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”Abstract”

Accurate control over the state and motion of single individual electrons would enable a

variety of appealing applications reaching from quantized to quantum coherent electron

sources. Realizing the accuracy of quantized current sources required for a metrolog-

ical standard is however extremely challenging and has naturally fuelled fundamental

research into single electron transport through mesoscopic structures.

A promising candidate, foreseen to meet the demand, combines the concept of quan-

tized charge in single electron transistors (SETs) and the gapped density of states in

superconducting metals (hence called hybrid electron turnstile), to produce a quantized

current. The time-correlated electron transport (sub-poissonian) between the super-

conducting leads is conveyed by the continuous density of states of the central normal

island. The large amount of available states at the normal island, although favourable

in terms of tunnel coupling, has nevertheless two important ramifications i.e. 1) ther-

mal fluctuations and 2) adverse higher-order processes, which limit the performance of

hybrid electron turnstiles.

Inspired by this ingenious application and the advances in quantum dot transport,

we explore the operation of a hybrid electron turnstile embodying a bottom-up quantum

dot instead of the usual metallic island. The desired devices are obtained by controlled

electromigration of aluminium nano-wires preceded by the deposition of gold nano-

particles. This in-situ process (conducted at 4 K) produces pristine tunnel junctions

between aluminium leads and gold nano-particles with a yield of ∼ 4%.

We characterize the stationary and turnstile operation by direct current measure-

ments at ∼ 100 mK, in a heavily filtered, but electromigration compatible, inverse

dilution refrigerator. Analysis of the acquired conductance maps under stationary con-

ditions, reveal a large charging energy (≳ 10 meV) and mean level spacing (≳ 1 meV).

With a detailed study of the coherence peak broadening at the Coulomb blockade (CB)

threshold, we show that electron transport through the quantum dot is conveyed by a

single quantum level. Although the tunnel coupling is weak, the single level life-time is

dominated by the lead - quantum dot hybridization as thermal energy fluctuation and

in-elastic scattering are suppressed by the large single level spacing on the quantum dot
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ii Abstract

and the superconducting gap in the leads. The observation of sub-threshold resonances

parallel to the CB diamond edges are consistent with earlier predicted higher-order

Cooper-pair - electron (CPE) cotunneling processes.

Under turnstile operation a periodic modulation signal (sine or square wave) is

added to the static gate potential. We demonstrate quantized current up to 200 MHz

at which its accuracy starts to worsen due to missed tunnel events. Strong experimental

evidence of the single quantum dot level nature of our turnstile device is provided by a

sharp onset of backtunneling processes and the temperature-robust operation beyond

300 mK.

Finally we observe a systematic current suppression unique to the low frequency

sine wave operation. Supported by theoretical work, we show that the underlying

missed tunnel events are caused by adiabatic traverses across the avoided crossing of a

quantum dot level and superconducting gap edges. These experiments deliver the first

experimental observation of the level repulsion between an electronic discrete state

and a semi-continuum and demonstrate the quantum coherent evolution of our devices

under adiabatic operation conditions.



”Résumé”

Le contrôle du nombre et de l’état quantique d’électrons individuels est un élément clé

pour la construction d’applications innovantes comme les sources à un électron ou les

standards métrologiques de courant. La difficulté d’atteindre la précision métrologique

pour une source de courant alimente la recherche fondamentale sur le transport indi-

viduel d’électrons dans les structures mésoscopiques.

Un candidat prometteur combine le concept de quantification de la charge dans

un transistor à un électron (Single Electron Transistor, SET) et la bande interdite de

la densité d’états d’électrodes supraconductrices. Le transport corrélé en temps (sub-

poissonien) d’électrons entre les électrodes supraconductrices est alors assuré par la den-

sité d’états continue de l’ilot métallique central. Le grand nombre d’états électroniques

disponibles dans lilot, bien que favorable en termes de couplage tunnel, a néanmoins

deux conséquences importantes que sont les fluctuations thermiques et des processus

parasites d’ordre supérieur, ce qui limite la performance de ces dispositifs.

Dans ce contexte, nous explorons le transport de charges dans un tourniquet à

électrons hybride basé sur une bôıte quantique en lieu et place de l’ilot métallique. Les

dispositifs sont réalisés par l’électromigration contrôlée de constrictions d’Aluminium

précédée par le dépôt aléatoire de nano-particules d’or. Ce procédé in-situ (réalisé à

basse température) permet l’obtention de jonctions tunnel entre des électrodes supra-

conductrices d’aluminium et nano-particules d’or avec un taux de succès de l’ordre de

4%.

Nous caractérisons le transport statique et en fréquence dans ces nanostructures par

la mesure statique du courant à une température de 100 mK dans un environnement

fortement filtré, mais néanmoins compatible avec l’électro-migration, d’un réfrigérateur

à dilution. L’analyse des cartes de conductance en fonction des tensions drain-source et

de grille révèle une énergie de charge très élevée de l’ordre de 10 meV et un écart entre

niveaux discrets d’énergie de l’ordre de 1 meV. Par une étude détaillée de l’élargissement

des pics de cohérence au seuil du blocage de Coulomb, nous montrons que le transport

électronique est assuré par un niveau unique dans la bôıte quantique. Bien que le cou-

plage tunnel soit faible, le temps de vie d’un électron dans un niveau donné est dominé
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iv Résumé

par l’hybridation des états électroniques entre les électrodes et la bôıte quantique. En

effet, les fluctuations thermiques et les processus inélastiques sont inopérants du fait du

grand écart d’énergie entre niveaux et de la bande interdite supraconductrice dans les

électrodes. L’observation de résonances sous le seuil imposé par le blocage de Coulomb

est décrite par des processus de co-tunneling de type paire de Cooper-électron.

Lorsqu’un signal radio-fréquence de forme sinusöıdale ou carrée est ajouté à la ten-

sion de grille, un fonctionnement de tourniquet à électron est montré. Nous obtenons un

courant quantifié jusqu’à une fréquence de 200 MHz, au delà de laquelle la précision se

dégrade à cause d’évènements tunnel manqués. Le couplage à un niveau unique dans la

bôıte quantique est clairement démontré par l’apparition d’effets de transport tunnel in-

versé à grande tension drain-source ainsi que l’insensibilité à la température jusqu’à en-

viron 300 mK. Enfin, nous observons une suppression systématique du courant unique-

ment à basse fréquence et avec un signal r.f. sinusöıdal. En accord avec une prédiction

théorique, nous montrons que les effets tunnel manqués sont causés par un processus

adiabatique au travers l’anti-croisement d’un niveau quantique sur la bôıte quantique

avec la densité d’états des électrodes supraconductrices. Nos expériences fournissent

la première démonstration expérimentale de la répulsion de niveaux entre un niveau

discret et un semi-continuum, illustrant ainsi l’évolution cohérente de nos tourniquets

hybrides à électron dans un régime adiabatique.
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”Introduction”

The ability to control electrons with increasing versatility and accuracy is a cornerstone

of modern information technology. Small electronic currents can be switched, ampli-

fied and transformed into light and heat by ordinary electronic devices present in our

equipment. These devices, e.g. bipolar and field-effect transistors, light-emitting diodes

and Peltier elements, typically manipulate a continuous flow of de-localized electrons

very similar to a liquid (figure 1a). With the advances in modern electronic circuit

technology, we gradually gain control over the motion and (quantum) state of single

electrons.

The granular nature of single charges particularly appears in small insulating bar-

riers through which electrons may only pass by the process of quantum tunneling [27].

The energy barrier, referred to as tunnel junction, converts an incoming flow of elec-

trons into a poissonian distributed stream of individual charges employing the stochastic

nature of the quantum tunnel process (figure 1b).

A true one-by-one motion of electrons is procured in small metallic islands contacted

by two tunnel barriers (figure 1c). Charging the central island by a single additional

electron goes with an associated energy cost characterized by the charging energy EC =
e2/2CΣ, where CΣ is the total capacitance of the island. At low temperature (kBT <
EC), well defined charge states are established i.e. the number of additional electrons

on the island becomes quantized (charge quantization). Electrons can not be exchanged

between the island and the leads as the thermal energy fluctuations (described by the

Fermi-Dirac distribution) are insufficient to provide the charging energy.

With the implementation of a third electrode, capacitively coupled to the island, the

electro-chemical potential required to add/remove single electrons to/from the island

can be manipulated. Current between the leads will take place if and only if electrons

can be both added to and removed from the island (on-state). At sufficiently low bias

eVB < EC electron transport can only proceed by sequential tunnel events and will

therefore be correlated to the islands charge occupation. This single electron nature

of the current through the island gives this three-terminal device its name i.e. single

electron transistor (SET).
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a)	Fermi-sea b)	Tunnel	junction c)	SET d)	Quantum	dot e)	QD	turnstile

2Δ

Figure 1: Energy schematics of various mesoscopic conduction channels showing increased
control over electron localization, energy and time interval between two particles.

The SET on-state current is yet, despite its sequential nature, at best characterized

as a (sub-poissonian) stochastic stream of electrons. There is no control over the

exact time interval between two electrons, let aside individual electrons or their energy.

Still, the theoretical prediction [89, 4] and observation [43] of single electron charging

effects in SETs inspired the concept of a quantized current source as to define a new

metrological current standard. Single electron transport, synchronized with an external

cyclic signal was foreseen to produce a quantized current I = ef , where f is the signal

frequency, with an accuracy superior to 1 ppm. Now, decades later it turns out that

the objective of a metrological standard build on the quantization of charge is quite

challenging and goes far further than just a definition for current. It requires exquisite

control over single electrons as if operated by a pupped master.

The quest for quantum metrology

The quest for this new metrological standard was initiated by the theoretical proposal

of Likharev and Zorin [89] in the mid 1980s. Shortly after, in 1990, Geerligs et al.

[44] demonstrated the quantization of current using four normal metal tunnel junctions

positioned in series. A single gate electrode is capacitively coupled to the center is-

land and provides active control over the electron transport. The operation as single

electron source is best explained as a 2-stage ’load and lock’ principle driven by the

gate voltage (figure 2a). During the first stage, a positive gate voltage, loads a single

electron and locks it at the center island. Double electron occupation is blocked by

charging energy. Next, the application of a negative gate voltage enables the electron

to leave the center island and directly after, the device. Sequential tunneling during the

operation is blocked by the energy required to charge the neighbouring islands. This

is achieved by the two additional tunnel junctions with respect to any ordinary SET.

In order to give direction to the generated current a small bias voltage is required to

break the symmetry between the source and drain. The necessity of a bias voltage dis-

tinguishes this ’turnstile’ from electron pumps which operate at zero bias. The pursuit

for metrological accuracy that followed, propelled an enormous amount of experimental

effort which we will shortly discuss.
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Figure 2: Schematic representations of the operation principle of various single electron
sources. a) Electron transport during the first and second operation stage of the first elec-
tron turnstile [44]. A gate is capacitively coupled to the central island of four tunnel junctions
in series. b,c) Stability diagram of a double MOSFET electron pump [54] (b) and double island
SET (c). Blue lines/dots denote regions of non-zero current. Pump operation is illustrated by
the magenta line. d) Potential landscapes of a single parameter tunable barrier pump illustrat-
ing 1) the initialization phase, 2) a captured electron and 3) the electron ejection. e) Energy
diagram of the hybrid SET charge states as function of the gate. The superconducting gap
introduces hysteresis which blocks sequential tunneling at small bias eVB < 2∆.

Metallic tunnel junction arrays

The work of Geerligs et al. was closely followed by the demonstration of current

quantization in the first multijunction electron pump [121]. Three metallic (non-

superconducting) tunnel junctions form two islands with significant charging energy,

which are each capacitively coupled to a gate electrode. The number of additional elec-

trons on each can be manipulated by the corresponding gate potentials as shown by the

stability diagram in figure 2c. Lines separating charge states indicate the degeneracy

of two charge states and cross at nodes where sequential tunneling through the com-

plete array becomes possible. To generate a quantized current, the device is operated

around such a node by two phase-shifted r.f. signals applied to the gates. During each

counter-clockwise cycle string in state ∣00⟩, an electron is pulled from the left lead onto

the first island while the system traverses the ∣10⟩ state. Next the electron is moved to

the second island as the system crosses the ∣01⟩ state. Finally, the electron is ejected

into the right lead and the cycle is restarted.

The theoretical analysis [56, 5] of error processes in multijunction electron pumps

shows that the accuracy at low operation frequency is significantly limited by cotunnel-

ing processes which can be suppressed by extending the number of charge islands. Soon,

subsequent experiments where performed with four [97] and finally five [70] separate

charge islands. In the latter experiment the current accuracy was indeed significantly

improved and the remaining error of 15 ppb (f = 10 MHz) is mainly determined by

photon-assisted tunneling [54, 68, 67].

In more modern versions of the early 3-junctions electron pump, the two metallic

island are replaced by quantum dots e.g. in carbon nanotubes [19], graphene [21]
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and single dopants [129]. As the operation frequencies are inherently limited, the

experimental work is meanly of fundamental value.

2DEG tunable barrier pumps

Closely after the demonstration of the electron turnstile, Kouwenhoven et al. [81, 82]

reported on a different kind to device which constitutes the basis of most modern

metrological electron pumps. Instead of manipulating the electro-chemical potential of

a charge island, Kouwenhoven et al. utilized tunable tunnel barriers made by quantum

point contacts (QPCs) in a 2DEG. Depletion of the electron gas below the QPCs

forms an electro-static potential well which confines the electron wave-function. The

application of two phase-shifted r.f. signals to the QPC top gates, alternately lowers

the two barriers such that during each cycle an electron is 1) loaded from one lead, 2)

locked inside the well and 3) finally ejected into the other lead.

Curiously it took more than a decade before this work was continued in 2007.

Blumenthal et al. showed that a conventional 2DEG tunable barrier pump can be

operated at high frequency (f = 547 MHz) without significant depression of the current

accuracy (1σ = 10−4). Hereto the barrier modulation was substantially revised with

respect (see figure 2d) to the pioneering experiments. During the ’initialization’ stage,

the left barrier is lowered below the Fermi-energy of the 2DEG which allows electrons to

’flow’ into the central part. During this stage, electrons experience minimal resistance

which allows high frequency operation. Upon raising the barrier, most electrons leave

and only a determined number of electrons become trapped. The number of captured

electrons can be tuned by a third gate located between the two barriers. Finally, the

electrons are ejected as the left barrier is raised high above the right. The capacitive

coupling between the gates lifts the potential in the central part such that the electrons

are pushed over the right barrier into the lead.

In the experimental work that followed, the operation of single-parameter barrier

pumps was studied under magnetic field [151, 59, 36], in parallel circuits [9, 152], by

their noise signatures [94], and as function frequency [60, 65] and potential landscape

[137, 46]. Furthermore a theoretical model known as the decay cascade model was

developed, which nicely captures the operation of tunable barrier electron pumps [59,

64]. An experimental verification was provided recently by a beautiful full counting

statistic (FCS) measurement [39, 38].

Combining all prior work, Giblin et al. [46] were able to demonstrate a quantized

current of 150 pA with a near-metrological accuracy of 1σ = 1.2 ⋅ 10−6. This amazing

result was obtained with a custom shaped device, operated under a high magnetic field

(14 T) and a dedicated wave form indicating the advanced stage of this experimental

field. By fitting the results to the decay cascade model the authors argue that the
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obtained accuracy is actually limited by the current detection setup and should be as

low as 1σ = 0.1 ⋅ 10−6.

MOSFET tunable barrier pumps

Powered by the advancing developments in CMOS technology, the fabrication of MOS-

FET controlled single electrons transistors (SET) became possible early in this century

[41, 157, 107]. Two adjacent metal-oxide-semiconductor field-effect transistors, inte-

grated on a silicon nanowire, act as tunable barriers with an on/off ratio of several

orders magnitude. The employment as single electron pump was first demonstrated

by Ono et al. [106] but with limited performance. The principle of operation involved

the modulation of both gated barriers (see figure 2b) within their tunnel regime. In a

subsequent experiment [42] the operation frequency was increased to 100 MHz. The

accuracy, still about 1%, was shown to be limited by thermal errors at the operation

temperate of 17 K [154]. More recently, Jehl et al. [55] reported a staggering improve-

ment of both frequency and accuracy by taking advantage of modern high performance

CMOS technology (fully depleted SOI).

The single-parameter operation of MOSFET barrier pumps, first demonstrated by

a Fujiwara et al. [40], requires a non-adiabatic raise of the active barrier similar to

2DEG tunable barrier pumps. Consequently the current accuracy is limited by the

initialization stage. A better electron confinement, obtained by the implementation

of a plunger gate, was shown to improve the overall device performance [130]. An

alternative approach to improve electron confinement consist of the implementation of

single donor atoms in the active channel [155, 85, 154]. Most recently the quantization

of hole current was shown. Due to a larger effective mass, the accuracy of hole pumping

is expected to be superior to electrons [155].

Hybrid SET turnstiles

Despite the vast amount of experimental work on single electron sources, a simple

but promising solution remained overlooked until 2007. In their leading work, Pekola

et al. proposed and demonstrated the turnstile operation of a single metallic island

contacted by tunnel junctions to superconducting leads [117]. The device is similar

to the first turnstile in terms of geometry, but takes advantage of superconducting

leads as to omit the two outermost tunnel junctions. The superconducting gap (2∆)

in the lead density of states (figure 3a right) blocks quasi-particle1 tunnel events at

low energy (as shown in figure 3a) and consequently sequential tunneling at small bias

eVB < 2∆. This introduces hysteresis in charge stability with respect to normal metal

SETs as is illustrated in figure 2e. A periodic manipulation of the gate potential around

1The electron transport in superconductors is carried by quasi-particles (single electrons) and
Cooper-pairs i.e. paired electrons of double charge and integer spin.
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charge degeneracy transports electron one-by-one through the turnstile, leading to a

quantized current. A small bias is required to give direction to tunnel events. Although

the operation of NISIN structures is possible, it suffers inherently from excessive heating

and parity effects as opposed to the SINIS configuration which benefits from intrinsic

cooling [61].

A theoretical analysis of first and second order error processes was provided by

Averin et al. [3]. Thermally induced errors, appearing as subgap leakage and back-

tunneling, are found to be well suppressed at a realistic electronic temperature of 100

mK in aluminium based devices. Nevertheless, proper device shielding is required

as the device environment can significantly affect the effective operation temperature

[133, 115, 91]. The dominating higher order error processes comprise Andreev reflec-

tion and Cooper-pair — electron (CPE) cotunneling. Andreev processes can, as a

double island occupation is involved, be suppressed by a large charging energy [2, 71],

whereas CPE cotunneling processes only depend on bias and cannot be easily subdued

[116] other than by decreasing the tunnel coupling. This puts a theoretical upper limit

to the metrological current (few tens of pA) of a single normal metal hybrid SETs.

However, the parallelization of many devices, is shown to be feasible for metrological

purposes [96].

Single-level hybrid turnstiles

In the work of this thesis we have explored yet another approach to suppress both

thermal and quantum errors in hybrid SET devices. Further reduction of the island

size to a few nanometers will strongly confine of the electron wave-function which leads

to the discretization of states on the quantum dot. When the thermal energy of the

quantum dot becomes smaller than the spacing between levels, the electron temperature

become undefined and corresponding thermal errors vanish. Furthermore, the number

of quantum dot states participating in the turnstile operation is reduced. At yet larger

level spacing, exceeding the superconducting gap, the quantum dot is effectively reduced

to a single level and enhanced control of quantum tunnel events is obtained. In this

thesis we will first discuss the operation of the single level turnstile (chapter 5) after

which we will demonstrate its operation experimentally in chapter 6.

Electronic coolers

Hybrid structures consisting of superconducting and normal parts have been employed

since far before the single electron turnstile. Thermal excitations in normal metal

part result in a smooth distribution of the electron energy described by the Fermi-

Dirac distribution (figure 3a left side). In superconductors however, the gap in the

quasi-particle density-of-states leads to a clear separation of occupied and unoccupied
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Figure 3: a) Energy schematic of an normal metal - insulator - superconductor tunnel junction.
b) Experimental current - voltage relation of an low impedance NIS junctions (black line) as
function of the applied bias. Dotted lines give the calculated current - voltage relation of a NIS
junctions assuming various fixed electron temperatures in the normal part. (extracted from
[123])

states. Electrons can only tunnel out of the normal metal if their energy is high enough

to enter one of the unoccupied states in the superconductor. Thanks to this energy-

selective tunneling, NIS tunnel junctions serve as sensitive probes of the electron energy

distribution in the normal metal [120, 49]. When the electron-electron interaction rates

(τNe−e) in the normal metal exceed the tunneling rate, a local electron temperature is

defined and directly given by the measured distribution. Therefore NIS junctions are

often used for local thermometry [22, 45, 77].

With increasing tunnel rates (but yet below τNe−e) the local energy distribution in the

normal metal becomes more and more affected by the back-action of energy selective

tunneling. In fact, when the junction bias is below the superconducting gap, the back-

action can be utilized to cool electrons in the normal metal [86, 101]. As only ’hot’

electrons (above the Fermi-energy) are allowed to tunnel out of the normal metal, the

electron energy distribution becomes shaper, which translates to a decrease in electron

temperature (figure 3b). By adding a second superconductor, in an SINIS configuration,

also ’hot’ holes are removed which doubles the cooling power of the device [86]. The

steady state temperature of the normal part is obtained when the cooling power of

the junction is balanced with the incoming heat flux from the normal metal lattice

mediated by electron-phonon interaction.

In the limit of a small and weakly coupled island, the charging energy becomes

non-negligible and the electron transport may only proceed by sequential tunneling.

The integration of a gate electrode turns the SINIS cooler into a SET and makes the

manipulation of heat fluxes and matching applications possible. A clear and simple

example is the work of Saira et al. [132] in which they operate a gated SINIS structure

(hybrid SET), visible in figure 4a as heat transistor. The authors show that the optimal

cooling power Q̇opt in this device can be manipulated (figure 4b) by a gate dependent
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a)a) b)

Figure 4: a) Scanning electron microscope image of a heat SINIS heat transistor. Additional
SIN junctions serve as local thermometers. b) Electron temperature of the normal island as
function of the bias when the gate is open (blue) and closed (red). (extracted from [132])

suppression of the maximum power Q̇optmax.

With a modest charging energy of EC ≈ 50µeV the on-off ratio of the cooling power

obtained at T = 214 mK was limited to about ≈ 30 percent. However as the maximum

suppression grows exponential with EC , it is expected that full suppression of the heat

current becomes possible in the limit of large charging energy. In chapter 3 of this

thesis, we will discuss on the operation of heat transistors in the limit of large charging

energy (≳ 10 meV) as observed in single molecule experiments [109, 150, 12].

The experiment of Saira et al. in fact preceded the onset of a new field of experi-

mental physics known as quantum thermodynamics [113]. The previously discussed ad-

vances in electron thermometry and temperature control (heating/cooling) provide fer-

tile grounds to study the heat transport in more complicated systems such as Coulomb

blockade refrigerators [34], in single conductance channels [57] and Maxwell deamon

devices [79, 80].

Quantum dot spectroscopy

Superconducting - quantum dot hybrid device are interesting from a more fundamental

point of view as well, as they allow us to study the hybridization between quantum

dot levels and the superconductor in the weak coupling regime. Extensive studies

[135, 99, 118, 119] show that in well-coupled quantum dots, the hybridization with the

superconducting leads gives rise to Andreev bound states (ABS) that carry the AC and

DC Josephson effect in mesoscopic devices. Till present the weak coupling limit has

been far less studied. First measurements (figure 5b) of the electron transport through

weakly coupled S-QD-S devices indicate the hybridization ’survives’ despite the weak

coupling [124].

More recently Winkelmann et al. [150] utilized the electro-migration technique [110]
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a) b)

Figure 5: a) Scanning electron microscope image of a nano-gap created by the electromigration
process. (extracted from [128]. b) Current-voltage relation of a quantum dot contacted by
superconducting electrodes in normal and superconducting state. (extracted from [124])

with aluminium junctions to contact C60 molecules. Building on this and other [105,

108, 83, 128] successful applications in single molecule electronics, we fabricate nano-

gaps (similar to figure 5a) by the electromigration of aluminium nano-wires preceded

by the deposition of small gold nano-particles. In chapter 4 of this thesis, we will

characterize the electron transport though these devices and show how hybridization

effects manifest in this weak coupling regime.

Yet, all reports on experiments with hybrid quantum dots in the weak coupling

regime are performed under stationary conditions and measure the conductance con-

veying by the quantum dot quasi-particle states. As we intend to operate our devices

as a single electron turnstile, we have a way to breach through this frontier. In fact, the

idea to exploit a single electron turnstile as probe of the system dynamics is not new

[74, 94, 35]. Recently Maisi et al. [95] used a N-S-N turnstile device to accurately probe

the lifetime of quasi-particle excitations in a small superconducting island, something

which is of enormous interest to quantum computing research [126, 147]. In chapter 6

of this thesis we demonstrate the detection of an adiabatic suppression of the turnstile

current in our single level turnstile devices. We show that the suppression is related

to the avoided crossing of the discrete quantum dot level and the superconducting gap

edge.
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Chapter 1

Sample fabrication

As to obtain gated bottom-up quantum dots weakly coupled to superconducting leads
by pristine tunnel junctions, we employ the controlled electro-migration of aluminium
nano-wires and the deposition of small gold nano-particles. In this chapter we will
discuss the lithography and deposition processes required to fabricate nano-wires located
on a local back-gate capped with a high-quality insulation layer. Next, we study the
deposition of gold nano-particles and discuss the compatibility of various techniques
with aluminium electro-migration junctions. In the last section we consider the process
electro-migration and demonstrate the relation between the maximum dissipated power
and nano-wires thickness.
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Even though the continuing demand in more powerful and smaller integrated chips

has resulted in the development of many tools used in nano-fabrication, the fabrication

of quantum dots remains a challenging task. The small dimensions needed to observe

the quasi-particle level spacing, require nano-meter sized junctions with a strongly

coupled gate electrode.

1.1 Gate electrode lithography

For most nano-electronic devices, a gate electrode is on the foundation of their op-

eration. Gate electrodes are used to manipulate the potential landscape in 2DEGs,

create inversion layers in FETs, and manipulate the position of charge/level states in

single electron transistors or quantum dots. For the last application, the one of our

interest, it is important that the gate is sufficiently coupled i.e. it can modulate the

electro-chemical potential of the island by at least a few times EC (≈ 100 meV).

Therefore, for these devices, the gate coupling can best be qualified by the maximum

charge it can induce, q = CGV
max
G . This gate induced charge, is defined by (1) the

capacitance CG between the gate and the island, and (2) the maximum potential one

can apply on the gate, before the gate insulation starts to leak current. While the second

parameter is limited by the quality of the gate insulation, the first is determined by the

device geometry [23] and the relative permittivity of the gate insulation.

Gate geometry

One can distinguish four different gate geometries: the planer back-gate, local top

and back gates and side/plunger gates. Each of these has its advantages for specific

devices and disadvantages for others. Planer back-gates are often used in graphene

based devices [50], since they provide a large active area and do not require special

fabrication1 steps. However, because of the thick gate oxide (microbonding requires

a minimum thickness of 300 nm) the gate coupling is too weak for SETs with high

charging energies (Ec > 1 meV).

Alternatively, one can pattern a gate electrode on top of the device, effectively

sandwiching it between substrate and gate. This is traditionally done in FETs [62],

where the top gate regulates the inversion layer. But more recently they are also used

to define the potential landscape in 2DEGs [46] and nanowires [52]. Even though a top

gate would generally provide a good coupling for a SET, this geometry is not compatible

with the electro-migration process, which, in our case, will be the last fabrication step.

Thirdly, one can position a gate electrode to the side of the device, hence it is called a

1Highly doped silicon wafers with thermally grown oxides of specified thickness are commercially
available



1.1. Gate electrode lithography 13

a) b)

c)

d)

Figure 1.1: Mesoscopic devices utilizing one of the four possible gate geometries. a) Planer
back gate [104], b) local back gate, c) top gate [52] and d) lateral gate [117].

lateral gate. While this geometry is compatible with electro-migration, the fabrication

of lateral gates with good coupling to the island remains difficult. Primarily because

minimizing the separation between gate and island below several tens of nanometers is

a challenge, and secondly because the relative permittivity of vacuum is low compared

to those of metallic oxides. Nevertheless a lateral gate could provide sufficient coupling

for small modulations of the islands electro-chemical potential e.g. RF gate modulation

which will be discussed later in this chapter.

Finally one can position a local gate underneath the island [111], which has several

advantages for electro-migration devices. Since the gate is local, one can use a very thin

gate insulation layer i.e. less then 10 nm thick, while keeping the device compatible

with electro-migration. Moreover, the deposition of the gate insulation layer allows one

to choose the dielectric constant to be as high as possible. Finally, local back gates are

compatible with the use of lateral gates for small RF gate modulations. In conclusion, a

local back gate has many advantages for our electro-migration devices, and is therefore

our preferred approach.

Lithography process

Our fabrication process begins with the lithography of local gate electrodes. In short,

we (1) clean the wafer, after which we (2-5) spincoat two layers of resist and (6) insulate

the wafer with deep UV or laser light. After (8) developing the resist, we proceed with

(9) the deposition of metal which we finally (10-12) lift off in a solvent. The details of

this process are listed in table 1.1.
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# Description Equipment Comments

1 cleaning RIE oxygen plasma 3 min
2 spincoat LOR3A spincoater 30 s, 2000 rpm
3 bake LOR3A hotplate 1 min, 170○C
4 spincoat UV3 spincoater 30 s, 4000 rpm
5 bake LOR3A hotplate 1 min, 130○C
6 DUV exposure mask-aligner MJB3 40 s, dose 0.12mW/cm2

7 postbake hotplate 1 min, 130○C
8 development MF26A 30 sec
9 metal deposition Plassys e-gun evapo-

rator
3 nm Ti (0.3 Å/s), 30
nm Au (0.3 Å/s)

10 liftoff (1) acetone 10 min
11 liftoff (2) hot RemoverPG 30 min, 70○C
12 rinsing & drying acetone, ethanol,

IPA, N2
13 cleaning RIE oxygen plasma 3 min

Table 1.1: The detailed recipe to acquire high quality local back gates by using a bilayer resist
technique for DUV optical lithography.

Generally one uses only a single layer of resist for such a lithography, but by using a

bilayer resist technique, we can ensure a high quality of the gate electrode. When using

a single resist layer, there is some chance the structures will have upstanding edges after

lift-off, like in figure 1.2b. These so called ’batman ears’ can cause (1) discontinuities

in the structures on top of the gate edges and (2) shorted gates (a ohmic connection

between the gate and the structures on top of the gate). Batman ears are the result of

a resist layer with a finite slope (figure 1.2a), such that there can be metal deposited

on the side walls of the resist.

