
HAL Id: tel-01217183
https://theses.hal.science/tel-01217183

Submitted on 19 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cloud-based cost-efficient application and service
provisioning in virtualized wireless sensor networks

Imran Khan

To cite this version:
Imran Khan. Cloud-based cost-efficient application and service provisioning in virtualized wireless
sensor networks. Other [cs.OH]. Institut National des Télécommunications, 2015. English. �NNT :
2015TELE0019�. �tel-01217183�

https://theses.hal.science/tel-01217183
https://hal.archives-ouvertes.fr

THÉSE DE DOCTORAT
TÉLÉCOM SUDPARIS – INSTITUT MINES-TÉLÉCOM

EN CO-ACCREDITATION
AVEC L’UNIVERSITÉ PIERRE ET MARIE CURIE - PARIS 6

École Doctorale Informatique, Télécommunication et Électronique de Paris

Spécialité
Informatique et Réseaux

Présentée par
Imran KHAN

Cloud-based Cost-efficient Application and Service
Provisioning in Virtualized Wireless Sensor

Networks

Soutenue le 08/07/2015 devant le jury composé de:

Rapporteurs:
M. Ahmed KARMOUCH Professeur à Université d’Ottawa, Canada
M. Mika YLIANTTILA Professeur à Université d’Oulu, Finlande

Examinateurs:
M. Guy PUJOLLE Professeur à UPMC, Paris 6, France
M. Ernesto DAMIANI Professeur à Università degli Studi di Milano, Italie
M. Laurent CIAVAGLIA Chercheur scientifique principal à Alcatel-Lucent, France
Mme. Imen Grida BEN YAHIA Ingénieur de Recherche à Orange Labs, France

Co-encadrant de Thèse:
M. Roch GLITHO Professeur Associé à Université Concordia, Canada

Directeur de Thèse:
M. Noël CRESPI Professeur à Télécom SudParis, France

Thèse numéro : 2015TELE0019

—To my late Father,

Acknowledgements

First of all, I would like to thank Prof. Noël Crespi, my thesis director and supervisor for

giving me all the support, encouragement, guidance and freedom one could wish for. It was

absolute pleasure to work with him and to gain valuable experience.

It gives me immense pleasure to acknowledge and convey my heart felt appreciation

for the assistance and the feedback given by Prof. Roch Glitho, my thesis co-supervisor.

He taught me the principles of research, with lots of patience, and his insight, constant

motivation and advise helped my work go in the right direction.

I’d like to thank the reviewers of my thesis; Prof. Ahmed Karmouch (University of

Ottawa, Canada) and Prof. Mika Ylianttila (University of Oulu, Finland) for their valuable

feedback to improve the quality of my work.

I would also like to show my gratitude to my co-authors, Dr. Fatna Belqasmi (Zayed

University, UAE), Fatima Zahra Errounda, Rifat Jafrin, Dr. Jagruti Sahoo & Dr. Sami

Yangui (Concordia University, Canada) and Son Han (Télécom SudParis, France) for their

valuable contribution in our joint research work. Special thanks goes to Dr. Ángel Cuevas

(Universidad Carlos III de Madrid, Spain), Dr. Roberto Minerva (Telecom Italia, Italy),

Dr. Djamal Zeghlache (Télécom SudParis, France), Dr. Preston Rodrigues and Dr. Paul

Polakos (CISCO, USA) for their useful comments and suggestions to improve my work.

I am also grateful to my colleagues at Service Architecture Lab, TSP; they have made

available their valuable support in a number of ways. Special thanks goes to secretary of

RS2M Department Valerie Mateus; she was always very kind and generous in helping me to

solve tedious administrative tasks.

My profound love and respect goes to my Mother – Hurmat Jahan, my Sister – Yasmeen,

and my Brother – Javeed, who always boosted me with encouragement to achieve the new

milestones in my life. No words can express my gratitude for my landlady, Mme. Evangelina

Sousa who graciously hosted me all these years in Evry.

Finally, throughout my research journey at Télécom SudParis, I have met, interacted

with and studied the work of number of excellent people. They, on a smaller or a larger scale

influenced me and helped me to see things from different perspective. I thank them for their

vision, shared knowledge and contributions to make this a better world.

Imran KHAN

Evry

08 July 2015

Abstract

Wireless Sensor Networks (WSNs) are becoming ubiquitous and are used in diverse applica-

tions domains. They are the cornerstones of the emerging Internet-of-Things (IoT) paradigm.

Traditional deployments of WSNs are domain-specific, with applications usually embedded

in the WSN, precluding the re-use of the infrastructure by other applications. This can

lead to redundant deployments. Now with the advent of IoT, this approach is less and less

viable. A potential solution lies in the sharing of a same WSN by multiple applications and

services, even including applications and services that were not envisioned during the WSN

deployment. This will allow resource- and cost-efficiency.

Two major developments have led to this potential solution. One is the advancements

in hardware and software in WSN domain. As WSNs’ nodes are becoming more and more

powerful, it is getting more and more pertinent to research how multiple applications could

share the very same WSN deployments. The second development is the Cloud Computing

paradigm that promotes resource- and cost-efficiency by applying the virtualization concept

to the available physical resources. As an enabler technology, virtualization can decouple

WSN infrastructure from the applications running on the infrastructure. This thesis focuses

on the cloud-based cost-efficient application and service provisioning in virtualized WSNs.

It makes the following contributions.

First, an extensive state-of-the-art review is presented that introduces the basics of WSN

virtualization and motivates its pertinence with carefully selected scenarios. Existing works

are presented in detail and critically evaluated using a set of requirements derived from the

scenarios. The pertinent research projects are also reviewed. Several research issues are also

discussed with hints on how they could be tackled. This contribution substantially improves

current state-of-the-art reviews in terms of the scope, motivation, details, and future research

issues.

The second contribution consists of two parts: the first part is a novel multilayer WSN

virtualization architecture that allows the provisioning of multiple applications and services

over the same WSN deployment. It is applicable to new generation/powerful as well as

resource-constrained WSN nodes. The proposed architecture provides platform indepen-

dence and uses separate interfaces for data and control messages. It is implemented and

evaluated using a scenario-based proof-of-concept prototype using Java SunSpot kit. The

second part of this contribution is the extended architecture that allows virtualized WSN

infrastructure to interact with a WSN Platform-as-a-Service (PaaS) at a higher level of ab-

straction. Through these enhancements a WSN PaaS can provision WSN applications and

services to the end-users as Software-as-a-Service (SaaS). The enhancements are based on

the identified fundamental differences between virtualized WSN Infrastructure-as-a-Service

(IaaS) and traditional IaaS. Early results are presented based on the implantation of en-

hanced architecture using Java SunSpot kit.

The third contribution is a novel data annotation architecture for semantic applications

in virtualized WSNs. It allows in-network data annotation and uses overlays as the corner-

stone. We use domain-independent base ontology to annotate the sensor data, which is then

forwarded to the PaaS where domain-specific ontologies exist. A proof-of-concept prototype,

based on a scenario, is developed and implemented using Java SunSpot, AdvanticSys Kits

and Google App Engine.

The fourth and final contribution is the enhancement to the proposed data annotation

architecture on two fronts. One is the extension to the proposed architecture to support on-

tology creation, distribution and management. The second front is a heuristic-based genetic

algorithm used for the selection of capable nodes for storing the base ontology. The ontology

management extension is implemented and evaluated using a proof-of-concept prototype us-

ing Java SunSpot kit, while the simulation results of the algorithm are presented.

Keywords: Wireless Sensor Networks; Internet-of-Things (IoT); Virtualization; WSN

Virtualization; Cloud Computing; Semantic Web; Data Annotation; Overlays

Résumé

Des Réseaux de Capteurs Sans Fil (RdCSF) deviennent omniprésents et sont utilisés dans

diverses applications domaines. Ils sont les pierres angulaires de l’émergence de l’Internet des

Objets (IdO) paradigme. Déploiements traditionnels de rcsfs sont spécifiques au domaine,

avec des applications généralement incrustés dans le RdCSF, excluant la ré-utilisation de

l’infrastructure par d’autres applications. Cela peut conduire à des déploiements redondants.

Maintenant, avec l’avènement de l’IdO, cette approche est de moins en moins viables. Une

solution possible réside dans le partage d’une même WSN par de multiples applications et

de services, y compris même les applications et les services qui ne sont pas envisagées lors

du déploiement de WSN. Cela permettra de ressources et de coût-efficacité.

Deux principaux développement ont conduit à cette solution potentielle. L’un est le

progrès dans le matériel et les logiciels de RdCSF domaine. Comme les rcsfs’ noeuds sont

de plus en plus puissantes, il devient de plus en plus pertinente pour la recherche com-

ment plusieurs applications pourraient partager le même RdCSF déploiements. La deuxième

évolution est le paradigme de Cloud Computing qui favorise la ressource- et le rapport coût-

efficacité en appliquant le concept de virtualisation à la ressources physiques disponibles.

À titre d’outil habilitant la technologie, la virtualisation peut découpler RdCSF infrastruc-

ture à partir d’applications exécutées sur l’infrastructure. Cette thèse se concentre sur le

nuage-based application rentable et service provisioning dans les environnements virtualisés

les rcsfs. Il fait les contributions suivantes.

Tout d’abord, un vaste état de la revue d’art est présenté qui présente les principes

de base de RdCSF la virtualisation et sa pertinence avec précaution motive les scénarios

sélectionnés. Ouvrages existants sont présentés en détail et évaluées de façon critique en

utilisant un ensemble d’exigences dérivées de ces scénarios. Les projets de recherche per-

tinents sont également examinés. Plusieurs questions de recherche sont également discutés

avec des astuces sur la manière dont ils pourraient être abordés. Cette contribution améliore

sensiblement l’état actuel des critiques d’art en termes de la portée, de la motivation, détails,

et des questions de recherche futures.

La deuxième contribution se compose de deux parties: la première partie est une nouvelle

architecture de virtualisation RdCSF multicouche permet le provisionnement de plusieurs

applications et services sur le même RdCSF déploiement. Il est applicable à nouvelle

génération/puissants aussi bien que des ressources limitées et noeuds RdCSF L’architecture

proposée prévoit l’indépendance de la plate-forme et utilise des interfaces séparées pour

les messages de contrôle et de données. Il est mis en oeuvre et évalués par l’élaboration

d’un scénario à base de prototype de validation de principe à l’aide de Java kit SunSpot.

La deuxième partie de cette contribution est l’architecture étendu qui permet d’interagir

d’infrastructure RdCSF virtualisé avec un RdCSF PaaS à un plus haut niveau d’abstraction.

Grâce à ces améliorations un RdCSF FQA peuvent provisionner RdCSF applications et ser-

vices pour les utilisateurs finaux comme Software-as-a-Service (SaaS). Les améliorations sont

basées sur les différences fondamentales entre virtualisé et traditionnel RdCSF IaaS IaaS.

Les premiers résultats sont présentés en fonction de l’implantation de l’architecture évoluée

à l’aide de Java kit SunSpot.

La troisième contribution est une nouvelle architecture d’annotation des données pour les

applications sémantiques dans les environnements virtualisés les rcsfs. Il permet l’annotation

des données dans le réseau et utilise des superpositions comme étant la pierre angulaire. Nous

utilisons une ontologie de base de domaine indépendant pour annoter les données du capteur,

qui est ensuite transmis à la plate-forme en tant que service (PaaS) où spécifique domaine

ontologies existent. Un prototype de validation de principe, basé sur un scénario, est élaboré

et mis en oeuvre à l’aide de kits AdvanticSys, Java SunSpot, et Google App Engine.

La quatrième et dernière contribution est la mise en valeur de l’architecture d’annotation

de données proposée sur deux fronts. L’un est l’extension à l’architecture proposée pour

soutenir la création de l’ontologie, la distribution et la gestion. Le second front est un al-

gorithme génétique sur la base heuristique utilisé pour la sélection de noeuds capables de

stocker l’ontologie de base. L’extension de la gestion de l’ontologie est mis en œuvre et

évaluée en utilisant un prototype de validation de concept en utilisant le kit Java SunSpot.

Bien que les résultats de simulation de l’algorithme sont présentés.

Mots-clés: Réseaux de capteurs sans fil; Internet-de-Objets (IdO); Virtualisation; Vir-

tualisation de Réseaux de Capteurs Sans Fil; Cloud Computing; Web Sémantique; Annota-

tion des Données; Réseaux de Superpositions

List of Publications

This thesis is based on the following original research publications.

I. Imran Khan, Fatna Belqasmi, Roch Glitho, Noël Crespi, Monique Morrow, Paul Po-
lakos, “Wireless Sensor Network Virtualization: A Survey”, Communications Surveys
& Tutorials, IEEE, vol.PP, no.99, pp.1,1 doi: 10.1109/COMST.2015.2412971, March
2015 (Impact Factor 6.49)

II. Imran Khan, Fatna Belqasmi, Roch Glitho, Noël Crespi, Monique Morrow, Paul Po-
lakos, “Wireless Sensor Network Virtualization: Early Architecture and Research Per-
spectives”, Accepted for publication in May/June issue of IEEE Network Magazine,
2015 (Impact Factor 3.720)

III. Imran Khan, Fatima Zahra Errounda, Sami Yangui, Roch Glitho, Noël Crespi, “Get-
ting Virtualized Wireless Sensor Networks’ IaaS Ready for PaaS”, IoTIP-15 Workshop
in 11th IEEE International Conference on Distributed Computing in Sensor Systems
(IEEE DCOSS 2015) conference, 2015, June 10-12, Fortaleza, Brazil.

IV. Imran Khan, Roch Glitho, Noël Crespi, “Design and Analysis of Virtualization Frame-
work for Wireless Sensor Networks”, in proceedings of 5th IEEE International Sympo-
sium on a World of Wireless, Mobile and Multimedia Networks PhD forum 2013 (IEEE
WoWMoM 2013 PhD forum), 2013, June 4-7, Madrid, Spain.

V. Imran Khan, Fatna Belqasmi, Roch Glitho, Noël Crespi, “A Multi-Layer Architecture
for Wireless Sensor Network Virtualization”, in proceedings of 6th Joint IFIP Wireless
and Mobile Networking Conference (WMNC’2013) 2013, April, 23-25, Dubai, UAE.

VI. Imran Khan, Rifat Jafrin, Fatima Zahra Errounda, Roch Glitho, Noël Crespi, Monique
Morrow and Paul Polakos, “A Data Annotation Architecture for Semantic Applications
in Virtualized Wireless Sensor Networks”, in proceedings of 14th IFIP/IEEE Symposium
on Integrated Network and Service Management (IM 2015) – Technical Session, 2015,
May 11-15, Ottawa, Canada. (CORE rank A, Acceptance rate 26%)

VII. Imran Khan, Rifat Jafrin, Jagruti Sahoo, Roch Glitho, and Noël Crespi, “Towards Pro-
visioning of Semantic Applications over Virtualized Wireless Sensor Network Infrastructure-
as-a-Service”, in preparation for submission in IEEE Transactions on Cloud Computing.

VIII. Imran Khan, Jagruti Sahoo, Son Han, Roch Glitho, and Noël Crespi, “A Genetic
Algorithm-based Solution for Efficient In-network Sensor Data Annotation in Virtu-
alized Wireless Sensor Networks”, under review in IEEE CCNC 2016 conference.

In addition, the author has also authored or co-authored one journal, three conference pa-
pers and three versions of an IETF draft in the relevant research areas, including Cloud
Computing, Machine-to-Machine communication, 4G EPC Network, service composition,
Quality-of-Experience in wireless networks, and Future Internet.

Table of contents

1 Introduction 1
1.1 Motivation and Research Problems . 3
1.2 Concepts and Research Methodology . 5

1.2.1 Concepts . 5
1.2.2 Research Methodology . 6

1.3 Contributions of the Thesis . 7
1.4 Thesis Organization . 10
1.5 Overview of My Publications . 10

2 Background and State-of-the-Art 13
2.1 Introduction . 13
2.2 Basics of WSN Virtualization . 14
2.3 WSN Virtualization – Motivating Scenarios 14

2.3.1 Fire Monitoring Scenario . 15
2.3.2 Heritage Building Monitoring . 16

2.4 WSN Virtualization – Requirements . 17
2.5 WSN Virtualization – Summary of State-of-the-Art 17

2.5.1 Node-Level Virtualization . 18
2.5.2 Network-Level Virtualization . 18
2.5.3 Hybrid Solutions . 19

2.6 WSN Virtualization Projects and Research Issues 22
2.7 Lessons Learned . 22
2.8 Summary . 25

3 Wireless Sensor Networks Virtualization Architecture 27
3.1 Introduction . 27
3.2 Proposed Architecture . 28
3.3 Proof-of-Concept Prototype . 30
3.4 Performance Measurements and Results . 31
3.5 Enabling Interactions between Virtualized Wireless Sensor Networks’ IaaS and

PaaS . 34
3.6 Extended Architecture . 35
3.7 Proof-of-Concept Prototype . 37
3.8 Performance Measurements and Results . 37

xi

3.9 Lessons Learned . 39
3.10 Summary . 40

4 Data Annotation Architecture for Semantic Applications in Virtualized
Wireless Sensor Networks 41
4.1 Introduction . 41
4.2 Proposed Architecture . 42
4.3 Proof-of-Concept Prototype . 45
4.4 Performance Measurements and Results . 45
4.5 Lessons Learned . 49
4.6 Conclusion . 50

5 Provisioning of Semantic Applications over Virtualized Wireless Sensor
Network IaaS 51
5.1 Proposed Architecture . 52
5.2 Proof-of-Concept Prototype . 54
5.3 Performance Measurements and Results . 55
5.4 Multi-objective Genetic Algorithm for Capable Node Selection 56

5.4.1 Problem Representation . 57
5.4.2 GA Operators . 58
5.4.3 Objective Functions . 60

5.5 Simulation Results . 63
5.5.1 Simulation Setup . 63
5.5.2 Results . 63

5.6 Lessons Learned . 65
5.7 Conclusion . 66

6 Conclusion 67
6.1 Summary . 67
6.2 Future Work . 68

Bibliography 71

Annex A Paper I 79

Annex B Paper II 105

Annex C Paper III 115

Annex D Paper IV 123

Annex E Paper V 127

Annex F Paper VI 133

Annex G Paper VII 143

Annex H Paper VIII 161

Acronym 169

List of Tables

2.1 Summary of the State-of-the-Art . 21
2.2 WSN Virtualization Related Projects . 24

xv

List of Figures

1.1 WSN application types, domains and example applications as shown in [2] . . 4

2.1 WSN Node-level Virtualization . 15
2.2 WSN Network-level Virtualization . 15
2.3 Examples of node-level virtualization solutions 18
2.4 Examples of Network-level virtualization solutions 19
2.5 Examples of Hybrid virtualization solutions 20

3.1 Multi-layer WSN Virtualization Architecture 29
3.2 Instantiation of the architecture . 31
3.3 HTTP POST Message Delay . 32
3.4 Overlay Creation Delay . 33
3.5 Fire Notification Message Delay . 33
3.6 Proposed vWSN IaaS Architecture . 36
3.7 Prototype Setup . 38
3.8 VS Creation Delay . 39
3.9 VS Start Time . 39

4.1 Multi-layer WSN Virtualization Architecture 43
4.2 Temperature sensor part of the base ontology 44
4.3 Prototype Configuration A . 46
4.4 Prototype Configuration B . 46
4.5 Prototype Configuration C . 47
4.6 Average End-to-End Delay . 47
4.7 End-to-End Delay of All Configurations from 50 Experiments 48
4.8 Ontology Download Time . 48
4.9 Impact on the Discovery of an OA . 49
4.10 Expected Operation Time of Java SunSpots (always on) 49

5.1 Proposed Architecture . 53
5.2 Prototype Setup . 54
5.3 Overlay Creation Delay . 55
5.4 Ontology Distribution Time . 56
5.5 Ontology Download Time . 56
5.6 Two-level encoding example . 57

xvii

5.7 Example 2-point crossover operation (fixed length level-2 string) 58
5.8 Example mutation operation . 59
5.9 Example mutation operation . 60
5.10 Fitness value of all OAs in the fittest individual 64
5.11 Average number of OAs and AAs obtained with crossover rate of 0.2 64
5.12 Average number of OAs and AAs obtained with crossover rate of 0.5 65
5.13 Average number of OAs and AAs obtained with crossover rate of 0.8 65

“— Possibilities do not add up. They multiply.”

–Paul Romer

Chapter 1
Introduction

Contents

1.1 Motivation and Research Problems . 3

1.2 Concepts and Research Methodology 5

1.2.1 Concepts . 5

1.2.2 Research Methodology . 6

1.3 Contributions of the Thesis . 7

1.4 Thesis Organization . 10

1.5 Overview of My Publications . 10

With their ability to sense real-world events, Wireless Sensor Networks (WSNs) act as a

bridge between physical and virtual worlds. These WSNs are composed of nodes that are

amalgamations of micro-electro-mechanical systems, wireless communications and digital

electronics, and have the ability to sense their environment, perform computations and com-

municate [1], [2]. Over the last decade or so we have seen a proliferation of WSN applications

and services in multitude of application domains, such as health care, building automation,

agriculture, smart cities and security & surveillance.

As demand for new, exciting and innovative applications and services grows, it becomes

imperative for the service providers to efficiently reuse existing infrastructure until it reaches

the end of its life-cycle. In this situation, application and service provisioning requires a well-

defined process to not only consider the requirements and constraints of the new applications

and services, but also to take into account the specifics of the respective communication

networks over which the applications and services will be deployed. In short, concrete archi-

tectural solutions are required that decouple the applications and services from the deployed

infrastructure.

However, there are some inherit limitations regarding how the applications and services

have been provisioned in WSNs so far. Traditionally, there has been a tight coupling between

1

2 Introduction

the applications and services, and the deployed WSN infrastructure. This has considerably

limited the scope of innovation and has promoted domain-specific solutions, which are dif-

ficult to reuse by new users especially from different domains. Because of the resource

constraints in WSNs, tailored solutions are often bundled with the deployment of the net-

work infrastructure. With end-users and their requirements predetermined, these tailored

solutions serve their purpose but only until new applications and services are contemplated.

It becomes inherently difficult to accommodate new applications and services simply because

the deployed solutions were never designed for them and any changes require considerable

capital and human effort. To tackle this, inefficient approaches like redundant infrastructure

deployments are used. However, such approaches are becoming less and less appealing due

to the associated costs in general and availability of alternative technologies in particular,

that an potentially allow the reuse of the deployed WSN infrastructure.

There are two new technologies (or rather paradigms shifts), in particular, that are

beginning to revolutionize not only the usage of applications and services but also how they

are provisioned. These technologies are Internet-of-Things (IoT) and Cloud Computing. IoT

is termed as next technological paradigm that aims to realize communication between many

types of objects, machines and devices on a massive scale [3]. IoT is expected to have a

profound impact on our daily lives, even bigger than the Internet, consequently raising many

challenges to address [4]. WSNs can be considered as one of the basic constituents of IoT

because they can help users (humans or machines) to interact with their environment and

react to real-world events. IoT not only provides opportunities for plurality of heterogeneous

devices to connect and communicate with each other but also makes it possible for application

and service providers to offer new innovative applications and services.

Cloud computing offers elastic provisioning of large-scale infrastructures to multiple con-

current users [5]. Through its three facets – Infrastructure-as-a-Service (IaaS), Platform-as-

a-Service (PaaS) and Software-as-a-Service (SaaS) – cloud computing effectively decouples

the applications and services from the deployed infrastructure [6] and allows multiple actors

to use it as and when required. Service providers use platforms (offered as PaaS) to provision

applications and services that are offered as SaaS on a pay-per-use basis to end-users or other

applications. The platforms ease the provisioning process by adding levels of abstraction to

the infrastructure offered as IaaS. The infrastructure is the actual dynamic pool of resources

used by the applications. Cloud computing has several inherent benefits such as, efficient

usage of resources, scalability, elasticity, and rapid development and introduction of new

applications. Cloud computing uses the established concept of virtualization to provide con-

current access to resources through abstractions. Virtualization allows users (applications

and services) to utilize resources as dedicated to them whereas in reality multiple users access

them concurrently [7]. This is usually achieved by dedicated software such as a hypervisor

or a middleware.

The work in this thesis targets WSNs and applies the concepts of cloud computing to

Motivation and Research Problems 3

provision applications and services in an efficient manner. The main focus of this thesis is

to offer WSN deployments as IaaS enabling their efficient usage by concurrent applications

and services. To accomplish this, the thesis makes four contributions. First contribution is

a detailed state-of-the-art review which has been missing from the literature. The second

contribution is a novel architecture to provision traditional WSN applications over a deployed

WSN and its extension to offer a deployed WSN as IaaS and allow it to interact with PaaS.

Third contribution is a novel architecture to provision semantic-based WSN applications

in a domain independent way. The fourth contribution is an ontology development and

management tools to easily create ontologies and a heuristic-based algorithm to facilitate

the selection of capable nods for the sensor data annotation.

1.1 Motivation and Research Problems

Since their mainstream introduction towards the end of 20th century, WSN deployments

have been used as means to bridge the gap between the physical world and the virtual world.

With their ability to sense, compute and communicate, WSNs provide their users with the

ability to react to various physical phenomenon and take required actions, which sometimes

involves invoking actuators to generate some mechanical response. Over the years, the use

of WSNs has increased and now there are many application domains where WSNs help

in solving real-world problems [2]. Fig. 1 shows a generalized view of the typical WSN

application domains and example applications.

Despite their potential benefits, by and large WSNs have remained domain-specific and

task-oriented and reusing the same deployed WSN for new application was prohibitively

expensive due to associated cost and human effort.

However, as capable sensor platforms emerged and the concept of IoT paradigm grabbed

attention, it soon became apparent that sharing WSN deployments can have several benefits.

For example, applications that were not envisioned a priori may be able to utilize existing

WSN deployments. The second benefit is the elimination of tight coupling between WSN

services/applications and WSN deployments. This allows experienced as well as novice

application developers to develop innovative WSN applications without knowing the technical

details of the WSNs involved. Another benefit is that WSN applications and services can

utilize as well as be utilized by third-party applications. It can also help to define a business

model, with roles such as WSN provider, virtual WSN provider and WSN service provider.

The last benefit is particularly interesting since it can pave way for new and innovative

applications like the ones mentioned at the beginning of this chapter. For example a city-wide

public sensor deployment can be shared between the citizens as well as various government

departments such as fire, traffic & event management, surveillance and security.

Many researchers now consider sharing deployed WSN among multiple applications and

provide its motivation. According to the authors in [8], the sharing of WSN deployments

4 Introduction

Sensor Network

Monitoring

Habitat

Animal Tracking

Public/Industrial
Traffic Tracking

Car/Bus Tracking

Habitat

Animal Monitoring

Public/Industrial
Structure Monitoring

Factory Monitoring

Inventory Monitoring

Machine Monitoring

Chemical Monitoring

Environment
Environmental Monitoring

(weather, temperature, pressure)

Business

Industry Monitoring

Health

Patient Monitoring

Military

Security Detection

Military

Enemy Tracking

Business

Human Tracking

Tracking

Figure 1.1: WSN application types, domains and example applications as shown in [2]

is a powerful enabler for information sharing in the context of IoT by using it along with

data analysis techniques. A smart city environment is considered in [9], where sharing of

WSN deployments could be used to efficiently utilize the deployed infrastructure. To achieve

this type of utilization, the use of multiple concurrency models is advised, depending on

the usage context. In [10] the sharing of WSN deployments is envisioned as an important

technology to create large-scale sensor platforms that are used to satisfy efficient usage of

network resources.

There are two approaches to allow multiple applications to share the deployed WSN

resources. One is to allow multiple applications to share the gathered data from a WSN.

In this approach a sink/gateway node collects all data from the WSN and then it is shared

among multiple users, for example in [11] WSNs are merged into the cloud by sending

observed sensor data through a host manager which lies outside the WSN. The host manager

simply collects the sensor data, profiles/aggregates it and then allows multiple applications

to use it for their purposes. The second approach is to use the capabilities of the individual

sensor nodes to execute multiple applications tasks concurrently and allow applications to

group these sensor nodes together according to their requirements [12].

The key difference between the two approaches is that the former approach allows sharing

Concepts and Research Methodology 5

of WSN data among multiple users, while latter approach allows sharing of WSN nodes by

multiple applications. This thesis is focused on the second approach because it allows to

provision more innovative applications over the deployed WSN even the ones which are not

known during the deployment. The emergence of capable sensors will greatly improve the

efficiency of the deployed WSN and will also encourage new business models.

However, provisioning applications and services in such shared environment, where WSN

nodes execute multiple application tasks, is not trivial. During the state-of-the-art review,

the lack of applicable and demonstrated architectural solutions was observed.

With this motivation, used as basis, this thesis addresses the following questions:

• Q1: What is the current state-of-the-art dealing with the possibility of utilizing WSNs

for multiple applications and services? What is the taxonomy and relevant research

works in this area?

• Q2: How multiple and concurrent WSN applications can be provisioned over a deployed

WSN? What is an efficient approach to build architecture to accomplish this? How WSN

infrastructure can interact with a PaaS? What features must be supported by a WSN

infrastructure to allow PaaS to develop and deploy WSN applications and services?

• Q3: How semantic web technologies can be used to efficiently provision WSN applica-

tions? In particular how semantic-based applications and service can receive annotated

sensor data in real-time? Also how sensor data annotation can be performed in a dis-

tributed manner, in standardized way while making sure that future enhancements to

the WSN infrastructure are also taken care of?

• Q4: How to enable a WSN IaaS owner to provide mechanism to support semantic-based

application without making the deployed infrastructure application domain-specific?

How to have an efficient and robust mechanism to annotate sensor data that is ap-

plicable to resource-constrained environments such as WSNs?

1.2 Concepts and Research Methodology

This thesis focuses on proposing novel architectural solutions to enable cloud-based cost-

efficient application and service provisioning in wireless sensor networks. To that end, three

architectural solutions, one heuristic-based genetic algorithm and a comprehensive state-of-

the-art review are presented to address the research questions, identified in Section 1.1. The

following important concepts and research methodology is used for this thesis.

