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sukasa, Javier Pérez, Javier González, Prof. Froilán Dopico, Prof. Ion Zaballa, Prof.

Wolf-Juergen Beyn, Fabien Brossard, the people of Boisseuil F.C. and of PANAFUTSAL.

All these people, and many others, made my stay abroad very happy and pleasant.

In Costa Rica, I am grateful with my friends and professors of the University of Costa

Rica. In particular, I have no words to express my gratitude to Prof. Javier Trejos, which

presented to me the opportunity to do my studies in Limoges and, in addition, was always

willing to help me in everything I needed. Moreover, I appreciate the support through my

years as a student given by Prof. Eduardo Piza, Prof. William Alvarado, Prof. Eugenio

Chinchilla and Prof. Mario Villalobos.

I would also like to thank the University of Limoges and the institute XLIM for wel-

coming me into their master and doctoral programs and for always supporting me. In

particular, I thank all the people envolved in the Master ACSYON, the group of Calcul
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5.4 Šamanskii’s Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.5 Solution of the Correction Equation . . . . . . . . . . . . . . . . . . . . . . 94
5.5.1 Using the Kronecker Product . . . . . . . . . . . . . . . . . . . . . 95
5.5.2 Using Forward Substitution . . . . . . . . . . . . . . . . . . . . . . 96

5.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.7 Functions Implemented in MATLAB and Maple . . . . . . . . . . . . . . . 99

Chapter 6 : Conclusions and Future Work . . . . . . 105

Chapter A : Appendix . . . . . . . . . . . . . . . . . . . . . . . 108
A.1 Kronecker Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.1.1 Kronecker Product Properties . . . . . . . . . . . . . . . . . . . . . 109
A.2 Vectorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.2.1 Compatibility with Kronecker Products . . . . . . . . . . . . . . . . 109
A.3 Vector and Matrix Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.3.1 Vector Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
A.3.2 Matrix Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

A.4 Pseudo-inverse of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
A.5 The Generalized Schur Decomposition . . . . . . . . . . . . . . . . . . . . 111
A.6 Composite Trapezoidal Rule . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Computation of Invariant Pairs and Matrix Solvents Page 3





Notation
N Set of nonnegative integers
N

∗ Set of positive integers
Z Ring of integers
R, Rn, Rn×n Set of real numbers, n-dimensional (column) real vectors

and n× n real matrices
C, Cn, Cn×n Set of complex numbers, n-dimensional (column) com-

plex vectors and n× n complex matrices
K[λ] Ring of polynomials in λ over a ring K

A
m×n Additive group of m× n matrices with entries in a ring

A

A
n×n Ring of n× n matrices with entries in a ring A

A
n resp. A1×n Additive group of n−dimensional (column) vectors,

resp. row vectors, with entries in a ring A

deg(p) Degree of the polynomial p
0n Square zero matrix of size n
In Identity matrix of size n
AT Transpose of a matrix/vector A
A∗ Conjugate transpose of a matrix A
A−1 Inverse of a matrix A
A+ Pseudo-inverse of a matrix A
σ(A) Spectrum of a square matrix A
rank(A) Rank of a matrix A
det(A) Determinant of a matrix A
tr(A), trace(A) Trace of a matrix A
A⊗ B Kronecker product of the matrices A and B

diag (A1, A2 . . . , An) The (block) diagonal matrix




A1 0 · · · 0

0 A2
. . .

...
...

. . . . . . 0
0 · · · 0 An




aij, A(i, j), [A]ij The (i, j)th entry of a matrix A
A(i, :) The ith row of a matrix A
A(:, j) The jth column of a matrix A
‖x‖ Norm of a vector x (see A.3.1)
‖A‖ Norm of a matrix A (see A.3.2)
vec (A) Vectorization of a matrix A (see A.2)
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Introduction

Invariant pairs, introduced and analyzed in [17], [20], [42] and [120], are a generaliza-

tion of eigenpairs for matrix polynomials. Let P (λ) =
∑ℓ

j=0 Ajλ
j be an n × n matrix

polynomial: the polynomial eigenvalue problem consists in computing a scalar λ and a

nonzero vector x such that P (λ)x = 0. Now, choose a positive integer k. The matrices

X,S of sizes n× k and k× k, respectively, are said to form an invariant pair of size k for

P (λ) if X 6= 0 and:

P (X,S) :=
ℓ∑

j=0

AjXSj = 0. (1)

Note that the eigenvalues of the matrix S are also eigenvalues of P (λ).

Invariant pairs offer a unified theoretical perspective on the problem of computing

several eigenvalue-eigenvector pairs for a given matrix polynomial. From a numerical

point of view, moreover, the computation of an invariant pair tends to be more stable

than the computation of single eigenpairs, particularly in the case of multiple or tightly

clustered eigenvalues. The notion of invariant pairs can also be applied to more general

nonlinear problems, although here we will limit our presentation to matrix polynomials.

How to compute invariant pairs? Beyn and Thümmler ([20]) adopt a continuation

method of predictor-corrector type. Betcke and Kressner ([17]), on the other hand, es-

tablish a correspondence between invariant pairs of a given matrix polynomial and of its

linearizations. Invariant pairs for P (λ) are extracted from invariant pairs of a linearized

form and then refined via Newton’s method.

The approach we take in this work to compute invariant pairs is based on contour

integrals. Being able to specify the contour Γ allows us to select invariant pairs that have

eigenvalues in a prescribed part of the complex plane. Contour integrals play an important

role in the definition and computation of moments, which form a Hankel matrix pencil

yielding the eigenvalues of the given matrix polynomial that belong to the prescribed

contour. The use of Hankel pencils of moment matrices is widespread in several appli-

cations such as control theory, signal processing or shape reconstruction, but nonlinear

eigenvalue-eigenvector problems can also be tackled through this approach, as suggested

for instance in [7] and [18]. E. Polizzi’s FEAST algorithm [112] is also an interesting

example of contour-integral based eigensolver applied to large-scale electronic structure

computations.

In this work, we adapt such methods to the computation of invariant pairs. We study,

in particular, the scalar moment method and its relation with the multiplicity structure

of the eigenvalues, but we also explore the behavior of the block version.

These results on invariant pairs can be applied to the particular case of matrix solvents,
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that is, to the matrix equation:

P (S) :=
ℓ∑

j=0

AjS
j = 0.

The matrix solvent problem has received remarkable attention in the literature since

Sylvester’s work [119] in the 1880s. The relation between the Riccati and the quadratic

matrix equation is highlighted in [21] whereas a study on the existence of solvents can be

found in [38]. Several works address the problem of computing a numerical approximation

for the solution of the quadratic matrix equation: an approach to compute, when possible,

the dominant solvent is proposed in [37]. Newton’s method and some variations are also

used to approximate solvents numerically: see, for example, [34], [80], [63], [88]. The

work in [58] uses interval arithmetic to compute an interval matrix containing the exact

solution to the quadratic matrix equation. For the case of the general matrix solvent

problem, we can also cite [26], [111] and [81].

We exhibit computable formulations for the condition number and backward error

of the general matrix solvent problem, thus generalizing previous work on the quadratic

matrix equation. Moreover, we propose an adaptation of the moment method to the

computation of solvents. Finally, we build on existing work on triangularization of matrix

polynomials (see [124] and [121]) and explore the relationship between solvents of matrix

polynomials in general and in triangularized form.

This thesis is organized as follows. Chapter 1 introduces preliminary notions, defi-

nitions and notation concerning matrix polynomials and their applications, the relation

with systems of ordinary differential equations, the generalized eigenvalue problem and

some solution methods. The last section discusses eigenvalue shifting for matrix polyno-

mials and presents a generalization of the shifting technique proposed in [101]. Eigenvalue

shifting consists in moving one or several eigenvalues of a given matrix polynomial to pre-

scribed positions in the complex plane (or to infinity). It can be useful, for instance,

as a preliminary modification of the polynomial before applying methods that require a

particular eigenvalue distribution.

Chapter 2 introduces the general theory of the invariant pair problem, along with an

alternative formulation based on the contour integral. The original contribution of this

chapter consists in new formulations for the condition number and the backward error of

the invariant pair problem. These formulas are obtained using the definition (1) recalled

above.

Chapter 3 is devoted to matrix solvents. A quick review of the general theory, of appli-

cations, and of an alternative formulation based on the contour integral are given. Next,

we specialize the results of Chapter 2 to solvents, and we compute new characterizations
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for the condition number and the backward error of the matrix solvent problem. Also,

motivated by the results in [121] and [124], we study in Section 3.4 the relation between

solvents of general and triangularized matrix polynomials.

Chapter 4 focuses on the computation of eigenvalues and invariant pairs through

moments and Hankel pencils. Our starting point here is the Sakurai-Sugiura method

([115], [7]) for computing eigenvalues of a matrix polynomial P (λ). The main idea consists

in defining a complex function f(z) whose poles are the eigenvalues of P (λ) inside a given

contour Γ, and in computing a few moments of f(z) via contour integrals. The moments

are then arranged to form a Hankel matrix pencil, whose generalized eigenvalues are

the eigenvalues of P (λ) that belong to the interior of Γ. We generalize and adapt this

approach to the computation of invariant pairs with eigenvalues belonging to a prescribed

region of the complex plane. We also discuss the effectiveness of the scalar and block

versions of the method in presence of multiple eigenvalues. In particular, we show that

the scalar method cannot capture some eigenvalue multiplicity structures, for which the

block version is needed. Our main results here consist in Theorem 14, Corollary 2 and

Theorem 16. Moreover, Section 4.4 addresses some questions on the choice of the contour

Γ; its content is not new, but it may offer a useful complement to the topics of this

thesis, particularly, regarding the estimation of the number of eigenvalues in a given

contour. Finally, Section 4.5.1 presents a theoretical and experimental error analysis for

the trapezoid rule applied to our quadrature problems.

The techniques presented in Chapter 4 – as well as other direct approaches to the

computation of invariant pairs – can be used either alone or in combination with iterative

refinement methods. Motivated by the work in [17], in Chapter 5 we propose and compare

some variants of Newton’s method applied to the numerical refinement of invariant pairs.

In particular, we experiment with line search strategies and with Šamanskii’s acceleration

technique [126].

Finally, Chapter 6 presents some conclusions and ideas for future work.

The Maple and MATLAB implementations of the symbolic and numeric methods

presented in this thesis are available online at the URL

http://www.unilim.fr/pages perso/esteban.segura/software.html
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Eigenvalue Problem
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Chapter 1 : Matrix Polynomials and Eigenvalue Problem

1.1 Matrix Polynomials and the Eigenvalue Problem

Let K be an arbitrary field. An n×n matrix polynomial is an n×n matrix whose entries

are polynomials in K[λ]. Any matrix polynomial P (λ) can be written in the following

form:

Definition 1. An n× n matrix polynomial P (λ) is defined as:

P (λ) = A0 + A1λ+ A2λ
2 + · · ·+ Aℓλ

ℓ =
ℓ∑

i=0

Aiλ
i, (1.1)

where ℓ ∈ N is the degree of the matrix polynomial and A0, A1, ..., Aℓ ∈ K
n×n.

Aℓ is called the leading coefficient matrix and A0 is called the trailing coefficient matrix

of P (λ). When Aℓ = In, the matrix polynomial is said to be monic.

The rank of a matrix polynomial P (λ) is defined as:

rank(P (λ)) = max{rank(P (λ0)) : λ0 ∈ K̄}.

Definition 2. An n× n matrix polynomial P (λ) is said to be regular if rank(P (λ)) = n,

or, equivalently, if its determinant det(P (λ)) does not vanish identically. Otherwise, it is

said to be singular.

In this work, we assume that P (λ) is regular.

Definition 3. The reversal of the matrix polynomial P (λ) is:

rev(P (λ)) := λℓP (1/λ) = λℓA0 + λℓ−1A1 + λℓ−2A2 + · · ·+ Aℓ (1.2)

In this work, K denotes either the field of complex numbers C or the field of real

numbers R.

Definition 4. The polynomial eigenvalue problem (PEP) consists in determining right

eigenvalue-eigenvector pairs (λ, x) ∈ C× C
n, with x 6= 0, such that

P (λ)x = 0,

or left eigenvalue-eigenvector pairs (λ, y) ∈ C× C
n, with y 6= 0, such that

y∗P (λ) = 0.
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Chapter 1 : Matrix Polynomials and Eigenvalue Problem

Remark 1.

• The homogeneous formulation of equation (1.1):

P (α, β) = βℓA0 + αβℓ−1A1 + · · ·+ αℓAℓ =
ℓ∑

i=0

αiβℓ−iAi,

for λ = α/β and (α, β) 6= (0, 0), allows the simultaneous treatment of finite and

infinite eigenvalues (see [4], [64], [67]).

• Infinite eigenvalues can still be covered using the reversal matrix polynomial (1.2).

Infinite eigenvalues of the matrix polynomial P (λ) are zero eigenvalues of the rever-

sal matrix polynomial rev(P (λ)).

A particular case of special interest is the quadratic eigenvalue problem (QEP), where

ℓ = 2:

Q(λ)x = (A0 + A1λ+ A2λ
2)x = 0, x 6= 0. (1.3)

Typical applications of the QEP include the vibration analysis of buildings, machines

and vehicles (see [52], [84], [123]). A considerable amount of work has been done on the

theoretical and computational study of the QEP: see, for instance, [123].

Remark 2. The case when ℓ = 1 for the PEP corresponds to the generalized eigenvalue

problem (GEP) for matrix pencils:

Ax = λBx, (1.4)

and if, moreover, we have that B = I, we obtain the standard eigenvalue problem:

Ax = λx.

1.1.1 Systems of Ordinary Differential Equations

Matrix polynomials play an important role in the study of ordinary differential equations

(ODEs). A system of ODEs of order ℓ > 1, with constant coefficients, takes the form

(see, e.g., [51]):
ℓ∑

i=0

Ai

(
d

dt

)i

u(t) = 0. (1.5)

Suppose we are looking for solutions of the form u(t) = x0e
λ0t, where x0 and λ0 are

independent of t, then (1.5) leads to the polynomial eigenvalue problem P (λ0)x0 = 0,

where P (λ) =
ℓ∑

i=0

Aiλ
i.
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Chapter 1 : Matrix Polynomials and Eigenvalue Problem

More generally, the function:

u(t) =

{
tk

k!
x0 + · · ·+

t

1!
xk−1 + xk

}
eλ0t

is a solution of the differential equation if and only if the set of vectors x0, x1, . . . , xk, with

x0 6= 0, satisfies the relations:

j∑

i=0

1

i!
P (i)(λ0)xj−i = 0, j = 0, 1, . . . , k.

This set of vectors x0, x1, . . . , xk is called a Jordan chain of length k + 1 associated with

the eigenvalue λ0 and the eigenvector x0.

In particular, when ℓ = 2, consider the linear second order differential equation:

Mq̈(t) + Cq̇(t) +Kq(t) = f(t), (1.6)

where M,C,K are n × n matrices and f(t) is a vector. Such equations arise in many

engineering applications, for instance, when studying mechanical and electrical oscillation

(see [84], [123]).

The homogeneous equation of (1.6) leads to the QEP:

(λ2M + λC +K)x = 0

for the solutions of the form q(t) = eλtx.

Several examples of real life problems related to (1.6) have been studied in the litera-

ture. For instance, in [1], [5], [33], [40], [89], [123] the wobbling of the Millennium bridge

over the river Thames in London was discussed. On its opening in 2000, this footbridge

started to wobble. It has generally been thought that the Millennium Bridge wobble was

due to pedestrians synchronizing their footsteps with the bridge motion. However, this

is not supported by measurements of the phenomenon on other bridges. In [89], a simple

model of human balance strategy for normal walking on a stationary surface was consid-

ered. This model showed that pedestrian can effectively act as a negative (or positive)

damper to the bridge motion and hence inadvertently feed energy into bridge oscillations.

Two days after the opening, the bridge was closed for almost two years while modifi-

cations were made to eliminate the wobble entirely. It reopened in 2002.

Another interesting real life example is the project of the company SFE GmbH in

Berlin, which investigated the noise in rail traffic that is caused by high speed trains (see

[71], [77], [91]).
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1.1.2 Smith Normal Form

Definition 5. A matrix polynomial E(λ) is unimodular if its determinant is a nonzero

constant, independent of λ.

Definition 6. Two matrix polynomials A(λ) and B(λ) of the same size are called equiv-

alent (A(λ) ∼ B(λ)) if there exist two unimodular matrix polynomials E(λ) and F (λ),

such that:

A(λ) = E(λ)B(λ)F (λ).

A crucial and well-known property of matrix polynomials is the existence of the Smith

form (see, e.g., [51]).

Theorem 1. [51] Every n×n matrix polynomial P (λ) is equivalent to a matrix polynomial

D(λ) of the form

D(λ) = diag(d1(λ), . . . , dn(λ)), (1.7)

where the di’s are monic polynomials such that di(λ) is divisible by di−1(λ).

Definition 7. The matrix polynomial D(λ), given by (1.7), is called the Smith normal

form of P (λ), and the monic scalar polynomials di(λ) are called the invariant polynomials

of P (λ).

1.1.3 Solving PEPs via Linearization

Linearization is a well established method for computing eigenvalues and eigenvectors of

polynomial eigenvalue problems of moderate size.

Given a polynomial eigenvalue problem (1.1) of degree ℓ ≥ 2, the linearization method

approach consists in converting P (λ) to a linear ℓn×ℓn pencil L(λ) = A+λB, having the

same spectrum as P (λ). This linear eigenvalue problem can then be solved by standard

methods, e.g., the QZ algorithm (see A.5).

Software libraries as LAPACK provide routines, among others, for solving systems of

linear equations (see [6]). On the other hand, the library ARPACK uses the implicitly

restarted Arnoldi method or, in the case of symmetric matrices, the corresponding variant

of the Lanczos algorithm to compute a few eigenvalues and corresponding eigenvectors of

large sparse or structured matrices (see[86]).

We introduce the notion of linearization following [52] and [93].

Definition 8. Let P (λ) be an n× n matrix polynomial of degree ℓ ≥ 1. A pencil L(λ) =

A+λB with A,B ∈ C
ℓn×ℓn is called linearization of P (λ) if there exist unimodular matrix

polynomials E(λ), F (λ) ∈ C
ℓn×ℓn, such that:

F (λ)L(λ)E(λ) =

[
P (λ) 0

0 I(ℓ−1)n

]
. (1.8)
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Remark 3. The linearization (1.8) is not unique (see [93], [123]).

Most of the linearizations used in practice are of the first companion form (see [52],

[91]):

C1(λ) =




Aℓ−1 Aℓ−2 · · · A0

−In 0 · · · 0
...

. . . . . .
...

0 · · · −In 0



+ λ




Aℓ 0 · · · 0

0 In
. . .

...
...

. . . . . . 0

0 · · · 0 In




or the second companion form:

C2(λ) =




Aℓ−1 −In · · · 0

Aℓ−2 0 · · ·
...

...
...

. . . −In

A0 0 · · · 0



+ λ




Aℓ 0 · · · 0

0 In
. . .

...
...

. . . . . . 0

0 · · · 0 In



.

It is well known that using this approach to solve the PEP via linearization can have

some drawbacks. For instance:

• The linearization approach transforms the original n×nmatrix polynomial of degree

ℓ into a larger ℓn× ℓn linear eigenvalue problem.

• The conditioning of the linearized problem can depend on the type of linearization

used and may be significantly worse than the conditioning of the original problem

(see [69], [123]).

• If there is a special structure in the matrix coefficients Ai, such as symmetry, spar-

sity pattern, palindromicity, the linearization may modify it. In that case, special

linearizations can be chosen to exploit the structure (see [2], [3], [14], [29], [35], [36],

[49], [66], [67],[68],[90], [92], [93], [94], [95], [96], [97], [98], [99]).

1.1.4 Direct Methods to Solve PEPs

In the previous section, we have listed some drawbacks of the linearization method for

solving PEPs. We pointed out that this approach not only increases the dimension of the

problem, but may also be very ill-conditioned.

We recall now some approaches which offer the possibility to handle the PEPs directly

without linearization.

• Ehrlich-Aberth iteration: In [22], the authors present an effective approach based on

the Ehrlich-Aberth iteration to approximate eigenvalues of matrix polynomials. The
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main points addressed in this work are the choice of the starting approximations,

the computation of the Newton correction, the halting criterion and the case of

(multiple) eigenvalues at zero and at infinity.

• Jacobi-Davidson method: This method computes selected eigenvalues and associ-

ated eigenvectors of a matrix polynomial. It iteratively constructs approximations

of certain eigenvectors by solving a projected problem. The method finds the ap-

proximate eigenvector as “best” approximation in some search subspace (see [116],

[117]).

This approach has been used for the efficient solution of quadratic eigenproblems

associated with acoustic problems with damping (see [125]).

• A second-order Arnoldi method for the solution of the quadratic eigenvalue problem

(SOAR): This method for solving large-scale QEPs generates an orthonormal basis

and then applies the standard Rayleigh–Ritz orthogonal projection technique to

approximate eigenvalues and eigenvectors (see [8]).

• Arnoldi and Lanczos-type methods: These processes are developed to construct

projections of the QEP. The convergence of these methods is usually slower than

a Krylov subspace method applied to the equivalent linear eigenvalue problem (see

[73]).

• A subspace approximation method: In [74], the authors use perturbation subspaces

for block eigenvector matrices to reduce a modified problem to a sequence of prob-

lems of smaller dimension. They show that this method converges at least as fast as

the corresponding Taylor series, and that Rayleigh quotient iteration can be used

for acceleration.

• Contour integral based methods: In [7], [18] and [114], the authors use contour

integral formulations to find all the eigenvalues of PEPs, which are inside a closed

contour in the complex plane.

1.2 Scaling of Generalized and Polynomial Eigenvalue

Problems

The performance of an algorithm may depend crucially on how the problem is formulated.

Balancing is a preprocessing technique that aims to avoid large differences in magnitude

among matrix entries, which may cause a poor numerical performance. A matrix with

a norm that is several orders of magnitude larger than the modulus of its eigenvalues

typically has eigenvalues that are sensitive to perturbations in the entries.
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The process of balancing produces a matrix, which is diagonally similar to the given

matrix and reduces the matrix norm. As a consequence, the eigenvalues do not change,

but their sensitivity can significantly be reduced. Such a diagonal scaling is, therefore,

typically used before running any eigenvalue algorithm.

1.2.1 Balancing Technique for Matrices

In the case of a n × n matrix A, balancing consists in finding a diagonal matrix D such

that DAD−1 is a well-scaled matrix (see [41], [108], [109]). For instance, consider the

badly scaled matrix A defined by:

A =




0 2−20 2−5

220 1 0

26 2−15 0


 .

If we balance A using the diagonal matrix D = diag(2−20, 1, 2−15), we obtain:

D−1AD =



0 1 1

1 1 0

2 1 0


 .

Let us compute the eigenvalues of A and of D−1AD using the MATLAB command eig

eig(A,’nobalance’) eig(D−1AD)

2.170086486635809 2.170086486626034

-1.481194304285063 -1.481194304092016

0.311107817428706 0.311107817465982

If we compute the condition number for the eigenvalues of A and of D−1AD using

MATLAB command condeig, we obtain:

condeig(A) condeig(D−1AD)

335275.9044 1.1585

237384.3761 1.0392

98402.2850 1.1197

Remark 4. There are also cases in which balancing can lead to a catastrophic increase

of the errors in the computed eigenvalues (see [128]).

1.2.2 Balancing Technique for Generalized and PEPs

In the case of the generalized eigenvalue problems Ax = λBx, the authors of [127] intro-

duce a balancing technique which aims to find diagonal matrices D1 and D2 such that
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the elements of D1AD2 and D1BD2 are scaled as equal in magnitude as possible (see also

[72]).

