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Invité
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s’est embêté. Guillermo el conquistador. Guillaume, merci pour ton amitié et pour
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les bouquins que l’on lissait au collège. Fred, toujours très sympathique avec moi. On
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Chapter 1

Introduction

“You never get a second chance to make a first impression”.

—Oscar Wilde

1.1 Brief review of the history of fluid mechanics

Fluid mechanics is the field of physics that studies the fluids, namely, liquids, gases

and plasmas, by applying them the laws of force and motion. There are two branches:

hydrostatics, which studies fluids at rest, and fluid dynamics, that deals with fluids in

motion.

The first researches in fluid mechanics date from the ancient Greece, around 250

B.C., when Archimedes studied the buoyancy force in liquids and published his work

entitled On Floating Bodies, considered as the first major work in the field. In the mid-

dle ages the Islamic physicist Al-Khazini invented the first known hydrostatic balance

and presented it in The book of Balance of Wisdom (1121).

In the seventeenth and eighteenth centuries, there were many advances in Europe.

The Italian Evangelista Torricelli, also known as the inventor of the barometer, ex-

plained several phenomena related to the motion of liquids in his treatise De motu

gravium naturaliter descendentium (1644). The French Blaise Pascal published his re-

searches about fluid statics in his treatise Récit de la grande expérience de l’équilibre des

liqueurs (1648), where he showed the variation of the atmospheric pressure between the

French city of Clermont and a nearby mountain called Puy-du-Dôme by using two glass

cylinders filled with mercury. The English Isaac Newton published his investigations

about the viscosity, after theoretical and experimental investigations of the fluid flowing
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between two parallel plates, in his Philosiphiæ naturalis principia mathematica (1687).

More progress in fluid dynamics were made by the Swiss Daniel Bernoulli who studied

the energy conservation in moving fluids and established the well known Bernoulli prin-

ciple which states that a fluid exchanges its kinetic energy for pressure. He presented his

results in his Hydrodynamica seu de viribus et motibus fluidorum commentarii (1738)

The nineteenth century was fruitful for the progress of fluid mechanics. The French

Jean Léonard Marie Poiseuille and the German Gotthilf Heinrich Ludwig Hagen de-

rived experimentally the laws that govern the liquid motion of very slow flows of high

viscous fluid through pipes, like the blood that flows through the veins. The French

Augustin Louis Cauchy derived the first differential equation of momentum in 1822,

using the ideas of the Swiss Leonhard Euler. Around the same period, the most im-

portant equation in fluid mechanics, called the Navier-Stokes equation, was obtained

independently by the French Claude-Louis Navier and the Irish George Gabriel Stokes.

In 1858 the German Hermann von Helmholtz published a paper in which he explained

the significance of the vorticity in fluid mechanics and science in general. Some years

after, in 1869, the British William Thomson Kelvin published his researches setting the

nowadays-called Kelvin’s circulation theorem. At the end of this century the Irish Os-

borne Reynolds studied the condition under which the transition to turbulence occurs

in pipe flow and used for the same time the now called Reynolds number in his article

of 1883 [19].

In the twentieth century, the German Ludwig Prandtl investigated the flow close to

the boundary layers and made the connection between the hitherto unconnected the-

ories describing creeping flows and inviscid flows. The British Geoffrey Ingram Taylor

advanced the understanding of fluid viscosity and turbulence and also helped in the

development of supersonic aircraft. In 1941 the Soviet Andrey Nicolaevich Kolmogorov

proposed a theory for isotropic turbulence, when the Reynolds number is large. He

postulated that the smallest scale at which the turbulent energy is dissipated has to

be universal, namely it does not depend on the large scales of the flow. Therefore, the

smallest length and temporal scales of turbulence only depend on the viscosity and the
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energy dissipation rate.

The interested reader will be able to find more details about the history of fluid

mechanics in “A history and philosophy of fluid mechanics” by G. A. Tokay or “The

worlds of flow” by Olivier Darrigol.

1.2 The Couette-Taylor flow

Rotating flows are those which turn around a point, an axis or an object. These

flows are observed in nature, for example, gases moving around stars, hurricanes or

the rotating currents in oceans. They can also be found in many industrial processes,

like the blood separators used to extract the plasma from the blood by centrifugation,

the air entering in an aircraft turbine or the water that moves a turbine for electricity

generation. These flows can even be found in daily life, like the coffee on a glass when it

is stirred to dissolve the sugar, the water whirlpools created in sinks or the air around

a spinning tennis ball.

A particular case of these rotating flows is when a fluid is confined between two

coaxial differentially rotating cylinders. This type of flows is named the Couette-Taylor

flow, after the French Maurice Marie Alfred Couette and the British Geoffrey Ingram

Taylor. They were one of the firsts using this configuration in their investigations at

the end of the nineteenth and the beginning of the twentieth centuries, respectively.

Since it appearance, the Couette-Taylor flow has been one of the most investigated flow

systems in fluid mechanics, because it is simple and easy to set an experimental model

for shear flows. In addition, it is a closed system, so it is less sensitive to perturbations.

Moreover, the global balances that relate the angular velocity to the energy dissipation

can be obtained easily. From the standpoint of fundamental physics it is a rich system,

since it presents multiple flow states, owing to the high non-linearity of the flow.

The Couette-Taylor system was first used in 1888 by Mallock [20] to determine the

viscosity of water. Later, Couette [21] employed it as a viscosimeter. In 1917 Rayleigh

[22] deduced a stability criterion for inviscid flows. Some years after, in 1923, Taylor

[1] found that the laminar flow is linearly destabilised and replaced by axisymmetric
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steady toroidal vortices, called Taylor vortices. He established a criterion for the first

appearance of instabilities depending on the rotation of both cylinders. Additionally, he

calculated the velocity profile of these vortices for purely inner rotation and when both

cylinders rotate. When a fluid tracer is added to the fluid, these Taylor vortices resemble

donuts stacked around the inner cylinder. Figure 1.1(a) depicts the streamlines in a

plane parallel to the common axis of the cylinder predicted by Taylor’s analytical study

and figure 1.1(b) shows a snapshot of the Taylor vortices. Chandrasekhar [23] studied

analytically the hydrodynamics and the hydromagnetic instabilities in Couette-Taylor

flows. Di Prima and Swinney performed an analitical study of Taylor vortices and wavy

vortices [10]. Di Prima et al. [11] obtained an analytical expression to calculate the

torque of laminar Taylor vortices as a function of the Taylor number and the radius

ratio.

Figure 1.1: (a) Reproduction of Taylor’s results [1]. Streamlines analytically predicted

of a Taylor vortex when only the inner cylinder rotates. (b) Snapshot of a flow with 6

Taylor vortices.

Following the works just cited, important contributions to the understanding of

this flow instability have been made by many authors. Stuart [24] did an analytical

study of disturbances and energy transfer. Coles [25] studied the onset of turbulence
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and the multiple states in terms of axial and azimuthal wavenumber. Snyder [26]

showed experimentally that the wavenumber is sensitive to the initial conditions and

that its selection is a time-dependent process. Gollub and Swinney [27] performed a

spectral analysis of the radial velocity to study the onset of chaos in the Couette-Taylor

system. Barcilon et al. [28] proved the co-existence of Görtler vortices and Taylor

vortices at high Taylor numbers in the turbulent regime. Koschmieder [29] measured

the wavelentgh of turbulent Taylor vortices at high Taylor number in systems with two

radius ratios and found that the wavelength strongly depends on the initial conditions

in the case of narrow gap. Mullin and Benjamin [30] found that the annulus length

has an effect on the stability of various steady cellular flows, in particular, a small

length of the cylinders increases considerably the end effects. Benjamin and Mullin

[31] demonstrated experimentally that a large number of states with distinct number of

vortices can be found in a system with wide gap and that “anomalous mode” with odd

number of vortices can arise. Andereck et al. [2] discovered a large variety of different

flow states by rotating the inner and the outer cylinder for a system with η = 0.883

and Γ = 30 (see figure 1.2).

The torque has also been widely studied since Wendt [4] measured the torque for the

first time in 1933 in a wide range of speeds, from laminar to turbulent flows. In 1936,

Taylor [32] measured the torque in systems with several inner cylinders of different

radii. Donnelly and Simon [18] obtained an empirical relationship between the torque

of the Taylor vortex flow and the rotation speed of the inner cylinder. Nakabayashi

et al. [33] analysed the effect of the surface roughness on the torque in transient and

fully turbulent flow. In the case of purely inner rotation and turbulent flow, the effect

of roughness only depends on the relative roughness and not in the Reynolds number.

The recent studies dealing with torque measurements are presented in the following

section.
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Figure 1.2: Reproduction of Andereck et al.’s results [2], redrawn by Cross and Green-

side [3]. Regimes observed in Couette-Taylor flow depending on the rotating speed of

the inner and outer cylinders in a system with η = 0.883 and Γ = 30.

1.3 Turbulent flows

Most of the flows present in Nature and in industrial applications are turbulent. Hence,

there exists a great interest in the investigation of this kind of flows. The origin of

turbulence is still unknown and it is a scientific challenge. However, the fundamental

properties that characterise these flows are known. They are irregular and random, so,

as they cannot be described from a deterministic point of view, they are treated using

statistic methods. The momentum transfer diffusion is highly effective. Turbulence

only appears if the Reynolds number is high, that is, the inertial forces are much larger

than the viscous forces. They are three-dimensional and exhibit high levels of vorticity

fluctuations. Actually, a turbulent flow can be visualised as a collection of vorticity

tubes that are stretched because of the velocity fluctuations, and this process can only
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take place in three-dimensional flows. Turbulent flows are always dissipative, because

the mechanical deformation work of the viscous stress increases the internal energy at

the expense of the kinetic energy of the turbulent fluctuations. That is why this kind

of flows needs a constant energy source to maintain the turbulence. And finally, the

smallest scales of turbulence are larger than the molecular scales, so the fluctuations of

the fluid properties, like the pressure, the density or the temperature, are associated

to a continuous medium and governed by the Navier-Stokes equations. In addition,

as turbulence is a consequence of the flow structure and not of the fluid, most of the

dynamic properties of turbulent flows are the same for all the fluids, independently

whether they are gases or liquids [34]. Then, the Couette-Taylor system can serve as

a prototype to study turbulent flows in closed systems, since it is easy to set up, to

control and to perform measurements.

Since the last three decades, turbulent flows and their energy dissipation have been

again an important topic in the field of Couette-Taylor flows. Lathrop et al. [16]

identified a transition from centrifugal to shear driven turbulence. Coughlin and Marcus

[35] studied numerically the turbulent burst that appear in the flow before the onset

of turbulence and described its dynamic behaviour. Takeda [36] measured the spatio-

temporal velocity field of the flow and analysed the frequency spectrum to study the

transition from laminar to turbulent flow. Batten et al. [37] studied numerically the

transition to shear driven turbulence and showed that this transition occurs earlier for

large radius ratios than for low ones. Racina and Kind [38] studied the dissipation of

turbulent kinetic energy with the help of the particle image velocimetry (PIV). Bilson

and Bremhorst [39] carried out direct numerical simulations (DNS) of turbulent flows

and showed that the Taylor vortices transport the main part of the momentum transfer

at Reynolds number below the transition to shear driven turbulence. Pirrò and Quadrio

[40] showed using DNS that the fluctuations in turbulent flows have two main sources:

the large-scale vortices and the near-wall shear. Dutcher and Muller [41] analysed

the different transitions between the laminar Couette flow and the turbulent flow by

means of spatio-temporal diagrams. Burin et al. [42] measured the angular momentum

transport in a system with a short height and a wide gap, finding few differences with
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systems with longer heights and narrower gaps.

1.4 Motivations

As already exposed, one of the most important features of turbulent flows is the high

energy dissipation. The energy injected in the fluid is transmitted from the large-scale

structures to the smallest scales, where the viscous stresses dissipate the kinetic energy

of the turbulent fluctuations and transform it in internal energy [34]. In a Couette-

Taylor system the total energy injected in the fluid per unit of time, i.e., the power

injected, can be calculated multiplying the rotation speed of the cylinders by the applied

torque. Therefore, it is clear that the use of torque measurement in these flows provides

a fruitful information about the energy dissipation.

Dubrulle and Hersant [43] proposed an analogy between the heat transfer in tur-

bulent Rayleigh-Bénard convection and the momentum transfer in turbulent Couette-

Taylor flow. Eckhardt et al. [44] extended this analogy and demonstrated that the

momentum transfer is directly related to the torque transmitted to the fluid. The

demonstration will be explained later together with the connection to the torque mea-

surements. In general, changes in the flow structure are accompanied by a variation of

the momentum transfer. So, these changes can be detected from the torque measure-

ments.

The main feature of Couette-Taylor flows is the presence of vortices due to the

centrifugal forces. Therefore, these vortices should play an important role in the en-

ergy dissipation process and the momentum transfer. The present work focus on the

dependence of the torque on the number of vortices and their size, and on the radius

ratio.

Many of the flows encountered in industrial processes are not Newtonian. One

particular case of non-Newtonain fluids are the viscoelastic solutions, which present

both viscous and elastic properties. We will also focus on the torque measurement

in viscoelastic solutions in the Couette-Taylor flow, where the turbulence appears at

relatively small shear rates and exhibits large fluctuations, due to the elastic stresses.
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Therefore, the main object of the present thesis is the development of an accurate

technique for torque measurements in the Couette-Taylor system with Newtonian and

viscoelastic solutions. The obtained data allow for a better understanding of features

of the energy dissipation and the momentum transfer in Couette-Taylor flows

With this information, we have been able to analyse different flow features and

the parameters that influence the energy dissipation and the momentum transfer in

turbulent Couette-Taylor flows.

1.5 Manuscript structure

This manuscript is organised as follows. Chapter 2 present the theoretical background

that holds the experimental work. Chapter 3 describes the experimental set-ups used

during the experiments. Chapter 4 deals with torque measurements in turbulent

Couette-Taylor flows. Chapter 5 deals with torque measurements in viscoelastic poly-

mer solution. The manuscript ends in chapter 6 with the conclusions.
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Chapter 2

Theoretical and experimental back-

ground of turbulent Couette-Taylor

flows

“After a certain high level of technical skill is achieved, science and art tend to coalesce in aesthetics,

plasticity and form. The greatest scientists are always artists as well”.

—Albert Einstein

2.1 Equations of motion

The first basic law in fluid mechanics is that the total fluid mass in a closed volume is

conserved. It is described by the continuity equation,

∂ρ

∂t
+∇ · ρ~u = 0 (2.1)

where ρ is the density of the fluid, t is the time, ∇· is the divergence of a vector field

and ~u is the velocity field. The first term of (2.1) represent the temporal variation of

mass per unit of time, while the second term is the convective mass flux per unit of

volume.

The momentum conservation principle, or Newton’s second law of motion, applied

to a fluid establishes that the variation of momentum contained in a fluid volume is

equal to the sum of all the forces acting on it and is described using the momentum

conservation equation. For Newtonian fluids, where the shear stress is proportional to

the shear rate, this equation is called the Navier-Stokes equation, and is written as
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follows,

∂ρ~u

∂t
+∇ · (ρ~u~u) = −∇p +∇ ·

[

µ(∇~u+∇~uT )
]

+∇[(µv −
2

3
µ)∇ · ~v] + ~F (2.2)

where, ∇ is the gradient, p is the pressure, µ is the dynamic viscosity, T indicates the

transpose of a vector, µv is the volume viscosity. The first term on the left side represents

the local variation of momentum per unit of volume and the second one represents the

momentum flux per unit of time. The first term on the right side includes the pressure

forces per unit of volume, the second and the third ones represent the viscous forces

related to the shear and the volumetric deformation per unit of volume and ~F is the sum

of the external forces applied to the fluid [34]. When the flow velocity is small compared

to the sound velocity in the fluid, the flow is considered incompressible (ρ ≈const) and

it is governed by the following equations.











∇ · ~u = 0

∂~u

∂t
+ (~u · ∇)~u = −1

ρ
∇p+ ν∇2~u+ ~F/ρ

(2.3)

where ν = µ/ρ is the kinematic viscosity and is assumed to be constant.

We consider the flow motion of a Newtonian fluid between two concentric infinitely

long cylinders which rotate around a common axis, i.e., the Couette-Taylor flow (see

figure 2.1). The inner cylinder of radius ri rotates at the angular frequency ωi and

the outer cylinder of radius ro rotates at the angular frequency ωo. The flow occupies

the gap between the cylinders, whose width is d = ro − ri and whose hight is H . A

cylindrical coordinate system is used and the common axis of the cylinders is chosen as

the z-axis. Then, r and ϕ denote the radial and the azimuthal coordinates, respectively.

The velocity field, ~u(t; r, ϕ, z), can be decomposed in three perpendicular compo-

nents: the azimuthal one, uϕ(t; r, ϕ, z), the radial one, ur(t; r, ϕ, z), and the axial one,

uz(t; r, ϕ, z). The azimuthal angular momentum per mass is L(t; r, ϕ, z) = ruϕ = r2ω,
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Figure 2.1: Design of the Couette-Taylor system.

where ω(t; r, ϕ, z) is the azimuthal angular velocity. The continuity equation reads,

1

r

∂

∂r
(rur) +

1

r

∂uϕ

∂φ
+

∂uz

∂z
= 0 (2.4)

and the Navier-Stokes equations for the flow motion in its three cylindrical components

are,
∂ur

∂t
+ ur

∂ur

∂r
+

uϕ

r

∂ur

∂ϕ
−

u2
ϕ

r
+ uz

∂ur

∂z

= −1

ρ

∂p

∂r
+ ν

[

∂

∂r

(

1

r

∂

∂r
(rur)

)

+
1

r2
∂2ur

∂ϕ2
+

∂2ur

∂z2
− 2

r2
∂uϕ

∂ϕ

] (2.5)

∂uϕ

∂t
+ ur

∂uϕ

∂r
+

uϕ

r

∂uϕ

∂ϕ
+

uruϕ

r
+ uz

∂uϕ

∂z

= − 1

ρr

∂p

∂ϕ
+ ν

[

∂

∂r

(

1

r

∂

∂r
(ruϕ)

)

+
1

r2
∂2uϕ

∂ϕ2
+

∂2uϕ

∂z2
+

2

r2
∂ur

∂ϕ

] (2.6)

∂uz

∂t
+ ur

∂uz

∂r
+

uϕ

r

∂uz

∂ϕ
+ uz

∂uz

∂z

= −1

ρ

∂p

∂z
+ ν

[

1

r

∂

∂r

(

r
∂uz

∂r

)

+
1

r2
∂2uz

∂ϕ2
+

∂2uz

∂z2

]

.

(2.7)

The velocity components satisfy the no-slip boundary conditions at the cylinders walls,
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i.e.,


































ur = uz = 0 at r = ri, r = ro

uϕ = ωiri at r = ri

uϕ = ωoro at r = ro

~u = 0 at z = 0, z = H

(2.8)

The conditions for uϕ at z = 0, z = H depend on the way that the endplates are

attached to the Couette-Taylor system.

In fluid mechanics, it is very common to use the dimensionless analysis for two main

reasons. On the one hand, it allows to know the minimum number of variables that

govern a given problem, reducing the initial physical variables to a smaller group of

dimensionless parameters. This enables to set accurately the conditions that should be

fulfilled to the existence of similitude between two flow systems; i.e., the dimensionless

number must be the same. Therefore, the dimensionless solution of both systems is

the same. Then, the physical solutions of the problems can be obtained by undoing

the change in the variables using the characteristic magnitudes of each problem. On

the other hand, the use of dimensional analysis is important because it provides the

relevance of a given variable in the problem, just guessing if its dimensionless value is

large or small to know whether the variable influences the dynamics or not [34]. The

Couette-Taylor system can be characterised by four dimensionless control parameters:

the radius ratio η = ri/ro, which is related to the flow mean curvature d̄ = d/r̄ =

2(1− η)/(1 + η); the aspect ratio Γ = H/d; the rotation ratio ωo/ωi; and the Reynolds

number of the inner cylinder, which represents the ratio between inertial forces to

viscous forces, and is defined as

Re =
ωirid

ν
. (2.9)

In our study, the outer cylinder is fixed (ωo = 0), so there are three independent control

parameters. The Reynolds number and the curvature can be combined to define the

Taylor number as follows,

Ta =
1

4

σ(ro − ri)
2(ri + ro)

2(ωi − ωo)
2

ν2
, (2.10)
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where it is introduced the pseudo-Prandtl number, defined as

σ =
(1 + η)4

(4η)2
. (2.11)

The relationship between Re and Ta, when ωo = 0, is the following,

Ta =
σ2

[(1 + η)/2]2
Re2 (2.12)

2.1.1 Base flow

Let consider the laminar Couette flow between two infinitely long cylinders which rotate

independently. The flow is stationary (time independent), axisymmetric (∂/∂ϕ = 0)

and invariant along the the cylinder axis (∂/∂z = 0). Then, there is only molecular

transport of azimuthal angular momentum, L. From the continuity equation, the axial

and radial components ur and uz are identically zero and the azimuthal component uϕ

only depends on the radial component. The base flow equations are,















ρ
u2
ϕ

r
= −dp

dr
d

dr

(

1

r

d

dr
(ruϕ)

)

= 0

, (2.13)

where the first equation is the balance between the centrifugal force and the radial

pressure gradient. The boundary conditions (2.8) lead to the azimuthal velocity of the

base flow,

uϕ(r) =
C1

r
+ C2r , where C1 =

(ωi − ωo)r
2
i

1− η2
and C2 =

ωo − η2ωi

1− η2
. (2.14)

The angular momentum L(r) = ruϕ = C1 +C2r
2. The viscous stress tensor ¯̄τ has only

shear component,

τrϕ = −µ

(

∂uϕ

∂r
− uϕ

r

)

=
2C1µ

r2
. (2.15)
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In the case where only the inner cylinder rotates, the laminar torque acting on the inner

cylinder surface over the height H is,

Tlam = 2πriHτrϕri = 4πr2iHµ
ωi

1− η2
. (2.16)

The characteristic torque for a cylindrical annulus of fluid with kinematic viscosity ν is

Tν = 2πρν2H , which is related to the molecular transport due to viscosity. This allows

to define the dimensionless torque expressed as,

Glam =
Tlam

2πρν2H
=

2η

(1 + η)(1− η)2
Re. (2.17)

2.1.2 Theory of Eckhardt, Grossmann and Lohse

A theory to establish an analogy between the momentum transfer in Couette-Taylor

flow and the heat transfer in Rayleigh-Bénard convection was recently developed by

Eckhardt, Grossmann and Lohse [44] in 2007. The Rayleigh-Bénard system consists

on two parallel plates displaced perpendicular to a gravity field an put at different

temperatures. If the lower plate is hotter, heat is transferred from the lower to the

upper plate. The flow becomes unstable at a given Rayleigh number, Ra (the analogue

of the Taylor number in Couette Taylor flow), which is proportional to the temperature

difference imposed on the plates. The idea was to obtain the same set of equations as

in Rayleigh-Bénard system that could lead to the same scaling laws in the turbulent

regime. The goal of this analogy is to demonstrate that the turbulence mechanisms

in high turbulent flows are the same independently of the system. Here below, the

different dimensionless parameters are derived from the flow equations.

