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ABSTRACT

Feasibility studies for deep geological radioactive waste disposal facilities have led
to an increased interest in the geomechanical modelling of its host rock. In France,
a potential host rock is the Callovo-Oxfordian claystone. The low permeability
of this material is of key importance, as the principle of deep geological disposal
strongly relies on the sealing capacity of the host formation. The permeability be-
ing coupled to the mechanical material state, hydromechanical coupled behaviour
of the claystone becomes important when mechanical alterations are induced by
gallery excavation in the so-called excavation damaged zone (EDZ).

In materials with microstructure such as the Callovo-Oxfordian claystone
[Robinet et al., 2012], the macroscopic behaviour has its origin in the interac-
tion of its micromechanical constituents. In addition to the coupling between
hydraulic and mechanical behaviour, a coupling between the micro (material
microstructure) and macro scale will be made. By means of the development
of a framework of computational homogenization for hydromechanical coupling,
a doublescale modelling approach is formulated, for which the macroscale con-
stitutive relations are derived from the microscale by homogenization.

An existing model for the modelling of hydromechanical coupling based on the
distinct definition of grains and intergranular pore space [Frey, 2010] is adopted
and modified to enable the application of first order computational homogeniz-
ation for obtaining macroscale stress and fluid transport responses. This model
is used to constitute a periodic representative elementary volume (REV) that
allows the representation of the local macroscopic behaviour of the claystone.
As a response to deformation loading, the behaviour of the REV represents the
numerical equivalent of a constitutive relation at the macroscale.

For the required consistent tangent operators, the framework of computational
homogenization by static condensation [Kouznetsova et al., 2001] is extended to
hydromechanical coupling. The theoretical developments of this extension are
implemented in the finite element code Lagamine (Liège) as an independent con-
stitutive relation. For the modelling of localization of deformation, which in clas-
sical FE methods suffers from the well-known mesh dependency, the doublescale
approach of hydromechanical coupling is combined with a local second gradient
model [Collin et al., 2006] to control the internal length scale of localized deform-
ation. By accepting the periodic boundary conditions as a regularization of the
microscale deformation, the use of the multiscale model in combination with the
local second gradient model can be used for modelling localization phenomena in
HM-coupled settings with material softening.

The modelling capacities of the approach are demonstrated by means of simu-
lations of oedometer tests and biaxial compression tests. The approach is demon-
strated to be a powerful way to model anisotropy in the mechanical as well as
the hydraulic behaviour of the material both in the initial material state and as
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an effect of hydromechanical alterations. For the application to the modelling of
Callovo-Oxfordian claystone, microstructural REVs are calibrated to geometrical
characteristics of the inclusion that form the microstructure under consideration
and to macroscale experimental results of the mechanical behaviour. The calib-
rated constitutive relation is used in the simulation of gallery excavation processes.
These computations give a proof of concept of the doublescale assessment of the
hydromechanical behaviour of the excavation damaged zones around galleries in
the context of nuclear waste disposal.

Keywords : Multiscale modelling, hydromechanical coupling, computa-
tional homogenization, coupled local second gradient model, excavation damaged
zone, anisotropy, strain localization.



RÉSUMÉ

Les études de faisabilité concernant le stockage géologique profond des déchets
radioactifs ont conduit un intérêt accru concernant la modélisation géomécanique
de la roche hte. En France, une roche hte potentielle est l’argilite du Callovo-
Oxfordien du site de Meuse/Haute Marne. Etant donné que le principe de stock-
age géologique profond repose fortement sur la capacité de confinement de la
formation hte, sa faible perméabilité est d’une importance clé. La perméabilité
étant dépendante de la microstructure du matériau et de son évolution sous
chargement, le comportement couplé hydro-mécanique de l’argilite est import-
ant. En effet, des modifications mécaniques sont induites par le creusement de la
galerie d’entreposage, générant une zone endommagée (EDZ), pouvant conduire
une modification de la perméabilité dans le voisinage de la galerie.

Dans les matériaux microstructure complexe comme l’argilite du Callovo-
Oxfordien [Robinet, 2008], le comportement macroscopique trouve son origine
dans l’interaction des constituants micro-mécaniques. En plus du couplage entre
le comportement hydraulique et mécanique, un couplage entre les échelles micro
(au niveau de la microstructure) et macro existe. Par le biais de l’élaboration
d’un cadre d’homogénéisation du couplage hydro-mécanique, une approche de
modélisation deux échelles est développée dans ce travail, dans laquelle la rela-
tion constitutive macroscopique découle directement du comportement à l’échelle
microscopique.

Un modèle existant du couplage hydro-mécanique, reposant sur l’identification
de grains et d’espaces poreux intergranulaires à l’échelle micro [Frey, 2010] est
adopté comme point de départ. Ce modèle repose sur une homogénéisation
numérique du comportement à la petite échelle afin d’obtenir à l’échelle macro-
scopique la réponse en contrainte et de transport du fluide interstitiel. Ce modèle
est basé sur un volume élémentaire représentatif (VER) périodique qui permet
de déduire le comportement macroscopique local de l’argilite. En réponse, en un
point d’intégration macro donné, à un incrément de la déformation et du gradient
de pression, la réponse du VER permet d’exprimer l’incrément de contrainte et
de flux associé, constituant de fait un équivalent numérique de la relation con-
stitutive.

Les problèmes aux conditions limites macro et micro sont traités simultanément
par la méthode élément fini. Pour obtenir les opérateurs tangents consistants à
l’échelle macro, la méthode d’homogénéisation par condensation statique [Kouznet-
sova et al., 2001] des opérateurs tangeants micro est étendu au cas avec couplage
hydro-mécanique. L’implémentation du modèle double échelle et la mise en uvre
des développements théoriques d’homogénéisation ont été effectués dans le code
élément fini Lagamine (Université de Liège). Pour la modélisation de la local-
isation de la déformation à l’échelle macro, qui, dans un formalisme de milieu
continu classique, souffre de la dépendance au maillage, l’approche double-échelle
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a été utilisée dans un formalisme de milieu enrichi de type milieu de second gradi-
ent pour matériau poreux saturé [Collin et al., 2006]. Ceci permet d’introduire
une échelle de longueur interne, régularisant ainsi le problème de localisation de
la déformation (objectivité vis-à-vis du maillage).

Les capacités du modèle homogénéisé numériquement, utilisé dans un cadre de
milieu de second gradient, sont ensuite démontrées par des simulations d’essais
dométriques et d’essais de compression biaxiaux. L’approche se confirme être
un moyen puissant pour modéliser l’anisotropie initiale et induite du comporte-
ment mécanique et du comportement hydraulique. Pour la modélisation du com-
portement de l’argilite du Callovo-Oxfordien, des VER sont construits en tenant
compte des travaux de caractérisation de la géométrie des inclusions microsco-
piques et des résultats expérimentaux d’essais macroscopiques sur le comporte-
ment hydro-mécanique. La loi de comportement homogénéisée numériquement
ainsi calibrée est utilisée dans des simulations de creusement de galerie jusqu’à
des niveaux d’endommagement générant une localisation de la déformation. Ces
calculs montrent à la fois la pertinence et l’applicabilité du concept double échelle
pour l’évaluation du comportement hydro-mécanique des zones endommagées au-
tour des galeries dans un contexte du stockage des déchets radioactifs.



CONTENTS

Abstract ii
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CONTEXT AND OBJECTIVES

Different scales of observations can be defined in basically any type of geomater-
ial. On the finer scales of observation these materials contain heterogeneities, the
arrangements of which define the microstructure of the material. The combined
effect of the microstructural elements in the material behaviour can generally be
characterized by an effective continuum at larger scales of observation. Classically,
the behaviour of this macroscale continuum is described by phenomenological con-
stitutive models in which the homogenized effect of some of the micromechanical
features is assumed to be accounted for. Improving these macroscale phenomen-
ological models by taking into account more and more micromechanical effects
makes it more and more difficult to formulate the macromechanical constitutive
relations and alternative descriptions are required. One of these alternatives is
to model the micromechanical effects explicitly on their specific length scale and
couple their homogenized effects to the macroscale behaviour. In this way, the
global response of an assembly of micromechanical features can provide an altern-
ative formulation for the multiphysical behaviour of the material at the macro
scale.

Making a coupling between different scales in the description of the behaviour
of materials has seen a developing trend in the last decennia. This trend has its
origin in the need to express the macroscale behaviour as a direct effect of mi-
cromechanical processes and many approaches have been proposed for these scale
transitions of upscaling the micromechanical response to deformation to a mac-
roscale constitutive behaviour. Early developments mainly concerned the elastic
behaviour of inclusions, such as the effective medium approach [Eshelby, 1957]
or the self-consistent method [Hill, 1965], followed by asymptotic homogeniza-
tion theory [Bensoussan et al., 1978, Sanchez-Palencia, 1980] for periodic media
with simple microstructures and the use of a representative cell for more complex
structures and constitutive relations that has led to local-global modelling, also
known as the framework of homogenization [Suquet, 1985, Lee and Ghosh, 1995,
1996, Feyel and Chaboche, 2000, Kouznetsova et al., 2001].

The modelling of the excavation of tunnels (referred to as galleries from here
on) for the construction of deep geological waste repositories is a field of studies
in which both the coupling of different scales and the coupling of different phys-
ical processes are involved. The principle of the nuclear waste disposal in deep
geological repositories relies strongly on the low permeability of the host rock,
which can provide a sealing capacity against the transport of radioactive nuclides
into the atmosphere. Changes in this sealing capacity can take place in the zone
around the gallery, usually referred to as the excavation damaged zone (EDZ), due
to deformations induced by the gallery excavation. Although different definitions
can be found in literature, this zone is generally characterized as follows:
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”The EDZ is a zone in which hydromechanical and geochemical modi-
fications induce significant changes in flow and transport properties.
These changes can, for example, include one or more orders-of-magnitude
increase in flow permeability” [Tsang et al., 2005].

The coupling between mechanical alteration on one hand and the transport and
flow properties on the other, is therefore of vital importance in the feasibility
studies of deep geological repositories, comprising the characterization of the hy-
dromechanical coupled behaviour and subsequently its numerical modelling for
predicting the performance of future repositories. As the transport phenomena
take place at the fine scales, and macroscale damage has its origin in micromech-
anical action, the link to the fine scale phenomena of the host rock need an
adequate representation in the characterization. In this context the modelling of
hydromechanical coupling in a multiscale framework is studied here. Objectives
of this work are to develop a doublescale model for studying localization problems
with hydromechanical coupling, and in specific the modelling of problems related
to gallery excavations in argillaceous rocks.

The choice for a doublescale model is based on the desire to derive macroscopic
material behaviour directly from microstructural effects, without relying on phe-
nomenological macroscale relations. As the direct modelling of the microstructure
is usually not possible due to its high computational expense, an alternative for-
mulation is needed to take into account the micromechanical effects. The use of a
fine scale representative elementary volume (REV) provides a tool for construct-
ing a detailed model of the microstructure without modelling the microstructural
details for the full domain. The response to deformation loading of such a REV
can be linked to the macroscale and serve as a numerical constitutive relation
in the framework of periodic computational homogenization [Kouznetsova et al.,
2001]. In this way, the macromechanical modelling is directly linked to the mi-
cromechanical processes, which fully dictates the macromechanical behaviour.
When solving the boundary value problems (BVP) at both scales using a finite
element method, we speak of the finite element squared (FE2) method.

This work presents the development of a FE2 method for hydromechanical
coupling and its application to localization problems related to gallery excavation
in argillaceous rocks.

From the development point of view the microscale model for hydromechan-
ical coupling [Frey, 2010] is combined here with computational homogenization
by static condensation [Kouznetsova et al., 2001, Özdemir et al., 2008a] to facilit-
ate an efficient scale transition from micro to macroscale. This method, generally
used for purely mechanical problems, is extended to hydromechanical coupling.
The implementation of the computational homogenization for hydromechanical
coupling allows an efficient implementation in the existing finite element code
Lagamine [Charlier, 1987]. Because the purpose is to study localization phenom-
ena, a regularization technique is needed to avoid macroscale mesh dependency.
Therefore, the doublescale method is combined with a local second gradient model
for hydromechanical coupling [Chambon et al., 2001, Collin et al., 2006].

This thesis was financed by the French national radioactive waste manage-
ment agency (Andra) in the context of the ongoing research on the feasibility of
deep geological repositories for high- and mid-level long-lived radioactive waste
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in France. It focuses on the possibilities of the construction of a repository in the
Callovo-Oxfordian claystone, in line with the research currently being conducted
in the underground research laboratory (URL) in Bure (Meuse/Haute-Marne,
France). Part of this research focuses on the evolution of transport phenomena
in the EDZ as an effect of the mechanical material alteration such as localized
strain and material damage.

An objective of this thesis is to apply the developed method to the modelling
of the localization of deformation around gallery excavations in Callovo-Oxfordian
claystone, more specifically those related to the URL in Bure.

Outline and presentation

The work presented in tis thesis concerns the development of a doublescale model
for hydromechanical coupling in a FE2 framework, its implementation in the
existing finite elements code Lagamine and its application on the modelling of
hydromechanical behaviour of claystones in the setting of gallery excavations. The
development of the code is the continuation of the work by Bilbie et al. [2008],Frey
[2010] and Marinelli [2013]. Building upon the results of these works and theory
available in literature (notably the computational homogenization [Kouznetsova
et al., 2001, Özdemir et al., 2008a] and local second gradient modelling [Chambon
et al., 2001, Collin et al., 2006]), the following parts are considered original in this
work;

• The extension of computational homogenization by static condensation to
hydromechanical coupling to use an existing microscale model [Frey, 2010]
for obtaining a homogenized macroscale constitutive relation to be used
in doublescale finite element computations. Key aspect is the consistent
homogenization of the REV responses to kinematical constraints and its
consistent tangent operators.

• The implementation of the hydromechanical coupled model in the finite
element code Lagamine as independent constitutive laws for mechanical
and HM-coupled behaviour

• The application of the doublescale FE2 method to localization problems
using a local second gradient model. The main doublescale computations
concern the modelling of biaxial compression tests and gallery excavation
problems.

This work is subdivided in five parts;

• Part I introduces the setting of the research for the development of the
doublescale model and introduces existing modelling approaches that form
the starting point of this work.

• Part II contains the development of the microscale model and its computa-
tional homogenization procedure required for the scale transition, including
the upscaling of consistent tangent operators.

• Part III deals with the implementation and validation of the developed
microscale model in the finite element code Lagamine. Aspects of compu-
tational efficiency, numerical accuracy and consistency are discussed, after
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which a validation of the doublescale model is given based on analytical
results. The purpose of the results presented in this Part is the validation
of the code and the demonstration of its possibilities.

• Part IV contains examples of the application of the model to true doubles-
cale computations in the modelling of localization in anisotropic material,
the calibration of the model against experimental results of laboratory tests
on Callovo-Oxfordian claystone and the application of the model to the
simulation of gallery excavation.

• Part V summarizes the results and states some points that requires further
study for the correct application of the proposed framework.

Several appendices with complementary information are added. Some of these
appendices give additional results or derivations as an extension to the main text,
some contain developments with respect to different versions of the micromech-
anical model. These latter developments need to be seen as independent from the
main part of the text. One of these developments is an alternative version of the
HM-coupled model with computational homogenization. This version resembles
more the model presented in Frey [2010], but has become obsolete after changes
in the formulation of the hydraulic system, as will be discussed in this work.



Part I

INTRODUCTION – MULTISCALE MODELLING OF

HYDROMECHANICAL BEHAVIOUR IN

GEOMATERIALS





1. CALLOVO-OXFORDIAN CLAYSTONE - DESCRIPTION

AND EXPERIMENTAL RESULTS

As part of the Paris Basin, the Callovo-Oxfordian claystone (COx) formation of
Bure can be found at depths between 420 and 550 meters below surface level [An-
dra, 2005a]. As a potential host rock for deep geological nuclear waste disposal
sites, this formation is subject of an extensive research program into the feasib-
ility of the construction of underground disposal facilities. As a major part of
this program, the Andra Underground Research Laboratory (URL) is constructed
at a depth of 490 meters in the COx formation in Bure (Marne/Haute-Meuse,
France), providing means for both in-situ and laboratory testing of the host ma-
terial [Andra, 2005a,b].

Different facies can be identified in the Callovo-Oxfordian claystone, for which
the general characteristics are those of a mudstone. The claystone consists of a
fine-grained clay matrix embedded with carbonate and tectosilicate grains and
has low permeability. From the length scale of the formation to the finest scales
of clay minerals, different scales of interest can be identified on which formation-
specific properties can be studied. Four scales are identified in the COx claystone
by Robinet [2008]:

• Microscopic scale (< µm) the structure of clay minerals forms a complex
microstructure on different subscales (sheets, particles, grains...)

• Mesoscopic scale (µm − cm) On this scale mineral grains (quartz, car-
bonates, sulphides) embedded in a clay matrix can be observed

• Macroscopic scale (cm− dm) On this scale the mineralogy is considered
to be homogeneous and porosity is uniformly distributed

• Formation scale (> dm) Different facies can be identified on this scale.
This is the scale of the geological and geotechnical (galleries) structures.

In the following sections, the characteristics of the material at these scales that
are relevant to the current work are presented.

1.1 The microscopic scale (< µm)

The Callovo-Oxfordian claystone consists mainly of three groups of minerals;
clays (20-60%), tectosilicates (10-40%) and carbonates (22-37%). The clay min-
erals form a matrix in which carbonate (mainly calcite) and tecto-silicate (mainly
quartz) grains are embedded. In additions, small fraction of heavy minerals can
be found, predominantly pyrite (up to 3 %), see [Andra, 2005a] and the references
therein.

As the inclusions all have dimensions bigger than the microscale character-
istic length, the main interest on this scale is the structure of the clay particles
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and aggregations that form the clay matrix on the mesoscale. The clay mass is
composed of mainly illite and interstratified illite/smectite, kaolinite, mica, and
chlorite minerals [Pellenard and Deconinck, 2006]. The pore space at this scale
(infra-micro and nano scale) is between the clay particles and around secondary
minerals, forming a connected pore network [Yven et al., 2007]. The clay particles
themselves consist of layers of clay minerals, each consisting of two or three sheets
with tetrahedral or octahedral atomic structure.

In this work, the clay particles and nano-pore network will not be modelled
in detail and treated as a homogeneous matrix. Possible hydraulic transport
through the nano-pore network will be considered as diffusive flow in the matrix,
which is in itself a phenomenological model for the hydromechanical processes
taking place at the underlying scales of the clay matrix.

1.2 Mesoscopic characterization

The experimental characterization of (fluid) transport phenomena in claystone is
not easily obtained and the effect of microstructure on its behaviour is therefore
mainly based on microstructure imaging in combination with numerical modelling
of fluid transport in equivalent pore networks [Robinet et al., 2012]. An example
of the result of imaging the microstructure and discretization into non-porous and
diffusive zones is given in Figure 1.1, based on X-ray computed tomography (per-
formed at the European Synchrotron Radiation Facility) with a spatial resolution
(voxel size) of 0.7 µm.

Fig. 1.1: a). Three-dimensional spatial distribution of mineral groups obtained us-
ing X-ray synchrotron tomography. b). Imposition of diffusive properties
[Robinet et al., 2012]

The shape of the inclusions at the mesoscale was investigated by Robinet
[Robinet, 2008, Robinet et al., 2012] by means of digital image analysis. The
images were obtained by two different techniques; scanning electron microscopy
using backscattered electron imaging mode (SEM BSEi) and X-ray computed
tomography (micro-CT), where in the case of micro-CT images 2D slices of 3D
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images were used. After gray-scale segmentation to distinguish between clay
matrix and the different types of inclusions, the grain elongation and the grain
orientation were computed from the shape of a best fit of an ellipse to the grain
intersection in the image. The dimensionless grain elongation index e is defined as
the ratio between minimum diameter l2 and maximum diameter l1 of the ellipse:

e =
l2
l1

(1.1)

The angle between the orientation in which l1 is measured and the positive hori-
zontal axis defines the grain orientation angle β between 0◦ and 180◦ (see Figure
1.2).

l2

l1

β

Fig. 1.2: Grain geometry equivalent ellipse for the characterization of grain elongation
e and orientation β.

A histogram of the orientation of the grains is given in Figure 1.3 (see also
Figures 14.1 and 14.2) which gives a measure of the anisotropy and the distribu-
tion of the orientation. A dimensionless anisotropy parameter A was defined by
Robinet [2008], Robinet et al. [2012] as the ratio between the highest and lowest
frequency f(β) at which a certain orientation is observed to quantify the orienta-
tion distribution. Results for elongation e and orientation anisotropy A obtained
from sample images normal and parallel to the bedding plane are reported in
Table 1.1.
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carbonate inclusions

tectosilicate inclusions

Fig. 1.3: Statistical characterization of the elongation index e and orientation β of
carbonate (top) and tectosilicate inclusions (bottom) in the bedding plane
(b,d) and in the plane parallel to the bedding (a,c) [Robinet et al., 2012].

Mesoscale observations of the evolution of deformation of the Callovo-Oxfordian
claystone are scarce in literature and the development of the cracks from a meso-
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Carbonates Tectosilicates Clays
Technique Sample Ref. A e % A e % %

SEM BSEi
EST26065⊥ 6.04 0.54 25.1 2.26 0.61 8.9 67.0
EST26095‖ 1.79 0.59 26.6 2.00 0.64 12.0 60.4

Micro-CT
EST26095⊥ 4.66 0.55

25.1*
2.52 0.60

14.7* 60.2*
EST26095‖ 1.35 0.59 1.55 0.62

Tab. 1.1: Geometrical characterization of the inclusions in C0x claystone. After
Robinet et al. [2012]. ∗ = volumetric percentages obtained from 3D images.

scopic point of view is something that has not yet been fully characterized. Nev-
ertheless, results on the initiation and developments of fractures at this scale
have been obtained from X-ray tomography on triaxial compression tests [Len-
oir et al., 2007, Bésuelle, 2014] and images of triaxial [Bornert et al., 2010] and
biaxial compression tests [Bésuelle et al., 2010, Wang et al., 2014].

In Figure 1.4 a slice of a 3D image of the state of a claystone sample under
triaxial loading is presented. This image was obtained by synchrotron radiation
micro tomography that was used for imaging the sample throughout the loading
test. Full-field measurements obtained from the time evolution of such 3D images
can provide a better insight in the initiation and continuation of micro cracks
and can give qualitative information on the cohesion between inclusions and clay
matrix.

ε q

Fig. 1.4: Horizontal slice of 3D nanoCT image (synchrotron) of triaxial compression
test performed on a � 1.3mm sample at 10 MPa confining pressure. 3D
image correlation is used to follow the development of (micro)crack during
compression. Colored overlay shows deviatoric strain Bésuelle [2014].

Porosity at the mesoscale is found in the form of isolated meso-pores (> 1µm),
located mainly around the inclusions. Their interconnection is through the nano-
pore network [Yven et al., 2007].

1.3 Macroscopic material characterization

Besides the purely mechanical and fully saturated hydromechanical behaviour,
studies were performed on the chemical, thermal, mineralogical and non-saturated
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behaviour of the COx, as well as the migration of gas and the coupling between
these different effects. Since this work is restricted to the development of a model
for hydromechanical coupling in fully saturated conditions, only these properties
of the COx are discussed, although it should be noted that hydromechanical
behaviour is strongly influenced by the degree of saturation [Pham et al., 2007,
Andra, 2011, Zhang, 2011] and a clear separation between dry, non-saturated and
saturated material conditions in experiments is not easily obtained.

AT the centimeter scale, on which the material can be considered homogen-
eous, the material behaviour is characterized by means of the results of laboratory
tests. A range of laboratory test were performed by different laboratories, from
which results are summarized in two reports by Andra [2005a, 2011]. From these
experimental campaigns, the following can be concluded regarding the macro-
scopic behaviour of the COx:

• preliminary evidence for anisotropy in the peak stress σp has been observed,
with a slightly higher peak stress for compression in the direction of the bed-
ding plane compared to perpendicular to the bedding plane and a reduction
up to 50% in the direction 45◦ to the bedding plane [Auvray, 2011].

• anisotropy of the Young’s modulus can be observed, with a 20-30% higher
stiffness in the bedding direction [Zhang, 2011]. This anisotropy however,
is not observed in the triaxial tests shown in Figure 1.5.

• Initial (intrinsic) permeability is in the order of 1×10−20 m2. This intrinsic
permeability corresponds to a hydraulic conductivity in the order of 1 ×
10−13m/s.

• Total porosity ranges between 14% and 19.5% [Yven et al., 2007].

A series of triaxial compression tests was performed by different laboratories
[Andra, 2013], for which samples were stabilized under a relative humidity of 90%
before testing. This stabilization leads to a partially saturated state of the sample
and the measured response is influenced by this degree of saturation. Therefore,
the response should be interpreted as a total stress. Although globally no fluid
pressure was applied, the (partial) saturation might play an important role in the
stress response, as demonstrated experimentally by Zhang [2011].

The nominal stress response to triaxial compression at different confining
stress for this series of tests is given in Figure 1.5. These results will serve in this
work as reference experimental results for the macroscopic behaviour of drained
conditions. Drained conditions in this sense is defined as the absence of influ-
ences of hydraulic pressure on the mechanical response, which means both locally
and globally drained conditions at zero fluid pressure and the absence of any
unsaturated effects.
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Rock parameter Ind Value

mass of unit volume (wet) ρ 2.39 g/cm3

Porosity n 18 ± 1 %
Young modulus E 4000± 1470 MPa
Poisson ratio ν 0.29± 0.05
Uniaxial compressive strength UCS 21± 6.8 MPa
Hoek-Brown criteria S 0.43

m 2.5
σc 33.5 MPa

Intrinsic permeability kii 5× 10−21 − 5× 10−20m2

Water content M 7.2± 1.4%

Tab. 1.2: Main characteristics of the Callovo-Oxfordian claystone at the URL level
(-490m). After Armand et al. [2014]
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Fig. 1.5: Nominal deviatoric stress response to triaxial compression at 2, 6 and 12MPa
confinement stress, perpendicular (perp) and parallel (par) to the bedding
plane [Andra, 2013].

By adopting the assumption of a Mohr-Coulomb failure criterion, a friction
angle φ and cohesion c can be found based on the peak response of the triaxial
tests. This gives a friction angle of φ = 24◦ and a cohesion of c = 6.4MPa. In
addition, the Poisson’s ratio ν and Young’s modulus E can be obtained from the
initial slopes of the stress-strain relations and fall well within the range of ν =
0.29±0.05 and E = 4.0±1.47GPa respectively, as can be found in literature (Table
1.2). More macroscale material properties can be found in literature, notable in
Andra [2005a,b] and the references therein. A range of material parameters can
be found, depending on the mineral content, which varies with the depth at which
the samples for testing were taken. Table 1.2 gives reference values of the main
hydromechanical parameters of the COx to be used in this work. In this table, the
failure criteria are given in the form of the Hoek-Brown criteria [Hoek and Brown,
1997], which can be translated into equivalent cohesion c′ and friction angle φ′

for a Mohr-Coulomb criterion [Hoek et al., 2002] (the conversion procedure used
here is presented in this specific 2002-version of the publication). When using the
Bure URL in-situ stress state, this results in φ′ = 22.1◦ and c′ = 6.8MPa, which
is in good agreement with the results obtained from the triaxial tests presented
above.
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1.4 Formation scale observation in the EDZ

At the formation scale (>1 dm), the Callovo-Oxfordian shows a variation in the
distribution of the mineral content, of which the variation of the carbonate content
is the most important parameters. At the URL level (-490m) the variation is
relatively low and the mineral content can be considered constant with depth.
The in-situ stress regime is related to the tectonic regime of alpine orogenesis
with a major principal stress direction in the horizontal plane at a NE150◦ strike.
The stress regime can therefore be characterized by means of a vertical stress
component σv and a major and minor horizontal stress component σH and σh.
Vertical stress corresponds to the weight of the overburden ρgh ≈ 12MPa:

σh = 12.40 MPa
σH = 16.12 MPa
σv = 12.70 MPa

A detailed study of the geometry of the EDZ around gallery drifts at the URL
level is documented in Armand et al. [2014]. Based on this work, the main features
for the characterization can be derived:

For a detailed observation of the fracture network, dyed resin was injected in
the rock around the gallery from a borehole horizontally drilled from the gallery
wall. The extraction of the injected material allowed the detailed identification
of the fracture network in the characterization of the distribution of the different
types of fractures (Figure 1.6).

In the excavation damaged zone, two types of localized failure are observed;
and extension fractures (mode I) and shear fractures (mode II). In the proximity
of the gallery wall, extensional fractures are observed with a heterogeneous dis-
tribution of orientation with respect to the gallery wall. These fractures have a
discrete nature. The chevron shear fractures have more the characteristics of a
zone in which smaller fractures form a band. The width of these bands is is the
order of a decimeter. The chevron fractures extend beyond the zone in which the
extension fractures are observed.
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extension and shear fractures chevron fracture

distance from gallery wall [m]

Fig. 1.6: Fracture observation under fluorescent light after dyed resin injection in a ho-
rizontal borehole drilled from the gallery wall. Top: interpretation of fracture
pattern drilled around resin injection. Bottom left: thin section with details
of extension/shear fractures. Bottom right: picture under fluorescent light of
chevron fracture. Bottom center: thin section of detail of chevron fracture.
Images taken from Armand et al. [2014]

Two models of the EDZ are defined; a model for galleries with an orientation
along the minor and along the major principal stress directions respectively. A
graphical representation of these models is given in Figure 1.7. It can be observed
that for the model of the gallery along the mayor principal stress direction, the
geometry of the excavation damaged zone is does not show a spherical pattern
around the gallery, although the (initial) stress state is close to axisymmetric (σ2 :
σ3 = 12.7 : 12.4). This indicates that anisotropic behaviour is likely to be induced
by the host rock, either at the local scale (present in the constitutive behaviour) or
at the global scale (formation-scale heterogeneity, effect of geological layering,...).
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a)

b)

Fig. 1.7: Conceptual model of the fractures in the EDZ for drifts in the direction of a)
the major principal stress and b) the minor principal stress [Armand et al.,
2014].

Other observations related to the hydromechanical behaviour at the formation
scale are [Armand et al., 2014]:

• In the ’homogeneous shear zone’, no big changes in hydraulic conductivity
was observed. The observed variations in hydraulic conductivity fall within
the range of one order of magnitude.

• In the ’heterogeneous traction zone’, a strong change in hydraulic conduct-
ivity was observed, with an increase up to 4 orders of magnitude. This
increase is related to the fracture transmissivity and not to a change in
permeability of the matrix.



2. MODELLING APPROACH FOR GALLERIES IN

CALLOVO-OXFORDIAN CLAYSTONE

The choice of appropriate constitutive models is a key factor in the modelling of
geomaterials and many constitutive models have been proposed in the classical
way of modelling material behaviour through the formulate of phenomenological
descriptions in macroscale constitutive relations. These models can generally be
divided in the family of elastic-plastic models [Vermeer and de Borst, 1984] and
hypoplastic models [Kolymbas, 1991], although many variations can be found, al-
lowing the direct introduction of a wide range of phenomena of material behaviour
such as plasticity, viscosity and coupling between multiple physical processes that
can directly be formulated. Examples of such phenomenological models applied
on the modelling of the hydromechanical behaviour of claystone can be found in
Shao et al. [2006], Arson and Gatmiri [2009], Cariou et al. [2013], Charlier et al.
[2013].

However, this way of phenomenological macroscale modelling can lead to dif-
ficulties when

• anisotropy has to be introduced for different phenomena

• a full loading history has to be taken into account

• material behaviour based on micromechanical observations needs to be
taken into account

• non-linear responses for principal stress rotation are to be considered

The incorporation of micromechanical phenomena in the formulation of the mac-
roscale behaviour can therefore hardly be avoided. An alternative to phenomeno-
logical macro scale constitutive models is taking into account the material micro-
structure underlaying the macroscopic constitutive behaviour in a direct simula-
tion. However, the full incorporation of the microstructure in the computation is
often restricted to relatively simple computations as an effect of the limitations
in computation power. Instead, a selection of the microstructure can be modelled
from which the homogenized response represents macroscopic behaviour. Many
approaches are available with different levels of microstructural detail. One fam-
ily of such models for anisotropic damage derives the macro scale behaviour from
micro scale damage related to the nucleation and growth of microcracks Andrieux
et al. [1986], Pensée et al. [2002]. These methods have seen a range of applica-
tions and extensions, notably to poromechanical modelling Dormieux et al. [2002,
2006]. This family of microcrack models does however not represent a complete
microstructure that takes into account for example the full interaction between
the micromechanical constituents such as inclusions, crystals or grains and more
complex micromechanical models with different homogenization schemes are re-
quired for this extend.
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2.1 Finite element squared – FE2

Another approach of microscale-based modelling can be found in double-scale
finite element methods [Lee and Ghosh, 1995, 1996, Smit et al., 1998] or the finite
element squared (FE2) method [Feyel and Chaboche, 2000, Kouznetsova et al.,
2001, Miehe and Koch, 2002, Schröder, 2014], where the material behaviour at the
macro scale is modelled by means of a representative elementary volume (REV),
containing a detailed model of the material microstructure. The boundary value
problem related to the deformation of the REV is solved by means of a finite
element method. The global response of the REV to the deformation, dictated
by the macroscale local deformation tensor FM = ∇M

0 ~x, serves as a numerical
constitutive law for the macro scale (Figure 2.1).
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Fig. 2.1: Schematic representation of the FE2 method. Macro response σij , together
with tangent operator Cijkl, forms the numerical constitutive relation derived
from the REV boundary value problem by computational homogenization.

The translation from the macroscale deformation gradient F to the REV
boundary value problem, which is discussed in more detail in Section 4, is most
efficiently done through periodic boundary conditions at the REV [Terada et al.,
2000, van der Sluis et al., 2000]. Once the boundary value problem at the micro-
scale is solved up to an acceptable degree of accuracy, the stress response to the
deformation loading is sent back to the macroscale. In the framework of compu-
tational homogenization, this scale transition is obtained from the condition of
equal work on the micro and the macroscale, better known as the Hill-Mandel
macro-homogeneity condition [Hill, 1965, Mandel, 1972] (Equation 2.1). In com-
bination with the divergence theorem, the integral over the microscale domain
can be linked to the boundary conditions of the microscale:

P
M : F ⋆M =

1

V

∫

Ω

P : F ⋆dΩ =
1

V

∫

∂Ω

~t · ~x⋆dΓ (2.1)

Here ∂Ω is the boundary of domain Ω and ~t is the traction acting on this
boundary at coordinate ~x.

These classical methods of first order computational homogenization are based
on the assumption of scale separability; the scale of fluctuation in the macro-
scopic fields is large compared to the microstructure and its REV, such that the
boundary conditions of the microscale BVP can be properly dictated by the local
macroscale deformation gradient. The method of computational homogenization
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has become a generally applied method in the analysis of the behaviour of ma-
terial with microscale heterogeneity, see for example Geers et al. [2010] and the
references therein. However, the method has it restrictions, notably linked to the
capacity of modelling localization phenomena. This is summarized in Geers et al.
[2010] as follows:

• The method complies with the principle of local action and the
material point concept and is therefore in a non-modified form
limited to a standard continuum mechanics theory at the macro-
scale.

• The aforementioned principle of separation of scales clearly sets
limits for the first-order case. As a consequence, large spatial
gradients at the macro-scale cannot be resolved. The method
is therefore not suited for the analysis of localization problems
[Geers et al., 2010]

For obtaining objective results in case of softening response and localization
problems, the first-order computational homogenization was extended to second-
order computational homogenization [Kouznetsova et al., 2002, 2004, Luscher
et al., 2010], in which a length scale was derived from micromechanical compu-
tations by adding the gradient of the macroscopic deformation tensor ∇0F

M to
the boundary conditions of the REV. By linking this strain gradient to the mac-
roscale strain gradient, a second gradient model can be obtained which is directly
dependent on the microscale deformation. Others have extended the computa-
tional homogenization to micromorphic media [Jänicke et al., 2009], obtaining
a length scale at the macrolevel through additional boundary conditions at the
microscale. In these ways, the continuity at the macroscale can be guaranteed
for loading beyond the peak response. However, the derivation of a length scale
from the microscale REV requires defining a length scale at the REV level and
the separation of scales is no longer valid.
An alternative approach is to extend the macroscale framework with discontinuit-
ies to allow localization of deformation at the microscale develop into fracture-like
discontinuities at the macroscale. For this purpose, a decomposition of the mac-
roscale deformation into a homogeneous unloading and a discrete fracture part
has been introduced in a continuous-discontinuous framework by Massart et al.
[2007]. Following a similar philosophy of tensorial decomposition of the deform-
ation was used to model localization along a-priori defined macroscale cracks
[Kulkarni et al., 2010, Nguyen et al., 2011]. Other methods have been proposed,
using multi-level computations combining multiscale modelling with direct mod-
elling of the microstructure to account for damage in zones where discontinuities
are likely to occur (see for example Ghosh et al. [2007], Bai [2008])
Recently, a continuous/discontinuous approach without a priori defined localiz-
ation paths using the so-called ’percolation-path aligned’ boundary conditions
was proposed by Coenen et al. [2011a,b]. Here the periodicity is rotated to align
with localization paths in order to decompose into continuous and discontinuous
deformation. This method has been applied in the modelling macroscale local-
ization in cellular material due to micro-buckling of cell walls in a discontinuous
Galerkin methods by Nguyen [2014], Nguyen and Noels [2014].

When it comes to multiphysical coupling in doublescale computations, the FE2

method has seen few applications, with the first notable formulation of multiphys-
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ics couplings the introduction of thermo-mechanical coupling by Özdemir et al.
[2008a,b]. Computational homogenization was later used for deriving the effective
porosity from microstructures captured in a REV [Massart and Selvadurai, 2012,
2014]. In these approaches, first order computational homogenization was used,
which implies that the separation of scales was honoured and no length scale was
supposed to be present at the microscale. A variational homogenization was intro-
duced by Su et al. [2011] for solving transient hydromechanical coupled problems,
taking into account the transient effects in both macro and microscale computa-
tions. This requires the introduction of an internal length scale in the REV. For
the incorporation of such a physical length scale, hydromechanical coupling in a
computational homogenization framework for micropolar media was proposed by
Jänicke et al. [2015] for the modelling of poroelastic media.

Computational homogenization of the hydromechanical coupling in porous
media was presented in Mercatoris et al. [2014] for the modelling of anisotropic
hydromechanical coupling in heterogeneous porous media.

2.2 Strain localization in finite element models; regularization
techniques

We investigate here an approach for the modelling of localization phenomena
while maintaining the continuum at the macro scale. It is well-known that the
classical finite element method will lead to spurious mesh dependency in case
of strain localization and an enhancement is required to obtain objective res-
ults. Several regularization enhancements are available for this purpose, such as
nonlocal damage models Pijaudier-Chabot and Baẑant [1987] or gradient mod-
els Muhlhaus and Alfantis [1991] in which damage parameters are smeared out
through spatial averaging or through dependency on strain gradients. In this
way mesh objectivity is obtained. However, this introduces a non-local depend-
ency of (damage) parameters in the constitutive law, which is not compatible
with the envisioned double scale approach. For this reason local second gradi-
ent models Mindlin [1965], Germain [1973] are required, since its framework is
based on the assumption of a microstructure with small dimensions compared to
the macro scale. This allows constraining the microkinematic field such that the
constitutive behaviour is strictly local. A local second gradient model has been
developed for geomaterials Chambon et al. [2001], Matsushima et al. [2002] and
the modelling of localization in shear bands has been investigated and presented
in works Bésuelle et al. [2006].

A consequence of the use of a local second gradient model on the macroscale,
is that a continuum approach is maintained throughout the computation and
macroscale discontinuities can not be taken into account. This requires the con-
stitutive behaviour to represent local continuous behaviour with a diffuse charac-
ter of deformation. This requirement might be very strong and is closely related
to the periodicity of the material behaviour. Section 11.2 will investigate this
requirement in more detail.



3. STATE OF ART : EXISTING MODELS TO START FROM

In this chapter, two existing approaches for the modelling of hydromechanical
coupling at the macro and micro level are discussed. These approaches form the
starting point of this work.

3.1 Large strain formulation of a poromechanical continuum with
a local second gradient model

On the macro scale a poromechanical continuum is defined for which the field
equations describing equilibrium under quasi-static conditions are solved for field
variables ui (displacement) and p (fluid pressure). Since localization due to soften-
ing will be studied, an enhancement is required to avoid either the well known
mesh dependency or the strain localization into bands with vanishing width and
energy dissipation upon mesh refinement [Pijaudier-Chabot and Baẑant, 1987].
This enhancement is introduced by considering the material as a micromorphic
material with a microkinematical gradient νij , in addition to the macro displace-
ment field ui. As a particular case of micromorphic continuum, the microkinemat-
ical gradient νij is assumed to be identical to the gradient of the macro displace-
ment ∂ui/∂xj in accordance with the second gradient theory [Mindlin, 1965,
Germain, 1973, Chambon et al., 1998, Matsushima et al., 2002].

The introduction of the kinematical gradient νij as a variable in the framework
of second gradient theory requires double stress Σ (with components Σijk) as a
static dual to the gradient of ν. This allows writing the field equations in a virtual
work formulation for any kinematically admissible field of displacement u⋆i and
ν⋆ij = ∂u⋆i /∂xj as:

∫

Ωt

(
σt
ij

∂u⋆i
∂xtj

+Σt
ijk

∂2u⋆i
∂xtj∂x

t
k

)
dΩ− W̄ ⋆

e = 0 (3.1)

with Ωt the configuration at time t, σt
ij the classical Cauchy stress and W̄ ⋆

e the
external virtual work. The external virtual work is assumed to contain no body
double forces and therefore can be given by:

W̄ ⋆
e =

∫

Ωt

ρtf ti u
⋆
i dΩ+

∫

Γσ′

(
ptiu

⋆
i + P t

i

∂u⋆i
∂xtk

nk

)
dΓ (3.2)

where f ti is the body force per unit mass, ρt is the mass density, pti the external
(classical) forces per unit area, and P t

i an additional external (double) force per
unit area. All these force densities are applied on part Γt

σ of boundary Γt.
Solving for the second gradient of displacement in (3.1) by a finite element

method requires continuously-differentiable (class C1) elements when the con-
straint on the microkinematical gradient is strong. As an alternative to the use
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of this class of elements, a field of Lagrange multipliers λij can be introduced to
weaken the constraint on νij :

∫

Ωt

λ⋆ij

(
∂uti
∂xtj

− νtij

)
dΩ = 0 (3.3)

with λ⋆ij a virtual field of Lagrange multipliers. This allows rewriting Equation
(3.1) into

∫

Ωt

(
σt
ij

∂u⋆i
∂xtk

+Σt
ijk

∂ν⋆ij
∂xtk

)
dΩ−

∫

Ωt

λij

(
∂u⋆i
∂xtj

− ν⋆ij

)
dΩ− W̄ ⋆

e = 0 (3.4)

For the fluid pressure, the field equations are written in terms of a fluid mass
balance equation in weak form as

∫

Ωt

(
Ṁ tp⋆ −mt

i

∂p⋆

∂xti

)
dΩ =

∫

Ωt

Qtp⋆dΩ−
∫

Γt

q̄tp⋆dΓ (3.5)

withM t the fluid mass in the current configuration, mt
i the mass flow density, Qt

a sink term and q̄t = mt
in

t
i the boundary input flux per unit area as the product

of mt
i and the boundary surface normal nt

i.
The non-linear field equations (3.3), (3.4) and (3.5) have to hold for the bound-

ary value problem related to a loading path that is followed for a certain time. To
solve this boundary value numerically, a discretization into time steps is required,
for which the solutions to the BVP are computed by a full Newton-Raphson
scheme. The fields ui and p are solved for, together with the fields νij for reg-
ularization and λij to provide a weakening in the constraints between ui and
νij .

The linearization of the 3 types of field equations (3.3)-(3.5) for finding the
iterative updates duti, dλ

t
ij , dν

t
ij and dpt through the definition of a linear auxiliary

problem is given in Collin et al. [2006]. This linearization results in a linear system
of field equations to be solved in the form of a 25 × 25 matrix equation with τ1
referring to configuration Ωt,n−1after iteration n− 1:

∫

Ωτ1

[U⋆,τ1
(x,y)]

T [Eτ1][dUτ1]dΩ = −Rτ1 (3.6)

Rτ1 is the out-of-balance term at the last computation, which needs to be cor-
rected for in the iteration, [Uτ1

(x,y)] is a 25-term array, with subsequently the

components of
∂dui

∂xj
, duτ11 , ∂dpτ1

∂xτ1
i

,dpτ1,
∂dντ1

ij

∂xτ1
k

, dλτ1ij and dντ1ij . Matrix [Eτ1] has the

following structure:

[Etn ] =




Ctn
(4×4) + E1tn(4×4) 0(4×4) Ktn

hm(4×3) 0(4×8) 0(4×4) −I(4×4)

G1tn(2×4) 0(2×2) G2tn(2×3) 0(2×8) 0(2×4) 0(2×4)

Ktn
mh(3×4) 0(3×2) Ktn

hh(3×3) 0(3×8) 0(3×4) 0(3×4)

E2tn(8×4) 0(4×4) 0(4×4) Dtn
(8×8) 0(8×4) 0(8×4)

E3tn(4×4) 0(4×4) 0(4×4) 0(4×8) 0(4×4) I(4×4)

E4tn(4×4) 0(4×4) 0(4×4) 0(4×8) −I(4×4) 0(4×4)
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(3.7)

Matrices [Ctn
(4×4)] and [Dtn

(8×8)] are the consistent linearizations of the classical and

the second gradient mechanical constitutive relations respectively. Matrix [Khh]
is the linearization of the hydraulic constitutive behaviour, relating variations of
pM and ∇pM to variations in Ṁ and ~m. Matrices [Khm] and [Kmh] contain the
coupling between the mechanical and hydraulic systems.

The second gradient tangent stiffness matrix [D(8×8)] is obtained from a con-
sistent linearization of the second gradient constitutive behaviour at the macro
level (see Section 3.1). The first order tangent stiffness matrices [C(4×4)], [Khh],
[Khm] and [Kmh] are obtained by a consistent linearization of the classical con-
stitutive behaviour, either by a numerical approximation such as a finite difference
approximation or in the form of an analytical expression through the partial de-
rivatives of the constitutive relation. To solve the linearized problem of Equation
(3.6) for displacement updates [dU ] the problem is spatially discretized using a
finite element method for large strains. The 9-node elements with 4 integration
points used for the discretization is given in figure 3.1.

ui , p

vij

λij

-1 1

1

-1

0

η

ξ

x2

x1

current element parent element

Fig. 3.1: Quadrilateral element and parent element used on the macro scale.

The numbers of nodes per element imply a quadratic shape function φ for ui
and p (8 nodes), a linear shape function ψ for νij (four nodes) and λij assumed
constant over the element (one node). Using the four integration points in a
finite element procedure, the field equations (3.4) and (3.5) are approximated on
the element domain as a function of the column vector [dUτ1

node] containing all
variables defined on the different element nodes, using the weakened constraint of
(3.3) on the second gradient of displacement. An identical discretization is done
with respect to the residual Rτ1⋆

elem on the element domain [Matsushima et al.,
2002, Collin et al., 2006]. The constitutive law for the second gradient model is
explicitly defined on the macro level. A special case of the isotropic linear model
by Mindlin [1964] is used here. This gives the relation between double stress Σijk

and double strain ∂2ul

∂xm∂xn
by a single parameter D as given in Equation (3.8)
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[Bésuelle et al., 2006].
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Σ111
▽

Σ112
▽

Σ121
▽

Σ122
▽

Σ211
▽

Σ212
▽

Σ221
▽

Σ222




=




D 0 0 0 0 D/2 D/2 0
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(3.8)

Here ν̇ij is the material derivative of νij and
▽

Σijk is the Jaumann double stress
derivative defined as:

▽

Σijk = Σ̇ijk +Σljkωli +Σilkωlj +Σijlωlk (3.9)

with ωij the spin tensor. The consistent linearization [D(8×8)] defined in equa-
tion (3.7) is derived by a forward finite difference approximation based on the
constitutive relation of equation (3.8).

3.2 The Frey microscale model for hydromechanical coupling

A starting point for the modelling of hydromechanical coupling at the micro-
scale is the microscale model developed by Frey [2010], Frey et al. [2013]. This
model, developed in large strain formulation, has been modified on several as-
pects. Before continuing with the development of the computational homogeniz-
ation framework, the main characteristics of the original model are given, after
which a discussion validates the proposed changes of the model.

3.2.1 The Frey-model in a large-strain formulation

The microscale model assumes the material to be composed of an assembly of
deformable grains connected by cohesive interfaces. These interfaces form a net-
work of pore channels saturated by a fluid. The fluid can percolate through the
network as an effect of the pressure gradients in the interface channels (see Figure
3.2), for which the hydraulic transmissivity is controlled by the normal opening
between the grains. The fluid pressure and the pressure gradient act on the grains
as normal and tangential tractions. In addition, mechanical cohesive forces act
over the interfaces depending on the history of the interface opening.
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deformable  

solid grains fluid flux

fluid phase

Fig. 3.2: Micromechanical model of the fluid-saturated microstructure in the Frey-
model.

By assigning different properties to the solids and the cohesive interfaces, a
model for the microstructure of claystone is obtained. Inclusions can be simulated
by introducing large grains with high stiffness embedded in a matrix of grains to
represent the clay matrix. The interfaces between the grains are therefore used to
simulate the border between the inclusions and the clay matrix or the potential
fractures in the clay matrix. The variation of interface cohesive parameters can
be used to introduce the different types of interfaces, for example the interfaces
between different inclusions or the interfaces between inclusions and clay matrix.