A different approach for the scaling of GEPs is proposed in [87]. A linearly convergent

iteration provides matricesD1 andD2 consisting of powers of 2 that approximately satisfy:

‖D1AD2ej‖
2
2 + ‖D1BD2ej‖

2
2 = ‖e∗iD1AD2‖

2
2 + ‖e∗iD1BD2‖

2
2 = 1, i, j = 1, . . . , n.

In [15], besides studying optimal balancing of GEPs and polynomial eigenvalue prob-

lems, it is noted that this iteration can easily be extended to weighted scaling of matrix

polynomials P (λ) by:

ℓ∑

k=0

ω2k‖D1AkD2ei‖
2
2 = 1,

ℓ∑

k=0

ω2k‖e∗jD1AkD2‖
2
2 = 1, i, j = 1, . . . , n

for some ω > 0 that is chosen to be close in magnitude to the desired eigenvalues.

In the specific case of the quadratic matrix polynomial Q(λ), Fan, Lin and Van Dooren

[45] suggest that a good scaling strategy for the QEP is to scale the coefficients A2, A1

and A0 so that their 2-norms are all close to 1. They consider modifying Q(λ) to:

Q̃(µ) ≡ βQ(λ) = µ2Ã2 + µÃ1 + Ã0,

where:

λ = αµ, Ã2 = α2βA2, Ã1 = αβA1, Ã0 = βA0,

α =

√
a0
a2

, β =
2

(a0 + a1α)

and

a2 = ‖A2‖2, a1 = ‖A1‖2, a0 = ‖A0‖2.

Note that the eigenvalues of Q(λ) can be recovered from those of Q̃(µ) by λ = αµ.

Moreover, this scaling approach does not affect any sparsity of A2, A1 and A0.

In [57], it is presented an eigensolver for the complete solution of QEPs (function

quadeig in MATLAB), which uses this scaling technique.

A different approach to balance matrix polynomials can be found in [31].

1.3 Shifting Technique for P (λ)

In [101], B. Meini describes a technique to shift two eigenvalues λ1 and λ2 of an n × n

quadratic matrix polynomial P (λ). This method requires the knowledge of a right and of
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a left eigenvector associated with λ1 and λ2, respectively.

The idea is to shift λ1 to 0 and λ2 to ∞ and then deflate those values obtaining as a

result a new (n − 1) × (n − 1) quadratic matrix polynomial, which shares with P (λ) all

its eigenvalues, except for λ1 and λ2.

As we pointed out before, this approach requires the knowledge of a right and of a

left eigenvector associated with the eigenvalues λ1 and λ2. Here, we present a formulation

that allow us to shift to infinity several eigenvalues at the same time, assuming only the

knowledge of a right eigenvector associated with those eigenvalues to shift.

Let us first recall some results from [101].

1.3.1 Meini’s Shifting Formulation

Given a n× n matrix polynomial P (λ) of degree ℓ ≥ 1, we have:

Theorem 2. [Thm. 1, [101]] Let λ1 ∈ C and v ∈ C
n, v 6= 0, such that P (λ1)v = 0. Then

for any η ∈ C and for any vector x such that x∗v = 1, the following properties hold:

1. The function

P̃ (λ) = P (λ)

(
I +

λ1 − η

λ− λ1

vx∗

)

is a matrix polynomial of degree ℓ;

2. det P̃ (λ) = λ−η
λ−λ1

detP (λ);

3. P̃ (η)v = 0, i.e., the value η, where we moved the original eigenvalue λ1, is an

eigenvalue for the shifted matrix polynomial. Note that the eigenvector v is the

same for λ1 and η.

4. If σ 6∈ {λ1, η} is such that P (σ)w = 0, then P̃ (σ)w̃ = 0, where

w̃ =

(
I −

λ1 − η

σ − η
vx∗

)
w.

5. Moreover, by setting:

P̃ (λ) =
ℓ∑

i=0

λiÃi,

one has

Ãℓ = Aℓ,

Ãi = Ai + (λ1 − η)
ℓ∑

j=i+1

λj−i−1Ajvx
∗, i = 0, . . . , ℓ− 1. (1.9)
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Equations (1.9) give us an easy way to compute the coefficients of the matrix polyno-

mial whose eigenvalue λ has been shifted.

Proposition 1. [Prop. 2, [101]] Let λ1 ∈ C, v ∈ C
n, v 6= 0, such that P (λ1)v = 0 and

let x ∈ C
n such that x∗v = 1. Then the following properties hold:

1. The matrix polynomial

P̃ (λ) = P (λ)

(
I +

λ1

λ− λ1

vx∗

)

is such that det P̃ (λ) = detP (λ) λ
λ−λ1

and P̃ (0)v = 0, i.e., the eigenvalue λ1 is

shifted to zero, while keeping the same right eigenvector v;

2. if λ1 6= 0, the matrix polynomial

P̂ (λ) = P (λ)

(
I +

λ

λ1 − λ
vx∗

)

is such that det P̂ (λ) = detP (λ) λ1

λ1−λ
and P̂ (∞)v = 0, i.e., the eigenvalue λ1 is

shifted to infinity, while keeping the same right eigenvector v.

1.3.2 Generalization of Shifting Technique

The results presented in [101] allow us to shift a single eigenvalue of a matrix polynomial.

Our goal in this section is to present a formulation to shift several eigenvalues at the same

time. We start by shifting the eigenvalue λk to infinity.

Proposition 2. Let P (λ) be a matrix polynomial, λk 6= 0 ∈ C and v 6= 0 ∈ C
n, such

that P (λk)v = 0 and let x ∈ C
n be such that x∗v = 1. Consider the matrix polynomial

P̂ (λ) =
∑ℓ

i=0 λ
iÂi with coefficients:

Â0 = A0,

Âi = Ai + λ−1
k

i−1∑

j=0

λ−j
k Ai−j−1vx

∗, i = 1, . . . , ℓ. (1.10)

Then the following properties hold:

1. P̂ (∞)v = 0, i.e., the eigenvalue λk is shifted to infinity, while keeping the same right

eigenvector v.

2. If λr 6∈ {λk,∞} and w 6= 0 are such that P (λr)w = 0, then ŵ 6= 0 such that
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P̂ (λr)ŵ = 0 can be computed by:

ŵ =

(
I −

λr

λk

vx∗

)
w. (1.11)

Proof. The shift of λk to ∞ can be proved by applying Theorem 2 to the reversed matrix

polynomial rev(P (λ)), by shifting λ−1
k to 0. The matrix polynomial P̂ (λ) is the reversed

polynomial of

P̃ (λ) = rev(P (λ))

(
I +

λ−1
k

λ− λ−1
k

vx∗

)
.

Then, we have:

P̃ (λ) =
ℓ∑

i=0

λiAℓ−i

(
I +

λ−1
k

λ− λ−1
k

vx∗

)
.

Adapting (1.9) to last P̃ (λ), we obtain:

Ãℓ = Aℓ−ℓ = A0,

Ãi = Aℓ−i + λ−1
k

ℓ∑

j=i+1

1

λj−i−1
k

Aℓ−jvx
∗, i = 0, . . . , ℓ− 1.

As P̂ (λ) = rev(P̃ (λ)), we get:

Â0 = A0,

Âi = Ai + λ−1
k

i−1∑

j=0

λ−j
k Ai−j−1vx

∗, i = 1, . . . , ℓ.

Now, to prove the second part of the Theorem note that:

P̂ (λr)ŵ = P (λr)

(
I +

λr

λk − λr

vx∗

)(
I −

λr

λk

vx∗

)
w

= P (λr)

(
I +

λr

λk

vx∗ +
λr

λk − λr

vx∗ −
λ2
r

λk(λk − λr)
vx∗

)
w

= P (λr)

(
I +

−λrλk + λ2
r + λrλk − λ2

r

λk(λk − λr)
vx∗

)
w

= P (λr)w = 0.

Remark 5. The new matrix polynomial P̂ (λ) has the same eigenvalues as P (λ), except

for λk that is shifted to ∞.
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Example 1. Consider the following quadratic matrix polynomial discussed in [123]:

P (λ) = λ2A2 + λA1 + A0 = λ2



1 0 0

0 1 0

0 0 0


+ λ



−2 0 1

0 0 0

0 0 0


+



1 0 0

0 −1 0

0 0 1


 ,

where the eigenvalues of P (λ) are: λ1 = 1, λ2 = 1, λ3 = 1, λ4 = −1, λ5 = ∞ and

λ6 = −∞. Let’s shift to infinity the eigenvalue λ1.

Note that if v = [1; 0; 0] is an eigenvector associated with λ1, then the vector x = v is such

that x∗v = 1.

To compute the coefficients of the shifted matrix polynomial P̂ (λ), we use (1.10):

Â0 = A0,

Â1 = A1 + λ−1
1

0∑

j=0

λ−jA−jvx
∗ = A1 + λ−1

1 A0vx
∗,

Â2 = A2 + λ−1
1

1∑

j=0

λ−j
1 A1−jvx

∗ = A2 + λ−1
1

(
A1 + λ−1

1 A0

)
vx∗.

Then we obtain:

P̂ (λ) = λ2Â2 + λÂ1 + Â0 = λ2



0 0 0

0 1 0

0 0 0


+ λ



−1 0 1

0 0 0

0 0 0


+



1 0 0

0 −1 0

0 0 1


 ,

where the eigenvalues of P̂ (λ) are: λ̂1 = ∞, λ̂2 = 1, λ̂3 = −1, λ̂4 = 1, λ̂5 = ∞ and λ̂6 =

−∞. The associated eigenvector to the shifted eigenvalue remains equal, i.e., P̂ (∞)v̂ = 0,

where v̂ = [1; 0; 0].

Moreover, suppose we want to compute the eigenvector v̂4 such that P̂ (−1)v̂4 = 0. From

formula (1.11), we have:

v̂4 =

(
I −

λ4

λ1

vx∗

)
v4 = (I + vx∗) v4 = [0;−1; 0],

where v4 = [0;−1; 0] is such that P (−1)v4 = 0.

In general, to shift m eigenvalues to ∞, we have the following more general result.

Theorem 3. Let P (λ) be an n × n matrix polynomial and its eigenvalues λi 6= 0 ∈ C

with associated eigenvectors vi 6= 0 ∈ C
n, for i = 1, . . . ,m. Consider the n × n matrix
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polynomial P̂ (λ) =
∑ℓ

j=0 λ
j
m

Aj, with coefficients:

m

A0 =
m−1

A0 = · · · =
0

A0 = A0,

m

Ai =
m−1

Ai + λ−1
m

(
i−1∑

j=0

λ−j
m

m−1

A i−j−1

)
m−1
vm

m−1

x∗
m , i = 1, . . . , ℓ, (1.12)

where
0

Ai = Ai.

Then the following properties hold:

• P̂ (∞)vi = 0, i.e., the eigenvalues λi are shifted to infinity, while keeping the same

right eigenvectors vi, for i = 1, . . . ,m.

• If P (λk+1)vk+1 = 0, then the vector
k
vk+1 6= 0 ∈ C

n such that P̂ (λk+1)
k
vk+1 = 0, can

be computed by:

k
vk+1 =

[
k−1∏

j=0

(
I −

λk+1

λk−j

k−j−1
vk−j

k−j−1

x∗
k−j

)]
vk+1, k = 1, . . . ,m− 1, (1.13)

where the vectors
k−j−1

x∗
k−j ∈ C

n satisfy
k−j−1

x∗
k−j

k−j−1
vk−j = 1 and

0
v1 = v1,

0
x1 = x1.

Proof. To get the coefficients
m

Ai, for i = 0, . . . , ℓ, note that we just must apply m times

the Proposition 2, i.e., the matrix polynomial P̂ (λ) is:

P̂ (λ) = P (λ)

(
I +

λ

λ1 − λ
v1x

∗
1

)(
I +

λ

λ2 − λ
v2x

∗
2

)
· · ·

(
I +

λ

λm − λ
vmx

∗
m

)
w.

Note that:

2

P (λ) = P (λ)

(
I +

λ

λ1 − λ
v1x

∗
1

)(
I +

λ

λ2 − λ
v2x

∗
2

)

=
1

P (λ)

(
I +

λ

λ2 − λ
v2x

∗
2

)
,

where the coefficients of
1

P (λ) are:

1

A0 = A0,

1

Ai = Ai + λ−1
1

i−1∑

j=0

λ−j
1 Ai−j−1v1x

∗
1, i = 1, . . . , ℓ.
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Then, the coefficients for
2

P (λ) are given by:

2

A0 =
1

A0 = A0,

2

Ai =
1

Ai + λ−1
2

(
i−1∑

j=0

λ−j
2

1

Ai−j−1

)
1
v2

1

x∗
2, i = 1, . . . , ℓ.

Continuing this m times we obtain that the coefficients for P̂ (λ) are given by:

m

A0 =
m−1

A0 = · · · =
0

A0 = A0,

m

Ai =
m−1

Ai + λ−1
m

(
i−1∑

j=0

λ−j
m

m−1

A i−j−1

)
m−1
vm

m−1

x∗
m , i = 1, . . . , ℓ,

for

k
vk+1 =

[
k−1∏

j=0

(
I −

λk+1

λk−j

k−j−1
vk−j

k−j−1

x∗
k−j

)]
vk+1, k = 1, . . . ,m− 1,

where the vectors
k−j−1

x∗
k−j ∈ C

n satisfy
k−j−1

x∗
k−j

k−j−1
vk−j = 1 and

0
v1 = v1,

0
x1 = x1.

Example 2. Consider the quadratic matrix polynomial P (λ) of Example 1 with eigenval-

ues: λ1 = 1, λ2 = −1, λ3 = 1, λ4 = 1, λ5 = ∞ and λ6 = −∞.

Let’s shift to infinity the eigenvalues λ1 = 1 and λ2 = −1 with corresponding associated

eigenvectors v1 = [1; 0; 0] and v2 = [0;−1; 0]. Consider the vectors: x1 = v1 and x2 = v2

such that x∗
i vi = 1, for i = 1, 2.

To compute the coefficients of the shifted matrix polynomial P̂ (λ), we use (1.12):

2

A0 =
1

A0 =
0

A0 = A0,

2

A1 =
1

A1 + λ−1
2

1

A0
1
v2

1

x∗
2 =

0

A1 + λ−1
1

0

A0
0
v1

0

x∗
1 + λ−1

2 A0
1
v2

1

x∗
2

= A1 + λ−1
1 A0v1x

∗
1 + λ−1

2 A0
1
v2

1

x∗
2,

2

A2 =
1

A2 + λ−1
2

(
1∑

j=0

λ−j
2

1

A1−j

)
1
v2

1

x∗
2 =

1

A2 + λ−1
2

(
1

A1 + λ−1
2

1

A0

)
1
v2

1

x∗
2

=
0

A2 + λ−1
1

(
1∑

j=0

λ−j
1

0

A1−j

)
0
v1

0

x∗
1 + λ−1

2

(
1

A1 + λ−1
2

1

A0

)
1
v2

1

x∗
2

= A2 + λ−1
1

(
A1 + λ−1

1 A0

)
v1x

∗
1 + λ−1

2

(
1

A1 + λ−1
2 A0

)
1
v2

1

x∗
2

= A2 + λ−1
1

(
A1 + λ−1

1 A0

)
v1x

∗
1 + λ−1

2

(
A1 + λ−1

1 A0v1x
∗
1 + λ−1

2 A0

) 1
v2

1

x∗
2.
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Now, we need to compute
1
v2 ∈ C

n. Using (1.13), we obtain:

1
v2 =

(
I −

λ2

λ1

v1x
∗
1

)
v2 =




0

−1

0


 .

Taking
1
x2 =

1
v2, satisfying

1

x∗
2
1
v2 = 1, we obtain:

P̂ (λ) = λ2
2

A2 + λ
2

A1 +
2

A0 = λ2



0 0 0

0 0 0

0 0 0


+ λ



−1 0 1

0 1 0

0 0 0


+



1 0 0

0 −1 0

0 0 1


 .

Note that P̂ (λ) has the eigenvalues: λ̂1 = ∞, λ̂2 = ∞, λ̂3 = 1, λ̂4 = 1, λ̂5 = ∞ and

λ̂6 = −∞.

The following result is a generalization of Theorem 2. It shows how to shift m eigen-

values λi to the values η1, . . . , ηm, with ηi 6= ∞, for i = 1, . . . ,m.

Theorem 4. Let P (λ) be an n × n matrix polynomial and its eigenvalues λi 6= 0 ∈ C

with associated eigenvectors vi 6= 0 ∈ C
n, for i = 1, . . . ,m. Consider the n × n matrix

polynomial P̃ (λ) =
∑ℓ

j=0 λ
j
m

Aj, with coefficients:

m

Aℓ =
m−1

Aℓ = · · · =
0

Aℓ = Aℓ,

m

Ai =
m−1

Ai + (λm − ηm)

(
ℓ∑

j=i+1

λj−i−1
m

m−1

Aj

)
m−1
vm

m−1

x∗
m , i = 0, . . . , ℓ− 1, (1.14)

where
0

Ai = Ai.

Then the following properties hold:

• P̃ (ηi)vi = 0, i.e., the eigenvalues λi are shifted to ηi, while keeping the same right

eigenvectors vi, for i = 1, . . . ,m.

• If P (λk+1)vk+1 = 0, then the vector
k
vk+1 6= 0 ∈ C

n such that P̃ (λk+1)
k
vk+1 = 0, can

be computed by:

k
vk+1 =

[
k−1∏

j=0

(
I −

λk−j − ηk−j

λk+1 − ηk−j

k−j−1
vk−j

k−j−1

x∗
k−j

)]
vk+1, k = 1, . . . ,m− 1, (1.15)

where the vectors
k−j−1

x∗
k−j ∈ C

n satisfy
k−j−1

x∗
k−j

k−j−1
vk−j = 1 and

0
v1 = v1,

0
x1 = x1.
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Proof. For the proof of this Theorem just note that we can apply Theorem 3 to the

reversed matrix polynomial of P̂ (λ) and by shifting λi to ηi.

Example 3. Consider again the quadratic matrix polynomial P (λ) of Example 1 with

eigenvalues: λ1 = 1, λ2 = −1, λ3 = 1, λ4 = 1, λ5 = ∞ and λ6 = −∞.

Let’s shift the eigenvalues λ1, λ2 and λ3 to the values: η1 = −5, η2 = 0 and η3 = 10,

respectively. The corresponding associated eigenvectors with the λi’s are v1 = [1; 0; 0],

v2 = [0;−1; 0] and v3 = [0; 1; 0].

Consider the vectors: x1 = v1 and x2 = v2 such that x∗
i vi = 1, for i = 1, 2, 3. Then,

using (1.14) and (1.15), we find the coefficients of the shifted matrix polynomial P̃ (λ̃):

P̃ (λ̃) = λ̃2Ã2 + λ̃Ã1 + Ã0 = λ̃2



1 0 0

0 1 0

0 0 0


+ λ̃



4 0 1

0 −10 0

0 0 0


+



−5 0 0

0 0 0

0 0 1


 .

The eigenvalues of P̃ (λ) are: λ̃1 = −5, λ̃2 = 0, λ̃3 = 10, λ̃4 = 1, λ̃5 = ∞ and λ̃6 = −∞.
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2.1 Introduction

Invariant pairs, first introduced in [20] and further developed in [82] and [17], are a gen-

eralization of the notion of eigenpair for matrix polynomials. The notion of invariant pair

offers a unified theoretical perspective on the problem of computing several eigenvalue-

eigenvector pairs for a given matrix polynomial and extends the well-known concepts of

standard pair [51] and null pair [9] (or Jordan pair [51]). As noted in the next section,

the notion of invariant pairs can also be applied to more general nonlinear problems, but

in this thesis, we will limit our presentation to matrix polynomials.

In the following section, we present a brief description of the existing theory on this

topic found in some of the references cited above.

2.2 Previous Work on Invariant Pairs

The notion of invariant pairs for a quadratic matrix polynomial Q(λ) is introduced in [20].

In this work, W.-J. Beyn and V. Thümmler consider the quadratic matrix polynomials

that depend on the parameter s ∈ R:

Q(λ, s) = A2(s)λ
2 + A1(s)λ+ A0(s), λ ∈ C

where it is assumed that A2(s), A1(s) and A0(s) are real square matrices depending

smoothly on s. The authors investigate under which conditions smooth solution branches

(X,Λ) = (X(s),Λ(s)) of the equation:

Q(Λ, s)X = A2(s)XΛ2 + A1(s)XΛ + A0(s)X = 0 (2.1)

exist and how to compute them in an efficient way.

For the computation of (X(s),Λ(s)), the work presents a continuation method of

predictor-corrector type (see [39], [79]) applied directly on (2.1), thus avoiding the lin-

earization of the problem. Moreover, in the correction step of the method, a Newton-like

process to generate the sequence (Xi,Λi, si) is studied. Finally, the method is demon-

strated on several numerical examples such as: a homotopy between random matrices, a

model of fluid conveying pipe problem and a traveling wave of a damped wave equation.

In [82], D. Kressner, inspired by the work in [20], studies a generalization of the notion

of invariant pairs. To this end, consider the nonlinear eigenvalue problem:

(f1(λ)A1 + f2(λ)A2 + · · ·+ fm(λ)Am)x = 0 (2.2)

for holomorphic functions f1, . . . , fm : Ω → C (where Ω ⊆ C is an open set) and constant
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matrices A1, . . . , Am ∈ C
n×n.

In this case, an invariant pair (X,S) ∈ C
n×k × C

k×k of (2.2) is defined by:

A1Xf1(S) + A2Xf2(S) + · · ·+ AmXfm(S) = 0,

where the eigenvalues of S are contained in Ω.

Moreover, the work presents a block Newton method to compute such invariant pairs.

An inverse iteration approach is used for finding the initial pair (X0, S0). It is explained

that this method inherits the disadvantages of similar methods for solving linear eigen-

value problems: for instance, its global convergence may be erratic and a single slowly

converging eigenvalue contained in S will hinder the convergence of the entire pair.

Finally, T. Betcke and D. Kressner focus on the invariant pair problem for matrix

polynomials in [17]. They study the behavior of invariant pairs under perturbations

of the matrix polynomial, and a first-order perturbation expansion is given. From a

computational point of view, different ways to extract invariant pairs from a linearization

of the matrix polynomial are analyzed. Moreover, the authors describe a refinement

procedure based on Newton’s method and applied directly on the polynomial formulation.

This computational approach is tested in some numerical experiments.

Later work on invariant pairs can be found in [42], [43], [44], [78], [83], [96], [120].

2.3 Definition and Theory

Definition 9. Let P (λ) be an n × n matrix polynomial. A pair (X,S) ∈ C
n×k × C

k×k,

X 6= 0, is called an invariant pair if it satisfies the relation:

P (X,S) := AℓXSℓ + · · ·+ A2XS2 + A1XS + A0X = 0, (2.3)

where Ai ∈ C
n×n, i = 0, . . . , ℓ, and k is an integer between 1 and nℓ.

Example 4. Consider again the matrix polynomial of Example 4:

P (λ) = λ2



1 0 0

0 1 0

0 0 0


+ λ



−2 0 1

0 0 0

0 0 0


+



1 0 0

0 −1 0

0 0 1


 .

Then (X,S), with:

X =



0 1 0

1 0 1

0 0 0


 , S =



1 0 0

0 1 1

0 0 1


 ,
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is an invariant pair for P (λ).

The eigenvalues of P (λ) are: λ0 = 1 with multiplicity 3, λ1 = −1, λ2 = ∞ and

λ3 = −∞. Note that the eigenvalues of S are λS = 1 with multiplicity 3.

Remark 6.

• Infinite eigenvalues can still be covered by defining invariant pairs for the reversal

polynomial (1.2). If a polynomial has zero and infinite eigenvalues, they have to

be handled by separate invariant pairs, one for the original and one for the reverse

polynomial.