Let consider a Couette-Taylor flow, beyond the Couette laminar regime, where the

velocity field is time dependent and has the three components. In this case, the trans-

port of azimuthal angular momentum, L, is both molecular and convective. To derive

the azimuthal conserved current, the equation (2.6) is averaged over a cylindrical sur-

face co-axial with the cylinders area A(r) = 2πrH , where ri ≤ r ≤ ro. The average is
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defined as,

〈X〉A =

∫

X
rdϕdz

2πrH
=

∫

dz

H

∫

X
dϕ

2π
, (2.18)

The terms containing ϕ vanish. Then, if a time average is also performed, one gets

〈

ur
∂uϕ

∂r
+

uruϕ

r
+ uz

∂uϕ

∂z
− ν

[

1

r

∂uϕ

∂r
− uϕ

r2
+

∂2uϕ

∂r2

]〉

A,t

= 0. (2.19)

The continuity equation allows to eliminate the derivative with respect to z, in fact the

term
〈

uz
∂uϕ

∂z

〉

A,t

=

〈

∂(uzuϕ)

∂z
− uϕ

∂uz

∂z

〉

A,t

=

〈

uϕ
∂ur

∂r
+

uϕur

r

〉

A,t

(2.20)

If this is introduced in (2.19), it is obtained

〈

∂(r2uruϕ)

∂r
− ν

[

1

r

∂uϕ

∂r
− uϕ

r2
+

∂2uϕ

∂r2

]〉

A,t

= 0 (2.21)

Now, if (2.21) is multiplied by r2, and taking into account that ω = uϕ/r, the following

expression is obtained,

∂

∂r

(

r3
[

〈urω〉A,t − ν
∂〈ω〉A,t

∂r

])

= 0 (2.22)

Therefore, the quantity inside the parenthesis is independent of r, i.e., a quantity that

has the same value for any cylindrical surface A(r) in the flow domain ri ≤ r ≤ ro. The

constant

Jω = r3
[

〈urω〉A,t − ν
∂〈ω〉A,t

∂r

]

(2.23)

is interpreted as the conserved transverse current of azimuthal motion, which transports

ω(t; r, ϕ, z) in the radial direction. Actually, the dimension of Jω is [Jω] = m4s−2 =

[L2] = [ν2]. The quantity Jω is the analogue of the conserved current of temperature,

J , in Rayleigh-Bénard convection. Jω evaluated in the inner cylinder at r = ri is

Jω|r=ri = −r3i ν
∂ω

∂r
|r=ri. (2.24)
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Then, using (2.15), the shear stress evaluated in the inner cylinder at r = ri is

τrϕ = −µri
∂ω

∂r
|r=ri. (2.25)

The combination of (2.24) and (2.25) yields the variation between the shear stress and

Jω,

τrϕ = ρr−2
1 Jω. (2.26)

So, the torque can be expressed as,

T = 2πriHτrϕri = 2πρHJω. (2.27)

Therefore, measuring the torque T acting on the inner cylinder yields the value of Jω.

The dimensionless torque,

G =
T

2πρν2H
=

Jω

ν2
. (2.28)

is the ratio between the conserved transverse current of azimuthal motion, Jω, to the

purely molecular. The conserved transverse current of azimuthal motion for a Couette

laminar flow is

Jω
lam = 2νC1 = 2νr2i

ωi − ω2

1− η2
. (2.29)

In analogy with the heat transport in Rayleigh-Bénard convection, where the Nusselt

number, Nu, compares the heat transfer in the turbulent regime with the heat transfer

in the conduction regime, Dubrulle and Hersant [43] and then Eckhardt et al. [44]

defined the quasi-Nusselt number on Couette-Taylor flow,

Nuω =
Jω

Jω
lam

=
G

Glam
. (2.30)

which is the ratio of the conserved transverse current of azimuthal motion to the molec-

ular transport in a laminar but not yet transversely convective flow.

The evolution of the torque of a turbulent flow with the rotation speed of the inner
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cylinder can be expressed as a scaling law,

Nuω = AReα−1, (2.31)

where A is the pre-factor and α is the exponent. A rigorous analogy between Rayleigh-

Bénard convection and Couette-Taylor flow exists between Ra and Ta, so the scaling

of the torque should be expressed as follows,

Nuω = ĀTaξTC , (2.32)

where ξTC = (α − 1)/2. In the turbulent Rayleigh-Bénard convection, the Nusselt

number is given by Grossmann and Lohse [45], and the scaling law of the heat convection

is expressed as,

Nu ∝ RaξRB . (2.33)

If the turbulent Couette-Taylor flow and the turbulent Rayleigh-Bénard convection had

the same universal behaviour, both exponent would be the same, ξTC = ξRB, indicating

that the mechanisms of turbulence are similar.

The total energy dissipation rate per mass in a Couette-Taylor flow can be easily

calculated if the torque and the rotation speed of the inner cylinder are known, so,

ε̄ =
torque× rotation speed

mass
=

T Ω

2π(r2o − r2i )Hρ
=

Jω Ω

(r2o − r2i )
(2.34)

The energy dissipation per mass can be also deduced from the equations of motion.

First, the r-, ϕ-, and z-components of the Navier-Stokes equations, (2.5),(2.6) and

(2.7), are multiplied by ur, uϕ and uz, respectively. If the the resulting equations are

grouped, it is obtained,

∂ (~u2/2)

∂t
+

(

ur
∂

∂r
+

uϕ

r

∂

∂ϕ
+ uz

∂

∂z

)(

~u2

2
+ p

)

=

ν

(

ur∇2ur + uϕ∇2uϕ + uz∇2uz −
u2
2 + u2

ϕ

r2
+

2uϕ

r2
∂ur

∂ϕ
− 2ur

r2
∂uϕ

∂ϕ

) (2.35)
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An average over the total volume of the fluid, V , can be defined as,

〈X〉V =
1

V

∫

dr

∫

dz

∫

Xrdϕ. (2.36)

If (2.35) is averaged over the flow volume and using the divergence theorem, also know

as the Gauss-Ostrogradsky theorem, one obtains the equation of the variation of the

kinetic energy as,

dEk

dt
=

〈

~u2

2

〉

V

=

ν

〈(

ur∇2ur + uϕ∇2uϕ + uz∇2uz −
u2
2 + u2

ϕ

r2
+

2uϕ

r2
∂ur

∂ϕ
− 2ur

r2
∂uϕ

∂ϕ

)〉

V

(2.37)

The terms of this equation can be rearranged by splitting the dissipation terms as

follows,

(~u · ∇2)~u = ∇ ·
(

∇~u2

2
+ (~u · ∇)~u

)

− 1

2

(

∂ui

∂xj

+
∂uj

∂xi

)2

(2.38)

where ∂/∂xi,j are the derivative in the cylindrical coordinates. The equation (2.37)

yields

dEk

dt
= ν

〈

∇ ·
(

∇~u2

2
+ (~u · ∇)~u

)〉

V

− ν

〈

1

2

(

∂ui

∂xj

+
∂uj

∂xi

)2
〉

V

. (2.39)

The first term in the right side of (2.39) corresponds to the energy introduced in the

fluid volume through the surfaces due to the viscous no-slip condition. Using again the

divergence theorem we can transform the volume integral in a surface integral, using a

closed surface, as,

εsurf = ν

〈

∇ ·
(

∇~u2

2
+ (~u · ∇)~u

)〉

V

=
ν

V

∮

A

(

∇~u2

2
+ (~u · ∇)~u

)

~dA. (2.40)

The second term on the right side of (2.39) corresponds to the dissipation rate in the

bulk of the flow, given by,

εbulk =
ν

2

〈

(

∂ui

∂xj

+
∂uj

∂xi

)2
〉

V

. (2.41)
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Hence, the total variation of kinetic energy can be written as,

dEk

dt
= εsurf − εbulk (2.42)

Now, the surface integral will be developed. The dissipation rate at the surfaces can be

computed as,

εsurf =
ν

V

∮

A

(

∇~u2

2
+ (~u · ∇)~u

)

~dA =

ν

V

[

Ao

〈

∂

∂r

~u2

2
+ ((~u · ∇)~u)r

〉

Ao

− Ai

〈

∂

∂r

~u2

2
+ ((~u · ∇)~u)r

〉

Ai

]

= Io − Ii

, (2.43)

being Io and Ii the contributions of the surfaces of outer and the inner cylinders,

respectively. If the terms inside the brackets are developed, taking into account that

uϕ = rω and that the surfaces are Ai = 2πHri and Ao = 2πHro, one gets the following

expression,

Io − Ii =
2ν

r2o − r2i

[

(

r3ω
∂ω

∂r

)

ro

−
(

r3ω
∂ω

∂r

)

ri

]

. (2.44)

Taking into account the definition of Jω (2.23), one obtains,

Io − Ii = −2(ωo − ωi)

r2o − r2i
Jω. (2.45)

So, the temporal variation of kinetic energy in the turbulent flow is,

dEk

dt
= Io − Ii − εbulk. (2.46)

In the mechanical equilibrium,

εbulk = Io − Ii = εsurf . (2.47)

In the case of a laminar Couette flow, where Jω = Jω
lam,

εsurf,lam = ν
r2i r

2
o

(r2o − r2i )
2

(

ωi − ωo

d

)2

(2.48)
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In the case of a flow beyond the laminar Couette regime, the increase of energy dissipa-

tion rate due to transverse convection between the cylinders is given by the convective

or “wind” dissipation rate per unit of mass,

εwind = εsurf − εsurf,lam =
2(ωi − ωo)

r2o − r2i
(Jω − Jω

lam). (2.49)

If this is expressed in terms of Nuω, σ and Ta, the following expression is obtained,

εwind =
ν3

d4
Ta

σ2
(Nuω − 1), (2.50)

which shows that the scale of the energy dissipation is ν3/d4. From this expression

the significance of σ can be interpreted as follows. The pseudo-Nusselt number be also

rewritten as,

σ =
ν

r2i r
2
o/(ri + ro)4

, (2.51)

where the quantity r2i r
2
o/(ri+ro)

4 can be interpreted as a viscosity due to the curvature

of the system, or the inverse of a resistance to the vorticity transfer in radial direction.

The larger is the gap, the larger is σ, so r2i r
2
o/(ri + ro)

4 decreases. The dimensionless

expression of the “wind” dissipation rate is,

ε̂wind =
Ta

σ2
(Nuω − 1). (2.52)

This exact relationship between the energy dissipation rate and the ω-current of the

ω-Nusselt number in the Coutte-Taylor is the analogue of the relationship between the

energy dissipation and the Nusselt number in turbulent Rayleigh-Bénard convection,

which is given by

ε̂RB =
Ra

Pr2
(Nu− 1). (2.53)

That is why σ is called the pseudo-Prandtl number in Couette-Taylor flow and Ta is the

analogous driving force in Couette-Taylor flow to Ra in Rayleigh-Bénard convection.
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2.2 Torque in turbulent states

The theory from Eckhardt et al. [44] proves that the torque measurements can provide

fruitful informations about the flow features, particularly, the energy dissipation and

the momentum transfer. In addition to the radius ratio, η, there are other parameters

that have an influence on the level of torque, and hence, on the energy dissipation of

turbulent flows. Numerous investigations have been carried out in the last two decades

to study the parameter space associated to the torque of turbulent flows. Here below,

the different works dealing with the torque are presented.

Wendt [4] was the first who measured the torque in turbulent Couette-Taylor flows.

In figure 2.2 the evolution of the torque divided by the torque of the laminar Couette

flow, Nuω, as a function of the Reynolds number, Re, is depicted. At low Re the flow is

laminar, so the momentum transport is done by viscous diffusion and Nuω = 1. Then,

once a critical Reynolds number is reached, the vortices appear in the flow. Systems

with different inner radii, ri = 4.70, 2.20 and 0.95 cm, corresponding to η = 0.935, 0.85

and 0.68, present different level of torque.

Figure 2.2: Reproduction of Wendt’s results [4]. Torque divided by the laminar torque

as a function of the Reynolds number
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Lathrop et al. [5, 16] found a transition from centrifugal to shear driven turbulence

in a system with η = 0.725 by analysing their torque measurements and demonstrated

that the mechanisms of energy dissipation change after this transition. Figure 2.3(a)

reproduces the results of the evolution G with Re and shows a clear change in the slope

of the curve at Re ≈ 104, which becomes steeper after the transition. Figure 2.3(b)

shows the evolution of the exponent α of the scaling laws with Re. Different behaviours

α are observed before and after the transition at Re ≈ 104, which increase progressively

once the transition is attained. Following this work, Lewis and Swinney [6] detected a

crossing of the torque-speed curves for turbulent flows with different numbers of vortices

around the transition to shear driven turbulence at Re = 13 000. Figure 2.4 reproduces

their results where they showed that the level of torque before the transition of a flow

with 10 vortices is higher than of a flow with 8 vortices. After the transition, the flow

with larger number of vortices presents lower torque. This means that the role of the

vortices become less important after this transition. Actually, Bilson and Bremhorst

[39] found in their numerical simulations that the vortices transport the main part of

the momentum transfer before the transition.

Dubrulle et al. [46] performed an analysis of the control parameters in turbulent

Couette-Flow, also finding a change in the slope of the Nuω(Re) curves when only the

inner cylinder rotates. They interpreted it as a transition to the “ultimate (universal)

regime” of turbulence, in analogy with Rayleigh-Bénard convection, in which energy

dissipation proceeds independently of initial conditions. In this regime, the torque

should vary like Re2 and do not depend any more on the molecular viscosity, like in the

Kolmogorov theory for developed turbulence at large Reynolds numbers, as Doering

and Constatin [47] exposed.

Ravelet et al. [14] carried out a study of turbulent flows in a system with η = 0.917,

focusing on the scaling of the torque with the Reynolds number. Again, they found a

change in the slope of the torque-speed curve at Re ≈ 10 000, probably related to the

transition to the ultimate regime. A change in the behaviour of the exponent α was

also found after this transition.
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Figure 2.3: Reproduction of Lathrop et al.’s results [5]. (a) Evolution of the dimension-

less torque G as a function of the Reynolds number, R. (b) Evolution of the exponent

α as a function of R.

Paoletti and Lathrop [48] studied the torque in a Couette-Taylor system with η =

0.725 and independently rotating cylinders, finding a maximum in the dimensionless

torque G when the ratio between the inner and the outer cylinder rotations speed is

ωo/ωi = −0.33 .

Following the work of Eckhardt et al. [44], van Gils et al. [49] investigated flows at

Re = O(106) in a system with η = 0.717 to reach the ultimate regime. They established

that this ultimate regime is attained once the boundary layers of the cylinders become

turbulent, like in the Rayleigh-Bénard convection. They found an exponent α = 1.88
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Figure 2.4: Reproduction of Lewis and Swinney’s results [6]. Evolution of the difference

in torque between a 10-vortex flow, G10, and a 8-vortex flow, G8, as a function of the

Reynolds number.

at the highest Re they reached. Additionally, they found a maximum in the rescaled

torque Nuω when counter rotating the cylinders at ωo/ωi = −0.31. Huisman et al.

[17] measured the properties of the boundary layer using particle image velocimetry

and found a logarithmic profile, typical of turbulent boundary layers, at Re ≈ 25 000,

indicating that the ultimate regime is reached. Focusing in the number of vortices

present in the flow, Huisman et al. [50] found multiple states in strongly turbulent

flows at Re = O(106), questioning Kolmogorov’s paradigm about the uniqueness of

turbulence at high Reynolds numbers. Finally, in the framework of the present work,

we published the results of our investigations [9] related to the effect of different numbers

of vortices in the torque of Couette-Taylor flows. Nine different states with different

numbers of vortices were found. The Nuω(Re) curves corresponding to these states

intersect close to the transition to the ultimate regime at Re ≈ 13 000. These results

will be developed in chapter 4.

From a numerical point of view, several groups have been able to simulate turbulent

Couette-Taylor flows up to relatively high Re. Most of the investigations used periodic

boundary conditions with relatively short calculation domains. Ostilla-Mónico et al.

[51] presented the effect of three- and four-vortex pairs on the dimensionless transport,

suggesting that the increase of the number of vortex pairs induces an increase in torque.
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Brauckmann and Eckhardt [12] investigated the effect of the vortex size on the torque

and found a maximum of torque for vortices of axial wavelength of 1.93 times the gap

width for Re = 5000. Both results confirm those of Lewis and Swinney [6] about the

influence of the number of vortices in the torque.

Ostilla-Mónico et al. [8, 52, 7] analysed the parameter space of turbulent Couette-

Taylor flow, focusing on the momentum transfer, and also investigated the transition

to the ultimate regime. Figure 2.5(a) shows the evolution of Nuω−1 with Ta for three

radius ratios, η=0.5, 0.714 and 0.909. The dashed lines represent the slope of the

Nuω(Ta) in logarithmic scale once the ultimate regime is attained. Actually, this is

equal to (α−1)/2, where α is the exponent of the scaling law. Hence, α = 1.88 and 1.76

for η = 0.909 and 0.5, respectively. As previously observed [16, 6, 49], the exponent

increases smoothly once the ultimate regime is reached. Moreover, the systems with

η = 0.909 and 0.714 present larger levels of torque than the one with η = 0.5. Figure

2.5(b) illustrates the transition between different regimes in the (Ta,η) parameter space.

The dashed line represents the threshold of the transition to the ultimate regime. For

η > 0.714, the transition is independent of Ta, but for η < 0.714, the threshold is

shifted to higher values of Ta when η decreases.

Figure 2.6 depicts the compensated torque Nuω versus Taylor number, Ta, for η =

0.909 and three different vortex wavelength, λz. Here λz is length of a pair of vortices

compared to the gap in between cylinders, where λz = 2 is equivalent to circular

vortices. The simulations (DNS) of four different λz: 1.5, 2.09, 3.00 and 4.00, are

compared with the experimental results of Ostilla-Mónico et al. [8] and our results [9].

Both in experiments and in numerics, different branches associated to different states

cross at Ta ≈ 2× 108, shown as a vertical dashed line in the graphic.
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Figure 2.5: Reproduction of Ostilla-Mónico et al.’s results [7]. (a) Rescaled torque

Nuω−1 versus Taylor number, Ta, for different radius ratios, η. (b) Transition between

different regimes in the (Ta,η) parameter space. The dashed line represents the thresh-

old of the transition to the ultimate regime. Abbreviation: boundary layer (BL), Taylor

rolls (TR), ultimate regime (UR).

Figure 2.6: Reproduction of Ostilla-Mónico et al.’s results [7]. Compensated torque

Nuω versus Taylor number, Ta, for η = 0.909 and three different vortex wavelength,

λz. Experimental data for the T 3C system with Γ = 46.35 [8] and from Mart́ınez-Arias

et al. [9] in a system with Γ = 30 (denoted MPCM14, λz = 2 corresponds to 30 rolls and

λz = 3 corresponds to 18 rolls). The vertical dashed line corresponds to the transition

to the ultimate regime.
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Chapter 3

Experimental set-ups

“In physical science a first essential step in the direction of learning any subject is to find principles

of numerical reckoning and practicable methods for measuring some quality connected with it. I often

say that when you can measure what you are speaking about, and express it in numbers, you know

something about it; but when you cannot measure it, when you cannot express it in numbers, your

knowledge is of a meagre and unsatisfactory kind; it may be the beginning of knowledge, but you have

scarcely in your thoughts advanced to the stage of science, whatever the matter may be”.