In the bilayer resist technique the lower resist layer is, by design, more sensitive to

the developing agent than the top layer, which therefore extends over the lower resist

(see figure 1.2c). This resist structure ensures the metallic film on the substrate will

never extends over the side walls of the lower resist and the resulting structure will

have no upstanding edges. In collaboration with Thierry Crozes, we have developed

a bilayer resist process compatible with laser-lithography (figure 1.2d), based on the

known process for deep UV. This has allowed us to benefit from the flexibility and

automatic alignment of laser-lithography.

Using a local back gate requires the alignment of the following lithography steps.

To make precise alignment possible, markers are patterned in addition to the gate elec-

trodes. Corresponding markers in the next lithography steps can be used to align the

structures of subsequent lithography steps. For the deep UV process we use 4 different

markers to gradually improve the alignment. First a rough alignment is performed on

big markers located at the bottom and sides of the wafer. The alignment procedure
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Figure 1.2: The bilayer resist technique (c, d) can be used to prevent the formation of
upstanding edges (denoted by the arrows in b) after lift off, which can occur when using a
single resist layer (a, b). The undercut in the bilayer resist ensures that the metallic film on
the substrate will never extends over the lower resist layer. The red dotted line in (d) shows
the separation between the lower resist layer (LOR3A) and the structure.

is finished with two small alignment markers located near every sample. Figure 1.3b

shows two smallest alignment markers in the deep UV design. Although the gradual

process improves the alignment precision, the process remains difficult and sometimes

has to be redone. This contrasts with the alignment process for laser lithography in

which, as it turn out, only a single alignment is necessary.

After lift off the wafers are cleaned from any residual resist by oxygen plasma and

we continue with the fabrication of the gate insulation layer by atomic layer deposition

(ALD).

1.2 Thin gate insulation

Local back gates are often made of aluminium, such that the gate insulation is simply

obtained by letting the aluminium oxidise [47]. The resulting oxidation layer is ∼ 2nm of

Al2O3 and is covering all aluminium. Often the aluminium is actually deposited while

the substrate is at liquid nitrogen temperature in order to reduce the aluminium grain

size and hence the surface roughness. Insulation layers fabricated with this method

generally have no leakage up to 2.5 V and provide good coupling. However, since the

oxide thickness is naturally limited to about 2 nm [156], its quality is very dependent

on the presence of defects and impurities. To acquire high quality gate electrodes, it is

therefore of importance to create oxide layers without any defects, which turns out to

be difficult and time consuming if done by natural oxidation.
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a) b)

100 μm 25 μm

Figure 1.3: The alignment of different lithography steps is achieved by adding complementary
markers to the design of subsequent layers. The gate layer (a) contains little crosses (highlighted
in pink) that next to be aligned with the four little squares (highlighted in blue in (b)) in the
next layer.

Fixed proces parameters

Parameter Value

Precursor temperature 20○C
’Tee’ temperature 90○C
Chamber temperature 100○C
’Bellow’ temperature 150○C

Process recipe

# Action Value

1 TMA injection 0.015 s
2 waiting time 120 s
3 H2O injection 0.015 s
4 waiting time 120 s

Table 1.2: The ALD process parameters that we used to create our high quality gate insulation
layer.

Instead of growing an oxide layer, one can now, due to the development of techniques

like atomic layer deposition (ALD) and chemical vapour deposition (CVD), also deposit

an oxide layer, atomic layer by layer. These techniques do not only make it possible to

deposit an arbitrary thickness and composition of oxide, but also to reduce the defects

and impurities concentrations. Also it has been shown by Datta et al. [23] that the

increase in gate coupling with decreasing insulation thickness will saturate below about

10 nm. Hence, with ALD one can deposit a thicker (∼ 8nm) oxide layer to reduce the

gate leakage current and increase the gate breakthrough voltage, while maintaining

optimal gate coupling, and thereby maximizing the gate induced charge. Since ALD

allows us to deposit an oxide layer thicker than 2 nm and with superior quality and

high reproducibly, it is our preferred method to create the insulation layers.

Oxide deposition process

An atomic layer deposition process consists of four steps which are repeated subse-

quently. During the first and third step a given amount of respectively a precursor and

H2O are introduced into the chamber which is heated to a set temperature. During
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Figure 1.4: The ALD process consists of four consecutive steps that are repeated for a number
of times. First a gaseous precursor is introduced in the chamber (a). During a set waiting time,
the precursor molecule binds to the substrate and the resulting reaction product (methane) is
removed from the chamber (b). Next gaseous H2O is introduced in the chamber (c) which reacts
with the previously introduced precursor molecules, creating an oxide layer. Again the reaction
product (methane) is removed from the chamber (d). After 80 cycles the average thickness is
about 8 nm.

the second (fourth) step the process waits while the precursor (H2O) will take part in

a self-limiting chemical reaction at the substrate and the reactants can be evacuated

from the chamber. To obtain a high quality insulation layer, the oxide has to be amor-

phous [73] and contain little impurities. In order to meet both requirements one has

to optimize the process parameters i.e. the chamber temperature and waiting times.

Fortunately, such a process had already been developed at the Neél Institut [148] for

Hf2O3 oxides and is listed in table 1.2.

Initially, we adopted this process to insulate the gate with 8 nm Hf2O3. However,

because of an unknown cause, thin aluminium films (t < 30nm) have a strongly increased

resistivity when deposited on Hf2O3, while for electro-migration it is important to have

leads with little electrical resistance. Therefore, instead of using the precursor TDMAH

(Hf2O3), we used TMA to create a layer of Al2O3. Gate electrodes made using this

process generally have a breakthrough voltage of about 9 V and show an immeasurable

high ohmic leakage resistance, as shown in figure 1.5.

1.3 The electromigration junction

The fabrication of the electromigration junctions is divided into two steps. We save

precious e-beam lithography time by using deep UV or laser lithography to pattern

bonding pads and contact lines of decreasing size. In the second step, performed by
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Figure 1.5: The quality of the gate insulation layer can be visualized by gate leakage current
as function of the applied voltage (blue circles). The red line corresponds to a 10 TΩ resistance.
This shows that the ALD process allows us to create thin and high quality gate insulation layers
with a high break-through voltage (8 V) and negligible gate leakage.

electron beam lithography (EBL), these lines are continued into the leads and electro-

migration junctions.

The process of the first step is identical to the one of the gate (which is in detail

described in table 1.1) except now 3 nm titanium and 40 nm gold are deposited. Again

a bilayer resist is used, this time to insure a good electrical connection between the two

different structures that make up the leads.

Figure 1.6 shows the devices after the second lithography step for both the deep

UV and laser lithography processes. The designs are kept nearly identical except for

a few differences. First, the DUV alignment markers are removed which allows for

bigger bonding pad in the corners. Second, all the alignment markers are only present

at the gate layer. Finally, the round shape of the markers (instead of the lines) enable

automatic alignment in two directions (instead of one). This is an important improve-

ment since now the calibration of writefields during the e-beam lithography step can

be performed on-chip.

Electron beam lithography

Electromigration can be performed best on nanometer sized junctions, such that the

process can be executed with precise control (see section 1.5). Ideally the junction are

thin and small while the leads have negligible resistance. Both requirements can be

easily fulfilled when using the bilayer resist technique designed by Park et.al.[110]. Here

the bilayer resist is used to define a fully undercut separation between two electrodes,

resembling a bridge-like shape (figure 1.7b). Combined with an angled deposition,

such a structure can be used to create thin junctions under the resist bridge (non-zero
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a) b)100 μm 100 μm

Figure 1.6: The two optical (i.e. DUV (a) and laser (b)) lithography designs, are very similar.
In the design for laser lithography we have implemented 8 circular markers (highlighted in pink)
that are used for the calibration of writefields and the automatic realignment during e-beam
lithography. The circular markers replace the line markers (highlighted in blue) in the DUV
design.

angled) contacted with thick metallic leads (zero angle) separated from each other by

the width of the resist bridge (figure 1.7c).

To create our electromigration junctions we use electron beam lithography on a

bilayer resist. First PMMA/MAA is spincoated which forms a relatively thick (∼400

nm) resist layer with an increased sensitivity to electrons. Next, PMMA 2% is spin-

coated to form a thin (∼50nm) layer of resist with normal sensitivity. The difference

in electron sensitivity between the two types of resist, allows us to obtain the large

undercut required for the resist bridge. After insulating the structures with a 20 kV

focussed electron beam, the resist is developed in a 1:3 mixture of methyl isobutylketon

(MIBK) and isopropanol (IPA). To insure a sub-micrometer accurate alignment of the

junctions with respect to the gate we use a two-step automatic realignment procedure

on the circular markers of every sample.

Just before we proceed with the deposition of the junctions, the substrate is cleaned

from any residual resist at the exposed parts using a low power oxygen plasma for about

10 seconds. Next we deposit two thin layers (13 nm) of aluminium under a positive

and its opposite angle (∼ 23○) followed by a thick layer (80 nm) of aluminium at zero

angle without breaking vacuum. The final thick layer decreases the access resistance

of the junctions and insures a continuous connection to the bonding pads. Finally the

sacrificial parts of the resist are lifted in hot Remover1165 (80○C) during 1 hour. The

resulting electromigration junctions are shown in figure 1.8b.

The bow-tie like shape of the junctions, visible in figure 1.8b, is not required for

electromigration although is does localize the region where the nano-gap will be formed
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Figure 1.7: (a) Top view schematic representation of the resist structure after the development
step. Grey areas are covered by both resist layers, while in the green areas all resist has been
removed. Areas highlighted in pink are completely undercut, forming a bridge like structure. (b)
Cross-section schematic representation along the dotted line in (a) after metal deposition. (c)
Angled scanning electron microscope image of the structure after metal deposition. Underneath
the resist bridge one can distinguish the overlap of the two opposite angled depositions.

# Description Equipment Recipe/Comments

1 spincoat
PMMA/MAA 33%

spincoater 30 s, 4000 rpm

2 bake hotplate 5 min, 200○C
3 spincoat PMMA 2% spincoater 30 s, 1400 rpm
4 bake hotplate 5 min, 180○C
5 e-beam exposure MEB dose 150µC/cm2

6 development (1) MIBK/IPA 1/3 30 s
7 development (2) IPA 1 min
8 cleaning RIE oxygen plasma 10 s (low power)
9 metal deposition Plassys e-gun evap-

orator
13 nm Al (−23○, 1 Å/s),
13 nm Al (23○, 1 Å/s),
80 nm Al (0○, 2 Å/s)

10 liftoff (1) hot Remover1165 60 min, 80○C
11 liftoff (2) acetone 10 min
12 rinse and dry acetone, ethanol,

IPA, N2

Table 1.3: The details of the e-beam lithography process used to create the nano-wires for
electromigration.
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10 μm
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300 nm

Figure 1.8: A fully fabricated device (a) consists of a gate layer (highlighted in blue), a contact
layer (highlighted in pink) and several electromigration junctions (highlighted in green). The
electromigration junctions (b) are created by a shadow evaporation. First, two thin layers,
∼ 12 nm (highlithed in pink) are deposited under opposite angles (±23○). The angle of deposition
needs to be optimized such that there is a small but present overlap between the two layers.
Next, a thick layer, ∼ 80 nm (highlighted in blue) is deposited under zero angle to reduce the
series resistance to the junctions and to ensure a good electrical connection to the contact layer.

[110]. It has been shown by Datta et al. [23] that the lead geometry of a nano-particle

based device has a dramatic effect on its gate coupling i.e. the sharper the apex of the

contacts, the larger the gate coupling. It is clear from figure 1.9b that this dependence

is especially present for small nano-gaps with ’thick’ contacts.

RF gate modulation

As will be explained in chapter 5, the driving force of electron pumping in supercon-

ducting quantum dots is a fast oscillating gate signal around a static gate potential.

This mandatory gate modulation can be achieved in different ways provided that the

AC and DC gate electrodes are capacitively coupled. An ohmic connection between the

two lines will short the DC gate electrode to ground, since the AC gate line contains

an attenuator to thermalize the inner conductor of the coaxial line.

In nano-electromechanical systems (NEMS) and spin qubits [69], an antenna posi-

tioned close to the substrate can provide sufficient signal. However in both cases it is

not the electrochemical potential of the island which is directly modulated. A more

common approach is to add the DC gate and AC gate signal to each other using a bias

tee lumped element located at dilution stage of the cryostat. Although this probably

gives the largest gate swing, we have chosen two different approaches. In both ap-

proaches the necessary AC gate elements are patterned by electron beam lithography

in the same fabrication steps as the electromigration junctions.

As pointed out before one can position a small lateral gate close by the junction.

Although it is difficult to position the gate very close to the island, a sufficient gate
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a)

b)

Figure 1.9: Finite element simulations show that the gate coupling strongly depends on the
geometry of the leads i.e. the shaper the apex angle, θ (a) of the contacts, the larger the
coupling. (b) The difference in gate coupling (expressed by the ratio) between a 3D system
(θ = 120○) and a 2D system (θ = 180○) increases with the thickness of the contacts. (Extracted
from [23])

swing can be achieved as is shown in the work of Pekola et al. [117]. Figure 1.10a shows

a SEM image of an electromigration junction equipped with a lateral gate situated ∼80

nm from the junction. In the second type of device we use an on-chip large area

parallel plate capacitor between the AC gate electrode and DC gate electrode (figure

1.10b), emulating a bias tee element. The capacitive coupling acts like a high pass

filter. To ensure a good signal transmission down to 1 MHz we need a sufficiently large

capacitance (∼ 100 pF). Here we benefit from the already present thin gate oxide which

acts as a dielectric spacer between the two capacitor plates which gives us the required

capacitance.

In the first approach the lateral gate directly modulates the electro-chemical po-

tential of the island. The coupling is generally weak, and might be even weaker in

our case, since the source and drain electrode shield the small island. In the latter

case we actually modulate the potential on the local back-gate. Since the back gate

is strongly coupled to the island, this approach ensures a good RF modulation of the

electro-chemical potential of the island and is therefore our preferred method.

1.4 Gold nano-particle deposition

In the last step before mounting the sample in the cryostat we deposit gold nano-

particles on the devices. We do this unlike others [83], before the formation of nano-gaps

by electromigration. The contacts to the nano-particles are made of aluminium because

of its superconducting property. But like any superconductor aluminium will oxidize

if it is exposed to air, which results in poor tunnel junctions. The formation of the

nano-gaps by in-situ electromigration ensures pristine and unoxidized gap edges which
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Figure 1.10: a) Scanning electron microscope image of lateral gated junction. As to obtain
sufficient coupling to the island, the gate electrode (blue) must be located close to the island.
The asymmetric shape of the electromigration junction (pink) is optimized such that the spacing
can be decreased to about 80 nm. b) Optical image of the on-chip bias-tee element, which is
obtained by a large area structure on top of the gate. The Al2O3 layer deposited by ALD acts
as a thin dielectric spacer between the gate and the structure on top. Together the system
forms a large area parallel plate capacitor (C ≈ 160 pF).

are necessary for electron tunneling between gold nano-particles and the contacts.

The deposition of nano-particles is, regardless whether done by metal evaporation

[125, 11], growth [12], self assembly [83] or drop-casting [150], a random process. How-

ever, with some techniques it is possible to control the particle density and dispersion

uniformity. In the course of this thesis we have studied the dispersion properties of

three deposition techniques i.e. (1) self assembling nano-particles, (2) spincoating and

(3) dropcasting. While the two latter techniques are rather straightforward and will

be shortly discussed hereafter, the self assembly of a gold-nanoparticle layer is more

complicated and will be discussed in detail in section 1.4.

Both techniques, spincoating and drop-casting2 are based on the fast evaporation of

the nano-particle solvent such that the nano-particles cannot locally congregate (for ex-

ample at a meniscus). The resulting nano-particle density is however also lower as most

of the dispersion is lost in the process. It is therefore necessary to repeat the process

several times in order to get sufficiently high particle densities. To further maximize

the evaporation of the dispersion we have selected gold-nanoparticles (Nanocomposix

NanoXact) that can be re-dispersed in toluene (50 ng/mL), which is highly volatile.

These gold nano-particles have a diameter of ∼ 5 nm and are functionalized with do-

decanethial molecules. The nano-particles are functionalized with spacer molecules to

prevent them from congregating in the solution. Additionally they naturally create a

spacing (tunnel junction) between the nano-gap contacts and the gold nano-particles.

Figure 1.11 shows the gold-nanoparticle distributions on the substrate after spin-

2In drop-casting a small droplet ( 10µL) of nano-particle dispersion is placed on the chip which will
be fast dried using a nitrogen gun
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a) b)

Figure 1.11: Scanning electron microscope images of gold nanoparticles (5 nm) distributed on
a substrate after spincoating (a) and drop-casting (b). Under equal conditions the drop-casting
technique gives better results than spincoating. The scale-bar in both images represent 50 nm.

coating and drop-casting 10 droplets of ∼ 10 µL. Although the particle distribution

after spincoating looks nicely homogeneous and dense on the substrate, there are ac-

tually little nano-particles distributed on top of the electromigration junctions. We

do not see such a difference in particle density after drop-casting which makes it the

superior deposition technique.

The self assembling monolayer approach

While the drop-casting of gold-nanoparticles works very well, it does have several short-

comings i.e. (1) the particle size has an upper limit of 5 nm and (2) the dodecanethial

molecules are very large (about 2 nm). The origin of both limitations is the tendency

of nano-particles to aggregate when they are dispersed in a solution. Because the gold

nano-particles do not carry an electrical charge, relatively long molecules are necessary

to sterically stabilize the suspension.

Another solution is to cover the gold-nanoparticles with an organic acid like citric

acid. In suspension the conjugate base caps the nano-particles and gives them an ef-

fective charge, making the dispersion more stable. Such gold nano-particles dispersions

are commercially available and can be made by the recipe of Frens [37]. In addition

to the increased stability of the suspension, the effective charge on the nano-particles

can conveniently be used in combination with self assembling monolayers as will be

explained in the following.

The self assembling process (figure 1.12) of nano-particles begins with the self as-

sembly of a specific molecule on the substrate. The molecules typically contain a silane

group on one end, and an amine group on the other. During a process called silanization

(figure 1.12b), the silane group preferentially attaches to the substrate, replacing -OH

groups. The result is a highly dense self assembled monolayer (SAM) of molecules with
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a) b) c) d)

Figure 1.12: A schematic representation of the creation of a dense layer of gold nanoparticle
using a self assembling monolayer. First the substrate is cleaned and activated with an oxygen
plasma (a) after which APTES molecules self assemble on the substrate (b). Next the sub-
strate is placed in an aqueous gold nano-particle suspension which contains negatively charged
nanoparticles (c). The positive change on the substrate attracts the nano-particles where they
immobilize (d). The process ends when the attractive force is counterbalanced by the Coulomb
repulsion between nano-particles.

their anime group oriented away from the surface. Due to the high affinity of amine

towards gold, the nano-particles will get easily immobilized on the surface. Moreover,

when the substrate is placed in an aqueous solution, the protonation of the amine

groups give the surface a tunable positive surface charge (figure 1.12c), effectively at-

tracting the negatively charged gold nano-particles to the substrate (where they get

immobilized). The attractive force of the substrate will be counterbalanced by the

Coulomb repulsion between nano-particles and the self-assembly process stops when

the two forces balance each other. Figure 1.13a shows the speciation curves of citric

acid and APTS as a function of the acidity of the solution. The protonation of APTS

can be fully tuned by the pH of the solution. For low pH (pH ≪ pKAPTES
1/2 ) the APTES

is fully protonated and will create a maximum positive surface charge. However there

is a lower boundary to the pH given by the iso-electric point of citric acid (pH ≈ 2) i.e.

when the gold nano-particles loose their effective charge, and the suspension becomes

unstable and turns black.

In various works (e.g. [83]) the self assembled monolayer of amine groups is formed

by inserting the sample in an aqueous solution of N-[3-(trimethoxysilyl)propyl] ethylene-

diamine (APTS), after which it is rinsed and baked at 120○C. Next, the sample is

placed in an aqueous gold nano-particle dispersion for 24 hours to deposit the gold

nano-particles. Here we show the results of a similar process which only takes about

1-2 hour. First we place the sample in a plasma chamber equipped with mass-flow con-

trollers (Diener Electronic Nano) to form the self assembled monolayer. This process

contains two steps: (1) we activate the surface with a short oxygen plasma after which

(2) we introduce a controlled flow of gaseous (3-Aminopropyl)triethoxysilane (APTES)

in the chamber during 5 minutes while the substrate is heated to 80○C. Finally the

sample is put into the aqueous gold nano-particle dispersion for 15-30 minutes after

which it is thoroughly rinsed with DI water.
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Figure 1.13: a) Speciation curves of APTES and citric acid (CA) as a function of the solution
pH give the percentage of formation in a solution. b,c) Gold nano-particles deposited using the
APTES self-assembly process with two solution acidities. A low solution pH (2-3) results in a
dense GNP distribution (b), while a neutral pH (7) leaves APTES uncharged which results in
a low density (c). Scale bar represent 100 nm.

Figure 1.13 shows the surface distribution of nano-particles after identical deposition

processes with different dispersion acidities (pH = 2 and pH = 7). The difference in

particle density is the direct effect of the solution acidity. A high pH solution (figure

1.13c) minimizes the positive surface charge while it maximizes the Coulomb repulsion

between gold nano-particles. We have found that the best results in terms of high

particle density and reproducibility are obtained when the nano-particle solution has a

pH between 3 and 4. More acidic dispersions do not result in higher densities, but do

result in an increased occurrence of clustered particles.

To obtain the best results with our silanization technique, we have studied the nano-

particle surface distributions for various combinations of the silanization parameters.

The strong effect of the dipersion acidity is eliminated by using a single solution stock

with pH 4. We have analysed SEM images by visual inspection and automatic particle

recognition. The latter technique allows us to extract for each particle the distance to

its n closest neighbours. Figure 1.14 shows the nano-particle surface distribution when

varying the plasma time (a, b, c) and APTES dose (d, e, f).

We find no significant effect of the oxygen plasma time on the nano-particles surface

distribution. More interesting is the effect of the APTES dose. Increasing the dose
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a) b) c)

Figure 1.14: Scanning electron microscope images of gold nanoparticles (12 nm) deposited
using a self assembling monolayer created with varying silanization parameters. The oxygen
plasma time (a, b, c) (APTES dose = 4 sccm) plasma time has little significant effect on the
particle density. However with increasing APTES dose (d, e, f) (plasma time = 30 s) their
appears to be a little decrease in particle density. The scale bars represent 100 nm.

GNP time 15 min 30 min 60 min

R(before) [Ω] 124 124 124
% (R < 10 kΩ) 37.5 35.4 12.5
R(after) [Ω] 1568 2177 3333

Table 1.4: The SAM based gold nano-particle deposition technique has a devastating effect
on the electromigration junctions. After the process less than 40 % of the junctions have a
resistance lower than 10 R < 10 kΩ. Of these junctions the average resistance is more than 10
times higher then before the deposition of gold nan-particles.

beyond a critical value (4 sccm) results in the decrease of particle density. This is

probably due to free APTES in the solution that binds to gold nano-particles, but will

be rinsed away later on. In addition to the plasma time and APTES dose we have

optimized various other silanization parameters.

With the little effect that the silanization parameters have of the surface distribu-

tion, one can legitimately raise the question whether the APTES SAM is necessary at

all. To answers this question we have studied the contribution of the APTES SAM on

the deposition process. Six samples, of which half received the optimized silanization

treatment, were placed in the gold nano-particles dispersion for 15, 30 and 60 minutes.

Figure 1.15 shows the resulting nano-particle surface distributions. The samples that

have the APTES SAM consistently have a higher nano-particle density (7-65 %) and

the distribution looks more homogeneous. However for increasing time spend in the

gold nano-particle dispersion, the difference in particle density become less.

Directly after the gold nano-particle deposition we have characterized our electromi-
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a) b) c)

d) e) f)

Figure 1.15: Scanning electron microscope images of gold nanoparticles (12 nm) deposited
with (a, b, c) and without (d, e, f) the use of a self assembling monolayer and during a varying
time in a gold nano-particle suspension. Overall the particle dispersion of the samples with
a self assembling monolayer have high particle density and are more homogeneous. However
the difference in particle density becomes less when the time spend in the gold nano-particles
suspension increases.

a)

50 nm

b)

1 μm

Figure 1.16: The aqueous gold nano-particle solution has a detrimental effect on the alu-
minium electromigration junctions. (a) The scanning electron microscope image of the electro-
migration junction shows that the ionic environment attacks and partly dissolve the aluminium.
(b) At the connection between the aluminium junctions and the gold contact leads the two met-
als interact, possibly forming an intermetallic compound. This process is possible enhanced by
the ionic environment.
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gration junctions by measuring their resistance and by optical inspection. In table 1.4

we summarize the device characterization by showing the percentage of junctions with

a low resistance (R < 10kΩ) after GNP treatment and their average resistance before

and after GNP treatment. It is clear that gold-nanoparticle deposition by self assembly

is not compatible with aluminium electromigration junctions. The reason for the large

increase in resistance and the low survival rate is twofold. First the aluminium junc-

tions get attacked in the ionic solution and partially dissolve (see figure 1.16a) which

increases their resistance. Second, at the connection between the optical and electron

beam lithography, the gold and aluminium interact (see figure 1.16b), possibly forming

an intermetallic compound known as white or purple plaque. Without exactly knowing

what it is, it is not unreasonable to expect that this causes the low survival rate of the

devices.

Unfortunately we have to conclude we can not use this SAM approach with our

aluminium electromigration junctions. The SAM technique allows us to fabricate high

quality gold-nanoparticle layers of controlled particle density. However it also dramat-

ically decreases the quality of our junctions making them unfit for electromigration.

1.5 Nano-gaps by electromigration

Electromigration (EM) is often utilized to contact molecules [111, 150, 105] because of

its easy process, decent success rate and compatibility with a local back-gate. In addi-

tion to these raison d’tre, electromigration also allows one to make nano-gaps in-situ. As

the surface of any superconductor will oxidise when it is exposed to air, it is important

in our devices that the actual tunnel junctions to the gold nano-particles are created

and maintained in vacuum. Like this, the ligands on the gold nano-particles form the

only barrier between pristine leads and the quantum dot. Therefore electromigration

is our designated method for making the nano-gaps to contact gold nano-particles.

Before it was ever used in molecular electronics, electromigration was already known

as the cause of interconnect failures in micro-electronic devices [51]. At sufficiently high

current densities (∼ 108A/m2) the transfer of momentum from electrons to atoms can

result in atomic motion and eventually the breaking of an electrical wire. Park et al.

[110] were the first that utilized this principle to make nano-gaps. Nano-sized junc-

tions made by shadow evaporation were simply biased with an increasing current while

measuring the voltage drop. After breaking they could measure tunnel resistances

ranging from 105 to 1012 in 85 % of the devices indicating a gap-size of about 1 nm.

Since this first application of EM to produce nano-gaps, various groups have adopted

and improved the electromigration process. Currently different techniques exist among

which are active feedback controlled systems [139] and 4 probe EM setups [153]. In

section 1.5.1 some of the existing techniques will be discussed, including the method
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that we have used. Most electromigration measurements published up to now were

actually performed on devices made of gold or platinum. It is believed that these two

materials, both not a superconductor, are best used for electromigration because of

there noble character and large atomic mobility. However there are examples where

electromigration is performed on lead [92] and aluminium [150] electromigration junc-

tions. Since we do need the leads in our devices to be superconducting and there is

local experience with aluminium electromigration junction, we have chosen to use alu-

minium. To illustrate the compatibility of aluminium with EM we show in section 1.5.2

the results of electromigrations performed on 128 aluminium nano-junctions. The high

reproducibility in break-voltage and current indicates the compatibility of aluminium

with electromigration.

1.5.1 Electromigration procedures

During a traditional electromigration process, electrons driven by an electric field in-

elastically collide with the atoms in the material, effectively transferring momentum.

The process was described by Trouwborst et.el [145] using the thermodynamics of irre-

versible processes [48]. By ignoring any thermodiffusion and assuming zero difference

in electrochemical potential of the electrons, the mass flux due to the atoms is given

by:

Jm = −
Lm,m

T
(∇µm −Z∗eρj) (1.1)

where µm is the electrochemical potential of the atoms, Lm,e and Lm,m are phenomeno-

logical constants and Z∗ is considered as an effective charge of the atoms:

Z∗ = Z −
Lm,e

Lm,m
. (1.2)

Note that the second term in the parenthesis in eq. (1.1) is force due to the electrostatic

field i.e. F∗ = eZ∗E, and can be decomposed into two parts by using eq. (1.2):

F∗ = eZesE − eZwindE. (1.3)

Hence the atoms in the metal experience two forces, both determined by the current

density: (1) the normal electrostatic force due to the electric field and a second force,

the so called ’electron wind’ due to the imparting electrons. Since often the electron

wind is much larger than the electrostatic forces, the atoms move in the direction of

the electrons.

Although this model results in a nice short equation illustrating the driving force

behind electromigration, it does not show the dynamics of the EM process. In addi-

tion to a high current density also a minimum atomic mobility is required. Because the
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a) b)

Figure 1.17: (a) A scanning electron microscope image of a fused electromigration junction.
When during electromigration the local temperature becomes too high the process spins out of
control and the junction ’explodes’. (b) When the electromigration process develops controlled
and without excessive heating the junction conductance steadily decreases until it becomes
quantized just before it enters the tunnel-regime. (extracted from [127])

atomic mobility is (exponentially) dependent on the local temperature one can expect a

critical temperature at which the atomic mobility is high enough and the electromigra-

tion process will start. Unfortunately, once the process is started the local temperature

can continue to increase due to increased Joule heating and when the temperature

becomes too high the wire may actually fuse violently (see figure 1.17). Therefore a

good control of the local temperature (or power dissipation) during electromigration is

essential, which turns out to be a challenging problem.

In the work done by Park et al. [110] the electromigrations were performed on bow-

tie shaped wires made by ebeam lithography and shadow evaporation. This allowed the

authors to create the small junctions (200 nm wide and 10 nm thick) necessary for high

current densities, while maintaining a small access resistance. The nano-wires were

electromigrated by means of a slowly increasing current bias until breaking point. In

this situation, during the electromigration the Joule heating of the junction PJ = I2RJ

will increase as the junctions cross-section decreases and its resistance increases. It

would be better to voltage bias the junctions since at constant voltage the Joule heating

PJ = U2/RJ will decrease with increasing junction resistance [153].

To further improve control over the electromigration process Strachan et al. [139]

developed a method that gradually breaks the junction during successive voltage ramps.

While increasing the voltage bias, the junction conductance is monitored. Whenever the

conductance has decreased with a setpoint percentage, the voltage is quickly lowered by

100 mV, after which a new voltage ramp is started. With this method Strachan et al.

are able to measure a quantized conductance just before the junction resistance enters

the tunnelregime. It has been shown that this feedback controlled method actively reg-

ulates the temperature such that the electromigration occurs at constant temperature
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a) b)

Figure 1.18: The feedback controlled electromigration process developed by Strachan et al.
[139] gradually break the junction during successive voltage ramps. (a) Whenever the feedback
system is disabled in the bistable region the current will not follow the constant power curve.
Instead it will drop quickly to the lower current branch (black trace). (b) The onset of elec-
tromigration during such a process follows a constant power curve which indicates there is a
critical temperature at which the electromigration process starts. (Figure are extracted from
[32])

[32] (see figure 1.18b).