1.2.1 Concepts

The well-established concept of virtualization, when coupled with WSNs, gives us virtualized

WSNs (vWSNs). This concept is core of all the work done in this thesis. Virtualization allows

6 Introduction

for the abstraction and sharing of computer and network resources, as well as the co-existence

of several entities on the same physical node [13]. WSNs can be virtualized at node level [14]

and also at network level [15]. It is assumed that in vWSNs all sensors support some form

of node-level virtualization themselves, i.e. the capability to run concurrent tasks.

The concept of Cloud Computing [16] is used to offer WSN IaaS to multiple applications

and services. This is achieved by using appropriate abstractions to hide the complexity of the

underlying WSN IaaS and allow applications and services to receive data using a standard

and homogeneous interface. By using this concept, it becomes possible for third party WSN

infrastructure owners to offer their infrastructure to developers to build new application and

service and offer them as SaaS. Typical examples of these third party WSN infrastructure

owners can be a city administration or a global scientific research organization.

The architectures, proposed in this thesis, use the concept of overlays as cornerstone.

Overlays have several advantages like, they are distributed, lack central control and allow

resource sharing [17]. The concept of overlays is used to provision applications and services

by logically grouping sensors, executing similar tasks, to exchange data. Overlays are also

used for network operation functions, such as sensor data annotation and storage of the

ontology. Additionally, the concepts of super peer and client peer [18] are used to store and

retrieve the ontology in a distributed manner.

Another concept, used this thesis, is semantic annotation, which helps in adding addi-

tional metadata to the raw data to enhance its meanings and to provide situational awareness

to the end user [19]. However, semantic annotation need domain concepts and relationships

between them. These concepts and relationships are provided by the ontologies. The work in

this thesis proposes a base ontology to annotate sensor data. The base ontology is developed

as an extension of the Semantic Sensor Network (SSN) Ontology from W3C Semantic Sensor

Network Incubator Group [20]. The base ontology is independent of any application domain

to make it usable for all application domains.

1.2.2 Research Methodology

In this thesis, the following research methodology is used to solve the identified research

questions.

First a step-by-step approach is used to design concrete architectural solutions. The first

step begins with the high-level specifications of different network entities and their interac-

tions with various actors. This includes inputs to and expected outputs from various entities

specified in the architecture, the requirements (technical and non-technical) specification and

the architectural principles that serve as foundation for the design of the architectures. The

second step is to make design choices, which include identifying the right set of technologies

(e.g. protocols, data format/encoding schemes, and communication types). The final step is

implementation and testing of the designed solutions over real networks or using development

Contributions of the Thesis 7

kits for the proof-of-concept prototypes.

All proposed architectures are implemented and evaluated using proof-of-concept proto-

types using two sensor kits, Java SunSpot kit [21] and AdvanticSys kit [22]. Java SunSpot

are high-end sensor nodes that have better processing and storage capabilities than earlier

generation of sensor nodes. They have multiple on-board sensing capabilities, are J2ME-

based hence easy to program and offer advanced features such as support for Over-the-Air

commands. Java SunSpots do not use any operating system, instead they have Squawk

VM [23] running over the hardware. AdvanticSys kit consists of TelosB motes that represent

early generation of sensor nodes. They also have multiple on-board sensors but have very low

processing and storage capabilities. They support popular operating systems like TinyOS

[24] and Contiki [25]. In this thesis, Contiki OS is used. These early generation sensors are

mainly used to demonstrate the support for legacy sensors and heterogeneity in the proposed

architectures.

The following is the detail of the performance metrics (or measures) used to evaluate the

proposed architectures. The paper in annex B uses HTTP POST Delay, Overlay Creation

Delay and Fire Notification Delay as performance evaluation metrics. The paper in annex C

uses Virtual Sensor Creation Delay and Virtual Sensor Start Time as performance evaluation

metrics. The paper in annex F uses End-to-End Delay, Ontology Download Time, Discovery

Delay, Expected Operation Time of Java SunSpots, and the Impact of tasks on current draw

from Java SunSpots battery as performance evaluation metrics. The paper in annex G uses

Overlay Creation Delay, Annotation Ontology Dissemination Time and Ontology Download

Time as performance evaluation metrics. Finally the paper in annex H uses the value of

fitness function for network size of 1000, 2000 and 3000 sensors. It also presents the impact

of using different crossover rates on the final solution.

1.3 Contributions of the Thesis

This thesis makes four contributions in total which are described here briefly and linked to

the original research papers addressing them. Detailed contribution of each original research

paper is presented in subsequent chapters.

The first contribution of the thesis is a detailed state-of-the-art review. Since the thesis

is addressing a new direction concerning provisioning of concurrent application and service

provisioning in WSNs, we were particularly interested to find out how various solutions in

WSN domain has evolved and what are the recent trends. Particularly what kind of re-

search projects are being done by academics as well as industries. The paper in annex A is

the outcome of this contribution and provides are comprehensive state-of-the-art review of

the existing works. Such review was missing from the existing literature. The paper starts

with the basics and motivation for WSN virtualization using carefully selected scenarios. A

taxonomy of the existing works is presented by identifying three categories; node-level virtu-

8 Introduction

alization solutions, network-level virtualization solutions and hybrid solutions. Each work is

characterized using its properties and is evaluated using a set of requirements derived from

the scenarios. Additionally several pertinent research projects are also reviewed. Towards

the end of the paper, several pertinent research issues are discussed with hints on how they

could be tackled.

The second contribution of the thesis is presented in two parts. First, a novel multilayer

WSN virtualization architecture is presented that supports provisioning of sensor applications

and services over multiple WSN deployments. Using our architecture, virtualized WSNs can

be utilized by concurrent applications and services. The papers in annex B, D and E are

related to this contribution. The overall concept of WSN virtualization framework was

presented in the paper in annex D along with possible research avenues. The initial version

of the architecture was presented in the paper in annex E without any performance results.

The paper in annex B presents the final architecture and the proof-of-concept implementation

along with results. The proposed architecture uses the concept of overlays to deploy new

applications and services. It is applicable to new generation/powerful (Java SunSpots) as

well as resource-constrained WSN nodes (TelosB). To allow resource-constrained WSN nodes

to participate in overlay related operations, we introduced the concept of Gates-to-Overlays

(GTO) nodes, which perform such tasks on their behalf. The proposed architecture provides

platform independence and uses separate interfaces for data and control messages. It is

implemented and evaluated by developing a scenario-based proof-of-concept prototype using

Java SunSpot kit. The results show the viability of our proposed architecture.

The second part of this contribution is presented in the paper in annex C. It addresses

the challenges that are faced when WSN IaaS has to interact with PaaS for application and

service provisioning. In this contribution we identified fundamental differences between tradi-

tional IaaS and WSN IaaS precluding the straightforward re-use of traditional PaaS offerings.

Keeping these differences in view, we extend our previous WSN virtualization architecture

to make it a true virtualized WSN IaaS to interact with WSN PaaS. The differences between

Traditional IaaS and WSN IaaS are identified in terms of resources, capabilities and protocol

support. In traditional IaaS we have the concept of Virtual Machine (VM) that allows time

and resource sharing of host machines by partitioning them into multiple dedicated execu-

tion environments [26]. In WSN IaaS we have the concept of Virtual Sensor (VS), which is a

logical representation of the physical sensor to allow sharing of its sensing capabilities (e.g.,

temperature and light sensing capabilities) [12]. We identified seven concrete differences

between VMs and VSs and using them proposed several enhancements to the original archi-

tecture. Using Java SunSpot kit we demonstrated the feasibility of the proposed architecture

using a simple smart home scenario and implemented it as a standalone Java application.

The third contribution is novel data annotation architecture to provision semantic ap-

plications in virtualized WSNs. The paper in annex F describes this contribution. The

proposed architecture supports in-network sensor data annotation and uses overlays as the

Contributions of the Thesis 9

cornerstone. We introduce the concept of base ontology to annotate sensor data indepen-

dently of any application domain. The idea is to offer a deployed WSN as IaaS to multiple,

independent users. Since, it is hard to predetermine the type of applications that will be

deployed over the WSN, the base ontology is created by extending the SSN Ontology from

W3C Semantic Sensor Network Incubator Group to ensure its interoperability.

Two separate overlays are used, ontology overlay to store the base ontology in a dis-

tributed manner and annotation overlay to annotate the sensor data. The peers in the

ontology overlay act as super peers while the peers in the annotation overlay act as client

peers. The super peers store the base ontology and client peers request for it whenever they

need to annotate sensor data. For each sensor, executing a task that requires annotation,

there is a corresponding entity in the annotation overlay whose task to perform the annota-

tion (and request ontology from super peer, if it does not have it already). Since it is not

possible for resource-constrained sensors to support such functionality, we reuse the GTO

nodes concept that perform this function on their behalf. Using GTO nodes that proposed

architecture is applicable to both resourceful and resource-constrained sensors. A proof-of-

concept prototype, based on a scenario, is developed and implemented using Java SunSpot,

AdvanticSys Kits and Google App Engine. Three different prototype configurations are used

for evaluation purposes.

The fourth and the final contribution is presented in the paper in annex G. It extends the

work done in the paper in annex F to incorporate two important features to offer WSN IaaS.

The first feature includes an easy to use mechanism to create, distribute and management

of the base ontology for the WSN infrastructure owner. A web-based GUI application is

developed that allows a WSN infrastructure owner to create and manage base ontology. The

developed ontology should reflect the deployed WSN instead of any application domain. The

deployed WSN infrastructure may include heterogeneous sensors hence the base ontology may

become large making it difficult to store it in the WSN as mentioned in the third contribution.

We propose to split the base ontology (according to the physical phenomena) into distinct

portions and store each portion in the WSN.

This strategy demands an efficient algorithm to select capable nodes in the WSN to store

thee portions of ontology. The second feature that we propose addresses this issue. We

propose a heuristic-based multi-objective genetic algorithm used for the selection of capable

nodes for storing the base ontology. It is important to mention that by capable nodes we mean

new generation of sensors (mostly IP-capable sensors), GTO nodes (base station nodes, sink

nodes). The algorithm takes into account the energy, storage space of the sensors and selects

the ones that have maximum energy and storage space available. Once suitable nodes are

identified, the portions of the base ontology are equally distributed among them. For example

if the base ontology is split into temperature sensor portion and humidity sensor portion,

there will be n nodes containing each of these portions. By replicating the base ontology

portions, the architecture will be able to cope with node failures and network dynamics. The

10 Introduction

simulation results of the algorithm are presented while the ontology management extension

is implemented and evaluated using a proof-of-concept prototype using Java SunSpot kit.

1.4 Thesis Organization

The following chapters summarize the main contribution of the research papers, provide

discussions and the ideas for future work. Chapter 2 discusses the background, motivation

and summary of the state-of-the-art. It is a summary of Paper I. Chapter 3 describes WSN

virtualization architecture to provision multiple application over deployed WSNs. It also

discusses the architecture to enable interactions between WSN IaaS and PaaS, along with

early performance measurements. This chapter is a summary of Papers II, III, IV and V.

Chapter 4 discusses the sensor data annotation architecture and presents implementation

details and performance evaluation results. It summarizes the contributions of Paper VI.

Chapter 5 is devoted to ontology management tool and heuristic-based genetic algorithm

for node selection, along with performance measurements. This chapter summarizes the

contributions of Paper VII and Paper VIII. Chapter 7 presents the items for the future work

and summary of the thesis. Finally the research papers are attached with this thesis in the

following order. Paper I is in annex A, paper II in annex B, paper III in annex C, paper IV

in annex D, paper V in annex E, paper VI in annex F, paper VII in annex G and paper VIII

in annex H.

1.5 Overview of My Publications

Paper I in annex A is “Wireless Sensor Network Virtualization: A Survey”. It provides

a comprehensive state-of-the-art review along with clear taxonomy of available solutions.

Several research issues are also identified along with hints to solve them.

Paper II in annex B is “Wireless Sensor Network Virtualization: Early Architecture

and Research Perspectives”. It presents a novel WSN virtualization architecture to provision

multiple application over deployed WSNs along with prototype and performance measure-

ments.

Paper III in annex C is “Getting Virtualized Wireless Sensor Networks’ IaaS Ready

for PaaS”. It presents the architectural enhancements made to the WSN virtualization ar-

chitecture to enable interactions between WSN IaaS and PaaS. Details of prototype and

performance measurements are also presented.

Paper IV in annex D is “Design and Analysis of Virtualization Framework for Wire-

less Sensor Networks”. It introduces the WSN virtualization problem with a high-level view

Overview of My Publications 11

and possible avenues of research that could be explored.

Paper V in annex E is “A Multi-Layer Architecture for Wireless Sensor Network Vir-

tualization. It presents an early version of the WSN virtualization architecture along with

motivation in the form of a use case.

Paper VI in annex F is “A Data Annotation Architecture for Semantic Applications

in Virtualized Wireless Sensor Networks”. It discusses a data annotation architecture that

supports, in-network, real-time annotation of sensor data independent of any application

domain. Details of prototype and performance measurements are also presented.

Paper VII in annex G is “Towards Provisioning of Semantic Applications over Virtualized

Wireless Sensor Network Infrastructure-as-a-Service”. It presents an ontology development

and management tool and builds on the architecture presented in Paper VI in annex F.

Details of prototype and performance measurements are also presented.

Paper VIII in annex H is “A Genetic Algorithm-based Solution for Efficient In-network

Sensor Data Annotation in Virtualized Wireless Sensor Networks”. It discusses a heuristic-

based algorithm to select capable nodes for storing of ontology in a distributed manner. The

performance measurements of the proposed algorithm are also presented.

The author is the lead contributor in all the papers and has lead implementation, proto-

typing, compilation of results and writing of the papers. The author worked with two masters

students at Concordia University for Paper III, VI and VIII and assigned them specific tasks

for implementation. For paper VII the author has worked with a PhD student at Telecom

SudParis and assigned him implementation tasks. During the preparation of the papers, the

author discussed the progress in the meetings and incorporated the suggestions/inputs given

by other co-authors and supervisors.

12 Introduction

“— Study the past if you would define the future...”

–Confucius

Chapter 2
Background and State-of-the-Art

Contents

2.1 Introduction . 13

2.2 Basics of WSN Virtualization . 14

2.3 WSN Virtualization – Motivating Scenarios 14

2.3.1 Fire Monitoring Scenario . 15

2.3.2 Heritage Building Monitoring . 16

2.4 WSN Virtualization – Requirements . 17

2.5 WSN Virtualization – Summary of State-of-the-Art 17

2.5.1 Node-Level Virtualization . 18

2.5.2 Network-Level Virtualization . 18

2.5.3 Hybrid Solutions . 19

2.6 WSN Virtualization Projects and Research Issues 22

2.7 Lessons Learned . 22

2.8 Summary . 25

2.1 Introduction

This chapter discusses the background, motivation and summary of the state-of-the-art in

the area of WSN virtualization and is based on annex A. It addresses the following research

question:

What is the current state-of-the-art dealing with the possibility of utilizing WSNs for mul-

tiple applications and services? What is the taxonomy and relevant research works in this

area?

13

14 Background and State-of-the-Art

At the beginning of this thesis work, it was observed that there is lack of comprehensive

state-of-the-art. Existing surveys [27] and [28] lacked the technical depth and critical review

of existing works. In order to address this, we started with the basics of WSN virtualization

by categorizing it into two categories. In order to show the pertinence of WSN virtualization,

two motivating scenarios are discussed. Then by identifying the needs of various actors in

these scenarios, eight requirements are identified. Each existing work is discussed, in detail,

to show how it supports various categories of WSN virtualization. Twenty six works related

to WSN virtualization are discussed in total and each one of them is evaluated using the

identified requirements. Also characteristics of these works are identified, in each WSN

virtualization category, to show their strengths and contributions. Recently this topic has

gained attention from academic and industrial quarters as evident from several research

projects. In Paper I, seven research projects are discussed. Finally several important research

issues and their potential solutions are also presented.

2.2 Basics of WSN Virtualization

WSN virtualization can be broadly classified into two categories: Node-level virtualization

and Network-level virtualization. The former allows execution of concurrent execution of

multiple application tasks on a sensor node [29], while the later allows dynamic formation

of logical groups of sensor nodes, where each group is dedicated to an application or a

service. Node-level virtualization can be achieved by sequential (one-by-one) or simultane-

ous execution (by context switching/multi-threading) of application tasks on a sensor node.

Network-level virtualization forms Virtual Sensor Network (VSN) which consists of a subset

of a WSN’s nodes dedicated to an application or a service at a given time [15]. VSNs ensure

resource efficiency, because the remaining sensor nodes remain available for multiple appli-

cations (even the ones that had not been envisaged when the WSN was deployed), although

not necessarily simultaneously. The basic concept of node-level virtualization is illustrated in

Fig. 2.1 whereas Fig. 2.2 shows the two possible realizations of network-level virtualization.

2.3 WSN Virtualization – Motivating Scenarios

The best way to show the pertinence and need for WSN virtualization is through motivating

scenarios. This way interactions between various actors and entities can be shown and based

on these interactions, it becomes easy to derive requirements for each of these actors. The

two scenarios described here are taken from the existing literature and are altered to illustrate

the motivation and the benefits of using WSN virtualization in certain situations.

WSN Virtualization – Motivating Scenarios 15

Sensor Operating System

Virtual Machine / Thread Manager /

Hypervisor

Application

1 Task

Application

2 Task

Application

3 Task

Figure 2.1: WSN Node-level Virtualization

WSN

VSN1
VSN2

VSN3

(a) Multiple VSNs over single WSN

WSN 1 WSN 2 WSN 3

VSN

(b) Single VSN over multiple WSNs

Figure 2.2: WSN Network-level Virtualization

2.3.1 Fire Monitoring Scenario

Consider the example of a city near an area where brush fires are common [30]. We assume

that the city administration is interested in the early detection of fire eruption and in its

course, using a WSN and a fire contour algorithm to determine the curve, shape and direction

of fire. One approach is that the city administration could deploy WSN nodes all over the

16 Background and State-of-the-Art

city (i.e., on each street and at individual houses), but this is not very efficient because some

individuals may have already deployed WSN nodes in their homes to detect fires. A more

efficient approach would be for the city administration to deploy WSN nodes to areas under

its jurisdiction, i.e., streets and parks, and to re-use the WSN nodes already deployed in

private homes.

In this scenario, two different applications share the same WSN infrastructure: one,

belonging to home owners, is confined to private WSNs deployed in individual houses, and

the other belongs to the city administration and shares the private WSN nodes with the WSN

nodes deployed by the city administration. Periodic notification or query-based models are

not suitable because the city administration application requires complete access to all the

WSN nodes for adaptive sampling.

Another issue is that to execute a fire contour algorithm in a distributed fashion, WSN

nodes need to exchange fire notification messages with each other. The query-based data

exchange approach is not efficient as it will force the execution of the fire contour algorithm

at a remote centralized location, since two WSN nodes located in their respective private

domains cannot exchange data directly. An overlay network is one possible solution. This

scenario illustrates the need for WSN virtualization, as two different users need to share a

common resource, i.e., WSN nodes.

2.3.2 Heritage Building Monitoring

A real-world deployment of a WSN is presented in [31], in which a WSN is used to monitor

the impact of constructing a road tunnel under an ancient tower in Italy, as it was feared

that the tower could lose its ability to stand on its own and collapse during the construction.

Now consider that there are three users interested in the fate of the tower. The first is the

construction company, as it needs to make sure that the tower does not lose its ability to stand

on its own, otherwise it will have to pay a heavy fine. The second user is the conservation

board that routinely monitors all the ancient sites around the city, and the third user is the

local municipality which will have to plan emergency remedial/rescue actions in case the

tower falls during the construction.

It is quite possible that the conservation board has already deployed its own WSN to

monitor the health of ancient sites including this tower. In this case the construction company

and the local municipality can use the existing sensor nodes during the construction period.

In the absence of WSN virtualization, there are only two possible solutions. One is

to rely on the information provided by the conservation boards application. However this

information may not be at the required granularity level. Worse, some of the information

that is needed might simply not be available because the requirements of the construction

company and of the local municipality were not considered when the conservation board

application was designed and implemented. The second solution is that each user deploys

WSN Virtualization – Requirements 17

redundant WSN nodes. Here WSN virtualization can play a pivotal role by fulfilling the

requirements of each user.

2.4 WSN Virtualization – Requirements

From the motivating scenarios we derived a set of eight requirements that a comprehensive

WSN virtualization solution should tackle. In Paper I, all existing works were evaluated

using these requirements. Table 2.1 illustrates the evaluation of all existing works based on

these requirements.

• Support for node-level virtualization: This fundamental requirement ensures that the

sensor nodes can support the concurrent execution of multiple applications.

• Support for network-level virtualization: This concerns the ability of sensor nodes to

dynamically form groups and execute application tasks together for individual appli-

cation.

• Support for application/service priority : This is useful for mission-critical application-

s/services.

• Platform-independence: The solution should be independent of any particular hardware

or software platform.

• Support for resource discovery mechanism: The solution should address both sensor

and service discovery.

• Support for resource-constrained sensor nodes: It is important to allow the use of exist-

ing deployments of sensors (most of them are early generations) for WSN virtualization.

• Support for heterogeneity : The proposed solution should be applicable to a variety of

WSN platforms with different capabilities (e.g. processing power, memory).

• Ability to select sensor nodes for application tasks: When multiple applications con-

currently utilize a deployed WSN, selection of proper sensor nodes is very important

because applications may have spatial and temporal requirements [21].

2.5 WSN Virtualization – Summary of State-of-the-Art

We categorize the existing work as Node-level virtualization, Network-level virtualization

and Hybrid solutions. Hybrid solutions combine both node- and network-level virtualization.

Each category is further classified based on the approaches used.

18 Background and State-of-the-Art

2.5.1 Node-Level Virtualization

Node-level virtualization can be realized by either i) a capable operating system like Contiki

[25], ii) using a middleware like Agilla [39] or iii) by using a virtual machine like Squawk that

directly runs over the sensors hardware. In the early-generation sensor nodes, the program-

ming model of choice was event-driven, as it was simple to implement, but once its limitations

were found, the thread-based approach was used to implement more complex and concurrent

tasks in sensor nodes. Of all these works, TinyOS and Contiki have become extremely pop-

ular and have good community support. Contiki is now considered as a platform for the IoT

[58] and has incorporated many innovative features over the last decade. RIOT [34] is a new

work to design a capable OS to run C/C++ applications on heterogeneous sensor platforms.

Fig. 2.3 shows the examples of node-level virtualization solutions.

The following characteristics are identified for node-level virtualization solutions: Pro-

gramming mode, Programming Language, Separation between operating system and appli-

cation tasks, Protocols supported, and Support for real-time applications.

App 1

Sensor Hardware

Contiki Core

Contiki

App 2 App n

(a) OS-based solution (e.g.,
Contiki)

Tiny OS

Agilla

Sensor Hardware

App 1 App 2 App n

(b) Middleware-based solution
(e.g.,Agilla)

Squawk Virtual

Machine

SPOT library

Sensor Hardware

App 1 App 2 App n

(c) Virtualmachine-based solu-
tion (e.g., Squawk VM)

Figure 2.3: Examples of node-level virtualization solutions

2.5.2 Network-Level Virtualization

Network-level virtualization can be realized by using i) cluster-based approach or ii) by

creating VSNs using overlays. The early work used the concept of clusters but managing

clusters itself is quite challenging. The majority of work on cluster-based solutions in WSNs

is focused on improving routing, energy efficiency and security. We need solutions that facil-

itate the creation of application-specific clusters that adapt to the dynamics of the network

and of the monitored events. Recently overlay solutions are being used for network-level vir-

tualization but it is still largely unexplored territory and applicable solutions are missing. It

is expected that with the advent of IoT paradigm there will be more emphasis on proposing

WSN Virtualization – Summary of State-of-the-Art 19

solutions that enable localized coordination between sensors for applications and services.

Fig. 2.4 shows the two types of node-level virtualization solutions.

The following characteristics are identified for node-level virtualization solutions: Net-

work formation mechanism, Algorithm/Protocol used, and Evaluation method.

WSN

Virtual Sensor

Network B

Virtual

Sensor

Network

A

(a) Virtual network-based solutions

WSN 1 WSN 2 WSN 3

VSN

(b) Cluster-based solutions

Figure 2.4: Examples of Network-level virtualization solutions

2.5.3 Hybrid Solutions

Hybrid solutions combine both node- and network-level virtualization mechanisms. Most re-

cent research work has focused on providing hybrid solutions for WSN virtualization. A few

recently-concluded research projects have addressed WSN virtualization, but their solutions

are embryonic and multiple issues remain. For example, some solutions are platform depen-

dent (SenShare [54]), others are theoretical and at conceptual level (VITRO [55]). However,

as more capable sensor platforms and software solutions (e.g. mbed [59]) emerge, hybrid

solutions are expected to get more attention. Fig. 2.5 shows the three hybrid virtualization

solution types.

The following characteristics are identified for hybrid solutions: Programming mode,

Programming Language, Separation between operating system and application tasks, Pro-

tocols supported, Support for real-time applications, Network formation mechanism, Algo-

rithm/Protocol used, and Evaluation method.

20 Background and State-of-the-Art

WSN

Cluster A
Cluster B

Cluster C

Sensor OS

Middleware

Sensor Hardware

App 1 App n...

(a) Middleware and cluster-based solutions

Sensor OS

Middleware

Sensor Hardware

App 1 App n...

WSN

Virtual Sensor

Network B

Virtual

Sensor

Network A

(b) Middleware and virtual network-based solutions

Virtual Machine

API

Sensor Hardware

App 1 ... App n

WSN

(c) Virtual machine and dynamic grouping-based solutions

Figure 2.5: Examples of Hybrid virtualization solutions

WSN Virtualization – Summary of State-of-the-Art 21
T

ab
le

2.
1:

S
u

m
m

ar
y

of
th

e
S

ta
te

-o
f-

th
e-

A
rt

R
eq

u
ir

em
en

ts

S
o
lu

ti
o
n

T
y
p

e
V

ir
tu

a
li
za

ti
o
n

T
y
p

e
A

p
p
li
ca

ti
o
n

P
ri

o
ri

ty
P

la
tf

o
rm

In
d
ep

en
d
en

ce
R

es
o
u
rc

e
D

is
co

v
er

y

A
p
p
li
ca

b
le

to
R

es
o
u
rc

e-
co

n
st

ra
in

ed
N

o
d
es

H
et

er
o
g
en

ei
ty

S
en

so
r

S
el

ec
ti

o
n

fo
r

A
p
p
li
ca

ti
o
n

T
a
sk

s

S
en

S
m

a
rt

[3
3
]

O
S
-b

a
se

d
N

o
d
e-

le
v
el

N
o

Y
es

N
o

Y
es

Y
es

N
o

R
IO

T
[3
4
]

O
S
-b

a
se

d
N

o
d
e-

le
v
el

Y
es

Y
es

Y
es

Y
es

Y
es

N
o

P
A

V
E

N
E

T
[3
5
]

O
S
-b

a
se

d
N

o
d
e-

le
v
el

Y
es

N
o

N
o

Y
es

N
o

N
o

S
en

S
p
ir

e
[3
6
]

O
S
-b

a
se

d
N

o
d
e-

le
v
el

Y
es

Y
es

N
o

Y
es

Y
es

N
o

N
a
n
o
-C

F
[3
7
]

V
M

-b
a
se

d
N

o
d
e-

le
v
el

N
o

Y
es

N
o

Y
es

Y
es

N
o

U
M

A
D

E
[3
8
]

V
M

-b
a
se

d
N

o
d
e-

le
v
el

N
o

N
o

N
o

Y
es

N
o

Y
es

A
g
il
la

[3
9
]

V
M

-b
a
se

d
N

o
d
e-

le
v
el

N
o

N
o

Y
es

Y
es

Y
es

N
o

L
it

e-
O

S
[4
0
]

O
S
-b

a
se

d
N

o
d
e-

le
v
el

Y
es

N
o

N
o

Y
es

Y
es

N
o

S
q
u
aw

k
V

M
[4
1
]

V
M

-b
a
se

d
N

o
d
e-

le
v
el

Y
es

Y
es

N
o

N
o

N
o

N
o

V
M

S
T

A
R

[4
2
]

V
M

-b
a
se

d
N

o
d
e-

le
v
el

Y
es

N
o

N
o

Y
es

N
o

N
o

M
A

N
T

IS
[4
3
]

O
S
-b

a
se

d
N

o
d
e-

le
v
el

Y
es

N
o

N
o

Y
es

N
o

N
o

T
in

y
O

S
[4
4
]

O
S
-b

a
se

d
N

o
d
e-

le
v
el

N
o

Y
es

N
o

Y
es

Y
es

N
o

C
o
n
ti

k
i
[2
5
]

O
S
-b

a
se

d
N

o
d
e-

le
v
el

Y
es

Y
es

N
o

Y
es

Y
es

N
o

M
a
te

[4
5
]

V
M

-b
a
se

d
N

o
d
e-

le
v
el

N
o

N
o

N
o

Y
es

Y
es

N
o

K
h
a
n

et
a
l.

[4
6
]

O
v
er

la
y
-b

a
se

d
N

et
w

o
rk

-l
ev

el
Y

es
Y

es
O

ffl
in

e
P

u
b
li
ca

ti
o
n

Y
es

N
o

N
o

M
E

N
O

[4
7
]

V
N

-b
a
se

d
N

et
w

o
rk

-l
ev

el
—

—
—

—
—

N
o

Io
T

-V
N

[4
8
]

V
N

-b
a
se

d
N

et
w

o
rk

-l
ev

el
N

o
Y

es
Y

es
Y

es
N

o
N

o

T
ay

a
n
a
n

et
a
l.

[4
9
]

V
N

-b
a
se

d
N

et
w

o
rk

-l
ev

el
N

o
N

o
N

o
N

o
N

o
N

o

J
ay

a
su

m
a
n
a

et
a
l.