• The definition of an invariant pair is independent of the choice of basis. Indeed, let

T ∈ C
k×k be an invertible matrix and consider X̃ = XT , S̃ = T−1ST . Then, by

multiplying (2.3) by T from the right, we obtain:

A0XT + A1XST + A2XS2T + · · ·+ AℓXSℓT =

A0X̃ + A1X̃T−1ST + A2X̃T−1S2T + · · ·+ AℓX̃T−1SℓT =

A0X̃ + A1X̃S̃ + A2X̃S̃2 + · · ·+ AℓX̃S̃ℓ = 0. (2.4)

Hence, (X̃, S̃) is also an invariant pair.

Note that if S is diagonalizable, then T can be chosen such that: S̃ = T−1ST =

diag(λ1, . . . , λk). More generally, S can always be chosen in Schur (upper triangular)

form.

• The relation (2.4) implies that the columns x̃1, x̃2, . . . , x̃k of the transformed basis X̃

are eigenvectors of P (λ): P (λi)x̃i = 0, x̃i 6= 0. In particular, S can be transformed

into Jordan form: it is then easy to see that the eigenvalues of S form a subset of

the eigenvalues of P (λ).

The following definitions proposed in [17] and [52] will be helpful for our work, for

instance, to allow for rank deficiency in X.

Definition 10. A pair (X,S) ∈ C
n×k × C

k×k is called minimal if there is m ∈ N
∗ such

that:

Vm(X,S) :=




XSm−1

...

XS

X




has full rank. The smallest such m is called minimality index of (X,S).
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Definition 11. An invariant pair (X,S) for a regular matrix polynomial P (λ) of degree

ℓ is called simple if (X,S) is minimal and the algebraic multiplicities of the eigenvalues

of S are identical to the algebraic multiplicities of the corresponding eigenvalues of P (λ).

It is well known that eigenvectors associated with a multiple eigenvalue are unstable

under perturbations, meaning that an arbitrarily small change in the matrix may cause

some of the eigenvectors disappear. In contrast, the notion of invariant pairs offers a

theoretical perspective and a numerically more stable approach to the task of computing

several eigenpairs of a matrix polynomial.

In particular, simple invariant pairs play an important role when using a linearization

approach as in [17], and ensure local quadratic convergence of Newton’s method, as shown

in [82]; see also [120].

2.3.1 Particular Case: Jordan Pairs

Invariant pairs are closely related to the theory of standard pairs presented in [52], and,

in particular, to Jordan pairs. If (X,S) is a simple invariant pair and S is in Jordan form,

then (X,S) is a Jordan pair.

As an example, consider the quadratic matrix polynomial of Example 4:

P (λ) = λ2



1 0 0

0 1 0

0 0 0


+ λ



−2 0 1

0 0 0

0 0 0


+



1 0 0

0 −1 0

0 0 1


 ,

and its eigenvalues: λ0 = 1, with algebraic multiplicity 3, and λ1 = −1, with algebraic

multiplicity 1. A corresponding Jordan pair (X, J) is given by:

X =



0 0 1 0

1 1 0 1

0 0 0 0


 , J = diag

(
−1, 1,

[
1 1

0 1

])
.

2.4 Formulation of the Invariant Pair Problem Using

the Contour Integral

Polynomial eigenpairs and invariant pairs can also be defined in terms of a contour integral.

Indeed, an equivalent representation for (2.3) is the following.
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Proposition 3. [42] A pair (X,S) ∈ C
n×k × C

k×k is an invariant pair if and only if

satisfies the relation:

P (X,S) :=
1

2πı

∮

Γ

P (λ)X(λI − S)−1dλ = 0, (2.5)

where Γ ⊆ C is a contour with the spectrum of S in its interior.

This formulation allows us to choose the contour Γ to compute S with eigenvalues

lying in a particular region of the complex plane. See [7], [10], [18], [19], [43], [50] for

applications of the contour integral formulation.

2.5 Linearized Matrix Equation and Fréchet Deriva-

tive

In this chapter, we analyze the condition number for P (X,S). To this end, we need to

study the matrix equation:

(P +∆P )(X +∆X,S +∆S) = 0, (2.6)

where ∆P (λ) is the perturbation of the matrix polynomial P (λ) defined as:

∆P (λ) = ∆A0 +∆A1λ+∆A2λ
2 + · · ·+∆Aℓλ

ℓ.

Consider ‖∆X‖ < ǫ, ‖∆S‖ < ǫ, ‖∆Ai‖ < ǫ for some sufficiently small ǫ > 0. Omitting

terms of order O(ǫ2) as ǫ → 0, we have the linearized system:

LP (∆X,∆S) = −∆P (X,S) (2.7)

with:

LP : (∆X,∆S) 7→ P (∆X,S) +
ℓ∑

j=1

AjXDSj(∆S),

where DSj denotes the Fréchet derivative of the map S 7→ Sj:

DSj : ∆S 7→

j−1∑

i=0

Si∆SSj−i−1 (2.8)

For example, for ℓ = 2, we have:

LP (∆X,∆S) = A0∆X + A1∆XS + A2∆XS2 + A1X∆S + A2X(∆SS + S∆S).
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2.6 Condition Number and Backward Error for the

Invariant Pair Problem

In the following sections, we present formulations of the backward error and condition

number for an invariant pair (X,S) of the matrix equation (2.3). We follow the ideas

presented in the articles [122] and [63], which give expressions for backward errors and

condition numbers for the polynomial eigenvalue problem and for a solvent of the quadratic

matrix equation.

2.6.1 Condition Number for P (X,S)

A normwise condition number of the invariant pair (X,S) can be defined as:

κ(X,S) = lim sup
ǫ→0





1

ǫ

∥∥∥∥∥

[
∆X

∆S

]∥∥∥∥∥
F∥∥∥∥∥

[
X

S

]∥∥∥∥∥
F

: (P +∆P )(X +∆X,S +∆S) = 0,

‖∆Ai‖F ≤ ǫαi, i = 0, . . . , ℓ

}
(2.9)

The αi are nonnegative weights that provide flexibility in how the perturbations are mea-

sured. A common choice is αi = ‖Ai‖F ; however, if some coefficients are to be left

unperturbed, ∆Ai can be forced to zero by setting αi = 0.

Theorem 5. The normwise condition number of the simple invariant pair (X,S) is given

by:

κ(X,S) =

∣∣∣∣
∣∣∣∣
[
BX BS

]+
BA

∣∣∣∣
∣∣∣∣
2∥∥∥∥∥

[
X

S

]∥∥∥∥∥
F

, (2.10)

where

BX =
ℓ∑

j=0

([
(Sj)T ⊗ Aj

])
, BS =

ℓ∑

j=1

j−1∑

i=0

(
(Sj−i−1)T ⊗ AjXSi

)
,

BA =
[
αℓ(XSℓ)T ⊗ In · · · α0X

T ⊗ In

]
.

Proof. By expanding the first constraint in (2.9) and keeping only the first order terms,
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we get:
ℓ∑

j=0

∆AjXSj +
ℓ∑

j=0

Aj∆XSj +
ℓ∑

j=1

AjXDSj(∆S) = O(ǫ2), (2.11)

where DSj denotes the Fréchet derivative (2.8). Using on equation (2.11) the vec operator
(see A.2), we obtain:

• vec (∆P (X,S)) = vec




ℓ∑

j=0

∆AjXSj


 =

ℓ∑

j=0

vec
(
∆AjXSj

)
=

ℓ∑

j=0

([
(XSj)T ⊗ In

]
vec (∆Aj)

)
=

=
[
αℓ(XSℓ)T ⊗ In · · · α0X

T ⊗ In

]



vec (∆Aℓ)/αℓ

...

vec (∆A0)/α0


 =: BA vec (∆A),

• vec (P (∆X,S)) = vec




ℓ∑

j=0

Aj∆XSj


 =

ℓ∑

j=0

vec
(
Aj∆XSj

)
=

ℓ∑

j=0

([
(Sj)T ⊗Aj

])
vec (∆X) =

=: BX vec (∆X),

• vec




ℓ∑

j=1

AjXDSj(∆S)


 = vec




ℓ∑

j=1

AjX

j−1∑

i=0

Si∆SSj−i−1


 =

ℓ∑

j=1

j−1∑

i=0

vec
(
AjXSi∆SSj−i−1

)
=

=
ℓ∑

j=1

j−1∑

i=0

(
(Sj−i−1)T ⊗AjXSi

)
vec (∆S) =: BS vec (∆S).

Then, we have: [
BX BS

]
y = −BAx+O(ǫ2),

where

y =

[
vec (∆X)

vec (∆S)

]
, and x =




vec (∆Aℓ)/αℓ

...

vec (∆A0)/α0




and therefore

‖y‖2 =

∥∥∥∥∥

[
vec (∆X)

vec (∆S)

]∥∥∥∥∥
2

=

∥∥∥∥∥

[
∆X

∆S

]∥∥∥∥∥
F

.

So we have that the definition (2.9) is equivalent to the following

lim sup
ǫ→0





1

ǫ

‖y‖2∥∥∥∥∥

[
X

S

]∥∥∥∥∥
F

:
[
BX BS

]
y = −BAx+O(ǫ2), ‖x‖2 ≤ ǫ





=

∥∥∥∥
[
BX BS

]+
BA

∥∥∥∥
2∥∥∥∥∥

[
X

S

]∥∥∥∥∥
F

,

where the matrix
[
BX BS

]
has full rank if the invariant pair (X,S) is simple (see [Thm.

7, [17]]).
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Case k=1

In order to better illustrate Theorem 5, let us consider the particular case k = 1. When

k = 1, invariant pairs (X,S) coincide with eigenpairs (x, λ). In this case, the matrices

BX , BS and BA in (2.10) are:

BX =
ℓ∑

j=0

([
(λj)T ⊗ Aj

])
=

ℓ∑

j=0

(
λjAj

)
= P (λ),

BS =
ℓ∑

j=1

j−1∑

i=0

(
(λj−i−1)T ⊗ Ajxλ

i
)
=

ℓ∑

j=1

j−1∑

i=0

(
λj−1Ajx

)
= P ′(λ)x,

BA =
[
αℓλ

ℓxT ⊗ In αℓ−1λ
ℓ−1xT ⊗ In · · · α0x

T ⊗ In

]

Note that:

BAx =
[
αℓλ

ℓxT ⊗ In · · · α0x
T ⊗ In

]



vec (∆Aℓ)/αℓ

...

vec (∆A0)/α0


 =

=vec (λℓ∆Aℓx+ · · ·+∆A0x) = vec (∆P (λ)x) = ∆P (λ)x.

Therefore, we obtain:

[
BX BS

]
y = −BAx+O(ǫ2) ⇔

[
P (λ) P ′(λ)x

] [∆x

∆λ

]
= −∆P (λ)x+O(ǫ2)

⇔ P (λ)∆x+ P ′(λ)x∆λ+∆P (λ)x = O(ǫ2).

The last equation is consistent with the first part of the computation of the condition

number for a nonzero simple eigenvalue λ of P (λ) presented in [Thm. 5, [122]]. The

second part differs, because here we are estimating

∥∥∥∥∥

[
∆x

∆λ

]∥∥∥∥∥
F

, whereas classical condi-

tion numbers for eigenvalue problems typically take into account angles between left and

right eigenvectors. Of course, it would also be interesting to formalize a similar approach

for invariant pairs, based on angles between suitable matrix manifolds (such as partially

developed in [17]).

Remark 7. The nonnegative parameters αi are scaling parameters, which can be chosen

accordingly to the problem. In practice, we choose them as: αi = ‖Ai‖F , for i = 0, . . . , ℓ.
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Numerical Examples

Example 5. Consider Example 4 and the corresponding invariant pair given by:

X =



0 1 0

1 0 1

0 0 0


 , S =



1 0 0

0 1 1

0 0 1


 .

Using the values α2 = ‖A2‖F , α1 = ‖A1‖F and α0 = ‖A0‖F , the condition number for

this problem is:

κ(X,S) = 3.8057.

Example 6. In [82], the following matrix polynomial was discussed:

T (λ) = λ2

[
1 0

0 1

]
+ λ

[
−1 −6

2 −9

]
+

[
0 12

−2 14

]
. (2.12)

It has eigenvalues λ1 = 1, λ2 = 2, λ3 = 3 and λ4 = 4. An invariant pair is given by:

X =

[
1 1

1 1

]
, S =

[
3 0

0 4

]
.

Using the values α2 = ‖A2‖F , α1 = ‖A1‖F and α0 = ‖A0‖F , the condition number for

this problem is:

κ(X,S) = 49.1339.

Example 7. Consider the quadratic matrix polynomial Q(λ) = λ2A2 + λA1 + A0 with

coefficients (see [80]):

A2 =

[
1 −1

1 −1

]
, A1 = A2 − τ

[
1 + τ 0

0 1

]
, A0 = −(A2 + A1). (2.13)

Note that if τ = 0 and S = I2, we have:

A2XS2 + A1XS + A0X = A2X + A2X +−2A2X = 0.

Then, any choice of X ∈ C
2×2 will form an invariant pair (X, I2). Note also that the

matrix P =
[
BX BS

]
in the formula for the condition number (2.10) is:

P =
[
((S2)T ⊗A2 + ST ⊗A1 + Ik ⊗A0) (Ik ⊗A2XS + ST ⊗A2X + Ik ⊗A1X)

]
=

=
[
(I2 ⊗A2 + I2 ⊗A2 + I2 ⊗−(A2 +A2)) (I2 ⊗A2X + I2 ⊗A2X + I2 ⊗A2X)

]
=

=
[
0 3I2 ⊗A2X

]
∈ C

4×8.
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Here, the matrix P has rank 2, i.e., it is rank deficient and thus if τ = 0, then we have:

κ(X,S) = ∞.

Now, we choose X = I2, α2 = ‖A2‖F , α1 = ‖A1‖F , α0 = ‖A0‖F and let us compute

κ(X,S) for different values of τ . We obtain:

τ 10−1 10−2 10−3 10−6 10−10

κ(X,S) 413.5617 42320.1986 4.2416e+006 4.2432e+012 4.7717e+015

Table 2.1: Condition numbers for matrix polynomial (2.13) using different τ

We show that κ(X,S) tends to ∞ as τ → 0.

2.6.2 Backward Error for P (X,S)

Let αi, for i = 0, . . . , ℓ, be nonnegative weights as in Section 2.6.1. The backward error

of a computed solution (X̃, S̃) ∈ C
n×k × C

k×k to (2.3) can be defined as:

η(X̃, S̃) = min{ǫ : (P +∆P )(X̃, S̃) = 0, ‖∆Ai‖F ≤ ǫαi, i = 0, . . . , ℓ} (2.14)

By expanding the first constraint in (2.14) we get:

− P (X̃, S̃) = ∆AℓX̃S̃ℓ + · · ·+∆A0X̃. (2.15)

Then, we have

−P (X̃, S̃) =
[
α−1
ℓ ∆Aℓ . . . α−1

1 ∆A1 α−1
0 ∆A0

]




αℓX̃S̃ℓ

...

α1X̃S̃

α0X̃




Taking the Frobenius norm, we obtain the lower bound for the backward error:

η(X̃, S̃) ≥
‖P (X̃, S̃)‖F

(α2
ℓ‖X̃S̃ℓ‖2F + · · ·+ α2

1‖X̃S̃‖2F + α2
0‖X̃‖2F )

1/2
.
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Consider again equation (2.15). Using the vec operator (see A.2), we obtain:

− vec (P (X̃, S̃)) = ((X̃S̃ℓ)T ⊗ In) vec (∆Aℓ) + · · ·+ (X̃T ⊗ In) vec (∆A0)

=
[
αℓ(X̃S̃ℓ)T ⊗ In . . . α0X̃

T ⊗ In

]



vec (∆Aℓ)/αℓ

...

vec (∆A0)/α0


 ,

which can be written as:

Hz = r, H ∈ C
nk×(ℓ+1)n2

(2.16)

Here we assume that H is full rank , to guarantee that (2.16) has a solution (backward

error is finite). Then the backward error is the minimum 2-norm solution to:

η(X̃, S̃) = ‖H+r‖2, (2.17)

where H+ denotes the Moore-Penrose pseudoinverse of H+.

Eq. (2.17) yields an upper bound for η(X̃, S̃):

η(X̃, S̃) ≤ ‖H+‖2‖r‖2 =
‖r‖2

σmin(H)
,

where σmin denotes the smallest singular value, which is nonzero by assumption. Note

that:

σmin(H)2 = λmin(HH∗) = λmin(α
2
ℓ (X̃S̃ℓ)T X̃S̃ℓ ⊗ In + · · ·+ α2

0X̃
TX ⊗ In) ≥

≥ α2
ℓσmin(X̃S̃ℓ)2 + · · ·+ α2

1σmin(X̃S̃)2 + α2
0σmin(X̃)2.

Thus we obtain the upper bound for η(X̃, S̃):

η(X̃, S̃) ≤
‖P (X̃, S̃)‖F

(α2
ℓσmin(X̃S̃ℓ)2 + · · ·+ α2

1σmin(X̃S̃)2 + α2
0σmin(X̃)2)1/2

.

Case k=1:

In the particular case k = 1, the approximate invariant pair (X̃, S̃) coincides with an

approximate eigenpair (x̃, λ̃). In this case, the definition (2.14) becomes:

η(x̃, λ̃) = min{ǫ : (P +∆P )(x̃, λ̃) = 0, ‖∆Ai‖F ≤ ǫαi, i = 0, . . . , ℓ},

which is the definition of the normwise backward error of an approximate eigenpair (x̃, λ̃)

for P (λ)x = 0, presented in [(2.2), [122]].

Example 8. Let us consider the power plant problem presented in [16] and in [123]. This

is a real symmetric QEP, with P (λ) of size 8× 8, which describes the dynamic behaviour
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of a nuclear power plant simplified into an eight-degrees-of-freedom system. The problem

is ill-conditioned due to the bad scaling of the matrix coefficients.

Figure 2.1: Location of the eigenvalues of the power plant problem

The maximum condition number for the eigenvalues of P (λ), computed by the MAT-

LAB function polyeig, is:

κmax = max
λ∈Λ

condeigλ = 1.0086e+008.

Using the method that will be presented in Section 4.3.1 and Section 4.5, we compute

an invariant pair (X,S) associated with the 11 eigenvalues with largest condition number

inside the contour Γ = γ + ρeiθ (γ = 80 + 10i, ρ = 170). The condition number and

backward error for (X,S) are

κ(X,S) = 565.6746 and η(X,S) = 4.4548e− 017.

Observe that κ(X,S) is significantly smaller than κmax.
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Figure 2.2: Eigenvalues (blue crosses) inside contour Γ = γ+ ρeiθ (γ = 80+10i, ρ = 170)
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3.1 Matrix Solvents: Definition and Theory

In this section we study the matrix solvent problem as a particular case of the invariant

pair problem, and we apply to solvents some results we have obtained for invariant pairs.

Definition 12. Let P (λ) be an n× n matrix polynomial. A matrix S ∈ C
n×n is called a

(right) solvent for P (S) if satisfies the relation:

P (S) := AℓS
ℓ + · · ·+ A2S

2 + A1S + A0 = 0. (3.1)

A special case is, for ℓ = 2, the quadratic matrix equation:

Q(S) := A2S
2 + A1S + A0 = 0,

which has received considerable attention in the literature. For instance, in [62] and [63]

the authors find formulations for the condition number and the backward error. They

also propose functional iteration approaches based on Bernoulli’s method and Newton’s

method with line search to compute the solution numerically.

The relation between eigenvalues of P (λ) and solvents is highlighted in [84]: a corollary

of the generalized Bézout theorem states that if S is a solvent of P (S), then:

P (λ) = L(λ)(λI − S),

where L(λ) is a matrix polynomial of degree ℓ − 1. Then any eigenpair of the solvent S

is an eigenpair of P (λ).

An equivalent representation for (3.1) that uses the contour integral is as follows.

Proposition 4. S ∈ C
n×n is a solvent if and only if

P (S) :=
1

2πı

∮

Γ

P (λ)(λI − S)−1dλ = 0, (3.2)

for any closed contour Γ ⊆ C with the spectrum of S in its interior.

As for invariant pairs, this formulation allows us to choose the contour Γ to compute

S with specific eigenvalues lying in a particular region of the complex plane.

3.1.1 Existence of Solvents

Let us recall some results that will be needed later. The next result is a generalization

of a theorem presented in [63] which gives information about the number of solvents of

P (S).
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Theorem 6. Suppose P (λ) has p distinct eigenvalues {λi}
p
i=1, with n ≤ p ≤ ℓn, and that

the corresponding set of p eigenvectors {vi}
p
i=1 satisfies the Haar condition (every subset

of n of them is linearly independent). Then there are at least

(
p

n

)
different solvents of

P (λ), and exactly this many if p = ℓn, which are given by

S = Wdiag(µi)W
−1, W =

[
w1 · · · wn

]
,

where the eigenpairs (µi, wi)
n
i=1 are chosen among the eigenpairs (λi, vi)

p
i=1 of P .

Note that if we have that p = n in Theorem 6, the distinctness of the eigenvalues is

not needed, and then we have a sufficient condition for the existence of a solvent.

Corollary 1. If P (λ) has n linearly independent eigenvectors v1, v2, . . . , vn, then P (S)

has a solvent.

An example which illustrates this last result is the following. Consider the quadratic

matrix solvent problem (see [38], [63])

Q(S) = S2 +

[
−1 −6

2 −9

]
S +

[
0 12

−2 14

]
.

Q(λ) has eigenpairs (λi, vi):

(λ1, v1) =

(
1,

[
1

0

])
, (λ2, v2) =

(
2,

[
0

1

])
,

(λ3, v3) =

(
3,

[
1

1

])
, (λ4, v4) =

(
4,

[
1

1

])
.

Consider the subsets of eigenvectors: {v1, v2}, {v1, v3}, {v1, v4}, {v2, v3} and {v2, v4}.

Each subset consists of vectors that are linearly independent. Therefore, the complete set

of solvents is: [
1 0

0 2

]
,

[
1 2

0 3

]
,

[
3 0

1 2

]
,

[
1 3

0 4

]
and

[
4 0

2 2

]
.

Note that we cannot construct a solvent whose eigenvalues are 3 and 4 because the

associated eigenvectors are linearly dependent.
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3.2 Condition Number and Backward Error for the

Matrix Solvent Problem

An analysis and a computable formulation for the condition number and backward error

of a solvent can be found in [62] and [63]. These results are given for the case of the

quadratic solvent problem Q(S).

This section presents computable expressions for the condition number and backward

error for the general matrix solvent problem (3.1). We follow the ideas presented in [62],

[63] and [122].

3.2.1 Condition Number of P (S)

We perform here a similar analysis as we did in Section 2.6.1. For self-consistency of the

chapter, we will add all the details of the calculations.

A normwise condition number of the solvent S can be defined by:

κ(S) = lim sup
ǫ→0

{
1

ǫ

||∆S||F
||S||F

: (P +∆P )(S +∆S) = 0, ‖∆Ai‖F ≤ ǫαi, i = 0 : ℓ

}
, (3.3)

where ∆P (λ) =
ℓ∑

i=0

λi∆Ai. The αi are nonnegative weights; in particular, ∆Ai can be

forced to zero by setting αi = 0.

Theorem 7. The normwise condition number of the solvent S is given by:

κ(S) =

∣∣∣
∣∣∣B̂−1

S B̂A

∣∣∣
∣∣∣
2

||S||F
, (3.4)

where

B̂S =
ℓ∑

j=1

j−1∑

i=0

(
(Sj−i−1)T ⊗ AjS

i
)
,

and

B̂A =
[
αℓ(S

ℓ)T ⊗ In αℓ−1(S
ℓ−1)T ⊗ In · · · α0In2

]
.