As stated before, when voltage biased, the electromigration process will take place

with decreasing power dissipation and will auto-stop whenever the dissipated power

does not heat the junction beyond this critical temperature. This self-limiting behaviour

removes the necessity of the time consuming feedback controlled system. This is only

valid however when the total circuit resistance in series with the junction is smaller than

the junction resistance (typically 10-30 ohm). In case this condition is not satisfied, the

series resistance (RS) creates a bistable branch in the I(V) curves of constant junction

power as is shown in figure 1.19a for two values of RS . This can easily be understood by

expressing the total dissipated power in terms of a constant junction power (Pc = I2RJ)

as is done in eq. (1.4).

I2RS + Pc = IVT (1.4)

It is clear that this equation will have two solutions whenever VT > 2
√
RSRT , where

VT is the voltage over the complete circuit. In the belly of the bistable branch, when

VT = 2
√
RSRT , the current is single-valued (I =

√
Pc/RS), and the resistance of the

total system is 2RS , indicating that at this point RJ is equal to RS . To exemplify the

condition for bi-stability one can again use eq. (1.4), this time expressing the constant

junction power in terms of the junctions resistance and voltages i.e. Pc = V 2
J /RJ . It

can be easily verified that this equation only has single-valued solutions when RJ > RS .
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Figure 1.19: (a) When there is a resistance in series with the electromigration junction,
for which RJ < RS , the I(V ) curves for constant junction power become bistable within a
certain voltage regime (grey region). (b) Along the I(V ) curves for constant junction power
the junction resistance increases from its initial value into the tunnelling regime as is pointed
out by the open circles. Note that at the belly of the bistable region the junction resistance
equals the series resistance.

I2RS + 4
RS
RJ

( RJ
RJ +RS

)
2

V 2
T = IVT (1.5)

In figure 1.19b the I(V ) curves with constant PJ are plotted for three different

powers. Along the curves the junction resistance increases from its initial value into

the tunnelling regime as is pointed out by the open circles. Equivalent I(V ) curves are

traced out during a feedback controlled electromigration, indicating that the feedback

system actively bypasses the bi-stability induced by RS > RJ . Moreover, since with the

feedback controlled electromigration measurements the EM onset follows the constant

power I(V ) curves (see figure 1.18), one can conclude that electromigration starts at a

critical power (that is, local temperature).

It was first shown by Esen et al. [32] and later by Trouwborst et al. [145] that the

active feedback system is indeed only required when the series resistance in the circuit

is larger then the junction resistance. When electromigration is executed in this regime

without the feedback system the percentage of samples with a measurable resistance

after EM decreases with increasing series resistance. The origin of this decreasing

yield can be understood by considering the dynamics of this electromigration process.

Before the electromigration starts, the majority of the applied voltage drops over the

series resistance. However when the electromigration begins (i.e. when the junction

is heated up to the critical temperature) the increase in RJ causes the voltage drop

over the junction to increase, thereby increasing the local Joule heating and thus the
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Figure 1.20: Calculated I(VT ) (a) and PJ(VT ) (b) curves for different RS (10, 120 and 340
Ω) using our simple model given by eq. (1.6). (a) The I(VT ) curves (colored) show the typical
current drop when the electromigration process starts. Note that in the case of RS = 340 Ω the
current drop extends beyond the end of the iso-power line. (b) Due to the increase in RJ , the
applied voltage will be located more and more over the junction. This voltage increase causes
a temporary increase of dissipated power PJ .

electromigration speed. The result can be a thermal run-away with disastrous outcome

[145].

Although it is impossible to simulate an actual electromigration we can illustrate the

effect of a large series resistance by assuming an arbitrary time profile for the junction

resistance. More precisely, we model the junction resistance by:

RJ(t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

R0 PJ(t) < Pc
R0 + eα(t−tc) PJ(t) > Pc

(1.6)

where tc is the time when the power dissipation in the junction becomes higher than

the critical value Pc. By using this junction resistance profile and assuming a slowly

increasing applied bias voltage (V̇T = 30mV /s) we can calculate the power dissipated in

the junctions during the electromigration. In figure 1.20 we show the resulting I(VT )
and PJ(VT ) curves for three different values for RS . In these calculations we have used

the following values: R0 = 10 Ω, Pc = 140 µW and α = 2.5 Ω/t. Figure 1.20b shows that

for increasing RS the burst of dissipated power just after the start of electromigration

becomes larger, even though the current through the junction decreases. When the

power dissipated in the junction becomes to large (i.e. PJ < PF ), the local temperature

can increase up to the melting point of the metal and the junction will be fused.

In the calculations above we have (for graphical purposes) taken an unrealistically

low value for the time constant α, which is the reason why also in case of RS = R0 the

dissipated power shortly continues to increase after the onset of electromigration. When

we use a more realistic time constant i.e. α = 100 Ω/t we find that the maximum power
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Figure 1.21: By using a four probe measurement setup, Wu et al. where able to measure the
junction resistance during electromigration (RJ) and at zero bias (R0

J) at any time during the
eelctromigration process. (a) During the process three regimes can distinguished. In the first
regime (I) the resistance increase of the junction is only due to local heating (RJ increases while
R0
J stays constant) i.e. the electromigration process has not been started yet. The second stage

(II) starts with a sudden increase of both resistances, after which they become equal. During
the second regime (the electromigration process) both resistances slowly continue to increase
while the dissipated power in the junction slowly decreases. Actually R0

J becomes a bit larger
than RJ , which indicates the transport becomes quasi-ballistic. In the third regime (III) both
resistances jump into the tunnelregime and electromigration ends. (Extracted from [153])

reached during electromigration decreases linearly with decreasing series resistance until

it saturates at the critical power for RS < R0, proving the auto-limiting property of

electromigration when RS is smaller than RJ .

When during electromigration the power dissipated in the junction stays below PF

the process might be very violent but remains controllable. When the electromigration

begins, the current rapidly drops until the lower branch in the bistable regime is reached

and electromigration process slows down. This can be seen in figure 1.18. Sometimes

the bi-stable regime actually extends over all junction resistances below 1/G0, and when

the electromigration starts, it will quickly end with RJ vastly in the tunnelling regime.

Of course we can not see this in our simple model since we assume a certain junction

resistance profile.

It is now clear that a significant series resistance can make a controlled electromigra-

tion nearly impossible. Unfortunately it is not always possible to reduce RS below the

junction resistance, especially in cryogenic setups where extensive filtering is required.
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Instead of using the time consuming feedback controlled electromigration process, one

can also perform the electromigration in a four probe configuration 3 as presented by

Wu et.al [153]. The samples is voltage biased by one pair of leads, while the volt-

age drop of the junction is measured with the second pair. A fast feedback system

regulates the applied voltage such that the measured voltage drop over the junction

slowly and uniformly increases, thereby effectively bypassing the effect of any series

resistance. This approach on electromigration allowed Wu et.al to measure the differ-

ence between the equilibrium resistance (zero bias) and active resistance of the junction

during the electromigration process (see figure 1.21). Their measurements confirm (1)

the existence of a critical temperature to start electromigration and (2) the decrease in

dissipated power during the electromigration process. Furthermore the measurements

indicate the existence of a quasi-ballistic regime during the electromigration process,

which can be expected when the effective size of the junction becomes less then the

inelastic scattering length.

In conclusion, the controlled electromigration process passes through 3 phases. Ini-

tially the junction will be Joule heated until it reaches a critical temperature (typically

400 K) and the electromigration is triggered. Once started the process will evolve with

decreasing power dissipation and reaches a quasi-ballistic regime. Finally the junction

resistance makes a jumps as the nano-gap is formed. To achieve this course, electro-

migration can be performed best by applying a slowly increasing voltage bias provided

that the series resistance in the circuit is less than the junction resistance. When it is

not possible to fulfil this latter condition (e.g. in cryogenic setups), one can resort to

active feedback systems as presented by Strachan et al. and Wu et al.

1.5.2 Our approach

Low temperature transport measurements, especially electron pumping experiments

[116], generally requires significant filtering on the measurement lines which inevitably

increases the series resistance in a cryogenic setup. Performing a slow and controlled

electromigration is in such a situation impossible unless one uses one of the active

feedback systems discussed in the previous section. But since we are using 5 nm gold

nano-particles, we actually need a fierce (but controlled) electromigration such that

the resulting gap will be large enough to fit the particle. A large series resistance can

therefore be beneficial to our needs.

To break our nano-wires, we apply a slowly increasing voltage bias over the junction

while simultaneously measuring the current (see figure 1.22a). A fast feedback algo-

rithm (developed in the lab by E.Bonet, C. Thirion and R. Picuerel), executed by an

3Measuring samples in a four probe configuration is a well known technique to remove the resistance
contribution of the junction leads and measurement lines
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Figure 1.22: (a, b) The I(V ) (a) and G(V ) (b) traces of 4 (out of 128) selected electromi-
grations of aluminium junctions with varying thickness (8, 19, 12 and 14 nm). In none of these
device we have observed the quantization of conductance. (c) The I(V ) points at the onset
of electromigration of 128 junctions. With decreasing junction thickness the electromigration
starts at lower voltage and current. (d) The extracted maximum power during electromigration
(pink circles) and the power at the onset of electromigration (purple circles). The dotted lines
are a linear fit based on the four data point.
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ADwin ProII, evaluates the conductance (figure 1.22b) of the system and puts the bias

voltage to zero as soon it detects a conductance below an arbitrary threshold value.

Due to the fast electronics we can stop the electromigration process within 10µs which

is faster than our typical electromigration process (40 µs as deduced from the number

of measured points after the onset of electromigration). However this method does

not remove the bi-stability caused by a large series resistance like any of the feedback

systems discussed above. Since we do have a significant line resistance in our cryostat

(170 Ω), we need to take special care to prevent excessive heating in our junctions dur-

ing the electromigration process. This can be done by a proper design of the nano-wires

as will be explained below.

In previous section we have shown that during the electromigration process the dis-

sipated power in the junction increases due to the increase in voltage over the junction

as its resistance increases. The amount by which the junction voltage increases is given

by IcRS , where Ic is the current present at the start of the electromigration process.

This critical current is determined by the local dissipated power necessary to heat the

junction beyond the critical temperature such that the electromigration process is trig-

gered. It can therefore be reduced by either increasing the electrical resistivity of the

junction or by decreasing the critical power. The latter can be achieved by decreasing

the junction cross-section area which reduces the heat transport out of the junction

through the leads. Figure 1.22c shows the current (Ic) and total voltage (VB) at the

onset of electromigration of junctions with different thickness. A clear increase in Ic

with increasing junction thickness is visible, especially for the devices with a lower

thickness. At the onset of electromigration the junction resistance is still small which

implies that the total voltage (VB) at this point is nearly equal to IcRS . The increase in

VB with increasing junction thickness therefore indicates that the amount by with the

dissipation increases during electromigration increases with increasing junction thick-

ness. This is confirmed by figure 1.22d which shows the measured power dissipated in

the junction at the onset of electromigration (purple data points) and the maximum

during electromigration (pink data points). The increasing difference with thickness

indicates an increase in dissipation during electromigration with increasing thickness.

Moreover, the increase in the dissipated power at the onset of electromigration (purple

data points in figure 1.22d) shows that the dissipation at the onset of electromigration is

indeed proportional to the thickness of the junctions. In conclusion, the use of junctions

with a very small cross-section area (typically 100 nm wide, and 8-14 nm thick) made

out of aluminium allows us to prevent excessive heating during our electromigration

process.

In all electromigrations that we have performed in our cryogenic setup, we have

never seen conductance quantization like other groups [139, 105, 18]. This is not sur-

prising since our total line resistance (340 Ω) is very large. However, this does not
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a) b) c) d)

Figure 1.23: Scanning electron microscope images of aluminium junctions after electromigra-
tion. Often it is difficult to observe the nano gap, even by SEM.

exclude the controlled formation of large nano-gaps. Figure 1.23 show SEM images of

some nano-gaps after electromigration. The gaps are well defined and often show little

signs of the fusing effect. After electromigration over 95 % of the junctions show tunnel-

currents with a zero-bias resistance between 100 kΩ and 10 GΩ. This high succes rate

and small variation in break voltage show we can create aluminium electromigration

junctions with a high reproducibility.
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Chapter 2

Cryogenic transport setup

The electron transport measurements presented in the following chapters are all con-
ducted in a highly filtered inverted dilution cryostat. In this chapter we will shortly
discuss the cryogenic operation of our dilution refrigerator, after which we will focus
on the electronic wiring. As to acquire a low-noise electronic setup, compatible with
the electro-migration technique electro-migration, we designed and installed a double-
shielded sample cavity and measurement wires.
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Experiments with mesoscopic or quantum devices generally require cryogenic tem-

peratures and a low noise electrical environment. Most experiments deal with small

electrical signals can be drowned easily by electrical noise. Johnson-Nyquist thermal

noise is reduced by measuring at low temperatures. To remove the remaining noise (e.g.

external radiation sources and thermal radiation from the hotter parts in the cryostat)

a careful design of the electronic setup is necessary. The cryogenic temperature is in

our experiments further required in order to put the aluminium leads in our samples

in a superconducting state.

At the beginning of my thesis I inherited an old ’inverted’ dilution cryostat (Sion-

ludi) originally wired for STM experiments. After removal of all electronic wires (except

the thermometry wires), we have installed a new sample stage, a three-axes magnetic

coil and low noise wiring compatible with in-situ electromigration. First I will shortly

discuss the cryogenic operation of the dilution refrigerator after which we continue with

the electronic wiring and filtering.

2.1 Cryogenic operation of a Sionludi

The Sionludi (a verlan for dilution) is an a-typical dilution refrigerator designed and

fabricated locally (Institut Néel, Grenoble). While normally a dilution refrigerator is

inserted top-down into a liguid 4He bath, the Sionludi is mounted on top of a liguid 4He

tank. The peculiar design offers a fast cooldown time and a spacious and easily acces-

sible experimental stage, especially convenient of cryogenic AFM/STM experiments.

As the refrigerator is located in a room temperature environment instead of a liguid
4He bath, extensive thermalization and shielding at various temperature stages and a

good vacuum are required to minimize the heat load to the cold stage. Moreover, the

absence of exchange gas during pre-cooling between the cold stage and a 4K reservoir

demand for a alternative precooling method which is achieved by the circulation of

mixture through both stills and the mixing chamber as will be discussed. Despite the

inverted geometry of the Sionludi, its cryogenic operation is nearly identical to any

other dilution refrigerator.

The cryostat (figure 2.1) is positioned inside a large vacuum chamber which is

mounted on a table top above a large liquid helium tank. Two separate circuits, a closed
4He/3He mixture circuit (primary circuit) and an open liquid 4He circuit (secondary

circuit), cool the inner parts of the cryostat. The 4He circuit provides large 4 K cooling

power (∼ 4 mW) and essentially replaces the conventional liquid helium bath. Liquid
4He from the underlying tank, which is operated at an overpressure, is pushed up into

a reservoir (figure 2.1f) located at the 4 K stage of the cryostat. The cold 4He vapours

from this reservoir are passed through a large counter flow heat exchanger (pointed out

by the green arrow in figure 2.1a) where they gradually cool the incoming mixture flow
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in the primary cooling circuit as well as the hotter stages (∼20 K and ∼80 K) of the

cryostat. The two ’hot’ stages are used to position gold plated copper shields necessary

to isolate the 4 K stage from thermal radiation.

The 4He/3He mixture in the closed primary circuit cools the cold stages (1K, 200

mK and 50 mK) of the cryostat, initially to 4 K but to lower temperatures when

condensing. During the initial cool down from room temperature to 4 K a large 4He

flow is passed through the secondary circuit. Simultaneously the 4He/3He mixture is

circulated through the primary circuit to cool the 1 K stage and dilution stage to 4

K. A significant mixture flow is necessary since these cold stages are well thermally

isolated from the 4 K stage. The primary circuit contains a dedicated part, called fast

injection, to pass a large mixture flow directly into the mixing chamber (bypassing still

1) onwards through the primary circuit . Before entering the mixing chamber (figure

2.1d) the mixture from the fast injection line is cooled by the large counter flow heat

exchanger (red arrows in figure 2.1d) and is thermalized at the 1 K stage. Once the

cold stages are thermalized to 4 Kelvin they can be cooled further by condensing the
4He/3He mixture in the mixing chamber and the stills (figure 2.1b and figure 2.1c).

Exact details of this condensation step are well described in the thesis of Norbert

Moussy [100]. After condensing, the cryostat (without experimental wiring) will reach

a stable base temperature of about 50 mK (80 mK with experimental wiring). In this

stage the operation is like other dilution refrigerators and is well described in the thesis

of Stefan Thiele [141].

2.2 A low noise electronic setup

Experiments with mesoscopic devices usually involve the measurement of small elec-

trical currents and voltages. A careful design of the electrical connections between the

sample at base temperature and the outer connectors of the cryostat at room tem-

perature are of paramount importance to the performance of the experimental setup.

Before installing the measurement wires in a cryostat, one has to take various principles

into account. Obviously the thermal load to the base temperature stage induced by

the wires should be kept to a minimum. Furthermore, the wires should be shielded

to reduce the pick-up of noise and thermal radiation. Finally, one should carefully

thermalize and filter the wires to remove high frequency signals that can disturb the

thermal equilibrium of electrons. Although these principles are very much connected

to each other, they will be discussed separately in the coming paragraphs. In addi-

tion to these principles of cryogenic transport measurements, we need the setup to be

compatible with our electromigration process which requires a low wire resistance and

large bandwidth (typically 1 MHz).

Although a large number of measurement wires is preferable due to the statistical
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a)f)

e)

d)

c) f)

50 mK
1 K

200 mK

4 K

20 K

80 K

Figure 2.1: Cryogenic parts of our Sionludi. a) The inverted geometry of a sionludi requires
extensive shielding at various temperature stages. f) Liquid helium is pushed into the cryostat
from below (blue arrow) and enters the 4K reservoir. e) Cold helium vapours exit the 4K
reservoir and go through the 4K counter flow heat exchanger to recovery. d) The mixture enters
the mixing chamber (blue arrow) through two counter flow heat exchangers (red arrows), each
connected to a separate still (c, b).
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a) b) c)

Figure 2.2: a) 27 measurement wires are divided into three capillaries, each filled with Ec-
cosorb [31]. Capillaries shield the wires from radiation, while the Eccosorb filters the high
frequency noise on the lines. b) Between the capillaries and the Thermocoax[140], the wires
are thermalized at base temperature inside a massive shielded box. c) To thermalize the center
conductor of the RF lines, we use -10 dBm attenuator at 4K, solidly clamped in copper.

nature of our experiment, we have to be cautious with the thermal load we induce

on the cold stage. Any additional (with respect to the cryostat without experimental

wiring) heat load will lead to an increase of the final base temperature depending on

the cooling power characteristics of the bare cryostat. The incoming heat flux per wire

and shielding capillaries can be kept to a minimum by using materials with low heat

conductivity (steel, constantan, manganin or CuNi clad superconducting NbTi), small

cross-section and thermal anchoring at intermediate temperatures. The latter can be

achieved by adjusting the length between temperature stages, such that the heat flux

can be compensated by the available cooling power (at the lower temperature stage).

Note however that the wire resistance will increase as the length increases (especially

for high resistivity materials), which complicates the electromigration process.

The shielding capillaries can significantly add to the total induced heat load on the

cryostat. Nevertheless they are vital to the thermal equilibrium of the electrons in the

wires. Unshielded wires act like antennas and absorb and re-emit radiation. Absorption

of radiation can excite electrons out of thermal equilibrium. Relaxation may occur by

re-emitting a photon or by electron-phonon interaction. As latter process is strongly

temperature dependent the electron and phonon bath are essentially thermally isolated

from each other at low temperature (T < 1K) and each may be characterized by its

own temperature. The absorption of radiation by electrons in the wire can therefore

easily lead an elevated electron temperature while can be much hotter than the phonon

bath. Shielding capillaries helps isolating the wires from the thermal radiation emitted

by the hotter parts of the cryostat.

Black-body radiation (THz) as well as any radiation from the outside world (wifi,

tele-communication etc) can propagate along the wires even though they are shielded.

The capillaries may isolate the wires, but will not block the radiation propagation

inside. Feed-through lumped-element filters can be used to block the radiation up

into the GHz regime but fail at higher frequencies. To filter the wires from the high
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Figure 2.3: a) The thermal radiation spectrum at various relevant temperature. At 50 mK
the thermal radiation peaks at about 1 GHz. b) Measured transmission of a 2 meter long
thermocoax wire. The attenuation becomes maximal above 1 GHz.

frequency black-body radiation often lossy transmission lines are favoured. The high

frequency attenuation in these lines is either based on a dissipative dielectric, e.g. (ferro-

magnetic) metallic powders (Eccosorb [8]), or a dissipative conductor e.g. Thermocoax

[140, 158]. Alternatively one can use superconducting twisted pair wires tightly enclosed

in a dissipative copper tape as proposed by Spietz [138]. The attenuation of all lossy

transmission lines starts at quite high frequencies (> 1GHz) and depends on the length

on the line (typically 1 m). Obviously one can best position the filters at the cold

stage of the cryostat just before they enter the sample stage. This ensures thermal

re-emission is minimum and the wires will be thermally anchored to base temperature.

We have installed three CuNi capillaries (see figure 2.4) of 1 m length from ambi-

ent temperature to base temperature, each containing 9 constantan wires of 0.2 mm-

diameter (R ≈ 135Ω). The capillaries are filled with Eccosorb to filter the thermal

radiation. While the shields are thermally anchored at each intermediate temperature

stage, the wires are only directly thermalized at base temperature. The capillaries are

equipped with a micro sub-d connector [6] fitted in a home-made brass shield at the

cold stage side. At the room temperature side, the wires are connected to a shielded 12

pin Jaeger connector. The shielded base temperature stage (see figure 2.5) is divided

into two chambers i.e. the initial cavity (1) where the constantan wires are thermally

anchored and a ’clean’ sample cavity (2). Two meter long Thermocoax wires provide a

filtered feed-through into the sample cavity. The measured signal tranmission (figure

2.3b) shows a strong attenuation above 10 MHz. Copper wires connect the Thermo-

coax to the thermalized constantan wires on one side and a pin spring-connector at

the sample stage on the other. The large heat conductivity of copper ensures a proper

thermalization of the sample to base temperature. We haven’t used any low frequency

cutoff filters to maintain the large bandwidth necessary for electromigration. After

electromigration we can optionally filter the lines with external feed-through pi filters



2.2. A low noise electronic setup 47

T 
=

 4
 K

T = 1 K

T 
=

 2
0 

K
T 

=
 8

0 
K

T 
=

 3
00

 K

2m thermocoax

coils2T

-10 dBm attenuator

eccosorb filled capillaries

semi-rigid RF line

grounding box grounding box grounding box

cu
rr

en
t 

su
pp

ly

connector box connector box connector box

T = 80 mK

ADwin  ProII

DAC
(16 bits)

ADC
(18 bits)

CPU (300 MHz)

ADC
(14 bits)

Signal generator (MHz - GHz)

TRMC2 temperature control

PC NanoQT

DLPCA-200

voltage
dividerga

te
 li

ne

dr
ai

n 
lin

e

et
he

rn
et

 b
us

V/I

103 (500kHZ)
108 (10 HZ)

Figure 2.4: A schematic of our measurement setup including the wires in the cryostat.

with a limited bandwidth (< 100kHz).

Besides these 27 DC lines, we have installed 3 broadband AC lines (red thick lines in

figure 2.4). From the SMA connectors at the outside of the cryostat to 4 K stage we have

used a 80 cm semi-rigid coax cable with a stainless steel center and outer conductor.

At the 4 K stage, the center conductor is thermalized by a 10 dBm attenuator firmly

enclosed in copper blocks. Between the 4 K and the base temperature stage we have

used a 40 cm long semi-rigid coax cable with a stainless steel outer conductor (0.52 mm

thick) and a silver plated copper beryllium center (0.51 mm-diameter). At the base

temperature stage, a 10 cm semi-rigid copper coax cable with a copper outer conductor

connects the line to a SMP receptacle with limited detent to the stage stage (figure

2.6a).

In the upper end of the ’clean’ sample cavity we have mounted the sample stage

(see figure 2.6a). It consists of a thick (3 mm) brass plate in which we have mounted

the 27 pin spring-connectors and the three SMP receptacles. The mass of the brass

plate ensures good thermalization of the RF ground which is necessary to sink the

heat produced by the RF signals. We have designed a mating sample carrier (figure

2.6b) PCB at which we position three SMP receptacles with full detent. Circular pads

provide space for the 27 pin spring-connectors. The copper backplane of the PCB

is connected to the gold plated groundplane by vias. The PCB is glued with silver

epoxy to a brass plate (1 mm thick) with a thread on the back for handling. The
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Figure 2.5: The cold stage consists of two chambers separated from each other by a solid
brass disk through which the 27 thermocoax wires go (left). The upper part of the cold stage
(right) contains the sample stage.

a) b)

Figure 2.6: The sample stage (a) is made of a thick brass disk on which 27 spring-pin connec-
tors and 3 SMP receptacles are mounted. The three SMP connectors ensure a good alignment
of the 27 spring-pins with respect to the sample carrier (b).
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three SMP receptacles on each side are connected by male-male SMP adaptors. The

snap-in connections provide sufficient force to keep the spring connectors compressed

and ensure a good alignment of the 27 spring-connectors.

2.3 Data aquisition

It is a good practice in the Néel Institute to integrate all measurement elements (e.g.

amplifiers, voltage devices, low pas filter etc) into a single device which can be connected

directly to the outer Jaeger connectors of the cryostat. The compact and shielded en-

vironment reduces the risk of ground loops that can couple noise into the measurement

setup. We have however chosen for the simpler approach of isolated elements since

the development of such a dedicated box can be time consuming. Only in the case

of current biased measurements we used a dedicated box since we could benefit from

a pre-existing current-biasing box which was developed by Laetitia Pascal and well

described in her thesis [112].

For the majority of our measurements we voltage bias the sample (optionally through

a home made voltage divider) and measure the current using a commercial current am-

plifier (Femto DLPCA-200) with variable gain. The voltage signals are provided and

read-in by an ADwin ProII system equipped with one voltage DAC (16 bit) card and

two voltage ADC (18 and 14 bit) cards. The ADwin system contains a fast (300 MHz)

digital signal processor (DSP) which can be programmed to real-time analyse (ADC)

and control (DAC) all voltage signals. While the DSP can be programmed for virtually

anything, we mostly used a program developed in the lab by E. Bonet, C. Thirion and

R. Piquerel that gives the ADwin system various functionalities e.g. sweeping voltages,

lock-in measurements and fast feedback electromigration. This particular ADwin pro-

gram can be controlled by mating home made computer software called NanoQT in

which complete measurement schemes can be coded in a JavaScript based language.

Originally NanoQT could, besides an ADwin, communicate with any equipment with

and TCP connection. Due to the opensource nature of the software we were able to add

GPIB support, making it compatible with the older equipment in the lab, like signal

generators and lock-in amplifiers.



50 2. Cryogenic transport setup



Chapter 3

Stationary transport properties of QD junctions

In the chapter we discuss theoretical frameworks that describe the electron and heat
transport in weakly coupled mesoscopic structures. First we discuss the concept of
charge states and use the master-equation approach to calculate the electron transport
through a metallic island tunnel coupled to normal or superconducting leads. In the
latter case, we solve the master-equation while accounting for the heat transport, as the
gapped density of states of superconducting leads results in energy-selective tunneling.
We find that maximum heat extraction is obtained at a gate-dependent bias and is
exponentially suppressed away from the charge degeneracy points. Next we consider the
electron transport through a quantum dot weakly coupled to superconducting leads. The
combination of a large level spacing on the quantum dot and the superconducting gap in
the leads suppresses thermal energy fluctuations in the device and inelastic scattering
on the quantum dot. As a consequence, the electron transport becomes dominated by
the tunnel coupling (hybridization) and a first-order perturbation approach is no longer
adequate.
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Electron transport through mesoscopic structures can often be well described by

assuming free non-interacting electrons moving in an electron gas at an elevated energy

with respect to the interacting ground state [103]. This picture, known as the Fermi

liquid theory, greatly simplifies the description of electron transport through structures,

since Coulomb interactions can be ignored. However there are some situations e.g. the

localization of charges, in which one can not ignore the Coulomb interaction between

electrons. A simple example is found in small metallic structures, connected by tunnel

junctions where the energy cost to add/remove electrons depends on the number of

electrons present.

3.1 The single electron transistor

With decreasing structure size and contact area, the transport of electrons becomes

dominated by single electron charging effects. A higher contact resistance increases the

typical time between two successive tunnel events which may become larger than the

typical electron diffusion time. In this regime the number of electrons in the island can

be considered as quantized. A smaller size on the other hand decreases the device ca-

pacitance such that charging the structure by a single electron comes with a significant

energy cost. Together these two properties make it difficult for electrons to enter/leave

the structure. At a sufficiently low temperature there are in fact little electrons in the

system that have enough energy to enter/leave the structure and electron transport

is blocked. As the blockade is caused by the Coulomb interaction between electrons

on the structure, it is know as Coulomb blockade. A simple example in which the

two properties, i.e. small size, and large contact resistance, are combined is the single

electron transistor (SET).

In a single electron transistor (figure 3.1) a small metallic island is connected to

two metallic reservoirs (leads) by tunnel barriers (GT < GQ). A third electrode (gate)

is capacitively coupled to the island such that it can modify the electrostatic potential

of the island but there can not be any exchange of electrons between the two. The

transport of electrons through this system can easily be described by an equivalent ca-

pacitance circuit. In this model, developed by Korotkov et al. [78], the island is coupled

to the leads and gate by capacitors of constant value Cs, Cd and Cg. From electro-

statics we know that an additional charge on the island accumulates some electrostatic

energy which can be expressed in terms of the capacitance of the island. Moreover, the

additional charge on the island must be, due to the quantization of charge, an integer

amount of electrons N . We can combine this in the expression for the electrostatic

energy of the island,

E = 1

2C
(Ne)2 = ECN2, (3.1)
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Figure 3.1: In a single electron transistor, a small metallic island (δ = 0) or quantum dot
(δ ≠ 0) is connected by three terminals. Current can pass through the device by two tunnel
junctions that are characterized by their capacitance CS,D and transparency γS,D. The third
electrode (gate) is only capacitively coupled to the center and allows independent manipulation
of the electrostatic potential of the island.

from which we can see that the addition of one electron to the island will increase its

electrostatic energy by the characteristic energy EC , known as the charging energy. In

order to transfer an electron from the leads to the island, the electron must have enough

energy to provide this charging energy. From this expression it can also be understood

why the island has to be small in order to observe charging effects, i.e. EC is inversely

proportional to the capacitance which decreases with decreasing island size.