A hyperelastic constitutive relation provides the Cauchy stress σ inside the
grains at a given time t as a function of the deformation, expressed in terms of
the left Cauchy-Green strain tensor b0t = F · F T :

σt
ij =

µ

J0t
(b0tij − δij) +

λ

J0t
ln(J0t)δij (3.10)

with J0t the Jacobian of the deformation gradient tensor F t at time t and δij
the components of unit tensor I. The material constants in this relation are the
Lamé parameters λ and µ. The interfaces that separate the grains allow a finite
displacement of the opposite grain boundaries. Cohesive forces between opposite
sides of the interfaces are directed normally (Tn) and tangentially (Tt) to the
interface orientation and are defined as a function of the history of normal and
tangential relative displacement of the opposite interface boundaries ∆un and ∆ut
respectively. This means that a full decoupling between normal and tangential
components in the ~T (∆~u)-relation is assumed. Figure 3.3 shows the model of the
interface with the components of the cohesive forces, acting antisymmetrically on
opposite interface boundaries
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Fig. 3.3: Interface model with components of cohesive forces Tt and Tn and fluid-on-
solid forces ft and Fp. [Frey et al., 2013]

The interfaces form a network of channels allowing fluid percolation. Taking
into account fluid bulk modulus kw, the fluid density ρw can be expressed as:

ρw = ρ0 exp

(
1

kw
(p− p0)

)
(3.11)

where ρw is the fluid density at reference pressure p0. The fluid mass flux ̟ in
the interface as a function of the pressure gradient dp

ds is found by an integration
of the Navier-Stokes equation for laminar flow between smooth parallel plates as

̟ = ρwκ
dp

ds
(3.12)

with κ a function of the dynamic viscosity of the fluid and the normal opening
of the interfaces ∆un. The integration of Equation (3.12) over the length of an
interface channel provides a solution for the mass flux between two points for a
given pressure difference ∆p between these points. Reduction of Stokes equation
with some minor simplifying assumptions gives

̟ =


exp

(
1

kw
p0
)
ρ0

s+∫

s−

1

κ(s)
ds




−1(
exp

(
1

kw
p+
)
− exp

(
1

kw
p−
))

(3.13)

with p+ and p− the fluid pressure at the extremities of the fluid channel. When
a given configuration of the REV is known, the integral over κ can be solved by
a Gauss quadrature, leading to an equation linear in the exponential of the fluid
pressure p. Introducing λp as the exponential of the fluid pressure p as

λp = exp
( p

kw

)
(3.14)

and interface conductivity term φ as

φ =


exp

(
1

kw
p0
)
ρ0

s+∫

s−

1

κ(s)
ds




−1

(3.15)
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Equation (3.13) can be rewritten in the linear form to describe the fluid mass flux
in a single interface channel as:

̟ = φ(λp
+ − λp

−

) (3.16)

A mass balance equation at the intersection of interfaces can be written

∑
̟ = 0 (3.17)

Periodic boundary condition pF = pL + ∆p, where []F are the ’follow’ degrees
of freedom, depending on a homologous ’lead’ degree of freedom []L, is enforced
through

λp
F − λ∆pλp

L

= 0 (3.18)

where ∆p = ∇Mp · (~xF − ~xL) is the difference between the periodic couples pL

and pF and λ∆p = exp
(

1
kw∆p

)
. The definition of a degree of freedom p at each

intersection of interfaces allows writing the global system of equations in λp by
the global assembly of (3.17) and (3.18):

[Φ]{Λ} = {0} (3.19)

where [Φ] is a n × n matrix and {Λ} is the column vector containing the n
degrees of freedom λ. One additional constraint is added by the penalization of
one degree of freedom in order to obtain a well-posed system of equations from
Equation (3.19);

λpen = λp̂ (3.20)

The value of penalization is used to iteratively update the pressure profile over
the REV in order to satisfy the third hydraulic boundary condition

1

V w

∫

Ωw

pdΩ = pM (3.21)

with Ωw the part of domain Ω occupied by the fluid phase, which in this case is
equal to the domain of the interfaces. Given a certain mechanical configuration
to provide the information for κ, the fluid system is solved for this specific config-
uration, after which the fluid pressure and pressure gradients in the channels are
used to determine the hydraulic forces Fp and ft acting as respectively normal
and tangential forces on the interface boundaries as shown in Figure 3.3. These
hydraulic forces take part in the equilibrium of the mechanical system, which is
solved for in a Newton-type iterative scheme (the tangent operators are only con-
sistent to the mechanical part of the problem, whereas the equilibrium involves
both mechanical and hydraulic components due to the grain boundary traction
by the fluid pressure). For each iterative update of the mechanical configuration
(nodal positions), the hydraulic system is solved to update the hydraulic back
coupling on the grains. This staggered scheme of subsequently taking a mech-
anical iteration and solving the hydraulic system of equations generally leads to
an efficient convergence due to the relatively low coupling from hydraulics to
mechanics [Frey, 2010].
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Once equilibrium is obtained for the mechanical system, the macroscopic prop-
erties are obtained from the REV by volume averaging by the following equations;

σ
M =

1

V REV



∫

Ωs

σdΩ+

∫

Ωw

pIdΩ


 (3.22)

~m =
1

V REV

∫

Γ+

(~xF − ~xL)q̄dΓ (3.23)

M =
1

V REV

∫

Ωw

ρwdΩ (3.24)

where the solid domain Ωs is defined as the grain domain and Ωw as the
interface element, q̄ is the interface fluid flux to be integrated over the upper
REV boundary Γ+.

3.2.2 Proposed modifications of the Frey model

The model presented above, for which the numerical details can be found in Frey
[2010] and Marinelli [2013], can provides a fully-coupled poromechanical mac-
roscale constitutive relation when combined with a homogenization framework
to provide the consistent tangent operators relating the increments in response
to increments in macroscale kinematical constraints. The staggered approach of
separately solving the microscale hydraulic and mechanical problems provides a
computationally efficient numerical scheme to solve the coupled problem. The
efficiency of this scheme is due to the relatively small coupling of the hydraulic
system on the mechanical system, allowing to omit the coupling terms in the
Newton-Raphson scheme for the mechanical problem.

However, for the implementation of this model in the framework of computa-
tional homogenization several difficulties arise:

• The first order computational homogenization is based on the separation
of scales. This implies that the REV represents local macroscale material
behaviour and a length scale at the microscale level should not be present
in order to be able to correctly prescribe the periodic boundary conditions.
The variation of fluid pressure over the REV violates this assumption. When
the variation in fluid pressure as an effect of the pressure gradient is taken
into account in the REV, an absolute REV size is required to translate the
macroscale pressure gradient to a pressure difference between the homo-
logous points on the periodic boundaries. Through the hydromechanical
coupling, the choice of the REV length not only has an effect on the hy-
draulic response, but also on the mechanical response of the REV.

• The definition of the macroscale stress tensor as the volume average of the
Cauchy stress over the deformed REV, with no mechanical stress compon-
ents in the interfaces, is not compatible with the Hill-Mandel principle of
macro-homogeneity, which requires the macroscopic work to be equal to the
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microscopic work. A possible alternative and more consistent way of taking
into account the macro homogeneity is to consider the first Piola-Kirchhoff
stress for the scale transition and obtain the macroscale Cauchy stress as

σM =
1

V 0 det(F )

∫

Ω0

P dΩ · F T (3.25)

In addition, the application of the Gauss-Ostrogradsky (or divergence) the-
orem for the integral over the domain boundary is required in the compu-
tational homogenization later on;

P
M =

1

V 0

∫

Ω0

P dΩ =
1

V 0

∫

Γ0

~t⊗ ~x0dΓ (3.26)

However, this might result in a non-symmetric Cauchy stress tensors, as no
requirements on the balance of moments is evaluated over the interfaces.
A similar problem arises when the macro stress is evaluated by means of
the boundary integral, either in the current or the reference configuration;
the undefined stress state in the interfaces either give rise to non-symmetric
Cauchy stress tensor or the internal grain boundaries have to be taken into
account in the integral. This prevents the direct application of the model
in the framework of computational homogenization.

• The consistent modelling of contact problems in large deformation formu-
lation by the finite element method is not straightforward and might re-
quire a redistribution of the grain contacts or a least a remeshing of the
contact interfaces for a proper transmission of the intergranular forces.
As the purpose of this model is to provide a simple and efficient way of
modelling micromechanical constituents, these contacts are modeled by in-
terface elements, for which no remeshing or redistribution of contacts is
considered. For large deformations, the contact forces acting between the
different particles loose their physical meaning as contacts are no longer
well-aligned. In addition to the physical meaning of these interface elements
under large local displacements, the definition of the interface channel fluid
volume suffers from a similar limitation as the intersections of several in
interface elements needs to be taken into account. The same would apply
for a possible reformulation in which a consistent interface stress state is
applied.

To overcome the aforementioned problems the following conceptual modifications
of the Frey model are introduced, facilitating a more consistent implementation
in the framework of computational homogenization.

A first modification is to change from a large deformation formulation to small
strain assumption at the microscale, through which stress tensors P and σ can be
assumed approximately equal, as the deformation gradient tensor F is assumed
to be approximately equal to identity matrix I. Moreover, the macroscale stress
state σM

ij is now found as

σM
ij =

1

V

∫

Ω

σijdΩ =
1

V

∫

Γ

tixjdΓ (3.27)
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A second modification is related to the spatial variation of the fluid pressure
and density inside the REV. To be consistent in the separation of scales, the fluid
pressure and density are considered to be constant over the REV. This means
that the drag forces acting on the grain interfaces ft disappear from the model
and the normal hydraulic forces Fp become equal to the macroscale fluid pressure
as the fluid pressure variation is small. Except the conceptual point of view, this
modification has some advantages compared to the original model: First of all,
the resulting hydraulic system of equations becomes linear in p instead of the
exponential pressure term λ, which provides a numerically more precise formu-
lation due to the independence of the fluid compressibility. A second advantage
from numerical point of view is that at the microscale the mechanical system can
be solved separate from the hydraulic system, since the hydraulic-to-mechanic
couplings are a-priori known. This makes the staggered procedure of solving
the hydraulic system of equations during each mechanical microscale iteration
obsolete. Finally, the periodic computational homogenization can be implemen-
ted more efficiently for the new version of the model, as the new formulation
of the hydromechanical coupled microscale problem is easier to differentiate for
condensing into consistent tangent operators.

With the above mentioned modifications, the microscale model in the frame-
work of first order periodic computational homogenization for hydromechanical
coupling will be redeveloped in the following chapters.



CONCLUSIONS PART I: TOWARD FE2 MODEL FOR

HYDROMECHANICAL COUPLING WITH A LOCAL SECOND

GRADIENT MODEL

In this part, the context of hydromechanical behaviour of claystone on multiple
scales and the challenges in the description of its behaviour in excavation problems
were presented. From this description, the coupling between the mesoscale of
microstructure with discrete characteristics and the macroscale with a (initially)
continuous behaviour is seen as an important modelling challenge and a coupling
between the different scales as well as the different physical phenomena is required.
To be more specific, the following phenomena are considered to be taken into
account:

• The macroscale modelling of the behaviour of claystone based on the explicit
description of its micromechanical constituents and their arrangement in the
microstructure;

• the modelling of the hydromechanical coupling through the evolving micro-
sctructure under deformation;

• the incorporation of the full loading history in the material behaviour;

• a natural way of introducing macroscale material anisotropy based on mi-
cromechanical observations;

• the modelling of the onset of localizations of macroscale deformation in
poromechanical continuum.

For the modelling of the microstructure, a model for hydromechanical coupling
on the microscale level was introduced by Frey [2010]. This model is able to
take into account the hydromechanical coupling at the microscale and provides a
primary way of modelling the actual mesoscopic structure of the claystone with
inclusions and discrete openings between its constituents. For the modelling of
localization problems in a poromechanical continuum, a poromechanical formu-
lation for saturated porous media combined with the local second gradient model
[Collin et al., 2006] was summarized as a model that can deal with the macroscale
localizations and evolving relations in hydromechanical coupled constitutive re-
lations. Computational homogenization was presented as a framework in which
the modelling of microstructural processes can be used to obtain the macromech-
anical constitutive behaviour, which comes best into its own in a finite element
squared (FE2) modelling approach.

This work will combine these two models through the scale transition provided
by a computational homogenization framework. This work is motivated by the
ambition of developing a multi-scale modelling approach to take into account
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the aforementioned characteristics of the behaviour of claystone. For a consist-
ent implementation, some modifications of the model were presented. The full
development of the merged models is given in the following parts.

The resulting modelling approach is summarized in Figure 3.4
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gradientL

model

ΣijkL+LDijklmn materialLpointLinL

macroscaleLfiniteLelementLBVP

∂p
∂ xm

p, ,

.

Fig. 3.4: Schematic representation of the hydromechanically coupled doublescale
model with local second gradient model.
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The starting point of the developments described in this work is the doubles-
cale model for hydromechanical coupling by [Frey, 2010], which is based on a
mechanical version developed by Bilbie [2007] and followed by the first doubles-
cale computations by Marinelli [2013]. Several modifications of this model have
been made to facilitate the implementation of computational homogenization by
static condensation and to guarantee the consistency in the doublescale frame-
work as discussed in section 3.2.2.

Chapter 5 describe the development of the microscale numerical model. With
respect to the Frey model the following contributions have been made:

• The change from large strain to a small-strain large-rotation formulation

• The separation of scales for the fluid problem

• A complete reformulation of the fluid flow model

• The introduction of diffusive fluid mass transport in the grains, combined
with the interface flow model

The last sections describe the homogenization procedure for obtaining the
macroscale response and the tangent operators. For the mechanical part of the
model, this is the application the computational homogenization available in lit-
erature [Kouznetsova et al., 2001] to the mechanical part of the microscale model.
The theory is therefore not original, although the reformulation using the period-
icity vector generalizes the approach to arbitrary periodic frames and is considered
to be more straightforward. The developments of the extension of the computa-
tional homogenization to hydromechanical coupling for the microstructure is an
original contribution, inspired on the computational homogenization of thermo-
mechanical coupled problems by Özdemir et al. [2008a].

From an implementation point of view, the following contributions were made
on the microscale ;

• a restructuring of the larger part of the code

• the implementation of the above-mentioned modifications of the model

• the complete implementation of the computational homogenization, both
for mechanical and HM coupled problems and both by numerical perturb-
ation and computational homogenization by static condensation.
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4. THE PERIODIC FRAMEWORK FOR HYDROMECHANICAL

COUPLED PROBLEMS

4.1 Decomposition of the microkinematics

The doublescale modelling approach distinguishes between a microscale and a
macroscale. The kinematics fields on these scales are umi , p

m and uMi , p
M re-

spectively and are not necessarily the same; given a point x̂i with a displacement
uMi (x̂), the microkinematics can be defined to be identical; umi (x̂) = uMi (x̂). A
Taylor expansion can be used to define the macro displacement of a point ~x close
to ~̂x as

ui(x) = ui(x̂) +
∂ui(x̂)

∂xj
(xj − x̂j) + ... (4.1)

For points ~x in a macroscale continuum very close to point ~̂x, only a first order
expansion is required and the higher-order terms of the expansion can be neg-
lected. For the microkinematics, these higher order terms can not be neglected,
as no continuity restriction is made to the displacement field at the micro level.

The micromechanical displacement field umi (x) is therefore decomposed in the
macromechanical field uMi (x) and further decomposition into microkinematical
gradients [Germain, 1973]:

umi (x) = uMi (x̂) +
∂uMi (x̂)

∂xj
x′j + χijk(x̂)x

′
jx

′
k + χijkl(x̂)x

′
jx

′
kx

′
l + .... (4.2)

with x′i = xi − x̂i and χijk, χijkl, ... the higher order gradients of the microscale
displacement fields. Rather than working with the full expansion, the higher order
terms are replaced by a micromechanical fluctuation field ufi (x), which leads to

umi (x) = uMi (x̂) +
∂uMi
∂xj

x′j + ufi (x) (4.3)

This micro fluctuation field can be discontinuous (as a result of the infinite de-
composition), but has to be kinematically admissible. Moreover, the require-
ment umi (x̂) = uMi (x̂) has to hold for any point in the macroscopic formula-
tion. From (4.2) it follows that this expression holds approximately, and only
for xi − x̂i << uMi (x̂). In this way the requirement for separation of scales
is obtained, in which the length scale of the representative elementary volume
containing the microstructure with its microkinematics is much smaller than the
macroscale problem.
In the same way as for the microscale displacements, the microscale pressure
fields can be decomposed into a macroscale components an a microkinematical
fluctuation field:

pm(x) = pM (x̂) +
∂pM (x̂)

∂xj
x′j + pf (4.4)
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As a consequence of the requirement of the separation of scales, it is found that

∂pM

∂xj
(xj − x̂j) + pf << pM (x̂) (4.5)

4.2 REV with periodic boundary conditions

In this section, a framework for the BVP on the REV is outlined. Different types
of boundary conditions can be chosen to translate the macroscale deformation,
pressure and pressure gradient to the microscale, of which the three main types
are;

• Dirichlet boundary conditions, where equal displacement of the boundaries
is enforced to apply the macroscale deformation,

• Neumann boundary conditions, where equals traction is applied on the
boundaries,

• Periodic boundary conditions, where the relative displacement between op-
posite boundaries is enforced and boundary traction on opposite boundaries
is antisymmetric.

It is well-known that Dirichlet and Neumann boundary conditions provide an
upper and lower bound solution, as they tend to respectively overestimate and
underestimate the equivalent material strength when the REV is not large enough
to be fully representative [Hill, 1963, Terada et al., 2000, van der Sluis et al.,
2000]. The periodic boundary conditions give a results bounded by these up-
per and lower bounds. The convergence towards a representative response with
increasing REV sample size is therefore more efficient with periodic boundary
conditions. For this reason and its suitability for homogenization applications,
periodic boundary conditions are adopted for transferring the macroscale deform-
ation to the microscale REV. In this section, the framework for the REV with
periodic boundary conditions is presented.

Next to the periodicity of the boundary conditions, periodicity of material can
be considered [Gitman et al., 2007]. Although not strictly necessary for the applic-
ation of periodic boundary conditions of the REV (see for example V.-D. Nguyen
and Noels [2012] for an alternative formulation of the periodic boundary condi-
tions), the material periodicity provides a natural accordance with the periodic
boundary conditions, as periodicity of the microscopic deformation is initially
obtained regardless the boundary conditions. This periodicity of the material
behaviour can be lost when softening phenomena occur and the localization of
deformation does not honor the periodicity of the microstructure. Numerical ex-
amples, using a REV with periodic microstructure and a microscale model very
similar to the one presented in this work, were given by Bilbie et al. [2008] who
showed that the response to deformation loading can become REV-dependent
when softening of the material takes place and localized deformation can occur.
This loss of material periodicity leads to dependency on the REV boundary condi-
tions whenever these conditions are not enhanced to deal with this non-periodicity
of deformation. In these cases the boundary conditions can become part of the
material behaviour, leading to a spurious REV-size and -shape dependency.
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This being noted, the aim is to develop a homogenization procedure that
provides a constitutive relation for a continuous macroscale medium. This re-
stricts the REV to representing continuous macroscale response. As a proper en-
hancement for fully continuous macroscale might not exist, the periodic bound-
ary conditions are accepted as a way of enforcing the local periodicity of the
microscale material behaviour. Although it provides a certain regularization of
microscale localized deformation, this will have implications on the macroscale
material behaviour that cannot be ignored. They will be discussed in Section
11.2.

The boundary value problem to be formulated on the REV is enforced through
periodic boundary conditions under the assumption that the material can be char-
acterized by a microstructure with a local periodicity. Local periodic media can
locally be subdivided in periodic domains Ωp enclosed by periodic boundaries Γp,
each of which contains a single realization of each microstructural phenomenon.
In the definition of a periodic representative elementary volume (REV) a section
of the periodic media is chosen such that it contains n times the entire domain
Ωp. The choice of the position and shape of the frame for cutting out the REV
from the locally periodic medium is arbitrary as long as the n realizations of do-
main Ωp fill the domain Ω, which has to be simply connected (that is, Ω should
have a single continuous boundary Γ). For the definition of the boundary value
problem on the REV it is convenient to choose a periodic frame with a simple geo-
metry, for which a rectangular frame aligned along the coordinate axes is the most
straightforward. An example of a locally periodic medium with the definition of
a periodic frame is given in Figure 4.1

A B

Fig. 4.1: Periodic structure by M.C. Escher (1938) with examples of a convenient peri-
odic frame A and inconvenient periodic frame B.

For periodic frames with finite dimensions, the periodic boundary Γ enclosing
Ω can be subdivided into two parts: a lead part ΓL and a follow part ΓF (see
Figure 4.2). The kinematics of any point xF on the follow boundary ΓF depend-
ents on the kinematics its homologous counterpart xL on the lead boundary ΓL.
The distance between points xL and xF is defined by a vector ~y. The vector ~y
will be called the periodic vector and provides the mechanical part of the periodic
boundary conditions for the REV through the relation between the homologous
couple:

~xF = ~xL + ~y (4.6)

In the reference configuration Ω0 of rectangular y1 × y2 periodic frames aligned
along the coordinate axes, the periodic vector ~y0 is either [y1; 0] or [0; y2], although
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the periodic frame can have any geometrically periodic shape characterized by
other periodic vectors and different points on the boundary might have different
periodic vectors. In a deformed configuration, the deformation of the REV is
enforced through the periodic vector by the global deformation gradient tensor:

xF,t
i = xL,t

i +
∂xM,t

i

∂x0j
y0j (4.7)

This expression can be written in terms of displacements as

uF,t
i = uL,t

i +
∂uM,t

i

∂x0j
y0j (4.8)

Comparing this expression with (4.3) shows that the microkinematical displace-
ment field uf is constrained by the periodicity of the microstructure and the
relative microkinematical displacement between the lead and follow is zero:

ufi
F − ufi

L
= 0 (4.9)

One point on the lead boundary is fixed to prevent rigid body motion, for which
the most practical choice is to fix the lower left corner of the REV to the origin
of the coordinate axis of the REV.

When these boundary conditions are enforced, equilibrium of the REV is
obtained in a classical way for mechanical problems. In a formulation for virtual
displacements u⋆i this writes

∫

Ω

σij
∂u⋆i
∂xj

dΩ+

∫

Γ

t̄iu
⋆
i dΓ−

∫

Ω

ρfiu
⋆
i dΩ = 0 (4.10)

a⃗
ax⃗

L

ΓL

ΓF

ay⃗
t xF

Fig. 4.2: Schematic representation of deformed REV with fixed lead •, lead REV
boundary , follow REV boundary , periodic vectors ◮, initial
REV boundaries , interface elements —— and solid element mesh ——.

With the REV small enough to neglect body forces fi and the field of virtual
displacements constrained by the periodic boundary conditions, this leads to the
requirement of antisymmetric boundary traction ~ti, completing the boundary
periodic boundary conditions of the REV.

~tF + ~tL = 0 (4.11)

When hydromechanical coupling is considered, the number of degrees of free-
dom in a point x in domain Ωp is augmented by 1 with respect to the purely
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mechanical case, as the fluid pressure p is introduced. For the pressure, the same
periodicity conditions apply and the boundary condition for pressure is given by

pF = pL +∇Mp · ~y (4.12)

considering the balance equation for fluid using the virtual pressure field p⋆,
equilibrium of the hydraulic system in the REV is described by

∫

Ω

mi
∂p⋆

∂xi
dΩ+

∫

Γ

q̄p⋆dΓ = 0 (4.13)

where mj is the local fluid mass flux, q̄ the fluid mass flux over the domain
boundary q̄ = mini. Again, p⋆ is constrained by the periodic boundary conditions
of Equation (4.12), which leads to the requirement of anti-periodic boundary flux
completing the fluid pressure boundary conditions.

q̄F + q̄L = 0 (4.14)

The requirement for the average pressure is easily obtained from the assumption
of scale separability, which allows the assumption of equal pressure over the REV,
or

∇pM · ~y << pM (4.15)

Similar to fixing one point to a fixed pressure, the pressure degree of freedom in a
single point can be fixed to the mean pressure obtain the correct REV pressure.

An additional result of the separation of scales is that transient effects can be
neglected on the microscale. This means that steady state flow can be considered
on the microscale.

4.3 Small strain - large rotation: stretch-rotation decomposition

Motivated by the implementation of the microscale model in a computational
homogenization framework, the REV boundary value problem will be formulated
under small strain assumptions. In order to obtain a small strain deformation
tensor, a transformation of the macroscale deformation gradient tensor is required.
The general approach of defining the small strain tensor ε as (∇~u+∇~uT )/2 does
not allow large rotation of the REV to be taken into account and a less strong
restriction on the deformation of the REV can be obtained by taking into account
large rotation of material. This can be obtained by decomposing the deformation
gradient tensor into a rotation component R and a stretch component U as
follows

FM
ij = RM

ikU
REV
kj (4.16)

This decomposition introduces a rotation of the REV with respect to the co-
ordinate system of the macroscale problem. To be able to distinguish between
the macroscale coordinate system and the REV coordinate system, superscripts
[]M and []REV will be used respectively.

The symmetric stretch tensor U is then assumed to represent the small strain
deformation gradient tensor to be enforced on the REV and the small strain
tensor ε is then defined as

ε = U
REV − I (4.17)
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It should be noted that in this formulation that:

diag(ε) 6= diag(F )− 1 (4.18)

As a consequence of the decomposition of the deformation gradient tensor, the
pressure gradient needs to be rotated equally:

∂pM

∂xi
= RM

ij

∂pREV

∂xj
(4.19)

Moreover, homogenized responses of the REV need to be rotated back into the
configuration corresponding to the macroscale kinematics. This involves the ro-
tation of the Cauchy stress tensor:

σ
M = R

M · σREV ·RMT
(4.20)

The rotation of the macroscale fluid mass flux is done as follows:

~mM = R · ~mREV (4.21)

So far, only rotation-objective vectors and tensors were dealt with. For the in-
cremental relation between the stress and strain, the rotation introduces some
additional terms to be taken into account:

δF = δ(R ·U) = δR ·U +R · δU (4.22)

δσM = δ(R · σREV ·RT )

= δR · σREV ·RT +R · δσREV ·RT +R · σREV · δRT
(4.23)

The same applies for the variation of the pressure gradient and the fluid mass
flux;

δ∇pM = δR · ∇pREV +R · δ∇pREV (4.24)

δ ~mM = δR · ~mREV +R · δ ~mREV (4.25)

These relations need to be taken into account when tangent operators, relating
variations of the REV response to variations of the macroscale kinematics, are
transferred from the REV with symmetric deformation to the macroscale later
on.



5. THE MICROSCALE MODEL

In the model development from the original Frey model to the final microscale
model, different versions have been defined. Two of these versions were extended
with computational homogenization for obtaining the consistent tangent operator:

• The Frey model for hydromechanical coupling. This is the model presented
in Section 3.2 with the only modification being the change from large strain
formulation to small strain/large rotation formulation. This version is not
consistent with respect to the separation of scales for the fluid and contains
contradictions in the way the fluid pressure distribution in a periodic REV
is taken into account. Nevertheless, an important part of the developments
of the computational homogenization by static condensation for hydromech-
anical coupling was devoted to this version of the model. The developments
of the computational homogenization of this version are therefore given in
Appendix C, together with the introduction of the diffusive fluid transport
in the grains.

• The microscale model for hydromechanical coupling. This is the ’final’ ver-
sion of the developments discussed in this work and contains all proposed
modifications. The developments of this version are given in this chapter.
Moreover, the developments in the following chapters and the results presen-
ted in Part III and Part IV all correspond to this version.

5.1 The microscale model - mechanical part

To model the material microstructure, a material is defined on the micro level
that is built of solid particles separated by cohesive interfaces. To concentrate
possible softening phenomena purely at the particle interfaces, the solid particles
are modelled as elastic solids, although the constitutive behaviour could be ex-
tended to more complex behaviour as well.
Interfaces are defined as the open space between two grains and its opening is
derived from the relative position of opposite grain boundaries (Figure 5.1). In
the initial (undeformed) configuration Ω0, the interfaces are closed, which means
the upper and lower boundaries Γint+ and Γint− coincide. The cohesive forces act
between the opposite sides of the interfaces as a function of the history of normal
and tangential relative displacements ∆un and ∆ut between the two boundaries,
which will be referred to as the interface state parameters Dn and Dt, although
an arbitrary number of state parameters could be used if required. For the co-
hesive force vector ~T a normal component Tn and a tangential component Tt
are defined as indicated in Figure 5.1, which gives the general relation for the
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interface cohesive forces as:

Ṫ t
n = f(∆utn,∆u

t
t, D

t
n, D

t
t; ∆u̇n,∆u̇t) (5.1)

Ṫ t
t = f(∆utn,∆u

t
t, D

t
n, D

t
t; ∆u̇n,∆u̇t) (5.2)

These general relations need to take into account the full mechanical behaviour
of the interfaces, including contact behaviour in compression (grains should not
overlap) and all other forces acting between the two grains on the opposite sides
of the interface as a function of (the history of) their relative displacement.

n+

inte
rfac
e

T+t

T+n

T-n

T-t

solid

solid
Δ t

Δ
n

n-

Γint+

Γint-

Fig. 5.1: Cohesive interface forces acting on the boundaries of the two opposite solids
in a deformed configuration.

The micro mechanical model described above is used to constitute a REV with
grains separated by cohesive interfaces. The field equation for the conservation
of momentum of this boundary value problem is written in the weak form for any
kinematically admissible virtual field of displacement u⋆ as follows:

∫

Ω

σij
∂u⋆i
∂xj

dΩ+

∫

Γ

t̄iu
⋆
i dΓ−

∫

Ω

ρfiu
⋆
i dΩ = 0 (5.3)

with t̄ the boundary traction on any boundary Γ. The boundary Γ can be divided
in external boundaries Γext (the periodic REV boundaries) and internal boundary
Γint (the interfaces). The external boundary is conditioned by Equations (4.8)
and (4.11) for periodicity from which follows that the integral over the external
boundary is zero due to the antisymmetry of the external boundary traction

(t̄Fi u
⋆F
i = −t̄Li u⋆Li ). With T

+/−
i the global components of the cohesive interface

forces acting on the upper/lower part of the interface and Γint,+ and Γint,− the
opposite grain boundaries, this gives

∫

Ω

σij
∂u⋆i
∂xj

dΩ−
∫

Γint,+

T+
i u

⋆+
i dΓ−

∫

Γint,−

T−
i u

⋆−
i dΓ = 0 (5.4)

Note that the definition of the upper (+) and lower (−) part of the interface is
arbitrary as long as the corresponding outward normal vectors are consistent with
the definition.

This nonlinear field equation is solved using a full Newton-Raphson iterat-
ive scheme by a linearization of the problem. After spatial discretization by a
finite element method, this scheme yields solving the following linear system of
equations

{u⋆}T [Kni ]{duni} ≈ −R⋆ni (5.5)
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with [Kni ] the global finite element matrix and {duni} column vector to update
the nodal positions from configuration Ωni to Ωni+1 .

5.1.1 Discretization of the continuum

The discretization of the field equations by the finite element are obtained as
follows:

For the grains, a four-node element with 4 integration points is used for the
spatial discretization. The element has a parent element in coordinate system
[ξ1, ξ2] with nodal coordinates [±1,±1] as presented in Figure 5.2.

n1 n2

n3n4

N

x1

x2

ξ
2

ξ1

Fig. 5.2: Mechanical 4-node element with 4 integration points for modelling the mech-
anical behaviour of the solid grains

The nodal positions in global coordinates xi are written as column vector
{XNode} and its displacements as {UNode} with [](i) the element numbering of
nodes:

{XNode} =





x
(1)
1

x
(1)
2

x
(2)
1

x
(2)
2

x
(3)
1

x
(3)
2

x
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{UNode} =





u
(1)
1

u
(1)
2

u
(2)
1

u
(2)
2

u
(3)
1

u
(3)
2

u
(4)
1

u
(4)
2





(5.6)

Shape functions N (i) are defined for the bilinear interpolation between the
nodal values as the contribution of the individual nodes (i) on the position [ξ1, ξ2]
in the parent element:

N (1) =
1

4
(1− ξ1)(1− ξ2)

N (2) =
1

4
(1 + ξ1)(1− ξ2) (5.7)

N (3) =
1

4
(1 + ξ1)(1 + ξ2)

N (4) =
1

4
(1− ξ1)(1 + ξ2)

These shape functions are used to define the strain ( ∂ui

∂xj
) in the integration

points as a function of {UNode} through defining the matrices of partial derivatives
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∂ξi
∂xj

and ∂N(i)

∂ξj
as [T ] and [B]:

[T ] =




∂ξ1
∂x1

∂ξ2
∂x1

0 0
∂ξ1
∂x2

∂ξ2
∂x2

0 0

0 0 ∂ξ1
∂x1

∂ξ2
∂x1

0 0 ∂ξ1
∂x2

∂ξ2
∂x2


 (5.8)

[B] =




∂N(1)

∂ξ1
0 ∂N(2)

∂ξ1
0 ∂N(3)

∂ξ1
0 ∂N(4)

∂ξ1
0

∂N(1)

∂ξ2
0 ∂N(2)

∂ξ2
0 ∂N(3)
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0 ∂N(4)

∂ξ2
0

0 ∂N(1)

∂ξ1
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∂ξ1
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0 ∂N(1)
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0 ∂N(2)
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0 ∂N(3)
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0 ∂N(4)
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(5.9)

The terms ∂ξi
∂xj

in [T ] are obtained from the inverse of the individual terms of

{∂x
∂ξ } = [B]{XNode}

{ξNode} =





ξ
(1)
1

ξ
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2
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(2)
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(5.10)

The strain tensor in an integration point can be found as the function of its local
coordinated ξi and the nodal displacements {UNode}:





∂u1

∂x1
∂u1

∂x2
∂u2

∂x1
∂u2

∂x2





= [T ][B]{UNode} (5.11)

The variation of a stress tensor σt in a certain configuration at time t can now
be written as

{δσt} =





δσt
11

δσt
12

δσt
21

δσt
22





= [Ct][T ][B]{δUNode} (5.12)

It is now possible to write the components of the balance equation (5.4) as

∫

Ω

{U⋆
Node}T [B]T [T ]T [Cτ ][T ][B]{δUNode}dΩ (5.13)
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For individual elements this can be further rewritten into

{U⋆
Node}T

∫

Ωe

[Eτ ]dΩ{δUNode} (5.14)

with

[E]τ = [B]T [T ]T [Cτ ][T ][B] (5.15)

The column vector of residual forces on the nodes of the solid elements is given
by;

{fe} =

∫

Ωe

[B]T [T ]T [σ]dΩ =

∫

ωpe

[B]T [T ]T [σ] det (JΩω)dω (5.16)

with ωpe the parent element domain, {fe} the element nodal force column vector:

{fe} =





f
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1
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(5.17)

and JΩω the Jacobian of the transformation from the parent element to the global
element

JΩω =

[
∂x1

∂ξ1
∂x1

∂ξ2
∂x2

∂ξ1
∂x2

∂ξ2

]
(5.18)

The stiffness matrix relating the variation of nodal displacement to the variation
of these nodal forces can be found as:

[ke] =

∫

Ωe

[Et]dΩ =

∫

ωpe

[Et] det(JΩω)dω (5.19)

Replacing the integrals of (5.16) and (5.19) over the element by a numerical
integration, the residual nodal forces and stiffness matrix are obtained as:

[fe] =

npi∑

i=1

npi∑

j=1

[B(ξi1, ξ
j
2)]

T [T (ξi1, ξ
j
2)]

T [σ(ξi1, ξ
j
2)] det (J

Ωω(ξi1, ξ
j
2))W

iW j (5.20)

[ke] =

npi∑

i=1

npi∑

j=1

[E(ξi1, ξ
j
2)] det(J

Ωω)W iW j (5.21)

with W i the weights of the Gauss quadrature, depending on the type of element.
W i = 1 in case of the element with 4 integration points.
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5.1.2 Discretization of the interfaces

For the interfaces a four node element with 2 integration points is used (see Figure
5.3). The nodes of the parent elements have coordinates [ξ1, ξ2] = [±1, 0]:

x2

x1

(1) (2)

(3)(4)

ip1 ip2

ξ2

ξ1

θ

Fig. 5.3: Mechanical part of the interface element with parent element in local coordin-
ates.

For the four nodes of the elements [XNode] and [UNode] can be used in the
same way as for the quadrilateral grain element. The shape functions for the
interface elements N (i) are different, because the parent element has only one
dimension ξ1. ξ2 merely serves as the orientation normal to the interface element
and for any point in the interface element ξ2 = 0:

N (1) =
1

4
(1− ξ1)

N (2) =
1

4
(1 + ξ1) (5.22)

N (3) =
1

4
(1 + ξ1)

N (4) =
1

4
(1− ξ1)

Rather than defining a strain in the integration points, the relative opening of
the interface ∆ut and ∆un is required. This means that [T I ] and [BI ] can be
defined as:

[BI ] =

[
−N (1) 0 −N (2) 0 N (3) 0 N (4) 0

0 −N (1) 0 −N (2) 0 N (3) 0 N (4)

]
(5.23)

[T I ] =

[
∂xt

∂ξ1
0

0 ∂xn

∂ξ2

][
∂ξ1
∂x1

∂ξ1
∂x2

∂ξ2
∂x1

∂ξ2
∂x2

]
=

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
(5.24)

with θ the orientation of the interface with respect to the global horizontal axis.
This leads to

{
∆ut
∆un

}
= [T I ][BI ]{UNode} (5.25)

and for a consistent linearization [CI ] of the interface cohesive forces defined
as

{
δTt
δTn

}
=

[
CI

tt CI
tn

CI
nt CI

nn

]{
δ∆ut
δ∆un

}
=
[
CI
]
[T I ][BI ]{δUNode} (5.26)
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It is now possible to write the last 2 components of the balance equation (5.4) as

∫

Γ

{U⋆
Node}T [BI ]T [T I ]T [CIτ ][T I ][BI ]{δUNode}dΓ (5.27)

For individual elements this can be further rewritten into

{U⋆
Node}T

∫

Γe

[EIτ ]dΩ{δUNode} (5.28)

with

[EI ]τ = [BI ]T [T I ]T [CIτ ][T I ][BI ] (5.29)

The column vector of residual forces on the nodes of the interface elements is
given by;

{f ie} =

∫

Γie

[BI ]T [T I ]T [T τ ]dΓ =

∫

γipe

[B]T [T ]T [tτ ]JΓγdγ (5.30)

with γipe the interface parent element domain, {f ie} the interface element nodal
forces and JΓγ the Jacobian of the transformation from the parent element to the
global element

JΓγ =
∂s

∂ξ1
(5.31)

and s the length along the interface element in the global coordinate system. The
stiffness matrix relating the variation of nodal displacement to the variation of
these nodal forces can be found as:

[kie] =

∫

Γie

[EIτ ]dΓ =

∫

γipe

[EIτ ]JΓγdγ (5.32)

Replacing the integrals of (5.30) and (5.32) over the element by a numerical
integration, the residual nodal forces and stiffness matrix are obtained as:

{f ie} =

npi∑

i=1

[BI(ξi1)]
T [T I(ξi1)]

T [tτ (ξi1)]J
Γγ(ξi1))W

i (5.33)

[kie] =

npi∑

i=1

[EI t(ξi1)]J
Γγ)W i (5.34)

with W i the weights of the Gauss quadrature, depending on the type of element.
W i = 1 in case of the interface element with 2 integration points.
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5.1.3 Global assembly

The global stiffness matrix [K] yields the incremental relation between the column
vector of nodal displacement components {u} and nodal force components {f}:

[K]{δu} = {δf} (5.35)

This global system of equations is obtained by an assembly of the element stiff-
ness matrices [ke] and [kie] and the column vectors of nodal element forces {fe}
and {f ie}. Periodic boundary conditions are enforced by penalization of nodal
displacement in Equation (5.35).

5.2 Hydromechanical coupling: the channel flow model

When fluid pressure is taken into account, the fluid pressure in the interfaces acts
normally on the grain boundaries. This introduces an additional force term fn
(the global equivalent of to the nodal balance equation. Because of the station-
arity of the microscale problem these hydraulic pressure forces only depend on
the macroscale fluid pressure. Due to the separation of scales between micro and
macro, the spatial variation of the fluid pressure has not to be taken into account
for solving the microscale problem. Nevertheless, the fluid pressures acting on
the grain boundaries are introduced as an additional (constant) nodal force in
the nodal balance equation for obtaining the nodal out-of-balance forces, since
these fluid pressures are active in the mechanical equilibrium form the hydraulics-
to-mechanics coupling.

The interfaces between the grains form a pore channel network and provide
a flow paths for fluid transport between the grains. The hydraulic transmissivity
of a channel is a function of the dynamic viscosity of the constitutive relation
of the fluid and the shape of the channel through which the fluid is percolating.
The variable for the coupling from the mechanical to the hydraulic system is the
normal openings of the interfaces and (if required) its history. Assumptions on
the shape of the interface channels as a function of the relative openings and the
associated flow regime determined by the pressure or the pressure gradient allows
the definition of a hydraulic transmissivity κ:

κ = κ(∆un,∆ut, p
M ,∇pM ) (5.36)

In this work, the assumption on the interface geometry will be that of two closely-
space parallel plates, for which a hydraulic aperture ∆uh is defined as a function
of the normal opening of the interface ∆un. This hydraulic opening allows the
translation from ∆un which is relative to the REV size (as a length scale with
undefined unit) and can be slightly negative, to a hydraulic non-negative equi-
valent opening with a physical dimension in order to derive the fluid transport
properties of the interface channel.

As introduced in Section 3.2.2, the separation of scales validates the assump-
tion of fluid incompressibility at the microscale level, which allows modelling of
the fluid flow in the interfaces starting from the Navier-Stokes equations for in-
compressible flow;

ρw
(
∂vi
∂t

+ vj
∂vi
∂xj

)
= − ∂p

∂xi
+ µ

∂2vi
∂xj∂xj

+ fi (5.37)
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Only small interface openings with low pressure gradients are considered in the
domain of application of the model. It is therefore reasonable to assume laminar
flow conditions. The microscale problem is solved under steady state conditions,
which has the following consequences for the fluid flow velocity ~v

∂vi
∂xi

= 0 (fluid incompressibility) (5.38)

∂vi
∂t

= 0 (steady state) (5.39)

vj
∂vi
∂xj

= 0 (laminar flow) (5.40)

When no body forces are considered, this allows reducing Equation (5.37) into

∂2vi
∂xj∂xj

=
1

µ

∂p

∂xi
(5.41)

Given a channel along the x1-axis with hydraulic opening ∆uh (Figure 5.4), solv-
ing for boundary conditions v(x2 = ±∆uh/2) = 0 and ∂p/∂x2 = 0 gives

v1(x2) = − 1

2µ

(
∆uh

2

4
− x2

2

)
dp

dx1
(5.42)

x2

x1

Δuh
v1(x2)

Fig. 5.4: Laminar fluid flow profile in an interface along the x1-axis with hydraulic
opening ∆uh

The integration of the mass flux ρw~v over the cross-section of the interface
gives the interface fluid mass flux ̟ as the following cubic function of the hy-
draulic opening ∆uh:

̟ =

1
2∆uh∫

− 1
2∆uh

ρwv1dx2 = −ρw∆uh
3

12µ

∂p

∂x1
= −ρwκdp

ds
(5.43)

s is the distance along the channel, to generalize the expression from the example
of a channel along the x1-axis to the case of an arbitrary interface orientation.
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With the local fluid mass flux in an interface channel defined as a function of
hydraulic transmissivity κ and the fluid density ρw, the pressure gradient can be
integrated over a channel section. Repeating the scale separability (i.e. the very
small spatial variation of fluid density with respect to the REV size, validating
the local assumption of the REV with respect to fluid density gradient), the fluid
pressure variation in the REV will have a negligible effect on the fluid density ρw

which thus can be taken constant over the REV and becomes directly dependent
on the REV average fluid pressure p̄ = pM ;

ρw = ρw0 exp

(
p̄− p0
kw

)
(5.44)

with ρw0 the fluid density at ambient pressure p0. This gives a relation between
the pressure gradient along the channel and the channel mass flux ̟;

dp

ds
= − 1

κ(s)

1

ρw0 exp
(
p̄−p0

kw

)̟ (5.45)

with s the position in the (1-dimensional) channel. The notion of steady state
flow at the micro scale provides the required conservation of fluid mass in the
channels, which means that ̟ is constant over the length of a channel. This
allows the integration of (5.45) over a channel between locations si and sj as
follows:

p(sj)− p(si) =

sj∫

si

1

κ(s)
ds

1

ρw0 exp
(
p̄−p0

kw

) ω̄ (5.46)

or

̟l = ρwφl
(
p(sj)− p(si)

)
(5.47)

were φl is a hydraulic transmissivity term for channel l at given fluid density,
linearly relating the channel fluid mass flux ̟l to the pressure difference;

φl = ρw




sj∫

si

1

κ(s)
ds




−1

(5.48)

Given the pressures at the end and the beginning of a channel section and the
REV fluid density, the fluid flow in individual channels is completely described
by (5.47). In order to solve for this, the fluid coupling term κ in equation (5.48)
need to be integrated over the channel section. Discretization of the channel by
means of one-dimensional finite elements allows the integration by means of a
Gauss quadrature. In the interface elements introduced for the mechanical part
of the model in 5.1, an equivalent one-dimensional hydraulic element with two
integration points is introduced (Figure 5.5).
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1

2

3

4

node 1

node 2

ip 1

ip 2

Fig. 5.5: Hydraulic interface element (blue) with two integration points in its equival-
ent mechanical interface element (gray).

The pore channel network can be discretized by means of these hydraulic
elements, resulting in a pore network with a degree of freedom at each interface
node defined at the channel intersection point. A schematic example of such a
network is given in Figure 5.6.

p1

p2

p3 p4

p5

ϕA

ϕB

ϕC

ϕD

ϖA ϖC

ϖB

ϖD

qT

qR

Fig. 5.6: Example mesh of a unit-length REV for the example of hydraulic system with
5 hydraulic degrees of freedom.

With the fluid mass flux over individual interface elements defined, the mass
balance equations in the intersection points of the channels are written for all
channels l connected to this intersection, thereby taking into account the homo-
logous connectivity of lead and follow node couples over the periodic boundaries:

∑

l

̟l
(i) = 0 (5.49)

This nodal mass balance provides an equation for each independent degree of
freedom pi. The additional equations needed to obtain a n×n system of equations
to solve the REV boundary value problem of n degrees of freedom are provided
by the periodic boundary conditions:

pF = pL +∇p · ~y (5.50)

A penalization of one of the nodal pressures to prevent the global variation of
the fluid pressure (the fluid pressure equivalent of rigid body movement in case
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of displacements) gives a well-posed system of equations in the form of Equation
(5.51). As the pressure over the REV can be considered constant, the penalization
pressure p̄ can be taken equal to the macroscale pressure pM . The matrix [Φ] is
the global assembly of nodal mass conservation (5.49) and the constraints of the
periodicity (5.50).

[Φ]{p} =
{
R
}

(5.51)

The n terms in column vector {R} are the penalization pressure p̄ (for one of the
independent degrees of freedom), 0 (for all other independent degrees of freedom
) or the periodic pressure difference ∇p · ~y (for all follow degrees of freedom pF ).
If needed, the individual equations assembled in (5.51) can be multiplied by a
penalization term to avoid ill-posed system of equations.

For the microstructure in Figure 5.6 this would give the following system of
equations:




φA 0 −φA − φC φc 0
0 φB + c2 −φB − φD 0 φD

−φA −φB φA + φB + φC + φD −φC −φD
−c1 0 0 c1 0
0 −c1 0 0 c1








p1
p2
p3
p4
p5





=





0
c2p̄
0

c1∆p1
c1∆p2





(5.52)

with c1 and c2 the penalization terms for the pore pressure and pore pressure
gradient respectively. Solving this system of equations provides the pore pressure
distribution from which the local fluid fluxes can be recomputed using Equation
(5.47).

An alternative approach for solving the REV hydraulic boundary value prob-
lem is to follow the approach of the computational homogenization that will be
used in the next chapter. This approach consists of writing the reduced system
of equations; when the homologous connectivity is initially not taken into ac-
count, Equation (5.49) provides n mass balance equations for all n fluid degrees
of freedom, leading to the system of equations:

[G]
{
p
}
=
{
Σ̟
}
. (5.53)

Σ̟ indicates the mass balance in the interface hydraulic nodes as a summation of
the contributions of fluid mass fluxes ̟ in the elements connected to the interface
hydraulic node on which degree of freedom p is defined.

In case of the example REV in Figure 5.6 , this gives;




φA 0 −φA 0 0
0 φB + 1 −φB 0 0

−φA −φB φA + φB + φC + φD −φC −φD
0 0 −φC φC 0
0 0 −φD 0 φD








p(1)
p(2)
p(3)
p(4)
p(5)





=





Σ̟(1)

Σ̟(2) + p̂
Σ̟(3)

Σ̟(4)

Σ̟(5)





(5.54)

replacing the sum of the interface mass flux towards a node
∑
̟ by the nodal

fluid balance q, the periodic boundary conditions for fluid fluxes is written as

Σ̟F +Σ̟L = qF + qL = 0 (5.55)
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System of equations (5.53) can be extended with the macroscale gradient of
pressure. This gives the following extended system of equations:

[
0(2×2) 0(2×m)

0(m×2) G(m×m)

]{
∇p
p(m)

}
=

{
0(2)
q(m)

}
(5.56)

wherem is the number of fluid pressure degrees of freedom in the interface channel
network. Two additional equations are required to provide dual terms for ∇p
for which the flux on the follow boundary ̟F can be used, expressed as the
macroscale mass fluid flux:

mREV
i =

1

V REV

∑

ΓF

qF yi (5.57)

with qF the residual of the mass balance in the hydraulic interface nodes on the
follow boundary. Adding these constraints to the extended system of equations
(which is simply done by a summation of the equations of degrees of freedom qF )
provides a first intermediate system of equations:

[
0(2×2) G1(2×m)

0(m×2) G1(m×m)

]{
∇p
p(n)

}
=

{
mREV

(2)

q(n)

}
(5.58)

This system of equations is then reduced by eliminating the dependent degrees
of freedom and their static duals by means of the periodic boundary conditions
(5.50) and (5.55), which can be repeated here as:

pF = pL +∇p · ~y (5.50) (5.59)

and

qF + qL = 0 (5.55) (5.60)

First, the elimination of the follow degrees of freedom is obtained by transfer-
ring their corresponding columns to those of their leads and the macro pressure
gradient. This leads to the second intermediate system of equations:

[
G2(2×2 G22×mi

G2(m×2 G2m×mi

]{
∇p
p(mi)

}
=

{
mREV

(2)

q(n)

}
(5.61)

with mi the number of independent pressure degrees of freedom, which is equal
to the number of nodes not on the follow boundary. The elimination of the
dependent mass fluxes qF by means of (5.60), which is simply the addition of the
equations for qF to those of qL, gives the final reduced system of equations:

[
G⋆pp

(2×2) G⋆pi
(2×mi)

G⋆ip
(mi×2) G⋆ii

(mi×mi)

]{
∇p(2)
p(mi)

}
=

{
m(2)

0(mi)

}
(5.62)

This system is singular, as the average pressure has not been defined and a pen-
alization is required to be able to solve the system of equations. This is done by
penalizing one of the independent fluid pressures to the macroscale fluid pressure
p̄ = pM . Because the main interest here is solving for the macroscale hydraulic
behaviour and not the microscale local fluid pressures fluctuation field pf , the
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choice of the penalization pressure p̂ for the penalization is arbitrary and it is
convenient to take p̂ = 0.

