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1.1 Working context

The PhD was funded by Carl Zeiss Meditec AG, a subsidiary of Carl Zeiss AG.
ZEISS is world renowned for manufacturing high quality optical systems, industrial
measurements and medical devices. Figure 1.1 illustrates manufactured medical
devices for neurosurgery, eye-surgery, gynaecology, or oncology. Amongst the many
devices, surgical microscopes are of interest as used as part of the clinical routine
in many hospitals throughout the world.

- T - -
. i ' /4

Figure 1.1: Products of Carl Zeiss Meditec AG.
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The work reported by this thesis took place within the Medicis team (Model-
ing surgical knowledge and processes, https://medicis.univ-rennesl.fr/), be-
longing to the UMR 1099-LTSI (http://www.ltsi.univ-rennesl.fr/), INSERM
(National institute of health and scientific research, http://www.inserm.fr), and
University of Rennes 1 (http://www.univ-rennesl.fr).

Medicis team research activities relate to the development of information process-
ing algorithms and Computer-Assisted Surgery (CAS) systems in the neurosurgical
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medical context, for a better understanding of brain-related diseases and the con-
ception of the Operating Room (OR) of the future. Two main thematics emerge
regarding the creation of surgical assistance systems and knowledge-based procedu-
ral models.

Oriiclogy-based daba shanng far translaliorsal iessanch
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Figure 1.2: Research work examples pursued by the Medicis team (from the team
website). Top row highlights the first thematic, second row represents the second
thematic.

The first thematic refers to numerical approaches for building surgical knowledge
and process model based on data fusion. Data fusion is the process of extracting
and integrating relevant information from different sources of data to help the
decision-making process. The data fusion challenge can be addressed from two
aspects of patient data.

First, data representing planned surgical or interventional procedures. Secondly,
data representing the patient himself through multimodal images and clinical
scores. Registration of different views of the same phenomenon (i.e. of the same
patient) is used to build specific models, whereas generic models are created through
registration of data and information coming from a homogeneous population (i.e.
different but similar patients).

The long-term objective is to develop methods able to generate predictive patient
outcome models, generate surgical procedure models from patient-specific models,
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compare surgical practice between surgeons with different expertise levels or from
different surgical centers. For instance, in case of Deep Brain Stimulation (DBS)
used to treat Parkinson disease, predicting patient motor improvement and clinical
side-effects is highly valuable. Similarly, predicting the sequence of surgical steps
and options in case of cervical spinal surgery (e.g. Anterior Cervical Discectomy
and Fusion (ACDF)) is studied.

The second thematic focuses on ontological approaches for symbolic models.
A common conceptualization for manipulated entities (e.g. anatomical structures,
their specific role, surgical instruments) allows to articulate generic and specific
models. This is crucial in the surgical and interventional decision making process.
Symbolic knowledge modeling allows to express a consensus about a vocabulary
and shared semantics, to exploit a formal representation in various contexts, and
to express the knowledge in such a way it can be processed by both humans and
automated systems.

Two major yet different topics are being studied, relying on ontology and other
semantic web technologies. First, research to build a suitable architecture to share
images and processing tools, more specifically in the neurosurgical context. Sec-
ondly, research on semantic annotation of brain anatomical structures in Magnetic
Resonance Imaging (MRI) images, in order to demonstrate how ontologies can be
used as knowledge source supporting knowledge-based image annotation software.

1.2 Scientific and medical context

Despite modern-life technological advances and tremendous progress made in
surgical techniques including Minimally Invasive Surgery (MIS), today’s OR is
facing many challenges remaining yet to be addressed. In 2004, a workshop entitled
"OR2020: Operating Room of the Future" gathered a hundred of experts including
physicians, engineers, and medical staff around a complex topic: identifying existing
OR challenges in order to define the general characteristics and integrated systems
of the OR of the future |Cleary 2004].

Nowadays, patient safety in the OR remains a sizable issue as preventable medical
errors occur frequently enough to cost tens of thousands of human lives per year in
the USA only [Kohn 2000]. Surgeons, equally to any human being, are prone to
making errors. Reducing the amount of errors can be provided by capable surgical
systems able to at least perform intelligent patient monitor and at best understand
the surgical workflow to prevent error making.

From the expected population growth, notably for the senior age group, a significant
increase in demands for surgical services will arise. An actual alarming observation
is however conflicting with the aforementioned estimation: there are personnel
shortages in almost every component of the medical array from nurses, to surgeons
or technicians. Two ways exist to cope with high demand and low supply situations:
either medical staff training time are shorten in order provide operative medical
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personnel as soon as possible, or the work-load of the remaining personnel is
increased. Pursuing the objective to ensure the best patient outcome possible, none
of them are correctly addressing the issue as less-qualified or overworked personnel
are both patient endangering factors. Strategies need to be developed to meet this
expanding workload while maintaining the best patient outcome possible.

Better OR management is also a major concern as being the most cost-intensive
sector in the hospital.
identification of inefficient, ineffective, and redundant procedures for scheduling and
supply management is of particular concern. More-efficient allocations of medical

The optimization of workflow processes through the

resources is one response to the expanding workload problem while increasing
patient outcome either by having rested medical staff or having enough medical
devices available for each and every surgical procedure.

While some medical devices are already integrated with computer technology such
as patient monitors, surgical robots and imaging equipment, they usually are
not fully incorporated with clinical management and operational systems. Using
advanced technology seamlessly integrated into the OR should provide better
patient care.

Designing such OR of the future should provide a safer, smarter, time-efficient,
and affordable medical care. Many challenges can be partly addressed through the
development and integration of well-thought health-care specific systems

Digital Operating Room (DOR) Maturity Levels
Evolutionary Growth Path, (2005-2025++)

Functionalities/

System Features
1 —
||]|:> + Surgical cockpit systems
+ Model Based Medical
Evidence (MBME)
“Knowledge and decision + RT accessto P2P
II:":> management, surgical processrepos.

+ Hospital/erterprisewide + Intelligent RT datamining
interoperability. + Full voice/gesture control
+ DOR processredesignwith » Clinical quantitative and + Medical TIMMS architect.

- HD video and digital
image acquisition

+ Boom-mounted devices

+ Automaticreporting

+ Integrated device cortrol

- Pre-opimage integration

- Basic DICOM in Surgery
- 10 image acquisition

+ Navigated Confrol

+ Modelling and simulation
+ Intelligentcamera

+ Deviceinterface harmon.

EMRand signal integration
+ WF management (engine)
incl. device/room control
+ Full DICOM in Surgery
+ Basic IHE integration
profiles for surgery
+ Smart walls incl. nD visual.
+ Basic model guided interv.
+ SIPRunctional.. hamon

statistical assessment,
+IHE integration profiles
for surgery and intervent.
+ Patient specificmodels
« Surgical solution systems
and services

+ RT CAD integration

+ Intelligent (situation
aware) robotic devices

+ Surgical (flight) recorder

Time Perioas

2005+: Maturity level 1 2010+: Maturity level 2 2015+: Maturity level 3 2020+: Maturity level 4 2025++: Maturity level 5

DOR vendor specific DOR peri-operative DOR intra-operative DOR vendor independent DOR intelligent infrastructure
integration processes optimisation process optimisation integration and processes

Figure 1.3: Digital operating room maturity levels (according to H.Lemke).
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Redesigning healthcare infrastructures towards the integration of such systems
is left facing the challenge to handle the complexity of the OR technology. Through
the proliferation of diverse array of medical devices and information technology in
today’s OR, technical and organizational issues arise regarding inter-operability
standards. Heinz Lemke' detailed expected OR maturity levels (illustrated
figure 1.3) towards the achievement of full digital integration and efficient use
of technology within the OR. Fully integrated operating rooms have already
emerged, such as the OR1? enabling efficient operation, simple data recording, and
unhindered data exchange within and without the OR.

As described by the fifth and last maturity level, the final objective is to fuse
intelligent infrastructures and processes into a surgical cockpit system. Similarly
to an airplane cockpit system, this system would be able to monitor in real-time
everything happening in the OR and store all the information into black-box
like devices. Medical errors could then be analyzed in retrospect and prevented
through better digital OR designs. Per-operatively, such systems could centralize
and display information coming from every sensor used in the OR, but could also
assist the surgeon through robotic tasks or provide procedural advice thanks to
its context-awareness. Warnings could be sent to the surgeon or the medical team
when the system considers that the surgical procedure is going off-course. Having
an easy and standardized access to data from all medical devices is the first core
element for OR systems. To that end, the handling, transmitting, storing and
creation of information in medical imaging has been standardized into the DICOM
standard, which stands for Digital Imaging and COmmunications in Medecine.
DICOM has been widely adopted by hospitals and enables the integration of
scanners, servers, workstations, printers, and network hardware into a Picture
Archiving and Communication System (PACS). Aside from medical data access
and exchange, the second core element for surgical cockpit systems lies in the
context-awareness, in other terms the capacity to process, analyze and understand
in real-time everything happening in the OR. For the system to be able to discern
if the surgical procedure is following its course accordingly or not, a typical
road-map for the procedure should be provided. To that end, the Surgical Process
Modeling (SPM) methology has been introduced in order to model and analyze
the surgical practice through a standard terminology |Lalys 2014]. The term
Surgical Process (SP) has been defined as "a set of one or more linked activities
that collectively realize a surgical objective within the context of an organizational
structure" [Neumuth 2007]. A SPM has been defined as "a simplified pattern of an
SP that reflects a predefined subset of interest of the SP in a formal or semi-formal
representation” [Neumuth 2007]. The formalization of terms employed to describe
a SP is usually coming from expert consensus and represented in the form of on-
tologies [Gibaud 2014]. Generic surgical procedure models (gSPMs) can be learned
from a collection of SP through data-mining and learning techniques in order to

1ht‘cp: //news.iscas.co/interoperability-standards-for-medical-device-integration-in-the-or-and-issues
’https://wuw.karlstorz.com/de/en/karl- storz-ori.htm


http://news.iscas.co/interoperability-standards-for-medical-device-integration-in-the-or-and-issues-relating-to-international-approval-procedures
https://www.karlstorz.com/de/en/karl-storz-or1.htm
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represent, all possible transitions within SPs. The SPM methodology is organized
around the concept of granularity levels, defining the level of abstraction at which
the surgical procedure can be described. As proposed by Lalys et al. [Lalys 2014],
the highest granularity level corresponds to the procedure itself. The procedure is
composed of a list of phases defining the major types of events occurring during
surgery. Each phase can be further subdivided into several steps representing a
sequence of activities used to achieve a surgical objective. An activity represents
a physical task and is commonly and minimally defined with a triple: an action
verb, a surgical tool, and an anatomical structure. Eventually, the activity can be
represented as a list of motions representing a surgical task involving only one hand
trajectory without any semantics, being the lowest granularity level.

The emergence of CAS systems represents a glimpse of what may be ahead
with surgical cockpit systems. Pre-operatively, they provide an access to patient-
specific information through multi-modality images, enabling the preparation
and simulation of a surgical scenario. During surgery, pre-operative data are
registered in real-time and displayed on visualization interfaces to assist the
surgeon in his decision-making process. They can also be aware of the current
surgical situation in order to detect risk situations and adapt assistance accord-
ingly [Sudra 2007, Kati¢ 2014]. Post-operatively, CAS systems can be used for
surgical procedure analysis, either for surgeon training, or for surgical practice
comparison [Forestier 2013].

While the first generation of CAS systems mainly focused on providing the
surgeon with access to medical information, new generations of Context-Aware
Computer-Assisted Intervention (CACATI) systems integrate the SPM methodology
for real-time understanding of surgical procedures. Omne important deadlock is
the ability to detect in real-time what is happening in the OR and to match the
result of this detection with the surgical knowledge formalized into the SPM in
order to produce an estimation regarding the current position along the surgical
workflow. Sensor-based approaches have been increasingly adopted to acquire
relevant information about surgery at a low-granularity level without disturbing
the flow of the intervention. In order to identify surgical activities, many image-
based analysis approaches have been investigated |Lalys 2013]. Among the three
elements minimally representing a surgical activity, performing the detection of the
anatomical structure is the less discriminating one. However, being able to detect
surgical tools will enable to fill the other two elements: the tool class, and the
action verb corresponding to a semantic formalism of the trajectory described by a
tool. As such, surgical tool detection is a key solution to help activity recognition.

1.3 Manuscript organization

The manuscript is organized in three main parts. The first one, from which this in-
troduction is part of, aims to heighten reader awareness on the research topic tackled
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in this work as long as provide a deeper understanding on automatic image-based
surgical instrument detection through an extended review of the literature. The sec-
ond part of the manuscript presents the contributions from this work, through an
in-depth description of the exploited data, a deep explanation of proposed surgical
tool detectors and an exhaustive presentation of the validation methodology as long
as the corresponding results obtained. The last part of the manuscript introduces
perspective work towards a robust integration of surgical instrument detection into
real-time in-vivo medical applications, while presenting some preliminary qualita-
tive results on phantom data. A global discussion and conclusion over the addressed
topics are provided to wrap-up the manuscript.
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2.1 Introduction

As presented in the previous chapter, the operating theater has been undergoing
significant transformations over the past years. Operating rooms have evolved into
highly complex and technologically rich environments with the incorporation of
many sensors or medical devices. Computer technologies are now essential and
increasingly used throughout the course of surgical interventions to process the im-
portant load of information.

Automatic understanding of surgical procedures represents the core issue for many
per-operative surgeon guidance and assistance systems, or post-operative systems
for example performing surgical videos fast browsing [Lalys 2013|. At the heart of
CACALI systems, leveraging videos acquired from various OR sensors with computer
technologies presents a strong challenge. Surgeon gestures describing the best a
surgery itself, accurate detection of surgical tools throughout surgical procedures,
combined with the surgical knowledge from the SPM methodology, is a key element
necessary for CACAI systems.

The term of computer wvision is employed to cover this technological field where
numerical or symbolic information are produced in the form of decisions from pro-
cessing, analyzing and understanding images. Detecting surgical tools in videos is
bound to the wide topic of object detection. Related to both computer vision and
image processing fields, it deals with detecting instances of semantic objects such
as humans, buildings, or faces in digital images and videos. It encompasses object
localization retrieving positions in the image, image segmentation for object classes
without clear structures, and object categorization assigning the right label to each
identified object instance.
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To help create models of such object classes, supervised learning is often used, be-
ing a machine learning task of inferring a function from labeled training data (i.e.
examples). Each training data is a pair consisting of an input object typically repre-
sented as a vector and a desired output value also called the supervisory signal. The
algorithm analyzes the training data and produces an inferred function, which can
be used for mapping new examples. An optimal scenario will allow for the algorithm
to correctly determine class labels for unseen instances. This requires the learning
algorithm to generalize from the training data to unseen situations in a "reasonable"
way.

Before entering operating rooms, the object detection topic has been widely ad-
dressed for applications in many areas including video surveillance, robotics, and
automated car driving. As such, instead of directly diving into surgical tool detec-
tion, we start by investigating one of the most covered object detection instance:
pedestrian detection (section 2.2). Then, we propose a methodological review of
the literature focusing on surgical tool detection (section 2.3). To end this chap-
ter, we discuss about both object detection instances in section 2.4 and conclude in
section 2.5.

2.2 Objects detection in computer vision: pedestrian de-
tection instance

Computer vision algorithms have been used to tackle many different challenging ob-
ject detection issues. Amongst them, the pedestrian detection represents a canon-
ical instance because of its many possible applications in car safety, surveillance,
or robotics. Strong of more than 10 years of extensive studies, it is a well defined
problem with established benchmarks and validation methodologies, and has served
as a playground to explore different ideas for object detection. As such, we propose
to scan the literature on pedestrian detection, which will later serve as a baseline
for the surgical tool detection task.

We do not intend to perform an in-depth exhaustive review of the literature on this
topic, but rather try to highlight the most important points. Information have been
gathered from three main review papers on the subject |Dollar 2009b, Dollar 2011,
Benenson 2014] and we encourage the reader to refer to those papers for more in-
formation on cited algorithms.

Any pedestrian detector is build around a specific detection strategy and has been
validated over a specific data-set following a specific methodology. In order to un-
derstand and analyze pedestrian detector performance, a detailed identification and
description of those three elementary bricks is paramount. The remainder of the
section is organized accordingly, starting by a presentation of existing validation
data-sets in section 2.2.1, then introducing detection methods in section 2.2.2, and
finally describing validation methodologies in section 2.2.3.
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2.2.1 Validation data-sets

Many public pedestrian validation data-sets have been published over the years;
each time adding challenge and improving precision in results thanks to fine-grain
annotations, hence being catalysts for progress. In order to understand their main
characteristics, a detailed presentation of only some of the most commonly used,
or most known data-sets, is performed. An overview of the considered data-sets
is shown table 2.1, and illustrations from the Caltech-USA data-set! are reported
figure 2.1.

Data-sets containing cropped pedestrian window only are known as ’classification’
data-sets. They are primarily used for train/test binary classification scenarios (see
upper part of the table). On the other hand, data-sets containing pedestrians in
their original full images are known as ’'detection’ data-sets. They allow for the
design and testing of full-image detection schemes (see bottom part of the table).
Below, data-sets are presented and compared based on the data collection strategy
(in section 2.2.1.1) and the data annotation strategy (in section 2.2.1.2).

Figure 2.1: Caltech-USA data-set examples. Annotations: green bounding boxes
for full pedestrians and dotted yellow bounding boxes for visible pedestrian parts.

2.2.1.1 Data collection

The data collection describes data acquisition strategies of raw video materials and
their transformation into final benchmark data-sets. Each data-set can be further
described by its quantified size (i.e. amount of data), by extended object location,

"http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
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Table 2.1: Non-exhaustive list of existing validation data-sets for the pedestrian

detection task.

Imaging setup Training set Testing set Annotations Properties
s |
3 s z g z T E Z sl |
S 2 3 80 2 80 & 3 ° it <)
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$ $+ 3 * $+ i3 S| B 5
B lo
MIT [Papageorgiou 2000] v - - - 924 -
Daimler-CB [Geiger 2012] (4 15k - 10k 2.4k 1.6k
NICTA [Overett 2008] v - 5.2k - 50k 18.7k 6.9k
INRIA [Dalal 2005] (4 614 1218 453 566 1208 566
ETH [Ess 2009a] v 499 - 1804 - 2388 12k
TUD-Brussels [Wojek 2009] v 1092 218 508 - 1776 1498
Daimler-DB [Enzweiler 2009] (4 - 6.7k 21.8k - 15.6k 56.5k (4 (4
Caltech-USA [Dollar 2009b] (4 67k 61k 65k 56k 192k 155k (4 v v

scale, or shape statistics, or by content-specific properties. Below, we describe each
element in details following the same order.

Data acquisition

The data acquisition process defines the imaging setup used to obtain the data, as
long as strategies followed to extract still images from videos when necessary. Pedes-
trians have been mainly labeled in photographs [Papageorgiou 2000, Dalal 2005], in
images taken from mobile device setup such as a robot or vehicle [Dollar 2009b,
Ess 2009a|, and occasionally in surveillance videos (in other data-sets). Generally,
data coming from photographs suffer from selection bias due to pre-emptive manual
selection, while surveillance data suffer from restricted background. As such, those
means of recording rarely serve as basis for detection data-sets.

Continuous data collection from a mobile recording setup largely eliminates selec-
tion bias while providing moderate diversity from urban scenes, unless staged. In
Caltech-USA, the largest benchmark data-set, a driver was asked to drive normally
through neighborhoods of the large metropolitan area of Los Angeles.
Consequently, hours of video can be collected, potentially leading to millions of im-
ages. In order to remove side-effects coming from moving recording vehicles such as
pitching, videos are stabilized. Finally, cropped video segments are extracted, rep-
resenting a better alternative to stand-alone images because of pedestrian temporal
consgistency in the sequences. Additionally, video segments enable the use of new

visual cues such as optical flow.

Data-set size

The size represents the amount of data composing the data-set, usually in the form
of a number of images or video sequences. The amount of images in each data-set
has largely increased over time, starting from a thousand images in MIT and leading
up to hundreds of thousand images in Caltech-USA, being two orders of magnitude
larger than most data-sets.

We can also note that nearly all data-sets are distributed into a training and a testing
set, with an equal amount of images in both sets when possible (e.g. Caltech-USA).
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Towards direct and unbiased comparison of pedestrian detection methods, a clear
image distribution between training and testing sets is necessary.

Data-set statistics

Not reported in the table, an in-depth statistical data-set analysis is informative and
serves to establish the requirements of a real world system, helping to identify con-
straints that can be used to improve automatic detection systems. For pedestrians,
aside from instance counting and averaging per image, distributions of the following
three elements have to be considered: scale, location, and occlusion. Depending on
those statistics, some data-sets will be considered more challenging than others. For
example, pedestrian image size can be grouped into three scales: near, medium and
far [Dollar 2011]. Many detectors being designed for the near scale detection, they
perform quite poorly at the medium scale.

Data-set properties

Additional properties can be used to provide at first glance a deeper level of details
for a data-set without having to access its content. For example, it can be notified
if the data-set is made of still images only or if complete video sequences are also
provided. In case of video sequence data-sets, a property can be added regarding
the availability of temporal correspondences between frames as part of annotations.
Similarly, the annotation level of details can be summarized with one property such
as the availability of occlusion labels.

2.2.1.2 Data annotation

The data annotation process, also known as ’ground truthing’, consists in manually
referencing positions of pedestrians in each and every frame of a data-set. For real
outdoor recordings, ground truth positions can not be retrieved automatically as
pedestrians are not equipped with any kind of tracking system.

Performing the data ground-truthing is a time-consuming but mandatory step for
validation, but also for training purposes. Even with large amount of data, where po-
tentially hundreds of hours might be required (e.g. 400h of effort for Caltech-USA),
the annotation process must be done cautiously. Luckily, some appropriate anno-
tation tools exist performing automatic position prediction in-between two frames
manually annotated using cubic interpolation for example [Dollar 2011].

The most used annotation type is a bounding box (BB) indicating the full extent of
a pedestrian, which might involve estimating hidden parts of occluded pedestrians.
In such cases, the favored strategy is to add a second bounding box to delineate the
visible part of the pedestrian only.

For each bounding box, a label is assigned: "Person’ for individual pedestrian, 'Peo-
ple’ for a large group where it would be almost impossible to label individuals, or
‘truncated’ for occluded pedestrian [Everingham 2010]. Furthermore, within image
sequences, the temporal correspondence between bounding boxes belonging to the
same pedestrian can be saved (e.g. Caltech-USA).
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The amount of annotated pedestrians per data-set has been increasing at the same
pace as the data-set size, and is reported in the fourth set of columns of table 2.1.

2.2.2 Pedestrian detection methods

Research in pedestrian detection has been very profuse and quite diverse, with more
than 40 proposed detection methods, also called detectors, in the last ten years.
These detectors share many conceptual elements as they are based on the compu-
tation of image features used within a learning strategy to create object models,
sometimes refined with the help of contextual information. Then, detectors ap-
ply learned models following a sliding window paradigm entailing dense multi-scale
scanning followed by a Non-Maximum Suppression (NMS) procedure as part of the
detection details specification.

As expressed by Dollar et al. [Dollar 2009¢|: "The performance of object detection
systems is determined by two key factors: the learning algorithm and the feature
representation”. This summarizes the two algorithmic challenges needing to be ad-
dressed in order to develop a robust, accurate and optimally fast object detection
System.

Below, we introduce each principal component of existing detectors, including the
feature representation (section 2.2.2.1), the learning strategy (section 2.2.2.2), the
use of contextual information (section 2.2.2.3), and the detection details specification
(section 2.2.2.4), all of which while providing some detector examples.

2.2.2.1 Feature representation

Features computed over the input image and aggregated into specific rep-
resentations serve as basis for object-specific model learning and classifica-
tion. While many different features or combination of features can be used,
nearly all modern detectors rely on some form of Histogram Of Gradient
(HOG) |Lin 2008, Dollar 2010, Benenson 2013]. Nevertheless, gradients can be
directly leveraged [Sabzmeydani 2007|, or grayscale features by computing Haar
wavelets [Viola 2004]. Obviously, color features over various spaces have been exper-
imented, mainly in the CIE-LUV color space [Dollar 2012, Mathias 2013]. Detectors
can also utilize texture features such as Local Binary Patterns (LBP) [Ojala 2002]
and co-occurence [Schwartz 2009], or self-similarity [Walk 2010] features. Finally,
some detectors integrate motion features, such as the optical flow [Park 2013].

The results of such linear or non-linear transformations of the input image are called
image channels, which notion can be traced back to the earliest days of computer
vision. Given an input image, a corresponding channel is a registered map of the
original image, where the output pixels are computed from corresponding patches
of the input pixels, thus preserving overall image layout [Dollar 2009¢|. An effi-
cient way of computing channel features, called integral channel features, has been
proposed by Dollar et al.[Dollar 2009¢|. Features are extracted from each image
channel using sums over local rectangular regions. Integral channel features com-



Chapter 2. Surgical tool detection: from computer vision to medical
18 field

bine the richness and diversity of information from use of image channels with the
computational efficiency of the Viola and Jones detection framework.

A number of papers have utilized integral channel features for different ap-
plications such as object recognition [Laptev 2006, Tu 2005], pedestrian de-
tection [Dollar 2007|, edge detection [Dollar 2006], and local region match-
ing [Babenko 2007].

2.2.2.2 Learning strategy

As part of any machine learning approach, the learning strategy aims to leverage
information provided by extracted image features to create object models. Sup-
port Vector Machines (SVMs) have been a popular choice since the original work
of Dalal et al. [Dalal 2005]. While many linear kernels have been considered; non-
linear kernels are less common with the exception of the fast histogram intersection
kernel [Maji 2008].

An important part of recent detectors has been relying on Decision Forests (DF) to
perform the model learning [Zhang 2014, Benenson 2013]. This family of boosted
classifiers has been introduced in [Viola 2004]| and is of peculiar interest because of
the automatic feature selection. They share with SVM classifiers many advantages
such as a relative speed, theoretical guarantees, extensibility, and good performance.
Deformable Part Based (DPM) detectors, originally motivated for pedestrian
detection |Felzenszwalb 2010], have been explored in many variants [Yan 2014,
Park 2010].

Finally, deep architectures such as convolutional neural networks, using a
mix of unsupervised and supervised training, have been considered (Con-
vNet [Sermanet 2013]). Another line of work proposes deep architectures to jointly
model parts and occlusions [Ouyang 2013].

2.2.2.3 Exploiting context

Pedestrian detectors following a sliding window strategy, the content inside suc-
cessive windows is used to score potential detections. However, when appearance
alone is not enough, drawing on the context of the window provides additional in-
formation to disambiguate object classes. Pedestrian detection methods integrate
for example context information into classifier inputs in the form of additional fea-
tures [Wolf 2006].

Context can be defined as information relevant to the detection task not di-
rectly due to the physical appearance of the object [Wolf 2006]. Five classes of
contextual relations between an object and its surroundings have been proposed
by [Galleguillos 2010], with three of particular interest. Semantic context repre-
sents object co-occurrence, spatial context represents the relative position of the
object in the image, and scale context represents the relative scale of the object
within images.

To integrate contextual information, every element of an image can be thought as
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a belonging of either the "things" or "stuff" meta-category [Heitz 2008]. "Things"
represents compact objects with distinct shape properties (e.g. pedestrian), while
"Stuft" includes elements with less structure or shape, and which can not be seg-
mented with bounding boxes (e.g. road, grass, buildings). Both categories are
represented using labeled pixels, and such a detection problem is formulated as a
labeling problem (referred to as semantic labelling), see illustration figure 2.2.
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Figure 2.2: Semantic labelling illustration from the MSRC-21 data-set.

2.2.2.4 Detection details specification

Detection details determine parameters regarding the search space during the slid-
ing window procedure and the post-processing of candidate detections. For mul-
tiscale detection, the standard approach has been to recursively scan multiple
scales at multiple image resolutions (i.e. octaves), usually around 10-14 scales
per octave. Typically, both high and low resolution candidate windows are re-
sampled to a common size before extracting features. Recently, it has been no-
ticed that training different models for different resolutions systematically improves
performance since the detector has access to the full information available at
each window size [Park 2010, Benenson 2013, Yan 2013]. Although training time
might be increased, this approach does not impact computational cost at test
time [Benenson 2012].

Regarding the Non-Maximum Suppression (NMS) approach, two dominant schemes
can be identified: mean shift mode estimation |Dalal 2006] and pairwise max sup-
pression [Felzenszwalb 2008]. The latter discards the less confident of every pair
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of detections that overlap sufficiently (according to the PASCAL overlap crite-
rion [Everingham 2010]), thus requiring only one parameter. In addition, a pairwise
max variant has been proposed allowing a detection to match any sub-region of
another detection, thus resulting in improved performance [Dollar 2009c].

2.2.3 Validation methodology

In order to quantify pedestrian detector performance and perform rankings in a
realistic, unbiased and informative manner, a proper and well defined validation
methodology is required. As a side-note, this methodology is also referred to as
evaluation methodology in pedestrian detection studies, such as in this work from
Dollar et al. [Dollar 2011|. However, we chose throughout this manuscript to follow
the terminology proposed by Jannin et al. [Jannin 2006]|. Verification consists in
assessing that a method is built according to its specifications, validation consists
in assessing that a method actually fulfills the purpose for which it was intented,
and evaluation consists in assessing that the method is accepted by the end-users
and is reliable for a specific purpose.

To describe such methodology, we first detail the object model learning strategy
employed as long as validation protocols 2.2.3.1. Then metrics used to compute the
validation are presented in section 2.2.3.2.

2.2.3.1 Specification phase

The model validation strategy employed to create object models is the first element
needing to be specified to perform detection method validation. As a starter, we
assume disposing of well-referenced data-sets with separate training and testing
splits (resp. named d0 and d1), each one sub-dividable into different sequences
approximately of the same size.

The following four training/testing scenarios have been proposed and encouraged
by Dollar et al. [Dollar 2011]:

e Train on external data, test on d0.
e Train on external data, test on dl.
e Train on d0, test on dl.

e Perform k-fold cross validation, k being the number of sequences within ei-
ther dO or d1. For example, in each phase k-1 sub-sequences of d0 are used
for training and the k" for testing. Then, results are merged before being
reported.

The first two scenarios allow a validation of existing and pre-trained pedestrian de-
tectors, while the other two involve the use of a new data-set.

The second element to specify is the strategy used to collect and process detector
results. A classic protocol to assess detector performance is to perform a full image
validation. Over an image, a detector returns for each detection a Bounding Box
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(BB) coupled with a confidence score, obtained after multi-scale detection and NMS
procedure. The validation is then performed using the final list of detected bounding
boxes (BByg;) and the corresponding list of ground-truth /reference bounding boxes
(BBy:). A greedy matching is performed to resolve the assignment ambiguity, pri-
oritizing detections with highest confidence scores. Thus, each BBy and BBy can
be possibly matched at most once.

Occasionally, only portions of a data-set can be used for the validation by filtering
ground truth or detector responses. For example, ground truth filtering can be used
to remove ambiguous regions where pedestrian locations are unknown (e.g. crowds).
Both ground truth and detector responses filtering are necessary to consider per-
forming limited validations such as for pedestrian in a restricted scale range.

2.2.3.2 Computation phase

To compute and report detector performance, the standard performance met-
rics [Makhoul 1999] such as recall and precision values are computed but not ex-
ploited directly through recall/precision curves. Instead, miss rates are plotted
against False Positives Per Image (FPPI) using log-log plots, by varying the thresh-
old on detection confidence score. This approach is favored as typically there is an
upper limit on the acceptable FPPI rate which is independent of pedestrian density.
To summarize detector performance, a single reference value representing the entire
curve can be used: the Log-Average Miss-Rate (LAMR). This value is computed by
averaging miss rates at nine FPPI rates evenly spaced in the [1072; 10°] log-space
range. In case of curves ending before reaching the given FPPI rate, the minimum
miss rate is used. Curves being usually linear in the given FPPI range, the LAMR
is generally similar to the performance at 10! FPPI, while providing more stable
and informative assessment of performance.

Regarding the computation of such metrics, the following approach is used. After
the per-image detection assignment, unmatched BBy are considered to be false
positives and unmatched BBy count as false negatives. In order to identify true
positives, a detected bounding box (BBg;) and a ground truth bounding box (BBg;)
form a potential match if they overlap sufficiently. The criterion employed, based
upon the PASCAL measure [Everingham 2010], states that their area of overlap
must exceed 50%. For pedestrians, results are insensitive to the exact threshold as
long as it is below 60% [Dollar 2011].
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2.3 Surgical instrument detection

Applying computer vision techniques to medical data is still fairly new. As such,
surgical field and data acquisition type ranges are rather large. Consequently, to
perform this review of the literature regarding surgical tool detection, we did not
limit the scope to the neuro-surgical field nor to surgical microscope data. We
were interested in any work performing image or video based surgical tool detec-
tion, whichever the surgical context. Approaches relying on external markers are
briefly mentioned as they will be addressed in details farther in the manuscript (see
chapter 8).

2.3.1 Review Introduction

In order to ease the review and the discussions, we propose to describe and classify
each study under three main categories, similarly to the ones proposed for pedes-
trian detection approaches: validation data-sets, detection methods, and validation
methodologies. Each category has been subdivided into their corresponding most
representative elements, as illustrated by the diagram shown in figure 2.3. The
review is organized according to the diagram and each component is explained in
details in the following subsections.

Reporting one extremely large table containing all the information gathered through-
out each paper is not feasible. For clarity, we created one table for each main cat-
egory, thus allowing more detailed information. Also for a space saving purpose,
reported values larger than 1000 are represented as 1k.

For each paper, when multiple data-sets, methods, or validation methodologies are
introduced, as many table entries have been added.
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2.3.2 Validation data-sets

To describe a data-set, we propose to rely on four types of information: the study
conditions in which data have been acquired, the amount of data and its type, the
range of challenging visual conditions covered by the data, and the type of annota-
tion /reference provided. Almost each and every study has been relying on its own
data-set, introduced with more or less details in the publications. Amongst those
data-sets, only few are available online for consultation. As such, some table infor-
mation may be missing or inaccurate depending on the level of details introduced in
the corresponding publication and the online availability of the data-set. Table 2.2
provides an overview of used surgical tool data-sets.

Table 2.2: Overview of surgical tool validation data-sets considered in the literature
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2.3.2.1 Study conditions

The study conditions component aims at describing the surgical context of each
study through characteristics including the assessment scenario, location, and en-
vironment, as described in Jannin et al. [Jannin 2008]. To cover the identification
of the surgical context, we report the surgical field as assessment scenario and the
data type as assessment environment.

Surgical specialty

Surgical tool detection has been applied to different surgical specialties, but mini-
mally invasive surgeries including endoscopic and laparoscopic procedures have been
mainly focused. Surgical examples are cholecystectomy [McKenna 2005], nephrec-
tomy [Reiter 2010|, hysterectomy [Kumar 2013b], pelvic [Sznitman 2014|. For the
most part performed on humans, some data have been collected on porcine experi-
ments [Pezzementi 2009, Reiter 2012al.

Far behind, ophthalinology is the second most studied surgical field, espe-
cially with retinal micro-surgeries [Burschka 2005, Pezzementi 2009, Richa 2011,
Sznitman 2012, Sznitman 2013, Sznitman 2014]. Finally, one study only from Sznit-
man et al. [Sznitman 2014] has performed tool detection over neurosurgical data.

Data type

The data type component is used to position the data-set along the control versus
clinical realism continuum [Jannin 2008]. Four data acquisition types can be identi-
fied: simulated, phantom, ex-vivo, and in-vivo. The simulated type represents one
end of the continuum with full control and no clinical realism while the in-vivo type
represents the other end of the continuum with no control and full clinical realism.
Simulated data are virtual and obtained from fully controlled environment where
tool models and surgical backgrounds can be mixed at will. A simple black tool
mask moved on top of a surgical background [Wolf 2011], rendered tool models un-
dergoing translation and articulation against a black background [Pezzementi 2009]
or a virtual endoscope moving over a liver with homogeneous texture [Speidela 2013]
are representative examples.