The charge on the island can be manipulated by applying non-zero potentials to

the different electrodes. It turns out that the gate can be used to add (remove) charges

to (from) the island. The total electrostatic energy of the island coupled to a source,

drain and gate is given below, in which the work performed by the sources is taken into

account.

E = EC(N − q
e
)

2

− q2

2CΣ
. (3.2)

The charging energy EC and the gate induced charge, q used in eq. (3.2) equation are

given by

EC = e2

2CΣ
, q = ∑

i

CiVi,

where CΣ = CS + CD + CG, is the total capacitance of the island due to the three

capacitors. The gate induced charge is not of integer value; it is a continuous parameter,

proportional to the applied potentials e.g. the gate q ∝ CGVG.

From figure 3.2a it is visible that for all possible values of N we get a series of shifted
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Figure 3.2: a) The electrostatic energy of the island depends the number of additional charges
on the island. For each value of the additional charge, the electrostatic energy is a parabolic
function of the gate induced charge The red curve denotes the island ground state. b) The
current map, i.e. I(VB , VG), of a single electron transistor shows diamond shaped areas in
which the current is zero. (T = 100 mK, EC = 2.0 meV)

parabolas representing the various charge states of the island. Between the low-lying

intersections with neighbouring parabolas the island has a minimum energy related to

a fixed number of charges N . When q is of integer value, the energy difference with

any of the neighbouring parabolas is equal to the charging energy and charge transport

is blocked. However, when q moves away from such a point, the energy difference

becomes less, until the point where q = n ± 1/2 and two parabolas intersect. Here the

island can be in either of the two charge states and sequential transport of electrons

through the island is possible. If q is moved any further, the island will remain in the

new charge state with minimum electrostatic energy and transport becomes blocked

again. This illustrates how we can manipulate both the island’s charge state and the

charge transport through the island, just with the applied potential to the gate.

In the previous paragraph it was assumed that the island always resides in the

charge state with minimum electrostatic energy. However, when there is enough energy

available, the charge state of the island can become different. By taking into account

that the island is connected to two leads at different non-zero electrostatic potential

(i.e. non-zero bias), we can define four different processes in which the transfer of a

single electron changes the charge state of the island i.e. the addition of an electron

from the source or drain and the extraction of an electron to the source or drain. For

each of these processes, the energy difference between the final and initial state of the

total system can be determined. Note that in these processes an electron is also added

(extracted) to (from) the leads at an energy cost eV (−eV ), which has to be taken into
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account.

from (to) the source : µSF (T )(N) = E(N ± 1) −E(N) ∓ eVS (3.3)

from (to) the drain : µDF (T )(N) = E(N ± 1) −E(N) ∓ eVD

Because we assume only a weak coupling between the leads and the island, these

single-electron transfers occur randomly and are characterized by a energy dependent

transfer rate Γ(µ), which can be interpreted as the probability per unit time for this

event to occur. Since each of these processes changes the charge state of the island

from one into another, a simple master equation approach can be used to calculate the

probability that the island is in a given charge state PN .

dPN
dt

= PN(t)
⎛
⎝ ∑i=S,D

Γ(µiF (N)) + Γ(µiT (N))
⎞
⎠
− (3.4)

PN−1(t) ∑
i=S,D

Γ(µiT (N − 1)) − PN+1(t) ∑
i=S,D

Γ(µiT (N + 1))

The master equation given by eq. (3.4) relates the change in the probability to find the

island in a given charge state to the transfer rates between the charge states. These

transfer rates can be decomposed into all rates to and from the given charge state, and

are given by the probability of being in a certain charge state multiplied by the rate at

which which electrons tunnel to and from the island. In case of a stationary system the

evolution of the probabilities becomes zero and the system can be solved easily under

the condition ∑n Pn = 1. Actually, when one writes eq.(3.4) in matrix from, the solution

of the system can be obtained by a simple matrix inversion. Once the probabilities are

known, the current through the island is given by the difference of electrons entering

and leaving one of the leads.

I = e∑
n

Pn(Γ(µkT (N)) − Γ(µkF (N))) k = S,D (3.5)

The only remaining task is the calculation of all possible single-electron transfer

rates. Since a small tunnel coupling between the leads and the island is assumed,

it is reasonable to start from Fermi’s Golden rule using the tunnel Hamiltonian as

perturbation. This Hamiltonian, given in eq. (3.6) in operator form, simply describes

the transfer of an electron from a lead to the island as the creation of an electron

with energy νI in the island and the annihilation of an electron with energy νL in the

lead. The complex conjugate term represents the transfer of an electron in the opposite

direction.

HT = ∑
νIνL

t0c
�
νL
cνI + h.c. (3.6)
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When we substitute this Hamiltonian into Fermi’s Golden rule and sum over all possible

configurations that belong to the initial and final charge states, we obtain the following

expression for the transfer rate of electrons from a lead to the island1:

ΓL→I(µ) =
4πt20
h̵
∫

∞

−∞
fL(E)nL(E)(1 − fI(E − µ))nI(E − µ)dE. (3.7)

In this equation fL (fI) is the Fermi-Dirac distribution on the lead (island), nL (nI)

is the density of states of the lead (island) and µ is the characteristic energy difference

of the process which is in the case of elastic tunneling given by eq. (3.3). The transfer

rate of electrons in the opposite direction is given by a similar equation.

ΓI→L(µ) =
4πt20
h̵
∫

∞

−∞
(1 − fL(E))nL(E)fI(E − µ)nI(E − µ)dE (3.8)

In these rate equation we have taken the Fermi-Dirac distribution to describe the occu-

pation probability distribution of the island. This is justified because we have assumed

that the tunnel rate is low and there is enough time between tunnel events for electrons

to relax to a quasi-equilibrium with the island2.

Now the rate equations and the electrochemical potentials of the four single-electron

transfer processes are known, one can calculate the current through the device for any

combination of applied potentials. Figure 3.2b shows the colormap of the current

through a device with normal leads and island (i.e. constant density of states) as a

function of the gate and bias. The white diamond shaped areas indicate the absence

of current and are known as Coulomb diamonds. Within these regions the number of

additional electrons on the island is constant and the transport of electrons is Coulomb

blockaded.

3.2 Electron transport though hybrid devices

The framework introduced in the previous section also allows us to calculate the current

through an (normal) island connected by superconducting leads. Instead of a constant

density of states, one has to use a superconducting density of states in eq. (3.7 and

3.8). It turns out that such a hybrid device shows interesting thermo-electric properties

and can be used as a heat transistor. Before we can discuss on this interesting feature

of hybrid SETs, we will shortly introduce the microscopic theory of superconductivity

developed by Bardeen, Cooper and Schrieffer.

The origin of the BCS theory is the discovery that the Fermi liquid becomes unstable

1A well explained and detailed derivation can be be found in [14] (page 155-157)
2This assumption is generally valid for single electron transistors coupled to normal lead. However

there are devices, where one can not assume thermal equilibrium. Interesting examples can be found
in experiments by Pothier et al. [120] and Pekola et al. [114]
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below a critical temperature. Cooper showed that a small but finite attractive potential

between electrons, mediated by electron-phonon interactions, causes a phase change

under the formation of bound s-wave electron pairs, known as Cooper pairs3. The new

ground state can be described by the BCS Hamiltonian,

HBCS = ∑
k,σ

ξkc
�
kσckσ +∑

kk′
Vkk′c

�
k↑c

�
k↓c′k↑ck′↓ (3.9)

where the first term describes the free electron states (quasi-particles) with energy ξ

and the second term accounts for the attractive potential between electrons which leads

to the formation of Cooper pairs. Next, BCS argued that the fluctuations around the

expectation value of ground state (given by ⟨c�k↑c
�
k↓), must be small due to the vast

number of Cooper pairs that participate in it. Therefore it is justified to simplify this

Hamiltonian to its mean-field form given by

HMF = ∑
k,σ

ξkc
�
kσckσ −∑

k

∆kc
�
k↑c

�
k↓ +∆∗

kc′k↓ck′↑ (3.10)

where ∆k = −∑kk′ Vkk′⟨c′k↓ck′↑⟩. From here there are two ways to solve the mean-field

Hamiltonian i.e. the original variational method4, and by the Bogoliubov transforma-

tion which we will shortly discuss.

The mean field Hamiltonian in equation 3.10 can be diagonalized by the unitary

Bogoliubov transformation of the operators c and c� (eq. 3.11). The off-diagonal

elements disappear by choosing uk and vk such that they satisfy the relation ∆∗
kv

2
k −

∆ku
2
k − 2ξvkuk = 0

⎛
⎝
γk↑
γ�k↓

⎞
⎠
=
⎛
⎝
u∗k vk

−vk∗ uk

⎞
⎠
⎛
⎝
ck↑
c�k↓

⎞
⎠
. (3.11)

After the transformation the mean field Hamiltonian takes the simple form of two

terms. One is the condensation energy of the BCS ground state and the second is equal

to the Hamiltonian of non-interacting quasi-particles with an energy given by

Ek =
√
ξ2
k + ∣∆k∣2. (3.12)

With this solution one can calculate various important parameters of the super-

conductor, like the superconducting order parameter ∆, the critical temperature Tc

and their temperature dependencies. Here we will focus on the density of states of the

3The two electrons participating gain energy by forming a pair. The energy gained is given by
∆E = 2ωDexp[ −

2
V n(εF ) ], where ωD is the Debye frequency of the phonons, V is the attractive inter-

action strength and n(εF ) is the density of states of the metal at the Fermi energy. Using Heisenberg
uncertainty relation, the energy can be related to an average distance between the two electrons forming
the pair. This distance is known as the phase coherence length in a superconductor.

4A detailed coverage of the methods is given by Tinkham [144]
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Figure 3.3: a) The current map of a superconducting single electron transistor. The gap in
the superconducting density of states results in an additional area of zero current i.e. VB < 2∆.
(T = 200 mK, EC = 0.7 meV, RN = 33kΩ) b) The superconducting density of states results
in energy selective transport of electrons. In a sandwich structure bias at VB < 2∆ only hot
electrons can tunnel out of the normal center, while hot holes are removed. (blue indicates
occupied states)

quasi-particles (free un-bound electrons) and Cooper pairs. The latter is rather simple.

Since Cooper pairs are bosons, Pauli’s exclusion principle does not apply and they can

all join in a macroscopic quantum state of the Fermi-energy. The quasi-particle den-

sity of states can be obtained by the notion that electrons in the normal state have a

constant density of states N(0) around the Fermi-energy. This leads to the following

result for the superconducting density of states nS(E)

nS(E)
N(0)

= ∣∆∣√
E2 −∆2

. (3.13)

Since there are two types of particles in superconductors i.e. the quasi-particles that

behave like free non-interacting electrons and the Cooper-pairs located at the Fermi-

energy, the current through a device consists of the transport of both individually. At

zero bias the Cooper-pair transport gives rise to a non-dissipative current, known as

supercurrent. At non-zero bias the supercurrent is modulated in time due to the AC-

Josephson effect and the time-averaged supercurrent will be zero except for specific bias

voltages when so-called multiple Andreev reflection can take place. The discussion of

Andreev reflections and the description of superconductivity in mesoscopic structure is

however outside the scope of this thesis. In the remaining part of this chapter we will

only discuss the transport of quasi-particles in the tunnel coupling regime. Using the

BCS density of states in eq. (3.7 and 3.8), it is possible to calculate the current and

charge state occupation probabilities of a superconducting single-electron transistor

(SSET). In figure 3.3a the current through a superconducting SET is shown on color

map. Compared to the normal SET (see figure 3.2b) there is an additional region
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where current is blocked i.e. VB < 2∆. This a direct consequence of the gap in the

superconducting density of states, which becomes clear if we look at the energy diagram

of a metallic normal island between two superconductors as presented in figure 3.3b.

Here we have assumed that the superconducting gap is larger than the thermal energy

energy in the superconductors (∆ > kBTS), such that all electrons states in the lower

BCS branch are occupied and all states is the upper branch are empty. When the bias

is below 2∆ and the thermal energy of the island is small (kBTN ≪ ∆− eVB), there are

nearly no electrons on the island that can enter the superconductors. Likewise there

are no electron states available at the island and the sequential tunneling of electrons is

blocked. With increasing applied bias, the amount of electrons that can tunnel between

the island and the superconductors increases according to the thermal distribution on

the normal island until VB > 2∆. Beyond this point, sequential tunneling will still

increase with temperature, but is less and less dominated by the thermal distribution

of the electrons of the island. In conclusion one can state that the electron transport

below VB = 2∆ is strongly dependent on the temperature of the normal island. Above

VB = 2∆, the temperature dependence becomes weaker and the electron transport is

almost fully determined by the applied bias.

3.3 Heat flow in a hybrid device

To this point we have assumed that the electrons that tunnel into the island spent

enough time (dwell time) there to interact and come to thermal equilibrium with the

Fermi-sea of the island. This implies that during the dwell time, the electron dissipates

(extracts) energy to (from) the other island electrons. When the Fermi sea is in good

thermal contact with a thermal reservoir i.e. in the limit of infinite electron-phonon

coupling with a phonon bath, the electron temperature will always be equal to the

phonon temperature (equilibrium). However, when the electron-phonon interaction is

finite, the heat dissipated (extracted) by the transport of electrons has to be taken into

account. In this case, the current has to be calculated with the requirement that the

following heat balance is satisfied:

dTe
dt

= κV (T 5
e − T 5

ph) + φet = 0. (3.14)

The heat equation in eq. (3.14) relates a change in electron temperature to the sum of

all heat fluxes. Here we only take the two leading contributions into account. The first

term in this equation represents the energy exchange between the Fermi sea and the

phonon bath at temperature Tph, due to the electron-phonon interaction (characterized

by the electron-phonon coupling parameter κ) in a volume V . The second term, φet,

accounts for the heat transfer due to electrons that tunnel to and from the island. The
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Figure 3.4: a) Net heat flow out of the normal island as function of VB . Negative flow indicates
electronic cooling of the island. (Tbase = 200 mK, EC = 0.7 meV, RN = 33kΩ) b) Heat can be
removed from the normal part of an superconductor-normal metal tunnel junction when the
applied bias is below ∆.

contribution of this heat flux is given by the weighted sum of the following heat rates:

HL→I(µ) =
4πt20
h̵
∫

∞

−∞
(E − µ) ⋅ fL(E)nL(E)(1 − fI(E − µ))nI(E − µ)dE (3.15)

HI→L(µ) =
4πt20
h̵
∫

∞

−∞
E ⋅ (1 − fL(E))nL(E)fI(E − µ)nI(E − µ)dE, (3.16)

where HL→I (HI→L(µ)) gives the heat added (subtracted) to the island. These equa-

tions are identical to eq. (3.7, 3.8), except for the extra energy term in the integrand

which accounts for the energy transfer between two objects (at different electro-chemical

potential) due to electron tunnelling events. In figure 3.4a the difference between the

two rates (HL→I(µ)−HI→L(µ)) is plotted for an SIN tunnel junction as function of eV .

It can be seen that at high bias (eV > ∆), heat is deposited into the normal part of the

junctions, while at low bias (eV < ∆) heat is actually removed from the normal part

i.e. the normal part is cooled by the superconductor5. This non-equilibrium cooling

can be illustrated best by an energy diagram of a SIN junction biased just below the

superconducting gap ∆ as shown in figure 3.4b.

From this diagram it becomes clear that, as a direct consequence of the supercon-

ducting gap, only hot quasi-particle excitations can tunnel into the superconductor,

which will result in a lower electron temperature on the normal part. This concept

of electronic cooling in SIN junctions was proposed and experimentally verified by

Nahum et al. [101]. One can anticipate that the extraction of heat out of the normal

part will be doubled when it is sandwiched between two superconductors as was shown

experimentally by Leivo et al. [86]. At optimal bias (V opt
B = 2(∆ − 0.66kBTN)/e) hot

5The total work done by the source is still equal to IVB . While the source remove heat from the
normal, they dissipate heat in the superconductors [122]
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Figure 3.5: Electronic cooling of the normal island in a superconducting SET is visible in the
sub-threshold current. The solid lines is the numerical self consistent solution of the master
equation and heat balance equation. The dashed lines give the I(VB) curves of the system at
constant normal island temperature (isotherms). (radius = 100 nm, κ = 2.3 ⋅ 109, RN = 33kΩ,
Tbath = 200 mK, EC = 0.7 meV)

quasi-particles are extracted from one side, while at the other side the hot quasi-holes

are filled. However, since the normal island is only coupled by tunnel junctions, can

expect to observe charging effects as the capacitance of the device decreases. This poses

the question how the electronic cooling in SINIS junctions is affected by the charging

energy in the regime where EC > kBTN . In recent work by Saira et al. [132] it was

shown that the electronic temperature of the normal island of a superconducting SET

can be well regulated by the gate potential. At optimal bias the heat flow out of

the normal island is significantly suppressed when the gate is detuned from a charge

degeneracy point.

In the above experiments the temperature of the normal island is often probed by

additional SIN junctions whose positioning can form a practical challenge, especially

for small normal islands. Alternatively one can directly extract the temperature of

the normal island from the full I(VB) curves of a SINIS junction as was shown by

Rajauria et al. [123]. The ability to perform a likewise analysis of the I(VB) curves

of a superconducting SET would enable the study of heat transport through a small

normal island. In this thesis we have self consistently solved the master equation (eq.

3.4) and heat equation (eq. 3.14) numerically in order to obtain the I(VB) curves of

a SSET when the heat transport is taken into account. Figure 3.5 shows the I(VB)
relations at (left panel) and just besides (right panel) the charge degeneracy point of a

SSET with EC = 0.7 meV. The solid line results from the full self consistent solution,

while the dashed lines are solution of the bare master equation assuming different island

temperatures. Each crossing with an isotherm gives the electronic temperature of the

normal island. At non-zero gate detuning (right panel), the I(VB) become affected

by the charging energy and the cooling power is suppressed. The results in the left

panel replicate the results of Rajauria et al. [123] up to some factor. In the right panel
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Figure 3.6: a) The temperature of a (spherical) normal island in a superconducting SET shows
the electronic cooling by the superconducting leads (radius = 100 nm, κ = 2.3 ⋅109, RN = 33kΩ,
Tbath = 200 mK, EC = 0.7 meV). The cooling is most pronounced around the charge degeneracy
point and just below ∆. b) The temperature versus gate induced charge shows the localized
character of the electronic cooling in a superconducting SET. With increasing charging energy
the cooling becomes more localized (from dark to light blue: EC =0.6, 1.2, 2.4, 4.8, 9.6 meV).

however, we observe quite a different behaviour, but the effect of electron cooling still

clearly visible.

Furthermore we can numerically calculate the electronic temperature map as is

shown in figure 3.6a. It shows that electronic cooling is only locally present around

at the charge degeneracy point and optimal bias V opt
B where it is maximal. At these

points the voltage drop between the island and both superconductors is smaller than ∆

and both SIN junctions contribute to the electronic cooling. Similar to Saira et al. we

observe the strong suppression of the electronic cooling at optimal bias when the gate is

detuned from a charge degeneracy point. Further analysis of the minimum temperature

of the normal island shows that the optimal bias (denoted by the dashed black line) itself

increases with the detuning of the gate. Still it is not equal to V opt
B + 4EC(ng − 0.5)/e,

which would correspond to the optimal alignment (in the context of electronic cooling)

of one of the leads with respect to the normal island. While electronic cooling is

optimized for one junction, it is counterbalanced by heating due to the other junction.

As to obtain optimal cooling of the island, heat must be extracted by both junctions

simultaneously.

Finally we look at the effect of an increasing charging energy on the electronic

cooling. Figure 3.6b shows the electronic temperature of the island at (classical) opti-

mal bias as a function of gate for various charging energies. The minimum electronic

temperature is equal for all charging energies and is obtained at the charge degen-

eracy point. Moreover we observe that the gate-space of electronic cooling decreases

exponentially with increasing charging energy which is consistent with the exponential

suppression of the heat flow in the SET off-state as reported by Saira et al. [132].

This implies that in the limit of large charging energy, e.g. in quantum dots, cooling
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will become practically impossible as one needs a very high gate coupling parameter.

Besides this practical limitation, the electronic cooling of quantum dot is also affected

by the confinement of the electronic wave-function.

3.4 Quantum dot conductance by first-order perturbation

In very small structures, i.e. when the lateral size becomes smaller than de Broglie

wavelength of the electrons, the spatial confinement of the electron wave functions

becomes dominating. In this case the density of states of the structure is no longer

continuous, but becomes discrete. The electrons around the Fermi-energy can be de-

scribed by the particle-in-a-box model. Quantum mechanics dictates that only wave

functions with an energy belonging to a set of discrete energies can exist in the po-

tential well. The eigenenergies of these single-particle states are separated by a mean

energy spacing δ which is inversely proportional of the spatial size L of the confinement

potential e.g. ∝ 1/L3. When the mean energy spacing of electrons on the island of

a SET becomes larger than its thermal energy (i.e. δ > kBT ), the electron transport

through the structure (now called a quantum dot) will become affected by the quantum

confinement. In this case we can no longer use the eq.(3.4) to calculate the electron

transport, but we have to solve the master equation for the so-called many-body states

of the quantum dot[7].

Obviously the particle-in-a-box model describes only a single particle, while quan-

tum dots generally contain many hundreds (thousands) of valence electrons. Therefore

one has to describe the electron transport through a quantum dot in terms of its many-

body states. Provided that the electrons can been seen as non-interaction particles, the

many-body states are given by all unique distributions of N electrons over the available

single-particle states of the particle-in-a-box model. Because electrons are fermions, any

single-particle level may contain up to two electrons (spin up, spin down); more than

two electrons is forbidden by the Pauli exclusion principle.

In second quantization representation, many-body states are given by the occupa-

tion enumeration of the all levels. When the orbital levels are labelled by index k, and

the occupation of a level is given by n, the many-body states are represented by the

set {nk}. The energy of the state is given by ∑kEknk and the number of participating

electrons is ∑k nk. In this framework, the addition (extraction) of an electron to (from)

a level k is obtained by the creation (annihilation) operator c�k (ck) acting on the many

body state of the quantum dot. For example, the excitation of an electron from level

k to level k′ is given by an annihilation operator ck, followed by the creation operator

c�k′ , i.e. c�k′ck∣χ⟩.

Formally, to describe the transport of electrons through a quantum dot coupled to
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δ

Figure 3.7: The small size of a quantum dot confines the electrons in a small space. This
results in a non-zero level spacing. Each level can be filled by zero, one (spin up or down) or
two (spin up and down) electrons.

leads, one has to consider the full system as given in eq. (3.17).

H =HL +HR +HT + (∑
k

tkc
�
kck +ECN

2 − eVgN) (3.17)

Here the first two terms represent the leads, the third describes the single-electron

tunnelling between the dot and the leads (as introduced by eq(3.6), and the final term

accounts for the many-body state of the quantum dot subjected to a large charging

energy. By assuming weak coupling between the quantum dot and the leads, one can

use a first order perturbation approximation to derive the following master equation

[143] which describes the electron transport up to the first order in the tunnel coupling.

dP∣α⟩
dt

= ∑
∣β⟩∨∖∣α⟩

P∣β⟩Γ∣β⟩→∣α⟩ − P∣α⟩ ∑
∣β⟩∨∖∣α⟩

Γ∣α⟩→∣β⟩ (3.18)

The master equation relates the change in the occupation probability of a given many-

body state ∣α⟩ to the transition rates to and from state ∣α⟩. The transitions between

states are the result of single electrons tunnelling between the leads and the quantum

dot. The energy difference µ of the total system due to the transfer of an electron is

given by the difference in electrostatic energy µES (as given by eq. 3.3) plus the energy

difference µδ = E∣f⟩ −E∣i⟩ between the initial (∣i⟩) and final (∣f⟩) state of the quantum

dot. The latter is simply equal to the associated single electron level spacing. In the

limit of weak coupling between the quantum dot and the leads, the single electron

transfer rates can be determined by Fermi’s Golden rule:

ΓT (µ) =2πt20∫
∞

−∞
f(E)n(E)δ(µ)dE.

ΓF (µ) =2πt20∫
∞

−∞
(1 − f(E))n(E)δ(µ)dE, (3.19)
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where δ() is the Dirac delta function. The validity of Fermi’s Golden rule is determined

by the energy dependence of the states in the lead i.e. the density of available states can

only change very little with respect to the tunnel coupling. In the case of a quantum

dot coupled to normal leads, this translates to the requirement that the tunnel coupling

should be much smaller than thermal energy of the quantum dot (tk ≪ kbT ). In the

case of intermediate coupling, i.e. when the aforementioned condition is not valid, one

has to take into account the broadening of the discrete states due to the finite coupling.

This will be the subject of the next section.

3.4.1 Electron thermalization rates

Once all possible transition rates are known, one can obtain the occupation proba-

bilities in steady state by matrix inversion6. Next, the current through the quantum

dot can be calculated using the obtained probability distribution. Figure 3.8a shows

the conductance map of a quantum dot with 4 single electron levels weakly coupled to

two normal leads. One can clearly identify the regions of zero current due to Coulomb

blockade. Outside the Coulombs diamonds there are additional regions of zero differen-

tial conductance, separated by clear lines of non-zero differential conductance. Each of

these lines corresponds to an increase (decrease) in current due to a change in the num-

ber of single particle level located between the Fermi energies of the leads. Previously,

in the description of charge transport through an island7, we assumed that the electrons

on the island remained in thermal equilibrium regardless of the charge transport. This

is reflected by the use of a Fermi-Dirac distribution in the rate equations (3.7, 3.8),

which dictates the thermal occupation of levels. In the case of a quantum dot however,

the master equation dictates the occupation probability of the many-body states. This

justifies the question, where and how thermal equilibrium is introduced in the master

equation for a quantum dot. The answer is simple; it isn’t. There are no terms in the

Hamiltonian given in eq. (3.18) that include thermalization. This reduces the validity

of the numerical results presented in figure 3.8a to the strongly non-equilibrium limit

where the electron tunneling rate Γet is much larger the the thermalization rate Γth

(Γet ≫ Γth). To impose thermal equilibrium on the system, one can use the Gibbs

distribution in the grand canonical ensemble to calculate the occupation probabilities,

instead of solving the master equation. This, on the other hand, will not take into

account the effect of single-electron transport. To account for both, Beenakker et el.[7]

6Although theoretically it should be possible to solve the master equation for any set of single
electron levels, there is a practical limit on the number of levels due to the computational power of
an ordinary computer. To solve the equation, one normally writes the master equation in matrix form
such that the solution can be obtained by matrix inversion. The size of the matrix is given by N = 2M ,
where M denotes the number of single electron levels. Obviously it is just the large size of the matrix
that limits the number of electron levels to about 8

7From here on we will refer to island as an object with zero level spacing but finite charging energy.
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Figure 3.8: a) Current map of a normal — quantum dot device showing areas of constant
current. Each area corresponds to a different number of electron levels between Fermi-energies
in the leads (illustrated by insets). (∆δ = 0.8, 1.0, 1.2 meV. b) The conductance peak at
charge degeneracy is affected by the thermalization processes of the quantum dot. At fast
thermalization Γth ≫ Γet, the state occupation P∣α⟩ is given by the Gibbs distribution in the
grand canonical ensemble (blue curve). In the opposite limit (red curve), P∣α⟩ can be calculated
by the master equation (eq. 3.18). In the intermediate regime (orange curve) one can use the
equation of Beenakker et al. (eq. 3.20) to obtain P∣α⟩.

solved the master equation for a quantum dot weakly coupled to normal leads, under

the condition that the state occupation probability is given by the Gibbs factor plus

some small bias dependent correction which is given by:

const. + eV

kBT

∞
∑
k=1

nk
⎛
⎝

ΓRk
ΓLk + ΓRk

−
µL − µQD
µL − µR

⎞
⎠
. (3.20)

The first term in this equation, a constant, takes care of the re-normalization of the

probability distribution. The sum in the second term runs over all single-electron levels

of the quantum dot, where nk is the level occupation of the state and ΓL,Rk are the

single-electron tunnelling rates from level k on the dot to the leads. Eq. (3.20) is

valid when all single-electron tunnelling rates remain smaller than the temperature

and the mean level spacing (Γet ≪ kBT < δ); a condition which is easily satisfied when

the quantum dot is weakly coupled to normal leads. Note that the correction term

becomes zero when ΓRk /(ΓLk + ΓRk ) = η for all k which implies that the level occupation

is then fully determined by the thermal processes on the dot. As to illustrate the effect

of energy thermalization on the electron transport through a quantum dot, the current

in plotted as a function of the applied gate in two extreme situations: Γth = 0 (red) and

Γet ≪ Γth (blue) (figure 3.8b).
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Figure 3.9: a) The current through a superconducting-quantum dot device as a function of
the applied source-drain bias as measured by Ralph et al. [124]. b) The current trace shows
replicas of the superconducting density of states at each inclusion of a ’channel’ between the
two Fermi-energies of the leads. In the first order approximation this results in non-physical
singularities. The peak height is maximal at charge degeneracy (red curve), when the two
coherence peaks of the leads are aligned with a single level.

3.4.2 Superconductor — quantum dot devices

By using the superconducting density of states in eq. (3.19), we calculate the electron

transport through a quantum dot coupled to superconducting leads. Figure 3.9b shows

the current through the quantum dot as a function of the applied source-drain bias. At

each new inclusion of a single-electron level between the Fermi energies of source and

drain, the superconducting coherence peaks are replicated. This is a direct consequence

of the discrete density of states on the quantum dot and was experimentally observed by

Ralph et al. [124]. Despite the reasonable correspondence with the experimental data

(see figure 3.9a), the presented theoretical framework is unable to describe the electron

transport through a superconductor-quantum dot-superconductor device accurately.

Especially around the replica’s of the superconducting coherence peaks, the measured

current deviates from the numerical result. The cause of this failure has its origin at

Fermi’s Golden rule used to calculate the single electron tunnel rates.

3.5 Hybridization at non-vanishing coupling

At the basis of the fore-going description of electron transport, we made the assumption

that the tunneling of electrons could be considered as a weak perturbation of the system.

Using the first order perturbation approximation, the full Hamiltonian can be written

in a master equation form in which the transition rates are given by Fermi’s Golden

rule. Often in literature the validity of this approach is expressed in relative terms of

the thermal energy kBT of the quantum dot and the tunnel coupling Γ i.e. Γ ≪ kBT . In

fact this condition only applies specifically to a quantum dot coupled to normal leads.

The general validity condition of the Fermi Golden rule requires that the variation in
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Figure 3.10: A single discrete level broadens when it is coupled to a continuum density of
states. The typical width of the broadening is inversely proportional to the coupling strength.

the density of the final states in the leads is small compared to the tunnel coupling [20].