For obtaining the relation between the macroscale fluid pressure gradient
∇REV p and the macroscale flux mREV

i the independent degrees of freedom pi

are reduced from the system by static condensation to find:

[K⋆]{∇p} = {m}, [K⋆] = [G⋆pp]− [G⋆pi][G⋆ii]−1[G⋆ip] (5.63)

with [K⋆] a 2 × 2 matrix, {∇p} the macroscale pressure gradient and {m} the
homogenized fluid mass flux. Because K⋆ is only dependent on nodal coordinates
~x and average pressure p̄ = pM (the fluid pressure fluctuation has been eliminated
from the equation), the variational relation is directly found as

K
⋆ · δ∇pM = δ ~m (5.64)

which makes perturbation or additional computational homogenization for a vari-
ational formulation obsolete. Finally, the permeability tensor is given as

k
REV = − 1

ρµ
K

⋆ (5.65)

The permeability k as a second order tensor is now obtained purely from the
microstructure configuration defined by the micromechanical nodal positions {~x}
and is a local material property. Darcian flow is obtained as a result, in contrast
with the Frey microsacle model for hydromechanical coupling in which the fluid
flow is non-Darcian as an effect of the variation of fluid density within the REV
(see for more details Section 3.2 and Frey [2010]). Note that the macroscale ro-
tation of the REV needs to be taken into account in order to distinguish between
kREV and kM .

Unlike the purely mechanical problem, the REV for hydromechanical coupled
problems requires the definition of a length scale related to the opening of the
interfaces to obtain a physically meaningful permeability tensor that can be used
on the macroscale, as the hydraulic interface aperture has to provide a physical
dimension for the permeability. This size introduction can be done by assign-
ing explicit REV dimensions (which gives ∆un) a physical dimension), or by an
artificial translation from dimensionless normal interface openings ∆un to a hy-
draulic interface opening ∆uh with a physical dimension. Moreover, to guarantee
well-posed systems of equations (5.52) and (5.54), a minimum hydraulic trans-
missivity to each node is required so that φ 6= 0. Both requirements of a physical
dimension of ∆uh and ∆uh > 0 are obtained by defining the hydraulic opening
∆uh as follows:

∆uh = max
(
∆umin

h ,∆u0h + ah∆un
)

(5.66)

Parameters ∆umin
h , ∆u0h and ah all have a length scales (in [m]) and can be used

to define the translation from a unitless mechanical normal opening to a physical
hydraulic opening. The resulting dependency on the normal mechanical interface
opening is given in Figure 5.7.
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Fig. 5.7: Relation between normal mechanical interface opening ∆un [−] and hydraulic
equivalent opening ∆uh [m].

5.3 Hydromechanical coupling with diffusive flow in the grain

The hydraulic model presented in Section 5.2 has a macroscale initial permeability
defined by the minimum interface opening and fluid transport is only taking place
in the grain interfaces. As the purpose of the model is to capture the behaviour
of claystone, with a clay matrix material through which fluid transport has a
diffusive character, the hydraulic model might not represent the correct physical
phenomena. For this reason, the hydraulic model is extended in this section to
take into account diffusive flow in the grains, such that it can be used to simulate
the diffusive flow in the clay matrix.

Within the presented framework of doublescale modelling, different approaches
can be followed for the introduction of diffusive fluid transport phenomena in the
grains. In order not to intervene with the steady-state formulation of the scale
transition, transient formulations are not applicable and only steady-state for-
mulations can be applied. Apart from this a full poromechanical approach could
be followed for the modelling of the HM-coupled behaviour of individual grains
under microscale steady-state conditions, but as a first extension of the existing
model towards diffusive flow, some restrictions are made to maintain the general
structure of the numerical formulation of the microscale problem. The concept of
the diffusive flow introduced in the grains can be characterized by the following
restrictions:

• Transient effects are, in line with the steady-state formulation of the mi-
croscale model, not considered in the diffusive flow. This implies that the
diffusive flow does not introduce a double porosity effect as it would require
the definition of different timescales in the microscale model

• No coupling between the deformation and the diffusive flow model are con-
sidered; permeability and pore volume are considered constant in the grains
and fluid pressure in the grains does not effect the deformation of the grains.

• The microkinematical fluctuation field pf is considered continuous over the
full REV domain. This means that all grains are considered permeable and
the fluid pressure is equal on both sides of the grain interface.

• Hydromechanical coupling is not taken into account in the diffusive part of
the model; only fluid flow and (time-independent) fluid mass storage in the
grains are considered. The variation of the fluid density in the diffusive part
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is (in the same way as for the interfaces) due to the macroscale variation of
pore pressure.

These restrictions lead to a complete decoupling of the deformation and the fluid
flow in the grains, which is favorable for the application of computational homo-
genization by static condensation.

As presented in 5.2 a minimum hydraulic interface opening is required in
the interface flow model to guarantee the connectivity between all degrees of
freedom in a general way. With the introduction of diffusive flow in the grains,
the connectivity can be obtained through the grains as well and a minimum
interface opening is no longer needed. However, to maintain the generality of well-
connected degrees of freedom, this requires a minimum permeability of all grains
and impermeable inclusions must be modelled as grains with a low permeability
with respect to the other grains. Moreover, the definition of a permeability for all
grains allows using the same finite element mesh for the mechanical and hydraulic
parts of the model. In the following developments, all grains are considered to
have a minimum permeability to constitute a well-posed system of equations.

The diffusive flow in the grains has to interact with the pore channel flow in
the interfaces. This interaction takes place at the grain boundaries for which the
channel flow model prescribes equal pressure at opposite sides of the interface
element. The linearity of the combined fluid problem allows addressing the dif-
fusive flow problem separately from the interface flow problem. This will be done
by deriving an expression relating the pore fluid pressure on the grain boundaries
to the grain boundary residual fluxes related to the diffusive flow in the grains.
Once this expression is derived, it can be merged with the system of equations of
the channel flow model do obtain the combined mass balance equations.

5.3.1 The microscale model for diffusive flow in the grains

A microscopic permeability tensor km is introduced to describe the microscale
permeability of the grain material:

k =

[
k11 k12
k12 k22

]
(5.67)

This leads to a mass flux mi:

mi = −ρw kij
µ

∂p

∂xj
(5.68)

with µ the fluid phase dynamic viscosity and ∂p
∂xj

the local pressure gradient.

Starting from the conservation of mass using a virtual work formulation in steady-
state conditions∫

Ω

∂p∗

∂xi
midΩ−

∫

Γ

p⋆q̄dΓ = 0 (5.69)

where q̄ = mini is the domain boundary mass flux along outward boundary vector
~n. Ω is here an arbitrary domain enclosed by domain boundary Γ. As we consider
an arbitrary configuration τ1 during the Newton-Raphson iteration, equilibrium
has not been obtained and a residual Rτ1 will be present;

∫

Ω

∂p∗

∂xi
mτ1

i dΩ−
∫

Γ

p∗q̄τ1dΓ = Rτ1 (5.70)
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A next configuration τ2 is needed, for which R = 0. Including the substitution
of mi and assuming q̄ does not change, this gives;

∫

Ω

∂p∗

∂xi

(
ρτ2w

kτ2ij
µ

∂pτ2

∂xj
− ρτ1w

kτ1ij
µ

∂pτ1

∂xj

)
dΩ = −Rτ1 (5.71)

Introducing the notation

dρτ1w = ρτ2w − ρτ1w =
∂ρτ1w
∂p

dpτ1 +
∂2ρτ1w
∂p2

(dpτ1)
2
+ ... (5.72)

dkτ1ij = kτ2ij − kτ1ij =
∂kτ1ij
∂p

dpτ1 +
∂2kτ1ij
∂p2

(dpτ1)
2
+ ... (5.73)

dpτ1 = pτ2 − pτ1 (5.74)

allows substitution of the unknowns for τ2 and gives the general expression

∫

Ω

∂p∗

∂xi

(
(ρτ1w + dρτ1w )

(kτ1ij + dkτ1ij )

µ

∂(pτ1 + dpτ1)

∂xj
− ρτ1w

kτ1ij
µ

∂pτ1

∂xj

)
dΩ = −Rτ1

(5.75)

Local fluid pressure independency of the material (
∂kij

∂p = 0) and the fluid density

(∂ρw

∂pf = 0) makes most terms drop out simplifying the problem into a linear
system:

∫

Ω

∂p∗

∂xi
ρtw
kij
µ

∂dpτ1

∂xj
dΩ = −Rτ1 (5.76)

This system, which is linear in p, can be solved directly, and iterations in a
Newton-Raphson scheme are not needed. Linearity of the problem means that
the formulation for a solution at time t becomes

∫

Ω

∂p∗

∂xi
ρtw
kij
µ

∂pt

∂xj
dΩ = 0 (5.77)

which can be solved after constraining the problem through boundary conditions
corresponding to time t.

5.3.2 Discretization of the diffusive flow in the grains

For the discretization, the 4-node quadrilateral element are used. These are the
same elements as were used for the discretization of the grains in mechanical
problem. In classical poromechanical computations of transient problems, these
elements are known to lead to numerical problems and introduce oscillations in the
numerical results. By the restriction to steady-state problems at the microscale,
with a decoupling between the mechanical and hydraulic problem in the grains,
these problems are avoided and the Q4 elements can be used.
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p1 p2

p3p4

N

x1

x2

ξ2

ξ1

Fig. 5.8: Element for discretization of the hydraulic pressure field to solve for, equival-
ent to the mechanical element in Figure 5.2

Equation (5.77) can be further rewritten using matrix notation to allow spatial
discretization;

∫

Ω

{P ∗}T [Kp]{P}dΩ = 0 (5.78)

with

{P} =

{
∂p
∂x1
∂p
∂x2

}
(5.79)

[Kp] = −ρ
t
w

µ

[
k11 k12
k21 k22

]
(5.80)

Using finite element discretization in the same way as for the mechanical part,
the vectors {P} and {P ∗}T can be found by

{P} = [Bp][T p]{PNode} (5.81)

with

{PNode} =





p(1)

p(2)

p(3)

p(4)




, (5.82)

[Bp] =

[
∂x1

∂ξ1
∂x1

∂ξ2
∂x2

∂ξ1
∂x2

∂ξ2

]
. (5.83)

and

[T p] =

[
∂N(1)

∂ξ1
∂N(2)

∂ξ1
∂N(3)

∂ξ1
∂N(4)

∂ξ1
∂N(1)

∂ξ2
∂N(2)

∂ξ2
∂N(3)

∂ξ2
∂N(4)

∂ξ2

]
(5.84)

With N (i) the shape functions for element nodes (i) according to (5.8), Equation
(5.78) can be further rewritten into

∫

Ω

{P ⋆
Nodes}T [T p]T [Bp]T [Kp][Bp][T p]{PNodes}dΩ = 0 (5.85)
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In a single element, the left-hand side of this expression becomes

{P ⋆
Nodes}T

∫

Ωe

[Ep]dΩ{PNodes} (5.86)

with

[Ep] = [T p]T [Bp]T [Kp][Bp][T p] (5.87)

The residual element fluxes {qe} can be obtained as

{qe} =

∫

Ωe

[T p]T [Bp]T {m}dΩ (5.88)

=

∫

ωpe

[T p]T [Bp]T {m} det (JΩω)dω (5.89)

with

{qe} =





q(1)

q(2)

q(3)

q(4)





(5.90)

The fluid element ’stiffness’ matrix [Kp]e as

[Kp]e =

∫

ωe

[Ep] det (JΩω)dω (5.91)

Transformation into numerical integration then leads to

[Kp]e =

npi∑

i=1

npi∑

j=1

[Ep(ξ1, ξ2)] det (J
Ωω(ξ1, ξ2))W

iW j (5.92)

{qe} =

npi∑

i=1

npi∑

j=1

[T p(ξ1, ξ2)]
T [Bp(ξ1, ξ2)]

T {m(ξ1, ξ2)} det (JΩω(ξ1, ξ2))W
iW j

(5.93)

Global assembly of element ’stiffness’ matrices [Kp]e and column vectors of ele-
ment nodal residual fluxes {qe} leads to a system of equations describing the
variation of the nodal fluid pressure degrees of freedom p in the grains and its
nodal fluid mass balance q in mass per time:

[Kp]{p} = {q} (5.94)

The unknown boundary conditions at the grain boundaries can not be addressed
directly as they interact with the interface hydraulic system. Therefore, system
of equations 5.94 is partitioned for degrees of freedom pb on the grain boundaries
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and internal degrees of freedom pi (for all nodes not on the grain boundaries).
This gives the following system:

[
Kpii Kpib

Kpbi Kpbb

]{
pi

pb

}
=

{
qi

qb

}
(5.95)

The dependent degrees of freedom (those on a REV follow boundary in ΓF ) in
{pi} can be eliminated using the periodic boundary conditions given in equations
(4.12) and (4.14). Together with the conservation of mass being satisfied for all
other grain internal degrees of freedom, this gives the reduced system of equations



Kp⋆ ii

Kp⋆ ib
Kp⋆ ip

Kp⋆bi
Kp⋆bb

Kp⋆bp

Kp⋆pi
Kp⋆pb

Kp⋆pp








pi

pb

∇pM



 =





0
qb

m⋆i



 (5.96)

where superscript []p refers to the prescribed degrees of freedom through the
boundary conditions. {q⋆i} is here the fluid mass flow over the periodic boundaries
through the internal grain nodes. Condensation of this system of equations on
the boundary and prescribed degrees of freedom gives a new system of equations:

[
Hbb Hbp

Hpb Hpp

]{
pb

∇pM
}

=

{
qb

m⋆i

}
(5.97)

with

[
Hbb Hbp

Hpb Hpp

]
=

[
Kp⋆bb

Kp⋆bp

Kp⋆pb
Kp⋆pp

]
−
[
Kp⋆bi

Kp⋆pi

] [
Kp⋆ ii

]−1 [
Kp⋆ ib

Kp⋆ ip
]
(5.98)

5.3.3 Merging the interface flow model and the diffusive grain flow model

For merging the system of equations for the grain boundary flux as a function of
the grain boundary pressure in Equation (5.97) with the pore channel flow system
of equations (5.53), a reassembly of the former system of equations is needed.
From the pore channel flow model follows that the fluid pressure on opposite
grain boundaries is identical. Hence, the hydraulic interface node on the axis of
the interface has the same pressure as the two node on opposite interface sides
between which it is located. To be able to define a mass balance equation for the
nodes with equal pressures, the mass balance is evaluated for the combination of
points of equal microscale pressures pm. This is done by defining a single shared
hydraulic degree of freedom ph for the nodes with identical pore pressure (see
Figure 5.9). The fluid mass flux as the dual to this degree of freedom is the sum
of the mass flux over the shared nodes:

∑
̟ +

∑
qb = 0 (5.99)
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grain node

interface hydraulic node

shared hydraulic DOF ph

Fig. 5.9: Shared hydraulic degrees of freedom ph for nodes with equal fluid pressure to
merge the diffusive grain flow and the interface channel flow.

The number of degrees of freedom ph is equal to the number of hydraulic
interface nodes for which the degrees of freedom are taken into account in (5.53).
Moreover, all condensed degrees of freedom pb in (5.97) are related to nodes
for which a shared degree of freedom is defined. This means that in practice, a
reassembly of system of equations (5.97) on the degrees of freedom ph can be used
to merge the diffusive flow problem and the interface flow problem. Reassembling
(5.97) and addition of (5.53) will lead to the combined system of equations for
degrees of freedom ph:

[
G+H⋆hh H⋆hp

H⋆ph H⋆pp

]{
ph

∇pREV

}
=

{∑
̟ + q⋆h

m⋆diff

}
(5.100)

with [H∗] and {qh} the reassembled equivalent of [H] and {qb} in (5.97) and [G]
and

∑
̟ the contribution of (5.53). Subscript []p refers to the prescribed macro

degrees of freedom. This system of equations is again a system of equations of
degrees of freedom with the connectivity of the interface hydraulic nodes. A sub-
sequent condensation following the procedure of Section 5.2 gives the relations
between the macro gradient of pressure and the macroscale fluid mass flux of
Equations (5.63) and (5.64). Moreover; as long as the diffusive fluid flow prop-
erties of the material (the components of the permeability tensor) are constant,
the condensation has to be performed only once at the beginning of the com-
putation and the result can be used in all identical microstructures throughout
the computation. The same approach might be followed for the mechanical part
of computations, although it should be noted that this only applies to purely
elastic deformation under small strain assumption and is not in line with the en-
visioned multiscale approach in which the choice of constitutive behaviour of the
micromechanical components is not restricted by a linearity condition.

5.4 Microscale constitutive relations

For the constitution of the micromechanical REV, the constitutive behaviour of
the different components (solid grains, cohesive interfaces and liquid phase) are
developed.

5.4.1 Solid constitutive law

As the principle of the microscale model is based on the concept of material de-
gradation (softening, damage,...) and the major part of the deformation to take
place in the interfaces between grains, the grains themselves don’t need sophist-
icated constitutive behaviour. Although it is very well possible to introduce any
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continuous constitutive relation in the grains, only a simple linear elastic con-
stitutive equation is introduced here. This allows (small) strains in the grains.
An isotropic, linear elastic relation is therefore defined for the solid grains as

σij = 2µεij + λεkkδij (5.101)

where εij is the small-strain tensor defined as εij = 1
2 (

∂ui

∂xj
+

∂uj

∂xi
). The Lamé

parameters µ and λ are used as model parameters, σij is the Cauchy stress, and
δij the Kronecker delta.

Alternatively, this can be written in matrix form as




2µ+ λ 0 0 λ
0 2µ 0 0
0 0 2µ 0
λ 0 0 2µ+ λ








ε11
ε12
ε21
ε22





=





σ11
σ12
σ21
σ22





(5.102)

or taking the variation of the stress state as a linear function of the variation of
the deformation gradient tensor;




2µ+ λ 0 0 λ
0 µ µ 0
0 µ µ 0
λ 0 0 2µ+ λ








δF11

δF12

δF21

δF22





=





δσ11
δσ12
δσ21
δσ22





(5.103)

5.4.2 Fluid constitutive law

Fluid compressibility is taken into account using the fluid compressibility modulus
kw;

˙ρw =
ρw

kw
ṗ (5.104)

with ρ̇w the rate of change of the current fluid density and ṗ as a function of
the rate of change in pressure p. Integration and the definition of a reference
pressure p0 with corresponding reference density ρw0 , gives the formulation of the
fluid density as

ρw(p) = ρw0 exp

(
p− p0
kw

)
(5.105)

5.4.3 Cohesive interfaces

The cohesive forces are described by a damage law, relating the relative normal
and tangential displacement to the normal and tangential cohesive forces respect-
ively. In a first effort, the inter-dependency between the components is reduced
as much as possible to facilitate a proper evaluation of the micromechanical re-
sponse. Therefore a decoupling between normal and tangential components is
adopted for the relation between relative displacement and cohesive forces. The
damage law is characterized by three parameters;

• Tmax the maximum cohesion

• D(t) the history of relative displacement between the interface boundaries
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• δc the critical relative displacement at which complete decohesion is ob-
tained

The history parameter D(t) at time t is defined relative to the critical relative
displacement δc for the normal and tangential displacement separately:

Dt
t = max

(
1

δct
max
0≤τ≤t

(|∆uτt |) , D0
t

)
if 0 ≤|∆utt| ≤δct

= 1 if δct <|∆utt|

Dt
n = max

(
1

δcn
max
0≤τ≤t

(|∆uτn|) , D0
n

)
if ∆utn ≤δcn

= 1 if δcn<|∆utn|

(5.106)

This defines Dt at time t as a parameter with values between D0 > 0 (initial
state) and 1 (complete decohesion). The parameter D0 serves here as a damage
history for the initial configuration (geological history, effects of excavation of the
sample, ...), but can also be seen as a control parameter for the stiffness of an
’undamaged’ material. D0 is always larger than 0, since D0 = 0 would introduce
infinite stiffness. Although this would be physically correct as it represents a non-
active interface, it requires reformulation of the finite element system of equations
to avoid infinite stiffness terms and ill-posed systems of equations. Taking a very
small (but non-zero) initial state parameter D0 can serve as an alternative to
obtain non-active interfaces, as the very high interface stiffness will serve as a
penalization of the relative interface displacement.

Using the state parameter Dt the constitutive laws for the normal and tan-
gential interface cohesion is defined as follows:

T t
n = 1

δcn

(
1

Dt
n
− 1
)
Tmax
n ∆utn if ∆utn > 0

= 1
δcn

(
1

Dt
n
− 1
)
Tmax
n ∆utn + κ∆t

n
2

if ∆utn ≤ 0
(5.107)

T t
t = Tmax

t

(
1
Dt

t
− 1
)

∆ut
t

δct
(5.108)

where κ is a penalization term to avoid grain inter-penetration. The penalization
is applied as a function of the negative interface opening squared to avoid an
incremental non-linearity around ∆un = 0. The law describes a classical damage
law with a linear softening branch and linear unloading-reloading (Figure 5.10).

The use of the separate interface laws for normal and tangential stress/strain
relations implies a decoupling between normal and tangential components, thereby
leaving some coupling aspects like interface friction out of consideration. The lack
of friction in the interface does however not exclude the mean stress dependency
of the response. As a combined effect of the asymmetry introduced by the pen-
alization of the negative normal interface openings and the close contact of all
grains, a mean stress dependency in the failure criterion is obtained and relatively
high effective internal friction angles can be obtained. Some results of this stress-
dependent behaviour is demonstrated in the modelling of the COx mechanical
response in Section 14.2.
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D0t Dtt 1 Δt/δt

Ttmax
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Fig. 5.10: Schematization of the damage laws for the interface cohesive forces Tn and
Tt.

5.4.4 The hydraulic constitutive law

The compressibility of the fluid phase is considered to be small with respect to the
spatial variation of the fluid pressure, which corresponds to the local assumption
of the REV. Given that variation of the fluid phase density is only dependent
on local fluid pressure through the fluid compressibility kw, the fluid density is
considered constant throughout the REV.

The change in fluid phase density ρ̇w is directly related to the change in fluid
pressure as:

ρ̇w = ρw
ṗ

kw
(5.109)

Given an initial fluid density ρ0w at reference pressure p0, the closed-form expres-
sion of the fluid density is

ρw(p) = ρ0w exp

(
p− p0

kw

)
(5.110)

5.5 Computational homogenized macroscale response

In this section, the homogenization approach for obtaining the macroscale re-
sponse from the REV under enforced deformation is discussed.

5.5.1 Homogenization of stress

The Hill-Mandel macro homogeneity condition [Hill, 1965, Mandel, 1972] is used
as starting point for deriving the micro-to-macro transition of the REV averaged
stress and its tangent operator. This condition requires the average microscale
work to be equal to the macroscale work. Under small strain assumption the work
conjugation of the stress tensor σ and strain tensor ∂ui

∂xj
are naturally obtained and

the macro homogeneity condition can be written in a virtual work formulation

WM⋆ = σM
ij

∂uM⋆
i

∂xj
= σREV

ij

∂uREV ⋆
i

∂xj
=

1

V REV

∫

ΩREV

Wm⋆dΩ (5.111)

As the interfaces introduce discontinuities in the microscale displacement field,

the microscale virtual work can not directly be related to σm
ij

∂u⋆
i

∂xj
and an equival-

ent, continuous microscale displacement field ûi needs to be introduced for this
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purpose. Around an interface, a zone of arbitrary width l is defined (see Figure
5.11), hereafter referred to as the contact zone.

Δu

l

n

εm

εm

εm

reference state current state

Fig. 5.11: Discontinuous interface with interface contact zone

Given a vector ~l = l~n (with interface normal vector ~n as its orientation) to
characterize the cross section of the cohesive zone, the deformation of the domain

by a certain strain field
∂ut

i

∂xj
and interface relative displacement ∆uti defines the

updated length of this vector as:

lti =

l∫

0

(δij +
∂uti
∂xj

)dl0j +∆uti = l0i +

l∫

0

∂uti
∂xj

dl0j +∆uti (5.112)

An equivalent strain of the contact zone can be defined by the introduction
of an equivalent displacement field ûi:

∂ûi
∂xj

=
1

l

(∫

~l

∂ui
∂xj

dl +∆uinj

)
(5.113)

or in terms of a small strain tensor:

ε̂ij =
1

l

(∫

~l

εijdl +
1

2
(∆uinj +∆ujni)

)
(5.114)

For small enough ~l this is equivalent to

ε̂ij = εij +
1

2l
(∆uinj +∆ujni) (5.115)

Outside the contact zone, the strain remains unchanged and ε̂ij = εij . With
an integration of the strain over the reference domain, the discontinuities can be
taken into account by considering ûi, which leads to:

∂uREV
i

∂xj
=

1

V 0

∫

Ω0

∂ûi
∂xj

dΩ (5.116)
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Note that for lim
l→0

displacement fields ûi and ui converge, although this means

that in the contact zone ε̂ → ∞ with l → 0. Nevertheless, the introduction of
the equivalent displacement field allows to apply Gauss theorem to transform the
domain integral over deformation into a boundary integral over displacements
(5.116), which holds for both displacement fields ui and ûi for any l:

∂uREV
i

∂xj
=

1

V 0

∫

Ω0

∂ûi
∂xj

dΩ =
1

V 0

∫

Ω

ûidxj (5.117)

Stress continuity is guaranteed over the REV domain under small strain as-
sumption (no interface opening). This means that for small enough l, the stress
state σij can be assumed constant over the cross section of the contact zone. This
means that the Hill-Mandel condition requires

σM
ij

∂uMi
∂xj

=
1

V 0

∫

Ω0

σm
ij

∂ûi
∂xj

dΩ (5.118)

Gauss divergence theorem and equilibrium equation (5.3) (stress and displace-

ment fields σ and ~̂u are continuous and the internal boundaries drop out for ûi)
allows to write

1

V REV

∫

Ω

σm
ij

∂û⋆i
∂xj

dΩ =
1

V REV

∫

Γ

t̄iû
⋆
i dΓ (5.119)

Using the periodic boundary conditions (4.8) and (4.11), the virtual displacement
of the external boundary is reduced to

1

V REV

∫

Ω

σm
ij

∂û⋆i
∂xj

dΩ =
1

V REV

∫

ΓF

t̄iv̂
⋆
i dΓ (5.120)

with ~v∗ the virtual ”change” of the periodicity vector ~y given by

v⋆i =
∂u⋆REV

i

∂xj
yj (5.121)

Substitution of ~v∗ allows to take the virtual part of the displacement outside the
integral;

1

V REV

∫

Ω

σm
ij

∂u⋆i
∂xj

dΩ =
1

V REV

∂u⋆REV
i

∂xj

∫

ΓF

t̄iyjdΓ (5.122)

For the Hill-Mandel condition (5.111) to be satisfied, the integral in the right
hand side of equation (5.122) needs to hold

σREV
ij =

1

V REV

∫

ΓF

t̄iyjdΓ (5.123)

Gauss theorem and periodic boundary conditions allow rewriting once more into

σREV
ij =

1

V REV

∫

Ω0

σm
ij dΩ (5.124)
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which provides the definition of the homogenized stress that corresponds to the
Hill-Mandel macro-homogeneity condition under small-strain assumptions. In
case of finite element discretization of the REV domain for solving the boundary
value problem, the macro stress tensor is easily obtained from Equation (5.123)
when it is written as the sum of the nodal reaction forces on the follow boundary:

σREV
ij =

1

V REV

∑

ΓF

fFi yjdΓ (5.125)

5.5.2 Homogenization of fluid mass flux

For the fluid part of the balance equations given in (3.5), the same approach for
establishing the macro-homogeneity can be followed. In other works this method
is used by Özdemir [2009] for thermomechanical problems and by Massart and
Selvadurai [2012, 2014] for fluid fluxes. The macro-homogeneity condition for the
hydraulic balance equations reads:

ṀREV p⋆REV −mREV
i

∂p⋆REV

∂xi
=

1

V REV

∫

Ω

(
Ṁ −mi

∂p⋆

∂xi

)
dΩ (5.126)

with Ṁ and mi on the microscale yet to be defined. As the microscale problem
is solved under steady state conditions, validated by the separation of scales, in
this case separating the timescales of the hydraulic storage Ṁ [fluid mass/time]
and the flux ~m [fluid mass/time] at the microlevel, this reduces temporarily to

mREV
i

∂p⋆REV

∂xi
=

1

V REV

∫

Ω

mi
∂p⋆

∂xi
dΩ (5.127)

with mi the microscale fluid mass flux. Gauss divergence theorem and the equi-
librium of the system allows to write

mREV
i

∂p⋆REV

∂xi
=

1

V REV

∫

Γ

qp⋆dΓ (5.128)

where q = mini is the normal outward mass flux over the REV. The (fluctuation
of the) virtual pressures are constrained by the boundary conditions (4.12) and
(4.14) which allows rewriting into

mREV
i

∂p⋆REV

∂xi
=

1

V REV

∫

ΓF

q

(
∂p⋆

∂xi

)REV

yidΓ (5.129)

From this, the definition of mREV
i is found as the integral of the microscale

boundary mass flux qF over the follow boundary:

mREV
i =

1

V REV

∫

ΓF

qF yidΓ (5.130)

For the finite element discretization of the REV boundary value problem, this
integral can easily be computed as the sum of the fluxes in the nodes on the
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follow boundary:

mREV
i =

1

V REV

∑

ΓF

qF yi (5.131)

The microscale outward flux on the follow boundary qF is the assembly of interface
fluxes ̟ and diffusive grain fluxes. This summation is identical to the summation
in 5.57 for the total flux over the follow boundaries.

Moreover, applying once more the divergence theorem shows that the macro-
scale mass flux is the average of the microscale mass flux

mREV
i =

1

V REV

∫

Ω

midΩ (5.132)

5.5.3 Homogenization of fluid mass

To obtain the macroscopic fluid contentM a direct approach is followed by defin-
ing the total amount of fluid in the REV as the amount of fluid in the grain pore
space plus the amount of fluid in the interfaces, for which the volume is defined by
the integration of the hydraulic opening over the interfaces. The interface volume
V int is much smaller than the REV volume V REV = V REV,0 and therefore, the
amount of fluid is computed as

M =
1

V REV



∫

ΩREV

ρwϕdΩ+

∫

Ωint

ρwdΩ


 (5.133)

With ρw constant over the REV and the interface volume defined by the integral
of the hydraulic interface aperture over the 1D pore network Sint, this can be
rewritten as

M =
ρw

V REV



∫

ΩREV

ϕdΩ+

∫

S

∆uhds


 =

ρw

V REV

(
ϕ̄V REV + V int

)
(5.134)

with ϕ̄ the REV average of the grain porosity. To obtain the fluid mass storage
term Ṁ , a finite difference approximation is made over the time interval ∆t. This
time interval is taken to be the same as the macroscale time step. For a time step
∆t from t−∆t to t, the fluid storage term Ṁ t is obtained as follows:

Ṁ t ≈ M t −M t−∆t

∆t
(5.135)

The specific fluid mass M t depends on the density of the fluid and the relative
volume it occupies. As the REV pore volume only changes due to the interface
volume, the rate of change in specific fluid mass Ṁ is found to be dependent
on the rate of change of fluid density ρ̇w and the rate of change of interface
volume V̇ int. This means that the fluid storage has a rheological part as well as
a geometrical part. With the assumption of constant grain pore volume (not to
be confused with incompressibility of the grains!), the geometrical component of
the fluid storage is relatively small. The effect of this definition is investigated in
Part III.



6. COMPUTATIONAL HOMOGENIZATION BY STATIC

CONDENSATION

The system of equations to be solved for the macroscale boundary value problem
(3.4)-(3.5) are, in general, nonlinear. This means that an iterative procedure is
needed to solve the system of equations. Different iterative procedures exist, of
which the Newton-Raphson method is chosen to be used because

”...it is our (not only our) experience that this method is very effi-
cient.” ... ”More efficient methods are available (quasi Newton method
for instance) but they diverge often. Newtons method can be seen as
the best compromise.” [Chambon, 2008]

The principle of Newton’s method, in which a tangent operator is used to make an
estimate of the update of the kinematic fields required to overcome the imbalance
of a solution, has a quadratic convergence with the number of iterations, under
the condition that a proper linearization around the test solution is possible. A
high consistency in the linearization for obtaining the tangent operator is key in
the algorithm efficiency, as an inaccurate tangent operator provides inaccurate
estimates of the updates in the iterations. When classical constitutive relations
are used, an exact solution can often be found as a closed-form analytical solution
exists for the partial derivatives of the constitutive equations. More complex con-
stitutive behaviour, for example obtained through the introduction of plasticity
or incremental nonlinearities of different degrees, can easily introduce difficulties
in the derivability of the constitutive equations. This is certainly the case for
the constitutive relation obtained from a microscale finite element relation as
presented in this work.

The matrices [C(4×4)], [K
τ1
hm(3×4)], [K

τ1
mh(4×3)] and [Kτ1

hh(3×3)] introduced in
Equation 3.7 as the consistent linearization of the classical constitutive relations
are the tangent matrices that are required in the Newton-Raphson scheme. From
the integration point objective, this can be recast in the following 7 × 7 system
of equations:

{dU⋆}T [A(7×7)]{dU} ≈ {dU⋆}T {dR} (6.1)

with

[Aτ1
(7×7)] =

[
[Cτ1

(4×4)] [Kτ1
mh(4×3)]

[Kτ1
hm(3×4)] [Kτ1

hh(3×3)]

]
(6.2)

as the linearization of the hydromechanical coupled constitutive behaviour and

{dUτ1
c } =

[
∂du1

∂x1

∂du1

∂x2

∂du2

∂x1

∂du2

∂x2

∂dp
∂x1

∂dp
∂x2

dp
]T
. (6.3)
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The virtual work term {dU⋆}T {dR} is related to the out-of-balance of the system
to be accounted for in the Newton-Raphson iteration. This defines the residual
term as follows:

{dRτ1} =
[
dσM,τ1

11 dσM,τ1
12 dσM,τ1

12 dσM,τ1
22 mM,τ1

1 mM,τ1
2 ṀM,τ1

]T
.

(6.4)

The residual term is the change in response to the update {dUτ1} to go from
configuration Ωτ1 to Ωτ2 over an iteration. The challenge is now to find the
consistent linearization around configuration Ωτ1 that can be used for matrix
[A(7×7)].

This chapter describes two approaches to obtain the linearization of the ho-
mogenized constitutive law for hydromechanical coupling.

6.1 Differentiation by numerical perturbation

In the computation of a time step from t−∆t to t, the equilibrated configuration
Ωt is the configuration to be found as an update of configuration Ωt−∆t by the
kinematics field {∆U t}. The solution for the kinematics fields {∆U t} satisfying
equations (3.4)-(3.5) are found iteratively, by updates {dUτ1}, for which (6.1) is
rewritten as

[Aτ1
7×7]{dUτ1} ≈ −{Rτ1} (6.5)

with {Rτ1} the array of local out-of-balance components and [Aτ1] the linear-
ization around configuration Ωτ1 as the incremental relation between the variation
of {U} and {R}. The linearization around Ωτ1 can be found by a finite difference
approximation. The change in response {∆R} to finite differences ǫ in the de-
formation {Uτ1}, gives an approximation of the consistent linearization. Because
the linearization [Aτ1] has to be consistent with the loading direction of {∆Uτ1},
the finite differences or perturbations ǫ need to be applied together with the load-
ing step of {∆Uτ1}. By defining Rτ1

(i)({Uτ1 + ǫj}) as the response after loading

step to configuration Ωτ1 with an additional perturbation of component Uτ1
(j) by

a finite perturbation ǫ, the finite difference approximation of the linearization
of the macroscale constitutive relation (stemming directly from the microscale
equilibrium and flow equations) is found:

Aτ1
(ij) ≈

R(i)({Uτ1 + ǫj})−Rτ1
(i)({Uτ1})

ǫj
(6.6)

This procedure to obtain the consistent linearization by a finite difference ap-
proximation through numerical perturbation of the components of the loading
on the REV was used for example by Feyel and Chaboche [2000] for mechanical
problems and Marinelli [2013] for hydromechanical coupling.

The consistency of the linearization, or the tangent stiffness matrix will partly
determine the efficiency of the Newton-Raphson scheme for finding a solution to
the problem to be solved. The consistency is influenced by

• the (non)linearity of the problem to be solved for,

• the precision of the response {Rτ1},
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• the size of the numerical perturbation ǫ.

The first two points depend on the specific behaviour of the constitutive law and
touch both the fundamental constitutive behaviour and the computational per-
formance and implementation. The size of the numerical perturbation ǫ has to
be chosen with respect to these first two points; ǫ has to be small enough to
avoid including the nonlinearities of the model in the result and large enough to
avoid roundoff errors due to the finite machine precision. A sensitivity analysis
of numerical perturbation size ǫ with respect to convergence of hydromechanical
coupled FE2 can be found in Marinelli [2013].

The linearization by numerical perturbation requires the response to a certain
load increment to be computed seven additional times, for which a numerical
perturbation is added to one of the seven components of [∆U ]. When the con-
stitutive relations are formulated in a classical way, the expense of these additional
computations can be neglected relative to the expense of solving the global finite
element system of equations. In the case where the response is given by a full
computation on the microscale, the computational costs of obtaining the response
from the incremental loading of the microstructure quickly exceeds the costs of
the global computation at the macroscale. This mean that the additional com-
putations for applying the numerical perturbations have a major impact on the
total computational expense.

An alternative to the use of the method of numerical perturbation with higher
efficiency and no dependency on the choice of the perturbation is therefore pre-
ferred.

6.2 Computational homogenization by static condensation of the
mechanical FE system of equations

Computational homogenization by static condensation [Kouznetsova et al., 2001]
provides an alternative to the numerical procedure, avoiding the time consuming
additional BVPs to be solved. The method is a well-established technique for
micro-to-macro scale transition in heterogeneous materials in both the small- and
large deformations framework, but has only seen few extensions to multiphysical
problems [Geers et al., 2010]. The classical condensation procedure for small
strain microscale formulation is repeated here in a slightly modified procedure,
generalizing the boundary conditions with respect to geometry and variables for
future developments.

The homogenized macro stress σREV is obtained from the REV by a volume
average of the micro scale stress by the boundary integral given in Equation
(5.123). As the REV boundary value problem is solved using a FE discretization,

this integral is approximated by the sum over the nodal forces ~fF on the follow
boundary multiplied by their periodic vectors:

σREV
ij =

1

V REV

∑
fFi yj (6.7)

The finite element system of equations (5.35) corresponding to a REV in equilib-
rium is used to solve the REV boundary value problem, with [K] the linearization
of the nodal force equilibrium around the updated configuration. This linear sys-
tem of equations with n degrees of freedom is extended with the variation of the
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macroscale variables δεREV into
[
0(4×4) 0(4×n)

0(n×4) K(n×n)

]{
δεREV

(4)

δu(n)

}{
0(4)
δf(n)

}
(6.8)

This system of equations is ill-posed as it does not contain the information of
the boundary conditions. For enforcing the periodic boundary conditions and
reducing the system of equations to a well-posed system, boundary conditions
(4.8) and (4.11), together with the definition of the homogenized stress (6.7) are
repeated here for the variation of nodal kinematics and residual forces:

δuFi = δuLi + δεREV
ij yj (4.8) (6.9)

δfFi + δfLi = 0 (4.11) (6.10)

δσREV
ij =

1

V REV

∑
δfFi yj (6.7) (6.11)

The nd follow degrees of freedom in {δuF } can be eliminated together with their
nodal force duals in {δfF }.
From (6.9) it follows that the contribution of each follow DOF δuFi can be elim-
inated by means of their lead degree of freedom and the macroscale kinematics
δεREV

ij . The elimination of δuFi gives a first intermediate equation where the

columns corresponding to δuFi are redistributed over those of δuLi and δεREV
ij :

[
0⋆pp(4×4) 0⋆pi(4×ni)

K1⋆ip(n×4) K1⋆ii(n×ni)

]{
δεREV

(4)

δu(ni)

}
=

{
0(4)
δf(n)

}
(6.12)

ni is here the number of independent degrees of freedom in th system of equations.
The extension of the system of equations with the four degrees of freedom δεij
requires four additional constraints. These constraints are introduced by the
variation of stress response δσREV

ij through (6.11). The addition of this constraint
is obtained by adding the summation of (6.11) in the top 4 equations of the
system, leading to the second intermediate equation:

[
K2⋆pp(4×4) K2⋆pi(4×ni)

K2⋆ip(n×4) K2⋆ii(n×ni)

]{
δεREV

(4)

δu(ni)

}
=

{
δσREV

(4)

δf(n)

}
(6.13)

The final step in the reduction of the system of equations is made by taking
into account the anti-periodicity of the nodal forces in equation (6.10), which
provides a straightforward elimination of δfFi by transferring their equations to
the equations of their leads δfLi . This elimination leads to the reduced system of
equations, which naturally satisfies the boundary conditions through the incor-
poration of ∇δ~uREV = δεREV . Moreover, the anti-periodicity of the boundary
traction makes the elimination of the lead nodal reaction forces disappear. The
result is the following reduced system of equations:

[
K⋆pp

(4×4) K⋆pi
(4×ni)

K⋆ip
(ni×4) K⋆ii

(ni×ni)

]{
δεREV

(4)

δu(ni)

}
=

{
δσREV

(4)

0(ni)

}
(6.14)
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where ni in the subscript is the number of remaining independent degrees of free-
dom, corresponding the degrees of freedom on the internal nodes and the nodes
on the lead boundary. Note that the REV periodicity vector ~y is included in the
elimination of the follow degrees of freedom, which gives the direct dependency
on variation of the macroscale strain tensor δεREV and results directly in the
components of the macroscale stress tensor δσREV

ij . A last step is now to elimin-
ate the remaining independent degrees of freedom by static condensation of the
system of equations on the prescribed degrees of freedom in {εREV }. This implies
that a four-by-four matrix [CREV ] is obtained, relating δεREV to δσREV :

[
CREV

(4×4)

]
{δεREV

(4) } = {δσREV
(4) } (6.15)

with
[
CREV

(4×4)

]
=
[
K⋆pp

(4×4)

]
−
[
K⋆pi

(4×ni)

] [
K⋆ii

(ni×ni)

]−1 [
K⋆ip

(ni×4)

]
(6.16)

This tangent stiffness matrix, consistent with respect to the symmetric macroscale
strain εM as enforced on the REV boundaries, has now to be rotated back into
the macroscale frame in consistency with the decomposition of the deformation
gradient tensor in 4.3. With the variation (or rate) of the stress tensor is not
objective with respect to rotation, this is not straightforward and a somewhat
lengthy derivation is required to obtain the correct transformation. The derivation
is given in Appendix A.3 to find the transformation from the fourth order tensor
4CREV (4CREV : δUM = δσREV ) to 4CM (4CM : ~∇δ~x = δσM ) as:

CM
ijkl = RM

iαR
M
jβC

REV
αβγδ

∂Uγδ

∂Fkl
−RM

iβ

∂RM
αβ

∂Fkl
σαj −RM

jβ

RM
αβ

∂Fkl
σαi (6.17)

with

∂Uγδ

∂Fkl
=

1

I1

∂RM
kl

∂θ
((δγ2 − δγ1) δγδU12 + (1− δγδ)(δl2U11 − δl1U22))+ δγlδδlR

M
kl

(6.18)

and

∂RM
αβ

∂Fkl
=

1

I1

∂Rαβ

∂θ

∂RM
kl

∂θ
(6.19)

where I1 is the first strain invariant tr(U), δij is the Kronecker delta and θ is the
angle of rotation represented by RM .

6.3 Computational homogenization by static condensation of HM
coupled FE system of equations

For the macroscale computations, the required tangent stiffness matrix is given
by equation

[
CREV

(4×4) KREV
mh(4×3)

KREV
hm(3×4) KREV

hh(3×3)

]


δεREV
(4){

δ∇pREV
(2)

δpM

}


 =





δσREV
(4){

δmREV
(2)

δṀ

}


 (6.20)
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with δ[.] to indicate an infinitesimal variation of a certain quantity. This system
of equations is summarized as

[AREV
(7×7)][δU(7)] = [δΣREV

(7) ]. (6.21)

Following the same procedure as was presented for the mechanical case in Section
6.2, the global system of equations for the fully-coupled hydromechanical finite
element computation at the microscale is written in a system of equations exten-
ded with 7 terms in each dimension to add the macroscale variables {U(7)} and
their response duals {Σ(7)}.

There are however, some differences in the approach related to the fluid pres-
sure and fluid mass with respect to the other variables. These differences stem
from the variation of pressure δpM that has not yet been addressed in the develop-
ments. The variation of microscale fluid pressure δpm is split in two parts; those
related to the variation in macro pressure and those related to the variation of
micromechanical fluctuation and macro pressure pressure gradient in accordance
with the definition of the decomposition of microscale pressure obtained in (4.4):

δpm = δpM + δp̂ δpM >> δp̂ (6.22)

Due to the principle of separation of scales, the variations δpM are much larger
than the variations δp̂. δpM is the 7th component of {δU(7)}. The result of
introducing the variation of reference pressures δp̂ is to obtain fluid pressure terms
taking into account the macroscale gradient of fluid pressures independent from
the pM . The following (empty) frame for the systems of equations is obtained:



[.](7×7) [.](7×n) [.](7×m)

[.](n×7) [.]mm
(n×n) [.]mh

(n×m)

[.](m×7) [.]hm(m×n) [.]hh(m×m)








δU(7)

δu(n)
δp̂(m)



 =





[.](7)
[.](n)
[.](m)



 (6.23)

For the assembly of this matrix, the equations describing the variation of the
response need to be assembled, after which elimination of the dependent degrees
of freedom by the equations of the boundary conditions leads to the reduced
system of equations which can be condensed on the macroscale variables. The
procedure of the assembly is equivalent to those presented for the mechanical
problem and the approach to solving the fluid system, although two important
differences must be taken care of. The first difference is the variation in specific
fluid mass δM , for which a new equation needs to be formulated. The formulation
of this equations is straightforward and is given later in this chapter. The second
difference is the influence of the variation of macroscale fluid pressure, which used
to be constant in microscale computations. The effect of δpM can be taken into
account in the equations of the microscale responses.

The partial derivatives that form the equations to be assembled in the frame
above, are derived for the nodal force balance, the fluid mass balance and the
macroscale specific fluid mass in the following three sections. The partial deriv-
atives are written in matrix form to represent the relation between variations of
the kinematics and its response.

6.3.1 Partial derivatives for the variation of fluid fluxes

For the variation of fluid flux, the influence of δpM might as well be writ-
ten on the macroscale by decomposing the variation of macroscale fluid flux
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δmREV
i = δ(vρw) into a rheological part δmREV,R

i = vREV
i δρw and a volumetric

part δmREV,V
i = ρwδvREV

i . Volumetric flux vREV
i is dependent on the configura-

tion of the REV and the pressure gradient (that is, {δu(n)} and {δp̂(m)}), whereas
the fluid density ρw only depends on the macroscale fluid pressure pM . From its
definition, it is already clear that δmREV,R

i can be computed completely on the
macroscale level, and it is easily verified that

δmREV,R
i =

mREV
i

ρw
δρw =

mREV
i

kw
δpM (6.24)

which can be written in matrix form as

[
M1(2×1)

]
δpM =

[
δmREV,R

(2)

] [
M1(2×1)

]
=

1

kw

[
m1

m2

]
(6.25)

The variation of the volumetric part δmREV,V
i is dependent on the microscale

kinematics δu and δp̂, which have couplings with the mechanical parts of the
microscale model. On the microscale, the volumetric part of the variation of the
nodal fluid mass balance δqV with respect to δu and δp̂ is defined as

{δqV(m)} = [Khm
(m×n)]{δu(n)}+ [Khh

(m×m)]{δp̂(m)} (6.26)

The last matrix has been defined for solving the fluid system for the given REV
configuration:

[
Khh

(m×m)

]
= [G] (Equation (5.53)) (6.27)

The first matrix has not yet been defined, as the fluid problem has been solved
decoupled from the mechanical microscale problem. It contains the assembly of
the partial derivatives of the interface mass fluxes ̟ with respect to the nodal
displacements ~u. To obtain the element matrices [Khm]e for the assembly of
[Khm

(m×n)], the partial derivatives with respect to the displacements of the nodal

coordinates UNode
(i) as components of {UNode{ are derived:

∂̟

∂UNode
(i)

= ρw(pn2)− pn1)
∂φ

∂UNode
(i)

(6.28)

To be able to solve the non-linearities in the interface element integration, the
definition of the hydraulic conductivity term φ is rewritten as the integral in the
parent element:

φl = ρw




sj∫

si

1

κ(s)
ds




−1

(6.29)

= ρw




+1∫

ξ1=−1

1

κ(ξ1)

∂s

∂ξ1
dξ1




−1

= ρw




+1∫

ξ1=−1

1

κ(ξ1)
JΓγdξ1




−1
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The partial derivatives with respect to U(i) can then be developed:

∂φ

∂UNode
(i)

= − φ2

ρw
∂

∂UNode
(i)




+1∫

ξ1=−1

1

κ(ξ1)
JΓγdξ1


 (6.30)

= −12µφ2

ρw
∂

∂UNode
(i)




+1∫

ξ1=−1

∆uh(ξ1)
−3
JΓγdξ1




(6.31)

Rather than further developing the derivation of the partial derivative for the
full integral and changing to numerical integration afterwards, the integral is first
replaced by a numerical integration as the weighted sum over the integration point
after which the derivation is continued for the sum of the individual components:

∂φ

∂UNode
(i)

= −12µφ2

ρw
∂

∂UNode
(i)

(
npi∑

i=1

∆uh(ξ1)
−3
JΓγW i

)

= −12µφ2

ρw

npi∑

i=1

∂
(
∆uh(ξ1)

−3
)

∂UNode
(i)

JΓγ(ξ1)W
i

= −12µφ2

ρw

npi∑

i=1

∂
(
∆uh(ξ1)

−3
)

∂∆uh(ξ1)

∂∆uh(ξ1)

∂UNode
(i)

JΓγ(ξ1)W
i

=
36µφ2

ρw

npi∑

i=1

∆uh(ξ1)
−4JΓγ(ξ1)W

i ∂∆uh(ξ1)

∂UNode
(i)

=

npi∑

i=1

(
36µφ2

ρw
∆uh(ξ1)

−4

)
JΓγ(ξ1)W

i ∂∆uh(ξ1)

∂UNode
(i)

(6.32)

(6.33)

These partial derivatives can be cast in a [1× 8] matrix as:

[
∂φ

∂UNode (1×8)

]
=

npi∑

i=1

(
36µφ2

ρw
∆uh(ξ1)

−4

)
JΓγ(ξ1)W

i

[
∂∆uh(ξ1)

∂UNode (1×8)

]
(6.34)

The variation of ∆uh at any point ξ in the parent element is given by (5.25).
Substitution of the different equations leads to the definition of the element mat-
rix:

[Khm]e = ρw(p(n2)− p(n1))

[
−1
1

] [
∂φ

∂UNode (1×8)

]
(6.35)

where the matrix [−1; 1] comes from the relation between interface fluid mass flux
̟ and the residual mass balance at the interface hydraulic nodes {qe}:

{qe} =

[
−1
1

]
̟ (6.36)
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The element coupling matrix therefore holds the relation

{δqe} = [Khm]e{δUNode} (6.37)

The element matrices [Khm]e can be assembled to find the matrix [Khm
(m×n)] after

which all matrices for the variation of the fluid flow are defined.