Proof. By expanding the first constraint in (3.3) and keeping only the first order terms,

we get:
ℓ∑

j=0

∆AjS
j +

ℓ∑

j=1

AjDS
j(∆S) = O(ǫ2), (3.5)

where DSj denotes the Fréchet derivative (2.8). Using on equation (3.5) the vec operator
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(see A.2), we obtain:

• vec (∆P (S)) = vec




ℓ∑

j=0

∆AjS
j


 =

ℓ∑

j=0

vec
(
∆AjS

j
)
=

ℓ∑

j=0

([
(Sj)T ⊗ In

]
vec (∆Aj)

)
=

=
[
αℓ(S

ℓ)T ⊗ In αℓ−1(S
ℓ−1)T ⊗ In · · · α0In2

]




vec (∆Aℓ)/αℓ

vec (∆Aℓ−1)/αℓ−1

...

vec (∆A0)/α0



= B̂A vec (∆A),

• vec




ℓ∑

j=1

AjDS
j(∆S)


 = vec




ℓ∑

j=1

Aj

j−1∑

i=0

Si∆SSj−i−1


 =

ℓ∑

j=1

j−1∑

i=0

vec
(
AjS

i∆SSj−i−1
)
=

=
ℓ∑

j=1

j−1∑

i=0

(
(Sj−i−1)T ⊗AjS

i
)
vec (∆S) = B̂S vec (∆S).

Then, we have that:

B̂S vec (∆S) = −B̂Ax+O(ǫ2),

where

x =




vec (∆Aℓ)
...

vec (∆A0)




Using that ||vec (∆S)||2 = ||∆S||F , we have that the definition (3.3) is equivalent to the

following

lim sup
ǫ→0

{
1

ǫ

||∆S||F
||S||F

: B̂S vec (∆S) = −B̂Ax+O(ǫ2), ‖x‖2 ≤ ǫ

}
=

∣∣∣
∣∣∣B̂−1

S B̂A

∣∣∣
∣∣∣
2

||S||F
.

Example 9. Consider the quadratic matrix polynomial (see [63]):

Q(λ) = λ2A2 + λA1 + A0 = λ2

[
1 0

0 1

]
+ λ

[
0 0

1 0

]
+

[
−1 0

−1 0

]
,

with eigenvalues: −1, 0, 0, 1. Note that there are three solvents for Q(S):

S1 =

[
1 −1

0 −1

]
, S2 =

[
1 0

0 0

]
, S3 =

[
−1 0

−2 0

]
.

Using the parameters α2 = ‖A2‖F , α1 = ‖A1‖F and α0 = ‖A0‖F , the solvent S1 has

condition number:

κ(S1) = 3.63971.
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Note that this condition number κ(S1) is equal to the one found in [63].

Remark 8. For the solvents S2 and S3, the matrix B̂S in Theorem 7 is singular. Then

we have that κ(S2) = ∞ and κ(S3) = ∞.

3.2.2 Backward Error of P (S)

We proceed as in Section 2.6.2 and we obtain bounds for the backward error of P (S).

Let αi, for i = 0, . . . , ℓ, be nonnegative weights as in Section 2.6.1. The backward

error of a computed solution S̃ ∈ C
n×n to (3.1) can be defined as:

η(S̃) = min{ǫ : (P +∆P )(S̃) = 0, ‖∆Ai‖F ≤ ǫαi, i = 0, . . . , ℓ} (3.6)

By expanding the first constraint in (3.6) we get:

− P (S̃) = ∆AℓS̃
ℓ + · · ·+∆A0. (3.7)

Then, we have

−P (S̃) =
[
α−1
ℓ ∆Aℓ α−1

ℓ−1∆Aℓ−1 . . . α−1
1 ∆A1 α−1

0 ∆A0

]




αℓS̃
ℓ

αℓ−1S̃
ℓ−1

...

α1S̃

α0




Taking the Frobenius norm, we obtain the lower bound for the backward error:

η(S̃) ≥
‖P (S̃)‖F

(α2
ℓ‖S̃

ℓ‖2F + α2
ℓ−1‖S̃

ℓ−1‖2F + · · ·+ α2
1‖S̃‖

2
F + α2

0)
1/2

.

Consider again equation (3.7). Using the vec operator (see A.2), we obtain:

− vec (P (S̃)) = ((S̃ℓ)T ⊗ In) vec (∆Aℓ) + · · ·+ (S̃T ⊗ In) vec (∆A1) + In2 vec (∆A0)

=
[
αℓ(S̃

ℓ)T ⊗ In . . . α1S̃
T ⊗ In α0In2

]




vec (∆Aℓ)/αℓ

...

vec (∆A1)/α1

vec (∆A0)/α0



,

which can be written as:

Hz = r, H ∈ C
n2×(ℓ+1)n2

(3.8)

Here, we assume that H has full rank to guarantee that (3.8) has a solution (backward

error is finite). Then, the backward error is the minimum 2-norm solution to the least
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square problem defined from (3.8), that is:

η(T ) = ‖H+r‖2. (3.9)

where H+ denotes the Moore-Penrose pseudoinverse of H+.

Eq. (3.9) yields an upper bound for η(S̃):

η(S̃) ≤ ‖H+‖2‖r‖2 =
‖r‖2

σmin(H)
,

where σmin denotes the smallest singular value, which is nonzero by assumption. Note

that:

σmin(H)2 = λmin(HH∗)

= λmin(α
2
ℓ(S̃

ℓ)T S̃ℓ ⊗ In + · · ·+ α2
1(S̃)

T S̃ ⊗ In + α2
0In2)

= λmin(α
2
ℓ(S̃

ℓ)∗S̃ℓ ⊗ In + · · ·+ α2
1(S̃)

∗S̃ ⊗ In + α2
0In2)

≥ α2
ℓσmin(S̃

ℓ)2 + · · ·+ α2
1σmin(S̃)

2 + α2
0.

Thus we obtain the upper bound for η(S̃):

η(S̃) ≤
‖P (S̃)‖F

(α2
ℓσmin(S̃ℓ)2 + · · ·+ α2

1σmin(S̃)2 + α2
0)

1/2
.

3.3 Computation of Solvents

The question of designing symbolic algorithms for computing solvents remains relatively

unexplored. Attempts have been made to formulate the problem as a system of polynomial

equations, which can be solved via standard methods. However, this approach becomes

cumbersome for problems of large size (see [62]).

Motivated by applications to differential equations [27], we study an approach to the

symbolic or symbolic-numeric computation of solvents based on the moment method, by

specializing the results presented in Section 4.1.

3.3.1 A Computational Approach

Our approach to compute matrix solvents is based on the relation between the matrix

solvent problem (3.1) and the invariant pair problem (2.3). We state this in the following

result.

Theorem 8. Let P (λ) be a n × n matrix polynomial and consider an invariant pair

(Y, T ) ∈ C
n×k × C

k×k of P (λ). If the matrix Y has size n × n, i.e. k = n, and is
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invertible, then S = Y TY −1 satisfies equation (3.1), i.e., S is a matrix solvent of P (λ).

Proof. As (Y, T ) ∈ C
n×n × C

n×n is an invariant pair of P (λ), we have:

AℓY T ℓ + · · ·+ A2Y T 2 + A1Y T + A0Y = 0.

Since Y is invertible, we can post-multiply by Y −1. Then we get:

AℓY T ℓY −1 + · · ·+ A2Y T 2Y −1 + A1Y TY −1 + A0 = 0 ⇔

AℓS
ℓ + · · ·+ A2S

2 + A1S + A0 = 0.

Therefore, S is a matrix solvent of P (λ).

Example 10. Consider again the quadratic matrix polynomial of previous section:

Q(λ) = λ2

[
1 0

0 1

]
+ λ

[
−1 −6

2 −9

]
+

[
0 12

−2 14

]
.

Invariant pairs (Xi, Ti) for P (λ) are given by:

X1 =

[
1 1

1 1

]
, T1 =

[
3 0

0 4

]
; X2 =

[
1 1

1 2

]
, T2 =

[
0 −2

1 3

]
;

X3 =

[
1 3

2 5

]
, T3 =

[
0 −6

1 5

]
; X4 =

[
3 11

4 12

]
, T4 =

[
0 −3

1 4

]
;

X5 =

[
−1 2

1 4

]
, T5 =

[
0 −4

1 5

]
; X6 =

[
1 4

2 6

]
, T6 =

[
0 −8

1 6

]
.

Taking Si = XiTiY
−1
i , for i = 1, . . . , 6, the Si satisfying (3.1) are:

S2 =

[
1 0

0 2

]
, S3 =

[
3 0

1 2

]
, S4 =

[
1 2

0 3

]
, S5 =

[
1 3

0 4

]
and S6 =

[
4 0

2 2

]
.

Note that the matrix X1 is singular and then we can’t construct the solvent S1 associated

to the eigenvalues 3 and 4 (the associated eigenvectors are linearly dependent).

3.3.2 Matrix p-th Root

Consider the matrix equation

Xp − A = 0, (3.10)

where A ∈ C
n×n. A matrix X satisfying (3.10) is called a p-th root of A (see, e.g., [55],

[56], [65], [76], [118]). One application of p-th roots is in the computation of the matrix
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logarithm through the relation (see [30])

logA = p logA
1
p .

When p = 2 we have the matrix equation:

X2 − A = 0. (3.11)

A solution X of (3.11) is called a matrix square root of A (see, e.g., [59], [60], [61], [75],

[100]). In this case, if A is singular, the existence of a square root depends on the Jordan

structure of the zero eigenvalues (see [32]). For instance, the matrix:

A =

[
0 1

0 0

]

has no square root, while the matrix

A =



0 1 0

0 0 0

0 0 0




does have a square root, specifically:

X =



0 0 1

0 0 0

0 1 0


 .

If A is nonsingular, it always has a p-th root. The number of square roots varies from

two (for a nonsingular Jordan block) to infinity (any involutory matrix is a square root

of the identity matrix). Moreover, when A has no non-positive real eigenvalues, one can

define the notion of principal root, denoted by A
1
2 .

The method of reference for computing matrix square roots is to compute a Schur

decomposition, compute a square root of the triangular factor, and then transform back

(see [24] and [60]).

Iterative methods are alternatives for computing p-th roots. In [59], [61], [75], [76],

[100], for instance, several variations of the Newton’s method to approximate the (square

roots) p-th roots are presented.

Note that equation (3.11) is a particular case of the monic matrix solvent problem of

degree p:

P (S) := Sp + Ap−1S
p−1 + · · ·+ A2S

2 + A1S + A0 = 0,
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when the matrices Ai are zero for i = 1, . . . , p − 1. Therefore, we can use our (block)

moment method to construct a solvent S satisfying (3.10) (see Section 4.3.2).

Example 11. Consider the matrix equation (see [118]):

X4 = A,

where:

A =




1 −1 −1 −1

0 1.3 −1 −1

0 0 1.7 −1

0 0 0 2



.

Consider the circle: Γ = 1 + 1
4
eıt. Applying our moment method, which will be presented

in Chapter 4, we construct the matrix solvent X̃:

X̃ =




1 −0.2259665745747 −0.2609342676468 −0.3057660919094

0 1.067789972372 −0.1851709326575 −0.212512633424

0 0 1.141858345435 −0.157829231891

0 0 0 1.189207115003



.

The residual is:

res(X̃) =
‖X̃4 − A‖2

‖A‖2
= 3.1024e− 13.

3.4 Solvents and Triangularized Matrix Polynomials

Motivated by the results in [121] and [124], where the authors analyze a method for

triangularizing the matrix polynomial P (λ), we aim here to study the relation between

solvents of general and triangularized matrix polynomials.

3.4.1 Triangularizing Matrix Polynomials

For any algebraically closed field F, any matrix polynomial P (λ) ∈ F[λ]n×m, with n ≤ m,

can be reduced to triangular form via unimodular transformations. In other words, there

exist matrix polynomials E(λ) and F (λ) with nonzero constant determinant such that:

T (λ) = E(λ)P (λ)F (λ),

where T (λ) is monic triangular and preserves the degree and the finite and infinite ele-

mentary divisors of P (λ) [121], [124].
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Theorem 9. [121] For an algebraically closed field F, any P (λ) ∈ F[λ]n×m with n ≤ m

is triangularizable.

A continuation, we recall the procedure to triangularize a quadratic matrix polynomial

Q(λ) (see [121]).

3.4.2 Procedure to Triangularize a Quadratic Matrix Polyno-

mial

Theorem 1.7 in [51] shows that any complex matrix polynomial of degree ℓ, with non-

singular leading coefficient, is equivalent to a monic triangular matrix polynomial of the

same degree. In this section, we recall the procedure for ℓ = 2, i.e., for the quadratic

matrix polynomial Q(λ).

1. Compute the invariant factors: α1(λ) | α2(λ) | · · · | αn(λ) of Q(λ) and consider

D(λ) = diag(α1(λ), . . . , αn(λ)).

2. If deg(α1) = 2, then deg(αi) = 2, i = 2 : n. Then D(λ) is a monic triangu-

lar quadratic matrix polynomial equivalent to Q(λ) and the construction is done.

Otherwise, go to Step 3.

3. If ℓ1 = deg(α1) < 2, then ℓn = deg(αn) > 2 and there is a monic polynomial s(λ)

of degree ℓn − 2 such that αj−1(λ) | α1(λ)s(λ) | αj, for some index j, 1 < j ≤ n.

The s(λ) is the product of αj−1(λ)/α1(λ) and some of the factors in the prime

factorization of αj(λ)/αj−1(λ).

4. Perform the following elementary transformations on D(λ):

(i) Add to column n the first column multiplied by s(λ). Then add to row n the

first row multiplied by −αn(λ)/(α1(λ)s(λ)) and permute columns 1 and n.

(ii) Successively interchange rows k and k + 1 for k = 1, 2, . . . , j − 2, so that rows

1, 2, . . . , j−2, j−1 of the new matrix are rows 2, 3, . . . , j−1 and 1, respectively,

of the former one.

(iii) Permute columns 1 to j − 1 in the same way as the rows in (ii).
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The resulting matrix polynomial has the form:

T1(λ) =




α2(λ)
. . .

αj−1(λ)

α1(λ)s(λ) · · · · · · α1(λ)

αj(λ)
...

. . .

αn−1(λ)
...

−αn(λ)/s(λ)




.

5. Let D1(λ) = diag(α2(λ), . . . , αj−1(λ), α1(λ)s(λ), . . . , αn−1(λ)). If D1(λ) is diagonal

of degree 2, the construction is done; otherwise, use D1(λ) to choose the new index

j and polynomials s(λ) as in Step 3 and perform the elementary transformations

described in Step 4 on the whole matrix T1(λ). Repeat these steps until all diagonal

entries have degree 2.

What can we say about solvents for a given matrix polynomial P (λ) and for the

associated triangularized polynomial? A partial answer will be given in Theorem 11.

Theorem 10. For any ℓn × ℓn monic linearization λI − A of P (λ) ∈ C[λ]n×n with

nonsingular leading coefficient, there exists U ∈ C
n×ℓn with orthogonal columns such that

M =




U

UA
...

UAℓ−1




is nonsingular and λI − MAM−1 is a linearization for the polynomial

T (λ) = λℓI + λℓ−1Tℓ−1 + · · ·+ λ2T2 + λT1 + T0, which is upper triangular and equivalent

to P (λ).

Theorem 10 is a straightforward generalization of a result found in [124]. Note that,

for the time being, we assume that the leading coefficient Aℓ is nonsingular.

Theorem 11. Let P (λ) be a n× n matrix polynomial and consider the linearization:

A =




0 In 0 · · · 0

0 0 In · · · 0
...

...
...

. . .
...

0 0 0 · · · In

−A0 −A1 −A2 · · · −Aℓ−1



.
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Let M be as in Theorem 10 and let Y1 be the first n× n block of the matrix

M−1




In

St

...

Sℓ−1
t



. If Y1 is nonsingular and St is a solvent for the triangularized problem, i.e.,

T (St) = 0, then S = Y1StY
−1
1 is a solvent for P (S).

Proof. Note that:




0

0
...

0



=




St − St

S2
t − S2

t
...

−T0 − T1St − T2S
2
t − · · · − Sℓ

t



=

=




0 In 0 · · · 0

0 0 In · · · 0
...

...
...

. . .
...

0 0 0 · · · In

−T0 −T1 −T2 · · · −Tℓ−1







In

St

...

Sℓ−1
t



−




St

S2
t
...

Sℓ
t



=

= M−1




0 In 0 · · · 0

0 0 In · · · 0
...

...
...

. . .
...

0 0 0 · · · In

−T0 −T1 −T2 · · · −Tℓ−1



MM−1




In

St

...

Sℓ−1
t



−M−1




In

St

...

Sℓ−1
t



St

(iii)
=

=




0 In 0 · · · 0

0 0 In · · · 0
...

...
...

. . .
...

0 0 0 · · · In

−A0 −A1 −A2 · · · −Aℓ−1



M−1




In

St

...

Sℓ−1
t



−M−1




In

St

...

Sℓ−1
t



St.

Since M−1




In

St

...

Sℓ−1
t




has size ℓn × n, let us partition it as




Y1

Y2

...

Yℓ



, where Yi ∈ C

n×n for
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i = 1, . . . , ℓ. Then:




0 In 0 · · · 0

0 0 In · · · 0
...

...
...

. . .
...

0 0 0 · · · In

−A0 −A1 −A2 · · · −Aℓ−1







Y1

Y2

...

Yℓ



−




Y1

Y2

...

Yℓ



St =

[
0

0

]
.

Then we have:

Yi = Y1S
i−1
t , for i = 2, . . . , ℓ; (3.12)

−A0Y1 − A1Y2 − · · · − Aℓ−1Yℓ − YℓSt = 0. (3.13)

Substituting equations (3.12) in (3.13) we obtain:

0 = Y1S
ℓ
t + Aℓ−1Y1S

ℓ−1
t + · · ·+ A1Y1St + A0Y1.

If Y1 is invertible we have:

0 = Y1S
ℓ
tY

−1
1 + Aℓ−1Y1S

ℓ−1
t Y −1

1 + · · ·+ A1Y1StY
−1
1 + A0.

Taking S = Y1StY
−1
1 we have:

0 = Sℓ + Aℓ−1S
ℓ−1 + · · ·+ A2S

2 + A1S + A0 := P (S).

Then S = Y1StY
−1
1 is a solvent for P (S).

Example 12. Consider the matrix polynomial:

P (λ) = λ2

[
1 0

0 1

]
+ λ

[
−1 −6

2 −9

]
+

[
0 12

−2 14

]
.

Let us triangularize P (λ) using the procedure in Section 3.4.2. One possible result is:

T (λ) =

[
(λ− 1)(λ− 2) 1

0 (λ− 3)(λ− 4)

]
=

[
λ2 − 3λ+ 2 1

0 λ2 − 7λ+ 12

]
=

= λ2

[
1 0

0 1

]
+ λ

[
−3 0

0 −7

]
+

[
2 1

0 12

]
= λ2I2 + λT1 + T0.

Now, suppose that the solvent St ∈ C
2×2 of the triangularized problem is in upper trian-
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gular form, i.e.:

St =

[
a b

0 d

]
.

Then, we have:

T (St) = S2
t + T1St + T0 =

[
a2 − 3a+ 2 ab− 3b+ bd+ 1

0 d2 − 7d+ 12

]
.

In the task of solving the problem T (St) = 0, we see that:





a2 − 3a+ 2 = 0

ab− 3b+ bd+ 1 = 0

d2 − 7d+ 12 = 0

=⇒
a = 1 or a = 2

d = 3 or d = 4

Then, we have four cases:

Case 1: If a = 1 and d = 3, then b = −1. We have:

St1 =

[
1 −1

0 3

]
.

Case 2: If a = 1 and d = 4, then b = −1
2
. We have:

St2 =

[
1 −1

2

0 4

]
.

Case 3: If a = 2 and d = 3, then b = −1
2
. We have:

St3 =

[
2 −1

2

0 3

]
.

Case 4: If a = 2 and d = 4, then b = −1
3
. We have:

St4 =

[
2 −1

3

0 4

]
.

Having the solvents Sti for the triangularized problem, we would like to find the (associated)

solvents Si for the original problem P (λ).
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Consider the linearization of P (λ):

A =

[
0 I2

−A0 −A1

]
=




0 0 1 0

0 0 0 1

0 −12 1 6

2 −14 −2 9



,

and the matrix M :

M =

[
U

UA

]
=




−20 15 8 −7

−2 0 2 0

−14 2 2 0

0 −24 0 12



.

Now, compute M−1

[
I2

Sti

]
for i = 1, . . . , 4. Taking Yi as the first 2× 2 block of this result

and computing Si = YiStiY
−1
i , we have:

S1 =

[
1 2

0 3

]
, S2 =

[
1 3

0 4

]
, S3 =

[
3 0

1 2

]
and S4 =

[
4 0

2 2

]
.

By Theorem 11, the Si are solvents for P (S), i.e., they satisfy P (Si) := S2
i +A1Si+A0 = 0

for i = 1, . . . , 4.

Note that in the description of the procedure to triangularize a quadratic matrix

polynomial in Section 3.4.2, we have the freedom when choosing the polynomial s(λ).

Therefore, the final triangularization for the matrix polynomial will change depending on

our choice. Moreover, the number of solvents may also change.

To demonstrate this, consider the following example.

Example 13. Consider again the matrix polynomial P (λ) of Example 12, but now with

its different triangularization:

T̂ (λ) =

[
(λ− 1)(λ− 3) 1

0 (λ− 2)(λ− 4)

]
=

[
λ2 − 4λ+ 3 1

0 λ2 − 6λ+ 8

]
=

= λ2

[
1 0

0 1

]
+ λ

[
−4 0

0 −6

]
+

[
3 1

0 8

]
= λ2I2 + λT1 + T0.

Suppose that the solvent St ∈ C
2×2 of the triangularized problem is in upper triangular

form, i.e.:

St =

[
a b

0 d

]
.
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Then, we have:

T̂ (St) = S2
t + T1St + T0 =

[
a2 − 4a+ 3 ab+ bd− 4b+ 1

0 d2 − 6d+ 8

]
.

When solving the problem T (St) = 0, we see that:





a2 − 4a+ 3 = 0

ab+ bd− 4b+ 1 = 0

d2 − 6d+ 8 = 0

=⇒
a = 1 or a = 3

d = 2 or d = 4

Then, we have four cases:

Case 1: If a = 1 and d = 2, then b = 1. We have:

St1 =

[
1 1

0 2

]
.

Case 2: If a = 1 and d = 4, then b = −1. We have:

St2 =

[
1 −1

0 4

]
.

Case 3: If a = 3 and d = 2, then b = −1. We have:

St3 =

[
3 −1

0 2

]
.

Case 4: If a = 3 and d = 4, then b = −1
3
. We have:

St4 =

[
3 −1

3

0 4

]
.

Having the solvents Sti for the triangularized problem, we would like to find the (associated)

solvents Si for the original problem P (λ).

Consider the linearization of P (λ):

A =

[
0 I2

−A0 −A1

]
=




0 0 1 0

0 0 0 1

0 −12 1 6

2 −14 −2 9



,
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and the matrix M :

M =

[
U

UA

]
=




2
3

13
3

1
3

−5
3

2 −5 −2 3

−10
3

58
3

13
3

−26
3

6 −18 −6 10



.

Now, compute M−1

[
I2

Sti

]
for i = 1, . . . , 4. Taking Yi as the first 2× 2 block of this result

and computing Si = YiStiY
−1
i , we have:

S1 =

[
1 0

0 2

]
, S2 =

[
1 3

0 4

]
, S3 =

[
3 0

1 2

]
.