[5
0
]

V
N

-b
a
se

d
N

et
w

o
rk

-l
ev

el
N

o
Y

es
N

o
Y

es
N

o
N

o

D
il
u
m

et
a
l.

[5
1
]

C
lu

st
er

-b
a
se

d
N

et
w

o
rk

-l
ev

el
N

o
Y

es
N

o
Y

es
N

o
Y

es

H
a
n

et
a
l.

[5
2
]

C
lu

st
er

-b
a
se

d
N

et
w

o
rk

-l
ev

el
N

o
Y

es
N

o
Y

es
N

o
Y

es

S
en

so
m

a
x

[5
3
]

M
id

d
le

w
a
re

a
n
d

C
lu

st
er

H
y
b
ri

d
N

o
N

o
N

o
N

o
N

o
N

o

S
en

S
h
a
re

[5
4
]

M
id

d
le

w
a
re

a
n
d

O
v
er

la
y

H
y
b
ri

d
Y

es
N

o
Y

es
N

o
N

o
Y

es

V
IT

R
O

[5
5
]

H
y
p

er
v
is

o
r

a
n
d

V
M

H
y
b
ri

d
N

o
Y

es
Y

es
Y

es
N

o
N

o

M
a
je

ed
et

a
l.

[5
6
]

M
id

d
le

w
a
re

a
n
d

C
lu

st
er

H
y
b
ri

d
Y

es
N

o
N

o
Y

es
N

o
P

re
d
et

er
m

in
ed

M
el

et
e

[5
7
]

V
M

a
n
d

D
y
n
a
m

ic
G

ro
u
p
in

g
-b

a
se

d
H

y
b
ri

d
N

o
N

o
Y

es
Y

es
N

o
Y

es

22 Background and State-of-the-Art

2.6 WSN Virtualization Projects and Research Issues

In Paper I, several pertinent research projects are also reviewed. These included the early

projects like CitySense [60] to the more recent European funded projects like iCore [61] and

Butler [62]. The following characteristics are identified for each research project: Project

aim, Project scope, Virtualization type, Network devices and Evaluation setup. Table 2.2

lists these projects and provides their summary based on these characteristics.

The following research issues are also identified in the paper along with discussions on

their potential solutions:

• Advanced Node-level Virtualization

• Network-level Virtualization

• Discovery and Publication

• Service Composition

• Sensor Node Selection and Task Assignment

• Application Task Dissemination

• Reference Designs and Architectures

• New Protocols, Algorithms and Simulation Tools

• WSN Virtualization Business Model & Standardization

• Energy Efficient Solutions

• Access Control, Authentication, and Accounting

• WSN Virtualization Application Scenarios and Test-beds

For each research issue multiple possible solutions are discussed by considering the most

recent research efforts in this domain.

2.7 Lessons Learned

The important lesson learned in this work is regarding the availability of the capable soft-

ware and hardware solutions for WSN virtualization. The upcoming solutions like mbed

operating system from ARM and RIOT operating system provide an insight into the future

trends. They are expected to offer a rich set of features than the existing operating systems.

Currently capable solutions like Contiki OS, TinyOS, Squawk VM, and Agilla middleware

do exist that support the execution of multiple application tasks at the same time, however

Lessons Learned 23

runtime isolation between application tasks and the sensor operating systems is not avail-

able. Such isolation will allow virtual sensors could be deployed and removed just like virtual

machines in traditional IaaS. On the hardware side there are many capable sensor kits such

as Java SunSpots, Preon32 sensor kits from Virtenio GmbH [63] (Java-based and similar to

SunSpots) and Phidgets kit [64]. These sensor kits can be used to research and prototyping

purposes. As more advances are made in the hardware arena, more capable sensors kits will

emerge in the future.

Another lesson is that there is a lack of architectural solutions to provision applications

and services in virtualized WSNs. For example, VITRO project [55] does discuss a reference

architecture without going into the details of functional entities, interactions between them,

interfaces, and protocols. To this end, this thesis proposes three concrete architectural

solutions, along with specification of functional entities, their interactions, interfaces and

protocols backed up by the proof-of-concept prototypes.

24 Background and State-of-the-Art
T

a
b

le
2.2:

W
S

N
V

irtu
alization

R
elated

P
ro

jects

P
ro

ject
(Y

ea
r)

P
ro

ject
A

im
P

ro
ject

S
co

p
e

V
irtu

a
liza

tio
n

L
ev

el
V

irtu
a
liza

tio
n

T
y
p

e
N

etw
o
rk

D
ev

ices
E

va
lu

a
tio

n
S
etu

p

C
ity

S
en

se
[6
0
]

(2
0
0
8
)

P
rov

id
e

city
-w

id
e

test
b

ed
fo

r
d
istrib

u
ted

&
n
etw

o
rk

in
g

resea
rch

A
ca

d
em

ic
resea

rch
N

etw
o
rk

-lev
el

G
a
tew

ay
-b

a
sed

v
irtu

a
liza

tio
n

E
m

b
ed

d
ed

P
C

s
w

ith
L

in
u
x

a
ctin

g
a
s

g
a
tew

ay
s

1
0
0
+

P
C

s
d
istrib

u
ted

ov
er

a
n

u
rb

a
n

a
rea

F
R

E
S
n
el

[6
5
]

(2
0
1
0

-
2
0
1
2
)

P
rov

id
e

a
fed

era
ted

W
S
N

fra
m

ew
o
rk

fo
r

m
u
ltip

le
a
p
p
lica

tio
n
s

A
ca

d
em

ic
resea

rch
N

o
d
e-

a
n
d

N
etw

o
rk

-lev
el

S
en

so
r

n
o
d
e-b

a
sed

v
irtu

a
liza

tio
n

iM
o
te2

n
o
d
es

u
sin

g
em

b
ed

d
ed

L
in

u
x

3
5

iM
o
te2

n
o
d
es

d
istrib

u
ted

in
a
n

a
ca

d
em

ic
b
u
ild

in
g

V
IT

R
O

[5
5
]

(2
0
1
0

-
2
0
1
3
)

D
ev

elo
p

a
rch

itectu
res,

a
lg

o
rith

m
s

fo
r

V
S
N

s.
A

ca
d
em

ic
resea

rch
+

In
d
u
stry

N
o
d
e-

a
n
d

N
etw

o
rk

-lev
el

G
a
tew

ay
-b

a
sed

v
irtu

a
liza

tio
n

T
elo

sB
,IR

IS
,

iS
E

N
S
E

,
x
b

ee,
T

m
o
teS

k
y
e,

A
d
va

n
ticS

y
s

k
it

S
im

u
la

tio
n
s

+
5

test
b

ed
setu

p
s

b
y

p
ro

ject
p
a
rtn

ers

S
m

a
rt

S
a
n
ta

n
d
er

[6
6
]

(2
0
1
0

-
2
0
1
3
)

P
rov

id
e

city
-w

id
e

Io
T

ex
p

erim
en

ta
tio

n
p
la

tfo
rm

fo
r

sm
a
rt

city
a
p
p
lica

tio
n
s

A
ca

d
em

ic
resea

rch
+

In
d
u
stry

N
etw

o
rk

-lev
el

G
a
tew

ay
-b

a
sed

v
irtu

a
liza

tio
n

S
en

so
r

n
o
d
es,

Io
T

d
ev

ices,
R

F
ID

ta
g
s,

G
P

R
S

d
ev

ices

2
0
,0

0
0

sen
so

rs
d
ep

loy
ed

in
fo

u
r

E
u
ro

p
ea

n
cities

iC
o
re

[6
1
]

(2
0
1
1

-
2
0
1
4
)

P
rov

id
e

co
g
n
itiv

e
fra

m
ew

o
rk

co
n
sistin

g
o
f

v
irtu

a
l

o
b

jects,
co

m
p

o
site

v
irtu

a
l

o
b

jects
&

b
u
sin

ess
p

ersp
ectiv

es

A
ca

d
em

ic
resea

rch
+

In
d
u
stry

A
b
stra

ct
rep

resen
ta

tio
n

o
f

sen
so

rs

G
a
tew

ay
-b

a
sed

v
irtu

a
liza

tio
n

S
en

so
rs,

IC
T

d
ev

ices,
ev

ery
d
ay

o
b

jects

W
ill

u
tilize

S
m

a
rt

S
a
n
ta

n
d
er

test
b

ed

B
u
tler

[6
2
]

(2
0
1
1

-
2
0
1
4
)

P
rov

id
e

secu
re,

p
erva

siv
e,

en
erg

y
-effi

cien
t

&
co

n
tex

t-aw
a
re

a
rch

itectu
re

A
ca

d
em

ic
resea

rch
+

In
d
u
stry

A
b
stra

ct
rep

resen
ta

tio
n

o
f

sen
so

rs

G
a
tew

ay
-b

a
sed

v
irtu

a
liza

tio
n

S
m

a
rt

o
b

jects,
m

o
b
ile

d
ev

ices
a
n
d

sm
a
rt

serv
ers

S
ev

era
l

fi
eld

-tria
ls

a
n
d

p
ro

o
f-o

f-co
n
cep

ts

V
iS

E
[6
7
]

(2
0
0
8

-
2
0
1
1
)

P
rov

id
e

p
u
b
lic

a
ccess

to
a

W
S
N

test
b

ed
u
sin

g
th

e
G

E
N

I
fra

m
ew

o
rk

A
ca

d
em

ic
resea

rch

A
b
stra

ct
rep

resen
ta

tio
n

o
f

sen
so

rs

G
a
tew

ay
-b

a
sed

v
irtu

a
liza

tio
n

H
ig

h
-en

d
n
o
d
es

ru
n
n
in

g
L

in
u
x

a
n
d

a
ctin

g
a
s

g
a
tew

ay
n
o
d
es

T
h
ree

n
o
d
es

d
ep

loy
ed

in
a

tow
n

n
ea

r
a

fo
rested

a
rea

Summary 25

2.8 Summary

This chapter provided a comprehensive state-of-the-art review as well as discussion regard-

ing basics of WSN virtualization, which were not addressed before. A clear taxonomy of the

existing works was presented and critically reviewed. Relevant research projects as well as

future research issues were also discussed. WSN virtualization is very much relevant in the

context of the IoT, in which small-scale devices, at an unprecedented scale, are expected to

provide services to multiple applications concurrently, but we have yet to find a comprehen-

sive solution that meets this challenge.

26 Background and State-of-the-Art

“— There’s no good idea that cannot be improved on.”

–Michael Eisner

Chapter 3
Wireless Sensor Networks Virtualization

Architecture

Contents

3.1 Introduction . 27

3.2 Proposed Architecture . 28

3.3 Proof-of-Concept Prototype . 30

3.4 Performance Measurements and Results 31

3.5 Enabling Interactions between Virtualized Wireless Sensor Networks’

IaaS and PaaS . 34

3.6 Extended Architecture . 35

3.7 Proof-of-Concept Prototype . 37

3.8 Performance Measurements and Results 37

3.9 Lessons Learned . 39

3.10 Summary . 40

3.1 Introduction

This chapter describes WSN virtualization architecture with details on proof-of-concept pro-

totype and performance evaluation results. It also discusses the architectural enhancements

to enable interactions between WSN IaaS and PaaS, along with early performance measure-

ments. It is based on annex, B, C, D, and E and addresses the following research question:

How multiple and concurrent WSN applications can be provisioned over a deployed WSN?

What is an efficient approach to build architecture to accomplish this? How WSN infrastruc-

ture can interact with a PaaS? What features must be supported by a WSN infrastructure to

27

28 Wireless Sensor Networks Virtualization Architecture

allow PaaS to develop and deploy WSN applications and services?

The paper in annex D provides a general high-level view of WSN virtualization domain

and possible avenues that could be explored. The paper in annex E presents an early version

of the WSN virtualization architecture. These papers mainly contribute to the development

of the WSN virtualization idea and its use for concurrent application and service provisioning

unlike the existing approaches. The paper in annex B presents a complete architecture

designs, implementation, and performance measurements whereas the paper in annex C

builds on the previous work and extends the proposed architecture to allow interactions

between WSN infrastructure and a PaaS.

The cornerstone of the proposed architecture is the concept of overlays, which is used

to logically group sensor nodes together to execute applications tasks for concurrent ap-

plications and services. In this architecture, each logical group of sensor nodes belongs to

a single application. Overlays have several advantages: they are distributed, lack central

control and allow resource sharing [68]. Overlays are used to improve the transmission of

data between end-hosts without requiring any change to the underlying infrastructure. P2P

overlays can achieve significant performance improvements and better resource usage despite

limited network capabilities and high failure recovery times. The same level of performance

from the overlays can be achieved in WSNs if capable nodes are used to perform overlay

related operations. These capable nodes are used in the proposed architecture to allow

resource-constrained and early generations of sensors to be part of the overlays. In order

to fulfil the fundamental requirements, a designated functional entity is used that provides

the level of abstraction required to hide the details of the underlying WSN deployment from

the applications. The proposed architecture is based on several architectural principles that

make it easy to fulfil the identified requirements.

The type of applications considered in this architecture are traditional WSN applica-

tions that require notification messages from various sensor nodes detecting various physical

phenomena such as fire, temperature, humidity, movement and so on.

3.2 Proposed Architecture

Fig. 3.1 shows our proposed multi-layer architecture. There are four layers (physical, virtual

sensor, virtual sensor access and overlay), two paths (data and control), five interfaces (data

(Di), proprietary Di (PDi), control (Ci), proprietary Ci (PCi) and gateway (Gi)) and a

registration server.

At the physical layer we have independent WSNs that consist of two types of sensor

nodes, i.e., resource constrained (type A) and capable (type B) sensors. Typical examples of

type A and type B sensors are TelosB motes and Java SunSpots respectively. There are some

specialized nodes in each WSN deployment, called GTO nodes. Their role is to help type A

Proposed Architecture 29

sensors join the application overlays and provide heterogeneity. The examples of the nodes

that can act as GTO nodes are gateways, base station nodes, sink nodes or a capable type

B sensors. For example, in the motivating example in section 2.3.2, if the existing sensors

are of type A, then either the existing gateway node or Type B sensors, deployed by the

construction company, can help those sensors to become part of the construction company

overlay. This might increase the complexity of the type B sensor nodes but it does allow

flexibility and applies to new generation smart sensor nodes.

Wireless Sensor Network B

Ci

End User

Application

End User

Application

Application Overlay
Application Overlay

Ci

Registration

Server

Internet

GTO

Node

Gi

PDi

PDi

PDi
PDi

PDi

PDi

Di

Di

Di
Di

Di

Sensor Agent

Ci

Di
Di

Sensor Agent

Wireless Sensor Network A

Gi

Type A

Sensor

Type A

Sensor

Type B

Sensor

Type B Sensor

Physical Layer

Virtual Sensor Layer

Overlay Layer

Heterogeneous sensors

& GTO nodes

Logical representation of each

sensor executing multiple tasks

Independent application overlays

Virtual Sensor Access Layer

Functional entities providing

unified interfaces to support

heterogeneous sensor nodes

Figure 3.1: Multi-layer WSN Virtualization Architecture

The virtual sensor layer consists of the logical representation of each sensor executing

multiple application tasks concurrently. Each logical representation is called a virtual sensor

in our architecture, which is an abstraction of an application task run by a sensor. There is a

one-to-one mapping between an application task and the end-user application, meaning that

an application cannot have two virtual sensors (two different application tasks) on a sensor

node. The realization of virtual sensors is platform dependent hence it is assumed that they

can only communicate with other entities over a proprietary (platform dependent) interface.

This assumption is particularly true for type A sensors. The number of virtual sensors that

can be supported by a physical sensor node varies and depends on the capabilities of the

30 Wireless Sensor Networks Virtualization Architecture

physical sensor node.

The virtual sensor access layer consists of a functional entity called Sensor Agent (SA),

which ensure platform independence. This is achieved by providing standardized interfaces

(Di and Ci) to interact with the end-user applications, and using platform-specific (pro-

prietary) interfaces (PDi and PCi) to interact with the underlying physical sensor nodes.

Example of a typical standard interface is a RESTful interface. SAs receive data from the

virtual sensors and forward it to the end-user applications. SAs can be implemented either

in capable (type B) sensors or in GTO nodes.

The overlay layer consists of independent application-specific overlays (two are shown in

the Fig. 3.1, but there could be many more). Each application overlay is created by the

end user application and consists of virtual sensors that run the overlay application tasks.

An overlay protocol is used for message exchange inside an overlay. A Registration Server,

which contains the details of the deployed sensor nodes, is used by end-user applications to

find sensor nodes.

Overall, the proposed architecture can be used in many scenarios where sensors are shared

by multiple applications. For example, consider a simple brush fire scenario where the city

administration is interested in the early detection of brush fire eruption and in its evolution,

using a WSN and a Fire Contour Algorithm. (FCA). Some houses in the area already have

their own sensors to detect fire. To accelerate the deployment of its application and avoid

redundancy, the city administration opts to deploy sensors in areas under its jurisdiction

(i.e., streets and parks) and use the sensor nodes already deployed in private homes. The

home owners get incentives like tax rebates for allowing the use of their sensors. In this

scenario all of the privately owned sensors execute two application tasks one for the home

owner and one for the city administration.

3.3 Proof-of-Concept Prototype

In order to measure the performance of the proposed architecture, we implemented a simple

brush fire eruption scenario using Java SunSpot development kit.

In the scenario, the city administration is interested in the early detection of brush fire

eruption and in its evolution, using a WSN and the FCA. We used a simple probabilistic

FCA, considering that a distant house will send fire notifications less frequently than a nearby

house because the fire is far from it. Some houses in the area already have their own sensors

to detect fire. To accelerate the deployment of its application and to avoid redundancy, the

city administration has opted to deploy sensors in areas under its jurisdiction (i.e. streets

and parks) and to incorporate the sensor nodes already deployed in private homes. The

home owners get incentives like tax rebates for allowing the use of their sensors by city

administration. The home gateways acts as GTO nodes. All of the privately-owned sensors

execute two application tasks – one for the home owner and one for the city administration.

Performance Measurements and Results 31

USB USB

GTO Node

A

GTO Node

B

Sensor Agent Sensor Agent

RESTful City Admin

Web Service

HTTP POST message

In JSON format

City Admin Overlay

(JXTA Peer Group)

JXTA

Peer A

JXTA

Peer B

JXTA

Peer C

JXTA

Peer D

JXTA

Peer E

JXTA

Peer F

Sensor B

Sensor C

Sensor F
Sensor A

Sensor D

Sensor E

City

Admin

JXTA

Peer

City Admin

Node

City Admin Area

Map Display

Figure 3.2: Instantiation of the architecture

We used six SunSpots (each executing three application tasks) and two base stations for

performance measurements. The prototype setup is shown in Fig. 3.2.

3.4 Performance Measurements and Results

The performance of the prototype was assessed in terms of the following delays: HTTP

POST Delay (HPD), Overlay Creation Delay (OCD), and Fire Notification Delay (FND).

HPD is the time difference between when the GTO node sends an HTTP POST request

and when it receives the corresponding success code (201 created). HPD is calculated for

each sensor. OCD is the time it takes to set up the city administration overlay from a non-

32 Wireless Sensor Networks Virtualization Architecture

existent state to a ready state, when it advertises its fire contour service and is ready to

accept join requests. We measured this delay inside the Java code to ensure that the OCD

does not include the JVM start-up delay. FND is measured as the time it takes for the city

admin node to multicast fire notification messages to JXTA peers and to receive their replies

after they execute fire contour algorithm. For each experiment we restarted the JVM and

cleared the previous JXTA configuration cache. All delays are measured in milliseconds and

calculated at the sender side.

The HPD measurements are shown in Fig. 3.3 (for clarity, only 15 measurements are

shown). It is observed that the delay for first POST message is much larger than that for the

subsequent messages. This long delay is due to the three-way handshake of TCP connection

that takes place during the first POST message, whereas for subsequent requests a persistent

HTTP connection (a.k.a. HTTP keep-alive) reduces delay considerably.

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

D
el

ay
 i

n
 M

il
li

se
co

n
d

s

Experiment Number

HTTP POST Message Delay

Sensor A Sensor B Sensor C Sensor D Sensor E Sensor F Avg Delay

Figure 3.3: HTTP POST Message Delay

The average OCD of city admin overlay is 1983ms from 50 iterations, as shown in Fig.

3.4. This delay includes the JXTA core start-up, the creation of a fire contour service, related

pipe advertisement, a JXTA multicast socket and the thread for accepting join requests from

other JXTA peers.

The average FND of five sensors that executed a fire contour algorithm in response to

the notification message sent by a city admin JXTA peer is 19.58ms. The FND of all sensors

is shown in Fig. 3.5.

Performance Measurements and Results 33

1500

1600

1700

1800

1900

2000

2100

2200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

D
el

ay
 i

n
 M

il
li

se
co

n
d

s

Experiment Number

Overlay Creation Delay

OCD Average OCD

Figure 3.4: Overlay Creation Delay

20.7 20.96

19.06
18.54 18.68

10

12

14

16

18

20

22

D
el

ay
 i

n
 M

il
li

se
co

n
d

s

Fire Notification Message Delay

Sensor A Sensor B Sensor C Sensor D Sensor F

Figure 3.5: Fire Notification Message Delay

34 Wireless Sensor Networks Virtualization Architecture

In order to determine the overhead of WSN virtualization, if we consider the scenario

where there is no overlay network and the fire notification is sent as HTTP message (similar

to HPD) which takes 18.96ms. Then the overhead introduced by the WSN virtualization for

FND is approximately 3.27%. The implementation demonstrates that WSN virtualization

is indeed feasible and does not incur much overhead. Node-level virtualization is achieved

with Java SunSpots easily while network-level virtualization is achieved using JXTA, and

once JXTA is operational, the delays are minimal. OCD is inevitable, but in the long-run,

using JXTA is beneficial as it provides a robust and scalable solution.

3.5 Enabling Interactions between Virtualized Wireless Sen-

sor Networks’ IaaS and PaaS

So far the works in this chapter has made it possible to offer a deployed WSN as IaaS by using

the concept of virtualization. The proposed WSN IaaS, can be used to provision traditional

applications in an efficient way. However, a true cloud-based WSN IaaS requires interactions

with a PaaS so that the latter can efficiently host and execute WSN applications and offer

them as SaaS to the end-users.

Interactions between vWSNs and PaaS are largely an unexplored area and the archi-

tectures presented so far cannot provide the required level of interactions. For example,

instantiation of VSs, starting them on demand and stopping them. In order to address this,

the paper in annex E proposes a multi-layer architecture to offer competent virtualized WSN

IaaS (vWSN IaaS), which are able to interact with PaaS to allow service providers to rapidly

provision WSN-based applications and services. An important point discussed in the paper

is that vWSN IaaS are fundamentally different from traditional IaaS. This is due to the

inherit limitations of the WSNs and their nodes. In total seven differences (in terms of VM

and VS) are discussed in the paper which are as follows.

• A VM allows for the sharing of resources (e.g., computing and storage) of the host

machine, whereas a VS allows sharing of sensing capabilities (e.g., temperature, light,

and humidity) by executing multiple application tasks. The key difference is that a VM

aims at sharing the host machine resources, whereas a VS may use the computing and

storage of the host sensor, but it aims at sharing the sensing capabilities of the host

sensor. In Java SunSpots, for instance, application tasks access the on-board sensors

to sense the physical phenomenon, and send the data accordingly.

• Multiple heterogeneous VMs (in terms of operating systems) can be simultaneously

deployed on the same host. For instance, a host can support a Linux-based VM and/or

a Windows-based VM at the same time. However, VSs are tightly coupled with their

sensor OS/middleware. For example, a sensor cannot support Contiki-based VS and

TinyOS-based VS at the same time.

Extended Architecture 35

• Multiple VMs can be deployed in an isolated manner. The creation, deployment,

and migration of VMs does not affect the execution of existing VMs. On the other

hand, the deployment of new VS may disturb the execution of existing VS(s). This

is due to the limited resources and the tight coupling between the VS and the sensor

OS/middleware. Similarly, migrating VS from one physical sensor to another is not a

standard feature yet. To the best of our knowledge, Java SunSpots is the only platform

that provides support for VS migration (as serialized Java Isolates). There is a work

in which an agent-based system for Java SunSpots is developed for VS migration [69].

• VMs can be addressed by other entities that are similar to their host machines. Each

VM can be assigned a public or private IP address and can be accessed accordingly.

However, there is currently no standard mechanism for addressing a VS. Typically,

a local ID is used and may vary depending on the platform. This necessitates some

address mapping/translation mechanism to communicate with a VS. For instance, in

Java SunSpots, each VS can be addressed by a MIDlet ID.

• For VM, there are no power/energy-related issues, whereas a VS inherits these issues

from the host sensor nodes. This means that the creation, deployment, and operation

of a VS are not only dependent on the capabilities/resources of the host sensor, but

also on its available energy. The always-on or always-available concept is not applicable

to WSN world.

• For VMs, there are already some open source and proprietary solutions (e.g., KVM

and VMware). However, no such solutions exist for VSs.

• At the IaaS level, the role of a VM is to maximize the use of a host machines resources

(e.g., computing and storage), while the role of a VS is to use the sensing capabilities of

the host sensor in an efficient manner. Therefore, to achieve cost-efficiency, traditional

IaaS may create several VMs on a limited number of host machines. However, achieving

cost-efficiency in vWSN IaaS may not lead to the creation of several VSs on a few host

sensor nodes since the creation of VSs is strongly correlated to the applications’ desired

coverage of a geographic area.

3.6 Extended Architecture

The proposed architecture is shown in Fig. 3.6. The bottom two layers (WSN Infrastructure

and Virtual Sensors) are similar to the ones in the previous architecture and consist of

heterogeneous sensors, GTO nodes and virtual sensors (both traditional as well as semantic).

The functionality of these two layers and the roles of their entities are same as described in

Section 3.2. Next layer is Virtual Sensor Manager, which contains two functional entities:

The VS Manager and VS Communicator. VS Manager receives requests to instantiate, start,

36 Wireless Sensor Networks Virtualization Architecture

Wireless Sensor

Network B

GTO

Node

WSN

Infrastructure

Virtual

Sensors

Wireless Sensor

Network A

Type A

Sensor

Type A

Sensor

Type B

Sensor

Type B Sensor

Virtual

Sensor

Manager

Virtualized

WSN

Infrastructure

ManagementSensor Description

Repository

Cloud

Management
IaaS Access/Control Interface

Semantic

WSN Apps

Traditional

WSN Apps

Platform-as-a-Service

Sensor Agent

Sensor

Discovery
VS Cache

VS Provider

VS Configurator

Agent Agent Agent
VS Scheduler

VS Manager

VS Communicator

IEEE 802.15.4

Figure 3.6: Proposed vWSN IaaS Architecture

stop, delete, and migrate VS. The VS Communicator supports platform-specific protocols

to interact with different sensor platforms to promote platform heterogeneity, such as IEEE

802.15.4, Bluetooth, Cellular and RESTful.

The Virtualized WSN Infrastructure Management layer contains several new entities as

well as SAs from the previous architecture. SAs interact with the PaaS on behalf of the VS

Proof-of-Concept Prototype 37

in order to provide platform independence. The additional entities in the architecture are:

Sensor Description Repository (contains all relevant information about the deployed sensors),

Sensor Discovery entity (interacts with the repository to search for the required sensors), VS

Provider (receives VS creation requests from the WSN PaaS and makes decision about when

to create, start, or stop a VS), VS Configurator (prepares task codes based on the requests

received from the VS Provider), and VS Scheduler (creates, starts, stops, and disseminates

task codes according to give schedule).

The task codes are generated from a skeleton code file that does nothing useful on its

own but can read from a parameter list and run a desired task. An example is the skeleton

code that reads a manifest file (i.e., used in Java SunSpot platform) to initialize parameters

such as sensor type, sampling interval, desired unit, and an end-point address to send data

output.

The final layer is the Cloud Management layer, which includes an entity called the IaaS

Access/Control Interface. This interface exposes a RESTful API that allows multiple users

(i.e. PaaS) to interact with the deployed vWSN IaaS through a set of REST-based operations.

3.7 Proof-of-Concept Prototype

In order to measure the performance of the proposed architecture, we used a simple scenario

where an application developer developed a simple smart home application.

In the scenario, a smart home application is required to help home owners to configure

the use of their appliances when environmental conditions change. For example, the A/C

should start automatically when temperature exceeds a given threshold. Similarly, the deck

lights should be turned-on automatically when natural light drops below a given threshold.

The developer first discovers the light and temperature services to design, create and deploy

the smart home application. The prototype setup is shown in Fig. 3.7.

For the prototype we used two Java SunSpot kits: two base station nodes and four

SunSpots with on-board sensors. The vWSN IaaS layers were implemented as a Java stan-

dalone application. A simple PaaS was programmed as a standalone Java application. Eclipse

IDE and JDK 1.7 were used for the application development. Two laptops, connected to a

LAN, were used for the prototype. The first one had the vWSN IaaS, and the second one

had the PaaS. The vWSN IaaS laptop was connected to the Java SunSpot base stations to

communicate with the remote SunSpots Over-the-Air (OTA). The smart home application

was developed as a simple Java application.

3.8 Performance Measurements and Results

The performance of the prototype was assessed in terms of the following metrics: VS Creation

Delay (VSCD) and VS Start Time (VSST).

38 Wireless Sensor Networks Virtualization Architecture

WSN IaaS

USB

Sensor

B

Base

Station

PaaS

Sensor

C

Sensor

D
Sensor

A

Developer

USB

Base

Station

Figure 3.7: Prototype Setup

VSCD is the time spent between the moment the WSN infrastructure receives the VS

creation request from the PaaS and the moment the VS is successfully created. We measured

two types of VSCD. In the first type, the shared base station instance is created once and

used repeatedly for VS creation, hence it only shows VS creation delay. In the second type,

a shared base station is created every time a VS creation request is received from the PaaS,

hence it shows VS creation delay plus the delay to create the shared base station instance.

VSST is the time spent when the WSN infrastructure receives the VS start request from

the PaaS and when the corresponding VS is successfully started. All experiments were

repeated 50 times with a confidence interval of 95%.