6.3.2 Partial derivatives for the variation of specific fluid mass M

In the same way as presented for the fluid flux, the variation of the specific fluid
mass δM can be divided in a rheological part δMR = V δρM and a volumetric
part δMV = δV ρM . For the rheological part, it is straightforward to obtain the
incremental relation, which in matrix form can be written as

[M2(1×1)]δp
M = δMR [M2(1×1)] =

M

kw
(6.38)

with kw the fluid compressibility.
The volumetric contribution requires the relation between variations of hy-

draulic interface openings and nodal displacements. This is obtained from the
integration of the variation of hydraulic interface opening over the interface ele-
ments. The variation of the normal and tangential opening of an interface element
is given by (5.25) from which the equation for the variation of the hydraulic in-
terface opening can be obtained:

δ∆uh =
[
0 ∂∆uh

∂∆un

]
[T I ][BI ]{δUNode} (6.39)

The partial derivative ∂∆uh/∂∆uh depends on the state of opening of the inter-
face (see Section 5.2):

∂∆uh
∂∆un

= ah if ∆un ≥ ∆ulinn (6.40)

= 0 if ∆un < ∆ulinn

Numerical integration will define an element matrix [V 1e] as

[V 1e] =
1

V REV

npi∑

i=1

ρw
[
0 ∂∆uh

∂∆un

]
[T I ][BI ]JΓγW i (6.41)

which holds the incremental relation

δMV e = [V 2e]{δUNode} (6.42)

with δMV e the volumetric part of the contribution of the interface element to the
variation of the specific fluid mass. Assembly of these element matrices leads to
the last required global matrix for the variation of the specific fluid mass:

[V 1(1×n)]{δu(n)} = δMV (6.43)
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6.3.3 Partial derivatives for the variation of nodal forces

The third set of responses in the coupled frame is that of the variations of stresses
{δσ(4)} which depend on variations of macroscale pressure δpM and nodal dis-
placements δu. Both are involved in the microscale equilibrium of nodal forces f
and the relation of the variation of nodal residual forces can be written as

{δf(n)} = [Kmm
(n×n)]{δu(n)}+ [KmP

(n×1)]δp
M (6.44)

The matrix [Kmm
(n×n)] has been used to solve the system of equations of the mech-

anical problem for constant pM and needs no development The matrix [KmP
(n×1)]

takes into account the variation of fluid pressure acting normally on the grain
boundaries. The variation of the hydraulic pressure δ ~fploc acting normally on the
grains is directly dependent on the variation of the macroscale fluid pressure δpM .
Writing this as a vector for straightforward incorporation in the interface element
integration gives a normal fluid pressure contribution vector:

δ ~fploc =

[
0

−δpM
]

(6.45)

Following an equivalent development of numerical integration as outlined in Sec-
tion 5.1.2 for the stiffness matrix related to the interface cohesion , the variation
of the nodal contribution of the fluid pressure on the residual forces of the inter-
face elements as a function of the variation of macroscale fluid pressure can be
found:

[N Ie] =

npi∑

i=1

JΓγ(ξi1)[B
Ip(ξi1)]

T [T Ip(ξi1)]
T

[
0
−1

]
W i (6.46)

with [0;−1] representing the partial derivatives ∂fpt /∂p
M and ∂fpn/∂p

M . The
matrices [T Ip] and [BIp] are define as follows:

[BIp] =

[
−N (1) −N (2) N (3) N (4)

−N (1) −N (2) N (3) N (4)

]
(6.47)

[T I ] =

[
∂xt

∂ξ1
0

0 ∂xn

∂ξ2

][
∂ξ1
∂x1

∂ξ1
∂x2

∂ξ2
∂x1

∂ξ2
∂x2

]
=

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
(5.24) (6.48)

This interface element matrix holds the following relation;

{δfp}e = [N Ie]δpM (6.49)

The assembly of the the interface element matrices [N ie] provides global matrix
[N(n×1)].

6.3.4 Assembly, reduction and condensation of the coupled matrix

The matrices containing the equations for the variations of forces, fluid fluxes and
fluid mass derived in the previous sections can be assembled into the frame of
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6.23, which leads to the following system of equations:






0(4×4) 0(4×2) 0(4×1)

0(2×4) 0(1×2) M1(2×1)

0(1×4) 0(1×2) M2(1×1)







0(4×n)

0(2×n)

V 1(1×n)






0(4×m)

0(2×m)

0(1×m)




[
0(n×4) 0(n×2) KmP

(n×1)

] [
Kmm

(n×n)

] [
0(n×m)

]
[
0(m×4) 0(m×2) 0(m×1)

] [
Khm

(m×n)

] [
Khh

(m×m)

]








δεREV
(4)

δ∇pREV
(2)

δpM

δu(n)
δp(m)





=





δ0(4)
δmR

(2)

δM

δf(n)
δq(m)





(6.50)

The system of equations (6.50) is reduced by eliminating the dependent de-
grees of freedom located on the follow boundary. This is done by means of the
following boundary conditions:

δuFi = δuLi + εMij yj (Equation (4.8)) (6.51)

δp̂F = δp̂L +
∂pM

∂xj
yj (Equation (4.12)) (6.52)

δfFi = −δfLi (Equation (4.11)) (6.53)

δqV
F
= −δqV L

(Equation (4.14)) (6.54)

In addition, the following averaging summations are used for row-operations to-
wards the upper 6 rows of the system of equations:

δσREV
ij =

∑

ΓF

δfFi yj (6.55)

δmV,REV
i =

∑

ΓF

δqV
F

i yj (6.56)

The total variation of macroscale fluid flux δmi is the sum of its rheological and
volumetric parts

δmREV
i = δmREV,R

i + δmREV,V
i (6.57)

The resulting reduced system of equations is given the following:






T 1
(4×4) 0(4×2) T 2

(4×1)

T 4
(2×4) T 5

(1×2) M1(2×1)

T 8
(1×4) 0(1×2) M2(1×1)






T 3
(4×ni)

T 6
(2×ni)

V 1⋆(1×ni)






0(4×mi)

T 7
(2×mi)

0(1×mi)




[
T 9
(n×4) 0(ni×2) K⋆mP

(ni×1)

] [
K⋆mm

(ni×ni)

] [
0(ni×mi)

]
[
T 10
(mi×4) T 11

(mi×2) 0(mi×1)

] [
K⋆hm

(mi×ni)

] [
K⋆hh

(mi×mi)

]








δεREV
(4)

δ∇pREV
(2)

δpM

δu(ni)

δp(mi)





=





δσ(4)
δmREV

(2)

δM

0(ni)

0(mi)
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(6.58)

with [T 1−11] some temporary matrices, the superscript ⋆ indicating the reduced
form of the original matrix and ni and mi the number of independent mechanical
and hydraulic degrees of freedom respectively. A shorter notation is introduced
for this reduced system of equations:




[
TA
] [

TB
]

[
TC
] [

TD
]



{
δUREV

(7)

δU(ni+mi)

}
=

{
δΣREV

(7)

0(ni+mi)

}
(6.59)

with [TA−D] the reduced matrix and {δUm
(mi+ni)

} the independent microscale
degrees of freedom.

From this system of equations, the independent degrees of freedom are reduced
by static condensation on the seven macro variables. This results in the following
condensed system of equations:

[AREV
(7×7)][δU(7)] = [δΣREV

(7) ] (6.60)

with

[AREV
(7×7)] =

[
TA
]
−
[
TB
] [
TD
]−1 [

TC
]

(6.61)

A last transformation is needed to change from fluid massM to the rate of change
of the fluid mass Ṁ . For the incremental time step ∆t, the rate of change of fluid
mass density is computed as

Ṁ t =
M t −M t−∆t

∆t
(6.62)

this means that the variation of the rate of change of the fluid mass density δṀ t

can be found as

δṀ =
δM t

∆t
(6.63)

this transformation requires the seventh row of matrix [A] to be divided by
∆t. Splitting matrix [A(7×7)] into the matrices [CREV

(4×4)],[K
REV
hm(3×4)],[K

REV
hh(3×3)]

and [KREV
mh(4×3)], gives the linearization of the constitutive relations relative to

the REV symmetric orientations. A consistent rotation of these tangent stiffness
matrices by RM (Equation (4.16)) gives the consistent tangent stiffness matrices
of the classical part required in Equation (3.7). The rotation of matrix [CREV ]
to [CM ] is given above in section 6.2, for which the full derivation is given in
appendix A.3. For the rotation of the other coupled terms, the rotation back to
the macroscale reference follow the same objective rotation of the stiffness matrix.
Their results can be found in Appendix A.3.

6.4 Computational homogenization by static condensation of HM
coupled FE systems of equations with the diffusive flow

The procedure for computational homogenization by static condensation for HM-
coupled macroscale behaviour introduced in the previous section is a general
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procedure, but the example of the assembly of the extended system of equations
for the combination of micro and macro variables was given for the pore channel
flow model only. The incorporation of the diffusive flow model in the compu-
tational homogenization is straightforward and only requires the contribution of
the diffusive flow to be added to the assembled system of Equations 6.50.

The contributions of the diffusive flow model, which is completely independent
of the deformation, are at play in the rheological terms of the the specific fluid
mass (grain pore volume is assumed constant, which means that the volumetric
part of the variation remains unchanged) and the total fluid mass flux (both
rheological and volumetric contributions). The contribution to the rheological
part of the variation of specific fluid mass is the introduced pore volume in the
grains, which means that specific fluid mass M in (6.38) has to be computed as
the sum over the fluid mass in the interfaces and the grain pore volume.

The rheological part of the fluid flux is taken into account at the macroscale by
the macroscale mass fluxmREV

i in matrix [M1(2×1)]. The volumetric contribution
is taken into account in the equations for solving the microscale hydraulic problem
by condensed matrix [H⋆] in equation (5.100), which is repeated here as:

[
G+H⋆hh H⋆hp

H⋆ph H⋆pp

]{
δph

δ∇pM
}

=

{
δqV

δm⋆diff

}
(5.100) (6.64)

The assembly of matrix [H⋆] in (6.50) leads to:






0(4×4) 0(4×2) 0(4×1)

0(2×4) H⋆pp
(2×2) M1(2×1)

0(1×4) 0(1×2) M2(1×1)







0(4×n)

0(2×n)

V 1(1×n)






0(4×m)

H⋆ph
(2×m)

0(1×m)




[
0(n×4) 0(n×2) KmP

(n×1)

] [
Kmm

(n×n)

] [
0(n×m)

]
[
0(m×4) H⋆hp

(m×2) 0(m×1)

] [
Khm

(m×n)

] [
Khh

(m×m)

]








δεREV
(4)

δ∇pREV
(2)

δpM

δu(n)
δp̂(m)





=





δ0(4)
δmR

(2) + δm⋆diff
(2)

δM

δf(n)
δqV(m)





(6.65)

where [Khh
(m×m)] is now defined as:

[Khh
(m×m)] = [G] + [H⋆hh] (6.66)

The reduction of this system of equations and its condensation into the 7 × 7
consistent tangent operator [AREV

(7×7 ] is exactly identical to the procedure described
in the previous chapter.
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CONCLUSIONS PART II

In this part, a modified version of the Frey model for hydromechanical coupling
was presented. The main modifications have been the adoption of the small strain
assumption and the introduction of the separation of scales in the description of
the fluid pressures. This has allowed the decomposition of the coupled problem
at the microscale in a mechanical and a hydraulic problem that can be solved
subsequently and has introduced a consistent description of the hydromechanical
boundary conditions on the REV with respect to the principle of separation of
scales. Secondly, the modifications allowed the consistent application of computa-
tional homogenization for the micro-to-macro transition. The procedure of first
order computational homogenization was extended for the case of hydromech-
anical coupling and can now be used for obtaining the homogenized response to
deformation loading and the associated consistent tangent operators. In this way,
the modelling of the response of a micromechanical REV provides a numerically
homogenized first order constitutive relation for hydromechanical coupled beha-
viour. This constitutive relation can be used in a macroscale computation. When
implemented in a finite element code, this gives the finite element squared (FE2)
method. The numerical implementation of the model, its combination with com-
putational homogenization and the implementation as a constitutive relation in
an existing finite element code are the subject of the next Part.
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Part III

IMPLEMENTATION AND APPLICATION

EXAMPLES OF THE DOUBLESCALE MODEL





7. NUMERICAL IMPLEMENTATION

In order to solve the macroscale REV boundary value problem introduced in
the sections above, the microscale model is implemented in the finite element
code Lagamine [Charlier, 1987] as an independent constitutive law to provide the
constitutive relations to be used in the macroscale iterative loading step Ωt−∆t →
Ωτ2 with Ωτ2 the next test solution for configuration Ωt. The corresponding
microscale BVP of enforcing the deformation loading step F t−∆t → F τ2 on the
periodic REV is again solved using the finite element method. In this chapter,
some aspects of the implementation of the microscale model in a finite element
code are discussed.

7.1 Numerical scheme for solving the microscale system of
equations

The microscale finite element code is used for the computation of the behaviour
of the REV in the loading path from initial configuration Ωt−∆t to Ωτ2. A
global scheme of the microscale computations is given in Figure 7.1, starting
with the transition of the local macroscale variables to the microlevel. From
the previous loading steps, the REV configuration Ωt−∆t is known. This initial
configuration is fully characterized by the microscale nodal positions {xt−∆t} and
the interface state parameters {Dt−∆t}. Starting from this initial configuration,
the mechanical problem is solved following a full Newton-Raphson scheme, using
the symmetric part of the macroscale deformation gradient tensor Uτ2 for the
periodic boundary conditions and the macroscale pressure pτ2 for the normal
fluid forces acting on the interface boundaries.

7.1.1 Enforcing the periodic boundary conditions

The periodic displacements of the REV boundaries are enforced through penal-
ization of the periodic couples δuLi and δuFi by adding the following penalization
equations to the global stiffness matrix during the first iteration:

±GpδuFi ∓GpδuLi = ±Gp∆Uτ2
ij yj (7.1)

with ∆Uτ2
ij = Uτ2

ij − U t−∆t
ij the required update of the symmetric part of the

macroscale deformation gradient tensor (the macro stretch) related to the mac-
roscale iteration to configuration Ωτ2. For all subsequent microscale iterations,
the penalization of periodic boundary conditions reduces to

±GpδuFi ∓GpδuLi = 0 (7.2)

Penalization term Gp has no physical meaning and penalization is only used for
solving the boundary value problem. The size of the penalization term has to be
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chosen carefully; a too large penalization term introduces numerical inaccuracies
in the result as larger penalization numbers will increase the relative difference in
the eigenvalues of the system of equations and the underlying equations will be
lost in the numerical precision of the terms. A too small penalization can lead to
boundary conditions which are not met accurately.

This method of penalization of the boundary conditions is not a unique
method and other ways of enforcing the periodic constraints can be envisioned.
However, the penalization method provides a straightforward way of introducing
a deformation update without a-priori defined assumptions about the field of de-
formation. This means that the deformation loading can be applied during the
first iteration. It should be noted that the penalization terms for the periodic
boundary conditions are not required in the condensation for obtaining the con-
sistent tangent stiffness matrix and a separate global system of equations needs to
be assembled for this purpose without taking into account the periodic boundary
conditions. The periodic boundary conditions are taken into account by means
of reduction of the global system of equations instead.

7.1.2 Microscale convergence criterion

The Newton-Raphson iterative procedure to solve the mechanical problem follows
the classical procedure, which is repeated in Table 7.1. Its convergence is evalu-
ated by means of an evaluation of the residual forces, which are the components
of array vector {f} containing the nodal reaction and out-of-balance forces. To
define a dimensionless number for the convergence criterion, reaction (or external)
force and out-of-balance (or internal) force summations are defined as;

Rext = {(fext)}(i){(fext)}(i) (7.3)

Rint = {(f int)}(i){(f int)}(i) (7.4)

The normalized norm of the residual forces is then defined as the square root of
the ratio of Rint and Rext:

Rnorm =

√
Rint

Rext
(7.5)

The microscale computation is supposed to be in equilibrium as soon as Rnorm <
ǫc, with ǫc a small value of choice. The choice of this value determines not only
the precision of the results, but will also influence the consistency of the tangent
operators. This means that the convergence criterion ǫc has to be chosen as small
as possible to obtain the best possible macroscale results. The practical limit of
precision for ǫc is around 1×10−8. Whenever the residual term of external forces
becomes zero, an alternative formulation is required to obtain convergence and
a replacement value has to be used for Rext. There is some arbitrariness in the
choice of a replacement value, as it has to correspond to the order of magnitude
of element residual forces under consideration, which can vary depending on the
application of the model.
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7.1.3 Microscale non-convergence mitigation

The deformation loading step enforced on the REV by the macroscale deformation
is applied in a single step, corresponding to the macroscale loading step related
to the configuration update Ωt−∆t → Ωτ2

In general, a solution for the boundary value problem can be found using a
single deformation loading step on the REV, which corresponds to the macroscale
loading step. For high linearity of the micromechanical constitutive relations and
due to the lack of geometrical non-linearities, microscale convergence is usually
very efficient.

In case of non-convergence (determined by means of number of iterations) of
the microscale Newton-Raphson scheme, some additional successive techniques
are used to solve microscale BVP:

• Taking substeps: whenever the maximum number of iterations is reached
for a microscale loading step, the loading step at the microscale is reduced
by a factor 2. This procedure is repeated up to a minimum loading step, for
which non-convergence is considered to indicate the impossibility of finding
a solution for this configuration of the REV.

• Microlevel numerical damping. In order to mitigate numerical oscillations
between or around possible solutions, numerical damping is applied on the
nodal displacement update as soon as the number of iterations reaches half
of the maximum number of iterations.

• Weakening the microscale convergence condition. Whenever the microscale
time step is reduced, the convergence criterion is temporarily weakened:
ǫc :=

√
ǫc. The final substep to obtain the total deformation loading step

uses the original convergence criterion to guarantee a good convergence,
which is required for obtaining a sufficiently consistent tangent operator
and homogenized stress tensor.

With a combination of these three techniques, most of the non-convergence prob-
lems at the microscale can be mitigated. However, taking substeps can signific-
antly increase the number of iterations for a deformation loading step on a single
REV, and the computation time for a single macroscale iteration can easily in-
crease from several minutes to several hours. If, eventually, no solution can be
found on the micro level, the macroscale NR scheme is restarted for a smaller
loading step.

7.1.4 The routine for the microscale loading steps

The computations on the microscale can be divided into three main parts of
computations:

• The Newton-Raphson iterative routine for solving the mechanical problem

• The direct routine for solving the fluid flow problem

• The condensation routine for the computational homogenization by static
condensation of the consistent tangent operators.
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This is schematically presented in Figure 7.1.

The mechanical system is solved for by enforcing the macroscale deforma-
tion gradient tensor FREV,τ2 and fluid pressure pM,τ2 on the REV boundary
value problem starting from the configuration of the last converged step Ωt−∆t,
characterized completely by its nodal coordinates {xt−∆t} and interface state
parameters {Dt−∆t}.

Once microscale equilibrium is obtained for configuration Ωτ2, the updated
microscale nodal coordinates and interface state parameters are stored as a can-
didate for the final configuration Ωt. Based on the mechanical interface openings,
the hydraulic interface openings ∆uh are defined and the specific fluid mass Mτ2

is obtained from an integral of the (spatially constant) fluid density ρwτ2 over the
REV. Both interface channel pore space V int and grain porosity ϕ are taken into
account in this integral.

With the information on the hydraulic opening of the interfaces, the fluid sys-
tem can be solved for fluid mass fluxes ~mτ2. The fluid system is solved twice; once
to obtain the microscale fluid pressure difference over the interface elements ∆ep̂
in Equation (6.22) and once by condensing directly on the macroscale pressure
gradient to find the fluid flux of Equation (5.63) or (5.64). The element pressure
difference is needed for the derivations of the equations for the additional coup-
lings that need to be taken into account in the computational homogenization.
These derivations are given in Sections 6.3.1, 6.3.2 and 6.3.3. These additional
coupling terms are obtained in loop over the (interface) elements, using the up-
dated configuration Ωτ2 with the interface pressure differences ∆ep̂τ2.

macroscale)kinematics

F
τ2))),)))pτ2,pτ2
Δ

N-R)loop

mechanical)

system

fluid)system

Δuh
τ2

pτ2
Δ

mτ2

F
τ2))))pτ2

στ2
Mτ2

homogenization:

static)condensation
στ2,)mτ2,)Mτ2

A
τ2))))))

macroscale)response

(7x7)

{xτ2},){Dτ2}

microscale)configuration

{xt-Δt},){Dt-Δt}

microscale routine

microscale)configuration)

{xτ2},){Dτ2}

Δepτ2

Fig. 7.1: Global scheme for solving the coupled microscale problem. The transition of
auxiliary information (stiffness matrices, local information) is not shown.

Using the information that is available from the decoupled solving of the mech-
anical and hydraulic systems, the routine for the condensation into the tangent
stiffness matrix is launched. This routine contains the aforementioned element
routine for the missing coupling terms, after which the coupled extended global
system of equations is assembled. The system is then reduced and condensed into
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the tangent stiffness matrix [A7×7] as presented before.
For solving the numerical systems of equations related to the condensation

of (6.61) (that is, finding a temporary term [T temp] = [TD]−1[TC ], the auxiliary
problem [TD][T temp] = [TC ] is solved by Gaussian-elimination of the augmented
matrix [TD|TC ]. Efficiency of the procedure of the Gaussian elimination is ob-
tained by taking into account the bandwidth, which is optimized by means of the
renumbering of the mechanical system of equations following the Cuthill-McKee
algorithm [Cuthill and McKee, 1969], which is a standardized approach for band-
width reduction. The profile of such a reduced system of equations is given in
Figure 12.3. In case of purely mechanical problems, the auxiliary problem to
obtain the temporary matrix is solved for the static condensation in (6.16).

7.2 A routine for material point BVPs

The microscale model gives, together with the computational homogenization for
scale transition, the possibility to define a macroscale constitutive relation based
on the microstructure REV. The behaviour of this law represents the material
behaviour as an average response to deformation loading on the microstructure.
To study the local behaviour of this macroscale law under a certain loading path,
the loading has to be applied incrementally (due to the (incremental) nonlinearity
of the model) and the solution for each increment has to be solved iteratively based
on the loading path conditions. A stand-alone routine is designed for applying
mixed-mode (as a combination of stress and strain components) loading paths,
thereby replacing the macroscale finite element computation. This routine is
developed completely outside the macroscale finite element code.

Two column vectors {U̇} and {Σ̇} are defined as the time derivatives of the
vectors {U} and {Σ}, containing the deformation gradient tensor F , fluid pressure
gradient ∇0p

M and mean fluid pressure pM and its response duals σM , ~m and M
respectively. The time derivatives are defined with respect to the dimensionless
time α. The material point boundary value problem is fully defined when for each
of the seven components, one of the two duals is prescribed. For this purpose,
the vectors are split in a prescribed part (P ) and a reaction part (R) such that for

each prescribed component U̇
(P )
(i) there are reaction components Σ̇

(R)
(i) . In the same

way, the prescribed components of the reaction vector Σ̇
(P )
(i) have corresponding

kinematical components Σ̇
(R)
(i) as a reaction. The distribution in prescribed and

reaction components

{U̇} =

{
U̇ (P )

U̇ (R)

}
{Σ̇} =

{
Σ̇(R)

Σ̇(P )

}
(7.6)

The number of prescribed or reaction components depends on the boundary con-
ditions of the unit cell boundary value problem and different steps in the loading
conditions can require different subdivisions into prescribed and reaction com-
ponents during a single simulation. Incremental loading by time steps ∆α can be
applied to follow the specified loading path. The loading increments related to

{U̇ (P )} can be directly enforced as increments U̇
(P )
(i) ∆α. The loading increments

related to {Σ̇(P )} are enforced through their responses {U̇ (R)}. As the relation
between {Σ̇(P )} and {U̇ (R)} is unknown, the loading increments {∆U (R)} cor-
responding to {Σ̇(P )∆α} need to be solved for iteratively. A Newton-Raphson
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iterative scheme is followed for this purpose. Using this scheme the iterative
corrections are found by solving the linearized system of equations

[Aα
(7×7)]{dU} = −{dΣ}α (7.7)

with [Aα
(7×7)] the auxiliary matrix to find an update {dU (R)} that mitigates the

out-of-balance stress {dΣ(P )}. Convergence is obtained when the norm of the out-
of-balance response in the stress rate-controlled components of the loading path
are sufficiently small. In this way, the iterative Newton-Raphson solution scheme
of the macroscale finite element problem described in Section 3.1 is simulated by
the material point BVP. Combined with the possibility of the rotation of the REV
with respect to the reference frame in which the loading is defined, it provides a
versatile tool for studying the material behaviour under different loading paths.
Moreover, the use of the tangent operator [A] for solving the incremental dis-
placements loading steps for the stress rate-controlled loading allow to assess the
quality of the computationally homogenized constitutive relation by means of the
convergence of the numerical scheme. To evaluate the convergence of the material
point BVP, a criterion has to be defined based on the out-of-balance terms in {U}
and/or {Σ}. Considering the iterative updated {dΣ} that is required to obtain
the stress-controlled loading state, the residual term for the material point BVP
Rmp is defined with three terms corresponding to the components of stress, fluid
mass flux and fluid mass respectively.

Rmp =
|{dΣ(P )

(1−4)}|
|{Σα

(1−4)}|
+

|dΣ(P )
(5−6)|

|Σα
(5−6)|

+
|dΣ(P )

(7) |
|Σα

(7)|
(7.8)

with |.| the norm and d[.] the out-of-balance or error with respect to the prescribed
components in {Σ}. Note that the residual combines the relative out-of-balance
norms for stresses (1-4), fluid mass flux (5-6) and fluid mass (7). In the case
of deformation-controlled loading, the out-of-balance components are zero as no
update is required. In case of a zero denominator, a minimum value is defined to
avoid numerical infinity.

As an example, for the biaxial compression of a material point at 2 MPa
confinement with constant pore pressure pM = 1 MPa and vertical pressure
gradient of 100 kPa/m, the following loading rates are applied in the material
point BVP;

for α = −1 → 0 for α = 0 → 10

U̇ (P ) = Σ̇(P ) = U̇ (P ) = Σ̇(P ) =



−
−
0
−

0MPa/m
0.1MPa/m

1MPa









−2MPa
0
−

−2MPa
−
−
−









−
−
0

−.01
0
0
0









0
0
−
−
−
−
−





The time steps ∆α used for the application of the mixed-mode loading are
controlled by an algorithm increasing and decreasing ∆α as a function of the
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number of iterations required to obtain convergence of the macroscale material
point BVP for stress-controlled loading.

The use of this routine is twofold; on one side it allows studying the behaviour
of the material that was defined by the microstructure in the REV, on the other
hand it can be used to test the computational homogenization, since the tangent
stiffness matrices obtained through the computational homogenization are used
to iteratively apply the correct loading path on the material point. The routine
will therefore be used in the following chapters to study the material behaviour
obtained from the microscale computations at the material point level. In addi-
tion, the quality of the obtained tangent operators is assessed by studying the
rate of numerical convergence of the Newton-Raphson scheme of this routine.
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1. initiate global stiffness matrix [G] and reaction array {R}

2. compute boundary conditions update ∆yτ2i = Uτ2
ij y

0
j − yt−∆t

i

3. Assemble penalization equations for boundary condition updates in {R}

4. i = 1

5. start iteration i

(a) assemble penalization terms in [G]

(b) element loop: build element system of equations and nodal forces

(c) assemble equations in [G] and nodal forces in {R}
(d) check convergence: if Rnorm < ǫc go to 6

(e) solve for nodal updates [G]{dx} = −{R}
(f) i = i+1, reset [G] and {R}
(g) go to 5

6. end of Newton-Raphson scheme

Tab. 7.1: microscale Newton-Raphson scheme



8. VERIFICATION OF THE MICROSCALE MODEL

In a first verification assessment, simplified microstructures are used, for which
analytical solutions can be easily obtained. The first of these microstructures is
given in Figure 8.1, together with the microscale constitutive parameters.

FE mesh

grains

interfaces

x2

x1

h1

h2

v1 v2
solids:

E [GPa] 4.0
ν 0.300
k11 [10−15m2] 0.1
k22 [10−15m2] 1.0

interfaces:

E0 [GPa] 8.0
Tmax [MPa] 10.0
δc 0.005
∆min

h 0.050 µm

Fig. 8.1: Microstructure used for the verification of the micromechanical model with
the microscale constitutive parameters. Horizontal and vertical interface
channels are labeled as h1, h2 and v1, v2 respectively.

8.1 Response to extension

For applying uniaxial extension of microstructure 8.1, the following macroscale
kinematical loading paths are enforced on the REV;

Ḟ =

[
0 0
0 0.02

]
, ~̇∇pM = ~0, ṗM = 0 (8.1)

or:

{U̇}(P ) =





0
0
0

0.02
0
0
0





(8.2)

The macroscale boundary conditions correspond to a macroscale axial strain εMa
that is enforced on a material point. For REV dimensions 1× 1, the axial strain
can be decomposed into the vertical component of the strain of the grains ε22 and
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the normal interface openings of the horizontal interfaces ∆uh1n and ∆uh2n :

εMa = ε22 +∆uh1n +∆uh2n (8.3)

In addition to the parameters given in Figure 8.1, the permeability tensor for the
solid parts is defined as:

k
g =

[
10−16 0
0 10−15

]
m2 (8.4)

Computations are performed both with and without taking into account the grain
permeability. To assess the hydraulic properties the macroscale permeability is
studied, for which a full hydromechanically coupled computation is not required.

As a function of the stiffness of the vertical interfaces Ev1
0 = Ev2

0 (resulting
from the interface cohesion parameters δc, D0 and Tmax) and the elasticity of the
grains described by Lamé parameters λ and µ the vertical stress in the REV σ22
for a given vertical strain in the grain ε22 can be found analytically by taking
into account the symmetry of the microstructure. This is done by considering
the extension of a single grain as a system of a block of width 1/2 and a vertical
interface (the interface spacing is 1/2), which is schematically presented in figure
8.2.

En
v

σii(εjj)

0.5

1
.0

ε22

Fig. 8.2: Analytical model of the extension of a block, taking into account the interface
stiffness

From the constitutive relation of the grains (5.103) and the stiffness of the
vertical interface Ev

n = T v
n/∆u

v
n it follows that

σ11 = (2µ+ λ)ε11 + λε22 (8.5)

σ22 = λε11 + (2µ+ λ)ε22 (8.6)

T v
n = Ev

n/∆u
v
n (8.7)

Equilibrium on the vertical grain boundary requires σ11 = T v
n and the (vertical)

interface spacing of 1/2 leads to ∆uvn + 0.5ε11 = 0. This allows expressing ε11 as
a function of ε22 by combining (8.5) and (8.7):

ε11 = − λ

2µ+ λ+ 1
2E

v
n

ε22 (8.8)
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It follows from (8.6) that

σ22 =

(
2µ+ λ− λ2

1
2E

v1
n + 2µ+ λ

)
ε22 = Ksε22 (8.9)

with ε22 the strain component in the grains and Ks a bulk stiffness term taking
into account the stiffness of the vertical interfaces. Defining the interface normal
stiffness of horizontal interfaces as Eh1

n and Eh2
n , the global response to extension

according to (8.1) can be found by solving the system of equations for the opening
of both interfaces and the strain in the grains.

σ22 = −Eh1
n ∆uh1n (8.10)

σ22 = −Eh2
n ∆uh2n (8.11)

The stiffness moduli Eh1
n and Eh2

n are used to characterize the interface cohesive
tractions Th1

n and Th2
n , with the same relation for both interfaces. This gives a

unique solution for the loading until softening takes place. In the softening regime,
the uniqueness of the solution is lost, as either one of the two interfaces can soften
while the other unloads, or both can follow the same softening path. In this
example, two possible loading paths are followed: In case A the upper interface
enters the softening regime, while the lower interface follows the unloading path
until it closes (see Figure 8.3). In case B both interfaces are set to follow the
unloading branch, leading to a symmetric solution for the deformation of the
REV.

T
A

T
max

Δu
n

h1

T
B

T
max

case A case B

Δu
n

h2 Δu
n

h1
=Δu

n

h2

Fig. 8.3: Loading path of the normal component of the interfaces

Solving equations (8.9)-(8.11) for the interface openings ∆u1n and ∆u2n as a
function of macro deformation εM22 provides an analytical solution for the homo-
genized permeability of cases A and B when the interface openings are translated
into equivalent permeability terms. These cases give an upper and a lower bound
solution for the general case in which no constraint on the interface softening
is introduced. They form the reference solutions for the numerical response in
Figure 8.4.

Mechanical response

The mechanical response to extension of the microstructure is given in Figure
8.4. The response of the both cases A and B is identical up to the point at which
the softening limit of the interface damage law is reached (point a). The stress
at this point corresponds well to the initial softening state parameter D0

n = 0.2
and a reference maximum cohesion Tmax

n = 10 MPa:

σ22 = Tn = Tmax
n (1−Dt

n)
∆utn
δcn

= Et∆utn (8.12)
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Solving Equation (8.9) for an initial interface stiffness E0 = 8.0 GPa results in
the macroscale extension of εM22 = 1/300 as the point at which the first softening
is induced (point a in the upper graph). After this point, cases A and B show a
different loading path. The macroscale extensions of point b corresponds to the
critical opening δc = 0.005 of the interface channel following the softening branch
in case A. Point c corresponds to twice this critical opening, as both upper and
lower interfaces are forced to follow the softening branch.
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Fig. 8.4: Top: stress response to mechanical response to oedometric extension. Bot-
tom: Evolution of horizontal permeability as a response to oedometric exten-
sion.

Hydraulic response

To study the effect of the deformation loading on the hydraulic behaviour, the
macroscale equivalent permeability is evaluated. This permeability can be ob-
tained analytically to compare with the numerical results. The macroscale axial
strain εa = εM22 can easily be related to the microscale strain and interface open-
ings due to the geometry of the REV. For homogeneous strain ε in the grains, the
macroscale axial strain can be related to the strain in the grains and the interface
openings for a 1× 1 REV:

εa = ε22 +∆uh1n +∆uh2n (8.13)



8.1 Response to extension 97

With the analytical solutions for stress as a function of the microscopic strain
ε22 and interface opening given above, the analytical solution for the interface
opening as a function of εMa can be found for cases A and B:

• 0 < εa < 1/300

∆uh1,h2n =
KsδcD0

n

2KsδcD0
n + Tmax

n (1−D0
n)

εa (8.14)

≈ 0.298 εa (8.15)

• Case A: 1/300 < εa < 0.005

∆u1n =
Ksδc(1−D0

n)

Ks(1− 2D0
n)δ

c − Tmax
n (1−D0

n)
εa

− KsD0
nδ

c2 + Tmax
n (1−Dn

0 )δ
c

Ks(1− 2D0
n)δ

c − Tmax
n (1−D0

n)
(8.15)

≈ 2.426 εa − 0.00713

∆u2n =
KsD0

nδ
c

Tmax
n (1−D0

n)− δcKs(1− 2D0
n)

εa

− KsD0
nδ

c2

Tmax
n (1−D0

n)− δcKs(1− 2D0
n)

(8.13)

≈ −0.606 εa + 0.00303

• Case B: 1/300 < εa < 0.01

∆u1,2n = − δcKs

Tmax
n − 2Ksδc

εa +
Tmax
n δc

Tmax
n − 2Ksδc

≈ 0.6016 εa − 0.00102 (8.10)

It is stressed here again that the interface opening is dimensionless, or relative
to the REV size. The hydraulic opening ∆uh can be computed from the normal
mechanical openings ∆uh1n , ∆uh2n , ∆uv1n and ∆uv2n using (5.66). Translation para-
meters ∆u0h = 0.02µm, ∆umin

h = 0.01µm and ah = 1 mm are used, resulting in
an initial permeability in the order of 10−20 m2 related to the pore channel flow.
In this chapter, these parameters are used for both the computations with only
pore channel flow (kgij = 0) and computations with combination of pore channel
flow and diffusive flow in the grains:

kM11 =
1

12L

(
∆uh1h

3
+∆uh2h

3
)
+ kg11 (8.11)
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kM22 =
1

12L

(
∆uv1h

3
+∆uv2h

3
)
+ kg22 (8.12)

with L the unit length in the out-of-plane direction, which is most conveniently
chosen to be 1. The term kgii is the (averaged) grain permeability, which in this
case can be added in superposition with the interface conductivity. Diagonal
term kg12 is kept zero to avoid the analytical solution to become too complex and
to be able to apply the superposition of contributions of the interfaces and the
grains to the permeability. Moreover, superposition can be used only in this ex-
ample with homogeneous hydraulic properties. In the general case with hydraulic
heterogeneity (when either one of the interface elements transmissivity or grain
permeability is not homogeneously distributed over the REV), the superposition
of the separately computed hydraulic conductivity of interface flow and diffusive
flow does not apply.

The numerical results are given in Figure 8.4 together with the results obtained
from the numerical computations. The solutions for case A and B are, in line with
the mechanical behaviour, identical up to the point of initiation of softening. The
localization of the softening in a single interface in case A induces a higher rate
of opening of this interface. This leads to a stronger increase in permeability for
case A starting in points a′ and a′′. This effect comes to a hold at the complete
unloading of the microstructure in point b, after which the increase in interface
opening is identical to the increase in strain and the REV is stress-free.
For case B, in which the interfaces are enforced to open identically, point a′

identifies the point of entering the softening branch, where the increase of the
rate of change in permeability can be related to the unloading of the grains.
This effect disappears at the point of unloading in point c. The requirement of
equal interface openings has reproduced the lower bound solution that was found
analytically. After point c, no constraint on the interface opening was enforced,
leading to unequal opening of the upper and lower interface. The effect of this
unequal interface opening is the increase of the permeability with respect to the
lower bound solution after point c for equally-opened interfaces.

With the minimum hydraulic interface opening being very low, the definition
of the grain permeability makes the diffusive flow the most prominent fluid mass
flow mechanism under initial deformation state. With increasing opening of the
interfaces, the interface flow will take over as the leading fluid transportation
mechanism.

8.2 Pressure-induced permeability

For further verification of the evolution of the permeability as an effect of deform-
ation, the following loading path is applied on the REV of Figure 8.1:

Ḟ =

[
0 0
0 0

]
, ~̇∇pM =

{
0
0

}
, ṗM = 100MPa/α (8.13)

The mechanical behaviour of the grains is characterized by their Young’s modulus
E = 4GPa and Poisson’s ratio ν = 0.3. For isotropic loading under plane strain
conditions, this corresponds to a bulk modulus K∗ = 6.5GPa. An initial opening
of the hydraulic interfaces is defined as ∆u0h = 0.05µm, corresponding to an
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initial equivalent permeability of 2.083 × 10−20m2 for two interfaces per REV.
Loading is applied in the form of an increasing fluid pressure pM , while enforcing
the macroscopic strain to be zero. In a first case, no normal cohesive forces are
introduced. The opening of the interfaces is therefore completely controlled by
the compressibility of the grains. Given the symmetry of the microstructure and
the homogeneous distribution of the interfaces, it is easily verified that there is
an analytical solution for the normal mechanical opening of the interfaces under
the constraint that both interfaces are equally opened (as one of the possible
solutions when cohesive softening takes place). The relation between normal
interface opening and the fluid pressure is:

∆un =
1

2

pm

K⋆
10−3m (8.14)

Making the transformation to hydraulic opening allows computing the macroscale
effective permeability by Equation (8.11), including a possible grain permeabil-
ity kg. This provides the analytical solution that is to be compared with the
numerical result.

For the numerical results, two case are considered; case A with a normal
interface cohesion Tmax

n = 40MPa, case B with a negligible interface cohesion
Tmax
n = 1.0 kPa (zero cohesion is avoided to guarantee a proper solution in

the initial part of loading). Case B is compared with the analytical results in
figure 8.6, which shows that the numerical results are in good agreement with the
analytical solution.

Fig. 8.5: Deformed microstructure at pressure pM = 10MPa. The normal interface
opening is ∆un = 0.0065, corresponding to a hydraulic opening of ∆uh =
6.55 µm

Figure 8.6 has been obtained by artificially constraining the interface openings
to be equal, in order to avoid the possible ’drifting’ of the solutions such as
observed after complete decohesion of the interfaces in Figure 8.4. Moreover,
the difference between cases A and B demonstrates the different stages in the
evolution of permeability with increasing pore pressure.
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Fig. 8.6: pressure-induced permeability evolution. Dotted lines take into account the
grain permeability (8.4). For the red lines, normal cohesive forces are active

8.3 Undrained isotropic loading

In this third example, microstructure 1 is loaded from the initial configuration up
to an isotropic stress state of 100MPa (extension) and −100MPa (compression)
under undrained conditions. This is done for different values of grain porosities ϕ
and the pore fluid pressure as a response to this loading is studied. The influence
of the porosity on the global response is through the rheological part of the fluid
storage: The constant pore volume in the grains allows local storage of fluid mass
with increasing fluid pressure through the compressibility of the fluid. The rela-
tion between the interface normal opening and corresponding interface hydraulic
opening is presented graphically in Figure 5.7. With a minimum hydraulic open-
ing of ∆umin

h = 0.025µm and an initial hydraulic opening of ∆u0h = 0.025µm,
there is a local variation in pore volume even for slightly negative (penalized)
mechanical openings, which contributes to a geometric component of the local
fluid storage.

Since the applied isotropic stress state is obtained through the application of
a macroscale deformation, it is possible to distinguish the two tests by a com-
pressive loading (negative stresses) and extensive loading (positive stresses). The
hydraulic responses to compressive loading are given in Figure 8.7 for compres-
sion (left) and extension (right) for different grain porosities ϕ. For this example,
the cohesive forces at the interfaces are taken to be negligible with respect to the
normal interface contact forces and the hydraulic forces on the interface bound-
aries. In the case of extensional loading, the pore pressure p directly follows the
enforced stress and ∂p/∂σii ≈ −1. As the interface cohesion plays an inferior
role, and in extension no interface normal forces are active, practically all forces
are taken by the water. In Biot’s consolidation theory, such a response corres-
ponds to a Skempton coefficient βp ≈ 1, independent of the grain porosity. In
case of compressive loading, the mechanical forces at the interfaces can take a
more significant role in the micromechanical equilibrium. It is important to real-
ize that the REV is considered globally undrained, but locally a redistribution of
fluid mass is possible. This redistribution allows the fluid mass in the interface
elements to enter the pore space in the grains (which is considered to be constant
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and therefore independent of the grain deformation) depending on the pore pres-
sure required for the compression of the fluid mass. The larger the ratio between
the grain pore volume and the initial interface volume, the lower the pore fluid
pressure drives the fluid out of the interfaces and the easier the normal interface
contact forces can take over the isotropic stress σii. The result is a series of
pore pressure response curves starting with a one-to-one correspondence in case
of zero grain porosity where the compressive loading remains fully taken by the
(nearly incompressible) fluid. With increasing grain porosity, the change of pore
pressure with confining stress decreases towards a −dp/dσii in the order of 0.01
for ϕ = 0.1.

The non-linearities are an effect of the non-linear nature of the normal part
of the contact forces, where the non-linearities come mainly from the penaliza-
tion of negative normal opening. The cohesive forces for positive interface open-
ings are negligible with respect to the measured pore pressures in the experi-
ment as can be observed from the quasilinear relation in case of extension. The
non-linear response in case of compression shows the transition from a (quasi-
)linear relation between stress and fluid pressure at relatively low pressure and
a (quasi-) quadratic relation at higher pressures. This transition is a transition
from a hydraulics-controlled response to a mechanics-controlled response. In the
hydraulics-controlled response, the compressive load in the interfaces is mainly
taken by the fluid pressure, which requires a compression of the fluid mass equal
to the change in interface hydraulic volume. The (constant) grain porosity intro-
duces an additional amount of water to be compressed and the total change in
fluid volume (equal to the total change in interface volume) will therefore be larger
in case of higher porosity ϕ. As an effect, the change in normal interface openings
will be larger for higher grain porosity and a transition to a mechanics-controlled
response is obtained at lower compressive stress states.

In the mechanics-controlled response, the interface contacts are penalized and
the quadratic penalization leads to a change in hydraulic interface opening with
the square root of the applied compressive load. The result is the 2:1 inclination
in the logarithmic plot between loading and hydraulic response.

The point at which the transition from hydraulic-controlled to mechanics-
controlled response takes place is determined by the relative change in fluid mass
volume per change in fluid pressure. In other words, the position of the different
graphs along the diagonal in Figure 8.7 is a function of the fluid bulk modulus
kw and the ratio between (initial) interface hydraulic volume and the grain pore
volume.

With a relatively high fluid bulk modulus of the fluid (kw ∼ 1× 109Pa), the
nonlinearities due to the fluid compressibility is small in the applied range of
stresses (|pM | < 1× 108 Pa)

Note that the smallest loading step applied here is ∆σ11 = 1.0× 10−4 MPa,
which explains the choice for range of the horizontal axis. For smaller compressive
loading, the ϕ = 0.1 curve will coincide with the ϕ = 0 curve to qualitatively show
the same behaviour as the other curves.
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Fig. 8.7: Pore fluid pressure as a reaction to undrained loading

The numerical experiments above demonstrate that even for simplified micro-
structures a constant relation between macroscale stress and fluid pressure is not
easily obtained. It is therefore not straightforward to compare the macroscale be-
haviour with for example Biot’s theory without a strong restriction in the domain
of stress/strain states to linearize different aspects of the microscale behaviour.
For example, to take away the non-linear effects in Figure 8.7, the penalization of
the normal interface opening should be omitted or the hydraulic interface opening
should be independent from the mechanical normal opening. Another option for
linearization could be to consider fluid incompressibility.



9. VERIFICATION OF THE CONSISTENCY OF

HOMOGENIZATION: TANGENT OPERATORS

Matrix [A(7×7)] containing the linearization of the constitutive relation obtained
from the microscale computation is used in the macroscale finite element as
the consistent tangent stiffness matrix [A(7×7)] for solving the hydromechanical
coupled field equations. The consistency of the linearization of the constitutive re-
lation needs to be high for a proper convergence at the macroscale. It is therefore
necessary to evaluate the quality of [A(7×7)] with respect to consistency.

The microstructure introduced in Figure 8.1 is subjected to a strain-controlled
loading path to obtain the following deformation:

F =

[
0.995 −0.01
0 1.01

]
, ~∇p =

{
1.0
10

}
MPa/m, pM = 1.0 MPa (9.1)

This loading path can be applied directly and no tangent operators are required
to solve for the time steps. Over the next loading step to obtain the configuration,
the material constitutive linearization [A(7×7)] is determined using computational
homogenization by static condensation (CHSC) and numerical perturbation (NP).
Different values of perturbations ǫm and ǫh are used for perturbations of mech-
anical and hydraulic variables respectively. To assess the quality of the tangent
stiffness matrix, the relative difference of the individual components are com-
pared. The relative difference is defined as follows:

∆A(ij) = ‖
Aǫ

(ij)

Ach
(ij)

− 1‖ (9.2)

with Aǫ
(ij) the components obtained by numerical perturbation and Ach

(ij) the com-
ponents obtained by computational homogenization through static condensation.
Figure 9.1 shows the results for the components [∆A], in which the mechanical
components ∆C(ij), the hydraulic componentsKhh

(ij) and the coupling components

Khm
(ij) and K

mh
(ij) are identified according to (6.2).
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Fig. 9.1: Relative difference between the components of the tangent operator obtained
by computational homogenization with static condensation and numerical
perturbation as a function of the size of the numerical perturbation ǫ. Missing
data indicates equal components (log(0) = NaN).

The relative error in the tangent operators obtained by numerical perturbation
suffer from influences of the model non-linearities for larger perturbations and
numerical imprecision for smaller perturbations.

For the components related to a variation of the macro strain (C(ij) and K
hm
(ij))

the relative difference in the components of the tangent operators as a function
of the numerical perturbation shows a smaller inconsistency between the two
approaches for smaller perturbations, which is in line with the expectations con-
sidering material non-linearities. The components related to the variation of hy-
draulic kinematics terms show less variation with changing size of the numerical
perturbation and the relative difference is smaller than observed for the com-
ponents related to variation of strain. Moreover, only 7 components are shown.
These 7 components correspond to the variation of macroscale fluid pressures.
The components related to the pressure gradient for numerical perturbation and
condensation are identical.

To test the efficiency of the obtained tangent operators in a computation, a
kinematics-controlled loading path {U̇ (P )} is followed until dimensionless time
α = 1 to reach the state of deformation given in (9.1). From this configuration,
the corresponding response rate {Σ̇(R)α} is used to define the response-controlled
loading rate {Σ̇(P )} to be applied during a subsequent time increment ∆α = 0.01.
The convergence of the error Rmp of the Newton-Raphson scheme for iteratively
solving for the correct {∆U (R),1+∆α} corresponding to the enforced {∆Σ(P )} is
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given in Figure 9.2. Convergence graphs are given for computations using con-
densation (CHSC) and numerical perturbation (NP). The size of the numerical
perturbation is chosen based on the minimum relative difference between con-
densation and numerical perturbation according to Figure 9.1 (ǫm = 1 × 10−6

for perturbations of the mechanical components and ǫh = 1 × 10−3 for the
perturbations of the hydraulic components) and an arbitrary perturbation size
ǫm = ǫh = 3 × 10−5 for comparison. The convergence graphs show that the
computation with condensation shows the best convergence in this example.
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Fig. 9.2: Convergence of a stress-controlled loading step using tangent stiffness
matrices obtained by computational homogenization through static condens-
ation (blue), numerical perturbation with ’optimized’ perturbation sizes (red)
and averaged perturbation sizes (black)

The same procedure of assessing the consistency of the tangent operators
is repeated with a more complex microstructure (Figure 9.3-left), in which the
deformation loading path has induced microscale damage (9.3-right). This mi-
crostructure is one of the realizations of the calibrated microscale model against
experimental data of the Callovo-Oxfordian claystone, for which details can be
found in Section 14. The following deformation is enforced before evaluating the
tangent stiffness matrix:

F =

[
0.99 −0.02
0 1.03

]
, ~∇p =

{
1.0
10

}
MPa/m, pM = 10 MPa (9.3)
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Fig. 9.3: Left: undeformed microstructure with heterogeneous grain stiffness. Yellow
grains represent the clay matrix with E ≈ 2GPa. Right the deformed state
corresponding to a linear strain-controlled loading path given in (9.3). Black
symbols represent the state of softening. See Section 14 for microscale model
parameters.