Note that the matrix Y4 is equal to:

Y4 =

[
1 4

3

1 4
3

]
.

This matrix is singular and then we can’t construct the solvent S4 associated to the eigen-

values 3 and 4 (the associated eigenvectors are linearly dependent).

By Theorem 11, the Si are solvents for P (S), i.e., they satisfy P (Si) := S2
i + A1Si +

A0 = 0 for i = 1, 2, 3.

Remark 9. The computation of the matrix M in the Examples 12 and 13 was done

following the proof of Theorem 5.2 in [121].

3.4.3 A Problem with an Infinite Number of Solvents

What happens to the ideas outlined above when working on problems with an infinite

number of solvents? Here is an example taken from [111].

Consider the matrix polynomial:

P (λ) = λ2I + λ



−7 −2 −2
3
31

−203
31

8
31

−13
31

−40
31

−231
31


+



13 9 7
−21
31

294
31

−36
31

60
31

183
31

435
31


 .
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One possible triangularization for P (λ) is:

T (λ) =



(λ− 3)(λ− 4) (λ− 3) 0

0 (λ− 3)2 1

0 0 (λ− 4)2


 = λ2I2 + λT1 + T0 =

= λ2I + λ



−7 1 0

0 −6 0

0 0 −8


+



12 −3 0

0 9 1

0 0 16


 .

Now, suppose that the solvent St ∈ C
3×3 of the triangularized problem is in upper trian-

gular form, i.e.:

St =



x11 x12 x13

0 x22 x23

0 0 x33


 .

Then, we have:

T (St) =S2
t + T1St + T0 =

=







(x11 − 3)(x11 − 4) x22 − 7x12 + x11x12 + x12x22 − 3 x23 − 7x13 + x11x13 + x12x23 + x13x33

0 (x22 − 3)2 x22x23 − 6x23 + x23x33 + 1

0 0 (x33 − 4)2






.

In the task of solving the problem T (St) = 0, we see that: x11 = 3 or x11 = 4, x22 = 3

and x33 = 4. Then we have two cases:

I. If x11 = 3, x22 = 3 and x33 = 4:

Then we find that x23 = −1, x12 = 0 and x12 = −1, which is a contradiction. In

this case, there is no solution and then we can’t construct a solvent.

II. If x11 = 4, x22 = 3 and x33 = 4:

Then we find that x23 = −1 and x13 = x12 + 1. In this case, the solvent St has the

form:

St =



4 x12 x12 + 1

0 3 −1

0 0 4


 =



4 0 1

0 3 −1

0 0 4


+ x12



0 1 1

0 0 0

0 0 0


 ,

for x12 ∈ C.

Thus T (λ) has an infinite number of solvents and the same holds for P (λ).
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4.1 Introduction

Numerical methods based on contour integrals for the computation of eigenvalues of ma-

trix polynomials and analytic matrix-valued functions have recently met with growing

interest. Such techniques are related to the well-known method of moments, where the

moments are computed by numerical quadrature (see [53]).

In this section, we explore a similar approach for computing invariant pairs. Our main

reference is the Sakurai-Sugiura method (see [7] and [115]) as well as the presentation

given in [18].

4.2 Toeplitz and Hankel Matrices

A Toeplitz matrix is a matrix where each descending diagonal from left to right is constant

(see [54]). Formally:

Definition 13. An n×n matrix T is Toeplitz if there exist scalars r−n+1, . . . , r0, . . . , rn−1

such that [T ]ij = ri−j for 1 ≤ i, j ≤ n.

Then, an n× n Toeplitz matrix has the form:

T =




r0 r−1 r−2 . . . . . . r−n+1

r1 r0 r−1
. . .

...

r2 r1
. . . . . . . . .

...
...

. . . . . . . . . r−1 r−2

...
. . . r1 r0 r−1

rn−1 . . . . . . r2 r1 r0




.

The Toeplitz structure can be exploited to design fast algorithms for fundamental

problems such as solving linear systems. For instance, when T is symmetric and positive

definite, the Toeplitz system Tx = b can be solved in O(n2) flops. This is due to the

structure of the inverse T−1.

Definition 14. An n×n matrix H is Hankel if there exist scalars h0, . . . , h2n−2 such that

[H]i+1,j+1 = hi+j for i, j = 0, 1, . . . , n− 1.

Then, an n× n Hankel matrix has the form:

H =




h0 h1 · · · hn−1

h1 h2 · · · hn

...
...

...

hn−1 hn · · · h2n−2



.
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Define the “flip matrix”:

En =




0 0 · · · 0 1

0 0 · · · 1 0
...

...
...

...

0 1 · · · 0 0

1 0 · · · 0 0



.

Then, an n × n matrix H is Hankel if and only if it can be written as H = T En, where

T is a suitable Toeplitz matrix. Conversely, an n × n matrix T is Toeplitz if and only if

T = H En, where T is a suitable Hankel matrix.

4.3 The Moment Method and Eigenvalues

Let us begin by briefly recalling a few basic facts about the Sakurai-Sugiura moment

method. Here, we essentially follow the presentation given in [7].

Let P (λ) be an n×n matrix polynomial and let Γ be a closed contour in the complex

plane and let u and v be arbitrarily given vectors in C
n. Define the function:

f(λ) := uHP (λ)−1v.

In the following, it will be understood that no eigenvalue of P (λ) should lie exactly on

the contour Γ: each eigenvalue should be either inside or outside the contour.

The next theorem, which can be found in [7], gives a representation for f(λ) that will

be useful later on.

Theorem 12. [Thm. 3.1, [7]] Let D(λ) = diag (d1(λ), . . . , dn(λ)) be the Smith form of

P (λ), and let E(λ) and F (λ) be as in (1.7). Let χj(λ) = uHqj(λ)pj(λ)
Hv, 1 ≤ j ≤ n.

Then

f(λ) =
n∑

j=1

χj(λ)

dj(λ)
, (4.1)

where qj(λ) and pj(λ) are the column vectors of E(λ) and F (λ)H , respectively.

Definition 15. Let k ∈ N. The k-th moment of f(z) is:

µk =
1

2πı

∮

Γ

zkf(z)dz. (4.2)
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For a positive integer m, define the Hankel matrices H0, H1 ∈ C
m×m as follows:

H0 =




µ0 µ1 · · · µm−1

µ1 µ2 · · · µm

...
...

...

µm−1 µm · · · µ2m−2



, H1 =




µ1 µ2 · · · µm

µ2 µ3 · · · µm+1

...
...

...

µm µm+1 · · · µ2m−1



. (4.3)

The eigenvalue algorithm presented in [7] relies on the following result:

Theorem 13. [Thm. 3.4, [7]] Suppose that the polynomial P (λ) has exactly m eigenvalues

λ1, . . . , λm in the interior of Γ, and that these eigenvalues are distinct, simple and non

degenerated. If χn(λℓ) 6= 0 for 1 ≤ ℓ ≤ m, then the eigenvalues of the pencil H1 − λH0

are given by λ1, . . . , λm.

So, in order to approximate λ1, . . . , λm, it suffices to compute by quadrature the first

2m moments of f(λ) and then apply an eigensolver, such as the QZ method (see A.5), to

the resulting Hankel pencil. Block versions of this approach have also been proposed; we

will say more on this later.

We now wish to investigate the behavior of the above method when the hypothesis

that the λi’s are distinct is removed. In particular, we aim to generalize Theorem 13,

which is based on the Vandermonde factorization of H0 and H1.

Theorem 14. Suppose that P (λ) has exactly m eigenvalues in the interior of Γ, namely,

distinct eigenvalues λ0, . . . , λs with algebraic multiplicities m0, . . ., ms, respectively, such

that m = m0 + · · · + ms. Moreover, assume that no eigenvalue of P (λ) lies exactly on

the contour Γ. If the geometric multiplicity of the λi’s, for i = 0, . . . , s, is equal to one,

then the matrix H0 is nonsingular and eigenvalues of the pencil H1 − λH0 are given by

λ0, . . . , λs with algebraic multiplicities m0, . . . ,ms.

Proof. Suppose that, in the Smith form (1.7) of P (λ), the matrix D(λ) is in the form

D(λ) = diag(d1(λ), . . . , dn−1(λ), dn(λ)), where

dn(λ) = (λ− λ0)
m0(λ− λ1)

m1 · · · (λ− λs)
ms

r∏

i=s+1

(λ− λi)
mi ,

and λs+1, . . . , λr are the eigenvalues of P (λ) located outside the contour Γ, with algebraic

multiplicities ms+1, . . . ,mr. Moreover, define d̃n(λ) =
∏s

i=0(λ − λi)
mi , i.e., d̃n(λ) is the

factor of dn(λ) whose roots are the eigenvalues of P (λ) located inside Γ.

Since the geometric multiplicities of the λi’s are all equal to one, the factors (λ− λi),

for i = 0, . . . , s, do not appear in the monic scalar polynomials d0(λ), . . . , dn−1(λ).
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Applying Theorem 12, we have:

µk =
1

2πı

∮

Γ

zkf(z)dz =
1

2πı

∮

Γ

n∑

j=1

χj(z)

dj(z)
zkdz =

=
1

2πı

∮

Γ

ϕ(z)

dn(z)
zkdz,

where

ϕ(z) =
n∑

j=1

χj(z)hj(z), with hj(z) =
dn(z)

dj(z)
.

We can introduce partial fraction decompositions and write

µk =
1

2πı

∮

Γ

ϕ(z)

dn(z)
zkdz =

=
1

2πı

∮

Γ

(
m0∑

i=1

c0,iz
k

(z − λ0)i
+ · · ·+

ms∑

i=1

cs,iz
k

(z − λs)i

)
dz =

=
s∑

j=0

mj∑

i=1

1

2πı

∮

Γ

cj,iz
k

(z − λj)i
dz,

where cj,i ∈ C, for j = 0, . . . , s and i = 1, . . . ,mj. Classical results on residues then yield

µk =
s∑

j=0

mj∑

i=1

cj,iRes

(
zk

(z − λj)i
, λj

)
=

=
s∑

j=0

mj∑

i=1

cj,i
1

(i− 1)!
lim
z→λj

di−1

dzi−1

(
(z − λj)

i zk

(z − λj)i

)
=

=
s∑

j=0

mj∑

i=1

cj,i
1

(i− 1)!
lim
z→λj

di−1

dzi−1

(
zk
)
=

=
s∑

j=0

mj∑

i=1

νj,iλ
k−i+1
j , (4.4)

where

νj,i =

{
cj,i

(i−1)!
(k − i+ 2)(k − i+ 3) · · · k if k ≥ i− 1,

0 otherwise.

Now, consider the pencil H1 − λH0 with H0 and H1 defined as in (4.3). Because of

(4.4), and of the fact that λ0, . . . , λs are roots of d̃n(λ), the moments µk satisfy a linear

recurrence equation of the form:

µk = am−1µk−1 + am−2µk−2 + · · ·+ a0µk−m. (4.5)
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Moreover, d̃n(λ) is the polynomial of smallest degree that has roots λ0, . . . , λs with the

prescribed multiplicities m0, . . . ,ms, so the recurrence (4.5) has the shortest possible

length; also, note that the ai’s in (4.5) are actually the coefficients of d̃n(λ). Therefore,

the matrices H0 and H1 have full rank. The same argument shows that H0 and H1 are

rank-deficient if taken of size larger than m × m (see [103], [[48], Vol. 2, pp. 205)] and

[25]).

As a consequence of the shifted Hankel form of H0 and H1, we have H0C = H1, where

C is a matrix in companion form

C =




0 0 · · · 0 x0

1 0 · · · 0 x1

0 1 · · · 0 x2

...
...

. . .
...

...

0 0 · · · 1 xm−1



,

and its last column is given by the solution of the linear system

H0




x0

x1

...

xm−1



=




µm

µm+1

...

µ2m−1



. (4.6)

The polynomial of degree m:

p(λ) = λm − xm−1λ
m−1 − · · · − x0

is a scalar multiple of d̃n(λ), and its roots are the λi’s generating the entries of the pencil

H1 − λH0. So we also have that the µi’s satisfy the recurrence (4.5):

µk = xm−1µk−1 + xm−2µk−2 + · · ·+ x0µk−m,

where k = m,m+ 1, . . . , 2m.

Consider now the Jordan matrix

J =




J1
. . .

Js


 ,
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where each block Ji, of dimension mi, is a square matrix of the form

Ji =




λi 1

λi
. . .
. . . 1

λi



,

and define the confluent Vandermonde matrix

V =
(
v JTv · · · (JT )r−1v

)
,

where vT =
(
e
[m1]T
1 · · · e

[ms]T
1

)
is partitioned conformally with J and e

[mℓ]T
1 =

(
1 0 · · · 0

)T

is the mℓ-dimensional unit coordinate vector. Then we have

V C =
(
v JTv · · · (JT )r−1v

)
C

=
(
JTv · · · (JT )r−1v −(x0I + x1J + · · ·+ xm−1J

r−1)Tv
)

=
(
JTv · · · (JT )r−1v (JT )rv

)

= JTV,

where we have used the property p(J) = 0, that is, the Cayley-Hamilton theorem.

We can now introduce the Vandermonde decomposition of the Hankel matrices H0

and H1. From the results presented in [25] it follows that there exist block matrices

B0 = diag(D
(0)
1 , . . . , D

(0)
s ) and B1 = diag(D

(1)
1 , . . . , D

(1)
s ), partitioned conformally with J ,

satisfying the conditions B0J
T = JB0 and B1J

T = JB1, so that

Hi = V TBiV, for i = 0, 1.

Moreover, we can prove that JB0 = B1:

H0C = H1 ⇔ (V TB0V )C = V TB1V ⇔ V TB0J
TV = V TB1V

⇔ V TJB0V = V TB1V ⇔ JB0 = B1,

where we used the properties V C = JTV and BiJ
T = JBi.

Therefore, we have:

H1 − λH0 = V TB1V − λV TB0V = V TJB0V − λV TB0V

= V T (J − λI)B0V.
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So the eigenvalues ofH1−λH0 are λ0, . . . , λs with respective multiplicitiesm0, . . . ,ms.

Example 14. Consider the matrix polynomial:

P (λ) = λ2I + λ




−2 0 0 0

0 −1 0 0

0 0 −6 0

0 0 0 −5



+




1 0 0 1

0 1
4

0 0

0 0 9 0

0 0 0 6



.

P (λ) has eigenvalues: λ1 = 1
2
, λ2 = 1, λ3 = 2, λ4 = 3 with algebraic multiplicities: m1 =

2,m2 = 2,m3 = 1,m4 = 3. The associated Smith form is:

D(λ) = diag (

(
1, 1, 1, (λ−

1

2
)2(λ− 1)2(λ− 2)(λ− 3)3

)
.

Choosing vectors u =
[
2 −2 1 −1

]T
and v =

[
0 1 0 2

]T
, we find that:

H0 =




−3 −7 −9 −21
2

−7 −9 −21
2

−12

−9 −21
2

−12 −109
8

−21
2

−12 −109
8

−123
8



, H1 =




−7 −9 −21
2

−12

−9 −21
2

−12 −109
8

−21
2

−12 −109
8

−123
8

−12 −109
8

−123
8

−551
32



.

Then, we have:

C = H−1
0 H1 =




0 0 0 −1
4

1 0 0 3
2

0 1 0 −13
4

0 0 1 3



.

Note that the eigenvalues of C are 1
2
, 1
2
, 1, 1. Moreover, the companion matrix C is asso-

ciated with the monic polynomial:

p(λ) = λ4 − 3λ3 +
13

4
λ2 −

3

2
λ+

1

4
,

whose roots are indeed 1
2
, 1
2
, 1, 1.

In fact, the Vandermonde factorization for H0 and H1 is Hi = V TBiV , i = 0, 1, where

V =




1 1
2

1
4

1
8

0 1 1 3
4

1 1 1 1

0 1 2 3



, B0 =




0 −2 0 0

−2 0 0 0

0 0 −3 −2

0 0 −2 0



, B1 =




−2 −1 0 0

−1 0 0 0

0 0 −5 −2

0 0 −2 0



,
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and JB0 = B1, with

J =




1
2

1 0 0

0 1
2

0 0

0 0 1 1

0 0 0 1



.

Example 15. Consider the quadratic matrix polynomial:

P (λ) = λ2




1 0 0

2 1 0

−1 1 −2


+ λ




0 0 0

−4 −2 0

2 −2 4


+



−2 1 −2

2 1 0

−1 1 −2


 ,

with associated Smith form:

D(λ) = diag ((d1(λ), d2(λ), d3(λ)) =



1 0 0

0 (λ− 1)2 0

0 0 (λ− 1)3(λ+ 1)


 .

The Jordan matrix associated with the linearized form of P (λ) is:

J =

[
J1 0

0 J2

]
,

where each block Ji is:

J1 =

[
1 1

0 1

]
, J2 =




−1 0 0 0

0 1 1 0

0 0 1 1

0 0 0 1



.

Note that we have the eigenvalue λ = 1 in different Jordan blocks.

Choose Γ as the circle ϕ(t) = 1+ 1
10
eıt, which contains 5 eigenvalues λ = 1, and consider

vectors u =
[
3 1 −2

]T
and v =

[
3 −1 −2

]T
. Theorem 14 implies that the moment

method yields the eigenvalues of P (λ) inside the contour, which are roots of d3(λ), i.e.,

λ0 = 1 with multiplicity m0 = 3. Let us compute the matrices H0 and H1 of size 3× 3:

H0 =



7 3 3

3 3 7

3 7 15


 , H1 =



3 3 7

3 7 15

7 15 27


 .
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The matrix H0 is nonsingular. Then, we have:

C = H−1
0 H1 =



0 0 1

1 0 −3

0 1 3


 .

Note that eig(C) = 1, 1, 1.

As the contour contains 5 eigenvalues, we might ask what happens when taking the

Hankel matrix Ĥ0 of size 5× 5:

Ĥ0 =




7 3 3 7 15

3 3 7 15 27

3 7 15 27 43

7 15 27 43 63

15 27 43 63 63



.

This matrix is singular, therefore we will not be able to find all the 5 eigenvalues inside

the contour. The method miss the additional multiplicities associated with the polynomial

d2(λ).

Remark 10. We conclude that the scalar moment method can be used to compute the

(possibly multiple) eigenvalues of P (λ) that belong to the interior of Γ and that are roots

of the polynomial dn(λ). The method misses the additional multiplicities associated with

the polynomials d1(λ), . . . , dn−1(λ).

The above remark is consistent with the fact that the Jordan form of a companion

matrix only contains one Jordan block for each eigenvalue: it is not possible to capture

multiple eigenvalues associated with several Jordan blocks.

In order to “see” the additional eigenvalues that are roots of d1(λ), . . . , dn−1(λ), the

block version of the moment method may be useful (see Section 4.3.2).

4.3.1 Computing Invariant Pairs via Moment Pencils

Let Γ be a closed contour, λ1, . . . , λm all the eigenvalues of P (λ) in the interior of Γ and

the matrices H0 and H1 defined as in (4.3).

For k = 0, 1, . . . ,m− 1 and a nonzero vector v ∈ C
n, consider the vectors:

sk =
1

2πı

∮

Γ

zkP (z)−1vdz, (4.7)

The method proposed in [7] for the computation of the eigenvectors of P (λ) is based on

the following result.
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Theorem 15. [Thm. 3.5, [7]] Let (λi, wi), i = 1, . . . ,m be eigenpairs for the matrix

pencil H1 − λH0, where the simple, distinct, nondegenerate eigenvalues λi belong to the

interior of a given closed contour Γ. Let S = [s0, · · · , sm−1]. Then, for i = 1, . . . ,m, the

vector yi = Swi is an eigenvector of P (λ) corresponding to the eigenvalue λi.

Theorem 15 is readily applied to invariant pairs.

Corollary 2. With the hypotheses of Theorem 15, S =
[
s0, s1, . . . , sm−1

]
and C =

H−1
0 H1. Then the pair (S,C) satisfies P (S,C) = 0, i.e., (S,C) is a simple invariant pair

for P (λ).

Proof. Note that the pair (Y,Λ), where Λ = diag(λ1, . . . , λm) and Y = [y1, . . . , ym], is

clearly an invariant pair for P (λ), that is,

P (Y,Λ) =
ℓ∑

j=0

AjY Λj = 0.

Moreover, we know that C = H−1
0 H1 = V −1ΛV , where V is the classical Vandermonde

matrix associated with λ1, . . . , λm, and that the columns of V −1 are eigenvectors of H1 −

λH0. So we have

0 =
ℓ∑

j=0

AjY Λj =
ℓ∑

j=0

AjY ΛjV =

=
ℓ∑

j=0

AjY V V −1ΛjV =
ℓ∑

j=0

AjSC
j = P (S,C),

that is, (S,C) is also an invariant pair of P (λ).

What can we say about more general cases, where some of the hypotheses of Theorem

15 are removed? If we remove the hypothesis that the λi’s are distinct, we can prove the

following.

Theorem 16. With the hypotheses of Theorem 14, let S =
[
s0, s1, . . . , sm−1

]
and

C = H−1
0 H1. Then the pair (S,C) satisfies P (S,C) = 0, i.e., (S,C) is a simple invariant

pair for P (λ).

Proof. Consider again the columns q1(λ), . . . , qn(λ) of the matrix F (λ) in the Smith form

(1.7) and the definition of sk given in (4.7). A similar computation to (4.4) shows that

S = [s0, . . . , sm−1] = QV,
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where

Q = [Q0, . . . ,Qs],

Qj = [γ0,jqn(λj), γ1,jq
′
n(λj), . . . , γmj−1,jq

(mj−1)
n (λj)], for j = 0, . . . , s,

the γi,j’s are complex coefficients and V is the confluent Vandermonde matrix defined

above.

It is shown in [7] (Lemma 2.4) that, if a complex number ζ is a root of dj(λ) for some

index 1 ≤ j ≤ n, then P (ζ)qj(ζ) = 0. In our case, this implies that the vector qn(λ)

is a root polynomial of P (λ) corresponding to the eigenvalue λj, for each j = 0, . . . , s;

see [51], section 1.5, for the definition and properties of root polynomials. It follows that

[qn(λj), q
′
n(λj), . . . , q

(mj−1)(λj)
n ] forms a Jordan chain for the eigenvalue λj. So we have

that (Q, J) is an invariant pair for P (λ). Moreover, if C = H−1
0 H1 as usual, we have

0 =
ℓ∑

j=0

AjQJ j =
ℓ∑

j=0

AjQJ jV =

=
ℓ∑

j=0

AjQV V −1J jV =
ℓ∑

j=0

AjSC
j = P (S,C),

Therefore, (S,C) is a simple invariant pair for P (λ).

Example 16. Consider the matrix polynomial:

P (λ) = λ2

[
1 0

0 1

]
+ λ

[
−2 0

2 −1

]
+

[
1 0

0 0

]
,

which has eigenvalues λ1 = 0, with algebraic multiplicity 1 and, λ2 = 1, with algebraic

multiplicity 3.

Suppose we are interested in the eigenvalues λ2. Then, we can choose a contour Γ(t) =

z0 +Reıt, t ∈ [0, 2π], where z0 = 1 and R = 1
2
.

Choosing the vectors u =
[
1 −1

]T
and v =

[
−1 1

]T
, we find:

H0 =



−1 −2 −5

−2 −5 −10

−5 −10 −17


 , H1 =



−2 −5 −10

−5 −10 −17

−10 −17 −26


 .
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Then, we have that the pair (S,C) given by Theorem 16

S = H−1
0 H1 =



0 0 1

1 0 −3

0 1 3


 and C =

[
0 −1 −2

1 1 3

]

is an invariant pair, i.e., it satisfies P (S,C) = 0.

Note that the companion matrix C is associated with the monic polynomial:

p(λ) = λ3 − 3λ2 + 3λ− 1,

which has a triple root equal to 1.