The origin of this condition can be illustrated nicely by regarding the so called lifetime

broadening of the single-electron levels on the quantum dot which is a consequence of

the finite tunnel coupling with a continuum density of states. A detailed derivation of

the decay of discrete states can be found in Cohen-Tanoudji et al. [20], where they solve

the system to infinite order in the perturbation theory. Here we will just reproduce the

general reasoning of this derivation.

The unperturbed system to be considered is given by a single discrete state ∣φi⟩ and

a set of states ∣α⟩ which form a continuum. Both are eigenstates of the unperturbed

Hamiltonian H0. Initially at time t = 0, we assume that the system is in the discrete

eigenstate ∣φi⟩. Each final state ∣α⟩ is characterized by its energy E. We now add a

constant perturbation T to the Hamiltonian, which only couples between ∣φi⟩ and ∣α⟩
i.e. ⟨α∣T ∣φi⟩ = t0. Consequently the state ∣φi⟩ is no longer an eigenstate of system, and

will evolve in time according to the new perturbed Hamiltonian i.e. ih̵∣ψ̇(t)⟩ =H ∣ψ(t)⟩.
The probability of finding the system in the initial state ∣φi⟩ is simply given by the

projection ∣⟨φi∣ψ(t)⟩∣2. Under the assumption that the final states ∣α⟩ are available and

their density n(E) varies smoothly over T ∼ t0, the probability is given by e−Γt, where

Γ is defined as

Γ = 2π

h̵
∫ dE∣⟨α∣T ∣φi⟩∣2n(E)δ(E = E∣φi⟩). (3.21)

Note that this equation is just the Fermi Golden rule for the tunnel rate between a

single electron level and the lead. Equivalently one can get the probability of finding

the system in the continuum state ∣α⟩ by the projection of the state ∣ψ(t)⟩ on ∣α⟩ which

is given by:

∣⟨α∣ψ(t)⟩∣2 = ∣⟨α∣t0∣φi⟩∣2n(E)
RRRRRRRRRRR

1 − e−Γt/2ei(E−E∣ψi⟩−δE)t/h̵

1
h̵(E −E∣ψi⟩ − δE) + iΓ

2

RRRRRRRRRRR
, (3.22)
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Figure 3.11: Higher order tunnel processes are leading when sequential tunneling is blocked
by the charging energy. In second order processes, known as cotunneling, electrons can tunnel
to and from the quantum dot, even if energy conservation is temporarily violated, provided
that a second event ’restores’ the quantum dot state. Cotunneling can be both elastic (a) or
inelastic (b).

where δE is a shift in the single-electron level due to the coupling known as the Lamb

shift8. The probability defined by eq. (3.22) gives the energy distribution of the

final states after the decay of a discrete state into the continuum. This distribution,

also known as the spectral density of the quantum dot, is shown in figure 3.10 for a

discrete level coupled to a normal (constant) density of states. The typical width of the

Lorentzian peak is proportional to the decay rate Γ, which clarifies the term lifetime

broadening. In this picture, considering a discrete level coupled to normal leads, it

becomes clear why Fermi-Golden rules applies in the limit when the thermal energy

is much less than the coupling. In this regime the distribution of final states remains

sharp as compared to the thermal variation of the Fermi-Dirac distribution.

However, if the discrete state is coupled to a superconducting density of states,

its lifetime varies strongly as E∣ψi⟩ approaches the superconducting gap edge. In the

approach discussed above, Γ ∝ nS(E = ∆) diverges and the condition of validity of the

Fermi Golden rules breaks down. In order to accurately describe the system beyond

the first order approximation, one can to take into account higher order processes

such as cotunneling (second leading order in the tunnel coupling). In principle such

a system can be solved using the master equation approach [75]. Hereto one has to

(1) expand the master equation up to higher order and (2) derive the tunnel rates

using the T-matrix formalism. Although the higher order master equation is beyond

the scope of this thesis 9, cotunneling itself can be described rather intuitively as the

transfer of an electron from one to the other lead, through the virtual occupation of

an intermediate state on the quantum dot. Figure 3.11 shows a schematic of a possible

cotunneling process. An electron from an occupied level on the quantum dot can,

8When the continuum density of states is just a constant, like in normal metals, the Lamb shift
reduces to zero.

9Possible starting points are: [28] (chap 4), [143]
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even though energy conservation forbids it, spend some time (given by Heisenberg

uncertainty relation) in the lead on the right. During this time, an electron from the

other lead can tunnel into the, now unoccupied, level, resulting in the net transfer on

an electron. Such virtual processes can either by elastic or inelastic and may in same

cases involve spin flips (Kondo effect). If the electron spin is neglected, one can attempt

to determine the cotunneling rates by inserting the tunnel Hamiltonian into the second

order term in the T-matrix. However, the obtained rates diverge as the energy of the

initial or final state become equal to the intermediate state energy. This divergence

again arises because the perturbative approach does not take into account the lifetime

broadening of the discrete [30].

An alternative approach is to calculate the electron current through a quantum

dot by means of (non-)equilibrium Green functions. The use of Green functions al-

lows one to solve the system beyond the perturbation approach. Although we won’t

detail the derivation, we will discuss the resulting equations and focus on their phys-

ical implications. Often these equations are obtained by representing the quantum

dot by the Anderson model, which is just a two level (spin up/down) system. Using

non-equilibrium Green functions, Meir et al. [98] derived the current-voltage relation

for an Anderson quantum dot coupled to two normal leads. The resulting equation,

which is essentially identical to the Landauer-Büttiker equation, expresses the current

as an integral of the thermal occupation in the leads and the spectral density of the

quantum dot in presence of the leads. Based on the same approach Levi Yeyati et

al. [88] have derived a similar equation for an Anderson quantum dot coupled to two

superconducting leads. Their result applies to the transport of quasi-particles between

the two superconductors and is given by:

I(V ) =4e

h
∫

∞

−∞
dE

tLnL(E − µL)tRnR(E − µR)

(E − ε)2 + (∑i=L,R tini(E − µi))
2

× (fL(E − µL) − fR(E + µR)), (3.23)

where ni and fi are respectively the superconducting density of states and the Fermi-

Dirac distribution of the leads and ε is the energy of the bare quantum dot level. Using

eq. (3.23) we can calculate the current through the quantum dot as a function of

the applied bias and gate potentials. Figure 3.12a shows the current as a function of

the applied source-drain bias for different coupling strengths. Notice that the I(V ) ∝
nS(E+eV ) near the superconducting coherence peak is smeared as Γ increases. This is

a result of the coherent (higher order) transport processes that can have both a positive

and negative contribution to the current. Similar features are observed near the charge

degeneracy points in quantum dots coupled to normal leads[75].

In the derivation of eq. (3.23), Levi Yeyati et al. have included only the continuum
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Figure 3.12: a) Current though a single level coupled to two superconductors as a function of
the applied source-drain bias calculated with eq. (3.23). Increasing tunnel coupling softens the
coherence peak. b) The spectral density of a single level is significantly altered when it is coupled
to a superconducting density of states, i.e. (1) there is a broadened quasi-particle (QP) state
and (2) a persistent discrete state (Andreev state) that remains bound in the superconducting
gap.

part of the quantum dot’s spectral density. It turns out there is also a discrete state

(see figure 3.12b) appearing from the Green functions known as an Andreev state. The

properties of this discrete state that is bound below the superconducting gap edge, will

be discussed extensively in the next chapter as it is responsible for the non-stationary

current in a superconducting single electron level turnstile.
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Chapter 4

Stationary transport experiments

In this chapter we present measurements of the electron transport through quantum
dot — superconductor hybrid devices performed under stationary conditions. A de-
tailed study of the coherence peak broadening at Coulomb threshold shows that the elec-
tron transport is dominated by the quantum dot – lead hybridization whiled despite
the weak tunnel coupling which is about equal to the thermal energy. The presence of
sub-threshold resonances parallel to the CB diamond edges is consistent with earlier
predicted higher-order Cooper-pair - electron (CPE) cotunneling processes.
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The presence of superconducting contacts in quantum dot devices significantly alters

the electron transport through the quantum dot. In the strong coupling regime, the

superconductivity of the lead introduces Andreev bound states in the spectral density

of the quantum dot which can carry a supercurrent [53]. This mesoscopic proximity

effect of quantum dots in the strong coupling regime has been studied thoroughly in

the recent years [135, 118, 25, 72, 66, 119, 15]. Recently Winkelmann et al. [150]

utilized the electromigration technique with gold-coated aluminium nano-junctions to

contact C60 molecules. As opposed to pure aluminium junction, Al/Au leads result in

a relativekly strong coupling to the quantum dot, which allowed the study of interplay

between superconductivity and the Kondo effect in a single molecule.

Superconducting - quantum dot devices in the weak coupling regime have received

much less attention. In the first report on the electron transport through weakly

coupled S-QD-S devices, Ralph et al. [124] show the dramatic change in the I(Vb)
curves due to the superconducting density of states in the leads. The charging energy

and level spacing in these devices remain limited as the quantum dot are obtained by

metal clustering during top-down deposition.

In the work of this thesis we study the effect of superconducting (aluminium) con-

tacts on the quantum transport through small gold nano-particles (∼ 4 nm). In the

weak tunneling regime, one can expect to obtain a spectral resolution which is not

limited by the electronic temperature, provided that the superconducting gap is larger

than kBT . We will show that in this regime, the spectral resolution becomes limited by

the hybridization between the superconducting coherence peaks and the single electron

levels on the quantum dot, as was previously predicted [88]. The electro-migration pro-

cess described in section 1.5 allows us to obtain pristine superconductor - quantum dot

- superconductor devices. The statistical nature of electro-migration results in devices

with varying lead - quantum dot coupling strengths.

4.1 Device zoology

The superconducting contacts to the quantum dots are fabricated by the in-situ electro-

migration of aluminium nanowires in cryogenic vacuum at 4K. To avoid the necessity of

breaking the vacuum after electro-migration, which will result in the instantaneous ox-

idation of the nano-gaps, we deposit gold nano-particles prior to the electro-migration.

Directly after electro-migration we characterize the junctions by measuring the current

at a fixed small bias voltage (typically 5 mV) as a function of the gate voltage. The

resulting traces can be categorized in three different groups. In most cases the junctions

show a small, but gate-independent current over the full gate range (-9V to +9V). The

zero-bias resistance of these devices ranges from hundreds of kiloohms to various giga-

ohms. Although the possibility of a nano-particle well tuned far from its degeneracy
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Figure 4.1: a) Example trace showing the gate independent conductance profile (numerical
derivative) of a SIS tunnel junction (T = 100 mK) with signatures of Josephson current and
multiple Andreev reflections. b) DC current trace in another device (VB = 3 mV, T = 4 K) as
function of gate voltage, which shows strong and closely spaced current oscillations. Further
conductance measurements at 100 mK (c, d) reveal the existence of Andreev bound states
(indicated by the red arrows) and faint resonances (green arrows) of a quantum dot in Coulomb
blockade.

points can not be ruled out, it is more likely that these devices are just tunnel junc-

tions. This goes generally with the observation (at T = 100 mK) of a gate-independent

critical current and signatures of multiple Andreev reflections in the more conductive

junctions (see figure 4.1a). About equally often, the traces show a gate dependent

current drowned in many randomly occurring jumps. Repeating the measurement in

these cases generally results in completely different gate traces. This instability of the

current is possibly the result of many gold nano-particles in the vicinity of the nano-

gap. The random charging of nano-particles mutually effects their conductance. In

about 4 percent of all 322 measured junctions, the traces show a reasonably stable and

reproducible gate dependent current. Again these 14 devices can be categorized into

three sub-groups.

We have measured three devices that show very broad peaks as a function of the

gate. The current maps of these devices (measured at T = 100 mK) show vague
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Coulomb structures with a significant conductance in the Coulomb diamonds and a

suppression of current in the superconducting gap between ±2∆. A small charging

energy of about 10 meV and the absence of single electron levels point to a large island

in between the superconducting leads. We have not observed an increase of the gap in

the conductance, which indicates that the islands are not superconducting.

In yet another gourp of three devices we observed strong oscillations in the device

conductance as a function of the gate at 4K (see figure 4.1b). Although the oscillations

look very similar to Coulomb oscillations, additional measurements of the conductance

at base temperature reveal a more complex picture involving the formation of Andreev

bound states in a quantum dot coupled to a superconducting reservoir [135, 84, 118,

25, 119]. Figure 4.1c shows a differential conductance map in which the Andreev

states are clearly visible (indicated by red arrows). The existence of two close lying

bound states of similar behaviour could indicate of the presence of two nearby quantum

dots [119]. On the right side of the figure one can distinguish the faint slanted lines

(green arrows) indicating the Coulomb diamond and exited states of a weakly coupled

quantum dot (δ ≈ 400µeV ). In a different gate regime, but on the same device, we

observe yet another set of Andreev bound states (see figure 4.1d). There are two bright

resonances (4 when taking into account the symmetry around zero bias) that extend

down to ∣Vb∣ ≈ 0.2 mV, from where they are continued by much weaker resonances

crossing at zero bias (indicated by the red arrows). Unfortunately these samples could

not be studied in more detail. The Andreev bound states are most likely formed

due to a strong coupling between the quantum dots and one of the superconducting

gap-edges (which makes phase biasing impossible). The coupling between the second

superconducting lead and the quantum dots is much weaker and can thus be considered

as a superconducting tunnel probe with which we measure the spectral density of the

quantum dot. Kumar et al.[84] have reported results of a similar measurement, which

are consistent with our observations.

In the remaining 8 devices (third sub-group) we observe sharp and stable Coulomb

peaks at T = 4K as shown in figure 4.2. In most cases there are conductance peaks

of various heights, as is illustrated by the inset in figure 4.2. This might indicate the

existence of multiple particles (in parallel) in the nano-gap, which can be expected

due to the dense nano-particle dispersion used. The presence of many particles is in

principle not problematic, provided that it does not result in an unstable electrostatic

environment. Additional measurements at 100 mK of the conductance around the

Coulomb oscillations show clear Coulomb diamond structures (see figure 4.3). In this

chapter we shall characterize the electron transport through these 8 devices of interest.
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Figure 4.2: Example DC current trace (VB = 3 mV, T = 4 K) as a function of the gate voltage.
The I(VG) curve show sharp Coulomb oscillations. Often there are peaks of various shapes and
height present, which might indicate the co-existance of multiple gold-nanoparticles inside the
nano-gap.

4.2 Quantum dot Coulomb blockade analysis

The mapping of the device conductance at low temperature as a function of both the

gate and bias source-drain potential can reveal a great amount of information about

the device parameters. In weakly coupled devices, these maps will shows the typical

Coulomb diamonds of zero conductance separated by regions of finite conductance.

From the shape of the Coulomb diamonds one can determine the asymmetry in the

capacitive coupling of the source and drain electrodes, the gate coupling parameter,

the charge degeneracy points and the charging energy of the particle [7, 142].

The two slopes of a diamond are given by β = CG/(CD +CG) (positive slope) and

β′ = CG/CS (negative slope). The asymmetry in the capacitive coupling of the source

and drain can be expressed by the ratio of the source and drain capacitance which is

given by:

CD
CS

= β′
⎛
⎝

1 − β
β

⎞
⎠
= SC . (4.1)

The gate coupling parameter, which expresses the effective change in island poten-

tial per unit volt applied to the gate electrode, is related to the diamond slopes by

α = CG/CΣ = (β′−1+β−1)−1
. For small quantum dot devices, the gate coupling strength

ranges from less than one percent up to several percent’s depending on the gate in-

sulation used [108]. In single electron transistors with a large normal island, the gate

coupling is generally much stronger due to the larger size of the island.

Together the source-drain asymmetry and the gate coupling parameter are helpful

tools in the identification of Coulomb diamonds in case there are many different particles

present between the source and drain electrode. Each particle is characterized by its
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# EminC RSH α CD/CS I+, I− γl, γr
meV MΩ pA GHz

A 35 135 0.35 0.45 3.70 / 2.8 0.047, 0.021
B 10* 26 0.03 1.03 1.77 / 1.82 0.016, 0.018
C 50* 500 0.05 0.70 166 / 92 7.94, 0.596
D 120* 1000 0.09 1.07 290 / 250 3.232, 2.06
E 70* 480 0.27 0.35 4.08 / 1.31 ...
F 12* 790 0.10 3.00 3.91 / 1.48 ...
G 2.5* 5 ... 0.31 250 / 178 3.93, 1.29
H 50 17 ... ... 1.37 ...

Table 4.1: Charging energy, shunt resistance, gate coupling, capacitive asymmetry and tunnel
coupling (in rates) to the source and drain leads derived from the current at large positive
and negative bias. For some devices (denoted by the asterisks), only a lower bound on the
charging energy can be given. Data is extracted from various measurements on 8 different
devices performed at T ≈ 80 mK.

capacitances to the three electrodes, resulting in distinct diamond shapes. Based on the

analysis of the diamond slopes one can identify and group the diamonds belonging to the

same particle. Once the Coulomb diamonds are identified, one can extract the charging

energy from the size of the diamond i.e. the horizontal (vertical) extent of a Coulomb

diamond is given by Eadd/(αe) (4Eadd), where the addition energy, Eadd is given by

the sum of the charging energy EC and the level separation δ, i.e. Eadd = 2EC + δ.

Figure 4.3 shows a selection of conductance maps at low temperature (T ≈ 100

mK) of the 8 selected devices in the superconducting state. Often we are not able to

measure the full extend of a diamond as the accesible gate range (determined by α and

the gate break-through voltage) is too small compared to the large charging energy.

In these cases we center the measurement range at the charge degeneracy point. The

maps clearly show slanted lines that are characteristic to Coulomb diamonds. The

superconducting gap in the leads appears as a strong suppression of the conductance

at small bias i.e. I ≈ 0 when eVB < 2∆. In the majority of the devices, we observe a finite

(instead of zero) conductance inside the Coulomb diamonds (but at ∣eVB ∣ > 2∆). This

current can be attributed to either direct tunneling between the leads characterized by

a shunt resistance RSH . In the next section we will address this feature in more detail.

In the conductance maps with an asymmetry in the Coulomb diamonds we observe a

small displacement between the two opposite apexes of the conductive regions as can be

seen in figure 4.3d. This is a direct consequence of the current suppression due to the

superconducting gap in the leads which becomes apparent with asymmetric capacitive

coupling of the leads to the quantum dot. The true charge degeneracy point lies in the

middle of these two apexes.

In table 4.1 we list the values of the charging energy, the asymmetry in the capacitive

coupling with the leads and the gate coupling parameter of the 8 selected devices. There
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Figure 4.3: Color maps of the differential conductance measurement in four devices (A, B, C,
D) at base temperature (T ≈ 80 mK). Coulomb diamonds measured in most devices (denoted
by an astrix in table 4.1), e.g. (b-d), extend beyond the scope of the measurements. Additional
slanted lines (indicated by red arrows) outside the Coulomb diamonds observed in some devices
indicate single quantum dot levels (excitations) with an energy spacing that varies between 2
and 10 meV.

is quite some variation between the device parameters as can be expected due to the

electro-migration process. In all devices we observe a large charging energy (EC ≫ 1

meV) and a small capacitive asymmetry that does not exceed a factor 3. For only two

devices we were able to measure to full extent of the Coulomb diamonds. For the other

devices we quote a lower bound on the charging energy given by the maximum source-

drain bias that we have applied. On average the gate coupling is about 5 percent,

which is consistent with the presence of a small nano-particle between the lead. In

two devices (A and E) we observe a remarkably high coupling (> 0.25). In these cases

we possibly measure the transport through a weakly coupled aluminium, though not

superconducting, grain.

Besides the capacitive parameters of a device, the conductance map can also reveal

the energy spacing between the single electron levels of the quantum dot. The levels

appear in the conductance map as lines parallel to the diamond edges. The energy

spacing between the first unoccupied level (the diamond edge) and higher energy levels

is given by e∆Vb − 2∆, where ∆Vb is the source-drain bias at which the lines of the

higher energy levels and the diamond edge intersect. In 7 of the 8 devices that we

have studied, we observe some clear lines (indicated by the arrows in figures 4.3b and

4.3c and running parallel to the Coulomb diamond edge. The energy spacing between

these lines lies between 1.5 and 10 meV but varies strongly from sample to sample.

The observed level spacing δ = 2π2h̵2

mkFV
(where V , m and kF are respectively the QD
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volume, electron mass and Fermi momentum) corresponds to gold nano-particles with

a diameter between 2.9 and 5.4 nm [149], which is consistent with the gold nano-

particles that we have used. In addition to these clear lines, we also observe many

equally spaced but faintly visible lines with a much smaller energy spacing of about

170µeV on average. The origin of these lines is most likely found at the vibrational

modes of the nano-particles [108].

4.3 Tunnel couplings and broadening of the transport features

Possibly the most striking feature in the electron transport through superconductor -

quantum dot - superconductor devices is the replication of the superconducting coher-

ence peaks at every inclusion of a new transport channel between the Fermi-energies of

the leads [124]. Following the sequential tunneling model, the shape of the replicas is

identical to the BCS coherence peaks and therefore has infinite height. Any rounding

of the peaks measured in experiments may therefore be related to external effects such

as the noise in the environment or non-equilibrium excitations [124]. However it was

shown by Levi-Yeyati et al. [88] that the peaks are also rounded by coherent effects

due to the interaction (hybridization) between the quantum dot level and the super-

conducting density of states in the leads (see section 3.5). In the 8 devices that we have

studied in detail, we observe different currents ranging from a few pA to 0.3 nA (see

table 4.1), which can be an ideal basis to study the effect of the coupling strength on

the ’coherence peak’ shape in the I(VB) curves.

4.3.1 Characterization of sub-threshold conductance

In some devices however, we observe a significant gate-independent device conductance

within the Coulomb diamonds. In order to study the tunneling coupling between the

leads and the quantum dot, the nature of this current contribution has to be character-

ized such that it can be taken into account. As inelastic cotunneling can be eliminated1

and elastic cotunneling is accounted for in the model of Levi-Yeyati, we focus on the

possible current contribution from direct tunneling between the superconducting leads.

Such a shunt current is possible as the electro-migration gap most likely has a varying

size along the trench. Assuming that the shunt current is described by a simple SIS

model we fit the sub-threshold current with the following equation

I(V ) = φ(σN) ∗ 1

eRN
∫ nl(E)nr(E − eV )(fl(E) − fR(E − eV ))dE, (4.2)

in which the tunnel current between two superconductors (characterized by their Fermi-

Dirac distributions fi and density of states ni) is convoluted with a Gaussian distribu-

1The conductance is constant with bias as opposed to conductance resonances at non-zero bias
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tion φ(σN) to account for white voltage-noise (see figure 4.4a). Since the sub-threshold

current can have contribution from both elastic cotunneling and the direct SIS shunt,

we only fitted the sub-threshold current measured far away from the charge degeneracy

point as to suppress the contribution from elastic cotunneling.

However, as for most devices it is difficult to obtain a decent fit of the data, we

construct a reference curve that represents the SIS shunt. This is done by taking the

average of various I(Vb) curves measured far from the charge degeneracy point. In

order to obtain a value for the shunt resistance we fit the linear part beyond eVb = 2∆

(see table 4.1). In the following analysis of the measured current traces at (or close to)

the charge degeneracy points, we have corrected the current according to the SIS shunt

resistance in order to study the current flowing solely through the quantum dot.

4.3.2 Tunnel coupling by tail-current analysis

When the current through the device is supported by a single spin degenerate electron

level, one can determine the coupling strength to the lead electrodes from the measured

current through the device in the on-state. The relation between the current at large

bias and the coupling is given by:

I+ = 2e
γlγr

2γl + γr
I− = −2e

γlγr
γl + 2γr

, (4.3)

where γl,r is the bare coupling strength to the left and right electrodes. These equations

are obtained by solving the master equation (eq. 4.3.2) for a single spin degenerate

electron level [13]. In the derivation it is assumed that the bias is much larger than

kBT , and the density of states in the leads is constant. This latter condition is in

the case of superconducting leads only valid far beyond the superconducting coherence

peaks.

The positive and negative single electron level current and the coupling to the leads

are listed in table 4.1. In the devices E and F, we can not determine the coupling

rates. In these devices, we measure a positive and negative current with a ratio > 2,

which indicates that the current is not supported by a single spin-degenerate conduction

channel. It is possible that in these devices the level spacing is much smaller than the

induced noise by the environment.

4.3.3 Analysis of the coherence peak broadening

As the coupling strength and asymmetry are now known, we can cross-reference the

coupling parameters to the shape of the first coherence peaks measured at charge
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Figure 4.4: a) SIS shunt conductance as a function of bias, (partly) responsible for the
non-zero conductance inside the Coulomb diamonds (see figure 4.3). The I(VB) of the SIS
shunt can be fitted by a model for a SIS tunnel junction convoluted with Gaussian noise
(RSh ≈ 1.9 GΩ, σN ≈ 30µeV ). b) Normalized (to the ’normal state’ current) I(VB) traces
measured at the charge degeneracy point of 5 different devices (T ≈ 80 mK) showing replica’s of
the superconducting coherence peak. The light-to-dark color-coding corresponds to decreasing
tunneling coupling.

degeneracy. In figure 4.4b we show the normalized current (corrected from any shunt

current) as a function of VB for 5 selected devices. The curves are light-to-dark color-

coded according to decreasing tunneling coupling. Although we do observe a qualitative

difference between the peaks, similar to the peak rounding that we expect from level-

lead hybridization et al., we can not identify a clear relation with the coupling strength.

In order to further study the peak shape, we fit the I(VB) traces of devices C and D

with three models which each represent a possible origin of the peak broadening i.e. 1)

voltage-noise, 2) photon-assisted tunneling and 3) the level-lead hybridization.

Peak broadening by voltage noise

The starting point of the first two models is the current-voltage relation derived from

the master equation of a single level system as is given by eq:

I = 2e

h
γ̃lγ̃r

fl(ε, µ) − fr(ε,−µ)
γ̃l(1 + fl(ε, µ)) + γ̃r(1 + fr(ε,−µ))

. (4.4)

In this equation2 we have used the effective tunnel coupling γ̃i between the level (char-

acterized by its electro-chemical potential ε) and leads which is given by tioni(ε, µ), in

which t0 is the matrix element of the tunnel Hamiltonian and ni is the lead density of

states. We assume that the electrons in the leads are well thermalized and can be de-

scribed by a Fermi-Dirac distribution fi centred around the electro-chemical potential

of the leads µ = ± eV2 . The final current-voltage relation of the first model (’Seq+Noise’)

is obtained by the convolution of eq. 4.4, in which we take a pure BCS density of states

2Note that equation 4.3 can be obtained from this equation at high positive and negative bias.
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to describe the leads, and a Gaussian profile to account for the white voltage noise

characterized by its standard deviation σN , which is taken as a fitting parameter.

Photon-assisted tunneling and Cooper-pair breaking

In the second model (’Seq+Dynes’) it is assumed that the peak shape is broadened by

photon-assisted tunneling and/or Cooper-pair breaking. Both processes can give rise

to an effective broadening of the coherence peaks. In the former process, electrons that

normally have insufficient energy absorb a photon from its dissipative environment and

enter the empty branch of a superconducting lead. It was shown by Pekola et al. [115]

that this environment-assisted tunneling results in the sub-gap conductance of SINIS

devices and can be well described by an effective broadening of the superconducting

density of states, identical to the Dynes model which is normally used to describe the

peak broadening by a finite Cooper-pair recombination time. In a similar way, we can

account for the photon-assisted tunneling in our system by substituting the effective

lead density of states nD(E) (as given in eq. 4.5), characterized the Dynes parameter

η (taken as fitting parameter), into eq 4.4.

nD(E) =
RRRRRRRRRRR
R

⎛
⎝

E + iη∆√
(E + iη∆) −∆

⎞
⎠

RRRRRRRRRRR
(4.5)

Quantum dot - lead hybridization

Finally, in the third model (’Hybrid’) we use the current-voltage relation of Levi-Yeyati

et al. [88] which accounts for the hybridization of the quantum dot level and the

superconducting leads. In this model there are no additional fitting parameters besides

the superconducting gap ∆ and the tunnel coupling γ. The electro-chemical potential ε

of the quantum dot level is in principle not an independent parameter as is it determined

by both the gate and bias potentials. To account for the contribution of the applied

bias we use the previously obtained capacitive asymmetry i.e.

ε = ε′ + eVB
2

(1 − α)(1 − SC
1 + SC

), (4.6)

where SC = CD/CS is the asymmetry in the capacitive coupling and ε′ is the gate

dependent detuning of the quantum dot level with respect to the charge degeneracy

point. Furthermore we can reduce the number of fitting parameters by using the

coupling asymmetry obtained from the analyses of the Coulomb diamond shape.

Discussion of the fit results

Figures 4.5a and 4.5b show the measured data and the best fitting curves obtained by

the models. To illustrate both the sub-threshold current and the peak shape we present
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Figure 4.5: Sub-gap current and the coherence peak shape of device C (a) and device D
(b). The I(Vb) curves are fitted with three models that can explain the peak broadening and
non-zero sub-gap current. The fit parameters for both device are listed in table 4.2

the results of device C and D differently i.e. for device C on a log scale (figure 4.5a)

and for device D on a linear scale (figure 4.5b). The fit parameters for both device are

listed in table 4.2. In the following discussion we will focus of the fit quality of the

subgap current and the coherence peak.

First of all, it is visible that ’Seq+Dynes’ model clearly fails to fit the data around

the peak and below the current threshold. The observed broadening of the peak requires

such large Dynes parameter that the sub-threshold current becomes much larger than

observed (indicated by blue arrow in 4.5a). Optimizing the fit in for the sub-gap regime

shows that the sub-gap current is limited by noise. This put an upper bound to the

Dynes parameters i.e. η < 10−5∆. We can thus conclude that our measurements are

are not dominated by the device environment. This statement is of utmost importance

if the device is used as an single level turnstile [115, 159, 90] as we will do in chapter 6.

The ’Seq+Noise’ model shows a better correspondence with the data, especially

around the coherence peak, but strongly overestimates the sup-gap current. Addition-

ally for device C we need an unrealistic high noise value of 50 µeV to fit the peak shape,

which is inconsistent with the previously obtained value (≈ 30µeV ) from the fit of the

SIS shunt.

Finally we observe that the ’Hybrid’ model gives the best correspondence with

the data. The broadening of the coherence peaks is captured reasonably well without

results in an overestimated sub-gap current. This indicates that the broadening in

the transport features are dominated by the quantum dot-lead hybridization rather

then temperature or inelastic scattering events [1]. We can further improve the fit by
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Model, device ∆ [µeV] (γl, γr)/∆ σN [µeV] η/∆
Seq+Noise, C 265 0.04, 0.0053 50 n.a.
Seq+Dynes, C 265 0.04, 0.0053 n.a. 0.03
Hybrid, C 270 0.032, 0.0042 n.a. n.a.

Seq+Noise, D 265 0.035, 0.043 30 n.a.
Seq+Dynes, D 265 0.035, 0.043 n.a. 0.03
Hybrid, D 260 0.023, 0.028 n.a. n.a.