The relative error in the stiffness components between numerical perturba-
tion and condensation are shown in Figure 9.4. Again, a good agreement is
found between the components of [C(4×4)] for small perturbations. This proves
that even for complex microstructures with softening phenomena, the condens-
ation provides consistent tangent operators for the mechanical system. Matrix
[Kmh] shows the highest consistency between condensation and perturbation at
a perturbation of εh = 100Pa. The increasing inconsistency away from this
perturbation size can be related to a loss of numerical precision for smaller per-
turbations and nonlinear effects incorporated in the linearization by the finite
difference approximation for larger perturbations. For matrices [Khm] the terms
related to the variation of fluid fluxes (shown in red) show a strong inconsistency.
This inconsistency is found both with respect to the condensation and between
different values of perturbation. The same inconsistency is found in the terms
related to the variation of fluid flux as a reaction to the variation of fluid pres-
sure Khh

(1,1) and K
hh
(2,1), represented by the red lines in the lower right graph. The

origin of these inconsistencies is the high sensitivity to to mechanical alterations
of the microstructure (in other words, the strong coupling from mechanics to
hydraulics), which causes a precision problem in the determination of the hy-
draulic flux. This can be demonstrated by applying several small deformation
loading steps ∆F11 = −0.00001 to the deformed microstructure and measuring
the subsequent increments of hydraulic fluxes ∆mi related to these increments.
Figure 9.5 shows a strong variation of the incremental changes in fluid flux as
response to the incremental deformation for different convergence criteria use in
the microscale computation. These strong variations can only be related to the
imprecision of the computed fluid flux and therefore a correct linearization of
these terms is impossible to obtain. The results for these coupling terms in the
stiffness matrix obtained by computational homogenization are therefore just as
useful as any other stiffness matrix, since consistency can not be obtained due
to a too strong variation in the response of the model itself. The other terms in
the two lower stiffness matrices [Khm] and [Khh], related to the variation of fluid
mass and the variation of pressure gradient show good consistency. As for the
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purely mechanical components, those related to a variation of deformation show
the highest consistency for the smallest variations. The terms relating variation
of pressure gradient to variation of fluid flux show little influence of variation
of numerical perturbation, as their results are both obtained computationally.
The remaining difference of a factor 10−5 can be found in the precision of the
numerical algorithms that were used to solve the systems of equations in both
methods.
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Fig. 9.4: Relative difference in the components of the tangent stiffness matrix [A(7×7)]
for different perturbations ε
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To evaluate the quality of convergence obtained by the tangent operators, a



108 Verification of the consistency of homogenization: tangent operators

stress-controlled continuation of the example above is performed. Starting from
the deformed state of the REV in Figure 9.3-right, the following stress-controlled
loading rates are enforced:

σ̇ =

[
−6.08 −0.11
−0.11 −2.33

]
MPa, ~̇m =

[
−6.05
−4.75

]
10−12 kg/s, Ṁ = 23.07 kg

(9.4)

The convergence graphs in Figure 9.6 show the convergence for different time
steps ∆α, with the convergence norm Rmp computed according (7.5).
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Fig. 9.6: Convergence obtained while enforcing the stress rate-controlled loading on
REV 9.3-right by stress rate (9.4) for different time steps.

From the convergence graphs in Figure 9.6 it can be concluded that a consist-
ent tangent stiffness matrix for the full hydromechanical coupled problem can be
found using computational homogenization by static condensation. Its consist-
ency is demonstrated to be of the same order as the best results obtained by nu-
merical perturbation and convergence of the material point systems of equations is
demonstrated to be of comparable quality. The term ’consistent’ is demonstrated
to be of doubtful meaning to some coupling terms in complex REVs. Neverthe-
less, the linearization [A(7×7)] obtained through computational homogenization
by static condensation can be used as a tangent stiffness matrix for solving the
material point boundary value problem of stress rate controlled loading.

The displacement loading condition on the REV boundaries are enforced by
means of the penalization of the displacement updates. This means that no ini-
tial estimate has to be made on the deformation in order to start the microscale
Newton Raphson iteration. In this way, non-objective results with respect to
the triggering of irreversible deformation through a biased initial test solution of
the microscale configuration of the first iteration are avoided. On this point, the
numerical methods of solving the microscale BVP on one hand and static con-
densation of the global stiffness matrix into the tangent operators on the other
show a fundamental difference in the way of enforcing the periodic boundary con-
ditions. For well-posed systems of equations, this difference should not introduce
additional problems. In case the problem becomes ill-posed, for example in the
vicinity of bifurcation points, the penalization might introduce numerical inac-
curacies (a higher numerical noise level). This means that both the converged
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solution of the microscale problem and the tangent operator loose their quality,
since the behaviour becomes less differentiable or non-differentiable. An example
of this was given in Figure 9.5.

Nevertheless, it can be concluded that on the material point level, the presen-
ted micromechanical model can provide a macroscale HM-coupled model by ap-
plying the principle of computational homogenization on the micromechanical
REV, for which the boundary value problem is dictated by the macroscale deform-
ation. Both macroscale stress response and tangent operators can be found by
computational homogenization, in order to be used in a material point boundary
value problem, simulating the local material behaviour under arbitrary loading
paths. Following the same approach, the micromechanical model is suitable for
the use in doublescale computations, as will presented in the following chapter.



110 Verification of the consistency of homogenization: tangent operators



10. MACROSCALE CODE: DOUBLESCALE COMPUTATIONS

In this chapter, several examples of doublescale computations for hydromechanical
coupling are given, thereby demonstrating the possibilities and restrictions of the
(HM-coupled) FE2 method.

10.1 Oedometric extension

An oedometric test with a simplistic microstructure is modelled (Figure 10.1).
This test was modelled by Marinelli [2013] with the original Frey model in a large
strain formulation using a column of 20 1 × 1 mm elements applying very small
instantaneous loads to maintain the close-to-linear conditions near the initial
configuration. Here, the modified version of the model is used. The modifications
allow taking into account larger pressure gradients as the local material behaviour
can be obtained independently from the pressure gradient. A refined mesh at the
point of drainage allows the accurate modelling of higher pressure gradient, with
less oscillations as commonly observed in coarse meshes for transient problems.
Note that oedometric extension is modelled here rather than the (conventional)
oedometric compression: The rectangular grains prevent a progressive evolution
of hydraulic properties under compressive loading as the normal compression of
the interfaces will hardly influence the hydraulic properties of the interfaces.
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Fig. 10.1: Macroscale mesh for oedometric extension (left) and micromechanical REV
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Fig. 10.2: Fluid pressure curves to oedometric loading, curves shown correspond to
t = 1.0 × 103, 1.0 × 104, 1.0 × 105, 1.0 × 106, 4.0 × 106 sec. for grain
porosity ϕ = 0 and ϕ = 0.5

The fluid pressure profiles shown in Figure 10.2 for the oedometric extension
at 10 kPa show good resemblance with the profiles that are usually obtained
for computations of consolidation problems [Biot, 1941, Terzaghi, 1943]; as an
effect of the relatively low loading forces with respect to the interface cohesion,
the interface openings remain close to their original state and hydraulic properties
(total pore volume, permeability and fluid density) remain practically unchanged.

The 500 kPa test shows a significantly different pressure profile, as the higher
fluid pressures induce variations in the hydraulic properties. This effect has been
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demonstrated in the material point computations above and now manifests in a
change in macroscopic behaviour; the resulting profile shows a combination of
the classical solution to the consolidation problem and the effects of a fluid mass
slowly intruding the material from the bottom of the sample. This increase in
fluid content through the opening of interfaces causes an increase of permeabil-
ity, facilitating the progressive invasion of the material by the fluid mass. From
this example, it is clear that it is no longer possible to compare the results of
the doublescale model with those obtained by ’simple’ classical models with con-
stant permeability, since the hydraulic properties show a too strong differentiation
throughout the test. The effect of a fluid mass and fluid pressure progressively
moving through the material will be further explored in the next section, where
this effect will manifest more as a moving front.

For both tests, a small influence of grain porosity (tests were performed with
ϕ = 0 and ϕ = 0.5 respectively) can be observed as an effect of the redistribution
of the fluid mass between interfaces and grain pore space. This redistribution
provides the fluid mass required for the interface opening, thereby activating
some of the cohesive forces and lowering the fluid pressure plateau. In this way a
Biot coefficient α ≈ 1 is obtained for macroscopic undrained loading.

10.2 Pressure dissipation

A second doublescale test consists of the hydraulic loading of a 10 cm sample,
for which displacement of the top and bottom are constrained together with
horizontal displacement for the entire sample. Three series of test are performed
with pressure increments of 10kPa, 1MPa and 10MPa enforced on the bottom
of the sample, while no fluid flux is allowed on the other boundaries (see Figure
10.3). In the first two series (10 kPa and 1 MPa), the fluid pressure is applied in
a single step, in the last series (10 MPa) the fluid pressure is applied in ten steps
of 1 second each. Each series contains two tests with grain porosities of ϕ = 0.00
and ϕ = 0.50.
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Fig. 10.3: Macroscale mesh for pressure dissipation test at p = 10 kPa and p =
1 MPa(left) and micromechanical REV (right).

The pressure response profiles to hydraulic loading of the sample in Figure
10.4 demonstrate again the influence of the grain porosity on the macroscale be-
haviour, as the water storage is influenced by the change in total pore volume.
This influence comes only from the fluid rheological part through the compressib-
ility of the fluid; the model does not consider grain pore volume change and total
pore volume change remains fully related to the change in interface opening. Nev-
ertheless, the fluid compressibility allows fluid mass redistribution at high grain
porosity, such that the applied loading is almost completely taken by the mech-
anical system in case of higher grain porosity. As an effect, fluid pressure remains
close to zero for the points that have not been reached by the macroscale fluid
flow (the increase of fluid mass). This means that for high grain porosities, the
increase of fluid pressure is only possible through the macroscopic displacement
of fluid mass, driven by a fluid pressure gradient. For low or no grain porosity, the
pressure increase is directly linked to the macroscopic strain due to the hydraulic
loading, for which a negative volumetric strain induces a direct rise in pore pres-
sure. This can be observed as the fluid pressure increases homogeneously in the
upper part of the sample in the case of grain porosity ϕg = 0.0.
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Fig. 10.4: Fluid pressure curves as a response to fluid pressure loading (Figure 10.3)
at t=10, 100, 1000, 10.000, 25.000 and 50.000 seconds.

Similar to the observed behaviour in the oedometric loading tests, higher hy-
draulic loading shows a stronger effect of the increasing permeability and the
effects of a pressure front that advances from the bottom upwards can be no-
ticed in the pressure profiles for 1 MPa hydraulic pressure. Figure 10.5 shows
the evolution of the permeability profile for the dissipation of the 1 MPa fluid
pressure load. The increase in permeability of more than one order of magnitude
can be observed (Figure 10.5). The advancing front of increased permeability
corresponds well with the advancing pressure front in Figure 10.4.
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Fig. 10.5: Permeability at different states of pressure dissipation for p = 1 MPa n =
0.50. Initial permeability is k22 = 1.04e−20 m2

In the third series of simulations, a pressure increment of 10MPa is applied in
10 subsequent time steps of 1 second each. The dissipation of the imposed pressure
is then followed over a period of 100 seconds. Incremental time steps of 1 second
are used for the integration. The dissipation response to this higher loading is
quite different from the behaviour of the pressure loading above, in the sense that
the fluid pressure profiles of consolidation are no longer found. Instead, the effect
of the advancing pressure front is the main mechanism of pressure dissipation as
can be found in Figure 10.6left. As an effect of a clearly defined pressure front,
the position of this front as a function of time can be followed (10.6right)
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The pressure front represents some very high gradients of pressure to be ac-
counted for in the finite elements. As the pressure front translates upwards with
time, the size of the elements in the mesh that have to capture this gradient
increases. This eventually introduces mesh-dependent results when the element
size becomes too large with respect to the zone of the pressure front. In the simu-
lations above, these effects start to develop when the pressure front has advanced
1 cm into the sample and the advance per time step becomes smaller than a single
element. This makes the advance of the pressure front erratic and introduces er-
rors in the pressure fields. The start of this effect can be seen in the advancement
of the pressure front for the ϕ = 0.50 computations in Figure 10.6 starting from
t = 37 sec. This effect clearly marks the limitation of the macroscale finite ele-
ment method when it comes to high pressure gradients with this mesh size, as it
fails to deal with the strong pressure gradients present in the sample.

Figure 10.7 shows the evolution of the pressure front from a permeability
point of view. With increasing fluid pressure, the grains are compressed and the
interfaces are opened. For p = 10MPa this results in an increase of permeability
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of 4 orders of magnitude.
It should be noted that, due to the oedometric conditions of the sample and

relatively low stiffness of the interface cohesion(1), no interface softening has taken
place in the simulations above. The effect of interface softening would increase
the evolution of the permeability. Moreover, localization of deformation might
mitigate the quasi-1D approach that is followed here and can introduce localized
effects even in a column of 1 element wide.

10.3 Localization in biaxial compression test - mechanical model

In this section, a 2D doublescale biaxial compression test is modelled, using the
mechanical model in combination with the local second gradient model. A simple
microstructure of four hexagonal grains is used in the REV (Figure 10.8). As
the purpose of this computation is to demonstrate the doublescale approach
with second gradient model, the representativeness of the microstructure is of
no importance, but it should be noted that the low number of interfaces strongly
influences the macroscale behaviour and a strong anisotropic response can be
expected.

Figure 10.8 shows the macroscale domain with boundary conditions and the
micromechanical REV. The domain is discretized using 4800 square elements.
Displacement-controlled axial deformation is enforced on the top of the sample, for
which a perfectly smooth boundary is assumed, allowing horizontal displacement
of the top of the sample. No confining pressure is applied.
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Fig. 10.8: The boundary conditions on the macro level (left) and the mesh for the
REV with microstructure on the micro level (right). In green the elements
for the solids, in blue the interface elements.

Figure 10.9 A) shows the nominal stress response to biaxial compression, in-
cluding a softening response initiated at approximately 1.25% shortening of the

(1) the term stiffness is used here with respect to the slope of the cohesion-displacement graph,

or the ratio ∂T/∂∆u
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sample. The volumetric strain response is given in Figure 10.9 B), with the
average volumetric strain of the sample (Vsample/V

0
sample − 1).

The ratio between initial lateral and axial strain rate −ε̇lat/ε̇a = 0.835 that
is observed in the plane-strain simulation corresponds to an effective Poisson’s
ratio ν = 0.455, which is much higher than the Poisson’s ratio of the individual
grains. This difference is the effect of the dilatancy introduced by the interfaces
as soon as deviatoric strain takes place; the transduction of shear stress over
the interfaces between the grains requires a relative displacement and relative
displacement of the interfaces requires some interfaces to be opened, leading to
a dilatant global response. The lack of interface static friction will contribute to
this effective dilatant behaviour.
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Fig. 10.9: A) nominal stress response to biaxial compression. B) volumetric strain
response, computed based on w1, w2 and a total volume integral.

Figure 10.10 shows the deformed microstructure at nominal axial compression
εa = −1.9% with Von Mises (VM) equivalent strain εVM defined as

εVM =

√
2

3
(ε112 + ε222 + 2ε122) (10.1)
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Figure 10.10B) shows the deformed microstructures at εa = −1.9% outside
the shear band (taken close to the center of the bottom boundary) and at the
center of the localization band. For each interface integration point, the damage
state of the interfaces is given. The red symbols indicate a state of softening, the
black symbold indicate a decohesion of one of the components of the interface
chesion. The size of the red symbolds indicates the amount of softening. An
almost continuous path of interfaces with complete decohesion of at least one
component (normal or tangential) is observed in the localization band near the
end of the test; only one channel of this path has a remaining cohesive force, which
is close to decohesion. It is important to observe that the orientation of the paths
of softening at the microscale are conjugated with respect to the shear band that
is present at the macroscale and that the orientation of microscale localizations
of damage do not necessarily have to align with the macroscale shear band.

As mentioned before, the anisotropy in the model that is introduced by the
low number of grains is strong. This anisotropy plays an important role in the
initiation of the strain localization, as it introduces preferential directions for
localization bands. As the macroscale behaviour does not have an axial symmetry,
conjugate shear bands are less favorable. In addition, localization in a shear band
involves a local rotation. Because rotations are restricted at the top and bottom
boundaries, the initiation of a band that does not interfere with these restrictions
is preferential. The constraints of the local second gradient model on the gradient
of deformation will then provide for a (weak) condition to ’push’ the shear band to
the center of the sample to obtain symmetry with respect to the top and bottom
boundaries.

For this reason, the same solution is found for different computations with
this microstructure.
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10.4 Localization in biaxial compression - hydromechanical
coupling

In this section, a biaxial compression test on a fluid-saturated sample under tran-
sient conditions is modelled. The initial state of the sample is homogeneous with
(total) stress σM

ii = 0 MPa and pore water pressure p = 0 MPa. Drainage is
applied on the top and the bottom of the sample (see Figure 10.11).

Microscale interface cohesion parameters δcn/t and macroscale second gradient

parameter D are chosen such that for a perfectly drained analysis (i.e., a purely
mechanical analysis), snapback of the macroscale response is just avoided and the
resulting shear band is approximately 4 elements wide.
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Fig. 10.11: Boundary conditions for biaxial compression of a fluid-saturated sample
under zero confinement (left) and the micromechanical REV with con-
stitutive parameters (right).

The biaxial compression test is performed four times; once without taking
into account the pore pressures (perfectly drained or purely mechanical) and
three times with different deformation loading rates:

• Test A : mechanical (pt(~x) = 0)

• Test B : ε̇a = 1E−11/s

• Test C : ε̇a = 1E−10/s

• Test D : ε̇a = 1E−09/s

Initial permeability is set to kii = 1.0×10−20 m2 through the grain permeability,
which is constant over the REV.

Figure 10.12 shows the nominal axial stress response and the pore pressure
response at the center of the sample. These responses show a dependency of the
developing reaction forces on the rate of loading as higher loading rates induce
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higher negative over-pressures. These negative over-pressures lead to higher and
delayed peak stresses for higher loading rates.

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018
−5

0

5

10

15

20

25

30

35

ε
a

[−]

n
o

m
in

a
l
a

x
ia

l
s
tr

e
s
s

[M
P

a
]

σ
a

|9p9=90

σ
a

| dε
a
/dt =9999991E−11

σ
a

| dε
a
/dt = 1E−10

σ
a

| dε
a
/dt = 1E−9

p

p
[M

P
a

]

−

−

−

−

−

−

−

Fig. 10.12: Nominal stress response to biaxial compression at 0 confinement (red) and
the fluid pressure response at the sample center (blue).

Comparing the VM strain and fluid pressure fields (Figure 10.13) for different
loading rates demonstrates that at the lower loading rates, the mechanism of de-
formation is not changed and the shear band develops in the same way as for the
mechanical computation. The fluid pressure follows the deformation, with neg-
ative pressure gradients towards the localizations. The dilatancy of the material
is the main reason for this behaviour and the fluid flux is towards the zones of
strongest deformation rate, which corresponds with a pore volume increase due
to interfaces that are being opened.
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Fig. 10.13: Deformed meshes with VM equivalent strain (top), fluid pressure (center)
and relative fluid flux (bottom) at εa = 1.20 %

Test A, B and C have localizations developing through the center of the
sample. This means that the anisotropic preference for this orientation is stronger
than the negative fluid pressure favoring localizations close to the top of the
sample. For the highest loading rates, the negative fluid pressure buildup is
stronger and the influence of the fluid pressure becomes dominant in the localiz-
ation, preventing the development of strain localization through the center of the
sample. This can be observed in Figure 10.13 Test D, where the highest deviatoric



10.4 Localization in biaxial compression - hydromechanical coupling 123

strains are concentrated in the zones of least fluid negative overpressure.
At the end of Test D (that is, at εa = 1.54% when a converged solution can

no longer be found due to (local) snapback effects) two localization bands are
developing, reflecting at the top and bottom boundary, as can be seen in Figure
10.14 left.
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Fig. 10.14: Deformed mesh (displacements multiplied 10×) at the end of Test D.
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11. THE MICROSTRUCTURAL REV

Many results on heterogeneous microstructures in literature are based on a vari-
ation in constitutive parameters, used to characterize the heterogeneity ( see for
example [Barbe et al., 2001a,b, Gitman et al., 2007] to name a few). These results
can be obtained for simulations of inclusions in a matrix as well as heterogeneity
in the form of polycrystalline microstructures. Two major differences between
these results and the model presented in this work are the following;

• localization takes only place in the interfaces, and the interface orientation
and connectivity plays an important role in the possible percolation of local-
ization paths. A low number of grains and the periodic boundary conditions
can strongly constrain the possibility of the full percolation of a localization
path.

• the application to geomechanical problems introduces a compressive loading
path to reach the softening response of the material. The mechanisms of
localization under compressive loading associated to the material softening
are more complex than those of the tensional loading which is the common
approach in the afore-mentioned references.

In the previous sections, only theoretical microstructures were demonstrated
to clarify the principles of the microscale model. Although these simplified mi-
crostructures can very well be used in doublescale computations and are of great
value in the validation of the developed models, their global response can not be
considered to properly represent the behaviour of geomaterials. Especially their
behaviour under compressive loading will show a strong orientation dependency
through the preferential orientation of the grains and the interfaces.

The generation of more complex microstructures requires a certain random-
ness in order to prevent user-dependent bias in microstructure realizations and a
general algorithm to be able to produce large and multiple realizations of these
microstructures is required.

From an application point of view, the definition of the microstructure has
to resemble the microstructure of the material that is to be simulated and there-
fore the geometry of the microstructure might be derived directly from actual
microstructural observations. The discretization of microstructure images is in
this case the most straightforward approach in defining the microstructure for
a REV. This requires the selection of representative images of the microstruc-
ture, for which the representativeness has to be tested based on a certain set of
geometrical parameters.

A different approach is to start from these geometrical parameters (which by
themselves characterize the (main) features of the microstructure) and reproduce
microstructures that statistically match these characteristics. This allows realiza-
tions of an unlimited number of microstructures and in addition provides a way of
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investigating the effect of variations in the microstructure characteristics. A more
practical consequence of this approach is that a reduction in complexity of the
microstructure is easily obtained by only taking into account a limited number
of parameters for the characterization of the microstructure.

In this context a routine for generating simple microstructures with a limited
number of parameters is developed. Although it is possible to generate advanced
microstructures (see for example Sonon et al. [2012]) a straightforward and effi-
cient way of obtaining microstructures is followed here.

11.1 The microstructural REV generator

A microstructure generator based on random initialization of grains is designed,
based on the well-known Voronöı tessellation. The use of Voronöı tessellation for
generating microstructures is often used in numerical methods to produce micro-
structures [Lee and Ghosh, 1995, Alonso-Marroqúın et al., 2005, Verhoosel and
Gutiérrez, 2009, Benedetti and Aliabadi, 2013]. A detailed description of the gen-
eration of Voronöı-based periodic REVs with finite element meshing is given by
Fritzen et al. [2009]. Several variations in the generation of the initial Voronöı tes-
sellation can be used for modifying the connectivity of the resulting Voronöı dia-
grams through the variation of the initial random sites. In addition, anisotropy in
the grain geometry is easily introduced by a modification of the distance function
[Barbe et al., 2001a]. In addition to these variations in Voronöı generation, the
microstructure grain shape can be modified in a post-processing step, as will be
introduced in the following part. This modification was initially introduced to
avoid grain shapes that introduce difficulties with finite element mesh generation,
but has proved to play an important part in the global response through the
specific imbrication of the grains. This grain-shape dependency will be addressed
in 11.2. The algorithm for generating the microstructure consists of the following
operational sequence, corresponding to Figure 11.1;

(a) A 1× 1 periodic domain is defined, in which n sites are generated randomly.
To obtain periodicity, the sites are copied to each periodic quadrant. Each
site will initiate a grain, eventually resulting in n unique grains in the periodic
domain.

(b) Inverse mapping by the grain shape tensor T−1 is applied for introducing the
required grain stretching and rotation (Section 11.1.2).

(c) Voronöı tessellation based on the periodic sites in the inverse mapped config-
uration produces the grain interfaces.

(d) Grain circularity optimization (Section 11.1.1) is performed to obtain more
regular shapes.

(e) Mapping by grain shape tensor T is applied to transform the deformed peri-
odic boundaries back to the initial configuration, thereby applying the grain
shape tensor T on the grains.

(f) The center periodic domain is isolated by cutting the grains at the periodic
boundaries, after which the finite element mesh is generated for the grains
and the grain interfaces and material properties are assigned to the different
micromechanical constituents.
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a) b) c)

d) e) f)

Fig. 11.1: Illustration of the algorithm for anisotropic REV generation with grain
shape tensor T = [1 0.8 ; 0 1].

11.1.1 Grain circularity optimization

The grain shapes obtained through Voronöı tessellation can be very unfavourable
for creating the finite element mesh of the grains, for example through very short
interface lengths. Moreover, the irregular grain shape might introduce undesired
microstructural properties in the material behaviour. In order to have a control
on the grain shape, a circularity correction is introduced to have control over the
grain shape. For this reason, the grain shape is optimized with respect to interface
length l and a configuration of the intersection points of the Voronöı diagram is
sought for which the sum of the squared length of the interfaces is minimal. With
li the length of interfaces i out of a total of I interfaces and xji the coordinates of
one of the J intersection points, the minimum of the sum of the squares interface
channel lengths has to hold:

∂
I∑

i=1

lili

∂xji
= 0 (11.1)

The only interface channels li that need to be considered in this condition are
those connected to intersection point ~xj and it is straightforward to verify that
this condition implies that the components of ~xj are the average of the directly
connected intersection points:

xji =
1

K

K∑

k=1

xjki (11.2)
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with ~xjk the coordinates of the K intersection points directly connected to ~xj

by an interface channel. The most convenient way of solving the coordinates
of all intersection for the given constraints is iteratively updating of individual
intersection points following a Gauss-Seidel iteration scheme until convergence
of the iterative updates to approximately zero. This scheme of subsequently
updating the coordinates of individual intersection points avoids dealing with
boundary conditions, which would have been necessary in case of a direct solution.

The result is a Voronöı-based microstructure with optimal circular grains
as given in Figure 11.1d. The only possible influence on preferential orienta-
tion (apart from the anisotropy introduced by the stretch and rotation of the
Voronöı diagram by tensor T ) comes from the periodicity in the microstructures,
all other features are randomly initialized. A circularity optimization parameter
η is introduced to control the amount of optimization to be taken into account,
ranging linearly from η = 0 (the original Voronöı diagram) to η = 1 (full op-
timization). With {x0} the coordinates of the intersection points of the original
Voronöı diagram and {x1} the configuration after full optimization, the parameter
η is taken into account by a linear interpolation between the two configurations:

{xη} = (1− η){x0} − η{x1} (11.3)

Figure 11.2 gives an example of different optimization factors applied on a
fixed set of Voronöı sites.

η = 0 η = 0.25 η = 0.5 η = 0.75 η = 1.00

Fig. 11.2: An example of 5 REVs with ξ = 0.5, θbed = −45◦ and different circular
optimizations η

11.1.2 Material anisotropy - grain shape tensor T

The random initialization for the generation of periodic REVs by Voronöı tessel-
lation provides a distribution of grain shapes in which only the periodic boundary
conditions influence the orientation of the grains and thereby anisotropy in the
macroscale response. For REVs with increasing number of grains, this anisotropy
will decrease and the expected response of the microstructural REV will therefore
be less anisotropic. In order to obtain microstructures with grains with a certain
preferential orientation, the grain shape tensor T is introduced for stretching and
rotating the microstructure with respect to the periodic frame.

Although four components can be defined in T , only two independent variables
will be present in the final grain shape. These variables are here defined as the
grain stretch ratio ξ and the bedding θbed, which can be related defining tensor
T as follows;

T =

[
ξ cos θbed sin θbed

−ξ sin θbed cos θbed

]
(11.4)
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For an arbitrary grain shape tensor, the grain stretch ratio ξ corresponds to the
ration of major principle stretch λ1/λ2, or the ratio of the eigenvalues of the
symmetric stretch tensor U = (T T · T )1/2. The bedding orientation θbed is the
orientation of the major stretch with respect to ~e1, or the orientation of the
eigenvector of stretch tensor U corresponding to the largest eigenvalue.

Figure 11.3 shows a microstructure with partial circular optimization (η = 0.5)
and grain anisotropy ξ = 1.5 for a bedding plane θbed = 0◦.
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Fig. 11.3: Example of statistics of a 200-grain REV with ξ = 1.5, η = 0.5 and θbed = 0◦.

11.2 REV size and shape

The size and shape of the REV has an influence on the macroscale response.
Three types of influence are distinguished here:

• The first type of influence is the representativeness of the REV with respect
to the microstructure: In line with its classical definition, the REV needs
to be large enough to contain a representative number of microstructural
features to provide a proper macroscale average. Larger REVs will lead to
better statistical representation of the microstructure.

• The second type is here the choice of the REV dimensions and the length
scale it introduces in case of a softening response. This effect is present
as soon as the material response looses its periodicity (generally around
the peak response) and the REV size defines the relative spacing between
possible localizations at the microscale (see Bilbie et al. [2008]).

• The last type of influence considered here is the choice of the shape (orient-
ation) of the periodic frame in which the locally periodic microstructure is
captured. This influence is present in the softening response and introduces
orientation-dependent post-peak response. This effect will be referred to as
the periodic frame effect.

In the following chapters, the three effects are demonstrated by several (statist-
ical) characterizations.

11.2.1 Representativeness of the elementary volume

The first type of influence is not directly related to the boundary value problem of
the REV. However, to REV-obtain objective results, the representativeness of the
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microstructural geometry must be guaranteed and the reduction of the influence
of the periodic frame on the grain geometry should be sufficient.

As an example, the convergence of the expected grain elongation e =
√
I2/I1

(to be compared with the experimentally observed distribution of elongation in-
dex e = l2/l1 (1.1)) towards a constant distribution with increasing number of
grains per REV is shown in Figure 11.4. The expected distribution is obtained
from a minimum number of 10.000 grains or 100 REV realizations each per REV
size. The results for η = 0 and η = 1 show that the circularity optimization is
influenced by the size of the REV and convergence of the expected grain elonga-
tion is obtained only for very large REVs. REVs with smaller numbers of grains
suffer from a bias towards elongated grains. This effect is due to the periodicity
in the Voronöı diagrams that prevents a proper optimization and stretches the
grains due to the connectivity of the Voronöı diagram.
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Fig. 11.4: Statistical distribution of grain elongation e as a function the number of
grains per REV n.

As discussed in above, a low number of grains in a single REV can introduce a
strong anisotropic response as the grains form a too small sample size for averaging
and an increasing number of grains will lead to representativeness. In case the low
number of grains would be the only effect playing on the response of the REV, the
expected value for a randomly generated REV with low number of grains should
be the same as the response found with a large number of grains. In a similar
way, an REV with a limited number of grains provides only a limited number
of localization paths between the grains and a low number of grain interfaces
constraints the development of interface damage for certain orientations of applied
deformation. Again, a larger number of grains lead to a better representation as
the constraints on possible patterns of damaged interfaces is reduced.

To study these effects for REVs with relatively lower numbers of grains, a
statistical averaging approach is followed to avoid the time-consuming compu-
tations on REVs with too many degrees of freedom. The averaged result of
several randomly generated microstructures is studied to smoothen out the non-
representativeness of the low number of grains and to obtain the peak response
expectation. Microstructures with 10, 20, 40 100 and 200 grains are studies for
circularity optimization of η = 0 (original Voronöı diagram) and η = 1.0 (optimal
circularity). The peak response to biaxial vertical compression under 2 MPa lat-
eral confinement pressure is studied to make a statistical characterization of the
effect of the size and orientation of the REV on the global response. Figures 11.5
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and 11.6 show the peak response to loading as a function of the orientation of the
REV. A normal and log-normal distribution are then fitted to provide the 95%
probability interval and the median, ploted together with the individual results.
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Fig. 11.5: Comparison of series of REVs of 10, 20 and 40 grains with the expectation
and 2.5% probability upper and lower bound based on fitted norma (blue)
and lognormal (red) distribution functions as a function of REV orientation
θI
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Fig. 11.6: Comparison of series of REVs of 100 and 200 grains with the expectation
and 2.5% probability upper and lower bound based on fitted normal (blue)
and lognormal (red) distribution functions as a function of REV orientation
θI

From Figures 11.5-11.6 it can be concluded that for both types of REVs (0%
and 100 % sphericity optimization), an increasing number of grains corresponds
to a decreasing variability in response and therefore a better representativeness
as is expected from the general concept of the REV. More specific convergence
can be observed when the averaged curves for the different numbers of grains
per REV are compared. For this purpose, the average over the expectation as a
function of REV orientation (mean), the average over the standard deviation as a
function of the REV (std) and a measure of the variation in the expected response
as a function of REV orientation θI (computed as the maximum difference in
response expectation divided by the average response expectation) are computed
and presented in Figure 11.7.
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Fig. 11.7: Statistics of the peak nominal stress as a function of the number of grains
per REV.

From Figure 11.7 the following can be concluded:

• The mean of nominal stress peaks appears to be constant for η = 0 for REVs
with more than 40 grains. In the case of η = 1 a strong dependency can be
observed in the mean of the expected peak stress, which can be related to
the change in elongation as observed in Figure 11.4. The circularity of the
grains appears to have a strong effect on the expected peak stress.

• The standard deviation in the peak response decreases with increasing num-
ber of grains per REV both for η = 0 and η = 1, which is perfectly in line
with the concept of the representative elementary volume.

• The variation in the expected peak response as a function of REV orient-
ation decreases with increasing number of grains per REV. This can be
explained by the increase in possible patterns of damaged interfaces with
the increase of grains in the REV. This convergence with increasing number
of grains comes to a hold at 40 grains, where the relative variation becomes
independent of the number of grains. This means that with more than 40
grains per REV, other effects (the periodic frame effect) become dominant
in the orientation-dependency of the response.

It can be concluded that the REVs with an increasing number of grains in the
REV, a (statistically) more isotropic peak stress response is obtained:. This
indicates that a REV exists in the sense that it gives a reasonably objective
description of the material behaviour and the influence of the boundary conditions
vanishes asymptotically. In the post-peak regime, this is not the case, as the
material periodicity is lost and localizations of interface deformation govern the
behaviour. The influence of the localization manifests itself both through the
length scale that is introduced by the (relative) size of the REV and the periodic
shape effect.

11.2.2 The periodic frame effect

For the series of 100-grain REVs, the orientation-dependent stress response to bi-
axial loading is averaged over the 100 unique realizations. This gives statistically
representative stress-strain curves for REVs with 100 grains at different orienta-
tions θI . Figure 11.8-left shows these curves for the REVs with 100% sphericity
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optimization. Two types of curves can be destinguished based on their soften-
ing rate. These two types of softening response correspond to the two types of
damage patterns in the interfaces; the stronger softening corresponds to a single
localization path in the REV and the weaker softening to a double localization
path. To demonstrate the relation between the REV orientation θI and the post-
peak response, a crosssection of the stress-strain curves is taken at εa = −0.025.
Figure 11.8-right shows the crosssections for the averaged stress-strain curves of
0% and 100% optimization. It is clear that there is a strong influence of the ori-
entation of the REV and more precicely the orientation of the periodic boundary
conditions in the response, with peaks in a 45◦ interval. Consequence is that
the REV boundary orientations remain influencing the post-peak behaviour and
presents preferential orientation of localization through the softening response.
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Fig. 11.8: Left: 100-test averaged stress-strain response for different loading orienta-
tions of 100-grains REVs with grain sphericity optimization η = 1. Right:
orientation-dependent 100-test averaged response at −2.5% axial strain for
η = 1 and η = 0.
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12. PERFORMANCE AND COMPUTATIONAL EFFICIENCY

Compared to the classical FE methods with macroscale phenomenological con-
stitutive laws, the FE2 method is computationally expensive. Although the rel-
ative cost of the microscale computations goes down significantly with increasing
numbers of degrees of freedom at the macro scale, the major part of the compu-
tation time is spent on the micro scale computations.

The possible gain in computational efficiency is therefore an important ar-
gument in the choice for computational homogenization by condensation, as it
makes the additional four computations needed for the finite difference approx-
imation of the consistent tangent stiffness matrix by numerical perturbation ob-
solete. Without these four additional computations, the theoretical reduction in
computation time through the introduction of the condensation is a factor five
(for mechanical problems) or eight (for hydromechanical coupling). However, the
routine for homogenization by condensation requires some matrix operations as
well and a certain overhead of initialization of the problem is required. This will
reduce the factor 5 (or 8) to a theoretical upper limit of efficiency which, especially
for relatively small microstructures, is difficult to obtain.

For the computational homogenization by static condensation (CHSC) to be
effective, both its overall and its absolute efficiency has to be competitive with
the method of numerical perturbation (NP). This requires in the first place a
convergence of the macroscale Newton-Raphson scheme to be of the same quality
as obtained by NP. Secondly, the computational effort required for the condens-
ation needs to be much smaller than the computations it is replacing. In this
chapter the performance of the developed methods are discussed with respect to
computational effort and quality of convergence in doublescale computations.

12.1 Doublescale convergence studies

To assess the convergence of doublescale computations with hydromechanical
coupling, several loading steps of the computation of Test B in Section 10.4 are
repeated. Starting from the same state of deformation, identical loading steps are
applied using either NP or CHSC for obtaining the consistent tangent stiffness
matrices. Three loading steps are evaluated; a loading step in the elastic domain
(εa = −0.25 %), a loading step just after the peak (εa = −1.00 %) and one at
the end of the snap-through (εa = −1.20 %). Figure 12.1 shows the graphs for
force convergence (left) and displacement convergence (right) as evaluated by the
macroscale finite element program Lagamine, with;
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FNORM the norm of the out-of-balance forces (on the DOFs to be solved for),
RNORM the norm of the reaction forces (the prescribed DOFs),
UNORM the norm of the iterative updates of the DOFs to be solved for,
DNORM the norm of the loading step updates of the DOFs to be solved for.

The ratios FNORM/RNORM and UNORM/DNORM can be compared with con-
vergence criteria for the forces (combining nodal (double) forces and nodal fluid
mass balance) and displacements (DOFs ui νij and p). Details of the normaliza-
tion of the different terms are not discussed here, as only a comparison between
NP and CHSC is made.
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Fig. 12.1: Convergence graphs for computational homogenization by static condensa-
tion (CHSC) and numerical perturbation (NP) for the HM-coupled biaxial
compression test D = 1× 10−11 in Section 10.4

The convergence graphs in Figure 12.1 demonstrate that the convergence of
the macroscale Newton-Raphson scheme obtained when using CHSC is of the
same quality as when NP is used. This holds for the elastic domain as well as the
softening domain. However, it is not guaranteed that this result always holds and
the Newton-Raphson algorithm does not necessarily leads to convergence and
stiffness matrix obtained by a numerical approximation such as the numerical
perturbation might sometimes better deal with the material non-linearities to be
taken into account around the test configuration.

For the simulation of the biaxial compression with fluid in Section 10.3, the
convergence profiles for forces and displacements are generated using numerical
perturbation and condensation for obtaining the tangent operators. The com-
parison at different states of deformation (linear domain, at peak response and
after snapthrough) are given in Figure 12.2. The convergence criteria present the
combined normalized errors for nodal forces and double forces.
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Fig. 12.2: Convergence at εa = −0.30%, εa = −1.3% and εa = −1.90% for the mech-
anical biaxial test in Section 10.3

12.2 Computational efficiency: NP vs. CHSC

The finite element method is based on the linearization and discretization of the
nonlinear field equations into a system of linear auxiliary equations to obtain a
solution in an iterative way. From a computational expense point of view, solving
these linear systems of equations is the core business of the finite element method.
With increasing number of degrees of freedom, practically all computation time
is spent in solving the auxiliary systems of equations. In the optimization of the
efficiency of the finite element code, it is key to solve these kind of systems as
efficient and as few times as possible. The reduction of the number of times the
system of equations has to be solved is closely related with the consistency of
the finite element formulation, which was discussed above. The efficiency of the
numerical solvers and routines is discussed in this section.

12.2.1 Condensation vs. numerical perturbation

One of the arguments of the introduction of the computational homogenization
by static condensation is the possible gain in computational efficiency of the
code. This gain is obtained through the reduction of the number of times the
microscale systems of equations have to be executed, as no solutions for the 4 or
seven perturbations are required. The condensation routine, in which no micro-
scale decoupling of the hydraulic and mechanical systems is possible, also involves
solving linear systems of equations and the gain in efficiency will depend on the
complexity and size of these systems of equations with respect to the computa-
tions usually needed for the perturbations. An objective characteristic time for
the computational cost of the perturbations is the time taken by the microscale
model to complete a single iteration of its N-R algorithm. Therefore, the follow-
ing two routines are distinguished in the comparison of computational efficiency:

One microscale iteration This iteration concerns only the mechanical sys-
tem of equations. The main computational work in this routine consists of;

• a loop over the elements, building the element stiffness matrices,

• the global assembly of the system of equations,
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• evaluation of convergence of the NR algorithm

• solving the system of equations to find a correction of the nodal positions

• updating the nodal positions

The number of operations with respect to the number of degrees of freedom is
of a first order O(n1) for all these points except for solving the system of equa-
tions: Triangular decomposition and back-substitution of the system of equations
in skyline storage [Bonet and Wood, 2000, Zienkiewicz and Taylor, 2000, Press
et al., 1993] is used for solving this. With a constant maximum number of degrees
of freedom per equation (a node has only so many nodal connections in the finite
element mesh), this leads to a complexity O(n2) for solving the linear system of
auxiliary equations.

The mechanical condensation routine

Only the purely mechanical condensation routine is considered, because the routine
for hydromechanical coupling is not optimized with respect to the bandwidth of
the coupled system of equations (see Figure 12.3). The main computational work
in this routine concerns;

• building the dense system of equations from the sparce system of equations
(last micromechanical iteration)

• reducing the dependent degrees of freedom and reactions from the system
of equations [K] → [K∗]

• solving the condensation system of equations [K∗ff ][X] = [K∗fp]

• matrix multiplication [S] = [K∗pp]− [K∗pf ][X]

Again, the most computationally expensive part of the routine is solving the sys-
tem of equations, which is done by a Gauss-Jordan algorithm and is of order
O(n2) with respect to the number of degrees of freedom n. The complexity of
order two is provided by the relatively low number of degrees of freedom per
equation and the band width that can be taken into account.

Renumbering of the equations following the Cuthill-McKee algorithm [Cuthill and
McKee, 1969, Bonet and Wood, 2000] is used to provides a system of equations
with optimally reduced bandwidth. This is advantageous to both routines, as
the band width can be used for the reduction of the number of operations to
be performed in solving the system of equations. Moreover, a smaller bandwidth
leads to a more efficient skyline storage, as fewer zero terms are taken into account.
This renumbering is only taken into account for the mechanical part of the system
of equations; the combination of hydraulic (p) and mechanical (ui) degrees of
freedom, defined on different nodes with a more complicated level of dependency
has not been implemented. This means that no optimal band width renumbering
is available for the HM-coupled systems of equations in the condensation of the
coupled tangent operators.

An example of a (reduced) HM-coupled system of equations profile is given
in Figure 12.3. It clearly shows the band in the mechanical part of the system
of equations, whereas the hydraulic part and the coupled part show an irregular
pattern, which is unfavourable for both storage and numerical performance.
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Fig. 12.3: Matrix profile of the reduced global system of equations (6.58) for a typ-
ical REV with hydromechanical coupling and 822 mechanical nodes. The
number of nonzero terms in this matrix is 32022

The performance tests in this section, as well as most of the computations
presented in this work, are all performed on a machine with the following pro-
cessor specifications:

Processor : Intel(R) Core(TM) i7-2670QM CPU @ 2.20→3.10 GHz
RAM : 8 GB
cache memory : L1 = 4× 32 kB

L2 = 4× 256 kB
L3 = 6 MB

Figure 12.4 shows the average computation time required for the different routines,
obtained from computations on REVs with different numbers of degrees of free-
dom. It shows that for smaller REVs, the computational time is indeed quad-
ratic with the number of equations (O(n2) for both routines and the condensation
routine takes 2 to 3 times as much time as a single microscale iteration.
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grains DOFs profile size profile memory
10 440 42.780 342 kB
14 580 67.208 538 kB
20 772 101.730 814 kB
28 998 145.952 1.17 MB
40 1346 233.752 1.87 MB
50 1570 262.054 2.10 MB
60 1974 497.604 3.98 MB
80 2458 565.496 4.52 MB

100 3086 792.144 6.33 MB

120 3696 1.335.474 10.7 MB
150 4530 2.377.810 19.0 MB
200 5884 5.369.486 43.0 MB
240 6960 9.041.958 72.3 MB
300 8520 16.364.914 131 MB
340 9758 24.198.572 194 MB

Tab. 12.1: Size of upper/lower triangle profile of the global mechanical system of equa-
tions for different REV size.
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Fig. 12.4: Computation time of the condensation routine, compared to the computa-
tion time of the FE iteration.

The sudden strong increase in CPU time of the Newton-Raphson scheme start-
ing at approximately 3000 equations can be traced back to the CPU cache size of
6.144 MB. As the routine for triangular decomposition of the mechanical system
of equations does not take into account the memory access, significant loss in
computational efficiency takes place when the workable set of data no longer fits
the size of the cache memory and RAM memory needs to be accessed. Table 12.1
contains the size of the skyline storage, required for the upper and lower part
of the stiffness matrices. The maximum cache size of 6.144 MB corresponds well
with the start of the rapid increase of computation time for REVs with more than
100 grains.

The effective gain in total computation time between NP and CHSC does
not only depend on the ratio between the two routines discussed above because
the total time is strongly influenced by the number of iterations at the micro-
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scale. In addition, there is a certain amount of time required for the initiation
and preprocessing of the microscale finite element computations, which can be
seen as an overhead cost on the REV computations. It is therefore unlikely that
the upper bound limit of gain in efficiency (5 times for mechanical computations
and 8 times for hydromechanical coupling) will be obtained, especially in case
of small increments, for which the microscale computation requires a small num-
ber of iterations (typically less then 10) to converge. The efficiency is therefore
computation-dependent; both with respect to REV size (relative overhead cost
and numerical efficiency) and model complexity (number of microscale iterations).
In the following paragraphs, results for the assessment of the gain in computa-
tional efficiency are given for the doublescale computations presented earlier.

12.2.2 Gain in efficiency for mechanical computations

CPU time required for the mechanical simulation presented in Section 10.3 using
numerical perturbation and static condensation respectively are measured. An
automatic strategy is used for defining the loading time steps, based on their
(non)convergence. Due to a good agreement in the rate of convergence between
the two methods, the same loading steps could be applied and the total number
of iterations required for obtaining the converged loading steps is equal between
the two methods.

Results are presented in Table 12.2 for the entire computation. The most
important result is the overall speed-up by a factor 3.20. This ratio contains
the overhead cost of the FE computations and the costs of the computational
homogenization itself, which reduces the efficiency from the an optimal ration of
5 to a ration 3.20. In computations with larger microscale problems, the efficiency
ratio can increase.

computations εa = 0 → −2.0% NP CHSC ratio
total computation time 6.25×104 1.95×104 3.20
- on micro level 6.04×104 1.74×104 3.47

- on macro level 2.10×104 2.10×103 -
number of converged loading steps 36 36 -
number of iterations leading to convergence 189 189 -
average microscale comp. time (per IP) 12.10 ms 3.49 ms 3.47

Tab. 12.2: Computation time for biaxial compression test up to εa = 2.0%

Computations have been performed without parallelization of the computa-
tion. As indicated in Table 12.2, the computations related to the micro level take
most of the time. As these computations are highly suitable for parallelization,
an important gain in efficiency can be obtained by parallelization of the micro
level routine and evaluating multiple REV boundary value problems in parallel.

12.2.3 Gain in efficiency for HM coupled computations

For the three loading steps for the evaluation of the convergence graphs in a
HM-coupled test in Section 10.4, the time per iteration for NP and CHSC is
compared. Compared to the theoretical ratio of 8, the ratio in computation
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time of 4.7 obtained for these computations seems very reasonable, and allows a
very significant speedup. This includes all overhead such as memory allocation,
preprocessing and the additional time for the condensation of the coupled system
of equations, for which no band width optimization is implemented.

step time/iter CHSC [sec] time/iter NP [sec] ratio NP:CHSC
εa = 0.25 % 4.50 21.42 4.76
εa = 1.00 % 4.25 19.83 4.66
εa = 1.20 % 4.36 21.18 4.85

Tab. 12.3: Effective efficiency double scale computation macroscale loading step for
the HM-coupled biaxial compression test in Section 10.4



CONCLUSIONS PART III

It can be concluded that on the material point level, the presented micromechan-
ical model can provide a macroscale HM-coupled constitutive relation by applying
the principle of computational homogenization on the micromechanical REV dic-
tated by the macroscale kinematics. Both macroscale stress response and tangent
operators can be found by computational homogenization, in order to be used in
a material point BVP, simulating the local material behaviour under arbitrary
loading paths. Following the same approach, the micromechanical model is used
in doublescale computations, providing a complete framework for the modelling
of hydromechanical macroscale poromechanical behaviour based on micromech-
anical constituents.