4.3.2 The Block Moment Method

Instead of the scalar version of the moment method, we can consider a Hankel pencil

constructed by block moments Mk ∈ C
ξ×ξ, for a suitable positive integer ξ.

Definition 16. Let k be a positive integer and U, V ∈ C
n×ξ nonzero matrices with linearly

independent columns. For k = 0, 1, . . ., define the block moment Mk ∈ C
ξ×ξ as:

Mk =
1

2πı

∮

Γ

zkUHP (z)−1V dz.

Then the block Hankel matrices Hξ0, Hξ1 ∈ C
m̃ξ×m̃ξ are defined as:

Hξ0 =




M0 M1 · · · Mm̃−1

M1 M2 · · · Mm̃

...
...

...

Mm̃−1 Mm̃ · · · M2m̃−2



, Hξ1 =




M1 M2 · · · Mm̃

M2 M3 · · · Mm̃+1

...
...

...

Mm̃ Mm̃+1 · · · M2m̃−1




Polynomial eigenvalue computation via the eigenvalues of the pencil Hξ1 − λHξ0 is dis-

cussed in [7] and [18]. See also [85] for an application to acoustic nonlinear eigenvalue

problems.

Invariant pairs can be computed from block moments by applying an approach that is

similar to the one described in the previous section for the scalar version. For k =

0, 1, . . . , m̃− 1, consider the matrices Sk ∈ C
n×ξ defined as:

Sk =
1

2πı

∮

Γ

zkP (z)−1V dz.

Then, we have the following result.
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Proposition 5. Let Γ be a closed contour, let the block Hankel matrix Hξ0 ∈ C
m̃ξ×m̃ξ

be nonsingular and m be the number of eigenvalues inside of Γ. If m̃ξ = m and Y =

[S0, . . . , Sm̃−1], T = H−1
ξ0 Hξ1, then the pair (Y, T ) satisfies P (Y, T ) = 0, i.e., (Y, T ) is a

simple invariant pair for P (λ).

Example 17. Consider again the matrix polynomial of Example 15:

P (λ) = λ2




1 0 0

2 1 0

−1 1 −2


+ λ




0 0 0

−4 −2 0

2 −2 4


+



−2 1 −2

2 1 0

−1 1 −2


 .

with associated Smith form:

D(λ) = diag ((d1(λ), d2(λ), d3(λ)) =



1 0 0

0 (λ− 1)2 0

0 0 (λ− 1)3(λ+ 1)


 .

In Example 15, we found that the scalar moment method, i.e. when ξ = 1, missed the

additional multiplicities associated with the polynomial d2(λ).

Consider now ξ = 2 as the size of the block moments Mk, the contour ϕ(t) = 1 + 1
10
eıt,

containing 5 eigenvalues λ = 1, as before, and the matrices:

U =



1 0

5 −3

2 −4


 , V =




1 3

0 1

−2 4


 .

We find the block moments Mk:

M0 =

[
−9 −12

9 12

]
, M1 =

[
−1 −22

−1 27

]
, M2 =

[
−5 −8

1 18

]
,

M3 =

[
−21 30

15 −15

]
, M4 =

[
−49 92

41 −72

]
, M5 =

[
−89 178

79 −153

]
.

Then, we have the Hankel matrix HL0:

Hξ0 =



M0 M1 M2

M1 M2 M3

M2 M3 M4


 =




−9 −12 −1 −22 −5 −8

9 12 −1 27 1 18

−1 −22 −5 −8 −21 30

−1 27 1 18 15 −15

−5 −8 −21 30 −49 92

1 18 15 −15 41 −72




.
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The matrix Hξ0 is singular. This happens because there are just 5 eigenvalues inside the
contour and Hξ0 has size 6×6. Then, we have to reduce the matrices Hξ0 and Hξ1 to match
the number of eigenvalues in the contour. Therefore, we get the truncated matrices:

Ĥξ0 =




−9 −12 −1 −22 −5

9 12 −1 27 1

−1 −22 −5 −8 −21

−1 27 1 18 15

−5 −8 −21 30 −49



, Ĥξ1 =




−1 −22 −5 −8 −21

−1 27 1 18 15

−5 −8 −21 30 −49

1 18 15 −15 41

−21 30 −49 92 −89



.

Then, we obtain:

T = Ĥ−1
ξ0 Ĥξ1 =




0 0 0 −2 1

0 0 0 −1 0

1 0 0 4 −3

0 1 0 2 0

0 0 1 −2 3



.

The eigenvalues of the matrix T are 1, 1, 1, 1, 1, which are all the eigenvalues inside the

contour.

Moreover, computing the matrix Y = [S0, S1, S2], using we get:

Ŷ =



0 1 1 2 0

0 −2 −2 0 0

0 −3
2

−7
2

−3 −4


 .

Then, (Ŷ , T ) is an invariant pair for P (λ).

Experimentally, we noted that the block method allows us to better “capture” the

multiplicity structure of eigenvalues, when there are several Jordan blocks per eigenvalue.

Further investigation of this approach will be the topic of future work. It should be

pointed out that the results in [18], and particularly Theorem 3.3, provide useful insight

into a generalized block moment method and into the (good) behavior of the method in

presence of multiple eigenvalues.

With the condition that the size of the block Hankel matrix Hξ0 ∈ C
m̃ξ×m̃ξ is equal to

the number of eigenvalues inside of Γ, i.e., if m̃ξ = m, we get:

T = H−1
ξ0 Hξ1 =




0 0 · · · 0 −X0

I 0 · · · 0 −X1

0 I · · · 0 −X2

...
...

. . .
...

...

0 0 · · · I −Xm−1



,

Computation of Invariant Pairs and Matrix Solvents Page 75



Chapter 4 : Moments, Hankel Pencils and Computation of Invariant Pairs

where 


−X0

−X1

...

−Xm−1



= H−1

ξ0




Mm

Mm+1

...

M2m−1



.

Consequently, since T has a block companion form, the problem of finding the eigenval-

ues λ1, . . . , λm of is equivalent to the problem of finding the eigenvalues of the matrix

polynomial:

L(λ) := λℓ +Xℓ−1λ
ℓ−1 + · · ·+X1λ+X0 = 0.

Example 18. Consider the matrix polynomial:

P (λ) = λ4I + λ3



−12 0 0

0 −12 0

0 0 −12


+ λ2



41 0 0

0 41 0

0 0 41


+ λ



−30 0 0

0 −30 0

0 0 −30


+



0 0 1

0 0 0

0 0 0


 ,

which has eigenvalues: 0, 0, 0, 1, 1, 1, 5, 5, 5, 6, 6, 6.

Suppose that in this example we only wish to compute the eigenvalues 0 and 1. We

choose a contour Γ enclosing just those eigenvalues; for example, we can take the circle

Γ(t) = z0 +Reıt, where z0 =
1
2
, R = 1. For L = 3, we find

T = H−1
L0HL1 =




0 0 0 1
30

1
30

1
30

0 0 0 −1
30

−1
30

−1
30

0 0 0 0 0 0

1 0 0 61
60

1
60

1
60

0 1 0 −1
60

59
60

−1
60

0 0 1 0 0 1




.

The companion matrix T is associated with the monic quadratic matrix polynomial:

H(λ) = λ2I + λX1 +X0,

where

X0 = −




1
30

1
30

1
30

−1
30

−1
30

−1
30

0 0 0


 , X1 = −




61
60

1
60

1
60

−1
60

59
60

−1
60

0 0 1


 ,

which has as eigenvalues: 0,0,0,1,1,1 as sought.

In [13], it is shown that the conditioning of the generalized Hankel eigenvalue problem

(H1 − λH0)y = 0 grows exponentially in terms of a quantity that depends on the largest

distance between eigenvalues (for conditioning on Hankel matrices see, e.g., [11], [12]).
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Therefore, our computation of invariant pairs and solvents using the (block) moment

method can be affected by ill conditioning. One possible solution to this problem consists

in breaking the contour Γ, which contains all the eigenvalues, into smaller contours Γi.

The small contours should be chosen so that each of them contains clustered eigenvalues.

This improves the conditioning for each subproblem, and therefore for the whole problem.

This strategy is consistent with the fact that invariant pairs typically present a particular

interest for clustered groups of eigenvalues.

For instance, consider Figure 4.1 and suppose that the largest distance between eigenvalues

λi is large. Then, knowing the locations of the eigenvalues, we can group them into smaller

non-overlapping contours Γi as shown in Figure 4.2.

After computing the simple invariant pairs (Xi, Si) associated with each contour, using

the (block) moment method, we can construct a simple invariant pair (X,S) as follows:

X =
[
X1 X2 · · ·

]
, S = diag(S1, S2, · · · ).

Figure 4.1: Eigenvalues inside a circle Figure 4.2: Grouping clustered eigenvalues

4.4 Choosing the Contour

The choice of Γ is, of course, a crucial step when applying the contour integral formulation

of the eigenvalue or invariant pair problem. If some information about the localization of

the eigenvalues of P (λ) is available, one can choose the contour accordingly. Some works

have addressed this localization problem; for instance: in [23] and [102] are presented

generalizations of matrix version of Pellet’s theorem to the case of matrix polynomials.

In [70], N. Higham and F. Tisseur found upper and lower bounds to the moduli of the

eigenvalues of a matrix polynomial. On the other hand, in [107], the authors used tropical

roots as approximations to eigenvalues of matrix polynomials.
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A related question is: how many eigenvalues of P (λ) live inside a given contour? Even

an approximate estimate can be useful to choose Γ and k consistently. An answer to this

problem is provided in [46] and [47] and it is based on the following result.

Theorem 17. [Thm. 2, [46]] Let F (z) be an n× n regular analytic matrix function and

let tr(F (z)) be the matrix trace of F (z). In addition, let m be the number of eigenval-

ues, counting multiplicity, inside closed curves Γ on the complex plane for the nonlinear

eigenvalue problem: F (λ)x = 0. Then, we have:

m =

∮

Γ

tr

(
F (z)−1dF (z)

dz

)
dz, (4.8)

where det(F (z)) 6= 0.

The equation (4.8) can be approximated by an N -point quadrature rule by:

m ≈

N−1∑

j=0

ωjtr(F (zj)
−1F ′(zj)), (4.9)

where zj is a quadrature point and ωj is a weight.

In the case when we use the trapezoidal rule on a circle with center C and radius R,

quadrature points and weights are defined by:

ωj =
R

N
exp

(
2πi

N

(
j +

1

2

))
, zj = C +R exp

(
2πi

N

(
j +

1

2

))
.

To avoid the matrix inversion in (4.9), an estimate for the trace with an unbiased estima-

tion can be used:

tr(F (zj)
−1F ′(zj)) ≈

1

L

L∑

i=1

(
vT
i F (zj)

−1F ′(zj)vi

)
,

where vi are the sample vectors, with entries equal to 1 or -1 with equal probability and

L is the number of sample vectors.

The number m of eigenvalues inside the contour can then be estimated as:

m ≈
1

L

N−1∑

j=0

ωj

L∑

i=1

(
vT
i F (zj)

−1F ′(zj)vi

)
. (4.10)

Remark 11. The choice of Γ can be combined with shifting techniques for the eigenvalues

of P (λ): see for instance [101].
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4.5 Numerical Approximation: Trapezoid Rule for

Moments

Consider the equation (4.2). Assuming that Γ has a 2π-periodic smooth parametrization:

ϕ ∈ C1(R,C), ϕ(t+ 2π) = ϕ(t) ∀t ∈ R.

Then, for k = 0, . . . , 2m− 1, we have:

µk =
1

2πı

∮

Γ

zkf(z)dz =
1

2πı

∫ 2π

0

ϕ(t)kf(ϕ(t))ϕ′(t)dt. (4.11)

Taking equidistant nodes tj =
2jπ
N
, j = 0, . . . , N , and using the trapezoid rule (A.6), we

obtain the approximation:

µk ≈
1

ıN

N−1∑

j=0

ϕ(tj)
kf(ϕ(tj))ϕ

′(tj). (4.12)

Note that for the special case when ϕ(t) is the circle: ϕ(t) = C + Reıt, we obtain the

formula for (4.12):

µk ≈
R

N

N−1∑

j=0

exp

(
2πıj

N

)
ϕ(tj)

kf(ϕ(tj)) = (4.13)

=
R

N

N−1∑

j=0

exp

(
2πıj

N

)(
C +R exp

(
2πıj

N

))k

f

(
C +R exp

(
2πıj

N

))
.

4.5.1 Error Analysis of the Trapezoid Rule for Moments

In this section, we present a explicit formulation for the error of the trapezoid rule for the

moments µk, in the case when Γ is a closed contour in the complex plane. We follow a

similar approach as W.-J. Beyn in [18].

Theorem 18. Let P (λ) be an n × n matrix polynomial and h ∈ H(A(a−, a+),C) be

holomorphic on the annulus:

A(a−, a+) =

{
z ∈ C :

R

a−
< |z| < Ra+

}
, a± > 1,

for some R > 0.
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Then, the approximation error for the trapezoidal quadrature for the moments µk:

EN(f) =
1

2πı

∮

|z|=R

zkf(z)dz −
1

N

N−1∑

j=0

f(Re
2ıjπ
N )(Re

2ıjπ
N )k+1

satisfies for all 1 < ρ− < a−, 1 < ρ+ < a+:

|EN(f)| ≤ (ρ+R)k+1 M1

ρN+ − 1
+

(
R

ρ−

)k+1
M2

ρN− − 1
,

for some M1 and M2 such that:

∣∣uHP (ρ+Reıt)−1v
∣∣ ≤ M1,

∣∣∣∣∣u
HP

(
R

ρ−
eıt
)−1

v

∣∣∣∣∣ ≤ M2.

Proof. Consider equations (4.11) and let z = Reıt. Then we have:

µk =
1

2πı

∮

Γ

zkf(z)dz =
1

2π

∫ 2π

0

(Reıt)kf(Reıt)(Reıt)dt =
1

2π

∫ 2π

0

f(Reıt)(Reıt)k+1dt.

(4.14)

Now, define the function h(z) as:

h(z) = f(z)zk+1.

Using the Laurent expansion of h, we have:

h(z) =
∞∑

ℓ=−∞

hℓz
ℓ, (4.15)

with coefficients:

hℓ =
1

2πı

∫

|z|=R

h(z)z−ℓ−1dz =
1

2πı

∫ 2π

0

h(Reıt)(Reıt)−ℓ−1(ıReıt)dt =

=
R−ℓ

2π

∫ 2π

0

h(Reıt)e−ıℓtdt. (4.16)

From (4.14) and (4.16), we have:

I := µk = h0. (4.17)

For any positive integer N , we define the trapezoidal rule approximation to µk in (4.14)

by:

µk ≈
1

N

N−1∑

j=0

f(zj)z
k+1
j =

1

N

N−1∑

j=0

h(zj) := IN , (4.18)
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where zj = Reıtj for equidistant nodes tj =
2jπ
N
, j = 0, . . . , N − 1.

From (4.18) and (4.15), we have:

IN =
1

N

N−1∑

j=0

h(zj) =
1

N

∞∑

ℓ=−∞

hℓ

N−1∑

j=0

zℓj =

=
1

N

∞∑

ℓ=−∞

hℓ

N−1∑

j=0

(Re
2ıπj

N )ℓ =
1

N

∞∑

ℓ=−∞

Rℓhℓ

N−1∑

j=0

e
2ıπjℓ

N .

If ℓ is multiple of N , the numbers e
2ıπjℓ

N are all equal to 1, and then, the second sum in

previous formula is equal to N . On the other hand, if j is not multiple of N , then that

sum is equal to 0.

Then, we have:

IN =
∞∑

ℓ=−∞

RℓNhℓN (4.19)

Therefore, using (4.17) and (4.19), we obtain:

IN − I =
∞∑

ℓ=−∞

RℓNhℓN − h0 =
∞∑

ℓ=1

(
RℓNhℓN +R−ℓNh−ℓN

)
.

Now, to estimate the error, we need a bound on the coefficients hjN . Using Cauchy’s

Theorem, we can shift the contour from |z| = R to |z| = ρ+R (i.e. taking z = ρ+Reıt).

Then, we obtain:

|hℓ| =

∣∣∣∣
1

2πı

∫

|z|=ρ+R

h(z)z−ℓ−1dz

∣∣∣∣ =
∣∣∣∣
(ρ+R)−ℓ

2π

∫ 2π

0

h(ρ+Reıt)e−ıℓtdt

∣∣∣∣

≤
(ρ+R)−ℓ

2π

∫ 2π

0

∣∣h(ρ+Reıt)
∣∣ dt,

where:

∣∣h(ρ+Reıt)
∣∣ =

∣∣f(ρ+Reıt)(ρ+Reıt)k+1
∣∣ ≤ (ρ+R)k+1

∣∣f(ρ+Reıt)
∣∣ =

= (ρ+R)k+1
∣∣uHP (ρ+Reıt)−1v

∣∣ ≤ (ρ+R)k+1M1,

for some M1 such that
∣∣uHP (ρ+Reıt)−1v

∣∣ ≤ M1.

Then, we have:

|hℓ| ≤
(ρ+R)−ℓ

2π

∫ 2π

0

∣∣h(ρ+Reıt)
∣∣ dt ≤ (ρ+R)k+1−ℓM1.

Similarly, using Cauchy’s Therorem, we can shift the contour from |z| = R to |z| = R
ρ−
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(i.e. taking z = R
ρ−
eıt). Then we find that:

|h−ℓ| ≤

(
R

ρ−

)ℓ
1

2π

∫ 2π

0

∣∣∣∣h
(

R

ρ−
eıt
)∣∣∣∣ dt ≤

(
R

ρ−

)k+1+ℓ

M2,

for some M2 such that

∣∣∣∣uHP
(

R
ρ−
eıt
)−1

v

∣∣∣∣ ≤ M2.

Using this, we find that:

|IN − I| =

∣∣∣∣∣
∞∑

ℓ=1

(
RℓNhℓN +R−ℓNh−ℓN

)
∣∣∣∣∣ =

∞∑

ℓ=1

∣∣RℓNhℓN +R−ℓNh−ℓN

∣∣

≤

∞∑

ℓ=1

RℓN |hℓN |+
∞∑

ℓ=1

R−ℓN |h−ℓN |

≤

∞∑

ℓ=1

(
RℓN(ρ+R)k+1−ℓNM1

)
+

∞∑

ℓ=1

(
R−ℓN

(
R

ρ−

)k+1+ℓN

M2

)

= (ρ+R)k+1M1

∞∑

ℓ=1

ρ−ℓN
+ +

(
R

ρ−

)k+1

M2

∞∑

ℓ=1

ρ−ℓN
−

= (ρ+R)k+1M1
ρ−N
+

1− ρ−N
+

+

(
R

ρ−

)k+1

M2
ρ−N
−

1− ρ−N
−

= (ρ+R)k+1M1
1

ρN+ − 1
+

(
R

ρ−

)k+1

M2
1

ρN− − 1
.

Then, the error for the trapezoid sum for the moment µk is bounded by:

|IN − I| ≤ (ρ+R)k+1 M1

ρN+ − 1
+

(
R

ρ−

)k+1
M2

ρN− − 1
.

Example 19. Consider the matrix polynomial (2.12) and the annulus:

A(a−, a+) =

{
z ∈ C :

R

a−
< |z| < a+R

}
, a± > 1,

for some R > 0. Suppose that 1 < ρ− < a− and 1 < ρ+ < a+ .

Now, consider in our example the circle of center C = 0 and radius R = 31
10

= 3.1, i.e.

z = 31
10
eıπ. Let a+ = 40

31
≈ 1.2903, then a+R = 4; and let a− = 31, then R

a−
= 1

10
. Then,

we obtain the annulus:

A =

{
z ∈ C :

1

10
< |z| < 4

}
, a± > 1.

Note that
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• As we have that ρ− < a−, then we can take ρ− = 31
2
= 15.5 (⇒ R

ρ−
= 1

5
).

• Note that: 3.1 < Rρ+ < Ra+ = 4. We will take several values of Rρ+ to study the

behavior of the error.

Consider u =

[
−4

−7

]
and v =

[
−10

11

]
, and compute the number of nodes Ni such that the

trapezoid rule error is less than 10−6. Then, we obtain the results presented in Tables

4.1, 4.2 and 4.3, where we fix M2 and vary M1 to study the behavior of the problem.

Moreover, in Figures 4.3, 4.4 and 4.5 we show a log-10 plot of |EN(f)| for the moments

µk, for k = 0, . . . , 5.

Rρ+ M1 M2 |EN (f)|k=0 N0 |EN (f)|k=1 N1

3.2 3195 71.1 10224
1.03226N−1

+ 14.22

( 31
2 )

N
−1

726 32716.8
1.03226N−1

+ 2.844

( 31
2 )

N
−1

763

3.3 2297 71.1 7580.1
1.06452N−1

+ 14.22

( 31
2 )

N
−1

364 25014.33
1.06452N−1

+ 2.844

( 31
2 )

N
−1

383

3.4 1905 71.1 6477
1.09677N−1

+ 14.22

( 31
2 )

N
−1

245 22021.8
1.09677N−1

+ 2.844

( 31
2 )

N
−1

258

3.5 1739 71.1 6086.5
1.12903N−1

+ 14.22

( 31
2 )

N
−1

186 21302.75
1.12903N−1

+ 2.844

( 31
2 )

N
−1

196

3.6 1728 71.1 6220.8
1.1613N−1

+ 14.22

( 31
2 )

N
−1

151 22394.88002
1.1613N−1

+ 2.844

( 31
2 )

N
−1

160

3.7 1889 71.1 6989.3
1.19355N−1

+ 14.22

( 31
2 )

N
−1

129 25860.41
1.19355N−1

+ 2.844

( 31
2 )

N
−1

136

3.8 2378 71.1 9036.4
1.2258N−1

+ 14.22

( 31
2 )

N
−1

113 34338.32002
1.2258N−1

+ 2.844

( 31
2 )

N
−1

120

3.9 4062 71.1 15841.8
1.2581N−1

+ 14.22

( 31
2 )

N
−1

103 61783.02
1.2581N−1

+ 2.844

( 31
2 )

N
−1

109

3.98 18093 71.1 72010.14
1.2839N−1

+ 14.22

( 31
2 )

N
−1

101 286600.3574
1.2839N−1

+ 2.844

( 31
2 )

N
−1

106

Table 4.1: Trapezoid Error Example: µk for k = 0, 1.

Figure 4.3: log|EN(f)| for µ0 and µ1
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Rρ+ M1 M2 |EN (f)|k=2 N2 |EN (f)|k=3 N3

3.2 3195 71.1 104693.7602
1.03226N−1

+ 0.5688

( 31
2 )

N
−1

800 335020.0330
1.03226N−1

+ 0.11376

( 31
2 )

N
−1

836

3.3 2297 71.1 82547.289
1.06452N−1

+ 0.5688

( 31
2 )

N
−1

403 272406.0537
1.06452N−1

+ 0.11376

( 31
2 )

N
−1

422

3.4 1905 71.1 74874.12006
1.09677N−1

+ 0.5688

( 31
2 )

N
−1

272 254572.0084
1.09677N−1

+ 0.11376

( 31
2 )

N
−1

285

3.5 1739 71.1 74559.625
1.12903N−1

+ 0.5688

( 31
2 )

N
−1

207 260958.6875
1.12903N−1

+ 0.11376

( 31
2 )

N
−1

217

3.6 1728 71.1 80621.56807
1.1613N−1

+ 0.5688

( 31
2 )

N
−1

168 290237.6451
1.1613N−1

+ 0.11376

( 31
2 )

N
−1

177

3.7 1889 71.1 95683.517
1.19355N−1

+ 0.5688

( 31
2 )

N
−1

143 354029.0129
1.19355N−1

+ 0.11376

( 31
2 )

N
−1

151

3.8 2378 71.1 130485.6161
1.2258N−1

+ 0.5688

( 31
2 )

N
−1

126 495845.3413
1.2258N−1

+ 0.11376

( 31
2 )

N
−1

133

3.9 4062 71.1 240953.778
1.2581N−1

+ 0.5688

( 31
2 )

N
−1

115 939719.7342
1.2581N−1

+ 0.11376

( 31
2 )

N
−1

121

3.98 18093 71.1 1140669.423
1.2839N−1

+ 0.5688

( 31
2 )

N
−1

112 4539864.303
1.2839N−1

+ 0.11376

( 31
2 )

N
−1

117

Table 4.2: Trapezoid Error Example: µk for k = 2, 3.