Table 4.2: Parameters of the three models used to fit the I(Vb) curves shown in figure 4.5.

included a small amount of voltage noise (σN ≈ 20µeV ) modelled by the convolution of

the ’Hybrid’ model with a Gaussian distribution.

In both devices we obtain a coupling strength from the ’Hybrid’ model fit which is

lower than what we obtain by the current analyses at large bias (eq. 4.3.2). At this

point it should be reminded that eq. 3.23 is derived based on the Anderson model

which is solved by the use of Green functions. In such a model, the charging energy

is incorporated in an effective level spacing of the Anderson dot. This however, does

not fully take into account the sequential nature of the transport in the weak coupling

regime and consequently the occupation probability Pα of the ’resonant’ level which

is in fact dependent on the bias. Therefore, to further improve the hybrid model, one

could take into account the average occupation probability Pα(VB), as was proposed

by Kang [63].

4.3.4 Coherent sub-threshold current

The correspondence between the data and the ’Hybrid’ model becomes even more

striking when we fit the full I(VB) traces of device D at various gate positions close to

the charge degeneracy point. In the sub-threshold regime the current is determined by

the SIS shunt and elastic cotunneling. As we have subtracted the contribution of the

SIS shunt, any leftover sub-threshold current is related to elastic cotunneling which is

taken into account by the ’Hybrid’ model.

Figure 4.6 shows the measured I(VB) traces (in red) before subtracting the cur-

rent contribution by the SIS shunt as to illustrate the difference between the gate-

independent SIS shunt (dash-doted line) and the coherent sub-gap. Traces obtained by

fitting the ’Hybrid’ model are added to SIS shunt and shown in blue. All fitting curves

are obtained with equal fitting parameters except the level detuning with the gate. In

order to obtain this set of fitting curves, we had to use slightly different values for the

asymmetry in the capacitive and tunnel coupling (respectively 0.85 and 0.09 instead3 of

3The asymmetry in the capacitive coupling was obtained form the Coulomb diamond analysis. The
asymmetry in the tunnel coupling was obtained from fitting the I(VB) traces at charge degeneracy.
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Figure 4.6: Sub-gap current at varying detuning (∆VG =
−10.8, −9.3, −7.8, −6.3, −4.8, −3.3, −1.8, −0.3 mV) from the charge degeneracy point as a
function of VB . Measured traces in device C (in red) are fitted with the ’Hybrid’ model shown
in blue (T ≈ 80 mK). All fit parameters, except the gate detuning, are equal for each curve
(SD = 0.096, (γl, γr) = (0.033∆, 0.039∆), ∆ = 285µeV, σN = µeV). The dash-dotted lines
represents the experimental SIS-shunt which contribution was accounted for in the fitting
procedure.

0.81 and 0.03) and the coupling strength (0.025∆ instead4 of 0.023∆). Overall we find a

good correspondence between the measured data and the obtained fitting curves. Close

to the charge degeneracy point, the fitting curves overestimate the sub-gap current a

little, but with increasing detuning from the charge degeneracy point this overestima-

tion becomes less and we obtain an excellent correspondence. This decreasing difference

between the observed and modelled sub-threshold current can possibly be attributed

to the over-simplification in the ’Hybrid’ model as was previously discussed.

Hybridization and tunnel coupling asymmetry

Another interesting feature in the I(Vb) traces is the evolution of the peak shape with

increasing detuning from the charge degeneracy point as shown in figure 4.7 on a linear

scale. In device D (figure 4.7a) we observe a decreasing peak height as we detune the

gate further away from the charge degeneracy point. The decrease in peak height is

similar on positive and negative bias. In device C (figure 4.7b) we observe a more

dramatic change in the peak shape when we detune the gate. The coherence peak

at positive bias nearly disappear when the gate is tuned below the charge degeneracy

point, while the coherence peak at negative bias below more pronounced. The dramatic

modification of the peak shape is due to the asymmetry in the tunnel coupling. When

the single electron level is aligned on one side with the coherence peak of the strongly

4The tunnel coupling was obtained from fitting the I(VB) traces at charge degeneracy.
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Figure 4.7: The peak shape is strongly dependent on the gate detuning from the charge
degeneracy point. a) In device D, which has a rather symmetric tunnel coupling, the peak
deforms symmetrically on the reversal of source-drain bias as the gate is detuned from the
charge degeneracy point. b) In device C, which has a rather strong tunnel coupling asymmetry,
the peak deforms asymmetrically upon the reversal of the bias.

coupled lead and beyond the coherence peak of the weaker coupled lead, the spectral

density of the dot is strongly broadened into a Lorentzian shape and the line shape of

the I(Vb) trace is similar to that of a quantum dot coupled to a normal lead.

While there are many reports on experiments with weakly coupled superconducting-

quantum dot device, this is the first quantitative study of the shape of the transport

features around the current threshold. From the analyses of these features, we get a

comprehensive picture of the coupling and the resulting quantum dot-lead hybridiza-

tion. We have shown that the sub-threshold transport and the coherence peak shape

are dominated by this hybridization which is important when operating the device as

a single level turnstile (see section 5.4).

4.4 Cooper-pair — electron cotunneling

In the previous sections we have shown that the electron transport through our devices

can be well described by the sequential tunneling model which applies to devices in

the weak coupling regime. So far we have focussed the discussion on the transport of

quasi-particles as the transport of Cooper-pairs is believed to be strongly suppressed

by the weak coupling. However, Johansson et al. [58] predicted the existence of sub-

threshold transport features in weakly coupled superconductor-quantum dot devices,

due to the coherent tunneling of a Cooper-pair and an electron that manifest even at

arbitrary high bias voltages. Here we report on the first observation to the best of our

knowledge, of this contribution to the transport in S-QD junctions.

The intuitive picture of this pair current is given by the sequential breaking of a

Cooper-pair in one lead followed by the cotunneling of the resulting quasi-particles as

is illustrated in figure 4.9a. This process known as Cooper-pair — electron (CPE)

cotunneling can only occur when VB > ±∆ and becomes resonant when the quantum
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Figure 4.8: In devices C and D, there is a small local increase in the conductance positioned
parallel and just below the Coulomb diamond edge.

dot level is aligned with the Fermi-energy of one of the superconducting leads. In the

case of a symmetric tunnel coupling between the quantum dot and the leads one would

expect a local increase of the conductance just below the Coulomb diamond edges as is

visible in figure 4.9b. Note that the expected sub-threshold lines are located parallel to

the Coulomb edges at a distance equal to the superconducting gap. This behaviour is

consisted with the sub-threshold features that we observe in device C and D as shown in

figure 4.8b. The contribution of CPE cotunneling appears as a small peak on top of the

sub-threshold current located just below and aligned with the slopes of the Coulomb

diamonds. In the conductance map (see figure 4.8a) of these devices, these peaks appear

as faint lines parallel to the Coulomb edges. Around the charge degeneracy point the

lines disappear abruptly when the source-drain bias is below the superconducting gap

i.e. ∣Vb∣ < ∆, which relates this feature unambiguously to the involvement of Cooper-

pairs. Rather remarkably we observe the pair current contribution only on one side

of the Coulomb diamond which could be related to charge parity or the asymmetric

tunnel coupling with the leads.

4.5 Magnetic field dependence

The application of a magnetic field often changes the electronic properties of meso-

scopic systems. For example it can drive superconductors to their normal state [144],

split the spin-degeneracy of quantum levels [83] and introduce 1D conduction chan-

nels in 2DEGs known as Landau Edge states [33]. More recently it was shown that

the application of a small magnetic field improves the performance of SINIS electronic

coolers by the enhanced thermalization of out-of-equilibrium quasi-particles in the su-

perconductors [112]. In this work, the reasons to study the electronic properties of our

devices under a magnetic field are threefold. As to verify the origin of the observed
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Figure 4.9: a) Schematic representation of the pair-current process observed in device C and
D. Cooper-pairs in the left lead split after which transport is possible by quasi-particle co-
tunnelling. This process gives rise to a local increase of the conductance located parallel to the
Coulomb diamond edge ate at distance equal to two times the superconducting gap as is shown
in the conductance map (b, extracted from [58]).

spectral gap to be superconducting rather than phonon blockade [17, 87, 134], we drive

the superconducting leads to their normal state. By gradually increasing the magnetic

field, we can verify that the pair-current line, observed in figure 4.8, coincides with

the Coulomb diamond edge in the normal state. Furthermore we search for signatures

of charge number parity, either in the Kondo effect or the Zeemann splitting of the

Coulomb diamond edges.

4.5.1 Suppression of the superconducting gap

Figure 4.10 shows the conductance maps of device C around its charge degeneracy point

measured at varying magnetic fields from zero to 600 mT at which we observe a clear

suppression of the spectral gap. To illustrate the difference in the conductance between

the superconducting state and the normal state of the device, we show the conductance

map measured at 600 mT directly next to the conductance at 0 mT. Furthermore we

observe that the superconductivity in the two leads is destroyed at different magnetic

fields. The reduction of the superconducting gap in the leads will move their filled

states up in energy, which lowers the conduction threshold. We observe this behaviour

first in the range from 0 to 200 mT in which the left lead becomes normal; the right

lead remains superconducting up till about 500 mT. We therefore associate the sub-gap

current seen at 250 mT to thermal quasi-particles in this remaining superconducting

lead.
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Figure 4.10: Conductance maps at T ≈ 80 mK of device C at varying magnetic fields which
show the transitions from the superconducting state of the device to its normal state. Addition-
ally the pair-current below the Coulomb diamond edges is enhanced until it coincides with the
Coulomb diamond edge at 150 mT. The Zeemann splitting of first quantum dot level on the left
side of the charge degeneracy point indicates the even charge occupation of the N occupation
state. There are no signatures of a Kondo resonance.



4.5. Magnetic field dependence 91

4.5.2 Field dependence of CPE cotunneling

The presence of the pair-current line indicates that it is in fact the lead with the higher

tunnel coupling whose superconductivity is destroyed first. At this point the pair-

current line coincides with the Coulomb diamond edge of the lead in its normal state.

This confirms that the sub-threshold feature is resonant when the quantum dot level is

aligned with the Fermi-energy of the lead, which is consistent with the picture of pair-

currents. A more detailed study of the sub-threshold peak shows an increase in the

pair-current with increasing magnetic field until it merges with the Coulomb diamond

edge at 200 mT. The same behaviour is observed in device D. We do not yet know how

this increases in the pair-current is related to the magnetic field. Possibly it is related

to the better thermalization of out-of-equilibrium quasi-particles in superconductors

subjected to a small magnetic field as was recently observed by Pascal et al. [112].

4.5.3 Revealing the Kondo resonance

Another interesting feature one can expect in quantum dot devices in the intermediate

coupling regime is a strong zero-bias conductance inside the Coulomb diamonds that

correspond to the odd charge states. This increase in conductance is caused by an

elastic cotunneling process that involves the spin-flipping of the electron in the highest

occupied level of the quantum dot and is known as the Kondo effect. However in hybrid

quantum dot devices the Kondo effect is suppressed by the absence of states in the leads

at low energy when the Kondo temperature TK is lower than the superconducting gap

[15]. Since we do not observe a conductance peak at zero bias at either side of the

charge degeneracy point we have to conclude that the Kondo temperature of the first

excited quantum dot level is lower than the superconducting gap in all samples.

In order to resolve any Kondo features in our devices, the superconductivity in

the leads has to be suppressed. However with the application of a magnetic field, spin-

degenerate quantum dot level will Zeemann split with an energy given by EZ = ±gS2 µBB
(g is the gyromagnetic ratio, µB is the Bohr magneton and B is the magnetic field),

assuming the quantum dot level has no orbital angular momentum. The zero-bias

Kondo resonance will persist in the presence of the magnetic field until the field exceed

a critical value of BC ≃ kBTK
µB

, at which the Kondo resonance splits into 2 symmetric

peaks at eVB = gSµB(B −BC)∆Sz (where ∆SZ = ±1) which faint rapidly with further

increasing magnetic field [150, 15].

A detailed study of the conductance maps shown in figure 4.10 reveals no additional

horizontal resonances at either zero and non-zero bias even when a magnetic field is

applied. It can therefore be concluded that the high magnetic field necessary to bring
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the device to its normal state5 is larger than the critical field at which the Kondo reso-

nances splits and starts to faint. This gives an upper bound to the Kondo temperature

of the studied quantum dot level i.e. TK < 400 mT, which is significantly smaller than

the superconducting gap of aluminium (T∆ ≈ 3 K).

4.5.4 Charge parity by Zeeman-splitting

Finally we do observe the Zeeman splitting of the first excited state as is indicated by

the magenta coloured arrows in the conductance map at 600 mT. The energy splitting

of this level corresponds to the gyromagnetic ratio of about 2, which can be expected.

From the observed level splitting we can assign a electron parity to the two Coulomb

diamonds around the charge degeneracy point. Since the level splits at the transition

from N to N+1 electron on the dot there are two final states available. Hence the

N+1 occupation state is a Kramer’s doubled, i.e. the N+1 occupation state has an odd

number of electrons.

5The critical magentic field of thin aluminium films is generally large than the bulk value.



Chapter 5

Non-stationary transport of single-level turnstile

In this chapter we will discuss the generation of quantized current by the turnstile
operation of a single quantum dot level coupled to superconducting leads. First we
will consider a semi-classical description of the single level turnstile, which we extend
to the classical limit of vanishing level spacing. Next, we will include the effect of a
finite quantum dot — superconductor hybridization and show how this can result in an
adiabatic limitation of the turnstile operation frequency.
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Adding (or removing) a single electron to a weakly coupled island can require sub-

stantial electrostatic energy such that its charge states become well defined at low

temperature. Current through the island is normally blocked unless at least two charge

states are made degenerate (by gate and/or bias) and electrons can pass through in a

sequential manner (see figure 5.1a). With the discovery of the single electron charging

effect, it was realized that charge quantization provides a way to produce a well con-

trolled current I = ef synchronized to an external driving signal [89] with frequency f .

The realization of such a quantized current source with normal leads would however

require an additional number of weakly coupled islands in series as to block current

while crossing the charge degeneracy [44]. An alternative method is to couple the island

to leads with a gapped density of states around Fermi-energy1.

In the foregoing theoretical discussion (section 3.2) on the electron transport through

superconducting hybrids SET devices, it was shown that the superconducting gap in

the leads suppresses sequential electron tunneling at low bias ∣VB ∣ < 2∆/e at any gate

potential, including the charge degeneracy regions. Nevertheless, around charge de-

generacy single electron tunnel events can still occur between the leads and the island,

provided that the electro-chemical potential µ of the island is aligned beyond the su-

perconducting gap of either lead i.e. µ > ∆ − eVB/2. Driving the island state in a

cyclic manner back-and-forth through a charge degeneracy region by manipulation of

the gate produces a quantized current related to the driving frequency is generated.

The dynamic operation of a superconducting hybrid SET turnstile, in the context of

metrological current source was proposed and experimentally verified by Pekola et al.

[3, 117] using superconducting — normal island (zero level spacing) hybrid devices. In

this chapter we extend this principle of operation to a single level turnstile by employing

a quantum dot. The quantized current accuracy is considered in terms of missed and

erroneous tunnel events. More fundamentally, we study the dynamics of the quantum

wave-function of a single occupied level which is tunnel coupled to a semi-continuum.

5.1 The single level turnstile operation

The operation of a single level turnstile is based on the co-operation of two principles

i.e. the quantization of the electron charge on a quantum dot and the gapped density

of states of superconducting leads2. Both principles can be represented schematically,

in terms of the quantum dot charges states and the electron tunnel rates to (red) and

1Other solutions exists which either require at least two phase shifted driving signals [55, 121] or
tunable barriers [81, 10]. A discussion of all different quantized current sources is presented in the
introduction of this thesis.

2There are other materials with a gapped region in their density of states like e.g. semiconductors.
However, as the turnstile performance depends strongly on the sharpness of the gap-edges, supercon-
ducting leads are favoured.



5.1. The single level turnstile operation 95

E

VG

sequential	
tunneling

E(N
+
1)

E(
N
)tunnel	rates	

of	-1	and	+1	

VB

in
out

VG

E

E(N
+
1)

E(
N
)

VB

SET normal metal - island SET superconductor - island

a) b)

Figure 5.1: Single electron transistor charge states as function of the gate. a) Overlapping
tunnel rates for adding (red) and removing (blue) electrons from the center island results in
sequential tunneling. b) The gap in superconducting leads suppresses the tunnel rates around
charge degeneracy and introduces hysteresis in the charge states which is exploited in electron
turnstile devices.

from (blue) the quantum dot, as is shown in figure 5.1b. At sufficiently small bias

(∣VB ∣ < 2∆/e), the gap in the lead density of states nullifies the tunnel rates close to

charge degeneracy such that sequential tunneling can not take place3. Beyond this

region (still at ∣VB ∣ < 2∆/e) only a single electron can be added (’in’) or removed (’out’)

at a time due to charge quantization. The resulting hysteresis in the quantum dot

charge states is actively exploited in the turnstile. Driving the quantum dot in a cyclic

manner between two charge states will transfer electrons one-by-one, resulting in a

quantized current synchronized with the driving signal.

5.1.1 Principle of operation

The turnstile operation is presented schematically in figure 5.2 in which we consider

a single quantum dot level positioned at the center of the charge degeneracy region4

(ε0d ∝ αV 0
g ). In case of a spin-degenerate level, we assume that its double occupation

is blocked by the charging energy. A small oscillating gate modulation AGζ(t) with

amplitude AG and frequency f moves the energy level εd around its static energy

position i.e. εd(t) = ε0d +Adζ(t) with amplitude Ad = αAG, such that it passes through

various states illustrated by the chemical potential diagrams (a-f). During each period

it absorbs one electron from the left lead (c) which it ejects into the right lead (f).

After the absorption (ejection) of an electron, the now occupied (unoccupied) level

passes through the charge degeneracy region (d and a) where sequential tunneling is

3When the quantum dot would be coupled to normal leads, the crossing of a charge degeneracy
point would always result in a period of allowed sequential tunneling during which many electrons are
transported between the leads.

4Formally we consider the electro-chemical potential of the occupation of the quantum dot level and
not it bare energy. However as there is only a single level present in our system its energy is equal to
the electro-chemical potential required to occupy it.
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Figure 5.2: A system in which a single level is coupled to two superconducting leads can be
used as an single electron turnstile. Driving the level in a cyclic manner through the charge
degeneracy region at constant bias generates a quantized current which is equal to ef . The level
trajectory corresponds to a horizontal movement in the conductance map of a quantum dot.
During each cycle the level passed through various states illustrated by the chemical potential
diagrams (a-f).
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Figure 5.3: A single level electron turnstile can operate in three regimes of signal amplitude
which depend on the source-drain bias. At small signal amplitude the level remains between
the position a and b such that I = 0. The turnstile current will be optimal when ∆ − VB/2 <
Ag < ∆ + VB/2. When the amplitude becomes larger, the turnstile current will deteriorate due
to backtunneling events.

blocked by the superconducting density of states and the level maintains its charge.

The applied bias determines from (to) which lead the electrons are absorbed (ejected)

and hence the direction of the generated current. In the forthcoming discussions we

will assume that the static energy level position ε0d is tuned at the charge degeneracy

point of the single level turnstile.

5.1.2 Static operation rules

From these diagrams one can infer three different regimes of the level modulation

amplitude Aδ, which we will explain according to the schematic in figure 5.3. First,

when the modulation amplitude is small i.e. Aδ < ∆−VB/2, the level will remain inside

the superconducting gap of both leads and will not absorb or eject electrons i.e. there is

no current. At larger modulation amplitude the level passes both the filled branch edge

of the left superconductor (a) and the empty branch edge of the right superconductor

(b), which produces a positive current given by I = ef , where f is the frequency of the

applied modulation signal. This current in forward direction will remain independent

on the modulation amplitude until the level also passes the filled branch edge of the

right superconductor (c) and/or the empty branch edge of the left superconductor (d)

i.e. Ag > ∆+VB/2. In this third regime, referred to as the backtunneling regime, there

is a finite chance that the quantum dot will absorb (eject) and electron from the right

(left) superconductor. The successive absorption and ejection of an electron from and

into the same lead is known as backtunneling. Such an event does not contribute to

the turnstile current which consequently will be less than ef . Backtunneling events are

therefore considered as a turnstile error.

Another possible process decreasing the turnstile accuracy is the successive absorp-

tion and ejections of an electron from the right lead into the left lead. This electrons

transport goes in opposite (or reverse) direction and contributes negatively to the
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turnstile current. In the hypothetical case that the quantum dot level ’jumps’ instanta-

neously between two energies (e.g. assuming the gate is driven by a square wave signal

and the setup has infinite bandwidth), respectively just below position c and above

position d, one can even expect a negative average current. This can arise due to the

inequality in the lead density of states, favouring the absorption from the right lead

and the ejection into the left lead.

In the far extent of the backtunneling regime, the energy level excursion will go

far beyond the superconducting gap where the density of states in the two leads will

be approximately equal. In this limit there is no difference between the tunnel rates

to/from either lead and the average current reduces to ≈ 0. The three turnstile am-

plitude regimes (figure 5.3c) i.e. 1) no current, 2) quantized current I = ef and 3)

the errorfull turnstile operation) can be mapped on the conductance map of a quan-

tum dot (figure 5.3b). Electron absorption (ejection) in the forward direction becomes

energetically allowed when the instantaneous gate is located to the right (left) of the

solid line a (b). Similarly, backtunneling process becomes possibled beyond the lines

c and d. Together these four lines construct two triangular areas where the electron

absorption and ejections only proceeds from and to the designated leads. When the

energy level trajectory is limited between the lines a and b, or exceeds the lines c and

d, the turnstile current will be zero or deteriorated by backtunneling processes.

5.2 Errors in the high frequency range

Until now we have considered the turnstile operation from a rather static point of view

as we have implicitly assumed that electron tunneling events occur instantaneously once

energetically allowed. In reality, quantum tunneling is a stochastic process characterized

by an average time between tunnel events given by inverse of the tunnel coupling i.e.

1/Γ. Consequently there is some random delay until an electron enters or leaves the

quantum dot. As to construct a more realistic picture one has to take into account the

dwell time td i.e. the finite time between the successive events tin and tout at which

the energy level crosses the superconducting gap edge. When the turnstile is operated

such that the dwell time in the blue (red) region is much smaller then Γ−1, the ejection

(absorption) of electrons may be skipped. Naturally these missed tunnel events lead to

a turnstile current less then ef .

5.2.1 First order approximation

In order to quantify the probability of these missed tunnel events, one can consider the

ejection of an electron into the superconducting lead. The typical decay time of an

electron on the quantum dot into the lead is determined up to first order by the tunnel
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coupling and the density of states in the leads i.e. Γi(ε) = γini(εd), where εd is the

position of the quantum dot level with respect to the Fermi-energy of the lead i and

ni(E) is the leads normalized density of states. For an arbitrary trajectory εd(t) the

probability of the electron to remain in the quantum dot is given by

Pmiss = e−∫
tout
tin

Γ(εd(t))dt, (5.1)

where we integrate the excursion of the quantum dot level over the dwell time during

which tunneling is energetically allowed. The total probability of a missed event per

cycle is given by ∼ 2Pmiss which accounts for both the missed electron absorption and

ejection.

Usually for single electron turnstiles an estimate is obtained by considering a square

wave gate signal [71]. Following this course, the probability of missed events in a

single level turnstile is simply given by Pmiss = exp(−γn(ε)/(2f)). However, as the

superconducting density of states goes to infinity when ε→∆, the probability of missed

events vanishes for any driving frequency, which is physically wrong.

In case of a sine wave excursion it is nevertheless possible to obtain a semi-analytical

expression by means of a parabolic approximation yielding,

Pmiss = exp

⎡⎢⎢⎢⎢⎣
− γπtd√

A2
d −∆2

{(Ad +∆)E(Ad −∆

Ad +∆
) −∆F(Ad −∆

Ad +∆
)}

⎤⎥⎥⎥⎥⎦
, (5.2)

where F(m) and E(m) are the full elliptic integrals of respectively the first and second

kind and td = (2πf)−1acos(Ad/∆) is the dwell time. The probability of missed tunnel

events, described by expression (5.2), is plotted by grey curves in figure 5.4 as function

of modulation frequency (left panel) and amplitude (right panel). The absence of a

clear dependence on the modulation amplitude is well understood as a counteracting

effect of the decreasing dwell time which neutralizes the singular density of states as

Ad →∆.

5.2.2 The hybridized quantum dot level

As the solution obtained for the parabolic approximation is based on the Fermi golden

rule, it does not take the hybridization of the quantum dot level and the superconduct-

ing lead into account. In the discussion of the stationary current through our devices

(see section 4.3), we showed the profound effect of the hybridization on the device con-

ductance. This observation justifies the search for a better model as to estimate the

probability of missed tunnel events. The typical lifetime of the quantum dot level tun-

nel coupled to a superconducting lead can be derived by means of the retarded Green

function of the quantum dot. In the forthcoming section (5.4) we will show that the
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Figure 5.4: Probability of missed tunnel events in a single level turnstile as function of (a)
signal frequency (Aδ = 1.1∆) and (b) amplitude (f = 100, 120 MHz). Calculated rates are
obtained with the 1) first order model (grey curves) and 2) the hybridized model (blue and red
curves). The arrow in (b) points to increasing frequency. (∆ = 265µeV, γ = 0.03∆)

energy dependent decay (tunnel) rate of the quantum dot level is given by Im(εqp),

where εqp is the complex pole of the retarded Green’s function in eq. 5.4.

As to calculate the probability of missed tunnel events for any arbitrary driving

signal, we numerically obtain the complex poles of the retarded Green’s function and

substitute the corresponding quantum dot level decay rate into eq. 5.1. Figure 5.4

displays Pmiss obtained for a sine wave (red) and square wave (blue) modulation signal

as a function of the frequency (figure 5.4a) and amplitude (figure 5.4a). For both

signal shapes there is an exponential increase with frequency visible similar to the

result obtained by the first order approximation (grey). Interestingly there is a clear

difference in Pmiss between the two models calculated for sine wave operation, which

seems to suggest that hybridization increases the number of missed tunnel events. The

square wave signal shows despite this effect, superior results which are particularly

pressing in the low frequency regime.

In fact, the difference between the three cases is largest when Ad ≈ ∆ (see figure 5.4a)

and is easily understood. Due to the ’constant’ nature of the square wave, the turnstile

can optimally benefit from the increased tunnel rates when εd is aligned with the

superconducting coherence peak. In sine wave operation however, the increasing tunnel

rate is counteracted by a decreasing dwell time as Ad →∆. In the first-order model (no

hybridization) discussed earlier, this resulted in a nearly constant probability as opposed

to the result obtained with the numerical model (which takes hybridization into). The

effect of decreasing dwell time is in the latter case superior to the increasing tunnel rate

as the singularity around Ad ≈ ∆ is suppressed by the hybridization between the energy

level and the superconducting lead. The probability of missed events consequently

increases as Ad →∆.
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a)

b)

Figure 5.5: a) Scanning electron microscope (SEM) image of a hybrid SET single electron
turnstile with a relatively large island (zero level spacing). b) Quantized current at varying
modulation frequencies as function of the device bias measured by Pekola et al. [117].

With increasing operation amplitude the effect of signal shape and hybridization

naturally decreases and the models finally converge at Pmiss = exp(−γπtd). In this limit

of large amplitude there is effectively no difference between the three models as, during

the majority of time, the energy level is located far away from the gap edge, where the

tunnel rates are nearly constant and the effect of hybridization is minimal.

5.3 Differences to the S-N-S turnstile

The quantization of charge on the quantum dot, required for the turnstile operation, is

in the foregoing discussion intrinsically present as we considered a single non-degenerate

quantum dot level. In devices with many electronic levels present on the quantum dot,

charge quantization may still be present as the result of a large charging energy i.e.

EC > kBT . In fact the first superconducting hybrid electron turnstile, realized in 2007

by Pekola et al. [117] (see figure 5.5), consisted of a relatively large central island

(EC ≈ 2 K) tunnel coupled to two superconducting leads. Despite the presence of

many available levels to (from) which electrons can tunnel, only a single electron can

be removed (added), provided that EC ≈ ∆.

Since the addition (subtraction) of a second electron is blocked by the charging

energy, the operation of the electron turnstile is somewhat similar to the single level

turnstile previously discussed. The introduction of multiple levels however does require

an adequate description of their occupation probabilities. In the case of small level

spacing, i.e. δ ≪ kbT and fast electron thermalization, i.e. thermal equilibrium, the

level occupation on the island is given by the Fermi-Dirac distribution. The total rate

at which electrons tunnel from the superconductor to the island is now simply given by

Γm = ∑
εk

γnS(εk)fL(εk)(1 − fI(εk)), (5.3)
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where fL and fI are the Fermi-Dirac distributions of respectively the superconducting

lead and the island, nS is the normalized BCS density of states and γ is the tunnel

coupling. In the limit of zero level spacing one recovers the electron tunnel rates as

given by eq. (3.7) in chapter 3. From here one can easily calculate the probability of

missed tunnel events in a many level single electron turnstile, by inserting eq. (5.3) in

eq. (5.1). Due to the large number of available states on the island, the effective total

tunnel rate for a given γ is much larger compared to the single level turnstile case and

ultimately results in a lower probability of missed tunnel events. On the other hand,

the electron tunneling is less energy-selective which does bring new challenges.

5.3.1 Thermal errors

Due to thermal fluctuations in the normal island, the sequential tunneling of electrons

is possible below VB = 2∆/e and produces an exponentially small current5 when the

SET is tuned close to its charge degeneracy point. In turnstile operation this results

in an extra contribution to the quantized current as SET periodically passes through

its degeneracy point. Secondly, thermally excited electrons at the island increase the

probability of backtunneling events around zero bias. As the relative error induced by

sequential tunneling is given by ≃ exp(−eV /kBTN), and the error due to backtunneling

is given by ∼ exp(−(2∆−eV )/kBTN), there is an optimal bias for the turnstile operation

given by ∣eVB ∣ = ∆ at which both errors are of the order of exp(−∆/kBTN). The

presence of an optimal source-drain bias defined by thermal arguments is typical to

a large island hybrid turnstile. For a single level turnstile one can not define such

an optimal operation point. As both error processes are thermally activated, their

probability vanishes as the level spacing becomes much larger than the thermal energy

i.e. δ ≫ kBT .

5.3.2 Higher order errors

Beyond these classical contributions to the error in the turnstile current one can also

expect quantum errors that arise from the elastic and inelastic coherent transfer of elec-

tron pairs as is discussed by Averin et al. [3]. Again, in the limit of large level spacing

and charging energy (δ,EC > ∆), the error contribution due to inelastic cotunneling

vanishes. Elastic Cooper-pair — electron (CPE) cotunneling remains possible provided

that the source-drain bias is larger than ∆ as was discussed in section 4.4. But the

contribution of this process decays rapidly with decreasing coupling as it is a fourth

order process.