Phantom data are a real-world equivalency to simulated data where real surgical
instruments are usually moved in front of phantom surgical backgrounds. They
can describe very simple setups such as a real tool moving in front of a white
background [Allan 2013] or in front of a real surgical background image [Wolf 2011].
Phantom backgrounds can be a little bit more complex, such as a half-sphere painted
to resemble the retinal surface in an ophthalmic surgical context [Sznitman 2013].
FEven real phantom organ models can be used to be as close to real clinical conditions
as possible [Speidel 2008].

For ex-vivo data, few cases have been reported, with experiments on lamb liver tissue
sample [Allan 2013], anatomical structures [Speidela 2013|, or cadavers [Voros 2007].
In-vivo data are the most represented, nearly used in every study. More details
about the range of challenging situations captured in such data are reported in
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section 2.3.2.4.

2.3.2.2 Data acquisition

The second component aims at describing the data acquisition strategy through the
type of recording device employed, the image type and resolution, and the data-set
size either as number of images or number of video sequences.

Recording device

Data recording devices are intrinsically connected to studied surgical fields as con-
sumer cameras can not be brought into operating rooms easily and even less posi-
tioned at will due to patient safety concerns. The recording device element is not
relevant for simulated data-set where only a computer is needed (noted as PC in
the table).

For MIS, the go-to surgical device commonly used is the daVinci Surgical System
(dVSS), equipped with an endoscope as recording device (noted as End. or dVSS
in the table). In ophthalmology and neuro-surgery, most surgeries are performed
under a surgical microscope capable of recording videos (noted as Mic. in the table).
Sznitman et al. [Sznitman 2013] managed to couple a consumer camera to a micro-
scope (noted as Ezt. in the table). While only Haase et al. [Haase 2013] proposed
a different recording setup, using a 3D endoscope coupled with a Time-of-Flight
(ToF) camera.

Image type

Depending on hardware capabilities of recording devices, two image types are avail-
able: monocular and stereoscopic.

Monocular represents single images, enabling to retrieve 2-dimensional (2D)
positions in the image referential only and is the most represented image
type [Sznitman 2012, Sznitman 2013, Sznitman 2014, Kumar 2013b, Wolf 2011,
Voros 2007, Doignon 2007].

Stereoscopic represents a pair of monocular images, namely a left one and a right
one, enabling to retrieve depth estimates using epipolar geometry. They have been
used in [Pezzementi 2009, Reiter 2012a, Richa 2011, Burschka 2005, Speidel 2014,
Speidel 2008].

Image resolution

A high variability can be noted in reported image resolutions, ranging from low
resolution (e.g. 200 x 100 pixels [Voros 2007]) to high resolution (e.g. 1600 x 1200
pixels |[Richa 2011, Sznitman 2013|) images.

Data-set size

The amount of data, represented as a number of images, can be expressed in dif-
ferent levels of magnitude: small, medium and large, with respect to the largest
data-set used in the literature [Kumar 2013b].
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Small data-sets contain less than a hundred images [Speidel 2006, Doignon 2007,
Haase 2013|, while medium data-sets range from a hundred to a thousand im-
ages [McKenna 2005, Allan 2013, Sznitman 2013]. Finally, large data-sets incor-
porate more than a thousand images [Richa 2011, Sznitman 2012, Reiter 2012a,
Kumar 2013b)].

The variability within a data-set is also representative and is represented by
the number of video sequences from which images originated. Most of the
studies, especially early works in the field, present a data-set made of omne
video sequence only [Burschka 2005, Doignon 2007, Pezzementi 2009, Reiter 2010,
Wolf 2011, Sznitman 2013]. However, recent works are proposing more than 5-6
sequences thus introducing a little bit more diversity in the data pool [Allan 2013,
Reiter 2012a, Kumar 2013b, Speidel 2014].

2.3.2.3 Data reference creation

The final objective being to estimate surgical tool positions in images, having a
reference for said positions, assumed to be close to the correct result [Jannin 2006],
is necessary. They can be obtained in two ways: either manually or automatically.
The manual approach being widely employed as not requiring the installation of
additional sensors.

The favored approach to obtain automatic annotations is to use an Optotrack op-
tical localizer [Burschka 2005, Wolf 2011, Allan 2013|. For simulated data-sets,
tool pose parameters are inherently known by the computer setting up the sim-
ulation [Wolf 2011, Speidela 2013].

Regarding manual annotations, most of the time tool-tip positions are
involved [Sznitman 2012, Wolf 2011, Sznitman 2013, Voros 2007, Haase 2013,
Speidel 2008, Speidel 2014, along with bounding boxes around surgical
tools [Sznitman 2012, Sznitman 2014, Kumar 2013b, Wolf 2011, Speidel 2006] or
parts of surgical tools [Reiter 2012b| (represented in the table by 4). Occasionally,
variants of bounding boxes are used [McKenna 2005|, or extended pose parameters
such as tool orientation, length, or entry point in the image [Sznitman 2013].

Tools statistics

In addition to the number of different video sequences, a second level of variability
involves the number of different surgical tools and their occurrences in the data-set.
Those information being only scarcely accessible, they are not displayed in the table.
However, we propose to report here what we managed to gather.

Regarding surgical tools diversity, studies were mostly focusing on tubular-shaped
tools such as a cylindrical needle-holder [Doignon 2004], forceps [Pezzementi 2009],
a large needle driver [Reiter 2012a], or standard tools from dVSS [Kumar 2013b].
Many times, only the generic term of "endoscopic tools" or "tools" is men-
tioned [Haase 2013].

Some data-sets only feature one surgical instrument, especially in phantom con-
ditions [Doignon 2007, Wolf 2011]. Two simultaneous tools are widely featured,
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especially in a context of MIS [McKenna 2005|. More than two surgical tools is very
unlikely, mostly because of the nature of minimally invasive surgeries performed
using a dVSS and displaying a maximum of two tools at the same time. Only Spei-
del et al. [Speidel 2014] proposed a data-set with up to three tools simultaneously
visible for a total of four different tools.

Unfortunately, tool occurrences, overlapping occurrences, orientation, number of si-
multaneous tool distributions, or any kind of extended statistics, are not available
in any paper.

2.3.2.4 Challenging conditions

The third and last level of data variability corresponds to the range of
challenging conditions captured. Data-sets may cover a wide range of ap-
pearance and lighting scenarios [Reiter 2012a, Sznitman 2012, Reiter 2010],
include occlusions [Speidel 2014], rapid appearance changes [Reiter 2010],
smoke  [Kumar 2013b,  Sznitman 2013,  Speidel 2014], specular  reflec-
tions [Kumar 2013b], shadow [Sznitman 2012, Sznitman 2013], blur [Sznitman 2012,
Kumar 2013b] or blood spatter |Haase 2013]. While sometimes data-sets are ex-
plicitly not covering any challenging situations [McKenna 2005].

2.3.3 Tool detection methods

While pedestrian detectors share many elements and typically follow a simi-
lar workflow, it is less clear for surgical tool detectors. One fundamental dif-
ference comes from the use of external markers to ease the detection, for ex-
ample color tags [Tonet 2007|, light emitting diodes [Krupa 2003], or RFID
tags [Miyawaki 2009]. In this review, we wanted to focus on approaches not requir-
ing to apply physical modifications to surgical tools, thus leaving aside marker-based
approaches for later consideration (see chapter 8).

From here, existing tool detectors may be grouped into two types: 'S’ detectors
performing full-image analysis and ’ST’ detectors performing sub-image analysis
by leveraging detection locations from previous frames. Both of them needing a
full-image analysis scheme, the latter only to initialize or re-initialize the tracking
procedure. Additionally, we inquire about prior knowledge used as core element of
detectors’ algorithmic design, which may lead to detectors not being suitable for
other surgical instruments or surgical contexts. Below, we present each component,
including the feature representation, the spatial pipeline form, the learning strat-
egy, tracking solutions, the use of prior knowledge, and conclude with optimization
strategies regarding detection speed. Table 2.3 gives an overview of each surgical
tool detection method.
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Table 2.3: Overview of surgical tool detection methods considered in the literature
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2.3.3.1 Feature representation

The first set of columns in table 2.3 indicates feature types used by each de-
Features are reported as general category of image content extracted
and not as particular instantiation. It appears nearly all detectors extract
a combination of some form of color features, mostly from the classic RGB
space [McKenna 2005, Reiter 2010, Sznitman 2013] and the Hue Saturation Value
(HSV) space [Speidel 2006, Speidel 2008, Pezzementi 2009]. Unconventional color
spaces such as CIE, XYZ, 02, O3 have been proposed in Allan et al. [Allan 2013].
Fairly few detectors rely on variants of HOG features [Burschka 2005, Allan 2013,
Kumar 2013b]|, preferring to leverage gradients directly such as image deriva-
tives |Wolf 2011| or through Sobel filtering [Haase 2013|. Texture features are also
a frequent cue for tool detection. Allan et al. [Allan 2013] proposed to employ inter-
est point extractors (e.g. SIFT, Color SIFT) to represent 2D texture around local
patches in the image, while Reiter et al. [Reiter 2010] chose to rely on FAST cor-
ners. In [Pezzementi 2009], the texture of the image is measured via co-occurrence
matrices and represented using a sub-set of Haralick coefficients.

Amongst the least represented categories, detectors can utilize grayscale (e.g. Haar
wavelets [Sznitman 2013], Hu moments [Voros 2007]), self-similarity (e.g. mutual
information [Richa 2011|) and depth [Speidel 2008, Haase 2013, Speidel 2014] fea-
tures.

Lastly, another important cue for human perception, which has almost never
been incorporated successfully, is motion. In a recent study from Speidel et
al. [Speidel 2014|, a motion disparity map is built and fused with traditional cues.

tector.
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On the other hand, Kumar et al. [Kumar 2013b| proposed to compute dense optical
flow for tracking purposes.

2.3.3.2 Detection pipeline

Overall, out of the 20 considered tool detectors, we can identify two fam-
ilies of pipeline architecture employed to perform spatial detection: one-
stage [Kumar 2013b, Sznitman 2012] and two-stage [Pezzementi 2009, Allan 2013].
One-stage surgical tool detectors are very similar to standard pedestrian detectors
in a sense, where tool pose is directly estimated from input image feature chan-
nels. This category covers detectors computing tool model responses over the input
image, potentially in a multi-scale search with candidate detections refined by a
NMS step [Kumar 2013b|. In addition, it includes detectors performing multiple
steps always solely over input image channels. For example, a four-step method of
mathematical morphology operations in [Voros 2007|, or a three-step method en-
compassing clustering and Hough fitting operations in [Haase 2013|.

Two-stage surgical tool detectors can be assimilated to pedestrian detectors ex-
ploiting contextual information. The first stage consists in a multi-class pixel-
wise classification (a.k.a. semantic labelling) of the input image using the fea-
ture channels. Usually two classes are modelled, one to represent tool pixels and
one to represent background pixels [McKenna 2005]. Three classes [Allan 2013] or
more [Reiter 2012a| have also been tested. The second stage corresponds to the tool
pose estimation, similar to the aforementioned one-stage, the main difference being
the use of semantic label maps (i.e. result of the first stage) as input instead of the
image feature channels. Usually performed in this order, context can also be used as
second stage, in order to refine candidate detections provided by a pose estimation
first stage [Reiter 2012b].

2.3.3.3 Learning strategy

Throughout the studies, we have identified three groups of learning strategies em-
ployed to perform spatial detection: probabilistic classifiers such as Naive Bayes, a
meta-group of template matching strategies such as cascade classifiers, and ad-hoc
strategies through empirically defined thresholds.

Largely employed for the multi-class pixel-wise classification, simple proba-
bilistic classifiers are based on applying Bayes’ theorem with naive indepen-
dence assumptions between the features. Aside from the Naive Bayes clas-
sifier itself |[Speidel 2006, Speidel 2008|, many related variants have been pro-
posed. For example, probability density function [Speidel 2014], likelihood pos-
terior probability [McKenna 2005, Reiter 2010], or Gaussian Mixture Models
(GMMs) [Pezzementi 2009, Reiter 2012b].

The second category relates to object model learning usually intended for one-stage
approaches. Kumar et al. [Kumar 2013b] used a Latent SVM (LSVM) to per-
form the pose estimation using a tool model, while Burschka et al. [Burschka 2005]
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used a standard template matching approach. An interesting template match-
ing strategy using an Active Testing approach has been proposed by Sznitman et
al. [Sznitman 2013]. In addition, some approaches proposed to perform part-based
modelling for example using a star-structured model [Kumar 2013b]. Conversely,
Allan et al. [Allan 2013| proposed to use Random Forests to perform the pixel-wise
classification, and Sznitman et al. [Sznitman 2014 the Gradient Boosting frame-
work.

We can mention a third type of approaches based on empirically defined thresh-
olds even though they do not represent learning strategies strictly speaking. In
most cases, such thresholds are necessary for mathematical morphology oper-
ations [Voros 2007], Hough line-fitting [Doignon 2004] or connected components
identification [Haase 2013]. Sometimes, empirically defined thresholds are not
even needed, approaches being entirely dependent on relative maximum val-
ues [Wolf 2011].

Whilst all aforementioned strategies require models to be trained prior to per-
forming tool detection, an online learning strategy has been proposed by Reiter
et al. [Reiter 2010].

2.3.3.4 Tracking approach

Roughly half of the studied tool detectors couple the spatial pose estimation with a
tracking approach in order to constrain the search space by re-using the knowledge
of previous detections. All of the most common tracking categories have been rep-
resented in the literature, and are introduced by order of importance.

Filtering tracking has been the preferred category of approaches, regrouping Parti-
cle filter useful for sampling the underlying state-space distribution [McKenna 2005,
Speidel 2014] and Kalman filter [Burschka 2005, Reiter 2012a].

Variants of Region-based tracking, based on the minimization of a similarity measure,
have also been widely considered. For example, the Sum of Squares Difference (SSD)
was adopted as similarity measure in [Sznitman 2012], Richa et al. preferred to rely
on the Mutual Information (MI) |Richa 2011, while Sznitman et al. proposed to
use the Sum of Conditional Variance (SCV) as objective function [Sznitman 2013].
Such tracker can also be based on extracting dense optical flow [Kumar 2013b].
Coming after, we can find contour tracking performing detection of object bound-
ary, with CONDENSATION being the most representative algorithm [Speidel 2006,
Wolf 2011].

Feature matching has been examined, using for instance the Normalized Cross Corre-
lation (NCC) over FAST corners [Reiter 2010], or the Kanade-Lucas-Tomasi (KLT)
point feature tracker [Kumar 2013b].

An interesting line of work, proposed by Kumar at al. [Kumar 2013b] dwells in an
optimal fusion between outputs from various trackers. Hence combining, for ex-
ample, feature-based trackers robustness to small motion and region-based trackers
robustness to significant motion.
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2.3.3.5 Prior knowledge

In order to constrain the detection search space, thus facilitating the task, many ap-
proaches rely on a set of assumptions, or prior knowledge (fourth set of columns ta-
ble 2.3). Such knowledge having different forms and aspects, we chose four categories
for its representation: assumption over tool location within the image, assumption
over tool shape, user assistance, robotic assistance. A fifth befitting category has
already been discarded from the review: markers (refer to the review introduction
section 2.3.1). In the following, an overview of each category and some examples
are provided.

Tool shape constraints

Assumptions over the shape have been widely employed to design detectors.
Low-level considerations regarding tools as simple tubular shapes [Speidel 2008,
Sznitman 2014] or solid cylinders with a tip alongside the center-line [Allan 2013,
Burschka 2005, Haase 2013| have been used.

Similarly, rough estimates of a tool shape have been expressed, either be-
ing represented by two edges symmetrically spaced from an axis-line contain-
ing the tip [Voros 2007] or by two parallel side segments and a tip lying in-
between [McKenna 2005].

On the other hand, highly detailed shapes with joint configurations can be leveraged
from a rendering software [Reiter 2012b, Pezzementi 2009].

Tool location constraints

The second most common type of assumption relates to tool appearance and dis-
appearance from the Field-of-View (FoV). In other words, surgical tool intersection
conditions with image boundaries.

Surgical instruments are expected to enter the scene (i.e. FoV) from image
boundaries [McKenna 2005, Allan 2013, Haase 2013], thus being visible on image
edges [Sznitman 2013].

Sometimes the constraint is expressed within the processing algorithm, where
the corresponding initialization is performed by looking exclusively at image bor-
der areas [Speidel 2006], or by choosing candidate regions close to image bound-
aries [Doignon 2004].

User assistance

Instead of relying on generic assumptions over a tool shape or its location within
the image, some methods request a manual help from the user.

For MIS, the knowledge of the instrument insertion point in the cavity greatly con-
straints the search space to a limited beam. The insertion point can be selected by
the surgeon using a vocal mouse [Voros 2007] or after computation requiring manual
selection of 2D instrument boundaries in a sequence of images [Wolf 2011].

In case of online learning algorithms, a user may also have to indicate to the sys-
tem which image portions are containing surgical tools needing to be subsequently
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identified [Reiter 2010].

Robotic assistance

Size and kinematic complexity of dVSS robots leads to relatively inaccurate tool
pose estimations supplied by internal encoders. At the same time, such inaccurate
positions can be seen at good estimates to constraint the search.

Robot kinematics data can be used as input to the detector [Burschka 2005], or to
render on-the-fly tool models with a limited set of joint configurations (i.e. different
tool poses) [Reiter 2012b|. Lastly, robot kinematics can be used in a post-processing
manner to reject erroneous detections or fill the gap of missed ones [Reiter 2012a].

2.3.3.6 Optimization strategies

For integration in real-time in-vivo medical applications, highly accurate tool detec-
tors are key, but not at the detriment of the processing speed. Finding the optimal
position along the speed versus accuracy trade-off is usually difficult. Computer
hardware specifications, code optimization and image resolution have a significant
impact on speed performances. Because of such variability, we chose not to inte-
grate this information into the table as a direct speed comparison between detectors
would not yield much sense. However, we propose to report interesting optimization
strategies mentioned by authors to increase the computational speed.

For detectors using a sliding window approach, the most popular ad-hoc opti-
mization implementation is to reduce the number of pixels to process. It can
be achieved by performing spatial down-sampling (by a factor 2 to 4) over input
images [Voros 2007, Pezzementi 2009|, or by processing every fourth line and col-
umn [Speidel 2006].

When processing video inputs, not every frame needs to be processed, assuming a
recording speed between 25 and 30 Iz, because of the limited motion of surgical
tools within consecutive frames. Speidel et al. [Speidela 2013] proposed to process
every fifth frame, while Reiter et al. [Reiter 2010| processed every third frame.
Limiting cascade classifiers (such as Random Forests) parameters, especially tree
length and depth, to a minimum has been proposed to increase computational speed.
Early stopping scheme [Sznitman 2014 or manual limitation [Allan 2013] have also
been proposed towards this effect.

Finally, for brute-force approaches requiring to process large amounts of pose-
specific models, a coarse-to-fine approach can remedy the huge processing time
issue [Reiter 2012b).

2.3.4 Validation methodology

As mentioned in the corresponding section for pedestrian detectors, a well described
validation methodology is necessary to quantify detector performance and perform
rankings in a realistic, unbiased and informative manner. To do so, we propose to
investigate existing tool detection validation methodologies through their specifica-
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tion phase (high-level) and computation phase (low-level). In the former, we explore
the assessment objective, the validation type and the model validation technique. In
the latter, we examine validation criterion and its estimation by focusing on figures
of merit, validation metrics, and normalization steps, using the same terminology as
specified by Jannin et al. [Jannin 2006]. Table 2.4 illustrates collected information
about the validation methodologies. In the following, both categories are presented
in details.

Table 2.4: Overview of surgical tool detection validation methodologies considered
in the literature review.
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2.3.4.1 Specification phase

The specification phase of the assessment methodology defines the conditions in
which the assessment is being performed with a clearly formulated assessment ob-
jective and type. Most of the studies performing validation, as detailed in the next
paragraph, the term of validation is used to refer to the methodology and relative
components.
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Assessment objective

In each and every existing work, the validation performance assessment has been
put forth, consisting in assessing that the tool detection method actually fulfills
the purpose for which it was intended [Jannin 2006]. Most of the time, the qual-
ity of the detections is being studied [Sznitman 2012, Kumar 2013b, Wolf 2011,
Voros 2007]. Less frequently, the quality of the tracking component is investi-
gated [Sznitman 2013, Reiter 2010].

From times to times, two other performance assessment aspects are considered:
verification consisting in assessing that a method is built correctly and evaluation
consisting in assessing that a method is valuable [Jannin 2006|. Verification assess-
ment has been used to guarantee a proper behavior of the method [Allan 2013],
or to get some insights about method strengths and weaknesses [Sznitman 2013].
Evaluation assessment has been performed for practical value demonstration in an
eye surgery proximity detection task context [Richa 2011].

The vast majority of assessment have been carried out in the 2-dimensional space,
and only a few in the 3-dimensional one [Wolf 2011, Haase 2013, Burschka 2005].

Validation type

Every study can be commonly assessed under two forms, described by the following
qualifiers: qualitative and quantitative. The former returns insights after visual ob-
servation of a phenomena. The latter corresponds to a systematic empirical investi-
gation of observable phenomena through the computation of statistical or numerical
values.

The vast majority of studies report detector performances in a quantitative way,
explained in details in the following section. Regarding qualitative assessment,
it can be expressed in numerous ways such as images with overlaid detection re-
sults [Speidel 2006] or plots showing the evolution of one parameter within the
image referential [Richa 2011].

Model validation strategy

The model validation strategy is crucial for assessing the external validity of the
model: the extent to which the results of a study can be generalized to other surgi-
cal contexts or tools. In a prediction problem, the model training is performed over
a data-set of known data, and the model is tested against a data-set of unknown
data.

Standard data-set splitting has been used, where the first half of every se-
quence is collected into the train split and the other halves represent the test
split [Sznitman 2012, Sznitman 2013, Sznitman 2014]. More robust validations,
using a cross-validation strategy, have been employed; in a leave-one-out man-
ner [Sznitman 2012], or in a 10-fold way [Kumar 2013b].

Sometimes, the data-set separation into train/test sets is unclear and the same im-
ages may appear in both sets [Speidel 2006, Speidel 2008]. Or even no train/test
sets are required for online learning algorithms [Reiter 2010].
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Finally, tool detectors not relying on a model learning strategy do not require sep-
arate train and test splits [Voros 2007].

2.3.4.2 Computation phase

The computation phase of the validation methodology expresses how the estimation
of a validation criterion is being performed. Three elements describe the quantifi-
cation of a validation criterion: a comparison method (i.e. metric), information
on which the computation is performed (i.e. reference), and a figure of merit (i.e.
quality index).

Criterion

A validation criterion aims at characterizing different properties of a method such
as its accuracy, precision, robustness, or reliability. This information is not reported
in the table as every study has been exclusively focusing on both accuracy and
precision. Some attempts have been made to retrospectively study the robustness,
but it was not the intended objective for the study and as such can not be considered
as the validation criterion. Using in-vivo data, with full clinical realism but no
control, it is difficult to target the validation of either robustness or reliability.

Reference

The first element necessary for the validation computation is the type of informa-
tion on which the measure is performed. In general, the computation is not directly
performed between detection results and corresponding references. Many different
information can be contained in the reference, for example the tool location, its
orientation or its tip position, but not all the information can be compared simul-
taneously. As such, a normalization step is performed to transform reference and
results information into a meaningful and equivalent representation for processing.
The favored reference, used in every study, is a landmark on the tool: ei-
ther the tip [Sznitman 2012, Sznitman 2013, Speidel 2008, Voros 2007|, the cen-
ter |Sznitman 2014, Reiter 2012a], or the end [Reiter 2010]. While sometimes,
the overall tool pose not limited to a specific landmark is used [Pezzementi 2009,
Speidel 2006].

The second most common reference is the orientation of the tool shaft [Wolf 2011,
McKenna 2005]. While few works exploited tool bounding boxes, either as di-
rect reference in Kumar et al. [Kumar 2013b], or by deriving pixel-wise tool label
maps |[Speidel 2014, Pezzementi 2009].

Validation metrics

The metric is a comparison function measuring a distance between the normalized
results of the method and the corresponding normalized reference. Previously used
metrics can be regrouped in four categories: simple distance, IOU, NCF and visual
criterion.

The distance, often computed as the Euclidean distance, is favored when the
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reference is a single value (e.g. tool orientation) or a point (e.g. tip posi-
tion). The metric, usually used for simple computation, can also be used in a
thresholding fashion to separate true positive from false positive detections. For
example, a detection is considered accurate for a distance error under 10 pix-
els [Sznitman 2013], or recall values are reported following an evolving distance
threshold [Sznitman 2012, Sznitman 2014].

The Intersection Over Union (IOU) criterion metric has been used with the standard
50% overlap threshold between bounding boxes in [Kumar 2013b]. A variant has
also been proposed, where the criterion is not employed with bounding boxes but
rather over the full image in a pixel-wise fashion [Pezzementi 2009, Speidel 2014].
Both aforementioned metrics operate towards spatial detection performance. A
metric dedicated to the tracking aspect has been proposed by [Sznitman 2012]
and [Reiter 2010]. The Number of Consecutive Frames (NCF) until the tracker
loses the tracked detection is considered.

Finally, the visual metric does not rely on a specific use of reference, the evalua-
tor being the only judge with his own subjective opinion. For example, where the
tool center-line must be within the tool shaft [Reiter 2012a], or where the tool-tip
location must be accurate with according joint configurations [Reiter 2012b].

Figures of merit

The figure of merit, or quality index, is used to obtain a statistical measure of the
distribution of local discrepancies computed using the validation metric. Three fig-
ure of merit types have been identified: standard statistics, standard performance
measures [Makhoul 1999], and duration.

Standard statistics relate to error computation, most of the time of pixel values.
Examples are mean (M) error [Wolf 2011, McKenna 2005|, standard deviation (S)
of the error [Sznitman 2014, Speidela 2013, Kumar 2013b], or order statistics (O) of
the error [Haase 2013].

Standard performance measures, also expressed as information retrieval metrics,
cover the calculation of true positive, true negative, false positive, false negative,
and all entailing measurements such as recall (R) [Sznitman 2012, Sznitman 2014,
precision (P) [Allan 2013], accuracy (A) [Kumar 2013b| and probability of error
(PE) |Pezzementi 2009).

The duration has only been used once to report in seconds an elapsed
time |Reiter 2010].

2.4 Discussion

2.4.1 Data-sets

While many pedestrian data-sets have been collected over the years, only a handful
were commonly used and nowadays the Caltech-USA data-set is the predominant
benchmark because of its large and challenging data. Conversely, almost each sur-
gical tool detection study has been relying on its own data-set and as of today, no
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surgical tool benchmark has been chosen by the community.

However, the value of benchmarks is undeniable according to Benenson et
al. [Benenson 2014] because individual papers simply show a narrow view over the
state of the art on a data-set. Having an official benchmark greatly eases the au-
thor’s effort to put their results into context, thus also providing reviewers easy
access to state of the art results.

The lack of surgical tool data-sets online availability has also been a major hin-
drance, compared to the well-referenced accessibility to pedestrian ones. Re-
cently, more and more authors have been making their data-sets freely available
(e.g. [Kumar 2013b, Sznitman 2014]), which represents a step in the good direction.

2.4.1.1 Data acquisition

Generally, acquiring videos in order to put together a pedestrian data-set can be
considered as a quite easy task to achieve because necessitating daily life street
recordings only. For Caltech-USA, a vehicle was equipped with a camera and the
driver was asked to drive normally through regular traffic in different neighborhoods
of a big city. On the other hand, having access to in-vivo surgical recordings is
quite harder, as it requires to enter the OR which is a much more restricted and
regulated environment than urban streets. As a result, every surgical tool data-set
has been covering either one of those three surgical fields: MIS, ophthalmology and
neuro-surgery, where a device capable of performing video recording is used as part
of the clinical routine (e.g. endoscope, surgical microscope).

Adding extra-sensors into the operating theater has been considered (e.g. consumer
cameras [Sznitman 2014], ToF camera |Haase 2013|), yet remaining an unpopular
solution due to many regulations. Being able to leverage data from already existing
sensors used in multiple hospitals seems more critical than the creation of a better
setup with ideal recording conditions and specific to one hospital. The choice
of adequate additional sensors is also not clear, especially to record the surgical
field-of-view where surgical tools are in action. For example, ToF camera devices
exhibit a low signal-to-noise ratio due to multiple error sources, such as temporal
noise or systematic offsets [Haase 2013]. Already existing surgical endoscopes and
microscopes are seemingly the fittest devices for the task, and the recording quality
can be improved with new hardware generations (i.e. from SD to HD cameras).

Regarding data quantity, for pedestrian there is no limit to the amount of data
that can be collected by continuous acquisition from a mobile recording setup,
hence the large and diverse Caltech-USA data-set. Unfortunately, depending on
the surgical field chosen for a data-set to represent, or the surgical procedure itself
(e.g. cholecystecomy), data may be scarce. In the partnered hospital, only one
intervention could be performed per week for this specific type of surgery. As such,
if not enough videos are collected, the data-set will not be representative enough
of the surgery and will not cover a wide range of background and tool variations.
On the opposite, collecting enough surgical recordings can be a very tedious
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process over many years. For surgical tool data-sets, a trade-off has to be found
between data quantity and diversity since a lack in either category is deterrent for
data-driven generic approaches. As of now, the richest data-set proposed contains
around three thousand images taken across sixteen different videos [Kumar 2013b].
When gathering data, automatic or random selection processes should be favored
to manual ones in order to reduce to a minimum any selection bias. As such,
video segment selection for subsequent split into images is preferable to stand-alone
images selection [Dollar 2011]. Aside from minimizing selection bias, selecting video
sequences also provides an additional pool of information to process. Temporal
correspondences between tool instances within a sequence can be used to analyze
trajectories, and even temporal features can be leveraged in the model learning
process (e.g. optical flow). Not to mention the inability for tracking systems
to exploit a data-set made of stand-alone images only. Similarly, depending
on camera hardware used for the recording, either monocular or stereoscopic
images are obtained. While the former category is represented in the vast ma-
jority of pedestrian and surgical data-sets, only the latter provides an access to
additional features such as depth maps. As a result, depending on the type of
data constituting the data-set, some features may not be accessible for computation.

For pedestrian, data taken from photographs or surveillance videos rarely serve
as a basis for data-sets due to selection bias and restricted backgrounds, mobile
recording device usually being favored [Dollar 2011]. Surgical data acquired in sim-
ulated or phantom environments where the control is higher than the clinical realism
have proven useful in order to verify that a method is built correctly or in order
to precisely understand a method behavior in a challenging environment where for
example tools are crossing each other under varying illumination. On the other
hand, in-vivo videos should be considered for reference data-set creation as they
provide full clinical realism with moderately diverse backgrounds depending on sur-
gical fields and tool appearance variations (e.g. occlusions, motion blur, smoke).
From the amount of visual variations (i.e. challenging conditions) observed, differ-
ent levels of difficulty can be associated to data-sets. In the medical field, data-sets
can be either too easy if only one tool is fully visible or highly challenging when
multiple tools are intersecting each other throughout important illumination varia-
tions. The data collection strategy should not focus on collecting or avoiding specific
challenging conditions such as occlusions, illumination variations, or motion blur.
With enough data, all the "challenging conditions" will be present in the data-set in
realistic proportions. In addition, strategies exist to access sub-sets covering specific
ranges of challenging conditions by relying on the information gathered through the
annotation process. For surgical tool data-sets, it is hard to judge about the level of
difficulty as the precise number of occurrence for each type of challenging condition
is not referenced anywhere.
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2.4.1.2 Annotations

Every pedestrian data-set is provided with its corresponding set of annotations,
which are bounding boxes around single pedestrian or crowd regions of interest.
Such annotations present a two-fold usefulness: they are necessary to extract
object windows for training and they serve as reference for the validation process.
Suffice to say that a data-set published without annotations has close to no utility,
should it be for pedestrian or surgical tool detection. Having erroneous annotations
can also be a major handicap as many learning approaches will fail to generalize
when similar samples are placed in both positive and negative pools. Annotating
the data, also abusively called ground truthing, has to be manually performed
because of the impossibility to access the ’'real’ ground truth. Not only would
it require every pedestrian to be GPS-tracked, but also cameras with their pose
parameters in order to retrieve pedestrian locations in 2D images. For surgical
tools, optical trackers can be used to retrieve the 3D pose and then 2D tool
locations can be computed assuming a good camera calibration. Rather tedious
and time-consuming, depending on the quantity of images to annotate and the
amount of labels to place, the data annotation process must be done carefully to
optimally benefit from the data-set.

Bounding boxes have been the favored choice of annotations for pedestrian,
fitting well enough with their appearances. In order to be uttermost accurate,
visible and occluded parts of pedestrian are separately annotated. Some labels are
added to better describe the content of the bounding box and specify for example if a
pedestrian is isolated or amongst a crowd. All those annotations put together enable
the computation of a large set of pedestrian statistics for a data-set. In addition,
they also allow for reference filtering in order to exclude portions of a data-set
during the validation, such as removing pedestrian belonging to crowd regions much
more difficult to detect. On the opposite, annotations performed on surgical tool
data-sets are much more lackluster, where most of the time only tool-tip positions
exist. Bounding boxes have been used without the distinction between visible and
occluded tool parts. However, surgical tools undergo tremendous amounts of in-
plane rotations. As such, bounding boxes can contain a lot of surgical background
due to said rotations and a tighter geometry seems necessary to delineate surgical
instrument contours (e.g. polygons). Annotations in a pixel-wise fashion, along the
line of what is presented in [Speidel 2008| seems more fitting. On the down-side, it
is not possible to exclude difficult portions of a data-set as attribute labels are not
provided to describe tool appearances (e.g. blurry, occluded).

2.4.2 Detection methods

First of all, we evoked that surgical tool detection can be achieved by modifying
the tool physical appearance using external markers or by adding hardware sensors,
encoders or external optical systems. While the former mainly presents issues with
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manufacturing, bio-compatibility and interference with other medical devices; the
latter requires extensive hardware integration and still has limitations in accuracy
and integration into the operating theater. Further insights about this category of
methods for surgical tool detection are presented and discussed in chapter 8.

Most pedestrian and surgical tool detectors are relying on image-based analysis, thus
recovering object position and orientation directly in the viewing reference. Albeit
pedestrian detectors focus on individual images, many tool detectors try to make use
of previous frames through tracking. According to Benenson et al. [Benenson 2014],
when starting from a strong spatial detector, using extra information such as track-
ing or temporal features improves performance. Nevertheless, it is not clear how
much tracking can improve per-frame detection itself. Additionally, tracking is re-
liant on a spatial detector for initialization and occasionally re-initialization pro-
cedures. All of it suggests the necessity to possess an efficient and reliable spatial
detector.

2.4.2.1 Feature representation

Feature representation is a highly versatile component as variants or combinations
of more than eight different feature families can be extracted from images. While
spatial features (e.g. color, HOG) have been present since the beginning of detec-
tors, stereo and temporal cues (e.g. depth map, optical flow) remain yet to be fully
exploited.

For pedestrian detectors, every feature representation is based around HOG, usu-
ally combined with color to form a HOG+LUV representation. Top performance
are reached with the use of ten feature channels, despite some approaches having
considered up to an order of magnitude more channels. Conversely, it is worth
noticing that HOG features are barely used for surgical tool detection, where color
is heavily favored through multiple spaces. Choosing the right color space can be
driven by the object to detect, for example HSV is stated to be better suited than
RGB for surgical tool detection [Speidel 2006]. HSV color space offers a separation
between the chromaticity and the luminance component, therefore more robust to
illumination changes.

Previously mentioned, features available for extraction are bound to the data acqui-
sition device and the detection strategy. Indeed, depth features cannot be computed
if only monocular images are retrieved, and motion features will not be extracted
in case of purely spatial detectors.