Fig. 3.8 shows the VSCD. The average value of the first type of VSCD after 50 iterations

is 14.973 seconds while for the second type of VSCD, the average value increased by around

62%, to 24.282 seconds. The reason for this increase is that the shared base station instance

takes time to probe for the available SunSpots. This delay is unavoidable and is not related

our architecture. The higher values of both types of VSCD are also due to time taken by

the Ant build tool to build, compile, and create the executable file for remote SunSpots.

Fig. 3.9 shows the VSST of the 50 experiments. On the average it takes 4.2 seconds

to start the newly created VS after receiving the request from the PaaS. Again, this delay

Lessons Learned 39

0

5000

10000

15000

20000

25000

30000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

D
el

ay
 i

n
 m

il
li

se
co

n
d

s

Experiment Number

VS Creation Delay

VS Creation Delay without Creating Shared Base Station Instance

VS Creation Delay including Shared Base Station Instance Creation

Figure 3.8: VS Creation Delay

3800

3900

4000

4100

4200

4300

4400

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

T
im

e
in

 m
il

li
se

co
n
d

s

Experiment Number

VS Start Time

VS Start Time Average VS Start Time

Figure 3.9: VS Start Time

included the remote SunSpot synchronization delay before the newly created VS was started.

3.9 Lessons Learned

Cloud computing offers elastic provisioning of resource and has revolutionized the way ap-

plications and services are deployed and consumed. It is clear that cloud computing can

ease the WSN application and service provisioning over vWSN IaaS. For a business model,

40 Wireless Sensor Networks Virtualization Architecture

WSN owners can simply focus on managing the resources while allowing PaaS developers to

use their WSN deployments to provision new applications and services. However, it is learnt

that current PaaS are not fully capable of using such deployments in an efficient manner.

For example, currently there is no mechanism to discover and manage virtual sensors and

their offered services at the PaaS level. Instead most solutions simply receive sensor data

and use it without taking full advantage of a vWSN IaaS. Hence our lesson is that a capable

vWSN IaaS needs an equally capable PaaS for developer to get the same level of application

development and deployment environment as in traditional IaaS.

Another lesson is that the real potential of vWSN IaaS can be realized when sensors are

able to make intelligent decisions based on the P2P communication with other sensors in

the vicinity. Not only can it help in creating some interesting applications in mobile WSNs

(vehicular ad hoc networks, mobile crowed sensing) but it can help in achieving efficient

decentralized solutions. Currently IEEE 802.15 WPAN Task Group 8 is working on the

specifications of Peer Aware Communications (PAC) in WPAN environments [70]. PAC offers

number of features like peer information discovery without association, efficient discovery

signalling rate of 100Kbps, data rate of 10Mbps, simultaneous multi-group communication,

multi-hop relay and security. PAC is very much relevant to the WSNs since most sensors

create a WPAN for communication. This could help in interesting application scenarios, for

example, sensors can offload their tasks to a willing sensor in their vicinity when needed.

3.10 Summary

This chapter presented the solutions regarding concurrent application and service provision-

ing through WSN virtualization. First a novel multilayer architecture is presented that allows

multiple applications and service to be provisioned over a deployed WSN. Additionally, the

architecture is enhanced with new layers, entities and functionalities to allow interactions

between WSN IaaS and PaaS to develop and deploy WSN applications and services. Both

these contributions are backed up by the real-world prototypes along with performance mea-

surements. This architecture can be used by traditional WSN applications and services.

“— It is not what you meant to say, but it is what your saying meant.”

–Walter M. Miller Jr.

Chapter 4
Data Annotation Architecture for Semantic

Applications in Virtualized Wireless Sensor

Networks

Contents

4.1 Introduction . 41

4.2 Proposed Architecture . 42

4.3 Proof-of-Concept Prototype . 45

4.4 Performance Measurements and Results 45

4.5 Lessons Learned . 49

4.6 Conclusion . 50

4.1 Introduction

This chapter discusses the sensor data annotation architecture and presents implementation

details and performance measurements. It is based on annex F and addresses the following

research question:

How semantic web technologies can be used to efficiently provision WSN applications? In

particular how semantic-based applications and service can receive annotated sensor data in

real-time? Also how sensor data annotation can be performed in a distributed manner, in

standardized way while making sure that future enhancements to the WSN infrastructure are

also taken care of?

41

42
Data Annotation Architecture for Semantic Applications in Virtualized Wireless Sensor

Networks

Semantic applications and services are gaining popularity and are particularly relevant

in the WSN domain. These applications and services allow their users to get the high-

level details of the events monitored by the sensors and infer additional knowledge to gain

situational awareness. Traditional WSN applications do provide such kind of information to

their users. Another benefit is that the semantic applications allow their users to use queries

like what is the current status of the fire? and what is the current location of the fire? to

get results like initial fire and in a public library respectively. Therefore, it is imperative

to provision traditional as well as semantic applications in virtualized WSNs. However,

semantic application require annotated data which is tricky to perform in such situations.

In order to tackle this issue we extend our previous virtualized WSN architecture to

provision traditional as well as semantic WSN applications in virtualized WSNs through

in-network sensor data annotation in a distributed manner. For this, the architecture uses

overlays and has functional entities as super peers and peers to store the ontology and

annotate raw sensor data respectively. Two main challenges addressed in this paper are i)

how to annotate sensor data in real-time instead of annotating it at a central location and

ii) how to keep virtualized WSN infrastructure independent of any particular application

domain, because annotating data requires domain ontologies.

The first challenge is addressed by using in-network functional entities to annotate the

sensor data in real-time before it leaves the network. In this new architecture, virtual sensors

can be of two types: semantic and non-semantic. The raw data from semantic sensor is sent

to the functional entity, responsible for the annotating it, and later it is sent to end-user

application via SA (similar to the architecture in Chapter 3 – Section 3.2). The second chal-

lenge is addresses by creating a base ontology that reflects the deployed WSN infrastructure

and not any application domain. For this standard SSN ontology is extended to create the

base ontology. For the annotation process this base ontology is stored in the network in

a distributed manner using the super peer concept. The functional entity (responsible for

annotating sensor data) acts as peer and requests for the required base ontology from the

super-peer to annotate raw sensor data. In this work, it is assumed that end-user applica-

tions and services will apply required application domain ontology (e.g. fire domain) since

the proposed architecture is independent of any application domain.

4.2 Proposed Architecture

The proposed architecture, shown in Fig. 4.1, is based on our previous WSN virtualization

architecture, presented in Chapter 3.

The architecture consists of four layers. The physical layer consists of sensor nodes that

support node-level virtualization. Both resource-constrained (e.g. TelosB, called Type A) as

well as capable (e.g. Java SunSpots, called Type B) sensor nodes are considered. Capable

sensors as well as high-end machines (e.g. base stations and sink nodes) act as GTO nodes to

Proposed Architecture 43

facilitate resource-constrained sensors to support node-level virtualization. The second layer

is Virtual Sensor layer that abstracts as virtual sensors, the simultaneous tasks run by the

physical sensors. In this work we assume that here can be two types of virtual sensors: those

who run semantic application tasks (and require data annotation), called semantic virtual

sensors and those who run non-semantic (traditional) application tasks, called virtual sensors.

Operations &

Management Entity

Type A

Sensor

AA

PDi

AA AA

Type B

Sensor

OA

OA
OA

Ontology Manager

GTO

Node

Physical

Layer

Annotation

Overlay

Ontology Overlay

Type A

Sensor

PDi
PDi

Type A

Sensor

Type B

Sensor

PDi

Virtual

Sensor

Layer

AA

SA

PDi PDi

Virtual Sensor

Access Layer

SA

Registration

Server

Internet

Di Di

AA = Annotation

Agent

OA = Ontology

Agent

SA = Sensor Agent

Application

Overlay

Layer

Non-Semantic

Application

Semantic

Application

Figure 4.1: Multi-layer WSN Virtualization Architecture

The virtual sensor access layer has two new functional entities and two overlays. The

functional entities are Annotation Agents (AAs) and Ontology Agents (OAs). We term an

44
Data Annotation Architecture for Semantic Applications in Virtualized Wireless Sensor

Networks

agent as an entity that provides a given functionality, therefore several agents are used in

our architecture. The Annotation overlay consists of AAs and SAs. The AAs receive raw

sensor data from semantic virtual sensors for annotation. They use the base ontology for

this purpose. Once the annotation is performed (RDF file generated), they communicate

with SAs in the same overlay to send the annotated data to the semantic applications. SAs

have the same role as mentioned in section 3.1, i.e., abstracting the underlying WSNs nodes

and providing a standard access mechanism to end-user applications. The functionality of

AAs can be implemented in capable sensors as well as GTO nodes.

The Ontology overlay consists of OAs, which are responsible for storing the base ontology

in a distributed manner. The OAs act as super-peers and provide the requested ontology to

the AAs. They do not deal with the sensor data. The Operations & Management (O&M)

entity (typically infrastructure owner), is responsible for providing the base ontology. Since

O&M entity is aware of the type of sensors deployed in the WSN, it can easily develop and

disseminate the base ontology to the ontology overlay.

The base ontology that we developed reflects the deployed WSN infrastructure; sensors,

their type, capabilities (e.g. available sensors, sensing range), properties (e.g. units of

measurements, dimensions) and information like data format supported. Since a single sensor

node can have multiple on-board sensors (e.g. TelosB has light, temperature and humidity

sensors whereas Java SunSpot has light, temperature and accelerometer) the base ontology

consists of multiple concepts each related to the available sensors. Fig. 4.2 shows the

temperature part of the base ontology.

Figure 4.2: Temperature sensor part of the base ontology

Instead of storing one single base ontology file in OAs, we use a simple method to split

the base ontology into multiple parts (each related to a single concept) and store these parts

Proof-of-Concept Prototype 45

in OAs. This way an AA does not need to keep light or humidity related concepts when it

only requires temperature concept to annotate sensor data.

4.3 Proof-of-Concept Prototype

In order to measure the performance of the proposed architecture, we used a simple fire

monitoring scenario where a semantic application tracks the fire in real-time.

In the scenario, the city administration and home owners deploy fire detecting sensors in

public streets and in private homes, respectively. These sensors run multiple application tasks

concurrently, using virtual sensors and semantic virtual sensors. The raw data from semantic

virtual sensors is first annotated and then sent to fire monitoring semantic application via

SA. The application applies the domain ontology and a set of rules using a reasoned to infer

additional knowledge. If a fire event is detected then a notification is sent to the end-user.

The end-user may query for additional information such as fire status and location.

We used two different sensor kits for the prototype, Java SunSpot and TelosB motes from

AdvanticSys Kit. In total we used six SunSpots (two as base stations), four TelosB motes

(one as border router) running Contiki OS. All sensors nodes executed multiple applica-

tion tasks. The performance measurements are made using three different prototype setups

(configuration A, B and C) which are shown in Fig. 4.3. Fig. 4.4 and Fig. 4.5 respectively.

In configuration A, TelosB motes are used which used a GTO node for annotation pur-

poses. In configuration B, Java SunSpots are used who annotated their data by themselves.

We achieved this by using µJena library [71]. In configuration C, raw sensor data was sent

to the fire monitoring semantic application. The application was developed using Apache

Jena Framework and deployed in cloud-based Google App Engine as SaaS.

In configuration A and B, fire monitoring semantic application received the annotated

data while in configuration C, it received raw sensor data and performed annotation itself.

4.4 Performance Measurements and Results

The prototype’s performance was assessed in terms of the following metrics: End-to-End

Delay (E2ED), Ontology Download Time (ODT), Impact of the scalability of AAs, Expected

Operation Time (EOT) of Java SunSpots, and the Impact of tasks on current draw from

Java SunSpots battery.

E2ED is the time difference between when the semantic virtual sensors sent their raw

data and when the corresponding success code (200 OK) is received from the fire monitoring

semantic application. This delay includes the time taken by all intermediate steps. ODT is

the time it takes an AA to request and to receive the required ontology from an OA. Impact

of scalability of AAs was studied in terms of discovery of an OA and ODT. To find EOT

of Java SunSpots, we executed both semantic and non-semantic tasks continuously until the

46
Data Annotation Architecture for Semantic Applications in Virtualized Wireless Sensor

Networks

Physical Layer

Ontology

Overlay

Annotation

Agent

Virtual Sensor

Access Layer

GTO

Node

TelosB TelosB

Annotation

Agent

Google App

Engine

Fire Domain Ontology

Query Engine
Semantic

Reasoner

Apache Jena Framework

Fire

Monitoring

Application

REST

GTO

Node

Web Server

JXTA Peer

RDF Generator

Annotation Agent

Ontology Agent

JXTA Peer

Annotation

Overlay

Ontology Agent

JXTA Peer

Sensor Agent

JXTA Peer

Web Client

SunSpot SunSpot

Figure 4.3: Prototype Configuration A

Annotation

Overlay

Annotation

Agent Virtual Sensor

Access Layer

Web Client

Sensor Agent

JXTA Peer

Annotation

Agent

Google App

Engine

Fire Domain Ontology

Query Engine
Semantic

Reasoner

Apache Jena Framework

Fire

Monitoring

Application

REST

Physical

Layer
SunSpotSunSpotSunSpot

Web ClientAnnotation Agent

JXTA Peer

RDF Generator

GTO

Node

Figure 4.4: Prototype Configuration B

Performance Measurements and Results 47

Wireless Sensor Network

TelosB TelosB

Google App

Engine

Fire Domain Ontology

Query Engine
Semantic

Reasoner

Apache Jena Framework

Fire

Monitoring

Application

Annotation

Module

REST

SunSpot

SunSpot
SunSpot

Border

Router

Socket

Proxy

TelosB

USBUSB

REST

Figure 4.5: Prototype Configuration C

Spots died. For this purpose no sleep or power saving mechanism was used. Finally we

determined the current draw from Java SunSpot battery while in shallow-sleep mode (no

task, radio ON), executing semantic, and non-semantic tasks.

The average E2ED of configurations A, B and C is 3566ms, 4575ms, and 3187ms respec-

tively as shown in Fig. 4.6.

Figure 4.6: Average End-to-End Delay

The E2ED of three configurations from 50 experiments is shown in Fig. 4.7. The E2ED

of configuration B is highest but considering the resource-constrained sensors it is acceptable.

48
Data Annotation Architecture for Semantic Applications in Virtualized Wireless Sensor

Networks

Performing annotation outside the network has less delay as shown by configuration C but

this comes at the expense of developing (or discovering) the base ontology beforehand.

Figure 4.7: End-to-End Delay of All Configurations from 50 Experiments

The average ODT for configuration A is 94ms, as shown in Fig. 4.8. This is typical for

JXTA under LAN environment.

Figure 4.8: Ontology Download Time

Since JXTA was used for implementation, it had direct impact on the scalability part.

We find that there is an increase in OA discovery time when number of AAs increase. This

is shown in Fig. 4.9. However, the increase in AAs did not impact the ODT which was again

around 100ms mainly because OA was already discovered.

Fig. 4.10 shows the EOT of the Java SunSpots while running a semantic and a non-

semantic task, without using any sleep mechanism. SunSpots lasted 571 and 603 minutes

Lessons Learned 49

Figure 4.9: Impact on the Discovery of an OA

for semantic and non-semantic tasks respectively in a lab environment.

Figure 4.10: Expected Operation Time of Java SunSpots (always on)

We also calculated current draw by Java SunSpots, which are 38mA current (base value)

during the shallow mode (no task, radio ON), 75.6mA for non-semantic task (98% increase

from base value) and 79.8mA for semantic task (109% increase from base value).

4.5 Lessons Learned

An important lesson learned during this work is regarding semantic web technologies and

the key roles they can play in vWSN IaaS. Semantic web can effectively eliminate the incon-

sistencies that may exist in the sensor data sent by various WSN deployments. For example

50
Data Annotation Architecture for Semantic Applications in Virtualized Wireless Sensor

Networks

temperature data from three different WSN deployments can be received as key-value pair

where key can be mentioned as t, temp, temperature respectively, and values being the ob-

served value. In this situation application or service faces a difficult situation to interpret

t, temp and temperature as same phenomena unless the developer has pre-empted such in-

consistencies and dealt with them in his program. This issue becomes more prominent in

vWSN IaaS when applications use data from different deployments. In our experience, in-

corporating semantic web technologies and standard ontologies with vWSN IaaS provides a

mechanism for using sensor data in a consistent manner.

Another lesson is that by using an ontology that corresponds to the WSN, the deployed

infrastructure could be made independent of any application domain. This way the annotated

sensor data can be used by application from different application domains. However, in

order to make use of the annotated data, applications will require their own required domain

ontology to further annotate and use the sensor data for their purposes.

4.6 Conclusion

This chapter presented the work dealing with the issue of provisioning semantic applications

and services over a virtualized WSN as demonstrated by the real-world prototype. In ad-

dition to this, the work proposed the concept of base ontology which is independent of any

application domain and truly reflects the deployed WSN infrastructure. This opens up the

possibility for WSN infrastructure owners to offer their network to a variety of users from

different domains.

“— Logic will get you from A to B. Imagination will take you everywhere.”

–Albert Einstein

Chapter 5
Provisioning of Semantic Applications over

Virtualized Wireless Sensor Network IaaS

Contents

5.1 Proposed Architecture . 52

5.2 Proof-of-Concept Prototype . 54

5.3 Performance Measurements and Results 55

5.4 Multi-objective Genetic Algorithm for Capable Node Selection . . . 56

5.4.1 Problem Representation . 57

5.4.2 GA Operators . 58

5.4.3 Objective Functions . 60

5.5 Simulation Results . 63

5.5.1 Simulation Setup . 63

5.5.2 Results . 63

5.6 Lessons Learned . 65

5.7 Conclusion . 66

This chapter presents the ontology management tool and heuristic-based genetic algo-

rithm for capable node selection, along with performance measurements. The chapter is

based on annex G and H. It addresses the following research question:

How to enable a WSN IaaS owner to provide mechanism to support semantic-based appli-

cation without making the deployed infrastructure application domain-specific? How to have

an efficient and robust mechanism to annotate sensor data that is applicable to resource-

constrained environments such as WSNs?

51

52 Provisioning of Semantic Applications over Virtualized Wireless Sensor Network IaaS

The main contribution of the architecture, presented in Chapter 4, is in-network sensor

data annotation in a distributed manner in real-time. However, there are two issues that

are not addressed by it, i) Allow WSN infrastructure owners to create and manage the

ontology, and ii) Facilitate the efficient sensor data annotation in a distributed manner.

We proposed using base ontology for annotation purposes since it is independent of any

application domain. The base ontology reflects the deployed sensors in the WSN and their

capabilities. It also provides a standard way to share the sensor data to other users promoting

interoperability. By extending SSN ontology, our proposed base ontology conforms to the

existing standards, therefore the data annotated using the base ontology can be readily used

by other applications and services according to their requirements.

With this background it is clear that there is a need to allow WSN infrastructure owners

to create and manage base ontology in an efficient manner. An ontology development and

management application is developed for this purpose. It is a web-based GUI application

that uses MySQL Database, Apache Tomcat and Protégé 3.8 API. Using an easy and step-

by-step approach, the base ontology can be created even by a novice user without knowing

technical details. It is possible to add/modify concepts such as temperature, humidity and so

on. Similarly when new sensors are deployed in the WSN, the base ontology can be modified

with their details.

Once the ontology is developed it needs to be stored in the deployed WSN in a distributed

way to be used when required. In this work we propose to store base ontology in multiple

nodes by dividing it into multiple parts such that each part contains a single concept. In

order to select a set of capable nodes to store these parts a heuristic-based genetic algorithm

is proposed. The algorithm tries to achieve multiple objectives and provides an optimal set

of nodes for the storage of base ontology concepts. It is executed by a central node that has

the status information of all the sensors.

5.1 Proposed Architecture

The proposed architecture, shown in Fig. 5.1, uses our previous WSN virtualization archi-

tecture, presented in Chapter 4.

There is a new node, at physical layer, called WSN IaaS Manager that has a global view

of the deployed WSN infrastructure. WSN IaaS Manager is responsible to select capable

nodes for storing the base ontology and then disseminate the ontology files to the selected

nodes. The virtual sensor layer remains same as in the previous architecture. There is a new

functional entity in the ontology overlay in the virtual sensor access layer called Ontology

Manager (OM). The role of OM is to hold the base ontology and provide it to the OAs when

requested. OM is distributed over many capable nodes in the network (i.e. GTO nodes and

Type B sensors). The rest of the functional entities and the overlays in virtual sensor access

layer remain same as in previous architecture.

Proposed Architecture 53

AA

AA

OA

Annotation

Overlay
AA

SA

OM

SA

OA

OA

OM

OM

ODi

WSN IaaS Owner

Ontology Development

& Management

Application

WSN IaaS

Manager

Type A

Sensor

Type B

Sensor

Physical

Layer

Type A

Sensor

Type A

Sensor

Type B

Sensor

Virtual

Sensor

Layer

GTO

Node

Non Semantic

Applications

Ontology

Overlay

SA

 Semantic

Applications

Virtual Sensor

Access Layer

AA

Application Layer

Figure 5.1: Proposed Architecture

In order to develop and manage the base ontology, the WSN infrastructure owner uses the

Ontology Development and Management Application. Once the base ontology is developed,

it is provided to the WSN IaaS Manager who then sends it to the network. The only entity,

that can receive the base ontology from the WSN IaaS Manager is OM, hence it is important

that OM have the most update version of the base ontology at all times.

54 Provisioning of Semantic Applications over Virtualized Wireless Sensor Network IaaS

5.2 Proof-of-Concept Prototype

In order to measure the performance of the proposed architecture, we use the same fire

monitoring scenario where a semantic application tracks the fire in real-time. A simple

prototype is used where the WSN IaaS Owner develops the base ontology using the Ontology

Development and Management Application and disseminates it to the network. Fig. 5.2

shows the prototype setup.

We used three laptops connected to a private LAN. One laptop is used to host the

Ontology Development and Management Application and to act as WSN IaaS Manager.

The second laptop acts as OM while third laptop acted as OA and implements the partial

functionality of AA, as mentioned before. The respective functionalities of these entities

were implemented as Java applications in all three laptops. One Java SunSpot kits was used

consisting of 1 base station node and 2 SunSpots with on-board sensors. Each SunSpot

executed two application tasks at the same time. The annotation functionality of AA was

implemented in the SunSpots as mentioned before.

WSN IaaS

Manager

Ontology Manager

(OM)

Ontology Agent

(OA)

USB

Ontology

Developer

SunSpot 2 SunSpot 1

JXTA Overlay

Virtual Sensor

Access Layer

Google App

Engine

Fire Domain Ontology

Query Engine
Semantic

Reasoner

Apache Jena Framework

Fire

Monitoring

Application

REST

Ontology Agent

Web Client

JXTA Peer

Sensor Agent

Web Client

JXTA Peer

JXTA Peer

Annotation Agent

Physical

Layer

Base Station

JXTA Peer

WSN IaaS Manager

Web Client
Annotation

Agent

RDF Generator

µJena library

Web Client
Annotation

Agent

RDF Generator

µJena library

Ontology

Manager

Web Client

JXTA Peer

Figure 5.2: Prototype Setup

Performance Measurements and Results 55

5.3 Performance Measurements and Results

The performance of the prototype was assessed in terms of the following metrics: Overlay

Creation Delay (OCD), Ontology Dissemination Time (ODisT) and Ontology Download

Time (ODT). OCD is the time to create JXTA overlay from a non-existent state to a ready

state, when it is ready to accept join requests. We measured this delay inside the Java code

to ensure that the OCD does not include the JVM start-up delay. ODisT is the combination

of the following delays, i) Delay from ontology application to WSN IaaS Manager, ii) Delay

from WSN IaaS Manager to OM, and iii) Delay from OM to OAs. For ODT we measured

the delay when an AA sends request to OA for a missing part of base ontology. All these

experiments were repeated 50 times with 95% confidence interval.

The average OCD is found to be 1906ms from 50 experiments as shown in Fig. 5.3. It

is important to remember that the OCD pretty much depends on the configurations of the

machines that act as JXTA peers and is unavoidable. However, it is experienced only during

the overlay initiation phase so does not necessarily make much impact during the sensor data

annotation process.

0

500

1000

1500

2000

2500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

D
e
la

y
 i

n
 M

il
li

se
c
o

n
d

s

Experiment Number

Overlay Creation Delay (OCD)

ODC Average OCD

Figure 5.3: Overlay Creation Delay

The average ODisT from 50 experiments is around 109ms as shown in Fig. 5.4. ODisT

includes i) Delay from ontology application to WSN IaaS Manager, ii) Delay from WSN IaaS

Manager to OM, and iii) Delay from OM to OAs. During our experiments we found that

the delay from ontology application to WSN IaaS Manager is negligible since both entities

were on the same laptop. Therefore this delay is not included in the given results. The delay

from WSN IaaS Manager is shown in vertical lines in Fig. 5.4. The average delay is 56ms.

The delay from OM to OA is shown as dots in Fig. 5.4 and on the average it is about 54ms.

The average ODT from 50 experiments is 137ms, as shown in Fig. 5.5. The reason

for higher ODT as compared to the delay from WSN IaaS Manager to OM and delay from

56 Provisioning of Semantic Applications over Virtualized Wireless Sensor Network IaaS

0

10

20

30

40

50

60

70

80

0

10

20

30

40

50

60

70

80

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

T
im

e
 i

n
 M

il
li

se
c
o

n
d

s

Experiment Number

Ontology Distribution Time (ODisT)

WSN IaaS Manager to OM OM to OA

Figure 5.4: Ontology Distribution Time

OM to OA is because ODT includes the request and reply delay as AA first sent a request

for the ontology file and later received it where as for the other delays there was no request

message, WSN IaaS Manager and OM simply sent the ontology file to the destination without

receiving any request message.

0

20

40

60

80

100

120

140

160

180

200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

T
im

e
 i

n
 M

il
li

se
c
o

n
d

s

Experiment Number

Ontology Download Time (ODT)

ODT Average ODT

Figure 5.5: Ontology Download Time

5.4 Multi-objective Genetic Algorithm for Capable Node Se-

lection

In our proposed architecture, ontology concepts are stored in multiple capable sensor nodes

in a distributed way. In order to have a dynamic and lightweight solution, we propose to

select a set of capable nodes to store the ontology concepts (i.e. act as OAs). In this work,

Multi-objective Genetic Algorithm for Capable Node Selection 57

we assume that all AAs are able to act as OAs (in terms of capabilities). However, due to

limited resources of AAs (energy and memory), it is necessary to select an optimal number

of them that will act as OAs. This selection needs to ensure that only nodes that fulfil the

energy and storage requirements, at that particular time, are selected. Once a set of nodes

is identified, ontology concepts are provided to them. Thus in this work we have energy-

related requirements and memory related requirements. The optimal selection of OAs can be

modelled as a multi-objective optimization problem where the objectives include maximizing

residual energy and maximizing residual storage. The solution to this problem provides the

OAs and their respective AAs. We use the GA to solve the optimization problem. The GA

is executed by a central node, i.e. WSN IaaS Manager shown in Fig. 5.1.

5.4.1 Problem Representation

We propose a two-level encoding scheme to encode a chromosome for GA as shown in Fig.

5.6. The level-1 encoding is used to represent the OAs; whereas the level-2 encoding is used

to represent the members (i.e. AAs) of each OA. The two-level encoding is based on binary

encoding. The level-1 encoding consists of n binary bits, where n is number of active sensors

in the network. In the chromosome each gene represents a sensor. A value of 0 in level-1

encoding means that the sensor is not selected to act as OA whereas a value of 1 means it is

selected to act as OA.

Sensor S1 S2 S3 S4 S5 S6 S7 S8

Level-1

0 1 0 0 1 0

0 1 0

0 0 1

1 0 0

S2 S3 S6 S2 S3 S6

S2 S3 S6 S2 S3 S6 S2 S3 S6

Level-2

0 1 1 0 0 1 0 0

Figure 5.6: Two-level encoding example

The level-2 encoding is described as follows. Each gene in level-1 encoding that has 0

bit has a level-2 binary string. Each such string consists of m bits where m is equal to the

number of 1 bits in level-1 encoding. To encode this, a position is randomly chosen between

1 and m and is filled with 1. Rest m-1 positions are filled with 0s.

Note that, numeric encoding could have been used for level-2 encoding. However, binary

encoding has an advantage of being flexible in performing mutation operation as described

later.

58 Provisioning of Semantic Applications over Virtualized Wireless Sensor Network IaaS

5.4.2 GA Operators

Crossover and mutation are the two genetic operations performed on the chromosomes in

a population. In a crossover operation, genes from different chromosomes (parents) are

recombined to produce new chromosomes (children). The crossover operation ensures that

after many generations, best features of the parents are carried to the next generation.

In the genetic algorithm, 2-point crossover is used. In particular, the 2-point crossover

operation is applied to level-1 encoding. When a gene is extracted from a parent chromosome,

the corresponding level-2 encoding is also extracted. Since the proposed encoding results in

variable length level-2 string for each chromosome, the crossover operation must preserve the

number of 1 bits in each chromosome. Thus, the basic 2-point crossover operation cannot

be applied directly on the chromosomes. One way of resolving this issue is to consider fixed

length level-2 strings which also requires pre-specifying the number 1 bits for the level-1

encoding for each chromosome in the initial population. The other way is to adopt a variant

of 2 point crossover operation [13] which preserves the number of 1 bits in each chromosome

that will be produced after crossover. The basic 2-point crossover operation on fixed length

level-2 strings is illustrated in Fig 5.7.

Parent 1 Parent 2

0 1 1 0 0 1 0 0

1 0 0 0 1 0 0 1 0 0 1 0 0 0 1

0 1 0 0 0 0 1 1

0 0 1

Crossover

Point

Crossover

Point

Child 1

0 0 0 1 1 1 0 0

0 1 0 1 0 0 1 0 0 0 1 0 0 0 1

Child 2

0 0 0 1 0 0 1 1

0 1 0 0 1 0 0 0 1 0 1 0 0 1 0

0 1 0 1 0 0 1 0 0 0 1 0

Figure 5.7: Example 2-point crossover operation (fixed length level-2 string)

After the crossover operation, mutation operation is applied to each child. During this

operation two genes, selected at random, are interchanged in a chromosome. In our case,

the mutation operator is applied in 2 steps to the level-2 strings. In the first step, two genes

that have 0 bits in level-1 encoding are selected at random. Then, their level-2 strings are

interchanged.

