperate to facilitate B-cell differentiation (Rawlings, Schwartz et al. 2012). In 

contrast, follicular B cells are poorly activated due to the presence of regulated events 

(Meyer-Bahlburg and Rawlings 2012). Identification of these regulatory elements 

remains a major challenge in view of a control of the TLR9-dependent B cell 

responses that might be aberrantly activated in autoimmune diseases (Papadimitraki, 

Bertsias et al. 2007). 

Like all TLRs that recognize nucleic acids, TLR9 is confined to the endoplasmic 

reticulum and to endolysosomes (Barbalat, Ewald et al. 2011). Activation of TLR9 

requires the acidification of endosomal compartments that in turn influences direct 

binding and interaction with its ligand (Rutz, Metzger et al. 2004) and leads to its 

cleavage, a prerequisite of its activation (Ewald, Lee et al. 2008; Park, Brinkmann et 

al. 2008). Such intracellular localization and cleavage restrain TLR9 activation to 

ligands able to reach endolysosomes in sufficient quantities, which is the case for viral 

and bacterial DNA but normally not the case for self DNA (Barton, Kagan et al. 

2006). Thus, a transmembrane TLR9 construct artificially expressed on the cell 

surface is not functional in its complete form whilst the cleaved mutated form 

bypasses the requirement of proteolysis and provides sensitivity to mammalian DNA 

(Mouchess, Arpaia et al. 2011). The intracellular localization and cleavage 



 

 -142- 

requirement prevent the recognition of self DNA and preserve tolerance breakdown 

(Barton, Kagan et al. 2006). 

However, natural cell surface expression of TLR9 has been reported. Intestinal (Lee, 

Mo et al. 2006) and gastric (Schmausser, Andrulis et al. 2004) epithelial cells have 

been shown to be able to express TLR9 on their plasma membrane, although the 

functionality of this TLR9 remains to be clearly established. Moreover, it seems likely 

that human B lymphocytes can also express cell surface TLR9 (Eaton-Bassiri, Dillon 

et al. 2004; Dasari, Nicholson et al. 2005; Baiyee, Flohe et al. 2006) but its functional 

role has not been determined. In the present study, we wish to evaluate the presence of 

TLR9 on the plasma membrane of human B cells and identify its function on B cell 

response. 
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Material and methods 

Isolation of B lymphocytes 

Cord blood, peripheral blood and tonsils were collected after informed consents had 

been obtained. Tissues were minced up and filtered to remove fragments and clumps. 

Cord blood samples, peripheral blood samples and tonsillar cell suspensions were 

layered onto Ficoll-Hypaque and centrifuged. Mononuclear cells were incubated with 

neuraminidase-treated sheep red blood cells and T cells depleted by a second round of 

centrifugation. All preparations were >95% pure B cells. 

Flow cytometry 

All mAb were purchased from Beckman Coulter, unless otherwise indicated. We used 

phycoreythrin (PE)-conjugated anti-CD24, PE-cyanin5-conjugated anti-CD38 and 

biotinylated anti-human TLR9 (Imgenex) revealed using PE-cyanin7-conjugated 

streptavidin. For the activation response, B cells were stained with fluorescein 

isothiocyanate (FITC)-conjugated anti-CD25. 

For the proliferation assay, B cells were preliminary labeled with 2µM 

carboxyfluorescein diacetate succinimidyl ester (CFSE) before stimulation and their 

proliferation evaluated on a FC500 flow cytometer (Beckman Coulter) measuring the 

decrease in mean fluorescence intensity (MFI) of CFSE. 

Cultures of B lymphocytes 

B cells were cultured in RPMI1640 medium (Invitrogen Life Technologies) 

supplemented with 10% heat-inactivated fetal calf serum, 2mM L-glutamine, 200U/ml 

penicillin and 100µg/ml streptomycin at 2.10
5 

cells/well in 96-well culture plates. 

They were stimulated with 0.25µM CpG-B 2006 (Cayla-InvivoGen), or 10µg/ml anti-

IgM-coated beads (BioRad) in the presence of 100U/ml recombinant IL-2 

(ImmunoTools) or 10µg/ml anti-TLR9 Abs (clone 26C593.2, Imgenex, or clone 

eB72-1665, eBioscience) cross-linked on 10µg/ml anti-mouse IgG or anti-rat IgG 

(Jackson ImmunoResearch Laboratories) coated plates. 

Immunofluorescence analysis 

B cells were stained with mouse anti-human TLR9 (Imgenenex) revealed with FITC- 

or tetramethylrhodamine-5,6-isothiocyanate (TRITC)-conjugated donkey anti-mouse 
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IgG (Jackson). They were co-stained with either rabbit anti-human IgM (Dako) 

revealed with TRITC-conjugated donkey anti-rabbit IgG (Jackson) or TRITC-

conjugated cholera toxin B (CTB, Sigma), or with FITC-conjugated CpG-B 

(Invivogen). Cells were then fixed in 4% paraformaldehyde, cytospined and analyzed 

with a TCS-NT confocal imaging system (Leica). Control mouse IgG with either 

FITC-conjugated or TRITC-conjugated donkey anti-mouse, and control rabbit IgG 

with TRITC-conjugated donkey anti-rabbit did not reveal background fluorescence.  

Isolation of lipid rafts 

Based on their insolubility in non-ionic detergent and their low density leading to their 

separation on a discontinuous sucrose gradient, lipid rafts were isolated from B cell 

plasma membranes. To this end, tonsillar B cells were first stimulated or not with 

10µg/ml rabbit anti-IgM cross-linked with sheep anti-rabbit IgG (Sigma) for 10 

minutes at 37°C. After washing at 4°C in TNE buffer (25mM Tris-HCl pH7.5, 

140mM NaCl and 1mM EDTA), cells were incubated for 30 minutes in 1% Triton X-

100 in TNE buffer containing anti-proteases cocktail (Sigma). One ml of supernatant 

was mixed with 1ml 85% sucrose, covered with 3ml of 35% sucrose and 1.5ml 5% 

sucrose, and centrifuged for 17 hours at 180000xg at 4°C. Eleven fractions were 

collected from the bottom upwards, the latest corresponding to the lipid rafts, and 

analyzed by Western blot. 

Western blot assay 

Cell surface expressed proteins were purified using the Cell Surface Isolation Kit 

(Pierce) according to the manufacturer’s instructions. Samples were separated by 

SDS-PAGE electrophoresis and proteins transferred on polyvinylidene difluoride 

(PVDF) membranes. After 1 hour of saturation with 5% milk in 0.1% Tween 20 

buffer, PVDF membranes were incubated in the presence of either rat anti-TLR9 

(Imgenex), rabbit anti-CD20 (Interchim), mouse anti-�-actin (Abcam), rabbit anti-

EEA1 (Abcam), horseradish peroxidase (HRP)-conjugated anti-IgM heavy chain 

(Dako), or biotinylated CTB (Sigma). After washes, HRP-conjugated anti-rat, anti-

rabbit or anti-mouse immunoglobulins (all from Jackson), or HRP-conjugated 
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streptavidin (Amersham) were added, revealed using the ECL Advance kit (GE 

Healthcare) and membranes analyzed with Quantity One Software (BioRad).  

For the activation assay, stimulated cells were lysed and proteins separated as 

specified above. Detection of phosphorylated tyrosine and phospho ERK were 

performed using mouse anti-phosphotyrosine (Abcam) and mouse anti-phospho ERK 

(BD Biosciences), revealed with HRP-conjugated anti-mouse immunoglobulins as 

above. 

Statistical analysis 

Data were expressed as mean±SD. Statistical analyses were performed using chi-

squared test for comparisons of percentages. Significance was assessed at P<0.05.  
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Results 

TLR9 is expressed on B cell plasma membrane 

Expression of cell surface TLR9 on non-permeabilized B lymphocytes was 

determined by flow cytometry (Fig. 1A) and assessed as MFI. Mature B cells and 

transitional B cells isolated from cord blood expressed low level of TLR9 with a MFI 

of 1.8±0.1 and 2.2±0.1, respectively. TLR9 expression was elevated on peripheral 

blood B lymphocytes (MFI of 16.1±1.1) and intermediate on tonsillar B cells (MFI of 

6.3±0.7). 

To become active, endosomal TLR9 must be cleaved. A soluble fragment is generated 

in the endosomal lumen which can bind to the transmembrane cleaved form. We 

looked for a cleavage form of plasma membrane TLR9. Proteins from the surface of B 

cells were biotinylated, and plasma membranes lysed. Biotinylated proteins were 

purified on NeutrAvidin column and separated by SDS-PAGE. Western blot analysis 

using anti-TLR9 mAb revealed a 130kDa band corresponding to the entire form of 

TLR9 and a supplementary 60kDa band corresponding to the cleaved fragment (Fig. 

1B). Western blots were repeated on the whole cell lysates without biotinylation. 

Densitometric analyses led to determine the ratio of cleaved form (60kDa) of 

TLR9/entire form (130kDa) of TLR9 (Fig. 1C). It was interesting to note a higher 

ratio with the biotinylated cell surface proteins indicating that most of TLR9 receptors 

on the B cell surface are cleaved. Overall, our results suggest that TLR9 can be 

expressed on the plasma membrane of B lymphocytes and can be cleaved into a 

potentially active form which constitutes the predominant form on the cell surface. A 

schematic representation is shown in Fig. 1D. 

Role of TLR9 expressed on the plasma membrane 

To go further, we wondered if TLR9 expressed on cell surface could be functionally 

operant. It has been demonstrated that endosomal TLR9 co-localizes with internalized 

BCR within endosomes resulting in B cell hyper response (Chaturvedi, Dorward et al. 

2008). We set out to determine whether cell surface TLR9 co-localized with cell 

surface BCR. Lipid rafts were fractionated without prior stimulation of the BCR (Fig. 

2A). We observed that in fraction 11 enriched in lipid rafts, weak bands of both the 
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entire form and the cleaved form of TLR9 were detectable. Significantly, after BCR 

stimulation, a large portion of BCR was translocated within lipid rafts of fraction 11 in 

association with higher co-localization of both complete and cleaved TLR9, as shown 

by the densitometric analyses (Fig. 2B). Indirect immunofluorescence studies 

confirmed these observations. Prior to BCR stimulation, TLR9 was mostly found 

outside the lipid rafts. However, after BCR stimulation, BCR translocated within lipid 

rafts yielded to co-localization of TLR9 (Fig. 2C). These results suggest that cell 

surface TLR9 could act as a co-receptor of the BCR able to modulate the BCR 

activation response of B cells. 

Effect of cell surface TLR9 stimulation 

To evaluate the B cell response after stimulation of cell surface TLR9, we first 

evaluated its ability to bind CpG-B, the identified ligand of endosomal TLR9. By flow 

cytometry analysis, we found that the binding level of FITC-conjugated CpG-B on 

cell surface increased with concentration after incubation at 4°C to avoid 

internalization (Fig. 3A). But unexpectedly, we were unable to observe strong co-

localization between membrane TLR9 and FITC-CpG-B through indirect 

immunofluorescence examination (Fig. 3B). This study indicates that cell surface 

TLR9 does not bind preferentially the well-known ligand of endosomal TLR9. 

Therefore, we decided to activate the B cells using anti-TLR9 Ab without 

permeabilization to ensure specific stimulation of the plasma membrane TLR9. The 

early tyrosine phosphorylation response was firstly assessed. After 3 min of anti-BCR 

stimulation, the phosphorylation of the proteins had clearly increased, and was also 

up-regulated after 5 min of stimulation with CpG-B as well as anti-TLR9 stimulation 

(Fig. 4A, left). Since cell surface TLR9 co-localized with the BCR in lipid rafts after 

BCR stimulation, we wondered whether it could act as a co-receptor for the BCR. We 

observed that, like co-stimulation of BCR and endosomal TLR9, co-stimulation of the 

BCR and cell surface TLR9 enhanced the phosphorylation profile of the protein 

lysates (Fig. 4A, right) that lead to increased activation of the MAP kinase ERK 

pathway. Thereby, we estimated the activated status of B cells stimulated with anti-

TLR9 Ab by measuring CD25 expression by flow cytometry. In comparison to 
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stimulation of the BCR in the presence of IL-2, CD25 was not up-regulated on B cells 

after 24 hours of stimulation of cell surface TLR9 with anti-TLR9 (Fig. 4B). Its 

putative role as a BCR co-receptor was then appraised. However, in contrast to the co-

stimulatory effect of endosomal TLR9 activated by CpG-B, anti-TLR9 Ab did not 

upregulate the BCR-induced expression of CD25, suggesting that B cells can not be 

activated through stimulation of cell surface TLR9. To go further, we determined the 

proliferative response of B cells. After 5 days, B cells proliferated following anti-BCR 

and IL-2 stimulation, mainly in association with CpG-B stimulation, but not with anti-

TLR9 stimulation (Fig. 4C). These results suggest that cell surface TLR9 differs from 

endosomal TLR9 and does not act synergistically with the BCR to promote the B cell 

response.  

Because signalling cascades can be initiated from the cell surface TLR9 (Fig. 4A), we 

wondered whether TLR9 on the plasma membrane could restrain the B cell response 

induced by the stimulation of endosomal TLR9. Activation of B cells following CpG-

B stimulation was thus inhibited in the presence of anti-TLR9 Ab leading to a 

significant down-regulation of CD25 expression (Fig. 5A). Furthermore, the weak 

proliferative response observed after CpG-B stimulation was dampened by anti-TLR9 

Ab co-stimulation (Fig. 5B). Interestingly, we found that the synergistic effect of 

endosomal TLR9 and BCR-induced proliferation was also abrogated by the 

concomitant stimulation of cell surface TLR9 (Fig. 5B), indicating that TLR9 on the 

plasma membrane may play the role of a negative co-receptor. The same results were 

obtained with all anti-TLR9 Ab tested (not shown). Yet, proliferation of B cells was 

strikingly inhibited when anti-TLR9 Ab was added to CpG-B alone or to CpG-B 

associated with anti-BCR and IL-2 (Fig. 5C) supporting the notion that the cell surface 

TLR9 might be a potent negative regulator of the endosomal TLR9-induced B cell 

response. 
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Discussion 

The unavailability of the TLR9 active form on cell surfaces has long been considered 

a key element to discriminate between microbial DNA and self DNA. However, our 

data demonstrate that the complete form and the potentially active cleaved form of 

TLR9 are expressed on the plasma membrane of B lymphocytes. Interestingly, we 

observed cell surface TLR9 co-localization with activated BCR in lipid rafts, 

suggesting that plasma membrane TLR9 could influence BCR-dependent activation of 

B cells. However, we were puzzlingly unable to demonstrate an interaction of cell 

surface TLR9 with CpG-B, its synthetic ligand. Yet, binding of ligands to TLR9 

requires an acidic environment (Rutz, Metzger et al. 2004). Thus, it is likely that the 

pH of the extracellular milieu is not sufficiently lowered to allow interaction of the 

known ligands with cell surface TLR9.  

It cannot be ruled out that cell surface TLR9 results from a novel TLR9 variant. For 

instance, it has been described that the P99L variant, though retaining its ability to 

bind normally CpG-B, displayed severely compromised functional response regarding 

NF-�B activation and cytokine production (Kubarenko, Ranjan et al. 2010). Another 

TLR9 allele, R892W, is also hyporesponsive to CpG-B. It is characterized by 

increased MyD88 adaptor binding but defective co-localization with CpG-B leading to 

impaired B cell response as seen by decrease IL-6 and IL-10 production by B cells 

after CpG-B stimulation (Knezevic, Pavlinic et al. 2012). This particular mutation 

appears to change the surface charge and hydrophilicity of TLR9. While the 

homotypic dimmer formation seems normal the heterotypic interaction of TLR9 with 

MyD88 is affected. A stronger association is detected that might be responsible for 

impaired downstream signalling, as previously observed with a truncated TLR9 form 

that strongly interacts with MyD88 and is defective in signalling on its own (Ewald, 

Lee et al. 2008). Future works are needed, to determine whether novel TLR9 variant 

might account for the TLR9 cell surface expression leading to downstream signalling 

independent of CpG-B binding. 

Alternatively, the possibility exists that TLR9 expressed on the plasma membrane 

interacts with ligands different from those of the endosomal TLR9, leading to the 
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activation of alternative signallings. This hypothesis is reinforced by our functional 

experiments. Whilst endosomal TLR9 signals synergized with BCR signals to 

enhance B cell activation and proliferation as previously observed (Busconi, Bauer et 

al. 2007), stimulation of cell surface TLR9 did not cooperate with the BCR to increase 

the B cell responses. Moreover, cross-linking of cell surface TLR9 with anti-TLR9 

Abs negatively regulates the endosomal TLR9-induced B cell response. These 

findings argue for a negative regulatory activity of plasma membrane TLR9 on B cell 

responses following endosomal TLR9 stimulation. Differential signalling pathways 

have been identified depending on receptor location. In intestinal epithelial cells, 

stimulation of basolateral-expressed TLR9 induces activation of NF-�B pathway after 

degradation of I�B�, whereas apical TLR9 signals induces accumulation of 

ubiquitinated I�B in the cytoplasm preventing NF-�B activation (Lee, Mo et al. 2006). 

This specific polarization of TLR9 might contribute to restrain inflammatory 

responses in a bacteria-enriched environment, with apical TLR9 stimulation delivering 

negative signals in balance with activation signals triggered by basolateral TLR9 

stimulation (Lee, Gonzales-Navajas et al. 2008). The signalling pathway activated 

following cell surface TLR9 engagement remains to be identified, but might likely 

differ from endosomal TLR9. While cell surface TLR4 activated TIRAP-MyD88 

signalling at the plasma membrane, endocytosed TLR4 induced TRAM-TRIF 

signalling from early endosomes (Kagan, Su et al. 2008). Similarly, plasma membrane 

and endosomal TLR9 might activate differential signalling pathways leading to a 

control of the B cell activation and proliferative response. Additional experiments are 

required to identify these cascades. 

Furthermore, our results raised several questions. To counteract the endosomal TLR9 

pathways, cell surface TLR9 must be activated by interaction with a ligand that is still 

to be identified. Whether anti-TLR9 Ab mimics binding of soluble ligand or cell 

surface ligand expressed on the plasma membrane of B cells in cis or on the plasma 

membrane of other B cells or of other cell types in trans remains to be determined. 