As stated in [Benenson 2014], the most popular approach for quality improvement
is to increase and diversify the features computed over the input image. Having
richer and higher dimensional representations tends to ease the classification task,
enabling improved results. However, developing a more profound understanding of
what makes good features good and how to design them is still needed. Up to now,
improvements were made through extensive trial and error.

As a side note, many pedestrian detectors have been favoring integral feature chan-
nels, which is also starting to be the case for surgical tool detectors [Reiter 2012a).
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It seems to be the way to go as it offers easier and faster access to feature values
over different configurations of rectangles, compared to standard feature channels.

2.4.2.2 Detection strategy

For pedestrian detectors, three main families of learning techniques have been ex-
ploited (i.e. Decision Forests, Deformable Part Models, Deep Networks), each one
providing extremely close results to the others [Benenson 2014], indicating the choice
of the learning technique is not a dominant one. Interestingly enough, they have only
been scarcely used for tool detectors where many threshold-based approaches have
been favored, even though inducing too much bias and not enough reproducibility
in the way thresholds are defined. According to Sznitman et al. [Sznitman 2014],
building classifiers to evaluate the presence of surgical instruments appear to be
the most promising solution for both in-vivo detection and tracking, and as such
data-driven learning strategies should always be favored.

A major objective for every learning approach is to generalize from train to test set,
usually represented by the model accuracy versus generalization trade-off. Learning
with too much accuracy is called "over-fitting", where even noise or insignificant
details are learned (i.e. similar to learning something by heart). Conversely, not
enough accuracy in the learning leads to over-generalization and the model is trig-
gered too much (i.e. many false alarms). Models that can generalize well are com-
pulsory for detectors to be able to identify surgical tools throughout various surgical
procedures coming with slight to moderate background and condition variations.
An alternative for surgical tool model creation is to use a robot renderer with a
CAD model to construct tool templates according to specific kinematic joint con-
figurations [Reiter 2012b]. This is stated to be desirable because collecting training
data becomes easier than if it had to come from videos, thus enabling larger collec-
tion with less effort. Advantages of this type of data generation have been shown
successfully in [Shotton 2013].

Choosing appropriate object parts to model can also prove to be a tricky matter,
especially because of object occlusions. Pedestrian are ordinarily fully modelled,
then sub-models can be derived to better handle occlusion cases [Mathias 2013].
For surgical tools, the most important part to model is also the most characteristic
landmark for tool differentiation, namely the tip region. Unfortunately, this is also
the part most likely subject to appearance modifications. Additionally, tool tips can
be cumbersome to model when made of many parts, which is the case for articulated
surgical instruments. Nevertheless, modeling the tip remains the most viable tactic
because undoubtedly always visible in the field-of-view and very specific for each
instrument, relatively to the tool end or tool body.

A parallel can be made between pedestrian detectors exploiting context and two-
stage tool detectors performing a pixel-wise classification as first stage. Both detec-
tors rely on integrating semantic labelling results in the pose estimation step. While
many classes can be modelled towards pedestrian detection such as road, building,
or sky, their number is highly reduced for surgical tool detection. Indeed, given
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the nature of surgical instruments being gray-ish metallic objects, usually only two
classes are necessary: one to model tool pixels and one to model background pixels.
Evidently, the more classes the less accurate semantic labels maps, as differences
between classes will be more and more subtle. Leveraging contextual information
seems to be a promising concept and has been largely employed for surgical tool
detectors.

2.4.2.3 Prior knowledge

Pedestrian detection methods are fully data-driven, the model learning being per-
formed from a set of training samples. Thus, methods’ design is unaffected in any
ways by outdoor backgrounds or pedestrian appearance conditions, everything rest-
ing on the shoulders of the training strategy.

Contrariwise, many surgical tool detectors try to reduce the complexity by adding
some sort of prior knowledge. Purely looking at both computer vision and machine
learning aspects, using such assumptions or external assistance can be seen as a
weakness. Surgical tool detection approaches will fail to be generic as shape or lo-
cation constraints for one surgical instrument do not necessary apply for another
surgical instrument. Thus, it will not be possible for one detector to detect other
type of tool or even to detect the same tool within another surgical context with a
different background.

Nevertheless, when looking at the other end of the scope, namely in-vivo surgical
applications, those same assumptions can be seen as a strength. For routine surgical
applications heavily relying on surgical tool detection, the higher the performance,
the safer for the patient. In that regard, adding as much prior knowledge as possible
will increase to a maximum detector performance.

2.4.2.4 Optimization strategies

The end goal for pedestrian or surgical tool detectors is an integration within higher-
level systems, be it for robotics, surveillance, care for the elderly or disabled, or
context-aware surgical applications. As such, in addition to high performance, a
processing speed matching the recording device speed is also required for such real-
time applications.

Pedestrian detectors can be straightforwardly ranked and compared based on their
speed performance thanks to benchmark data-sets and standardized search space
(e.g. scales per octave). Unfortunately, surgical tool detector speed comparison
cannot be performed because of too much variations in input image resolution and
search space.

The biggest impact on processing speed comes from hardware specifications and
code optimization. When dealing with image-based processing, an extensive use of
the GPU should be done to benefit from parallel computing. As such, every new
hardware generation is accompanied by a huge speed boost. Implementation strate-
gies will also have an impact on the processing speed, but a lesser one. For instance,
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cascade-based classifiers such as random forests can be speed-up by either limiting
each tree depth, using some sort of soft-cascading [Benenson 2012] or early stopping
scheme [Sznitman 2014]. Already mentioned, performing feature computation over
integral channels also provides a speed gain. The most popular speed-up strategy
is to perform down-sampling over input images or to use larger strides at run-time,
for example processing every fourth line and column.

Aside from GPU implementation and code optimization, most of the strategies en-
able a speed-up gain always at the cost accuracy. As such, it is necessary to find
the right balance within the speed versus accuracy trade-off.

2.4.3 Validation methodology

The purpose of the validation methodology is to quantify and rank detectors per-
formance in a realistic, unbiased and informative manner. According to Dollar et
al. [Dollar 2011], there is in general no single 'correct’ validation methodology, yet
proposing a proper one is crucial and surprisingly tricky. To ensure consistent and
reproducible comparisons, using the exact same code is mandatory, as opposed to a
re-implementation where elements may be missing.

Analogically to data-sets, a validation methodology of reference is used for pedes-
trian detectors while each surgical tool detector has been validated according to its
own methodology. Currently, it is hard to judge or compare tool detectors looking
only at their individual results provided out of a reference context.

2.4.3.1 Specification phase

For pedestrian detectors, a clear set of model validation strategies has been proposed
by Dollar et al. [Dollar 2011]. Described scenarios, relying on two distinct train and
test image sets, can be used either for the validation of existing and pre-trained
detectors, or for training and validation of a new detector, depending on train and
test set belonging to a same data-set. For surgical tool detectors, only few studies
use similar protocols with train/test splits, such as k-fold cross-validations. One
limitation arises from a train/test splits strategy employed where the beginning of
an image sequence represents the training set and following images of the same se-
quence represent the testing set. This is a borderline strategy as the learned model
can over-fit the data, thus potentially not working in other video sequences of a
same surgical type. However, many times there is no clear explanation about image
distributions and images from the training set may also be included in the test set.
The only exception being for online learning approaches where model validation
techniques do not apply.

In addition to quantitative results, some surgical tool detection studies conjointly
report qualitative assessment. While it can be interesting to get insights about
detection success/failure modes, this is heavily observer-biased and not at all repro-
ducible. Detector comparison and ranking can only be performed through quanti-
tative assessment.
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Pedestrian detector validation is mainly being performed in the 2D space since sin-
gle monocular input images are processed. Some surgical tool detectors have been
validated in the 3-dimensional (3D) space, but not only stereoscopic input images
are needed to obtain 3D tool detections but a real ground-truth obtained via an
automatic system is also necessary to perform the validation. In general, those
conditions are difficultly fulfilled, explaining the favored 2D space validation.

2.4.3.2 Computation phase

Unsurprisingly, the choice of the metric, the reference and the figure of merit are all
entangled and highly correlated to the specification phase. In case of a 3D valida-
tion, the Intersection Over Union criterion metric can not be used, mainly because
3D reference bounding boxes do not exist. Similarly, the number of consecutive
frames metric will only be used to assess tracking performance.

Many tool detector validation methodologies have been performed only over one
tool landmark (e.g. tool-tip). While a detector could achieve high performance
regarding only a specific tool landmark location, the overall tool pose could be in-
accurate most of the time. It feels necessary to couple a tool landmark validation
with a global pose validation, using for example bounding boxes or any kind of
larger geometry. That said, choosing the according tool detector metric set should
be driven by the final medical application in which it will be used. In specific cases
of tool positioning, only an accurate tool-tip location is mandatory, thus justifying
the choice to perform exclusively an assessment of tool-tip location performance.
Every pedestrian detector has been validated using the same set of parameters: the
Intersection Over Union criterion metric, bounding boxes as reference, and recall,
precision, and LAMR as figures of merit. Given the nature of pedestrian to detect,
rectangular bounding boxes fit rather well with their geometry, hence reported per-
formance results are highly informative. Using the same strategy for surgical tools,
where important in-plane rotations are occurring, will provide far less precise re-
sults. As already mentioned, for surgical tools, bounding boxes should be replaced
by a geometry tighter to a tool shape (e.g. polygons). Another strategy, for object
validated under this metric set, is to modulate the overlap threshold depending on
the class of the object. For pedestrians and cyclists, an overlap of 50% is required,
while for cars the overlap should be at least of 70% [Geiger 2012]. Depending on
the nature of the object to detect, and the relative size of the bounding geometry,
it is necessary to trade lightly with the overlap threshold.

Aside from global tool pose validation, it is worth mentioning that intermediate
steps performance are also being assessed. For example, the pixel-wise classification
(i.e. semantic labelling) is studied with per-class and per-pixel accuracy computa-
tion. Regarding surgical tool trackers, the validation is only performed through the
computation of the number of consecutive frames they are able to track. However,
the added-value of the tracker itself is almost never quantified. Comparing detector
performance with and without the use of the tracking layer could be of interest.
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2.5 Conclusion and problematic of the thesis

In this chapter, we presented a methodological literature review on image-based
object detection for two different instances: pedestrian and surgical tool. For
structuring the review, existing works have been classified and presented following
three major components: validation data-sets, detection methods, and validation
methodology. Each component introducing a sub-set of elements to provide a more
detailed level of description for each existing work.

When comparing pedestrian detection and surgical tool detection existing works,
the most eye-catching conclusion to draw is the lack of standardization for the
latter one. For pedestrian, a limited number of well-thought, well-detailed and well-
referenced benchmark data-sets is employed. Conjointly with very standardized
validation methodologies, performing comparisons and rankings between detectors
is fairly easy. For the surgical tool instance, each work has been referencing to
a different data-set, and even though validation methodologies are relying on
the same concepts (as for pedestrian), a direct performance comparison between
detectors is simply impossible. Regarding detection techniques, the pool of machine
learning algorithms is rather limited, with a large majority of tool detectors tending
to rely on prior knowledge to ease the process, compared to pedestrian ones.

Such a difference between the two object detection instances shows the relative
novelty of the domain that has not been as extensively studied as the pedestrian
one. As a consequence, many insights can be taken from the pedestrian detection
task as to build upon better tool detectors and better comparisons between them.

From this review of the literature, the problematic of the thesis was centered
on four main aspects. First, neurosurgical data being barely used as material
for tool detection, the necessity arose to create a new data-set, as robust and
diverse as possible with the potential to be a benchmark. Secondly, developing
new image-based tool detector approaches was of interest, using microscope videos
as input and as few assumptions as possible (i.e. limited to no prior knowledge).
Thirdly, for use in real medical application, solutions had to be found to obtain
real-time tool detection, either through algorithmic concepts or programming
strategies. Finally, exhaustive validation methodologies have been investigated for
meaningful detector performance comparison and optimal assessment of tool pose
estimation quality.
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3.1 Introduction

As previously explained, data-driven approaches for object detection require large
and diverse data-sets to efficiently learn object models. Surgical tool detection being
a fairly new topic of interest, no benchmark data-sets exist yet, each study being
evaluated upon its own proposed data-set. In addition, only one previous work
has been focusing on the neurosurgical field, with a data-set exhibiting weaknesses
such as a rather low diversity, and not precise enough annotations. As such, we
created a new in-vivo data-set covering the neurosurgical field, tackling as best as
possible issues regarding size, diversity, annotation quality and covered challenging
conditions. All studied algorithms presented in the manuscript were validated upon
this new data-set.

This chapter starts by presenting in section 3.2 all the in-vivo data gathered from
CHU Rennes hospital and available for the data-set creation. In section 3.3, we
introduce in details our proposed data-set and its creation strategy. Then, the data
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annotation protocol followed to manually create the reference (i.e. ground truth)
for the data-set is described in section 3.4. Finally, a discussion regarding both the
data-set creation and the data annotation protocol is provided section 3.5.

3.2 Available data

(b) Ventriculocisternotomy

ituitary (d) Spine

(c)

Figure 3.1: Example images taken from collected neurosurgical data.

In-vivo surgical recordings (i.e. videos) were captured at the neurosurgical de-
partment of the University of Rennes hospital (CHU Pontchaillou). Recording
devices used were OPMI Pentero (Carl Zeiss Meditec AG) microscopes, with an
initial image resolution of 720 x 576 pixels and at 25 frames per second (fps).
Four intervention types were covered by the data: pituitary surgeries, brain tumor
removal surgeries, spine tumor removal surgeries, and ventriculocisternotomy
surgeries.

Pituitary surgeries consist in an incision made in the back wall of the nose
to remove tumors within the pituitary gland.

Ventriculocisternotomy surgeries consist in an opening allowing cerebro-spinal
fluid to drain through a shunt from the ventricles of the brain into the cisterna
magna.

Brain tumor removal surgeries consist in the removal of a tumor either at the
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basis of the cranium, or on the upper part of the brain.

Spine tumor removal surgeries, also known as spinal cord surgeries, consist in
a dorsal sagittal incision to remove tumors such as meningioma or schwannoma
(a.k.a neuroma).

Table 3.1 gives an overview of available data, where multiple video sequences
have been acquired for a single intervention (i.e. surgical procedure). Storage size
restriction prevents the recording of a procedure in its entirety within a single
object and as such multiple video sequences are necessary. In addition, surgeons
often choose to record only specific moments of the surgery, thus resulting in
multiple video sequences for the same intervention.

Table 3.1:
partment of the University of Rennes hospital.

Available in-vivo surgical recordings acquired in the neurosurgical de-

Surgery Type # Interventions | # Video seq.
Brain tumor removal 60 530
Spine tumor removal 25 140

Pituitary 29 117
Ventriculocisternotomy 12 12

3.3 The NeuroSurgicalTools Data-set

We named our proposed data-set the NeuroSurgicalTools data-set. In section 3.3.1,
we start by presenting the data collection strategy followed to assemble the data-
set. Then, we provide in-depth tool statistics in section 3.3.2 and highlight some
challenging conditions appearing throughout the data-set in section 3.3.3.

3.3.1 Data collection strategy

The flowchart representing the data collection process is provided in figure 3.2,
where I represents a number of interventions, S a number of video sequences and N
a number of images.

Initial set Eligible set Selected sub-set NeuroSurgicalTools
+ Pituitary: 1=29 Manua + Pituitary: 1=0 Manua + Pituitary: S=0 Random + Pituitary: N=0
+Ventriculo.: 1=12 | contextual | +Ventriculo.: 1=0 visual |+ Ventriculo.: $=0 image |+ Ventriculo.: N=0
+ Brain: 1=60 selection | + Brain: 1=45 selection |4 Brain: 5=99 selection |+ Brain: N=1945
+Spine: =25 (step1l |+ Spine: 1=20 (step 2) +Spine: $=10 (step 3] +Spine: N=531

Figure 3.2: Flowchart describing the data collection strategy to create the Neuro-
Surgical Tools data-set.

From the initial pool of surgical data, we excluded videos not exploitable for
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image-based surgical tool detection, step 1 of the flowchart. Pituitary recordings
were put aside because of inherent surgical conditions where the in-focus field-
of-view is extremely narrow, thus making the most part of surgical instruments
extremely blurry. Ventriculocisternotomy recordings were removed due to a lack
of tool diversity as only one is appearing throughout the twelve videos. Finally,
as illustrated in figure 3.3, other videos were rejected because of bad recording
conditions. Vigibly darker videos exhibiting a lot of noise indicate a recording
problem from the microscope, and as such are not representative for the task.
Similarly, videos showcasing surgeons’ fingers occluding more than 70% of the FoV
are of no interest since surgical instruments are not visible.

Figure 3.3: Example excluded data because of bad video quality (left) or large
occlusion (right).

Within the remaining set of brain and spine tumor removal procedures, we man-

ually selected 14 different videos with the targeted objective to obtain enough diver-
sity in terms of background and instrument representation (step 2 of the flowchart).
From each one, we cropped a video sub-sequence of varying length, at least showing
in action one of the two most common surgical instruments used in neurosurgery
(i.e. suction tube and bipolar forceps). To further limit the manual selection bias,
we did not try to avoid challenging conditions for image-based detection, such as
cases of tool occlusion, tool overlap, or coming from lightning.
In order to remove side-effects from interlaced videos that are appearing on still
images (see figure 3.4), each video segment has been re-encoded for a final video
resolution of 612 x 460 pixels. This stabilization simplifies the annotation process
while also providing ’'cleaner’ images for tool model creation.

After video de-interlacing, each sequence has been sampled at 1Hz, and 2476
images were randomly selected to form the final data-set (step 3 of the flowchart).
The NeuroSurgicalTools data-set has been further split into training and testing sets
to fit with validation methodologies. Figure 3.5 shows representative images of the
data-set. The data-set is freely available online !.

"https://medicis.univ-rennesl.fr/software
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Figure 3.4: Interlacing effect on still images. Original suction tube (left) and de-
interlaced suction tube (right).

Figure 3.5: Example images from our NeuroSurgicalTools data-set.

3.3.2 Dataset statistics

A summary of the data-set is provided from table 3.2 to table 3.5. The distribution
of images from each surgical sequence is provided in table 3.2. In those images,
seven different surgical tools are appearing for a total of 3819 occurrences (see
table 3.3). At most one instance of each instrument category is visible in an
image, at the exception to retractors which can be up to three simultaneously. Two
surgical instruments are heavily featured in the data-set: the suction tube and the
bipolar forceps.

Proportions of the number of tools per image are reported in table 3.4 and 3.5.
Not considering the retractors, almost 50% of images are displaying two surgical
instruments simultaneously, only 10% exhibit three surgical tools at the same time,
and about 27% of the frames have no instruments at all.
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Table 3.2: Number of images per sur-

gical sequence.

Train set Test set
Background | 221 || Background | 256
Seq 1 225 Seq 7 180
Seq 2 300 Seq 8 140
Seq 3 80 Seq 9 224
Seq 4 32 Seq 10 80
Seq 5 180 Seq 11 139
Seq 6 183 Seq 12 40
- - Seq 13 70
- - Seq 14 126
Total [ 1221 ||  Total [ 1255 |
Table 3.4: Distribution of tools per

image (with retractors).

Table 3.3: Tool occurrence per image

split.

Surgical tool

Train& Test splits

Suction Tube 900 844
Bipolar Forceps | 538 460
Retractors 157 140
Hook 163 88
Scalpel 55 130
Pliers 81 79
Scissors 33 30
Others 0 121
| Total = 3819 [ 1927 | 1892

Table 3.5: Distribution of tools per
image (without retractors).

Tools/image

0

1

2

3

4

Tools/image || 0

1
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3

Number

647

293

1041

356

139

Number 667

341

1173

295

Probability

Below, we analyze distributions of surgical instrument scale, in-plane orientation

and location over the whole NeuroSurgicalTools data-set (i.e. both train and test

splits). We report results for the two most represented instruments: the suction tube
and the bipolar forceps. In addition, only those instruments have been annotated
with an isosceles triangle (see section 3.4) from which statistics are computed.

3.3.2.1 Scale statistics
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Figure 3.6: Tool shaft width distributions computer over the NeuroSurgicalTools
dataset. Suction tube (left) and bipolar forceps (right).
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Surgical videos being recorded with different microscope parameters, especially
the zoom value, surgical tools appear at different scales. In figure 3.6, we report
histograms of tool shaft widths for the suction tube and the bipolar forceps. The
vast majority of suction tubes (i.e. around 75%) appear with a shaft width between
20 and 40 pixels. The bipolar forceps is a larger tool, mostly with a shaft width
between 40 and 60 pixels (around 60%).

3.3.2.2 In-plane orientation statistics

During surgeries, surgical tools undergo in-plane rotations in a range mainly con-
strained by the surgeon’s dexterity. In figure 3.7, we report for each of the two afore-
mentioned tool categories their orientation distributions. For reference, we consider
orientation 0° to represent a surgical tool horizontally aligned with its tip facing the
left border. Orientation ranges do no overlap between the two tools, implying all the
surgeons from the dataset have the same hand dexterity as suction tube and bipolar
forceps are often used concurrently. Given orientation ranges for the bipolar forceps
between [0°, 30°] and [320°, 360°[, we can assume all surgeons to be right-handed
as this tool is consistently used by the dominant hand. Similarly, suction tubes in
the range [150°, 270°] are indicating left hand manipulation. Relatively to a vertical
image-centred axis, a symmetry can be noticed between instruments use, suggesting
an optimal placement of surgeons’ hands.
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Figure 3.7: In-plane orientation distributions computer over the NeuroSurgicalTools
data-set. Suction tube (left) and bipolar forceps (right).

Table 3.6: Proportions of suction tube appearance per orientation range.

Orientation range || [140°, 180°] | |180°, 210°] | |210°, 240°| | |240°, 280°]
Proportion 21.7% 32.6% 31.1% 14.6%
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Table 3.7: Proportions of bipolar forceps appearance per orientation range.

Orientation range || [0°, 30°] | [260°, 320°] | [320°, 340°] | [340°, 360°|
Proportion 36.8% 11.1% 23.9% 28.2%

3.3.2.3 DPosition statistics

Viewpoints as long as operating conditions constrain surgical tools to appear only
in certain regions of the image. Tool-tip locations over the data-set are computed
using annotated isosceles triangles, and resulting heat maps are plotted as shown in
figure 3.8. As can be seen, tool-tips are mainly located in the center of the image,
although being widely spread. This was to be expected as surgical microscopes
are centered over anatomical structures of interest (i.e. on which the surgeon is

working).

Figure 3.8: Tool-tip locations over the whole NeuroSurgicalTools data-set, for the
suction tube (left) and the upper part of the bipolar forceps (right).

In addition, global locations over the data-set are also studied and resulting
heat maps are shown in figure 3.9. We report in figure 3.9a a mixed heat map
accumulating every surgical tool location at the exception of the retractors. In case
of multiple-parts instruments, we report one heat map per instrument part (e.g.
upper and lower part of a bipolar forceps).

Commonly, surgical instruments enter the field of view from the bottom part of the
image, in an upwards direction. This is highly correlated to operating conditions,
as the surgeon is usually standing in front of the surgical field. We can also notice
an impact of surgeon’s handedness on surgical instruments location. For example,
the suction tube, hook, and pliers are used by the surgeon’s left hand. Conversely,
the bipolar forceps, scalpel, and curette are being used by the surgeon’s right hand.
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Figure 3.9: Cumulative location per tool class over the whole NeuroSurgicalTools
data-set, represented as heat-maps.

3.3.3 Challenging conditions

Throughout the data-set, surgical instruments appear under a wide range of adverse
(or challenging) conditions. Those conditions have been neither annotated nor la-
belled, as such we propose to highlight each one with a couple images in figure 3.10.
The challenging conditions accounted for are the following: tool-tips hidden under
anatomical structures, motion blur, occlusions, tools overlapping each other, pres-
ence of blood partially covering a tool, and the reflection of one tool into another
one.
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Figure 3.10: Challenging conditions identified throughout the NeuroSurgicalTools
data-set.

3.4 Data annotation protocol

For the annotation process, we decided to use a web-browser open-source software
named LabelMe [Russell 2007]. For more information, please refer to the annex B.
Annotations were done manually in each image of the aforementioned data-set by
a domain expert. Three types of annotations, illustrated in figure 3.11, have been
performed:

e A bounding polygon and a class label.

e An isosceles triangle which first point is located on the tool-tip and the two
other points are on each side of the tool body.

o Attribute labels (e.g. blur).

The first kind of annotations has been done on each and every tool appearing in
the data-set. Whereas the second one has been done on the suction tube and the
bipolar forceps only. This triangle is encoding the tool orientation, its width and its
tip position, which are necessary information for automatic data processing.

The attribute labelling is necessary for sub-set selection, especially to remove blurry
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images from training samples. However, in case of partial occlusion only one bound-
ing polygon has been placed over the extended tool position. We did not added one
annotation on the visible tool part only.

Figure 3.11: Example data-set frames (left column) and annotations (right column).
Isosceles triangles are represented in yellow, other colors represent bounding poly-
gons.

3.5 Discussion

3.5.1 Data collection

With our data collection strategy, we aimed to create a data-set diverse-enough
in terms of surgical background and instrument representation, as representative
as possible to the surgical reality, and with as little selective bias as possible. As
illustrated by the numerous challenging conditions, the data-set presents a lot of
diversity regarding instrument appearance, especially for the suction tube and the
bipolar forceps. However, as highlighted by the statistics, the data-set is fairly un-
balanced as other tools are less represented. While representative of the surgical
reality where both the aforementioned instruments are mainly used, increasing the
data-set in size to obtain enough samples for the different categories of instrument
is desirable.
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Also pointed out by the statistics, all of the fourteen selected surgical interventions
used to create our data-set have been performed by right-handed surgeons. Con-
sequently, surgical instruments are constrained to appear in restricted areas of the
image, thus impacting the diversity. In order to fully cover the range of tool appear-
ance possibilities while respecting the surgical reality, video recordings of surgical
interventions performed by left-handed surgeons should be added to the data-set.
Lastly, our proposed data-set is only representative of surgical interventions per-
formed at the neurosurgical department from the Rennes University hospital. While
many surgical instruments are standard, surgical practice may differ from one hos-
pital to another or from one country to another. For completeness, adding data
acquired in other hospitals throughout the world would be of interest to further
increase the diversity in tool and background appearance. Be it as it may, the pro-
posed NeuroSurgical Tools data-set is diversified enough to train and validate tool
detection approaches.

3.5.2 Data annotation

The data annotation quality is preponderant for every ensuing usage of the data-set.
Image regions annotated as instrument with a bounding polygon and an isosceles
triangle serve as input to the tool model creation process. Similarly, validation
methodologies are exclusively focusing on the overlap between obtained candidate
detections and the annotated references (i.e. bounding polygons). Consequently,
annotations must be done with extreme caution as to obtain high quality tool mod-
els and in the end the most meaningful validation results possible. Depending on the
data-set size, the annotation process can be cumbersome and time-consuming. In or-
der to obtain high quality annotations and prevent one single annotator to botch up
the process, crowdsourcing solutions have been proposed [Maier-Hein 2014]. Data
are made available online and many different persons can participate in the anno-
tation effort. In addition to alleviating the time spent annotating for each person,
in also tends to prove a limited inter-/intra-annotator variability.

Aside from annotation quality based on user performance, in other terms how close
polygons are placed around surgical instruments, the level of details can also be
used as a good assessment. We identify five different levels of annotation details as
described in table 3.8, each level improving in precision over the previous one. With
the first level, each instrument in the image is solely annotated with a bounding
polygon, enough to perform pixel-wise classification techniques. In the second level,
an isosceles triangle is added enabling compensation in orientation and scale in tool
model creation techniques and more detailed performance results by analyzing tool-
tip position and tool orientation. The third level provides details regarding cases
of occlusion with multiple polygons for one instrument (e.g. one polygon over the
visible part and another one estimated over the extended instrument). The fourth
level adds information to assess the quality of a tracking approach via temporal
correspondences between bounding polygons in consecutive images, requiring im-
age sequences. Finally, semantic attributes can be added for each instrument (fifth
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level), further helping to describe the content visible by mentioning the presence of
specular reflection, motion blur, or blood stain. The different levels of annotation
details enable the creation of specific sub-sets in order to gain a better understanding
of a tool detector behavior, for example focusing on occluded tools.

Table 3.8: Data annotation levels of detail.

Single polygon | Isosceles triangle | Multiple polygons | Temporal corr. | Semantic attributes
Level 1 4
Level 2 v 4
Level 3 4 4 4
Level 4 4 v 4 4
Level 5 4 4 v v 4
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4.1 Introduction

Towards tool detection from in-vivo surgical recordings, we chose to focus on ap-
proaches performing purely spatial image-based analysis, thus not relying on any
kind of tracking or external marker support. Many state-of-the-art pedestrian de-
tectors share a similar inability when it comes to surgical tool detection: how to deal
with in-plane rotations. Extensive studies have been performed in order to detect in
real-time pedestrian at multiple scales in videos, however extracted features are not
invariant to rotation. Regarding surgical tool detectors, many different strategies
have been followed either regarding the tool modelling task or the pose estimation
task applying the model over input images. However, performing comparison be-
tween tool detectors is almost irrelevant due to the lack of validation data-set and
methodology standardization. While it is hard to identify the best detection strat-
egy to adopt, most tool detectors exhibit the use of prior knowledge to facilitate the
pose estimation task. However, such strategy might impede a detector’s ability to
transfer to one surgical field or tool to another.

In section 4.2, we describe a first detection approach to transfer from real-word
pedestrian to surgical instruments: the adapted SquaresChnFtrs. A second ap-
proach, the core contribution of this manuscript: the ShapeDetector, combining
pedestrian and surgical tool detector strengths is presented in section 4.3.

4.2 First approach: adapted SquaresChnFtrs

4.2.1 Introduction

Dealing with in-plane rotations does not represent an issue for pedestrian detection
in real life street scene recordings because gravity applies. Pedestrian most usually
appear standing or walking, thus representing a uniformity in the pedestrian model
with the head on top and feet at the bottom. Regarding surgical tools, surgeons
hover them over anatomical structures and as such they can appear under differ-
ent in-plane orientations or tilt inclinations. As a first solution to tackle the tool
detection problem, we considered more fitting to start building upon an already
performing detector from the literature, rather than creating a new detector from
scratch. As such, finding the right pedestrian detector amongst the wide variety of
state-of-the-art detectors was paramount. One approach stood out when perform-
ing a search with the three following criterion: low detection miss-rate, high speed
and online source code availability; the SquaresChnFtrs detector from Benenson et
al. [Benenson 2013|. Consequently, our first contribution is an adaptation of the
SquaresChnFtrs detector to make it perform in a context of surgical tool detection.
The SquaresChnFtrs detector belongs to the category of one-stage approaches, and
follows a typical sliding window paradigm. At train time, image features are ex-
tracted and used to learn an object specific model. At test time, the object specific
model is applied over input image features in a dense multiscale sliding window
scanning followed by a NMS procedure. In section 4.2.2, we describe in details each
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component of the vanilla SquaresChnFtrs, including the feature representation, the
model learning strategy, the sliding window scanning, and optimization strategies.
Next, in section 4.2.3, we describe our proposed adaptation enabling surgical tool
detection.

4.2.2 SquaresChnFtrs

4.2.2.1 Feature representation

The feature representation, inspired by the Integral Channel Features from Dollar et
al. [Dollar 2009a|, combines three types of channels: color, gradient magnitude, and
gradient histograms for a total of 10 channels. An illustration is given figure 4.1,
when computed over a pedestrian input image.

gradient histogram grad. LUV

Figure 4.1: Example input image (left) and computed channels (taken
from [Dollar 2009a).

Color channels are extracted from the LUV color space because of its simplicity
to compute and its attempt to perform perceptual color uniformity. Three channels
are necessary for the representation, one for each color space component.

Gradient histogram channels are weighted histograms where bin index is de-
termined by gradient angle and weight by gradient magnitude. Six channels are
necessary for the representation, to model six different quantized orientations.

Gradient magnitude computed along gradient histograms is additionally stored
in a separate channel.

Integral channels

Integral images (or summed area tables) have been introduced for object detection
by the Viola and Jones detection framework [Viola 2001]. Using integral channel
features representation, only three floating point operations are needed to compute
a sum of pixel values within a rectangular region of a channel. This represents a
fast and efficient way of evaluating features within the model window during the
sliding window process. Creating integral images is quite simple and can be done in
one pass considering equation 4.1 where [ is the input image, S the integral image,
x and y being pixel location.
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S(x,y) =I(z,y) + Iz - Ly) + I(z,y = 1) = I(x -1,y — 1) (4.1)
An input image and its corresponding integral version is illustrated figure 4.21.
Assuming A, B, C, and D the four corners of a rectangular region, with a clock-wise

enumeration starting from the upper left corner. The corresponding features value
over the region is obtained using equation 4.2.

Value = S(A) + S(D) — S(B) — S(C) (4.2)

Summed Area Table

Image
5 5 5 2 5 7 12 14
3 6 3 6 8 16 24 32
5 2 5 > 13 23 36 46
3 6 3 6 16 32 48 64
v N

Figure 4.2: Integral image computation example. Input image (left) and integral
image (right).

4.2.2.2 Model learning strategy

The model learning strategy employed belongs to the category of cascade classifier
(e.g. Random Forests) and is very similar to the one proposed in the Viola and Jones
framework. Low level features are built from summing over rectangular regions (i.e.
pooling), then using boosting these rectangular regions are selected and assembled
in a set of weak classifiers [Benenson 2013]. This set of weak classifiers, also called a
strong classifier, refined by bootstrapping is the representation of the learned model.

Pooling

The feature pool is the set of rectangles used to construct the weak classifiers.
Rectangle candidates are not obtained through careful design (i.e. regular pattern)
but are randomly selected within the model window. Both the channel index and
the rectangle size are arbitrary determined (enforcing a minimal area of 25 pixels).
Following this pooling strategy, a total of 30000 rectangles was extracted and used
as input to the boosting.

"https://computersciencesource.wordpress.com/2010/09/03 /computer-vision-the-integral-
image/
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Boosting

From the feature pool, a set of level-two decision trees (three stump classifiers per
tree) was constructed and then linearly weighted using Adaboost. The final strong
classifier consists of 2000 weak classifiers.

Bootstrapping

To increase the variability and difficulty of the training set, supplementary hard neg-
atives are obtained via bootstrapping. The training starts with a set of 5000 random
negative samples and then bootstraps twice, each time adding 5000 additional hard
negative samples.

4.2.2.3 Sliding window scanning

At run-time, a full image detection is performed following a sliding window approach
(see figure 4.3). On every image pixel, starting from the upper left corner, the
model (i.e. cascade classifier) is applied over the corresponding image sub-region,
corresponding to the model window size. As a result, a score representing the
confidence to have the object present in the image sub-region is returned for the
pixel location. In the end, each pixel location is associated with a confidence score.
In order to limit the pool of candidate locations only to the most promising ones,
a score thresholding is applied. The threshold value is empirically defined from
score values range, depending on the classifier parameters. A further selection is
performed via NMS to suppress multiple nearby detections.

Window
0|-2]2]5]3 1|3 421
2[3]3[1]0 1|2 6/1]3
6]1]af2]1 ] 104 \1
s|7]el1]3F]4]7 Processing=—3p{ 6 ke
A RRaE /ﬂ" e 0
s|115|7]0 03 Model Window
slofol2[1]2]3]5 (Cascade) score
Image Output

Figure 4.3: Sliding window process representation.

Non-Maximum Suppression

The NMS procedure belongs to the category of pairwise max suppres-
sion |Felzenszwalb 2008]. The less confident of every pair of detections that overlap
sufficiently is suppressed. This simplified NMS procedure only requires one single
parameter: the overlap threshold, set to 50% in practice. The overlap value is com-
puted using the Intersection Over Union criterion. In figure 4.4 the NMS impact is
illustrated .
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(a) Without NMS (b) NMS

Figure 4.4: Illustration of the Non-Maximum Suppression procedure.