—William Thomson Kelvin

In order to analyse the energy dissipation quantitatively in Couette-Taylor flow, the

torque has to be measured accurately. For this purpose, the devices and fluids used have

been carefully selected to optimise the torque measurements. This chapter presents the

three set-ups and the fluids employed for the experiments. The Couette-Taylor systems

used are presented in §3.1. The rheology of the working fluids employed is explained in

§3.2. Finally, §3.3 deals with reflective particles used for visualisations.
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3.1 Couette-Taylor systems

3.1.1 Couette-Taylor system on rheometer

This facility consists on a Couette-Taylor cell fitted on a rheometer (Physica MCR 501

from Anton Paar). A photography of the rheometer and a sketch of the Couette-Taylor

cell are depicted in figures 3.1(a) and (b). There is an outer cylinder with a radius

of ro = 55.00 ± 0.01 mm. Cylinders with different radii can be fitted on the head

of the rheometer. Three cylinders with radii of ri = 53.50, 50.00 and 33.00 ± 0.01

mm have been used. Hence, the gap between the outer and the inner cylinders are

d = ro − ri = 1.50, 5.00 and 22.00 ± 0.01 mm, respectively. The height of the inner

cylinders is of H = 150.0 ± 0.5 mm. The radius ratios are η = ri/ro = 0.973, 0.909

and 0.6, and the aspect ratios are Γ = H/d = 100, 30 and 6.82, respectively. Figure

3.2 illustrates the three configurations drawn to scale. The rheometer is able to apply

a torque, T , while measuring the angular speed of the inner cylinder, Ω. It is also

possible to control the speed through a control loop. The maximum rotation speed

that the cylinders can attain is 10 Hz. Note that the outer cylinder is always stationary

The inner cylinders are made of aluminium and their surfaces are anodised. The

bottom of the cylinders is recessed. There is a gap of 0.500 ± 0.001 mm between the

edge of the base of the inner cylinder and the flat bottom of the outer cylinder filled

with an air bubble, which minimises the shear stress on the bottom of the cylinders.

The top part of the gap between the two cylinders is covered with an annular PVC lid.

It is positioned so that the bottom of the lid is at the same height as the upper edge of

the inner cylinder. This makes the gap to be completely filled with liquid and there is

no contact between the lid and the inner cylinder. The outer cylinder is made of glass

and there is an additional glass jacket filled of circulating water from a thermostat in

order to maintain the working temperature at 22.00 ± 0.05◦C. The room temperature

is fixed at the same temperature to prevent heat fluxes between the ambient and the

working fluids.

Most of the previous works dealing with torque measurement of turbulent flows
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Figure 3.1: Rheometer Physica MCR 501 from Anton Paar and Couette-Taylor cell.

(a) Photograph of the rheomter with the Couette-Taylor cell fitted. (b) Sketch of the

Couette-Taylor cell.

employed techniques based on torque bearing [16, 14] or torque sensing strain arms

[49, 13]. The rheometer used here controls the torque, which is proportional to the

electric current. The purpose of using a rheometer is to take simultaneously accurate

torque and rotation speed measurements, in a wide range of rotation speed. By selecting

an appropriate fluid, torque measurements, both for laminar Couette flow and turbulent

flow, can be done. While in other systems the torque is measured in the centre of the

inner cylinder, with the present system the torque is measured for the whole height of

the inner cylinder, including the end effects.

The rheometer contains a synchronous brushless electronically commutated motor

powered by a direct current electric source via an integrated inverter/switching power

supply. The advantage of using a direct current electric source lies on the direct pro-

portionality between the torque that the motor applies and the electrical current that
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Figure 3.2: Sketches drawn to scale of the different configurations . (a) configuration

with η = 0.6 and Γ = 6.85. (b) configuration with η = 0.909 and Γ = 30. (c)

configuration with η = 0.973 and Γ = 100.

feeds it. So,

T = CII (3.1)

where T is the torque and CI depends both on the length of the conductors that

drive the electrical current, I, which feeds the motor, and the density of the magnetic

field generated by the magnets of the motor. Hence, the torque can be controlled

accurately and in a simple way by adjusting the electrical current. To minimise the

friction of the motor, the rheometer contains a high-precision air bearing. Thanks to this

construction, the accuracy of the torque is 0.5% of the measured value and never smaller

than 0.2 µN ·m. In addition, the rheometer allows for torque- or speed-controlled runs

operated by a real-time control system with a maximum acquisition frequency of 100 Hz

and a real resolution of the optical incremental encoder smaller than 1 µrad. In the case

when running an experiment in torque control mode, a constant torque is applied to the

inner cylinder, since the electrical current that the motor receives is constant. When

running an experiment in speed control mode, the real-time control system adjust the

torque that is needed to keep the rotation speed constant. The fluids employed in each

experiment were selected to optimise the torque or speed acquisitions. The advantage
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of using the Couette-Taylor cell fitted to a rheometer is that it is small, light and easy

to handle. Hence, after every experiment it is unmounted, what allows to clean the cell

and renew the fluid for every test. This guarantees that the properties of the fluids are

always the same and no trace of other substances is present.

3.1.2 CoGeoF3 Taylor-Couette system

This Couette-Taylor facility is in the Laboratory of Aerodynamics and Fluid Mechanics

of the Brandenburg Technical University of Cottbus, Germany [13], and has been used

to complement our investigations of turbulent flows in a wide gap. Figure 3.3(a) and

(b) show a photograph and a sketch of the device, respectively. The inner and the outer

cylinder radii are ri = 35 mm and ro = 70 mm, respectively. Hence, the gap between

the two cylinders is d = ro − ri = 35 mm. The length of the inner cylinder is L = 700

mm. Consequently, the dimensionless parameters that describe the geometry are the

radius ratio η = ri/ro = 0.5 and the aspect ratio Γ = L/d = 20. This facility is able to

control the speed of the inner cylinder, Ω, while measuring the torque, T .

The inner cylinder is made of aluminium and its surface is anodised. In order

to measure the torque, two strain gauges are placed in the internal wall of the inner

cylinder. The gauges are calibrated, so each angular deformation of the cylinder is

associated to a given torque. The strain gauges give reliable values up to 2N ·m,

although the measured values never exceed 0.5N ·m. The frequency acquisition is 100

Hz. The effective measuring length of the inner cylinder is 5/7 of the total length.

Therefore, the torque acting on the 100 mm closest to the bottom and top ends are not

measured, thus the end effects do not affect the torque measurements. The temperature

of the system is measured through a sensor placed inside the inner cylinder. The inner

cylinder is driven by an electrical motor. The speed of the motor is regulated using a

variable-frequency drive, which is adjusted through a computer. Bearings of different

sizes and belts are used in the kinematic chain between the electrical motor and the

inner cylinder, so the motor works in an optimal regime.
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Figure 3.3: CoGeoF3 Couette-Taylor system. (a) Photograph of the facility. (b) Sketch

of the system, drawn to scale.

3.2 Rheology of working solutions

3.2.1 Newtonian solutions

Several Newtonian fluids have been used depending on the goal of each experiment. To

reach high Reynolds numbers in turbulent flows, low viscous fluids were employed. In

the case of laminar flows at low Reynolds numbers, high viscous fluids were employed

to maximise the torque level. Below, the Newtonian fluids used are presented together

with their properties.

Demineralised water is obtained from a resin-filtering system and then it is degassed.

Its properties are obtained from Kestin et al. [53] and Wagner et al. [54]. Mixtures of
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demineralised water and pure glycerol 99%, obtained from Acros Organics, in different

concentrations were used to obtain high viscous Newtonian fluids. Both substances

are degassed before mixing. In table 3.1 the values of the density, ρ, and the dynamic

viscosity, µ, for all the glycerol concentrations, Cgly, used during the experiments are

presented at the working temperature of 22◦C. The values obtained from the measure-

ments are compared with previous studies [55] finding a good agreement. Since glycerol

is an organic substance and degrades in time, the solutions were prepared everyday for

each experiment. The density has been measured using a density-meter Anton Paar

DMA 35. The viscosity has been measured using a rolling-ball viscosimeter Anton Paar

AMVn for viscosities under 10mPa s and the rheometer Anton Paar MRC 501 with

a cone and plate geometry of 50 mm of diameter and an angle of 0.5◦ for fluids with

viscosities above 10mPa s.

Cgly (wt.%) ρ (kg/m3) µ (mPa.s)
0 997.8 0.954
25 1058.3 1.936
50 1125.4 5.543
70 1179.8 20.370

Table 3.1: Density and viscosity of water-glycerol solutions for different concentrations

of glycerol at 22◦C.

A low viscous silicon oil (Polydimethylsiloxane 0.65 cSt, Aldrich) was used as a

Newtonian fluid, because it has a lower viscosity than water and thus higher Reynolds

numbers can be reached. Its density is equal to 764 kg/m3 and its kinematic viscosity

equal to 0.65×10−6 m2/s at a temperature of 22◦C.

A high viscous silicon oil was used as a Newtonian fluid in the CoGeoF3 to prevent

corrosion. The variation of its density, ρ, and its dynamic viscosity, µ, with the tem-

perature, T , have been measured using a viscosimeter Anton Paar SVM 3000 and are

displayed in figure 3.4. A linear model and an Arrhenius model were tried to fit the vari-

ation of the dynamic viscosity with the temperature, although the results were not sat-

isfactory. Then, an empirical exponential fitting in the form: µ = µce
(−bT ), was tried, as

the range of temperature is small, ∆T = 15 K. Here, µc = µ(T = 0) = 15.23 kgm−1 s−1
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and b = 18.30× 10−3 K−1 is a coefficient related to the temperature dependence of the

viscosity. The fitting is plotted as a continuous line in figure 3.4.
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Figure 3.4: Variation of dynamic viscosity, µ, and density, ρ, of the silicon oil AK10

with the temperature, T . The continuous line corresponds to an empirical exponential

fitting of µ.

3.2.2 Viscoelastic polymer solutions

Viscoelastic fluids have been used to study the effect of elasticity on the flow. There

is a large variety of polymers and the present study considers mixtures of water,

poly(ethylene glycol) (PEG), poly(ethylene oxide) (PEO) in different concentrations

and isopropyl alcohol (IPA). A Capillary Breakup Extensional Rheometer (CaBER) has

been used to determine its elastic properties. This nonionic polymer has the simplest

structure among water-soluble polymers. Its chemical structure: H−(O−CH2−CH2)n−
OH allows an aqueous dissolution in a wide range of concentrations and a large num-

ber of macromolecular conformations. The properties of aqueous PEO solutions and

mixtures of PEO and PEG are well documented [56, 57, 58, 59, 60, 61, 62, 63, 64, 65].

The polymers were provided by Sigma Aldrich. The PEG is a polymer with relatively

short linear chains whose molar mass is 20 000 gmol−1. The PEO is a high-molecular-

weight polymer with long linear chains whose molar mass is 8 000 000gmol−1. Initially,

different concentrations of PEG in water were tested and the viscosity and density of

the solutions were measured. Figure 3.5 shows the variation of the kinematic viscosity,
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ν, and the density, ρ, with the concentration of PEG, CPEG, of different solutions. A

concentration of 7 wt.% of PEG was selected because it is considered as dilute [66] and

it allows to trigger the first instability in Couette-Taylor flow at low rotation speed of

the inner cylinder with a sufficiently high level of torque. When this concentration of

PEG is combined with PEO concentrations of 76, 100, 150, 300 and 1000 ppm, a suit-

able compromise between viscosity and elasticity is obtained. The combination of these

concentrations covers a dilute to semi-dilute regime [64]. The density of the mixture is

the same for all the concentrations and is equal to 1 009± 1 kg/m3.
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Figure 3.5: Variation of the kinematic viscosity, ν, and the density, ρ, with the concen-

tration of PEG, CPEG, of mixtures of water and PEG.

All fluids were prepared in batches of 1 kg and the protocol [67, 64] is as follows.

In one vessel, PEG flakes were dropped in water and the mixture was stirred gently

until complete dissolution. In another vessel, PEO powder was mixed in 5 g of IPA

and poured into water without being stirred. Both vessels were stored at 5◦C during

72 hours. Then, the solutions were mixed and gently stirred. After that, the fluid

remained at room temperature, 22◦C, during four hours before the experimental runs.

A photograph of the fluid filament formed by a solution with a concentration of 1000

ppm of PEO is displayed in figure 3.6.

For measuring the shear viscosity, µ, a bob-cup geometry was installed, having the

bob a radius of 13.330±0.001 mm, the cup a radius of 14.460±0.001 mm and the gap a

37



Torque measurement in turbulent Couette-Taylor flows

Figure 3.6: Photograph of the fluid filament formed in an aqueous solution of 7 wt.%

of PEG and 1000 ppm of PEO. The diameter of the stick is 8 mm.

length of 40.006±0.001 mm. In figure 3.7(a) a sketch of the bob-cup geometry is shown.

The values of the shear viscosity, µ, as a function of the shear rate, γ̇, are presented

in figure 3.7(b). As the concentration of PEO increases, the shear viscosity increases,

but remains constant with respect to the shear rate. In the case of the solution with

1000 ppm of PEO, the shear thinning is significant and the shear viscosity can be fitted

using a Carreau model,

µ = µ∞ + (µ0 − µ∞)[1 + (λC γ̇)
2](n−1)/2 (3.2)

where µ0 is the viscosity when γ̇ tends to zero, µ∞ is the viscosity when γ̇ tends to

infinity, λC is the Carreau relaxation time and n is the shear-thinning index. Here

µ0 = 33.5 mPa.s, µ∞ = 18.1 mPa.s, n = 0.7 and λs = 1.62 s. The curve µ(γ̇) that fits

the points is represented in figure 3.7(b) as a red continuous line, and is used to assess

the viscosity at different shear rates, γ̇, for 1000 ppm.

3.2.3 Capillary Breakup Extensional Rheometry

A capillary breakup extensional rheometer (HAAKE CaBER 1 from Thermo Scientific)

is used to measure the capillary thinning of a fluid filament joining two circular plates

after a stretching [68, 69]. An image of the rheometer is shown in figure 3.8(a). The
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Figure 3.7: (a) Sketch of the bob-cup geometry installed in the rheomter for measuring

the shear viscosity. All the dimensions are in mm. (b) Shear viscosity, µ, as a function

of the shear rate, γ̇, for different concentrations of PEO ofMw = 8×106 g/mol dissolved

in 7% PEG aqueous solution. The red continuous line corresponds to a fitting by the

Carreau model.

extensional relaxation time can be deduced from the thinning speed of the filament.

This technique was used to characterise the elastic behaviour of the viscoleastic fluids

used in chapter 5. Figure 3.8(b) displays an image of the plates before and after the

stretching. Figure 3.8(c) illustrates a sketch of the plates. The diameter of the plates

is D0 = 6 mm and they are initially separated by 3 mm. The final distance of the

plates is 11.6 mm after the stretching. It works as follows. A sample of fluid is placed

between the circular parallel plates. Then, if the gap, the diameter, the density of the

fluid and its surface tension are well selected, a capillary bridge will form [70]. At time

t = −50 ms the top end plate is moved upward to reach a final position at t = 0.

The displacement profile can be linear or logarithmic. A linear profile is used. The

evolution of the fluid filament diameter, D(t), is monitored at the midplane between

the end plates using a laser micrometer. It is possible to vary the sampling rate, which

is fixed at 1000 Hz in the tests. The spatial resolution is 8 µm, so any variation of the

filament diameter below this value can not be detected.

Figure 3.9 (a) presents the evolution of the normalised midplane diameter of the

filament, D(t)/D0, as a function of time for viscoelastic solutions containing water, 7

wt.% of PEG and PEO in different concentrations. Figure 3.9(b) shows snapshots at
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Figure 3.8: Capillary breakup extensional rheometer (CaBER). (a) Frontal image of

the apparatus. (b) Photographs of the plates before and after stretching. (c) Sketch of

the plates before and after stretching.

different increasing times, in intervals of 0.5 s, of the fluid filament formed between the

plates of the CaBER after the stretching by a solutions containing 7 wt.% of PEG and

300 ppm of PEO. In the first instant, after the stretching of the plates, the gravity force

is predominant and the diameter decreases rapidly until reducing its initial value 10

times. After this, in the case of the Newtonian fluid, with 0 ppm of PEO, the diameter

still reduces rapidly and no filament is observed. In the case of viscoelastic solutions,

the elastic force becomes dominant and a fluid filament appears between the plates,

like in figure 3.9(b). Then, the thinning rate will depend on the level of elasticity of the

fluid. In the case of 76 ppm, the filament remains during 1 s before the breakdown. In

the case of 1000 ppm, the filament remains more than 5 s. As can be observed in figure

3.9(a) the midplane diameter of the filament decays exponentially in time. In practise,

this is used to obtain the relaxation time, λe, applying the upper convected Maxwell

constitutive model [68, 70, 71, 69], which is described by the following equation,

D(t)

D0
=

(

G1D0

4γ

)1/3

exp [−t/3λe] (3.3)

where G1 is related to the elastic modulus and γ is the surface tension, which is equal to

58.1mN ·m−1 for all the fluids with concentrations 0, 76, 100, 150, 300 and 1000 ppm of

PEO. The surface tension was measured using a tensionmeter (DSA100 from KRÜSS).

It works using the principle of the pendant drop. When a drop is suspended, an increase
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of pressure is produced inside the drop as a results of the surface tension and gravity.

The correlation between the pressure difference, ∆p, the radii of curvature, r1 and r2,

of the surface and the surface tension is described by the Young-Laplace equation,

∆p = γ

(

1

r1
+

1

r2

)

(3.4)

In practice, liquid is injected from a needle, so that it forms a drop on the tip. The

drop is then optically observed and the surface tension is calculated from the shape of

the drop, based on equation 3.4. Once γ is calculated, G1 can be obtained. The value

of G1 for each concentration is given in table 3.2. For concentrations of 76, 100 , 150

and 300 ppm the value of G1 is similar. However, for a concentration of 1000 ppm G1

is considerably larger.
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Figure 3.9: Capillary thinning of fluid filaments. (a) Evolution of the normalised di-

ameter, D(t)/D0, as a function of time for water solutions containing 7 wt.% of PEG

and different concentrations of PEO. (b) Snapshots at increasing times, in intervals of

0.5 s, of the fluid filament formed by a solution containing 300 ppm of PEO between

the plates of the CaBER after stretching.

76 ppm 100 ppm 150 ppm 300 ppm 1000 ppm
G1 (mPa) 7.05 6.62 6.79 7.19 11.68

Table 3.2: Constant G1 for viscoelastic water solutions containing 7 wt.% of PEG and
different concentrations of PEO.
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Figure 3.10 depicts the relaxation time, λe, as a function of the concentration of

PEO, CPEO. The points have been fitted by an exponential law as,

λe = AeC
β
PEO (3.5)

where the constant Ae = 12.048 s, and the exponent β = 0.61, which is close to

0.71±0.03 found by Stelter et al. [68] for aqueous solutions of PEO of molar mass

4×106 g/mol. In their case, the solutions did not contained neither PEG nor alcohol.

The extensional relaxation times, λe, are shorter than the relaxation times from shear

tests [62, 63] and longer than those from normal force analysis [72]. Also, λe is of the

same order as the Carreau parameter λC .

The flow of polymer solutions is characterised by a stress tensor, ¯̄τ , that can be

expanded into two parts: the contribution of the solvent to the stress tensor, ¯̄τs, and

the contribution of the polymer to the stress tensor tensor, ¯̄τp. Hence, ¯̄τ = ¯̄τs + ¯̄τp. It

follows that the total viscosity, µ, can be interpreted as the sum of the solvent viscosity,

µs, and the contribution of the polymer, µp, i.e., µ = µs + µp. The elasticity of the

fluid only has effects in the polymeric component of the stress, whereas the inertia has

effects on both components. To quantify the importance of the polymeric stress to

the total shear stress, the viscosity ratio is defined as S = µp/µs = (µ − µs)/µs. To

summarize, table 3.3 reports the values of the total shear viscosity, the viscosity ratio

and the extensional relaxation time.

CPEO µ S λe

(ppm) (mPa · s) (ms)
76 8.065 0.094 171
100 8.115 0.1 201
150 8.947 0.213 254
300 10.965 0.487 395
1000 33.500-20.062 1.720-3.542 823

Table 3.3: Properties of the different PEO solutions dissolved in an aqueous solvent

containing 7% PEG, whose shear viscosity, µs, is 7.375mPa · s.
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Figure 3.10: Variation of the extensional relaxation time, λe, with the concentration

of PEO, CPEO. The error bars represent the standard deviation over 3 measurements

and are smaller than the symbols. The black straight line is a power law fitting with

an exponent of 0.61.

3.3 Reflective particles for visualisation purpose

For flow visualisation purpose, Kalliroscope AQ1000 was added to all the fluids. This

is a suspension of 1 − 2% of reflective flakes which align their largest dimension to

the planes of shear. Savaş [73] studied these particles in the case of Couette flow

and came to the conclusion that the particles align onto the stream surfaces. More

recently, Abcha et al. [74] analysed the behaviour of these particles in the Couette-

Taylor flow and established that the intensity of light reflected by Kalliroscope flakes is

related to the radial velocity component when the outer cylinder is fixed. The particles

have a typical size of 30 µm × 6 µm × 0.07 µm [75, 76] with a density of ρ =1.62

g/cm3. Sedimentation of these particles remains negligible in horizontal or vertical

configurations if the experiment lasts less that 10 hours [75]. These particles do not

modify significantly the flow viscosity and no non-Newtonian effect is detected as far as

small concentrations under 8.1 w.t% are used [76]. Concentrations below 2 wt.% were

chosen to get suitable light contrasts in the flow.
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Torque in turbulent Couette-Taylor

flows

“C’est par la logique que l’on prouve et par l’intuition que l’on découvre”.