This aspect appears important since identification of the natural ligand will help to 

understand this novel regulatory event that lead to control B cell responses. Another 

critical aspect of TLR9 activation is to decipher the way by which CpG-B reaches the 
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endosomal compartment. According to our observations, plasma membrane TLR9 

does not supply the binding receptor for CpG-B endocytosis. DEC-205 has been 

recently identified as a cell surface receptor for CpG-B that contributes to its uptake 

and delivery to the endosomal TLR9. B cells express significant levels of DEC-205 

which is important for CpG-B-dependent response (Kato, McDonald et al. 2006). In 

DEC-205-deficient mice, B cells are severely hampered in their ability to up-regulate 

CD40, CD86 and MHC class II molecules and showed a profound inability to produce 

IL-6 in response to CpG-B stimulation. DEC-205 is required for optimal CpG-B 

uptake to consequently facilitate B cell activation by promoting the delivery of 

captured CpG-B to endosomal TLR9 (Lahoud, Ahmet et al. 2012). However, in this 

model B cells can also acquire CpG-B uptake in a DEC-205-independent manner. 

This suggests that in addition to DEC-205, particular signalling platforms might be 

required for B cells to be fully responsive to CpG-B stimulation of endosomal TLR9 

and possibly to cell surface TLR9 activation. In this respect, a novel molecular 

signalling platform has been characterized in macrophages to be essential for ligand 

activation of TLR9 and cellular signalling. This complex contains G-protein coupled 

receptor (GPCR), metallo-proteinase-9 (MMP9) and the lysosomal sialidase 

neuramimidase 1 (Neu1) (Abdulkhalek and Szewczuk 2013). It is likely that CpG-

binding to endosomal TLR9 induces conformational changes (Latz, Verma et al. 

2007) which potentiate GPCR-signalling through MMP9 activation inducing Neu1. 

Activated Neu1 then hydrolyzes �-2,3-sialyl residues linked to �-galactosides on 

TLR9. This structural modification would trigger the formation of homotypic dimmer 

that facilitate the recruitment of MyD88 adaptor and subsequent cellular response. On 

the cell surface, Neu1 appears also as an important intermediate of several TLR 

ligand-induced receptor activation and subsequent cellular function (Amith, Jayanth et 

al. 2009). Thus, TLR4 activation on macrophages is dependent on Neu1 in 

conjugation with GPCR and MMP9 signalling (Finlay, Abdulkhalek et al. 2010). 

Transactivation of cell surface receptors necessitates a molecular platform containing 

GPCR signalling in association with MMP9 and Neu1 cross-talk required for all 

identified cell surface TLRs (Abdulkhalek, Guo et al. 2012). Whether cell surface 

expressed TLR9 needs similar signalling platform to activate the B cell response after 
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binding of its specific ligand remains elusive. However, the detection of cleaved form 

and the up-regulation of tyrosine phosphorylated proteins subsequent to anti-TLR9 

stimulation suggest that conformational changes also occurred for TLR9 on the B cell 

surface.  

Moreover, additional proteins are required for cell surface as well as endosomal TLR 

activation by their respective ligands. As an example, CD14 is associated with 

MyD88-dependent cell surface TLR4 and constitutively interacts with MyD88-

dependent TLR9 in macrophages (Baumann, Aspalter et al. 2010). Interestingly, the 

absence of CD14 reduces nucleic acid uptake and alters TLR-dependent cytokine 

production suggesting that CD14 promotes selective nucleic acid and acts as a co-

receptor for endosomal TLR9 activation. CD14 could contribute to the engagement of 

nucleic acids by a holo-receptor in analogy to LPS-recognition by the TLR4-CD14 

complex (Fitzgerald, Rowe et al. 2004). Alternatively, CD14 might act indirectly by 

providing a physical platform for the recruitment of factors required to assemble a 

fully functional receptor complex (Schmitz and Orso 2002). On the surface of B cells 

that lack CD14 expression, other molecules may play similar functions. For example, 

HMGB-1, although not membrane associated, binds and enhances nucleic acid uptake 

into the endosome, suggesting it could play a role in autoimmune responses (Tian, 

Avalos et al. 2007). Currently, HMGB-1 can form immune complex with nucleic acid 

and stimulate the BCR of autoreactive B cells (Avalos, Kiefer et al. 2010). However, 

TLR2, TLR4 as well as CD24-SiglecG/10 on the B cell surface have been identified 

as receptors for HMGB-1 (Li, Liang et al. 2013) that promote B cell reactivity. The 

possibility therefore exists that HMGB1 could also interact with cell surface TLR9 to 

influence the B cell activation. Finally, the BCR is an alternative receptor that 

provides efficacious endocytosis of the intracellular ligands by B cells (Lanzavecchia 

and Sallusto 2007). Consequently, activation of autoreactive B cells requires efficient 

regulatory mechanisms to avoid aberrant autoimmune reactions (Marshak-Rothstein 

2006). Our data suggest that responses of B cells to endosomal TLR9 either alone or 

in association with the BCR can be curtailed by engagement of cell surface TLR9 

which might provide a novel regulatory event of autoreactive B cells. 
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Whether cell surface TLR9 negative regulator is defective in autoimmune conditions 

is an open question that warrants further investigation. It has been recently 

demonstrated that TLR9 possesses a paradoxical role. Required for activation of 

anergic self reactive anti-DNA B cells, TLR9 also promotes tolerance by restricting 

their survival (Nickerson, Christensen et al. 2013). We may infer that endosomal and 

plasma membrane signals may offset each other in order to influence the final 

behavior of autoreactive B cells. Defect in TLR9 signalling from cell surface would 

then encourage the development of autoimmune reactions and could be a novel 

therapeutic target in autoimmune diseases.  
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LEGEND OF FIGURES 

Figure 1 TLR9 is expressed on B cell surface. A. Flow cytometry analysis of 

cell surface expression of TLR9 on B cells from cord blood, 

peripheral blood and tonsil. B. Proteins on the surface of B cells were 

biotinylated, solubilized and separated on gel electrophoresis before 

Western blot analyses, and compared to whole cell lysates. Anti-

EEA1 and anti-� actin Abs were used as controls for the presence of 

endosomal and plasma membrane proteins, respectively. Anti-CD20 

Ab was used to confirm the presence of a well-known cell surface 

expressed protein. Anti-TLR9 Ab revealed a 130kDa complete form 

and a 60kDa Nterminal cleaved form of TLR9. C. Ratio of cleaved 

TLR9/complete TLR9 obtained after densitometric analyses 

(mean±SD of 3 experiments). D. Schematic representation of the 

different forms of TLR9 expressed on the cell surface of B cells. The 

Nterminal cleaved fragment can interact with the Cterminal cleaved 

form and with the complete form. The black square indicates the 

epitope location recognized by the anti-TLR9 Ab used in flow 

cytometry and Western blot studies. 

Figure 2 TLR9 and BCR co-localized within lipid rafts on B cell surface after 

BCR activation. B cells were stimulated or not with 10µg/ml anti-

IgM. A. Co-localization of TLR9 and BCR was evaluated on lipid 

raft-enriched protein fraction with anti-TLR9 and anti-µ chain Abs. 

Lipid rafts were enriched in fraction 11, as depicted by staining with 

cholera toxin B (CTB). B. Densitometric analyses (mean±SD of 3 

experiments). C. Co-localization (yellow color) of TLR9 (green color) 

and BCR or CTB (red color) before and after BCR stimulation. 

Confocal microscopy analysis was performed after staining of B cells 

with anti-TLR9 Ab revealed with FITC-conjugated anti-Ig and with 

anti-IgM Ab revealed with TRITC-conjugated anti-Ig or with TRITC-

conjugated CTB. 
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Figure 3 TLR9-independent binding of CpG-B on the B cell surface. A. 

Flow cytometry analysis of CpG-B binding on the surface of B cells 

after incubation at 4°C of different concentrations (0.3µM, 1µM and 

3µM) of FITC-conjugated CpG-B. B. Confocal microscopy analysis 

of B cells stained at 4°C with FITC-conjugated CpG-B and anti-TLR9 

Ab revealed with TRITC-conjugated anti-Ig.  

Figure 4 Differential responses of B cells after cell surface TLR9 or endosomal 

TLR9 stimulation. B cells were stimulated or not with 10µg/ml anti-

IgM Ab with 100U/ml IL-2 in the presence or absence of 10µg/ml 

anti-TLR9 Ab or 0.25µM CpG-B. A. After stimulation of 3 and 5 

min, total B cell lysates were prepared for Western blot analysis using 

anti-phosphotyrosine or anti-phospho ERK Abs. Detection of �-actin 

served as control. A representative experiment is shown. B. After 24 

hours of stimulation, induction of CD25 expression on B cells was 

evaluated by flow cytometry using FITC-conjugated anti-CD25 Ab, * 

P<0.05, (mean±SD of 6 experiments). C. After 4 days of stimulation, 

the proliferative response was determined on flow cytometer by the 

dilution of CFSE expression from cells stained with CFSE before 

stimulation. Representative experiments are shown where dotted 

histograms correspond to the staining of unstimulated B cells.  

Figure 5 Cell surface TLR9 stimulation inhibits endosomal TLR9 

responses. B cells were stimulated with 0.25µM CpG-B with or 

without 10µg/ml anti-TLR9 Ab in the presence or absence of 

10µg/ml anti-IgM Ab with 100U/ml IL-2. A. CD25-induced 

expression was determined by flow cytometry using FITC-conjugated 

anti-CD25 Ab after 24 hours, *P<0.05, (mean±SD of 6 experiments). 

B. Proliferation was evaluated after 4 days on flow cytometer by the 

dilution of CFSE expression in B cells stained before stimulation. A 

representative experiment is shown where dotted histograms 

correspond to CFSE staining of unstimulated cells. C. Cell surface 
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TLR9 inhibitory effect on proliferation was expressed as the 

percentage of inhibition relative to B cells cultured without anti-TLR9 

Ab. 
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Figure 3
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Figure 4
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III. GENERAL DISCUSSION 
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Our study deals with various aspects of immunology and autoimmunity 

starting from the implication of the B cell survival factor BAFF, and its receptor BR3 in EC 

survival to the identification of a new splice variant of BAFF. We also focused on B cell 

biology and the functions of TLRs and showed the presence of TLR9 on the plasma 

membrane of B cells and its effect on the TLR9-induced B cell response.  

In the first part, we showed that ECs can express BAFF and its receptor BR3. 

BR3 modulates the survival of ECs and this phenomenon is PKC� dependent. We also 

showed that different forms of BAFF are implicated in the survival of EC mediated by BR3, 

suggesting that differently glycosylated or non-glycosylated forms are present and act 

differently.  

The second study deals with the functions of a newly identified transcriptional 

variant of BAFF. This variant lacks the exon 4 in humans. The exon 4 of the BAFF gene in 

humans shares a similarity with the exon 5 in mice. We also observed this transcriptional 

variant in mice in which the exon 5 had been spliced out. The mechanism of splicing 

regarding the formation of this new splice variant was also studied in details. We reported 

that �4BAFF acts, in association with p50 from the NF-�B pathway, as a transcription factor 

for its own parent gene and that �4BAFF expression is required for regulatory B cell 

functions. 

The last part of our study shows the presence of TLR9 on the plasma 

membrane of B cells. Both the full form and the active cleaved form of TLR9 were found on 

the plasma membrane. A study identified that the cell surface TLR9 could act as a co-

receptor of BCR and modulate the BCR-activated B cell response. The cell surface TLR9 

plays the role of a negative regulator of the endosomal TLR9-induced human B cell response. 

However, the ligand of TLR9 at the cell surface is still not identified as CpG-B, the well-

known ligand for endosomal TLR9, and does not bind to the cell surface TLR9. 

In the first part of our study we investigated the role of BR3 and BAFF on EC 

survival. This is the first time that BR3 is implicated in the survival of epithelial cells. BAFF 

interacts with three receptors of the TNF family: BAFFR/BR3 (Thompson, Bixler et al. 2001; 

Yan, Brady et al. 2001), BCMA (Gras, Laabi et al. 1995) and TACI (von Bulow and Bram 

1997). However, additional evidence suggests that BR3 is the main receptor used by BAFF to 

maintain its survival function. Indeed, BR3 knock-out mice display far less peripheral B cells 
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and a decreased production of circulating immunoglobulins which is also the case in BAFF 

knock-out mice (Sasaki, Casola et al. 2004). Mice lacking both TACI and BCMA do not 

exhibit a significant loss of B cells (Shulga-Morskaya, Dobles et al. 2004). In addition, the 

interaction between BR3 and BAFF is also important for the survival of other cell types. 

Neuronal cells express both BAFF and its receptor BR3. In neuronal cells, BR3 deficiency 

reduces the survival of neuronal cells (Tada, Yasui et al. 2013). Thus, it is clear that different 

cells express BAFF and its receptor BR3 and that the interaction of BAFF with this receptor 

modifies the survival properties of these different cells. Indeed, we also observed that the 

SGEC from SS patients and the EC lines express BAFF and its receptor BR3. However, the 

expression of other BAFF receptors, such as BCMA and TACI, was not observed in both SS 

patients and HSG cells, suggesting that BR3 is the only BAFF receptor expressed by ECs. 

However, BR3 expression by the EC is not related to SS because we also observed BR3 

expression in healthy controls. Inhibiting the function of BR3 by BR3-specific siRNA results 

in increase of apoptosis and a reduced proliferation in ECs. 

The protein kinase C (PKC) is a family of proteins that acts as a major 

regulator of cell death, tumor progression and cell proliferation. PKC� has long been 

implicated in the apoptosis process of different cells (Basu 2003; Griner and Kazanietz 2007). 

PKC� needs to be cleaved catalytically to become active and to induce apoptosis (LaGory, 

Sitailo et al. 2010). The intracellular localization of PKC� is essential because it enables its 

ability to induce apoptosis through distinct signalling pathways. Depending on the cell types, 

and apoptotic stimuli PKC� translocates to different subcellular organelles (Brodie and 

Blumberg 2003). PKC� translocated to the mitochondria or the nucleus induces apoptosis. On 

the contrary, PKC� localization in the endoplasmic reticulum protects against apoptosis 

(Gomel, Xiang et al. 2007). The tyrosine phosphorylation of PKC� is crucial for regulating its 

nuclear localization and its proteolytic cleavage. Two tyrosine phosphorylation sites in the 

regulatory domain and two near the caspase cleavage sites have been shown to facilitate 

PKC� nuclear translocation and proteolytic cleavage respectively (Kaul, Anantharam et al. 

2005; DeVries-Seimon, Ohm et al. 2007). PKC� possesses a nuclear localization sequence 

and the nuclear localization of PKC� from the cytoplasm is required to induce apoptosis 

(DeVries, Neville et al. 2002). The translocation of PKC� to the nucleus induces the 

apoptosis of cells in different ways; the interaction of the DNA-dependent protein kinase 

(DNA-PK) with PKC� being one of them. Apoptosis can also occur when activated PKC� 

phosphorylates DNA-PK that gets disassociated from DNA. This inhibits the repair of the 
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DNA and induces DNA fragmentation (Bharti, Kraeft et al. 1998). PKC� has been shown to 

act as a lamin kinase acting on lamin B, thus contributing to the disassociation of nuclear 

lamina during cell apoptosis (Cross, Griffiths et al. 2000). Different studies show that PKC� 

regulates p53 levels by increasing the transcription of the p53 gene and by phosphorylating 

p53, which is important for p53-mediated apoptosis (Abbas, White et al. 2004; Yoshida, Liu 

et al. 2006). 

As in other cell types, PKC� also induces apoptosis in ECs. ECs from the 

parotid glands of PKC�-/- 
mice show significantly decreased apoptosis after stimulation with 

genotoxins. Moreover, reintroducing wild-type PKC� restores the apoptosis procedure. The 

parotid gland ECs from PKC�-/- 
mice showed a decrease in cytochrome c release along with 

poly (ADP-ribose) polymerase (PARP) cleavage and caspase 3 activation (Humphries, 

Limesand et al. 2006). 

In our report, we observed an increase of EC apoptosis when BR3 was 

blocked with anti-BR3 antibody. The same phenomenon was observed when siRNA specific 

to BR3 was used to inhibit the expression of BR3. We also observed increased translocations 

of PKC� to the nucleus of EC in BR3-blocking conditions which was associated with 

increased apoptosis in epithelial cells. In line with previous results, we also observed an 

increased translocation of PKC� into the nucleus in BR3-blocking conditions. The effect of 

BAFF on PKC� translocation has been previously described in B cells, where BAFF was 

reported to prevent translocation and accumulation of PKC� to the nucleus (Mecklenbrauker, 

Kalled et al. 2004). Our result is in complete agreement with this BAFF induced inhibition of 

the translocation of PKC� into the nucleus because in EC, we observed that the interaction 

between BAFF and BR3 maintains PKC� outside the nucleus. 

Previous results from our laboratory showed that B cells can induce the 

apoptosis of ECs in B cell- EC co-culture model. This EC apoptosis requires the interaction 

between B cells and ECs. This interaction induces the caspase 3 activation, translocates 

PKC� to the nucleus, promotes the phosphorylation of Histone H2B and subsequently results 

in EC apoptosis (Varin, Guerrier et al. 2011). In SS, the lesions of exocrine glands consist of 

lymphocytic infiltration including B cell infiltrations. Thus, it is possible that infiltrating B 

cells expressing BAFF compete with EC expressing BR3 to interact with BAFF. Moreover it 

might also be possible that, in a co-culture model, the EC apoptosis induced by B cells is 

caused by a defective signal received by the BR3 expressed on ECs, leading to PKC� 
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activation and to its nuclear localization. 

Earlier, it has been shown that BAFF performs most of its activity when in 

soluble form/through its soluble forms and, in this way, regulate the survival of B cells 

(Stadanlick and Cancro 2008). However, the glycosylation of BAFF makes it harder to detect 

in serum which could explain why, some autoimmune disease patients, BAFF levels in serum 

remain within or below normal range (Pers, Devauchelle et al. 2007). Indeed, reports 

suggests that BAFF could assume unpredictable glycoforms (Bossen and Schneider 2006), an 

alternative variant such as �3 (Gavin, Ait-Azzouzene et al. 2003) and intergenic splice 

variants isoforms (Pradet-Balade, Medema et al. 2002). In a report from our group, Le Pottier 

et al. showed that polyclonal antibodies are more efficient than monoclonal antibodies in 

capturing the various forms of BAFF in serum. Namely, polyclonal antibodies recognize both 

the glycosylated and the non-glycosylated forms of BAFF. These reports are further 

strengthened by our observations.  

In addition, we observed that some but not all forms of BAFF are involved in 

the survival of ECs. The rate of survival of the ECs decreases when BAFF is neutralized 

through the use of a polyclonal rabbit anti-BAFF antibody. However, the neutralization of 

BAFF by a mouse anti-BAFF monoclonal antibody does not have any effect on BAFF-

mediated EC survival in our model. This observation supports the theory that different forms 

of BAFF have different effects. In our model, the BAFF form involved in EC survival was 

not neutralized by the mouse anti-BAFF monoclonal. Hence, we did not observe any change 

in EC proliferation. Rather, when BAFF was neutralized by a polyclonal rabbit anti-BAFF 

antibody we observed a decrease in the survival of epithelial cells. 