Figure 4.4: log|EN(f)| for µ2 and µ3
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Rρ+ M1 M2 |EN (f)|k=4 N4 |EN (f)|k=5 N5

3.2 3195 71.1 1072064.106
1.03226N−1

+ 0.022752

( 31
2 )

N
−1

873 3430605.140
1.03226N−1

+ 0.0045504

( 31
2 )

N
−1

910

3.3 2297 71.1 898939.9772
1.06452N−1

+ 0.022752

( 31
2 )

N
−1

441 2966501.925
1.06452N−1

+ 0.0045504

( 31
2 )

N
−1

460

3.4 1905 71.1 865544.8285
1.09677N−1

+ 0.022752

( 31
2 )

N
−1

298 2942852.418
1.09677N−1

+ 0.0045504

( 31
2 )

N
−1

311

3.5 1739 71.1 913355.4062
1.12903N−1

+ 0.022752

( 31
2 )

N
−1

227 3196743.922
1.12903N−1

+ 0.0045504

( 31
2 )

N
−1

238

3.6 1728 71.1 1044855.523
1.1613N−1

+ 0.022752

( 31
2 )

N
−1

186 3761479.884
1.1613N−1

+ 0.0045504

( 31
2 )

N
−1

194

3.7 1889 71.1 1309907.348
1.19355N−1

+ 0.022752

( 31
2 )

N
−1

158 4846657.187
1.19355N−1

+ 0.0045504

( 31
2 )

N
−1

166

3.8 2378 71.1 1884212.297
1.2258N−1

+ 0.022752

( 31
2 )

N
−1

139 7160006.733
1.2258N−1

+ 0.0045504

( 31
2 )

N
−1

146

3.9 4062 71.1 3664906.963
1.2581N−1

+ 0.022752

( 31
2 )

N
−1

127 14293137.16
1.2581N−1

+ 0.0045504

( 31
2 )

N
−1

132

3.98 18093 71.1 18068659.93
1.2839N−1

+ 0.022752

( 31
2 )

N
−1

123 71913266.53
1.2839N−1

+ 0.0045504

( 31
2 )

N
−1

128

Table 4.3: Trapezoid Error Example: µk for k = 4, 5.

Figure 4.5: log|EN(f)| for µ4 and µ5
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Chapter 5 :

Iterative Refinement of Invariant

Pairs and Matrix Solvents
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5.1 Iterative Refinement of Invariant Pairs and

Matrix Solvents

Once an invariant pair has been numerically computed or approximated, it can be refined

using an iterative method such as Newton: this is, for instance, the strategy proposed

in [17]. Here, we experiment with some modifications to the classical Newton’s method

applied to the equation P (X,S) = 0.

5.2 Newton’s Method

Newton’s method, also called the Newton-Raphson method, is a root-finding algorithm

that uses the first few terms of the Taylor series of a function f(x) in the vicinity of a

suspected root (see [106], [113]).

Consider the Taylor series of f(x) expanded about the point x = x0 + ǫ:

f(x0 + ǫ) = f(x0) + f
′

(x0)ǫ+
1

2
f

′′

(x0)ǫ
2 + · · · .

Keeping terms only to first order, we have:

f(x0 + ǫ) ≈ f(x0) + f
′

(x0)ǫ.

Setting f(x0 + ǫ) = 0 and solving last equation for ǫ = ǫ0, gives:

ǫ0 = −
f(x0)

f ′(x0)
,

which is the first-order adjustment to the root’s position. Taking x1 = x0 + ǫ0 and

calculating a new ǫ1, and so on, the process can be repeated until it converges to a fixed

point (which is precisely a root) using:

ǫn = −
f(xn)

f ′(xn)
.

Then, given a good initial choice of the root, the algorithm is iteratively given by:

xk+1 = xk −
f(xk)

f ′(xk)
, for n = 1, 2, . . . .

In the case of invariant pairs, Newton’s method defines (∆X,∆S) by

P (X,S) + DP(X,S)(∆X,∆S) = 0. (5.1)
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And for the case of matrix solvents, Newton’s method defines ∆S by

P (S) + DPS(∆S) = 0. (5.2)

As explained in [17], the definition of a simple invariant pair (X,S), i.e., a pair such

that P (X,S) = 0, is not sufficient to characterize (X,S). Then, we must add the condition

WHVm(X,S) = Ik,

where m ≤ ℓ is not smaller than the minimality index of (X,S) and the columns of

W = [WH
m−1, . . . ,W

H
0 ]H form an orthonormal basis of span(Vm(X,S)). In other words,

the idea of the Newton’s method is the following: given an initial approximation (X0, S0)

to a simple invariant pair (X,S) ∈ C
n×k × C

k×k our goal is to compute a correction

(∆Xk,∆Sk), which brings(X0, S0) closer to (X,S). This is, the Newton’s method applied

to the equations:

P (X,S) = 0, V(X,S) = 0,

where V(X,S) = WHVm(X,S)−Ik, for some normalization matrixW = [WH
m−1, . . . ,W

H
0 ]H ∈

C
k×mn, takes the form:

(Xk+1, Sk+1) = (Xk, Sk)− L
−1
k (P (Xk, Sk),V(Xk, Sk)) ,

where Lk is the Jacobian at the current iterate (Xk, Sk):

Lk(∆X,∆S) =

(
P (∆X,Sk) +

ℓ∑

j=1

AjXkDS
j
k(∆S),

m−1∑

j=1

WH
j (∆XSj

k +XDSj
k(∆S))

)
.

The methods for solving the correction equations will be discussed in Section 5.5. For

now, we will describe the global algorithm and its variants.

5.2.1 Algorithm: Newton’s Method

Given an initial approximation (X0, S0) to the solution of (2.5) (resp. S0 to the solution

of (3.2)), a tolerance ǫ and a contour Γ ∈ C (with the spectrum of S0 in its interior), we

have:

Algorithm 1.

STEP 1: Set k = 0

STEP 2: If errork < ǫ: STOP
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STEP 3: Solve for (∆Xk,∆Sk) (resp. for ∆Sk) the equation:

DP(X,S)(∆Xk,∆Sk) = −(P (Xk, Sk), 0)

(resp. DPS(∆Sk) = −(P (Sk), 0))

STEP 4: Update:

• Xk+1 = Xk +∆Xk, Sk+1 = Sk +∆Sk (resp. Sk+1 = Sk +∆Sk).

• k = k + 1

• go to STEP 2.

Remark 12. In the case of invariant pairs, we define errork as: errork = ‖P (Xk,Sk)‖F
‖Xk‖F

and in the case of matrix solvents: errork =
‖P (Sk)‖F
‖Sk‖F

.

5.3 Incorporating Line Search into Newton’s Method

Line searches are relatively inexpensive and improve the global convergence properties of

Newton’s method. Each iteration of a line search method computes a search direction dk

and then decides how far to move along that direction. The iteration is given by:

xk+1 = xk + tkdk,

where the positive scalar tk is the step length. The success of a line search method depends

on effective choices of both the direction dk and the step length tk (see [129]). A value

tk = 1 gives the original Newton iteration.

In this section, we show how to incorporate exact line searches into Newton’s method

to approximate invariant pairs (X,S) and solvents for the general matrix solvent problem

P (S) = 0. For that, we use the contour integral formulations (2.5) and (3.2).

As pointed out before, the use of Newton’s method incorporating line searches to find

solvents is not new. For instance, in [63] and [88] this approach is used to approximate

solvents for the quadratic matrix equation.

5.3.1 Case of Invariant Pairs

In the specific problem (2.5), the direction dk is given by the solution (∆Xk,∆Sk) of the

correction equation (5.5) (see Section 5.5). The step length tk on each iteration is given

by the solution of the minimization problem:

p(t) = ‖P (X + t∆X,S + t∆S)‖2F .
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Using the formula for the total derivative of P at (X,S) in direction (∆X,∆S):

DP(X,S)(∆X,∆S) =
1

2πı

∮

Γ

P (λ)
(
∆X +X(λI − S)−1∆S

)
(λI − S)−1dλ, (5.3)

we have, at second order in ‖∆X‖ and ‖∆S‖:

P (X + t∆X,S + t∆S) =
1

2πı

∮

Γ
P (λ)(X + t∆X)(λI − S − t∆S)−1dλ =

=
1

2πı

∮

Γ
P (λ)(X + t∆X)

(

(λI − S)−1 + (λI − S)−1t∆S(λI − S)−1

+(λI − S)−1t∆S(λI − S)−1t∆S(λI − S)−1 + · · ·
)

dλ

≈
1

2πı

∮

Γ
P (λ)(X + t∆X)

(

(λI − S)−1 + t(λI − S)−1∆S(λI − S)−1

+t2(λI − S)−1∆S(λI − S)−1∆S(λI − S)−1
)

dλ =

=
1

2πı

∮

Γ
P (λ)X(λI − S)−1dλ

+ t

[

1

2πı

∮

Γ
P (λ)

[

∆X +X(λI − S)−1∆S
]

(λI − S)−1dλ

]

+

+ t2
[

1

2πı

∮

Γ
P (λ)

[

∆X +X(λI − S)−1∆S
]

(λI − S)−1∆S(λI − S)−1dλ

]

+

+ t3
[

1

2πı

∮

Γ
P (λ)∆X(λI − S)−1∆S(λI − S)−1∆S(λI − S)−1dλ

]

=

= P (X,S) + tDP(X,S)(∆X,∆S)

+ t2
[

1

2πı

∮

Γ
P (λ)

[

∆X +X(λI − S)−1∆S
]

(λI − S)−1∆S(λI − S)−1dλ

]

+

+ t3
[

1

2πı

∮

Γ
P (λ)∆X(λI − S)−1∆S(λI − S)−1∆S(λI − S)−1dλ

]

.

Recalling that Newton’s method defines (∆X,∆S) by (5.1), we have:

P (X + t∆X,S + t∆S) = (1− t)P (X,S)

+ t2
[

1

2πı

∮

Γ

P (λ)
[
∆X +X(λI − S)−1∆S

]
(λI − S)−1∆S(λI − S)−1dλ

]

+ t3
[

1

2πı

∮

Γ

P (λ)∆X(λI − S)−1∆S(λI − S)−1∆S(λI − S)−1dλ

]
.

Thus

p(t) = (1− t)2‖P (X,S)‖2F + t4‖A‖2F + t6‖B‖2F

+ t2(1− t)trace(P (X,S)∗A+ A∗P (X,S))

+ t3(1− t)trace(P (X,S)∗B +B∗P (X,S))

+ t5trace(A∗B +B∗A)

≡ (1− t)2α + t4θ + t6ϕ+ t2(1− t)β + t3(1− t)γ + t5η

= t6ϕ+ t5η + t4(θ − γ) + t3(γ − β) + t2(α + β)− 2αt+ α,
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where:

A =
1

2πı

∮

Γ

P (λ)
[
∆X +X(λI − S)−1∆S

]
(λI − S)−1∆S(λI − S)−1dλ,

B =
1

2πı

∮

Γ

P (λ)∆X(λI − S)−1∆S(λI − S)−1∆S(λI − S)−1dλ,

α = ‖P (X,S)‖2F , θ = ‖A‖2F , ϕ = ‖B‖2F , η = trace(A∗B +B∗A),

β = trace(P (X,S)∗A+ A∗P (X,S)), γ = trace(P (X,S)∗B +B∗P (X,S)).

5.3.2 Case of Matrix Solvents

For the problem (3.2) we have the minimization problem:

p(t) = ‖P (S + t∆S)‖2F .

Using the formula for the derivative of the matrix inverse:

dA−1

dt
= −A−1dA

dt
A−1,

we write the formula for the total derivative of P at S in direction ∆S as follows:

DPS(∆S) =
1

2πı

∮

Γ

P (λ)(λI − S)−1∆S(λI − S)−1dλ. (5.4)
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Then, we have:

P (S + t∆S) =
1

2πı

∮

Γ

P (λ)(λI − S − t∆S)−1dλ

=
1

2πı

∮

Γ

P (λ)
[
(λI − S)−1 + (λI − S)−1t∆S(λI − S)−1

+(λI − S)−1t∆S(λI − S)−1t∆S(λI − S)−1 + · · ·
]
dλ ≈

≈
1

2πı

∮

Γ

P (λ)
[
(λI − S)−1 + t(λI − S)−1∆S(λI − S)−1

+t2(λI − S)−1∆S(λI − S)−1∆S(λI − S)−1
]
dλ =

=
1

2πı

∮

Γ

P (λ)(λI − S)−1dλ

+ t

[
1

2πı

∮

Γ

P (λ)(λI − S)−1∆S(λI − S)−1dλ

]
+

+ t2
[

1

2πı

∮

Γ

P (λ)(λI − S)−1∆S(λI − S)−1∆S(λI − S)−1dλ

]
=

= P (S) + tDPS(∆S)

+ t2
[

1

2πı

∮

Γ

P (λ)(λI − S)−1∆S(λI − S)−1∆S(λI − S)−1dλ

]
.

Recalling that Newton’s method defines ∆S by (5.2), we have:

P (S) + DPS(∆S) = 0,

then, we have:

P (S + t∆S) = (1− t)P (S)+

+ t2
[

1

2πı

∮

Γ

P (λ)(λI − S)−1∆S(λI − S)−1∆S(λI − S)−1dλ

]
.

Thus

p(t) = (1− t)2‖P (S)‖2F + t4‖A‖2F + t2(1− t)trace(P (S)∗A+ A∗P (S))

≡ (1− t)2α + t4θ + t2(1− t)β =

= t4θ − t3β + t2(α + β)− 2αt+ α,

where:

A =
1

2πı

∮

Γ

P (λ)(λI − S)−1∆S(λI − S)−1∆S(λI − S)−1dλ,

α = ‖P (S)‖2F , θ = ‖A‖2F , β = trace(P (S)∗A+ A∗P (S)).
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5.3.3 Algorithm: Newton’s Method with Line Search

Given an initial approximation (X0, S0) to the solution of (2.5) (resp. S0 to the solution

of (3.2)), a tolerance ǫ and a contour Γ ∈ C (with the spectrum of S0 in its interior), we

have:

Algorithm 2.

STEP 1: Set k = 0

STEP 2: If errork < ǫ: STOP

STEP 3: Solve for (∆Xk,∆Sk) (resp. for ∆Sk) the equation:

DP(X,S)(∆Xk,∆Sk) = −(P (Xk, Sk), 0)

(resp. DPS(∆S) = −(P (Sk), 0))

STEP 4: Find by exact line searches a value of t that minimizes the function:

min
t∈[0,2]

‖P (X + t∆X,S + t∆S)‖2F

(resp. min
t∈[0,2]

‖P (S + t∆S)‖2F )

STEP 5: Update:

• Xk+1 = Xk + t∆Xk, Sk+1 = Sk + t∆Sk (resp. Sk+1 = Sk + t∆Sk).

• k = k + 1

• go to STEP 2.

5.4 Šamanskii’s Technique

Another variation on Newton’s method is Šamanskii’s technique, which accelerates the

quadratic convergence to cubic. Therefore, we must ensure we have quadratic convergence

in order to use this technique (see [126]).

5.4.1 Algorithm: Newton’s Method with Line Search and

S̆amanskii Technique

Given an initial approximation (X0, S0) to the solution of (2.5) (resp. S0 to the solution

of (3.2)), tolerances ǫ and ǫ0 and a contour Γ ∈ C (with the spectrum of S0 in its interior),

we have:
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Algorithm 3.

STEP 1: Set k = 0

STEP 2: If errork < ǫ: STOP

STEP 3: Solve for (∆Xk,∆Sk) (resp. for ∆Sk) the equation:

DP(X,S)(∆Xk,∆Sk) = −(P (Xk, Sk), 0)

(resp. DPS(∆S) = −(P (Sk), 0))

STEP 4: If errork < ǫ0: go to STEP 7.

STEP 5: Find by exact line searches a value of t that minimizes the function:

min
t∈[0,2]

‖P (X + t∆X,S + t∆S)‖2F

(resp. min
t∈[0,2]

‖P (S + t∆S)‖2F )

STEP 6: Update

• Xk+1 = Xk + t∆Xk, Sk+1 = Sk + t∆Sk (resp. Sk+1 = Sk + t∆Sk).

• k = k + 1 and go to STEP 2.

STEP 7: Update Xk,1 = Xk +∆Xk and Sk,1 = Sk +∆Sk (resp. Sk,1 = Sk +∆Sk).

STEP 8: Solve for (∆Xk,1,∆Sk,1) (resp. ∆Sk,1) the equation:

DP(X,S)(∆Xk,1,∆Sk,1) = −(P (Xk,1, Sk,1), 0)

(resp. DPS∆Sk,1 = −(P (Sk,1), 0))

STEP 9: Update

• Xk+1 = Xk,1 +∆Xk,1, Sk+1 = Sk,1 +∆Sk,1 (resp. Sk+1 = Sk,1 +∆Sk,1).

• k = k + 1 and go to STEP 2.

5.5 Solution of the Correction Equation

In this section, we use Newton’s Method and its variations to approximate a solution for

equation (2.5) (resp. for equation(3.2)). We must find the correction (∆X,∆S) (resp.

∆S) for the equations:

DP(X,S)(∆Xk,∆Sk) = −(P (Xk, Sk), 0) (5.5)

and respectively for:

DPS(∆S) = −(P (Sk), 0).
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In next sections, we will show two ways to find this correction. The first one uses

a Kronecker product approach and the second uses forward substitution. We will focus

in the case of the correction equation for invariant pairs; the corresponding equation for

matrix solvents can be used in a similar way.

5.5.1 Using the Kronecker Product

Consider the equation (5.5). Vectorizing its left part and using (A.1), we obtain:

vec (DP (∆X,∆S)) =

= vec

(
1

2πı

∮

Γ

P (λ)
(
∆X +X(λI − S)−1∆S

)
(λI − S)−1dλ

)
=

=
1

2πı

∮

Γ

vec
(
P (λ)

(
∆X +X(λI − S)−1∆S

)
(λI − S)−1

)
dλ =

=
1

2πı

∮

Γ

vec
(
P (λ)∆X(λI − S)−1

)
dλ+

+
1

2πı

∮

Γ

vec
(
P (λ)X(λI − S)−1∆S(λI − S)−1

)
dλ =

=
1

2πı

∮

Γ

(
(λI − S)−T ⊗ P (λ)

)
dλ vec (∆X)+

+
1

2πı

∮

Γ

(
(λI − S)−T ⊗ P (λ)X(λI − S)−1

)
dλ vec (∆S).

Then, we can rewrite the equation DP (∆X,∆S) = (P (Xp, Sp), 0) as:

[
K11 K12

K21 K22

][
vec (∆X)

vec (∆S)

]
=

[
vec (P (Xp, Sp))

0

]
, (5.6)

where

K11 =
1

2πı

∮

Γ

(
(λI − S)−T ⊗ P (λ)

)
dλ,

K12 =
1

2πı

∮

Γ

(
(λI − S)−T ⊗ P (λ)X(λI − S)−1

)
dλ,

K21 =
m−1∑

j=0

((Sj)T ⊗WH
j ),

K22 =
m−1∑

j=1

(Ik ⊗WH
j X)KSj ,
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where KSj denotes the Kronecker product formulation of the Fréchet derivative, i.e.:

KSj =

j−1∑

i=0

((Sj−i−1)T ⊗ Si.

5.5.2 Using Forward Substitution

Using the Schur decomposition of Sp and an appropriate unitary transformation of the pair

(Xp, Sp), we can assume that Sp is in upper triangular form. Using this special structure of

Sp, we can easily find the columns of ∆X and ∆S successively using a forward substitution

process.

Note that using the upper triangular structure of Sp in the equation:

DP (∆X,∆S) = (P (Xp, Sp), 0) (5.7)

the computation of the first columns ∆x1 and ∆s1 of ∆X and ∆S, respectively, is simple.

Assuming that S is an upper triangular matrix, then (λI − S)−1 is also upper triangular.

Its diagonal entries are (λI − s11)
−1, (λI − s22)

−1, . . . , (λI − snn)
−1, where s11, s22, . . . , snn

are the diagonal entries of S. In order to compute ∆x1 and ∆s1, we can write:

DP (X,S) =
1

2πı

∮

Γ

P (λ)
(
∆x1 +X(λI − S)−1∆s1

)
(λ− s11)

−1dλ =

=
1

2πı

∮

Γ

P (λ)∆x1(λ− s11)
−1dλ+

1

2πı

∮

Γ

P (λ)X(λI − S)−1∆s1(λ− s11)
−1dλ.

Then, we have: [
B11 B12

B21 B22

][
∆x1

∆s1

]
=

[
r1

0

]
, (5.8)

where r1 denotes the first column of Res = P (Xp, Sp) and:

B11 =
1

2πı

∮

Γ

P (λ)(λ− s11)
−1dλ,

B12 =
1

2πı

∮

Γ

P (λ)X(λI − S)−1(λ− s11)
−1dλ,

B21 =
m−1∑

j=0

sj11W
H
j ,

B22 =
m−1∑

j=1

WH
j X

[
DSj

]
11
,
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where [DSj]11 denotes the Fréchet derivative of the first column of Sj with respect to the

first column of S:

[
DS1

]
11

= Ik,
[
DSj

]
11

= s11
[
DSj−1

]
11
+ Sj−1, j ≥ 2

For the second columns of ∆X and ∆S, we can find an equation of the form of (5.8), but

first we must update the right side of the equation (5.7). We will now describe how to do

this update.

First, consider the partitions:

∆X = [∆x1,∆X2], ∆S = [∆s1,∆S2], Res = [r1, Res2],

S =

[
s11 s12

0 S22

]
and Sj

[
sj11 [Sj]12
0 Sj

22

]
.

Note also that using the formula for the inverse of a block upper triangular matrix [104],

we have:

(λI − S)−1 =

[
(λ− s11)

−1 (λ− s11)
−1s12(λI − S22)

−1

0 (λI − S22)
−1

]
.