In conclusion it can be expected that the main source of error in a single level

5In chapter 3 it was shown that this current produces electronic cooling of the island
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turnstile (i.e. δ > ∆) is dominated by the number of missed tunneling events. In order

to obtain a rate of missed events comparable to the many-level (or normal island)

turnstile, the scarcity of available levels can be compensated by increasing the tunnel

coupling. Naturally, (higher-order) CPE cotunneling rate will increase, but do not

necessarily limit the turnstile current accuracy. As each nth order CPE cotunneling is

characterised by a minimum bias VB > ∆/n threshold, the error contribution of these

processes can be easily avoided at low (zero) bias. Note that this feature is specific to

a single-level hybrid turnstile and would not work in a normal-island hybrid turnstile.

Finally it is possible that the (with γ) increasing presence of a Kondo resonance at zero

bias puts a lower bias on the operation bias. Determination of the error contribution

by these processes is beyond the scope of this thesis but is required as to determine the

maximum performance of the single-level hybrid turnstile.

With increasing tunnel coupling also the hybridization between the single level

and the superconducting leads increases and should be taken into account. In the

next section we will describe the effect of the hybrization, starting from a model that

describes the interaction between a single level and the superconducting density of

states of a single lead.

5.4 Quantum dynamics originating from hybridization

Usually the tunnel coupling between the leads and a quantum dot is described per-

turbatively up to first or second order, which is justified when the tunnel coupling

is smaller than the typical scale of the variation in the leads DOS. In this limit, the

spectral broadening of a single level is the smallest energy scale and therefore the level

can be approximated by a discrete state. However, in the case the quantum dot is

coupled to a superconductor, this perturbative approach fails (up to any order) when

the level is aligned to one of the superconducting coherence peaks (see section 3.5).

Fortunately the hybridization between the single level and the superconductor can eas-

ily be described by means of Green functions. Without actually deriving any Green

function here, we will discuss our results (obtained in collaboration with Denis Basko),

to describe the effect of hybridization on the single level turnstile operation.

5.4.1 Spectral properties of the coupled quantum dot

Consider a system composed of a single non-degenerate level, whose bare energy6 is

given by εd. This level is coupled to a BCS superconductor by a tunnel coupling char-

acterized by γ. The retarded Green function of the level is (in frequency representation)

6The bare eigenenergy of the level is the energy it would have if it were completely isolated.
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given by

GR(ε) = 1

ε − εd −Σ(ε)
, (5.4)

where Σ(ε) is called the self-energy of the quantum dot. From the theory of Green

functions (see [93, 14]) we know that the retarded Green function contains the local

properties of the quantum dot. Discrete eigenstates appear as poles on the real axis

while quasi-particle states with a finite lifetime appear as poles in the complex plane, off

the real axis. Finally a continuum of states will appear as a branch cut in the complex

plane. The self-energy of the quantum dot coupled to a superconductor is proportional

to the normal component of the Green’s function in the superconductor, i.e.

Σ(ε) = − γε√
∆2 − ε2

≈ −γ
√

∆/2
∆ − ε

. (5.5)

Using this approximation which is valid when ε ≃ ∆, the poles of the retarded Green

function7 are determined by

Λ + (εd −∆) ≃
√

γ2∆/2
Λ

. (5.6)

As a function of the bare level energy εd, we can distinguish two different regimes. For

εd−∆ < −(γ2∆/4)1/3
, eq. (5.6) has a single real and positive solution which indicates the

existence a single discrete state ∣A⟩ of infinite lifetime. In the opposite case, the retarded

Green function has a second imaginary solution which corresponds to a resonance in

the continuum at

εqp ≈ εd − i
¿
ÁÁÀ γ2∆

2(εd −∆)
. (5.7)

The characteristic lifetime of this quasi-particle state ∣qp⟩ is given by the imaginary

part of its energy i.e h̵/Im(εqp). In fact, we have already encountered this state, as it

is responsible for the stationary electron transport at ∣VB ∣ > 2∆/e described in section

3.5. Its spectral density (shown in figure 3.12b) is continuous and given by ρ(ω) =
−(1/π)ImGR(ω).

The somehow unexpected result here is that the discrete state ∣A⟩ described by the

real pole of the retarded Green function survives beyond εd = ∆. For εd ≳ ∆ the energy

of this state, which is bound below the superconducting gap edge, is given by

εA −∆ ≈ −∆

2

γ2

(εd −∆)2
. (5.8)

We plot εA in figure 5.6a as function of the bare level energy εd for various coupling

7Besides the isolates poles that indicate the discrete and quasi-particle state, the Green function
also has a branch cut at ε =∆ − iη, where η goes from 0 to ∞
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Figure 5.6: a) Spectral properties single level coupled to a superconductor (γ = 0.04∆, ∆ =
265µeV). For εB < ∆ there only exists one discrete solution ∣A⟩ (magenta), while above εd ≈ ∆
there exists a second quasi-particle state ∣qp⟩ (blue) with εqp ≈ εd. Insets display the spectral
density and weight of the states at εd/∆ = 0.4,1.0,1.6, as function of ε on a log scale. b) Avoided
crossings of a single discrete level with multiple close lying discrete states used by Demkov and
Osherov [26] to explain the avoided crossing of a single discrete with a semi-continuum density
of states (δ → 0).

strengths. In the same plot we show the energy of the quasi-particle state ∣qp⟩ which

exists only for εd −∆ < −(γ2∆/4)1/3
. At εd = ∆, there is a visible anti-crossing between

the two states which increases with increasing coupling (γ) between the single level and

the superconductor.

5.4.2 Dynamics of the quantum dot wave function

The avoided crossing of εd and the gap edge is, to some extent, very similar to the

Landau-Zener physics of a two-level system driven across degeneracy. We can obtain a

more illustrative picture by regarding the consecutive crossing of a discrete level with

various close-lying discrete levels (figure 5.6b). At each avoided crossing (encircled)

there is a finite probability that the electron will make a transition to the excited state.

This approach has been used by Demkov and Osherov [26] to describe the transition

probability between a discrete state and a semi-continuum i.e. in the limit of zero

level spacing between the levels. They find that the transition probability from the

discrete state to the continuum can be decomposed into elementary Landau-Zener

factors. In the case of a featureless density of states above the gap edge, the spectral

weight of the lowest discrete state decays exponentially as the bare level energy enters

the semi-continuum. This is significantly different from the result that we find for

superconducting leads, where the spectral weight of ∣A⟩ is given by a power law,

Z =
⎛
⎝

1 − ∂Σ

∂ε

⎞
⎠

−1

≈ γ2∆

(εd −∆)3
. (5.9)
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Moreover we find that the level repulsion experienced by ∣A⟩ at the gap edge is partic-

ularly amplified by the density of states divergence. Without the divergence, εA would

exponentially tend to ∆, which significantly decreases the anti-crossing energy.

5.4.3 Time dependence

Next we assume εd is well below the superconducting gap and the discrete state is

occupied while the quasi-particle state remains empty. When the bare level energy is

moved adiabatically (by the gate) beyond the superconducting gap ∆ and back, the

electron will remain in the (ground) state ∣A⟩, below the continuum, from where it can

not be ejected into the superconductor. In the picture of the single electron turnstile

operation, adiabatic transitions will thus result in missed tunneling events in the low

signal frequency regime, where classically one would not expect it. The rate of these

missed events is directly proportional to the probability of an adiabatic transition.

For an arbitrary time dependence εd(t), one can obtain this probability by calculat-

ing occupation probability of the discrete state ∣A⟩ at the end of the bare level excursion

when εd = 0. Since ∣A⟩ corresponds to the bare level when εd ≪ ∆, its occupation prob-

ability is given by the electron wave function amplitude χ(t) of the bare energy level

at t→∞, which is can be obtained by the following integro-differential equation

i
dχ(t)
dt

= εd(t)χ(t) + ∫
t

−∞
ΣR(t − t′)χ(t′)dt′. (5.10)

Here ΣR(t) is the inverse Fourier transform of the self energy given in eq. (5.5).

Analytical solutions to this equation can be found for three particular signal shapes

εd(t). Most extreme is the quantum quench model in which the level position is changed

instantly. Consequently the transitions are always of a non-adiabatic nature as opposed

to the two other solutions i.e. the linear and quadratic time dependence.

Turnstile dynamic operation diagram

Derivation of the solution to the quadratic time dependence, defined as εd − ∆ =
(Aδ −∆) (1 − 4t2/t2d) is complex and goes beyond the scope of this thesis, but pro-

duces a good understanding of the turnstile operation in terms of two dimensionless

parameters x = (Ad − ∆)3/(γ2∆) and y = 4(Ad − ∆)/(t2dγ
2∆). In the diagram shown

in figure 5.7, four different areas are distinguished. The magenta shaded region at low

signal frequency denotes an adiabatic area. Directly above and separated by the line

y = 1/x lies the semi-classical region in which the missed event probability is given by

Pmiss = exp (− ∫ Γ(εd(t))dt). At even high signal frequencies (y > max(1, x)) we find

the third region where the bare level excursion goes to fast for complete decay such

that the coupling to the leads acts as a small perturbation but does not lead to tunnel



5.4. Quantum dynamics originating from hybridization 107

x = (A
d
 - ∆)3/(γ2 ∆)

y 
=

 4
(A

d -
 ∆

)/
(t

d2  γ
2  ∆

)

y = 1/x2

y = x

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Figure 5.7: ’Phase’ diagram of the single-level electron turnstile operated by a sine wave
signal (approximated by a square wave trajectory) expressed as a function of two dimensionless
parameters i.e. the horizontal and vertical axes are related to respectively operation amplitude
and frequency. The red hatched area denotes the adiabatic operation regime; blue hatched the
’perturbative’ and grey dotted the ’semi-classical’ regime. The turnstile operation can not be
analysed analytically within the white rectangle.

events. In the fourth region of small signal frequency (y < 1) and amplitude (x < 1), no

solution could be found.

The quantum quench model

In the quantum quench model, the bare level energy is abruptly changed from some

value deep in the superconducting gap at t = 0− to εd at t = 0+. In this case the solution

to eq. (5.10) is directly given by the retarded Green’s function of the level leading to,

χ(t > 0) = iGR(t) = −∫
∞

∞

dε

2πi

e−iεt

ε + i0+ − εA −Σ(ε + i0+))
, (5.11)

whose integral can be obtained by the evaluation of the complex residues at the poles.

The quantum quench model is obviously a big oversimplification of the experimen-

tally obtainable bare level excursion and one should consider whether it can be used at

all. The applicability of the model is determined by the rise time of the applied signal

which should be smaller than the typical time scale in the model tQQ which is given by

tQQ = 1/max(εA −∆, (γ2∆)1/3). (5.12)

When we use the coupling parameter of devices C and D that we have obtained in

the previous chapter, we conclude that tQQ > (10 GHz)−1. Consequently the quantum

quench model can not be applied when we assume an experimentally obtainable rise

time of 0.8 - 1.6 ns.
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Figure 5.8: a) Numerically calculated discrete level (solid curve) trajectories εA(t) produced
by a sine (blue) and square (red) wave modulated bare level (dashed curve). Rise time of the
square wave is 1.6 ns. b) Numerical evaluation of the adiabaticity parameter ℵ during the bare
level modulations in (b), calculated at three different modulation frequencies (f = 10, 30, 60
MHz). When ℵ < 1 during the discrete level excursion, the system remains adiabatic which
results in a missed tunnel event. With γ = 0.03∆ and ∆ = 265µeV, the transition from
adiabatic to non-adiabatic takes place at f ≈ 20 MHz.
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5.4.4 Adiabatic transition at the gap edge

Although we are unable (at least up to the point of this writing) to derive or compute the

exact probability of missed events for an experimentally realistic, bare level excursion

εd(t), we can numerically evaluate the condition for adiabatic transitions which is, just

like the case of a Landau-Zener 2-level system, given by

dε

dt
≪ ε2/h̵, (5.13)

in which ε is the energy separation between two anti-crossing eigenstates. For the case

under consideration, i.e. a single discrete level and a BCS continuum, the adiabaticity

condition takes the following form

ℵ = 1

ω2

dω

dt
≪ 1, (5.14)

in which ω = h̵(εA−∆) and tin−tout defines the dwell time of the bare level energy above

the superconducting gap. The somewhat different energy parameter in this equation is

a consequence of the continuous density of states in the superconductor. The turnstile

operation will only be adiabatic when the inequality of eq. (5.14) holds throughout the

complete period for which εA > ∆.

For any arbitrary bare level excursion εd(t), one can determine the instantaneous

discrete state energy εA as a function of time, by solving eq. (5.6) numerically. Figure

5.8a shows εA (solid line) and εd (dashed line) as function of time for two different

driving signals. The square wave signal has a constant rise time (typically 1.6 ns in our

experiments). For each point in time the adiabaticity parameter ℵ (hebrew aleph) can

be evaluated and is shown in figure 5.8b, for three different driving frequencies. It is

visible that the square wave driving signal always breaches the adiabaticity condition,

since its rise time is constant. The behaviour of the sine wave driving is however

frequency dependent and below a certain frequency the system remains adiabatic during

the full excursion of the bare level. This is the main result of this chapter. It dictates

that one can expect adiabatic suppression of the single level turnstile current at low

frequencies, which was rather unexpected.

Up to now we have only considered the coupling to one the two junctions in the

single electron turnstile. The continuation to two leads is rather straightforward since

the source-drain bias can be regarded as an effective decrease of the superconducting

gap i.e. ∆′ = ∆ − eVB/2. This allows us to determine the ’adiabaticity degree’ of the

system as a function of both the applied bias and signal amplitude. In figure 5.9 we plot

contour maps of maximum log10(ℵ), reached during the bare level excursion produced

by a sine wave modulation signal. Each contour plot represent a different combination

of the driving frequency (columns) and coupling strength γ (rows). In the case of low
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Figure 5.9: Contour maps of log10 (max[ℵ]) as function of the sine wave modulation amplitude
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signal frequency or an increase in the tunnel coupling (γ) ’rotates’ the zero contour line to the
top left, thereby increasing the hatched area in which adiabatic current suppression dominates
the turnstile operation.

coupling and high frequency (presented in figure 5.9a) the ℵ = 1 contour appears as a

near straight line, lying closely to the classical turnstile condition. The close proximity

between the conditions reveals that the system behaves rather classically in this regime.

With increasing coupling (figure 5.9b) or decreasing signal frequency (figure 5.9c), we

observe that the ℵ = 1 contour ’turns’ away from the classical turnstile condition. This

results in an area (blue shaded) where the turnstile operation is energetically allowed

but suppressed by adiabatic transitions.



Chapter 6

Single-level turnstile experiments

In this chapter we present measurements of a quantum metrological current generated by
the periodic modulating of a single quantum electronic level coupled to two superconduct-
ing leads. We demonstrate current quantization up to 200 MHz, conveyed by a single
quantum level. Strong experimental evidence of the single level nature of our turnstile
device is provided by a sharp onset of backtunneling processes and the temperature-robust
operation beyond 300 mK. Finally show a systematic current suppression uniquely ob-
served in low frequency sine wave operation, which can be attributed to the adiabatic
suppression of tunnel events.
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Until now the study of quantum dot - superconducting hybrids has mainly been fo-

cussed on the electrical features of strongly coupled hybrids under stationary conditions

such as Andreev bound states [135, 118, 72], supercurrent reversal [146] and the inter-

play with the Kondo effect[16, 15, 150]. These studies are largely driven by the search

towards quantum computing which requires the measurement of coherent quantum

states. Driven by another perspective i.e. quantum-metrology, the quantized transport

of single electrons has been studied by either the dynamical modulation of tunnel bar-

riers in electrons pumps [81, 10] or the electro-chemical potential in superconducting

single electron turnstile [117]. Here we show the first realization of a single level turn-

stile in which we manipulate the electro-chemical potential of a quantum dot contacted

by superconducting leads to generate a quantized current. We explore and characterize

the turnstile operation parameters. Moreover we show that the turnstile experiment is

possibly an experimental realization of the single level versus semi-continuum Landau-

Zener transition which was introduced in the last chapter.

6.1 Frequency response

Our quantum dot - superconductors hybrid devices are obtained by the electromigration

of aluminium nano-junctions at T = 4K, preceded by the deposition of 4 nm diameter

gold nano-particles. With this technique, we obtained 8 devices in which a small

particle is weakly coupled to the superconducting leads. The DC electronic transport

measurements T ≈ 80 mK, as discussed in chapter 4 confirm the quantum dot behaviour

of the particles. We now continue with the application of a time-dependent signal to

the AC gate electrode which is capacitively coupled to the DC gate electrodes by a

large on-chip parallel plate capacitor (see chapter 1). As discussed in the previous

chapter, the back-and-forth modulation of the electro-chemical potential through the

charge degeneracy region at a constant bias ∣VB ∣ < 2∆/e should give rise to a quantized

current equal to I = ef , where f is the frequency of the applied modulation signal.

Here we study the turnstile current response to either a sine or square wave shaped

time dependent signal. The rise-time tRT of the square wave is set to 1.6 ns, such that

the higher harmonics (1/tRT ≈ 0.63 GHz) remains well below the superconducting gap

(∼ 64 GHz) as to suppress photon-assisted quasi-particle excitations.

To roughly characterize the operation regime of our turnstile devices, we measure

the turnstile current at constant bias VB = ∆/e as function of the modulation signal

frequency. Hereto we first accurately position the DC gate V DC
G at the center of the

charge degeneracy region. Note that this position, referred to as the gate offset position

V 0
G, lies in between the two apexes of conductive regions at positive and negative bias

(see section 4.2). As we do not precisely know the transmission of the AC wiring,

including the on-chip capacitive coupling between the static gate and the AC electrode,
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Figure 6.1: DC turnstile current (device D) as function the sine wave modulation frequency
measured at varying modulation amplitude (increasing from bright to dark). The dashed ma-
genta line gives the theoretical turnstile current I = ef . (T = 90 mK, eVB = 3/2∆,Asig =
−18 to − 2 dBm)

we measure frequency sweeps at various constant signal amplitudes. In figure 6.1 we

plot the measured current response of device D for increasing signal amplitude (light

blue to dark blue) of a sine wave modulation signal.

We observe frequency regions of high and low current as compared to the theoretical

turnstile current which is indicated by the dashed magenta line. The current in these

regions is possibly affected by the presence of parasitic resonances and regions of signal

suppression in the AC electrode circuit. In two frequency regions (low: 20-70 and high:

180-205 MHz) however, we observe a partial correspondence between the theoretical

turnstile current and the measured current response at different driving amplitudes

(illustrated by the inset). In these two regions, we have an optimal coupling between

the AC driving electrode and the electro-chemical potential of the quantum dot. This

limited range of operation seems disappointing, but is considering our little experience

in producing on-chip bias-tee elements a reasonable result. The previous conclusion

that the coupling outside the two frequency regimes is affected by external resonances

and alike, is supported by measurements on a second device (device C) which shows

a similar behaviour in frequency. To construct an unambiguous picture of our single

level turnstile device, we will characterize its operation in terms of various parameters

in the next sections.
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Figure 6.2: a, b) Example traces of the turnstile current as function of the bias measured
in device D (a) and C (b) at several modulation amplitudes of respectively a sine (180 MHz)
and square (56 MHz) wave. c, d) Differential conductance maps compiled from the bias traces
exemplified by respectively (a) and (b). Blue dashed lines denote the current onset at V onB ,
white circles denote the point V optB of minimum differential conductance at the current plateau
and the magenta dashed lines give the error onset at V errB .

6.2 The semi-classical description

Our first step in the verification of the turnstile operation is the characterization of the

current as a function of the bias potential and the modulation amplitude. Again we

first accurately position the gate at V 0
G. Next we record the current while the bias is

slowly varied between ±2∆/e and a continuous modulation signal of constant frequency

and amplitude is applied to the gate. Measurements at each frequency are repeated

for various signal amplitudes. With increasing amplitude we observe the development

of a clear plateau in the sub-gap current located at I = ±ef (figure 6.2a and 6.2b).

The I(VB) trace measured under stationary conditions is shown as a reference by

the magenta curve. Color maps of the numerically obtained differential conductance

dI/dVB at each signal amplitude Asig show the transition between zero current and

I = ±ef as bright lines that cross at zero bias (figure 6.2c and 6.2d). We numerically

extract the plateau onset bias ±V on
B (Asig) which is defined by the maximum differential

conductance at the transition (indicated by the dashed blue lines). The extracted bias



6.2. The semi-classical description 115

A
sig

 (mV)

e 
V

B
 / 

∆

V
B

ON
 ∝  c(f

1 ) A
sig

V
B
ON

 ∝  c(f
2 ) A

sig

0 50 100 150 200

−2

−1

0

1

2

Figure 6.3: Theoretical turnstile current diagram as a function of signal amplitude and bias for
two different operation frequencies. Dashed lines corresponding to the current onset, construct
regions of quantized current (hatched areas). The slopes of the current onset is affected by the
frequency dependent signal transmission c(f).

points show a clear linear dependence on the driving amplitude1. A careful analysis of

constructed lines at several frequencies of the modulation signal (sine or square waves)

shows the consistent crossing of all lines through the point (VB = ±2∆/e, Asig = 0).

Verification of turnstile operation

The observed properties of the plateau in the sub-gap current meet three important

criteria for the unambiguous identification as a turnstile current plateau i.e. 1) the

two lines ±V on
B (Asig) are linearly dependent on the signal amplitude and cross at zero

bias, moreover 2) the lines constructed at each driving frequency all cross the point

(VB = ±2∆/e, Asig = 0)2 and finally 3) the current value on the plateau is exclusively

determined by the signal frequency3.

The crossing of the two transition lines at zero bias is both an important and practi-

cal observation. As discussed in the previous chapter, such a crossing is expected when

1) the turnstile current onset is unaffected by adiabatic suppression (section 5.4) and

2) the modulation amplitude of the electro-chemical potential is equal to the supercon-

ducting gap, i.e. Aδ = ∆ (section 5.1.2). Based on this observation we can calculate the

frequency dependent signal transmission i.e. Aδ = c(f)Asig and renormalise the signal

amplitude. When the crossing at zero bias is not visible in a differential conductance

map, the transmission can still be obtained but one has the assume that the turnstile

operation is non-adiabatic at low Asig such that the current onset is given by eq. (6.1).

1Signal generators often require the sine wave amplitude to be set in units of the signal power (dBm)

instead of the potential (volt). One can simply convert one to the other by [mV ] ∝

√

100.1[dBm]−3.
2This was be verified by extrapolating ±V onB (Asig) to zero modulation amplitude.
3This is for example fundamentally different from photon assisted tunneling between two supercon-

ducting electrodes in which the current onset is frequency dependent while the current value of the
subgap plateaux is frequency independent[136].
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A (linear) fit of V on
B (Asig) in the low Asig regime directly gives the signal transmission.

eV on
B = 2∆ − 2Aδ (6.1)

Parasitic effects

Besides the bright lines that indicate the plateau onset, we observe bright regions with

a bias threshold ±V err
B (Asig) < ±2∆/e (magenta dashed lines in figures 6.2c and 6.2d)

which decreases with increasing signal amplitude. In these regions (∣VB ∣ > V err
B (Asig))

the current becomes larger than ∣I ∣ = ef which is most likely due to crosstalk between the

gate and bias electrode. A further characterization of this side effect will be presented

in section 6.3. For now we consider the onset of these regions as the upper limit of the

turnstile bias operation range.

Together the four lines (±V err
B and ±V on

B ) delimit 3 characteristic current regions

i.e. 1) a region of zero current, 2) two regions where I ≈ ±ef and 3) a region where

∣I ∣ < ef . The observation of a suppression of turnstile current in the third region is

consistent with the concept of backtunneling as was discussed in the previous chapter.

We will study this feature in more detail in section 6.6 as it is a strong indication of

the single level nature of our turnstile device.

At some frequencies we observe yet another line in the dI/dVB (VB,Asig) map which

is located between the plateau and error onset lines at either one of the bias polarity

(insets figures 6.2a and 6.2d). A closer inspection of the I(VB) traces shows that the

line corresponds with a second small current step at the plateau (see inset figure 6.2b).

In fact, it is only after this step that the current becomes equal to ∼ ef . In sample C

and D, the substructure is located at opposite polarity. The origin of these lines is so

far not fully understood but a detailed study does exclude the asymmetry in the tunnel

and capacitive coupling.

Gate dependency

The consistency of the turnstile operation can be further established by the study of the

turnstile current as a function of the center gate value. Hereto we first apply a static

bias < 2∆/e to the device. Next we record the current while the static gate is slowly

moved from below to above V 0
G. During each gate trace, a continuous modulation

signal of constant frequency and amplitude is applied to the gate. We repeat the

measurement for several combinations of the modulation amplitude and frequency.

In figure 6.4a, five example traces are plotted for increasing (dark to bright) signal

amplitude (f = 185 MHz, VB = 3/2∆), which demonstrate the development of a flat

current plateau at I = ef . Notice that the current accuracy on the plateau of the

first 4 traces is strikingly independent of the gate voltage. Only at the edges of the
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Figure 6.4: a) Example traces of the current as function of the center gate position measured
with several modulation amplitudes Psig = −10, −8, −6, −4, −2 dBm. b) Turnstile current map
constructed from several center gate traces measured with varying modulation amplitude. (VB =
3/2∆, sine wave, device D) c, d) Similar measurements at VB = ∆. (square wave, device D)

plateau there is some small curvature which is slightly different between the left and

right side. A colour map (6.4b) of the current I(VB, V DC
G ), demonstrates the plateau

widening with increasing modulation amplitude. Below Psig = −10 dBm the modulation

amplitude of the quantum dot level is for any gate position, too small to cross both the

filled branch of one superconductor and the empty branch of the other. With increasing

amplitude, a current plateau is developed centred around V 0
G. When the modulation

amplitude of the quantum dot level4 increases beyond ∆ we start to see the suppression

of the turnstile current due to backtunneling at the edge of the plateau. On the right

side of the Psig = −2 dBm trace in figure 6.4a we observe a clear deficit in the current.

The excess of current at the left edge of the plateau can be well understood by an angled

level excursion in the (VB, VG) plane, caused by a non-negligible gate-bias crosstalk.

Since the traces shown in figure 6.4 are obtained at a static bias close to the gap edge

VB = 3/2∆, already a small vertical component can be enough to send the level beyond

the Coulomb threshold where sequential tunneling is allowed. The result is an unknown

current contribution which depends strongly on the exact excursion.

Similar measurements of the turnstile plateau obtained at a smaller static bias i.e.

VB = ∆ show a remarkably different picture as is shown in figure 6.4d. Again we observe

4In the regime where the modulation amplitude of the quantum dot level A∆ is below δ, its values
can be read of directly from the edge locations of the plateau
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Figure 6.5: The turnstile operation as function of bias (sine wave, f = 195 MHz and 40 MHz)
is characterized in terms of current onset, optimal bias and error bias. The current plateau is
characterized by the current variation ∆Ip and the onset width ∆V .

typical triangular shape with the apex located at V 0
G. However at high modulation

amplitudes another slightly asymmetric triangular region (denoted by star) appears

in which current is strongly suppressed. We can attribute the current suppression to

backtunneling which appears asymmetric around V 0
G due to the asymmetric tunnel

coupling to the leads.

6.2.1 Current accuracy and plateau characterization

The foregoing characterization the turnstile plateau shape as a function of bias/gate

potential and modulation signal amplitude, showed that the generated current is indeed

consistent with a quantized turnstile current. Next we will shift our focus to current

traces and characterize the turnstile plateau in terms of three parameters (indicated

in figure 6.5), i.e. the current accuracy (Ĩopt − 1, where Ĩ = I/ef) and plateau flatness

(∆Ip) at optimal bias (V opt
B ) and the rise voltage (∆V ) at the onset.

Turnstile current accuracy

In order to characterise the turnstile accuracy we evaluate the current Iopt at optimal

bias ±V opt
B (Asig) which is defined as the point of minimum differential conductance

at the current plateau i.e. between the plateau onset ±V on
B (Asig) and the error onset

±V err
B (Asig). In figure 6.2c and 6.2d, V opt

B (Asig) is indicated by white circles. In

device C, the extracted points seem to ’stick’ to the plateau onset line, as opposed to

device D. We will focus the ongoing discussion to the V opt
B (Asig) trace which follows

the error onset line, as the opposite polarity trace is severely affected by the presence

of a substructure in the current plateau.
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Figure 6.6: Turnstile current along the line of minimal differential conductance at the current
plateau (a, b) and the current drop ∆Ip (c, d), as function of Aδ for a set of frequencies (5 MHz
steps) in the low (a: 20 - 65 MHz) and high (b: 180 - 205 MHz) modulation regime (sine wave,
device D).

For each optimal bias point we determine the turnstile current Iopt and the mod-

ulation amplitude Aδ of the quantum dot level. Here we assume that the turnstile

operation is non-adiabatic5 such that the plateau onset bias is given eq.( 6.1). Later

in this chapter it will be shown that this assumption can be violated when the turn-

stile is operated with a low frequency sine wave modulation signal (adiabatic operation

regime). The extracted V on
B value will give an underestimate of ’true’ modulation am-

plitude since the semi-classical onset given by eq. (6.1) is suppressed by missed tunnel

events due to the adiabatic operation. On the other hand we can safely assume that Iopt

is much less affected by the low frequency turnstile operation as the optimal current is

extracted at optimal bias where the turnstile operation is non-adiabatic due to a high

bias and/or modulation amplitude.

Figure 6.6a and 6.6b show an example of the obtained current points against Ãoptδ =
Aδ − eV opt

B /2 for a sine wave gate modulation in two different frequency regimes. We

have subtracted the optimal bias V opt
B from the modulation amplitude such that Ãδ = ∆

corresponds to the superconducting gap of the leads. In these plots we have coloured

the data points according to the signal frequency. Each set of data points forms a well

defined line located at I ≈ ef . Below Ãδ = ∆ we observe the suppression of the turnstile

5A theoretical discussion of the adiabatic operation regime was presented in the previous chapter
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because of missed tunnel events. At low frequency sine wave operation, the missed

tunnel events are possibly caused by the adiabatic turnstile operation as discussed in

the previous chapter. At high modulation frequencies we observe a small but gradual

decrease in the current as the modulation amplitude increases which we attribute to

the gate-bias crosstalk.

The accuracy of the turnstile current can be expressed in terms of the reduced op-

timal current i.e. Ĩopt −1. As to compare between different modulation frequencies and

signal shapes (sine and square), we compute the accuracy averaged over ∆ ≲ Asig ≲ 2∆.