These differential effects of the various forms of BAFF were further 

reinforced with the observation that in EC supernatant, the mouse anti-BAFF monoclonal 

antibody detects only one form of BAFF present at 21 kDa whereas the polyclonal rabbit 

anti-BAFF antibody detects an additional form of BAFF at 17 kDa along with the 21 kDa 

form. It seems that the BAFF form observed at 17 kDa is responsible for the BR3 mediated 

survival of ECs. However, a detailed analysis of this form and its glycosylation status is 

required / this form and its glycosylation status need to be further evaluated. 

BAFF production by SGECs was also shown previously. Moreover, this 

production of BAFF by ECs can induce the activation of B cells and the secretion of auto-
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antibody. The local production of BAFF by ECs also influences the disease by altering B cell 

differentiation and the formation of ectopic germinal-center-like structures (Groom, Kalled et 

al. 2002; Jonsson, Szodoray et al. 2005). In SS, it has been already established that viral 

infection is associated with the disease. Indeed, ECs display different TLRs, and stimulation 

with ds RNA and poly (I: C) increases BAFF mRNA and protein in SGECs. Still, the specific 

signaling pathways leading to BAFF production by epithelial cells remain unidentified. 

Nevertheless, BAFF production has been shown to be partially dependent on signalling 

through the TLR and IFN pathways (Ittah, Miceli-Richard et al. 2008). Our report also shows 

the production of BAFF by SGECs, and the expression of the BAFF-receptor. This is also the 

first time that different forms of BAFF have been shown to act differently after interacting 

with BR3. 

In our report we observed the sheer importance of the interaction between 

BR3 and the specific forms of BAFF in the survival of ECs. This is particularly true in SS. 

Indeed, EC play an important role in the pathogenesis. Increased EC apoptosis and various 

apoptosis-related molecules such as FAS-FASL, perforin, granzymes have already been 

detected within minor SG lesions of SS patients (Polihronis, Tapinos et al. 1998). This 

increased apoptosis generates an autoimmune response in SS. Because of the apoptosis, 

nuclear antigens such as autoantigenic Ro(SSA) and La(SSB) ribonucleoproteins are exposed 

to the surface leading to autoantibody responses (Ohlsson, Jonsson et al. 2002).  

Rituximab treatment leads to the depletion of B cells in the peripheral blood 

and SGs of SS patients (Pijpe, van Imhoff et al. 2005; Devauchelle-Pensec, Pennec et al. 

2007). This treatment was shown to increase BAFF levels (Lavie, Miceli-Richard et al. 

2007). The increased BAFF levels may be attributed to B cell depletion in the peripheral 

blood and the ensuing lack of receptors for binding. Since rituximab treatment also causes B 

cell depletion in SGs, (Daridon, Devauchelle et al. 2007) it could occasion an absence of 

competition between B cells and ECs for BAFF. In that situation, BAFF could act as an anti-

apoptotic factor for ECs by interacting with the BR3 present on ECs which would result in 

EC survival. 

Another important aspect in our study involves the treatment of SS patients by 

anti-BAFF immunotherapy such as Belimumab. Belimumab is a recombinant fully human 

IgG1-� mAb targeting only soluble BAFF (Fairfax, Mackay et al. 2012). This drug has 

completed phase III trials and has been approved for SLE treatment (Navarra, Ishimori et al. 
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2011). It is currently under phase II clinical trials in SS (clinicaltrials. gov identifier 

NCT01160666). In our report, we observed that different forms of BAFF play different roles. 

Consequently, it would be important to evaluate the forms of BAFF that are recognized by 

Belimumab prior to its use in anti-BAFF immunotherapy. Depending on the required forms, 

anti-BAFF treatment could also deprive ECs in BAFF and favors apoptosis.  

The BAFF gene encodes 4 different mRNAs: the well-characterized full-

length BAFF, a longer variant called �BAFF, a shorter variant designated �3BAFF and a 

novel transcriptional variant that was recently identified by our group: �4BAFF, in which 

exon 4 is excised. (Gavin, Ait-Azzouzene et al. 2003). The larger transcript �BAFF was 

identified in the human cell lines HL-60 and U937, but sequencing proved this transcript to 

be non-functional because of the incomplete splicing of the intronic sequences that lead to the 

formation of a premature stop codon (Gavin, Ait-Azzouzene et al. 2003). The smaller 

transcript �BAFF, which lacks exon 3 in humans (exon 4 in mice), appears to negatively 

regulate BAFF in mice, by forming non-functional heterotrimers with the full-length BAFF 

(Gavin, Duong et al. 2005). It has been shown that �BAFF in mice was indeed able to oppose 

endogenous BAFF functions in an in vivo setting and when �BAFF is overexpressed under 

the control of a human CD68 promoter, a significant phenotype is obtained in independent 

transgenic lines, with reduced follicular and MZ B cell numbers. We demonstrated that 

�4BAFF was induced by IFN-�, modifying the function of SC35 (a member of the SR 

protein family) and favoring the increase of hnRNP C1/C2 that in turn regulates SC35. Our 

work aimed to understand the functional role of �4BAFF. We demonstrated that the 

glycosylated form of �4BAFF acts as a transcription factor, upregulating a large number of 

genes. 

We also demonstrated for the first time that �4BAFF, a splice variant of 

BAFF lacking exon 4, can function as a transcription factor for its own parent gene. �4BAFF 

also induces the expression of many genes involved in the immune response. Different TLRs 

(-2, -6, -9 and -10) are increased. AICDA (AID gene) and miR-155 are also shown to be 

increased after �4BAFF transfection. These genes have critical roles in the establishment and 

control of tolerance (Isnardi, Ng et al. 2008; Tili, Croce et al. 2009; Meyers, Ng et al. 2011). 

Indeed, TLR ligation results in the production of pro-inflammatory cytokines, increased 

antigen expression, antibody production, proliferation and differentiation in B cells (Huggins, 

Pellegrin et al. 2007; Jiang, Lederman et al. 2007). As �4BAFF increases the expression of 
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BAFF, the effect of �4BAFF in various autoimmune diseases becomes even more significant 

because BAFF acts as one of the determinants in the development of autoimmune disorders 

(Mackay, Silveira et al. 2007). 

BAFF possesses two potential N-glycosylation sites but only the residue N
124

 

is glycosylated (Schneider, MacKay et al. 1999). The importance of the N-glycosylation 

status for BAFF has been already described, particularly for the �BAFF variant (Gavin, Ait-

Azzouzene et al. 2003), but also for the full-length form of BAFF in the serum of patients 

with autoimmune diseases (Le Pottier, Bendaoud et al. 2009). We also previously observed 

that �4BAFF was located in the endoplasmic reticulum and the nucleus and that the 

nonglycosylated form of �4BAFF was not found in the nucleus. This observation suggests 

that the glycosylation status of �4BAFF is an important factor that contributes to its nuclear 

entry. It is also worth mentioning that the glycosylation is an important factor for the 

activation of transcription factors as shown by Chan et al. In their work, they observed that 

unglycosylated CREB-H (cyclic AMP-responsive element binding protein H) is maintained 

in an inactive form in the endoplasmic reticulum (Chan, Mak et al. 2010). 

The splicing efficiency of individual exons is determined by multiple 

mechanisms including cell-specific patterns or in response to acute stimulation (Black 2003). 

IFN-� stimulation for 24h was found to induce �4BAFF expression. The cytokine-mediated 

alternative splicing now clearly emerges as a potential regulatory mechanism, one that can 

operate on different time scales depending on mRNA and protein stability. The effects of 

IFN-� on the alternative splicing phenomena have been described in other genes. For 

example, the isoforms of human tryptophanyl-tRNA synthetase (TrpRS) are regulated in vivo 

by IFN-� through alternative mRNA splicing (Liu, Wang et al. 2004). Furthermore, IFN-� 

can modify the global expression pattern of genes, including spliced variants. Ortis et al. 

(Ortis, Naamane et al. 2010) showed that, in purified rat pancreatic cells, IFN-�, in 

association with other cytokines (IL-1� and TNF-�), modified the expression of more than 20 

genes involved in RNA splicing. It also induced changes in the alternative splicing of more 

than half of the cytokine-mediated genes, showing that these cytokines could affect the 

alternative splicing in a tissue-specific manner.  

In our report, we observed that the transfection of �4BAFF increases the 

expression levels of full-length BAFF. We also observed the presence of the protein in the 

nucleus of B cells, which led to the working hypothesis that it could act as a transcription 
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factor. Inorder to operate properly, in eukaryotic cells, the genetic material and the 

transcriptional system in the nucleus are separated from the translational and metabolic 

system of the cytoplasm by the nuclear membrane. If a protein is to act as a transcriptional 

regulator it must be able to penetrate the nuclear membrane to reach the nucleus. Nuclear 

pore complexes present on the nuclear membrane allow the passive transport of ions and 

small proteins (Lange, Mills et al. 2007). The transport of proteins to the nucleus needs the 

help of specific soluble career proteins called importeins (Gorlich, Prehn et al. 1994). These 

soluble proteins bind to the nuclear localization sequence (NLS) that is exposed on the 

protein surface and subsequently help the transport of proteins to the nucleus (Lange, Mills et 

al. 2007). However, the �4BAFF protein does not express any NLS sequence, suggesting that 

it cannot bind to importeins and reach the nucleus. However, in our study, we found that 

�4BAFF can bind to the consensus NF-�B binding site (-1040-840) of the BAFF promoter. 

Furthermore, our results show that the NF-�B component p50 helps the translocation of 

�4BAFF to the NF-�B binding site on the BAFF promoter and acts as a transcription factor. 

This interaction probably enables the localization of �4BAFF into the nucleus. 

The interactions between the NF-�B dimers or monomers and the 

heterologous transcription factors through direct binding have been already described and 

markedly influence the transcriptional responses (Oeckinghaus, Hayden et al. 2011). NF-�B 

p50 lacks a transactivation domain and therefore usually forms a heterodimer to be 

transcriptionally active (Ghosh, May et al. 1998). We discovered that the �4BAFF sequence 

contains a perfect match between aa145 and aa153, corresponding to the 9aa transactivation 

domain, and is therefore able to form a heterodimer transcriptionally active with p50. In vitro 

studies have shown that p50 can associate with other transcriptional activators such as Bcl-3 

(Fujita, Nolan et al. 1993) or p300 (Deng and Wu 2003) to activate transcription. NF-kB p50 

can also form a complex with the transcriptional co-activator CREB to activate IL-10 

transcription in macrophages (Cao, Zhang et al. 2006). Interestingly, among the genes that 

are upregulated after �4BAFF transfection, the promoter of the miR-155-encoding BIC gene 

contains two putative NF-�B sites able to bind in vitro the NF-�B proteins p50 and p65 in 

nuclear extract from MC3 cells (Gatto, Rossi et al. 2008). Furthermore, p50 plays a critical 

role in the induction of the AID gene expression because AID induction in B cells is impaired 

in p50-/- mice (Snapper, Zelazowski et al. 1996). Finally, by blocking the ubiquitinination of 

p50, Bcl-3 stabilizes a p50 complex that inhibits the TLR gene transcription and limits the 

strength of the TLR responses (Carmody, Ruan et al. 2007). 
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Studies on murine colitis and experimental autoimmune encephalomyelitis 

(EAE) have demonstrated that regulatory B cells leads to the generation of Treg cells which 

in turn regulate T cell-dependent immune responses. However, B cells have also been shown 

to directly inhibit T cell proliferation through cell to cell contact, even leading to anergy, or 

apoptosis of T cells, and the modulation of the inflammatory response. In this regard, CD40 

engagement on B cell appears to be a requisite for the induction of functional Breg cells in 

mice. 

In human, stimulation of CD40 brings about the development of B cells with 

suppressive properties. Furthermore, signalling in the absence of CD40 makes B cells unable 

to regulate inflammatory response (Mizoguchi, Mizoguchi et al. 1997; Fillatreau, Sweenie et 

al. 2002). TLR9 was also described as a prerequisite to induce B cell regulation of 

inflammatory responses (Lenert, Brummel et al. 2005). We have recently observed that 

combination of CD40 and TLR9 associated stimulation can successfully induce functional 

regulatory B cells (Lemoine, Morva et al. 2011). In our current finding, we observe that 

TLR9 and CD40 stimulation could induce �4BAFF expression. This observation led us to 

hypothesize that there must be a direct connection between �4BAFF expression and the 

regulatory properties of B cell. 

In accordance to our hypothesis, reducing the expression of �4BAFF by 

si�4BAFF resulted in a marked decrease of TGF-� production and regulatory T cell 

induction. Neutralizing �4BAFF in B cells also resulted in a significant decrease on the 

inhibition of T cell proliferation. However, IL-10 production was not downregulated after 

�4BAFF inhibition. This result is in accordance with our previous results showing that 

human regulatory B cells can inhibit the proliferation of T cells through a mechanisms 

independent of IL-10 but through the induction of Foxp3 regulatory T cells, while the Th1 

differentiation is controlled by IL-10-dependent signalling (Lemoine, Morva et al. 2011). It 

has been observed that human tonsil B cells constimulated with CpG ODNs and CD40L have 

a sigh proliferative response and produce large quantities of IL-10 and show IL-10-dependent 

regulatory properties (Jamin, Morva et al. 2008). Although regulatory B cell efficiency was 

mainly associated to their production of IL-10 (Mizoguchi, Mizoguchi et al. 2002), there is 

also strong evidence that part of the immunosuppressive function of regulatory B cells are 

mediated through the induction of regulatory T cells (Wei, Velazquez et al. 2005). 
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The pivotal role of �4BAFF as a transcription factor that controls BAFF 

expression and the control of immune response hold immense promise for the clinic. The 

potential for �4BAFF to be used as a therapeutic target will need further investigation into 

the scope of its role and potential as a transcriptional regulator of other genes, with 

ramifications for disease outcome and treatment strategies aimed at controlling BAFF 

production in autoimmunity and cancer. 

Hence, it is our hypothesis that �4BAFF may very well play a pivotal role in 

the control of BAFF expression. Further studies regarding the function of �4BAFF and its 

role in regulating disease outcomes will be of immense interest to the autoimmune field. 

Attempting to discover the exact ways to control the ratio of BAFF to �4BAFF will be a 

fruitful avenue of future research.  

In the third part of our study, we focused on B cells and TLR9. We showed 

that B cells express both the complete and the potentially active forms of TLR9 on their 

plasma membrane, though the specific ligand for the membrane-bound TLR9 has yet to be 

discovered. Indeed, we observed that TLR9 expression on the plasma membrane of B cells 

does not interact with CpG-B, a known synthetic ligand for TLR9 (Bauer, Kirschning et al. 

2001). TLR9 recognizes microbial CpG DNA. The stimulatory effect of bacterial CpG-DNA 

is due to the presence of unmethylated CpG dinucleotides in a particular base context named 

CpG-motif (Krieg, Yi et al. 1995; Hemmi, Takeuchi et al. 2000). The interaction between 

TLR9 and its ligand needs endocytosis of the ligand to the endosomal or lysosomal vesicles 

formation. Moreover, it has been proven that CpG-DNA signalling through TLR9 depends on 

the acidification and the maturation of endosomes (Yi, Tuetken et al. 1998);(Ahmad-Nejad, 

Hacker et al. 2002). Thus, the reduced pH conditions (6.5-4.5) in the endosomes and 

lysosomes are actually perfect for this interaction (Mellman, Fuchs et al. 1986). There might 

be different theories that could account for the non-binding of CpG-DNA with the cell 

surface TLR9. It is likely that the pH of the extracellular environment is not sufficiently acid 

to initiate the interaction between Cpg-ODN ligands and the cell surface TLR9. Moreover, it 

is also possible that the cell surface TLR9 interacts with different ligands and initiates 

signalling mechanisms that differ from the endosomal ones. This second possibility is 

strengthened by two facts. Earlier we showed that, in intestinal ECs, the stimulation of 

basolateral TLR9 induces the activation of the NF-�B pathway, though the apical TLR9 

signalling induces the accumulation of ubiquitinated I�B� in the cytoplasm, thereby 
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inhibiting the activation of NF-�B (Lee, Mo et al. 2006). Later, it was identified that this 

polarization of TLR9 in turn contributes to limit the inflammatory responses in bacterial-

enriched condition, where apical TLT9 stimulation delivers a negative signal in balance with 

the activation signals triggered by basolateral TLR9 stimulation; thus contributing to 

homeostasis (Lee, Gonzales-Navajas et al. 2008). Signalling through TLR4 also varies 

according to its localization. Cell-surface TLR4 activates the TIRAP-MYD88 signalling at 

the plasma membrane, whereas endocytosed TLR4 activates the TRAM-TRIF signalling 

cascade (Kagan, Su et al. 2008). Thus, in our observation, it is possible that cell surface 

TLR9 interacts with different ligands and induces signalling through other pathways than the 

endosomal TLR9 pathways. 

The possibility that a cell surface TLR9 signal through different pathways is 

further strengthened by our observation that B cell receptor (BCR) and surface TLR 

stimulation do not activate B cells. The proliferative response of B cells also differs 

according to the localization of TLR9. The stimulation of cell surface TLR9 with anti-TLR9 

antibody and the co-stimulation with BCR and IL-2 do not induce proliferation, suggesting 

that the cell surface TLR9 differs from the endosomal TLR9 and does not act synergistically 

with the BCR to promote the B cell response. In contrast, reports indicate that endosomal 

TLR9 signals synergize with BCR signals and increase B cell activation, and proliferation 

(Busconi, Bauer et al. 2007). 