4.2.2.4 Optimization strategies

On every pixel location, all of the 2000 weak classifiers have to be evaluated before
a confidence score can be returned. To accelerate the detections, the use of an
early stopping scheme has been proposed: a soft-cascade [Zhang 2007]. The soft
cascade aborts the evaluation of non-promising detections if the score of a given
stage drops below a learned threshold. Thus, the number of weak classifiers needing
to be evaluated at run-time can be reduced from 2000 (i.e. full cascade) to 50-100,
which is eventually speeding up the object detection task. The soft cascade has to be
manually tuned according to the initial cascade. Figure 4.5 illustrates side-by-side
stage thresholds from the original cascade and the manually set soft cascade.
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Figure 4.5: Illustration of an original cascade (left) and its corresponding soft cas-
cade (right).
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4.2.3 Adapted SquaresChnFtrs

To be able to accurately detect surgical instruments using the SquaresChnFirs de-
tector, it is necessary to take care of orientation related issues. First, we start by
establishing a reference point for in-plane rotation (section 4.2.3.1). Then, we pro-
pose to replace bounding boxes by bounding polygons as output to obtain tighter
detections (section 4.2.3.2). Finally, in sections 4.2.3.3 and 4.2.3.4, we present the
creation of orientation-specific models and their aggregation into a multi-orientation
bundle for run-time detection.

4.2.3.1 Orientation reference

Throughout the manuscript, the orientation of surgical instruments will be men-
tioned many times, as such we establish here what we consider to be the orientation
of reference. We propose to define orientation (0° as representing the surgical instru-
ment horizontally aligned with its tip facing the left side of the image, as shown in
figure 4.6.

Figure 4.6: Suction tubes registered at orientation 0°.

4.2.3.2 Bounding polygons

Detections are usually being stored and displayed under the form of a rectangle,
having the same size as the model window (i.e. size of training samples). However,
because of in-plane rotation, such rectangles are not tight enough around tools.
Not only does it affect the visual display, but it is also an hindrance for the NMS
procedure. Consequently, we propose to use a geometry more fitting to instruments
shape: a polygon. Figure 4.7 illustrates the difference between both geometries.

4.2.3.3 Orientation-specific model

In order to create an object model, training samples have to be aligned to com-
pensate for translation and scale. For surgical instruments, a third compensation
regarding the orientation has to be performed. To give more freedom to the model,
generated training images are not strictly represented at the desired orientation, but
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Figure 4.7: Bounding boxes (pink) versus bounding polygons (green) displayed over
detected surgical tools.

are also spanning over a limited orientation range. We propose to learn a model for
every 5°, as such six training samples are generated for each input sample in the
range -3/+2° (see figure 4.8).

(d) Orientation 0° (e) Orientation 1° (f) Orientation 2°

Figure 4.8: Suction tube training image examples for a model creation at orientation
0°.
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In addition to the cascade classifier, an orientation-specific model is associated
with a bounding polygon and its tip location. We used the SVG inkscape software 2
to manually create polygons, using as reference a training sample at the specific ori-
entation. The polygon has to be perfectly placed within the model window in order
to generate accurate detections during the sliding window process, as illustrated in
figure 4.9.

Figure 4.9: Bounding polygon (in black) placed over a suction tube model for the
Adapted SquaresChnFtrs. The model size is 256 x 256 pixels.

4.2.3.4 Multi-orientation detection

Similarly to a multi-scale detection at run-time, we propose to perform a multi-
orientation detection. While creating one orientation-specific model only and rotat-
ing input images multiple times could be a solution, the computational cost behind
features re-computation would be far too important, especially regarding real-time
detection. As such, we propose to transfer the time consuming effort from run-time
to train-time by creating multiple models, each one covering a specific orientation.
At test time, features are extracted once and input images are left untouched, while
every orientation-specific model is processed one after the other in a sliding window
fashion. For each orientation-specific model, a set of orientation-specific candidate
detections is collected. In the end, multiple sets of orientation-specific candidate
detections have been gathered and are sent to the NMS procedure.

A tool multi-orientation model is created as a bundle of multiple orientation-specific
models. In the study, a bundle is made of 72 single orientation models as illustrated
figure 4.10, with an orientation step of 5° between each.

https://inkscape.org/fr/
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Figure 4.10: Illustration of a multi-orientation model for surgical instrument de-
tection via the adapted SquaresChnFirs approach. From left to right: example
training image at the given tool orientation, representation of the cascade classifier,
SoftCascade scheme, and bounding polygon.

4.3 Second approach: ShapeDetector

4.3.1 Introduction

Adapting a state-of-the-art pedestrian detector to make it perform in a surgical
context was a first step, as representing a simple solution. While it provides encour-
aging results, reported in chapter 7, better performance can be achieved. Contextual
information, presented as a strong component for pedestrian and tool detectors, is
not handled yet. Moreover, although surgical tools usually do not have a distinctive
color due to reflections, illumination variations, and grey tissue or texture, they do
exhibit a distinctive local structure. Those reasons were motivations to integrate
context within a tool detector pipeline.

Consequently, our second contribution belongs to the category of two-stage ap-
proaches, and is named: ShapeDetector. The first stage of the pipeline performs
local appearance decisions by classifying each pixel into "tool" or "background"
categories (steps 1 and 2 in figure 4.11). The second stage enforces the global shape
by evaluating a tool-specific shape template (steps 3 in figure 4.11).
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g Semantic labels

Input image Feature channels Response maps Detections

Figure 4.11: Overview of two-stage approaches pipeline. Step 1 computes a set
of integral feature channel from the input image. Step 2 performs the pixel-wise
classification (i.e. semantic labelling) for two classes: tool and background. Step 3
represents the pose estimation process using SVM shape models. Either as many
response maps as classes, or a single map of semantic labels, are eligible as input
for the pose estimation.

In the following, we first present the semantic labelling methodology, using the
SquaresChnFtrs detector framework (section 4.3.2). Then, we describe multiple
shape template creation processes (section 4.3.3). Finally, we introduce the second
stage performing the pose estimation on top of the semantic labels, also in a sliding
window fashion (section 4.3.4).

4.3.2 First stage: semantic labelling

In order to perform the multi-class pixel-wise classification, we propose to re-use
the SquaresChnFirs detector framework almost identically. We suggest to model
two classes of pixels: the ones belonging to the surgical background and the ones
belonging to surgical instruments. As such, one classifier is learned for each class,
avoiding relying on a single sensitive threshold from a single classifier. In addition,
learning as many classifiers as classes to model enables the possibility to perform a
pixel-wise classification for more than two classes.

The principal structural change occurring to the SquaresChnFtrs framework is re-
lated to the extraction of training samples. As we move from global object mod-
elling to pixel-wise modelling, the number of training samples does not correspond
to the number of training images exhibiting the corresponding object. Moreover,
the pooling strategy cannot occur within the model window, non-existing for pixel
modelling, and a new strategy is necessary (section 4.3.2.1). Compared to the initial
SquaresChnFtrs framework, a wider set of low-level feature channels are taken into
account (section 4.3.2.2). The classifier itself is learned following the exact same
pattern as used in the initial SquaresChnFtrs framework.
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4.3.2.1 Training samples extraction

Training samples used for object detection can not be used here. A new set of
training samples has to be generated for this task. For each training image, the
corresponding training image for the semantic labelling is created by associating the

right label to every pixel of the image (see figure 4.12).

Figure 4.12: Original image (left), corresponding semantic labelling training image
(middle), and overlaid semantic labelling onto the input image (right).

Using this set of semantic labelling training images, training samples (or patches)
are obtained using a randomly perturbed regular grid. In order to obtain balanced
sets for each class, an estimate number of samples is computed from available sam-
ples in each class. Otherwise, classes occurring frequently in the data-set or having
a large spatial extent such as the surgical background tend to be favored. The sam-
pling grid granularity is adapted automatically to fit the samples requirements. In
case of unlabeled pixels in training images, they are ignored from the extraction
process, as to avoid the risk of adding confusing examples.

4.3.2.2 Feature representation

In the initial SquaresChnFtrs framework, three types of feature channels were con-
sidered. For the pixel-wise classification, four different types of feature channels are
used, with some extensions to the color feature type.

Gradient features are identical to the HOG feature representation introduced
in the initial framework. Six channels corresponding to six different gradient orien-
tations are considered, as well as a gradient magnitude channel.

Color features are represented either through the basic color representation
consisting of three LUV channels, or an alternative to LUV: Color Names
(CN) [Shahbaz Khan 2012]. The set of color attributes corresponds to linguistic
color labels commonly assigned by humans to colors occurring in the world. Eleven
name color channels are proposed: black, blue, brown, grey, green, orange, pink,
purple, red, white and yellow.

Normalized location features are also considered by simple linear mapping
between (x,y) pixel coordinates and real-valued interval [0,1]x[0,1].
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Linear filters are applied to the image, as proposed by Shotton et
al. [Shotton 2006]: Gaussian filters at three different scales applied to the three
CIElab channels, x- and y- derivatives of Gaussians at two different scales applied
to the luminance channel, and Laplacian of Gaussians at four different scales, for a
total of seventeen filter channels.

4.3.2.3 Output normalization

As a result from the pixel-wise classification over the input image, classifier outputs
for each class are obtained. The distributions of outputs per class being approxi-
mated fairly well using Gaussians, outputs can be mapped to the desired range of
[0,255] (see Response maps in figure 4.11). For clarity, we propose to define two
terminologies: semantic scores and semantic labels.

Semantic scores represent the initial set of classifier outputs in the range |0,255],
with as many response maps as classes modelled. Illustrated by figure 4.13c
and 4.13d.

Semantic labels represent a single response map, obtained after post-processing
the initial set of response maps. A pixel-wise argmax over each response map is
operated, and the maximum score across all classes (i.e. maps) determines the label
of a pixel. ITllustrated by figure 4.13b, where green represents pixels being labelled
as tool and red represents pixels being labelled as background.

Semantlc labels

(c) Semantic scores (tool class) (d) Semantic scores (background class)

Figure 4.13: Semantic labels versus semantic scores illustration.
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4.3.3 Shape-template model creation

In this section, two different shape template creation strategies are introduced. Con-
versely to one-stage approaches, as it is for the adapted SquaresChnFtrs detector,
a model is not derived from original images. Here, semantic labelling outputs are
used as input to the shape template creation process. A shared similarity emerges
from the necessity for all positive samples (i.e. showing a surgical tool) to be aligned
beforehand, to compensate for translation, scale and rotation. Thanks to this com-
pensation, a model can be learned at any orientation or scale desired. For easier
training, a model can be up-/down- sampled or rotated in a post-processing fashion.
As such, only one set of training samples needs to be created in order to obtain shape
templates at various scales and orientations for the surgical instrument of interest.
Below, we start by mentioning an hand-crafted model strategy (section 4.3.3.1).
Then, the main shape template creation approach, using a SVM and completely
data-driven, is described in section 4.3.3.2. Finally, we report in section 4.3.3.3 nec-
essary elements to build the final ShapeDetector model for ensuing processing by
the second stage of the pipeline.

4.3.3.1 Fixed template

The first proposed template creation strategy is simple and ad-hoc, using only a
polygon example of the tool of interest as input. In an rectangular envelope around
the polygon, a weight of +1 is set to pixels within a 5-pixel distance of the polygon
edges. A weight of -1 is given to pixel ranging from a 6-pixel to a 20-pixel distance
from the polygon edges. Any other pixel within the rectangle is attributed a weight
of 0. Figure 4.14 illustrates such shape templates for a suction tube and a bipolar
forceps.

Figure 4.14: Fixed shape template examples for a suction tube (left) and a bipolar
forceps (right). Weights color code: red is +1, blue -1, and green 0.

4.3.3.2 Data-driven SVM template

For this data-driven approach, we propose to learn the shape template model by
using a linear Support Vector Machine. Surgical instruments having a spatial co-
herence, we consider regularizing the SVM training by adding a two-dimensional
spatial smoothness prior to also enforce a spatial coherence within the shape model.
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Below, we explain in details the SVM regularization process and the creation of
positive and negative samples for the SVM training.

SVM regularization

The regularization term is an important element for SVM training. Since we know
that we are operating a two-dimensional domain, we consider modifying the vanilla
SVM equation (4.3) (see [Burges 1998]). We include a regularization term M (equa-
tion 4.4) that promotes a 2d spatial smoothness prior [Lehmann 2011].

min wlw+ — ZL Y, < Ty, w >) (4.3)
weR™ ‘ ’ er

. T
min w Mw+ L (yt, < xe,w >) (4.4)

where T' = {x4, yt}gl are instance-label pairs, L : {0,1} x R — R is the loss
function and C is a penalty parameter. The matrix M can be decomposed as shown
in equation 4.5. The regularization matrix R encodes the 2d spatial structure.

M=R"-R (4.5)

In equations 4.6, we develop the link between the standard SVM formulation and the
one using regularization via R. It can be seen that the 2d prior can be encoded via
a simple transformation of the input data (via R~1), allowing the use of unmodified
SVM training code. At test time, we use the resulting w, without needing to change
the input data.
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The 2d spatial smoothness in the regularization matrix is performed by enforcing
4-connex pixels to have close values. In case of a 4-pixel image (represented by
a, b, ¢, and d), the regularization matrix to use is represented in equation 4.7.
For comparison, equations 4.8 and 4.9 illustrate the regularization term with and
without 2d spatial smoothness.
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Training positive samples

From the set of annotations provided with the data-set described in chapter 3, it
is possible to generate different training samples. We consider three alternatives
on how exactly we choose to generate the training samples, from the same original
image (see figure 4.15a):

1. SquaresChnF'trs semantic labelling maps (see figure 4.15b).
2. Annotation masks of all surgical instruments (see figure 4.15c).
3. Annotation masks of a single surgical instrument (see figure 4.15d).

Semantic labelling maps from alternative (1) best represent the data the classifier
will receive a test time as they are the direct results from the first stage. However,
they are somewhat noisy, making it more difficult to accurately learn the shape of
a surgical instrument.

To overcome this issue, we propose with alternative (2) to create binary masks using
surgical instrument annotations. Those masks can be considered as a perfect/ideal
semantic labelling result where all the noise has disappeared. To generate tool class
training masks, every annotated surgical instrument is assigned the white color and
the rest of the image is in black. Corresponding background class training masks
are obtained as being the opposite/complementary images.

For alternative (3), we also want to take advantage of an ideal semantic labelling
case, yet learning the surgical instrument shape only and not modeling surrounding
instruments. As such, only the tool of interest is in white in tool class training

masks and the rest of the image, including neighboring surgical instruments, is in
black.
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(a) Cropped original (b) Semantic labelling data

(c) All instruments annotation (d) Single instrument annotation

Figure 4.15: SVM positive samples for the suction tube. Top rows correspond to
the tool class and bottom rows to the background class.

Obviously, training samples can be generated either to represent semantic scores
(i.e. one mask per class) or to represent semantic labels (i.e. only one overall
mask). For the former, background class samples are generated as specified above for
alternatives (2) and (3). For the latter, no background class samples are generated
for alternatives (2) and (3).

Training negative samples
Negative training samples are created from scratch in a random manner, following
one of the three distribution sampling alternatives:

1. Binary sampling: uniform binary distribution where pixels can only have the
value 0 or the value 255 (see figure 4.16a).

2. Grayscale sampling: uniform distribution where pixels can have a value in the
range [0, 255] (see figure 4.16b).
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3. Gaussian sampling: Gaussian distribution where pixels can have a value in the
range [0, 1], then re-scaled in the range [0, 255] (see figures 4.16¢ and 4.16d).

Background)

c¢) Gaussian distribution (Tool) (d) Gaussian distribution

—~

Figure 4.16: SVM negative inputs depending on the sampling strategy.

Compared to the naive alternative (1), alternative (2) better matches with pos-
itive samples, while alternative (3) is meant to close this gap even further by mod-
elling pixels distribution from real semantic labelling results.

Negative samples should always have the same size as positive samples, be it for the
image resolution but also for the number of classes, in case of semantic scores mod-
elling. For alternatives (1) and (2), the tool class sample is randomly sampled, and
the background class sample is obtained as the opposite image. For alternative (3),
each class is modelled by its own Gaussian distribution, as such each class sample
is randomly obtained from the corresponding distribution.

Selecting cropped images as negative samples could also have been a solution, how-
ever the pooling strategy is hard to put in place. In semantic labelling images, large
portions are totally uniform aside from some noise, thus many negative samples
randomly extracted could be almost identical and not discriminating enough for the
training procedure.

4.3.3.3 ShapeDetector model

To be processed by the second stage of the pipeline, a global ShapeDetector model
needs to be created. The following elements/parameters are included in the global
model, displayed figure 4.17:

e Shape-template model: core element representing the modelled tool shape,
which will be evaluated on each image pixel during the sliding window process.

e Bounding polygon: generic geometrical shape representing the tool, which is
mandatory for the NMS procedure and results displaying.
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e Tool-tip location: element required to perform the corresponding validation.

e Tool orientation/scale: two parameters necessary to perform detection at mul-
tiple orientations and scales.

e Tool class: imperative information as a first step towards the classification
process when different tool models are ran in parallel.

e

Figure 4.17: Hlustration of the final ShapeDetector model for a suction tube (left)
and a the upper part of a bipolar forceps (right). The bounding polygon and tool—
tip location are represented in black, other colors are representing the SVM shape
model.

4.3.4 Second stage: pose estimation

In the second stage of the pipeline, we propose to perform tool pose estimation by
capturing the global shape of specific tools, using rigid templates. For each surgical
instrument, a shape model has been learned over a set of normalized pose images.
This learning-driven approach makes no assumption about the texture or the shape
of the objects.

We chose not to use semantic labels as additional feature channels, as such the
pose estimation is performed on top of semantic labelling results in a sliding win-
dow fashion. By conducing an exhaustive search, we can detect an arbitrary num-
ber of surgical instruments, at any position and orientation in the image. Each
trained shape template is transformed for each desired scale and orientation (sim-
ilar to [Benenson 2012|) at the very beginning (see section 4.3.4.1). This speeds
test time computation up, since it avoids the need to recompute the semantic la-
belling at different scales and orientations (i.e. features extraction and pixel-wise
classification). Assuming a restricted depth range, semantic labelling can be ap-
plied over the image at a single scale, which is common practice in street scene
labelling [Ess 2009b].

Each shape-template is approximated piece-wise via a set of squares (see sec-
tion 4.3.4.3), thus enabling the use of semantic labels integral images when eval-
uating the correlation of each scale/orientation specific template. Using integral
channels makes the computation cost of the sliding window independent of the tem-
plate scale, meaning that searching for small instruments costs as much as looking
for large ones.
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Each candidate detection consists of a score, a bounding polygon on the hypothe-
sized object and a tool-tip position, coming from the set of information contained in
the ShapeDetector model. Finally, the candidates are filtered using a greedy NMS
procedure based on their score, polygonal representation overlap, and orientation
(see section 4.3.4.2).

4.3.4.1 Search space setup

Before starting the sliding window process, an exhaustive set of shape templates is
created from the initially learned model, to cover every scale and orientation speci-
fied by the search space.

The model scale is based on one parameter only, a proportionality coefficient com-
pared to the initial model. This enables detecting surgical tools at different scales,
corresponding to different microscope zoom values. However, the scale parameter is
impacting the tool shaft width only, and it is not possible to specifically extend the
model to look for larger or shorter tools. The model orientation is represented by
one parameter, being an angle value in our orientation referential.

4.3.4.2 Non-Maximum Suppression

To eliminate spurious detection hypotheses, a form of greedy NMS is applied, sup-
pressing multiple nearby detections. The NMS procedure removes the less confident
of every pair of detections that overlap sufficiently according the Intersection Over
Union criterion [Everingham 2010, but only if the difference in orientation is higher
than an empirically defined threshold. Our NMS is thus represented by two param-
eters: the overlap threshold and the orientation difference threshold. By setting the
latter threshold to 0, the simplified NMS procedure as presented in |[Dollar 2011] is
retrieved.

4.3.4.3 Model piece-wise approximation

To be combined with integral images, each shape-template is approximated piece-
wise via a set of squares (see figure 4.18). Such approximation also reduces the
number of operations required to evaluate the model on a given image location,
thus making the overall process faster.

To perform the approximation, the initial SVM model window is sub-divided into
15 x 15 pixel squares, after addition of extra padding to avoid uneven square size
division. A new weight is set for each piece, computed by averaging SVM values
within the square. For the number of pieces created to be stable across the various
scales processed, the model scale coefficient is applied to the square size.
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Figure 4.18: Visual effect of the piece-wise approximation over the SVM model
of a bipolar forceps. Top row displays the original model and bottom row the
approximated model.

4.4 Conclusion

In this chapter, we presented two novel image-based approaches for surgical tool
detection. The first one, the adapted SquaresChnFtrs, is a direct extension of an
efficient, robust, and real-time state-of-the-art object detector. Following a one-
stage framework, the method is able to compensate for tools undergoing in-plane
rotations. The second approach, the ShapeDetector, is a novel approach following
a two-stage pipeline framework and re-using the Square ChnFtrs framework to per-
form the pixel-wise classification. The pose estimation over semantic labelling result
maps is performed using data-driven SVM tool shape templates in an exhaustive
sliding window fashion. The approach does not rely in its design on prior knowl-
edge regarding the number of surgical tools, their shape, or position in the image.
Through the use of bounding polygons instead of bounding boxes to represent can-
didate detections, both approaches enable to retrieve tool pose more accurately.
Detection performances obtained using the aforementioned techniques are reported
in chapter 7.
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5.1 Introduction

As stated in chapter 2, there is in general no single correct strategy to assess detec-

tor performance. However, a proper validation methodology should aim to quantify

detector performance in a realistic, unbiased, and informative manner. Addition-
ally, detectors should be ranked and compared with one another, to the possible
extent. At the very least, a detector performance should be put in perspective with

competitive baseline approaches from the same research field. In this chapter, we

propose our own validation methodology, closely mimicking the best acknowledged

methodologies in computer vision.

In section 5.2, we detail the specification phase of the validation methodology, spec-

ifying the conditions in which the validation was performed. Then, we describe a set
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of computational metrics in section 5.3. Finally, in section 5.4, we present multiple
baseline approaches.

5.2 Specification phase

Detectors are trained using our NeuroSurgicalTools data-set (presented chapter 3)
under the model validation technique presented in section 5.2.1. Validation is per-
formed following the full image analysis described in section 5.2.2, and results are
reported as described in section 5.2.3.

5.2.1 Model validation technique

As a remainder, the NeuroSurgicalTools data-set has been equitably split into train-
ing and testing sets. For our model validation technique, we chose one of the four
training/testing scenarios proposed by Dollar et al. [Dollar 2011|, which is named
scenario call in their paper.

In other words, the NeuroSurgicalTools training set is used to train detectors while
detection results are collected over the NeuroSurgicalTools testing set.

5.2.2 Full image analysis

Similarly to the scheme laid out in the review paper from Dollar et al. [Dollar 2011],
we chose to perform validation following the single frame analysis protocol. In gen-
eral, an object detector takes an image as input and returns for each detection
a Bounding Geometry (BG) at the image location (e.g. bounding box, bounding
polygon) coupled to a confidence score. The validation is therefore being performed
using the final list of detections (BGg) and the corresponding list of ground truth
(B th)~

Each BG4 and BG gy may be matched at most once, using a greedy matching strat-
egy to resolve the assignment ambiguity. Detections with highest confidence scores
are prioritized and matched first. In case of a BGg matching multiple BGy;, the
match with highest overlap value is kept using the PASCAL measure described in
section 5.3.1.

In this work, we aim at detecting surgical tools, in other words distinguishing sur-
gical instruments from the surgical background, and leave aside the problem of tool
categorization. When validating the detection of a specific tool, we ignore all false
positives on other annotated tools. Only unmatched BGy; of the specific tool class
are accounted for as False Positives. This is similar to the protocol used for pedes-
trian detection [Dollar 2009a|, where regions with "crowds" triggering false positives
for pedestrians are ignored. False positives on other tools are considered part of the
fine-grained tool classification left for future work.
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5.2.3 Results reporting

To report and compare detector performance, we do not rely on standard re-
call/precision curves. Instead, we prefer to plot (using log plots) miss rate against
FPPI by varying the threshold on detection score.

To summarize detector performance, we use the LAMR computed by averaging miss
rate at nine FPPI rates evenly spaced (in the log-space) in the range [1072, 10°].
In case of curves ending before reaching a given FPPI rate, the minimum miss rate
achieved is used |Dollar 2011].

As a side-note, our adapted SquaresChnF'trs first proposed detector is reported under
the name of SquaresChnFtrs in plots of the Results chapter (chapter 7) for better
visualization.

5.3 Validation metrics

The validation criterion considered in this work aims at characterizing accuracy
and precision properties of detection methods. The three elements describing the
quantification of the validation criterion (i.e. metric, reference, figure of merit) are
presented altogether in the following under the term of validation metric.

We consider three validation metrics to assess a detector pose estimation perfor-
mance: a first one regarding the overall bounding geometry (section 5.3.1), a second
one regarding the tool orientation (section 5.3.2), and a third one regarding the
tool-tip position (section 5.3.3). We also propose in section 5.3.4 another metric
dedicated to the performance of the semantic labelling stage of our proposed Sha-

peDetector.

Figure 5.1: Visual representation of validation metrics computation between the
blue BG4 and the orange BGy. Tool-tips are symbolized by a yellow circle and
the green line represents the tip to tip distance.

Figure 5.1 illustrates for two different images the metrics validating the pose
estimation. Metrics are computed between the blue BGy; and the orange BG g,
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each tool-tip being symbolized by a yellow circle. The green line represents the
distance between both tip locations.

5.3.1 Polygon overlap

The polygon overlap metric proposes to study the tool global position, which is
the go-to metric for pedestrian detectors. Due to surgical instruments’ elongated
shapes, we decide to use bounding polygons cropped to image borders, instead
of standard bounding boxes. We use the traditional Intersection Over Union crite-
rion [Everingham 2014] to count false positives and false negatives (see equation 5.1).
Since a small difference in orientation between two elongated polygons leads to small
overlapping areas, we consider true detections the ones with an overlap of at least
25% with the ground truth, instead of the traditional 50% threshold. We will show
in chapter 7 detector performance stability until a 60% area threshold.

area(BGg N BGyt)
area(BGg4 U BGyy)

Overlap = > 25% (5.1)

5.3.2 Orientation difference

Given many in-plane tool rotations during surgeries, we compute for every true
detection BG4 obtained at a fixed rate of 107" FPPI the error in the orientation
estimation with the corresponding reference BG ;. Results are plotted as probability
versus orientation difference (in degrees).

5.3.3 Tool-tip distance

In some applications, the tool-tip position is more relevant than the tool-body pose
estimation. We can thus measure the Euclidean distance between a detection BG4
and its corresponding reference BGy:. To ensure meaningful results, we compare
methods at a fixed rate of 10~! FPPI, and propose to disregard detections deviating
by more than 45° from the ground truth. This measure is optimistic over the
estimated accuracy given many false positives, but gives an upper bound on the
tool-tip precision when detections are correct. In chapter 7, we will show the limited
impact of the orientation threshold over reported tool-tip distances.

5.3.4 Segmentation quality

For reporting multi-class semantic labelling results, two metrics are widely used:
per-pixel and per-class averages. Both those metrics are computed by performing a
full image pixel-wise comparison between semantic labels (i.e. single map output)
and ground truth labels.

For the per-pixel metric, the overall percentage of correctly-classified pixels is
computed, all classes included. For the per-class metric, per-class percentages of
correctly-classified pixels are measured, then averaged altogether.
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5.4 Baseline

To understand the difficulty of detecting surgical tools from in-vivo surgery images,
we re-used or implemented different baselines for comparison with our proposed
methods. In sections 5.4.1, 5.4.2, and 5.4.3, semantic labelling, one-stage and two-
stage baseline approaches are respectively introduced. For completeness, we also
detail in section 5.4.4 multiple variants of our proposed ShapeDetector approach.

5.4.1 Semantic labelling: Darwin

We used the Darwin framework, introduced in [Gould 2012], as a baseline for the
semantic labelling task.

The classifier approach is inspired by [Shotton 2006] and is based on boosted decision
trees built on top of features comprising filter banks, HOG and RGB color. Features
are heavily hand-crafted and choice of pooling regions is not randomly performed.

5.4.2 One-stage: Linemod

As a representative for one-stage approach baseline, we chose the Line-mod detec-
tor [Hinterstoisser 2010], based on a fast matching of oriented gradient templates.
It is a well-known and open-source detector, already packaged and ready to use
as part of the OpenCV libraries. This technique is supposed to perform well and
thus serves as a good baseline because surgical instruments are mainly texture-less
objects.

5.4.3 Two-stage: Skeleton

As a first two-stage baseline, we implemented a naive method based on mathemat-
ical morphology operations. Heavily hand-crafted for tool detection, this method
exploits the geometry of surgical instruments by searching exclusively for tubular
shapes. An overview of the Skeleton pipeline is shown figure 5.2.

Inputs

The semantic labels (i.e. single map output) coming from the first stage are used
as input for this method. Pixels labelled as belonging to the background class are
set to black and pixels labelled as belonging to the tool class are set to white, thus
giving a binary black and white mask (illustrated figure 5.2a).

Process

The first mathematical morphology operation consists in a double dilation on the
input mask, using a structuring element of size 5x5 (refer to figure 5.2b for the result
of the dilation). The double dilation is necessary as to reduce labelling noise visible
in the input mask as much as possible .

Tubular shapes needing to be identified and counted, we thus extract topological
skeletons [Zhao 1991] in order to summarize the tool presence evidence. Indeed, as
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Figure 5.2: llustrated Skeleton approach workflow.

we consider tubular shapes only, they can be reduced to their barycentre lines or
"skeletons" (see figure 5.2¢). Assuming a minimal size for surgical instruments in
the image can be set, an additional noise reduction step is performed. After com-
puting connected components, only skeletons with a length longer than an empirical
threshold are kept (illustrated figure 5.2d). From the set of remaining connected
components, we estimate straight lines using the Hough transform (see figure 5.2¢).
Each line obtained, and longer than a specific threshold, is considered as a candidate
detection and enriched with a bounding polygon and a score computed proportion-
ally to the line length.

Post-processing
Finally, a greedy NMS iteration is performed based on candidate detection scores
for a final set of detections presented figure 5.2f.

5.4.4 Two-stage: ShapeDetector variants

In section 4.3, we presented the methodology of our proposed two-stage pipeline:
the ShapeDetector. Following the pipeline, various semantic labelling methods can
be employed, two types of semantic labelling outputs can be leveraged, and two
shape-template creation processes have been introduced. As such, many variants of
the ShapeDetector can be instantiated, but we decided to limit ourselves to three
representative ones.
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FixedTemplate : The SquaresChnFtrs framework is used to perform the semantic
labelling, combined with a fixed shape template model processed over semantic
labels (i.e. single map).

DarwinDetector : The Darwin framework is used to perform the semantic la-
belling, combined with a fixed shape template model processed over semantic labels
(i.e. single map).

ShapeDetector : The SquaresChnFirs framework is used to perform the seman-
tic labelling, combined with the data-driven SVM shape template model processed
over semantic scores (i.e. multiple maps).

FizedTemplate and DarwinDetector instances can highlight the impact of em-
ploying different techniques to perform the pixel-wise classification. The impact
of performing differently the shape template model creation will be underlined by
FizedTemplate and ShapeDetector instances. While we consider ShapeDetector to
be the name of our proposed two-stage detector pipeline, it also refers to the variant
achieving best performance.

5.5 Conclusion

Although no single correct way to perform the quantification of a validation criterion
exists, defining a proper validation methodology is crucial. To that extent, this
chapter provides a detailed description of our proposed methodology designed with
the aim to quantify and rank detection approaches in a realistic, unbiased, and
informative manner. A set of competitive baselines has been re-used or implemented
in order to provide perspective in detector performance. Obtained results following
our proposed validation framework are reported in chapter 7.
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Towards real-time detection
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6.1 Introduction

For in-vivo medical applications, while tool detectors must provide highly accurate
results, they also should be able to run at a speed close to the recording device
frame-rate (i.e. around 25 Hz-30 Hz). In order to decrease the processing time, two
strategies can be employed: code optimization and ad-hoc optimization strategies.
The former relies on CPU and GPU performances to obtain the exact same detector
results with better time performance. The speed gain is also being heavily correlated
to computer hardware specifications: the more CPU/GPU CUDA cores, the faster
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the detector. The latter usually obtains speed gain at the cost of detection accuracy
and should be traded with more carefully.

In this chapter, we present a fast implementation (in C++ programming language) of
our ShapeDetector detector. We especially focus on optimizing the pose estimation
step of the pipeline (i.e. second stage) as the semantic labelling (i.e. first stage) is
already performed on GPU thanks to the SquaresChnFtrs framework. We propose
to start by giving some insights about good programming practice, which can be
applied to any application (section 6.2). Then, we propose in sections 6.3 and 6.4
our code optimization choices for a CPU implementation and a GPU one. Finally,
in section 6.5, we introduce some ad-hoc optimization strategies employed to further
increase the processing speed.

6.2 Good programming practice

Before performing deep code optimization, which can be a cumbersome process be
it in CPU or GPU, some generic good programming practice can be considered
as a first layer of optimization. Usually, they can be applied without deep C++
programming knowledge and do not require extensive code modifications. All of the
following programming advice have been employed towards ShapeDetector speed-up.

Compiler options

As a starter, your compiler is smart and can do a lot of code optimization on its own.
As such, the following compiler options should always be prioritized: -march=native
-03.

Inline functions

At compile time, the compiler places a copy of the function body at each point in
the code where the function is called. Using inline functions save the overhead of
function invocation and return (i.e. register saving and restore) by avoiding a jump
to a sub-routine.

Such functions are usually only declared in header files with the inline tag. Oc-
casionally, they can be declared within source files, and have to placed before any
functions invoking them (i.e. preferably at the beginning of the file).

Loop unrolling

Using a loop unrolling strategy optimizes a program’s execution speed at the expense
of its binary size (i.e. space versus speed trade-off). It reduces pointer arithmetic,
end of loop tests, branch penalties and hide latencies (i.e. delay to read data from
memory). As you can see in Figure 6.1, if/else condition tests can be skipped by
increasing the pointer by 2 instead of 1.

Bottlenecks identification
Identifying instructions or code blocks requiring the most computational time is
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Normal loop After loop unrolling

int res= 8;
nt x; '
for(x = 8; x < 100; ++x) forix = B; x < 100; x+=2)

1
ifl (x%2) = @) res += X;
res += x; res += 2%*(x+1):

res 4= 2%y

Figure 6.1: Loop-unrolling example applied to remove unnecessary if/else condition
tests.

paramount to be able to perform code optimization, such code blocks are called
bottlenecks. While bottlenecks can probably be identified with experience (through
educated guess), it is best in general no to assume their location and always measure
speed using dedicated code profilers. As of today, the Intel VTunes code profiler
is the best available for CPU bottlenecks identification, since originating from the
same company manufacturing CPUs. To learn more about CPU code profilers,
please refer to the appendix A.

6.3 CPU optimization

By default, every program/application is being ran on the CPU. As such, we intro-
duce in details our proposed CPU optimization choices. We start by a presentation
of CPU’s hardware and their architecture in section 6.3.1. Then, in section 6.3.2,
we explain how to perform CPU code modifications to make an efficient use of CPU
architecture. Finally, in section 6.3.3, we introduce SIMD instructions enabling to
perform parallel computing on a CPU.

6.3.1 CPU architecture

When working with a computer, numerical data can be stored within five different
physical containers (see figure 6.2). External to a computer, data can be read from
video sources (e.g. consumer cameras) or from hard drives/USB keys. Within the
computer, data is stored into hard drive(s) for long-term periods.

For data to be processed by an application (i.e. some code), a transfer from per-
manent storage areas to temporary storage ones is required. In a standard pipeline,
data is first loaded onto the RAM, then moved onto CPU caches, to finally end up
into CPU registers where computations actually happen.