With the purpose of easily producing microstructures with statistically con-
sistent grain shapes and a certain randomness, an algorithm was presented gener-
ating REVs based on Voronöı diagrams. The peak response to biaxial compression
was used to demonstrate the influence of the periodic frame on the macroscale re-
sponse. Statistical analysis has shown that a systematic variation in peak strength
as a function of REV orientation is present. The same goes for the influence of
the periodic frame with respect to the post-peak response to biaxial compression:
the definition of the periodic frame has an influence on the post-peak behaviour
that appears as an orientation-dependency in the post-peak stiffness.
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Part IV

APPLICATION TO DOUBLESCALE MODELLING

OF HYDROMECHANICAL BEHAVIOUR OF

CLAYSTONE





13. MODELLING ANISOTROPIC BEHAVIOUR

In this section the anisotropic behaviour of the macroscale response is invest-
igated using a microstructure with a less prominent preferential direction than
in the example computation given above. The anisotropy, which is deliberately
introduced through the grain shape, is investigated by evaluating the response
to biaxial compression of the REV under different orientations θI . Microscale
constitutive parameters are chosen such that the initial stiffness of the interfaces
is high with respect to the stiffness of the grains. This results in a nearly isotropic
initial effective stiffness, as the influence of the interfaces will be small.

A REV with grain shape parameters ξ = 1.5, η = 0.2 and θbed = 0 (see Section
11) containing 40 grains with identical stiffness properties is defined (see Figure
13.1). The effect of the introduction of the anisotropy due to the elongation of
the grains is studied.

grains: 40
χ 1.5
η 0.2
θg [◦] 0

solids:

E [GPa] 6
ν [-] 0.2

interfaces:

δct/n 0.05

D0
t/n 0.002

Tmax
t/n [MPa] 5.0

Fig. 13.1: Microstructure with uniform grain properties for anisotropic macroscale re-
sponse.

13.1 Materialpoint biaxial compression

Biaxial compression under 12MPa confinement stress is applied on a single ma-
terial point. The orientation of the REV with respect to the direction of compres-
sion is changed and the difference in peak stress response to biaxial compression
is studied for characterizing the anisotropy in the material behaviour.

Figure 13.2 shows the stress-responses of seven different orientations. The
initial stiffness of the material is consistent between the different orientations and
is equal to the stiffness of the grains. As an effect of the high initial stiffness of
the interfaces, the macroscale stiffness is governed by the stiffness of the grains
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and no initial anisotropy is present.
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Fig. 13.2: Response to the biaxial compression for different REV orientations.

The peak response shows a strong variation with REV orientation. Figure
13.3 shows the peak response as a function of REV orientation, visualizing the
anisotropic nature of the material strength. This strength can be related to
the bedding: loading perpendicular and parallel to the bedding gives approxim-
ately equal responses, intermediate orientations give lower strengths and a smooth
graph with peaks at -90 and 0 degrees and a minimum close to 45 degrees can
be drawn as a function of the loading orientation. Such anisotropy in material
strength correspond well to strongly-isotropic shales, see for example the experi-
mental work of Niandou et al. [1997].

-90 -75 -60 -45 0
12

20

30

40

50

60

REVkorientationkθ [°]

a
x
ia

lk
s
tr

e
s
s
k[
M

P
a

]k

-30 -15

materialkpointkpeakkresponse

doublescalekpeakkresponse

Fig. 13.3: Anisotropy in material strength. The continuous line is obtained from ma-
terial point biaxial compression tests, the points are the nominal peak stress
responses of doublescale biaxial compresison simulations.

The deformed microstructures for REV orientations (and thereby also bedding
planes) at an interval of 15 degrees is given in figure 13.4. From the microscale
point of view, the softening phenomena seem to align with the bedding orienta-
tion, except for the case of parallel (−90◦) and perpendicular (0◦) loading.
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Fig. 13.4: Deformed microstructures for different REV orientations; microscale local-
izations.

13.2 Doublescale simulation of biaxial compression

The REV presented in the analysis above is used in the doublescale modelling of
biaxial compression of a 38 × 76 mm sample under 12 MPa confinement. The
local second gradient model is used to obtain mesh-objective results for strain
localization. The second gradient parameter D is calibrated at 1.25 kN to obtain
a shear band of approximately 5 elements (≈ 20 mm) wide. REV orientations on
an interval of 15◦ between θI = −90◦ and θI = 0◦ is used. The peak response of
the different doublescale biaxial compression tests is included in Figure 13.3 and
coincide perfectly with the local peak response, which suggests a homogeneous
deformation at least up to the peak response. The local stress-strain curves for
two tests are given in Figure 13.5, including the local response obtained by the
material point BVP. Good agreement between the global and local responses is
found until the curves separate at the peak response as an effect of localized
deformation in the doublescale computations. The same pre-peak agreement can
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be found for the other orientations.
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Fig. 13.5: Material point response and macroscale nominal stress response to biaxial
compressive deformation.

Figure 13.6 shows the deformed meshes at macro and micro level for θI = 0
and θI = −60. Strain localization in a shear band can be observed in the both
macroscale meshes
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Fig. 13.6: Deformed mesh with total Von Mises equivalent strain at maximum com-
pression. The microstructures show the micromechanical damage (red) and
decohesion (black) related to the macroscale material softening.

Comparing the orientation of the macroscale localization with the micromech-
anical pattern of damage and decohesion, it is important to notice that no correla-
tion between micro and macro localization orientation exists. This has important
implications for possible enhancements of the doublescale approach, such as the
continuous/discontinuous frameworks, for which criteria are required for the ini-
tialization of the discontinuous enhancements of the macroscale domain.

The θI = −60◦ test has demonstrated that the orientation of the macroscale
localization is independent of the bedding orientation, and here appears approx-
imately conjugate to the macroscale localization band.



14. CALIBRATION OF THE MICROSCALE MODEL TO COX

14.1 Grain shape modelling

For obtaining the correct shape of inclusions in the REV several approaches can
be envisioned. One of them would be to construct the REV from images of the
microstructure itself by discretization into matrix material and different types of
inclusions. In this way, the observed inclusion geometry and their spatial relation
can very accurately be captured in the REV simulation. However, some modi-
fications are then required to obtain locally periodic REVs and meshing might
be difficult. Moreover, the potential interfaces in the matrix domain will have
to be defined, which requires some assumptions on the potential of micro cracks
forming between the inclusions.

An alternative approach is used here by generating REVs with the routine
introduced in Chapter 11. The characterization of the geometry and orientation
of the inclusions (tectosilicates and carbonates) is available from imaging analysis
[Robinet, 2008, Robinet et al., 2012], as summarized in Chapter 1. The objective
is to capture these characteristics using the Voronöı-based REVs. This is done
by calibrating the grain shape variables (ξ, η and θI) against the grain shape
characteristics derived from experimental observations as presented in Chapter 1.

Although a more consistent approach would include the evaluation of the
different types of inclusions individually, the shape of the assembly of grains
generated by the REV generator will be used here. As the REV generator is
not designed to distinguish between different groups of grains, considering their
properties individually is not a valid approach and the characterization of the
grain shapes of the simulations will therefore be done on the assembly of numerical
grains (both inclusions and matrix material) as a whole.

Fitting the numerical simulations of the grain shapes to the experimental
results in Figure 1.3 is based on statistical averaging. For a range of parameters
ξ and η, a series of 100 REVs with 200 grains is generated. A fixed bedding plane
θbed = 10◦ is used to meet the orientation of the grains (Figure 14.1), rather than
to match the in-situ inclination of the bedding plane which is between 1◦ and
1.5◦ [Andra, 2005a]. The histograms of the individual grain orientation β and
grain elongation e =

√
(I2/11) are compared with the equivalent experimental

histograms. The application of the circularity optimization η is found to have a
strong influence on the distribution of the orientations, as it tends to align the
grains in the principal direction of θbed.

From the characterization of the COx microstructure, histograms of the stat-
istical distribution of the elongation and orientation of carbonate and textosilicate
inclusions are available. The spatial distribution of the inclusions (clustering of
inclusions, contacts, spatial correlation in orientation, ...) is not characterized.
With the current method of simulation of the microstructure only a single inde-
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H
⊥ to bedding plane ‖ to bedding plane

ξ 1.3 1.0
η 0.1 0.1

Tab. 14.1: Results of the numerical calibration of the grain geometry parameters to
be used in the REV generator against image analysis data on COx.

pendent distribution of respectively grain elongation, grain orientation and grain
size is provided. Assigning different properties to distinguish between different
inclusions can therefore not result in multiple independent statistical distribu-
tions for each type of inclusion without risking a very biased distribution for the
remaining grains that make up the clay matrix. For this reason, the choice of the
individual grains to assign the inclusion material properties to is made randomly
and the resulting distributions of simulated inclusion shapes is identical to the
initial grain shape distributions. This means that only a single distribution is
available from the simulation and comparison between experimental observations
and simulations is therefore a comparison between the distributions of the specific
inclusions (experimental) with the overall grain shape (simulations).

Two sets of histograms of the experimental characterization of the inclusion
shapes are available; one for the carbonate inclusions (Figure 14.1) and one for
the tectosilicates (Figure 14.2). Each set contains histograms perpendicular and
parallel to the bedding plane for the inclusion elongation e and orientation. The
best fit of the numerical simulations for ξ and η to both histograms leads to the
calibration results given in Table 14.1 The numerical and experimental results
in 14.1 show that the preferential orientation at 10◦ is correctly reproduced and
the variation in orientation frequency is accurately simulated. The histogram
for elongation index shows a less good agreement, which can be explained by the
effect of elongated carbonate inclusions of organic origin that can not be simulated
by Voronöı-based grain structures.

The histograms for the elongation index of tectosilicates shows a better agree-
ment between numerical and experimental results. The histogram the distribution
of the grain orientation could be improved by reducing anisotropy ξ, but in that
case the good agreement with the distribution of the carbonates is lost.
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numerical :  ξ=1.30   θ=10°

numerical :  ξ=1.00   θ=10°

perpendicular to bedding plane parallel to bedding plane

Fig. 14.1: Shape statistics of carbonate inclusions from 2D images perpendicular (left)
and parallel (right) to the bedding plane [Robinet et al., 2012] in comparison
with simulated grain shapes.
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volume % E [GPa] ν [-]
tectosilicates (quartz) 15% 95 .074
carbonates (calcite) 25% 84 .317
heavy minerals (pyrite) 3 % 305 .154
clay matrix material 57% - -

Tab. 14.2: Elastic properties assigned to the inclusions

numerical :  ξ=1.30   θ=10°

numerical :  ξ=1.00   θ=10°

perpendicular to bedding plane parallel to bedding plane

Fig. 14.2: Shape statistics of tectosilicate inclusions from 2D images perpendicular
(left) and parallel (right) to the bedding plane [Robinet et al., 2012] in
comparison with simulated grain shapes.

From the histograms of elongation and orientation it can be concluded that
the Voronöı-based REV generation can, from a statistical point of view, reproduce
well the available characteristics of the inclusion geometry.

With the calibrated grain characteristics, 40-grain REVs can be generated for
further calibration against the mechanical characteristics of the claystone. One
realization of these REVs is given in Figure 14.3. As no geometrical differentiation
is made between the shape or size of the inclusions, inclusion properties can be
assigned randomly based on their volume fraction obtained from image analysis.
The volume fractions given in Table 14.2 are used for the distribution of the in the
REV by calculating the relative number of grains related to each volume fraction
(rounded upward).
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14.2 Fitting the macroscopic material response

With the grain geometry fitted and the inclusions assigned to several grains,
the macroscale response to biaxial compression needs to be fitted against results
obtained from drained triaxial compression tests. Therefore the elastic properties
of carbonates (calcite), tectosilicates (quartz) and heavy minerals (pyrite) are
assigned to the corresponding grains according to Table 14.2. The mechanical
characteristics for the calibration of the remaining grains representing the clay
matrix and the interfaces are obtained from triaxial tests [Andra, 2013, Armand
et al., 2013]. For the numerical modelling under plane strain conditions to be
comparable with the results of triaxial data, the different appearance of stiffness
and Poisson’s ratio need to be taken into account. An apparent plane-strain
modulus Eps can be defined to compare with the Young’s modulus derived from
the triaxial tests;

Eps =
δσa
δεa

=
E

1− ν2
(14.1)

The same can be done for the Poisson’s ratio:

νps = −δεlat
δεa

=
ν

1− ν
(14.2)

The plane strain modulus Eps is the ratio between variations of axial stress
σa and axial strain εa, the plane strain Poisson’s ratio νps is the ratio between
variations of axial strain and lateral strain εlat . When applied to the reference
parameters for the COx claystone (E ≈ 4.0 GPa and ν ≈ 0.3, [Armand et al.,
2013]), the plane strain equivalent parameters become:

Eps = 4.4 GPa, νps = 0.428 (14.3)

This difference in elastic properties has to be taken into account when comparing
the numerical biaxial and experimental triaxial results. The material strength
(nominal peak stress) derived from triaxial tests can not be translated directly to
plane strain conditions as it requires information on the dependency of the the
peak strength (the ’failure’) on the Lode angle (defined by the dependency on the
intermediate principal stress). This information can generally be obtained from
the failure criterion, which is unknown. Moreover, in the doublescale modelling
approach, out-of-plane stress is not defined, which means that the Lode angle can
not be obtained for making the comparison. Only a qualitative prediction can be
made, based on the stress paths of biaxial- and triaxial tests and the properties
of general failure criteria. This would predict a lower (or at least an equal) peak
response in case of triaxial compression compared to the biaxial compression test
(plane strain conditions) when constant confinement stress is applied.

To avoid the quantification of the difference in peak response, the peak re-
sponse of the biaxial compression test is fitted to be equal to the triaxial com-
pression test.
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solids: SimOn −CO3 FeS2 clay
E [GPa] 95 84 305 2.3
ν [-] 0.074 0.317 0.154 0.11

interfaces:

δct/n 0.05

D0
t/n 0.002

Tmax
n [MPa] 1.0
Tmax
t [MPa] 5.5

Fig. 14.3: Microstructure ’8’ with carbonate (gray), tectosilicate (red) and pyrite (deep
blue) inclusions in a matrix of clay (yellow). Grain selection for material
allocation has been performed randomly.

The remaining micromechanical parameters (the clay matrix elasticity and the
interface cohesion parameters) are adjusted in order to fit the numerical material
point response to the biaxial compression to the post-peak part of the experi-
mental results. This is done following the following procedure:

• The initial state of softening for normal and tangential components of co-
hesion D0

n and D0
t are chosen high, such that the initial stiffness of the

interfaces is high with respect to the stiffness of the grains. The initial
response of the REV is therefore mainly controlled by the stiffness of the
grains.

• The stiffness parameters E and µ to be used for the grains that make up the
clay matrix are fitted such that the initial response to compressive loading
represents the correct macroscale Young’s modulus and Poisson’s ratio (see
(14.1) and (14.2).

• The normal and tangential components of the maximum cohesive forces
Tmax
n and Tmax

t are used for fitting the macroscale peak response. The
ratio between Tmax

t and Tmax
n is increased in order to reduce the pressure-

dependency of the response.

• The critical opening is chosen such that the macroscale deformation at mac-
roscale peak strength corresponds well with the experimental observations.

With this procedure in mind, the parameters are fitted in a manually-iterative
(trial-and error) procedure until a reasonable fit with the experimental results is
obtained.

Four triaxial tests (1 at 2MPa confinement, 3 at 12MPa confinement [Andra,
2013]) are used for the calibration. Their stress-strain curves are given in Figure
14.4 together with the results of the calibrated numerical response to biaxial
compression for different REV orientations. They show a good agreement in
initial stiffness, peak stress and axial strain at peak stress. Lateral strain shows
good agreement at low stress levels, but the numerical results show a stronger
dilatancy at higher stress levels and when softening takes place. This high degree
of dilatancy is strongly linked to the fact that relative displacement between grains
(which is needed for interface softening) can only be obtained by the opening of
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adjacent interfaces. As the rearrangement of grains is not taken into account in
the finite element formulation, this relative opening of the interfaces continues
regardless the state of deformation.
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Fig. 14.4: Deviatoric stress response to biaxial material point compression for orient-
ations at an interval of 15◦. In black the experimental results, obtained by
triaxial compression.

In Figure 14.5 the derivatives of axial stress with respect to axial strain are
given, again showing good agreement with respect to the experimental results up
to the point at which the peak stress is reached. It is important to note that
strong fluctuations in the stiffness can be observed in the post-peak domain for
several 2 MPa confinement tests, some of which indicate a snapback at the end
of the numerical simulation. This effect can not be observed under 12 MPa
confinement, where the response is much smoother.
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Fig. 14.5: Structural stiffness. In red the responses of numerical simulations for θREV

at an interval of 15◦. In black the experimental results.

A small variation in initial stiffness can be observed in the numerical results.
This variation in initial stiffness is the combined effect of the heterogeneity of the
grain stiffness, the grain elongation with respect to grain shape and distribution
of interface orientations. Figure 14.6 shows the initial stiffness of the material
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under confining pressure as a function of the orientation of deformation.
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Fig. 14.6: Anisotropy of the initial stiffness under different confining pressures. Ori-
entation θREV = −10◦ corresponds to loading perpendicular to the bedding
plane, which was introduced as θbed = 10◦.

The anisotropy in the peak response is shown in Figure 14.7. Its profile is
much more irregular than that of the initial stiffness, as the peak strength is
mainly determined by the interfaces. Nevertheless, the numerical results show a
very good agreement with the experimental results in general.

By determining the peak stress at different confining stresses, the apparent
friction angle and cohesion is defined by adopting a Mohr-Coulomb failure cri-
terion (Figure 14.7).
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Fig. 14.7: A) Evolution of the deviatoric stress peak with respect to the REV orient-
ation for the 2 MPa and 12 MPa lateral stress simulations. B) Friction
angle φ and cohesion c interpreted from the Mohr-Coulomb failure criterion
derived from the biaxial compression simulations at 2 MPa and 12 MPa.

Unloading and reloading during biaxial compression tests can be performed
to study the residual stiffness of the material as an effect of the interface damage.
Two examples are given for the material response with REV orientations of 0◦ and
50◦ respectively, for which unloading to the initial state is applied from several
stages of compression. The results are shown in Figure 14.8. The unloading-
reloading branches are perfectly elastic (no hysteresis is taken into account). The
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higher stiffness observed at lower axial strain is due to the regained contact of
the interfaces.
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Fig. 14.8: Stress response to displacement-controlled axial loading, unloading and re-
loading under constant confining stress for θREV = 0◦ (left) and θREV = 50◦

(right).

For unloading response that better represents the experimentally observed
behaviour, the interface cohesive laws will have to be modified in order to take
into account plastic deformation. A possible modification is to introduce plastic
behaviour in the interfaces by modifying the unloading branch of the interface
constitutive relation (Figure 14.9). This conceptually simple modification could
provide a proper unloading/reloading branch in the macroscale behaviour.

T

δΔ

T

δΔ
damage model elastoplastic model

Fig. 14.9: Original damage model for interface cohesion (left) and alternative plastic
damage model (right).

14.3 Strain localization in an unconfined compression test

A doublescale unconfined compression test is modelled with the calibrated micro-
structure . A 38×76 mm sample is modelled by means of a 10×20 element mesh
and strain-controlled loading is applied. Several computations are performed with
a range of second gradient parameters D = 0.5, 1, 2, 4, 8 kN , for a calibration of
this parameter against the mesh-size. No confinement stress is taken into account,
which means that (under the assumption of a Mohr-Coulomb failure criterion for
the comparison between biaxial and triaxial results) the peak stress corresponds
to the unconfined compressive strength of the material.

Figure 14.10 gives the nominal stress-strain curves for all tests (left), together
with the envelope of the nominal stress-strain curves (right). Good agreement
is found between the different test up to εa = −1.1%, at which heterogeneous
deformation starts and the second gradient model induces different solutions for
different second gradient parameter D. A shear band with the same orientation is
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triggered in all computations and the slope of the stress response curve is relative
to the width of the developing band. Convergence problems are encountered
shortly after the initiation of the shear band, forcing the computations to be
performed using smaller loading steps.
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Fig. 14.10: Nominal response to uniaxial compression with different second gradi-
ent parameters. The stiffness indicates that the computations with D =
0.5 kN and D = 1.0 kN tend towards snapback.

Figure 14.11 and 14.12 show the deformed microstructures for the two com-
putations with smallest second gradient parameters at the last converged loading
step. The state of deformation is best described by the VM equivalent stress
(middle). The nodal velocities (left) and VM equivalent strain rate (right) indic-
ate the current activities with respect to deformations. The incipient shear band
seems to develop in the center of the sample, touching the top and bottom bound-
ary due to its high inclination. With continuing compression, the active part of
the band shifts to one side, thereby introducing an asymmetry in the deformation
pattern and a reflection of the band at the top boundary. Strong spatial vari-
ations in strain rate and nodal velocities can be observed in this reflection (the
upper left corner of the sample), suggesting a loss of the mesh independence or
numerical instabilities as the dimensions of the strain localization approaches the
element size. This causes rather erratic nodal displacements, both in space and
time. For larger parameters D the shear band remains at its initial position.
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Fig. 14.11: Deformed meshes for D = 0.5kN (displacements multiplied 10×).
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Fig. 14.12: Deformed meshes for D = 1.0kN (displacements multiplied 10×).
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15. STUDY ON THE LOCAL BEHAVIOUR OF THE

DOUBLESCALE BIAXIAL COMPRESSION

The biaxial compression test for a dry sample presented in Section 14.3 suffers
from computational difficulties that start somewhere after the peak. The compu-
tational difficulties express themselves in convergence problems of the macroscale
Newton-Raphson scheme in the post-peak domain, where small increments are
required to obtain a proper convergence of the macroscale problem. Figure 15.1
shows the details of the nominal stress-strain curve near the end of theD = 1.0 kN
test.
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Fig. 15.1: Zoom on the nominal stress-strain response curve for the unconfined com-
pression with D = 1 kN . The markers indicate the individual loading steps.

To get a better understanding of the processes at play in the macroscale
behaviour obtained in the doublescale computations, several indicators are in-
vestigated for the description of the macroscale behaviour. These indicators are
based on existing theories such as bifurcation analysis, which can not always be
applied directly to any type of model. It must therefore be stressed that these
techniques only serve as indicators of the true behaviour and therefore provide a
heuristic approach to the assessment of the phenomena and serve as an indicator
of computational problems.

In addition to the notion that a heuristic approach is followed, a differentiation
must be made between the analysis of local material behaviour (on the material
point level) and the global behaviour (that of the boundary value problem); the
local second gradient model in large strain formulation and the boundary value
problem are not considered in this analysis and the focus will be on the local
macroscale behaviour of individual material points.

The next sections describe some tools to assess the macroscopic material point
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behaviour and their application on the local material state of the biaxial com-
pression tests.

15.1 Deformed microstructures and interface damage states

The top left corner of the test forD = 1000N shows the strongest spatial variation
in strain rates and can be expected to cause the computational difficulties. Figure
15.2 shows a zoom of the upper left corner of the sample with elements 171,
181 and 191 containing the peak in ε̇VM . The microstructures of the integration
points in these elements at the last converged loading step are given in Figure 15.3.
Although significant differences can be observed in the distribution of softening
and decohesion even within the same elements, it is difficult to point at processes
that could cause the computational difficulties.
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Fig. 15.2: Zoom of the deformed mesh for element and integration point numbering.
Displacements multiplied 10×.
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Fig. 15.3: Deformed microstructures for elements 191 & 192 (top), 181 & 182 (center)
and 171 & 172 (bottom). Red diamonds indicate interface cohesive soften-
ing, black diamonds indicate decohesion, either in normal or in tangential
mode.
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15.2 Gudehus diagrams

A general tool for the evaluation of the local constitutive relations is the repres-
entation of the stress (or strain) response to small strain (or stress) increments
applied on a material point in a certain configuration. This method was proposed
by Gudehus [1979] applying strain increments with constant amplitude in all ori-
entations in εii space. The graphical representation of the constitutive relation
between strain increment and stress increment is the diagram of stress responses
∆σii to the applied strain increments. The constitutive behaviour of the material
point can be interpreted by means of the shape of the stress response diagram.

Although the application of equal stress increments to study the behaviour
of its strain response is often applied (see for example Royis and Doanh [1998]),
this approach is not followed here for the simple reason that it is not guaranteed
that all stress increments can be applied. The application of strain increments
does not suffer from this effect and therefore allows the evaluation of the material
response to loading at any given state of the material.

In general, shear strain is not considered in the application of strain increments
and the shear stress response ∆σ12, which is non-zero, is not taken into account
in the diagram. This results in a diagram as a projection of the Cauchy stress
tensor on the σ12 = 0 plane in σ11 − σ22 − σ12 space.

The strain increments are chosen such that

|∆ε| =
√
∆ε211 +∆ε222 (15.1)

and

tanα =
∆ε22
∆ε11

. (15.2)

With strain increment |∆ε| constant and the orientation α covering the range
between 0◦ and 360◦, a radially symmetric (un-)loading is applied. The stress
response to this loading visualizes the direction-dependent material behaviour.
For small increments |∆ε|, the response approximates the incremental relation
consistent to the variation of loading directions. Larger strain probes will include
possible non-linear effects in the stress response and in this case the Gudehus
diagram represents a secant approximation of material response to the different
deformation loading paths. Figure 15.4 (left) shows the Gudehus diagram for the
REV in Figure 14.3 around the initial configuration F t = F 0 = I for a range
of different strains. This figure clearly shows the nonlinear response effects with
respect to |∆ε|, as the stress does no longer increases in some orientations for
|∆ε| > 0.1%. This can be related to the failure of the material. It is clear that
these responses do not represent a linearization of the local material behaviour
but capture an entire loading path.

To compare the diagrams related to the smallest strain increments, the dia-
grams are normalized by |∆ε|. The normalized diagrams are shown in 15.4(right).
The difference between the diagrams for smallest strain increments can be related
to the nonlinearities introduced by the penalization of closed interfaces, as the
material becomes stiffer for larger compressive strain increments. The differences
between the diagrams at largest strain increments are the effect of softening and
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eventually decohesion of the interfaces at the microscale, which leads to a de-
crease in secant stiffness, especially in the case of large (> 0.1%) extensional
strain increments.

−8−6−4−20

x 10
7

−8

−6

−4

−2

0

2

x 10
7

∆σ
11

[Pa]

∆σ
2
2

[P
a
]

|∆ε|=1E−5

|∆ε|=1E−4

|∆ε|=1E−3

|∆ε|=4E−3

|∆ε|=2E−2

−7−6−5−4−3−2−10123

x 10
9

−5

−4

−3

−2

−1

0

1

2

x 10
9

∆σ
11

/|∆ε| [Pa]

∆σ
2
2
/|
∆ε

| 
[P

a
]

Fig. 15.4: Gudehus diagrams for strain probes from the non-deformed state for stress
response (left) and relative stress response (right)

15.2.1 Extended Gudehus diagrams

In general, the Gudehus diagram is a projection of a contour in σ11− σ22− σ12
space on the σ12 = 0 plane and this projection can have different shapes, which is
an ellipse in case of incremental linearity. From the Gudehus diagrams above it is
clear that the behaviour of our model is not incrementally linear at the presented
state and the representation of the incremental relation between stress and strain
cannot be given by a deformation direction-independent stiffness matrix. The
individual evaluation of the response to all strain increment directions is therefore
required for a more detailed evaluation and an evaluation of only the diagonal
components of the strain increments and stress responses is not sufficient and
the shear components need to be taken into account as well. This implies an
evaluation of the incremental response in the spirit of the Gudehus diagrams by
applying a set of strain increments dε describing the spherical relation

|dǫ| =
√
dε211 + dε222 + dγ2 (15.3)

with

dε11 = dF11

dε22 = dF22

dγ = dF12 + dF21, with dF12 = dF21

The strain increment can be characterized by its amplitude |dǫ| and the polar
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coordinates α and β defined in Equation (15.4) and illustrated in Figure 15.5

tanα =
dε11
dε22

, sinβ =
dγ

|dε| (15.4)

Δε11 Δε22

Δγ

α

β

Fig. 15.5: Coordinate system for the extended Gudehus diagrams with (symmetric)
shear stain component dγ = dF12+dF21 where dF12 = dF21 is used to avoid
the influence of stress rotation.

This type of extension of the Gudehus diagrams introduces two difficulties.
First the choice of the ratio between dεii and dγ is somewhat arbitrary. Second
difficulty is the representation of the results, as the stress increment response
gives a surface in 3-dimensional stress space. Two examples of these surfaces are
given in Figure 15.6, corresponding to the same elements as analyzed in Figure
15.8 at λ = 1.76. The stress response for element 1 shows a perfect ellipsoid,
indicating incremental linearity of the material behaviour corresponding to the
elastic state of a material point outside the zone of localized strain. The ellipse
in the corresponding Gudehus diagram is a projection on the σ12 = 0 plane of
the cross section of the ellipsoid related to the δγ = 0 strain increments.
The stress response in element 181, as part of the strain localization band, gives
a more complex response. The stress response surface has two distinct parts; one
part forming an almost perfectly collapsed surface, the other part is a part of
an ellipsoid that is turned inside-out (the response has changed direction with
respect to the stress response in the initial configuration).
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λ = 1.76, element 1, IP 1 λ = 1.76, element 181, IP 3

Fig. 15.6: 3D stress response surfaces with color scale corresponding to the second
order work (σ̇ij ε̇ij). For element 181 the origin lies outside volume enclosed
by the stress response surface. Relative scales between the diagrams are not
equal, axes (x, y, z) correspond to (dσ11, dσ22, dσ12)

15.2.2 Test incremental non-linearity of current configuration

For studying the macroscale behaviour of the material in the vicinity of bifurcation
points, several approaches can be followed. A possible approach is studying the
existence and uniqueness of possible solutions of the problem [Chambon and
Caillerie, 1999] or a bifurcation analysis based on the evaluation of the acoustic
tensor [Rudnicki and Rice, 1975, Desrues and Chambon, 1989]. The later makes
use of the tangent operator Lijkl under the assumption that it is only dependent
on current stress, deformation and material state parameters and not on the
direction of the rate of deformation. In other words, the macroscale material
behaviour has to be incrementally linear or at least piecewise linear.

It is easily verified from the extended Gudehus diagram that the model presen-
ted here is not always incrementally linear, as the stress response to incremental
loading is different for loading and unloading increments.

Nevertheless, it is possible to investigate incremental non-linearity of the cur-
rent configuration of the microstructure by comparing the difference in stress
response (dσ+

ij + dσ−
ij) for strain increments in opposite directions (dε+ij and dε−ij ,

dε+ij := −dε−ij). This allows adding a second curve to the Gudehus diagram, rep-
resenting the non-linearity in the model. In the presented model, incremental
non-linearities can be found numerically as an effect of two micromechanical ef-
fects:

• The transition from opened to closed interfaces. Although the transition
is incrementally linear from a mathematical point of view due to the pen-
alization by the squared negative opening, a small numerical variation can
induce strong nonlinear effects, which in practice manifests as incrementally
nonlinear behaviour. This effect can be observed in the Gudehus diagrams
for the initial state of the REV, where compression and extension show sig-
nificant differences for a strain increments of |∆ε| = 2×10−6. A less strong
penalization can provide a better linearity for the behaviour of closed inter-
faces, but compromises the physical representation of the interfaces.

• The softening of the interface cohesive forces. The use of the simplified
damage model introduces incrementally nonlinear effects when changing
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between increasing and decreasing relative displacement ∆u, either in nor-
mal or in tangential direction.

A combination of these two micromechanical effects leads to the non-linearity
diagram, as presented in Figure 15.7.
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Fig. 15.7: Gudehus graph for Micro 8 initial state, with incremental nonlinear differ-
ence diagram for |dε| = −1× 10−6

When the non-linearity diagram reduces to the origin, the behaviour is incre-
mentally linear and dσ+

ii = −dσ−
ii . For a complete evaluation of the incremental

nonlinearity, the third component of the deformation, dγ needs to be taken into
account and the criterion for numerical incrmental linearity is given by

|dσ+ + dσ−|
|dσ+|+ |dσ−| < ǫ (15.5)

with

|dσ| =
√
dσ11

2 + dσ22
2 + dσ12

2 (15.6)

If this is true for all strain increments |dε| then the material behaviour increment-
ally linear from a numerical point of view.

This numerical approach for the evaluation of linearity should be handled
with care, as the small strain increments can comprise material nonlinearities
that are interpreted as incremental nonlinearities. An example of such an ef-
fect is the polynomial penalization of the interfaces, which easily introduces a
direction-dependent response for small but nevertheless finite strain increments.
The effect of such material nonlinearities captured by the finite strain increments
can be observed in the example above; from a numerical point of view the model
is incrementally nonlinear, although from a mathematical point of view all the
global material behaviour should be incrementally linear. The apparent incre-
mental non-linearity is thus an effect of the choice of the strain increment, which
can not be taken small enough to numerically linearize the effect of the polyno-
mial penalization of closed interfaces.



15.2 Gudehus diagrams 173

E 1, IP 1 E 181, IP 1
ε a

=
−
1
.2
0

−1 −0.5 0 0.5 1

x 10
5

−1

−0.5

0

0.5

1
x 10

5

  α=0°

  α=90°

 

 

∆ σ

∆ σ
+
+∆ σ

−

origin

−1 −0.5 0 0.5 1

x 10
5

−1

−0.5

0

0.5

1
x 10

5

  α=0°

  α=90°

  α=180°

  α=270°

∆ σ
11

∆
 σ

2
2

 

 

∆ σ

∆ σ
+
+∆ σ

−

origin

ε a
=

−
1
.3
0

−1 −0.5 0 0.5 1

x 10
5

−1

−0.5

0

0.5

1
x 10

5

  α=0°

  α=90°

 

 

∆ σ

∆ σ
+
+∆ σ

−

origin

−1 −0.5 0 0.5 1

x 10
5

−1

−0.5

0

0.5

1
x 10

5

  α=0°

  α=90°

  α=180°

  α=270°

∆ σ
11

∆
 σ

2
2

 

 

∆ σ

∆ σ
+
+∆ σ

−

origin

ε a
=

−
1
.4
0

−1 −0.5 0 0.5 1

x 10
5

−1

−0.5

0

0.5

1
x 10

5

  α=0°

  α=90°

 

 

∆ σ

∆ σ
+
+∆ σ

−

origin

−1 −0.5 0 0.5 1

x 10
5

−1

−0.5

0

0.5

1
x 10

5

  α=0°

  α=90°

 

 

∆ σ

∆ σ
+
+∆ σ

−

origin

ε a
=

−
1
.7
6

−1 −0.5 0 0.5 1

x 10
5

−1

−0.5

0

0.5

1
x 10

5

  α=0°

  α=90°

 

 

∆ σ

∆ σ
+
+∆ σ

−

origin

−1 −0.5 0 0.5 1

x 10
5

−1

−0.5

0

0.5

1
x 10

5

  α=0°

  α=90°

  α=180°
  α=270°

∆ σ
11

∆
 σ

2
2

 

 

∆ σ

∆ σ
+
+∆ σ

−

origin

Fig. 15.8: Gudehus diagram for IP1 in elements 1 (left) and 181 (right) around the
peak and at the end of the computation.
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From the Gudehus diagrams in Figures 15.6 and 15.8, several conclusions can
be drawn:

• The loss of homogeneity starts before the peak response is reached, as the
Gudehus diagrams are different between elements 1 and 181. Looking at the
deviatoric strain rate reveals that significantly non-homogeneous deforma-
tion can be found at stresses as low as 80− 85% of the peak stress.

• Both integration points show a slight non-linearity before the peak response.

• The stress response surface in the 3D extension of the Gudehus diagram
collapsing into a disk can serve as an indication of numerical difficulties
in the finite element computation. It is straightforward to observe that in
case of a (partly) collapsed surface, only a restricted part of the orienta-
tions in stress space is accessible by strain increments. Moreover, identical
stress increments of the remaining accessible stress space can be reached
by different strain increments. At the local scale, this can indicate both
problems of existence of a solution (due to an inaccessible stress space) and
uniqueness of a solutions (different strain increments for the same stress in-
crements). Whether or not these local problems lead to numerical problems
in the Newton-Raphson iteration of the macroscale finite element loading
step will depend on the complete macroscale boundary value problems.
Nevertheless, the collapse of part of the Gudegus stress response surface
can be seen as an indication of difficulties arising from the constitutive law.

15.2.3 Elasticity condition

A more theoretical approach to assess the incremental non-linearity of the mater-
ial would therefore be the analysis of the state of all individual micromechanical
components that might introduce incremental nonlinearities. In the presented
model with damage interface laws and polynomial penalization of closed inter-
faces, the only possible direction-dependent response at the microscale comes from
interface softening (∆̇ui > 0 ∧ ∆ui/δ

c
i = Di). This implies that if ∆ui/δ

c
i < Di

for all interfaces, incremental linearity is guaranteed from a mathematical point
of view and we can say that the material is in an elastic state. This elasticity
criterion is easily verified at the end of the computations and can serve as an
indicator for the local state of the material. Although easily implemented at the
level of the element loop of the microscale finite element program, this method
has a strong model-dependence.

15.3 Uniqueness and the second order work criterion

Simplifying Equation (3.1) to a small-strain, classical framework and considering
stress rate σ̇ as a generalization of all σ, the balance equation can be rewritten
as [Chambon and Caillerie, 1999]

∫

Ω

σ̇ij ε̇
⋆
ijdΩ−

∫

Γ

ṫiu̇
⋆
i = 0 (15.7)

with

ε =
1

2

(
F + F

T
)
− I (15.8)
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and u̇⋆i a kinematically admissible virtual velocity obeying the boundary condi-
tions. By doing so, the second gradient model and the finite strain formulation at
the macroscale are no longer taken into account and the value of the theoretical
results obtained hereafter reduce to an indicative quantity.

It can be verified [Hill, 1958] that a unique solution exists when

∫

Ω

∆σ̇ij∆ε̇ijdΩ > 0 (15.9)

with ∆ε̇ = ε̇2 − ε̇1 the difference between any two kinematically admissible fields
of strain rate ε̇1 and ε̇2 that comply with equation 15.7. Equation 15.9 is met
when ∆σ̇ij∆ε̇ij > 0 for the entire domain, which allows the local evaluation to
provide a guaranteed uniqueness of the global BVP. This expression resembles
the second order work defined as

2W (ε̇) = σ̇ij ε̇ij (15.10)

For several constitutive models in the framework of small strains it can be proved
that 2W (ε̇) and 2W (∆ε̇) = ∆σ̇ij∆ε̇ij can be interchanged in the assessment of
uniqueness of solutions but for a general model only ∆ε̇ can guarantee uniqueness
according to (15.9) and the second order work 2W = ε̇ij σ̇ij is only a specific case
of 2W (∆ε̇) that does not suffice to prove uniqueness [Chambon and Caillerie,
1999].

For closed-form analytical constitutive relations it can be straightforward to
derive these criteria for second order work for all possible combinations of strain
rates. In computationally more challenging models, such as our doublescale
model, this is not possible and a numerical approach is needed, computing the
stress rate σ̇ij corresponding to a range of possible strain rates ε̇ij . In case of
rate-independent behaviour of computational models, the strain rate ε̇ and cor-
responding stress rate σ̇ can be replaced by a strain increment dε and its stress
response dσ.

The execution of the extended Gudehus analysis provides a set of stress re-
sponses to strain increments in all directions in 3D strain space. Although this
set of strain increments only contain those related to |dε| = cst, combinations of
any two strain increments dε1 and dε2 can be obtained. In this way the following
three quantities of second order work 2W are defined;

• 2W
1
= ε̇1ij σ̇

1
ij

• 2W
2
= ε̇2ij σ̇

2
ij

• 2W
∆
= ∆ε̇ij∆σ̇ij = (ε̇2ij − ε̇1ij)(σ̇

2
ij − σ̇1

ij)

In case one of the three is negative, uniqueness can (locally) no longer be guar-
anteed. If all three values are positive, the second order work of any linear
combination of ε̇1 and ε̇2 needs to be evaluated to complete the analysis. This
can be done by defining a fourth term W a as

2W
a
= (ε̇2ij − aε̇1ij)(σ̇

2
ij − aσ̇1

ij)

= a∆ε̇ij∆σ̇ij + (1− a) ε̇2ij σ̇
2
ij + (a2 − a)ε̇1ij σ̇

1
ij

= a2W
1 − a(2W

1
+ 2W

2
+ 2W

∆
) + 2W

2

(15.11)
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with a ∈ ℜ+. Given that 2W
1
> 0, 2W

2
> 0 and 2W

∆
> 0 the minimum value

of 2W
a
(a) is found to be

min
(
2W

a
(a)
)
= 2W

2 − 1

4

(
2W

1
+ 2W

2
+ 2W

∆
)2

2W 1 (15.12)

Following this approach allows a full evaluation of the uniqueness of the solution
using only the numerical pair stress responses to strain increments |dε1| = |dε2| =
cst. The complexity of the number of strain increments to be applied (and thereby
the number of finite element computations to be executed) is hereby reduced from
ℜ3 to ℜ2. Moreover, the results obtained from the extended Gudehus diagrams
can be used in this evaluation. Nevertheless, it must be noted that;

• The evaluation remains a numerical approximation and only a finite number
of orientations of strain increments can be tested. It can not be guaran-
teed that possible orientations leading to negative second order work are
neglected.

• the developments as an extension of the Gudehus diagrams is done in the
framework of small strains, thereby omitting the effect of material rotation
in the behaviour.

• Only local information is obtained and the kinematical admissibility with
respect to the macroscale boundary conditions and equilibrium equation is
not yet taken into account. This implies that certain results of negative
second order work do not lead to any instabilities, simply because their ori-
entation(s) of strain rate do not correspond to the actual loading direction.

With the developments above and using the stress response data obtained from
the extended Gudehus analysis, the terms 2W 1, 2W 2, 2W∆ and 2W a can be
computed for all available (combinations of) strain increments as approximations
of the strain rate. Figure 15.9 gives a stereographic plot of the orientations dε1

for W 1 < 0 (red dot) together with dε1 (blue circle) and ∆ε (red cross) for
W∆ < 0|W i > 0 as a function of α and β. The current macroscale loading is
indicated with a blue cross. The results shown are those of integration point 3 in
element 181 at different states of deformation (see Figures 15.2 and 15.1). Well
before the peak (εa = −1.1%), negative second order work 2W 1 and negative
2W∆ can be observed, although their corresponding orientations dε1 and ∆ε
do not agree with the current loading. Right after the peak (εa = −1.4%),
the orientations with negative second order work appear around the orientation
of current deformation rate, developing into a well-defined zone of orientations
towards the end of the loading path visible as a red cloud in the projection at
εa = −1.76%.
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εa = −0.0110 εa = −0.0130
α=-45o

α=135o
α=315oβ=90o

β=-90o

macroscale loading

dε1 | ∆ε:∆σ<0 & dεi:dσi
>0

∆ε | ∆ε:∆σ<0 & dεi:dσi
>0

dε1 | dε1:dσ1
<0

εa = −0.0140 εa = −0.0176

Fig. 15.9: Negative second order work σ̇ij ε̇ij (red) and ∆σ̇ij∆ε̇ij (blue) in element 181
around the peak and at the end of the computation.

From the figure above it can be concluded that, locally, uniqueness can not be
guaranteed for states of deformations well before the peak, although it is likely
that the orientations corresponding to the negative second order work are not
admitted by the kinematically constraints of macroscale balance- and boundary
conditions. After the peak, local uniqueness of the solution is definitely lost as
the orientations of negative second order work and current loading direction co-
incide. This is a first indication of numerical instability, leading to computational
difficulties at the macroscale.

Appendix B contains some more examples of stereographical representations
of the different definitions of negative second order work.

15.4 RICE bifurcation criterion

The mechanical tangent stiffness matrix 4CM provided by the computational
homogenization of the REV response to deformation F describes the variational
relation

δσt
ij = CM,t

ijklδF
t
kl (15.13)

This relation is consistent with respect to the direction of deformation at time
t. As the model is incrementally non-linear, each other increment of deformation
δFij entails a different tangent operator 4C. Under the strong assumption that
CM

ijkl can be used for any strain increment (incremental linearity) the derivation
of Rice’s criterion for bifurcation [Rudnicki and Rice, 1975], this derivation is
usually rewritten as

σ̇ij = Lijklε̇kl (15.14)

where the constitutive tensor 4L is roughly approximated by 4C under the as-
sumption that the geometrical nonlinearities can be ignored (see Bésuelle and
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Rudnicki [2003] for a review). The theory then defines an orientation for a pos-
sible localization band with a normal tensor ~n, such that the rate of deformation
inside the shear band can be written as

ε̇kl = ε̇0kl + gknl (15.15)

where ε̇0 is the rate of deformation outside the band and ~g characterizes the
direction of relative displacement of the opposite sides of the band. From the
stress continuity equilibrium ∇ · σ = ~0 it follows that

niσij = niσ
0
ij (15.16)

It is important to repeat here that the influence of the global boundary value
problem and the local second gradient model on the continuity are ignored in this
analysis. Combination of (15.15) and (15.16) leads to the condition

njLijklgknl = 0 (15.17)

This naturally holds for the trivial solution gk = 0, which corresponds to the
homogeneous deformation as one of the solutions. Rice’s criterion for bifurcation
is met when a second, non-trivial (~g 6= ~0), solution to (15.17) exists. Such a
solutions exist if

det(A) ≤ 0 (15.18)

withA the so-called acoustic tensor corresponding to njLijklnl. The existence
of a non-trivial solution indicates a local bifurcation point. In case of a homo-
geneous problem, this point is instantaneously reached over the full domain. In
case of a (initially) heterogeneous deformation, the bifurcation criterion can be
met locally. As mentioned earlier, our model is an incrementally non-linear model
and the bifurcation analysis cannot be extended any further than (multi)linear
models as 4L will depend on both ~n and ~g. A more consistent approach might
comprise the comparison of the current loading rate ε̇ij with the vector product
ginj corresponding to possible orientations of the strain tensor that meet the
bifurcation criterion.

Given the constitutive tensor 4L (or in its place the orientation-dependent
consistent tangent 4C) analytical solutions to Equation (15.17) can be found
[Vardoulakis, 1980]. Finding a solution contains solving a fourth-order equation.
In case the orientation of ~g is of little interest, a more pragmatic way of evaluating
Rice’s criterion it to perform a numerical analysis of (15.18) for a series of ~n with
different orientations. This way of evaluation only requires a computation loop
over the different orientations performing the matrix multiplications of comput-
ing the determinant of the acoustic tensor. Once a deformation has been applied
on the REV and a solution is found for the stress response and the corresponding
linearization of the constitutive relation, the evaluation of the Rice criterion is
a straightforward routine which takes negligible computational effort. The Rice
criterion can therefore easily be used in an evaluation of the doublescale com-
putation without additional computational effort. In addition, the orientation of
~n corresponding to the minimum if det(A) can serve as an indicator of possible
localization orientations.

Figure 15.10 shows the zones where the Rice criterion is satisfied for several
states of deformation of the biaxial compression test under evaluation.
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εa = 1.1% εa = 1.2% εa = 1.3% εa = 1.4% εa = 1.5%

εa = 1.6% εa = 1.65% εa = 1.7% εa = 1.75% εa = 1.76%

Fig. 15.10: Rice’s criterion for different stages of the biaxial compression test; shaded
element quadrants indicate (∃det(A) < 0) in the corresponding integration
point. Displacements multiplied 10×.

15.5 Different local indicators in a global setting

Through the adoption of several simplifications and assumptions, a number of
indicators has been defined for the local material behaviour. These indicators are
here used to give some insight into the (global)state of the boundary value prob-
lem. Figure 15.11 contains the indicators of the sections above with Rice criterion
(using the approximation of the direction-independent stiffness matrix) with ~n for
the minimum determinant of the acoustic tensor, the numerical elasticity condi-

tion and the different conditions of negative second order work 2W
1
and 2W

∆
.

Starting at the first state of deformation corresponding to εa = −1.1% which
lies well before the peak, the criteria of second order work indicates local loss of
uniqueness in a zone which is later to be the zone of strain localization. From
the stereographical plots in 15.9 and Appendix B it was concluded that at this
stage the current loading rate and the loading increments related to negative
second order work do not agree and the possible fields of velocities that satisfy
∆εij∆σij < 0 do most likely not obey the boundary conditions of the macroscale
BVP. The Rice criterion at this stage is not met and the orientation of minimum
determinant of the acoustic tensor is conjugate to the final shear band orientation.

It is interesting to note that heterogeneous deformation is encountered far
before the peak, which indicates that the local second gradient model plays a
role in the pre-peak part of the computations and the results of computations
for different second gradient parameters will diverge from a point well before
the peak. This can be observed from the fields of of VM equivalent strain in
Figure 15.11, where the incipient shear band can be observed well before the
peak response and a variation in the order of 10% in the total VM strain can be
observed as soon as εa = −0.011.

For the states of deformation around the peak, the following observations are
made;
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• Negative second order work criteria seem to behave chaotically, changing
rapidly between the different states of deformation. Whether or not this
is a numerical effect of the large loading steps or inaccurate convergence
criteria is not clear.

• The low number of points for which local uniqueness can not be proved at
the peak, suggests that the solution found at the peak (εa = −1.3%) is most
likely a unique solution. This can explain the good convergence at the peak
and the possibility of taking (relatively) large deformation loading steps in
the computations.

• The Rice criterion is met for a small part of the domain before the peak
response is reached. The first continuous ’band’ of points that meet Rice’s
criterion is found at the peak and corresponds well with the developing
band.

• Vector ~n corresponds well with the orientation of the incipient shear band
for all points for which Rice criterion is met.

At the final state (εa = −1.76%) the Rice criterion and negative second or-
der work criteria show very good agreement and both criteria seem to accurately
follow the shear band activity (see the VM strain rate in Figure 14.12). The align-
ment of orientations related to negative second order work and current loading
direction shown by the stereographical plots for this state of deformation, suggest
that uniqueness is lost. This might explain the computational problems of finding
a well-converged solution.
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Fig. 15.11: Different indicators of localized deformation rate with Rice criterion and
orientation of vector ~n (top), the different indicators based on second order
work and interface softening rate (middel) and Von Mises equivalent strain
in current configuration with displacements magnified 10× (bottom)

As a final remark, it can be stated that the evaluation of 2W
1
< 0 seems to

be sufficient for most points; only very few points exists for which 2W
1
> 0 and

2W
∆
< 0 (or 2W

a
< 0). However, the kinematical admissibility of deformation

increments dε1 and dε2 has to be considered in this type of analysis.
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16. MODELLING OF A GALLERY EXCAVATION

The setting of the underground research laboratory (URL) described in Section 1
is taken as the starting point of the modelling of a gallery excavation problem with
the doublescale model, first for purely mechanical behaviour and later with taking
into account hydromechanical coupling. The focus will be on the development of
strain localizations around the gallery excavation as a response to the unloading
of the future gallery wall to simulate of the excavation of a gallery drift.