TLR 9 has been shown to play a contradictory role. An in vivo study showed 

that TLR9 is responsible for the production of specific Abs in lupus prone mice and is 

correlated with increased disease severity (Christensen, Kashgarian et al. 2005; Wu and Peng 

2006). The production of anti-DNA antibody is ascribed with the expression of TLR9 by B 

cells (Nickerson, Christensen et al. 2013). Moreover, in lupus, the tolerance-breaking of 

autoreactive B cells was observed because nucleic acids containing self-antigens, activate 

TLR9 help from the BCR (Christensen and Shlomchik 2007). Although TLR9 has been 

shown to increase anti-DNA-Ab generation in mice model of lupus, other studies have shown 

that TLR9 has no effect in elevated diseased conditions (Yu, Wellmann et al. 2006; 

Nickerson, Christensen et al. 2010) This tend to suggest a dual function of TLR9. Indeed, 

recent findings have shown that, on one hand, TLR9 is required to activate anergic self-

reactive anti-DNA B cells but, on the other hand, controls self-tolerance by restricting their 

survival (Nickerson, Christensen et al. 2013). These reports indicate that there might be some 
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kind of regulating mechanism that controls the function of TLR9 in different autoimmune 

reactions. Indeed, in our report we observed that the engagement of the cell surface TLR9 

inhibits the activation of B cells resulting from the endosomal TLR9 signalling. Moreover, 

the synergistic effect of the endosomal TLR9 and of the BCR-induced proliferation was also 

inhibited when the cell surface TLR9 was stimulated; indicating that the cell surface TLR9 

acts as a negative regulator of the endosomal TLR9-induced human B cell response. This 

might be important in the context of autoimmunity where the endosomal and plasma 

membrane TLR9 functions could be regulate the final shaping of the autoreactive B cell pool 

in so doing, influence the ultimate behavior of these autoreactive B cells.  

To conclude, our results can open new avenues in biology. The presence of 

both the full and the active form of TLR9 along with the various ways they operate from 

endosomal TLR9 can open new directions in TLR9 signalling. Our preliminary data suggest 

that the cell surface TLR9 negatively regulates the function of the endosomal TLR9. 

Recently, the dual self-contradictory role of TLR9 has been shown. Not only is TLR9 is 

required for the activation of self-reactive anti-DNA B cells, it also elevates tolerance by 

restricting their survival (Nickerson, Christensen et al. 2013). It might also possible that cell 

surface and endosomal TLR9 signalling counterbalance one another to determine the final 

behavior of the autoreactive B cells. However, further investigations are needed to identify 

the detailed functions and signalling of cell surface- expressed TLR9 and their impact. It is 

also surprising that CpG B, the known ligand of endosomal TLR9 does not bind to the cell 

surface TLR9. It will be of great interest to find out the exact ligand for membrane-bound 

TLR9 to facilitate different in vitro studies. TLR9 has long been implicated in various 

autoimmune diseases. TLR9 knock-out mice are severely affected by nephritis and skin 

diseases (Christensen, Shupe et al. 2006). So, it will be rewarding to investigate the role of 

the membrane-expressed TLR9 on different autoimmune diseases. Since the membrane-

expressed TLR9 negatively regulate the role of the endosomal TLR9, it is also possible that 

defaults in the cell surface TLR9 signaling could promote autoimmune reactions and thus 

could be used as a therapeutic target. 



 

 -179- 

IV. REFERENCES 



 

 -180- 

 

Abbas, T., D. White, et al. (2004). "Inhibition of human p53 basal transcription by down-

regulation of protein kinase Cdelta." J Biol Chem 279(11): 9970-9977. 

Abdel-Hamid, S. M. and H. N. Al-Lithy (2011). "B cell activating factor gene 

polymorphisms in patients with risk of idiopathic thrombocytopenic purpura." Am J 

Med Sci 342(1): 9-14. 

Abdelsadik, A. and A. Trad (2011). "Toll-like receptors on the fork roads between innate and 

adaptive immunity." Hum Immunol 72(12): 1188-1193. 

Abdulkhalek, S., M. Guo, et al. (2012). "G-protein coupled receptor agonists mediate Neu1 

sialidase and matrix metalloproteinase-9 cross-talk to induce transactivation of 

TOLL-like receptors and cellular signaling." Cell Signal 24(11): 2035-2042. 

Abdulkhalek, S. and M. R. Szewczuk (2013). "Neu1 sialidase and matrix metalloproteinase-9 

cross-talk regulates nucleic acid-induced endosomal TOLL-like receptor-7 and -9 

activation, cellular signaling and pro-inflammatory responses." Cell Signal 25(11): 

2093-2105. 

Abu-Helu, R. F., I. D. Dimitriou, et al. (2001). "Induction of salivary gland epithelial cell 

injury in Sjogren's syndrome: in vitro assessment of T cell-derived cytokines and Fas 

protein expression." J Autoimmun 17(2): 141-153. 

Agrawal, S. and S. Gupta (2011). "TLR1/2, TLR7, and TLR9 signals directly activate human 

peripheral blood naive and memory B cell subsets to produce cytokines, chemokines, 

and hematopoietic growth factors." J Clin Immunol 31(1): 89-98. 

Ahmad-Nejad, P., H. Hacker, et al. (2002). "Bacterial CpG-DNA and lipopolysaccharides 

activate Toll-like receptors at distinct cellular compartments." Eur J Immunol 32(7): 

1958-1968. 

Al-Hashimi, I., S. Khuder, et al. (2001). "Frequency and predictive value of the clinical 

manifestations in Sjogren's syndrome." J Oral Pathol Med 30(1): 1-6. 

Allen-Petersen, B. L., M. R. Miller, et al. (2010). "Loss of protein kinase C delta alters 

mammary gland development and apoptosis." Cell Death Dis 1: e17. 

Alsaleh, G., L. Messer, et al. (2007). "BAFF synthesis by rheumatoid synoviocytes is 

positively controlled by alpha5beta1 integrin stimulation and is negatively regulated 

by tumor necrosis factor alpha and Toll-like receptor ligands." Arthritis Rheum 

56(10): 3202-3214. 

Amith, S. R., P. Jayanth, et al. (2009). "Dependence of pathogen molecule-induced toll-like 

receptor activation and cell function on Neu1 sialidase." Glycoconj J 26(9): 1197-

1212. 



 

 -181- 

Avalos, A. M., K. Kiefer, et al. (2010). "RAGE-independent autoreactive B cell activation in 

response to chromatin and HMGB1/DNA immune complexes." Autoimmunity 43(1): 

103-110. 

Avery, D. T., J. I. Ellyard, et al. (2005). "Increased expression of CD27 on activated human 

memory B cells correlates with their commitment to the plasma cell lineage." J 

Immunol 174(7): 4034-4042. 

Avery, D. T., S. L. Kalled, et al. (2003). "BAFF selectively enhances the survival of 

plasmablasts generated from human memory B cells." J Clin Invest 112(2): 286-297. 

Bacchelli, C., S. Buckridge, et al. (2007). "Translational mini-review series on 

immunodeficiency: molecular defects in common variable immunodeficiency." Clin 

Exp Immunol 149(3): 401-409. 

Baiyee, E. E., S. Flohe, et al. (2006). "Expression and function of Toll-like receptor 9 in 

severely injured patients prone to sepsis." Clin Exp Immunol 145(3): 456-462. 

Baker, K. P., B. M. Edwards, et al. (2003). "Generation and characterization of LymphoStat-

B, a human monoclonal antibody that antagonizes the bioactivities of B lymphocyte 

stimulator." Arthritis Rheum 48(11): 3253-3265. 

Balazs, M., F. Martin, et al. (2002). "Blood dendritic cells interact with splenic marginal zone 

B cells to initiate T-independent immune responses." Immunity 17(3): 341-352. 

Barbalat, R., S. E. Ewald, et al. (2011). "Nucleic acid recognition by the innate immune 

system." Annu Rev Immunol 29: 185-214. 

Barr, T. A., S. Brown, et al. (2007). "TLR-mediated stimulation of APC: Distinct cytokine 

responses of B cells and dendritic cells." Eur J Immunol 37(11): 3040-3053. 

Barrat, F. J., T. Meeker, et al. (2005). "Nucleic acids of mammalian origin can act as 

endogenous ligands for Toll-like receptors and may promote systemic lupus 

erythematosus." J Exp Med 202(8): 1131-1139. 

Barton, G. M., J. C. Kagan, et al. (2006). "Intracellular localization of Toll-like receptor 9 

prevents recognition of self DNA but facilitates access to viral DNA." Nat Immunol 

7(1): 49-56. 

Basset, C., J. O. Pers, et al. (1997). "Practical usefulness of IgA-containing immune complex 

determination in the serum of patients with primary Sjogren's syndrome." Clin Exp 

Rheumatol 15(2): 157-161. 

Basu, A. (2003). "Involvement of protein kinase C-delta in DNA damage-induced apoptosis." 

J Cell Mol Med 7(4): 341-350. 



 

 -182- 

Batten, M., J. Groom, et al. (2000). "BAFF mediates survival of peripheral immature B 

lymphocytes." J Exp Med 192(10): 1453-1466. 

Bauer, S., C. J. Kirschning, et al. (2001). "Human TLR9 confers responsiveness to bacterial 

DNA via species-specific CpG motif recognition." Proc Natl Acad Sci U S A 98(16): 

9237-9242. 

Baumann, C. L., I. M. Aspalter, et al. (2010). "CD14 is a coreceptor of Toll-like receptors 7 

and 9." J Exp Med 207(12): 2689-2701. 

Bekeredjian-Ding, I., A. Doster, et al. (2008). "TLR9-activating DNA up-regulates ZAP70 

via sustained PKB induction in IgM+ B cells." J Immunol 181(12): 8267-8277. 

Bekeredjian-Ding, I. and G. Jego (2009). "Toll-like receptors--sentries in the B-cell 

response." Immunology 128(3): 311-323. 

Bekeredjian-Ding, I. B., M. Wagner, et al. (2005). "Plasmacytoid dendritic cells control 

TLR7 sensitivity of naive B cells via type I IFN." J Immunol 174(7): 4043-4050. 

Bell, J. K., G. E. Mullen, et al. (2003). "Leucine-rich repeats and pathogen recognition in 

Toll-like receptors." Trends Immunol 24(10): 528-533. 

Bendaoud, B., Y. L. Pennec, et al. (1991). "IgA-containing immune complexes in the 

circulation of patients with primary Sjogren's syndrome." J Autoimmun 4(1): 177-

184. 

Bernasconi, N. L., E. Traggiai, et al. (2002). "Maintenance of serological memory by 

polyclonal activation of human memory B cells." Science 298(5601): 2199-2202. 

Bettelli, E., Y. Carrier, et al. (2006). "Reciprocal developmental pathways for the generation 

of pathogenic effector TH17 and regulatory T cells." Nature 441(7090): 235-238. 

Bharti, A., S. K. Kraeft, et al. (1998). "Inactivation of DNA-dependent protein kinase by 

protein kinase Cdelta: implications for apoptosis." Mol Cell Biol 18(11): 6719-6728. 

Binard, A., V. Devauchelle-Pensec, et al. (2007). "Epidemiology of Sjogren's syndrome: 

where are we now?" Clin Exp Rheumatol 25(1): 1-4. 

Binard, A., L. Le Pottier, et al. (2009). "Is the blood B-cell subset profile diagnostic for 

Sjogren syndrome?" Ann Rheum Dis 68(9): 1447-1452. 

Bing, H., Y. Siyi, et al. (2010). "The use of anti-human T lymphocyte porcine 

immunoglobulin and cyclosporine a to treat patients with acquired severe aplastic 

anemia." Acta Haematol 124(4): 245-250. 



 

 -183- 

Bischof, D., S. F. Elsawa, et al. (2006). "Selective activation of TACI by syndecan-2." Blood 

107(8): 3235-3242. 

Black, D. L. (2003). "Mechanisms of alternative pre-messenger RNA splicing." Annu Rev 

Biochem 72: 291-336. 

Blair, P. A., K. A. Chavez-Rueda, et al. (2009). "Selective targeting of B cells with agonistic 

anti-CD40 is an efficacious strategy for the generation of induced regulatory T2-like 

B cells and for the suppression of lupus in MRL/lpr mice." J Immunol 182(6): 3492-

3502. 

Blair, P. A., L. Y. Norena, et al. (2010). "CD19(+)CD24(hi)CD38(hi) B cells exhibit 

regulatory capacity in healthy individuals but are functionally impaired in systemic 

Lupus Erythematosus patients." Immunity 32(1): 129-140. 

Bodmer, J. L., P. Meier, et al. (2000). "Cysteine 230 is essential for the structure and activity 

of the cytotoxic ligand TRAIL." J Biol Chem 275(27): 20632-20637. 

Boeglin, E., C. R. Smulski, et al. (2011). "Toll-like receptor agonists synergize with CD40L 

to induce either proliferation or plasma cell differentiation of mouse B cells." PLoS 

One 6(10): e25542. 

Bohnhorst, J. O., M. B. Bjorgan, et al. (2001). "Bm1-Bm5 classification of peripheral blood 

B cells reveals circulating germinal center founder cells in healthy individuals and 

disturbance in the B cell subpopulations in patients with primary Sjogren's 

syndrome." J Immunol 167(7): 3610-3618. 

Bossen, C., T. G. Cachero, et al. (2008). "TACI, unlike BAFF-R, is solely activated by 

oligomeric BAFF and APRIL to support survival of activated B cells and 

plasmablasts." Blood 111(3): 1004-1012. 

Bossen, C. and P. Schneider (2006). "BAFF, APRIL and their receptors: structure, function 

and signaling." Semin Immunol 18(5): 263-275. 

Botos, I., Z. Wu, et al. (2001). "Crystal structure of a cyclic form of bovine pancreatic trypsin 

inhibitor." FEBS Lett 509(1): 90-94. 

Bouaziz, J. D., S. Calbo, et al. (2010). "IL-10 produced by activated human B cells regulates 

CD4(+) T-cell activation in vitro." Eur J Immunol 40(10): 2686-2691. 

Boule, M. W., C. Broughton, et al. (2004). "Toll-like receptor 9-dependent and -independent 

dendritic cell activation by chromatin-immunoglobulin G complexes." J Exp Med 

199(12): 1631-1640. 

Boutsi, E. A., S. Paikos, et al. (2000). "Dental and periodontal status of Sjogren's syndrome." 

J Clin Periodontol 27(4): 231-235. 



 

 -184- 

Brayer, J. B., S. Cha, et al. (2001). "IL-4-dependent effector phase in autoimmune 

exocrinopathy as defined by the NOD.IL-4-gene knockout mouse model of Sjogren's 

syndrome." Scand J Immunol 54(1-2): 133-140. 

Brentano, F., O. Schorr, et al. (2005). "RNA released from necrotic synovial fluid cells 

activates rheumatoid arthritis synovial fibroblasts via Toll-like receptor 3." Arthritis 

Rheum 52(9): 2656-2665. 

Brodie, C. and P. M. Blumberg (2003). "Regulation of cell apoptosis by protein kinase c 

delta." Apoptosis 8(1): 19-27. 

Brummel, R. and P. Lenert (2005). "Activation of marginal zone B cells from lupus mice 

with type A(D) CpG-oligodeoxynucleotides." J Immunol 174(4): 2429-2434. 

Busconi, L., J. W. Bauer, et al. (2007). "Functional outcome of B cell activation by chromatin 

immune complex engagement of the B cell receptor and TLR9." J Immunol 179(11): 

7397-7405. 

Cachero, T. G., I. M. Schwartz, et al. (2006). "Formation of virus-like clusters is an intrinsic 

property of the tumor necrosis factor family member BAFF (B cell activating factor)." 

Biochemistry 45(7): 2006-2013. 

Cao, S., X. Zhang, et al. (2006). "NF-kappaB1 (p50) homodimers differentially regulate pro- 

and anti-inflammatory cytokines in macrophages." J Biol Chem 281(36): 26041-

26050. 

Capolunghi, F., S. Cascioli, et al. (2008). "CpG drives human transitional B cells to terminal 

differentiation and production of natural antibodies." J Immunol 180(2): 800-808. 

Carbonatto, M., P. Yu, et al. (2008). "Nonclinical safety, pharmacokinetics, and 

pharmacodynamics of atacicept." Toxicol Sci 105(1): 200-210. 

Carmody, R. J., Q. Ruan, et al. (2007). "Negative regulation of toll-like receptor signaling by 

NF-kappaB p50 ubiquitination blockade." Science 317(5838): 675-678. 

Cartegni, L., S. L. Chew, et al. (2002). "Listening to silence and understanding nonsense: 

exonic mutations that affect splicing." Nat Rev Genet 3(4): 285-298. 

Castigli, E., S. A. Wilson, et al. (2005). "TACI is mutant in common variable 

immunodeficiency and IgA deficiency." Nat Genet 37(8): 829-834. 

Chan, C. P., T. Y. Mak, et al. (2010). "N-linked glycosylation is required for optimal 

proteolytic activation of membrane-bound transcription factor CREB-H." J Cell Sci 

123(Pt 9): 1438-1448. 



 

 -185- 

Chang, S. K., B. K. Arendt, et al. (2006). "A role for BLyS in the activation of innate immune 

cells." Blood 108(8): 2687-2694. 

Chang, S. K., S. A. Mihalcik, et al. (2008). "B lymphocyte stimulator regulates adaptive 

immune responses by directly promoting dendritic cell maturation." J Immunol 

180(11): 7394-7403. 

Chang, W. L., E. S. Coro, et al. (2007). "Influenza virus infection causes global respiratory 

tract B cell response modulation via innate immune signals." J Immunol 178(3): 

1457-1467. 

Chaturvedi, A., D. Dorward, et al. (2008). "The B cell receptor governs the subcellular 

location of Toll-like receptor 9 leading to hyperresponses to DNA-containing 

antigens." Immunity 28(6): 799-809. 

Chen, C., L. C. Edelstein, et al. (2000). "The Rel/NF-kappaB family directly activates 

expression of the apoptosis inhibitor Bcl-x(L)." Mol Cell Biol 20(8): 2687-2695. 

Christensen, S. R., M. Kashgarian, et al. (2005). "Toll-like receptor 9 controls anti-DNA 

autoantibody production in murine lupus." J Exp Med 202(2): 321-331. 

Christensen, S. R. and M. J. Shlomchik (2007). "Regulation of lupus-related autoantibody 

production and clinical disease by Toll-like receptors." Semin Immunol 19(1): 11-23. 

Christensen, S. R., J. Shupe, et al. (2006). "Toll-like receptor 7 and TLR9 dictate 

autoantibody specificity and have opposing inflammatory and regulatory roles in a 

murine model of lupus." Immunity 25(3): 417-428. 

Christodoulou, M. I., E. K. Kapsogeorgou, et al. (2010). "Characteristics of the minor 

salivary gland infiltrates in Sjogren's syndrome." J Autoimmun 34(4): 400-407. 

Christodoulou, M. I., E. K. Kapsogeorgou, et al. (2008). "Foxp3+ T-regulatory cells in 

Sjogren's syndrome: correlation with the grade of the autoimmune lesion and certain 

adverse prognostic factors." Am J Pathol 173(5): 1389-1396. 

Cinamon, G., M. Matloubian, et al. (2004). "Sphingosine 1-phosphate receptor 1 promotes B 

cell localization in the splenic marginal zone." Nat Immunol 5(7): 713-720. 