—Jules Henri Poincaré

Torque measurements in three systems with three different radius ratios and aspect

ratios have been performed for large rotation rates of the inner cylinder. Flow visuali-

sations illustrate a specific procedure to select a given number of turbulent vortices and

the influence of the vortex size on the flow. The relationship between the torque and

the rotation speed is given by an analytical relationship near the threshold of Taylor

vortex flow and by a power law for turbulent flows. The torque for flows containing dif-

ferent number of vortices is reported and a crossing of the different torque-speed curves

is found, corresponding to the transition to the ultimate regime of turbulence. Before

each intersection, flows with larger number of vortices exert higher levels of torque. Af-

ter each intersection, flows with larger number of vortices exert lower levels of torque.

The level of torque also depends on the radius ratio of the system. The exponent of

the scaling laws presents different behaviours depending on the regime of the flow and

also depends on the number of vortices. In the ultimate regime it becomes nearly con-

stant when increasing the Reynolds number. The pre-factor becomes independent of

the Reynolds number in the ultimate regime. Finally, the effect of the radius ratio and

the aspect ratio in the transition to the ultimate regime is analysed.
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4.1 Introduction

Turbulent Couette-Taylor flows have been investigated since the works by Wendt [4]

and Taylor [32]. They are interesting because the energy dissipation and the momentum

transfer can be well quantified through torque measurements [44]. Due to the high non-

linearity of this turbulent states, the level of torque depends on different parameters.

In this chapter, we focus on the effect of the number of vortices and the radius ratio on

the torque.

The number of vortices in a finite-length Couette-Taylor flow is one of the most

important flow parameters, since the momentum transfer strongly depends on it. How-

ever, the size of those vortices at a given Reynolds number is not a trivial problem

and no general rule exists to predict it accurately. Different studies have focused on

the number of cells at low Re, like those by Coles [25] or Benjamin and Mullin [31].

Other works that dealt with turbulent flows and the number of vortices were interested

in the different level of torque that they induced on the inner cylinder, like those by

Lathrop et al. [16] and Lewis and Swinney [6]. Recently, experiments performed by

Huisman et al. [50] at Re = O(106) proved the existence of multiple states in the

ultimate regime of turbulence, a regime where the boundary layers become turbulent.

Also, recent numerical investigations by Ostilla-Mónico et al. [7] focused on flows with

different wavelengths and its influence on the torque. These simulations use periodic

boundary conditions and the wavelength of the vortices is an imposed parameter, so

certain wavelengths might be unstable in given experiment.

The curvature, that depends on the radius ratio, η, is also one of the important

geometrical parameters in the Couette-Taylor system, since the centrifugal force, which

depends on the curvature, is the main destabilising mechanism of the flow. In fact, at

low Re the laminar flow is destabilised by centrifugal forces. The first torque measure-

ments by Wendt [4] and Taylor [32] were already performed in systems with different

radius ratios and led to the conclusion that they are affected by the curvature. Recently,

Ostilla-Mónico et al. [8, 7] carried out numerical simulations and found an influence
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of the radius ratio on the torque scaling and the transition to the ultimate regime of

turbulence.

The chapter is organised as follows. In §4.2 flow visualisations are shown and the

effect of the vortex size on the flow is reported in §4.3. In §4.4 the torque measurement

for the different systems are presented, focusing on turbulent flows at high Reynolds

numbers. The exponents of the scaling law of the torque with the Reynolds number are

presented in §4.5, and the behaviours of the exponent and the pre-factor are analysed.

The transition to the ultimate regime is discussed in §4.6. The conclusion is drawn in

§4.7.

4.2 Flow visualisations

Due to different instabilities that emerge in the flow when the Reynolds number in-

creases, the velocity field of the flow is restructured giving rise to different patterns.

These patterns can be observed by using visualisation techniques and information about

the flow can be obtained. As it will be presented in figure 4.1, the flow undergoes dif-

ferent transitions, from the laminar Couette flow to the turbulent Taylor vortex flow.

Actually, one of the main feature of the Couette-Taylor flow is the vortices and their

length. Hence, the goal of this section has been to focus on the number of vortices

present in the flow, their length and the way they are affected by the aspect ratio of

the systems.

4.2.1 Patterns in Couette-Taylor flow

With the help of a tracer that reflects the light, Kalliroscope, the patterns arising in

a Couette-Taylor flow can be observed. In figure 4.1 photographs of different patterns

in a system with η = 0.909 and Γ = 30 are presented. Note that the height of the

cylinder is 150 mm. The fluid is Newtonian and consists of mixtures of water and

glycerol at different concentrations. Photographs were taken using an exposure time of

125 µs. Figure 4.1(a) presents a snapshot of a laminar Couette flow at Re = 20. Figure

4.1(b) shows a Taylor vortex flow, which is a flow pattern of time-independent, axisym-
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metric, toroidal vortices, characterised by a single axial wavenumber. Figure 4.1(c)

corresponds to a wavy vortex flow, a flow pattern of time-dependent, non-axisymetric

vortices characterised by a single axial wavenumber and a single azimuthal wavenum-

ber. Figure 4.1(d) presents a snapshot of a modulated vortex flow, a flow pattern of

non-axisymmetric vortices characterised by a double temporal frequency.

As Re is further increased, the pattern bifurcates to a chaotic state with weak tur-

bulent patches that spread in the flow while the large scale structures remain. The

following snapshots correspond to turbulent flows. Figure 4.1(e) shows a chaotic wavy

vortex flow. Figure 4.1(f) corresponds to a wavy turbulent flow, which is a flow charac-

terised by a singular temporal frequency. This pattern is analogous to the wavy vortex

flow but turbulent. Figures 4.1(g-i) present a turbulent vortex flow for increasing Re,

an analogous pattern to the Taylor vortex flow but turbulent [41]. Note that as Re is

increased the large scales are less visible because of the increase of turbulence.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

20 146 178 324 1172 1513 6000 10 000 16 000
 Re

Figure 4.1: Snapshots of Couette-Taylor flows at different Reynolds numbers. (a)
Laminar Couette flow. (b) Taylor vortex flow. (c) Wavy vortex flow. (d) Modulated
wavy vortex flow. (e) Chaotic wavy vortex flow. (f) Wavy turbulent vortex flow. (g),
(h) and (i) Turbulent Taylor vortex flows.

4.2.2 Selection of the number of vortices

The experimental procedure used to select different numbers of vortices in a system

with η = 0.909 and Γ = 30 is presented. In quasi-static ramping of the velocity,

the Taylor vortex flow is characterised by 30 time-independent, axisymmetric toroidal
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vortices from Rec = 138. This value is close to the predicted value, Rethc = 139 given

by the stability theory [77]. For 157 < Re < 199, wavy vortex flow is seen. From

Re = 199, modulated wavy vortex flow is observed.

Figure 4.2: Spatio-temporal diagram over the whole height (Γ = L/d = 30) of the

Couette-Taylor flow (η = 0.909) in three intervals from Re = 110 to 1300. The di-

mensionless acceleration rate is dRe/dτv = 4. The numbers on the diagram count the

number of cells from bottom to top.

In figure 4.2, a spatio-temporal diagram of the flow patterns over the whole height

of the cylinders is presented. The flow is driven by the rotation of the inner cylinder

at a constant ramping rate, dRe/dτv = 4, where τv = tν/d2 and t is time. As Re

increases from laminar Couette flow, Eckman vortices develop at the end plates of the

cylinders [78]. Then, these vortices evolve into a well-defined state of axisymmetric

steady toroidal Taylor vortices that rapidly join at the centre of the cylinder at Re =

143. At Re = 174, the wavy vortex flow starts. Note that the onset of Taylor vortices

and wavy vortices is delayed, as the dimensionless acceleration is faster than the quasi-

static one, dRe/dτv < 0.6 [79]. In figure 4.2, the second interval (250 < Re < 450) shows

sequences of regions with strong modulation leading to the merging of cells (26, 24 and

22). In the same range of Re, Coles [25] showed in a system of similar aspect ratio that
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a large number of expected states were accessible due to the vertical oscillations and

the merging of these cells. Clearly, as we progress in time or in Re the number of cells

decreases from 30 to 20. To obtain a smaller number of cells, say 18, a lower acceleration

is used. Hence, this merging of cells will allow to prepare an initial state with 30 to

18 cells. Once the desired number of cells is set up, our strategy is to instantaneously

change the torque to a prescribed value and then measure the velocity for few minutes

before the next measurement. The stability of each state was tested for approximately

70 times the viscous time, i.e. ν/d2, to ensure that the number of vortices remained

constant. The velocity fluctuations of the rotating cylinder are small, typically around

0.6%.

4.2.3 States and number of vortices

The number of vortices depends on multiple parameters and the most important is the

aspect ratio, Γ, which establishes the range of number of vortices that a system can

hold. In general, the number of vortices in a Taylor vortex flow is close to the aspect

ratio, for example, a system with Γ = 30 will contain 30 circular vortices, as seen in

figure 4.2. Any deviation to the value of Γ means that the vortices elongate or shorten

in the axial direction. In the turbulent state, the number of vortices at a given Re can

vary in a wider range than in a flow with laminar structures, because of the increase of

degrees of freedom induced by the non-linearity of turbulence.

Snapshots of various flows with different numbers of vortices at distinct Re in a

system with η = 0.909 and Γ = 30 are presented in the following figures. Figures

4.3(a-g) depict images of flows at Re = 6000 containing 18, 20, 22, 24, 26, 28 and 30

vortices, respectively. Figures 4.4(a-d) depict images of flows at Re = 10 000 containing

18, 20, 30 and 32 vortices. Figures 4.5(a-d) display images of flows at Re = 13 000

and containing 18, 20, 30 and 32 vortices. Figures 4.6(a-d) display images of flows at

Re = 16 000 containing 18, 20, 30 and 32 vortices.

Figure 4.7 presents different snapshots of flows containing eight, six and four vortices

in a system with η = 0.6 and Γ = 6.8. Figures 4.7(a) and (b) depict flows with six and
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Figure 4.3: Snapshots of turbulent Taylor vortices in a system with η = 0.909 and

Γ = 30 at Re = 6000. (a) 18 cells, (b) 20 cells, (c) 22 cells, (d) 24 cells, (e) 26 cells, (f)

28 cells and (g) 30 cells.
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Figure 4.4: Snapshots of turbulent Taylor vortices in a system with η = 0.909 and

Γ = 30 at Re = 10 000. (a) 18 cells, (b) 20 cells, (c) 30 cells and (d) 32 cells.

eight Taylor vortices at Re = 110 and 146, respectively. The end effects elongate the

vortices close to the top and bottom. This behaviour was previously observed [78] in a

system with large gap, η = 0.75, and small aspect ratio, Γ = 6. Figures 4.7(c) and (d)

depict flows at Re = 6000 with six and eight vortices, respectively. Figure 4.7(e) shows

a flow at Re = 12 000 with four vortices. Interestingly, this state with four vortices has

only been found at this particular Reynolds number. Finally, figure 4.7(f) shows a flow

at Re = 45 000 containing six vortices. The counting of turbulent vortices becomes a

difficult task when the gap increases, this is the reason why the snapshots are blurred,
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Figure 4.5: Snapshots of turbulent Taylor vortices in a system with η = 0.909 and

Γ = 30 at Re = 13 000. (a) 18 cells, (b) 20 cells, (c) 30 cells and (d) 32 cells.
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Figure 4.6: Snapshots of turbulent Taylor vortices in a system with η = 0.909 and

Γ = 30 at Re = 16 000. (a) 18 cells, (b) 20 cells, (c) 30 cells and (d) 32 cells.

as can be observed from figures 4.7(c-f). Nevertheless, in the present case, the vortices

could be counted while the experiments were running because they were still clear.

Figure 4.8 depicts different snapshots of flows containing several number of vortices

at different Reynolds numbers in a system with η = 0.973 and Γ = 100. Figure 4.8(a)

shows a flow with 100 Taylor vortices at Re = 272. Figure 4.8(b) shows a flow with 98

wavy vortices at Re = 302. Figure 4.8(c) shows a flow with 84 modulated wavy vortices

at Re = 373. The modulation reduces significantly the number of vortices, hence they

become more elongated in the axial direction. Figure 4.8(d) shows a flow with 68

turbulent vortices at Re = 2030. Finally, figure 4.8(e) shows a flow at Re = 5041.
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Figure 4.7: Snapshots of flows in a system with, η = 0.6 and Γ = 6.8. The numbers

help to count the vortices. (a) and (b) flows containing six and eight Taylor vortices

at Re = 110 and 146, respectively. (c) and (d) flows containing six and eight turbulent

Taylor vortices, respectively, at Re = 6000. (e) Flow containing four turbulent Taylor

vortices at Re = 12 000. (f) Flow containing six turbulent Taylor vortices at Re =

45 000.

Here, the number of vortices can not be determined.

(a) (b) (c) (d) (e)

Figure 4.8: Snapshots of flows in a system with η = 0.973 and Γ = 100. (a) Flow

containing 100 Taylor vortices at Re = 272. (b) Flow containing 98 wavy vortices at

Re = 302. (c) Flow containing 84 modulated wavy vortices at Re = 373. (d) Flow

containing 68 turbulent Taylor vortices at Re = 2030. (e) Flow at Re = 5041.
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Figure 4.9 presents different snapshots of flows containing 20 and 18 vortices in a

system with η = 0.5 and Γ = 20. Figure 4.9(a) shows a flow with 20 turbulent Taylor

vortices at Re = 6000. Figure 4.9(b) shows a flow with 18 turbulent Taylor vortices at

Re = 6000.
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Figure 4.9: Snapshots of turbulent vortices in a system with η = 0.5 and Γ = 20 at

Re = 6 000. (a) Flow containing 20 turbulent Taylor vortices. (b) Flow containing 18

turbulent Taylor vortices.
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4.3 Aspect ratio and end effect
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Figure 4.10: Snapshots and aspect ratio along the axis of 30 and 18 cellular modes at

Re = 6000. (a) Normal 30 cells, (b) abnormal 18 cells and (c) the associated aspect

ratio along the axis.

The finding of different states for the same boundary conditions requires that the

size of the cells varies from one state to another. In figure 4.10(a,b), photographs of

two states with 30 and 18 cells at Re = 6000 in a system with η = 0.909 and Γ = 30

are depicted. Figure 4.10(c) presents their aspect ratio along the vertical axis. For

intermediate numbers of cells, 20, 22, 24, 26 and 28, intermediate curves are found, but

not shown for clarity of the figure. For the primary state of 30 cells, the aspect ratio,

l/d, of all the cells is close to one. However, for the 18-cell pattern, the ratio l/d is

1.5 in the centre of the cylinder, so the cells are elongated. It should be noted that

the cells close to the ends of the cylinders have a significantly larger aspect ratio up to

2.75. This indicates that the caps have a local effect and strongly elongate the two cells

close to the ends [78]. Even if the data on the aspect ratio are for Re = 6000, one can
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check in figures 4.3, 4.4, 4.5 and 4.6 that the flows look essentially similar to the ones

in figure 4.10(a,b) when increasing Re, although fuzzier.

To quantify the effect of the ends plates on the vertical elongation of the vortices,

the height of the cells has been measured in three systems containing several number

of vortices at Re = 6000. Figure 4.11 shows the mean aspect ratio of the vortices

far away from the end plates, l̄/d, as a function of Γ/nv, where nv is the number of

vortices. Hence, the vortices close to the end plates have been neglected. The red

continuous line, (−), is the bisecting that separates the bottom part, where the vortices

in the middle are compressed in the axial direction, and the upper part, where the

vortices are elongated. Hence, the points laying on such bisecting line means that all

the vortices along the axis have the same height. It is found that the smaller is the

number of vortices in the flow, the parameter Γ/nv increases, the more compressed the

vortices are, hence the points on the right move down with respect to the bisecting

line. This indicates that the vortices close to the end plates become more elongated

when reducing the number of vortices, compressing the other vortices. This behaviour

is well observed in figure 4.10(c) for Γ = 30 between the flows with 30 and 18 cells,

where the top and bottom vortices of the 18-cell state are bigger than for the 30-cell

state. Particularly, the average size of the top and bottom vortices for the 30, 28, 26,

24, 22, 20 and 18 vortices states are 23, 25, 42, 59, 72, 94 and 81% bigger than the mean

height of the vortices far away from the end, respectively. This occurs because when

the number of vortices is reduced, those close to the end plates have more freedom to

expand in the gap and compress the vortices in the middle. Clearly, the effect of the

end plates on the vortices height increases when decreasing the number of vortices.

Another result that is obtained from figure 4.11 is the effect of the aspect ratio, Γ,

on the mean aspect ratio of the vortices, l̄/d. The larger is Γ the less compressed are

the vortices in the middle, so they tend to have the same size wherever they are located

along the axis. Actually, the points for Γ = 30 are closer to the bisecting line than

those for Γ = 20 and 6.8.

The states in figures 4.10 and 4.11 were obtained at Re = 6000. The largest vortex
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Figure 4.11: Mean value of the aspect ratio of the vortices far away from the end plates,

l/d, as a function of Γ divided by the number of vortices, nv, in three systems with

different aspect ratios: Γ = 30, 20 and 6.8. The radius ratios are η = 0.909, 0.5 and

0.6, respectively. The red line (−) is the bisecting where all the vortices have the same

size along the axis.

aspect ratio for Γ = 30 and η = 0.909 is 1.5 for 18 cells and the smallest is 0.88

for 34 cells. In the numerical simulations by Ostilla-Mónico et al. [7] the smallest

vortex aspect ratio found for η = 0.909 is 0.75 and the authors argue that this might

be an artificial result due to numerical constraint and not stable in an experiment.

Effectively, no states with vortex aspect ratio smaller that 0.88 have been found for

η = 0.909. However, in the case of η = 0.6, the smallest l̄/d found is 0.8.
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4.4 Global variation of the torque

When the rotation speed of the inner cylinder increases from rest, the different insta-

bilities that appear make the flow undergoes several transitions, giving rise to different

states. The patterns that characterise these states were already presented in figure 4.1.

In figure 4.12 it is shown the evolution of the rescaled torque Nuω as function of the

Reynolds number, Re, in the system with η = 0.909. In the following subsections the

different Nuω(Re) curves for each system is analysed.
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Figure 4.12: Variation of Nuω with Re in a system with η = 0.909.

4.4.1 Variation of torque in pre-turbulent flows

The evolution of the torque with the rotation speed of the inner cylinder is analysed

for laminar Couette flow (see figure 4.1(a)), Taylor vortex flow (see figure 4.1(b)) and

wavy vortex flow (see figure 4.1(c)) in systems with η = 0.973, 0.909 and 0.6. Figure

4.13 depicts the evolution of Nuω with Re up to Re = 1000 in logarithmic scale. The

ω-Nusselt number associated to the azimuthal Couette flow (-) is constant and above
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one in all the cases, because of the end plates that introduce an additional torque with

respect to an infinite cylinder. In the case of η = 0.6, Nuω = 1.66 presenting the

largest shift. This is due to the small aspect ratio, Γ = 6.8, that makes the end effect

considerably significant. In the other two cases Nuω = 1.16 and 1.07 for η = 0.973 and

0.909, respectively. One might think that the Nuω for η = 0.973 should be smaller than

for η = 0.909, since the aspect ratio of the former, Γ = 100, is larger that the later,

Γ = 30. This inconsistency could be related to the air bubble below the inner cylinder.

In the case of the wider cylinder the surface of the end plates is smaller, but the air

bubble is larger and the stress that its edge introduces could be enough to increase the

torque.
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Figure 4.13: Variation of Nuω with Re in systems with η = 0.973, 0.909 and 0.6 in

logarithmic scale. Different symbols are used to distinguish different radius ratios: (�)

for η = 0.973, (•) for η = 0.909 and (N) for η = 0.6. Note that the empty blue triangle,

(△), represents a flow with 8 Taylor vortices.

For increasing values of the Reynolds number Nuω stops being constant and grows

when the Taylor vortices appears in the flow, being completely developed at Rec = 73,

138 and 264, for η = 0.6, 0.909 and 0.973, respectively. Esser and Grossmann [77]

predicted theoretically the onset of Taylor vortices for an infinitely long cylinder at

Rethc = 73, 139 and 252, respectively, hence the values agree well. The Nuω related to
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the Taylor vortices is characterised by a sharp increase of the slope. This slope depends

on the radius ratio and decreases for decreasing η. This is related to the space between

cylinders, the closer they are the better is the momentum transfer. For the case of

η = 0.6 the range of Reynolds number in which Taylor vortices are stable is much larger

than the other two systems and goes up to Re = 880. This increase of the stability of

the Taylor vortices when reducing the aspect ratio was reported before [80]. Moreover,

we have been able to set two different states with 6 and 8 vortices, corresponding to

the blue filled triangles, (N), and blue empty triangles, (△), respectively, finding that

the flow with larger number of vortices exert larger torque. This is explain by the

high momentum transfer efficiency of the vortices, so the more vortices there are in

the flow, the better is the momentum transfer. Particularly, the largest difference in

torque between the 6-cell state and the 8-cell state is found to be 3.72 % at Re = 731.

Finally, the vortices are wavy between 138 < Re < 154 for η = 0.909. In the case of

η = 0.973 the vortices are wavy from Re > 264. No wavy vortices have been identified

for η = 0.6.

In order to compare the torque with analytical results, the date have been rescaled

using the laminar torque measured in the experiments, T exp
lam. Figure 4.14 shows the

rescaled torque, T/T exp
lam as a function of Re. Donnelly and Simon [18] proposed the

relationship of the momentum transport in the form Nuω = a1Re−2 + a2Re0.36. Our

data are fitted for the system with η = 0.909 with values of a1 = −13 374 and a2 = 0.33.