For a reasonably low constraint on the development of shear bands around
the gallery, the element size must be small with respect to gallery dimensions:
The width of possible shear bands must be small enough with respect to the
dimensions of the gallery and the mesh size must be small enough to allow a
proper integration over the strain gradients on the element level (to guarantee
mesh-objective results). In case the chevron cracks of Figure 1.4 are modelled
by a single shear band, the shear band in the numerical modelling is supposed
to be in the order of 10 cm wide. To have a shear band of at least 3 elements
wide, this band width requires an element size of 3 cm, which is too fine to apply
in a doublescale computation of a gallery with a diameter of 5.4 m. Therefore,
concessions have to be made with respect to the correct band width and the
computational expense. The same goes for the choice of the domain (a quarter
gallery against a full gallery) and the detail of the microstructure in the REV.
Nevertheless, the use of realistic boundary conditions with a model of restricted
detail can be used to study general tendency in the response and can serve as a
proof of concept for future computations with higher details and computational
cost.

16.1 Macroscale geometry for mechanic analysis

Figure 16.1 shows the mesh for the spatial discretization at the macroscale. The
quarter of the domain around the gallery is divided into two zones. A first inner
zone from the gallery wall up to a distance of 3 times the gallery radius. This is
the zone in which the EDZ is expected to develop. A second zone is defined up
to a distance of 50 m. At this distance, influences of the excavation on the stress
state is expected to be negligible, thereby defining the computational domain. A
fine mesh is used for the first zone, dividing the quarter circle of the gallery wall
by 40 equally-sized elements. The length-width ratio of the elements in the first
zone is set to one to optimize element integration. In the second zone, where only
small elastic strains are expected, the elements are stretched to reduce the total
number of microscale REV boundary value problems to solve. This gives a total
number of 1640 elements.



184 Modelling of a gallery excavation

50 m 2.6 m 7.8 m

Fig. 16.1: Macroscale mesh for the modelling of gallery excavation.

The choice for a quarter of a gallery is one based on the computational ex-
pense of the problem. Although for the modelling of a gallery excavation often
only a quarter of the gallery is considered assuming symmetry to be maintained
throughout the computation, the validity of this assumption is not maintained
when localization phenomena take place and non-symmetric solutions can be en-
countered. This was demonstrated for initially symmetric problems in several
studies, such as Sieffert et al. [2009] and Marinelli et al. [2015]. In case of aniso-
tropic behaviour that does not coincide with the horizontal and vertical axes, the
boundary conditions will certainly influence the response, as will be demonstrated
later on. Zero displacement perpendicular to the radial boundaries is used to en-
force the quarter of the gallery domain. Boundary conditions with respect to the
gradient of displacement, which can be used for enhancing the symmetry [Zervos
et al., 2001, François et al., 2014] with respect to the local second gradient model
is not used here. These conditions are only applicable in models with axes of
symmetry on the domain boundaries which does not apply to the general model
derived from the microscale computations. As a consequence, the double stresses
perpendicular to the radial boundaries are considered zero. This is once more not
consistent with the modelling of a full gallery.

An initial stress state at zero deformation is used to simulate the in-situ stress
state given in Section 1.4:

σ
is =

[
16.12 0
0 12.4

]
MPa (16.1)

The boundary traction related to the far-field boundary (blue) and gallery wall
boundary (red) have both a normal and a tangential component as an effect of
the anisotropic stress state. These components can be computed as the product
of the stress tensor σ and the normal outward vector ~n. The farfield boundary
traction (in blue) is thereby given by

τfieldi = σis
ijnj (16.2)
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On the gallery wall, the boundary traction is gradually reduced until a support
of τ supn = 0.3 MPa is reached that acts normal on the gallery wall.

τwall
i = (σis

ij − δijτ
sup
n )(1− λ)nj + δijτ

sup
n nj (16.3)

The dimensionless time or loading parameter λ is used to define the state of
unloading of the gallery wall, simulating the excavation. In-situ stress conditions
are maintained for λ = 0 and the final gallery wall support σsup is obtained at
λ = 1.

For the modelling of possible strain localization phenomena, the element size
has to be small enough to guarantee mesh independent results. Referring to the
observations made around the galleries of the URL (Section 1.4), the distinct
localizations that can be taken into account individually are those of the chevron
cracks as a homogeneous zone in the order of a decimeter wide. The extension and
shear fractures close to the gallery wall can only be modelled in a homogenized
way in a continuous zone of deformation.

With a minimum element size of 10cm (corresponding to 40 elements at the
gallery wall), the localization bands will be at least 30 cm wide. This can be
a reasonable first approximation of the width of the chevron cracks. A detailed
mesh is generated in a zone around the gallery up to 4 times the gallery radius
(10.4 m) as no strong deformations are expected outside this zone. In order
to apply a consistent farfield pressure, the total domain of computations was
extended to 50 m from the gallery center. Only a few elements were used to
model this zone, as the deformation and stress fields in this zone are expected to
be nearly homogeneous.

16.2 Mechanical simulation of quarter gallery I

The gallery excavation computation is performed using the calibrated REV 8
(Figure 14.3). For the calibration of the second gradient parameter, the compu-
tations of the biaxial compression are used, calibrating the local second gradient
model parameter D at a relatively low value of 40 kN , which in the setting of
unconfined compression would correspond to a final shear band of approximately
10 cm wide.

The unloading of the reaction forces on the gallery wall according (16.3) is
applied with convergence criterion on forces ǫf = 1 × 10−4 and displacements
ǫu = 1 × 10−4, providing well-converged solutions. The resulting fields of de-
viatoric stress and strain are shown in Figure 16.2. The deviatoric strain field
shows no strain localization in shear bands. Only the initiation of localization of
deformation is visible close to the upper part of the gallery wall. This zone shows
the highest deviatoric stress of the domain. When looking at the evolution of
the deviatoric strain with unloading, the integration points for the element at the
top of the gallery wall appear to have past the peak deviatoric stress just before
complete unloading (Figure 16.3).
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VM equivalent strain deviatoric stress

Fig. 16.2: Micro ’8’: VM equivalent strain and deviatoric stress after gallery excavation
at λ = 1.

This deviatoric stress peak corresponds with the maximum of deviatoric stress
of biaxial compression under low confinements, as for example observed for biaxial
compression at 2MPa confinement (Figure 14.4) and the doublescale unconfined
compression (Figure 14.10). The microstructure in this element shows only a
slight initiation of softening, with the early development of continuous paths of
interfaces in a state of softening.
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Fig. 16.3: Left: Deviatoric stress in the integration points in element 1600 (on top
gallery wall). Integration point 1 and 4 are closest to the gallery wall.
Right: Deformed microstructure of IP4 at λ = 1

The absence of strain localization in shear bands in the numerical simulation
after calibration of the mechanical behaviour is not in good agreement with the
observations of localized deformation in the field. An explanation for this absence
is not easily found and can be sought in different directions. A possible reason is
the incorrect representation of mechanical properties of the constitutive law which
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were not considered in the model calibration. The constant dilatant behaviour
with continued loading for example might not be representative for the claystone.
In combination with a relatively large internal length scale, this could lead to
an arching effect around the gallery, leading to a too resistant response of the
material.

16.3 Mechanical simulation of quarter gallery II

For further studies on the localization around the gallery excavation, an altern-
ative REV is calibrated against the experimental data. As a trade-off between
computational efficiency on one hand and accuracy in representing a material
with enough detail on the other, the number of grains in the REV is reduced by a
factor two with respect to the example given above. To avoid a too strong effect of
the heterogeneity of the grain stiffness with the reduced number of grains, homo-
geneous grain stiffness is adopted equal to the initial material stiffness mentioned
in literature (Andra [2005a] and the references therein).

From a series of 100 REVs with 20 grains each, the REV with the lowest an-
isotropy in the peak strength was chosen. This REV (REV 28, shown in Figure
16.4) was then calibrated against the experimental results from triaxial compres-
sion tests under 12MPa confining stress. The results of the calibration are given
in the accompanying table:

θREV [◦] -80.0

solids: 20
E [GPa] 4.0
ν 0.3
kii [×10−20m2] 1.0
ϕ[−] 0.18

interfaces:

δct/n 0.125

D0
t/n 0.01

Tmax
t/n [MPa] 1.00

Fig. 16.4: Microstructure ’28’ for the modelling of

Only a partial calibration with respect to experimental results was performed
for this microstructure. As for a given microstructural geometry the effective fric-
tion angle (as the pressure-dependency of the peak response) and the dilatancy are
difficult to control, not all parameters available from the experimental data can be
calibrated. The approach followed here is therefore to only calibrate against the
12 MPa experimental results. It has to be stressed again that the comparison is
done between numerical results obtained under plain strain conditions and exper-
imental results obtained from triaxial compression tests. As the influence of the
Lode angle (or the intermediate principal stress) on the behaviour of the Callovo
Oxfordian claystone is not well known, an assumption of the failure criterion is
required to make a comparison. Although it was pointed out in Section 14.2 that
the biaxial compression can be expected to lead to higher peak responses than
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triaxial compression tests, the peak stress is here calibrated conservatively in or-
der to correct for the possible influence that the strong dilatancy might have on
the localization. For this reason, the peak stress response to biaxial compressive
loading is calibrated to significantly underestimate the failure load and thereby to
favor the localizations. The peak stress response as a function of REV orientation
is calibrated not to exceed the maximum of the experimental results (Figure 16.5).
With an effective friction angle that is higher than observed by experiments, this
leads to a material that is weaker than the COx under low confinement.
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Fig. 16.5: Deviatoric stress response to material point biaxial compression at 12 MPa

confining stress for different orientations θI compared to the experimental
results obtained by triaxial compression tests.

Figure 16.6 shows the anisotropy in the peak response to biaxial compression
at 2 MPa and 12 MPa confining stress. The initial orientation of the REV has
been rotated −80◦ such that the maximum peak stress coincides with loading
in 0◦ orientation. It is clear that for all orientations, the peak strength of the
material is lower than the strength observed in the experiments.



16.3 Mechanical simulation of quarter gallery II 189

−80 −60 −40 −20 0 20 40 60 80
0

5

10

15

20

25

30

35

40

D
e
v
ia

to
ri
c
 s

tr
e
s
s
 σ

2
2
−σ

1
1

[M
P

a
]

orientation [o]

Fig. 16.6: Peak response to biaxial compression as a function of REV orientation for
confining stress of 2 MPa (red) and 12 MPa (blue).

Figure 16.7 shows the evolution of the deviatoric strain. For four stages, the
total deviatoric strain and the strain rate is plotted. As most of the unloading
at the gallery wall results in homogeneous deformation around the gallery, most
focus goes to the final 10% of the unloading, during which strain localization
takes place. From the plots of deviatoric strain, the following can be observed:

• Strain localization is triggered along the gallery wall, but the initial location
of localization of strain (visible at the top of the gallery, the point of highest
deviatoric stress in the early stage of unloading) does not necessarily lead
to the first localization bands.

• Bands are activated and deactivated during the evolution of deformation.
This is not related to instabilities of different solutions, but rather to the
evolving anisotropy of the material through the geometry of the microstruc-
ture.

• The localization bands appear to have preferential directions, instead of the
curved bands that are observed in the field or reproduced using classical con-
stitutive relations [Varas et al., 2005, Marinelli et al., 2015] or constitutive
relations from REV numerical simulations leading to a more isotropic ma-
terial response [Nguyen, 2013].

• The localization bands appear mesh independent and reasonably constant,
demonstrating the ability of the local second gradient model to properly
regularize the continuum for this complexity of constitutive behaviour. A
more complex behaviour with stronger fluctuations of material stiffness as
observed in the biaxial compression test with the REV in FIgure 14.3 will
lead to more variation in the dimensions of strain localizations.
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Fig. 16.7: Deviatoric (Von Mises equivalent) strain and strain rate for different stages
of excavation, simulated by the unloading parameter λ.
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To further study the preferential orientation of the localization bands, deformed
microstructures are plotted for different points in different bands. These micro-
structures are given in Figure 16.8.

Fig. 16.8: Macroscale mesh with VM equivalent strain after unloading (λ = 1) and
deformed microstructures for different integration points.

The pattern of interface softening and decohesion at the microscale is strongly
related to the mode of localization at the macroscale; each orientation of localiz-
ation at the macroscale corresponds to a specific pattern of the interface degrad-
ation. This can be traced back to the anisotropy in the post-peak response. Each
of the preferential orientations of macroscale localizations corresponds to one of
the valleys in the post-peak response domain.

For REVs with relatively low number of grains, the pattern of anisotropy is
already present in the peak stress and will for the better part correspond to the
post-peak anisotropy. This anisotropy (a material property) can be linked to the
initiations of the different localization bands.

16.4 Quarter gallery with hydromechanical coupling

In this section, the modelling of the gallery excavation is repeated for the case of
hydromechanical coupling, which introduces a time-dependency into the model-
ling framework. Even if the modelling of the excavation itself can be considered
as an undrained exercise, the dissipation of the (induced variation of) pore water
pressure after the excavation is a transient process.

The in-situ conditions are simulated for a gallery orientated in the direction of
the minor principal in-situ stress. This corresponds to the following initial stress
state for the modelling of the cross section of the gallery excavation problem in
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plane strain conditions :

σ0
11 = 16.12 MPa
σ0
22 = 12.70 MPa
σ0
12 = 0.00 MPa
p0 = 4.70 MPa

The modelling of the hydromechanical coupling requires the (loading) time
steps to be controlled carefully to guarantee a proper time integration and ap-
plication of the different loads. This leads to a strong increase in computation
time. To be able to perform these kind of computations, a coarser mesh is used
to reduce the computational cost of the total number of microscale computations.
To be able to properly capture the hydraulic pressure gradient of the dissipating
fluid pressure, the zone of square elements is extended to 50 m from the center
of the gallery and the full domain is extended to 200 m. Figure 16.9 shows the
mesh with the applied boundary conditions, where the number of elements along
the quarter circle of the gallery is reduced from 40 to 20.

p(t)

0
200

0

200

p = constant

Fig. 16.9: Mesh for HM-coupled computation of gallery excavation.

For the boundary conditions applied on the mesh in Figure 16.9, three groups
of boundaries are considered;

1) the gallery wall

pt = pis(1− λtp)

τ ti = σis
ij (1− λtmech)nj (16.4)

2) the farfield boundary

pt = pis

uti = 0 (16.5)
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3) the radial boundaries

mt
ini = 0

uini = 0 (16.6)

ni are the components of the normal vectors to the boundaries and λtmech and
λtp the loading multipliers for forces and fluid pressure as a function of time.
Figure 16.10 presents the applied loading on the gallery wall, simulating a passing
excavation front at the plane of interest at t = 14 days [Andra, 2013]
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 -

 λ
)
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p

Fig. 16.10: Multipliers λ for the gallery wall boundary conditions as a function of time,
simulating the excavation front passing at t = 14 days.

For the regularization, the second gradient model with parameter D = 40kN
is used, identical to the mechanical simulation of the gallery excavation presented
in 16.3.

REV 28 with the constitutive parameters given in Figure 16.4 is used at the
microscale. For the coupling between the mechanical hydraulic opening of the
interfaces with the fluid problem, the minimum opening of the interfaces is defined
at 0.02 µm and the relation ah = ∂∆uh/∂δun = 1 mm (Equation (5.66)) is used
to introduce a physical length in the hydraulic opening. With these values and
an isotropic grain permeability k11/22 = 1.0× 10−20 m2, the initial permeability
of the REV is:

k
0 =

[
1.26 0.00
0.00 1.28

]
× 10−20m2 (16.7)

The (average) porosity of the grains is set at ϕ = 0.18. This results in an initial
fluid content of 180.56 kg/m3, including the effect of fluid compressibility and
interface hydraulic volume. A REV orientation of θREV = 0◦ is used. For this
reason, the specific modes of localized deformation can not be compared with
those presented in Section 16.3.

A first impression of the response to unloading is given by the physical conver-
gence of the gallery wall with time of the ground response curves [Brown et al.,
1983, Alonso et al., 2003, Lee and Pietruszczak, 2008]. This response is given in
Figure 16.11 for three points along the wall; the intersection with the horizontal
axis (0◦), the vertical axis (90◦) and the intersection of the gallery wall with the
diagonal (45◦). The convergence during the first 28 days ≈ (0.08 year) shows
strong resemblance with the mechanical loading parameter λmech (Figure 16.10)
and indicates a predominantly elastic response to unloading of the gallery wall.
This elastic response is due to the close-to-undrained conditions of the material
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around the gallery. This can be verified by the pore pressure field after unload-
ing (t = 30 days), which is given in Figure 16.12 together with the Von-Mises
equivalent strain. With the exception of the gallery wall on which fluid pressure
is enforced to be zero, the fluid pressure is negative in the zones of higher de-
formation and reaches negative pressures as low as −4 MPa. This negative pore
pressure as a direct reaction to the mechanical unloading of the gallery wall is
explained by the dilatancy due to the deformation of the material. This dilatancy
is a direct result of the opening of interfaces that is required for any macroscale
deformation other than that due to elastic deformation of the grains. The pres-
sure drop of around 8MPa is in the range of the drop in mean total stress due
to the unloading of the gallery wall.

Fig. 16.11: Gallery convergence with time: gallery wall displacement relative to gallery
center

The longterm response (1-500 years) corresponds more to transient behaviour,
with asymptotic convergence of points β = 0◦ and β = 45◦, which can be related
to the dissipation of the fluid underpressure that allows further gallery wall con-
vergence through deviatoric (and therefore volumetric) deformation. The point
at β = 90◦ initially shows the same response, after which an acceleration with
time can be observed. This stronger convergence can be related to the (initiation
of) localized deformation close to this point. The activity of these localizations
can be observed at different locations, depending on the state of dissipation of
the negative pore pressures. Examples of this effect are given by the strain rate
fields in Figure 16.12 at times t = 5 years and t = 50 years. This time-dependent
response due to the pressure dissipation is strongly influenced by the dilatant
nature of the material. A consequence of formulating the microscale model such
that the dilatancy is high and pore volume can only increase with deformation is
that the development of negative pore pressures can not be avoided.
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Fig. 16.12: Response to unloading at t = 30 days, t = 5 years, t = 50 years and t = 500
years.

16.5 Evolution of permeability

The evolution of the permeability with macroscale degradation is investigated
in this section. For this purpose, Figure 16.13 shows the distribution of the
individual components of permeability tensor k at the end of the simulation.
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Fig. 16.13: Permeability distribution at the end of the simulation for hydromechanical
coupling. Color scales are truncated.

The permeability increases in the zones of stronger deformation (close to the
gallery wall) as an effect of the opening of individual interfaces. The orientation of
the individual interfaces influence the orientation of the increase in permeability,
which introduces a strong anisotropy of permeability. The increase in permeabil-
ity as reported in literature (see Section 1 and Armand et al. [2014]) is not found
in the simulations. This can be explained by the two-dimensionality of the mi-
crostructure and the need for grain contacts in case of a compressive state of the
material. This prevents the development of continuous paths of opened interfaces
for the fluid to percolate from one side of the REV to the other and therefore
keeps the permeability low. An extension of the microscale model to 3D or the
introduction of an interface dilatancy effect to simulate the effect sliding inter-
faces with rough surfaces could introduced the effect of the three-dimensionality
of the pore network (see for example Massart and Selvadurai [2012]).

An exception to this restricted evolution of permeability can be found in some
REVs in the upper corner, for which excessive strains lead to complete decohesion
of the interfaces and a continuous opening of interface channels. This leads locally
to an increase of the permeability of several orders of magnitude, but the mode
of deformation in these elements is far from mesh-objective and the modes of
deformation ae not necessarily representative for the correct structural response.



17. MESOSCALE HETEROGENEITY; RANDOM REV

ORIENTATION

The effect of the orientation of the microstructure and the periodic frame of
the REV has been discussed in different sections above. Section 11.2 has demon-
strated that the orientation of the REV with respect to the macroscale introduces
anisotropy in the material behaviour, either as a desired effect, or as an effect of
the non-representativeness of the microstructure in the REV. In addition, the
influence of the periodic frame in the post-peak regime was demonstrated to play
an important role. In section 16.3 it was demonstrated that the combined effect
of microstructure and periodic frame leads to preferential orientations of shear
bands due to the anisotropy of the macroscale material behaviour.

The representativeness of the REV in the non-softening regime is easily ob-
tained by taking more and more grains into consideration and complies with
the classical definition of the REV. However, the increasing number of degrees
of freedom in the microscale finite element computations leads to an excessive
computational cost of the evaluation of the microscale boundary value problem.

In this section an alternative approach is followed to mask the effects of both
the low number of grains in the REVs and the periodic frame by introducing a
spatial variability of the configuration of the microstructure and orientation of
periodic frame. The configuration of the REV can be changed by means of a
variation of:

• realizations of the microstructure

• microscale constitutive parameters

• orientation of the microstructure

• orientation of the periodic frame

• a combination of these points

Furthermore, different approaches can be envisioned for the introduction of the
spatial variability, based on the spatial correlation between the parameters on
which the variation is applied. The introduction of this spatial correlation is
required to obtain mesh-independent spatial variation of material properties and
therefore a mesh-independent computation.

In a first attempt the only variation that is introduced is the REV orientation,
which is the most straightforward variation from an implementation point of view.
The variation of the orientation of the REV implies that the variation of the
orientation of the microstructure and the orientation of the periodic frame are
identical and only θREV is changed. No spatial correlation is introduced, which
implies a certain mesh-sensitivity to be expected in the results as an additional
length scale is introduced by the size of the macroscale mesh. Nevertheless, the
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application of the local second gradient model will regularize an important part of
this mesh sensitivity and the internal length of strain localizations is maintained.

The REV orientation is defined randomly and independently in each integra-
tion point, as schematically presented in Figure 17.1. The values for θREV are
uniformly distributed between 0◦ and 180◦.

Fig. 17.1: Macroscale enhanced finite elements with REV orientation θREV assigned
randomly to the integration points.

17.1 Microstructure REV

The microstructure for this test is given in Figure 17.2 together with the con-
stitutive parameters. The low number of grains leads to a concise finite element
problem to be solved at the microscale, which allows a detailed macroscale com-
putation with a fine mesh as well as small loading steps.

grains: 8
ξ 1.0
η 1.0

solids:

E [GPa] 7.2
ν 0.200

interfaces:

E0 [GPa] 3.3
Tmax [MPa] 5.0
δc 0.125

Fig. 17.2: Microstructure REV 184 with microscale constitutive parameters.

Figure 17.3 shows the material-point response to unconfined biaxial compres-
sion for different REV orientations θREV . A small variation in the initial stiff-
ness can be observed, as an effect of the interface distribution. The orientation-
dependency in peak response to biaxial compression shows a combination of low
number of grains, periodic frame orientation and material anisotropy with a peak
of increased strength every 30◦. The slopes of the softening branches of the
nominal stress response show relatively few variations between the different REV
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orientations, with 2 or 3 notable exceptions, related to microscale damage in a
single path through the REV.

A) σ1 response curves B) peak response
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Fig. 17.3: A) material point response to unconfined compression for REV orientations
on a 10◦ interval. B) peak response as a function of REV orientation θ.

Two doublescale unconfined biaxial compression tests on a 38×76mm2 sample
is are simulated by means of a regular mesh of 40 × 80 finite elements. Local
second gradient model parameters D = 100 N and D = 25 N are used for the
two simulations.

Figures 17.4 and 17.5 show εVM and ε̇VM for different stages of the simulation
with D. As an effect of the spatial variation at the intermediate length scale,
slightly heterogeneous strain fields are obtained from the first loading step on (in
the order of 10% in step A). Multiple incipient shear bands can be observed from
the point where the global response becomes non-linear in step B and C (the first
non-linear effects appear around 50% of the peak strength). The bands develop
at different rates until the peak of the global stress-strain curve is reached (step
D), where some bands stop being active and localized deformation takes place in
a few bands only. In the post-peak regime (Figure 17.5) only two active bands
remain and the demain outside these bands is unloading (hence the rate of εVM

is negative). These bands develop from the peak onwards, becoming narrower
and more distinct untill they reach a final width. Eventually, one of the bands
becomes inactive (between step F and G) and further deformation takes place in
a single remaining active band. It should be noted that no special measures were
taken to either trigger or stop the development of strain localization. This is fully
controlled by the material behaviour and its intermediate scale of heterogeneity
that was introduced through the random distribution of the initial orientation of
the REV.

In Figures 17.6 and 17.7 the results of the simulation for D = 25 N are presen-
ted. The fields of deviatoric strain and rate of deviatoric strain in the initially
linear part (step A) shows no difference with the simulation with D = 100 N and
has a spatial scale of fluctuation directly prescribed by the element size. Hetero-
geneity of deformation at a spatially larger scale occurs as soon as nonlinear re-
sponses are obtained (step B). The length scale of these heterogeneities is difficult
to compare quantitatively between the simulations for D = 25 N and D = 100 N ,
but it can be observed that the heterogeneities for a smaller parameter D tend
to have a smaller length scale. Again, the incipient localization bands fade out
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during the continuous pre-peak loading (step C and D) after which a single shear
band develops from the point of peak response onwards (steps E-H). Due to the
smaller parameter D the band width is less wide. Moreover, only a single shear
band develops after the peak. As a result of the reduction of both the width and
the number of shear bands, snap-back is more likely to take place. Step H is the
last converged point before snapback and no solutions can be found without the
use of more advanced loading control algorithms.

A)

B)

C)

D)

Fig. 17.4: Pre-peak (rate of) Von Mises equivalent strain (εV M ) for D = 100 N .
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E)

F)

G)

H)

Fig. 17.5: Post-peak (rate of) Von Mises equivalent strain (εV M ) for D = 100 N .
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A)

B)

C)

D)

Fig. 17.6: Pre-peak (rate of) Von Mises equivalent strain (εV M ) for D = 25 N .
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E)

F)

G)

H)

Fig. 17.7: Post-peak (rate of) Von Mises equivalent strain (εV M ) for D = 25 N .
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Figure 17.8 gives a magnification of the deformation of the shear band of the
simulation with D = 25 N . With a ×10 magnification of the displacements, the
deformed mesh shows clearly that the width of the shear band is mesh-objective
with a width of about 6 elements. Nevertheless, smaller fluctuations in the dis-
placement fields can be observed at the level of the element, both as irregularities
in the mesh and as small local variations in the deviatoric strain field. These
fluctuations are the effect of the random variation of the REV at the integration
points and can be seen as an intermediate scale of heterogeneity with a length
scale that is directly related to the element size. The amplitude of these fluc-
tuations are determined by the anisotropy in the REV response, influenced by
both the microstructure anisotropy and the periodic frame effect in the post-peak
regime.

Fig. 17.8: Magnification of Figure 17.7H) at the point where the shear band touches
the domain boundary (displacements multiplied ×10) with truncated εV M

colorscale.

The variation of the REV orientation has restored the isotropy of the material
at the macroscale, which has allowed the conjugated shear bands to develop,
as well as the reflection on the top and bottom of the sample. This does not
necessarily mean that the periodic frame effect has been resolved; the effect has
been masked by spreading out the response in all loading direction, but locally
still constrains the modes of deformation. In addition, the size-dependency of the
REV has not been resolved and the number of grains per REV still plays a role
in the (post-peak) response.

Nevertheless, the application demonstrates the capabilities of the doublescale
modelling approach in case the periodic frame effect and problems of microstruc-
ture representativity are resolved.

17.2 Microscale mode of deformation

The macroscale shear band can now be compared with the deformation of the
microstructure and the damage of the interface decohesion. For this purpose, the
deformed REVs along a cross-section through the shear band in the final stage of
both simulations is made (see Figures 17.5H) and 17.7H)). Along the cross sections
A − B and C − D, ten deformed microstructures are presented in respectively
Figure 17.9 and 17.10. As an effect of the variation in REV orientation, the
modes of deformation at the microscale are no longer unique to the macroscale
mode of deformation as it was observed in for example Figure 16.8. Due to the
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different states of deformation at the end of the simulations (steps H), the results
in Figures 17.9 and 17.10 can not be compared in detail.

el. 1622 el. 1623 el. 1624 el. 1625 el. 1626

el. 1627 el. 1628 el. 1629 el. 1630 el. 1631

Fig. 17.9: Deformed microstructures of integration point 2 for the elements 1629 to
1638 along cross section A−B (Figure 17.5H))

el. 1629 el. 1630 el. 1631 el. 1632 el. 1633

el. 1634 el. 1635 el. 1636 el. 1637 el. 1638

Fig. 17.10: Deformed microstructures of integration point 2 for the elements 1629 to
1638 along cross section C −D (Figure 17.7H))

17.3 Comparison with experimental observations

Several aspects of the incremental strain fields show good resemblance with ex-
perimental observations. Figure 17.11 shows incremental deviatoric strain fields
(second invariant of strain increments) obtained from an experimental biaxial
compression test on a sample of Callovo-Oxfordian claystone under a lateral con-
finement of 12 MPa [Bésuelle, 2015]. The fields of deviatoric strain increments
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for different loading steps are obtained from digital image correlation between
photographs taken before and after the loading step [Lanatà, 2015].

Comparing the experimental results with the numerical results presented in
the section above, the following observations can be made in both numerical and
experimental fields of deviatoric strain increments:

• The deviatoric strain field in the initial (approximately linear) stage of de-
formation shows no spatial correlation, although a certain heterogeneity is
observed as small as the resolution of observation.

• With continuing axial loading, heterogeneity in the form of conjugated
bands start to develop well before reaching the peak stress response. This
heterogeneity starts to appear at the moment the stress-strain relation be-
comes non-linear. In the numerical simulations, this non-linearity is the
direct effect of interface cohesion softening.

• Towards the peak, some of these bands become inactive while others show
increased activity. The most active bands tend to prevail after the stress
response peak.

• Just after the peak only a few bands remain active, of which a single band
prevails.

The numerical results obtained with the random distribution of the REV ori-
entation indicates that for the accurate modelling of pre-peak heterogeneous de-
formation with incipient shear bands, the introduction of an additional scale of
heterogeneity can be of great importance.
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Fig. 17.11: Second invariant of the strain increment . Obtained from digital image
correlation of pictures taken during a biaxial compression test on Callovo-
Oxfordian claystone at 12 MPa lateral confinement [Bésuelle, 2015]
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CONCLUSIONS PART IV

In this Part the developed model was calibrated against the experimental data of
available for the Callovo-Oxfordian claystone. Good agreement was obtained with
respect to the mechanical properties of material up to the peak response under
biaxial/triaxial compression tests, notably for effective Young’s modulus, friction
angle and cohesion. The model was shown to be capable of reproducing a realistic
anisotropy in the peak strength by introducing a weak bedding plane through the
preferential direction of grain orientation. However, obtaining perfectly isotropic
peak stress responses proves very difficult to obtain with only a limited number
of grains in the REV. Nevertheless, anisotropy in the response of the calibrated
REV falls within the experimentally observed variation as a combined effect of
anisotropy and reproducibility of the experimental test results.

The application of the calibrated model (including the heterogeneity of the
grain stiffness for the simulation of inclusions embedded in a clay matrix) in the
modelling of biaxial compression of a sample has demonstrated that computa-
tional difficulties can prevent an ’advanced’ analysis of the post-peak behaviour.
Different tools for studying possible instabilities in the macroscale behaviour were
demonstrated. Definitive conclusions could not be drawn from these studies, al-
though they gave more insight in the macroscopic complexity of the BVP.

The application of the method in the modelling of gallery excavation problems
has demonstrated that the calibrated model does not necessarily reproduce the
localization phenomena that were observed in the field. A further investigation
into the post-peak behaviour may be required in order to see if fundamental dif-
ferences in the global material behaviour can explain these discrepancies. The
use of a material with a ’conservative’ calibration of the material strength was
demonstrated to be able to capture the progressive development of shear bands
around the gallery. The effect of the post-peak anisotropy, introduced by a com-
bination of material anisotropy and boundary condition orientation, was observed
in the shape and orientation of the shear bands. This effect clearly points out the
need for a more representative post-peak behaviour.

The application of the model to the simulation of hydromechanical coupling
has demonstrated that the build-up and dissipation of (negative) pore pressures
can have an important effect on the initiation and progression of both the con-
vergence of the gallery wall and the development of localizations of deformation.
The evolution of the hydraulic conductivity is found to be relatively low due to
the remaining contact between the grains, which prevents the development of con-
tinuous percolation paths through the entire REV. This can be seen as a strong
effect of the microscale modelling in 2D.

The introduction of a random distribution of initial REV orientation shows
that isotropy can be restored by randomly distributing the orientation-dependent
effects of the material anisotropy and the periodic frame. This effect also restored
the unpredictability of developing shear bands as the anisotropy no longer con-
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strains the reflection of shear bands at the top and the bottom of the domain. The
introduction of an intermediate scale of heterogeneity, although directly defined
by the finite element dimensions, allows the initiation of multiple localizations of
deformation in the post-peak regime of biaxial compression tests, showing good
resemblance with experimental observations.



Part V

CONCLUSIONS
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Several novelties were presented in this work on the development, implementa-
tion and application of a finite element squared (FE2) model for hydromechanical
coupling: An existing microscale model for hydromechanical coupling [Frey, 2010]
was modified in order to meet the requirements of consistent computational ho-
mogenization. This modified model was used to fill a representative elementary
volume (REV) for modelling the local hydromechanical behaviour of a poromech-
anical continuum at the macroscale. The macroscale response to kinematical
loading of this REV was used to provide a numerical constitutive relation and was
implemented in a finite element code, coupled to an existing locals second gradi-
ent model for hydromechanical coupling Collin et al. [2006]. For this purpose the
method of computational homogenization by static condensation was extended
to the case of hydromechanical coupling to obtain the consistent tangent oper-
ator that relates a variation of the kinematics to a variation of the homogenized
response. A simple algorithm was then developed for generating periodic micro-
structures for a given set of grain shape characteristics. These characteristics
were used to calibrate the modified microscale model to the Callovo-Oxfordian
claystone, after which the calibrated model was applied in the doublescale nu-
merical simulation of the excavation damaged zone around a gallery excavation,
taking into account hydromechanical coupling. The ability to model strain local-
ization effects in was demonstrated in both academic examples and a (simplified)
engineering problem.
This Part gives the concluding summary of the work on these contributions and
gives in indications for further studies and improvements.

First order computational homogenization by static condensation, commonly
used for upscaling in purely mechanical micro-macro computations, was exten-
ded in this work to the framework of hydromechanical coupling and formulated
to meet the specific characteristics of the micromechanical model. Developments
have been detailed for the specific microscale model, although the general ap-
proach and formulation can be used for other steady-state microscale models for
hydromechanical coupling. Performance tests have demonstrated that the nu-
merical accuracy of this method in the macroscale Newton-Raphson iteration for
solving the macroscale nonlinear problem is of the same quality as that of its nu-
merical alternative of finite difference approximations by numerical perturbation.
Both theoretical and practical examples have demonstrated a significant gain in
computational efficiency.

The developed extension of computational homogenization for hydromechan-
ical coupling was implemented as an independent constitutive relation for local
hydromechanical coupled behaviour in a finite element code. The use of the model
in combination with a local second gradient constitutive law in a HM-coupled fi-
nite element formulation has allowed the modelling of strain localization without
mesh dependency.

A micromechanical material description with discontinuous grains and inter-
faces was used to fill up a REV to provide a computationally homogenized con-
stitutive relation for a macroscale poro-mechanical continuum description. The
formulation of the mixture theory of hydromechanical coupling in the poromech-
anical continuum at the macroscale, which in a classical formulation makes use
of a phenomenological expression of the behaviour of the mixture of both the
solid and the fluid phase, is now obtained by modelling the solid and and fluid
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phases separately at the microscale and using the homogenization of the response
to kinematical variations to obtain the constitutive relations. By this approach
the poromechanical formulation of the macroscale hydromechanical coupling is
obtained in a natural way and the description can therefore be based on physical
considerations of micromechanical interactions between the solid and fluid phase
rather than expressing the the hydromechanical coupling by phenomenological
laws. The evolution of pore space (leading to fluid storage) and permeability as
an effect of (micromechanical) deformation is controlled by the mechanical part
of the REV, as the pore channel network evolves under deformation of the REV.
This gives the means of modelling the anisotropic evolution of permeability as a
response to material deformation, based on specific configuration of the material
microstructure.

Examples have demonstrated that enforced deformation of the REV can lead
to an evolution of the hydraulic properties by means of a traceable evolution of
the pore channel network. The physical changes in the pore channel network form
the basis of the alteration of the fluid system of equations.

Although diffusive flow in the grains has been introduced to take into ac-
count transport of fluid mass through the clay matrix, the main advantage of the
presented model is the ability of modelling hydromechanical coupling based on the
interaction between solid and fluid phases rather than modelling a poromechan-
ical mixture. For the modelling of fluid transport through the (undamaged) clay
matrix, the diffusive flow model has to be interpreted as the homogenized result
of the underlying microstructure of clay particles and platelets. As the micro-
structure of the clay matrix is defined at a smaller scale than the microstructure
of the embedded inclusions, the clay matrix microstructure should either be taken
into account by separate REVs at a smaller scale (introducing a third scale to
take into account) or by a phenomenological law to represent the homogenized
effects of the microstructure on the (coupled) hydromechanical behaviour. As
the introduction of a third level of computations is unrealistic, the latter option
is chosen and a (uncoupled) description of a continuum with hydromechanical
behaviour is used to represent the homogenized behaviour of the clay matrix.

The approach of modelling the material as an assembly of grains that can
interact at their interfaces allows (in addition to a natural way of obtaining hy-
dromechanical coupling in a poromechanical continuum formulation) the intro-
duction of anisotropy in the mechanical behaviour based on the geometry of the
grains that form the microstructure. Although a further specification of aniso-
tropy would be possible by a variation of microscale constitutive relations, it was
shown that anisotropy in (initial) macroscale stiffness, peak strength and soften-
ing response can be obtained by a variation of the average grain size and shape
only. However, the anisotropy introduced by the material interferes with the an-
isotropy introduced by the periodic frame in case of softening behaviour. First
by the constraint of the low number of possible localizations passing the REV
boundaries (in case of REVs with a low number of grains) and later by the peri-
odic frame effect through the orientation of the periodic constraints on possible
microscale localizations of interface damage.

The application of the microscale model has demonstrated that the basic geo-
metrical distributions of the spaces of the inclusions can be easily reproduced by
means of a Voronöı-based microstructure and that REVs of restricted complexity
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can be calibrated against experimental data with respect to post-peak stiffness
and peak strength. This reproduction of the basic geometrical characteristics of
inclusions is of importance for the model to be useful in sensitivity analysis of the
material model and the influence of the variation of these characteristics could be
obtained by numerical simulations.

The doublescale modelling approach was successfully applied in doublescale
simulations of biaxial compression tests in both purely mechanical and hydromech-
anical formulations. Although the micromechanical constitutive relations, the
microstructure in the REV and the macroscale boundary value problem were re-
latively limited in complexity, the results serve as a good proof of concept for the
application of the finite element squared method for hydromechanical coupling
to academic problems. Its application to the modelling of gallery excavations has
demonstrated that the method can be applied to engineering problems when a
good balance between microstructural detail and computational efficiency is taken
into account, although the increased computational cost introduced by the mi-
croscale computations remains an issue. With respect to the computational cost
it must be noted that significant reduction in net computation time can be made
in case (massively) parallel computation is implemented. As the REV boundary
value problem has to be solved for each macroscale integration point individually,
the FE2 method is very suitable for parallel processing.

The simulation of the gallery excavations has demonstrated that localized
strain response around the gallery is not evidently obtained with the microscale
model calibrated against experimental data, indicating that certain characterist-
ics of the material behaviour are not properly simulated and further development
of the model (on the microscale model as well as the doublescale framework) is
required. For future applications and development of the method, the follow-
ing points need consideration: Both the size and the orientation of the periodic
boundaries of the REV were statistically demonstrated to have an influence on
the post-peak behaviour, making the periodicity of the boundary conditions an
inherent property of the constitutive behaviour as soon as the periodicity of the
material is lost. This is one of the consequences of maintaining a continuum de-
scription in the post-peak regime of deformation, and a sound way of maintaining
a continuum approach is not readily available: Coupling between a microscale
with discontinuous microstructure and a macroscale poro-mechanical continuum
in the post-peak domain without relying on additional constraints such as the
(artificial) regularization by the periodic boundary conditions remains a major
challenge in the fully consistent application of the presented doublescale approach.
In the meantime, the periodic boundary conditions are used as the regularization
of the micromechanical behaviour. For further development of the method, the
following points can be formulated to serve as recommendations:

• A first point is to assess the issue of post-localized dependency of the REV
response on the periodic boundary conditions. A consistent and objective
way of maintaining the continuum approach is required for a proper use
with the second gradient model. A certain enhancement will be required
for this purpose, replacing the boundary conditions as a method for local
regularization.
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• For a certain phenomenon (either mechanical or hydraulic) to be present
in the macroscale behaviour, a micromechanical process must be present to
locally initiate these phenomena at the microscale. Plasticity in the mac-
roscale response was given as an example of these phenomena, for which
the introduction of a plasticity model at the interfaces was suggested in-
stead. In analogy with this example, additional characteristics of the ma-
terial behaviour need to be represented at the microscale and the microscale
constitutive relations should be modified to take these effects into account.

• It was demonstrated that the doublescale modelling of localizations around
gallery excavations can be obtained with the presented model. It is clear
that the given examples do not contain the required level of detail at the
macroscale due to restrictions with respect to the mesh size and that the
micromechanical model gives a too strong variability with orientation. A
pragmatic approach for more realistic results would be to increase the num-
ber of elements at the macroscale and the complexity of the REV at the
microscale. This will have consequences on the computational load and asks
for a more time-efficient architecture of the code. In a first stage, this can
be obtained by a parallelization of the computations of the boundary value
problems on the individual REVs. Other approaches that can reduce the
total computational cost without such as adaptive remeshing, a combination
with reduced-basis methods, or the combination of the doublescale model
with a phenomenological model in regions of lower degrees of deformation.

• For a more progressive evolution of the permeability under material de-
formation, the incorporation of additional effects that better capture the
three-dimensional nature of the development of connected pore channels
is required. These effects need to account for connected interface openings
throughout the REV, which currently are prevented due to the normal grain
contacts. The change from 2D to 3D in the formulation of the REVs might
contribute to the more realistic representation of the model, although this
will have a major impact on he computational load of the REV boundary
value problem, both through the increase in the number of degrees of free-
dom and the interconnectivity of these degrees of freedom, which reduces
the sparseness of the systems of equations to be solved.
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écoulements en milieu poreux). PhD thesis, Université de Liège, Belgium, 1987.
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P. Germain. La méthode des puissances virtuelles en mécanique des milieux
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[Cited on page 14, 62]
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saturation, de la composition minéralogique et de la température. PhD thesis,
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APPENDIX





A. REV ROTATION

Between the definition of the macroscale strain state in the form of macroscale
deformation gradient tensor FM and its application in the periodic boundary
conditions of the REV, the following corrections are made;

• application of initial REV deformation F 0 related to the initial stress state
σ0(FM,0 = I) 6= 0.

• the (rate-objective) rotation of the REV with respect to the global axis by
angle θI

• the decomposition into a symmetric stretch tensor UREV and rotation
RREV

The different transitions are schematically presented in Figure A.1.

F
M

F
tot

F
REV

U
REV

σM

C
M

σtot σREV σ'
REV

R
REV

C
tot

C
REV C'

REV

micro

computation
initial stress 

deformation 

gradient tensor 

F
0≈  I

REV initial 

orientation 

0 < θI < 180°

small strain/

large rotation 

decomposition 

F
REV=R

REV
U

REV

Fig. A.1: Schematic representation of local deformation gradient transformation before
application on the REV and the associated stress definitions

In the following three sections, the different operators with respect to deform-
ation gradient tensor F , stress tensor σ and tangent operator 4C are given.

A.1 Initial stress deformation

The initial deformation gradient tensor F 0, related to the initial stress state, is
taken into account by defining the total deformation gradient F tot as the macro-
scale deformation applied on the REV in initial state of deformation:

F tot
ij = FM

ik F
0
kj (A.1)

Under the assumption that F 0 ≈ I, no geometrical correction is required for the
transformation of the stress state and

σ
M ≈ σ

tot (A.2)
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To be fully consistent in the linearization, the tangent operator is corrected for
the initial state of deformation:

CM
ijkl = CijkmF

0
lm (A.3)

Note: in the main part of this work, the correction for initial stress state was
kept out and a direct transformation between []M and []REV was made, which
corresponds to the case where F 0 = I and σ0 = 0

A.2 Initial REV rotation

The REV is rotated with respect to the macro scale frame by an initial rota-
tion angle θI . For numerical simplicity, not the actual REV is rotated, but the
deformation gradient that is enforced on its boundaries. This means a rotated
deformation gradient tensor FREV

γδ is defined, corresponding to the rotation of

F tot
kl by angle θI , thereby introducing a reference frame are the macroscale and

one at the microscale.

θI

REVREV

REV macro REV micro

x2

x1 x’1

x’2

x’1

x’2

Fig. A.2: REV in the macro coordinate system (left) and the same REV as evaluated in
the micro scale (right). The transformation operation is the rotation by angle
θθ of the enforced deformation (macro to micro) and the same rotation in
opposite direction of the resulting stress and tangent stiffness matrix (micro
to macro).

Defining a macroscale vector ~zM and a microscale vector ~zREV , the rotation
of the deformation is defined by the rotation tensor Rθ as

~zM = R
θ~zREV (A.4)

with

R =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
(A.5)

This leads to the following transformation of deormation gradient and stress
tensor;

F
REV = R

θT
F

tot
R

θ (A.6)

σ
M = R

θ
σ

REV
R

θT (A.7)

Note here that in this rotation the stress is rate-objective, since the rotation Rθ

is constant. This allows a straightforward rotation of the tangent operator:

Ctot
ijkl = Rθ

iαR
θ
jβC

REV
αβγδR

θ
kγR

θ
lδ (A.8)
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A.3 Polar decomposition for small strain-large rotation

A small strain-large rotation assumption is adopted at the micro level in order
to avoid difficulties with the continuity of stress state in and around the inter-
faces. This means that for the evaluation, the macro deformation gradient Fij

(formulated in large strain and therefore non-symmetric) is decomposed in a pure
rotation Rik and a symmetric stretch Ukj according to

Fij = RikUkj (A.9)

A variation of the components of the deformation gradient tensor F now becomes

δFij = δRikUkj +RikδUkj (A.10)

When the stress σM
ij corresponds to the deformation gradient Fij we can define

the rotated stress state σ
′REV
ij that corresponds to the stretch Uij . The relation

between the two stress states is given by

σREV
ij = Rikσ

′REV
kl Rjl (A.11)

and so;

σ̇ = Ṙσ
′
R

T +Rσ̇′R
T +Rσ

′
ṘT (A.12)

When we define the tangent moduli

Cijkl =
∂σij
∂Fkl

or σ̇ij = CijklḞkl (A.13)

C ′
αβγδ =

∂σ′
αβ

∂Uγδ
or σ̇′

αβ = C ′
αβγδU̇γδ (A.14)

we can find the relation between Cijkl and C
′
αβγδ by several substitutions using

the equations above. After some tedious algebra [Mathematica] we find that; ori
:

Cijkl = RiαRjβC
′
αβγδ

∂Uγδ

∂Fkl
−Riβ

∂Rαβ

∂Fkl
σαj −Rjβ

Rαβ

∂Fkl
σαi (A.15)

σ̇ =

(
∂R

∂F
: Ḟ

)
σ

′
R

T +R

[
4
C

′ :

(
∂U

∂F
: Ḟ

)]
R

T +Rσ
′

(
∂R

∂F
: Ḟ

)T

(A.16)

or:

Cijkl =
∂Riα

∂Fkl
σ′
αβRjβ +RiαC

′
αβγδ

∂Uγδ

δFkl
Rjβ +Riασ

′
αβ

∂Rjβ

∂Fkl
(A.17)

with:

∂Uγδ

∂Fkl
=

1

I1

∂Rkl

∂θ
((δγ2 − δγ1) δγδU12 + (1− δγδ)(δl2U11 − δl1U22))+ δγlδδlRkl
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(A.18)

and

∂Riα

∂Fkl
=

1

I1

∂Riα

∂θ

∂Rkl

∂θ
(A.19)

where I1 is the first strain invariant tr(U), δij is the Kronecker delta and θ is the
angle of rotation represented by R.
With the symmetric stretch Uγδ enforced on the micro REV the resulting stress
σ′
αβ and tangent moduli C ′

αβγδ can be rotated back to the correct orientation
with equations (A.11) and (A.15) to correspond to the deformation gradient Fkl.

Following the same procedure, the hydraulic tangent operator and the coupling
tangent operators can be rotated from the symmetric configuration []REV to the
macroscale configuration []M . The 7 × 7 consistent tangent operator introduced
before is repeated here without reference to coordinate system []M or []REV :



Cijkl Aijl Bij

Dikl Eil Gi

Hkl Kl L








∂δuk/∂xl
∂δp/∂xl
δp



 =





δσij
δmi

δṀ



 (A.20)

The computational homogenization delivers the tangent operators in []REV al-
though the macroscal computationrequires all tanget operators in []M . The ob-
jective rotation from configuration [] to []′ related to the decomposition of the
macroscale deformation gradient tensor F into stretch U and rotation R de-
mands the following operations for the different parts of the tangent operator:

Cijkl = RiαRjβC
′
αβγδ

∂Uγδ

∂Fkl
+
∂Riα

∂Fkl
σ′
αβRjβ +Riασ

′
αβ

∂Rjβ

∂Fkl

(A.21)

Aijk = RiαRjβRkγA
′
αβγ (A.22)

Bij = RiαB
′
αβRjβ (A.23)

Dikl = m′
α

∂Rαi

∂Fkl
+RiαD

′
αγδ

∂Uγδ

∂Fkl
(A.24)

Eil = RiαRlγE
′
αγ (A.25)

Gi = RiαG
′
α (A.26)

Hkl = H ′
γδ

∂Uγδ

∂Fkl
(A.27)



A.3 Polar decomposition for small strain-large rotation 235

Kl = RlδK
′
δ (A.28)

L = L′ (A.29)

with:

∂Uγδ

∂Fkl

=
1

I1

∂Rkl

∂θ
((δγ2 − δγ1) δγδU12) + δγlδδlRkl

+
1

I1

∂Rkl

∂θ
((1− δγδ)(δl2U11 − δl1U22)) (A.30)

and

∂Riα

∂Fkl
=

1

I1

∂Riα

∂θ

∂Rkl

∂θ
(A.31)

where I1 is the first strain invariant tr(U), δij is the Kronecker delta and θ is the
angle of rotation represented by R.