Claudio, E., K. Brown, et al. (2002). "BAFF-induced NEMO-independent processing of NF-

kappa B2 in maturing B cells." Nat Immunol 3(10): 958-965. 

Collins, C. E., A. L. Gavin, et al. (2006). "B lymphocyte stimulator (BLyS) isoforms in 

systemic lupus erythematosus: disease activity correlates better with blood leukocyte 

BLyS mRNA levels than with plasma BLyS protein levels." Arthritis Res Ther 8(1): 

R6. 



 

 -186- 

Colonna, M., G. Trinchieri, et al. (2004). "Plasmacytoid dendritic cells in immunity." Nat 

Immunol 5(12): 1219-1226. 

Correale, J. and M. Farez (2009). "Helminth antigens modulate immune responses in cells 

from multiple sclerosis patients through TLR2-dependent mechanisms." J Immunol 

183(9): 5999-6012. 

Craxton, A., K. E. Draves, et al. (2005). "BAFF regulates B cell survival by downregulating 

the BH3-only family member Bim via the ERK pathway." J Exp Med 202(10): 1363-

1374. 

Cross, T., G. Griffiths, et al. (2000). "PKC-delta is an apoptotic lamin kinase." Oncogene 

19(19): 2331-2337. 

d'Arbonneau, F., J. O. Pers, et al. (2006). "BAFF-induced changes in B cell antigen receptor-

containing lipid rafts in Sjogren's syndrome." Arthritis Rheum 54(1): 115-126. 

Daridon, C., V. Devauchelle, et al. (2007). "Aberrant expression of BAFF by B lymphocytes 

infiltrating the salivary glands of patients with primary Sjogren's syndrome." Arthritis 

Rheum 56(4): 1134-1144. 

Daridon, C., J. O. Pers, et al. (2006). "Identification of transitional type II B cells in the 

salivary glands of patients with Sjogren's syndrome." Arthritis Rheum 54(7): 2280-

2288. 

Dasari, P., I. C. Nicholson, et al. (2005). "Expression of toll-like receptors on B 

lymphocytes." Cell Immunol 236(1-2): 140-145. 

Deng, W. G. and K. K. Wu (2003). "Regulation of inducible nitric oxide synthase expression 

by p300 and p50 acetylation." J Immunol 171(12): 6581-6588. 

Devauchelle-Pensec, V., Y. Pennec, et al. (2007). "Improvement of Sjogren's syndrome after 

two infusions of rituximab (anti-CD20)." Arthritis Rheum 57(2): 310-317. 

DeVries-Seimon, T. A., A. M. Ohm, et al. (2007). "Induction of apoptosis is driven by 

nuclear retention of protein kinase C delta." J Biol Chem 282(31): 22307-22314. 

DeVries, T. A., M. C. Neville, et al. (2002). "Nuclear import of PKCdelta is required for 

apoptosis: identification of a novel nuclear import sequence." EMBO J 21(22): 6050-

6060. 

Diao, Z., T. Ye, et al. (2007). "Expression, purification, and characterization of recombinant 

human soluble BAFF secreted from the yeast Pichia pastoris." Protein Expr Purif 

54(1): 11-17. 



 

 -187- 

Diaz-de-Durana, Y., G. T. Mantchev, et al. (2006). "TACI-BLyS signaling via B-cell-

dendritic cell cooperation is required for naive CD8+ T-cell priming in vivo." Blood 

107(2): 594-601. 

Diebold, S. S., T. Kaisho, et al. (2004). "Innate antiviral responses by means of TLR7-

mediated recognition of single-stranded RNA." Science 303(5663): 1529-1531. 

Dillon, S. R., B. Harder, et al. (2010). "B-lymphocyte stimulator/a proliferation-inducing 

ligand heterotrimers are elevated in the sera of patients with autoimmune disease and 

are neutralized by atacicept and B-cell maturation antigen-immunoglobulin." Arthritis 

Res Ther 12(2): R48. 

Dimitriou, I. D., E. K. Kapsogeorgou, et al. (2002). "CD40 on salivary gland epithelial cells: 

high constitutive expression by cultured cells from Sjogren's syndrome patients 

indicating their intrinsic activation." Clin Exp Immunol 127(2): 386-392. 

Do, K. H., H. J. Choi, et al. (2013). "SOCS3 regulates BAFF in human enterocytes under 

ribosomal stress." J Immunol 190(12): 6501-6510. 

Douagi, I., C. Gujer, et al. (2009). "Human B cell responses to TLR ligands are differentially 

modulated by myeloid and plasmacytoid dendritic cells." J Immunol 182(4): 1991-

2001. 

Eaton-Bassiri, A., S. B. Dillon, et al. (2004). "Toll-like receptor 9 can be expressed at the cell 

surface of distinct populations of tonsils and human peripheral blood mononuclear 

cells." Infect Immun 72(12): 7202-7211. 

Evans, J. G., K. A. Chavez-Rueda, et al. (2007). "Novel suppressive function of transitional 2 

B cells in experimental arthritis." J Immunol 178(12): 7868-7878. 

Ewald, S. E., B. L. Lee, et al. (2008). "The ectodomain of Toll-like receptor 9 is cleaved to 

generate a functional receptor." Nature 456(7222): 658-662. 

Fabris, M., L. Quartuccio, et al. (2013). "The TTTT B lymphocyte stimulator promoter 

haplotype is associated with good response to rituximab therapy in seropositive 

rheumatoid arthritis resistant to tumor necrosis factor blockers." Arthritis Rheum 

65(1): 88-97. 

Fairfax, K., I. R. Mackay, et al. (2012). "BAFF/BLyS inhibitors: A new prospect for 

treatment of systemic lupus erythematosus." IUBMB Life 64(7): 595-602. 

Fillatreau, S., C. H. Sweenie, et al. (2002). "B cells regulate autoimmunity by provision of 

IL-10." Nat Immunol 3(10): 944-950. 



 

 -188- 

Finlay, T. M., S. Abdulkhalek, et al. (2010). "Thymoquinone-induced Neu4 sialidase 

activates NFkappaB in macrophage cells and pro-inflammatory cytokines in vivo." 

Glycoconj J 27(6): 583-600. 

Fiorentino, D. F., A. Zlotnik, et al. (1991). "IL-10 acts on the antigen-presenting cell to 

inhibit cytokine production by Th1 cells." J Immunol 146(10): 3444-3451. 

Fitzgerald, K. A., D. C. Rowe, et al. (2004). "Endotoxin recognition and signal transduction 

by the TLR4/MD2-complex." Microbes Infect 6(15): 1361-1367. 

Fu, L., Y. C. Lin-Lee, et al. (2006). "Constitutive NF-kappaB and NFAT activation leads to 

stimulation of the BLyS survival pathway in aggressive B-cell lymphomas." Blood 

107(11): 4540-4548. 

Fu, L., Y. C. Lin-Lee, et al. (2009). "BAFF-R promotes cell proliferation and survival 

through interaction with IKKbeta and NF-kappaB/c-Rel in the nucleus of normal and 

neoplastic B-lymphoid cells." Blood 113(19): 4627-4636. 

Fujita, T., G. P. Nolan, et al. (1993). "The candidate proto-oncogene bcl-3 encodes a 

transcriptional coactivator that activates through NF-kappa B p50 homodimers." 

Genes Dev 7(7B): 1354-1363. 

Ganley-Leal, L. M., X. Liu, et al. (2006). "Toll-like receptor 2-mediated human B cell 

differentiation." Clin Immunol 120(3): 272-284. 

Gantner, F., P. Hermann, et al. (2003). "CD40-dependent and -independent activation of 

human tonsil B cells by CpG oligodeoxynucleotides." Eur J Immunol 33(6): 1576-

1585. 

Gao, J., S. Killedar, et al. (2006). "Sjogren's syndrome in the NOD mouse model is an 

interleukin-4 time-dependent, antibody isotype-specific autoimmune disease." J 

Autoimmun 26(2): 90-103. 

Gatto, G., A. Rossi, et al. (2008). "Epstein-Barr virus latent membrane protein 1 trans-

activates miR-155 transcription through the NF-kappaB pathway." Nucleic Acids Res 

36(20): 6608-6619. 

Gauld, S. B., R. J. Benschop, et al. (2005). "Maintenance of B cell anergy requires constant 

antigen receptor occupancy and signaling." Nat Immunol 6(11): 1160-1167. 

Gavin, A. L., D. Ait-Azzouzene, et al. (2003). "DeltaBAFF, an alternate splice isoform that 

regulates receptor binding and biopresentation of the B cell survival cytokine, BAFF." 

J Biol Chem 278(40): 38220-38228. 



 

 -189- 

Gavin, A. L., B. Duong, et al. (2005). "deltaBAFF, a splice isoform of BAFF, opposes full-

length BAFF activity in vivo in transgenic mouse models." J Immunol 175(1): 319-

328. 

Gay, N. J. and M. Gangloff (2007). "Structure and function of Toll receptors and their 

ligands." Annu Rev Biochem 76: 141-165. 

Genestier, L., M. Taillardet, et al. (2007). "TLR agonists selectively promote terminal plasma 

cell differentiation of B cell subsets specialized in thymus-independent responses." J 

Immunol 178(12): 7779-7786. 

Germain, R. N. (1994). "MHC-dependent antigen processing and peptide presentation: 

providing ligands for T lymphocyte activation." Cell 76(2): 287-299. 

Ghosh, S., M. J. May, et al. (1998). "NF-kappa B and Rel proteins: evolutionarily conserved 

mediators of immune responses." Annu Rev Immunol 16: 225-260. 

Ginzler, E. M., S. Wax, et al. (2012). "Atacicept in combination with MMF and 

corticosteroids in lupus nephritis: results of a prematurely terminated trial." Arthritis 

Res Ther 14(1): R33. 

Giroux, M., M. Schmidt, et al. (2003). "IFN-gamma-induced MHC class II expression: 

transactivation of class II transactivator promoter IV by IFN regulatory factor-1 is 

regulated by protein kinase C-alpha." J Immunol 171(8): 4187-4194. 

Gomel, R., C. Xiang, et al. (2007). "The localization of protein kinase Cdelta in different 

subcellular sites affects its proapoptotic and antiapoptotic functions and the activation 

of distinct downstream signaling pathways." Mol Cancer Res 5(6): 627-639. 

Gorelik, L., K. Gilbride, et al. (2003). "Normal B cell homeostasis requires B cell activation 

factor production by radiation-resistant cells." J Exp Med 198(6): 937-945. 

Gorlich, D., S. Prehn, et al. (1994). "Isolation of a protein that is essential for the first step of 

nuclear protein import." Cell 79(5): 767-778. 

Gottenberg, J. E., R. Seror, et al. (2013). "Serum levels of beta2-microglobulin and free light 

chains of immunoglobulins are associated with systemic disease activity in primary 

Sjogren's syndrome. Data at enrollment in the prospective ASSESS cohort." PLoS 

One 8(5): e59868. 

Gras, M. P., Y. Laabi, et al. (1995). "BCMAp: an integral membrane protein in the Golgi 

apparatus of human mature B lymphocytes." Int Immunol 7(7): 1093-1106. 

Gray, M., K. Miles, et al. (2007). "Apoptotic cells protect mice from autoimmune 

inflammation by the induction of regulatory B cells." Proc Natl Acad Sci U S A 

104(35): 14080-14085. 



 

 -190- 

Griner, E. M. and M. G. Kazanietz (2007). "Protein kinase C and other diacylglycerol 

effectors in cancer." Nat Rev Cancer 7(4): 281-294. 

Groeneveld, P. H., T. Erich, et al. (1985). "In vivo effects of LPS on B lymphocyte 

subpopulations. Migration of marginal zone-lymphocytes and IgD-blast formation in 

the mouse spleen." Immunobiology 170(5): 402-411. 

Groom, J., S. L. Kalled, et al. (2002). "Association of BAFF/BLyS overexpression and 

altered B cell differentiation with Sjogren's syndrome." J Clin Invest 109(1): 59-68. 

Groom, J. R., C. A. Fletcher, et al. (2007). "BAFF and MyD88 signals promote a lupuslike 

disease independent of T cells." J Exp Med 204(8): 1959-1971. 

Gross, J. A., J. Johnston, et al. (2000). "TACI and BCMA are receptors for a TNF homologue 

implicated in B-cell autoimmune disease." Nature 404(6781): 995-999. 

Guan, Z. B., W. B. Dan, et al. (2007). "cDNA cloning, expression and bioactivity of porcine 

BAFF." Dev Comp Immunol 31(12): 1211-1219. 

Guan, Z. B., J. L. Ye, et al. (2007). "Cloning, expression and bioactivity of duck BAFF." Mol 

Immunol 44(6): 1471-1476. 

Guerrier, T., L. Le Pottier, et al. (2012). "Role of Toll-like receptors in primary Sjogren's 

syndrome with a special emphasis on B-cell maturation within exocrine tissues." J 

Autoimmun 39(1-2): 69-76. 

Ha, S. A., M. Tsuji, et al. (2006). "Regulation of B1 cell migration by signals through Toll-

like receptors." J Exp Med 203(11): 2541-2550. 

Hang, L., J. H. Slack, et al. (1983). "Induction of murine autoimmune disease by chronic 

polyclonal B cell activation." J Exp Med 157(3): 874-883. 

Hansen, A., P. E. Lipsky, et al. (2007). "B-cell lymphoproliferation in chronic inflammatory 

rheumatic diseases." Nat Clin Pract Rheumatol 3(10): 561-569. 

Hansen, A., M. Odendahl, et al. (2002). "Diminished peripheral blood memory B cells and 

accumulation of memory B cells in the salivary glands of patients with Sjogren's 

syndrome." Arthritis Rheum 46(8): 2160-2171. 

Harris, D. P., L. Haynes, et al. (2000). "Reciprocal regulation of polarized cytokine 

production by effector B and T cells." Nat Immunol 1(6): 475-482. 

Hase, H., Y. Kanno, et al. (2004). "BAFF/BLyS can potentiate B-cell selection with the B-

cell coreceptor complex." Blood 103(6): 2257-2265. 



 

 -191- 

Hashimoto, C., K. L. Hudson, et al. (1988). "The Toll gene of Drosophila, required for 

dorsal-ventral embryonic polarity, appears to encode a transmembrane protein." Cell 

52(2): 269-279. 

Hayashi, Y., R. Arakaki, et al. (2009). "Salivary gland and autoimmunity." J Med Invest 56 
Suppl: 185-191. 

Heer, A. K., A. Shamshiev, et al. (2007). "TLR signaling fine-tunes anti-influenza B cell 

responses without regulating effector T cell responses." J Immunol 178(4): 2182-

2191. 

Hemmi, H., O. Takeuchi, et al. (2000). "A Toll-like receptor recognizes bacterial DNA." 

Nature 408(6813): 740-745. 

Hildebrand, J. M., Z. Luo, et al. (2010). "A BAFF-R mutation associated with non-Hodgkin 

lymphoma alters TRAF recruitment and reveals new insights into BAFF-R signaling." 

J Exp Med 207(12): 2569-2579. 

Honda, K., H. Yanai, et al. (2004). "Role of a transductional-transcriptional processor 

complex involving MyD88 and IRF-7 in Toll-like receptor signaling." Proc Natl Acad 

Sci U S A 101(43): 15416-15421. 

Hornung, V., S. Rothenfusser, et al. (2002). "Quantitative expression of toll-like receptor 1-

10 mRNA in cellular subsets of human peripheral blood mononuclear cells and 

sensitivity to CpG oligodeoxynucleotides." J Immunol 168(9): 4531-4537. 

Hsu, H. C., P. Yang, et al. (2008). "Interleukin 17-producing T helper cells and interleukin 17 

orchestrate autoreactive germinal center development in autoimmune BXD2 mice." 

Nat Immunol 9(2): 166-175. 

Huang da, W., B. T. Sherman, et al. (2009). "Systematic and integrative analysis of large 

gene lists using DAVID bioinformatics resources." Nat Protoc 4(1): 44-57. 

Huard, B., L. Arlettaz, et al. (2004). "BAFF production by antigen-presenting cells provides 

T cell co-stimulation." Int Immunol 16(3): 467-475. 

Huard, B., P. Schneider, et al. (2001). "T cell costimulation by the TNF ligand BAFF." J 

Immunol 167(11): 6225-6231. 

Huggins, J., T. Pellegrin, et al. (2007). "CpG DNA activation and plasma-cell differentiation 

of CD27- naive human B cells." Blood 109(4): 1611-1619. 

Humphries, M. J., K. H. Limesand, et al. (2006). "Suppression of apoptosis in the protein 

kinase Cdelta null mouse in vivo." J Biol Chem 281(14): 9728-9737. 



 

 -192- 

Hussain, S. and T. L. Delovitch (2007). "Intravenous transfusion of BCR-activated B cells 

protects NOD mice from type 1 diabetes in an IL-10-dependent manner." J Immunol 

179(11): 7225-7232. 

Hymowitz, S. G., D. R. Patel, et al. (2005). "Structures of APRIL-receptor complexes: like 

BCMA, TACI employs only a single cysteine-rich domain for high affinity ligand 

binding." J Biol Chem 280(8): 7218-7227. 

Igoe, A. and R. H. Scofield (2013). "Autoimmunity and infection in Sjogren's syndrome." 

Curr Opin Rheumatol 25(4): 480-487. 

Isnardi, I., Y. S. Ng, et al. (2008). "IRAK-4- and MyD88-dependent pathways are essential 

for the removal of developing autoreactive B cells in humans." Immunity 29(5): 746-

757. 

Ito, T., S. Hanabuchi, et al. (2008). "Two functional subsets of FOXP3+ regulatory T cells in 

human thymus and periphery." Immunity 28(6): 870-880. 

Ittah, M., C. Miceli-Richard, et al. (2008). "Viruses induce high expression of BAFF by 

salivary gland epithelial cells through TLR- and type-I IFN-dependent and -

independent pathways." Eur J Immunol 38(4): 1058-1064. 

Iwata, Y., T. Matsushita, et al. (2011). "Characterization of a rare IL-10-competent B-cell 

subset in humans that parallels mouse regulatory B10 cells." Blood 117(2): 530-541. 

Jain, S., S. B. Chodisetti, et al. (2011). "CD40 signaling synergizes with TLR-2 in the BCR 

independent activation of resting B cells." PLoS One 6(6): e20651. 

Jamin, C., A. Morva, et al. (2008). "Regulatory B lymphocytes in humans: a potential role in 

autoimmunity." Arthritis Rheum 58(7): 1900-1906. 

Jegerlehner, A., P. Maurer, et al. (2007). "TLR9 signaling in B cells determines class switch 

recombination to IgG2a." J Immunol 178(4): 2415-2420. 