Another analytical relationship between T/Tlam and Re was proposed by DiPrima

et al. [11] to calculate the torque for Taylor vortices and reads,

T

Tlam

= 1 + A(η, q)

[

1− Rec(η, q)

Re

]

+ B(η, q)

[

1− Rec(η, q)

Re

]2

+O
[

1− Rec(η, q)

Re

]3
(4.1)

where A(η, q), B(η, q) and the critical Reynolds number, Rec(η, q), are constants that

depend on η and the axial wavenumber, q. Here, A(η, q) and B(η, q) have been obtained
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Figure 4.14: Variation of the torque, T , divided by the experimental laminar torque,

T exp
lam, as a function of Re in linear scale. The grey continuous line corresponds to the

analytical expression proposed by DiPrima et al. [10].

from DiPrima et al. [11] for an axial wavenumber, q = 3.127, which correspond to square

cells. The values of Rec(η, a) have also been obtained obtained from DiPrima et al. [11].

Both tables are reproduced in figure 4.15. The relationship is depicted in figure 4.14 as

grey continuous lines and covers the range of Re where the Taylor vortices are stable

in our system. In the case of η = 0.909 the line is extended up to wavy vortex flow.

It is also extended in the case of η = 0.973, although the region of stability of wavy

vortices is not known. The lines have been shifted in the Re-axis so the curves begin

at the transition points found experimentally, not at the Rec calculated analytically.

The cases for η = 0.973 and 0.909 agree well with the experimental data in the Taylor

vortex regime, but not in the case of η = 0.6. This is because of the small aspect ratio

which makes that the end effects have a strong influence on the torque. Mullin and

Benjamin [30] also found that the aspect ratio has an effect on the stability of various

steady cellular flows, in particular, a small length of the cylinders increases considerably

the end effects. In the case of η = 0.909 the fitting also agrees for the torque exerted

by the wavy vortices.
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Figure 4.15: Tables from DiPrima et al. [11]. (a) Table I to obtain the critical Reynolds

number, Rec. (b) Table VI to obtain the values of A(η, q) and B(η, q) for q = 3.127.

4.4.2 Variation of torque in turbulent flows

The energy dissipation in a turbulent flow is much larger than in a laminar flow because

of the increase of shear stress induced by the chaotic vibration of the fluid particles.

This increase of energy dissipation requires to inject more power in the fluid through

the torque exerted by the inner cylinder. In addition, the turbulence increases the

number of degrees of freedom and multiple states can appear in the flow, corresponding

to different numbers of vortices. The torque of turbulent flows in three systems with

different radius ratios will be analysed here.

First, torque and speed measurements have been performed in the system with

η = 0.909 and Γ = 30 up to Re = 24000. Using the procedure presented earlier we were

able to measure the torque associated to nine different states with distinct number of

cells. The relationship between the ω-Nusselt number and the Reynolds number for

these states is presented in figure 4.16. Different symbols and colours represent the

different states: the laminar Couette flow, the Taylor vortex flow (30 cells), the wavy

vortex flow and the nine different turbulent Taylor vortex flows with 34, 32, 30, 28, 26,

24, 22, 20 and 18 cells. In order to access large values of Re up to 24 000, low-viscosity

silicone oil was used and two series of data are reported in figure 4.16. The use of silicone
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oil does not allow to visualise the flow and therefore to count the number of vortices.

These data were obtained by applying protocols leading to states with large and small

numbers of cells. The trend of the curves suggests that the black triangles correspond

to large numbers of cells and empty triangles to small numbers of cells. Clearly, the

level of torque depends on the number of vortices. Each state is not stable for every

Reynolds number and the onset of turbulence is around Re ≈ 1000, as can be seen

in figure 4.1(e). At Re below Re = O(104) the states with larger number of vortices

exert larger torque. A change in the slope is observed above Re ≈ 104, corresponding

to the transition to the ultimate regime, as previously observed by Lathrop et al. [16],

Lewis and Swinney [6], Dubrulle et al. [46], Ravelet et al. [14], Merbold et al. [13]

and Ostilla-Mónico et al. [8, 7]. In the following, these aspects will be deeply analysed.

Additionally, it is presented in figure 4.17 the variation of the dimensionless “wind”

dissipation rate per mass, ε̂wind, with the Reynolds number.

The stability domains of the different numbers of vortices are shown in figure 4.18.

It is interesting to notice that the 34-, 32-, 30-, 28- and 26-vortex states are not stable

for Re below 3800. Similarly, the 24-, 22- and the 20-cell states are not stable for Re

below 2300, 2100 and 1700, respectively. In the range between 1000 and 1700, only the

18-cell state is stable. These results are reminiscent of the stability studies of Coles

[25], Snyder [26], Koschmieder [29] and Cliffe et al. [81].

As the Reynolds number increases, a systematic growth of the ω-Nusselt number is

observed. The 18-cell state always has the lowest ω-Nusselt number, whereas the states

associated with the largest number of cells always have the highest ω-Nusselt number.

As the Reynolds number increases further, the curves of Nuω versus Re move closer

together. Then, the curves for different states intersect in a range of Re between 9600

and 15 500. A zoom in this range is shown in figure 4.19 where most of the intersections

are located at approximately 12 600. In table 4.1 it is presented the value of Re for each

intersection. Below each intersection, the torque is larger for states where the number

of cells is larger. Above each intersection, the trend changes and a smaller number

of cells leads to a larger torque. Similar intersections were reported by Lathrop et al.
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Figure 4.16: Rescaled torque, Nuω, as a function of Re for the different flow states in

a system with η = 0.909 and Γ = 30. The black stars (⋆), the blue triangles (N) and

the red triangles (H) represent the laminar Couette flow, the Taylor vortex flow and

the wavy vortex flow, respectively. The black triangles (N) and the empty triangles (▽)

represent data obtained using a low viscosity silicone oil.

[16] and Lewis and Swinney [6] for eight- and 10-cell states in a system with η =0.724.

Recently, numerical studies by Ostilla-Mónico et al. [7] with η = 0.909 have shown

the same behaviour for flows with four distinct wavelengths, where the crossing of the

curves are around Re = 13 000. These intersections are a consequence of the transition

to the ultimate regime.

Physically, this is explained as a change in the mechanism of momentum transfer.

Before the transition to the ultimate regime, the turbulence is driven mainly by the

centrifugal force, that induces the vortices, while the boundary layers remain laminar.

Hence, the main part of the momentum transfer is carried out by these vortices. This

explains why the larger is the number of vortices, the larger is the momentum transfer

and the larger the level the torque. However, in the ultimate regime, the boundary layers
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Figure 4.17: Dimensionless “wind” dissipation rate per mass, ε̂wind, as a function of Re

for the different flow states in a system with η = 0.909 and Γ = 30. The blue triangles

(N) and the red triangles (H) represent the Taylor vortex flow and the wavy vortex

flow, respectively. The black triangles (N) and the empty triangles (▽) represent data

obtained using a low viscosity silicone oil.

become turbulent and dominate the dynamics of the flow [16]. Hence, the turbulence

acquires the main role in the momentum transfer. So, the less number of large structure

are present in the flow, that is, the vortices, the better is the momentum transport and

the larger is the level of torque.

The analysis of our data allows us to present in figure 4.20 the rescaled torque,

Nuω, as a function of the aspect ratio of the vortices, l̄/d, for several values of Re. For

relatively small Re, the rescaled torque decreases as the aspect ratio of the vortices

increases. For large Re, the rescaled torque increases with l̄/d. At Re = 13 000, Nuω

is almost constant. In the experiments, values of l̄/d between 0.88 to 1.5 correspond

to states with 34 to 18 cells. Our results are compared with the numerical simulations

of Brauckmann and Eckhardt [12] for a flow containing 2 vortices at Re = 5000, and

confirm a clear effect of the vortex aspect ratio on Nuω. At Re = 5000, our values
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Figure 4.18: Rescaled torque, Nuω, as a function of Re for the different flow states in

a system with η = 0.909 and Γ = 30 to show the stability threshold of different states.
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Figure 4.19: Rescaled torque, Nuω, as a function of Re for the different flow states in

a system with η = 0.909 and Γ = 30 to show the intersections between the different

curves.

present larger values of Nuω for l̄/d < 1.35, however, they do not exhibit the peak

that these authors found in their data at l̄/d = 0.965. The discrepancy between the

experiments and the numerical simulations may be due to the fact that the numerical
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nv (l̄/d) 30 (0.99) 28 (1.05) 26 (1.13) 24 (1.19) 22 (1.25) 20 (1.34) 18 (1.50)
30 (0.99) 15 296 15 391 13 835 13 532 12 691 12 590
28 (1.05) 15 446 13 480 13 253 12 345 12 311
26 (1.13) 12 407 12 186 11 806 11 773
24 (1.19) 11 711 11 392 11 514
22 (1.25) 9 585 10 170
20 (1.34) 11 689

Table 4.1: Reynolds numbers of the crossings point for different of number of vortices

(mean aspect ratio of the vortices). The average of all the Re numbers corresponding

to the different intersections equals to 12 591.

simulations were performed for a radius ratio η = 0.71 and with periodic boundary

conditions.
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Figure 4.20: Rescaled torque, Nuω, as a function of the mean aspect ratio of the cells,

l̄/d, for different Re in a system with η = 0.909 and Γ = 30. The horizontal error

bar for Re = 10 000 represents the maximum error on l̄. The vertical error on Nuω is

smaller than the symbol height. The cross points (+) correspond to the direct numerical

simulations (DNS) of Brauckmann and Eckhardt [12] at Re = 5000 with η = 0.71.
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Now, the system with η = 0.6 and Γ = 6.8 is analysed. Torque speed measurements

have been performed up to Re = 45 000 for flows containing different numbers of

vortices. The relationships between the ω-Nusselt number and the Reynolds number

are depicted in figure 4.21. Different symbols and colours are used to represent the

different states: laminar Couette flow, Taylor vortex flow with six and eight vortices

(see figures 4.7(a) and (b)) and turbulent vortices with eight, six and four cells (see

figures 4.7(c), (d) and (e), respectively). Again, different numbers of vortices present

distinct levels of Nuω. A crossing of the Nuω(Re) curves happens at Re = 6090. A

zoom around this point is shown in figure 4.22. Before this crossing the state with 8

cells presents larger values of torque. The largest difference of ω-Nusselt between the

8- and the 6-vortex state is 2.18% at Re = 2779, when the flow is already turbulent.

The differences in ω-Nusselt between the 8- and the 6-vortex for a Taylor vortex flow

is 3.72% at Re = 731. The difference is larger in the case of laminar vortices, because

the momentum transfer is done almost completely by the vortices. However, when the

flow is turbulent, part of the momentum transfer is done by the turbulence. Therefore,

the differences in torque when varying the number of vortices are smaller. Then, after

the crossing of the curves, the state with 8 cells present a lower value of Nuω. This

behaviour is in agreement with the flow in the system of η = 0.909. Additionally, the

state with 8 vortices is not stable forRe > 6500. This behaviour was previously reported

in the work of Lewis and Swinney [6], where only one branch of the curves survives after

the crossing. Finally, an increase of the Nuω(Re) slope is observed after the crossing.

This is a consequence of the change in the mechanism of the momentum transfer in the

ultimate regime. As explained above, the turbulence penetrates the boundary layers

and dominates the momentum transfer, which increases. This improvement of the

momentum transfer is reflected as an increase of the Nuω(Re) slope, when shown in

logarithmic scale.

The variation of the dimensionless torque with the radius ratio, η, was already

investigated in the first studies done by Wendt [4] and Taylor [32]. Recently, Ostilla-

Mónico et al. [8, 7] have dealt numerically with the radius ratio dependence of the

flow for purely inner rotation, focusing on the transition to the ultimate regime. In
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Figure 4.21: Rescaled torque, Nuω, as a function of Re for different flow states in a

system with η = 0.6 and Γ = 6.8.
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Figure 4.22: Rescaled torque, Nuω, as a function of Re for different flow states in a

system with η = 0.6 and Γ = 6.8 to show the intersection between the curves.

the following, the effect of the radius ratio, η, on the ω-Nusselt number is analysed for

different systems.

Figure 4.23 displays the evolution of Nuω as a function of the Reynolds number in

the range 40 < Re < 45 000 for three different radius ratios, η = 0.6, 0.909 and 0.973.

As explained in 4.4.1, at low Re, in the Couette laminar regime, the three curves are
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shifted up due to the end effects that introduce an additional torque with respect to the

theoretical laminar torque calculated for an infinite cylinder. This increase of torque

induced by the end effects appears to be important when analysing the torque at large

Re. Therefore, it is proposed to use a new rescaling by using the torque measured in

the laminar regime, T exp
lam, as previously done.
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Figure 4.23: Rescaled torque, Nuω, as a function of Re in systems with three different

radius ratios. The aspect ratios, Γ, are: 6.8, 30 and 100, respectively.

Figure 4.24 depicts the variation of the rescaled torque T/T exp
lam with Re in the

systems with η = 0.6, 0.909 and 0.973. The results from Merbold et al. [13] with

η = 0.5 are added for comparison. The experimental set-up used by these authors has

been described in chapter 3, where the torque is only measured in the centre of the

inner cylinder, so the end effects are not taken into account. The results of Wendt [4]

are also added for three different radius ratios, η = 0.68, 0.85 and 0.935. Clearly, there

is an influence of the radius ratio on the level of Nuω, where the systems with η = 0.6

and 0.973 have the lowest levels of T/T exp
lam. Then, the rest of the data superpose in a

wide range of Re. However, as we are comparing very different systems, in which the

torque is measured in distinct ways, we can not extract strong conclusions about the

variation of T/T exp
lam with η. Nevertheless, the slope of the curves can be compared. It

was already explained that the flow in the systems with η = 0.6 and 0.909 undergoes a

transition to the ultimate regime at Re = 6090 and 12 600, respectively. This transition

induced a change in the slope of the curve Nuω(Re), that can be observed in figure
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4.24. A similar change in the slope was reported by Merbold et al. [13] at Re = 75 000

in the system with η = 0.5, probably due to the transition to the ultimate regime. The

slope after the transitions are similar in all the systems. Also, in the curves of Wendt

[4] for η = 0.68 and 0.85 the slope is similar.
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Figure 4.24: Rescaled torque, T/T exp
lam, as a function of Re in systems with different

radius ratios. The experimental data from Wendt [4] and Merbold et al. [13] are added

for comparison purposes.
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4.5 Power law fitting

In chapter 2 it was explained that the motivation behind seeking scaling laws is to

find the universal behaviour of momentum transfer in turbulent flows. Particularly,

the analogy with Rayleigh-Bénard system is interesting as the driving mechanism of

momentum transfer and heat transfer are comparable [46, 44]. The dependence of Nuω

on Re can be described as Nuω = AReα−1, where A is the pre-factor and α is the

exponent. In the following, the variation of both parameters will be discussed.

4.5.1 Exponent

In turbulent flows, at very high Re, the exponent, α, tends to 2, according to the

Kolmogorov’s theory of isotropic and homogeneous turbulence [47, 16]. For intermediate

Reynolds numbers α varies and depends on several parameters. In figure 4.25 the

evolution of α with Re is shown for the three systems studied with η = 0.6, 0.909

and 0.973. Here, α − 1 = ∂(log10Nuω)/∂(log10Re) is calculated for each system as a

function of the Re using sliding least-square fit [16, 6, 14, 13] over intervals between

0.1 < ∆(log10Re) < 0.4. The results are compared with those of Ravelet et al. [14] with

η = 0.917, Lim and Tam [15] with η = 0.892, Lewis and Swinney [6] with η = 0.714

and Merbold et al. [13] with η = 0.5.

Around Re ≈ 400, the flow is chaotic and exhibits some turbulent patches. It is

possible to test the scaling law (2.31). For 400 < Re < 4000 the behaviour of the

exponent is constant. The points for η = 0.6 are around α = 1.4, in agreement with

those of Ravelet [14]. And the points for η = 0.909 and 0.973 are around α = 1.5, in

agreement with those of Lim and Tan [15]. The common feature in this range, in which

the turbulence starts appearing in the flow, is that the exponent remains constant.

At Re > 4000 the turbulence is well established in the flow and the exponent

increases again. Note that in the case of η = 0.909 there is a large number of points,

corresponding to the different numbers of vortices found. In the case of η = 0.6 the

exponent reaches a constant value at Re = 9200. This occurs after the crossing of
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Figure 4.25: Evolution of the exponent, α, with Re in three systems with different

radius ratios. The data are compared with those of Ravelet et al [14] with η = 0.917,

Lim and Tan [15] with η = 0.892, Lewis and Swinney [6] with η = 0.714 and Merbold

et al. [13] with η = 0.5.

the Nuω(Re) curves at Re = 6090, where the slope of such curve also changes. The

same trend is observed in the case of Lewis and Swinney [6], in which the behaviour

of α varies after the change in slope of the Nuω(Re) curves and the crossing of its two

branches. A similar behaviour is observed in the case of Ravelet et al. [14], where

the exponent grows smoothly at the same Reynolds number, Re ≈ 13 000, where a

change in slope of the Nuω(Re) curve is observed. A drop of the exponent takes place

at Re ≈ 40 000. In the case of Merbold et al. [13], the change in the behaviour of

α occurs at Re ≈ 75 000. In figure 4.24 it can be observed a change in the slope of

the torque at the same Re. The value of α is also related to the transition to the

ultimate regime. Actually, Ostilla-Mónico et al. [7] realised that the ultimate regime

is characterised by an exponent α > 5/3, in analogy with the Rayleigh-Bénard system.

In all the cases included for comparison, α is larger than 5/3. In the case of η = 0.6

the exponent is slightly below this threshold and equals 1.64. This could be explained
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by the small aspect ratio of this system, Γ = 6.8.

Once the variation of α with Re has been analysed, now we focus on the dependence

of the exponent with the number of vortices. Figure 4.26(a) displays the variation of

α−1 as a function of Re for different numbers of cells between 4000 . Re . 21 000. A

dependence of the exponent with the number of vortices is found, so the smaller is the

number of vortices, the larger is the exponent. Actually, the meaning of α is related

to the viscosity dependence of the torque [16]. The Kolmogorov assumption assumes

α = 2 for fully developed turbulence at extremely high Re [47, 16]. Any deviation from

α = 2 implies a particular form of velocity fluctuations. In fact, this is considered as

an upper limit and no numerical [8] or experimental [48, 49, 50] study has managed to

attain this limit even at Re = O(106). In a flow system with a given number of vortices,

the form of the velocity fluctuations is constrained by the presence of large-scale vortices

and cannot be completely random. Hence, the less number of vortices there are in the

flow, the largest is the level of turbulence and the higher is the exponent. Modern

investigations using particle image velocimetry [38, 82] aim to quantify the velocity

fluctuations and estimate the average turbulent kinetic energy dissipation rate.

A new scaling of the Reynolds number based on the mean aspect ratio of the cells,

l̄Re/d, depicted in 4.11, is proposed for the exponent in figure 4.26(b). A partial overlap

of the data is found at l̄Re/d > 17 000, most probably when the ultimate regime starts.

This suggests that the size of the cells is an important parameter before the transition.

However, in the ultimate regime the role of turbulence is more important than the one

of the vortices.

The principal feature that we wish to highlight is the systematic dependence of the

scaling on the number of vortices in the flow. For situations where the number of cells

is small, the flow is less constrained by the cells. Therefore, the turbulent flow will

exhibit larger velocity fluctuations, leading to higher turbulence and a larger α. For

situations were the number of cells is large, the flow is more constrained by the cells

and the velocity fluctuations are weaker, leading to a smaller value of α.

According to Ostilla-Mónico et al. [7], the ultimate regime is characterised by an
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Figure 4.26: Evolution of the exponent, α, for different numbers of cells. The black

triangles (N) and the empty triangles (▽) represent data obtained using low viscosity

silicone oil. (a) α − 1 as a function of Re and (b) α − 1 versus l̄Re/d, based on the

averaged height of the cells, l̄.

exponent, α > 5/3 ≈ 1.67. A recent experimental work [51] has shown that at very

high Reynolds numbers, R = O(Re6), the exponent reaches values of 1.78. In numerical

simulations an exponent of 1.88 has been reached at Re = O(Re5). In our case, even

at much lower Reynolds numbers, Re = O(Re4), exponent with values above 1.75 have

been attained in the case of small number of vortices (see the black triangles (N) and

the empty triangles (▽) in figure 4.26). However, in the case of 30 cells the exponent

only reaches a value of 1.57. This indicates that if the number of vortices is reduced,

similar levels of turbulence can be attained than in flows at higher Re but larger number

of cells.

4.5.2 Pre-factor

So far, only the exponent had been analysed when performing scaling laws of the torque

[16, 6, 15, 44, 14, 13, 8, 7], without taking into account the role of the pre-factor, A, in

(2.31). In the following analysis, the dependence of A on Re and the number of vortices

is analysed.
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In figure 4.27 the evolution of the pre-factor, A, for different numbers of vortices

in a system with η = 0.909 and Γ = 30 is presented. The data corresponding to the

system with η = 0.6 are also included. The values of A are greater for larger number

of vortices and decrease for increasing Re numbers. Two upward peaks are observed at

approximatively Re = 8500 and Re = 12 300. These upward peaks appear at the same

Re numbers that the two downward peaks observed in figure 4.26(a).
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Figure 4.27: Evolution of the pre-factor, A, with Re, for different numbers of vortices.

The continuous line corresponds to a fitting given by (4.2). The black triangles (N) and

the empty triangles (▽) represent data obtained using low-viscosity silicone oil. The

green triangle (N) represent the values in the system with η = 0.6.