236 REV rotation



B. STEREOGRAPHICAL PROJECTIONS OF LOADING

INCREMENTS LEADING TO NEGATIVE SECOND ORDER

WORK

On the following page, the stereographical projection of the loading orientations
leading to negative second order work or ∆ε : ∆σ < 0 is given for the integration
points along cross sections A′ − A′′ and B′ − B′′ (Figure B.1) are given. The
figure gives det(A) < 0 to indicate the approximate position of the shear band.

B' B''

A'

A''

Fig. B.1: Crosssection along which the evaluation of negative second order work and
∆ε : ∆σ < 0
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C. INTRODUCTION OF DIFFUSIVE FLOW IN THE FREY

MODEL

For the developement of the diffusive flow in the grains, we will consider the
following :

• Fluid is compressible: ρt = ρ0exp(p
t/kw)

• Grain pore volume is constant (small strain assumption)

• grain permeability is constant

This means that the solid part of the hydraulic problem does not change and only
pressure p is a variable, but the problem is nonlinear due to fluid compressibility.

The introduction of diffusive flow in the grains, requires to redefine the hy-
draulic problem and write it in a purely nonlinear problem that is solved iterat-
ively.

We define the following:
ϕ = grain porosity (constant)
ρw = fluid density
Q = sink term

Ṁ = fluid storage term [kg m−3s−1]
In this chapter, all variables etc. are at the micro scale.

A short description of the introduction of double porosity at the micro level.
The new fluid system to be solved includes the original system of interfaces with
compressible fluid (no changes). In addition to that, a flui pressure degree of
freedom is defined in each node inside the grains. Diffusive flow of compressible
fluid inside each grain is taken into account. Interaction between the flow in the
grains and the flow in the interfaces is allowed by means of a ’connecting channel’,
basically a large connectivity term prescribing quasi-equal pressures on opposite
sides of the interface (see Figure C.1).

In the new fluid system, all nodes ii and ni shown in Figure C.1 have fluid
degrees of freedom. Nodes ni are the nodes that are part of the mechanical system
as well. Nodes ii are the interface nodes, existing only in the fluid interface
elements.
Three types of hydraulic elements are distinguished;

• 2D porous elements for the grains, bounded by nodes ni (green surfaces)

• 1D fluid channel elements for the interfaces, bounded by nodes ii (blue thick
lines)

• 1D connection channel elements, connecting the interface channel system
with the grain porous media, between elements ii and ni (blue lines)
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n4

n1
n2

n3
i2

i1

n5

n6

n7

n8

n9

n10 i4

i3

Fig. C.1: Hydraulic finite element discretization with nodes n part of the poromech-
anical elements and nodes i in the interface channel network. Connection
elements between the grains and the interfaces are defined connecting n and
i.

C.1 2D porous elements

Developments for diffusive flow in grains We start with the balance of momentum
for the fluid phase :

∂pt

∂xi
+ F

S/W,t
i + ρw,tgi = 0 (C.1)

and the mass balance equation for the fluid :
∫

Ω

(
Ṁ tp⋆ −mt

i

∂p⋆

∂xi

)
dΩ =

∫

Ω

Qtp⋆dΩ−
∫

Γq

q̄tp⋆dΓ (C.2)

with Q a sink term and Ṁ the storage term. Because we are in steady state, this
will reduce to

∫

Ω

mt
i

∂p⋆

∂xi
dΩ =

∫

Γq

q̄tp⋆dΓ (C.3)

The mass flux mt
i is defined as a function of the true fluid velocity with respect

to the solid phase V
W/S,t
i :

mt
i = ρw,tϕV

W/S,t
i (C.4)

The constitutive law for the fluid reads:

ρ̇w,t =
ρw,t

kw
ṗt (C.5)

Computation of the fluid mass flow, for the moment leaving out the gravtational
forces gives

mt
i = −ρw,t κ

µ

(
∂pt

∂xi
+ ρw,tgi

)
= −ρw,t κ

µ

∂pt

∂xi
(C.6)
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Fluid mass density is given by

M t
Ω = ρw,tϕ (C.7)

q̄t = mt
ini on Γt

q (C.8)

Let’s continue, for iteration from τ1 to τ2 :

∫

Ω

mτ1
i

∂p⋆

∂xi
dΩ−

∫

Γτ1
q

q̄τ1p⋆dΓτ1 = Rτ1 (C.9)

∫

Ω

∂p⋆

∂xl

(
mτ2

l −mτ1
l

)
dΩ = −W τ1 (C.10)

under the assumption that q̄ does not change... We can further rewrite this into

∫

Ω

ρτ1
κ

µ

∂pτ1

∂xi

∂p⋆

∂xi
dΩ−

∫

Γq

q̄τ1p⋆dΓ =W τ1 (C.11)

∫

Ω

∂p⋆

∂xl

(
ρτ2

κ

µ

∂pτ2

∂xi
− ρτ1

κ

µ

∂pτ1

∂xi

)
dΩ... = −W τ1 (C.12)

We now define :

dpτ1 = pτ2 − pτ1 (C.13)

dρw,τ1 = ρw,τ2 − ρw,τ1 (C.14)

dϕτ1 = ϕτ2 − ϕτ1 = 0 (C.15)

duτ1i = uτ2i − uτ1i = 0 (C.16)

Taylor expansion and disregarding all second-and-higher order terms gives:

∫

Ω

∂p⋆

∂xj

(
dρw,τ1 κ

µ

∂pτ1

∂xl
+ ρw,τ1 κ

µ

∂dpτ1

∂xl

)
dΩ = −Rτ1 (C.17)

where all terms related to volume deformation are ignored. Because we know
that

dρw,τ1 =
ρw,τ1

kw
dpτ1 (C.18)

we can further rewrite into

∫

Ω

∂p⋆

∂xj

(
ρw,τ1

kw
κ

µ

∂pτ1

∂xl
dpτ1 + ρw,τ1 κ

µ

∂dpτ1

∂xl

)
dΩ = −Rτ1 (C.19)
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We now write in matrical form:
∫

Ω

[P ⋆τ1
(x,y)]

T [W τ1][dP τ1
(x,y)]dΩ = −Rτ1 (C.20)

with

[dP τ1
(x,y)] =




∂dpτ1

∂x1
∂dpτ1

∂x2

dpτ1


 [P ⋆τ1

(x,y)] =




∂p⋆τ1

∂x
∂p⋆τ1

∂y

p⋆τ1


 (C.21)

[W τ1] =



ρw,τ1 κ

µ 0 ρw,τ1

kw
κ
µ

∂pτ1

∂x1

0 ρw,τ1 κ
µ

ρw,τ1

kw
κ
µ

∂pτ1

∂x2

0 0 0


 (C.22)

Finite element discretization on 4-node quadrilateral elements will give

[P ⋆
node]

T

1∫

−1

1∫

−1

[B]T [T τ1]T [W τ1][T τ1][B]dξdη[dP τ1
node] =−W τ1

[P ⋆
node]

T [Kelem][dP τ1
node] =−W τ1

(C.23)

with

[dP τ1
(x,y)] = [T τ1][dP τ1

(ξ,η)] (C.24)

[dP τ1
(ξ,η)] = [B][dP τ1

node] (C.25)

and

[dP τ1
node] =




dpτ1(−1,−1)

dpτ1(+1,−1)

dpτ1(+1,+1)

dpτ1(−1,+1)


 (C.26)

The out-of-balance residual is calculated as:

−W τ1 = −[P ⋆
node]

T

1∫

−1

1∫

−1

[B]T [T τ1][στ1]dξdη = [P ⋆
node]

T [fτ1HE ] (C.27)

[στ1] =



−mτ1

1

−mτ2
2

Ṁτ1


 (C.28)

[F τ1
HE ] =



qτ11
qτ22
Qτ1


 (C.29)
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qi and Q are the nodal residual terms.
shape function :

N (i) =
1

4
(1 + ξ

(i)
1 ξ1)(1 + ξ

(i)
2 ξ2), xi = N (i)x

(i)
i (C.30)

∂N (i)

∂ξi
=

1

4
ξ
(i)
i (1 + ξ

(i)
3−iξ3−i) (C.31)

[
∂p
∂ξ1
∂p
∂ξ2

]
=

[
∂N(1)

∂ξ1
∂N(2)

∂ξ1
∂N(3)

∂ξ1
∂N(4)

∂ξ1
∂N(1)

∂ξ2
∂N(2)

∂ξ2
∂N(3)

∂ξ2
∂N(4)

∂ξ2

]



p(1)

p(2)

p(3)

p(4)


 eledb(2:3) (C.32)

C.2 1D fluid channel elements

This type of elements are the elements that were present in the original version of
the code, modelling the flow between smooth quasi-parallel platens by means of
a 1D channel. The mass flow ω̄iiij in the channel between nodes ii and ij (i 6= j)
on position s is given by

ω̄(s) = −ρ(s)κ(s)∂p(s)
∂s

(C.33)

with ρ(s) = exp (p(s)/kw) the fluid density, κ(s) the hydraulic conductivity of the
crossesction of the channel at location s. Mass conservation in the channel re-
quires that ω̄(s) is constant over the element and with the assumption of constant
pressure gradient over the interface it can be found that

ω̄iiij =
kwρ0

exp
(
p0

kw

) ij∫
ii

1
κ(s)ds

(
exp

(
pii

kw

)
− exp

(
pij

kw

))
(C.34)

with ω̄iiij the flux from node ii to node ij (mind the difference with what has
been written before...). This expression is summarised as

ω̄iiij = φiiij
(
λii − λij

)
(C.35)

When we want to solve only the fluid system of equations, the variable φ is
constant (κ is only dependent on uni

i ). This means that the variational expression
for δω̄iiij will become

δω̄iiij =
φiiij

kw
(
λiiδpii − λijδpij

)
, δω̄iiij =

φiiij

kw
[
λii −λij

]{δpii
δpij

}

(C.36)

If we now want to build a ’element stiffness matrix’ for the variation of fluxes δqii

away from nodes ii, we get:

{
δqi1

δqi2

}
=

[
φi1i2

kw λi1 −φi1i2

kw λi2

−φi1i2

kw λi1 φi1i2

kw λi2

]{
δpi1

δpi2

}
(C.37)
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to compute the net flow away from the nodes (for the residual in Newton-scheme),
the flow away from the nodes can be computed as

{
qi1

qi2

}
=

{
ω̄i1i2

−ω̄i1i2

}
(C.38)

C.3 1D connection elements

For the coupling of the flow in the porous grains and the channel interfaces,
connection ellements are used for the exchange of fluid between the mechanical
nodes ni on the boundaries of the solid grains and the interface fluid nodes ii. An
arbitrary (large with respect to the interface channel conductivity) conductivity
is used for this type of channels, to allow large fluid exchange with a low pressure
gradient. Without defining the dimensions of the channel, the fluid mass flow in
the channel is given by

ω̄ = −kρ(s)∂p(s)
∂s

(C.39)

because we will choose k such that the pressure gradient is small and the length
of the channel is small as well, we can assume a constant density ρ(s) = ρ.
Conservation of fluid mass now requires the pressure gradient to be constant as
well, whichallows to write

ω̄ = −kρ
l
(pni − pii) (C.40)

with l the length of our connection element. We now define a single parameter
KC such that

ω̄iini = −KC(pni − pii) (C.41)

KS is chosen such hat it is large compared to the conductivity of the interface
elements connected to node ii. In this way the assumption of a small pressure
gradient can be justified. In this way we can write the variational equation for
the fluid mass flow from ii to ni as

δω̄iini = −KC(δpni − δpii) =
[
KC −KC

]{δpii
δpni

}
(C.42)

for the variation of the fluxes away from the nodes we can write the element
’stiffness’ matrix as

{
δqi1

δqn1

}
=

[
KC −KC

−KC KC

]{
δpi1

δpn1

}
(C.43)

C.4 Boundary conditions

The boundary conditions are enforced as follows;
At the beginning of each iteration, the pressure in the nodes at the top boundary
and left boundary are updated:

p+ = p− +∆pREV (C.44)
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After this, the element system of equations is build, the fluxes are computed and
the global system of equations is assembled. Equilibrium is checked based on
fluid flux. Convergence criterium is the norm of the residual fluxes (taking into
account periodicity) divided by the norm of the fluxes on the REV boundaries
(without periodicity). When the convergence criterium is not met in the curent
configuration pτ1, an update δpτ1 is computed to correct for the residual nodal
fluxes qres,τ1.

The degrees of freedom on the top and right boundary are reduced from the
system of equations using the following relations:

δp+ = δp− δq+ = −δq− (C.45)

The reduced system is solved for the pressure update δpτ1 and the pressure DOFs
(including the reduced DOFs) are updated to find pτ2.

1. Initiate arrays

2. Gather info on boundary conditions and inclusions : LDEXT

3. set PPEN = P X(1)

4. LOOP to solve average pressure: WHILE |DP AV| >1E-6

(a) LOOP to solve fluid problem: WHILE convnorm ≤ 1E-6

i. ZERO arrays

ii. Update porepressure difference: P top = P bottom + DP I

iii. Build integration point SOE’s solid elements: W

iv. Integrate SOE to solid element stiffness matrix: GELEM

v. Build interface element stiffness matrix: GELEM

vi. Compute solid integration point fluxes

vii. Integrate fluxes to find element nodal fluxes

viii. Assemble global system of equations

• for solid elements : GELEM→ GFLUID

• for interface elements : GELEM → GFLUID

• for connection ellements : T → GFLUID

ix. Assemble residual fluxes: FRES → RFLUID

• for solid elements : FRES → RFLUID

• for interface elements : FRES --> RFLUID

• for connection ellements : expression --> GFLUID

x. penalize porepressure: GFLUID(n,n)+1, RFLUID(n)+PPEN

xi. Reduce system of equations

• transport follow DOFs to lead DOFs in GFLUID and RFLUID

• annul follow DOFs and fixed DOFs

• remove follow DOFs and DOFs: GFLUID → G, RFLUID →
FLUID

xii. Compure residual norm: CONVNORM

xiii. Check convergence

xiv. Solve fluid system [G]{dp} = fluid LU-decomposition and back-
substitution
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xv. copy lead DOFs to follow DOFs : FLUID → RFLUID

xvi. update porepressure

(b) END LOOP

(c) compute average pressure

(d) compute pressure diff: DP AV

(e) update penalization pressure: PPEN = PPEN + DP AV

5. END LOOP

6. pass info to existing module arrays

7. PPORE → QB

8. compute fluid mass M

9. M → SIGMB



D. COMPUTATIONAL HOMOGENIZATION FOR

CONSISTENT TANGENT OPERATORS OF THE FREY MODEL

The modifications of the Frey model into the model presented in this work has
been performed in several stages and several modifications were only made after
the full development of several transitional versions. One of these versions con-
tains only the adoption of small strain/large rotation for the mechanical system
and treats the hydraulic system in the original way of linearization in the expo-
nential of the fluid pressure λ = exp(p/kw) and including the effective pressure
gradient over the REV and the drag forces acting on the grain boundaries. This
appendix covers the condensation routine for the computational homogenization
of the HM-coupled tangent stiffness matrix for this transitional version of the
microscale model. Not all details of the Frey model are repeated here and for
the details of the hydraulic system and its coupling with the mechanical system,
reference is made to the thesis by Frey [2010], see also Frey et al. [2013], Marinelli
[2013].

First, some equations are repeated to state the relations between the macro
scale problem and the micro scale problem. These equations are used later on to
link the condensed rigidity matrix to the variables that link the micro and macro
scales . The computations for the condensation are described in different steps.
Parts of the code of the most time-consuming steps are given to show the code
and the non-zero profiles of the matrices involved in the condensation are given.
The computation time of the different steps of the condensation routine are given.
They show which parts of the routine take the most computational effort.

In addition to the presented approach for condensation, an alternative way
is described as Method 2. The different approach to the condensation of this
Method 2 avoids the problems that make Method 1 so slow.

D.1 Preliminaries

The microstructure that will be used for the examples is given in figure D.1.
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(4) (3)

(2)(1)

Fig. D.1: 120-elements REV mesh used as example.

To deal with the renumbering of all types and subsets of degrees of freedom
we define the following notation, which corresponds to the
variable value indice notation
NITI no. of fluid nodes 120 it,jt,kt,...
NICO no. of interface elements 128 ic,jc,kc,...
NELEM total no. of elements 384 ie,je,ke,...
NGAUC no. of int. point interface el. 2 igi,jgi,kgi,...
NPOIN no of nodes mechanic 441 ip,jp,kp,...
NNODE no. of mechanical nodes per element 4 in,jn,kn,...
NNODF no. of hydraulic nodes per element 2 if ,jf ,kf ,...
NDGOF no. of mech. deg. of freedom 882 id,jd,kd,...

To address nodes that are located at the boundaries, an additional letter is added:

t : top boundary
b : bottom boundary
r : right boundary
l : left boundary

In this way, the displacement of a mechanical node on the top boundary will
be either uipti or uidt, the fluid pressure on a hydraulic node on the right bound-
ary will be picr.
In addition, the following sets of DOFs will be used:

d : dependent DOFs : located on the top and right boundary and corner node (3)
i : independent DOFs : all but the dependent DOF’s
p : prescribed DOFs : located on the corner nodes (1), (2) and (4)
f : free DOF’s : all independent DOFs except the corner nodes

The indices for nodes and elements will be written in superscript, a comma will
be used to separate these indices. The indices for dimensions (i, j, k, ...) will be
written in subscript. To give an example, the variation of the interface element
volume as a function of the variation of the displacement of its corner nodes can
be written as:

∂V ic

∂uic,ini

(D.1)

Matrices will be written as [A] with components Ai,j , column vectors as {A},
the combination of column vector {A} and {B} as

{
A
B

}
, a vector as ~a with
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components ai, a second order tensor as a with components aij , a fourth order
tensor as 4A with indices Aijkl.

List of variables

~f (nodal) force
~Fp (nodal) normal force on interface boundary by fluid pressure in the global frame
~ft (nodal) tangential force on interface boundary by fluid pressure gradient in the global frame
~g gravitational acceleration
mi fluid mass flux in direction i (macro)
p (nodal) fluid pressure
p̄ REV average fluid pressure
pM macro level fluid pressure (= p̄)
∆p fluid pressure difference between opposite REV boundaries
qit net fluid flow at fluid node it: nonzero at boundaries
Q = [QL;QB ] boundary fluxes; first component is fluid flux over left REV boundary, second over right
ui (nodal) displacement
~x (nodal) position vector
[Csym] 7× 7 consistent tangent stiffness matrix in coordinate system x
CTEic 1/κ
Fij Deformation gradient tensor component
M fluid mass per volume (macro)

Ṁ fluid mass variation per unit volume (macro)
Rij Rotation tensor component
Uij Stretch tensor component
V volume in general
V ic,igi fluid volume related to interface integration point
V w total fluid volume
V REV total volume of the REV
φ element conductivity term
κic,ig element conductivity
λ exponential fluid pressure term λ = exp(p/kw), λ∆p = exp(∆p/kw),...
ρ density
ρw fluid density
σM
ij Cauchy stress components at macro level
σm
ij Cauchy stress components at micro level
ω interface element fluid mass flux from node 1 to node 2
∆un normal opening of interfaces
Γ boundary domain
Γint internal boundary domain: interface boundaries
Γext external boundary domain: boundaries of the REV
Ω general volumetric domain
Ωw fluid domain
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D.2 Balance equations and definitions before condensation

Stress

The definitions of the homogenized quantities that form the coupling between
the macro scale and the micro scale are defined here, starting from the balance
equation

∂σij
∂xj

= 0 (D.2)

when no external (body) forces are considered. The definition of the macro stress
σM as the integral over the micro stress σm is written as a result of the small-
strain assumption:

σ
M =

1

V REV

∫

ΩREV

σ
mdV (D.3)

Application of the divergence theorem provides an integral of the boundary trac-
tion over the domain boundaries:

σ
M =

1

V

∫

Ω

σ
mdV =

1

V



∫

Γext

(~fext~x)ds+

∫

Γint

(~f int~x)ds


 (D.4)

with Γext the REV external boundary and Γint the internal boundaries on which
internal forces are acting. These internal boundaries are the grain boundaries.
Because of the small strain assumption and antisymmetry of the cohesive and
normal fluid forces, the only internal forces that need te be taken into account are
the fluid drag forces ~fD, acting on both interface sides. The other forces acting on
the interface boundaries are antisymmetric and therefore cancel out under small
strain assumption. When the integral above is discretized, the following equation
for the macro stress is found;

σM
ij =

1

V REV



∑

ip∈Γext

f ipi x
ip
j +

∑

ip∈Γint

ft
ip
i x

ip
j


 (D.5)

Under small strain assumption, variation of this expression gives:

δσM
ij =

1

V REV



∑

ip∈Γext

δf ipi x
ip
j +

∑

ip∈Γint

δft
ip
i x

ip
j


 (D.6)

Fluid terms

The flux ωic in interface element ic from fluid node 1 to fluid node 2 is calculated
by

φic(λ2 − λ1) = ωic (D.7)

with φ = φ(uini ) the element conductivity term dependent on the displacements
uini of interface element nodes in and λif = exp(pif/kw) the pressures in interface
element fluid nodes if . ω is the flux in terms of fluid mass.
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Conservation of fluid mass in the steady state micro problem requires that the
sum of the fluxes towards any fluid node is zero, which gives the conservation of
fluid mass in the fluid nodes as

∑

icon

ωicon = qit = 0 (D.8)

with icon the interface elements connected to the fluid node it. For the fluid nodes
on the boundaries, the sum of the opposite fluid nodes equals zero. The fluid mass
fluxes QL and QB over the left and bottom REV boundaries are defined as the
sum over the nodal fluxes qit on these boundaries;

QL =
∑

itl∈ΓL

qitl (D.9)

QB =
∑

itb∈ΓB

qitb (D.10)

with ΓL and ΓB the left and bottom boundaries of the REV.
The fluid mass per volume M is defined as

M =
1

V REV

∫

Ωw

ρwdV M =
1

V REV

∑

ic,igi

V ic,igiρic,igi (D.11)

with Ωw the fluid domain and V REV the REV volume. The volume V ic,igi is the
volume corresponding to the normal hydraulic opening ∆uh at the integration
point igi in interface element ic.

Variation of equations (D.9),(D.11) gives

δM =
∑

ic,igi

∑

ip

ρic,igi
∂V ic,igi

∂uipi
δuipi +

∑

jt

∑

ic,igi

V ic,igi ∂ρ
ic,igi

∂pjt
δpjt (D.12)

δQL =
∑

ip

∑

itl∈ΓL

∂qitl

∂uipj
δuipj +

∑

jt

∑

itb∈ΓL

∂qitl

∂pjt
δpjt (D.13)

δQB =
∑

ip

∑

itb∈ΓB

∂qitb

∂uipj
δuipj +

∑

jt

∑

itb∈ΓB

∂qitb

∂pjt
δpjt (D.14)

Input/Output variables

From the periodicity conditions and the coupling between the macrolevel and the
micro level, we have the following relations with on the left hand side the micro
scale variables and on the right hand side the macro scale variables. :

δu
(c)
i /x

(c)
j = δUM

ij (D.15)

δ∆p1/x
(2)
1 = δ

∂pM

∂x1
(D.16)

δ∆p2/x
(4)
2 = δ

∂pM

∂x2
(D.17)

δ

(
1

V w

∫

Ωw

pdV

)
= δp̄ = δpM (D.18)
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UM
ij is the stretch ∂xi

∂x0j
at the macro level . p̄ is the REV average fluid pressure

at the micro level, which is equal to the local fluid pressure at the macro level.
∆p1 is the pressure difference between the right and the left boundary. ∆p2 is
the pressure difference between the top and bottom boundary of the REV. Note

that on the left hand side x
(2)
1 and x

(4)
2 are constant (small strain assumption)

but that V w can evolve with time.

The flux over the boundaries QL and QB can be related to the macro flux ~m
by

QL = m1(x
(4)
2 − x

(1)
2 )−m2(x

(4)
1 − x

(1)
1 ) (D.19)

QB = m2(x
(2)
1 − x

(1)
1 )−m1(x

(2)
2 − x

(1)
2 ) (D.20)

(D.21)

With x
(1)
1 = x

(1)
2 = 0, small strain assumption and some rewriting this gives;

m1 =
1

V REV

(
x0

(2)
1 QL + x

(4)
1 QB

)
(D.22)

m2 =
1

V REV

(
x0

(2)
2 QL + x

(4)
2 QB

)
(D.23)

The variation of the fluid mass with time Ṁ is computed as the finite difference
approximation over the time step. For a time step ∆t from tn to tn+1 we have:

Ṁ tn+1

=
M tn+1 −M tn

∆t
(D.24)

Because M tn does not change, the variation of this equation gives

δṀ tn+1

=
δM tn+1

∆t
(D.25)

Because the time step is not part of the computations at the micro level, the
devision by the time step is done at the macro level. The output of the micro
level therefore only contains terms for Mand not Ṁ .
The relation between σM and the micro-scale variables is given above.

Combined

The goal is to find the 7 × 7 consistent tangent stiffness matrix [A(7×7)] for the
macro scale that holds the relation:

[A(7×7)]





∂δuk

∂xl

∂δpM

∂xl

δpM





=





δσij
δmi

δṀ



 (D.26)

Subscript x is used here to indicate that this is the consistent tangent stiffness
matrix with respect to the x-coordinate system in which the deformation of the
REV is symmetric. Equations (D.15)-(D.18) will link the left hand side to the
nodal variables. Equations (D.6),(D.11), (D.22) and (D.23) will link the right
hand side to the nodal reactions.
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D.3 HM-coupled condensation: Method 1

Based on the definitions of homogenized macro response in the section above, the
first homogenization procedure for the tangent operators is given in this section.
This method was introduced in Eijnden et al. [2013] and repeated here in detail
with focus on the numerical implementation. The method is presented in 8 sub-
sequent steps in order to demonstrate the computation time, which can become
a major drawback of this method.

Step 1 : initialization

Declare dimensions of matrices, memory, etc. This part only concerns the pro-
graming part of the code.

Step 2 : assembly of partial derivatives

A preparational part of the subroutine computes the following partial derivatives
that will form the building blocks of the matrices used in the condensation. These
equations are written in discretized form, directly relating the nodal degrees of
freedom and nodal reactions. These partial derivatives concern the hydraulic and
coupled terms. The mechanical system of equations has already been obtained
while solving the micro problem.
The following matrices of derivatives are constructed:

∂V ic,ig

∂uic,ji

dVdu e(ic,ig,j,i) (D.27)

∂∆un
ic,ig

∂uic,ji

dDUndu e(ic,ig,j,i) (D.28)

∂V w

∂uid
dVdu(id) (D.29)

∂CTEic

∂κic
dCTEdKAP(ic) (D.30)

∂κic

∂∆un
ic,ig

dKAPdDUn e(ic,ig) (D.31)

∂φic

∂uic,ji

dphidu e(ic,j,i) (D.32)

∂φic

∂uid
dphidu(ic,id) (D.33)
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∂ωic

∂pic,if
dwdp e(if,ic) (D.34)

∂ωic

∂uic,in,i
dwdu e(in,i,ic) (D.35)

∂Qi

∂uid
dQdu(i,id) (D.36)

∂Qi

∂pit
dQdp(i,it) (D.37)

∂ρico,ig

∂pit
drhodp(ic,ig,it) (D.38)

∂M

∂uid
dMMdu(id) (D.39)

∂M

∂pit
dMMdp(it) (D.40)

∂Fp
ic,in
i

∂pic,if
dfndp e(ic,in,i,if (D.41)

∂Fp
id

∂pit
dfndp(id,it) (D.42)

∂ft
ic,in
i

∂uic,jnj

dfDdu e(ic,in,i,jn,j) (D.43)

∂ft
id

∂ujd
dfDdu(id,jd) (D.44)

∂ft
ico,in
i

∂pico,if
dfDp e(ico,in,i,if) (D.45)

∂ft
id

∂pit
dfDdp(id,it) (D.46)
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Step 3 : build global system of equations

From the mechanical part of the code, a complete mechanical system of equations
is available;

Gid,jd
mech =

∂f idmech

∂ujd
(D.47)

in matrix notation, this will give:

[Gmech] · {δu} = {δfmech} (D.48)

with dimensions
[Gmech] : NDGOF ×NDGOF
{δu} : NDGOF
{δfmech} : NDGOF

The forces f idmech contain the nodal stress equivalent forces and the interface
cohesive forces. Using the partial derivatives defined in Step 2, this mechanical
system of equations is extended into a HM-coupled system of equations [G]:

[
G
]{δu

δp

}
=





δf
δM
δQ



 (D.49)

[G] =




[
∂fmech

∂u − ∂fD
∂u

] [
−∂fn

∂p − ∂fD
∂p

]

[
−∂M

∂u

] [
−∂M

∂p

]
[
−∂Q

∂u

] [
−∂qL,B

∂p

]


 (D.50)

Dimensions :
[G] : NDGOF+3×NDGOF+NITI
{u} : NDGOF

{p} : NITI

{f} : NDGOF

{M} : 1
{Q} : 2

This assembly of the coupled global matrix includes the summation for obtaining
Qi and M .

Step 4 : Compute transformation matrix T p

A transformation matrix is needed to eliminate the pressure degrees of freedom p
from the system of equations. This transformation matrix [Tp] is the incremental
relation between the nodal fluid pressures pit on one side and the mechanical
nodal displacements uid, REV pressure difference ∆p̄i and REV average pressure
p̄ on the other:

[Tp]
{
δp
˜
}
=





δu
˜δ∆p
δp̄



 (D.51)
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This means that [Tp] has dimensions NDGOF+ 3× NITI. In the original code,
the following hydraulic system of equations is solved [Frey, 2010]:

[Φ]{λ} = ([Φω] + [Φ∆]) {λ} = {0} (D.52)

Matrix [Φ] has dimensions [NITI × NITI] and contains 2 types of equations.
This system therefore can be written as a sum of two matrices, each containing
one type of equations. In this way we have;

• [Φω] : containing terms φic for equations φic(λic,2−λic,1) = 0 with
∑

ic connected to it

ωic =

0

• [Φ∆] : containing the constraints on boundary conditions : λitbλ∆p2−λitt =
0, λitlλ∆p1 − λitr = 0

ω is the flux in the interface element from local hydraulic node 1 to 2. Equa-
tion (D.52) is the singular system for which one value of λ needs to be fixed by
penalization in order to have one solution. For the homogenization, this pen-
alization will not be used. Instead, an additional incremental relation for the
average fluid pressure is added to the system. With φic the conductivity terms of
the interface elements and λit the exponential pressure terms at the fluid nodes
(λ = exp(p/kw)) we have; Φω = Φω(φ) and Φ∆ = Φ∆(λ

∆p). Variation of equation
D.52 gives:

[δΦ]{λ}+ [Φ]{δλ} = ([δΦω] + [δΦ∆]]) {λ}+ [Φ]{δλ} = {0} (D.53)

This can be written as

∑

ic,jt,id

(
∂Φit,jt

ω

∂φic
∂φic

∂uid
δuid +

∂Φit,jt
∆

∂λ∆i

∂λ∆i
∂∆p̄j

δ∆p̄j

)
λjt +

∑

jt,kt

Φit,jt ∂λ
jt

∂pkt
δpkt = 0

(D.54)

This singular system needs one additional equation in order to be solved and this
equation is given by the definition of the average pressure. The average pressure
p̄ is calculated as the integral of the fluid pressure over the fluid domain divided
by the fluid volume. Discretization gives

p̄ =

∑
ic

∑
ig V

ic,igpic,ig

V w
(D.55)

variation of the average fluid pressure can be written as

δp̄ = − 1

(V w)2

∑

ic,ig,id

(
∂V w

∂uid
δuidpic,igV ic,ig

)

+
1

V w

∑

ic,ig,it

(
∂pic,ig

∂pit
δpitV ic,ig

)
(D.56)

+
1

V w

∑

ic,ig,id

(
pic,ig

∂V ic,ig

∂uid
δuid

)
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or

1

V w

∑

id



∑

ic,ig

(
pic,ig

∂V ic,ig

∂uid

)
− p̄

∂V w

∂uid


 δuid+

1

V w

∑

ic,ig,it

(
V ic,ig ∂p

ic,ig

∂pit

)
δpit = δp̄

(D.57)

This equation is added to one of the equations in (D.54), preferably the equation
that was previously used to penalize one nodal pore pressure. This will be fluid
node it = itpen. When we now switch over to matrix notation, equation D.54 can
be written as :

[A1]





δu
δ∆p
δp



 = {0} (D.58)

Matrix [A1] has dimensions NITI× NITI+ NDGOF+3. In the same way, using the
partial derivatives given above, equation D.57 can be written as

[A2]





δu
δ∆p
δp



 = δp̄ (D.59)

’Matrix’ [A2] has dimensions 1× NDGOF+2+ NITI. Adding [A2] to [A1] will give
[A3]:

[A3]





δu
δ∆p
δp



 =





0
...
0
δp̄
0
...
0





(D.60)

Partitioning [A3] =
[
A B C

]
gives

[
[A] [B] [C]

]




δu
δ∆p
δp



 = {D}δp̄ {D} =





0
...
0
1
0
...
0





(D.61)

with dimensions
[A] : NITI× NDGOF

[B] : NITI× 2
[C] : NITI× NITI

[D] : NITI
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isolating {δp} gives:

{
δp
}
= [C]

−1 [−[A] {D} −[B]
]




δu
δp̄
δ∆p



 (D.62)

which means that [Tp] can be defined as

[Tp] = [C]−1
[
−[A] {D} −[B]

]
(D.63)

The fluid pressure DOFs are eliminated using the matrix [Tp];

[K] = [G]

[
[I] [0]
[Tp]

]
[K]





δu
δp̄
δ∆p



 =





δf
δM
δm



 (D.64)

with
[I] : [NDGOF ×NDGOF ] : identity matrix
[0] : [NDGOF × 3] : zero matrix
[K] : [NDGOF + 3×NDGOF + 3] : matrix for new system of equations

Step 5 : Elimination of dependent DOFs

This step starts from system of equations

[K]





δu
δp̄
δ∆p



 =





δf
δM
δQ



 (D.65)

The periodicity conditions for displacements are:

uipti = uipbi + u
(4)
i − u

(1)
i

uipri = uipli + u
(2)
i − u

(1)
i (D.66)

u
(3)
i = u

(2)
i + u

(4)
i − u

(1)
i

with ipt, ipb, ipr and ipl the nodal numbering for nodes on the top, bottom, right
and left boundary of the REV and (i) the numbering of the corner nodes given
in Figure D.1. These conditions are used for the elimination of the dependent
degrees of freedom (those on the top and right boundary and corner node (3)).
This elimination entails the distribution of the dependent left hands side of (D.67)
over their three dependencies at the right hand side of (D.67), which makes the
dependent variables obsolete in the system of equations.

For the forces, the periodicity conditions read:

δf ipti = −δf ipbi

δf ipri = −δf ipli (D.67)

(D.68)

and for the homogenized macroscale stress tensor, the following summation is
required as constraining condition;

δσREV
ij =

∫

Γ

δfixjdΓ (D.69)
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with Γ the boundary of the REV, fi the traction forces acting on the boundaries
and xj the coordiates at which the traction forces act. After discretization, this

corresponds to the summation of the nodal forces f ipti ,f ipbi , ..., f
(4)
i and their

corresponding coordinates xiptj ,xipbj , ..., x
(4)
j . Because of the periodic boundary

conditions, the second term in the integral disappears (f ipti δxiptj = −f ipbi δxipbj ,

f ipri δxiprj = ...). Parts of the first term of the right hand side of equation (D.69)
can be written as

δf ipti xiptj = δf ipt(xipbi + x
(4)
i − x

(1)
i ) (D.70)

δf ipri xiptj = δf ipr(xipli + x
(2)
i − x

(1)
i ) (D.71)

δf
(3)
i x

(3)
j = δf (3)(x

(4)
i + x

(2)
i − x

(1)
i ) (D.72)

(D.73)

This means we can add the dependent boundary forces to the independent bound-
ary forces without changing the result of equation D.69 and in the meantime elim-
inate the variation in reaction forces by defining a reduced reaction force column
vector {f⋆}:

δf⋆ipti = δf ipt + δf ipb (≈ 0)

δf⋆ipri = δf ipr + δf ipl (≈ 0)

δf⋆ipbi = δf ipb + δf ipt (≈ 0)

δf⋆ipli = δf ipl + δf ipr (≈ 0)

δf
⋆(1)
i = δf (1) − δf (3) −

∑

ipt

δf ipti −
∑

ipr

δf ipri (D.74)

δf
⋆(4)
i = δf (4) + δf (3) +

∑

ipt

δf ipt

δf
⋆(2)
i = δf (2) + δf (3) +

∑

ipr

δf ipr

In this way, the variation of the dependent boundary forces are taken into account
in the {δf⋆} and the dependent DOFs are eliminated from the system of equations
when the same additions are done for the rows of [K] in equation (D.65). The
result is the reduced system of equations containing only independent variables
and reaction:

[K⋆]{δU I } = {δF ⋆I} (D.75)

with {U I} the independent DOF’s (all except top/right boundary and corner 3),
the average fluid pressure p̄ and the pressure difference over the REV ∆pi. The
column vector {δF I} contains the variation of the independent nodal forces, the
variation of the mass in the REV δM and the variation of the mass flux over the
boundaries δQi.

Step 6 : The actual condensation

{δU I} and {δF I} are partitioned in prescribed (p) and free (f) DOF’s:
[
K⋆pp K⋆pf

K⋆fp K⋆ff

]{
Up

U f

}
=

{
δF ⋆p

δF ⋆f

}
=

{
δF ⋆p

0

}
(D.76)
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with

{δF ⋆p} =





δf
⋆(1)
1

δf
⋆(1)
2

δf
⋆(2)
1

δf
⋆(2)
2

δf
⋆(4)
1

δf
⋆(4)
2

δ∆p̄1
δ∆p̄2
δp̄





{δUp} =





δu
(1)
1

δu
(1)
2

δu
(2)
1

δu
(2)
2

δu
(4)
1

δu
(4)
2

δQL

δQB

δM





The partitioning is actually taken into account in the numbering of the DOF’s
and therefore does not take any special operations in the code.

In a balanced REV, the nodal forces on the free nodes {F ⋆f} are equal to zero.
This enables the condensation on the prescribed DOFs to

[S]{δUp} = {δF ⋆p} (D.77)

with

[S] = [K⋆pp]−[K⋆pf][K⋆ff]−1[K⋆fp] [Ktemp] = [K⋆ff]−1[K⋆fp]

(D.78)

To find [S], first the matrix [Ktemp] = [K⋆ff]−1[K⋆fp] is computed by solving
[K⋆ff][Ktemp] = [K⋆fp]. This is done using LU-decomposition and backsubstitu-
tion. Once the term [Ktemp] is calculated, the nodal stiffness matrix [S] is found
by a simple mulpiplication:

[S] = [K⋆pp]− [K⋆pf ] ∗ [Ktemp] (D.79)

Solving the system to find [Ktemp] is the main cause of the high computation
cost of the condensation routine. Looking at the profile of the matrices involved
(see figure below), makes clear why; matrix [K⋆ff ] has hardly any zero values.
For this reason the computational homogenization procedure above is a compu-
tational inefficient way to obtain the consistent tangent operators for the hy-
dromechanical coupling (see below).

Step 7 : system of equations for drag forces

A matrix for the system of equations for the fluid drag forces is build:

[GD]

{
δu
δp

}
= {δfD} (D.80)

This is done using the partial derivatives dfDdu(id,jd) and dfDdp(id,it) defined
in Step 2

Using elimination matrix [Tp] defined above, the pressure DOFs are eliminated
just like we’ve seen before:

[KD] = [GD]

[
[I] [0]
[Tp]

]
[KD]





δu
δ
∆p̄
δp̄





= {δfD} (D.81)
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The dependent displacements can be eliminated from system of equations [KD]
using the periodicity conditions of the boundaries similar to Step 5. Partitioning
in prescribed and free DOFs then gives the following equation

[
K⋆p

D K⋆f
D

]{δUp

δUf

}
= {δfD} (D.82)

with {δUf} and {δUp} as defined above. The programming for this elimination
of the dependent DOFs is exactly the same as described in Step 5.
The condensation in Step 6 has shown that

{δUf} = −[Ktemp]{δUp}. (D.83)

This means that we can substitute for {δUf} to find [SD] as

[SD] = [K⋆p
D ]− [K⋆f

D ][Ktemp] [SD]{δUp} = {δfD} (D.84)

the dimensions of [SD] is NDGOF × 9.

Step 8 : find the tangent stiffness

From above we have the relation

δσM
ij =

1

V REV

∫

Γext

δfexti xjdΓ +
1

V REV

∫

Γint

δf inti xjΓ (D.85)

After discretization, fexti is given by the prescribed forces f
⋆(1,2,4)
i in {F ⋆p} in

equation D.77, f inti is given by the drag forces fD
ip
i in equation D.84. This means

we have;

δσM
ij =

1

V REV

∑

c=1,2,4

δf
⋆(c)
i x

(c)
j +

1

V REV

∑
δfD

ip
i x

ip
j (D.86)

with corner node forces f
⋆(c)
i as the only external boundary forces and fD

ip
i as the

only internal boundary forces. Substitution of δf
⋆(c)
i and δfDi using equations

(D.77) and (D.84) will give the relation between δσM and δUp. Using equations
(D.15)-(D.18) allows to substitute the components of δUp for the variables of the
macro scale (stretch Uij , pressure gradient ∇symp and average pressure p̄).
For the mass flux QL and QB , equations (D.22) and (D.23) give the relation with
the macro scale mass flux ~m.
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To repeat all relations, we have:

δu
(1)
1 = δUM

11 x0
(1)
1 + δUM

12 x0
(1)
2 (D.87)

δu
(1)
2 = δUM

21 x0
(1)
1 + δUM

22 x0
(1)
2 (D.88)

δu
(2)
1 = δUM

11 x0
(2)
1 + δUM

12 x0
(2)
2 (D.89)

δu
(2)
2 = δUM

21 x0
(2)
1 + δUM

22 x0
(2)
2 (D.90)

δu
(4)
1 = δUM

11 x0
(4)
1 + δUM

12 x0
(4)
2 (D.91)

δu
(4)
2 = δUM

21 x0
(4)
1 + δUM

22 x0
(4)
2 (D.92)

δ∆p1 =
∂pM

∂xM1
x0

(2)
1 +

∂pM

∂xM2
x0

(2)
2 (D.93)

δ∆p2 =
∂pM

∂xM1
x0

(4)
1 +

∂pM

∂xM2
x0

(4)
2 (D.94)

(D.95)

δσM
11 =

1

V REV

(
δf

⋆(1)
1 x0

(1)
1 + δf

⋆(2)
1 x0

(2)
1 + δf

⋆(4)
1 x0

(4)
1

)
(D.96)

δσM
12 =

1

V REV

(
δf

⋆(1)
1 x0

(1)
2 + δf

⋆(2)
1 x0

(2)
2 + δf

⋆(4)
1 x0

(4)
2

)
(D.97)

δσM
21 =

1

V REV

(
δf

⋆(1)
2 x0

(1)
1 + δf

⋆(2)
2 x0

(2)
1 + δf

⋆(4)
2 x0

(4)
1

)
(D.98)

δσM
22 =

1

V REV

(
δf

⋆(1)
2 x0

(1)
2 + δf

⋆(2)
2 x0

(2)
2 + δf

⋆(4)
2 x0

(4)
2

)
(D.99)

δm1 =
1

V REV

(
QLx0

(2)
1 +QBx0

(4)
1

)
(D.100)

δm2 =
1

V REV

(
QLx0

(2)
2 +QBx0

(4)
2

)
(D.101)

When using the symmetry in the Cauchy stress tensor, the substitutions men-
tioned above can be performed by the multiplication with a transformation matrix
[Tx]:

[Csym] =
1

V REV
[Tx]

T [S][Tx] +
1

V REV
[x0]

T [SD][Tx] (D.102)

with

[x0] =




x0
1
1 x0

1
2 0 0

0 0 x0
1
1 x0

1
2

x0
1
1 x0

1
2 0 0

0 0 x0
2
1 x0

2
2

.

.

x0
N−1
1 x0

N−1
2 0 0

0 0 x0
N−1
1 x0

N−1
2

x0
N
1 x0

N
2 0 0

0 0 x0
N
1 x0

N
2




N = NPOIN

(D.103)
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and

[Tx] =




x
(1)
1 x

(1)
2 0 0 0 0 0

0 0 x
(1)
1 x

(1)
2 0 0 0

x
(2)
1 x

(2)
2 0 0 0 0 0

0 0 x
(2)
1 x

(2)
2 0 0 0

x
(4)
1 x

(4)
2 0 0 0 0 0

0 0 x
(4)
1 x

(4)
2 0 0 0

0 0 0 0 x
(2)
1 x

(2)
2 0

0 0 0 0 x
(4)
1 x

(4)
2 0

0 0 0 0 0 0 1




(D.104)

Note that the matrix [SD] only concerns the first four (related to the stress)
lines of stiffness matrix [Csym], the zeros are added to make the matrices fit.
Furthermore, for a rectangular REV with two boundaries on the axes most of the
terms in [Tx] will be zero.
Once consistent tangent stiffness matrix [Csym] is determined, it is rotated back
to the macro coordinate system in a separate routine, together with the resulting
stress and fluid flux.

D.4 HM-coupled condensation: Method 2

Using the partial derivatives defined in the Step 2 above, the following matrices
can easily be assembled:

δM =
[
[GMm] [GMh]

]{δu
δp

}
(D.105)

δp̄ =
[
[Gpm] [Gph]

]{δu
δp

}
(D.106)

[
[Gmm] [Gmh]
[Ghm] [Ghh]

]{
δu
δp

}
=

{
δf
δq

}
(D.107)

Dimensions:
p̄ : 1
M : 1
{f} : NDGOF
{q} : NITI
{u} : NDGOF
{p} : NITI
[GMm] : 1×NDGOF
[GMh] : 1×NITI
[Gpm] : 1×NDGOF
[Gph] : 1×NITI
[Gmm] : NDGOF ×NDGOF
[Gmh] : NDGOF ×NITI
[Ghm] : NITI ×NDGOF
[Ghh] : NITI ×NITI



264Computational homogenization for consistent tangent operators of the Frey model

Fig. D.2: Non-zero profile of matrix [K] to condense on corner nodes in Method 2.
The non-zero values that lay outside the band currently prevent efficiency of
the solver. A better numbering of the DOFs that better takes into account
the coupling between the hydraulic and mechanical DOFs is needed to solve
this.

with qit the nodal fluid imbalance; non-zero values represent a source at the
node... The combination of these three equations gives:




[GpM ] [Gph]
[GMm] [GMh]
[Gmm] [Gmh]
[Ghm] [Ghh]



{
δu
δp

}
=





δp̄
δM
δf
δq





(D.108)

Using periodicity equations

uipt = uipb + u(4) − u(1)

uipr = uipl + u(2) − u(1)

pitt = pitb + p(4) − p(1)

pitr = pitl + p(2) − p(1)

f ipti = −f ipbi

f ipri = −f ipli

qitt = −qitb

qitr = −qitl

(D.109)

and equilibrium condition (residual forces and mass fluxes are zero at all nodes
that are not involved in the periodic boundary conditions) the dependent DOFs
(top boundary, right boundary and upper-right corner node) can be eliminated
from this system of equations as was done before for forces only. This gives us a
system with the independent DOFs {ui} and {pi} :




[K⋆pm] [K⋆ph]
[K⋆Mm] [K⋆Mh]
[K⋆mm] [K⋆hm]
[K⋆hm] [K⋆hh]



{
δui

δpi

}
=





δp̄
δM
δf⋆i

δq⋆i





(D.110)

The fact that [K⋆] is build directly from [K], means that it maintains its sparcity
and a proper renumbering of the DOFs can reduce the band width of the matrix
[K] significantly. Only the dependent DOFs have been eliminated to find [K⋆],
which meand the size of [K] is still in the order of the number of DOFs in the
total REV. Figure D.2 shows the matrix [K] without renumbering and with a
renumbering including the fluid terms. The system [K] can now be condensed
on mechanical corner nodes (c) and artificial hydraulic nodes (g), located at the
mechanical corner nodes. This is done in the same way as before, but now for
both forces and fluxes. The condensation gives:




[S⋆pm] [S⋆ph]
[S⋆Mm] [S⋆Mh]
[S⋆mm] [S⋆hm]
[S⋆hm] [S⋆hh]



{
δu(c)

δp(g)

}
=





δp̄
δM
δf⋆(c)

δq⋆(g)





(D.111)
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with (c) indicating the prescribed corner nodes (1), (2) and (4). (g) indicates
the ’ghost’-points for the fluid system located at the mechanical points (1), (2)
and (4). This means we now have a system of 11 equations of which equation
nine is directly dependent on equations ten and eleven (δq(1) = −δq(2) − δq(4)).
From the first equation and the variation of the pressure difference over the op-
posite boundaries δ∆p1 = δp(2) − δp(1), δ∆p2 = δp(4) − δp(1) it the following
transformation matrix can be built:

[S⋆⋆]





δu
(1)
1

δu
(1)
2

δu
(2)
1

δu
(2)
2

δu
(4)
1

δu
(4)
2

δp(1)

δp(2)

δp(3)





=





δu
(1)
1

δf
(1)
2

δf
(2)
1

δf
(2)
2

δf
(4)
1

δf
(4)
2

δ∆p1
δ∆p2
δp̄





(D.112)

with [S⋆⋆] the following matrix:




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 −1 0 1

S⋆pm(1) S⋆pm(2) S⋆pm(3) S⋆pm(4) S⋆pm(5) S⋆pm(6) S⋆ph(1) S⋆ph(2) S⋆ph(3)




(D.113)

We define matrix [Tp] as the inverse of this matrix to find the same matrix [S] as
in Method 1 as :

[S] =



[S⋆mm] [S⋆hm]
[S⋆hm] [S⋆hh]
[S⋆Mm] [S⋆Mh]


 [Tp] (D.114)

Note that the seventh equation (q(1)) is fully dependent on the eighth’ and equa-
tion nine (q(2) and equation 10 (q(4)) because of the periodic boundary conditions.
This seventh equation can therefore be left out of the system of equations and
the result is a 9 by 9 matrix [S] like we’ve seen before in Method 1.
For the drag forces, the exact same procedure can be followed; first condensation
on corner nodes (c) and ghost nodes (g), followed by transformation matrix [Tp]
to find matrix [SD]. Once [S] and [SD] are found, the consistent tangent stiffness
matrix is easily found following Step 8 from the method 1.

The big advantage of this method is that renumbering of the DOFs will lead
to a sparce matrix with relatively small band width such thet term that we used
to call [Ktemp] in the foregoing can be computed efficiently.
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