Jego, G., A. K. Palucka, et al. (2003). "Plasmacytoid dendritic cells induce plasma cell 

differentiation through type I interferon and interleukin 6." Immunity 19(2): 225-234. 

Jiang, W., M. M. Lederman, et al. (2007). "TLR9 stimulation drives naive B cells to 

proliferate and to attain enhanced antigen presenting function." Eur J Immunol 37(8): 

2205-2213. 

Jin, J. O., T. Kawai, et al. (2013). "Interleukin-7 enhances the Th1 response to promote the 

development of Sjogren's syndrome-like autoimmune exocrinopathy in mice." 

Arthritis Rheum 65(8): 2132-2142. 



 

 -193- 

Jin, M. S. and J. O. Lee (2008). "Structures of the toll-like receptor family and its ligand 

complexes." Immunity 29(2): 182-191. 

Jonsson, M. V., P. Szodoray, et al. (2005). "Association between circulating levels of the 

novel TNF family members APRIL and BAFF and lymphoid organization in primary 

Sjogren's syndrome." J Clin Immunol 25(3): 189-201. 

Jung, D. J., J. J. Bong, et al. (2004). "Extracellular proteinase inhibitor-accelerated apoptosis 

is associated with B cell activating factor in mammary epithelial cells." Exp Cell Res 

292(1): 115-122. 

Kagan, J. C., T. Su, et al. (2008). "TRAM couples endocytosis of Toll-like receptor 4 to the 

induction of interferon-beta." Nat Immunol 9(4): 361-368. 

Kapsogeorgou, E. K., R. F. Abu-Helu, et al. (2005). "Salivary gland epithelial cell exosomes: 

A source of autoantigenic ribonucleoproteins." Arthritis Rheum 52(5): 1517-1521. 

Kapsogeorgou, E. K., H. M. Moutsopoulos, et al. (2001). "Functional expression of a 

costimulatory B7.2 (CD86) protein on human salivary gland epithelial cells that 

interacts with the CD28 receptor, but has reduced binding to CTLA4." J Immunol 

166(5): 3107-3113. 

Karpusas, M., T. G. Cachero, et al. (2002). "Crystal structure of extracellular human BAFF, a 

TNF family member that stimulates B lymphocytes." J Mol Biol 315(5): 1145-1154. 

Kassan, S. S. and H. M. Moutsopoulos (2004). "Clinical manifestations and early diagnosis 

of Sjogren syndrome." Arch Intern Med 164(12): 1275-1284. 

Kastelein, R. A., C. A. Hunter, et al. (2007). "Discovery and biology of IL-23 and IL-27: 

related but functionally distinct regulators of inflammation." Annu Rev Immunol 25: 

221-242. 

Kato, M., K. J. McDonald, et al. (2006). "Expression of human DEC-205 (CD205) 

multilectin receptor on leukocytes." Int Immunol 18(6): 857-869. 

Katsifis, G. E., S. Rekka, et al. (2009). "Systemic and local interleukin-17 and linked 

cytokines associated with Sjogren's syndrome immunopathogenesis." Am J Pathol 

175(3): 1167-1177. 

Kaul, S., V. Anantharam, et al. (2005). "Tyrosine phosphorylation regulates the proteolytic 

activation of protein kinase Cdelta in dopaminergic neuronal cells." J Biol Chem 

280(31): 28721-28730. 

Kawai, T. and S. Akira (2006). "TLR signaling." Cell Death Differ 13(5): 816-825. 

Kawai, T. and S. Akira (2007). "TLR signaling." Semin Immunol 19(1): 24-32. 



 

 -194- 

Kawai, T., S. Sato, et al. (2004). "Interferon-alpha induction through Toll-like receptors 

involves a direct interaction of IRF7 with MyD88 and TRAF6." Nat Immunol 5(10): 

1061-1068. 

Kawakami, A., K. Nakashima, et al. (2007). "Toll-like receptor in salivary glands from 

patients with Sjogren's syndrome: functional analysis by human salivary gland cell 

line." J Rheumatol 34(5): 1019-1026. 

Kawasaki, A., N. Tsuchiya, et al. (2002). "Analysis on the association of human BLYS 

(BAFF, TNFSF13B) polymorphisms with systemic lupus erythematosus and 

rheumatoid arthritis." Genes Immun 3(7): 424-429. 

Kayagaki, N., M. Yan, et al. (2002). "BAFF/BLyS receptor 3 binds the B cell survival factor 

BAFF ligand through a discrete surface loop and promotes processing of NF-

kappaB2." Immunity 17(4): 515-524. 

Kern, C., J. F. Cornuel, et al. (2004). "Involvement of BAFF and APRIL in the resistance to 

apoptosis of B-CLL through an autocrine pathway." Blood 103(2): 679-688. 

Khare, S. D., I. Sarosi, et al. (2000). "Severe B cell hyperplasia and autoimmune disease in 

TALL-1 transgenic mice." Proc Natl Acad Sci U S A 97(7): 3370-3375. 

Kim, H. A., S. H. Jeon, et al. (2008). "TGF-beta1 and IFN-gamma stimulate mouse 

macrophages to express BAFF via different signaling pathways." J Leukoc Biol 

83(6): 1431-1439. 

Kim, J., J. A. Gross, et al. (2011). "Increased BCMA expression in lupus marks activated B 

cells, and BCMA receptor engagement enhances the response to TLR9 stimulation." 

Autoimmunity 44(2): 69-81. 

Knezevic, J., D. Pavlinic, et al. (2012). "Heterozygous carriage of a dysfunctional Toll-like 

receptor 9 allele affects CpG oligonucleotide responses in B cells." J Biol Chem 

287(29): 24544-24553. 

Kong, L., N. Ogawa, et al. (1997). "Fas and Fas ligand expression in the salivary glands of 

patients with primary Sjogren's syndrome." Arthritis Rheum 40(1): 87-97. 

Krieg, A. M., A. K. Yi, et al. (1995). "CpG motifs in bacterial DNA trigger direct B-cell 

activation." Nature 374(6522): 546-549. 

Krumbholz, M., D. Theil, et al. (2005). "BAFF is produced by astrocytes and up-regulated in 

multiple sclerosis lesions and primary central nervous system lymphoma." J Exp Med 

201(2): 195-200. 



 

 -195- 

Kubarenko, A. V., S. Ranjan, et al. (2010). "A naturally occurring variant in human TLR9, 

P99L, is associated with loss of CpG oligonucleotide responsiveness." J Biol Chem 

285(47): 36486-36494. 

Kulkarni, K., K. Selesniemi, et al. (2006). "Interferon-gamma sensitizes the human salivary 

gland cell line, HSG, to tumor necrosis factor-alpha induced activation of dual 

apoptotic pathways." Apoptosis 11(12): 2205-2215. 

Kumar, A., J. Zhang, et al. (2006). "Toll-like receptor 3 agonist poly(I:C)-induced antiviral 

response in human corneal epithelial cells." Immunology 117(1): 11-21. 

Kumar, H., T. Kawai, et al. (2009). "Toll-like receptors and innate immunity." Biochem 

Biophys Res Commun 388(4): 621-625. 

L'Age-Stehr, J., H. Teichmann, et al. (1980). "Stimulation of regulatory T cell circuits by 

immunoglobulin-dependent structures on activated B cells." Eur J Immunol 10(1): 21-

26. 

LaGory, E. L., L. A. Sitailo, et al. (2010). "The protein kinase Cdelta catalytic fragment is 

critical for maintenance of the G2/M DNA damage checkpoint." J Biol Chem 285(3): 

1879-1887. 

Lahoud, M. H., F. Ahmet, et al. (2012). "DEC-205 is a cell surface receptor for CpG 

oligonucleotides." Proc Natl Acad Sci U S A 109(40): 16270-16275. 

Lampropoulou, V., E. Calderon-Gomez, et al. (2010). "Suppressive functions of activated B 

cells in autoimmune diseases reveal the dual roles of Toll-like receptors in immunity." 

Immunol Rev 233(1): 146-161. 

Lampropoulou, V., K. Hoehlig, et al. (2008). "TLR-activated B cells suppress T cell-

mediated autoimmunity." J Immunol 180(7): 4763-4773. 

Lande, R., J. Gregorio, et al. (2007). "Plasmacytoid dendritic cells sense self-DNA coupled 

with antimicrobial peptide." Nature 449(7162): 564-569. 

Langat, D. L., D. A. Wheaton, et al. (2008). "Signaling pathways for B cell-activating factor 

(BAFF) and a proliferation-inducing ligand (APRIL) in human placenta." Am J 

Pathol 172(5): 1303-1311. 

Lange, A., R. E. Mills, et al. (2007). "Classical nuclear localization signals: definition, 

function, and interaction with importin alpha." J Biol Chem 282(8): 5101-5105. 

Lanzavecchia, A. and F. Sallusto (2007). "Toll-like receptors and innate immunity in B-cell 

activation and antibody responses." Curr Opin Immunol 19(3): 268-274. 



 

 -196- 

Lartigue, A., N. Colliou, et al. (2009). "Critical role of TLR2 and TLR4 in autoantibody 

production and glomerulonephritis in lpr mutation-induced mouse lupus." J Immunol 

183(10): 6207-6216. 

Latz, E., A. Verma, et al. (2007). "Ligand-induced conformational changes allosterically 

activate Toll-like receptor 9." Nat Immunol 8(7): 772-779. 

Lau, C. M., C. Broughton, et al. (2005). "RNA-associated autoantigens activate B cells by 

combined B cell antigen receptor/Toll-like receptor 7 engagement." J Exp Med 

202(9): 1171-1177. 

Lavie, F., C. Miceli-Richard, et al. (2007). "Increase of B cell-activating factor of the TNF 

family (BAFF) after rituximab treatment: insights into a new regulating system of 

BAFF production." Ann Rheum Dis 66(5): 700-703. 

Le Pottier, L., B. Bendaoud, et al. (2009). "New ELISA for B cell-activating factor." Clin 

Chem 55(10): 1843-1851. 

Le Pottier, L., V. Devauchelle, et al. (2009). "Ectopic germinal centers are rare in Sjogren's 

syndrome salivary glands and do not exclude autoreactive B cells." J Immunol 182(6): 

3540-3547. 

Leadbetter, E. A., I. R. Rifkin, et al. (2002). "Chromatin-IgG complexes activate B cells by 

dual engagement of IgM and Toll-like receptors." Nature 416(6881): 603-607. 

Lee, J., J. M. Gonzales-Navajas, et al. (2008). "The "polarizing-tolerizing" mechanism of 

intestinal epithelium: its relevance to colonic homeostasis." Semin Immunopathol 

30(1): 3-9. 

Lee, J., J. H. Mo, et al. (2006). "Maintenance of colonic homeostasis by distinctive apical 

TLR9 signalling in intestinal epithelial cells." Nat Cell Biol 8(12): 1327-1336. 

Lemaitre, B., E. Nicolas, et al. (1996). "The dorsoventral regulatory gene cassette 

spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults." Cell 

86(6): 973-983. 

Lemoine, S., A. Morva, et al. (2011). "Human T cells induce their own regulation through 

activation of B cells." J Autoimmun 36(3-4): 228-238. 

Lenert, P., R. Brummel, et al. (2005). "TLR-9 activation of marginal zone B cells in lupus 

mice regulates immunity through increased IL-10 production." J Clin Immunol 25(1): 

29-40. 

Li, G., X. Liang, et al. (2013). "HMGB1: The Central Cytokine for All Lymphoid Cells." 

Front Immunol 4: 68. 



 

 -197- 

Li, J., M. Y. Jeong, et al. (2010). "Toll-like Receptor3-mediated Induction of Chemokines in 

Salivary Epithelial Cells." Korean J Physiol Pharmacol 14(4): 235-240. 

Lin-Lee, Y. C., L. V. Pham, et al. (2006). "Nuclear localization in the biology of the CD40 

receptor in normal and neoplastic human B lymphocytes." J Biol Chem 281(27): 

18878-18887. 

Litinskiy, M. B., B. Nardelli, et al. (2002). "DCs induce CD40-independent immunoglobulin 

class switching through BLyS and APRIL." Nat Immunol 3(9): 822-829. 

Liu, B., Y. Yang, et al. (2006). "TLR4 up-regulation at protein or gene level is pathogenic for 

lupus-like autoimmune disease." J Immunol 177(10): 6880-6888. 

Liu, F., J. B. Wang, et al. (2004). "Construction and immunogenicity of human 

papillomavirus type 6b L1 recombinant plasmid." Chin Med Sci J 19(3): 233-236. 

Liu, J., E. Shue, et al. (2004). "A new gamma-interferon-inducible promoter and splice 

variants of an anti-angiogenic human tRNA synthetase." Nucleic Acids Res 32(2): 

719-727. 

Liu, N., N. Ohnishi, et al. (2003). "CpG directly induces T-bet expression and inhibits IgG1 

and IgE switching in B cells." Nat Immunol 4(7): 687-693. 

Liu, Y., L. Xu, et al. (2002). "Crystal structure of sTALL-1 reveals a virus-like assembly of 

TNF family ligands." Cell 108(3): 383-394. 

Llorente, L., Y. Richaud-Patin, et al. (1994). "In vivo production of interleukin-10 by non-T 

cells in rheumatoid arthritis, Sjogren's syndrome, and systemic lupus erythematosus. 

A potential mechanism of B lymphocyte hyperactivity and autoimmunity." Arthritis 

Rheum 37(11): 1647-1655. 

Lu, W., P. Cao, et al. (2009). "Molecular cloning, expression, and bioactivity of dove B 

lymphocyte stimulator (doBAFF)." Vet Immunol Immunopathol 128(4): 374-380. 

Ma, Z., F. Chen, et al. (2006). "Modulation of autoimmunity by TLR9 in the chronic graft-vs-

host model of systemic lupus erythematosus." J Immunol 177(10): 7444-7450. 

Mackay, F. and H. Leung (2006). "The role of the BAFF/APRIL system on T cell function." 

Semin Immunol 18(5): 284-289. 

Mackay, F. and P. Schneider (2008). "TACI, an enigmatic BAFF/APRIL receptor, with new 

unappreciated biochemical and biological properties." Cytokine Growth Factor Rev 

19(3-4): 263-276. 

Mackay, F. and P. Schneider (2009). "Cracking the BAFF code." Nat Rev Immunol 9(7): 

491-502. 



 

 -198- 

Mackay, F., P. Schneider, et al. (2003). "BAFF AND APRIL: a tutorial on B cell survival." 

Annu Rev Immunol 21: 231-264. 

Mackay, F., P. A. Silveira, et al. (2007). "B cells and the BAFF/APRIL axis: fast-forward on 

autoimmunity and signaling." Curr Opin Immunol 19(3): 327-336. 

Mackay, F., S. A. Woodcock, et al. (1999). "Mice transgenic for BAFF develop lymphocytic 

disorders along with autoimmune manifestations." J Exp Med 190(11): 1697-1710. 

Mangan, P. R., L. E. Harrington, et al. (2006). "Transforming growth factor-beta induces 

development of the T(H)17 lineage." Nature 441(7090): 231-234. 

Mann, M. K., K. Maresz, et al. (2007). "B cell regulation of CD4+CD25+ T regulatory cells 

and IL-10 via B7 is essential for recovery from experimental autoimmune 

encephalomyelitis." J Immunol 178(6): 3447-3456. 

Manoussakis, M. N., I. D. Dimitriou, et al. (1999). "Expression of B7 costimulatory 

molecules by salivary gland epithelial cells in patients with Sjogren's syndrome." 

Arthritis Rheum 42(2): 229-239. 

Manoussakis, M. N. and E. K. Kapsogeorgou (2010). "The role of intrinsic epithelial 

activation in the pathogenesis of Sjogren's syndrome." J Autoimmun 35(3): 219-224. 

Manoussakis, M. N., M. P. Spachidou, et al. (2010). "Salivary epithelial cells from Sjogren's 

syndrome patients are highly sensitive to anoikis induced by TLR-3 ligation." J 

Autoimmun 35(3): 212-218. 

Mansson, A., M. Adner, et al. (2006). "A distinct Toll-like receptor repertoire in human 

tonsillar B cells, directly activated by PamCSK, R-837 and CpG-2006 stimulation." 

Immunology 118(4): 539-548. 

Mantchev, G. T., C. S. Cortesao, et al. (2007). "TACI is required for efficient plasma cell 

differentiation in response to T-independent type 2 antigens." J Immunol 179(4): 

2282-2288. 

Mariette, X., S. Roux, et al. (2003). "The level of BLyS (BAFF) correlates with the titre of 

autoantibodies in human Sjogren's syndrome." Ann Rheum Dis 62(2): 168-171. 

Marshak-Rothstein, A. (2006). "Toll-like receptors in systemic autoimmune disease." Nat 

Rev Immunol 6(11): 823-835. 

Marshak-Rothstein, A. and I. R. Rifkin (2007). "Immunologically active autoantigens: the 

role of toll-like receptors in the development of chronic inflammatory disease." Annu 

Rev Immunol 25: 419-441. 



 

 -199- 

Martin, F. and J. F. Kearney (2002). "Marginal-zone B cells." Nat Rev Immunol 2(5): 323-

335. 

Matassa, A. A., L. Carpenter, et al. (2001). "PKCdelta is required for mitochondrial-

dependent apoptosis in salivary epithelial cells." J Biol Chem 276(32): 29719-29728. 

Matassa, A. A., R. L. Kalkofen, et al. (2003). "Inhibition of PKCalpha induces a PKCdelta-

dependent apoptotic program in salivary epithelial cells." Cell Death Differ 10(3): 

269-277. 

Matsumoto, I., K. Tsubota, et al. (1996). "Common T cell receptor clonotype in lacrimal 

glands and labial salivary glands from patients with Sjogren's syndrome." J Clin 

Invest 97(8): 1969-1977. 

Matsumoto, M., Y. Fujii, et al. (2011). "The calcium sensors STIM1 and STIM2 control B 

cell regulatory function through interleukin-10 production." Immunity 34(5): 703-

714. 

Matsumura, R., K. Umemiya, et al. (2002). "Expression of TNF-related apoptosis inducing 

ligand (TRAIL) on infiltrating cells and of TRAIL receptors on salivary glands in 

patients with Sjogren's syndrome." Clin Exp Rheumatol 20(6): 791-798. 

Matsumura, Y., S. N. Byrne, et al. (2006). "A role for inflammatory mediators in the 

induction of immunoregulatory B cells." J Immunol 177(7): 4810-4817. 

Matsushita, T., K. Yanaba, et al. (2008). "Regulatory B cells inhibit EAE initiation in mice 

while other B cells promote disease progression." J Clin Invest 118(10): 3420-3430. 