CPU caches
Designed to make instantly available data most often used by the CPU, two levels of
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Figure 6.2: Illustration of computer and CPU architectures.

caches are available: level 1 and level 2. Their purpose is to serve as buffer between
the global memory (i.e. RAM) and registers, thus reducing the average time to
access data from the main memory.

Level 1 cache is a small amount of memory, usually ranging from 2Ko to 64Ko,
directly located right onto the CPU. Level 2 cache is memory card located near the
CPU, with a little bit more memory, usually ranging from 256Ko to 2Mo.

CPU registers

They are memory cells built onto the CPU and containing the Arithmetic and Logic
Unit (ALU). They can contain between 32 bits and 256 bits of data, depending on
the generation of CPU.

Data is loaded from a larger memory (i.e. caches) into registers where it is used for
arithmetic or logic operations, or other machine instructions. CPU registers being
at the top of the memory hierarchy, they provide the fastest way to access data.

6.3.2 Memory access and alignment

Having presented data access pattern within the CPU architecture, it appears crucial
to properly store and access data (from the code side) in order to reduce as much
as possible data transfer time from global memory to CPU caches (and eventually
CPU registers).

In the following, we present how to organize memory access order (section 6.3.2.1),
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the effect of having data structures aligned in memory (section 6.3.2.2), and our
implementation choices towards this effect (section 6.3.2.3).

6.3.2.1 Memory access order

Following the locality of reference concept, phenomenon describing related storage
locations frequently accessed, sequential locality occurs when data elements are ar-
ranged and accessed linearly, such as, traversing the elements in a one-dimensional
array.

In other terms, data should be accessed in increasing addresses order as CPU caches
optimize memory access in increasing sequential order. Data has to be fetched from
global memory (i.e. RAM), placed within caches in order to be finally processed
by CPU registers. However, fetching data is a time-consuming task, as such with
sequential data access, the amount of data fetching is limited, thus providing opti-
mized data access.

Most of the time for image processing algorithms, predicting in which order data
will be accessed is easy. As such, data should be organized in memory in such a way
that sequential processing is possible.

6.3.2.2 Data structure alignment

Modern computers read from/write to a memory address in word-sized chunks (e.g.
4 byte chunks on 32-bit systems). Data alignment and data structure padding
correspond to two separate but related issues regarding the way data is arranged
and accessed in computer memory.

Data alignment

Due to the way the CPU handles memory, putting the data at a memory offset
equal to some multiple of the word size increases the system’s performance; and is
called data alignment. However, it may be necessary to insert some meaningless
bytes between two data structures to ensure such alignment, which is called data
padding.

Data padding

Usually, the compiler allocates individual data items as to respect data alignment,
which is not possible for data structures containing members with different alignment
requirements (e.g. a float and a char). To maintain proper alignment within a
data structure, the translator usually inserts additional unnamed data members
(see figure 6.3). In addition, a data structure as a whole may be padded with a final
unnamed member to allow each member of an array of structures to be properly
aligned.

Automatic padding being only performed when a structure member is followed by
a member with a larger alignment requirement, re-ordering members in a structure
will impact the amount of padding required to maintain alignment (see figure 6.3).
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Using pack() instructions represents a lazy solution to tell the compiler to pack the
members of a structure to a certain level of alignment (see figure 6.3). For example,
using pack(2) aligns data members larger than a byte to a two-byte boundary so
that any padding members are at most one byte long.

Bytes: | 1 2 3 4 | 5 6 7 8 9 18 11 12 |
Et“'d Test Member: | AfAA padding | EBB ccc padding |
char AAA; Bytes: | 1 2 3 45 | & |
int BEB; Member: | AmA BBE | ccc | S
char CCC;
b Bytes: | 1 2 | 3 4 5 6 | 7 | 8
Member: | AAA | padding | BEB | ccc | padding #pragma pack(2)

Figure 6.3: Illustration of different data structure paddings.

6.3.2.3 ShapeDetector containers re-factoring

In order to reduce data access time during the ShapeDetector process, data contain-
ers have been memory aligned and re-factored to enable a sequential data access as
much as possible.

Standard OpenCV matrix containers have been substituted by Boost libraries con-
tainers enabling better control over memory alignment. Using Boost GIL (Generic
Image Library) image containers, semantic labelling results (e.g. semantic scores)
have been memory aligned on 32 bits .

Regarding the sliding window process, shape-template models are evaluated over
each pixel location. However, while semantic labelling maps are scanned in an
optimized and sequential order (i.e. double loop over rows then columns), shape-
template models are quite large and cover more of the image than what can be
cached. As such, multiple data transfers from RAM to caches are necessary to eval-
uate a model on every pixel location.

To overcome this issue, we propose to store a shape-template model within a struc-
ture where each square (from the piece-wise approximation) is represented by four
pointers, one for each corner. The sliding window process is not performed over
the image, only pointers within the structure are successively incremented, thus
providing sequential access order and limiting jumps in memory.

6.3.3 SIMD

SIMD stands for Single Instruction Multiple Data, mimicking parallel computing on
CPU registers as illustrated by figure 6.4'. Only data level parallelism is exploited
but not concurrency: at a given moment the same operation is simultaneously (i.e.
parallel) performed on multiple data, but in a single process (i.e. instruction). SIMD
is well suited for algorithms requiring simple, repetitive calculations of large amounts
of data.

'From https://www.kernel.org/pub/linux/kernel /people/geoft/cell /ps3-linux-
docs/CellProgramming Tutorial /BasicsOfSIMDProgramming.html
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Figure 6.4: Scalar operations (left) versus SIMD operations (right).

6.3.3.1 SIMD overview

SIMD instructions are performed by Arithmetic and Logic Units (ALUs) within
CPU registers, hence only arithmetic and logical operations can be executed (e.g. +,
-, and, or) over standard scalar types (e.g. char, int, float, double). While multiple
data can be processed with a single instruction, it is to note that operations cannot
be mixed (as illustrated in figure 6.5).
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Figure 6.5: SIMD unprocessable pattern (left) and processable pattern (right).

SSE, SSE3 or AVX

CPU register size represents the upper limit of data held, which corresponds to the
number of parallel instructions possible to perform. Depending on CPU architec-
ture, register size is varying, but the two most common sizes are: 128 bits and 256
bits.

Multiple generations of SSE (Streaming SIMD Extensions) instructions have been
developed to make use of 128-bit size registers. For example, 8 integer operations
(16 bits) or 4 floating point operations (32 bits) can be performed simultaneously.

To manipulate 256-bit size registers, Advanced Vector Extensions (AVX) have been
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created, adding new instructions to legacy 128-bit SSE ones. For example, 16 in-
teger operations (16 bits) or 8 floating point operations (32 bits) can be performed
simultaneously.

Vector types

While conventional data types used in C programming are scalar types (e.g. char,
int, float), data types used for SIMD operations are called vector types. A vector
can be interpreted as a series of scalars of the corresponding type, automatically
aligned on 16-byte boundaries, and of similar length to the type of extensions used
(e.g. SSE or AVX).

However, vector fields can not be accessed directly and union types have to be
declared with a corresponding scalar container. Figure 6.6 illustrates an SSE vector
type (n128) and an AVX vector type (m256) is case of float elements.

»def union { typedef union {
ml28 m; m256 m;
float v[4]; float v[8];
} wdsf; // gives access to vast } vBsf; /f gives access to vBsf

Figure 6.6: SIMD union types for SSE instructions (left) and AVX instructions
(right).

6.3.3.2 SIMD implementation

In the second stage of the ShapeDetector pipeline, since integral images are em-
ployed, shape-template models are evaluated through the computation of a limited
number of floating point operations. As such, we propose two SIMD implementa-
tions: one for 128-bit registers (i.e. SSE3) and one for 256-bit registers (i.e. AVX).
We use an optimized memory access strategy, similar to the one described above,
where iterators are created on each four corners of piece-wise shape-template model
approximations, then slided along the semantic labelling results. As SIMD con-
tainers, we use v2di vector type for SSE instructions and v4di vector type for AVX
instructions, respectively allowing to perform simultaneous operations on 4 float and
8 float values.

Here is the exhaustive list of SSE instructions required: mm loadu_sil28,
~mm_add_epi32, mm sub_epid2, mm load psl, mm mul ps, add_ ps.
Here is the exhaustive list of AVX instructions required: ~mm256 cvtepi32 ps,
~mm256 add ps, mm256 sub ps, mm256 setl ps, mm256 mul ps,
_mm?256 hadd_ps.

6.3.4 Multi-threading

OpenMP, which stands for Open Multi-Processing, is an API supporting multi-
platform shared memory multiprocessing programming in C++. It consists of a
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set of compiler directives, library rountines and environment variables that influ-
ence run-time behavior 2. OpenMP can be easily used to multi-thread specific code
blocks, using by default the maximum number of available cores.

For the ShapeDetector, the sliding window procedure is following a double loop,
the first one over the different shape-template models (i.e. different scales and
orientations) and the second loop corresponds to the full image evaluation of the
shape-template model. Using OpenMP, the first loop is multi-threaded over avail-
able CPU cores. As such, in parallel, the same input image is being evaluated for
different shape-template models.

6.4 GPU implementation

Having described an optimized CPU version of the ShapeDetector, we want to make
use of the GPU to further increase computational speed. The GPU is especially
well-suited to address problems that can be expressed as data-parallel computations
with high arithmetic intensity. Because the same program is executed for each data
element, over many data elements, the memory access latency can be hidden with
calculations instead of big data caches.

We propose to present an overview of GPU architecture in section 6.4.1 and related
GPU programming notions in section 6.4.2. Then, relying on CUDA libraries, we
introduce design choices of our GPU implementation in section 6.4.3.

6.4.1 GPU architecture

Figure 6.7 illustrates differences in design between CPU and GPU architectures
while highlighting GPU capabilities toward compute-intensive tasks®. GPU devices
devote more transistors (i.e. green elements) to data processing than CPU’s, where
green elements correspond to ALUs (i.e. CPU registers), mainly versed into data
caching and flow control.

Control ALU ALU
ALU

AlU

I N N

Figure 6.7: Representations of CPU architecture (left) versus GPU architecture
(right).

?From http://en.wikipedia.org/wiki/OpenMP
3From http://docs.nvidia.com/cuda/cuda-c-programming-guide/
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As illustrated by figure 6.8, a multi-dimensional grid (from 1D to 3D) is used
to organize GPU thread blocks?. Since all threads of a block are expected to reside
on the same processor core (and share limited memory resources), the number of
threads per block is limited to 1024 on current GPUs.
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Figure 6.8: Illustration of grid/blocks/threads of a GPU.

6.4.2 GPU programming model

Host versus Device

The CUDA programming model assumes that CUDA threads are executed on a
physically separate entity name device (i.e. the GPU) as a co-processor to the CPU
running the main application, named host.

The model also assumes that both the host and the device maintain their own sepa-
rate memory spaces. Similarly to header (*.hpp) and source files (*.cpp) managing
and processing data for the host, specific *.cu code files manage memory spaces and
process data for the device.

Kernels and execution configuration
As opposed to regular C functions executed only once, CUDA allows to define

“From http://docs.nvidia.com/cuda/cuda-c-programming-guide /
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functions, called kernels, that are executed N times in parallel by N different CUDA
threads. The number of CUDA threads executing a kernel function is specified
using the execution configuration syntax inserted between the function name and
the parenthesized argument list (represented in equation 6.1).

__global __voidFunction <<< Dy, Dy, Ns, S >>> (parameters); (6.1)

D, specifies the dimension and size of the grid (in 3 dimensions) such as Dg.x *
Dgy.y * Dy.z equals the number of blocks being launched. Dy, specifies the dimension
and size of each block (in 3 dimensions) such as Dy.x * Dy.y * Dy.z equals the number
of threads per block. N; specifies the number of bytes in shared memory that is
dynamically allocated per block in addition to the statically allocated memory. S is
an optional argument specifying the associated CUDA stream.

Execution configuration arguments have to be carefully selected with respect to the
GPU device compute capability. Likewise, function calls will fail if Dy or D, are
greater than maximum sizes allowed for the device.

Memory access

During their execution, CUDA threads can access data from the GPU device only
via multiple memory spaces such as their local private memory, the thread block
shared memory, or the overall memory. The latter memory type encompasses global,
constant, and texture memory spaces, which are persistent across kernel launches by
the same application. Data, once set as texture on the GPU device, can be accessed
at any given time by any thread with almost any cost (time-wise).

6.4.3 CUDA implementation

To perform the detection process on the GPU, we opted to use the following grid
and block dimensions:

e Block dimensions: Dy.x = 16, Dy.y = 16, Dy.z = 1.

e Grid dimensions: Dg.x = W/Dy.x, Dg.y = H/Dy.y, Dg.z = O/Dy.z. W and
H represents the width and height of the input image. O corresponds to the
total number of orientations to process.

The kernel method is separating the image into sub-images of 16 x 16 pixels, each
processed on a different thread at a specific orientation. The complete correlation
of the SVM model over one image pixel location to produce a detection score is
performed in the same thread.

6.5 Ad-hoc optimization strategies

After CPU code optimization or GPU implementation, there is not much room left
for speed improvement while maintaining exactly identical detector performance.
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Although waiting for new hardware generations can be a possibility, the remaining
solution to further increase computational speed is through the use of ad-hoc opti-
mization strategies, potentially detrimental to detector accuracy.

Below, we report various parameters having an impact on the processing speed de-
pending on the range of values selected by the user. They are applicable to both
CPU and GPU implementations of the ShapeDetector as they are not directly im-
pacting the computation process itself, but more-so relate to pre-/post-processing
choices.

6.5.1 Data down-sampling

The first, and probably most obvious, strategy to speed-up detection is to reduce
the size of input data to process. Instead of processing full images, spatial down-
sampling by a factor 2 or 4 is performed beforehand. In order not to lose too much
information, integral feature channels are shrunk after computing features over the
original input image.

6.5.2 Search range

With the ShapeDetector, we perform at least multi-scale and multi-orientation sur-
gical tool detection, with a potential round of multi-tool detection to try to perform
classification and detection at the same time. For each initial tool model, a com-
plete multi-scale/-orientation is necessary without the possibility to perform multi-
threading or parallel computing. As such, using two tool models virtually doubles
the processing speed of the detector.

While every space configuration could be tested, the computational time required
would be tremendous. Conversely, an overly reduced search space might lead to
far too inaccurate results. As such, orientation and scale search spaces have been
parameterized as described below.

Orientation search range is defined by a unique parameter being the step be-
tween two consecutive orientations to search, obviously in the range [0°, 360°].

Scale search range is defined by three parameters: the highest scale to detect,
the lowest scale to detect, and the number of scales to search in-between. Scale
is represented by one value, being a ratio when compared to the initially learned
model size, assimilated to represent scale 1.

6.5.3 Candidate detections

The last category of user choices relates to the amount of candidate detections al-
lowed. At the end of the sliding window approach, all the candidate detections are
first sorted by their confidence score before being transferred to the NMS procedure.
Evidently, post-processing a hundred detections is way faster than having to deal
with a million ones.
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To limit the pool of candidate detections, a first selection is performed by only
keeping the ones with a confidence score higher than a specific threshold (i.e. de-
tection score threshold). Detection scores being decimal values, potentially with a
restrained order of magnitude differential, we propose to give an upper bound to
the amount of candidate detections. A second threshold is then used to specify the
number of best candidates to keep and transfer to the NMS procedure.

6.6 Discussion

Performing detection speed-up, either through code optimization and parallel com-
puting or through the use of ad-hoc optimization strategies is becoming common.
Obviously the main goal of object detectors is to obtain highly accurate results be-
fore being able to run fast. Nevertheless, the frame per second processing capacity is
being mentioned side-by-side with the LAMR value in pedestrian detector literature
review |[Dollar 2011|. Conjointly with the use of integral channels, this indicates the
importance of detection speed and a desire made by the community to find new
ways for speed improvement.

Processing data in real-time is also crucial for integration into medical applications
such as CACAI systems. At the very least, a detection algorithm should be able
to process data at the same speed as the recording device to make a full use of
available information. Depending on physical hardware constraints, investigating
CPU code optimization, GPU code optimization and ad-hoc optimization strategies
is necessary. Some medical devices are currently only equipped with a CPU and
can not integrate a GPU because of space constraints. Waiting for high-end GPUs
to enter the OR might take some time, thus investing other speed-up solutions is
unavoidable. In addition to space constraints, GPUs require high power-supply and
multiple fans to reduce the heat from an intense use, which might be an issue within
sterile environment where dust can not be expelled anywhere.

Counsidering CPU code optimization through SIMD instructions or GPU implemen-
tation might be extreme, yet taking advantage of C++ programming advice and
OpenMP libraries is a good start to notice speed differences. Without thinking
about applications where high speed is mandatory, small speed increase enable the
acquisition of more experimental results in a same amount of time. In our line of
work, the sooner detection results are acquired and analyzed, the sooner the method
can be modified and improved. Having to wait fifteen minutes for a new batch of
detection results is not long-term time-efficient when the same results could be gen-
erated in five minutes with the use of OpenMP.

Of course, CPU code optimization and GPU implementation simply enable to ob-
tain the same detection results in less time. When dealing with ad-hoc optimization
strategies, the impact on detection accuracy should be assessed in order to find the
best position along the speed versus accuracy trade-off.
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7.1 Introduction

Having presented core elements of this thesis work in previous chapters, as long as
validation studies, in this chapter we focus on tool detector performance validation
and comparison. First, we investigate ShapeDetector parameters impact on detec-
tor performance in section 7.2. Then in section 7.3, we report overall detection
results for all the considered baseline methods (as introduced in section 5.4). In
section 7.4, we study the processing speed for both the adapted SquaresChnFtrs and
the ShapeDetector. Finally, in section 7.5 we provide discussions and future work
directions.

7.2 ShapeDetector tuning process

As presented in section 4.3, the ShapeDetector framework is based upon a two-stage
pipeline. Each stage using its own learning approach and specific set of parame-
ters, investigating their impact on ShapeDetector performance is of interest. Inde-
pendently optimizing parameters of each stage eventually leads to better detection
results.

In section 7.2.1, we take a closer look to the pixel-wise classification process and focus
on obtaining the best intermediate semantic labelling results. Then in section 7.2.2,
we investigate the design space for the shape-template model creation.

7.2.1 Semantic labelling

Computed with the segmentation quality validation metric, we study the impact
of the cascade classifier parameters on the semantic labelling quality (in sec-
tion 7.2.1.1). Then, in section 7.2.1.2, we compare results with the considered
semantic labelling baseline. Finally, in section 7.2.1.3, we provide images showcas-
ing success and failure modes of the semantic labelling.

7.2.1.1 ShapeDetector semantic labelling: parameters tuning

Only a handful of parameters can have an impact on the semantic labelling quality
(for the method introduced in section 4.3.2). Those parameters can be grouped
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into two categories: related to the feature representation or to the cascade classifier
learning. Table 7.1 reports the impact of different feature representation on the
labelling accuracy. As expected, color and texture are strong cues, while position is
a rather weak one.

Table 7.1: Feature representation impact on the labelling accuracy.

Feature channels Accuracy
HOG alone 78.9%
HOG+LUV 84.9%
HOG+LUV+XY 85.1%

HOG+LUV+XY+FB 85.2%
HOG+CN+XY+FB | 85.7%

For the HOG+CN+XY+FB feature channels combination, table 7.2 reports
the impact of different cascade classifier learning configurations on the labelling
accuracy. It indicates that larger model window size or increased number of weak
classifiers has very little to no effect on the semantic labelling accuracy. The
decision tree depth parameter is not studied as it can not be modified.

Table 7.2: Cascade classifier learning configuration impact on semantic labelling

accuracy.
Model window size | # Weak classifiers | Accuracy

200 51 x 51 85.6%

500 31 x 31 85.4%

500 41 x 41 85.8%

500 51 x 51 85.7%

500 61 x 61 84.7%

750 51 x 51 85.4%

1000 51 x 51 85.4%

In the remainder of the chapter, all subsequent experiments using the
SquaresChnFtrs semantic labelling are performed using 500 depth-2 decision trees,
a bl x 51 model window size, and HOG+CN+XY+FB as feature channels repre-
sentation.

7.2.1.2 Semantic labelling performance comparison

As presented above, the SquaresChnFtrs semantic labelling is obtaining an accuracy
of 85.7% with the selected parameter configuration. As a comparison, the semantic
labelling baseline considered: Darwin, is obtaining a lesser accuracy with 73.4%
only. Figure 7.1 illustrates semantic labels map obtained from both techniques over
the same image. Tool regions are visibly better labelled with the SquaresChnFtrs
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approach than with the Darwin one. The Darwin approach is under-labelling with
many tool pixels missed, while by comparison the SquaresChnFtrs is slightly over-

labelling.

Figure 7.1: Semantic labels map obtained from Darwin (left) and the SquaresChn-
Firs framework (right). Detected tool pixels are marked green.

7.2.1.3 Success and failure modes

Figure 7.2: Example semantic labelling results obtained from the SquaresChnFtrs
method (HOG + CN + XY + FB configuration). Detected tool pixels are marked green.
The rightmost column shows some failure modes.
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Figure 7.2 illustrates success and failure modes obtained with the SquaresChn-
Ftrs semantic labelling. It can be noticed that either in success mode images or in
failure ones, the semantic labelling is quite noisy. While most of surgical tools are
marked in green, their boundaries are not well defined and tips are sometimes not
completely covered.

7.2.2 SVM shape-template model creation

Creating an accurate surgical tool model is crucial for high detector performances.
For the SVM model creation, introduced in section 4.3.3.2, many different training
sample configurations as long as various design choices can be selected. Their impact
on ShapeDetector performances are quantified using the polygon overlap validation
metric.

First, SVM training sample impact is reported in section 7.2.2.1 for positive samples,
and in section 7.2.2.2 for negative ones. Then, SVM design choice impact is reported
in section 7.2.2.3 for the regularization term and in section 7.2.2.4 for other SVM
parameters. Finally, a conclusion on the SVM shape-template model creation is
provided section 7.2.2.5.

7.2.2.1 Positive training samples

Three strategies have been considered to generate positive samples for the SVM
training (see section 4.3.3.2): (1) SquaresChnF'trs semantic labelling scores, (2) an-
notations of all surgical instruments, (3) annotations of a single surgical instrument.
In figure 7.3, we report ShapeDetector performance for those three alternatives.
Using single instrument annotations (red curve) leads to the best detection perfor-
mances.
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Figure 7.3: Detection results for each type of positive samples used to learn the
SVM model. Obtained with the polygon overlap metric for a suction tube.
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Figure 7.4 illustrates visual SVM model differences when learned with the three
type of positive samples, for a suction tube instrument and the upper part of a
bipolar forceps. As can be expected, the 'cleanest’ model exhibiting best the tool
shape is obtained from the third alternative. The tool shape obtained with the
first alternative is extremely noisy and the tool is hardly recognizable. Indeed, in
addition to semantic labelling results being quite noisy themselves, in the data-set
the suction tube is sometimes partially occluded by other surgical instruments or
being very close to them, explaining the not-so-well-defined shape.

R Rp—

T PR NN
h‘.. - .__-‘._-a‘l“

s :

.“ﬂ

) Semantic labelling data  (e) All instruments annotations (f) Single instrument annota-
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tions

Figure 7.4: SVM model per type of positive samples for a suction tube (top) and a
bipolar forceps (bottom). Upper rows represent the background class and bottom
rows the tool class.

7.2.2.2 Negative training samples

Three negative samples alternatives have been considered to train the SVM shape
model (see section 4.3.3.2): (1) binary sampling, (2) grey-scale sampling, (3) Gaus-
sian sampling.

Figure 7.5 displays the visual impact of SVM model alternatives. Variations in
appearance are minimal across models, indicating a small impact of the negative
sampling strategy on detection results.
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Figure 7.5: Suction tube SVM model per type of negative sampling strategy. Upper
row represents the background class and bottom row the tool class.

Figure 7.6 reports ShapeDetector detection performance for those three alterna-
tives. We can see that the same results are obtained without any noticeable different
between negative sampling strategies.
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Figure 7.6: Detection results for each type of negative samples used to learn the
SVM model. Obtained with the polygon overlap metric for a suction tube.

In table 7.3, we report the mean and variance parameters of the Gaussian used to
perform the sampling with alternative (3). Gaussian distributions are very similar
when using either single annotation (alternative (1)) or full annotations (alternative
(2)) positive sample creation strategy, indicating a limited presence of other tools in
the vicinity of one tool. Very different parameters are obtained from real semantic
labelling positive samples and huge discrepancies can be noted when compared to a
perfect semantic labelling represented by the full annotation positive sample creation
strategy, corroborating the presence of noise.
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Table 7.3: Gaussian parameters for different tools and positive image types: Single
Annotation (SA), Full Annotation (FA) and SquaresChnFtrs labelling (Real). *
indicates only the upper part of the tool is used.

Suction tube Bipolar Forceps
SA ‘ FA ‘ Real || SA* ‘ SA ‘ FA ‘ Real
Mean (Tool class) || 166 | 158 | 26 181 | 150 | 142 | 33
Var. (Tool class) 55 | 57 5 51 | 58 | 60 8
Mean (BG class) || 89 | 97 | 41 74 | 105 | 113 | 55
Var. (BG class) 55 | 57 | 10 51 | 58 | 60 | 16

7.2.2.3 SVM regularization

We propose to investigate the impact of the SVM 2D spatial regularization term in
two ways. First, its visual impact on shape-template models, and then its perfor-
mance impact on ShapeDetector results.

Visual impact
Figure 7.7 displays side-by-side models obtained with and without SVM regulariza-
tion for a suction tube and a bipolar forceps. Models learned with the use of the

regularization term are noticeably smoother, indicating a proper behavior for the
spatial regularization.

===

Figure 7.7: Visual impact of the SVM spatial regularization term. Odd columns
display regularized SVM models and even columns unregularized ones. Upper row
represents the background class and bottom row the tool class.

Impact on ShapeDetector performance

Figure 7.8a reports ShapeDetector performance obtained with two suction models,
one with spatial regularization and one without. The SVM spatial smoothness prior
is not improving the overall quality as results are almost identical.

7.2.2.4 SVM parameters

The last parameter studied is the value of the internal SVM regularization parameter
C. As shown in figure 7.8b, varying this parameter has no impact on the detector
performances.
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(a) Impact of the SVM regularization. (b) Impact of the SVM C parameter.

Figure 7.8: Impact of the SVM regularization (left) and the SVM C parameter
(right) on ShapeDetector performance for the suction tube.

7.2.2.5 Conclusion

From those experiments, we identified which training samples and SVM design space
have to be used to obtain the best detection results possible. In the remainder of the
chapter, results are reported with SVM models learned using the following configu-
ration: an SVM C value of 1, the spatial regularization term, a binary distribution
for sampling negative examples, and single instruments annotations as positive ex-
amples. Shape template models are trained at a fixed size of 125 x 300 pixels. An
exhaustive side-by-side display of SVM models over different design space configu-
rations is available appendix C.

7.3 Detectors performance

Having presented how to optimize both stages of our ShapeDetector, we propose in
this section to report and compare detectors performance for the two most common
tools of the dataset: the suction tube and the bipolar forceps. To ensure a fair
comparison, we match the parameters of each method as closely as possible in terms
of training data, evaluated scales and orientations.

Considering the pose of an instrument to be represented by three parameters, a
detailed performance validation for each is proposed. First, for the global position
in section 7.3.1, then the tip location in section 7.3.2, and lastly the orientation in
section 7.3.3.In addition, success and failure modes are illustrated in sections 7.3.4
and 7.3.6. To complete the comparison between considerd detectors, we propose in
section 7.3.5 a side-by-side visual illustration of their results on a sub-set of images.
At test time, detectors were evaluated using a 4-pixel stride in line and column
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without image down-sampling, and a 5° orientation step (i.e. 72 orientations are
evaluated). Only one tool shape model has been ran at a time.

7.3.1 Global position performance
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Figure 7.9: Comparative detectors performance according to the polygon overlap
metric. LAMR are reported in brackets.

For reference, global position performance results are obtained using the polygon
overlap validation metric, as described in section 5.3.1. Figure 7.9 illustrates results
where large differences in detection quality amongst the considered methods are
noticeable. Linemod performs quite poorly in this domain, showing that using an off-
the-shelf detector is not enough. Our adapted SquaresChnFtrs performs significantly
better, most likely due to its more flexible model. Still, generic detectors (i.e. one-
stage approaches) achieve a rather poor performance, reaching less than 50% recall
at 107! false positive per image (for the suction tube). On the other hand, the
hand-crafted Skeleton approach provides better results, indicating that pixel-wise
segmentation is a strong cue. Finally, our ShapeDetector obtains the best results
thanks to its data driven learning instead of hand-crafting features or shape cues.
Using this metric, at 10~! false positive per image, the miss-rate is reduced by a
third with respect to the best generic detector. Which shows the utility of the
proposed two-stage approach. The poor results of DarwinDetector compared to
FizedTemplate indicates that high quality semantic labels is key for good detection.

Detector stability

Previous results are obtained using a 25% area threshold within the polygon overlap
validation metric. As such, we propose to highlight the impact of selecting different
overlap threshold, as illustrated in figure 7.10. The results obtained at the selected
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value of 25% are similar to the ones obtained at the more standard 50% threshold,
showing good performances stability. Our ShapeDetector approach obtains low log-
average miss-rate for a large range of overlap thresholds and outperforms any of the
other approaches.
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Figure 7.10: Log-Average Miss Rate as a function of the overlap threshold for the

considered detectors, for a suction tube.

7.3.2 Tool-tip distance performance

The Linemod detector being extremely under-performing, the miss rate at 10! false
positive per image mark is around 90%, which is far too low to perform an accurate
validation over the remaining candidate detections. As such, for this study using the
tool-tip distance validation metric, the Linemod detector is not considered. Results
are reported in figure 7.11.
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Figure 7.11: Comparative detectors performance according to the tool-tip distance
metric, at the 107! FPPI mark.
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Both our adapted SquaresChnFtrs and ShapeDetector have similar performances
under this metric, with less than a 20-pixel error for a 50% recall for the suction
tube. Between FizedTemplate and DarwinDetector, the 10% recall difference for a
40-pixel suction tube tip error indicates the impact of the semantic labelling quality
around tool boundaries. A 20% recall improvement at a 20-pixel suction tube tip
error can be noted between the Fized Template and the ShapeDetector, pointing out
the benefits from sophisticated shape modelling towards the tool-tip estimation.
With our proposed ShapeDetector, the bipolar forceps tip position is overall better
estimated than for the suction tube. Aside from the tool tip occlusion issue, semantic
labelling noise appears to be less influential for tools with a large enough tip region,
the bipolar forceps being bigger than the suction tube at a similar microscope zoom
value.

7.3.3 Orientation estimation performance

For the same reason as stated above, this study using the orientation difference
validation metric does not consider the Linemod detector. Results are reported in
figure 7.12.
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Figure 7.12: Comparative detectors performance according to the orientation dif-
ference metric, at the 10~ FPPI mark.

All the compared approaches exhibit a similar behaviour regarding orientation
accuracy for suction tube detections. The best orientation estimation (i.e. less than
a 5° difference) is achieved for more than 60% of detections across the methods,
given models being tested with a 5° orientation step. Curves are steady in-between
a 45° difference and a 155° difference, indicating only few detections are completely
erroneous orientation-wise. For the ShapeDetector, roughly 20% of detections have
an orientation deviating by 170°-180° from the reference, indicating a well placed
detection regarding its global position, only facing the opposite direction. Noisy
semantic labelling results around tool-tip locations, region heavily focused by the
shape model learning strategy, as long as occlusions can induce such a shift in orien-
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tation. Regarding the bipolar forceps surgical instrument (illustrated figure 7.12b),
such a confusion is orientation is far less important, happening only for 5% of can-
didate detections with the ShapeDetector. Bipolar forceps overall shape is diverse
enough to compensate for tip labelling noise and provide a robust orientation esti-
mation

7.3.4 Success modes

Figures 7.13 and 7.14 display success modes obtained with the ShapeDetector for a
suction tube and a bipolar forceps model.

Figure 7.13: Detections using our ShapeDetector with a suction tube model. First
row: original images; second row: our detections (semantic labelling labels overlaid
in green).

Figure 7.14: Detections using our ShapeDetector with a bipolar forceps model. First
row: original images; second row: our detections (semantic labelling labels overlaid
in green).
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7.3.5 Comparative visual results

Figure 7.15 offers a side-by-side comparison of detections obtained with the various
methods considered across a sub-set of images.

Figure 7.15: Detection examples using a suction tube model (with semantic labelling

results overlaid in green when used).
From left to right: original image, ShapeDetector, Skeleton, DarwinDetector, Adapted
SquaresChnFlrs.
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7.3.6 Failure modes

Figure 7.16 illustrates failure modes obtained with a suction tube model for the
adapted SquaresChnFtrs detector. Detections being performed on a square window
from the surgical instrument model (see green boxes), the polygon model (see pink
polygons) is fitting well-enough the surgical instrument within. However, surgical
instruments being elongated shapes, the instrument model only covers a limited part
of the visible instrument. As such, the polygon model can fit well within the model
square but completely drift off over the remainder of the shape.

Figure 7.16: Adapted SquaresChnFtrs failure modes: polygon drift.

Another category of failure modes for the ShapeDetector approach are reported
in figure 7.17. The detection polygon is well over the surgical instrument, however
the orientation is reversed by 180° because either the tip is occluded or the semantic
labelling is too noisy around the tip.

Figure 7.17: ShapeDetector failure modes: orientation inversion.
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Figure 7.18 illustrates cases of missed detections with a suction tube model for
our ShapeDetector approach.

Figure 7.18: Failure cases using the ShapeDetector approach with a suction tube

model. Odd columns show original images, even columns show detection results.

7.4 Detectors speed

For real-time use in medical applications, the computational speed of surgical tool
detectors must be studied. In chapter 6, we presented two types of strategies to de-
crease computational time: using higher-level implementation techniques or using
ad-hoc optimization strategies. While the former only affects detector speed, the
latter also usually worsen detector performance.

Below, hardware specifications of the computer used to run the experiments are
given in section 7.4.1. In section 7.4.2, speed improvements from CPU and GPU
code implementation techniques are reported. Finally, in section 7.4.3, ad-hoc opti-
mization strategy impact on both the computational speed and detector performance
are studied.

7.4.1 Computer setup

Results were obtained using the following computer setup:

Model: DELL Precision T8600.

CPU: Intel Xeon E5-2620 v2 @2.10GHz.

GPU: NVIDIA GeForce Titan Black. 2880 cuda cores, 880 MHz Clock.
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7.4.2 Speed gain from code design

The original SquaresChnFtrs pedestrian detector being already implemented on
GPU, our adapted SquaresChnFtrs tool detector inherently benefits from its speed-
up. As such, we investigate impacts of the classifier early stopping scheme (i.e.
SoftCascade) on detector speed and performances (see section 7.4.2.1).
Regarding our proposed ShapeDetector, we report in section 7.4.2.2 speed-up values
coming from the CPU code optimization and GPU parallel computing.

7.4.2.1 Adapted SquaresChnFtrs

Using a SoftCascade as early stopping scheme has been proposed to further speed-
up the SquaresChnFirs detector, as introduced in section 4.2.2.4. We report its
impact on our adapted SquaresChnFtrs for two different processing configurations,
as shown in table 7.4). The last column of the table summarizes performance with
the LAMR value.

For a similar processing configuration, the speed-up is roughly tenfold when using
the SoftCascade. As a counterpart, a small drop in detection performances can be
noticed, with a ALAMR of 4 when processing 7 scales and 71 orientations.

Table 7.4:  Adapted SquaresChnFtrs computational speed for different processing
configurations. The LAMR, value is used to report detector performance.

Scales | Orientation | Soft Cascade | Speed (Hz) | LAMR
1 71 No 3 /
1 71 Yes 28 60%
7 71 No 0.3 49%
7 71 Yes 3 53%

7.4.2.2 ShapeDetector

In table 7.5, we report processing times obtained with different ShapeDetector im-
plementations. The semantic labelling step was already performed on the GPU since
using the SquaresChnFtrs framework, and as such CPU speeds can not be reported
in the table. From a non-optimized CPU implementation requiring 1.3 s per image,
we managed to reach a computation time of only 180 ms with a non-optimized GPU
implementation.