In the second step, a gene that has 0 bit in level-1 encoding is selected at random. Then,

in its level-2 binary string, a random position corresponding to a 0 bit is selected. Then,

Multi-objective Genetic Algorithm for Capable Node Selection 59

this 0 bit is interchanged with the 1 bit. These steps are illustrated in Fig. 5. Note that,

with numeric encoding for level-2 strings, only step-1 can be performed. Thus, using binary

encoding for level-2 strings results in flexibility in mutation operation.

Before

Mutation

Step 1

0 1 1 0 0 1 0 0

1 0 0 0 1 0 0 1 0 0 1 0 0 0 1

After

Mutation

Step 1

0 1 1 0 0 1 0 0

1 0 0 0 1 0 0 1 0

Random

genes

seleected

0 1 00 0 1

Before

Mutation

Step 2

0 1 1 0 0 1 0 0

1 0 0 0 1 0 0 1 00 1 00 0 1

After

Mutation

Step 2

0 1 1 0 0 1 0 0

1 0 0 0 1 0

A random

gene

selected

0 1 00 0 11 0 0

Figure 5.8: Example mutation operation

60 Provisioning of Semantic Applications over Virtualized Wireless Sensor Network IaaS

5.4.3 Objective Functions

In order to select most promising and fittest individual to produce new generation in each

iteration, we use two objectives function that allows us to compare the individuals. Our

main objectives are:

f1: Maximizing the residual energy of sensors

f2: Maximizing the residual storage of sensors

These objectives ensure that the total residual energy and total residual memory of sensor

nodes are maximized. For computing f1, we adopted the following energy model.

)(***

)(***

0

4

0

2

dddlEl

dddlEl
E

mpelect

fselect

Tx

Figure 5.9: Example mutation operation

Where, ETx denotes energy consumed in sending l bit of data to a node at distance

d. Eelect is the amount of energy consumption per bit to run the transmitter and receiver

circuitry. The details of other parameters can be found in [72].

The objective f1 is expressed as:

𝑓1 = 𝐸𝑚𝑎𝑥 ,𝑗 − 𝐸𝑟

𝑛𝑜 (𝑗)

𝑖=1

 + 𝐸𝑗 (𝑜)

𝑚

𝑗=1

Where,

m = number of sensors selected as OAs,

Emax,j = Current residual of energy of sensor j,

no(j) = Number of AAs for which sensor j act as OAs,

Er = Energy spent in communication between two sensors,

Ej(O) = Energy spent by sensor j in receiving ontology file

Emax,j is known from the status received from sensors before executing GA. Er and

Ej(O) are computed using the above energy model.

The objective f2 is expressed as:

𝑓2 = 𝑀𝑚𝑎𝑥 ,𝑗 − 𝑀𝑗

𝑁𝐴

𝑖=1

 +𝑀𝑗 (𝑜)

𝑚

𝑗=1

Multi-objective Genetic Algorithm for Capable Node Selection 61

Where,

m = number of sensors selected as OAs,

Mmax,j = Current value of storage of sensor j,

NA = Total number of application tasks running in sensor j,

Mj = Storage needed for applications in sensor j,

Mj(O) = Storage needed for ontology file in sensor j

Since the OA selection problem is a multi-objective optimization problem, there is not

one optimal solutions rather a set of solutions called pareto-optimal solutions. However,

finding the best or a good trade-off solution is often difficult as it requires a proper analysis

of the pareto-front. Therefore, multi-objective optimization problems are often solved us-

ing scalarization or weight sum approach which transforms multi-objective optimization to

single-objective optimization.

Using this approach, the new objective function is expressed as:

𝑍 = 𝑊1 ∗ 𝑓1 + 𝑊2 ∗ 𝑓2

1,0 ,1 2121 WWWW

Where, W1 and W2 are weights and indicate the relative importance of the objective

functions. These weights can be adjusted based on the need.

The final proposed capable node selection algorithm is shown next.

62 Provisioning of Semantic Applications over Virtualized Wireless Sensor Network IaaS

Algorithm 1: Capable Node Selection Algorithm

Result: Set of capable nodes that can act as OAs

Input: Population size α

total number of sensors n

crossover probability β

mutation probability γ

number of iterations σ

Output: solution X

/* Initialization */

/* Level 1 Encoding */

1 Generate α random solutions of size n

2 for i← 0 to n do

3 individual[i] = randomInt[0, 1];

4 /* if individual[i] == 1 then it is an OA */

5 /* else it is not an OA */

end

6 /* Level 2 Encoding */

7 for each individual k not Selected As OA in Level 1 do

8 Create a binary string of length m bits ;

9 /* where m is the number of 1s at level-1 */

10 Fill one random bit of the string with 1 ;

11 Fill rest of the bits with 0 ;

end

12 repeat

13 crossOver(with β probability);

14 mutation(with γ probability);

15 fitnessEvalution();

16 replaceWithNewGeneration();

17 iterations+ +;

until iterations <= σ;

18 return Solution

Simulation Results 63

5.5 Simulation Results

The performance of the proposed algorithm is assessed using simulations, the details are as

follows.

5.5.1 Simulation Setup

The proposed algorithm is implemented using Apache Commons Math library [73]. We

execute the algorithm for large number of sensors to get a near-optimal solution containing

the list of sensors that can act as OM in the deployed WSN IaaS.

Since our work targets capable and advanced sensor platforms, we considered Java

SunSpots for our simulation. Java SunSpots have built-in rechargeable Li-ion battery with

a total energy of about 9590 joules. The current residual energy of the sensors is fixed at

random from 50% to 100% of this value. A uniform value of 50j is assumed for communica-

tion between OAs and AAs. Similarly a uniform value of 80j is assumed for OAs to receive

ontology file from the central OM node. In our previous work, described in chapter 4, we de-

veloped the base ontology with multiple concepts (e.g. temperature, light, carbon, humidity).

The maximum ontology file size we had was around 8Kb for a single concept. In this work,

we assume a storage space of 10Kb for storing a single ontology file in an OA. In addition

to this we consider the scenario where OAs may be executing applications tasks themselves.

Here we assume that each OA executes three application tasks. It is important to mention

that rev 8 of Java SunSpot provides about 7200Kb of storage space of application tasks.

Hence considering 10Kb for ontology storage makes sense. Each experiment was repeated

10 times and the results presented here show the average values of these experiments.

5.5.2 Results

The total fitness value of the optimal set of OAs is shown in Fig. 5.9 It is important to

mention that the values are higher because fitness value of all OAs is combined. We observe

that the higher population size (i.e. more sensors) do not necessarily lead to maximum

fitness value. However, as iterations passed, the fitness became larger. For this result we

kept crossover rate at 0.8. For each population size the best solution was found in the last

few iterations (e.g. 47th, 48th and 50th).

The next results shows the number of OAs and AAs obtained by using different crossover

rates. Fig. 8, 9 and 10 show the average number of OAs and AA obtained using crossover

probability of 0.2, 0.5 and 0.8 respectively. It is interesting to note that the low crossover rate

leads to less number of OAs. This means that there will be more AAs associated with one

OA. As we increased the crossover probability, number of OAs increased as well irrespective

of the population size. Another interesting observation is that there is not major increase

in number of OAs when population size increases. In fact the number of OAs remain pretty

64 Provisioning of Semantic Applications over Virtualized Wireless Sensor Network IaaS

500000

700000

900000

1100000

1300000

1500000

1700000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

V
al

ue

Generation #

Fitness Value of all OAs in the Fittest Individual

1000 Sensors 2000 Sensors 3000 Sensors

Figure 5.10: Fitness value of all OAs in the fittest individual

much consistent w.r.t population size.

We also performed simulation by varying the mutation rate but found that it did not

have any major impact.

Overall these results provide us interesting insights and motivate us to further improve

the algorithm and solve other research problems in this area.

156 164 162

844

1836

2838

0

500

1000

1500

2000

2500

3000

1000 Sensors 2000 Sensors 3000 Sensors

N
um

be
r

of
 S

en
so

r

Average Number of OAs and AAs with Crossover

rate of 0.2

Number of OAs Number of AAs

Figure 5.11: Average number of OAs and AAs obtained with crossover rate of 0.2

Lessons Learned 65

189 198 199

811

1802

2801

0

500

1000

1500

2000

2500

3000

1000 Sensors 2000 Sensors 3000 Sensors

N
um

be
r

of
 S

en
so

r

Average Number of OAs and AAs with Crossover

rate of 0.5

Number of AAs Number of OAs

Figure 5.12: Average number of OAs and AAs obtained with crossover rate of 0.5

220 222 227

780

1778

2773

0

500

1000

1500

2000

2500

3000

1000 Sensors 2000 Sensors 3000 Sensors

N
um

be
r

of
 S

en
so

r

Average Number of OAs and AAs with Crossover

rate of 0.8

Number of AAs Number of OAs

Figure 5.13: Average number of OAs and AAs obtained with crossover rate of 0.8

5.6 Lessons Learned

An important lesson learned during this work is that the creation of ontologies can be

accomplished easily using available technologies and tools. The open source technologies

and tools like MySQL and Protégé OWL API can be readily used for this purpose. However,

the importance of an ontology developer having the domain knowledge cannot be ruled out.

66 Provisioning of Semantic Applications over Virtualized Wireless Sensor Network IaaS

The process of creating ontology in a standard format can be simplified so that a domain

expert with limited IT/technical knowledge is able to rapidly create and manage ontologies.

Another lesson is that even though annotated sensor data is used by third party applications

and may not be relevant to the WSN IaaS owner, it still makes sense to have sensor data

storage mechanisms at the WSN infrastructure to allow for historic or performance analysis

of sensors and their data. Such historic sensor data can be used for data visualisation or

analysis or can be shared with public using the Linking Open Data Cloud project [73].

5.7 Conclusion

This chapter presented the work regarding ontology development and management tool. The

tool uses open source software and technologies to help WSN IaaS owner to easily create,

manage and extend the base ontology concepts. A heuristic-based algorithm is also presented

to provide a near-optimal set of capable nodes to store the base ontology in a distributed

manner. Once a near-optimal set of capable nodes it available, the own files containing the

base ontology concepts can be disseminated to the network.

“— What is not started will never get finished.”

–Johann Wolfgang von Goethe

Chapter 6
Conclusion

Contents

6.1 Summary . 67

6.2 Future Work . 68

This chapter provides a summary of the thesis along with some work items for the future

work that will aid in extending the work done in this thesis.

6.1 Summary

Since their mainstream introduction towards the end of 20th century, WSN deployments

have been used as means to bridge the gap between the physical world and the virtual world.

With their ability to sense, compute and communicate, WSNs provide their users with the

ability to react to various physical phenomenon and take required actions. WSNs are used

in a plurality of application domains. The most obvious drawback of the current WSN

deployments is that they are domain-specific, task-oriented, and are tailored for particular

applications with little or no possibility of reusing them for newer applications. This strategy

is inefficient and leads to redundant deployments when new applications are contemplated.

WSNs are considered as basic building blocks of IoT paradigm where sensors, along with

multitude of everyday objects communicate, interact and share data on a massive scale.

Therefore, it is not unrealistic to envision that future WSN deployments will have to support

multiple applications simultaneously.

This thesis proposed several architectural solutions to efficiently provision applications

and services concurrently over vWSNs. Each architectural solution is based on identified

principles that are used to satisfy identified user requirements. The proposed architectures

are designed independent of any platform or protocol. Proof-of-concept prototypes, con-

sisting of difference sensor kits, were used to validate all proposed solutions. In total five

contributions were made in this thesis.

67

68 Conclusion

Firstly, a comprehensive state-of-the-art review is presented which is a new contribution

in this domain. A clear taxonomy along with technical details of existing works is presented.

Each work is critically evaluated using a set of requirements. Several pertinent research

projects are also discussed along with future research issues with hints on their potential

solutions.

Second contribution is presented in two parts, one is a novel WSN virtualization archi-

tecture that allows provisioning of concurrent applications. Using the architecture, WSN

deployments can be realized as vWSN IaaS. The architecture uses the concept of overlays

and is used as basis for tackling research problems in later contributions. The architecture

is evaluated using a proof-of-concept prototype using Java SunSpot kit. The second part of

this contribution is a capable architecture that allows interactions between vWSN IaaS and

PaaS for dynamic provisioning of application and services. The architecture is based on the

fundamental differences and consist of several functional entities to facilitate the dynamic

creation and execution of virtual sensors when requested by PaaS. This architecture is also

validated by using Java SunSpot kit.

The third contribution is a novel architecture that allows in-network, distributed, real-

time annotation of raw sensor data to provision semantic applications in vWSNs. A new

base ontology concept is used to facilitate annotation of sensor data independent of any

application domain. The proposed architecture uses the concept of overlay and super-peers

to annotate and store the base ontology in the network. A proof-of-concept prototype is

used to evaluate the proposed architecture using Java SunSpot and AdvanticSys kit.

The fourth contribution of the thesis is architectural solution for vWSN IaaS owner to

easily create and manage base ontology along with a heuristic-based genetic algorithm is

used to select a set of capable nodes to store the base ontology in an optimal manner. A

proof-of-concept prototype is used to evaluate the proposed architecture using Java SunSpot

while simulation results of the proposed algorithm are presented.

6.2 Future Work

WSN virtualization is a very vast topic and demands thorough investigation and solutions

for various technical challenges. Paper I provides comprehensive list of research challenges,

along with potential avenues to solve them. In this section we present some new work items

that will compliment and extend the work done in this thesis.

The first future work item is to address how vWSN IaaS can efficiently publish or adver-

tise its available sensors and their services. Paper III, VI, V, VI and VII all assume a static

publication process where the WSN owners publish their nodes to a central repository, how-

ever a dynamic publication is required. A P2P based architecture can be a solution like the

one in [75] that does not rely on any central mechanism to discover the services. However,

no such solution exists for virtualized WSNs. Recent IETF service discovery protocols like

Future Work 69

CoAP resource discovery [76], [77] and DNS-SD [78] can be used to design efficient discovery

and publication solutions in resource-constrained environments.

This is important because eventually this information will be used by PaaS to compose

and deploy new applications and services. As a potential solution semantically enriched

vWSN IaaS can play a pivotal role and aid a PaaS to discover and use available sensors

and their services. vWSN IaaS and their resources could be formalized as ontologies hiding

the heterogeneity and complexity and published for different PaaS. A simple publication

mechanism could work for a particular PaaS but in order to allow discovery from multiple

PaaS requires a standard solution. Yet another direction is that a service recommendation

system for virtualized WSNs, for context-aware discovery of resources and services.

The second future work item is extending the vWSN IaaS architecture presented in

Paper VII to provide virtual sensor reservation in-advance and subscription based notification

mechanisms. Using this mechanism, users such as PaaS could pre-book their required sensors

and setup periodic notification for their applications. The issue of reservation seems tricky

but in WSNs it makes sense because often applications are interested to get information

about real-world events at a particular location and at a particular time. For example, if

application A is interested to use sensors in room X at time T but all are busy then some

kind of solution is needed to address this issue. At a higher level of abstraction, this issues is

essentially the mapping of end-user application requirements to the available sensors. Once

the reservation is done, then the end-user can subscribe to receive sensor data according to

its requirements. This idea could be extended to a scenario where two vWSN IaaS could

lease their resources to each other against certain incentives like the idea discussed in [79].

The last future work item concerns an important issue to monitor virtual sensors in real

time and tackle their failures at vWSN IaaS. This issue concerns the management aspects of

vWSN and it is not tackled in this thesis. This issue is very important because the end-user

applications and services will be hosted in containers at PaaS and will be linked to virtual

sensors to receive sensor data. In ideal situation everything will work smoothly but as WSN

are prone to failures, it is important to work on mitigation strategies when a virtual sensor

fails and minimize the impact on the applications at PaaS. Issues like finding another virtual

sensor in real-time are not trivial since the new virtual sensor may not fulfil the spatial

and temporal requirements of the application. As a potential solution, an active monitoring

mechanism at vWSN IaaS will be useful to take care of such failures. By using a pre-emptive

approach, the PaaS could be notified before such failures occur.

70 Conclusion

Bibliography

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor net-

works: a survey,” Computer Networks, vol. 38, no. 4, pp. 393–422, Mar. 2002.

[2] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,” Computer

Networks, vol. 52, no. 12, pp. 2292-2330, Aug. 2008.

[3] G. Kortuem, F. Kawsar, D. Fitton, and V. Sundramoorthy, “Smart objects as building

blocks for the Internet of things,” IEEE Internet Computing, vol. 14, no. 1, pp. 44–51,

Jan. 2010.

[4] M. A. Feki, F. Kawsar, M. Boussard, and L. Trappeniers, “The Internet of Things: The

Next Technological Revolution,” Computer, vol. 46, no. 2, pp. 24–25, 2013.

[5] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Pat-

terson, A. Rabkin, I. Stoica, and M. Zaharia, “A View of Cloud Computing,” Commun.

ACM, vol. 53, no. 4, pp. 50–58, Apr. 2010.

[6] L. M. Vaquero, L. Rodero-Merino, J. Caceres and M. Lindner, “A break in the clouds,”

ACM SIGCOMM Computer Communication Review, vol. 39, pp. 50, 2008.

[7] A. Khan, A. Zugenmaier, D. Jurca and W. Kellerer, “Network virtualization: a hyper-

visor for the Internet?,” IEEE Communications Magazine, vol. 50, pp. 136-143, 2012.

[8] A. Merentitis, et al., “WSN Trends: Sensor Infrastructure Virtualization as a Driver To-

wards the Evolution of the Internet of Things,” presented at the UBICOMM 2013, The

Seventh International Conference on Mobile Ubiquitous Computing, Systems, Services

and Technologies, 2013, pp. 113–118.

[9] Ramdhany, Rajiv and Coulson, Geoff. ”Towards the Coexistence of Divergent Applica-

tions on Smart City Sensing Infrastructure” Proceedings of 4th International Workshop

on Networks of Cooperating Objects for Smart Cities 2013 (CONET/UBICITEC 2013),

Philadelphia, USA, April 8, 2013: pp.26-30

71

72 Bibliography

[10] S. Abdelwahab, B. Hamdaoui, M. Guizani, and A. Rayes, “Enabling Smart Cloud Ser-

vices Through Remote Sensing: An Internet of Everything Enabler,” IEEE Internet of

Things Journal, vol. 1, no. 3, pp. 276–288, Jun. 2014.

[11] M. Fazio, M. Paone, A. Puliafito, and M. Villari, “Huge amount of heterogeneous sensed

data needs the cloud,” in 2012 9th International Multi-Conference on Systems, Signals

and Devices (SSD), 2012, pp. 1–6.

[12] I. Khan, et al., “Wireless Sensor Network Virtualization: Early Architecture and Re-

search Perspectives”, Accepted, IEEE Network. 2015

[13] S. Loveland et.al, ”Leveraging virtualization to optimize high-availability system con-

figurations,” IBM Systems Journal, vol. 47, no. 4, 2008, pp. 591-604

[14] P. Levis and D. Culler: “Mat: A tiny virtual machine for sensor networks, In AS-

PLOSX: Proceedings of the 10th International Conference on Architectural Support for

Programming Languages and Operating Systems, San Jose, CA, 2002, pp. 85-95.

[15] A. P. Jayasumana, Q. Han, and T. H. Illangasekare, “Virtual Sensor Networks - A Re-

source Efficient Approach for Concurrent Applications,” in Fourth International Con-

ference on Information Technology, 2007. ITNG ’07, 2007, pp. 111–115.

[16] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art and research

challenges,” J Internet Serv Appl, vol. 1, no. 1, pp. 7–18, Apr. 2010.

[17] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey and comparison of

peer-to-peer overlay network schemes,” IEEE Communications Surveys Tutorials, vol.

7, no. 2, pp. 72–93, Second 2005.

[18] B. Beverly Yang and H. Garcia-Molina, “Designing a super-peer network,” in 19th

International Conference on Data Engineering, 2003. Proceedings, 2003, pp. 49–60.

[19] A. Kiryakov, B. Popov, I. Terziev, D. Manov, and D. Ognyanoff, “Semantic annotation,

indexing, and retrieval,” Web Semantics: Science, Services and Agents on the World

Wide Web, vol. 2, no. 1, pp. 49–79, Dec. 2004.

[20] M. Compton, et al., “The SSN ontology of the W3C semantic sensor network incubator

group,” Web Semantics: Science, Services and Agents on the World Wide Web, vol. 17,

pp. 25–32, Dec. 2012.

[21] R. B. Smith, “SPOTWorld and the Sun SPOT,” in Proceedings of the 6th International

Conference on Information Processing in Sensor Networks, New York, NY, USA, 2007,

pp. 565–566.

Bibliography 73

[22] Advanticsys. May 2015. http://www.advanticsys.com/shop/prokit-p-27.html - [accessed

25/05/2015]

[23] D. Simon and C. Cifuentes, “The Squawk Virtual Machine: JavaTM on the Bare Metal,”

in Companion to the 20th Annual ACM SIGPLAN Conference on Object-oriented Pro-

gramming, Systems, Languages, and Applications, New York, NY, USA, 2005, pp.

150–151.

[24] P. Levis, et al., “TinyOS: An Operating System for Sensor Networks,” in Ambient

Intelligence, W. Weber, J. M. Rabaey, and E. Aarts, Eds. Springer Berlin Heidelberg,

2005, pp. 115–148.

[25] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and flexible operating

system for tiny networked sensors,” in 29th Annual IEEE International Conference on

Local Computer Networks, 2004, 2004, pp. 455–462.

[26] V. Medina and J. M. Garca, “A survey of migration mechanisms of virtual machines,”

ACM Computing Surveys, vol. 46, pp. 1-33, 2014.

[27] M. M. Islam, M. M. Hassan, G.-W. Lee, and E.-N. Huh, “A Survey on Virtualization

of Wireless Sensor Networks,” Sensors, vol. 12, no. 2, pp. 2175–2207, Feb. 2012.

[28] M. M. Islam and E.-N. Huh, “Virtualization in Wireless Sensor Network: Challenges

and Opportunities,” Journal of Networks, vol. 7, no. 3, Mar. 2012.

[29] Y. Yu, L. J. Rittle, V. Bhandari, and J. B. LeBrun, “Supporting Concurrent Applica-

tions in Wireless Sensor Networks,” in Proceedings of the 4th International Conference

on Embedded Networked Sensor Systems, New York, NY, USA, 2006, pp. 139–152.

[30] I. Khan, F. Belqasmi, R. Glitho, and N. Crespi, “A multi-layer architecture for wire-

less sensor network virtualization,” in Wireless and Mobile Networking Conference

(WMNC), 2013 6th Joint IFIP, 2013, Dubai, UAE, pp. 1–4.

[31] M. Ceriotti, et al., “Monitoring Heritage Buildings with Wireless Sensor Networks:

The Torre Aquila Deployment,” in Proceedings of the 2009 International Conference on

Information Processing in Sensor Networks, Washington, DC, USA, 2009, pp. 277–288.

[32] X. Wang, J. Wang, Z. Zheng, Y. Xu, and M. Yang, “Service Composition in Service-

Oriented Wireless Sensor Networks with Persistent Queries,” in 6th IEEE Consumer

Communications and Networking Conference, 2009. CCNC 2009, 2009, pp. 1–5.

[33] R. Chu, L. Gu, Y. Liu, M. Li, and X. Lu, “SenSmart: Adaptive Stack Management for

Multitasking Sensor Networks,” IEEE Transactions on Computers, vol. 62, no. 1, pp.

137–150, Jan. 2013.

74 Bibliography

[34] E. Baccelli, O. Hahm, M. Günes, M. Wählisch, and T. Schmidt, “RIOT OS: Towards

an OS for the Internet of Things,” presented at the The 32nd IEEE International Con-

ference on Computer Communications (INFOCOM 2013), 2013.

[35] S. Saruwatari, M. Suzuki, and H. Morikawa, “PAVENET OS: A Compact Hard Real-

Time Operating System for Precise Sampling in Wireless Sensor Networks,” SICE Jour-

nal of Control, Measurement, and System Integration, vol. 5, pp. 24–33, 2012.

[36] W. Dong, C. Chen, X. Liu, Y. Liu, J. Bu, and K. Zheng, “SenSpire OS: A Predictable,

Flexible, and Efficient Operating System for Wireless Sensor Networks,” IEEE Trans-

actions on Computers, vol. 60, no. 12, pp. 1788–1801, Dec. 2011.

[37] V. Gupta, et al., “Nano-CF: A coordination framework for macro-programming in Wire-

less Sensor Networks,” in 2011 8th Annual IEEE Communications Society Conference on

Sensor, Mesh and Ad Hoc Communications and Networks (SECON), 2011, pp. 467–475.

[38] S. Bhattacharya, A. Saifullah, C. Lu, and G. Roman, “Multi-Application Deployment in

Shared Sensor Networks Based on Quality of Monitoring,” in 2010 16th IEEE Real-Time

and Embedded Technology and Applications Symposium (RTAS), 2010, pp. 259–268.

[39] C.-L. Fok, G.-C. Roman, and C. Lu, “Agilla: A Mobile Agent Middleware for Self-

adaptive Wireless Sensor Networks,” ACM Trans. Auton. Adapt. Syst., vol. 4, no. 3,

pp. 16:1–16:26, Jul. 2009.

[40] Q. Cao, T. Abdelzaher, J. Stankovic, and T. He, “The LiteOS Operating System: To-

wards Unix-Like Abstractions for Wireless Sensor Networks,” in International Confer-

ence on Information Processing in Sensor Networks, 2008. IPSN ’08, 2008, pp. 233–244.

[41] D. Simon, et al. ”JavaTM on the Bare Metal of Wireless Sensor Devices: The Squawk

Java Virtual Machine,” in Proceedings of the 2nd International Conference on Virtual

Execution Environments, New York, NY, USA, 2006, pp. 78–88.

[42] J. Koshy and R. Pandey, “VMSTAR: Synthesizing Scalable Runtime Environments for

Sensor Networks,” in Proceedings of the 3rd International Conference on Embedded

Networked Sensor Systems, New York, NY, USA, 2005, pp. 243–254.

[43] S. Bhatti, J. et al, “MANTIS OS: An Embedded Multithreaded Operating System for

Wireless Micro Sensor Platforms,” Mob. Netw. Appl., vol. 10, no. 4, pp. 563–579, Aug.

2005.

[44] P. Levis and D. Gay, TinyOS Programming. Cambridge University Press, 2009.

[45] P. Levis and D. Culler: ”Maté: A tiny virtual machine for sensor networks.” In AS-

PLOSX: Proceedings of the 10th International Conference on Architectural Support for

Programming Languages and Operating Systems, San Jose, CA, 2002, pp. 85-95.

Bibliography 75

[46] I. Khan, F. Belqasmi, R. Glitho, and N. Crespi, “A multi-layer architecture for wire-

less sensor network virtualization,” in Wireless and Mobile Networking Conference

(WMNC), 2013 6th Joint IFIP, 2013, Dubai, UAE, pp. 1–4.

[47] J. Hoebeke, et al., “Managed Ecosystems of Networked Objects,” Wireless Pers Com-

mun, vol. 58, no. 1, pp. 125–143, May 2011.

[48] I. Ishaq, J. Hoebeke, I. Moerman, and P. Demeester, “Internet of Things Virtual Net-

works: Bringing Network Virtualization to Resource-Constrained Devices,” in 2012

IEEE International Conference on Green Computing and Communications (GreenCom),

2012, pp. 293–300.

[49] R. Tynan, G. M. P. O’Hare, M. J. O’Grady, and C. Muldoon, “Virtual Sensor Net-

works: An Embedded Agent Approach,” in International Symposium on Parallel and

Distributed Processing with Applications, 2008. ISPA ’08, 2008, pp. 926–932.

[50] A. P. Jayasumana, Q. Han, and T. H. Illangasekare, “Virtual Sensor Networks – A Re-

source Efficient Approach for Concurrent Applications,” in Fourth International Con-

ference on Information Technology, 2007. ITNG ’07, 2007, pp. 111–115.

[51] H. M. N. D. Bandara, A. P. Jayasumana, and T. H. Illangasekare, “Cluster Tree Based

Self Organization of Virtual Sensor Networks,” in 2008 IEEE GLOBECOM Workshops,

pp. 1-6.

[52] Q. Han, A. P. Jayasumana, T. Illangaskare, and T. Sakaki, “A wireless sensor network

based closed-loop system for subsurface contaminant plume monitoring,” in IEEE Inter-

national Symposium on Parallel and Distributed Processing, 2008. IPDPS 2008, 2008,

pp. 1–5.

[53] M. Haghighi and D. Cliff, “Multi-agent Support for Multiple Concurrent Applications

and Dynamic Data-Gathering in Wireless Sensor Networks,” in 2013 Seventh Interna-

tional Conference on Innovative Mobile and Internet Services in Ubiquitous Computing

(IMIS), 2013, pp. 320–325.

[54] I. Leontiadis, C. Efstratiou, C. Mascolo, and J. Crowcroft, “SenShare: Transforming

Sensor Networks into Multi-application Sensing Infrastructures,” in Wireless Sensor

Networks, G. P. Picco and W. Heinzelman, Eds. Springer Berlin Heidelberg, 2012, pp.

65–81.

[55] L. Sarakis, T. Zahariadis, H.-C. Leligou, and M. Dohler, “A framework for service

provisioning in virtual sensor networks,” J Wireless Com Network, vol. 2012, no. 1, pp.

1–19, Dec. 2012.

76 Bibliography

[56] A. Majeed and T. A. Zia, “Multi-set Architecture for Multi-applications Running on

Wireless Sensor Networks,” in 2010 IEEE 24th International Conference on Advanced

Information Networking and Applications Workshops (WAINA), 2010, pp. 299–304.