Mauri, C., D. Gray, et al. (2003). "Prevention of arthritis by interleukin 10-producing B 

cells." J Exp Med 197(4): 489-501. 

Mauri, C., L. T. Mars, et al. (2000). "Therapeutic activity of agonistic monoclonal antibodies 

against CD40 in a chronic autoimmune inflammatory process." Nat Med 6(6): 673-

679. 

Mavragani, C. P. and H. M. Moutsopoulos (2010). "The geoepidemiology of Sjogren's 

syndrome." Autoimmun Rev 9(5): A305-310. 

Mavragani, C. P., N. M. Moutsopoulos, et al. (2006). "The management of Sjogren's 

syndrome." Nat Clin Pract Rheumatol 2(5): 252-261. 

Mecklenbrauker, I., S. L. Kalled, et al. (2004). "Regulation of B-cell survival by BAFF-

dependent PKCdelta-mediated nuclear signalling." Nature 431(7007): 456-461. 

Medzhitov, R. (2001). "Toll-like receptors and innate immunity." Nat Rev Immunol 1(2): 

135-145. 



 

 -200- 

Medzhitov, R., P. Preston-Hurlburt, et al. (1997). "A human homologue of the Drosophila 

Toll protein signals activation of adaptive immunity." Nature 388(6640): 394-397. 

Mellman, I., R. Fuchs, et al. (1986). "Acidification of the endocytic and exocytic pathways." 

Annu Rev Biochem 55: 663-700. 

Meyer-Bahlburg, A. and D. J. Rawlings (2012). "Differential impact of Toll-like receptor 

signaling on distinct B cell subpopulations." Front Biosci (Landmark Ed) 17: 1499-

1516. 

Meyers, G., Y. S. Ng, et al. (2011). "Activation-induced cytidine deaminase (AID) is required 

for B-cell tolerance in humans." Proc Natl Acad Sci U S A 108(28): 11554-11559. 

Meylan, E., K. Burns, et al. (2004). "RIP1 is an essential mediator of Toll-like receptor 3-

induced NF-kappa B activation." Nat Immunol 5(5): 503-507. 

Michallet, M. C., G. Rota, et al. (2013). "Innate receptors for adaptive immunity." Curr Opin 

Microbiol 16(3): 296-302. 

Mizoguchi, A. and A. K. Bhan (2006). "A case for regulatory B cells." J Immunol 176(2): 

705-710. 

Mizoguchi, A., E. Mizoguchi, et al. (1997). "Suppressive role of B cells in chronic colitis of 

T cell receptor alpha mutant mice." J Exp Med 186(10): 1749-1756. 

Mizoguchi, A., E. Mizoguchi, et al. (2002). "Chronic intestinal inflammatory condition 

generates IL-10-producing regulatory B cell subset characterized by CD1d 

upregulation." Immunity 16(2): 219-230. 

Mizoguchi, E., A. Mizoguchi, et al. (2000). "Regulatory role of mature B cells in a murine 

model of inflammatory bowel disease." Int Immunol 12(5): 597-605. 

Moisini, I. and A. Davidson (2009). "BAFF: a local and systemic target in autoimmune 

diseases." Clin Exp Immunol 158(2): 155-163. 

Moon, E. Y., J. H. Lee, et al. (2006). "Reactive oxygen species augment B-cell-activating 

factor expression." Free Radic Biol Med 40(12): 2103-2111. 

Moore, P. A., O. Belvedere, et al. (1999). "BLyS: member of the tumor necrosis factor family 

and B lymphocyte stimulator." Science 285(5425): 260-263. 

Moreaux, J., E. Legouffe, et al. (2004). "BAFF and APRIL protect myeloma cells from 

apoptosis induced by interleukin 6 deprivation and dexamethasone." Blood 103(8): 

3148-3157. 



 

 -201- 

Morva, A., S. Lemoine, et al. (2012). "Maturation and function of human dendritic cells are 

regulated by B lymphocytes." Blood 119(1): 106-114. 

Mouchess, M. L., N. Arpaia, et al. (2011). "Transmembrane mutations in Toll-like receptor 9 

bypass the requirement for ectodomain proteolysis and induce fatal inflammation." 

Immunity 35(5): 721-732. 

Moulin, V., F. Andris, et al. (2000). "B lymphocytes regulate dendritic cell (DC) function in 

vivo: increased interleukin 12 production by DCs from B cell-deficient mice results in 

T helper cell type 1 deviation." J Exp Med 192(4): 475-482. 

Moutsopoulos, H. M. (1994). "Sjogren's syndrome: autoimmune epithelitis." Clin Immunol 

Immunopathol 72(2): 162-165. 

Mukhopadhyay, A., J. Ni, et al. (1999). "Identification and characterization of a novel 

cytokine, THANK, a TNF homologue that activates apoptosis, nuclear factor-kappaB, 

and c-Jun NH2-terminal kinase." J Biol Chem 274(23): 15978-15981. 

Murawski, M. R., G. N. Bowen, et al. (2009). "Respiratory syncytial virus activates innate 

immunity through Toll-like receptor 2." J Virol 83(3): 1492-1500. 

Nakamura, H., Y. Horai, et al. (2013). "TLR3-mediated apoptosis and activation of 

phosphorylated Akt in the salivary gland epithelial cells of primary Sjogren's 

syndrome patients." Rheumatol Int 33(2): 441-450. 

Nardelli, B., O. Belvedere, et al. (2001). "Synthesis and release of B-lymphocyte stimulator 

from myeloid cells." Blood 97(1): 198-204. 

Navarra, S. V., M. I. Ishimori, et al. (2011). "Studies of Filipino patients with systemic lupus 

erythematosus: autoantibody profile of first-degree relatives." Lupus 20(5): 537-543. 

Ng, L. G., A. P. Sutherland, et al. (2004). "B cell-activating factor belonging to the TNF 

family (BAFF)-R is the principal BAFF receptor facilitating BAFF costimulation of 

circulating T and B cells." J Immunol 173(2): 807-817. 

Nguyen, C. Q., M. H. Hu, et al. (2008). "Salivary gland tissue expression of interleukin-23 

and interleukin-17 in Sjogren's syndrome: findings in humans and mice." Arthritis 

Rheum 58(3): 734-743. 

Nguyen, C. Q., A. Sharma, et al. (2009). "Differential gene expressions in the lacrimal gland 

during development and onset of keratoconjunctivitis sicca in Sjogren's syndrome 

(SJS)-like disease of the C57BL/6.NOD-Aec1Aec2 mouse." Exp Eye Res 88(3): 398-

409. 



 

 -202- 

Nickerson, K. M., S. R. Christensen, et al. (2013). "TLR9 promotes tolerance by restricting 

survival of anergic anti-DNA B cells, yet is also required for their activation." J 

Immunol 190(4): 1447-1456. 

Nickerson, K. M., S. R. Christensen, et al. (2010). "TLR9 regulates TLR7- and MyD88-

dependent autoantibody production and disease in a murine model of lupus." J 

Immunol 184(4): 1840-1848. 

Nossent, J. C., S. Lester, et al. (2008). "Polymorphism in the 5' regulatory region of the B-

lymphocyte activating factor gene is associated with the Ro/La autoantibody response 

and serum BAFF levels in primary Sjogren's syndrome." Rheumatology (Oxford) 

47(9): 1311-1316. 

Novak, A. J., D. M. Grote, et al. (2006). "Elevated serum B-lymphocyte stimulator levels in 

patients with familial lymphoproliferative disorders." J Clin Oncol 24(6): 983-987. 

Novak, A. J., S. L. Slager, et al. (2009). "Genetic variation in B-cell-activating factor is 

associated with an increased risk of developing B-cell non-Hodgkin lymphoma." 

Cancer Res 69(10): 4217-4224. 

Novljan, M. P., B. Rozman, et al. (2006). "Comparison of the different classification criteria 

sets for primary Sjogren's syndrome." Scand J Rheumatol 35(6): 463-467. 

O'Connor, B. P., V. S. Raman, et al. (2004). "BCMA is essential for the survival of long-

lived bone marrow plasma cells." J Exp Med 199(1): 91-98. 

Oeckinghaus, A., M. S. Hayden, et al. (2011). "Crosstalk in NF-kappaB signaling pathways." 

Nat Immunol 12(8): 695-708. 

Ohata, J., N. J. Zvaifler, et al. (2005). "Fibroblast-like synoviocytes of mesenchymal origin 

express functional B cell-activating factor of the TNF family in response to 

proinflammatory cytokines." J Immunol 174(2): 864-870. 

Ohlsson, M., R. Jonsson, et al. (2002). "Subcellular redistribution and surface exposure of the 

Ro52, Ro60 and La48 autoantigens during apoptosis in human ductal epithelial cells: 

a possible mechanism in the pathogenesis of Sjogren's syndrome." Scand J Immunol 

56(5): 456-469. 

Ohyama, Y., S. Nakamura, et al. (1996). "Cytokine messenger RNA expression in the labial 

salivary glands of patients with Sjogren's syndrome." Arthritis Rheum 39(8): 1376-

1384. 

Oliver, A. M., F. Martin, et al. (1999). "IgMhighCD21high lymphocytes enriched in the 

splenic marginal zone generate effector cells more rapidly than the bulk of follicular 

B cells." J Immunol 162(12): 7198-7207. 



 

 -203- 

Oren, D. A., Y. Li, et al. (2002). "Structural basis of BLyS receptor recognition." Nat Struct 

Biol 9(4): 288-292. 

Ortis, F., N. Naamane, et al. (2010). "Cytokines interleukin-1beta and tumor necrosis factor-

alpha regulate different transcriptional and alternative splicing networks in primary 

beta-cells." Diabetes 59(2): 358-374. 

Ota, M., B. H. Duong, et al. (2010). "Regulation of the B cell receptor repertoire and self-

reactivity by BAFF." J Immunol 185(7): 4128-4136. 

Palucka, A. K., J. Banchereau, et al. (2002). "The interplay of dendritic cell subsets in 

systemic lupus erythematosus." Immunol Cell Biol 80(5): 484-488. 

Papadimitraki, E. D., G. K. Bertsias, et al. (2007). "Toll like receptors and autoimmunity: a 

critical appraisal." J Autoimmun 29(4): 310-318. 

Park, B., M. M. Brinkmann, et al. (2008). "Proteolytic cleavage in an endolysosomal 

compartment is required for activation of Toll-like receptor 9." Nat Immunol 9(12): 

1407-1414. 

Park, C. H. and K. T. Kim (2012). "Apoptotic phosphorylation of histone H3 on Ser-10 by 

protein kinase Cdelta." PLoS One 7(9): e44307. 

Park, J. S., D. Svetkauskaite, et al. (2004). "Involvement of toll-like receptors 2 and 4 in 

cellular activation by high mobility group box 1 protein." J Biol Chem 279(9): 7370-

7377. 

Parry, T. J., K. S. Bouhana, et al. (2000). "Ribozyme pharmacokinetic screening for 

predicting pharmacodynamic dosing regimens." Curr Issues Mol Biol 2(4): 113-118. 

Parry, T. J., T. A. Riccobene, et al. (2001). "Pharmacokinetics and immunological effects of 

exogenously administered recombinant human B lymphocyte stimulator (BLyS) in 

mice." J Pharmacol Exp Ther 296(2): 396-404. 

Pasare, C. and R. Medzhitov (2004). "Toll-like receptors and acquired immunity." Semin 

Immunol 16(1): 23-26. 

Pasare, C. and R. Medzhitov (2005). "Control of B-cell responses by Toll-like receptors." 

Nature 438(7066): 364-368. 

Patke, A., I. Mecklenbrauker, et al. (2006). "BAFF controls B cell metabolic fitness through a 

PKC beta- and Akt-dependent mechanism." J Exp Med 203(11): 2551-2562. 

Patole, P. S., H. J. Grone, et al. (2005). "Viral double-stranded RNA aggravates lupus 

nephritis through Toll-like receptor 3 on glomerular mesangial cells and antigen-

presenting cells." J Am Soc Nephrol 16(5): 1326-1338. 



 

 -204- 

Pavlidis, N. A., J. Karsh, et al. (1982). "The clinical picture of primary Sjogren's syndrome: a 

retrospective study." J Rheumatol 9(5): 685-690. 

Pers, J. O., C. Daridon, et al. (2005). "BAFF overexpression is associated with autoantibody 

production in autoimmune diseases." Ann N Y Acad Sci 1050: 34-39. 

Pers, J. O., V. Devauchelle, et al. (2007). "BAFF-modulated repopulation of B lymphocytes 

in the blood and salivary glands of rituximab-treated patients with Sjogren's 

syndrome." Arthritis Rheum 56(5): 1464-1477. 

Pijpe, J., G. W. van Imhoff, et al. (2005). "Rituximab treatment in patients with primary 

Sjogren's syndrome: an open-label phase II study." Arthritis Rheum 52(9): 2740-

2750. 

Ping, L., N. Ogawa, et al. (2005). "Novel role of CD40 in Fas-dependent apoptosis of 

cultured salivary epithelial cells from patients with Sjogren's syndrome." Arthritis 

Rheum 52(2): 573-581. 

Piskacek, S., M. Gregor, et al. (2007). "Nine-amino-acid transactivation domain: 

establishment and prediction utilities." Genomics 89(6): 756-768. 

Polihronis, M., N. I. Tapinos, et al. (1998). "Modes of epithelial cell death and repair in 

Sjogren's syndrome (SS)." Clin Exp Immunol 114(3): 485-490. 

Pradet-Balade, B., J. P. Medema, et al. (2002). "An endogenous hybrid mRNA encodes 

TWE-PRIL, a functional cell surface TWEAK-APRIL fusion protein." EMBO J 

21(21): 5711-5720. 

Qian, Y., N. Giltiay, et al. (2008). "Deficiency of Act1, a critical modulator of B cell 

function, leads to development of Sjogren's syndrome." Eur J Immunol 38(8): 2219-

2228. 

Qian, Y., J. Qin, et al. (2004). "Act1, a negative regulator in CD40- and BAFF-mediated B 

cell survival." Immunity 21(4): 575-587. 

Quartuccio, L., S. Salvin, et al. (2013). "BLyS upregulation in Sjogren's syndrome associated 

with lymphoproliferative disorders, higher ESSDAI score and B-cell clonal expansion 

in the salivary glands." Rheumatology (Oxford) 52(2): 276-281. 

Rahman, Z. S., S. P. Rao, et al. (2003). "Normal induction but attenuated progression of 

germinal center responses in BAFF and BAFF-R signaling-deficient mice." J Exp 

Med 198(8): 1157-1169. 

Rawlings, D. J., M. A. Schwartz, et al. (2012). "Integration of B cell responses through Toll-

like receptors and antigen receptors." Nat Rev Immunol 12(4): 282-294. 



 

 -205- 

Reyland, M. E. (2007). "Protein kinase Cdelta and apoptosis." Biochem Soc Trans 35(Pt 5): 

1001-1004. 

Ringwood, L. and L. Li (2008). "The involvement of the interleukin-1 receptor-associated 

kinases (IRAKs) in cellular signaling networks controlling inflammation." Cytokine 

42(1): 1-7. 

Rochas, C., S. Hillion, et al. (2009). "Transmembrane BAFF from rheumatoid synoviocytes 

requires interleukin-6 to induce the expression of recombination-activating gene in B 

lymphocytes." Arthritis Rheum 60(5): 1261-1271. 

Roschke, V., S. Sosnovtseva, et al. (2002). "BLyS and APRIL form biologically active 

heterotrimers that are expressed in patients with systemic immune-based rheumatic 

diseases." J Immunol 169(8): 4314-4321. 

Rosen, A., L. Casciola-Rosen, et al. (1995). "Novel packages of viral and self-antigens are 

generated during apoptosis." J Exp Med 181(4): 1557-1561. 

Rubtsov, A. V., C. L. Swanson, et al. (2008). "TLR agonists promote marginal zone B cell 

activation and facilitate T-dependent IgM responses." J Immunol 180(6): 3882-3888. 

Ruprecht, C. R. and A. Lanzavecchia (2006). "Toll-like receptor stimulation as a third signal 

required for activation of human naive B cells." Eur J Immunol 36(4): 810-816. 

Rutz, M., J. Metzger, et al. (2004). "Toll-like receptor 9 binds single-stranded CpG-DNA in a 

sequence- and pH-dependent manner." Eur J Immunol 34(9): 2541-2550. 

Ruyssen-Witrand, A., S. Rouanet, et al. (2013). "Association between -871C>T promoter 

polymorphism in the B-cell activating factor gene and the response to rituximab in 

rheumatoid arthritis patients." Rheumatology (Oxford) 52(4): 636-641. 

Sage, A. P., D. Tsiantoulas, et al. (2012). "BAFF receptor deficiency reduces the 

development of atherosclerosis in mice--brief report." Arterioscler Thromb Vasc Biol 

32(7): 1573-1576. 

Sakai, A., Y. Sugawara, et al. (2008). "Identification of IL-18 and Th17 cells in salivary 

glands of patients with Sjogren's syndrome, and amplification of IL-17-mediated 

secretion of inflammatory cytokines from salivary gland cells by IL-18." J Immunol 

181(4): 2898-2906. 

Salomonsson, S. and M. Wahren-Herlenius (2003). "Local production of Ro/SSA and 

La/SSB autoantibodies in the target organ coincides with high levels of circulating 

antibodies in sera of patients with Sjogren's syndrome." Scand J Rheumatol 32(2): 79-

82. 



 

 -206- 

Salzer, U. and B. Grimbacher (2005). "TACItly changing tunes: farewell to a yin and yang of 

BAFF receptor and TACI in humoral immunity? New genetic defects in common 

variable immunodeficiency." Curr Opin Allergy Clin Immunol 5(6): 496-503. 

Santegoets, K. C., L. van Bon, et al. (2011). "Toll-like receptors in rheumatic diseases: are we 

paying a high price for our defense against bugs?" FEBS Lett 585(23): 3660-3666. 

Sanz, L., M. T. Diaz-Meco, et al. (2000). "The atypical PKC-interacting protein p62 channels 

NF-kappaB activation by the IL-1-TRAF6 pathway." EMBO J 19(7): 1576-1586. 

Sasaki, Y., S. Casola, et al. (2004). "TNF family member B cell-activating factor (BAFF) 

receptor-dependent and -independent roles for BAFF in B cell physiology." J 

Immunol 173(4): 2245-2252. 

Sato, S., M. Hasegawa, et al. (2000). "Quantitative genetic variation in CD19 expression 

correlates with autoimmunity." J Immunol 165(11): 6635-6643. 