Inserting this in equation (5.3), we have:

DP (X,S) =
1

2πı

∮

Γ

P (λ)∆X(λI − S)−1dλ+

+
1

2πı

∮

Γ

P (λ)X(λI − S)−1∆S(λI − S)−1dλ =

=
1

2πı

∮

Γ

P (λ) [∆x1,∆X2] (λI − S)−1dλ

+
1

2πı

∮

Γ

P (λ)X(λI − S)−1 [∆s1,∆S2] (λI − S)−1dλ =

=
1

2πı

∮

Γ

P (λ) [∆x1, 0] (λI − S)−1dλ+

+
1

2πı

∮

Γ

P (λ) [0,∆X2] (λI − S)−1dλ+

+
1

2πı

∮

Γ

P (λ)X(λI − S)−1 [∆s1, 0] (λI − S)−1dλ

+
1

2πı

∮

Γ

P (λ)X(λI − S)−1 [0,∆S2] (λI − S)−1dλ =

=
1

2πı

∮

Γ

P (λ)
[
∆x1(λ− s11)

−1 ∆x1(λ− s11)
−1s12(λI − S22)

−1
]
dλ+

+
1

2πı

∮

Γ

P (λ)
[
0 ∆X2(λI − S22)

−1
]
dλ+

+
1

2πı

∮

Γ

P (λ)X(λI − S)−1
[
∆s1(λ− s11)

−1 ∆s1(λ− s11)
−1s12(λI − S22)

−1
]
dλ+

+
1

2πı

∮

Γ

P (λ)X(λI − S)−1
[
0 ∆S2(λI − S22)

−1
]
dλ.
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Multiplying last equation by

[
0

Ik−1

]
to consider just the last k − 1 columns, we have:

1

2πı

∮

Γ
P (λ)

[
∆x1(λ− s11)

−1 ∆x1(λ− s11)
−1s12(λI − S22)

−1
] [ 0

Ik−1

]
dλ+

+
1

2πı

∮

Γ
P (λ)

[
0 ∆X2(λI − S22)

−1
] [ 0

Ik−1

]
dλ+

+
1

2πı

∮

Γ
P (λ)X(λI − S)−1

[
∆s1(λ− s11)

−1 ∆s1(λ− s11)
−1s12(λI − S22)

−1
] [ 0

Ik−1

]
dλ+

+
1

2πı

∮

Γ
P (λ)X(λI − S)−1

[
0 ∆S2(λI − S22)

−1
] [ 0

Ik−1

]
dλ =

1

2πı

∮

Γ
P (λ)∆x1(λ− s11)

−1s12(λI − S22)
−1dλ+

1

2πı

∮

Γ
P (λ)∆X2(λI − S22)

−1dλ+

+
1

2πı

∮

Γ
P (λ)X(λI − S)−1∆s1(λ− s11)

−1s12(λI − S22)
−1dλ+

+
1

2πı

∮

Γ
P (λ)X(λI − S)−1∆S2(λI − S22)

−1dλ,

obtaining for the pair (∆X2,∆S2) ∈ C
n×(k−1) × C

n×(k−1) the linear matrix equation:

1

2πı

∮

Γ

P (λ)
[
∆X2 +X(λI − S)−1∆S2

]
(λI − S22)

−1dλ = R̂es2

m−1∑

j=0

WH
j

(
∆X2S

j
22 +XDSj([0,∆S2])

[
0

Ik−1

])
= Ôrt2,

where the updated right hand sides are:

R̂es2 := Res2 −
1

2πı

∮

Γ
P (λ)

[
∆x1 +X(λI − S)−1∆s1

]
(λ− s11)

−1s12(λI − S22)
−1dλ

Ôrt2 := −

m−1∑

j=0

WH
j

(
∆x1

[
Sj
]
12

+XDSj([∆s1, 0])

[
0

Ik−1

])
.

Taking r2 and q2 as the first columns of R̂es2 and Ôrt2, respectively, we can find the

second columns ∆x2 and ∆s2 of ∆X and ∆S, respectively, solving the linear system:

[
B11 B12

B21 B22

][
∆x2

∆s2

]
=

[
r2

q2

]
,
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where:

B11 =
1

2πı

∮

Γ

P (λ)(λ− s22)
−1dλ,

B12 =
1

2πı

∮

Γ

P (λ)X(λI − S)−1(λ− s22)
−1dλ,

B21 =
m−1∑

j=0

sj22W
H
j ,

B22 =
m−1∑

j=1

WH
j X

[
DSj

]
22
.

5.6 Numerical Results

In this section we compare two methods to refine approximate invariant pairs (X,S) ∈

C
n×k × C

k×k: Newton’s method (N.M.) presented in [17], Newton’s method with line

search (N.M.L.S.), explained in Section 5.3 and Newton’s method with line search and

S̆amanskii technique (N.M.L.S.S.), explained in Section 5.4.

We have implemented Newton’s method with the above variants in MATLAB and

applied it to several problems taken from the NLEVP collection (see [16]). The results

are shown in Table 5.1. For each problem, an initial invariant pair (X0, S0) has first

been approximated using the (block) moment method of Section 4.3.1 and approximating

the moments µi in (4.2) via the trapezoid rule discussed in Section 4.5, with N = 20

integration nodes. Moreover, Γ is chosen for each problem as the contour enclosing the

k eigenvalues with largest condition number (computed using the MATLAB function

polyeig).

Table 5.1 shows that line search is generally effective in reducing the number of itera-

tions and the overall computation time.

Figure 5.1 shows the convergence of the Newton’s method with line search, for the

Dirac problem presented in Table 5.1. Here we use as contour the circle of center C = −0.1

and radius R = 1.14, which contains the 6 eigenvalues with largest condition number.

5.7 Functions Implemented in MATLAB and Maple

In this section, we describe the Maple and MATLAB implementations used in this thesis.

These implementations are available online at the URL

http://www.unilim.fr/pages perso/esteban.segura/software.html

Computation of Invariant Pairs and Matrix Solvents Page 99



Chapter 5 : Numerical Refinement of Invariant Pairs and Matrix Solvents

N.M. N.M.L.S. N.M.L.S.S.

Problem Deg P Size X Ite Time Ite Time Ite Time

bicycle 2 2× 2 23 0.082 16 0.112 12 0.05

butterfly 4 64× 5 67 3.719 22 1.567 19 1.57

cd player 2 60× 6 500 N.C. 19 1.021 19 1.15

closed loop 2 2× 2 8 0.016 7 0.02 6 0.02

damped beam 2 200× 6 28 6.109 4 0.6037 3 0.80

dirac 2 80× 6 500 N.C. 41 1.965 41 2.23

hospital 2 24× 24 53 5.65 51 6.21 48 6.20

metal strip 2 9× 9 500 N.C. 28 0.589 23 0.48

mobile manipulator 2 5× 2 8 0.014 7 0.030 6 0.03

pdde stability 2 225× 6 29 9.644 16 5.622 17 8.17

planar waveguide 4 129× 6 72 11.148 19 3.682 17 5.34

plasma drift 3 128× 6 69 13.059 26 5.596 23 6.33

power plant 2 8× 8 15 0.34 13 0.39 11 0.50

railtrack 2 1005× 3 32 199.365 28 209.471 25 216.53

Table 5.1: Comparison of results for classical Newton, Newton with line search and New-
ton with line search and Šamanskii’s technique.

Figure 5.1: Convergence of Dirac problem using Newton’s method with line search.This
is a log-10 plot of the relative residual ‖P (X,S)‖F

‖X‖F
versus the number of iterations.

MATLAB

Let P (λ) be an n × n matrix polynomial of degree ℓ and Γ a contour (we limit our

implementations to the case when Γ is a circle).

• conditionNumInvPair.m: This function approximates the condition number for an

invariant pair (X,S) using equation (2.10). For this computation we use the values
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αi = ‖Ai‖, for i = 0, . . . , ℓ.

The input of this function is:

∗ coeffs: cell array containing coefficients Ai of P (λ).

∗ (X,S): the invariant pair (X,S) ∈ C
n×k × C

k×k.

∗ C: center of the circle.

∗ R: radius of the circle.

∗ N: number of nodes of the trapezoid rule to approximate the contour integral.

• condNumSolvent.m: This function approximates the condition number for a solvent

S using equation (3.4). For this computation we use the values αi = ‖Ai‖, for

i = 0, . . . , ℓ.

The input of this function is:

∗ coeffs: cell array containing coefficients Ai of P (λ).

∗ S: the matrix solvent S ∈ C
n×n.

∗ C: center of the circle.

∗ R: radius of the circle.

∗ N: number of nodes of the trapezoid rule to approximate the contour integral.

• numEigsContour.m: This function approximates the number of eigenvalues of P (λ)

inside Γ using equation (4.10). The input of this function is:

∗ coeffs: cell array containing coefficients Ai of P (λ).

∗ C: center of the circle.

∗ R: radius of the circle.

∗ N: number of nodes of the trapezoid rule to approximate the contour integral.

• invariantPair.m: This function approximates an invariant pair (X,S) of P (λ).

The approach used for this computation relies on the block version of the moment

method presented in Section 4.3.2.

The input of this function is:

∗ coeffs: cell array containing coefficients Ai of P (λ).

∗ C: center of the circle.

∗ R: radius of the circle.

∗ N: number of nodes of the trapezoid rule to approximate the contour integral.
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• solvent.m: This function approximates a solvent S of P (λ). As explained in Section

3.3.1, the idea is to approximate first an invariant pair (Y, T ) ∈ C
n×n × C

n×n and

assuming that the matrix Y is invertible then we compute the solvent S = Y TY −1.

The input of this function is:

∗ coeffs: cell array containing coefficients Ai of P (λ).

∗ C: center of the circle.

∗ R: radius of the circle.

∗ N: number of nodes of the trapezoid rule to approximate the contour integral.

• invariantPairCircles.m: This function approximates an invariant pair (X,S) of

P (λ). The approach used for this computation relies on the block version of the

moment method presented in Section 4.3.2.

Consider the circles Γ,Γ1, . . . ,Γk, where Γi are located inside Γ and the circles Γi,

Γj do not intersect, for i 6= j and i = 1, . . . , k. This function computes the invariant

pair (X,S), where the eigenvalues λr’s of S are such that λr is inside of Γ but not

inside of Γi, for r = 1, . . .. For instance, consider Figure 5.2 and suppose we want

to exclude the eigenvalues λ1, λ2, λ3, λ4 and λ6. Then, we can use the circles Γ1 and

Γ2 as in Figure 5.3, to prevent the computation of those eigenvalues.

The input of this function is:

∗ coeffs: cell array containing coefficients Ai of P (λ).

∗ C: list with centers of the circles. The first entry must contain the center of

the main circle (which contains the smaller circles).

∗ R: list with radius of the circles. The first entry must contain the radius of the

main circle (which contains the smaller circles).

∗ N: number of nodes of the trapezoid rule to approximate the contour integral.

Maple

Let P (λ) be an n × n matrix polynomial of degree ℓ and Γ a contour (we limit our

implementations to the case when Γ is a circle).

• invariantPair.mpl: This function computes an invariant pair (X,S) of P (λ). The

approach used for this computation relies on the block version of the moment method

presented in Section 4.3.2.

The input of this function is:

∗ coeffs: list containing coefficients Ai of matrix polynomial P (λ).
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Figure 5.2: Eigenvalues inside the circle
Figure 5.3: The eigenvalues that should be
excluded from the computations are con-
tained in the smaller circles

∗ C: center of the circle.

∗ R: radius of the circle.

• invariantPairCircles.mpl: This function computes an invariant pair (X,S) of

P (λ). It uses the same idea described in function invariantPairCircles.m.

The input of this function is:

∗ coeffs: list containing coefficients Ai of matrix polynomial P (λ).

∗ C: list with centers of the circles. The first entry must contain the center of

the main circle (which contains the smaller circles).

∗ R: list with radius of the circles. The first entry must contain the radius of the

main circle (which contains the smaller circles).

• solvent.mpl: This function computes a solvent S of P (λ). As explained in Section

3.3.1, the idea is to compute first an invariant pair (Y, T ) ∈ C
n×n × C

n×n and

assuming that the matrix Y is invertible then we compute the solvent S = Y TY −1.

The input of this function is:

∗ coeffs: list containing coefficients Ai of matrix polynomial P (λ).

∗ C: center of the circle.

∗ R: radius of the circle.

• condNumInvPair.mpl: This function computes the condition number for an in-

variant pair (X,S) using equation (2.10). For this computation we use the values

αi = ‖Ai‖, for i = 0, . . . , ℓ.

The input of this function is:
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∗ coeffs: list containing coefficients Ai of matrix polynomial P (λ).

∗ (X,S): the invariant pair (X,S) ∈ C
n×k × C

k×k.

∗ C: center of the circle.

∗ R: radius of the circle.

• condNumSol.mpl: This function computes the condition number for a solvent S

using equation (3.4). For this computation we use the values αi = ‖Ai‖, for i =

0, . . . , ℓ.

The input of this function is:

∗ coeffs: list containing coefficients Ai of matrix polynomial P (λ).

∗ S: the matrix solvent S ∈ C
n×n.

∗ C: center of the circle.

∗ R: radius of the circle.

• numberEigsContour.mpl: This function computes the number of eigenvalues of

P (λ) inside Γ using equation (4.8).

The input of this function is:

∗ coeffs: list containing coefficients Ai of P (λ).

∗ C: center of the circle.

∗ R: radius of the circle.
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Chapter 6 :

Conclusions and Future Work
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Conclusion

In this work, we have explored several aspects related to invariant pairs and solvents

of matrix polynomials.

After recalling some basics about matrix polynomials and their applications, and the

relation with systems of ordinary differential equations, we presented a generalization of

a shifting method for matrix polynomials, which we believe can be useful, for instance,

when applying methods that require a particular eigenvalue distribution.

We presented some key points in the general theory and applications of the invariant

pair and matrix solvent problems. Additionally, we computed new formulations for the

condition number and the backward error of invariant pairs and matrix solvents. In the

case of solvents, this computation generalized the existent previous work on the quadratic

matrix equation. Furthermore, we explored the relationship between solvents of matrix

polynomials in general and in triangularized form. This could be useful when computing

matrix solvents.

In order to compute invariant pairs and matrix solvents, we studied a moment Hankel

pencil method in its scalar and block versions: the method lends itself to a numeric or a

hybrid symbolic-numeric application. We showed that the scalar method cannot capture

some eigenvalue multiplicity structures, for which the block version is needed. Moreover,

we analyzed the error for the trapezoid rule applied to the approximation of the moments

via contour integrals.

When computing invariant pairs and matrix solvents, the proposed moment Hankel

pencil methods, and some others direct approaches as well, may need to be refined numer-

ically using an iterative method: here, we studied and compared two variants of Newton’s

method, namely line-search and Šamanskii. We tested the effectiveness and robustness of

these approaches on several problems, many of them taken from the NLEVP collection.

Some points in this analysis may deserve to be explored in further detail. For instance,

we would like to achieve a deeper understanding of the behavior of the block moment

method presented in Chapter 4: at this time, we do not have results that tell us in

advance what should be the size of the blocks, depending on the structure of multiplicity

of the eigenvalues.

On the other hand, we would like to present convergence theorems for Newton’s

method and its variants analyzed in Chapter 5. Formal convergence results would help us

decide, for instance, whether the results given by direct methods are good starting points

for the subsequent refinement.

Another possible generalization involves the use of numerical quadrature to approxi-

mate the contour integrals. Here we limited ourselves for simplicity to the case when the

contour is a circle, but it would be interesting to extend our implementations to different

types of contour (e.g. ellipses, lines, etc). This might be more advantageous for some

problems with particular eigenvalue distributions.
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We would also like to work more on the design and development of effective symbolic-

numeric eigenvalue algorithms based on the moment method, along with extensive nu-

merical tests.
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Chapter A :

Appendix
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A.1 Kronecker Product

If A is an m × n matrix and B is a p × q matrix, then the Kronecker product A ⊗ B is

the mp× nq block matrix (see [54], pp. 27):

A⊗ B =




a11B · · · a1nB
...

. . .
...

an1B · · · annB


 .

A.1.1 Kronecker Product Properties

• (A⊗ B)T = AT ⊗ BT .

• (A⊗ B)(C ⊗D) = AC ⊗ BD.

• (A⊗ B)−1 = A−1 ⊗ B−1, for matrices A and B nonsingular.

• A⊗ (B ⊗ C) = (A⊗ B)⊗ C.

A.2 Vectorization

The vectorization of an m×n matrix A, denoted by vec (A), is the mn× 1 column vector

obtained by stacking the columns of the matrix A on top of one another (see [54], pp.

28):

vec (A) =




A(:, 1)
...

A(:, n)


 .

A.2.1 Compatibility with Kronecker Products

The vectorization is frequently used together with the Kronecker product to express matrix

multiplication as a linear transformation on matrices. In particular:

vec (ABC) = (CT ⊗ A) vec (B) (A.1)

A.3 Vector and Matrix Norm

A.3.1 Vector Norm

A general vector norm on K
n is a function f : K

n → R that satisfies the following

properties (see [54], pp. 68):
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• f(x) ≥ 0, x ∈ K
n, (f(x) = 0, iff x = 0).

• f(x+ y) ≤ f(x) + f(y), x, y ∈ K
n,

• f(αx) = |α|f(x), α ∈ K, x ∈ K
n.

We denote such function with a double bar notation: f(x) = ‖x‖. A useful class of vector

norms are the p− norms defined by:

‖x‖p = (|x1|
p + · · ·+ |xn|

p)1/p, p ≥ 1.

The 1−, 2− and ∞− norms are the most important:

• ‖x‖1 = |x1|+ · · ·+ |xn|,

• ‖x‖2 = (|x1|
2 + · · ·+ |xn|

2)1/2 = (xTx)1/2,

• ‖x‖∞ = max
1≤i≤n

|xi|.

A.3.2 Matrix Norm

f : Km×n → R is a matrix norm if the following properties hold (see [54], pp. 71):

• f(A) ≥ 0, A ∈ K
m×n, (f(A) = 0, iff A = 0).

• f(A+B) ≤ f(A) + f(B), A,B ∈ K
m×n,

• f(αA) = |α|f(A), α ∈ K, A ∈ K
m×n.

We denote such function with a double bar notation: f(A) = ‖A‖. The most frequently

used matrix norms are the Frobenius norm:

‖A‖F =

√√√√
m∑

i=1

n∑

j=1

|aij|
2 =

√
trace(A∗A).

and the p−norms:

‖A‖p = sup
x 6=0

‖Ax‖p
‖x‖p

.

In the case of p = 1 and p = ∞, we have:

• ‖A‖1 = max
1≤j≤n

m∑

i=1

|aij|, which is the maximum absolute column sum of the matrix.

• ‖A‖∞ = max
1≤i≤n

n∑

j=1

|aij|, which is the maximum absolute row sum of the matrix.
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A.4 Pseudo-inverse of a Matrix

Given an m×n matrix A, the Moore-Penrose generalized matrix inverse is a unique n×m

matrix pseudo-inverse A+ (see [54], [110]).

The Moore-Penrose inverse satisfies:

• AA+A = A,

• A+AA+ = A+,

• (AA+)∗ = AA+,

• (A+A)∗ = A+A.

A.5 The Generalized Schur Decomposition

The QZ algorithm of Moler and Stewart ([105], [54]) solves the generalized eigenvalue

problem of finding x and λ such that Ax = λBx, for A,B ∈ K
n×n.

Theorem 19. If A and B are in C
n×n, then there exist unitary Q and Z such that

Q∗AZ = T and Q∗BZ = S are upper triangular. If for some k, tkk and skk are both zero,

then σ(A,B) = C. Otherwise:

σ(A,B) =

{
tii
sii

: sii 6= 0

}
.

A.6 Composite Trapezoidal Rule

An intuitive method of finding the area under the curve y = f(x) over [a, b] is by approx-

imating that area with a series of trapezoids that lie above the intervals {[xk, xk+1]} (see

[28]).

Theorem 20. Let f ∈ C2[a, b], h = (b−a)
n

and xj = a + jh, for j = 0, 1, . . . , n. There

exists a µ ∈ (a, b) for which the Composite Trapezoidal rule for n subintervals can be

written with its error term as:

∫ b

a

f(x)dx =
h

2

[
f(a) + 2

n−1∑

j=1

f(xj) + f(b)

]
−

b− a

12
h2f

′′

(µ).
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Index

Contour, 77

Number of eigenvalues inside of, 78

Invariant pair, 30

Backward error, 38

Condition number, 34

Contour integral representation, 33

Homogeneous formulation, 13

Jordan pair, 32

Minimal, 31

Minimality index, 31

Moment method, 70

Newton’s method, 87

Šamanskii’s technique, 93

Algorithm, 88

Line search, 89

Solution of the correction

equation, 94

Simple, 32

Matrix

Balancing, 18

Fréchet derivative, 33

Hankel, 62

Kronecker product, 109

Moore-Penrose inverse, 111

Norm, 110

Toeplitz, 62

Vectorization, 109

Matrix polynomial, 12

Degree, 12

Equivalent, 15

Jordan chain, 14

Leading coefficient, 12

Linearization, 15

Monic, 12

Ordinary differential equations, 13

Rank, 12

Regular, 12

Reversal, 12

Shifting Technique, 20

Singular, 12

Smith normal form, 15

Trailing coefficient, 12

Triangularization, 51

Unimodular, 15

Matrix solvent, 43

Backward error, 47

Computation, 48

Condition number, 45

Contour integral representation, 43

Existence, 43

Infinite number of solvents, 59

Matrix p-th root, 49

Newton’s method, 87

Šamanskii’s technique, 93

Algorithm, 88

Line search, 91

Number of, 44

Moment method, 63

Block, 73

Moments, 63

Trapezoid rule, 79

Polynomial eigenvalue problem, 12

Balancing, 18

Generalized eigenvalue problem, 13

QZ algorithm, 111

Quadratic eigenvalue problem, 13

Scaling, 19

Standard eigenvalue problem, 13
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Résumé : Cette thèse porte sur certains aspects symboliques-numériques du problème
des paires invariantes pour les polynômes de matrices. Les paires invariantes géneralisent
la définition de valeur propre / vecteur propre et correspondent à la notion de sous-
espaces invariants pour le cas nonlinéaire. Elles trouvent leurs applications dans le calcul
numérique de plusieurs valeurs propres d’un polynôme de matrices ; elles présentent aussi
un intérêt dans le contexte des systèmes différentiels.

En utilisant une approche basée sur les intégrales de contour, nous déterminons des
expressions du nombre de conditionnement et de l’erreur rétrograde pour le problème
du calcul des paires invariantes. Ensuite, nous adaptons la méthode des moments de
Sakurai-Sugiura au calcul des paires invariantes et nous étudions le comportement de la
version scalaire et par blocs de la méthode en présence de valeurs propres multiples. Le
résultats obtenus à l’aide des approches directes peuvent éventuellement être améliorés
numériquement grâce à une méthode itérative : nous proposons ici une comparaison de
deux variantes de la méthode de Newton appliquée aux paires invariantes.

Le problème des solvants de matrices est très proche de celui des paires invariants.
Le résultats présentés ci-dessus sont donc appliqués au cas des solvants pour obtenir des
expressions du nombre de conditionnement et de l’erreur, et un algorithme de calcul basé
sur la méthode des moments. De plus, nous étudions le lien entre le problème des solvants
et la transformation des polynômes de matrices en forme triangulaire.

Mots clés : Polynômes de matrices, paires invariantes, solvants, intégrale de contour,
nombre de conditionnement, erreur rétrograde, faisceaux de matrices de Hankel, méthode
de Newton.

Abstract: In this thesis, we study some symbolic-numeric aspects of the invariant
pair problem for matrix polynomials. Invariant pairs extend the notion of eigenvalue-
eigenvector pairs, providing a counterpart of invariant subspaces for the nonlinear case.
They have applications in the numeric computation of several eigenvalues of a matrix
polynomial; they also present an interest in the context of differential systems.

Here, a contour integral formulation is applied to compute condition numbers and
backward errors for invariant pairs. We then adapt the Sakurai-Sugiura moment method
to the computation of invariant pairs, including some classes of problems that have multi-
ple eigenvalues, and we analyze the behavior of the scalar and block versions of the method
in presence of different multiplicity patterns. Results obtained via direct approaches may
need to be refined numerically using an iterative method: here we study and compare two
variants of Newton’s method applied to the invariant pair problem.

The matrix solvent problem is closely related to invariant pairs. Therefore, we special-
ize our results on invariant pairs to the case of matrix solvents, thus obtaining formulations
for the condition number and backward errors, and a moment-based computational ap-
proach. Furthermore, we investigate the relation between the matrix solvent problem and
the triangularization of matrix polynomials.

Keywords: Matrix polynomials, invariant pairs, solvents, contour integral, condition
number, backward error, Hankel pencils, Newton’s method.
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