Regarding the tendency of the curves, the following fit is proposed.

A = c1 +
c2
Re

. (4.2)

where c1 = limRe→∞A and c2 is related to the dependence of A on Re. When Re is

smaller or of the same order of c2, A depends on Re. On the contrary, when Re ≫ c2,
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the term in (4.2) depending on Re is negligible and A becomes constant and equals

c1. The fit curves corresponding to (4.2) are presented in figure 4.27 as continuous

lines. Although they do not overlap well on the points, due to the two upward peaks,

these curves estimate the behaviour of A at the largest Reynolds numbers, suggesting

that the curves reach a constant value and the pre-factors are no longer dependent on

Re. Moreover, the range of Re where the pre-factors seem to become constant coincides

with the crossing of the Nuω(Re) curves. The values of c1 and c2 are shown in table 4.2.

If this is compared to the system with η = 0.6, the suggestion is confirmed. Actually,

the pre-factor reaches a constant value when Re > 9200, in the same region where

the exponent α also becomes constant. As explained before, this coincides with the

ultimate regime of turbulence.

The main results that we want to stand out is the change in the behaviour of A
before and after the transition to the ultimate regime. Before the transition, the pre-

factor depends on Re. In the ultimate regime, the pre-factor is constant. This implies

that before the transition there is not a unique exponent α. So, the exponent is a local

property of the flow strongly dependant on Re. In the ultimate regime, the exponent

is a global property of the flow, although it still depends on Re, as shown in different

works [16, 6, 13, 8, 7].

nv 30 28 26 24 22 20 18
c1 0.2365 0.1955 0.1322 0.0883 0.0709 0.0837 0.0860
c2 1780.4 1884 2070 2117 1974 1611 1342

Table 4.2: Values of the constants c1 and c2 in (4.2) for different numbers of vortices.

4.6 Transition to the ultimate regime

The transition to the ultimate regime in Couette-Taylor flow was first observed by

Latrhop et al. [16] and was explained as a change from centrifugal turbulence to shear-

driven turbulence. This transition involves several changes in the features related to the

torque: a variation of the slope in the evolution of the torque with the rotational speed,

a crossing between the different branches of the Nuω(Re) curve for different numbers
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of vortices, a progressive growth of the exponent of the scaling law once α = 1.67, a

change in the axial diffusion coefficient and different wall shear stress characteristics

[16, 7]. Moreover, we have shown a clear behaviour of the pre-factor, A, after this

transition, which becomes constant in this regime. In the following, the dependence of

the Reynolds number in the transition to the ultimate regime, ReT , on the radius ratio,

η, is analysed. A dependence on the aspect ratio Γ is also observed.

In the numerical work of Ostilla-Mónico et al. [8, 7] the η-dependence of the tran-

sition to the ultimate regime was analysed. For η & 0.7 the threshold appears at a

constant Taylor numbers which is equivalent to Re = O(104). However, for η . 0.7 the

critical point increases with decreasing radius ratios. Moreover, it was suggested that

the transition is independent of the wavelength of the cells. They gave three reasons for

which the global effect of reducing η leads to an increase of ReT . First, when the gap

is large compared to the radii of the cylinders, i.e., when the curvature is pronounced,

the fluctuations in the outer cylinder are reduced with respect to the inner cylinder.

Second, the convexity of the inner cylinder and the concavity of the outer one tend to

stabilise and destabilise the flow, respectively [83, 84, 85]. And third, the shear close

to the outer cylinder is reduced for large gaps. All this leads to an asymmetry of the

boundary layers that delays the transition to the ultimate regime of turbulence.

In figure 4.28 it is displayed different ReT as a function of η. In our case, the point

for η = 0.6 represents the crossing of the Nuω(Re) curves, that coincides with the

change of slope of this curve. In the case of η = 0.909, the point represents the average

Re where all the intersection of the Nuω(Re) curves take place. A comparison with

several works is done.

For Lewis and Swinney [6] the point at ReT = 13 000 for η = 0.724 is based on the

change in slope of the evolution of the exponent, α, with Re, and in the crossing of the

Nuω(Re) curves for two flows with different numbers of vortices. In the simulations of

Ostilla-Mónico et al. [7] the points at ReT = 59 300, 14 000 and 16 500 for η = 0.5,

0.714 and 0.909, respectively, are based on the onset of turbulence in the boundary

layer, that coincides with a change in slope in the Nuω(Ta) curves. In the experimental
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study of Merbold et al. [13] a change in slope in the Nuω(Re) curve is observed at the

ReT = 75 000 for η = 0.5. Huisman et al. [17] identified a change to a logarithmic

boundary layer at ReT = 25 700 for η = 0.716. For Ravelet et al. [14] the point is

based in the change in slope of the Nuω(Re) curve at the ReT = 10 380 for η = 0.917.
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Figure 4.28: Reynolds number in the transition to the ultimate regime, ReT , as a

function of the radius ratio, η. Points from different works [16, 14, 17, 13, 9, 7] are

added for comparison purposes.

Regarding the figure 4.28 the transition to the ultimate regime seems to be little

affected by the radius ratio when η & 0.7. However, for η . 0.7 the transition is delayed

with decreasing η. This is in agreement with the explanation of Ostilla-Mónico et al.

[7]. Nevertheless, the point with η = 0.6 strongly differs. This could be explained by the

short aspect ratio, Γ = 6.8, that advances the transition to the ultimate regime. In the

other experimental works, the aspect ratio is larger than 20. In the numerical works, the

periodic boundary conditions do not take into account the effect of the boundary layer.

Therefore, this result indicates that the transition to the ultimate regime is affected by

the aspect ratio of the system.
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4.7 Conclusions

This chapter have dealt with the torque that turbulent flows exert on the inner cylinder

when only this cylinder rotates. Torque measurements in three systems with different

radius ratios, η = 0.973, 0.909 and 0.6, have been carried out up to Reynolds numbers

of 45 000. The effect of the radius ratio and the number of vortices have been studied.

Flow visualisation have been performed to count the number of vortices.

The flow visualisations have shown the different transitions that the flow undergoes,

starting from the laminar Couette flow, until reaching the turbulent regime. The pro-

cedure to select the number of vortices has been illustrated through a spatio-temporal

diagram and then, the multiple turbulent states that can be established in the flow have

been shown. Finally, the size of the vortices, l, has been measured and the influence of

the aspect ratio of the system, Γ, on the mean vortex size, l̄, has been analysed.

The global variation of the rescaled torque, Nuω, with the Reynolds number, Re,

has been shown. A focus on the regimes before the onset of turbulence has been made,

particularly, on the laminar Couette flow, the Taylor vortex flow and the wavy vortex

flow. The critical Reynolds number, Rec, of the onset of Taylor vortices agrees well with

the theory [77]. The torque measured for Taylor vortices agrees well with the analytical

studies of DiPrima et al. [11] for the systems with large radius ratio, although the

agreement is not good with the system with η = 0.6. This could be due to the small

aspect ratio of this system, Γ = 6.8.

In the case of turbulent flows, the torque measurements show a clear effect of the

number of vortices in the rescaled torque, Nuω. Before the transition to the ultimate

regime of turbulence [7], the laminar boundary layers limit the momentum transfer of

the turbulence, as it can not reach the cylinders. Hence, the vortices have the main

role in the momentum transfer and the larger is the number of vortices, the larger is

the torque they apply. In the ultimate regime, the turbulence penetrates the boundary

layers [17], so it can now dominate the momentum transfer. Therefore, the higher is

the level of turbulence in the flow, the larger is the momentum transfer. As the level of
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turbulence increases when the number of vortices decreases, flows containing a smaller

number of vortices will exert larger levels of torque. As a consequence of the change

in the mechanism of momentum transfer, intersections of the Nuω(Re) are observed.

This improvement of the momentum transfer mechanism in the ultimate regime also

results in an increase in the slope of the Nuω(Re) curves, which is observed after the

crossing of the curves. Finally, an influence of the radius ratio, η, is observed in Nuω,

although strong conclusion of the effect can not be made, due to the differences between

the systems.

Power law fitting have been applied to the torque data to analyse the behaviour

of the exponent, α, and the pre-factor, A. For laminar Couette flows α = 1, since

the torque is proportional to the rotation speed of the inner cylinder. After an abrupt

increase of α, corresponding to the Taylor vortices, the exponent reaches a constant

value, that varies between 1.4 < α < 1.5, depending on the system. Once the turbulence

appears in the flow, the exponent grows significantly. Then, after the transition to

the ultimate regime, α reaches a constant value and, in some cases, still increase but

smoothly. The effect of the number of vortices has also been analysed, finding that

the exponent increases when reducing the number of vortices. This is related to the

turbulent energy dissipation, so the less the number of vortices, the higher is the level

of turbulence, and hence, the larger is α. We have demonstrated that flows with a

small number of vortices and moderate Reynolds numbers, Re = O(104), presents the

same level of turbulence than flows with larger number of vortices and higher Reynolds

numbers, Re = O(106). When rescaling Re, using the mean aspect ratio of the cells,

l̄/d, a collapse is found at the highest Reynolds number, most probably related to the

ultimate regime. With respect to the pre-factor, A, it is found that it depends on Re

before the transition, and becomes constant in the ultimate regime. This indicates that,

if universal scaling laws are sought between momentum transfer and the driving force,

they should be done in the ultimate regime of turbulence.

The threshold of the transition to the ultimate regime of turbulence, ReT , has been

analysed as a function of the radius ratio, η. As previously presented by Ostilla-Mónico
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et al. [7], ReT depends on η. For systems with η & 0.7 and aspect ratios Γ ≥ 20,

ReT seems to not vary so much with η. For systems with η . 0.7 and Γ ≥ 20, ReT

increases with decreasing η. We have shown that a small Γ modifies the transition to

the ultimate regime, so ReT becomes smaller.
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Torque of viscoelastic polymer solu-

tions in Couette-Taylor flows

“I have not failed. I have just found 10 000 ways that will not work”.

—Thomas Alva Edison

The effect of long-chain polymer addition in Couette-Taylor flow is described. Torque

measurements and flow visualisations have been performed in a wide range of elastic

numbers. When the fluid is pre-sheared, flow visualisations during an acceleration-

deceleration cycle of the inner cylinder show that different patterns emerge when in-

creasing the concentration of long-chain polymers. The torque presents hysteresis dur-

ing the acceleration-deceleration cycles, corresponding to different patterns. With high

concentrations, pairs of solitary vortices are observed when decelerating and their torque

is measured. Additionally, the number of these solitary vortices is controlled through

the deceleration rate of the inner cylinder. The relationships between the torque and

the speed are also analysed when the fluids are not pre-sheared. Finally, when the ro-

tation rate is large, inertio-elastic turbulence was observed and the torque fluctuations

that arise have been analysed.
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5.1 Introduction

When a viscoelastic polymer solution is employed as working fluid in a Couette-Taylor

flow, elastic properties can give rise to the inertio-elastic instabilities, or pure elastic

instabilities as shown by Larson et al. [86]. Special patterns, such as localised steady

vortex pairs of large wavelength, called tall Taylor cells by Beavers and Joseph [87] and

Haas and Bühler [88] or diwhirls by Groisman and Steinberg [89, 90], can arise. The

challenge when dealing with polymer solutions is the increase of dimensionality of the

parameter space, because of new parameters that depend on the rheological properties

of the fluid.

After pioneering studies done by Denn and Roisman [91], there has been a growing

interest in viscoelastic instabilities in the Couette-Taylor system [86, 89, 57, 92]. Theo-

retical studies are nowadays complemented by numerical calculations using viscoelastic

models, like the upper-convected-Maxwell fluid model [93] or the Oldroyd-B model

[94] and finite extensible nonlinear elastic (FENE) dumbbell models [95, 96, 97, 98].

Although these studies were able to reproduce many flow properties observed in ex-

periments such as standing waves or diwhirls, the torque and wavelength selection

mechanism have been less investigated.

The present study considers high-molecular-weight linear polymer poly(ethylene

oxyde) (PEO) in a mixture of water and poly(ethylene glycol) (PEG). The properties of

aqueous PEO solutions and mixtures of PEO and PEG are well documented in several

studies [56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 99, 100, 101]. Different stability diagrams

of different regimes in Couette-Taylor flow are available [57, 65, 67]. Recently, Dutcher

and Muller [79, 65] summarized most of previous experimental studies on viscoelastic

Couette-Taylor flow. They identified inertial and inertio-elastic transitions depending

on the viscoelasticity of the fluids (viscosity ratio and elastic number, defined below).

The transition sequences, including elastically dominated turbulence, were character-

ized using patterns from spatio-temporal diagrams. Another technique to detect the

transition is to monitor the torque that the fluid exerts on the inner cylinder as done
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by Denn and Roisman [91], Yi and Kim [102] and Groisman and Steinberg [92]. Denn

and Roisman [91] provided torque data for several polymer solutions, including PEO of

4×106 g/mol. Yi and Kim [102] studied dilute polyacrylamide solutions. Groisman and

Steinberg [92] also studied polyacrylamide solutions and reported hysteretic behavior

for a single large elastic number.

Our objective was to carry out a systematic study of the dependence of the flow

patterns and the torque on different rotation speeds and different concentrations of PEO

during slow acceleration/deceleration cycles. The chapter is organised as follows. In

§5.2 the experimental methodology is presented. In §5.3 results about pre-sheared fluids

are presented. The patterns that appear are illustrated in spatio-temporal diagrams,

the torque is analysed and the pairs of solitary vortices that appear during deceleration

are analysed. In §5.4 results concerning fluids non pre-sheared are presented. The

fluctuations in the inertio-elastic turbulent regime are analysed. The conclusion is

presented in §5.5.

5.2 Experimental methodology

5.2.1 Dimensionless numbers

We use the Couette-Taylor system with η = 0.909 and Γ = 30 described in §3.1. The

addition of polymer to the fluid increases the parameter space of Couette-Taylor flow.

Hence, new parameters have to be defined to quantify the new effects on the flow. The

shear rate is defined as,

γ̇ = Ωri/d (5.1)

which is the deformation rate of a fluid layer parallel to the cylinders surfaces. The

Reynolds number has been previously defined in (2.9), but using the shear rate it can

be defined as,

Re = γ̇λv, (5.2)
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where λv = d2/ν is the viscous diffusion time across the gap. The dimensionless viscous

diffusion time across the gap is defined as,

τv =
t

λv
=

νt

d2
. (5.3)

To quantify the effects of the elasticity on the flow, the Weissenber number, which is

the product of γ̇ and the relaxation time, λe, is defined as,

Wi = γ̇λe. (5.4)

The elastic number, which is the ratio between the relaxation time and the viscous time

is defined as,

El =
λe

λv

=
Wi

Re
. (5.5)

The viscosity ratio is,

S =
µp

µs
, (5.6)

where µp is the polymer contribution to the viscosity and µs is the solvent viscosity.

5.2.2 Rheology summary

In §3.2 the properties of the viscoelasctic fluids were presented and are summarised in

table 5.1. The elastic number, El, has been calculated using the elongational relaxation

time measured with the CaBER, as it is the longest relaxation time of the fluid.

5.2.3 Experimental protocol

During the experiments, the rotation speed of the inner cylinder was varied with a

constant acceleration and deceleration ∆Ω/∆t = ±5.2 × 10−3 rad/s2. This ramping

rate was selected, so the dimensionless acceleration is below the criterion of Dutcher

and Muller [41] that states that the Newtonian Couette-Taylor flow instability is inde-

pendent of the acceleration when ∆Re/∆τv . 0.60. As τv is larger than any relaxation

time of the polymer solution, the acceleration used here is slow enough to allow for the
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CPEO (ppm) λv (s) S λe (ms) El
76 3.128 0.094 171 0.05
100 3.109 0.100 201 0.06
150 2.819 0.213 254 0.09
300 2.301 0.487 395 0.17
1000 0.753-1.257 1.720-3.542 823 0.66-1.09

Table 5.1: Properties of the different PEO solutions dissolved in an aqueous solvent

containing 7% PEG, whose viscous diffusion time is, λv = 3.420 s. Note that for the

solution with 1000 ppm the minimum and maximum values of λv, S and El correspond

to the shear thinning of the viscosity.

elastic stress response.

When viscoelsatic fluids are poured for the first time in the Couette-Taylor system

and the inner cylinder is submitted to an acceleration, it is observed that the first

instability does not appear at the same γ̇, if the experiment is repeated. Actually, this

critical shear rate is delayed for several repetition of the experiment, until the critical

γ̇ becomes constant and the experiments are reproducible. In order to get reproducible

results, a pre-shear at a constant shear rate slightly larger than the critical shear for

instabilities was applied for sufficiently long time until the torque reached a constant

value. After using this protocol, the critical γ̇ is constant. In figure 5.1 the evolution

of the torque, T , with the shear rate, γ̇, is displayed for flows containing different

concentrations of PEO. The black curves correspond to fluids without pre-shear and

the red ones to pre-sheared fluids. In the case of the small concentrations, 76 ppm, no

difference is observed before and after the pre-shear. However, for larger concentrations,

the critical γ̇ for the transition appears at higher values in the case of pre-sheared fluids.

In the case with 100 ppm, the curve corresponding to the pre-sheared fluid (−−) lays

above the curve without pre-shear (–). This results may indicate that the polymer

chains are entangled when the fluid is prepared. Then, when the fluid is submitted to

a certain level of shear stress the polymer chains untangle.

This issue introduces a new complexity in the study of viscoelastic fluids in Couette-

Taylor flow. For this reason, we have performed different types of analyses in fluids
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Figure 5.1: Torque, T , as a function of shear rate, γ̇, for fluids containing different

concentrations of PEO dissolved in 7% PEG aqueous solution. The black curves (–)

are fluids without pre-shear and the red curves (−−) are pre-sheared fluids.

without pre-shear and fluids with pre-shear that will be treated in different sections.

5.2.4 Degradation

The early studies from McGary [103] showed that PEO solutions are susceptible of

degradation due to mechanical, thermal, oxidative or aging processes. Dutcher and

Muller [65] showed that aqueous solutions of PEG and PEO age faster than aqueous

solutions of PEO in 47% glycerol. To circumvent the drawback of degradation due to

processes related to the lifetime of the solutions, the fluids are always used at the third

day after preparation. However, the mechanical degradation is still unknown. In order

to test the limit at which the fluid are mechanically degraded, they were sheared up

to a high γ̇ to test their responses while monitoring the torque. The fluid with 1000

ppm of PEO, was sheared up to the highest shear rate reachable in our Couette-Taylor

system in an acceleration-deceleration cycle. Figure 5.2 reports the torque as a function
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of shear rate for all the solutions and for the solvent. The first transition is identified

by an abrupt change in slope at low shear rate and an increase in the amplitude of

torque fluctuations. At higher γ̇ the level of fluctuations decreases significantly and the

vortices resemble turbulent Taylor vortices as in a Newtonian solution, at γ̇ ≃ 200, 200,

220, 265 and 400 s−1 for concentrations of 76, 100, 150, 300 and 1000 ppm, respectively.

In the case of 1000 ppm, the following steps of the curve correspond to a change in the

number of vortices that reduces the torque further, as shown in chapter 4. During the

deceleration, the torque significantly reduces down to the level of the solution without

PEO. This, together with the fact that the torque fluctuations are reduced, suggests

that the fluid has lost some of its viscoelastic properties.
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Figure 5.2: Torque, T , as a function of shear rate, γ̇, for solutions containing different

concentrations of PEO dissolved in a 7% PEG aqueous solution. The solvent (0 ppm)

and the solution with 1000 ppm were submitted to an acceleration and deceleration

cycle, so the up- and down-arrows indicate acceleration and deceleration, respectively.
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5.3 Pre-sheared solutions

As explained in 5.2.4, the critical γ̇ for the first instability is reproducible if the fluids

have been previously pre-sheared. This section deals with fluids that have been pre-

sheared.

5.3.1 Visualisations

The patterns that appear in a Couette-Taylor flow when using a viscoelastic solution

are different from those in a Newtonian fluid, because of the effect of elasticity. The

transitions that the fluid undergoes are distinct depending on the elastic number, El,

and do not occur at the same values of Re or Wi. Through flow visualisations, the

patterns that appear when accelerating and decelerating the inner cylinder with fluids

containing 76, 100, 150, 300 and 1000 ppm of PEO are analysed.

Figures 5.3(a) and (b) present the spatio-temporal diagrams of a solution with 76

ppm of PEO (El = 0.05) with the inner cylinder accelerating and decelerating, re-

spectively. At low shear rate, during the acceleration, the laminar Couette flow is

progressively replaced by Taylor vortices. The critical Re is at 133, indicating that the

fluid is destabilized compared to the Newtonian case for which the transition happens

at Re = 135. According to the non-monotonous behavior of the stability boundaries

found earlier [57], this 76 ppm solution is not far from the intertio-elastic regime, as

it destabilises the flow. Between 134 < Re < 137 the Taylor vortices present weak

oscillations that appear at the ends of the cylinder and propagate to the center, giving

rise to disordered oscillating flow (or noisy non-axisymmetric standing waves) between

137 < Re < 143 [104, 89, 105, 57]. Beyond Re = 143 the space-time diagram shows

a random pattern in which irregular lines emerge and disappear in short ranges of Re.