[57] Y. Yu, L. J. Rittle, V. Bhandari, and J. B. LeBrun, “Supporting Concurrent Applica-

tions in Wireless Sensor Networks,” in Proceedings of the 4th International Conference

on Embedded Networked Sensor Systems, New York, NY, USA, 2006, pp. 139–152.

[58] P. Levis, “Experiences from a Decade of TinyOS Development,” in Proceedings of the

10th USENIX Conference on Operating Systems Design and Implementation, Berkeley,

CA, USA, 2012, pp. 207–220.

[59] M. Schulz, ”mbed Cookbook - IoT,” May 2015. [Online]. Available:

https://developer.mbed.org/cookbook/IOT - [accessed 25/05/2015]

[60] R. N. Murty, G. Mainland, I. Rose, A. R. Chowdhury, A. Gosain, J. Bers, and M.

Welsh, “CitySense: An Urban-Scale Wireless Sensor Network and Testbed,” in 2008

IEEE Conference on Technologies for Homeland Security, 2008, pp. 583–588.

[61] F. Berkers, et al., “Constructing a multi-sided business model for a smart horizontal

IoT service platform,” in 2013 17th International Conference on Intelligence in Next

Generation Networks (ICIN), 2013, pp. 126–132.

[62] A. Andrushevich, B. Copigneaux, R. Kistler, A. Kurbatski, F. L. Gall, and A. Klap-

proth, “Leveraging Multi-domain Links via the Internet of Things,” in Internet of

Things, Smart Spaces, and Next Generation Networking, S. Balandin, S. Andreev, and

Y. Koucheryavy, Eds. Springer Berlin Heidelberg, 2013, pp. 13–24.

[63] Preon32 sensor kit – http://www.virtenio.com/en/products/evaluationskits.html – [ac-

cessed 25-05-2015]

[64] Phidgets kit – http://www.phidgets.com/products.php?category=18 – [accessed 25-05-

2015]

[65] C. Efstratiou, I. Leontiadis, C. Mascolo, and J. Crowcroft, “A Shared Sensor Network

Infrastructure,” in Proceedings of the 8th ACM Conference on Embedded Networked

Sensor Systems, New York, NY, USA, 2010, pp. 367–368.

[66] L. Sanchez, et al., “SmartSantander: IoT experimentation over a smart city testbed,”

Computer Networks, vol. 61, pp. 217–238, Mar. 2014.

[67] D. Irwin, et al. ”Towards a virtualized sensing environment,” in Testbeds and Research

Infrastructures. Development of Networks and Communities. Springer Berlin Heidelberg,

2011, pp. 133-142.

Bibliography 77

[68] A. Anitha, J. JayaKumari, and G. V. Mini, “A survey of P2P overlays in various net-

works,” in 2011 International Conference on Signal Processing, Communication, Com-

puting and Networking Technologies (ICSCCN), 2011, pp. 277–281.

[69] R. Lopes, F. Assis, and C. Montez. “MASPOT: A mobile agent system for Sun SPOT.,

In Autonomous decentralized systems (ISADS), 2011 10th international symposium on,

pp. 25-31. IEEE, 2011. Kobe, Japan.

[70] S. Cho, S. Chang, and Y. Han, “A fully distributed coordination scheme based on

orthogonal requests and responses,” in 2014 16th International Conference on Advanced

Communication Technology (ICACT), 2014, pp. 804–807.

[71] F. Crivellaro, “µJena: Gestione di ontologie sui dispositivi mobile,” Thesis, M.Sc., Po-

litecnico di Milano, Milan, Italy, 2007.

[72] J.-M. Kim, S.-H. Park, Y.-J. Han, and T.-M. Chung, “CHEF: Cluster Head Election

mechanism using Fuzzy logic in Wireless Sensor Networks,” in 10th International Confer-

ence on Advanced Communication Technology, 2008. ICACT 2008, vol. 1, pp. 654–659.

[73] Apache Software Foundation, “Apache commons mathematics library,” 2015,

http://commons.apache.org/math/

[74] S. Amit, Semantic Services, Interoperability and Web Applications: Emerging Concepts:

Emerging Concepts. IGI Global, 2011.

[75] J. Maenpaa, J. J. Bolonio, and S. Loreto, “Using RELOAD and CoAP for wide area

sensor and actuator networking,” J Wireless Com Network, vol. 2012, no. 1, pp. 1–22,

Dec. 2012.

[76] Z. Shelby, “Embedded web services,” IEEE Wireless Communications, vol. 17, no. 6,

pp. 52–57, Dec. 2010.

[77] Z. Shelby, et al. ”Constrained Application Protocol (CoAP), draft-ietf-core-coap-18”,

work in progress. The Internet Engineering Task Force–IETF, June (2013).

[78] S. Cheshire, and M. Krochmal, ”Multicast DNS”, IETF RFC 6762, February 2013.

[79] Y. Zhang, J. Wen, “An IoT electric business model based on the protocol of BitCoin”, in

2015 18th Int. Conf. Intelligence in Next Generation Networks: Innovations in Services,

Networks and Clouds (ICIN 2015), Paris, France, Feb. 2015.

78 Bibliography

Annex A
Paper I

79

IEEE COMMUNICATION SURVEYS & TUTORIALS

Wireless Sensor Network Virtualization: A Survey
Imran Khan, Student Member, IEEE, Fatna Belqasmi, Member, IEEE, Roch Glitho, Senior Member, IEEE,

Noel Crespi, Senior Member, IEEE, Monique Morrow, Senior Member, IEEE, and Paul Polakos

Abstract—Wireless Sensor Networks (WSNs) are the key com-
ponents of the emerging Internet-of-Things (IoT) paradigm. They
are now ubiquitous and used in a plurality of application domains.
WSNs are still domain specific and usually deployed to support
a specific application. However, as WSNs’ nodes are becoming
more and more powerful, it is getting more and more pertinent to
research how multiple applications could share a very same WSN
infrastructure. Virtualization is a technology that can potentially
enable this sharing. This paper is a survey on WSN virtualization.
It provides a comprehensive review of the state-of-the-art and
an in-depth discussion of the research issues. We introduce the
basics of WSN virtualization and motivate its pertinence with
carefully selected scenarios. Existing works are presented in detail
and critically evaluated using a set of requirements derived from
the scenarios. The pertinent research projects are also reviewed.
Several research issues are also discussed with hints on how they
could be tackled.

Index Terms—Wireless Sensor Network (WSN), Internet-of-
Things (IoT), virtualization, node-level virtualization, network-
level virtualization.

I. INTRODUCTION

THE emerging Internet-of-Things (IoT) concept is consid-
ered to be the next technological revolution, one that real-

izes communication between many types of objects, machines
and devices, and at an unprecedented scale [1]. WSNs can be
seen as the basic constituents of IoT because they can help users
(humans or machines) to interact with their environment and
react to real-world events. These WSNs are composed of nodes
that are amalgamations of micro-electro-mechanical systems,
wireless communications and digital electronics, and have the
ability to sense their environment, perform computations and
communicate [2]. The most obvious drawback of the current
WSNs is that they are domain-specific and task-oriented, tai-
lored for particular applications with little or no possibility of

Manuscript received October 27, 2014; revised March 2, 2015; accepted
March 3, 2015. This work is partially supported by CISCO systems through
grant (CG-576719), European ITEA-2 funded project Web-of-Objects (WoO),
and by the Canadian Natural Sciences and Engineering Research Council
(NSERC) through the Canada Research Chair in End-User Service Engineering
for Communications Networks.

I. Khan and N. Crespi are with the Institut Mines-Télécom, Télécom SudParis,
91011 Evry, France (e-mail: imran@ieee.org; noel.crespi@it-sudparis.eu).

F. Belqasmi is with the College of Innovative Technology, Zayed University,
Abu Dhabi, UAE (e-mail: fatna.belqasmi@zu.ac.ae).

R. Glitho is with the Concordia Institute for Information Systems Engineer-
ing (CIISE), Concordia University, Montreal, QC H3G 2W1, Canada (e-mail:
glitho@ece.concordia.ca).

M. Morrow and P. Polakos are with CISCO Systems, Inc., San Jose, CA
95134 USA (e-mail: mmorrow@cisco.com; ppolakos@cisco.com).

Digital Object Identifier 10.1109/COMST.2015.2412971

reusing them for newer applications. This strategy is inefficient
and leads to redundant deployments when new applications
are contemplated. With the introduction of the IoT, it is not
unrealistic to envision that future WSN deployments will have
to support multiple applications simultaneously.

Virtualization is a well-established concept that allows the
abstraction of actual physical computing resources into logical
units, enabling their efficient usage by multiple independent
users [3]. It is a promising technique that can allow the efficient
utilization of WSN deployments, as multiple applications will
be able to co-exist on the same virtualized WSN. Virtualization
is a key technique for the realization of the Future Internet
[4] and it is indeed quite pertinent to explore it in the context
of WSNs.

Virtualizing WSNs brings with it many benefits; for example,
even applications that were not envisioned a priori may be able
to utilize existing WSN deployments. A second, related benefit
is the elimination of tight coupling between WSN services/
applications and WSN deployments. This allows experienced
as well as novice application developers to develop innova-
tive WSN applications without needing to know the technical
details of the WSNs involved. Another benefit is that WSN
applications and services can utilize as well as be utilized by
third-party applications. It can also help to define a business
model, with roles such as physical WSN provider, virtual WSN
provider and WSN service provider.

The WSN virtualization concept can be applied to several
interesting application areas. Recent advances in smart phones
and autonomous vehicles [5] have made it possible to have
multiple on-board sensors on them. Mobile crowd sensing is
one area that can take advantage of virtualizing these sensors
through participatory and opportunistic sensing [6] and [7].
An opportunistic urban sensing scenario is presented in [7]
in which thousands of sensors are required to monitor the
CO2 concentration in an urban city. Instead of deploying these
sensors and managing them, WSN virtualization can be used
as a key enabling technology to utilize sensors from citizens
to provide the required data. Similarly, Sensing-as-a-Service
(SaaS) model is presented in [8] along with several use case
scenarios. WSN virtualization can help realize the SaaS model
through cost-efficient utilization of deployed sensors. Several
other motivational examples can be found in [9] and [10].

Of course there are many technical challenges to resolve
before such utilization takes place but they also provide a strong
motivation for a deeper and complete search space exploration
to propose innovative solutions in this area. Many researcher
now consider WSN virtualization as a key enabling technol-
ogy and provide its motivation. According to the authors in

1553-877X © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEEE COMMUNICATION SURVEYS & TUTORIALS

[11], WSN virtualization is a powerful enabler for information
sharing in the context of IoT by using it along with data
analysis techniques. A smart city environment is considered
in [12], where WSN virtualization could be used to efficiently
utilize the deployed infrastructure. To achieve this type of
utilization, the use of multiple concurrency models is advised,
depending on the usage context. In [13], WSN virtualization
is discussed as a key enabler to promote resource efficiency,
with a cooperative model that captures several aspects of WSN
virtualization. In [14] WSN virtualization is envisioned as an
important technology to create large-scale sensor platforms that
are used to satisfy efficient usage of network resources.

There are surveys (e.g., [15]) that cover wireless network
virtualization at large, but they do not focus on the specifics of
WSN virtualization. Although it is a key enabling technology,
the few surveys published to date on WSN virtualization (e.g.,
reference [16], reference [17]), have several limitations. They
do not include real world motivating scenarios and are also
dated because they do not review the most recent developments
in the area. Furthermore they lack comprehensiveness in terms
of what is reviewed and how it is reviewed. There is for instance
no well-defined yardstick for the critical analysis of the state of
the art. In addition, they do not elaborate on potential solutions
when it comes to research directions.

This paper is a survey on wireless sensor network virtual-
ization. It aims at addressing the shortcomings of the very few
surveys published so far on the topic. From that perspective it
makes the following contributions:

• Real world motivating scenarios for WSN virtualization.
• Comprehensive and in-depth review of the state of the art

including the most recent developments in the area.
• Critical analysis of the state of the art using well defined

yard-sticks derived from the motivating scenarios.
• An overview of the open issues along with insights on

how they might be solved.

In Section II we discuss the basics of WSN virtualization
concepts and its types. In Section III, we first present the
motivating scenarios and then provide a set of requirements.
Based on these requirements we critically review the state-of-
the-art in Section IV. Relevant WSN virtualization projects are
discussed in Section V. Section VI outlines several research
directions and Section VII concludes the paper.

II. WSN VIRTUALIZATION BASICS

WSN virtualization can be broadly classified into two cate-
gories: Node-level virtualization and Network-level virtualiza-
tion. In this section we discuss both these categories.

A. Node-Level Virtualization

WSN node-level virtualization allows multiple applications
to run their tasks concurrently on a single sensor node [18],
so that a sensor node can essentially become a multi-purpose
device. The basic concept of node level virtualization is il-
lustrated in Fig. 1. There are two ways to achieve node-level
virtualization: Sequential and Simultaneous execution.

Fig. 1. Execution of multiple applications in a general purpose WSN node.

Sequential execution can be termed a weak form of virtu-
alization, in which the actual execution of application tasks
occurs one-by-one (in series). The advantage of this approach
is its simple implementation, while the obvious disadvantage
is that applications have to wait in a queue. In simultane-
ous execution, application tasks are executed in a time-sliced
fashion by rapidly switching the context from one task to
another. The advantage of this approach is that application tasks
that take less time to execute will not be blocked by longer
running application tasks, while the disadvantage is its complex
implementation.

B. Network-Level Virtualization

It is WSN network-level virtualization that enables a Virtual
Sensor Network (VSN). A VSN is formed by a subset of a
WSN’s nodes that is dedicated to one application at a given time
[19]. Enabling the dynamic formation of such subsets ensures
resource efficiency, because the remaining nodes are available
for different multiple applications (even for applications that
had not been envisaged when the WSN was deployed), although
not necessarily simultaneously.

WSN network-level virtualization can be achieved in two
different ways. One way is by creating multiple VSNs over the
same underlying WSN infrastructure, as illustrated in Fig. 2(a).
WSN nodes that are not part of any VSN remain available for
other applications or network functions, such as routing. The
second way is where a VSN is composed of WSN nodes from
three different administrative domains, as shown in Fig. 2(b),
facilitating data exchange between them that would not be
possible otherwise.

KHAN et al.: WIRELESS SENSOR NETWORK VIRTUALIZATION: A SURVEY

Fig. 2. VSN concept. (a) Multiple VSNs over single WSN. (b) Single VSN
over multiple WSNs.

III. WSN VIRTUALIZATION—MOTIVATING

SCENARIOS AND REQUIREMENTS

In this section we first present two scenarios that are derived
from the literature, and then come up with a set of requirements.
Using these requirements we critically review the existing
work, grouping our summation of that work under three types:
node-level virtualization, network-level virtualization, and hy-
brid solutions.

A. Motivating Scenarios

The scenarios described here illustrate the motivation and
benefits of using WSN virtualization in common WSN
deployments.

1) Fire Monitoring Scenario: Consider the example of a city
near an area where brush fires are common [9]. We assume
that the city administration is interested in the early detection
of fire eruption and in its course, using a WSN and a fire
contour algorithm to determine the curve, shape and direction
of fire. One approach is that the city administration could
deploy WSN nodes all over the city (i.e., on each street and
at individual houses), but this is not very efficient because
some individuals may have already deployed WSN nodes in
their homes to detect fires. A more efficient approach would
be for the city administration to deploy WSN nodes to areas
under its jurisdiction, i.e., streets and parks, and to re-use the
WSN nodes already deployed in private homes. In this scenario,
two different applications share the same WSN infrastructure:
one, belonging to home owners, is confined to private WSNs
deployed in individual houses, and the other belongs to the
city administration and shares the private WSN nodes with
the WSN nodes deployed by the city administration. Periodic

notification or query-based models are not suitable because the
city administration application requires complete access to all
the WSN nodes for adaptive sampling.

Another issue is that to execute a fire contour algorithm in a
distributed fashion, WSN nodes need to exchange fire notifica-
tion messages with each other. The query-based data exchange
approach is not efficient as it will force the execution of the fire
contour algorithm at a remote centralized location, since two
WSN nodes located in their respective private domains cannot
exchange data directly. An overlay network is one possible so-
lution. This scenario illustrates the need for WSN virtualization,
as two different users need to share a common resource, i.e.,
WSN nodes.

2) Heritage Building Monitoring: A real-world deployment
of a WSN is presented in [20], in which a WSN is used to
monitor the impact of constructing a road tunnel under an
ancient tower in Italy, as it was feared that the tower could
lose its ability to stand on its own and collapse during the
construction. Now consider that there are three users interested
in the fate of the tower. The first is the construction company,
as it needs to make sure that the tower does not lose its ability
to stand on its own, otherwise it will have to pay a heavy
fine. The second user is the conservation board that routinely
monitors all the ancient sites around the city, and the third
user is the local municipality which will have to plan emer-
gency remedial/rescue actions in case the tower falls during the
construction.

It is quite possible that the conservation board has already
deployed its own WSN to monitor the health of ancient sites
including this tower. In this case the construction company and
the local municipality can use the existing sensor nodes during
the construction period. In the absence of WSN virtualization,
there are only two possible solutions. One is to rely on the
information provided by the conservation board’s application.
However this information may not be at the required gran-
ularity level. Worse, some of the information that is needed
might simply not be available because the requirements of
the construction company and of the local municipality were
not considered when the conservation board application was
designed and implemented. The second solution is that each
user deploys redundant WSN nodes. Here WSN virtualization
can play a pivotal role by fulfilling the requirements of each
user.

B. Requirements

In this section we present a list of eight requirements, derived
from the scenarios mentioned above. In Table IV we indicate if
the existing solutions meet our identified requirements, and to
what degree.

The first requirement is the availability of node-level vir-
tualization. This is a fundamental requirement which ensures
that the sensor nodes can support the concurrent execution of
multiple applications.

The second requirement is network-level virtualization,
which concerns the ability of sensor nodes to dynamically form
groups to perform the isolated and transparent execution of
multiple application tasks in such a way that each group belongs
to a different application.

IEEE COMMUNICATION SURVEYS & TUTORIALS

The third requirement is support for application/service pri-
ority. It is our observation that most WSNs are deployed for
mission-critical situations like security, fire monitoring, battle-
field conditions and surveillance. In such situations, mission-
critical applications/services should have prioritized execution
mechanisms.

The fourth requirement is that any WSN virtualization so-
lution should be platform-independent and thus should not
depend on a particular hardware or software platform.

The fifth requirement is that the proposed solution should
have a resource discovery mechanism, for both neighbor dis-
covery and service discovery.

The sixth requirement is based on the applicability of the
proposed solution to resource-constrained sensor nodes, includ-
ing early generation sensor nodes. Mechanisms to allow legacy
sensor nodes to become part of a WSN virtualization solution
are also covered by this requirement.

The seventh requirement is heterogeneity, which means that
the solution should be applicable to a variety of WSN platforms
with different capabilities (e.g., processing power, memory).
These platforms would include MICAZ, MICA2, Atmel AVR
family, and MPS430 among others.

The eight requirement is the ability to select sensor nodes
for application tasks. When multiple applications concurrently
utilize a deployed WSN, selection of proper sensor nodes
is very important because applications may have spatial and
temporal requirements [21].

IV. STATE-OF-THE-ART

In this section we present the state-of-the-art and analyze
it critically. We categorize the existing work as Node-level
virtualization, Network-level virtualization and Hybrid solu-
tions. Hybrid solutions combine both node- and network-level
virtualization. Each category is further classified based on the
approaches used.

A. Node-Level Virtualization

We group the Node-level virtualization approaches under
two umbrellas: sensor operating system (OS) based solutions
and Virtual Machine-/Middleware (VM/M) based solutions. In
sensor OS-based solutions, the node-level virtualization is part
of the sensor OS. In VM/M-based solutions, the node-level
virtualization is performed by a component running on top of
the sensor’s OS.

Node-level virtualization solutions use two types of pro-
gramming models; event-driven and thread-based. Event-driven
programming model is simple to implement in sensors. Event-
driven programs have a main loop that listens for the events,
e.g., the temperature value going above a threshold. When the
event occurs a callback function is called to handle the event,
using an event-handler. When a program is blocked, by an
I/O event, its event-handler simply returns the control without
involving context switching. Thread-based model is more diffi-
cult to implement in sensors, due to limited resources and use
of common address space. Each program consist of multiple
threads, and when a thread is blocked, context switching is
required to execute other threads [22].

Fig. 3. Example node-level virtualization solutions. (a) OS-based solution
(e.g., Contiki). (b) Middleware-based solution (e.g., Agilla). (c) Virtual machine-
based solution (e.g., Squawk VM).

Fig. 3 shows the node-level virtualization types while Table I
illustrates the characteristics of the existing works addressing
node-level virtualization.

1) Sensor Operating System-Based Solutions: SenSmart
[23] is a recent multitasking sensor OS that supports the
execution of concurrent application tasks in very resource-
constrained sensor nodes. It is designed to tackle the issues
associated with the execution of concurrent application tasks.
Normally, application tasks have their associated predefined
stack space, but in SenSmart the stack allocation is managed
dynamically at run time. Initially, each application task gets
its default (stack) memory region and time slice, but during
its execution SenSmart manages the size and location of the
allocated stack in a transparent way. Each application task uses
logical addresses at runtime, managed by the OS and mapped
onto the physical memory. Stack space can be reclaimed from
those tasks that no longer require it. When a new task is
scheduled to run, the context of the current task is compressed
and saved in a circular buffer for its resumption. The system
architecture consists of a base station that compiles the code,
links it and eventually distributes it to the sensor node. There is
no mention of support for network layer support (6LoWPAN)
or any radio protocol.

The support for node-level virtualization is provided by com-
piling and linking multiple application task codes together in a
single code image. The application task codes are programmed
in nesC and the compiled binary code of each task is then
modified by a rewriter, combined with other binary codes and
finally linked with the precompiled kernel runtime. The kernel
runtime ensures that the application tasks, when instantiated,
follow the multitasking semantics (stack management, context
switching) and run concurrently. Once a final executable code
is generated, it can be disseminated to the sensor node using
any wireless reprogramming approach. The strategy of first
compiling and linking all the binary codes together means that
there is no separation of OS and application tasks, and, when-
ever a new application task is contemplated, all of the software
of the sensor node is updated. The OS uses an event-driven
programming model and follows a sense-and-send workflow
model [24].

SenSmart has been implemented in Mica2/MicaZ hardware
platforms and evaluated for overhead of common system func-
tions, application benchmarking, and task scheduler perfor-
mance when concurrent tasks are executed. The overhead of
common system functions is within acceptable range espe-
cially for important functions such as context saving, restoring

KHAN et al.: WIRELESS SENSOR NETWORK VIRTUALIZATION: A SURVEY

TABLE I
CHARACTERISTICS OF NODE-LEVEL VIRTUALIZATION SOLUTIONS

and switching. All these functions take between 127 μs to
316 μs. For application benchmarking it was found that the
same applications use more CPU cycles in SenSmart than in
TinyOS. For concurrent tasks, the evaluation found that delays
recorded during execution of multiple tasks has same order of
magnitude as context switching.

RIOT [25] is the latest attempt to address the challenges
of designing a flexible OS for diverse hardware in the IoT.
The concept of RIOT is based on the fact that none of the
existing OSs, traditional or resource-constrained, are capable
of supporting diverse hardware resources in the IoT. The focus
of RIOT is to provide features such as real-time multithreading
support, a developer-friendly programming model and POSIX-
like API based on C/C++, as well as full TCP/IP network stack
support for resource-constrained devices using 6LoWPAN and
RPL. RIOT is based on microkernel architecture and requires
only 1.5 kB of RAM and 5 kB of ROM for a basic application.
RIOT can run on 8-bit, 16-bit and full 32-bit processors, and
thus has the potential to become unique operating system for
diverse hardware devices in the IoT paradigm. This adaptability
is achieved by using a hardware abstraction layer. Overall,
RIOT takes a modular approach and the system services and
the user application tasks run as threads. The scheduler is
designed to minimize context switching between threads to
few clock cycles. The kernel is based on FireKernel [26]
providing maximum reliability and real-time multithreading.
System tasks have static memory allocation, but for application
threads dynamic memory management is used. RIOT is a work
in progress and so far there are no performance results or
comparisons with existing OSs, but the code is available on
their website.

In the context of WSN virtualization, RIOT uses a real-
time thread-based programming model where various system
services and application tasks are coded in standard ANSI
C/C++ and run in parallel. Threads can be preempted based on
their priority. Application tasks are coded independently of the
hardware and software, which makes it possible to run them
on different devices. In large-scale deployments such as Smart
Cities, sensor nodes and other IoT devices (e.g., surveillance
cameras) can be programmed conveniently.

So far there are no performance results regarding RIOT OS
however, in [27] the authors do present a theoretical comparison
of their approach against existing competition without any
qualitative or quantitative comparison.

SenSpire OS [28] is another recent effort that supports
both event-driven and thread-based programming models. Their
work has four main features: predictability—to guarantee that
sensor nodes respond to control messages, availability—the
nodes remain available for data forwarding when needed, pro-
gramming mode—which is hybrid, and efficiency—so that the
OS can be used on very resource-constrained sensor nodes.
Another contribution of SenSpire is a multi-layer (radio, re-
source and sensornet layers) abstraction to develop networked
applications. The radio layer makes it possible to write device
drivers using different MAC protocols. The resource layer
exposes the lower layer and allows different application tasks
to use it concurrently. A new object-oriented language (CSpire)
is provided to program user application tasks using a hybrid
programming model. SenSpire uses static optimizations, mean-
ing that application tasks, their states, and the kernel structures
should be known beforehand. This limits its flexibility, a re-
quirement for the real-world deployment of WSNs. The kernel

IEEE COMMUNICATION SURVEYS & TUTORIALS

of SenSpire is written in C and the application tasks are written
in CSpire. The paper describes extensive results based on the
implementation of SenSpire on Mica2, MicaZ, and TelosB
nodes. Its performance at various benchmarks is compared
to that of MANTIS [29] and TinyOS [30]. Overall findings
indicate that SenSpire offers a performance comparable to
those OSs.

For WSN virtualization, SenSpire incorporates both event-
driven and thread-based programming models. Tasks can be
programmed as events or as threads. Event tasks have higher
priority than thread tasks. System tasks are usually imple-
mented as event tasks because they are predictable and easier
to maintain. Application tasks are implanted as thread tasks
with varying priority levels. A thread task is preempted either
by a higher-priority thread task or when it goes to sleep. This
set up is unlike other OSs where thread tasks are executed
in a time-sliced manner. In SenSpire the threads follow run-
to-completion model unless they are preempted by a higher
priority thread. The execution of threads is sequential (First-
in First-out) when they have the same priority level. The use of
CSpire language to program application tasks means a learning
curve for developers. Despite using a layered-approach, appli-
cation tasks are tightly integrated with the OS and so when
new application tasks are contemplated, all of the sensor node
software is updated.

The performance results of SenSpire OS show that its in-
terrupt latency is less than TinyOS. The overhead of task
scheduling is compared against MANTIS OS [29] showing
more delay in case of SenSpire. The energy consumption of
various tasks including radio and CPU are almost similar to
TinyOS.

MANTIS [29] is a thread-based embedded operating system
supporting simultaneous execution on sensor nodes. The OS
kernel and threads are programmed in C language and are
portable across different hardware platforms. There are system-
level threads and user-level threads. The OS kernel, scheduler
and underlying hardware are exposed as APIs for the user-
level threads. MANTIS supports preemptive multithreading
by assigning priorities to threads, thereby allowing the inter-
leaving of tasks and avoiding delays. Long-running threads
can be preempted by short-running threads. Simultaneous ex-
ecution of these threads is achieved by context switching.
When execution of a thread is suspended, all its current states
are stored in its own stack and later retrieved to resume execu-
tion. Every thread has an entry in a thread table managed by
the kernel. Its size is fixed, hence only a predefined number
of user-level threads can be created. The other main features
of the OS include a dynamic reprogramming mechanism for
deployed sensor nodes, a remote debugging mechanism and
an x86-based prototype platform. Dynamic reprogramming
options are, the wireless re-flashing of the entire OS, the re-
programming of single threads and changing the variables of a
thread. The wireless re-flashing of the OS and reprograming of
a single thread is mentioned as work-in-progress. A command
server is used for remote debugging. The sensor nodes run
the client part of the command server. Any user can login
to the sensor node and modify its setting, execute or stop
threads or restart them. The authors implemented several de-

manding tasks with MANTIS on MICA2 nodes, including AES
and RC5 encryption algorithms, compression/decompression
algorithms using arithmetic code, and a 64-bit FFT algo-
rithm. These tasks took low execution time in MANTIS. Nor-
mally the concurrent execution of threads leads to context
switching overhead and the need for additional stack space.
In MANTIS, it was found that while context switching does
not incur much performance loss, a stack estimation tool would
be helpful.

MANTIS is an interesting option for node-level virtualiza-
tion, as it is completely thread-based and easier to program
without having to manage low-level details of stack/memory.
The time-sliced multithreading approach makes it possible to
run application tasks simultaneously without using a run-to-
completion model. The application threads are coded in C
and are independent of the OS. Although MANTIS support
dynamic reprogramming but it has not been fully explained
in the paper. Currently it is not clear whether the work on
MANTIS is underway or not as the project page [31] has quite
old information.

The performance results presented in [29] are very limited.
No comparison is provided in against other competing solutions.
The execution times of some complex tasks (compression/
decompression and RC5 and AES encryption) and power con-
sumption using MICA-2 platform are presented.

LiteOS [32] is a Unix-like OS designed for sensor nodes.
It provides rich features, such as a hierarchical file system,
a command shell that works wirelessly, kernel support for
dynamic execution of multi-threaded applications, debugging
support and software updates. LiteOS maps a WSN as a
UNIX-like file system where different commands can be ex-
ecuted by the user in familiar UNIX-like manner. There are
three components: i) LiteShell, ii) LiteFS and iii) Kernel.
LiteShell is a command shell that resides in a base station
and is used to communicate with sensor nodes to execute file,
process, debugging, environment and device related commands.
Within the wireless range, sensor nodes can be mounted by
LiteShell, similar to how a USB is connected to a computer.
However, this process cannot be achieved via the Internet or
by multi-hop communication. The sensor nodes do not main-
tain any state regarding LiteShell and simply respond to the
commands.