Table 7.5:  ShapeDetector computational times with different CPU and GPU im-
plementations, for one 612 x 460 image.

Stage 1 (ms) | Stage 2 (ms) | ShapeDetector (ms)

CPU non-opti. / 1200 1290
CPU opti. / 600 690
CPU SIMD / 200 290

GPU 90 90 180
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7.4.3 Speed gain from ad-hoc optimization strategies

Ad-hoc optimization strategies can be used to further increase a detector’s speed
but at the cost of its performance. Below, results are reported for each category of
ad-hoc strategies presented in section 6.5, when using a suction tube SVM model.
The terminology used in the tables is the following: stride represents the spatial step
used in row and column, # Ori represents the number of processed orientations,
Score thresh. represents the minimum detection score, and # Cand. represents the
maximum number of candidates sent to the NMS procedure. Computational speed
in Hertz and LAMR values ares used to report speed and accuracy results for the
detector.

7.4.3.1 Data down-sampling

Table 7.6 reports speed and accuracy results when performing different shrinking
operations on input integral channels. We can notice a six time speed-up between
the processing of the input image at the original scale and after down-sampling by
a factor 4. The overall accuracy remaining unchanged with a similar LAMR value.
As illustrated figure 7.19, some detections are however better estimated regarding
the tool-tip position.

Table 7.6: Speed versus accuracy performance with different stride configurations.

Stride | # Ori | Score thresh. | # Cand. | Speed (Hz) | LAMR
Config. 1 1 72 0.01 All 0.7 16%
Config. 2 2 72 0.01 All 2.5 16%
Config. 3 4 72 0.01 All 4.6 16%

Figure 7.19: Detection results when processing input-size image (left) and a 4-time
down-sampled image (right).
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7.4.3.2 Search range

For the scale search range, the possibility exists to manually or automatically set the
parameters when accessing the surgical microscope zoom value. As such, only the
orientation search range impact is explored in table 7.7, where speed and accuracy
values are reported. We additionally mention in brackets the orientation step used
for an easier understanding of the table (in the # Ori column). An almost doubled
speed is obtained when processing orientations every 5° compared to every 2°, for a
1% A LAMR decrease. For a triple speed-up, between processing orientations every
15° compared to every 2°, results are more impacted with a 7% A LAMR deterio-
ration. Figure 7.20 illustrates detections obtained when using different orientation
steps. The orientation is better estimated when using a smaller orientation step.

Table 7.7: Speed versus accuracy performance for different orientation search range

configurations.
Stride | # Ori | Score thresh. | # Cand. | Speed (Hz) | LAMR
Config. 1 | 4 | 24 (15°) 0.01 All 8.1 27%
Config. 2| 4 | 36 (10°) 0.01 All 6.7 24%
Config. 3| 4 | 48 (7.5°) 0.01 All 5.9 22%
Config. 4 | 4 72 (5% 0.01 All 16 21%
Config. 5| 4 | 180 (2°) 0.01 All 2.5 20%

Figure 7.20: Detection results when scanning 180 orientations (left) and 24 orienta-
tions (right).
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7.4.3.3 Candidate detections

As presented in section 6.5.3, two parameters regarding the selection of candidate
detections can have an impact on the speed: the detection score threshold and the
upper-bound on the number of detections. The speed-up provided comes from the
NMS procedure taking a longer time with a larger pool of candidate detections to
process. In table 7.8, we report speed versus accuracy performance for different
configurations of those two parameters.

Table 7.8: Speed versus accuracy performance for different candidate detection
selection configurations.

Stride | # Ori | Score thresh. | # Cand. | Speed (Hz) | LAMR
Config. 1 4 72 0.01 All 4.6 21%
Config. 2 4 72 0.01 250 6.5 35%
Config. 3 4 72 0.01 500 6.3 28%
Config. 4 4 72 0.01 1000 5.6 24%
Config. 5 4 72 0.001 All 1.25 16%
Config. 6 4 72 0.0001 All 0.8 16%
Config. 7 4 72 0.0001 10000 1.8 16%

The detection score threshold is highly dependent on the shape model strategy

chosen as final scores are partly computed from model weights. In our case, 0.001
and 0.0001 thresholds provide the same detection performance with a LAMR of 16%
for a 1.5 speed difference. Using a reduced threshold of 0.01, the LAMR value drops
to 21% while in fact results are comparable, until the 10~! FPPI mark. Indeed,
the LAMR value is computed in the [1072:10°] FPPI range, but with this reduced
threshold, miss-rate versus FPPI curves are ending before reaching the 10~! FPPI
mark. As such, the last miss-rate value reached is used up to the 10° mark. As illus-
trated figure 7.21, lowering the detection score threshold is increasing the number
of candidate detections. Roughly 3000 candidate detections per image are obtained
for a 0.01 threshold, while this number goes up to 100000 when using a 0.0001 score
threshold. Decreasing the score threshold marginally improves detection results
while providing up to a 5-time speed-up. Most of the candidate detections with a
score in-between 0.01 and 0.001 are removed thanks to the NMS procedure for only
a few number of false positive detections added.
The second parameter, an upper-bound on the maximum number of candidate de-
tections, is very tricky to manually adjust as very dependent on the number of tools
potentially appearing in the image. The speed-up provided is also very negligible
with a 1.5x factor only, for a huge accuracy loss with a 14% A LAMR decrease. By
keeping the best 250 candidate detections only, some true positives can be missed as
shown figure 7.22. The suction being blurry in the showcase example because of fast
motion, detection scores in this image area are lower than detection scores around
the curette area. As such, detections over the suction tube are not transferred to
the NMS procedure, thus increasing the miss-rate.
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Figure 7.21: ShapeDetector results when using a detection score threshold of 0.01
(left) and 0.001 (right).

Figure 7.22: ShapeDetector results when limiting the number of candidate detections
to 250 (left) and without any limitations (right).



128 Chapter 7. Surgical tool detection: Results and discussion

7.5 Discussion

7.5.1 Detection bounding geometry

In every pedestrian detector as long as most of surgical tool detectors, detections
are represented with square or rectangle windows. This representation is sufficient
enough when dealing with real-life objects prone to gravity. However, surgical tools
are subject to in-plane rotations and rectangles are covering too much of the image,
which does not provide accurate tool pose estimation. Figure 7.23 illustrates surgical
instrument detection results displayed with bounding boxes (in pink) and bounding
polygons (in green). Bounding polygons represent a better alternative and enable

more accurate tool detection.

Figure 7.23: Surgical tool detections represented with bounding boxes (pink) and
bounding polygons (green).

7.5.2 In-plane rotations

In computer vision images (e.g. for pedestrian), the orientation pose parameter is
not taken into account as demonstrated by training images only having to compen-
sate for scale and translation. However, surgical tools can appear through many
in-plane orientation or tilt variations, and as such surgical tool detectors must deal
with the orientation parameter.

The corresponding main issue with computer vision detectors is the feature repre-
sentation not being rotation-invariant (e.g. gradient). A model learned for an object
at one orientation is not able to detect the same object appearing at totally different
orientation as both of their feature representations are widely different. Scanning
a set of different orientations can be seen as a naive approach but is preferable
to using rotation-invariant features, which would lead to a loss of information. A
multi-orientation scanning is conceptually pretty similar to the multi-scale scanning
consistently employed.
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7.5.3 Semantic labelling

Compared to hand-crafted features from other semantic labelling methods such as
Darwin, the SquaresChnFtrs semantic labelling is obtaining the best segmentation
quality because of its flexible and data-driven approach. However, the SquaresChn-
Ftrs semantic labelling is not perfect and resulting maps are relatively noisy and
especially inaccurate around instruments boundaries including the tool-tip. Improv-
ing the quality of the labelling is essential to retrieve precise tool-tip position and
to perform classification. In addition, maybe because of the few available samples,
blurred tool pixels are incorrectly labelled.

Having chosen to model our problem using two classes only, one for tools and one
for the surgical background, is providing good results. One class per surgical in-
strument would only draw confusion in the classifier as all the instruments exhibit a
similar local appearance. Adding new classes to the pixel-wise classification could be
to consider in case of colored surgical instruments such as the blue IOL instrument
used for cataract surgeries.

A specific attention should be brought towards changing illumination conditions in
the recorded videos, highly altering instruments’ color and sometimes introducing
shadows in the image. In those cases, new specific classes could be added to the
pixel-wise classification to identify image regions with specular reflections or tool
shadows.

7.5.4 SVM shape model

Even with hundreds of training images, learning an accurate tool-specific shape tem-
plate through SVM training is difficult given the various ways to generate positive
and negative samples. Using real semantic labelling results to generate SVM train-
ing samples seemed to be the most logical alternative as representing best the reality
of data to process. However, the SVM learning process is hindered by the semantic
labelling noise and resulting models are too noisy. Representing a perfect semantic
labelling case, SVM positive samples created from data annotations serve as a good
alternative. Generating random negative samples from scratch through Normal dis-
tributions is straightforward and easy to implement. Nevertheless, it appears to
be an intelligent choice compared to random image cropping. Indeed, because of
the nature of input images, especially when considered annotation masks, cropped
negative samples would most of the time be completely filled in black or white. As
such, they would not serve as viable input samples for SVM learning.

With our current implementation choices, enforcing 2D spatial smoothness in the
SVM regularization has shown to be ineffective to induce any noticeable improve-
ments in the detector performance. However, the resulting SVM models tend to be
visibly smoother indicating a proper behavior of the regularization term. It might
be due to the piece-wise approximation of shape templates used to gain computa-
tional speed already enforcing such spatial smoothness in a brute-force manner.
The shape learning strategy aims to modeling the way a surgical instrument is
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appearing in the data, usually through many appearance variations such as illumi-
nation changes, occlusion, or x-/y-/z-axis tool rotations. As such, a model does not
represent the physical reality of an instrument, as would a 3D auto-CAD model. For
instruments exhibiting important appearance differences, for example when being
viewed from the left side or right side, the created SVM shape might not be rep-
resentative to the real instrument shape. In case of very different faces for a same
instrument, multiple 2D SVM models should be created to avoid a big blurry/messy
model which will never be good enough to be triggered at run-time.

7.5.5 Detection and classification

The proposed detection approaches are fully data-driven and do not rely on the
use of any kind of prior knowledge to constrain the search space. As such, even
if not thoroughly validated, we are confident in their ability to perform detections
in another surgical context such as laparoscopy where surgical tools appear very
similarly in the images.

Nevertheless, failure modes have been identified such as missed detections or er-
roneous detections especially regarding the orientation estimation. Some missed
detections are the results from the presence of noise in the semantic labelling layer.
Erroneous detections in orientation are exposing the limits of the pose estimation
strategy coupled to the SVM model, most of the time due to tool-tips being occluded.
In both cases, failure modes can be avoided by coupling a tracking approach, as we
touch on in the next chapter. Additional features can also help, for example with
stereoscopic videos and an access to depth information in order to identify blurred
regions in the image. When the microscope is in-focus, those blurred regions rep-
resented regions where surgical tools are titled, due to the shallow depth-of-focus.
Mixing a label map indicating pixels of tilted surgical tools with the label map from
the SquaresChnFtrs where in-focus tools are well labelled can produce better overall
semantic labelling maps, thus enabling a better pose estimation. Temporal features
could have been investigated, however none have shown to be successfully effective
in any other prior study. As such, we preferred to focus on spatial features instead
of going into uncharted waters.

In the current ShapeDetector setup, while running multiple tool models simultane-
ously is possible even if not real-time, the classification issue remains. Indeed, SVM
models can identify the difference between a tool and the surgical background, but
are not built to learn how to differentiate shapes of two similar surgical instruments.
As a result, the detection score over a suction tube with a suction tube SVM model
can be hardly inferior to the one obtained with a bipolar forceps SVM model, as
illustrated figure 7.24. Performing tool classification together with detection is not
straightforward in the current architecture.

Our initial experiments indicate that only subtle cues enable to distinguish
amongst tools (e.g. hook versus suction tube), and thus we believe that more
discriminative features are needed to solve this fine-grained classification task. Po-
tentially learning specific classifiers based on surgical instruments local edges and
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Figure 7.24: Classification issue for the ShapeDetector with concurrent bipolar for-

ceps (left) and suction tube (right) models.

applied on top of the global shape detection could solve the classification issue.

7.5.6 Validation methodology

Assessing the performances of an object detection approach can be hard as a rele-
vant validation methodology has to be defined. In this work, we proposed methods
not relying on prior knowledge in their design and thus we chose to use standard
computer vision metrics for the validation process.

To validate the pixel-wise classification performance, the per-class average metric
is used. However, this is a flawed metric since it does not capture the aesthetic
quality of the results and results that are equal quantitatively can be far from equal
qualitatively. Nevertheless, developing metric assessing the visual quality of images
is a work on its own, and as such we chose to rely on this go-to metric.

From our set of 2D detections, validating the estimation of the three pose param-
eters represented by the tool global position, tip location, and orientation, is the
best achievable. Arguably using bounding polygons for the validation improves over
previous work that considered only bounding box overlap |[Kumar 2013a].

The first validation metric used, the polygon overlap, based upon the intersec-
tion over union criterion, is state-of-the-art and widely used for object detection
in computer vision to assess of overall good positioning. Developed to be used with
bounding boxes, we consider the intersection over union criterion to also fit well with
bounding polygons with an adaptation regarding the overlap area threshold. Instead
of a 50% overlap threshold traditionally used, we decreased it to 25% because of the
nature of the elongated polygons. Small variations in orientation can substantially
lower the overlap area, and the point of this metric is to assess of accurate location
not correct orientation estimation. In retrospect, the traditional threshold could
have been used since we observed performances stability until a 60% area threshold.
This behavior has been mentioned for pedestrian detection where the evaluation is
insensitive to the exact threshold as long as it is below 60% [Dollar 2011].
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Having identified true detections from the use of this first metric, we proposed
to further assess the pose estimation quality through the tool-tip distance and in-
plane orientation difference metrics. Even though being relatively straightforward
metrics, they have been previously used in similar work when using tracking ap-
proaches [Sznitman 2012| and in body pose estimation validation [Dantone 2014].
The choice to study tip position and orientation accuracy at a fixed rate of 107!
FPPI gives an upper-bound of the pose estimation quality when detections are cor-
rect. Given detector behavior in the range [1072, 10°] FPPI, selecting a fixed rate
of 10~ FPPI for the study was the only acceptable possibility.

Obviously, the choice of the 10~! FPPI fixed rate, as long as the obtained miss
rates, orientation differences and tip-distance errors are hard to put in perspective
without any medical application with specific objectives.

7.5.7 Processing speed

The speed-up provided by the Soft Cascade is hard to predict as extremely
dependent on the cascade design itself. Methods spending more time on detection
score computation than on feature computation are expected to benefit more from
the Soft Cascade. For the adapted SquaresChnFtrs, using a Soft Cascade layout is
particularly useful because features are computed only once while multiple cascades
are evaluated. Being able to skip the evaluation of 1500 weak classifiers for each
cascade is an enormous speed-up considering up to 72 different cascades (i.e. 72
orientations).

Regarding the ShapeDetector, the GPU implementation is enabling the fastest
processing speed possible with respect to detection performance. Only specific GPU
code optimization or the next hardware generation could bring further speed-up.

Detector processing time can be additionally decreased by limiting specific
parameters range such as the orientation step or image strides, thus obtaining
coarser detections quality-wise, known as the speed versus accuracy trade-off.
Modifying parameters range or search range is user-dependent and can be easily
done in-between consecutive processings as not impacting on the algorithmic
structure of the detector.

For example, processing the full range of orientation [0°:5°:360°] is mandatory
without any assumptions over tool position in the image. However, knowing the
surgeon hand-dexterity ahead of a detection process, only a sub-range of orienta-
tions necessitate to be scanned, thus providing detection speed-up. Similarly, the
scale search range can be reduced to a couple of scales, given the possibility to
retrieve in real-time the microscope zoom value. Only a look-up-table is required
to couple microscope zoom values with tool model scales.
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7.5.8 Application usage

Many solutions investigated to solve the surgical instrument pose estimation problem
required significant changes to operating room setup. Instead of relying on 2d video
signals (as presented here), some methods require additional tags (e.g. RFID tech-
nology [Bardram 2011]) or specialized optics (e.g. Kinect-based systems [Lea 2012]).
Only requiring the video feed from a surgical microscope, which is a standard medi-
cal equipment for most hospitals throughout the world, our proposed approach can
directly be used in existing operating rooms. The surgical instrument detection
task is a key element for in-vivo surgeon assistance within context-aware computer
assisted intervention systems. Many other applications in the surgical field rely on
tool detection from videos. Example applications are automatic indexation of sur-
gical videos for faster browsing [Lalys 2012], or surgeons’ technique comparisons to
identify best practices [Neumuth 2009].

Even though not tested within a higher-level medical application, current results are
encouraging since the approach is data-driven and not relying on prior knowledge.
As such, we are confident in the possibility to achieve even higher performances by
adding some assumptions when designing a targeted medical application.

Thanks to its architectural design and a GPU implementation, our ShapeDetector
is currently running in-between 5-8Hz, which is close to fast enough for integration
in real-time systems. The soft cap of 25Hz (i.e. recording device speed) should be
reached with proper GPU code optimization or with the new generation of computer
hardware.
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8.1 Introduction

In previous chapters, we

introduced an almost frame-rate spatial detector and

showed interesting performance obtained over our data-set. Depending on the final

medical application relying on tool detection, current results may or may not be



138 Chapter 8. Robustification process towards medical applications

enough, especially regarding the inability to perform tool classification. Taking a
look at pipeline robustification strategies might be necessary to achieve a specific
goal within a targeted medical application. While it has already been proven that
adding layers such as tracking to a robust spatial detector can only improve overall
results, tool categorization is a trickier problem as image-based approaches can be
helpless in case of limited visual differences between two surgical tools.

In this chapter, we start by investigating possible solutions to externally tackle the
surgical tool classification problem and propose an adequate candidate solution (see
section 8.2). Then, we present in section 8.3 a tracking solution to refine spatial
detections.

8.2 Tools classification through external markers

8.2.1 Introduction

Performing simultaneous surgical tool detection and classification using video input
only can prove difficult as many instruments share a similar color (e.g. gray-ish),
overall shape (e.g. tubular structure), or texture. A striking example is illustrated
by figure 8.1, where a suction tube and an endoscope are displayed side-by-side.

) Side- by side endoscope and suction tube

) Suction tube c¢) Endoscope

Figure 8.1: Example of surgical instruments with almost no visual differences when
in use.

Between both instruments, only subtle differences exist to perform categoriza-
tion to the naked eye. Depending on the microscope recording setup (i.e. the
field-of-view) and the surgical reality (i.e. how instruments are moved), it might
be impossible to perform classification from still images as crucial visual landmarks
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may not be visible.

In the literature review regarding surgical tool detection (see section 2.3), we ex-
cluded a category of approaches relying on external markers. Although we deemed
such approaches unfit for the creation of robust spatial tool detectors, they represent
a viable solution when video is not enough. In case of extremely similar surgical
instruments, adding external markers will enable the otherwise impossible tool de-
tection and categorization.

A succinct review of the literature regarding surgical tool detection from exter-
nal markers is provided section 8.2.2. Then, in section 8.2.3, we describe our ex-
ternal marker solution and its corresponding identification technique. Finally, in
sections 8.2.4 and 8.2.5, we present preliminary results regarding external marker
correct identification and provide a discussion.

8.2.2 Review of the literature

Because operating rooms and hospitals in general represent a sensitive environment
with many constraints and regulations, this review of the literature focuses on tech-
nologies that have been investigated in a medical context. Mainly two categories of
markers have been extensively studied: color/shape markers retrieved from image-
based analysis and RFID markers retrieved from external additional sensors.

In everyday life, barcodes represent the most known category of external markers,
being used for various purposes especially in an industrial context (e.g. supermar-
kets, postal services).

Below, each category is detailed and discussed, starting by color/shape marker in
section 8.2.2.1, then RFID markers in section 8.2.2.2 and finally barcode markers
in section 8.2.2.3. A global conclusion regarding the possibility of usage within our
application context is given in section 8.2.2.4.

8.2.2.1 Color/shape markers

This first category can be summarized as external markers identified through low-
level image-based analysis, thresholding for example. Such markers with a distinc-
tive color or shape are usually placed somewhere along surgical instruments shaft.
Figure 8.2 gives an overview of color/shape markers.

In the early work from Casals et al. [Casals 1996], a marker made of three
elements has been proposed to identify the presence of surgical instruments during
laparoscopic surgeries (illustrated by figure 8.2a). Two horizontal straight lines
are placed along the surgical instrument axis in order to retrieve location and
orientation. In addition, a ring mark located at the surgical instrument rod
end enables 3D position retrieval from its diameter measurement. No color has
been specified for the marker itself and basic mathematical morphology and
filtering techniques are employed to perform the detection. In 2002, Zhang and
al. [Zhang 2002] proposed to add on a surgical tool three black rings of a same size
and spaced from each other by a known distance (see figure 8.2c). Marker locations
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Dissector

Chip Applier

(a) Casals et al. (b) Ko et al.

(c) Zhang et al. (d) Wei et al.

Figure 8.2: Color/shape external marker placement examples throughout existing
studies.

are retrieved using low-level image processing such as thresholding on grey-level
images.

Instead of relying on markers’ shape, Wei et al. [Wei 1997] proposed to effectively
use color information to perform tool detection. A color distribution analysis
based on the HSV color space is performed over laparoscopic data to identify
the most suitable marker color. A final near-cyan plastic ring has been proposed
(illustrated figure 8.2d), detected through thresholding on the Hue and Saturation
color space channels. Similarly based on background color distribution analysis,
Tonet and al. [Tonet 2007] added a cyan ring around the tool-tip. Focusing on
cholecystectomy surgeries, Ko and al. [Ko 2005] proposed to add one specific color
marker on each and every surgical instrument (see figure 8.2b).

Finally, bio-compatible color markers have been evoked for an in-vivo real-time
tracking of surgical instruments in laparoscopic surgeries [Bouarfa 2012]. Ex-
clusively relying on color information, this system is claimed to be robust to
partial occlusion and smoke. In addition, performing a multi-instrument detection
is possible, however as more and more different colors are used, the confusion
increases between those colors. Generally, using colors with a maximum distance
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from the surgical background in the hue space is preferred. Pink and red colors are
too easily confused with the surgical background as opposed to blue and green colors.

To conclude, strengths lie in the image processing simplicity to accurately
retrieve the location of the marker as long as in an easy design and placement over
instruments. While adding color or shape information increases the visibility of
one tool, those approaches are usually very sensitive to illumination variations and
occlusions. Markers placed too close to the tool-tip can easily be occluded or hidden
under anatomical structures. For markers positioned along the tool shaft (e.g.
straight lines), visibility issues might arise due to surgical instruments undergoing
in-plane rotations. For multiple parts instruments (e.g. pliers or forceps), placing
the marker on the shared tubular part could be an issue as it might not be visible in
the FoV of the recording device. For color markers, performing surgical background
color distribution analysis is straightforward but illumination variations hinder
the recognition process especially in case of low-level thresholding operations. In
addition, when many different instruments have to be identified, finding enough
color ranges to differentiate each instrument from the other ones as long as from
the surgical background might be difficult to achieve.

8.2.2.2 RFID markers

Before an introduction of the related work on RFID markers use, we start by giving
a quick overview about the RFID technology and its applications and barriers in
health-care.

RFID technology overview

Radio-Frequency [Dentification (RFID) is a wireless use of electromagnetic fields to
transfer data for automatic object identification and tracking purposes. A RFID sys-
tem commonly includes hardware components necessary to emit and receive signals
(e.g. tags, readers, antennas) and a software component to process such signals.
Placed on surgical instruments, two types of RFID tags exist: passive or active,
depending on powering techniques used. Passive tags, without battery power, can
only communicate with the RFID reader when sitting in its electromagnetic field.
On the other hand, active tags can broadcast a response signal towards the reader
as they are self-supplied in power.

Regarding the software component, RFID readers scan tags and send the informa-
tion to the system for further processing such as signal filtering for noise reduction of
signal analysis. In health-care, RFID systems are commonly combined with other
technologies such as Bluetooth or mobile devices. As for the tags, passive ones
are primarily used for patient and drug identification and active ones for tracking
purposes.

Applications and barriers in health-care
Over the past years, the use of RFID markers in health-care has grown rapidly.
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From a recent literature review, performed by Yao et al. [Yao 2010], RFID use in
health-care can be summarized into five categories:

e Tracking applications: aiming at large scale tracking of assets and equipment
in hospitals. They can also be considered for vulnerable patients such as
elderly people, dementia patients, children and newborn.

e Identification and verification: for drugs and sensitive medical supplies (e.g.
blood bags) in order to alleviate drugs counterfeiting, theft and misuse.

e Sensing: for sensor-derived data collecting and integration with physical and
chemical sensors (e.g. humidity sensor, temperature sensor, chemical sen-
SOr...).

e Interventions: for automating care with self pill-dispenser providing patients
with their dose safely, or guiding pathway such as indoor navigational system
form blind people.

e Alert and triggers: for preventing medical equipment such as sponges to re-
main inside a patient after the end of a surgical procedure. Or, for preventing
a patient to ingest the wrong drug with RFID antenna wristbands.

Within hospital environments, due to the electromagnetic nature of the RFID
technology, potential side effects have been investigated especially regarding po-
tential interference between Ultra-High Frequency (UHF) and other devices.
In [Van Der Togt 2008|, 68 cases of interference were observed from 246 tests,
ranging from minor effects (e.g. noise on computer monitors) to potential haz-
ardous failures (e.g. stopping infusion pumps or ventilators) and occurred at dis-
tances from 1c¢m to 6 m away from the interfering device. Conversely, Christe et
al. |[Christe 2008| reported no interference in 1600 tests on five devices at many
different distances ranging from 0.3m to 1.8 m. As outlined by Houliston et
al. [Houliston 2009], chances of interference grow with some specific factors such
as higher output power of the RFID system, shorter distance between RFID reader
and medical devices, and the presence of a tag on a device. In addition to interfer-
ence, a total of six different categories of barriers have been enlightened:

e Interference: electronic medical devices may be hindered in their common
behavior in the presence of high-frequency RFID.

o Ineffectiveness: tag placement remains the main factor in incorrect identifica-
tion. RFID tag readability is strongly dependent on factors such as angle of
rotation and reading distance.

e Standardization: interoperability across providers is difficult because of the
lack of standardization of the RFID protocols at hardware and software levels.

e Cost: infrastructure installation cost as long as integration cost are too ex-
pensive for a tracking system in an hospital.
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e Other barriers: lack of organizational support, trust issue, security concern ...

Related work
In this paragraph, we pay a closer attention to previous works targeting surgical
instrument detection or tracking within the OR (illustrated in figure 8.3).

(a) Bardram et al.

RFID antenna

M

-

A trocar cannula with an

Forceps integrated RFID antenna

(c) Miyawaki et al. (d) Miyawaki et al.

Figure 8.3: Different RFID use from existing works of the literature.

Bardram et al. [Bardram 2011] performed surgical phase recognition through
RFID identification of surgical tools equipped with passive RFID tags. Tables and
trolleys on which tools are placed had built-in RFID readers. As many medical
equipment are metallic (e.g. instruments, tables), UHF RFID has been used. For
detection, nurses were equipped with wireless palm-based RFID sensors (see fig-
ure 8.3a). This sensor is composed of a low-capability reader module, only able to
detect one tag at a time in the low frequency range, meaning that a Low Frequency
(LF) tag on instruments is also necessary. Hence, every surgical instrument was
equipped with both LF and UHF tags. The setup has only been used in a simulated
environment and is not yet suitable for deployment as many security, hygiene, and
ergonomic issues still need to be addressed. In addition, small surgical instruments
such as surgical needles are difficult to tag because of their small width.

Also in a context of surgical activity recognition, Parlak et al. [Parlak 2011] proposed
to select RFID tags type and placement depending on instruments raw material and
shape (see figure 8.3b). They identified long-term interaction instruments, attached
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with two tags, one at the point of contact with the human body (i.e. to detect
interaction) and one where the instrument is likely to remain exposed to the RF
signal. And short-term interaction instruments only provided with a single tag as an
accurate tracking is less crucial. Placing two tags on essential surgical instruments
was generally helpful, however it can be hard to apply in practice, especially with
small contact surfaces (i.e. small instruments). To reduce side-effects from human
presence and system movements, the RFID antenna was mounted at the OR ceil-
ing, facing the floor. Several types of UHF passive tags, including non-metallic ones,
were studied yet not presenting significant impacts on detection performances. No
interference between the UHF RFID system and patient monitors were experienced
during the experiments.

Miyawaki et al. [Miyawaki 2009] developed a UHF RFID system specific to surgi-
cal instrument detection in endoscopic and laparoscopic surgeries. RFID readers
were placed on the end of trocar cannulas (shown figure 8.3d) to detect moments
of tool insertion and removal. Instruments were equipped with a passive ceramics-
encapsulated disk-type tag, resistant to water and heat conditions. They designed
a special device to easily connect and adapt an RFID tag to an instrument (see
figure 8.3¢). This special device is composed of a spring and a stopper such that
the tag can be placed at any appropriate position along the shaft of the surgical
instrument. The spring has the property to be low enough to give no resistance
against a surgeon’s hand during a procedure. Electromagnetic interference occurred
mainly because of an electric knife used to destroy tissue with electricity, stop small
vessels bleeding or cut through soft tissue. Even the smallest output power from
the knife, when in cutting or blend modes, interrupted the RF communication.
Finally, Kranzfelder et al. [Kranzfelder 2014] studied the reliability of sensor-based
real-time detection in the context of laparoscopic cholecystectomy for use under clin-
ical conditions. Passive RFID transponders and UHF RFID antennas were selected
to form the setup because of an easy integration into routine OR workflow. Some
mismatches were experienced between RFID recordings and the reality. Indeed,
even small levels of output power can interrupt RF communication.

Conclusion

RFID tags have proven to be quite effective for higher-level applications such as
surgical phase or activity recognition. The positioning of the RFID antenna has
to be well thought and done carefully in order to retrieve signals with maximal
accuracy. Passive tags have been the preferred solution, but their placement on
surgical instruments can be difficult and many instruments might not be eligible
(e.g. needles).

While Ultra High Frequency appears to be more robust than Low Frequency, issues
arise especially with interference, reflection and shielding. However, even if multiple
studies have been conducted on the matter, it is still not 100% sure that RFID
does not have any adverse impact on other medical devices. Be it as it may, the
technology has been deemed safe-enough for use in in-vivo medical applications
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within the OR.
Additionally, installing the RFID technology is extremely costly given the amount
of element pieces necessary, which is an obstacle as only few hospitals can afford it.

8.2.2.3 Barcode marker

A barcode marker is an optical machine-readable representation of a pattern specific
to the object to which it is attached. Two categories of barcode exist, depending on
their pattern dimensionality: either 1D or 2D. Linear one-dimensional barcodes are
systematically represented by parallel lines of varying widths and spacings. FEvolved
two-dimensional barcodes rely on rectangles, dots, hexagons and other geometric
patterns. Figure 8.4 displays existing barcode representations.

9310779300005 12345678

(a) EAN (b) Pharmacode

c) Aztec code (d) QR code

Figure 8.4: Examples of barcode markers. First row: one-dimensional, second row:
two-dimensional.

Barcode recognition is mainstream in everyday life, especially commercially to
automate supermarket check-out systems, keep track of mail or airline luggage,
or for ticket offices. Originally barcodes were scanned by special optical scanners
(i.e. barcode readers) but many image-based analysis computer software became
available (e.g. ZBar, LeadTools, mobile phone applications). Some recent works
performed standard 1D /2D barcode recognition using image processing techniques,
mainly for mobile phone use [Gallo 2011, Rathod 2012].

Barcodes are also widely used in healthcare and hospital settings mainly for patient
identification through identification wristband. However, they have not been used
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within Operating Rooms in a tool detection /classification manner, probably because
of two major constraints. First, the full extent of a barcode has to be visible in
the surgical field-of-view for image-based analysis, which can be difficult because
of barcode length or occlusions. Secondly, barcodes need to be wrapped around
surgical instruments to be visible under various in-plane rotations, and identical at
any given orientation. Another solution, not relying on image-based analysis, would
be through the use of RFID-like systems, with body-worn barcode readers equipped
for example on nurses.

8.2.2.4 Conclusion

Towards surgical instrument classification, three main categories of markers have
been identified: color/shape markers, RFID markers and barcode markers; each one
presenting strengths as long as weaknesses.

Color/shape markers are very easy to set-up and detect, however detection tech-
niques rely on low-level image processing (e.g. threshold) and as such are extremely
sensitive to illumination variations or occlusions. Moreover, the more surgical instru-
ments to detect, the more confusion between close-range colors. Tested in in-vivo
conditions, no side-effects were enlightened from the experiments.

On the other hand, RFID markers represent the new generation of markers for
surgical applications as shown by the quantity of recent work focusing on the sub-
ject. While detection/classification performances have shown to be very significant,
setting up a robust RFID system in an OR is complex because of interference with
other medical devices and cost. Many studies have been conducted to ensure patient
and staff safety in in-vivo conditions without reaching an unanimous consensus.
Finally, barcode markers have shown to be very effective and robust in industrial ap-
plications but have never really been used in an OR context, indirect use in hospitals
only. Using traditional barcodes on surgical instruments seems difficult to set-up,
especially because of in-plane rotations, tilt variations, and lighting conditions where
standard identification techniques are likely to fail.

8.2.3 Marker detection

From this review of the literature, an off-the-shelf use of external markers does not
seem possible; each category presenting advantages as long as drawbacks. The main
conceptual design concern expressed for the ShapeDetector also applies here, which
is to modify as little as possible the OR setup. Additionally, the marker technique
should not have an impact on ShapeDetector detection results as only the classifi-
cation part is handled by external markers not the detection itself.

Under these circumstances, the RFID technology is not fitting as requiring extensive
modification of the OR setup to place antennas, in addition to be cumbersome and
expensive.

Regarding color-based markers, while being extremely efficiently retrievable, they
would greatly impact first stage of the ShapeDetector (i.e. the semantic labelling).
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As many additional classes as marker colors will be necessary, overall performance
will most probably suffer from it.

While barcodes represent an easy alternative with packaged and freely available de-
tection algorithms, they will seemingly impact the semantic labelling in the same
way as color markers could do. As illustrated in figure 8.5, too much of the original
surgical instrument is occluded when using a standard barcode.

Eventually, we opted to design a marker fitting best our needs, presented in sec-
tion 8.2.3.1. Then, we introduce in section 8.2.3.2 the corresponding image-based
analysis technique to retrieve the marker from still images.

Figure 8.5: Illustration of an EAN barcode placed on a surgical instrument.

8.2.3.1 Chosen marker

As chosen solution, we propose to create a marker made of a set of black rings which
would visually look like a barcode. Using black bars only, without their interlaced
white counterparts such as in real barcodes, the hindrance on semantic labelling
results is almost nonexistent. In addition, the control is total over the number of
rings forming the marker, the spacing between rings, and the width of each ring, as
illustrated in figure 8.6.

Such markers are to be placed around the shaft of surgical instruments, at a safe
distance from the tool-tip to avoid occlusion issues, and are identical at any given
in-plane orientation thanks to their circular pattern. As an alternative, such black
rings can also be engraved directly onto the surgical instrument to avoid dealing
with marker placement and withdrawal.

Figure 8.6: Tllustrations of our proposed barcode-like marker, placed along the shaft
of a suction tube.
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8.2.3.2 Proposed method

As mentioned in the introduction, detecting markers is required to perform surgical
tool classification only. As such, we rely on one assumption: barcodes can only be
identified on already detected surgical tools.