This pattern is present for all the concentrations of PEO at high shear rates and is a

characteristic of elastic instabilities [106]. A snapshot of this flow is shown in figure

5.13(a) as a pattern characterized by chaotically oscillating thin vortices. This pattern

has also been named as “inertio-elastic turbulence” [104]. During the deceleration, the
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disordered oscillating flow is also observed for 142 > Re > 136. However, it is not

replaced by Taylor vortices but by symmetric standing waves [104, 89, 105, 57]. These

standing waves observed as diagonal lines in a narrow range around the transition are

typical modes of high concentrations [57].

Figures 5.3(c) and (d) present the spatio-temporal diagrams of a flow with a solution

with 100 and 150 ppm of PEO (El = 0.06 and 0.09), respectively, with the inner cylinder

accelerating. The Taylor vortices are completely developed at Re = 135 and Re = 131.

The fluid with 100 ppm (El = 0.06) is stabilised with respect to the one with 76 ppm

(El = 0.05). The fluid with 150 ppm (El = 0.09) is even more destabilised than in the

case of 76 ppm (El = 0.05). In both cases, the range in which Taylor vortices are stable

decreases with the elastic number. Afterwards, the same weak oscillations appear, as for

76 ppm (El = 0.05), then the disordered oscillating flow and finally the inertio-elastic

turbulence pattern. The occurrence of Taylor vortices during the acceleration together

with the inertio-elastic turbulence in the cases of 76, 100 and 150 ppm (El = 0.05, 0.06

and 0.09, respectively) indicate that these solutions present inertio-elastic instabilities.

Figures 5.4(a) and (b) present the spatio-temporal diagrams of a solution with 300

ppm of PEO (El = 0.17) with the inner cylinder accelerating and decelerating, respec-

tively. In this case, during the acceleration, the laminar Couette flow is not replaced by

Taylor vortices, but by symmetric standing waves, the same as in figure 5.3(b), that ap-

pears between Re = 116 and 118. This behaviour during acceleration was also observed

by Baumert and Muller [105]. For Re > 118 the flow presents inertio-elastic turbulence.

During the deceleration, the inertio-elastic turbulent pattern is directly replaced by a

laminar Couette flow between Re = 109 and 107. Note that in both cases the patterns

are not symmetric with respect to the mid height of the cylinders.

Figures 5.4(c) and (d) present the spatio-temporal diagram of a flow with a solution

of 1000 ppm of PEO (0.71 < El ≥ 1.09) with the inner cylinder accelerating and de-

celerating, respectively. Again, the transition from the laminar state to inertio-elastic

turbulence is preceded by standing waves without any Taylor vortex. During the de-

celeration, at Re > 80 the inertio-elastic turbulent pattern is observed. Then, dark
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Figure 5.3: Spatio-temporal diagrams at the mid-plane of the gap over the whole height

(the upper part is the top end plate and the lower part is the bottom end plate) of

the flow for different concentrations of PEO dissolved in 7% PEG aqueous solution.

(a) and (b) Diagrams of flows containing a 76 ppm PEO solution (El = 0.05) during

acceleration and deceleration, respectively. (c) Diagram of the flows containing 100 ppm

PEO solution (El = 0.06) during acceleration. (d) Diagram of the flows containing 150

ppm PEO solution (El = 0.09) during acceleration. Note that to convert Re into Wi,

the Reynolds number has to be multiplied by El, which is also provided in table 5.1.
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Figure 5.4: Spatio-temporal diagrams at the mid-plane of the gap over the whole height

(the upper part is the top end plate and the lower part is the bottom end plate) of the

flow for different concentrations of PEO dissolved in 7% PEG aqueous solution. (a) and

(b) Diagrams of the flows for the 300 ppm solution (El = 0.17) during acceleration and

deceleration, respectively. (d) and (c) Diagrams of the flows for the 1000 ppm solution

(0.71 < El < 1.09) during acceleration and deceleration, respectively. Note that to

convert Re into Wi, the Reynolds number has to be multiplied by El, which is also

provided in table 5.1.

irregular and horizontal lines emerge giving rise to the flame pattern [105]. At Re = 64

the branches of the flame pattern end up in three horizontal stationary lines, which
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correspond to three solitary pairs of vortices or diwhirls [89]. The average distance

between the centres of the diwhirls is 7.5 times the gap. At Re = 48, the diwhirls dis-

appear from bottom to top. A snapshot of a three diwhirls pattern is shown in figure

5.13(d). The presence of diwhirls indicates that the 1000 ppm fluid is in the elastic

regime.

5.3.2 Hysteresis in the torque

The hysteretic behaviour of the torque exerted by a viscoelastic fluid on the inner

cylinder when it is accelerated and then decelerated was first observed by Groisman and

Steinberg [92] at a large elastic number. The transitions they observed with El = 57 is

of purely elastic nature, since El >> 1. However, this hysteresis has never been reported

for several fluids in a wide range of El, where the viscous and the elastic forces are of

the same order. This could help in the understanding of the relationship between the

hysteresis and the level of elasticity of the fluid, that is, the elastic number. Here, we

analyse the hysteresis observed in the torque for fluids with different concentrations of

PEO, that lead to different 0 < El < 1.09.

The torque data are shown in figures 5.5 and 5.6 as Nuω as a function of Re and

Wi, respectively. In the laminar regime, Nuω is approximately constant and close to

one. When Re or Wi is small, Nuω is slightly shifted up due to the end effects that

introduce an additional torque (see chapter 4). The end effects seem to be reduced for

the 1000 ppm solution (0.71 < El < 1.09), but it is not clear how the viscoelasticity

affects them. At higher Re or Wi, there is a slight increase of the slope of Nuω before

the abrupt increase of torque corresponding to the onset of inertio-elastic instabilities.

This slight increase of torque was also observed in the study by Yi and Kim (1997)

and attributed to the polymer contribution. As the shear rate exceeds a critical value,

there is a rapid increase of the torque for large values of the polymer concentration. In

figure 5.7 it is depicted the critical Reynolds number, Rec, and the critical Weissenberg

number, Wic, where the torque increases abruptly, as a function of the elastic number,

El. It is observed that as El increases, Rec decreases, as previously observed [104, 57].
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In the case of Wic, it increases with the elastic number. In figures 5.5 and 5.6, Nuω

fluctuates significantly for large value of Re or Wi and El [92].
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 El = 0.09
 El = 0.07
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Figure 5.5: Nuω as a function of Re for solutions with different El or concentrations

of PEO dissolved in 7% PEG aqueous solution. The up- and down-arrows indicate

acceleration and deceleration, respectively.

The up- and down-arrows in figure 5.5 indicate the acceleration and deceleration

protocol, respectively. The paths followed by Nuω present hysteresis loops as observed

experimentally before [92]. This hysteretic region is a signature of a subcritical tran-

sition between the laminar state (Nuω ≃ 1) and the regime where Nuω fluctuates.

The flow with the smallest polymer concentration exerts almost the same torque when

accelerating and decelerating, although the flow patterns can be quite different (see

figures 5.3 and 5.4).

When only a single fluid with one concentration is studied, it is clear which dimen-

sionless number best represents the dynamics of the flow. One can decide to use Re

when El is small [79, 65], because the viscous forces are dominant, or Wi when El is

large [92], since in this case, the elastic forces are the dominant ones. However, when

El ≈ 1 or when several fluids want to be compared in a wide range of elastic numbers,

95



Torque measurement in turbulent Couette-Taylor flows

10 20 30 40 50 60
1

2

3

Wi

Nuω

 

 

 El = 0.71−1.09
 El = 0.17
 El = 0.09
 El = 0.07
 El = 0.06

Figure 5.6: Nuω as a function of theWi for solutions with different El or concentrations

of PEO dissolved in 7% PEG aqueous solution.
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Figure 5.7: Critical Reynolds number, Rec, and critical Weissenberg number, Wic, as

a function of the elastic number, El.

an appropriate dimensionless number should be use to combine the effects of viscos-

ity and elasticity, as none of them dominate the flow. Therefore, it is proposed, in a

first test, an alternatively way to combine the viscous and the elastic effects, by using
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the geometric mean time of the viscous and the elastic time scales. In figure 5.8 the

evolution of Nuω is presented as a function of
√
ReWi = γ̇

√
λvλe, where the increase

of the threshold with El is evidenced. In figure 5.9 it is depicted the critical control

parameter,
√
ReWic, as a function of the elastic number, El. The tendency observed

is clear and
√
ReWic increases with El.
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Figure 5.8: Evolution of Nuω for solutions with different El or concentrations of PEO

dissolved in 7% PEG aqueous solution as a function of
√
ReWi.

The dimensionless areas of the hysteresis loop of the curves Nuω(Re), Nuω(Wi)

and Nuω(
√
ReWi), corresponding to figures 5.5, 5.6 and 5.8, respectively, have been

calculated. Their values are shown in table 5.2. Since the hysteresis is a phenomenon

related to the elasticity of the fluid, its area must be quantified using Wi, as it is the

real parameter to count the elasticity effects. Regarding the values in table 5.2, one

can observe that the only case when the values increase monotonously occurs for Wi.

It means that the areas of the hysteresis loop are directly related to the elasticity of the

fluid. On the contrary, the path followed by the Newtonian fluid is reversible presenting

no hysteresis, so the transition is supercritical. Such hysteresis loop has also been found

in numerical simulations by Thomas et al. [96]. Both, in the present experiments and
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Figure 5.9: Critical
√
ReWic as a function of the elastic number, El.

in the simulations, the flame pattern emerges when decelerating or reducing Wi (see

figure 5.4(d) for 80 > Re > 64). The associated torque is shown in figure 5.6 for

53 > Wi > 45 during deceleration and appears as staircases. In the experiments, an

anticlockwise hysteresis loop is observed, where the upper branch corresponds to the

flame pattern. This is because of the delay in the elastic response, with respect to the

viscous one. Part of the energy stored in the inertio-elastic regime by the elastic stresses

is released with some delay during the deceleration, making the level of torque being

higher. However, in the simulations [96], the initial state is a pattern of oscillatory

strips, which remain stable when increasing Wi, and has larger torque than the flame

pattern. Hence, the hysteresis loop predicted from the simulations is in the clockwise

direction, contrary to the experiments.

El 0.06 0.17 0.71-1.09
Area loop Re 1.0 12.4 5.3
Area loop Wi 0.05 2.12 3.62

Area loop
√
ReWi 0.23 5.13 4.43

Table 5.2: Areas of the hysteresis loop of the curves Nuω(Re), Nuω(Wi) and

Nuω(
√
ReWi) of figures 5.5, 5.6 and 5.8, respectively, as a function of El.
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5.3.3 Torque turbulent fluctuations

At high rotation speeds of the inner cylinder, beyond the transition region, the torque

fluctuates significantly, as can be observed in figure 5.10. In order to analyse these

fluctuations, new series of experiments were performed, where the 1000ppm solution

was brought to relatively high shear rates in the inertio-elastic turbulent regime, using

the same acceleration rate employed in the previous experiments. The value of the

rotation speed at which the fluctuations have been analysed is depicted in figure 5.10

as a blue vertical line. This speed was kept constant at γ̇ = 70 1/s, Re = 81, Wi = 58,

during 4200s, and the torque was measured with a sampling frequency of 100 Hz, so

42 000 points were acquired.
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Figure 5.10: Injected power, P , as a function of the shear rate, γ̇, for the solution

containing 1000ppm of PEO dissolved in 7% of PEG. The vertical continuous blue line

indicates the value of the shear rate, γ̇, at which the analysis of the fluctuations has

been done.

In figure 5.19(a) the evolution of the injected power signal, P (t) = T (t) × Ω, as a

function of time, t, is shown. The power decreases during the experiment around 47%

of its initial value. In order to be able to analyse the fluctuations, a deconvolution has

been applied to the power signal. If the signal is the multiplication of an exponential

function, E(t), and a function containing the fluctuation, F (t), as P (t) = E(t)× F (t),

the resulting signal is as, Pc(t) = P (t)/E(t) × P̄ . It is depicted in figure 5.19(b). It

can be observed the presence of multiple frequencies, a typical behaviour of a random

signal.
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Figure 5.11: (a) Evolution of power, P , as a function of time, t for the solution contain-

ing 1000ppm of PEO dissolved in 7% of PEG when the rotation speed is kept constant

at γ̇ = 70 1/s. (b) Deconvolution of the power signal, Pc.

Figure 5.12(a) presents the normalized probability distribution functions (PDF) of

the reduced injected power, (P (t)−〈P 〉)/σp(P ), where 〈P 〉 is its time average and σp(P )

is the standard deviation of the signal P (t). The PDF lays on the Gaussian curve for

values above 3 × 10−2, indicating the absence of intermittence in the torque signal.

Figure 5.12(b) presents the spectral power density (SPD) of the injected power, P (t).

Two regions with different slopes can be identified. For frequencies below f < 5× 10−3

the slope equals -1.5 and for f > 5×10−3 the slope equals -2.3. It means that the energy

transfer at the higher frequencies is faster than for the low frequencies. For polymer

solution in Couette-Taylor flow, radial velocity measurements [92] show a slope of -1.1

at low frequencies and a slope of -2.2 at higher frequencies. Simulations for radial

velocity signal at a particular position in the gap are available [97] finding exponents

from 0.6 to 2.2.
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Figure 5.12: (a) Normalized PDFs of the reduce value of the injected power, (P (t) −
〈P 〉)/σp(P ), of a solution containing 1000 ppm of PEO dissolved in 7% PEG aqueous

solution at steady-state regime for shear rates, γ̇ = 70. The continuous line is a fitting

to the Gaussian function. (b) SPD of the injected power.

5.3.4 Diwhirls

(a) (b) (c) (d) (e) ( f ) (g)

Figure 5.13: Snapshots over the whole height of the flow of solutions containing 1000

ppm of PEO dissolved in 7% PEG aqueous solution . (a) Inertio-elastically turbulent

flow. (b-g) Flows at Wi = 37 containing 1 to 6 diwhirls, from left to right, respectively.

During deceleration, coming back from the inertio-elastic turbulent regime for so-
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lutions of high El, the latest stages of the hysteretic region gives rise to diwhirls [89].

These steady vortices have been found in the form of 1 to 6 pairs and are depicted in

figure 5.13(b-g). The diwhirls are stationary counter-rotating vortices localised in space

with strong inflow. The diwhirl pairs are separated by large laminar zones, that extend

not regularly. They are due to the elastic stresses which tend to relax in the flow. The

number of diwhirls increases with the ramping rate. The faster is the deceleration,

the shorter is the time that the elastic stresses have to relax, so they have less time

to respond to the applied stress. In practice, the numbers of diwhirls is controlled by

the deceleration rate of the inner cylinder as quantified in figure 5.14(a). Using the

constant deceleration of ∆Ω/∆t = 0.1 × ∆γ̇/∆t = −5.2 × 10−3 rad/s2, three diwhirls

are observed (see figure 5.4(d) and figure 5.13(e). When using faster decelerations, the

number of diwhirls increases. An alternative procedure to obtain 1 or 2 diwhirls is to

decrease the speed of the inner cylinder until the diwhirls start to disappear. Once

the desired number of diwhirls is reached, the inner cylinder is accelerated to a speed

that can sustain it. Furthermore, the existence of diwhirls leads to an additional torque

with respect to the laminar torque. It has been measured at a constant speed, Re = 51

or Wi = 37, for several minutes and is represented in figure 5.14(b) as the additional

torque compared to the laminar, T̄ − Tlam, per number of diwhirls, nd, divided by the

laminar torque. Here, the laminar torque, Tlam, is the torque of the flow without any

diwhirl. The increase of this relationship with nd indicates that the additional torque

that each individual diwhirls needs to be sustained depends on the numbers of diwhirls.

This could be also explained relating this increase of torque to the distance between

diwhirls, so the closer they are the more torque they need. The variation of the torque

with the number of diwhirls is given by the following fit,

(T̄ /Tlam − 1)/nd = B + C(nd − 1)ζ, (5.7)

where B represents the momentum transfer per diwhirl in a flow containing one diwhirl.

Note that this is directly related to the energy dissipation rate of this solitary diwhilr

(see (2.52)), as it is equal to T̄ /Tlam−1. The coefficient C measures the influence of the
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number of diwhirls on the additional torque over the laminar. The exponent ζ indicates

how strong is the dependency of the torque on the numbers of diwhirls. Here ζ ≃ 3/5,

B = 1.37× 10−3 and C = 8.4× 10−3.
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Figure 5.14: (a) Dependency of the numbers of diwhirls, nd, on the deceleration of

the inner cylinder, −∆γ̇/∆t. (b) Additional dimensionless torque over the laminar per

number of diwhirls, nd, of flows containing six different numbers of diwhirls at Re = 51

or Wi = 37. The black line represents a fitting described in the text (5.7).

5.4 Non pre-sheared solutions

As observed in figure 5.1, the transition point strongly depends on the pre-shear when

the concentration of polymer increases. So, it is interesting to analyse it in terms of

dimensionless numbers. In this section the results concerning the non pre-sheared fluids

are studied and compared with those of pre-shear fluids.

5.4.1 Torque increase

The variation of the torque with the rotation speed of the inner cylinder is analysed. In

figures 5.15 and 5.16 the evolutions of theNuω as a function ofRe andWi are presented,

respectively, for all the solution without pre-shear. Note that they correspond to the
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dimensional curves shown in figure 5.2. As previously observed, the critical Reynolds

number, Rec, where the torque increases abruptly, decreases for increasing El, and

the critical Weissenberg number, Wic, increases for increasing El. In figure 5.17 it

is depicted the critical Reynolds number, Rec, and the critical Weissenberg number,

Wic, where the torque increases abruptly, as a function of the elastic number, El. If

it is compared with figure 5.7, it is observed that both Rec and Wic are much smaller

for the solutions with El = 0.17 and 0.72. This can be also deduced from figure 5.1.

In figures 5.15 and 5.16, the Nuω(Re) and Nuω(Wi) curves reach a maximum that

increases with El. In the case of Nuω(Re), the maximum is attained with different

slopes, that increase with El. After this maximum, the curves for El = 0.06 and 0.07

present a plateau, what indicates that the torque increases linearly with the rotation

speed of the inner cylinder, so the increase of energy dissipation rate is constant. The

curves with higher El decreases after the maximum. This is due to the degradation

of the solution shown in figure 5.2. In the case of 0.66 < El < 1.09 the solution is

completely degraded at Re = 500. Then, the Nuω is constant, as for El = 0.06 and

0.07. Again, the steps correspond to the change in the number of vortices. The absence

of fluctuations indicates that there is no more elastic effects.

In figure 5.18 it is depicted the evolution of Nuω as a function of
√
ReWi. In

this case, the critical
√
ReWi where the torque increase abruptly does not follow a

monotonous behaviour as for the pre-sheared solutions, as shown in figure 5.8.

5.4.2 Torque turbulent fluctuations

The torque fluctuations observed in figures 5.15 and 5.16) have been quantify, so ex-

periments were performed where the 1000 ppm solution was brought to relatively high

shear rates in the inertio-elastic turbulent regime, without being pre-sheared, and then,

the shear rate was kept constant during 3000 s. The torque was measured with a sam-

pling frequency of 1 Hz. The fluctuations for the applied shear rates γ̇ = 46 and 85

s−1 are 3.1 and 3.2%, respectively. In figures ?? and 5.20 the power signals are shown

as previously done in figure 5.19. Figure 5.21(a) presents the normalized probability
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Figure 5.15: Nuω as a function of Re for solutions with different El or concentrations

of PEO dissolved in 7% PEG aqueous solution for non pre-sheared solutions.
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Figure 5.16: Nuω as a function of Wi for solutions with different El or concentrations

of PEO dissolved in 7% PEG aqueous solution for non pre-sheared solutions.
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Figure 5.17: Critical Reynolds number, Rec, and critical Weissenberg number, Wic, as

a function of the elastic number, El, for non pre-sheared solutions.
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Figure 5.18: Evolution of Nuω for non-presheared solutions with different El or con-

centrations of PEO dissolved in 7% PEG aqueous solution as a function of
√
ReWi.

distribution functions (PDF) of the reduced injected power, (P (t)−〈P 〉)/σp(P ), where

P (t) = T (t)×Ω is the injected power, 〈P 〉 is its time average and σp(P ) is the standard
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deviation of the signal P (t). It can be seen that the two PDFs lay on the same master

curve for PDF values above 3× 10−2. The continuous line is a Gaussian fit to show the

non-Gaussian nature of the PDFs. Figure 5.21(b) presents the spectral power density

(SPD) of the injected power, P (t). Both PSDs vary with a power law and an exponent

of -1.9±0.2.
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Figure 5.19: (a) Evolution of power, P , as a function of time, t for the solution con-

taining 1000ppm of PEO dissolved in 7% of PEG without pre-shear when the rotation

speed is kept constant at γ̇ = 46 1/s. (b) Deconvolution of the power signal, Pc.
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Figure 5.20: (a) Evolution of power, P , as a function of time, t for the solution con-

taining 1000ppm of PEO dissolved in 7% of PEG without pre-shear when the rotation

speed is kept constant at γ̇ = 85 1/s. (b) Deconvolution of the power signal, Pc.
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Figure 5.21: (a) Normalized PDFs of the reduce value of the injected power, (P (t) −
〈P 〉)/σp(P ), of a solution containing 1000 ppm of PEO dissolved in 7% PEG aqueous

solution at steady-state regime for shear rates, γ̇ = 46 and 85 s−1 (Re = 55 and 100,

Wi = 38 and 70). The continuous line is a fitting to the Gaussian function. (b) PSDs

of the injected power. For clarity, the curve for γ̇ = 85 s−1 has been shifted down by a

factor 10−4.
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5.5 Conclusions

The effect of viscoelasticity over a wide range of elastic numbers, El, on Couette-Taylor

flow has been investigated. Using a specific protocol, consisting on a slow acceleration

and deceleration of the inner cylinder, the flow patterns and the corresponding torque

have been analysed. A significant difference is found when the solutions are pre-sheared

after preparation. The degradation of the fluid is analysed, finding that the fluid

degrades mechanically, if high shear rates are applied. Above a certain value of shear

rate, γ̇, the solution loses all its elasticity and behaves as a Newtonian fluid, presenting

the same flow patterns.