LiteFS is a hierarchical file system partitioned into three
modules that use RAM, EEPROM and Flash memory, respec-
tively. The RAM holds the open files, and their allocation and
data information is in EEPROM and Flash memory, respec-
tively. EEPROM holds the hierarchical directory information
and the actual data is stored in Flash memory. The LiteOS
programming model supports both event-based and thread-
based approaches. The scheduling mechanism is also hybrid
and supports priority-based and round-robin based schedul-
ing. User applications are multithread-based, and concurrent
threads do not have memory conflicts because there is no
memory sharing between them. Overall, LiteOS’s architecture
is inspired by UNIX and works in a distributed manner. The
memory consumption of LiteOS applications is larger than
that of TinyOS because LiteOS applications are multithreaded
whereas TinyOS applications are singe threaded.

KHAN et al.: WIRELESS SENSOR NETWORK VIRTUALIZATION: A SURVEY

LiteOS offers a flexible approach to implement node-level
virtualization. It uses a hybrid programming model hybrid that
allows the concurrent execution of application threads and
handles events through a call-back mechanism. The application
tasks can be programmed in C language. Installing and running
application tasks is very simple and can be accomplished
by dynamically copying user applications. Another advantage
of LiteOS is its separation between applications and the OS
through callgates. Callgates are pointers and act as applica-
tion access points to they can access system software and
resources. This means that new applications can be simply
loaded on a sensor node without reprogramming the sensor
node from scratch.

The performance results of LiteShell show the average re-
sponse time of commands sent using the LiteShell. The average
delay of common network commands is under 500 ms. The
delay to send file in the network using copy command depends
on the file size. The delay for 4 KB file copy is around 3 seconds
to 7.5 seconds for single-hop and two-hop transfer respectively.
The length of source code is compared against TinyOS and it is
found that the same application can be written in LiteOS using
few lines than TinyOS, however because of multi-threading
support LiteOS applications take more memory than TinyOS
counterparts.

PAVENET [33] OS is a thread-based OS designed to ex-
clusively handle the issues related to the preemption of mul-
tithreaded application tasks. However, PAVENET has one
major drawback—its non-portability. It only works with PIC18
microchip, and unlike other sensor OSs it cannot be used
on other hardware platforms such as MICAZ. Two types of
multithreading are provided: preemptive and cooperative. The
former is used for real-time tasks (e.g., radio access, sensor
sampling) and the latter for best-effort tasks (e.g., routing).
PAVENET makes three contributions that deal with the issues
of preemption overhead and stack/memory space management;
it offers a real-time task scheduler, a best-effort task scheduler
and a wireless communication stack to abstract lower layers. To
mitigate the effects of switching overheads, the PIC18 chip’s
functions are used for a real-time task scheduler. One of the
functions is the fast return stack that automatically saves the
context of a task. The best-effort task scheduler makes use
of cooperative task switching to avoid stack/memory issues.
The wireless communication stack includes MAC, network and
socket layers between the physical and application layers. A
buffer is shared by the MAC, network and socket layers to
handle the data flow. Tasks with equal priority are grouped
together and executed as single task, which leads to code
size that is smaller than that of TinyOS. The average clock
cycles required to execute an application are better than those
required for TinyOS. The support for multithreading means
that for complex tasks, PAVENET uses more RAM and ROM
than TinyOS.

For WSN virtualization, PAVENET provides a thread-based
programming model and uses C language. It is possible to pro-
gram multithreaded applications with varying priority levels,
but their execution will be sequential and not simultaneous
because time-sliced execution is not provided. There is also
no separation of application tasks from the OS. The main

drawback of PAVENET is its lack of portability, although it
is an interesting approach that shows how a better hardware
design can lead to an efficient sensor OS.

The performance results of PAVENET show that it uses
more RAM than TinyOS for sample applications. The execution
times of sample applications is comparable to TinyOS. The task
switching overhead is found to be 5 times less than MANTIS
and comparable to TinyOS. Another aspect is the comparison of
lines of codes needed to code sample applications in PAVENET
and TinyOS. PAVENET uses twice as less as TinyOS (even
more for complex applications).

Contiki [34] is by far one of the most popular systems for
WSNs, and over the years has grown to become a leading
platform for the IoT and low-powered embedded networked
systems. It has a kernel based on an event-driven model, but
preemptive multithreading is also provided as an option in the
form of a library and exposed as an API for applications to
call the necessary functions. Preemption is implemented using
a timer interrupt. All threads have their own execution stack.

The concept of protothreads [35] was introduced to com-
bine the concepts of event-driven and thread-based approaches.
Protothreads borrows the block-wait approach of threads and
combines it with the stack-less approach of events. The advan-
tage of protothreads is that they have lower stack requirement
than traditional threads and can be preempted, unlike events.
Contiki makes it possible for applications and services to be
dynamically uploaded/unloaded wirelessly on sensor nodes.
This is made possible by incorporating relocation informa-
tion in the application binary and later performing runtime
relocation.

The OS is written in C language and can be ported to many
hardware platforms. CPU multiplexing and an event handling
mechanism are the two major functionalities provided by the
kernel. The rest of the system-related functionalities are pro-
vided as system libraries that can be used by applications when
needed. There is no hardware abstraction layer and applications
can directly utilize the underlying hardware. Since the OS is
event-driven, once an event handler is called, it can only be
preempted by an interrupt—otherwise it must run to comple-
tion. A simple over-the-air protocol is used to dynamically load/
unload applications in a WSN. Binary images of the new appli-
cation code are sent to selected network nodes using point-to-
point communication; the remaining sensor nodes receive the
application code as broadcast from them. The current version
of Contiki includes several features like full IP support [36],
including IPv6 [37], CoAP [38], RPL, 6LowPAN, Cooja, a
network simulator to test applications on emulated devices
before actual deployment, the Coffee flash file system [39] for
sensors that have external flash memory, and a command-line
shell for debugging applications.

For node-level virtualization, Contiki is one of the better
choices available. It supports multiple applications that are
independent of the OS and run on top of it. Applications can
be programmed in C language and updated/installed without
reinstalling the whole OS. It provides a hybrid programming
model. With protothreads, it is possible to create efficient
multithreaded applications that share a common stack. Contiki
supports many different hardware platforms.

IEEE COMMUNICATION SURVEYS & TUTORIALS

The original Contiki paper used in this work does not provide
any systematic performance results. However some insights
regarding the performance were presents. For example, repro-
gramming of a sensor node with a new code (6 KB size) took
around 30 seconds, whereas the reprogramming of 40 nodes
with the same code took around 30 minutes. It is found that code
size of similar applications in Contiki is larger than TinyOS but
smaller than MANTIS.

TinyOS [30] is another notable effort to provide OS solution
for sensor nodes. It is an application-specific, component-
based OS based on two characteristics: being event-centric
and offering a flexible platform for innovation. It is written
in nesC, a dialect of C language, and has a component-based
modular design using an event-driven programming model.
Three main abstractions are used in TinyOS: commands, events
and tasks. Commands are requests to perform a service, events
are generated as responses when services are executed, and
tasks are functions posted by commands or events for the
TinyOS scheduler to execute at a later time. TinyOS compo-
nents are sets of services, specified by the interfaces that are
offered to applications. There are two type of components:
modules and configurations. Modules are code snippets written
in nesC for calling and implementing commands and events.
Configurations connect components through their interfaces.
Only components used by the applications are included in the
final binary image.

The TOSThreads [40] library was introduced to combine the
event-based approach with a thread-based approach, similar
to the protothreads in Contiki. Event-based code runs in a
kernel thread and user applications run in application threads.
Application threads can only run when kernel thread becomes
idle. Static optimizations are used during compilation to ensure
the removal of any issues in the final code. The OS and the
applications are bundled together at compile time in a single
file. A component called Deluge [41] is used for over-the-
air network-wide reprogramming. The new application code
is distributed as composite binaries. Many protocols can be
implemented as components. The current version of TinyOS is
portable to many hardware platforms.

TinyOS is not the most suitable OS for WSN node-level vir-
tualization. First of all, the programming mode is event-driven
and it is often difficult to program event-driven applications.
In the context of WSN virtualization, it may not be feasible
to bundle applications with the OS at the time of deployment.
New application tasks can only be installed by propagating the
entire OS image over a virtual machine [42]. TinyOS also has
tight coupling between the applications and the OS. The task
scheduler in TinyOS is sequential (FIFO based) and executes
tasks in run-to-completion mode, meaning a weak form of
WSN virtualization.

The performance results of TinyOS highlight important fea-
tures of the OS. For example, code optimization reduces code
size of the programs as much as 60%. The timer component re-
duces CPU utilization by 38%. The interrupt and task switching
also takes very less time as compared to SenSmart.

2) Virtual Machine-/Middleware-Based Solutions: Maté
[42] is a tiny virtual machine that supports sequential execution
and uses a stack-based binary code interpreter. It was designed

to work on the early-generation, resource-constrained WSN
nodes using TinyOS. The main purpose of Maté is to enable
energy efficient code propagation in WSN with minimal over-
head required to re-task sensors. To achieve this, application
programs are broken into small code capsules and propagated
throughout a WSN with a single command. Only predefined
applications with predefined instruction sets are possible. There
are fixed sets of instructions divided into three classes: basic,
s-class and x-class. Basic instructions include arithmetic op-
erations and the activation of sensors/LEDs, s-class instruc-
tions perform memory access, and x-class instructions perform
branch operations. Up to eight user-defined instructions are
also allowed. These user-defined instructions need to be fixed
when Maté is installed and cannot be changed afterwards.
Each program capsule contains up to 24 instructions. Larger
programs consist of multiple capsules. The instructions in the
capsules are executed in sequence until the halt instruction is
reached. New application code is propagated in the network
in the form of code capsules, using a viral code distribution
scheme. Each capsule contains a version number which is
used by a sensor node to determine if it needs to install new
application code. Network-wide code propagation occurs when
a sensor node forwards the code capsule to its local neighbors,
which in turn forward it to their neighbors. Maté maintains two
stacks, one for normal instructions and the other for instructions
that control the program flow. When an instruction is under
execution, a new instruction cannot be executed. This allows
for simpler programming options. Maté incurs the cost of byte
code interpretations before instructions can be executed.

Regarding node-level virtualization, Maté supports the se-
quential execution of tasks and tries to address the main draw-
back of the original TinyOS implementation. New application
code can be injected without replacing the OS on a sensor
node. However, applications are still tightly coupled. Maté is
more suitable for simple event-driven networks where it is
possible to define events and their outcomes. To end on a
positive attribute, Maté does provide a simple mechanism to
automatically reprogram a WSN using code capsules.

The performance results of Maté are collected by implanting
an ad-hoc routing protocol which is also implemented in stan-
dard TinyOS release with Maté. The implementation of simple
operations (such as AND, rand, sense, sendr) take more CPU
cycles than native TinyOS, worst-case taking 33 times more
CPU cycles and best case taking 1.03 times. A setup of 42
sensor nodes (in a grid pattern) is used to see the propagation
of code using Maté. It is found that Maté takes little over
120 seconds to reprogram all sensor nodes with the new code.
Overall Maté incurs overhead because its each instruction is
executed as a TinyOS task.

VMSTAR [43] is a Java-based software framework for
building application-specific virtual machines. It also allows
for the updating of WSN applications as well as the OS
itself. VMSTAR provides a rich programming interface that
allows developers to develop new applications which can be
portable to a variety of hardware platforms. VMSTAR gen-
erates compact code files rather than regular Java class files.
It supports both the sequential and simultaneous execution of
thread-based applications. The framework is comprised of three

KHAN et al.: WIRELESS SENSOR NETWORK VIRTUALIZATION: A SURVEY

parts: a component language called BOTS [44], a composition
tool and an updating mechanism. The component language
is used to specify software systems. The composition tool
selects/composes the required components and determines the
dependencies between them to satisfy specific constraints.

The updating mechanism uses an incremental update tech-
nique [45] to take actual coding changes rather than structural
changes into account in the program code file like change
in number of lines. For simple applications, sequential thread
execution is supported, but for complex applications requir-
ing input from external events, two event-based programming
models are defined. One is the select model, in which an
application subscribes to an event, acquires the corresponding
event handle and executes it when the event occurs. In the
case of multiple events, the respective handling methods are
executed sequentially. The second model is known as action
listener, in which applications define event handlers by ex-
tending the default handler class from the library—they do
not register for events. When an event occurs, the registered
callback method is invoked. The action listener model allows
for the simultaneous execution of threads, but in the paper
only the select model is implemented. A base station is used
as a repository for application code and as an orchestrator
for deployment and update purposes. A native interface is
also provided to allow access to the underlying resources of a
MICA platform.

For node-level virtualization, VMSTAR does support the
concurrent execution of multi-threaded application tasks but
the implementation presented only supports single-threaded
Java applications. The programming model is thread-based and
applications can be coded in Java language, making it easier
for developers. Concurrent events can be handled using action
listeners. Although VMSTAR discusses the distinction between
the user applications and the OS, for the implementation exam-
ple both are tightly coupled.

The performance results of VMSTAR show that it performs
better than Maté but not so well against native TinyOS. For
example, its memory consumption is almost double as com-
pared to TinyOS. The same is true for CPU utilization, where
VMSTAR sits between TinyOS and Maté.

Squawk [46] is a small Java virtual machine that runs on
sensor hardware. Compared to VMSTAR, Squawk does not
require an operating system to run; it provides the required
functionalities by itself. These include interrupt handling, net-
working functions, resource management, support for the mi-
gration of applications from one SunSpot to another and an
authentication mechanism for deployed applications. Applica-
tions in Squawk are represented and treated as objects. Since
multiple, isolated objects can reside in a virtual machine, con-
current applications can be executed easily. Squawk VM runs
on a specific device platform, Sun Small Programmable Object
Technology (SunSpot) which has more processing, memory
and storage capability than MICA /MICAZ and other WSN
platforms. Squawk VM can use many standard Java features,
such as garbage collection, exception handling, pointer safety,
and thread library. It is written in Java, in compliance with
J2ME CLDC [47]. The device drivers and the MAC layer are
also written in Java. Squawk VM supports split VM architec-

ture, where the class file loading is performed on a desktop
machine to generate its representation file. The representation
file is then deployed and executed on SunSpots. The size of
these files is much less than standard Java class files. Green
threads are used to emulate multi-threaded environments. The
threads are managed, executed and scheduled in user space.
An application’s status, including its temporary state, can be
serialized to a stream for storage. When another Squawk VM,
on another SunSpot, reads that stream it can effectively recon-
stitute the application along with its complete state information.
This allows for live-migration of applications from one SunSpot
to another. This is quite useful in situations when a SunSpot
device is about to run out of battery power.

For node-level virtualization, Squawk VM takes quite a
different approach than its competitors. A robust and efficient
application isolation mechanism is provided, which allows mul-
tiple applications to be represented and treated as Java objects.
These objects are instance of the Isolate class and can be started,
paused and resumed using available methods. Applications can
have multiple threads which are managed by the JVM. The
programming model is thread-based and applications can be
coded in J2ME. There is also an option for Over-The-Air (OTA)
programming which can be used to load, unload, stop and
migrate applications on SunSpots.

The performance results of Squawk are presented using some
benchmark suits and a math application to measure integer and
long computation. For memory footprint, Squawk is compared
with KVM for CLDC which shows that Squawk VM with
debugging support uses less memory than KVM equivalent.
The benchmark suits for Squawk and KVM were run of dif-
ferent sets of ARM platforms with different CPU and memory
sizes. The KVM ran on better hardware and hence exhibited
better results than Squawk VM. The suits files of applications
generated in Squawk have around 37% less size than standard
java class files and JAR files.

Agilla [48] is a mobile agent-based middleware that runs on
top of TinyOS and uses a VM engine to sequentially execute
multiple applications in a round-robin fashion. It uses a mobile
agent and tuple-space programming models. The middleware is
designed to support self-adaptive applications in WSNs. Appli-
cation programs are coded as mobile agents that can migrate
themselves to other sensor nodes in response to changes in the
network or in the physical phenomenon that is being monitored.
Each sensor node can run several autonomous mobile agents.
These mobile agents may perform a strong migration, i.e.,
transfer application code and its state to another sensor. Weak
migration only transfers application code, which means that at
its new destination, a migrated mobile agent will restart the
application. Agents are injected in the WSN from a base station
and propagated one hop at a time. Each mobile agent arrives at
a new destination, starts its execution and then migrates to the
next-hop sensor node. This process can take quite some time
to propagate a new application in the WSN. Each sensor node
has a tuple space and a local memory. In a tuple space, data
is accessed using pattern-matching techniques. This approach
allows mobile agents to be oblivious of each other’s memory
addresses. Mobile agents have a stack space, a heap and three
registers, which are used to store ID of the agent, program

IEEE COMMUNICATION SURVEYS & TUTORIALS

code and condition code. Every agent, including the clones, has
a unique ID. The program code register holds the address of
the next instruction and the condition code register holds the
execution status.

For node-level virtualization, Agilla relies on TinyOS to
provide concurrency, and thus mobile agents are executed in a
round-robin fashion. However, this is an OS issue, since a mul-
tithreaded OS can execute mobile agents in parallel allowing
better concurrency. Mobile agents work independently of the
TinyOS. The use of tuple-space and locally-stored agent states
allows for quick migration, but still much work is left to the
programmers to deal with issues such as stalled migration. In a
highly dynamic WSN where applications utilize sensor nodes
on the fly, such as the IoT, the migration of agents might lead
to performance issues. The programming language of Agilla is
another difficulty, as the agents are programmed in low-level
assembly-like language.

A test-bed of 25 sensor nodes is used to gather the perfor-
mance results. Agent migration is evaluated by varying number
of hops between source and destination sensor nodes. The
migration is 99% successful for up to 3 hops but after that
it starts decreasing. Also more hops mean more latency, a
5-hop migration can take more than 1.1 second. The latency
experienced for remote operations is under 300 ms.

The authors in [49] present an integrated system, UMADE,
to promote the utilization of a deployed WSN among multiple
contending applications. The main contribution of UMADE
is a mechanism to allocate sensor nodes to improve overall
Quality of Monitoring (QoM) for the applications. UMADE
is implemented on TelosB motes and uses Agilla VM on top
of TinyOS. The proposed systems consist of several com-
ponents such as, specification of QoM attributes, application
deployment and relocation of applications to deal with the
network changes, as well as QoM-aware application allocation
algorithm. QoM attributes are specified by variance reduction
and detection probability attributes. A variance reduction QoM
attribute exploits the correlation of sensor readings using prob-
abilistic methods to predict sensor readings. For the detection
probability QoM attribute, a stochastic model is used to find the
probability of an event’s detection by a group of sensor nodes.
It is not clear from the paper whether QoM attributes can only
be specified before the deployment of UMADE or if it is an
evolving process. A simple greedy heuristic is used in a QoM-
aware application allocation algorithm to maximize the overall
WSN utility. Applications are deployed using an application
allocation engine and an application deployment engine. The
allocation engine runs in a base station and uses an allocation
algorithm to find the suitable sensor nodes for an application.
The deployment engine, present in both the base station and the
sensor node, is used to wirelessly send a sensor application to
the selected sensor nodes. The applications run concurrently in
the Agilla VM. Both preemptive and non-preemptive allocation
is used to deal with network dynamics and sensor node failures.
In preemptive allocation existing applications are relocated to
new sensor nodes to increase the overall utility, whereas in non-
preemptive allocation no application is relocated to new sensor
nodes. The base station side code is written in Java and the
sensor node code is written in nesC.

UMADE uses Agilla VM for node-level virtualization. Agilla
VM is extended to provide dynamic memory management for
concurrent applications. UMADE has event-driven program-
ming model and uses nesC language to code application tasks.

Application specific results are presented in the paper (i.e.,
applications that are implemented for evaluation purposes). For
example, an increase in weight of a temperature monitoring
application resulted in increase in its utility by 60%. The time
to execute multiple application over a set of nodes increases lin-
early. Since UMADE uses Agilla over TinyOS its performance
is highly dependent on those two solutions.

A macro-programming framework, Nano-CF, for the in-
network programming and execution of multiple applications
over a deployed WSN is presented in [50]. Nano-CF runs
over the Nano-RK operating system [51] and allows several
applications to utilize a common WSN infrastructure. Using
Rate-Harmonized Scheduling (RHS) [52], Nano-CF realizes
the coordinated delivery of data packets from multiple appli-
cation tasks that run on sensor nodes. RHS also allows for data
aggregation and ensures that small data packets are combined
together before being sent to their respective applications.
Nano-CF is a three-layer architecture consisting of a Coordi-
nated Programming Environment (CPE) layer, an integration
layer and a runtime layer. The CPE layer is present at the user/
programmer side and allows them to write application programs
in the Nano-Coordination Language (Nano-CL). Nano-CL is
descriptive language with a C-like syntax. Its programs have
two sections: service descriptor and job descriptor. The service
descriptor section has tasks that are executed by the sensor
nodes, as services. The job descriptor section has multiple
services along with a set of nodes which will execute them.
The programmer has to specify the timing and the periodic rate
at which the services (tasks) will be executed at each sensor
node. The program code is parsed to byte-code and sent to the
sensor nodes by a dispatcher module in the CPE layer. The
integration layer is responsible for handling the data and control
packets. It consists of a sender module in the gateway and a
receiver module in the sensor nodes to deliver the application
task in byte-code. The runtime layer resides in each sensor
node and consists of a code interpreter module which translates
the received task byte-code for the underlying Nano-RK OS. It
also provides routing functionality using DSR protocol. A data
aggregation module collects aggregated data from the sensor
nodes and sends it to the user applications using RHS. The
proposed architecture is evaluated using a university campus
multi-application sensing test-bed called sensor Andrew [53].

Nano-CF makes several contributions to node-level virtualiza-
tion. It allows independent application developers to write appli-
cation tasks for a common WSN infrastructure. Each application
task runs independently and is not coupled with the sensor OS.
The proposed framework is suitable for data collection applica-
tions and for sensor nodes that have multiple on-board sensors.
The programming model is event-driven and applications are
programmed using their descriptive language, Nano-CL.

The performance results of the solution cover the energy
and overhead of code interpreter. Using RHS allows energy
savings especially using multiple applications since packets are
aggregating first and then transmitted. However, the packet size

KHAN et al.: WIRELESS SENSOR NETWORK VIRTUALIZATION: A SURVEY

Fig. 4. Network-level virtualization solutions. (a) Virtual network-based so-
lutions. (b) Cluster-based solutions.

has an impact on this because bigger packets means they cannot
be aggregated due to size issues. When code interpreter is used,
the extra-overhead is around 55%.

B. Network-Level Virtualization

We group the network-level virtualization approaches under
two umbrellas: virtual network/overlay-based solutions and
cluster-based solutions. Virtual network/overlay-based solutions
utilize the concept of virtual networks and application over-
lays to achieve network-level virtualization. Virtual network/
overlay are logical networks created on top of physical net-
work(s). In cluster-based solutions, the nodes in a physical
network are grouped to work together in connected groups, i.e.,
clusters. Unlike virtual network/overlays, clustering is more
like the physical partitioning of the network where one part
of the network is used to one application and another part is
used by a different application. Nodes inside a cluster have spe-
cific roles, such as cluster-head and cluster-member. Typically
cluster-based solutions in WSNs are used to monitor dynamic
events.

Fig. 4 shows the network-level virtualization types while
Table II illustrates the characteristics of the existing work
dealing with node-level virtualization.

1) Virtual Network/Overlay-Based Solutions: The work in
[9] uses overlays to create application-specific virtual networks
on top of the deployed WSN. The overlay is used to allow
data exchange between sensor nodes in different administrative
domains. This work is more suitable for situations where it
is difficult to bundle applications during the deployment of a
WSN. A three-layer architecture is presented to allow multi-
ple end-user applications to utilize sensor nodes concurrently.
The bottom layer has new-generation sensor nodes like Java
SunSpots, as well as older and less capable ones. To allow older
and less capable sensor nodes to participate in overlays, another
entity called Gates-to-Overlay (GTO) nodes is incorporated.

TABLE II
CHARACTERISTICS OF NETWORK-LEVEL VIRTUALIZATION SOLUTIONS

The functionality of these GTO nodes can be implemented
in gateways and sink nodes, as well as more powerful sensor
nodes. The middle layer abstracts the simultaneous tasks ex-
ecuted by the physical sensors as virtual sensors. This is the
basic assumption of the work, that the sensor nodes are capable
of executing multiple application tasks concurrently. The top
layer consists of applications implemented as overlays. These
independent applications utilize the data sent by their respective
tasks running on the sensor nodes. Each application has an inde-
pendent overlay with virtual sensors as members of that overlay.
This logical grouping allows data exchange even when sensors
are physically located in different administrative domains. The
architecture has separate paths for data and control messages.
A fire monitoring scenario is used as an example, in which the
sensor nodes in private homes are used to monitor the progress
of fire eruption using a fire contour algorithm. Since sensor
nodes are in private homes they cannot send data to each other
directly. An overlay network is created to facilitate such data
exchange and execute the fire contour algorithm. The authors
assume the prior publication of sensor nodes to a registry which
the end-user applications use to select the required sensors. The
paper does not provide any implementation details. However,
certain protocols are suggested for data, control interfaces and
for overlays.

IEEE COMMUNICATION SURVEYS & TUTORIALS

For network-level virtualization this work makes use of
application-specific overlays to provide a robust and efficient
mechanism for sensors to communicate. There have been some
efforts to utilize DHT overlays in WSNs e.g., [54]–[57]. Each
sensor can be part of several overlays at the same time and
can execute their tasks. In the absence of any implementation
details, it is difficult to determine the effectiveness of this solu-
tion, but it is quite relevant to IoT, where WSNs will be utilized
by different users to provide new applications and services
that were not envisioned during their initial deployment. Even
geographically dispersed WSNs can be combined to provide
data for new applications.

No performance results are presented in this work.
The work in [58] discusses the “Managed Ecosystems of

Networked Objects” (MENO) concept, with its broader scope
to connect sensor nodes as well as other IP-smart objects to
the Internet for end-to-end communication without the use of
traditional gateway-based approaches. The idea behind MENO
is to create a virtual network on top of physical networks and
thereby allow communication with different types of devices,
including sensor nodes. Within each virtual network, end-to-
end communication is possible using different protocols. Once
end-to-end communication is enabled, it becomes possible for
application developers to write new applications that utilize
sensors, actuators and other devices. This work is still at the
conceptual level, without any implementation details or results.
It appears to be on track to use a clean-slate approach to
integrate the physical world with the Internet in a seamless way.
Some motivational scenarios are presented to make a case for
integrating WSNs to the Internet.

The concept utilized by MENO is used to develop the In-
ternet of Things Virtual Network (IoT-VN) [59]. That study
presents some implementation details by applying the concept
of the IoT-VN to constrained and non-constrained environ-
ments. For constrained environments, the IDRA framework
[60] is used to implement neighbor detection and a tunneling
mechanism to create virtual links between the members of the
virtual network. For non-constrained environments, the Click
Router [61] is used, which is a C++ based framework capable
of realizing network packet processing functionality. Routing
the data over virtual links is accomplished by means of the
AODV protocol. They have extended the AODV header to
include IoT-VN ID header and a network header. A simple
ping application implements basic request and reply messages
to demonstrate data exchange inside a virtual network.

For network-level virtualization, the work in [58] and [59]
uses the concept of virtual links built over either layer 3 or
layer 2 in traditional networks, and over IEEE 802.15.4 in
WSNs. Not much detail about the actual protocols is provided,
but the researchers do mention some motivational scenarios to
open up WSN deployments and connect them to the Internet.
Overall, the focus here is on connecting different devices
(resource-constrained and non-resource constrained) together
and allowing end-to-end communication for the deployment of
new applications and services.

The work in [58] does not provide any performance results,
however [59] presents early results using a simple two sensor
test-bed setup. Round trip times of a ping command are shown

which was sent from one sensor to another. Overall the results
do not give much insight in to the solution.

An embedded agent-based approach is presented in [62] to
create and maintain Virtual Sensor Networks (VSNs). This
agent-based solution is built on top of Java SunSpot devices, as
they offer Java programming support and are easier to program.
The authors first provide an analysis of the layered approach
normally used to create and maintain a VSN. In this approach
a new VSN layer is introduced to create and maintain a VSN,
but it is not flexible when the sensor nodes’ sleep and wake
patterns are taken into account. A sensor node that is part of
more than one VSN at a time cannot sleep abruptly without first
coordinating with other sensor nodes to inform them about its
unavailability. Since the layers in sensor nodes are tightly cou-
pled and cannot be changed without affecting the other layers,
an agent-based solution is proposed in this work. Agent Factory
Micro Edition (AFME) [63] library is used to create agents.
Each agent resides on a sensor node and is responsible for creat-
ing and maintaining a VSN, as well as for communicating with
the agents working for the same VSN on other sensor nodes.
These agents can communicate with each other to optimize
performance. AFME allows communication between agents for
easy message exchange. AFME also allows the migration and
cloning of agents in the network, which makes it easy for new
sensor nodes to join a VSN. Using the agent-based approach
has obvious benefits, not least because a sleep broker can
make intelligent decision about the sleep and wake duration of
sensor nodes.

For network-level virtualization the work in [62] considers
independent VSNs created over a WSN for different applica-
tions. To create such VSNs, mobile agents create a virtual topol-
ogy linking sensor nodes together for an application. Although
the agents are implemented using AFME, there are no details
about VSN formation and its operation.

Interestingly the work does not provide any performance
results of the agent-based approach instead it present simulated
results of layered approach showing their obvious drawbacks.