Figure 6.7 shows the obtained results for device D as a function of the frequency. The

difference between the sine (magenta) and square (grey) wave shape signal is especially

profound in the high frequency regime (figure 6.7c) where the turnstile operation suf-

fers from missed tunnel events as can be seen by the current deficit. The somewhat

large deficit observed for the sine wave signals corresponds best with the model that

takes the quantum dot — superconductor hybridization effect (blue solid line) into

account. In the low frequency range we do not observe a difference between the two

signal shapes. As to obtain a reasonable accuracy value for low frequency sine wave op-

erations, we omitted the small amplitude Iopt values from the average which is justified

as the turnstile operation may be adiabatic in this regime.
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Plateau flatness and onset

To characterize the plateau flatness we multiply the minimum differential conductance

by ∆/e, which yields an estimation of the current variation ∆Ip over the plateau (see

figure 6.5). The results of the low frequency sine wave modulation are shown in figure

6.6c. We observe a broad region 1 ≲ Ãδ ≲ 2 where ∆Ip ≈ 1 pA. At the region borders,

∆Ip increases while can be attributed to respectively missed tunnel events (Ãδ ≲ 1) and

backtunneling or gate-bias crosstalk (Ãδ ≳ 2). The observation that the lower border

uniquely consists of low frequency data (≤ 45 MHz) can indicate adiabatic current

suppression as the origin of missed tunnel events. The average ∆Ip of each device,

modulation type and frequency range is given in table 6.1. The square wave modulation

consistently results in flatter current plateaus as opposed to a sine wave modulation.

However, the flatness decreases for both modulation types as the frequency increases.

The second performance parameter of the turnstile to be discussed is the plateau

onset. The current onset can be characterized by the bias voltage range over which

the reduced current Ĩ = I/ef settles (see figure 6.5) i.e. the width of the bright lines

in figure 6.2. We estimate the onset width by ∆V = 1/ (dĨ/dV ∣V onB ). As the modula-

tion amplitude should not affect the current transition, ∆V can be averaged over all

modulation amplitudes. In the low frequency sine wave operation regime, we observe

a small but significant increase in ∆V as the frequency decreases. We will study this

feature in more detail in section 6.6.3 as it may indicate adiabatic current suppression.

In any other operation regime (square wave or high frequency sine wave), there is no

significant relation between ∆V and f . As to compare ∆V between the four opera-

tion regimes, we average over all frequencies within each regime. The obtained main

values are given in table 6.1. There is a significant difference between the sine and

square wave modulation signals in both frequency regimes, which is consistent with the

previous observations.

Device & Type Ĩ − 1 ∆Ip ∆V Ĩ − 1 ∆Ip ∆V

Range low low low high high high
Units % pA µeV % pA µeV

C, square −0.5 ± 2.1 0.79 75 ± 23 n.a. n.a. n.a.
D, square 1.2 ± 1.9 0.51 71 ± 8 −0.2 ± 1.2 1.25 93 ± 29
D, sine 1.0 ± 1.6 1.94 125±42 −1.6 ± 1.4 2.53 150±50

Table 6.1: Turnstile plateau characterization by the current accuracy, current drop over the
turnstile plateau and the onset rise voltage, measured in the low and high frequency regime of
a sine and square wave modulation signal.
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Figure 6.8: Differential conductance maps as function of bias and modulation amplitude
measured with a large (a) and zero (b) detuning from the gate offset position (square wave,
f = 60 MHz, device C). c) Example current traces as a function of bias at charge degeneracy
illustration the cross-talk between the AC gate modulation signal and bias voltage.

6.3 Gate-bias crosstalk

In the previous sections we already took notice of a so-called gate-bias crosstalk with-

out further specifying it. In the devices used for the turnstile experiments, the two

superconducting leads are necessarily located on top of the gate, such that there is a

non-negligible capacitive coupling between the leads and the gate (∼ 14 fF). Crosstalk

between the gate and the leads will naturally lead to oscillations in the electrochemical

potential of the leads when the gate is modulated by an AC signal. Normally, when

the capacitances to the gate are equal, this will only result in an effective reduction of

the gate modulation amplitude. However, due to the common drain design in our elec-

tromigration chips, there is a factor ∼ 10 between the two capacitances. The resulting

imbalance in the crosstalk from the gate to source and drain, appears as a modulation

of the bias voltage. This adds a vertical component to the trajectory of the quantum

dot state in the (VB, VG) plain when a modulation signal is applied to the gate (inset

figure 6.8a).

In the previous section it was already argued that the gate-bias crosstalk is respon-

sible for the error onset visible in the differential conductance maps of the turnstile

current Ip(VB,Asig). To verify that these error lines are indeed related to the effective

modulation of the bias, the measurement of figure 6.8b is redone at a gate position

far from the charge degeneracy regions (see figure 6.8a). This will exclude the current

contribution from the turnstile operation. Again, we observe identical error onset lines

as before, but in absence of the turnstile onset lines. Comparing the I(VB) traces in

figure 6.8a with an I(VB) trace measured under stationary conditions clarifies the typ-

ical smoothing due to oscillations in the bias (see figure 6.8c). The turnstile operation

of the measured samples is possibly most limited by the gate-bias crosstalk. The bias
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onset is clearly visible by the sudden decrease in current. (f = 56 MHz, device C) b) Similar
measurements in the SINIS device show a different signature of the backtunneling (Extracted
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component in the modulation of the quantum dot state notably decreases the operation

range V on
B ≲ VB ≲ V err

B and thereby the performance in terms of plateau flatness and

accuracy. To eliminate the crosstalk the samples were redesigned as to balance the

capacitances from the source an drain to the gate. The new sample design is shown in

figure 1.8a but was not yet measured during this thesis.

6.4 Single-level signature: backtunneling

One of the profound signatures of a single level turnstile is the strong presence of back-

tunneling. At fixed bias, the turnstile current passes through three different regimes

as the modulation amplitude increases (see chapter 5.1.2), i.e. 1) no current when

Aδ < ∆ − VB/2e, 2) the turnstile current plateau when ∆ − VB/2e < Aδ < ∆ + VB/2e
and 3) an erroneous regime (Aδ > ∆+ VB/2e) where backtunneling strongly suppresses

the current. All three regimes are clearly visible in figure 6.9a where the normalized

turnstile current is plotted against the modulation amplitude of the quantum dot level

for 4 different fixed bias values.

The small difference in the plateau current between the curves originates from the

finite slope of the turnstile plateau as a function of the bias (see section 6.2.1). Each

plateau maintains its value until it is either sharply bent up by the gate-bias cross talk

or bent down by backtunneling. This behaviour is fundamentally different from a SI-

NIS turnstile in which the electro-chemical potential of a continuum density of states is

modulated. Also in SINIS devices there is a regime in which only ’forward’ tunneling is

energetically allowed i.e. between the two dashed vertical lines in figure 6.9b. Beyond

this regime, backtunneling increasingly suppresses the turnstile current with increasing

modulation amplitude. The current suppression with increasing modulation amplitude
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Figure 6.10: Energies schematic illustrating the energy windows available for forward tunnel-
ing (green) and backtunneling (red) in a single electron turnstile (a) and a single level turnstile
(b).

in SINIS turnstile device is significantly different from the sharp exponential-like sup-

pression that we observe in the curves of figure 6.9a. The striking difference with our

observations can be well understood by the difference in the density of states of the

central part of a turnstile as is illustrated by figure 6.10. In a single level turnstile (fig-

ure 6.10b) there is only a small energy window (given by the level broadening) available

for forward tunnel events. This is opposed to a single electron turnstile (figure 6.10a)

in which the available energy window is given by the bias eVB, which makes it much

more robust against backtunneling.

The narrow spectral density of a single quantum dot level would make a sign reversal

of the turnstile current possible as was discussed in section 5.1.2. The square wave

turnstile operation, optimized to alternate between the two backtunneling threshold

positions, favours current in the opposite direction. In our experiments we haven’t

been able to observe this feature which relies on the singularity at the BCS gap edge.

The tunnel coupling observed in our experiments is actually too large compared to the

limited rise time of the applied square wave signal. This observation is confirmed by

calculations that take the quantum dot — superconductor hybridization into account.

As to observe the sign reversal of the current at backtunneling threshold, a lower tunnel

coupling would be more favourable.

6.5 Single-level signature: temperature independent accuracy

In the theoretical discussion of the single level turnstile (previous chapter), temperature

was completely ignored. The justification is given by the observation that the thermal

energy is in fact the smallest energy scale compared to both the superconducting gap

and the mean level spacing on the quantum dot. The operation of a single level turnstile

should thus be very robust against temperature up to kBT ≲ min[∆, δ], where δ is the

mean level spacing on the quantum dot. The consistency of this assertion is verified

experimentally by the analysis of the turnstile current plateau as a function of cryostat
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Figure 6.11: Turnstile current accuracy at V optB (a, c) and current drop over the plateau (c, d)
as function of the cryostat base temperature. The data presented in (a,b) are the average values
of all measured modulation amplitudes, while (c,d) only show the data at optimal modulation
amplitude. The solid lines are a guide to the eye. (device C, f = 56MHz, square wave)

base temperature. At each cryostat temperature the turnstile current is measured as

a function of the bias and for various modulation amplitudes. The DC gate position

and modulation frequency are kept constant during the measurements. Again we char-

acterize each turnstile current plateau according to its current at minimum differential

conductance and the extended current drop over the plateau.

Figure 6.11 shows the average values obtained from all modulation amplitudes at a

given base temperature. With increasing temperature, there is a small gradual decrease

in the current accuracy visible (figure 6.11a). Simultaneously we observe a small in-

crease in ∆Ip. Of course we have to consider the possibility that the average values are

dominated by the data points extracted at non-optimal modulation amplitudes. The

data presented in figure 6.6c showed that optimal turnstile operation is often obtained

when Aδ ≳ ∆. Data at optimal modulation amplitude shows an essentially constant

current accuracy ∆Ip when the temperature is varied up till ∼ 300 mK above which

the turnstile performance only weakly deteriorates with further increasing temperature.

The decreasing turnstile performance can be due to 1) backtunneling from thermally

activated higher quantum dot levels and 2) a finite electron-hole population in the su-

perconducting leads. As the superconducting gap is the smallest energy scale in the

device it is likely that the latter process is dominant.

The extremely small temperature dependence of the turnstile plateau in single level

turnstiles is notably different from the what is observed in SINIS turnstiles. In an

experiment by Nakamura et al. [102] with aluminium SINIS junctions, a strong increase
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in ∆Ip was observed with increasing temperature above 300 mK. At T = 500 mK ∆Ip

in Nakamura et al. is ≈ 10 pA which is significantly higher than our observation. The

robustness of the turnstile operation is a hallmark of a single quantum level conveying

the current.

6.6 Adiabatic turnstile operation

So far we have experimentally verified and characterized the turnstile operation of

our devices. In the high frequency range we observed a small error in the turnstile

current due to a significant increase in missed tunnel events (figure 6.7). The error

is consistent with the model discussed in the previous chapter. Moreover, we have

shown various signatures illustrating the single level character of our devices. There

is a strong decrease in the turnstile current as backtunneling becomes energetically

allowed. Furthermore we find that the turnstile plateau remains essentially unchanged

up to 500 mK, which is only expected when kBT ≪ δ, where δ is the level spacing on

the quantum dot.

Despite the single level character of our devices we have until now always interpreted

the system from a semi-classical point of view, based on the Fermi Golden rule. For

example, the plateau onset bias was assumed to be directly related to the modulation

amplitude by V on
B = 2∆ − 2Aδ, which is just an energy condition. This semi-classical

picture is however only applicable when the coupling between the quantum dot and

the superconducting leads can be described as a vanishing perturbation. In the previ-

ous chapter however we learned that a non-zero coupling should result in the avoided

crossing between a discrete state bound below the superconducting gap edge and a

quasi-particle state above. During the turnstile operation, electrons can only tunnel

to/from the superconducting leads from the quasi-particle state. A turnstile current

is generated provided that the electrons make a transition from the discrete state to

the quasi-particle state which only occurs when the quantum dot level excursion be-

comes diabatic (non-adiabatic). When the system remains adiabatic during the level

excursion above (below) the gap edge, the turnstile current will be suppressed as the

main part of the electron wave-function remains in the bound state. Our calculations

presented in the previous chapter show that we can expect adiabatic current suppres-

sion in device C when the quantum dot level is modulated by a sine wave with f below

a few tens of MHz. In device D we can expect the adiabatic suppression to extend

to higher frequencies as max[γL, γR], is larger. However we do not have experimental

data of the turnstile current generated by a sine wave modulation in this device. In the

forthcoming sections we present three different observations which are all consistent

with the model of adiabatic suppression of the current in device C.
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Figure 6.12: Differential conductance maps of the turnstile current as function of the bias and
modulation amplitude. a) Operation of the turnstile with a square wave signal always shows
the crossing of the plateau onset lines at zero bias. b-f) In the low frequency regime of a sine
wave modulation, the turnstile current shows a gap which decreases with increasing frequency.
h) In the high sine wave frequency operation regime the gap is zero, and the crossing of the
onset lines is recovered. (device D)

6.6.1 The threshold gap

In the semi-classical picture of the turnstile operation around V 0
G, one will always

observe the crossing of the two plateau onset lines in the differential conductance at

zero bias as for example in figure 6.2d. For any modulation frequency and type, there

exists an amplitude at which the turnstile produces an accurate quantized current

down to zero bias. Around zero bias, the current will steadily change from ±ef to

∓ef without interruption as the bias goes through zero. With increasing frequency

the dwell time above (below) the gap decreases and one can expect a suppression in

current close to zero bias due to missed tunneling events. In the low frequency limit

however, the current accuracy should become better. It is therefore rather striking that

we observe exactly the opposite behaviour in our experiments conducted at V 0
G with a

sine wave modulation of the quantum dot level as is shown in figure 6.12 (b-g). At high

modulation frequency we consistently observe the crossing of the plateau onset lines at

zero bias (figure 6.12h). Below 70 MHz, a gap of zero current appears which increases

with decreasing modulation frequency (figure 6.12 b-g).

The suppression of the current in the gap appears to be related to the modulation
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Figure 6.13: Simulated contour maps of the adiabaticity parameter ℵ (on log10 scale) as
function of the normalized bias and modulation amplitude of the quantum dot level at three
different modulation signals. Grey solid lines denote the classical onset of the turnstile current
and backtunneling events. The blue star marks the gap in the turnstile current. The purple
open square marks to position where the inconsistent gate coupling is measured. The green
circle denotes the position and range where the plateau onset measurements are performed.
(γ = 0.04∆, corresponding to device D)

rate as experiments with a square wave modulation signal at equal frequencies again

show the crossing of the two plateau onset lines at zero bias (see figure 6.12a). The

existence and properties of the gap are remarkably consistent with the picture of the

adiabatic suppression of the turnstile current. Figure 6.13(a-c) shows the adiabaticity

contour maps of a turnstile operated by a sine wave modulation signal of 30-70 MHz.

The solid black lines mark the regions of accurate turnstile operation (no missed event

or backtunneling) given by the classical energy conditions. The contour lines give

the maximum value (on log10 scale) of the adiabaticity parameter ℵ as defined by

eq. (5.14). Adiabatic suppression of the turnstile current is expected when ℵ ≪ 1.

With increasing frequency we observe that the ℵ = 1 contour rotates away from the

semi-classical condition for the plateau onset, towards higher modulation amplitudes.

The backtunneling onset however remains unaffected by the adiabaticity in the system.

Once an electron made the transition from the discrete state below the reduced gap

into the quasi-particle state, the system behaves semi-classically6. The co-existence of

the adiabatic suppression and backtunneling produces a frequency dependent gap as

observed in figure 6.12 (blue star). As the rise time of our square wave modulation

signal (tRT = 1.6 ns) is much smaller and frequency independent, the ℵ = 1 contour

will always coincide with the semi-classical condition of the plateau onset, which is

consistent with the absence of a gap in the square wave experiments.

A gap in the turnstile differential conductance map can also arise when the turnstile

is operated at a non-zero detuning from V 0
G as was illustrated in figure 6.4d. In this case,

the forward and reverse tunneling thresholds cross at non-zero bias and produce a gap in

6The crossing of a quasi-particle state with the superconducting gap edge does not show any avoided
crossing like the discrete state does.
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f (MHz) κ◻ κ∼ κ◻/κ◻70 κ∼/κ◻70 κ∼/κ◻
30 0.075 0.045 0.39 0.23 0.59
40 0.133 0.083 0.70 0.43 0.62
60 0.218 0.188 1.14 0.98 0.86
70 0.191 0.216 1.00 1.13 1.13

Table 6.2: Proportionality factors between the modulation amplitude and the onset bias
V onB from differential conductance maps in the low frequency regime of square and sine wave
modulation signals. (device D)

the dIp/dVB map. The size of the gap is would then however be frequency independent

but depends linearly on the gate detuning. As to produce a gap comparable to those in

figure 6.12 an accidental7 gate detuning would need to be significantly larger than the

gate noise in our measurements. Figure 6.14 shows the turnstile current as a function of

the gate detuning and modulation amplitude measured at eVB = ∆ and low frequency

square wave operation. Extending the current onset line VG − V 0
G = 3Aδ/∆ to Aδ = 1

indicates that the gate detuning required to generate a gap as large as eVB = ∆ is 1.5

mV. To create a gap as observed in figure 6.12c (∼ ∆/2) the minimum gate detuning

would be 750µeV which is huge! Together with the observed frequency dependence, an

explanation of the observed gap in terms of a non-zero gate detuning becomes strongly

unlikely.

6.6.2 Calibration of Aδ

Note that the ℵ = 1 contour in figure 6.13 always crosses eVB = ±2∆ at Aδ = 0 but under

an angle (w.r.t the the amplitude axes) which depends on the modulation frequency.

This implies that the local slope of eV on
B (Aδ) (e.g. around the purple square in figure

6.13) will deviate from -2 as expected from eq. (6.1). Recall that the accidental detuning

of the center gate position will not result in such a deviation. We can parametrize the

new relation simply by the incorporation of a frequency dependent correction factor i.e.

eV on
B = 2∆−2χ(f)Aδ. When the system can be described semi-classically, the correction

factor is simply given by χ(f) = 1. The observation of a frequency dependent χ(f) < 1,

would be consistent with the presence of adiabatic suppression.

Unfortunately, since the signal transmission c(f) i.e. the proportionality between

Aδ and Asig, also depends on frequency, the experimental local slope is determined by

κ = 2χ(f)c(f) rather than κ = χ(f). To be able to distinguish between χ(f) and c(f)
further information is required. Under the assumption that the signal transmission

is shape independent, all necessary information is provided by experiments conducted

with a square wave driving. As the lines observed in these experiments are determined

by the semi-classical picture i.e. χ(f) = 1, we can determine the signal transmission

7All presented measurements are carefully positioned at V 0
G direct before starting the measurement.
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Figure 6.14: Turnstile current map as a function of gate detuning and modulation amplitude.
The turnstile current appears as a diamond enclosed by four threshold lines of which only a
small part is measured.

parameter c(f) from the experimental slope ∂V on
B /∂Asig. The value of χ(f) is now

easily obtained by χ(f) = κ∼/κ◻. In table 6.2 we list the experimentally obtained

proportionality κ = c(f)χ(f) between V on
B and Asig in the low modulation amplitude

regime for both modulation types.

Assuming κ = c(f) for both sine and square wave operation at 70 MHz, all values can

be normalized according to the proportionality factor measured with the square wave

modulation (κ◻70). The discrepancy between the normalized values indicate that κ∼

value is not exclusively determined by the signal transmission i.e. κ∼ ≠ c(f). Moreover

the ratio κ∼/κ◻ increases with decreasing modulation frequency which is consistent

with the hypothesis of adiabatic current suppression.

6.6.3 The onset transition width

A detailed study of the plateau onset transition in the low frequency regime of the sine

wave modulation is justified. As these transitions are probably governed by Landau-

Zener physics, the shape of the transition may be frequency-dependent. A closer look

at the iso-ℵ lines in figure 6.13 shows a decreasing spacing between the lines as the

frequency increases. This indicates a steeper increase of the adiabatic parameter as

function of the bias which will result in a sharper current onset.

In the analysis of the current onset transition we compare the differential conduc-

tance of the normalized current traces (red dotted data in figure 6.15) at eVB ≈ ∆. The

modulation amplitude at each frequency is chosen such that the current onset takes

place at eVB ≈ ∆ (green circle in figure 6.13). The peaks in the differential conduc-
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Figure 6.16: Full-width-half-maximum (FWHM) values of the differential conductance peaks
presented in figure 6.15 for sine (circles) and square (star) wave modulation signal. The solid
grey curve represents the theoretical estimation based on the adiabatic model.

tance can be well fitted with a quasi-Voigt function8 containing a skewed Gaussian

contribution (blue solid curves) which is convenient dor the extraction a a full-width

hall-maximum value.

Since the turnstile operation with a square wave modulation signal will be fully semi-

classical, its differential conductance peak (blue curve in figure 6.16) serves as a good

reference. With decreasing frequency there is a well visible decrease in the maximum

value of the peaks generated by the sine wave modulation. Even at f = 60 MHz, there

still is a small difference between the sine and square wave operation. To quantify

the difference between the peaks, we extract their full-width-half-maximum (FWHM)

values. Figure 6.16 shows the extracted values against the modulation frequency. The

blue star gives the result for a square wave modulation. There is a clear decrease in

8The quasi-Voigt function is a linear combination of a Lorentzian and (skewed) Guassian profile.
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the FWHM visible with increasing frequency, which is consistent with a plateau onset

dominated by the adiabatic suppression.

In the previous sections we showed that there is no significant difference in the

plateau current accuracy between the various frequencies (in the low range) which

indicates that all classical considerations like e.g. the dwell time, do not play a dominant

role. As to compare the data with the adiabatic model we determine the bias distances

between the ℵ = 0.1 and ℵ = 1 contour line in figure 6.13 at equal Aδ and close to VB = ∆

at each frequency. Without any scaling factor we find a reasonable correspondent

between the experimental data and the obtained theoretical estimation as presented by

the grey solid line in figure 6.16.

6.6.4 Adiabaticity breaking

Together the three different observations form a compelling argument that the mea-

sured current onset obtained with a low frequency sine wave modulation, is in fact

the transition from the adiabatic to the diabatic operation regime. The observation

of adiabatic current suppression was rather unexpected for us and can have profound

implications.

Spectral isolation of the subgap state

Adiabatic evolution of the turnstile operation requires a ’hard’ gap with a diverging

density of states at the gap edge as was shown in the previous chapter. Intrinsic broad-

ening of the gap edge will soften the spectral separation between the gap edge an the

discrete bound state such that non-diabetic transitions become likely. A semi-classical

but intuitive explanation can be given in terms of tunnel events between the discrete

sub-gap state and sub-gap states in the superconducting leads. During adiabatic oper-

ation, an electron is ’stuck’ in the discrete state bound below the superconducting gap

edge. When the bare level energy goes beyond ∆− eVB/2, the discrete level is ’pressed’

against the gap edge (see figure 6.17) where the presence of sub-gap states in the leads

would allow the electron to escape from the discrete quantum dot state. One should

therefore compare the spectral separation εA −∆ with the intrinsic broadening of the

superconducting gap edge caused by the finite Cooper-pair lifetime in superconductors

[29]. The broadening of the diverging coherence peaks in the superconducting density

of states is well characterized by the Dynes parameter (see eq. 4.5). DC measurements

presented in chapter 4 set an upper bound 5 ⋅ 10−5∆ to the Dynes parameter which is

in fact limited by the current noise in our system. Other experiments [131, 115] set

the upper bound of the Dynes parameter in aluminium to 1.7 ⋅ 10−7 by the use of full-

counting statistics. In order to obtain this result, the measurement had to be executed

in a micro-wave filtered sample cavity as photon-assisted tunneling can also broaden
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the coherence peaks. As our measurements were conducted in a similar environment9

it is reasonable to assume an equally low Dynes parameter10.

Turnstile operation at Aδ and VB = ∆/2, limits the bare energy level to Aδ+eVB/e =
3/2∆. Taking the measured tunnel coupling γ ≈ 0.03∆ into account we obtain an lower

limit to the spectral separation ∆ − εA ≥ 5 ⋅ 10−3∆ ≃ 1µeV during the level trajectory

which is well above the intrinsic broadening of the diverging coherence peaks. We can

therefore safely conclude that the discrete sub-gap state is well defined and the gap-edge

is ’diverging’.

Decoherence of the electron wave-function in the leads

During the period when the level is pressed against the gap edge, the electron wave-

function is divided over the quasi-particle state above and the discrete state below the

gap edge. As the majority of the electron wave-function is located in the discrete state

∣A⟩, the change that the electron will tunnel out through the quasi-particle state is

essentially zero. However, during the dwell time the wave-function belonging to ∣A⟩,
spreads out into the superconductor where it might loose its coherence. If it does,

the electron wave-function can not be re-collected at the end of the dwell time and

is ejected into the lead. The loss of phase coherence in the leads therefore breaks

the adiabatic current suppression. Our observation of current suppression at 20 MHz

9That is a doubled shielded sampled cavity with measurement wires filtered by 1 meter Thermocoax
10Here we might also benefit from a large shunt capacitance (present due to the small but relatively

long geometry of the electro-migration gaps), which suppresses environmentally activated tunnel events
[133].
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implies phase coherence of the electron wave-function in the leads during the dwell of

∼ 10 ns at A∆ ≈ 1.5∆ which is consistent with qubit experiments in which coherence

times superior to ∼ 1µs are measured [76].



Summary

Electrons in condensed (solid) matter display a remarkable rich behaviour that is yet,

despite decades of research, at most partially explored. The basis of this versatility

lies with the wave-particle duality of electrons as formulated by De Broglie in 1924.

Prior to the de-Broglie hypothesis, electrons were thought of as corpuscular entities.

Three years later, in 1927, the wave-like character of electrons was confirmed in ’the

most beautiful physics experiment’, conducted by Davisson and Germer [24]. As the

interference can only arise from a wave-like character, the experiment demonstrates the

true essence of quantum-mechanics.

Still the particle-like representation of electrons is not entirely wrong. In normal

metals the electron wave-function quickly suffers from phase decoherence due to the

(abundant) interactions with its environment e.g. inelastic scattering with electrons,

phonons and photons. With the loss of phase coherence, (self)interference effects van-

ish and electrons become ’classical’ particles. Even when electrons are subjected to

quantum mechanical features e.g. tunneling and level discretization, an experiment

can often be considered classical as its relevant time scales exceeds the phase decoher-

ence time. In this thesis, the electron transport through quantum dot - superconductor

single electron transistor devices was studied under stationary and turnstile conditions.

As the electron tunnel rates in SETs are generally the longest time scale, we initially

considered the experiment from this quasi-classical point of view. However, we find

that a ’hard’ superconducting gap in the lead density of states combined with a large

level spacing enhances the coherent state of the quantum dot.

Assuming semi-classical conditions, we first considered the charge and heat trans-

port between a small normal island (zero level spacing) and the superconducting leads

numerically using first order perturbation theory. Heat maps of the SET in (VB, VG)
space show areas of positive heat flux out of the normal island located around the charge

degeneracy points, that is, cooling. Away from charge degeneracy however, the flux is

exponentially suppressed by the charging energy, which results in a strong localization

in gate space as EC increases. Introducing a finite level spacing δ on the island has

two important ramifications. As thermal excitations are frozen out, electron tempera-

ture is no longer defined. Furthermore, the broadening of electronic quantum dot level

135
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is dominated by the tunneling coupling (hybridization) as both the electron-electron

and electron-phonon interaction are negligible in small-size quantum dots. This makes

quantum dots with large level spacing unfavourable for studying electronic cooling.

Employing the in-situ electromigration of aluminium nanowires, superconducting

contacts to gold nano-particle (4 nm) quantum dots are established. As to study

their electronic properties, we have carefully measured the current under stationary

conditions. The experimental data indeed shows a non-thermal broadening of the

coherence peaks at current threshold. The excellent agreement with a model describing

quantum dot - lead hybridization indicates a vanishing inelastic scattering rate on the

quantum dot. The agreement is especially striking in the sub-threshold (including sub-

gap) regime where other models, e.g. environmentally activated tunneling, severely

deviate. With these measurements we have shown that electron transport through the

quantum dot - superconductor devices is conveyed by a single phase-coherent electronic

level.

To operate the devices as a turnstile, a periodic modulation signal (sine or squares

wave) is added to the back-gate potential. We measure a quantized current I = ef (≲ 1

% error) up to operation frequencies around 200 MHz. The obtained turnstile current

plateaus as a function of the bias show a small but finite slope, possibly contributed

by the bias-gate crosstalk. The single quantum dot level character of these devices is

particularly well illustrated by 1) a marked threshold type onset of electron backtunnel-

ing events and 2) a vanishingly small temperature dependence of the turnstile current

accuracy.

Besides these quasi-classical hallmarks, we find yet another striking feature indicat-

ing the quantum coherent evolution of the single electron wave function during turnstile

operation. The tunnel coupling between the quantum dot level and the superconduct-

ing leads, induces (besides broadening of transport features) a small anti-crossing in

the spectral density of the quantum dot. Under adiabatic operation, the electron will

always remain in the ground state while the bare level makes an excursion above the su-

perconducting gap. During this trajectory, the electron wave function initially spreads

out into the superconducting leads, with only its evanescent part located at the quan-

tum dot. As the bare level returns below the gap, the electron wave function is forced

back into the quantum dot.

As a consequence tunnel events are missed as the frequency is lowered, which is

completely contradicting the semi-classical picture. Loss of phase coherence, when

spread out in the leads, would result in the ejection of the electron as the wave function

can not be forced back into the quantum dot. Otherwise, adiabatic operation will result

in missed tunnel events.

Our observation of adiabatic tunneling suppression down to 20 MHz requires a lower
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bound of about 5 ns to the electron coherence time in superconducting leads. This is

not surprising as the electron-phonon scattering and quasi-particle recombination times

in aluminium are known to be much larger. Also the interaction between quasi-particles

is expected to be small, as there are essentially none present above the superconducting

gap. Unfortunately we were unable to drive our turnstile device below 20 MHz due to

decreasing signal transmission. Further measurements at even lower frequency regime

may possibly reveal the recovery of the semi-classical picture as the adiabatic operation

might become disturbed by the loss of phase coherence in the leads.

The theoretical consideration of 1) the adiabatic current suppression and 2) the

missed tunnel events presented in this thesis suggests promising turnstile accuracy

within an unbounded frequency region with increasing tunnel coupling. It is however

likely that there is an upper limit to the coupling, set by n-th order Cooper-pair —

electron cotunneling processes, each characterised by a minimum bias VB > ∆/n thresh-

old. Furthermore the presence of a Kondo resonance at zero bias can be anticipated

with increasing tunnel coupling. Consequently there may be an optimal bias at which

the combined error contribution will be minimal. Further study of these processes is

necessary as to determine whether single level turnstile devices can reach metrological

accuracy at an operation frequency exceeding 1 GHz.

In addition to the metrological application, the single level turnstile may possibly

find use in quantum computing. One might imagine this system as an coherence pre-

serving electron box. Stored electrons only loose coherence once it has been ejected

into the superconducting leads. However the maximum storage time may be limited by

higher-order Cooper-pair electron cotunneling processes and Kondo mediated multiple

Andreev reflections. Again, further study of these processes is necessary to determine

the storage time.
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