The flow patterns of pre-sheared solutions vary with El. Taylor vortices are found

during acceleration for El < 0.1, and its range of stability decreases with El. The

disordered oscillating flow is also found during acceleration for El < 0.1 and its range

of stability also decreases with increasing El. Standing waves are found during de-

celeration, in the case of El = 0.05 (or CPEO=76 ppm) and during acceleration and

deceleration for El = 0.17 (or CPEO=300 ppm). All the fluids present the pattern typi-

cal of inertio-elastic turbulence at high Reynolds numbers, Re. In the case of El ≈ 1 (or

CPEO=1000 ppm) and during deceleration, the inertio-elastic turbulent pattern gives

rise to the flame pattern, that end in three pairs of vortices, also called diwhirls. These

transitions, that were reported before [105, 92, 65], are retrieved and the associated

torque has been measured in more details.

The torque during an acceleration-deceleration cycle of the inner cylinder presents a

hysteresis loop, indicating a subcritical transition. During the acceleration, the torque

increases abruptly at a critical point. The critical Reynolds number, Rec, decreases

with El. The critical Weissenber number Wi, increases with El. The critical points for

the pre-sheared fluids are much larger when El ≥ 0.17. The area of the loops increases

with the elasticity of the solutions, since they are associated to the elastic stresses. The

torque presents large fluctuations at high rotation speed of the inner cylinder, associated

to intertio-elastic turbulence, its amplitude increases with El. At large rotation rates,
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the torque signal fluctuates significantly and its power spectral density scales with the

frequency with an exponent of −1.9±0.2, indicating that it is a inertio-elastic turbulent

flow.

Six different numbers of stationary solitary pair of vortices or diwhilrs have been

found when varying the deceleration rate of the inner cylinder. The faster is the decel-

eration, the larger is the number of diwhirls. This is associated to the response time of

the elastic stresses. The torque that these diwhilrs exert per number of diwhirl increases

with the number of diwhirls present in the flow.
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Conclusions

“Let the future tell the truth and evaluate each one according to his work and accomplishments. The

present is theirs; the future, for which I have really worked, is mine”.

—Nicola Tesla

The experimental researches carried out in the LOMC deal with the fluid confined

between two coaxial differentially rotating cylinders, namely, the Couette-Taylor flow,

particularly, when only the inner cylinder rotates and the outer is fixed. This system

is characterised by the radius ratio, η, which is the ratio between the inner and the

outer radii of the cylinders and the aspect ratio, Γ, which is the ratio between the

height of the cylinders and the gap between them. The investigations have focused

on turbulent flows, those which appear at high Reynolds numbers, Re, i.e., when the

inertial forces dominate the viscous forces. Turbulent flows are characterised by a

high energy dissipation and a high momentum transfer. This kind of flow are of great

scientific and technological interest, since they appear in several natural and industrial

processes.

In the last decade there has been a large interest in turbulent Couette-Taylor flows

among the scientific community, after Eckhardt, Grossmann and Lohse [44] proposed

an unifying theory that makes the analogy with Rayleigh-Bénard convection, the flow

between two parallel differentially heated plates. They demonstrated that the equa-

tions that describe the evolution of the momentum transfer in Couette-Taylor flow are

analogous to the equations of Rayleigh-Bénard convection. In Couette-Taylor flow, the

momentum transfer is characterised by the pseudo-Nusselt number, Nuω, and by the

centrifugal driving force, represented by the Taylor number, Ta, which is proportional to

Re2. In Rayleigh-Bénard convection, the heat transfer is described by the Nusselt num-
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ber, Nu, and by the driving force (the Archimede buoyancy force), represented by the

Rayleigh number, Ra, which is proportional to the temperature difference between the

plates. Both systems have similar scaling of the momentum and heat transfer with their

corresponding driving force in the turbulent regime. This scaling laws have exponents

which should be the exactly the same. The power law relationship in Couette-Taylor

flow between is written as Nuω ∝ TaξTC , and the power law relationship in Rayleigh-

Bénard convection is written as Nu ∝ RaξRB , so it is expected that ξTC ≈ ξRB. This

theory also allows to calculate the energy dissipation rates by exactly the same equa-

tions. In the case of Couette-Taylor flow the dimensionless energy dissipation rate

is given by ε̂TC = Ta/σ2(Nuω − 1) and in Rayleigh-Bénard convection is given by

ε̂RB = Ra/Pr2(Nu− 1). The pseudo-Prandtl number, σ, in Couette-Taylor flow is the

analogous of the Prandtl number, Pr, in Rayleigh-Bénard convection. The momen-

tum transfer and the energy dissipation rate can be easily quantified by measuring the

torque exerted by the flow in the inner cylinder.

The main goal of this thesis has been to analyse several parameters that influence the

momentum transfer and energy dissipation by acquiring accurate torque measurements.

We got interested in the effect of the variation of the number of vortices present in a

turbulent flow and the influence of the radius ratio, η, in the momentum transfer, Nuω.

Three systems with different η have been studied. The torque measurements reveal

that flows with different numbers of vortices exert distinct levels of torque, giving

rise to distinct Nuω(Re) curves. Consequently, the momentum transfer and energy

dissipation rate change from one state to another. Crossings of the Nuω(Re) curves

are observed, a feature related to the transition to the so-called “ultimate regime of

turbulence”, a regime attained when the boundary layers become turbulent, in analogy

with the Rayleigh-Bénard convection. Before the crossings, flows with larger number of

vortices exert higher levels of torque. After the crossings, flows with larger number of

vortices exert lower levels of torque. This is related to the change of momentum transfer

mechanism in the ultimate regime of turbulence, in which the turbulent boundary layers

predominates over the vortices. The variation of the exponent ξ = (α − 1)/2 with the

driving force Ta ∝ Re2 has been studied. The scaling laws of the torque shows that
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flows with smaller number of vortices have larger exponents, α. This indicates that

the level of turbulence increases when decreasing the number of vortices. It is found

that the pre-factor, A, becomes constant in the ultimate regime, another indication of

the change of momentum transfer mechanism in this regime. Finally, we have observed

that the radius ratio, η, and the aspect ratio, Γ, modify the threshold of the transition

to the ultimate regime of turbulence.

The other goal of this thesis has been to analyse the effect of viscoelasticity in

the energy dissipation of Couette-Taylor flow with aqueous solutions of poly(ethylene

oxyde) (PEO). Viscoelastic solutions have been studied in a wide range of elastic num-

bers, El, which is the ratio between Re and the Weissenberg number, Wi. Using a

protocol consisting on a acceleration and deceleration of the inner cylinder, the flow

patterns and the corresponding torque have been analysed. Distinct patterns have

been observed in solutions with different concentrations of PEO. A variation of the

critical Reynolds number, Rec, and the critical Weissenber number, Wic, is found, cor-

responding to an abrupt increase of the torque, at different El. Hysteresis loops in

the Nuω(Re) and Nuω(Wi) curves have been observed for increasing with El. When

using solutions whose El is close to one, different number of stationary solitary pair of

vortices, called diwhirls, have been found when decelerating the inner cylinder, starting

from the inertio-elastic turbulent regime. Their energy dissipation rate have been quan-

tified. The analysis of the torque signal fluctuations at high shear rates, γ̇, indicates

the presence of intertio-elastic turbulence in the flow.

This project has allowed me to acquire a wide knowledge about torque measurements

in several Couette-Taylor systems. The torque have been measured in three different

systems with distinct radius ratios using a rheometer. Additionally, the collaboration

with the Department of Aerodynamics and Fluid Mechanics in the Technical Univer-

sity of Cottbus-Senftenber, in Germany, has allowed me to operate a different type of

Couette-Taylor system, which uses strain gauges as a torque measurement system. Flow

visualisations have also been performed using different types of laboratory instruments

(high speed cameras, white lights, lasers). The image treatment and the creation of
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spatio-temporal diagrams have been done using specific programs or codes that have

been developed in the laboratory. The rheological properties of the fluids have been

analysed. Several measuring apparatuses, such us a density-meter, viscosimeters, a ten-

siometer, a shear rheometer, or a Capillary Breakup Extensional Rheometer (CaBER),

have been employed to quantify the density, the viscosity, the relaxation time or the

surface tension of the tested fluids. In the case of the shear rheometer, various con-

figurations have been employed, like cone and plate geometries with different angles

or cup and bob geometries. In the case of the extensional rheometry, I have learnt

how to master this robust measurement technique to obtain the relaxation times to

characterise the viscoelastic fluids.

Finally, the collaboration between the laboratory in Le Havre and the one in Cot-

tbus has resulted in a three-month research project founded by the European High

performance Infrastructures in Turbulence (EuHIT) program. This European project

has allowed me to broaden further my research experience in a different institute and

in a different country. The experience has been fruitful, thanks to the possibility of the

exchange of ideas and work methods.
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Résumé

Les travaux de recherche menés au cours de la thèse au LOMC concernent l’écoulement

de Couette-Taylor dans l’entrefer de deux cylindres coaxiaux lorsque le cylindre intérieur

tourne et l’extérieur est fixé. Ce système est caractérisé par le rapport des rayons ,η,

du cylindre intérieur et du cylindre extérieur, et le rapport d’aspect, Γ, entre la hauteur

des cylindres et la taille de l’entrefer. Les recherches se sont centrées sur les écoulements

turbulents, qui apparaissent à des grandes valeurs du nombre de Reynolds, Re, c’est-

à-dire, quand les forces inertielles dominent les forces visqueuses. Les écoulements

turbulents sont caractérisés par une forte dissipation d’énergie et un grand transfert de

quantité de mouvement. Les écoulements turbulents revêtent un grand intérêt scien-

tifique et technologique car ils apparaissent dans beaucoup de phénomènes naturels et

de processus industriels.

Durant la dernière décennie, les écoulements turbulents de Couette-Taylor ont at-

tiré une forte attention de la communauté scientifique grâce à la théorie unificatrice

proposée par Eckhardt, Grossman et Lohse, qui fait l’analogie avec la convection de

Rayleigh-Bénard entre deux plaques horizontales parallèles maintenues à différentes

températures. Ils ont montré que les équations qui décrivent l’évolution du transfert de

la quantité de mouvement entre les deux cylindres dans l’écoulement de Couette-Taylor

sont analogues à celles qui décrivent le transfert de chaleur entre les deux plaques dans

la convection de Rayleigh-Bénard. Dans l’écoulement de Couette-Taylor, le transfert de

quantité de mouvement est caractérisé par le pseudo-nombre de Nusselt, dénoté Nuω,

et par la force motrice centrifuge, représentée par le nombre de Taylor, Ta, proportion-

nel au carré de la vitesse de rotation du cylindre et la courbure. Dans la convection

de Rayleigh-Bénard, le transfert de chaleur est décrit par le nombre de Nusselt, Nu,

et par la force motrice (poussée d’Archimède), qui est représentée par le nombre de

Rayleigh, Ra proportionnel à la différence de température entre les plaques. Les deux

systèmes ont des lois d’échelle similaires du transfert de quantité de mouvement et de
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chaleur, par rapport à leurs forces motrices. Ces lois s’expriment sous forme de lois de

puissance avec des exposants qui devraient être identiques. La loi de puissance dans

l’écoulement de Couette-Taylor s’écrit comme Nuω ∝ TaξTC , et la loi de puissance

dans la convection de Rayleigh-Bénard s’écrit comme Nu ∝ RaξRB et on s’attend à ce

que ξTC ≈ ξRB. Cette théorie permet aussi de décrire le taux de dissipation d’énergie

avec exactement les mêmes équations. Le taux de dissipation d’énergie adimension-

nel est donné par ε̂TC = Ta/σ2(Nuω − 1) dans l’écoulement de Couette-Taylor et par

ε̂R−B = Ra/Pr2(Nu−1) dans la convection de Rayleigh-Bénard. Le pseudo-nombre de

Prandtl, σ, dans l’écoulement de Couette-Taylor est analogue au nombre de Prandtl,

Pr, dans la convection de Rayleigh-Bénard. Le transfert de quantité de mouvement et le

taux de dissipation d’énergie dans le système de Couette-Taylor peuvent être facilement

quantifiés, par la mesure du couple que l’écoulement applique sur le cylindre intérieur.

L’objectif principal de la thèse a été l’étude exprimentale de l’influence de cer-

tains paramètres sur le transfert de la quantité de mouvement et sur la dissipation

d’énergie. Cette étude a été réalisée par l’acquisition de mesures précises du couple.

Nous nous sommes intéressés à l’influence de la variation du nombre de rouleaux et

du rapport des rayons, η, sur le transfert de quantité de mouvement, Nuω. Trois

systèmes avec différentes valeurs de η ont été étudiés. Les mesures du couple ont révélé

que les écoulements avec différents nombres de tourbillons exercent un niveau de cou-

ple différent et donc donnent lieu à des courbes distinctes Nuω(Re). Par conséquent,

le transfert de quantité de mouvement et le taux de dissipation d’énergie changent

d’un état à un autre. Des croisements des courbes Nuω(Re) sont observés, une car-

actéristique liée à la transition vers le “régime ultime de la turbulence”, un régime

atteint quand les couches limites deviennent turbulentes, par analogie à la convection

de Rayleigh-Bénard. Avant chaque croisement, les écoulements avec un nombre plus

grand de rouleaux exercent un couple plus grand que ceux avec un petit nombre de

rouleaux. Après chaque croisement, la situation s’inverse. Ceci est relié au change-

ment du mécanisme du transfert de quantité de mouvement dans le régime ultime de

la turbulence, où la turbulence dans les couches limites domine sur la dynamique des

tourbillons. La variation de l’exposant ξ = (α − 1)/2 avec la métrique Ta de la force
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motrice a été analysée. La loi d’échelle du couple montre que les écoulements avec un

nombre de rouleaux plus petit ont un exposant α plus grand. Cela signifie que le niveau

de turbulence augmente quand le nombre de tourbillons diminue. Le pré-facteur, A de

la loi de puissance, devient constant dans le régime ultime de la turbulence, une autre

signature du changement du mécanisme du transfert de la quantité de mouvement dans

ce régime. Nous avons observé aussi que le rapport des rayons, η, et le rapport d’aspect,

Γ, modifient le seuil de la transition vers le régime ultime de la turbulence.

L’autre objectif de cette thèse a été d’étudier l’effet de la viscoélasticité des solu-

tions aqueuses de polyoxyéthylène (PEO) sur la dissipation d’énergie des écoulements

de Couette-Taylor. On a étudié des solutions viscoélastiques ave une grande plage de

nombres élastiques, El, rapport entre Re et le nombre de Weissenberg, Wi. En util-

isant un protocole d’accélération et de décélération de la vitesse de rotation du cylindre

intérieur, les motifs qui apparaissent dans l’écoulement et le couple associé ont été

analysés. Différents motifs ont été observés dans des solutions avec différentes concen-

trations de PEO. Une variation du nombre de Reynolds critique, Rec, et du nombre

de Weissenberg critique, Wic, a été établie, correspondant à une augmentation abrupte

du couple, pour différentes valeurs de El. Des boucles d’hystérésis dans les courbes

Nuω(Re) et Nuω(Wi) ont été observées quand El augmente. Dans des solutions dont

les valeurs de El sont voisines de 1, des paires solitaires de vortex stationnaires appelés

diwhirls, ont été mises en évidence, lors de la décélération du cylindre intérieur, à partir

du régime de turbulence viscoélastique. Leur taux de dissipation d’énergie a été mesurée

et elle est significative. L’analyse du signal des fluctuations du couple pour des grandes

valeurs du taux de cisaillement, γ̇, indique la présence de turbulence inertio-élastique

dans l’écoulement.

Ce projet m’a permis d’acquérir une connaissance profonde sur la mesure du couple

sur nombreux systèmes de Coutte-Taylor. Le couple a été mesuré sur trois systèmes

avec des différents rapports des rayons en utilisant le rhéomètre. La collaboration avec le

Département d’Aérodynamique et Mécanique des Fluides de l’Université Technique de

Cottbus-Senftenberg, en Allemagne, m’a permis de manipuler un système de Couette-
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Taylor différent, lequel utilise de jauges de déformation comme méthode de mesure

du couple. Des visualisations de l’écoulement ont été réalisées en utilisant différents

outils de laboratoire (caméras de haute vitesse, sources de lumière blanches, lasers).

Le traitement des images et la construction des diagrammes spatio-tempoels ont été

réaliés avec des programmes spécifiques ou bien avec des programmes développés au sein

du laboratoire. Les propriétés rhéologiques des fluides ont été mesurées avec plusieurs

appareils de mesures, comme le densimètre, le viscosimètre, le rhéomètre de cisaillement

ou le rhéomètre extensionnel (CaBER), le tensiomètre. Dans les cas du rhéomètre de

cisaillement, nombreuses géométries ont été utilisées, comme des géométries de conne

et plan avec de plusieurs angles ou des géomtries de cup et bob. Dans le cas de la

rhéométrie extensionnel, j’ai appris à maitriser cette technique de mesure robuste pour

obtenir les temps de relaxation caractéristiques des fluides viscoélastiques.

Finalement, la collaboration entre le laboratoire du Havre et celui de Cottbus a

donné lieu à un projet de recherche de trois mois financé par le programme European

High performance Infrastrucures in Turbulence (EuHIT). Ce programme européen m’a

permis d’agrandir mes expériences de recherche dans un laboratoire différent et dans

un pays différent. L’expèrience a été fructueuse, grâce à la possibilité d’échange des

idées et de méthodes de travail.
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Voy a parar en el camino

y en lo que dura un cigarrito

voy a pensar en estos años,

todo lo que ha pasado.

En el cajón de la memoria

guardo trocitos de la historia,

las páginas que ya han pasado

de un libro inacabado.

Platero y tú, “Cigarrito”.
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Résumé
L’écoulement entre deux cylindres coaxiaux, appelé l’écoulement de Couette-Taylor, a été

étudié lorsque le cylindre intérieur tourne. Quatre dispositifs ont été utilisés avec différentes

tailles dentrefer. Les visualisations montrent l’évolution des motifs avec le nombre de Reynolds,

Re. La variation du couple sur le cylindre intérieur a été détermine en utilisant le pseudo-nombre

de Nusselt, qui est une mesure du taux de dissipation d’énergie.

Pour des faibles valeurs de Re, l’écoulement est laminaire et azimutal, et le couple est

proportionnel à Re. Au-delà d’une valeur critique de Re, les rouleaux de Taylor apparaissent

et la pente de variation du couple change brutalement. Pour de grandes valeurs de Re, les

rouleaux deviennent turbulents et la pente du couple augmente à cause de la dissipation d’énergie

turbulente. Le couple a été mesuré jusqu’à Re=45.000 et montre une dépendance avec le rapport

de rayons des cylindres et du nombre de vortex. Avant le régime ultime de la turbulence, les

états avec plus de rouleaux présentent un couple plus grand et la situation est inversée dans le

régime ultime.

Une étude du couple agissant sur le cylindre intérieur a été menée en présence d’un liquide

viscoélastique contenant des polymères de grande masse molaire. En appliquant des cycles

d’accélération-décélération de la rotation du cylindre intérieur, le couple présente une boucle

d’hystérèse dont l’aire augmente avec la concentration de polymère. Les statistiques des fluc-

tuations de la turbulence élastique ont été analysées. Le couple exercé par les vortex solitaires

obtenus lors de la phase de décélération, avant la relaminarisation complète de l’écoulement, a

été étudié.

Mots clés : Écoulement de Couette-Taylor, Couple, Transfer de quantité de mouvement,

rouleaux, turbulence, Dissipation, Viscoélasticité.

Abstract
The flow between two concentric cylinders, i.e., the Couette-Taylor flow, has been investi-

gated when only the inner cylinder rotates. Four set-ups have been employed with 4 values

of the radius ratio. Flow visualisations have been performed to analyse the evolution of the

flow patterns with the Reynolds number, Re. The variation of the torque acting on the inner

cylinder with different parameters has been quantified using the pseudo-Nusselt number, which

measures the rate of energy dissipation in the flow.

At low Re, the flow is laminar and azimuthal, and the torque is proportional to Re. Above

a critical value of Re, Taylor vortices emerge in the flow and the slope of the torque changes

drastically. At high values of Re, the vortices become turbulent and the increase rate of torque

is enhanced due to the energy dissipation of turbulence. The torque measured up to Re=45 000

depends on the radius ratio of the cylinders and on the number of vortices. Below the ultimate

regime of turbulence, flows containing larger number of vortices exert larger levels of torque;

above it, flows containing larger number of vortices exert lower levels of torque.

A specific study of the torque exerted on the inner cylinder has been carried out with

viscoelastic fluids made of large-weight-molecule polymers. If acceleration-deceleration cycles

of the rotation of the inner cylinder are applied, the torque exhibits a hysteretic loop, which

increases with the polymer concentration. The statistics of the elastic turbulence fluctuations

have been analysed. A special focus was made on the torque induced by the solitary vortices

obtained in the deceleration phase, before the flow relaminarisation.

Keywords : Couette-Taylor flow, Torque, Momentum transfer, Vortex, Turbulence, Dissipa-

tion, Viscoelasticity.
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