A three-step approach is employed to detect and identify a barcode, thus providing
a tool class for every candidate detections from the shapeDetector. Each detection is
pre-processed for easier barcode recognition, which is performed following a similar
strategy to the state-of-the-art technique [Gallo 2011]. From a detected barcode, its
identification through pattern extraction is mandatory for matching in a barcode
data-base to access the corresponding tool class. Each of the three components is
described in details in the following.

Pre-processing

From a candidate detection, the sub-image containing the surgical tool is extracted
and rotated to appear at orientation 0°. The resulting sub-image illustrated in
figure 8.7 is used as input to the recognition step.

Figure 8.7: Marker recognition: pre-processing step. The found detection (left) is
horizontally aligned (right).

Marker recognition

Assuming a barcode being present in the processed sub-image, an horizontal scan-
ning is performed following a line starting from the estimated tool-tip position up to
the sub-image border (see figure 8.8). After image color type conversion from RGB
space to HSV space, the intensity value in each pixel along the virtual horizontal
line is retrieved.

Knowing the barcode color (i.e. black), a threshold is applied to keep on intensity
values lower than 100 only. Other intensity values having a high chance of belong-
ing to the surgical instrument itself or the surgical background and as such are not
relevant to perform the marker identification.
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i

Figure 8.8: Illustration of the 1D signal extraction. The pink line in scanned (left)
to produce the signal (right).

The line of intensity values retrieved can be considered as a one-dimensional
signal. As such, standard signal processing techniques are applied with the objective
to retrieve mandatory marker information such as the number of bars, their spacing,
and their width. First, the signal is detrended to better visualize variations between
background pixels’ intensity and barcode pixels’ intensity. Then, a low-pass filtering
is performed in order to smooth the signal as high frequency variations are only
noise from pixels’ intensity variations. A limited number of 20 coefficients has been
used for the filtering to restraint the delay between input and output signals. As
identifying switches from surgical instrument to marker’s bars is key for marker
identification, the derivative of the filtered signal is computed. Finally, on this
derivative signal, maximum positive and negative peaks are identified as they should
correspond to in-bar and out-bar limitations. An overview of the four-step detection
technique is provided in figure 8.9.

As output of the marker recognition step, a list of maximum positive and negative
peaks with their respective amplitude values is created, necessary to perform barcode
identification.

Marker identification

The goal of the marker identification step is to retrieve as accurately as possible the
barcode pattern (i.e. number of bars, their width and spacing) in order to match it
with known barcode patterns to identify the corresponding tool class.

To do so, a pairing between maximum positive and negative peaks is executed,
based on two parameters: in-between pixel distance, and amplitude difference. The
pairing process can be simplified by assuming limited ranges of in-between distances
when looking to identify one specific pattern.

If the extracted barcode pattern can be matched with a known barcode pattern, the
corresponding class label is given to the detection on which the barcode has been
found and identified.
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Figure 8.9: Tlustration of the 1D signal processing steps. In the first three steps,
input signals are represented in blue and output ones in green.

8.2.4 Results

To perform validation studies regarding marker detection, a dedicated new data-set
has been acquired as the NeuroSurgicalTool data-set does not contain tools with
markers. The following phantom setup was used for the acquisition: a suction tube
covered with a marker has been moved over a fake surgical background make of
a skull. Motions performed were not mimicking real in-vivo gestures but rather
illustrated in-plane orientations and tilt variations.

Table 8.1 sums up different marker configurations employed, with the first bar of the
marker always placed 7mm away from the tool-tip. Almost the same movements
were performed for each configuration to enable a comparison as fair as possible,
yet not identical since a robotized arm has not been used.

Two studies are proposed: a first one evaluating marker impact on ShapeDetector
performance (section 8.2.4.1), secondly an evaluation of marker detection technique
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performance (section 8.2.4.2). No annotations were performed on the data-set, as
such qualitative and visual results are provided only.

Table 8.1: Barcode marker employed with different ring configurations.

Number Width Spacing Color
(mm) (mm)

Config. 1 3 3 3 Red
Config. 2 4 3 5 Red
Config. 3 3 3 2 Red
Config. 4 3 3 2 Black
Config. 5 4 3 2 Black
Config. 6 3 1 2 Black

8.2.4.1 Impact on ShapeDetector performance

As illustrated figure 8.10, the color choice is having an impact on the detector
performance. Red color bars induce holes in semantic scores, especially for the tool
clags, leading to inaccurate detections over the tool starting after around the last
bar instead of the tool-tip. Conversely, when using black bars, semantic scores are
almost not altered and detections are as good as if no marker was on the surgical
instrument. As such, our current setup necessitating to capture the entirety of a

marker to perform its identification, using red bars is not compatible.

(a) Original (b) Tool class (c) Background class (d) Detection

(e) Original (f) Tool class (g) Background class (h) Detection

Figure 8.10: Semantic labelling results with a red barcode marker (top row) and a
black barcode marker (bottom row).
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8.2.4.2 Marker detection performances

In figure 8.11, we report marker identification success modes. The first couple of
positive and negative peak is associated to the transition from the background to
the surgical tool. Each of the other peak couple is corresponding to a black bar
composing the marker. In general, good marker detection results are obtained when

the surgical tool is close to being plane-aligned.
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(b) Processed signal
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o
(c) Detection (d) Processed signal

Figure 8.11: Success modes for the proposed marker detection technique.

However, when important tilt variations are applied, as illustrated figure 8.12,
the detection is not well placed over the surgical instrument, and as such the pro-
cessed signal can not be identified. Tilt variations are detrimental to well-positioned
detections, but also to the barcode identification as proportions between bars are
not preserved.
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Figure 8.12: Failure mode for the proposed marker detection technique.

8.2.5 Discussion

Given the nature of employed external markers, performing validation studies in
in-vivo conditions does not appear feasible because of safety reasons. However, in
a phantom context it is quite easy to add and remove different marker configura-
tions in order to study the marker retrieval technique robustness. This approach is
preferable to blending markers into in-vivo images as edges between markers and
instruments would not be realistic.

While efficient to classify one surgical instrument from many others, such approach
does not seem fit for each and every tool. For high microscope zoom values, only a
small portion of a surgical instrument is visible in the FoV. As such, a marker made
of four bars could not be visible to its full extent. Additionally, close marker config-
urations with only a one-bar difference can easily be confused in case of erroneous
detection or high tilt variations. To avoid confusion cases, the solution is to focus
on the identification of one specific barcode only at run-time.

Not to disturb the semantic labelling process and ShapeDetector results, the cho-
sen color must be within a close color-range to modelled surgical instruments. At
the same time, the color difference between the surgical instrument and the bar-
code must be high enough for the proposed signal processing technique to perform
well. Obviously, having well placed candidate detections over surgical instruments
is critical to ensure the best possible conditions to detect and recognize barcodes.
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8.3 Tracking

8.3.1 Introduction

As mentioned in chapter 2, when starting from a strong spatial detector, the overall
performance is necessarily enhanced from the addition of extra information such
as tracking. Even if the added value on per-frame detection itself is not clear, we
propose to discuss the interest in coupling detection and tracking.

In addition, the marker-based classification technique previously introduced has
proven to be quite sensitive, especially to tilt variations. As such, adding a tracking
layer could be a solution to propagate instruments’ classes in case of missed identi-
fications.

We chose not to perform a literature review regarding stand-alone tracking ap-
proaches or detectors coupling a tracking solution. Instead, we decided to rely on
the go-to tracking technique: Kalman filter, because of its rather easy usage and
off-the-shelf availability.

Below, we start by introducing our strategy to integrate Kalman filters within the
ShapeDetector pipeline (section 8.3.2). Then, in section 8.3.3, we report preliminary
and qualitative ShapeDetector performance from the use of a tracking layer.

8.3.2 Tracking integration

We start by presenting in section 8.3.2.1 our design choices for the Kalman filters.
Then, the track creation process is described in section 8.3.2.2. Finally, the coupling
of the tracking layer with our ShapeDetector is explained in section 8.3.2.3.

8.3.2.1 Kalman filter design

Regardless of targeted in-vivo medical applications, when dealing with image-based
surgical instrument detection, the three following parameters must be retrieved ac-
curately: global tool pose, tool orientation and tool-tip location. While those three
parameters are intrinsically connected, we propose to model a track with two Kalman
filters; the first one estimating the tool-tip location and the second one the tool ori-
entation.

Position filter

Most ShapeDetector failing modes occur due to instruments being occluded by other
instruments or anatomical structures, under high tilt values, or suffer from blurriness
because of rapid motions. In such cases, the ShapeDetector is unable to provide
candidate detections, hence a prediction regarding tool location is of interest. To do
s0, we propose a first Kalman filter in position and speed, using the tool-tip location
as reference point, illustrated by equation 8.1.
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1 010
01 0 1

Kalmanposition = 00 1 0 (8.1)
00 0 1

Orientation filter

We highlighted presence of noise is the semantic labelling results, especially around
tool boundary and tip regions. Erroneous detections obtained in the opposite direc-
tion of the surgical tool, for example with an orientation shifted by 180°, represent
an identified side-effect from such noise. To avoid orientation shift between consec-
utive frames, we propose to use a second Kalman filter in orientation, illustrated by
equation 8.2.

1 0
Kalmanorientation = <0 1> (82)

8.3.2.2 Tracks assignment

Starting with a set of initial detections resulting from the first frame processing, the
corresponding set of tracks is created. Each track is associated with two Kalman
filters initialized using pose parameters from its corresponding candidate detection.
On following images, a matching strategy is employed to pair the set of tracks
with the set of newly acquired detections. For each track, using both Kalman
filters, an estimated detection location is computed , represented as a polygonal
area. This estimated polygon is slightly enlarged to cover more space, as such
being more permissive regarding detection inaccuracy. Ensuingly, the matching
strategy between current detections and Kalman-based estimations is analogous to
the validation methodology strategy. Pairing is done based on the Intersection Over
Union (IOU) measurement where highest overlapping areas are favored. Ultimately,
new tracks are created for unmatched detections, while tracks not having been paired
are estimated using the strategy presented in the following section.

8.3.2.3 Compensation

In case of missing or erroneous detections, merging Kalman estimates is necessary to
obtain new candidate detections. The new detection has the same polygonal shape
and size as previous detections in the track, and is placed at the location given
by the first Kalman filter, appearing under the orientation provided by the second
Kalman filter.

When all tool pose parameters are correct aside from the orientation, typical sit-
uation in case of an orientation shift, the location of the detection is kept and an
in-plane rotation of the polygonal shape is applied to match with the estimated
orientation value from the Kalman filter. Such compensation is illustrated in fig-
ure 8.13.
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(a) Original detection (b) Compensated detection

(c) Overlap

Figure 8.13: Hlustration of the compensation process using Kalman filter estimates.

Track persistence

The longer the track has not been matched to a candidate detection, the more likely
the track is dead and should be removed. As such, a persistence threshold is set,
represented as a number of consecutive frames, after which the track is deleted if
not matched.

8.3.3 Results

To evaluate the impact of adding a tracking process to the ShapeDetector, we do
not have access to any reference. As such, performing quantitative studies is not
possible and only visual results are provided.

Success modes are illustrated in figure 8.14. Tracked detections are displayed as
black curves in the figure corresponding to successive tool-tip positions within
the last 10 frames. Using Kalman filters enables to better handle one highlighted
ShapeDetector issue: shift in orientation.
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Figure 8.14: Success modes of the tracking layer on in-vivo data.

However, some unwanted side-effects also appear from the use of a tracking
layer, as displayed in figure 8.15. The detection over the suction tube, on the left
part of the image, is lost by the tracking system. As a result, both the previous
track (in black) and a new track corresponding to the real detection (in blue) are
present in the image, until the previous track is lost.

Figure 8.15: Failure mode of the tracking layer on in-vivo data.

Having surgical instrument tracks means having access to the trajectory followed
by the instruments. This additional information can be useful for surgical activity
recognition as it provides an access to the knowledge of the action performed, after
proper motion pattern identification. In the end, we can have access to the surgical
instrument position in the image, its class, and the corresponding action verb.
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9.1 Discussion

To kick-off the last chapter, we propose a general discussion about the research
performed in this thesis following the main categories introduced in the literature
review in chapter 2. Many specific discussions having been provided throughout the
manuscript in their corresponding chapters, we therefore try as much as possible
not to be redundant.

The discussion is organized accordingly to the literature review, starting by the
data acquisition process in section 9.1.1. In section 9.1.2, current detection methods
and their future are discussed. Finally, in section 9.1.3 we address the validation
methodology topic especially regarding medical application.

9.1.1 Data acquisition

Two-third of existing works addressing the surgical tool detection problem have
been focusing on endoscopic videos in Minimally Invasive Surgical in-vivo setups
while the remaining third has been exploiting surgical microscope videos in a retinal
microsurgery context. Nevertheless, no official benchmark data-sets have been
chosen by the community and each study has been relying on its own set of data.
As such, the first contribution of the thesis was the creation of a new data-set,
the NeuroSurgicalTools data-set, using microscope videos recorded during brain
and spine tumor removal surgeries. The data-set has been put together with as
few selective bias as possible to present all the makings to represent a benchmark
solution, and has been made available online!. The data-set creation process
followed pedestrian data-set creation hindsight since being a computer vision topic

"https://medicis.univ-rennesl.fr/software
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heavily addressed in the past decade.

In this thesis work, we chose to rely on surgical microscopes as data record-
ing devices. They present the advantage to already equip OR and using them to
their full extent is a first step towards new generations of CACAI systems. In addi-
tion, information extracted from the OR in the form of videos recorded by surgical
microscopes respect the constraints put forward by Bouarfa et al. [Bouarfa 2011]
as they are discriminant, compact in size, easy to monitor and last but not least
invariant to task distortion.

Surgical microscopes are set to observe with magnification the surgical field-of-view
where instruments are manipulated over anatomical structures. In addition, video
recording capabilities are available in any surgical microscope. As such, they
provide an access to the best possible viewpoint to perform surgical tool detection
through image-based analysis. Incoming hardware microscope updates from SD
monocular camera to HD stereoscopic ones will in time provide additional resources
for more robust and reliable tool detection.

Depending on surgeon skills, surgical choices and occasional adverse events, each
surgical procedure is unique. Yet, when compared within a same surgical context
such as spine tumor removal procedures in neurosurgery and observed from a
microscope viewpoint, they appear to be reproducible. Variations in instrument
appearance are visible across surgery types, especially between pituitary and
spine surgeries for example. In the former, the surgical entry point is extremely
narrow and instruments are highly tilted. In the latter, instruments are closer to
being plane-aligned in the field-of-view. As such, features are consistent in their
representation when extracted from videos showcasing procedures from a same
surgical type. This invariance to task distortion is a key component for data-driven
surgical tool detection approaches based on learning strategies.

Lastly, surgical microscopes do not disturb the OR setup as they are used as part of
the clinical routine and the recording device is already embedded thus not requiring
additional modifications. In addition, they do no require any control from surgical
staff members aside from the activation or deactivation of the recording. Hence, a
microscope is easy to monitor and data easy to record.

Surgical microscopes provide access to a unique viewpoint: the viewpoint of
the operating surgeon. From this viewpoint, recorded videos display what the
surgeon is seeing, which is the most important viewpoint providing on principle
enough data to detect surgical tools used and by extension identify surgical
activities. However, recording and analyzing videos from other viewpoints within
the OR has been suggested. While surgical tools might not be directly identified
from such viewpoints, they can provide other information complementary to the
ones obtained from the standard viewpoint. For example, recording the surgeon
him- /her-self can be used to retrieve body and arms posture, which could help
identifying surgical tools in use relying on knowledge-based algorithms. Likewise,
wide-angle cameras recording the operating theater in its entirety can be used to
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monitor surgical devices being employed or the position and number of medical
staff in the room. Manually adding consumer cameras in the OR prove to be
troublesome as a standardized viewpoint must be found to ensure feature invariance.
Moreover, issues related to occlusion and camera calibration must be addressed
as medical staff could come and go in front of the camera, potentially preventing
to retrieve essential information at a needed time. New solutions are starting to
be commercialized to enable video recording from other viewpoints as long as
answering the viewpoint standardization issue: cameras are embedded onto surgical
lights or surgical glasses?. Adding other consumer cameras in the operating room
remains a possibility, however using at their full potential already installed devices
feels to be the priority.

Other global sensors could be added in order to have access to new feature
types, such as Kinect devices or RFID tags placed on surgical tools. Similarly,
new generation of cameras such as RGB-D cameras providing depth information
or thermographic cameras can be used. Currently, such technology is costly, few
hospitals are or can be equipped, and many safety regulations are not met by such
sensors to be safely used within an OR.

As presented in the Introduction (see chapter 1), the medical community long-term
objective comes down to the creation of surgical cockpit systems within fully digital
operating rooms. In such technologically advanced environments, many different
sensor types will be added with standardized and easy access. In time, a wider
range of data to process will be available, complementary to current videos recorded
by medical devices providing information from a unique viewpoint.

As long as data acquisition and processing comply with real-time capability,
redundancy in input signals is a necessary situation for robust tool detection
methods. As such, making full use of 2D /3D videos is the first stone for surgical
cockpit systems, waiting for new sensor types to be efficiently integrated into OR
as part of the surgical routine.

9.1.2 Detection methods

The core contribution of this thesis work was the creation of two spatial surgical
tool detectors, inspired by the best state-of-the-art computer vision approaches.
The first proposed detector, the adapted SquaresChnF'trs, belongs to the category
of one-stage approaches where the pose estimation is directly performed on top
of image feature channels. This detector is an adaptation of the vanilla Squares
Channel Features pedestrian detector [Dollar 2009a] not compatible with surgical
tool variations as extracted features such as HOG are not rotation-invariant. To
deal with this issue, multi-orientation models are proposed and used similarly to
multi-scale models. Instead of traditional bounding boxes to represent and display
estimated tool positions, we choose to rely on a geometry tighter to instrument
shape. Our proposed refined detection representation is a bounding polygon, fitting

*http://www.surgitel.com/surgicam
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well with elongated shapes at various in-plane orientations.

The second proposed detector, the ShapeDetector, belongs to the category of
two-stage approaches where the pose estimation is performed on top of a map of
semantic labels obtained through pixel-wise classification. Surgical instruments
exhibiting a similar local structure, we make use of the local classification to
assign to every pixel a tool or background label. A data-driven approach through
regularized SVM is used to learn specific shape-template models for each category
of surgical instrument. With an exhaustive sliding-window approach, we can
detect an arbitrary number of surgical instruments, at any scale or position in the
image, without relying on a set of assumptions or prior knowledge. Through a
specific non-maximum suppression design, we are able to detect instruments partly
occluded or crossing each other.

Using 2D videos as input gives access to the minimal amount of information
required to perform tool detection. All the parameters representing the instrument
pose are not optimally estimated and many failure modes remain, for example
due to high-tilt variations or motion blur. With the idea not to temper with an
OR setup, surgical microscopes are still not used at their full extent. While many
are exclusively equipped with a single camera, upgraded versions are capable of
embedding two cameras thus enabling to record stereoscopic videos. Additional
information can be leveraged from the processing of 3D videos such as depth maps
and 3D tool shape models can be created. Identified 2D failure modes due to
high tilt variations are likely to be better handled through this additional layer of
information as the tilt can be quantified in 3D. Coupled to the fact that with time
all surgical microscopes will be equipped with 3D technology, focus should be now
directed towards tool detection from stereoscopic videos.

Nevertheless, either 2D or 3D image-based analysis are not enough to address the
tool detection and classification problem, at least not under every visual appearance
possibility when in-plane rotations, tilt variations, overlap, or motion blur are in
play. Robust tool detection methods might not be using a single-modality input,
but rather multiple modalities as a basis for feature extraction. For example,
in a MIS context, internal information provided by the robotic dVSS are used
either to constrain or refine image-based tool detection processes |Reiter 2012a).
Each modality on its own might not obtain high performance detection, but their
combination can help overcome limitations from each.

The type of information to process and possible features to extract are bound by
the type of input sensors. Even if many tool detection approaches are using the
same combination of features and a similar family of learning strategy such as
cascade classifiers, there is room for improvement. The impact of motion or depth
fetures on a detector performance is still an uncharted territory. As of today, it
is still not clear what makes a detector good as features behavior still remains
to be fully understood and an increase in detector performance could come from here.

For integration in in-vivo medical applications, tool detectors must be able
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to process input data in real-time, which corresponds to the frame-rate of the
recording device, usually 25Hz for a microscope. For the ShapeDetector, we
proposed two different implementations in order to increase the computational
speed while keeping intact detection performance. The first fast version is relying
on CPU processing power through code optimization and parallel computing on
CPU registers through the use of SIMD instructions. The second fast version is
making use of a GPU high effectiveness to perform parallel computing, especially
relevant for image processing.

For one image at a resolution of 612 x 480 pixels, the initial processing time when
looking for one model at one scale and 72 orientations was around 1.5s. Under the
same search space configuration, the ShapeDetector fast implementation on GPU
is requiring 170 ms for one image. Currently running in-between 5-8Hz on surgical
microscope videos, the ShapeDetector is close to fast-enough for real-time use.
Detection approaches, as most of the algorithms performing some kind of image-
processing, are inherently eligible for efficient parallel computing. Nevertheless,
speed improvement while keeping untouched detection performance is a research
topic on its own, as illustrated by the evolution from image channels to integral
image channels.

9.1.3 Validation methodology

Validation studies were performed following the full-image analysis paradigm, using
train and test splits of our proposed NeuroSurgicalTools data-set. The validation
has been focusing on the following three tool pose parameters: overall position,
tip location and orientation; each one through specific validation metric used over
detection polygons. A set of competitive baseline methods, ranging from out-of-the
box computer vision algorithms to specifically designed techniques, were used to
compare performance results. The ShapeDetector obtained best performances
regarding overall pose estimation while being tied for first place with the adapted
SquaresChnFtrs regarding tool-tip location. Overall, with our ShapeDetector at
10~ FPPI, we achieve a 15% miss-rate for the suction tube and a 5% miss-rate for
the bipolar forceps. 50% of detected suction tubes have a tip position erroneous
from less than 20 pixels and 80% have an orientation erroneous from less than 10°.
Tustrated by the stand-alone validation of the pixel-wise classification, semantic
label maps are quite noisy, especially around tools boundaries. For two-stage
detectors, heavily relying on semantic label maps, such noise has a negative impact
regarding accurate tool-tip location.

Outside of any application task, we developed a data-driven approach for surgical
tool detection from microscope videos. Even though not thoroughly validated in
other surgical contexts, preliminary results in retinal microsurgery context are
encouraging. Our detection approaches being as generic as possible without the
use of any prior knowledge, we proposed to use a generic validation methodology
to assess the estimation of the three tool pose parameters, almost identically to
methodologies used for pedestrian validation.
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Nevertheless, the level of expectation when examining detection performance results
is not the same when performing detection validation and detection evaluation
within a medical environment where patient lives are at risk. Current detection
results can equally be good-enough for applications solely involving tool instances
counting, or way too bad for applications requiring instrument tip location
estimation at a mm spatial resolution. As such, drawing conclusions regarding our
approach performance is highly versatile, and having the possibility to perform
evaluation within a medical application is of interest.

Model validation strategies are straightforward with few variety, the two pos-
sible alternatives being the cross-validation and the train/test split. Obviously, it
is necessary to specify the learning strategy to ensure results relevancy. Otherwise,
any manual strategy could lead to results being driven by an over-fitting of the
model, and not well generalized from the data. The validation methodology
pertinence is intrinsically connected to the parameters selected regarding the
validation metric, criterion, and the quality of the reference. Poorly performed and
detailed data references preclude a precise understanding of a method strengths
and weaknesses. Loose references will substantially and virtually increase results,
especially in our work with tight polygonal geometry.

From highly detailed data references, the possibility emerges to perform targeted
validation over specific sub-sets, for example covering instances of occluded tools or
multiple overlap. Selective validation for different types of challenging conditions is
of interest but requires large and diverse data-sets with carefully detailed references.
Ideally, having accurate to the pixel references, annotated with semantic attributes
and additional polygons in case of occlusion is what is needed. Such validation
strategy is definitely necessary to develop robust detection systems able to perform
well in in-vivo applications where many different situations can occur.

9.2 Conclusion

Even though becoming a richer environment filled with more and more devices
and technology, OR equipment are still not used to their full extent and patient
safety remains a major issue due to preventable medical errors. With the long-term
objective to build safer and seamless digital operating rooms, the necessity to
develop CACALI systems arisen to better integrate and standardize operating room
technology. Being able to detect and recognize in real-time a surgical procedure
up to its activities represents a central piece for such systems. Within the SPM
terminology, a surgical activity is often minimally represented as a triple: action
verb, surgical tool, and anatomical structure [Gibaud 2014]. To improve CACAI
systems capabilities, an automatic and accurate detection of surgical instruments is
essential. In this thesis, we proposed to focus on automatic and real-time surgical
tool detection from 2D surgical microscope videos.
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Using surgical microscope videos as data input for this work is extremely in-
teresting because presenting many advantages. At first, data can be acquired easily
without altering the clinical routine as surgical microscopes are already part of
operating room standard setup. Secondly, recording videos from a microscope is a
very simple and standardized process. Acquired data provide diverse and robust
information necessary to tackle the tool detection problem either through 2D or 3D
feature extraction.

We feel like pushing the limits of data extraction from current recording de-
vices remains an optimal solution as there is still room for improvement in
detection performance. Not all the feature representations, machine learning
strategies, and various combinations of all of them have been investigated. Fully
validating methods performing data extraction from existing surgical devices is a
first keystone. As such, a clear assessment of what is working, how it is working
and what kind of information are needed can help designing new recording systems.
At the same time, the design of new devices, as long as some experimental studies
be carried out in the OR to prepare what could be the next generation of sensors.
However, tool detection methods should wait before trying to leverage data from
unorthodox sensors as they are cumbersome to add in the OR, and still do not
provide a standardized point of view nor a standardized access to data.

The second major obstacle for efficient comparison and ranking between sur-
gical tool detection approaches, and to enable an healthy competition within
the community is the lack of standardized validation methodologies and their
corresponding benchmark data-sets. Provided with an easy access to both com-
ponents, identifying strengths and weaknesses for each method within a specific
surgical context or towards the detection of a specific surgical tool could be made
possible.  For even better performance result bench-marking, the exact same
validation code should be employed and if possible all the methods ran from a same
person/computer, as it is done for pedestrian detection [Dollar 2011]. In this optic,
we already made available our created data-set as a possibility for other people to
re-use it.

Bench-marking tool detection methods in a computer vision way is a good
solution to perform validation and identify method flaws. Nevertheless, we are
working on an application field where the end-goal is to integrate such algorithms
into OR systems. As such, evaluating the added-value of tool detection tech-
niques within CAS systems, either per-operatively or post-operatively, is of high
importance. Having an evaluation objective would also help to design evaluation
protocols or metrics to match with what is really necessary in the medical reality.
Even if not for prevalent CAS systems, performing side-by-side validation and
evaluation is paramount to faster achieve real-life usefulness for tool detection
techniques.






APPENDIX A

CPU code profiling applications

In this appendix, we introduce different CPU code profiling software necessary to
identify bottlenecks in CPU-based applications. In section A.1l, we start by present-
ing the most powerful yet paying code profiling tool, then in sections A.2 and A.3
we suggest free alternatives.

A.1 Intel VTunes Amplifier

Intel VTunes Amplifier is a commercial application for software performance anal-
ysis for 32 and 64-bit x86 based machines, with both command line and GUI inter-
faces. It is available for both Linux and Microsoft Windows operating systems at
https://software.intel.com/en-us/intel-vtune-amplifier-xe.

VTune Amplifier assists in various kinds of code profiling including stack sampling,
thread profiling and hardware event sampling. The profiler result consists of details
such as time spent in each sub routine which can be drilled down to the instruction
level. The time taken by the instructions are indicative of any stalls in the pipeline
during instruction execution. The tool can be also used to analyze thread perfor-
mance.

In the following, we highlight Intel Vtunes use through multiple illustrations.

@ Elapsed Time: 3.342s

CPU Time: 4.813s
Instructions Retired: 16,422,840,000
CPI Rate: 0.667
CPU Frequency Ratio: 1.086
Paused Time: 0s
Overhead Time: 0s
SpinTime: 0.001s

@ Top Hotspots

This section lists the most active functions in your application. Optimizing these hotspot functions typically results inimproving overall application

performance.

Function CPUTIme

cv::remapBilinear<cv:Cast<float, float>, cv::RemapNoVec, float> 0.4425
ticket spin lock 0.380s

boost::geometry::strateqy::distance::projected point<boost:geometry:model::d2::point xy<short, boost::geometry:ics::cartesian>... 0.259s

check segment<iul> 0.196s

monokel::SemanticLabellingDetector::process multichannels v7. omp Fn.0 0.172s

Figure A.1: Overall result view from Intel VTunes profiling on the ShapeDetector
application.
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Figure A.2: Extended result view from Intel VTunes profiling on the ShapeDetector

application.
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Figure A.3: Intel VTunes analysis of thread performance.
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Figure A.4: Line per line result view from Intel VTunes profiling on the ShapeDe-
tector application.

A.2 Valgrind and KCacheGrind

Valgrind is a programming tool for memory debugging, memory leak detection, and
profiling. Valgrind was originally designed to be a free memory debugging tool for
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Linux on x86, but has since evolved to become a generic framework for creating

dynamic analysis tools such as checkers and profilers.
Part of the Valgrind toolchain, Callgrind is used for profiling, the application being
transformed in an intermediate language and then ran in a virtual processor emu-

lated by Valgrind. Thanks to a huge run-time overhead, the precision is really good
and the data profiling is complete. An application running in Callgrind can be 10

to 50 times slower than normally.

The output of Callgrind is not usable directly

and KCachegrind must be used to display the informations about the profiling of
the analyzed application, as shown figure A.5.
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Figure A.5: ShapeDetector application profiling results using Callgrind (i.e.

Val-

grind) and displayed using KCacheGrind.
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A.3 GPerfTools and KCacheGrind

GPerfTools, standing for Google Performance Tools, are offering a CPU profiler,
a fast thread aware malloc implementation, a memory leak detector and a heap
profiler. The GPerfTools profiler can profile multi-threaded applications. The run
time overhead while profiling is very low and the applications run at &native speeda.
KCachegrind can be used for analyzing the profiling data after converting it to a
cachegrind compatible format.






APPENDIX B

LabelMe: data annotation tool

In this appendix, we present the LabelMe web-browser tool used to perform the data
annotation process. LabelMe is a project created by the MIT Computer Science and
Artificial Intelligence Laboratory (CSAIL), accessible at http://labelme.csail.
mit.edu/Release3.0/.

The tool can be accessed anonymously or by logging in to a free account. To access
the tool, users must have a compatible web browser with javascript support. To
start performing the annotations, a new collection must be created and images
added (.jpg format), 20 at a time maximum (as illustrated in figure B.1).

Publications Developers Help

Home: dbouget _

My Collections (Home)
Public Collections

Account Settings .

ollection: /suctiontube

Col
Collection: /v9

Change Password

Collection: /vil

Figure B.1: LabelMe interface displaying collections created.

To start annotating, the user only has to click anywhere on the border of any
object, and continue clicking along the outside edge until returning to the starting
point. Once the polygon is closed, a bubble pops up on the screen which allows the
user to enter a label for the object. The user can choose whatever label the user
thinks best describes the object. The annotation step is illustrated in figure B.2.
Once every image of a collection has been processed, all the annotations can be
downloaded in .xml files (one file per image).


http://labelme.csail.mit.edu/Release3.0/
http://labelme.csail.mit.edu/Release3.0/
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APPENDIX C

SVM model illustrations

In this appendix, we display side-by-side SVM models obtained through different
configurations of the design space. In section C.1, we report models for the suction
tube category and the bipolar forceps is illustrated in section C.2. Figures always

display the background class on odd rows with the tool class being on even rows.

C.1 Suction tube

(k) Uniform negative

\
| s

“ R e e L ]

L

-

(q) Gaussian negative

Figure C.1: Suction tube SVM models for various training configurations, with the
use of the SVM spatial regularization term.
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Figure C.2: Suction tube SVM models for various training configurations, without
the use of the SVM spatial regularization term.
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C.2 Bipolar forceps

(k) Uniform negative

W — g

) Gaussian negative

Figure C.3: Bipolar forceps SVM models for various training configurations, with
the use of the SVM spatial regularization term.
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(q) Gaussian negative

Figure C.4: Bipolar forceps SVM models for various training configurations, without
the use of the SVM spatial regularization term.
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Figure C.5: Upper part of the bipolar forceps SVM models for various training

configurations.
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D.1 Introduction

D.1.1 Contexte

En dépit d’avancées majeures concernant les technologies du quotidien et les pro-
gres des techniques chirurgicales comme la chirurgie minimalement invasive (MIS),
la salle d’opération fait toujours face & de nombreux challenges. En 2004, un groupe
de travail s’est réuni autour de la thématique suivante: "La salle d’opération du
futur, a 'horizon 2020.". L’objectif ciblé était 'identification des challenges actuels
afin de concevoir les caractéristiques générales de la salle d’opération du futur, dans
le but d’améliorer la prise en charge des patients.

Parmi les nombreux challenges identifiés se trouvent: un nombre toujours conséquent
d’erreurs chirurgicales évitables [Kohn 2000], un nombre de personnels soignants
toujours plus en baisse entrainant des praticiens surchargés de travail ou moins qual-
ifiés (moins de temps de formation), une gestion non optimisé des blocs opératoires
et des ressources médicales, et enfin une difficulté d’intégration et de standardisation
des nouvelles technologies au sein du bloc opératoire. Une réponse a la plupart des
challenges peut étre apportée grace au développement et a l'intégration de systémes
technologiques avancés et intelligents.

La conception de la salle d’opération du futur afin d’y intégrer des systémes intelli-
gents doit étre & méme de répondre aux problémes de complexité liés & 'utilisation
des nouvelles technologies. Cette salle d’opération devra ressembler & un cock-
pit chirurgical avec une intégration digitale complete et une utilisation efficace de
la technologie, comme par exemple OR1'. De la méme maniére quun cockpit
d’avion, ce cockpit chirurgical serait équipé d’un systéme de boite noire permettant
d’analyser a posteriori les erreurs médicales afin d’en réduire leurs nombres. Pendant
les opérations, il pourrait assister le chirurgien dans la réalisation de taches chirur-
gicales robotisées, fournir des conseils & ’équipe soignante, ou émettre des alertes
quand la chirurgie dévie de la procédure standard grace a un raisonneur intégré.
Cette capacité de traitement, d’analyse et de compréhension des événements se pro-
duisant au sein de la salle opératoire est primordiale. C’est dans ce but qu’est née la
Modélisation des Processus Chirurgicaux permettant d’analyser la pratique chirur-
gicale via une terminologie unifiée [Lalys 2014|, en se focalisant trés souvent sur
le chirurgien principal. Une procédure chirurgicale peut étre décrite par plusieurs
niveaux de granularité, partant d’'une découpe en temps chirurgicaux majeurs et se

"https://www.karlstorz.com/de/en/karl-storz-ori.htm
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terminant en une découpe trés fine en gestes élémentaires. A mi-chemin sur ’échelle
de granularité se trouve la représentation en activités chirurgicales; une activité
étant synthétiquement représentée par un triplet: verbe d’action, outil chirurgical,
et structure anatomique [Lalys 2013].

De nombreuses approches basées sur I’analyse d’image se sont attaquées a la recon-
naissance automatique des activités. Pour cet objectif, étre capable d’identifier les
outils chirurgicaux est primordial car donnant accés & deux des trois éléments du
triplet: l'outil chirurgical, et le verbe d’action provenant de ’analyse de trajectoire
de l'outil.

D.1.2 Etat de art sur la détection des outils chirurgicaux

Une revue de la littérature a été effectuée concernant les méthodes de détection
des outils chirurgicaux basées sur de 'analyse d’image. Les méthodes utilisant des
marqueurs externes n’ont pas été incluses. Trois catégories sont proposées afin de
décrire les travaux existants: les jeux de données de validation, les méthodes de
détection, et les méthodologies de validation.