Sato, S., H. Sanjo, et al. (2005). "Essential function for the kinase TAK1 in innate and 

adaptive immune responses." Nat Immunol 6(11): 1087-1095. 

Savarese, E., O. W. Chae, et al. (2006). "U1 small nuclear ribonucleoprotein immune 

complexes induce type I interferon in plasmacytoid dendritic cells through TLR7." 

Blood 107(8): 3229-3234. 

Sayi, A., E. Kohler, et al. (2011). "TLR-2-activated B cells suppress Helicobacter-induced 

preneoplastic gastric immunopathology by inducing T regulatory-1 cells." J Immunol 

186(2): 878-890. 

Scapini, P., B. Nardelli, et al. (2003). "G-CSF-stimulated neutrophils are a prominent source 

of functional BLyS." J Exp Med 197(3): 297-302. 

Schaumann, D. H., J. Tuischer, et al. (2007). "VCAM-1-positive stromal cells from human 

bone marrow producing cytokines for B lineage progenitors and for plasma cells: 

SDF-1, flt3L, and BAFF." Mol Immunol 44(7): 1606-1612. 

Schiemann, B., J. L. Gommerman, et al. (2001). "An essential role for BAFF in the normal 

development of B cells through a BCMA-independent pathway." Science 293(5537): 

2111-2114. 

Schmausser, B., M. Andrulis, et al. (2004). "Expression and subcellular distribution of toll-

like receptors TLR4, TLR5 and TLR9 on the gastric epithelium in Helicobacter pylori 

infection." Clin Exp Immunol 136(3): 521-526. 

Schmittgen, T. D. and K. J. Livak (2008). "Analyzing real-time PCR data by the comparative 

C(T) method." Nat Protoc 3(6): 1101-1108. 



 

 -207- 

Schmitz, G. and E. Orso (2002). "CD14 signalling in lipid rafts: new ligands and co-

receptors." Curr Opin Lipidol 13(5): 513-521. 

Schneider, K., S. Kothlow, et al. (2004). "Chicken BAFF--a highly conserved cytokine that 

mediates B cell survival." Int Immunol 16(1): 139-148. 

Schneider, P., F. MacKay, et al. (1999). "BAFF, a novel ligand of the tumor necrosis factor 

family, stimulates B cell growth." J Exp Med 189(11): 1747-1756. 

Seshasayee, D., P. Valdez, et al. (2003). "Loss of TACI causes fatal lymphoproliferation and 

autoimmunity, establishing TACI as an inhibitory BLyS receptor." Immunity 18(2): 

279-288. 

Shan, X., L. Chen, et al. (2006). "Effects of human soluble BAFF synthesized in Escherichia 

coli on CD4+ and CD8+ T lymphocytes as well as NK cells in mice." Physiol Res 

55(3): 301-307. 

Shimamura, T., S. Habu, et al. (1984). "Feedback suppression of the immune response in 

vivo. III. Lyt-1+ B cells are suppressor-inducer cells." Cell Immunol 83(1): 221-224. 

Shu, H. B., W. H. Hu, et al. (1999). "TALL-1 is a novel member of the TNF family that is 

down-regulated by mitogens." J Leukoc Biol 65(5): 680-683. 

Shulga-Morskaya, S., M. Dobles, et al. (2004). "B cell-activating factor belonging to the TNF 

family acts through separate receptors to support B cell survival and T cell-

independent antibody formation." J Immunol 173(4): 2331-2341. 

Singh, A., W. F. t. Carson, et al. (2008). "Regulatory role of B cells in a murine model of 

allergic airway disease." J Immunol 180(11): 7318-7326. 

Smirnova, A. S., V. Andrade-Oliveira, et al. (2008). "Identification of new splice variants of 

the genes BAFF and BCMA." Mol Immunol 45(4): 1179-1183. 

Smith, A. J., T. P. Gordon, et al. (2004). "Increased expression of the B-cell-regulatory 

molecule CD72 in primary Sjogren's syndrome." Tissue Antigens 63(3): 255-259. 

Smith, R. A. and C. Baglioni (1987). "The active form of tumor necrosis factor is a trimer." J 

Biol Chem 262(15): 6951-6954. 

Snapper, C. M., P. Zelazowski, et al. (1996). "B cells from p50/NF-kappa B knockout mice 

have selective defects in proliferation, differentiation, germ-line CH transcription, and 

Ig class switching." J Immunol 156(1): 183-191. 

Spachidou, M. P., E. Bourazopoulou, et al. (2007). "Expression of functional Toll-like 

receptors by salivary gland epithelial cells: increased mRNA expression in cells 



 

 -208- 

derived from patients with primary Sjogren's syndrome." Clin Exp Immunol 147(3): 

497-503. 

Speight, P. M., A. Cruchley, et al. (1989). "Epithelial HLA-DR expression in labial salivary 

glands in Sjogren's syndrome and non-specific sialadenitis." J Oral Pathol Med 18(3): 

178-183. 

Stadanlick, J. E. and M. P. Cancro (2008). "BAFF and the plasticity of peripheral B cell 

tolerance." Curr Opin Immunol 20(2): 158-161. 

Strange, R., F. Li, et al. (1992). "Apoptotic cell death and tissue remodelling during mouse 

mammary gland involution." Development 115(1): 49-58. 

Subramanian, S., K. Tus, et al. (2006). "A Tlr7 translocation accelerates systemic 

autoimmunity in murine lupus." Proc Natl Acad Sci U S A 103(26): 9970-9975. 

Sumida, T., Y. Kita, et al. (1994). "T cell receptor V alpha repertoire of infiltrating T cells in 

labial salivary glands from patients with Sjogren's syndrome." J Rheumatol 21(9): 

1655-1661. 

Sun, C. M., E. Deriaud, et al. (2005). "Upon TLR9 signaling, CD5+ B cells control the IL-12-

dependent Th1-priming capacity of neonatal DCs." Immunity 22(4): 467-477. 

Szodoray, P., P. Alex, et al. (2005). "Distinct profiles of Sjogren's syndrome patients with 

ectopic salivary gland germinal centers revealed by serum cytokines and BAFF." Clin 

Immunol 117(2): 168-176. 

Szyszko, E. A., K. A. Brokstad, et al. (2011). "Salivary glands of primary Sjogren's syndrome 

patients express factors vital for plasma cell survival." Arthritis Res Ther 13(1): R2. 

Tada, S., T. Yasui, et al. (2013). "BAFF controls neural cell survival through BAFF 

receptor." PLoS One 8(7): e70924. 

Tangye, S. G., V. L. Bryant, et al. (2006). "BAFF, APRIL and human B cell disorders." 

Semin Immunol 18(5): 305-317. 

Tardivel, A., A. Tinel, et al. (2004). "The anti-apoptotic factor Bcl-2 can functionally 

substitute for the B cell survival but not for the marginal zone B cell differentiation 

activity of BAFF." Eur J Immunol 34(2): 509-518. 

Thery, C., L. Zitvogel, et al. (2002). "Exosomes: composition, biogenesis and function." Nat 

Rev Immunol 2(8): 569-579. 

Thompson, J. S., S. A. Bixler, et al. (2001). "BAFF-R, a newly identified TNF receptor that 

specifically interacts with BAFF." Science 293(5537): 2108-2111. 



 

 -209- 

Tian, J., A. M. Avalos, et al. (2007). "Toll-like receptor 9-dependent activation by DNA-

containing immune complexes is mediated by HMGB1 and RAGE." Nat Immunol 

8(5): 487-496. 

Tian, J., D. Zekzer, et al. (2001). "Lipopolysaccharide-activated B cells down-regulate Th1 

immunity and prevent autoimmune diabetes in nonobese diabetic mice." J Immunol 

167(2): 1081-1089. 

Tili, E., C. M. Croce, et al. (2009). "miR-155: on the crosstalk between inflammation and 

cancer." Int Rev Immunol 28(5): 264-284. 

Tobon, G. J., Y. Renaudineau, et al. (2010). "The Fms-like tyrosine kinase 3 ligand, a 

mediator of B cell survival, is also a marker of lymphoma in primary Sjogren's 

syndrome." Arthritis Rheum 62(11): 3447-3456. 

Tribouley, C., M. Wallroth, et al. (1999). "Characterization of a new member of the TNF 

family expressed on antigen presenting cells." Biol Chem 380(12): 1443-1447. 

Tsubata, T. (1999). "Co-receptors on B lymphocytes." Curr Opin Immunol 11(3): 249-255. 

Tsunawaki, S., S. Nakamura, et al. (2002). "Possible function of salivary gland epithelial 

cells as nonprofessional antigen-presenting cells in the development of Sjogren's 

syndrome." J Rheumatol 29(9): 1884-1896. 

Tzioufas, A. G. and M. Voulgarelis (2007). "Update on Sjogren's syndrome autoimmune 

epithelitis: from classification to increased neoplasias." Best Pract Res Clin 

Rheumatol 21(6): 989-1010. 

Vabulas, R. M., H. Wagner, et al. (2002). "Heat shock proteins as ligands of toll-like 

receptors." Curr Top Microbiol Immunol 270: 169-184. 

Vakaloglou, K. M. and C. P. Mavragani (2011). "Activation of the type I interferon pathway 

in primary Sjogren's syndrome: an update." Curr Opin Rheumatol 23(5): 459-464. 

Varin, M. M., T. Guerrier, et al. (2012). "In Sjogren's syndrome, B lymphocytes induce 

epithelial cells of salivary glands into apoptosis through protein kinase C delta 

activation." Autoimmun Rev 11(4): 252-258. 

Varin, M. M., T. Guerrier, et al. (2011). "B lymphocytes induce epithelial cells of salivary 

glands into apoptosis through protein kinase C delta activation." Bull Group Int Rech 

Sci Stomatol Odontol 50(2): 165. 

Varin, M. M., L. Le Pottier, et al. (2010). "B-cell tolerance breakdown in Sjogren's 

syndrome: focus on BAFF." Autoimmun Rev 9(9): 604-608. 



 

 -210- 

Vincent, F. B., D. Saulep-Easton, et al. (2013). "The BAFF/APRIL system: emerging 

functions beyond B cell biology and autoimmunity." Cytokine Growth Factor Rev 

24(3): 203-215. 

Vitali, C., S. Bombardieri, et al. (2002). "Classification criteria for Sjogren's syndrome: a 

revised version of the European criteria proposed by the American-European 

Consensus Group." Ann Rheum Dis 61(6): 554-558. 

von Bulow, G. U. and R. J. Bram (1997). "NF-AT activation induced by a CAML-interacting 

member of the tumor necrosis factor receptor superfamily." Science 278(5335): 138-

141. 

von Bulow, G. U., H. Russell, et al. (2000). "Molecular cloning and functional 

characterization of murine transmembrane activator and CAML interactor (TACI) 

with chromosomal localization in human and mouse." Mamm Genome 11(8): 628-

632. 

von Bulow, G. U., J. M. van Deursen, et al. (2001). "Regulation of the T-independent 

humoral response by TACI." Immunity 14(5): 573-582. 

Vora, K. A., L. C. Wang, et al. (2003). "Cutting edge: germinal centers formed in the absence 

of B cell-activating factor belonging to the TNF family exhibit impaired maturation 

and function." J Immunol 171(2): 547-551. 

Walters, S., K. E. Webster, et al. (2009). "Increased CD4+Foxp3+ T cells in BAFF-

transgenic mice suppress T cell effector responses." J Immunol 182(2): 793-801. 

Wang, C., L. Deng, et al. (2001). "TAK1 is a ubiquitin-dependent kinase of MKK and IKK." 

Nature 412(6844): 346-351. 

Warnatz, K., U. Salzer, et al. (2009). "B-cell activating factor receptor deficiency is 

associated with an adult-onset antibody deficiency syndrome in humans." Proc Natl 

Acad Sci U S A 106(33): 13945-13950. 

Watanabe, R., M. Fujimoto, et al. (2007). "CD19 expression in B cells is important for 

suppression of contact hypersensitivity." Am J Pathol 171(2): 560-570. 

Wei, B., P. Velazquez, et al. (2005). "Mesenteric B cells centrally inhibit CD4+ T cell colitis 

through interaction with regulatory T cell subsets." Proc Natl Acad Sci U S A 102(6): 

2010-2015. 

Wolf, S. D., B. N. Dittel, et al. (1996). "Experimental autoimmune encephalomyelitis 

induction in genetically B cell-deficient mice." J Exp Med 184(6): 2271-2278. 



 

 -211- 

Woo, S. J., J. Im, et al. (2013). "Induction of BAFF expression by IFN-gamma via 

JAK/STAT signaling pathways in human intestinal epithelial cells." J Leukoc Biol 

93(3): 363-368. 

Wu, X. and S. L. Peng (2006). "Toll-like receptor 9 signaling protects against murine lupus." 

Arthritis Rheum 54(1): 336-342. 

Xia, X. Z., J. Treanor, et al. (2000). "TACI is a TRAF-interacting receptor for TALL-1, a 

tumor necrosis factor family member involved in B cell regulation." J Exp Med 

192(1): 137-143. 

Xu, L. G. and H. B. Shu (2002). "TNFR-associated factor-3 is associated with BAFF-R and 

negatively regulates BAFF-R-mediated NF-kappa B activation and IL-10 production." 

J Immunol 169(12): 6883-6889. 

Yamada, T., K. Zhang, et al. (2005). "B lymphocyte stimulator activates p38 mitogen-

activated protein kinase in human Ig class switch recombination." Am J Respir Cell 

Mol Biol 32(5): 388-394. 

Yamamoto, M., S. Sato, et al. (2003). "Role of adaptor TRIF in the MyD88-independent toll-

like receptor signaling pathway." Science 301(5633): 640-643. 

Yan, M., J. R. Brady, et al. (2001). "Identification of a novel receptor for B lymphocyte 

stimulator that is mutated in a mouse strain with severe B cell deficiency." Curr Biol 

11(19): 1547-1552. 

Yan, M., H. Wang, et al. (2001). "Activation and accumulation of B cells in TACI-deficient 

mice." Nat Immunol 2(7): 638-643. 

Yanaba, K., J. D. Bouaziz, et al. (2008). "A regulatory B cell subset with a unique 

CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses." 

Immunity 28(5): 639-650. 

Yang, M., J. Deng, et al. (2012). "IL-10-producing regulatory B10 cells ameliorate collagen-

induced arthritis via suppressing Th17 cell generation." Am J Pathol 180(6): 2375-

2385. 

Yang, M., H. Hase, et al. (2005). "B cell maturation antigen, the receptor for a proliferation-

inducing ligand and B cell-activating factor of the TNF family, induces antigen 

presentation in B cells." J Immunol 175(5): 2814-2824. 

Yang, M., K. Rui, et al. (2013). "Regulatory B cells in autoimmune diseases." Cell Mol 

Immunol 10(2): 122-132. 

Yang, M., L. Sun, et al. (2010). "Novel function of B cell-activating factor in the induction of 

IL-10-producing regulatory B cells." J Immunol 184(7): 3321-3325. 



 

 -212- 

Yao, J., T. W. Kim, et al. (2007). "Interleukin-1 (IL-1)-induced TAK1-dependent Versus 

MEKK3-dependent NFkappaB activation pathways bifurcate at IL-1 receptor-

associated kinase modification." J Biol Chem 282(9): 6075-6089. 

Yao, Y., Z. Liu, et al. (2013). "Type I interferons in Sjogren's syndrome." Autoimmun Rev 

12(5): 558-566. 

Ye, Q., L. Wang, et al. (2004). "BAFF binding to T cell-expressed BAFF-R costimulates T 

cell proliferation and alloresponses." Eur J Immunol 34(10): 2750-2759. 

Yi, A. K., R. Tuetken, et al. (1998). "CpG motifs in bacterial DNA activate leukocytes 

through the pH-dependent generation of reactive oxygen species." J Immunol 

160(10): 4755-4761. 

Yoshida, K., H. Liu, et al. (2006). "Protein kinase C delta regulates Ser46 phosphorylation of 

p53 tumor suppressor in the apoptotic response to DNA damage." J Biol Chem 

281(9): 5734-5740. 

Yoshimoto, K., M. Tanaka, et al. (2011). "Regulatory mechanisms for the production of 

BAFF and IL-6 are impaired in monocytes of patients of primary Sjogren's 

syndrome." Arthritis Res Ther 13(5): R170. 

Youinou, P. (2010). "Haralampos M. Moutsopoulos: a lifetime in autoimmunity." J 

Autoimmun 35(3): 171-175. 

Youinou, P. and J. O. Pers (2011). "Disturbance of cytokine networks in Sjogren's 

syndrome." Arthritis Res Ther 13(4): 227. 

Yu, P., U. Wellmann, et al. (2006). "Toll-like receptor 9-independent aggravation of 

glomerulonephritis in a novel model of SLE." Int Immunol 18(8): 1211-1219. 

Zarember, K. A. and P. J. Godowski (2002). "Tissue expression of human Toll-like receptors 

and differential regulation of Toll-like receptor mRNAs in leukocytes in response to 

microbes, their products, and cytokines." J Immunol 168(2): 554-561. 

Zarnegar, B., J. Q. He, et al. (2004). "Unique CD40-mediated biological program in B cell 

activation requires both type 1 and type 2 NF-kappaB activation pathways." Proc Natl 

Acad Sci U S A 101(21): 8108-8113. 

Zhai, K., X. Tian, et al. (2012). "Cytokine BAFF gene variation is associated with survival of 

patients with T-cell lymphomas." Clin Cancer Res 18(8): 2250-2256. 

Zhang, D., G. Zhang, et al. (2004). "A toll-like receptor that prevents infection by 

uropathogenic bacteria." Science 303(5663): 1522-1526. 



 

 -213- 

Zhang, X., E. Deriaud, et al. (2007). "Type I interferons protect neonates from acute 

inflammation through interleukin 10-producing B cells." J Exp Med 204(5): 1107-

1118. 

Zheng, L., Z. Zhang, et al. (2010). "Expression of Toll-like receptors 7, 8, and 9 in primary 

Sjogren's syndrome." Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109(6): 

844-850. 

Zhou, H. J., L. V. Pham, et al. (2007). "Nuclear CD40 interacts with c-Rel and enhances 

proliferation in aggressive B-cell lymphoma." Blood 110(6): 2121-2127. 



 

 -214- 

 

V - APPENDIX 



 

 -215- 

Appendix  1  

The complexity of the BAFF TNF-family members: Implications for 
autoimmunity 

Journal of Autoimmunity 39 (2012) 189e198 



 

 -226 - 

Appendix 2 

Interferon-gamma and SC35 protein regulate the alternative splicing of BAFF 
gene 

 

 

 