D.1.2.1 Jeux de données de validation

Aucun jeu de données de référence, ou benchmark, n’a été recensé et chaque étude
s’est appuyée sur son propre jeu de données. La plupart des travaux se sont basés
sur des données provenant de chirurgies minimalement invasives comme la cholé-
cystectomie [McKenna 2005], ou 'hystérectomie [Kumar 2013b|. La deuxiéme spé-
cialité chirurgicale la plus étudiée est ’ophtalmologie avec des microchirurgies de
Voeil [Pezzementi 2009, Sznitman 2012|. Un seul travail s’est porté sur des images
provenant d’un contexte de neurochirurgie [Sznitman 2014].

Les annotations de la position des outils dans les images composant ces jeux de don-
nées ont souvent été du type boites englobantes [Speidel 2006, Sznitman 2012, ou du
type point unique sur la position de 'extrémité des outils [Voros 2007, Haase 2013)].

D.1.2.2 Meéthodes de détection

Deux grandes familles de méthodes existent permettant d’effectuer la détection des
outils chirurgicaux en temps-réel en utilisant des techniques d’analyse d’image. Les
méthodes purement spatiales effectuant une analyse compléte de I'image, et les
méthodes réutilisant la position des outils détectés dans les images précédentes (type
"tracking"). Les deux approches nécessitent une analyse de I'image entiére, dans le
but unique d’initialiser ou réinitialiser la procédure de tracking dans le second cas.
Concernant les méthodes analysant I'image entiére, trois classes se distinguent: les
méthodes ad-hoc, les méthodes & un niveau, et les méthodes 4 deux niveaux.

Les méthodes ad-hoc reposent sur 1'utilisation d’opérations de morphologie mathé-
matique [Voros 2007]|, de seuillage, ou de la transformée de Hough [Doignon 2004].
Les méthodes a un niveau effectuent la détection de la position des outils directe-
ment & partir des caractéristiques extraites de l'image [Kumar 2013b]. Pour finir,
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les méthodes & deux niveaux effectuent d’abord une premiére passe afin d’identifier
les pixels appartenant aux outils et ceux appartenant & l’arriére-plan, pour en-
suite effectuer l'estimation de la pose des outils sur le résultat de la premiére
passe [Pezzementi 2009].

Afin de faciliter la tache de détection, la plupart des méthodes font usage de con-
traintes sur ’espace de recherche. Ces contraintes sont représentées par un ensemble
d’hypothéses soit par rapport a la forme de Voutil a identifier (une forme tubu-
laire [Speidel 2008|), soit concernant la position de loutil dans les images (visible
sur les bords [McKenna 2005]).

D.1.2.3 Meéthodologies de validation

Au méme titre que pour les jeux de données, aucune méthodologie de validation de
référence n’existe. Un nombre conséquent de travaux se sont intéressés & la quantifi-
cation de l'estimation de la position de extrémité des outils [Sznitman 2012]. Les
autres parametres de pose des outils validés ont été l'orientation [Wolf 2011], et la
position globale de l'outil [Kumar 2013b].

Dans les cas de validation de I'orientation ou de la position de 'extrémité des outils,
une simple distance Euclidienne est utilisée. Dans les cas de validation de la pose

globale des outils, le critére d’Intersection Sur I’Union est pris en compte (mesure
de PASCAL |Everingham 2010]).

D.1.2.4 Conclusion

La conclusion frappante que 'on peut tirer de cette revue de la littérature est le
manque cruel de jeux de données et de méthodologie de référence pour valider les
méthodes de détection d’outils chirurgicaux. A ce titre, il est difficile d’émettre
un jugement concernant les méthodes existantes car ne pouvant étre comparées et
clagsées sur un pied d’égalité. Concernant les méthodes d’analyse en elles-mémes,
plusieurs types ont été étudiés chacun présentant avantages et inconvénients.

D.1.3 Problématique de la thése

Devant 'intérét croissant des études sur la détection des outils chirurgicaux dans
des images/vidéos, cette thése s’est focalisée sur quatre principaux aspects. Tout
d’abord, les données de neurochirurgie étant peu ou pas utilisées, et devant la né-
cessité de créer des jeux de données robustes, le premier objectif a été la création
d’un nouveau jeu de données. Deuxiémement, le coeur de cette thése s’est porté sur
la création de méthodes de détection des outils chirurgicaux dans des images en 2
dimensions sans utilisation de connaissances a priori. Ensuite, afin de pouvoir inté-
grer ce type de méthode dans un systéme opérationnel, nous nous sommes intéressés
a Poptimisation de la vitesse de calcul. Pour finir, nous avons validé nos méthodes
par rapport 4 des méthodes de référence, selon trois critéres d’estimation de pose
des outils: la position globale, la position de ’extrémité de ’outil et I'orientation de
Poutil.
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D.2 Données de validation

Les données utilisées dans cette thése ont été acquises au sein du département de
Neurochirurgie du CHU Pontchaillou & Rennes. Deux types de chirurgies ont plus
particuliérement été privilégiées: les chirurgies de résection de tumeurs cérébrales
et de tumeurs rachidiennes.

A partir des données a disposition, un sous-échantillon de 14 vidéos a été manuelle-
ment défini, représentatif des deux types de chirurgies et faisant apparaitre sept
catégories d’instruments chirurgicaux. Notre jeu de données définitif, le NeuroSur-
gicalTools, est composé de 2476 images de résolution 612 x 460, extraites aléatoire-
ment dans les 14 vidéos précédemment évoquées. La figure D.1 illustre différentes
images se trouvant dans ce jeu de données, mis en accés libre?. Plusieurs condi-
tions pouvant représenter un challenge pour la détection sont visibles: occlusions
des outils, outils se chevauchant, illumination changeante, et flou entrainé par des
mouvements rapides.

Figure D.1: Illustration des images composants notre NeuroSurgicalToolsDataset.

Afin d’obtenir les positions de référence des outils chirurgicaux dans ces images,
un processus d’annotation a été suivi. Chaque outil a été délimité par au moins
un polygone, ou plusieurs dans le cas d’instruments en plusieurs parties comme
le forceps bipolaire. De plus, afin d’avoir accés aux informations d’orientation, de
largeur et de position précise de 'extrémité de I’outil, un triangle isocéle a été ajouté
pour les deux outils principaux.

’https://wuw.medicis.univ-rennesi.fr/software
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D.3 Meéthodes de détection

Dans cette thése, deux approches différentes ont été proposées permettant de dé-
tecter des outils chirurgicaux dans des images 2D. Tout d’abord, le SquaresChnFtrs
adapté, basé sur une des méthodes de détection de piétons les plus performantes de
la littérature. Notre deuxiéme méthode, le ShapeDetector, est une approche & deux
niveaux n’utilisant aucune contrainte ou hypothése a priori sur le nombre d’outils,
leurs positions, ou leurs formes afin de faciliter la détection.

D.3.1 Premiére approche: SquaresChnFtrs adapté

Cette premiére méthode se base sur le détecteur de piéton du méme nom: le
SquaresChnFtrs. Pendant 'entrainement, des caractéristiques image (features) sont
extraites et utilisées pour la création d’'un modéle de 'objet & détecter. Pendant
la phase de test, le modéle crée est appliqué en chaque pixel de I'image en suivant
une stratégie de fenétre glissante (sliding window), suivi d’une passe de sélection
des meilleures détections possible (NMS). Afin de détecter des outils chirurgicaux,
pouvant apparaitre a diverse orientations, le détecteur SquaresChnFtrs a du étre
adapté.

Représentation des caractéristiques image Trois types de caractéristiques
sont extraites de l'image, pour une représentation finale selon 10 canaux: 3
canaux de couleur dans ’espace LUV, 1 canal de magnitude des gradients, et 6
canaux d’histogrammes de gradient (HOG). De plus, chaque canal est représenté
de maniére intégrale, permettant ainsi de calculer la valeur des caractéristiques
image dans une région rectangulaire indéfinie en seulement trois opérations élémen-
taires [Viola 2001].

Apprentissage du modéle d’objet La stratégie employée pour apprendre un
modéle repose sur un classifieur en cascade: la forét d’arbres décisionnels. Un
ensemble de 2000 classifieurs faibles a été assemblé en utilisant Adaboost afin de
créer un classifieur fort [Benenson 2013].

Apprentissage d’un modéle d’outil chirurgical Afin de créer un modéle
d’outil chirurgical, les images d’entrainements doivent étre compensées en posi-
tion, taille, et en orientation dans le cas présent. Nous définissons 'orientation 0°
comme représentant un outil aligné horizontalement et faisant face au bord gauche
de I'image, comme illustré sur I'image D.2.

Un modéle est crée pour chaque 5° d’orientation, le tout assemblé dans un super
modeéle permettant de détecter un outil chirurgical & n’importe quelle orientation
dans I'image avec une précision minimale de 5° dans ’estimation de Iorientation. De
plus, pour gagner en précision dans I'estimation globale de la pose de 'outil, nous
proposons l'utilisation de polygones englobants plutét que de boites englobantes
pour représenter les détections.
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Figure D.2: Tubes d’aspirations apparaissant & 1’orientation 0°.

D.3.2 Deuxiéme approche: ShapeDetector

Adapter une méthode de I'état de I'art dédiée & la détection de piétons a permis
d’obtenir des résultats de détection intéressants (voir section D.6), cependant il est
possible de faire mieux. Notre deuxiéme méthode suit le schéma des méthodes a
deux niveaux, et permet l'utilisation d’informations de contexte pour améliorer la

g Semantic labels

qualité des détections, comme illustré figure D.3.

Input image Feature channels Response maps Detections

Figure D.3: Schéma décrivant le processus de notre ShapeDetector. Etape 1: calcul
des canaux image sous forme intégrale. Etape 2: classification de chaque pixel de
I'image en deux classes: outil et arriére-plan. Etape 3: estimation de la pose des
outils & partir d’'un modéle SVM.

D.3.2.1 Premier niveau: labélisation semantique

L’objectif de ce premier niveau est de traiter 'image afin d’en obtenir une carte
affichant les pixels de I'image pouvant appartenir aux objets. La SquaresChnFtrs
est réutilisé afin d’effectuer non-pas une décision sur un modeéle global de 'outil
mais en chaque pixel de I'image. Deux classifieurs différents sont appris, un pour
modeéliser les pixels appartenant & la classe outil, et un second pour modéliser les
pixels appartenant a la classe arriére-plan.

Formalisme du résultat Le résultat de I’étape de labélisation sémantique est un
ensemble de cartes de scores, une pour chaque classifieur. Pour faire référence & cette
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sortie multi-classes, nous utilisons le terme de scores sémantiques (cf. images D.4c
et D.4d). Nous proposons aussi de fusionner cet ensemble de cartes en une image
de labels. Pour ce faire, le label associé & chaque pixel est celui de la classe ayant le
score sémantique le plus élevé. Nous utilisons le terme de labels sémantiques pour
faire référence a cette sortie (cf. image D.4b).

(a) Image d’entrée (b) Labels sémantiques

(c) Scores sémantiques pour la classe outil ~ (d) Scores sémantiques pour la classe arriére-
plan

Figure D.4: Tllustration des scores et labels sémantiques.

D.3.2.2 Modéle d’outil SVM

Une machine a vecteurs de support (SVM) a été utilisée afin d’apprendre un modéle
d’outil chirurgical. De plus, nous ajoutons un terme de régularisation spatiale per-
mettant d’assurer une cohérence spatiale au sein du modéle. A partir de I’équation
standard d'un SVM (équation (D.1) (cf. [Burges 1998]), nous ajoutons le terme
de régularisation M (équation D.2) permettant d’appliquer notre lissage spatial en
2d [Lehmann 2011].

w’ w+C YL (yi, i - w) (D.1)



D.3. Meéthodes de détection 189

wT~M~w—|—C~ZL(yZ—,azi'w) (D.2)

ou (z;, y;) sont des paires du type instance-label, L (y;, x; - w) est la fonction de
cott et C est le paramétre de pénalité. La matrice M peut étre décomposée comme
représenté dans ’équation 4.5. La matrice de régularisation R encode la structure
spatiale 2D.

M=R'-R (D.3)

Echantillons d’entrainement positifs Trois alternatives ont été proposées, per-
mettant de créer des échantillons positifs pour "apprentissage du modéle SVM. Pour
les alternatives (2) et (3), nous tirons profit des annotations effectuées sur le jeu de
données.

1. Scores sémantiques du SquaresChnFirs.
2. Masques d’annotations de tous les outils (cf. image D.5a).

3. Masques d’annotations de 'outil concerné uniquement (cf. image D.5b).

—_—

iy

(a) All instruments annotation (b) Specific instrument annotation

Figure D.5: Echantillons positifs d’un tube d’aspiration pour l'apprentissage SVM.
La ligne du haut représente la classe sémantique outil et celle du bas la classe arriére-
plan.

Echantillons d’entrainement negatifs Les échantillons d’entrainement négatifs
sont créés aléatoirement a partir d’une des trois stratégies suivantes:

1. Tirage binaire: distribution uniforme binaire ou les pixels prennent soit la
valeur 0 soit la valeur 255.
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2. Tirage en niveaux de gris: distribution uniforme ou les pixels prennent une
valeur dans [0, 255].

3. Tirage gaussien: distribution gaussienne oi les pixels prennent une valeur dans
[0, 1], puis les valeurs sont remises a 1’échelle dans [0, 255].

D.3.2.3 Modéle d’outil pour le ShapeDetector

Un modéle global décrivant plusieurs paramétres d’un outil chirurgical a besoin
d’étre crée pour pouvoir ensuite effectuer I'estimation de la pose dans le deux-
ieme niveau du ShapeDetector. Les éléments suivants sont inclus, et représentés
sur 'image D.6: le modéle SVM de l'outil, le polygone englobant décrivant la forme
générique de loutil, la position de 'extrémité de 'outil, 'orientation et échelle de
Ioutil, et enfin la catégorie de 'outil.

e —

Figure D.6: Illustration du modéle général du ShapeDetector pour un tube
d’aspiration (gauche) et la partie supérieure de la pince bipolaire (droite). En noir

sont représentés le polygone englobant ainsi que la position de 'extrémité de ’outil.
Les autres couleurs représentent le modéle SVM.

D.3.2.4 Second niveau: estimation de la pose des outils

L’estimation de la pose des outils dans I'image se fait en appliquant le modéle SVM
suivant une stratégie de fenétre glissante sur les scores sémantiques résultant du
premier niveau.

Le modéle SVM d’un outil est appris pour une pose normalisée. Afin de détecter
un nombre arbitraire d’outils, a des positions et orientations différentes, un jeu
de modeéles est dérivé du modéle de base pour correspondre aux parameétres de
recherche spécifié par l'utilisateur. La génération d’un ensemble de modéles au
lancement du processus permet de ne pas avoir & recalculer le premier niveau pour
chaque échelle et orientation, permettant ainsi d’accélérer la vitesse d’acquisition
des détections [Benenson 2012].

Chaque modéle SVM généré est découpé en blocs de 15 x 15 pixels et représenté
comme un ensemble de carrés (cf. image D.7). Cette stratégie permet de tirer
avantage des représentations intégrales des canaux de caractéristiques et d’obtenir
un gain additionnel de vitesse.



D.4. Détections en temps-réel 191

>

P

(a) Modele complet (b) Modele par partie

Figure D.7: Effet visuel de 'approximation par parties du modeéle SVM d’un forceps
bipolaire, pour la classe outil.

D.4 Détections en temps-réel

Afin d’utiliser ce type de méthodes dans des systémes opérationnels au sein de la
salle opératoire, il est nécessaire de pouvoir traiter les données en temps-réel, c’est
a dire entre 25 et 30Hz. Deux types de stratégies existent afin d’augmenter la
vitesse de calcul d’un algorithme. Premiérement, optimiser le code, que ce soit sur
le CPU ou le GPU, afin d’obtenir plus rapidement la méme qualité de résultats.
Deuxiémement, utiliser des stratégies d’optimisation ad-hoc ayant un effet négatif
sur la qualité des résultats. Dans ce cas, il faut alors trouver le meilleur compromis
entre qualité et vitesse.

D.4.1 Bonnes pratiques de programmation

Avant d’entrer dans une optimisation du code en profondeur, I'utilisation de "bonnes
pratiques" de programmation représente une premiére couche d’optimisation de code
permettant d’obtenir un gain de vitesse. Pour référence, les optimisations sont
proposées pour un code écrit en C++.

e Déroulage de boucle: afin d’éviter des tests de condition du type if/else, et
de réduire 'arithmétique sur les pointeurs.

e Fonctions inline: afin que le corps d’une fonction soit placé directement a
I’endroit de son appel, évitant ainsi les sauts entre routines.

e Multi-threading: les libraires OpenMP peuvent étre utilisées afin de répartir
facilement le traitement des données sur les différents coeurs CPU & disposi-
tion.
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e ldentification des points bloquants "bottlenecks": pour augmenter la vitesse,
il faut pouvoir identifier les bouts de code concentrant un temps important
de calcul. Des logiciels spéciaux doivent étre utilisés pour cette tache, comme
I'Intel VTunes Amplifier.

D.4.2 Implémentation CPU

Afin d’effectuer de maniére efficace des calculs en paralléle sur le CPU, nous avons
utilisé les instructions SIMD (Single Instruction Multiple Data). En un méme temps
CPU, la méme opération (arithmétique ou logique) est effectuée simultanément pour
différentes données.

Nous avons effectué deux implémentations différentes basées sur 'utilisation des
instructions SIMD: SSE3 utilisant des registres CPU de 128 bits, et AVX utilisant
des registres CPU de 256 bits. Dans le premier cas, seules quatre opérations sur des
flottants peuvent étre réalisées en méme temps contre huit dans le second.

D.4.3 Implémentation GPU

L’utilisation des capacités de calcul du GPU apparait comme logique pour des algo-
rithmes de traitement d’image ot un méme bout de code est exécuté a l'identique
en chaque pixel d’'une image. Nous avons opté pour une répartition comme suit:

e Taille d'un bloc: Dy.x = 16, Dy.y = 16, Dy.z = 1.

e Fonctions inline: Dgy.x = Largeur/Dy.x, Dg.y = Hauteur/Dy.y, Dg.z =
NbOrientations/ D.z.

D.4.4 Méthodes d’optimisation ad-hoc

Pour ce dernier type de méthodes permettant d’accélérer la vitesse de calcul, il
existe un impact sur la qualité des détections. Parmi les stratégies les plus prisées,
on trouve le sous-échantillonnage de I'image de départ, la réduction des paramétres
de recherche (nombre d’orientations moins important), et la limitation du nombre
de détections candidates accélérant ainsi la procédure de NMS.

D.5 Meéthodologie de validation

La littérature ne proposant pas de méthodologie de validation de référence,
nous avons choisi d’utiliser une méthode similaire & celle utilisée par Dollar et
al. [Dollar 2011] pour la détection des piétons. Nous proposons aussi un jeu de
méthodes de référence (i.e. baseline) afin de comparer les performances de nos
méthodes. Le protocole de validation (section D.5.1) définit la phase de spécifica-
tion de la méthodologie et les métriques de validation définissent la facon dont le
critére de validation est évalué (section D.5.2).



D.5. Meéthodologie de validation 193

D.5.1 Protocole de validation

Le protocole de validation suivi a été établi par Dollar et al. [Dollar 2011]. Pour
chaque image testée, ’ensemble de détections obtenues par notre méthode (BGg)
est comparé aux détections de référence (BGy). Un appariement est effec-
tué entre les éléments des deux ensembles en se basant sur la mesure de PAS-
CAL [Everingham 2010].

Les différents modéles sont appris sur I’ensemble d’entrainement de notre jeu de
données, et les résultats sont obtenus sur I’ensemble de test de ce méme jeu de don-
nées.

Les résultats de validation sont affichés sous la forme de graphiques représentant le
taux de détections manquées en ordonnée contre le nombre de faux positifs par im-
age en abscisse. La moyenne du taux de détection manqué est calculée pour résumer
les performances des détecteurs en une seule valeur.

D.5.2 Meétriques de validation

Figure D.8: Représentation visuelle des métriques de validation prises en compte et
calculées entre la détection BGy; bleue et la détection BG4 orange. Les extrémités
des outils sont représentées par des cercles jaunes et la ligne verte identifie la distance
entre les deux extrémités.

Trois métriques sont utilisées pour valider trois paramétres d’estimation de pose
des outils chirurgicaux (représentés figure D.8), et une quatriéme métrique pour la
qualité de la classification au niveau pixel:

o Chevauchement de polygones: le critére d’Intersection Sur I’Union est utilisé
entre deux polygones. Chaque détection chevauchant sa référence de plus de
25% est considérée comme un vrai positif.

e Différence en orientation: la différence entre l'orientation de chaque vraie
détection (au titre de la premiére métrique) et de sa référence est quantifiée.
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o Distance des extrémités: la distance Euclidienne entre 'extrémité de chaque
vraie détection (au titre de la premiére métrique) et de sa référence est cal-
culée.

o Qualité de la segmentation: le pourcentage général de pixels correctement
classifiés est calculé.

D.5.3 Méthodes comparées

Pour chaque catégorie d’approche considérée, au moins une méthode de référence
de I’état de I'art est utilisée pour comparaison.

e Segmentation sémantique: la méthode Darwin est utilisée [Gould 2012].
e Approche & un niveau: le détecteur Linemod est utilisé.

e Approche & deux niveaux: la méthode Skelefon, créée & la main et se basant
sur une succession d’opérations morphologiques.

e Variantes du ShapeDetector: notre méthode permettant de créer plusieurs
variantes, nous en considérons trois. La variante FiredTemplate appliquant
un modéle fixe sur la segmentation du SquaresChnFtrs, la variante DarwinDe-
tector appliquant un modéle fixe sur la segmentation Darwin, et la variante
ShapeDetector appliquant un modéle SVM sur la segmentation SquaresChn-
Ftrs.

D.6 Reésultats

D.6.1 Qualité des détections

Les principaux résultats obtenus pour chaque détecteurs sont reportés sur la fig-
ure D.9. La méthode Linemod obtient des résultats assez faibles, démontrant
I'incapacité d’une méthode générique de détection d’objets d’obtenir de bons résul-
tats pour la détection des outils chirurgicaux. Notre SquaresChnFtrs adapté obtient
en comparaison de meilleurs résultats, probablement grace a son modéle flexible,
mais les performances restent limitées avec moins de 50% de recall pour un taux de
10~ faux positifs par image. Les méthodes & deux niveaux obtiennent de meilleurs
résultats indiquant le fort impact de la segmentation sémantique. Finalement, notre
ShapeDetector obtient les meilleurs résultats, divisant par deux le taux de détections
ratées par rapport au meilleur détecteur générique. Les plus faibles performances
du DarwinDetector par rapport au Fized Template indiquent la nécessité d’une seg-
mentation de haute qualité afin d’obtenir les meilleures détections possibles.

Pour la validation de I’estimation de la position de P'extrémité des outils (fig-
ure D.10), le SquaresChnFtrs adapté et le ShapeDetector obtiennent des perfor-
mances similaires.
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Figure D.9: Performances des différentes méthodes selon la métrique Chevauchement
de polygones.
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Figure D.10: Performances des différentes méthodes selon la métrique Distance des
extrémités. Evaluation réalisée & 10~! faux-positifs par image.

Dans le cas du tube d’aspiration, une erreur inférieure & 20 pixels est obtenue
pour 50% des détections considérées comme étant des vrais positifs. On peut noter
I'importance que la qualité de I'étape de labélisation sémantique en comparant les
résultats du Fized Template et du DarwinDetector. Pour une erreur d’estimation de
la position de 'extrémité de 'outil de 40 pixels, un taux de rappel de 10% entre les
deux approches est notable.

La figure D.11 illustre les résultats obtenus avec la méthode ShapeDetector pour
un modéle de forceps.
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Figure D.11: Detections d’un forceps bipolaire obtenues avec le ShapeDetector. Les
pixels classifiés comme appartenant a la classe outil sont marqués en vert.

D.6.2 Vitesse des détecteurs

Les résultats en vitesse ont été obtenus avec les spécifications d’ordinateur suiv-
antes: DELL Precision T8600, Intel Xeon E5-2620 v2 @2.10GHz, NVIDIA GeForce
Titan Black, et sont reportés dans la table D.1. Pour un temps de calcul initial
d’environ 1.3 s, les optimisations CPU et GPU successives ont permis d’atteindre
un temps de calcul de seulement 180 ms. Les optimisations ont été effectuées pour
le ShapeDetector, et les temps sont reportés pour des images de taille 612 x 460
pixels.

Table D.1: Pour une image de 612 x460 pixels, les temps de calcul du ShapeDetector
selon différentes implémentations CPU and GPU.

Niveau 1 (ms) | Niveau 2 (ms) | ShapeDetector (ms)
CPU non-opti. / 1200 1290
CPU opti. / 600 690
CPU SIMD / 200 290
GPU 90 90 180
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D.6.3 Discussion
D.6.3.1 Rotations dans le plan

A l'inverse de bien des méthodes de vision par ordinateur symbolisant une détec-
tion par une fenétre rectangulaire, nous avons proposé I'utilisation d’une géométrie
plus fine: des polygones. De par les multiples changements d’orientation dans le
plan subis par les instruments chirurgicaux au cours d’une procédure, de larges
portions de ’arriére-plan chirurgical seraient aussi présentes dans la détection. Ce
phénomeéne est illustré dans 'image D.12, ot des fenétres rectangulaires symbolisant
les détections sont représentées en rose, et les polygones proposés sont représentés

en vert.

Figure D.12: Représentation des détections avec des boites englobantes (rose) et des
polygones englobants (vert).

D.6.3.2 Labélisation sémantique

Les résultats obtenus par 'étape de classification au niveau pixel ne sont pas par-
faits, comme en témoigne la présence de bruit principalement au niveau des contours
des outils. Une amélioration de la qualité globale est nécessaire afin de pouvoir
obtenir de maniére plus précise la position de l'extrémité des outils. Avoir choisi
de modéliser simplement deux classes pour cette étape apparait comme étant une
bonne stratégie. La création d’une classe par catégorie d’outil chirurgical ne ferait
qu’ajouter de la confusion entre classifieurs. En prenant le tube d’aspiration et le
forceps bipolaire, les différences au niveau local sont presque inexistantes, les deux
outils étant non texturés, métalliques et de couleur grise. De nouvelles classes pour-
raient étre ajoutées dans le cas d’outils présentant des variations fortes de couleur,
comme 'instrument [OL utilisé pour les chirurgies de la cataracte.
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D.6.3.3 Détection et classification

Les approches proposées sont basées sur un apprentissage dépendant des données
d’entrées et n’utilisent aucune connaissance a priori concernant la taille, forme, posi-
tion, ou nombre des outils dans les images pour effectuer les détections. Cependant,
plusieurs cas de détections erronées ou manquées ont été identifiés et la précision de
la couche de labélisation sémantique apparait comme jouant un réle prépondérant
dans la qualité des détections.

Dans I’état actuel du ShapeDetector, il est possible d’utiliser plusieurs modéles
d’outils SVM en méme temps sur une image, méme si ne permettant plus d’obtenir
des détections en temps-réel. Cependant, le probleme de classification entre outils
demeure car les modéles SVM ont été congus pour différentier un outil de I'arriére-
plan chirurgical et non des autres outils. En conséquence, il est possible que le score
d’une détection obtenue avec un modéle de tube d’aspiration soit plus élevé que
le score d'une détection obtenue avec un modéle de forceps, sur une zone d’image

laissant apparaitre un forceps (cf. image D.13).

Figure D.13: Probléme de classification du ShapeDetector avec un modéle de forceps
(gauche) et de tube (droite).

D.7 Procédés de robustification

Afin d’intégrer une méthode de détection d’outils chirurgicaux dans un systéme
opérationnel au sein du bloc opératoire avec un objectif médical précis, de meilleurs
résultats de détection peuvent étre requis. Nous avons exploré deux pistes permet-
tant de robustifier nos méthodes de détection.

D.7.1 Utilisation de marqueurs externes

Dans certains cas, la classification entre deux types d’instruments chirurgicaux n’est
pas possible en effectuant une simple analyse d’image. A ce titre, il est nécessaire de
placer des marqueurs externes sur les outils afin de faciliter les taches de détection
et de classification.



D.7. Procédés de robustification 199

Nous avons choisi d’utiliser une représentation similaire a un code barre, comme
illustré sur I'image D.14. Pour effectuer l'identification de ce marqueur externe,
nous considérons une ligne partant de I'extrémité de 1’outil jusqu’au bord de 'image
comme un signal 1D. Nous utilisons alors des techniques de traitement du signal
comme 'application d'un filtre passe-bas ou de calcul de dérivée du signal.

Figure D.14: Marqueur externe similaire & un code barre et placé sur des outils
chirurgicaux.

D.7.2 Utilisation d’une méthode de suivi temporel

Comme établi par Benenson et al. [Benenson 2014, en partant d’'une méthode de
détection spatiale robuste et performante, 'utilisation de méthodes entre autre de
suivi temporel permet d’améliorer encore un peu plus les résultats. A ce titre,
nous nous sommes intéressés a 'utilisation de filtres de Kalman afin d’améliorer les
résultats de détection de notre ShapeDetector.

Pour chaque ’track’, c’est & dire chaque outil détecté et suivi temporellement, de
lui associer deux filtres de Kalman. Le premier filtre permet d’estimer la position
de 'extrémité de 'outil grace & la position précédente et aux parameétres de vitesse
de déplacement de 'outil. Le second permet I'estimation de 'orientation de I'outil
a partir des orientations antérieures. La figure D.15 illustre les résultats obtenus,
avec chaque ’track’ représentée dans les images par une courbe noire.

Figure D.15: Résultats du suivi temporel sur des séquences in-vivo.
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D.8 Conclusion

Bien que devenant un environnement de plus en plus riche technologiquement, la
salle opératoire reste un endroit ot la sécurité des patients n’est pas assurée 3 100%
comme le montre le nombre toujours conséquent d’erreurs chirurgicales. La né-
cessité de développer des systémes intelligents au bloc opératoire apparait comme
croissante. Un des éléments clés pour ce type de systéme est la reconnaissance du
processus chirurgical, passant par une identification précise des outils chirurgicaux
utilisés.

Dans ces travaux de thése, un nouveau jeu de données, deux méthodes de détection
en temps-réel, ainsi qu’une méthodologie de validation des performances ont été pro-
posés afin de répondre au probléme d’identification des outils chirurgicaux dans des
vidéos 2D. L’utilisation des vidéos provenant du microscope chirurgical est partic-
uliérement intéressante car ne dérangeant par le chirurgien pendant 'intervention.
De plus, le point de vue du microscope permet d’obtenir toutes les informations
nécessaires pour l'identification des outils. Enfin, grace aux nouvelles générations
de microscopes, il sera possible d’extraire des informations de profondeur grace a
I’enregistrement de vidéos stéréoscopiques.

Pour le futur, il est important pour la communauté de mettre en place des jeux de
données de référence ainsi que les méthodologies de validation correspondantes. De
plus, effectuer I’évaluation de ce type d’approches dans des systémes de plus haut
niveau, en per- ou post-opératoire, apparait comme primordial.
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Détection en temps-réel des outils chirurgicaux dans des vidéos 2D
de neurochirurgie par modélisation de forme globale et
d’apparence locale.

Résumé : Bien que devenant un environnement de plus en plus riche tech-
nologiquement, la salle opératoire reste un endroit ot la sécurité des patients n’est
pas assurée a 100% comme le montre le nombre toujours conséquent d’erreurs
chirurgicales. La nécessité de développer des systémes intelligents au bloc opératoire
apparait comme croissante. Un des éléments clés pour ce type de systéme est
la reconnaissance du processus chirurgical, passant par une identification précise
des outils chirurgicaux utilisés. L’objectif de cette thése a donc porté sur la
détection en temps-réel des outils chirurgicaux dans des vidéos 2D provenant de
microscopes. Devant 'absence de jeux de données de référence, qui plus est dans
un contexte neurochirurgical, la premiére contribution de la thése a donc été la
création d’un nouvel ensemble d’images de chirurgies du cerveau et du rachis
cervical, mis & disposition en ligne. Comme seconde contribution, deux approches
différentes ont été proposées permettant de détecter des outils chirurgicaux via des
techniques d’analyse d’image. Tout d’abord, le SquaresChnFtrs adapté, basé sur
une des méthodes de détection de piétons les plus performantes de la littérature.
Notre deuxiéme méthode, le ShapeDetector, est une approche a deux niveaux
n’utilisant aucune contrainte ou hypothése a priori sur le nombre, la position, ou
la forme des outils dans 'image. Par rapport aux travaux précédents du domaine,
nous avons choisi de représenter les détections potentielles par des polygones
plutét que par des rectangles, obtenant ainsi des détections plus précises. Pour
intégration dans des systémes médicaux, une optimisation de la vitesse de calcul
a été effectuée via un usage optimal du CPU, du GPU, et de méthodes ad-hoc.
Pour des vidéos de résolution 612 x 480 pixels, notre ShapeDetector est capable
d’effectuer les détections a une vitesse maximale de 8 Hz. Pour la validation de
nos méthodes, nous avons pris en compte trois paramétres: la position globale,
la position de l'extrémité, et 'orientation des détections. Les méthodes ont été
classées et comparées avec des méthodes de référence compétitives. Pour la
détection des tubes d’aspiration, nous avons obtenu un taux de manqué de 15%
pour un taux de faux positifs par image de 10~!, comparé & un taux de manqué de
55% pour le SquaresChnFtrs adapté. L’orientation future du travail devra porter
sur l'intégration des informations 3D, l'amélioration de la couche de labélisation
sémantique, et la classification des outils chirurgicaux. Pour finir, un enrichisse-
ment du jeu de données et des annotations de plus haute précision seront nécessaires.

Mots clés : Détection d’objet, vision par ordinateur, outils chirurgicaux,
images de microscope.




Real-time detection of surgical tools in 2D neurosurgical videos by
modelling global shape and local appearance.

Abstract: Despite modern-life technological advances and tremendous progress
made in surgical techniques including MIS, today’s OR is facing many challenges
remaining yet to be addressed. The development of CAS systems integrating
the SPM methodology was born as a response from the medical community,
with the long-term objective to create surgical cockpit systems. Being able to
identify surgical tools in use is a key component for systems relying on the SPM
methodology. Towards that end, this thesis work has focused on real-time surgical
tool detection from microscope 2D images. From the review of the literature,
no validation data-sets have been elected as benchmarks by the community. In
addition, the neurosurgical context has been addressed only once. As such, the
first contribution of this thesis work consisted in the creation of a new surgical
tool data-set, made freely available online. Two methods have been proposed to
tackle the surgical tool detection challenge. First, the adapted SquaresChnFtrs,
evolution of one of the best computer vision state-of-the-art approach for pedestrian
detection. Our second contribution, the ShapeDetector, is fully data-driven and
performs detection without the use of prior knowledge regarding the number,
shape, and position of tools in the image. Compared to previous works, we chose
to represent candidate detections with bounding polygons instead of bounding
boxes, hence providing more fitting results. For integration into medical systems,
we performed different code optimization through CPU and GPU use. Speed
gain and accuracy loss from the use of ad-hoc optimization strategies have been
thoroughly quantified to find an optimal trade-off between speed and accuracy. Our
ShapeDetector is running in-between 5 and 8Hz for 612 x 480 pixel video sequences.
We validated our approaches using a detailed methodology covering the overall
tool location, tip position, and orientation. Approaches have been compared and
ranked conjointly with a set of competitive baselines. For suction tube detections,
we achieved a 15% miss-rate at 1071 FPPI, compared to a 55% miss-rate for the
adapted SquaresChnFtrs. Future works should be directed toward the integration
of 3D feature extraction to improve detection performance but also toward the
refinement of the semantic labelling step. Coupling the tool detection task to the
tool classification in one single framework should be further investigated. Finally,
increasing the data-set in diversity, number of tool classes, and detail of annotations
is of interest.

Keywords: Object detection, template matching, surgical tools, microscope
images.
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