Pioneering work regarding network-level virtualization was
first presented in [19] and extended in [64] and [65]. In [19],
a subset of WSN nodes dynamically forms a VSN. Applica-
tions with attributes or situations such as being geographically
dispersed, using heterogeneous WSN nodes with different ca-
pabilities and that monitor dynamic phenomenon are partic-
ularly suited to take advantage of VSNs. Each independent
subset executing an application is a VSN. In this approach,
it is clear that different applications can execute sequentially,
due to the dynamic VSN formation by different node subsets.
However, the authors do not give any information about how
these applications might eventually be executed simultaneously.
Two illustrative applications are presented. One is a geo-
graphically overlapped application which works in scenarios
where heterogeneous WSN nodes are deployed to monitor
two different events spread over a large area. Each WSN
needs to be deployed without using resource sharing even in
those areas where there is no event of interest, to provide
communication and routing. With resource sharing however,
other WSNs can help, resulting in a more efficient use of
resources.

KHAN et al.: WIRELESS SENSOR NETWORK VIRTUALIZATION: A SURVEY

The second application illustrates the concept of monitoring
a dynamic event with a subset of WSN nodes. This subset
can expand or reduce depending on the dynamics of the event.
The work discusses the management issues of these VSNs
and describes functions to create VSNs. WSN nodes that are
not part of any subset help in the overall WSN operation,
with data routing for example, or remain asleep to conserve
energy.

For network-level virtualization the authors in [19] present
the basic motivation to create VSNs. Example applications
are discussed. However, the paper presents high-level details
and does not include any technical details, e.g. how to realize
these VSNs. The paper provides the basic concept of multiple
applications sharing a WSN and using multiple WSNs for new
applications without additional deployments.

No performance results are presented in this work.
2) Cluster-Based Solutions: A self-organizing tree-based

solution is presented in [64] to facilitate the creation, oper-
ation and maintenance of VSNs. When an event has been
detected, a dynamic cluster tree is formed, ensuring that nodes
will join a VSN to monitor the event in a reactive manner.
In this approach the sequential execution of applications is
possible, since VSNs are formed dynamically, but it is not
clear if (or how) it is supported by the WSN nodes. This
approach uses cluster heads and child cluster heads inside
VSNs to carry out different functions. This structural organi-
zation provides logical connectivity among WSN nodes and
ensures that two different notifications of the same event are
detected and treated as one; meaning that no event in the
deployed WSN remains unknown. Once an event is detected,
a dynamic cluster tree is formed by exchanging VSN formation
messages.

VSNs provides unicast, broadcast and multicast communi-
cation. For unicast communication, a hierarchical addressing
scheme like DNS is used while broadcast and multicast commu-
nication use a list. This list is used by each cluster head to keep
track of the child cluster heads it serves. A new hierarchical
clustering algorithm is proposed to create VSNs. A simulation-
based performance analysis of the proposed algorithm is pre-
sented using a custom-built simulator in C language. However,
advanced VSN functions like the merging and splitting of VSNs
are not implemented.

A cluster tree mechanism is used to group the sensor nodes
that work for an application, as a way to realize network-level
virtualization. This work is an extension of the work in [19].
Dynamic trees are formed and communication between the
sensor nodes is also supported. There is no discussion about
the actual implementation of the proposed scheme.

For performance results a discrete-event simulator is used.
Three scenarios are implemented to detect events in different
regions and use sensor nodes to monitor them. The results show
a linear increase in number of hops similar to the increase in
sensor nodes monitoring the event. When an event occurs, with
source and destination node in the same region, more unicast
messages are exchanged but these messages are not affected by
the network size. On the other hand, when an event occurs in
another region more multicast messages are exchanged and are
affected by network size.

A proof-of-concept study that monitors an underground
plume is presented in [65]. It is based on a single application,
and so it is difficult to find a link with sequential or simulta-
neous execution. The authors also discuss a phenomena-aware
clustering algorithm to create and maintain VSNs. Using this
algorithm, clusters are comprised of groups of WSN nodes that
are close to dynamic phenomenon and report on it frequently
throughout their lifetimes. With these reports, the algorithm is
able to select those WSN nodes which are relevant for clusters
and that are close to the dynamic phenomenon, allowing less-
relevant WSN nodes to save their energy for other applications.
This technique considerably reduces the required data reporting
since only relevant data is sent. As the deployed WSN is event-
based and not always on, sudden bursts of data are avoided
whenever an event of interest occurs. The algorithm is also re-
silient to WSN node and link failures. To adapt to the dynamics
of an event, i.e., a merger or a split, another algorithm, called
DRAGON, is presented. When an event is detected, DRAGON
ensures its location is found and used as a reference point to
track its movement. Sensor readings and the relative positions
of WSN nodes are then used to make decisions about whether
two events should logically remain distinct or be merged into a
single event.

For network-level virtualization this work is based on [19]
and [64]. The proof-of-concept prototype is used to demon-
strate the viability of the concepts presented in earlier papers,
however only one application is demonstrated.

There are not much performance results of the prototype
except that the sensors were able to track a plume similar to
the conductivity probes.

C. Hybrid Solution

Hybrid solutions combine both node- and network-level vir-
tualization mechanisms. We group the Hybrid solutions under
three types: middleware and cluster-based solutions, middle-
ware and virtual network/overlay-based solutions and virtual
machine and dynamic grouping-based solutions.

In middleware and cluster-based solutions, a middleware
handles node-level virtualization, while network-level virtu-
alization is achieved by grouping sensor nodes into clusters.
In middleware and virtual network/overlay-based solutions a
middleware handles node-level virtualization while network-
level virtualization is achieved using virtual network/overlays.
In virtual machine and dynamic grouping-based solutions,
node-level virtualization is achieved using a virtual machine,
and a tailored, sensor node grouping scheme is used for
network-level virtualization.

Fig. 5 shows the hybrid virtualization solution while Table III
shows the characteristics of hybrid solutions.

1) Middleware and Cluster-Based Solutions: In [66], a mid-
dleware solution, Sensomax, for Java SunSpot [67] devices
is presented. Sensomax follows a components-based approach
and provides several operational paradigms such as data-driven,
event driven, time-driven and query-driven, to offer more flex-
ibility. The main contributions of Sensomax are support for
multi-tasking, dynamic task modification and re-programming
at runtime. At node-level, user applications are coded as

IEEE COMMUNICATION SURVEYS & TUTORIALS

Fig. 5. Hybrid virtualization solutions. (a) Middleware and cluster-based
solutions. (b) Middleware and virtual network-based solutions. (c) Virtual
machine and dynamic grouping-based solutions.

application-specific agents. Concurrency is implemented using
a main Monolithic Kernel, abstracting the sensor resources.
Applications act as Microkernels running atop the Monolithic
Kernel and access underlying resources in a uniform way. When
an application starts its execution in a sensor node, its corre-
sponding agent is loaded to an execution space and queued for
execution. A resource-algorithm is used for allocating resources
to multiple agents in the execution space. However, no details
of such allocation algorithms are discussed. Application agents
can be data-driven, event-drive, time-driven, query-driven or
hybrid models.

At the network level, the deployed WSN is divided into
multiple clusters consisting of sensor nodes. Each cluster is
dedicated to a single or multiple applications and treated as a
single entity by the application programmers. The applications
can span over multiple clusters by running application-specific
agents in each cluster. Each cluster consists of a sensor node
acting as the cluster-head and several sensor nodes acting as
cluster members. Sensor nodes can have dual roles, i.e., a sensor
node can act as cluster-head for an application while at the same
time it can be a cluster member for a different application. Such
roles depend on the application agents residing in a sensor node.
The agent-based approach is used for network-level communi-
cation in Sensomax. The global agents enable different network
entities to communicate with each other. The local agents

are used for intra-cluster communication, allowing the cluster-
heads to communicate with their cluster-members and vice-
versa. The system agents are used by the base-station to send
configuration instructions to cluster members via cluster heads.
The system agents are used to reprogram or update sensor nodes
on the fly. The WSN resources are divided into three main
classes: global, local and system resources. Global resources
include sensors, actuators and processes that are shared among
different network entities. Local resources include resources
found inside a cluster and can only be shared between members
of that particular cluster. System resources include items such
as system properties where resource states are defined. A one-
hop broadcasting of agents is used to propagate application-
specific agents in the WSN.

For node-level virtualization, Sensomax uses Java SunSpot
devices and exploits their ability to run concurrent application
tasks. Each user application is programmed as an agent, and
multiple agents can reside on a single sensor node. Agents
are submitted via a base station and propagated into the WSN
using a one-hop broadcast. The network-level virtualization
uses the clusters concept. The WSN is divided into multiple
clusters, each with its own cluster head. Different types of
communication modes are provided to enable communication
between different network entities.

The performance results are collected by means of a test-bed
consisting of 12 sensor nodes and a simulator. The processing
time of each agent is found to be around 200 ms when the
sensor node is executing 30 concurrent applications. The sim-
ulation results follow the same trend. The sample applications
report temperature and light level with various conditions. The
dynamic update processing time is under 100 ms for the same
number of applications.

The work in [68] presents a multi-set architectural model to
allow the execution of multiple applications over a deployed
WSN. This work is based on the concept of agents, similar to
Agilla. The agents are not application-specific, instead they are
used to control the node- and network-level functionality. The
overall design goal is the ability to run multiple applications
in a pre-defined execution order and to be able to adjust their
functional parameters. A configuration agent (C-Agent) is used
to modify the functional parameters of an application running
on a sensor node, e.g., to change its sampling interval. The
C-Agent is first propagated in the WSN from the base station
to the cluster-heads and then from cluster-heads to the sensor
nodes in their clusters. Before the deployment of a WSN, the
applications and their order of execution are defined. This step
limits flexibility, as new applications cannot simultaneously use
the deployed WSN. At node-level, TinyOS is used to provide
concurrent execution of application tasks on a sensor node
using a middleware that runs on top of TinyOS. The solution
inherits the drawbacks of TinyOS; making applications to be
executed in their predefined order.

At the network-level, the scoping building block concept [69]
is used to divide a WSN into subsets. Within these subsets,
nodes can be grouped as clusters according to the application
requirements. Each subset is dedicated to execute only one ap-
plication, hence a WSN with n subsets will execute n number of
applications. The role of cluster-head is performed by powerful

KHAN et al.: WIRELESS SENSOR NETWORK VIRTUALIZATION: A SURVEY

TABLE III
CHARACTERISTICS OF HYBRID SOLUTIONS

sensor nodes, so there is no selection of cluster-heads on the
fly. When the WSN is deployed initially, only one applica-
tion begins its execution, according to a pre-defined sequence.
The sensors in other subsets sleep to conserve their energy until
it is their turn to execute their application. A switching agent
(S-Agent) is used to switch from one application to another
by putting awake sensor nodes into sleep mode and vice-versa.
There is no information about how S-Agent is propagated in the
network.

For node-level virtualization, the solution works similar to
the TinyOS and provides a weak form of virtualization. Pre-
defining applications and their execution sequences does not
make this solution very attractive. For network level virtual-
ization, the WSN is divided into subsets that have multiple
clusters. At any given time the sensor nodes in one subset are
active while others sleep to save their energy.

No performance results are presented in this work.
2) Middleware and Virtual Network/Overlay-Based Solu-

tions: The authors in [70] discuss SenShare, a platform to
execute multiple applications over a WSN. This is the first
significant effort to tackle the issue of allowing open access
WSN deployments running multiple applications concurrently.
Two roles, those of WSN infrastructure owners and applica-
tion developers, are considered. This separation opens up the
possibilities for new business models, innovative applications,
improved utilization of WSN resources, and flexibility, along
with cost benefits. At node-level a hardware abstraction layer
(HAL) and a node runtime layer is used in each sensor node
to support multiple applications. Each application is a TinyOS
program which runs on top of a multi-tasking OS that allows
the simultaneous execution of multiple application tasks. The
HAL is shared by each application and is used to break the
tight coupling between TinyOS applications and the sensor
hardware and to allow shared access to the sensor hardware.
Each application contains virtual hardware controllers (e.g.,
access to LEDs, sensors, timers and network I/O) that are
linked to all TinyOS application at compile time. When an
application requires access to, e.g., a sensor, the corresponding

virtual hardware controller passes the request to a runtime layer
between the applications and the multi-tasking OS. The runtime
layer is OS-specific and all of the TinyOS applications use it
to access the sensor hardware. It runs as a separate process
inside every sensor node and mediates between the applications
and the sensor hardware. The sensor I/O and network I/O
are two components in the runtime layer that allow managed
access to sensing components and to the network interface,
respectively. This access is allowed asynchronously to multiple
applications. Each application in SenShare, has a unique ID
which is used to manage it. To deploy an application, SQL-like
commands are used to select the target nodes according to the
application’s requirement. Afterwards the application’s binary
code is sent to the selected nodes using a modified version of the
Deluge protocol [71]. Once the application is up and running,
the virtual topology is formed to provide isolation from other
data/control traffic. The WSN is globally synchronized using
the TPSN protocol [72].

At the network level, a network-level overlay is created
to group WSN nodes that execute similar application, using
the Collection Tree Protocol (CTP) [73]. Physically scattered
groups executing similar applications can be joined into a single
overlay network. CTP is also used to route data and control
messages in the WSN. To provide isolation between the traffic
from multiple applications, each application packet is modified
to include the application ID along with sequence number,
origin and destination addresses. The runtime layer attaches and
removes this information at the source and destination nodes,
respectively.

An application could be executed by physically scattered
sensor nodes. Linking these scattered sensor nodes (clusters)
into a single virtual connected network requires an overlay
formation protocol that utilizes the underlying CTP topology
to connect clusters together in a virtual connected network. The
protocol works by making each sensor node route its packets to
the closest cluster.

For node-level virtualization, SenShare implements applica-
tion tasks as TinyOS programs over a multi-tasking OS. The

IEEE COMMUNICATION SURVEYS & TUTORIALS

programming model is similar to TinyOS. Incorporating virtual
hardware controllers with the applications makes the solution
less flexible, as developers need to be aware of the type of
hardware each sensor node has. The runtime layer between the
OS and the applications does not expose the sensor hardware
to the developers, so they cannot write applications on the fly.
For network-level virtualization, SenShare uses the concept of
overlays and uses CTP protocol to create independent overlays
for applications.

The performance results of this work cover the application
isolation penalty and overlay management. With more concur-
rent applications in a sensor node, it is observed that sampling
rate decreases by 28% as compared to a single application
sampling the same phenomenon. The CPU utilization also
increases linearly and has less impact on the SenShare runtime.
The same is observed for memory usage. The extra overlay
traffic is found to be decreasing over the period of time to
around 10% of the network traffic.

The work in [10] discusses the node- and network-level
virtualization of sensor nodes in the context of the VITRO
project. The goals of this work are i) to design a middleware
to act as a bridge between applications and the sensor nodes,
and ii) to design advanced sensor node architecture. Node-level
virtualization is achieved by instantiating various instances of
routing and of MAC layers. There is a Node Virtualization
Manager (NVM) inside every sensor node which is responsible
for managing the available resources and fulfilling the requests
to utilize those resources [74]. NVM interacts with each layer
to ensure the optimal, secure and energy-efficient utilization
of sensor nodes. Each sensor node has a middleware which
is responsible for its discovery and the services it provides.
This middleware sits on top of the network layer. The network
layer uses routing protocols that can support multiple routing
instances. A trust-aware routing protocol [75] is used to route
the data, and delay-tolerant network mechanisms are suggested
to counter the connectivity issues. For each application, a newly
configured MAC layer is instantiated.

A reference architecture is presented at the network level,
consisting of several autonomous WSN domains. Each of these
domains is connected to VITRO service providers through a
gateway node. The gateway node plays a major role in provid-
ing network-level virtualization. It consists of modules that help
in the creation and management of VSNs. The gateway node
uses several registries to create and manage a VSN. In VITRO,
only gateway nodes can be part of the VSN, which can be re-
alized by creating a routing link between them using protocols
such as RPL. Individual sensor nodes can only be part of the
VSN, on their own, if they support the functionalities of the
gateway node, otherwise they can only join a VSN with the help
of a gateway node. Details such as sensor selection and task
dissemination are not discussed. A VSN manager is responsible
for service negotiation, session establishment and monitoring.
Functional architectures of gateway nodes and advanced sensor
nodes are also presented, along with the details of the inter-
faces between system components. No implementation details
are discussed and no protocol recommendations are given for
interfaces or functions such as service registration or service
negotiation.

For node-level virtualization, VITRO relies on advanced sen-
sor nodes that enable the efficient utilization of resources and
concurrent access. However, there is no discussion regarding
the OS that will provide such functionalities, nor is there any
information on the hardware platform in the paper. Most of
the details are at the conceptual level; no technical details
such as programming model, programming language, and OS
are provided. For network-level virtualization, this work only
connects already VSN-aware/legacy/proprietary WSNs through
a gateway node. The mechanisms for creating a VSN-aware
network are not discussed, nor is there any mention of protocols
to be used.

No performance results are presented in this work.
3) Virtual Machine and Dynamic Grouping-Based Solution:

Melete [18] provides both node- and network-level support for
the concurrent execution of applications in WSNs. At the node-
level, Melete supports simultaneous execution by enhancing
Maté, supporting the interleaved execution of multiple ap-
plications on a single WSN node. Application code images
are stored, each with its own dedicated execution space. Ap-
plications do not share variables with each other to ensure
that an application failure does not affect other applications
executing on the same WSN nodes. The number of concurrent
applications that can be executed by WSN nodes depends on
the available RAM; the implementation in the paper supports
up to five applications. Melete uses an event-driven program-
ming model. Another contribution of Melete is that it supports
application task code dissemination. Task code dissemination
has two main goals. One is to select the sensor nodes which
are part of a group, and send new code to them. The second
is to reactively send code to the sensor nodes that require it.
Both goals allow the task code of the relevant sensor nodes
to be sent while discouraging its unnecessary dissemination.
Actual code forwarding is done region-wise using multi-hop
communication.

At a network-level, Melete supports the dynamic grouping of
deployed WSN nodes to execute multiple applications simulta-
neously. The supported network topology is a connected graph.
It is possible for WSN nodes to be part of more than one logical
group at a time. Each logical group is dedicated to a single
application, and the implementation supports up to 16 groups
coexisting in a WSN. A new application code is disseminated
passively between members of the group using the above-
mentioned design goals. All WSN nodes maintain the version
information of the applications, and advertise it in the group,
hence making WSN nodes aware of when to update their appli-
cation codes. This saves energy by reducing unnecessary com-
munications, but at a cost of the delay incurred. Sensor nodes
in a logical group execute a single application at a time, hence
each application cannot be influenced by the run-time error
of another application. The paper presents extensive simulation-
based as well as actual implementation results.

For node-level virtualization, Melete improves on Maté, but
since application tasks have their own data and execution space,
only a limited number of application tasks can run concurrently.
The programming model is based on the event-driven approach
of TinyOS. The application programs are written in TinyScript.
A dynamic grouping scheme is provided for network-level

KHAN et al.: WIRELESS SENSOR NETWORK VIRTUALIZATION: A SURVEY

TABLE IV
SUMMARY OF THE STATE-OF-THE-ART

virtualization. By default, all sensor nodes are members of a
parent group, with its code stored in them. How a sensor node
will join a new group depends on the task code it is executing.
The programmer needs to be aware of the many situations that
may arise in the network and program the responses, and this
approach is not flexible at all.

The performance results of Melete include mathematical
analysis of the impact of parameters on the task code dissemina-
tion scheme. The code size and memory consumption of Melete
was compared to Maté. The code size of Melete is bigger
than Maté even when there was only one application. Similarly
Melete exhibits higher memory consumption than Maté. The
result pertaining to dynamic grouping show delays in the order
of seconds for a motion tracking application in an office setting.

D. Summary

Table IV illustrates the evaluation of the existing work based
on the requirements identified in section 2.4. We have found
several capable node-level virtualization solutions. In the early-
generation sensor nodes, the programming model of choice
was event-driven, as it was simple to implement, but once its
limitations were found, the thread-based approach was used to

implement more complex and concurrent tasks in sensor nodes.
Of all these works, TinyOS and Contiki have become extremely
popular and have good community support. Contiki is now
considered as a platform for the IoT [76] and has incorporated
many innovative features over the last decade. RIOT [25] is a
new work to design a capable OS to run C/C++ applications on
heterogeneous sensor platforms.

For network-level virtualization, the early work used the con-
cept of clusters but managing clusters itself is quite challenging.
The majority of work on cluster-based solutions in WSNs is
focused on improving routing, energy efficiency and security.
We need solutions that facilitate the creation of application-
specific clusters that adapt to the dynamics of the network
and of the monitored events. Recently overlay solution are
being used for network-level virtualization but it is still largely
unexplored territory. We have works like [54] discussing, quite
convincingly, that it is not ‘mission impossible’ to use over-
lays in WSNs. Most recent research work has focused on
providing hybrid solutions for WSN virtualization. A few
recently-concluded research projects have addressed WSN vir-
tualization, but their solutions are embryonic and multiple
issues remain. For example, some solutions are platform de-
pendent, others are theoretical and at conceptual level.

IEEE COMMUNICATION SURVEYS & TUTORIALS

TABLE IV
(Continued). SUMMARY OF THE STATE-OF-THE-ART

V. WSN VIRTUALIZATION RESEARCH PROJECTS

In this section we introduce some relevant projects that envi-
sion the utilization of WSNs by multiple applications. Table V
lists these projects and provides their summary based on the
following characteristics.

1) Project Aim: Provides the holistic aim of the overall
project. FRESnel and VITRO are the only two projects that are
aimed directly at WSN virtualization. The remaining projects
have more extended scopes, such as smart city realization,
smart health in the context of IoT, or aim to provide a large-
scale test bed for network research.

2) Project Scope: Indicates if a project is a part of academic
or industrial research, or is being developed as a multi-partner
effort. VITRO, Smart Santander, iCore and Butler are all Eu-
ropean FP7 projects involving large consortiums of industrial,
telecom and academic partners. FRESnel is a joint project
between Cambridge and Oxford Universities, UK.

3) Virtualization Level: Indicates the type of WSN virtu-
alization. FRESnel and VITRO are the two projects that aim
to provide both node- and network-level virtualization. City-
Sense, iCore, Butler and ViSE do not explicitly address WSN

virtualization, but they do consider the utilization of sensors by
multiple applications.

4) Virtualization Type: The true realization of WSN vir-
tualization does not involve any gateway node managing the
virtualization-related tasks; instead, sensor nodes themselves
handle such tasks. On the other hand the gateway-based vir-
tualization solutions make WSNs act as capillary networks
connected to the Internet or to other networks through a single
node. It is important to mention that the presence of a gateway
node for communication is difficult to rule out since sensor
nodes may use sense and sleep mechanisms.

5) Network Devices: Another important characteristic of
these projects is the type of devices they use in their work.
CitySense, Butler and ViSE use high-end devices. While sen-
sors are considered, they are usually connected to high-end
PCs/nodes that compliment them for processing, data storage,
power supply and connectivity. FRESnel and VITRO utilize
the usual/normal sensor nodes, which is more relevant to WSN
virtualization.

6) Evaluation Setup: All of the projects discussed here eval-
uate their contributions using real test bed setups; however the
size of these setups varies considerably. For example, the Smart

KHAN et al.: WIRELESS SENSOR NETWORK VIRTUALIZATION: A SURVEY

TABLE V
WSN VIRTUALIZATION-RELATED PROJECTS

Santander project will use around 20 000 nodes deployed over
four European cities, providing a massive platform for research
and evaluation purposes. This gigantic setup will also be used
by the iCore project. In comparison, Fresnel’s in-campus test
bed has 35 nodes while ViSE test bed has only 3 nodes.

The ViSE and CitySense projects were not designed to
provide solutions for WSN virtualization, but they do in-
corporate the important virtualization concept, i.e., to allow
multiple applications to utilize the deployed WSN infras-
tructure. The Smart Santander, iCore and Butler projects are
aimed to realize the IoT, and consider sensors and devices of
different types. VITRO and FRESnel are focused on WSN
virtualization, but VITRO provides gateway-based virtualiza-
tion, which is not a true realization of WSN virtualization.
The FRESnel project however, considers the true realiza-
tion of WSN virtualization, but it provides platform-specific
solutions. Overall it is clear that the idea of WSN virtu-
alization is receiving considerable attention, not only from
academic quarters but also from major industrial and telecom
players.

VI. RESEARCH ISSUES

We identify some important research issues that need to be
addressed to provide innovative WSN virtualization solutions.

1) Advanced Node-Level Virtualization: Node-level virtual-
ization has attracted considerable attention from the research
community. In many ways, it is provided as part of the sen-
sor OS. Multi-threaded OSs and application-specific virtual
machines (VM), working on top of an OS, can support the
concurrent execution of application tasks. As the trend moves
towards more powerful IP-WSNs, more efforts are required to
virtualize the individual components of sensor nodes, such as
MAC and routing layers. The VITRO project has put forth
the concept [10], but there are no real implementations to
date. PAVENET OS [33] takes advantage of capable hard-
ware to design efficient OSs but is tied to a single platform.
To exploit the recent advances in sensor hardware, a fresh
approach like RIOT OS [25] can be taken to come up with
new and general purpose solutions. Some new solutions provide
separation between the sensor OS and the user application
tasks but we still need functions like OTA installation/updating

IEEE COMMUNICATION SURVEYS & TUTORIALS

of new user tasks without disturbing the existing ones. One
possible solution to tackle this issue is to design an abstraction
layer that works on top of sensor OS to provide application
portability like in [83]. A modular-based approach will work
much better since it will be applicable to heterogeneous OSs,
programming languages and models.

2) Network-Level Virtualization: Not much work has been
done in the area of network-level virtualization to support
multiple applications over a deployed WSN, hence there is a
tremendous opportunity to make valuable contributions. Over-
lay networks can provide an efficient solution as they are robust
and can work efficiently without changes in the underlying
network. Some solutions like those in [54], [56], and [57]
do exist, but they are still embryonic in nature and do not
consider the requirements of multiple applications utilizing
a WSN concurrently. As multiple overlays may need to co-
exist, preventing them from interacting with each other in a
harmful way remains a challenge. Cluster-based approaches
have traditionally been used in WSN’s for improving routing,
energy-efficiency, management and security. Managing clusters
in a virtualized WSN is not trivial, however, cluster-based
solutions can be quite useful in scenarios where a deployed
WSN is used to monitor dynamic events. These solutions can
also be helpful in mobile WSNs, Robotic and Vehicular Ad hoc
Networks.

3) Discovery and Publication: The discovery and publica-
tion of resources and services in WSN is already challenging,
but it becomes more sophisticated in virtualized WSNs. For
example, it will be interesting to find whether certain kind of
relationships exist between physical and virtual sensors and
whether they can be exploited to provide quick publication and
discovery solutions. As virtual sensors are created on-demand
and destroyed when no longer required, their publication and
discovery needs to be efficient, robust, scalable and manage-
able. Discovery and publication of resources and services on
the fly are very important functions, especially in the context
of IoT. A P2P based architecture can be a solution like [84]
that does not rely on any central mechanism to discover the ser-
vices. However, no such solution exists for virtualized WSNs.
Similarly a service recommendation system can be developed,
for virtualized WSNs, which allows context-aware discovery
of resources and services. Recent IETF service discovery pro-
tocols like CoAP resource discovery [85], [86] and DNS-SD
[87] can be used to design efficient discovery and publica-
tion solutions in resource-constrained environments. Moreover,
new algorithms that adapt to evolving WSN conditions and
nodes’ mobility or failures are required, to ensure service
continuity.

4) Service Composition: Service composition using virtual
sensor nodes is another important research challenge. In our
view, future WSN deployments will involve multiple actors,
such as WSN providers, virtual sensor providers, service
providers, third-party application/services providers and end-
user applications. A cloud-based approach could be a solution
[88]. WSN resources could be offered as Infrastructure-as-a-
Service (IaaS) and used by Platform-as-a-Service (PaaS) to
offer services to end users. In this regard, existing projects like
[79], [80], and [81] can be used for inspiration about end user

services. Using semantics and ontologies to compose services
based on application requirements and the capabilities of sensor
nodes can provide improved solutions. It is also important to
note that the service composition may also use existing or third-
party services on the fly. Location and mapping services are
typical examples of such services.

5) Sensor Node Selection and Task Assignment: The issues
of sensor selection and task assignment are very much related
to each other. Selecting the right set of sensor nodes according
to the temporal and spatial requirements of applications is
crucial [21] to improving the overall Quality of Monitoring
(QoM) systems. A more detailed task assignment problem
formulation and its solutions are presented in detail in [89],
but it does not consider the possibility of multiple applications
using a single sensor node at the same time. In [90] cost-
effective market-based algorithms are used for task allocation
and resource management. But the proposed algorithms are
OS specific (Sensomax) and require more work to determine
their suitability. A QoS-aware task allocation algorithm in [91]
brings a new dimension into the sensor node selection while
satisfying QoS requirements of multiple applications at the
same time. New algorithms that not only consider the QoS
requirements of the applications but also take into account the
properties of the events being monitored by the sensor nodes
are needed to advance in this area.

6) Application Task Dissemination: When new applications
are being contemplated, it is not unrealistic to assume that
a new algorithm or application task will need to be sent for
the sensor node(s) to execute. Sending the new task code (or
updating an existing one) in a seamless way, with no disruption
of existing tasks, is quite a challenge. Much of this will depend
on the sensor OS and its ability to install and update user
tasks without disturbing the existing ones or requiring the
reboot of the sensor node. Another issue is how to get the
user input, program it, and compile it to generate executable
code. In the context of IoT, the user may not have technical
expertise to code the required program. There needs to be a
clear separation between the WSN infrastructure and the user.
This can be achieved by having an entity, like service provider,
to allow a user to provide her requirements in an easy man-
ner, e.g., in a web-form. This way only some aspects of the
(re)programming a sensor nodes can be exposed to the user.
Once the input is gathered, the service provider can send it to
the physical WSN provider to generate executable code for the
selected sensor node(s) and reprogram them. Such a system
will have two benefits: one is that the sensor nodes not able
to fulfill a task, due to some reason, can be filtered out. Second,
based on previous usage patterns of the user, a recommendation
system can be devised that makes use of the historical data to
recommend and (re)program the sensor nodes. An alternative
approach would be to develop a cloud-based PaaS solution
and provide toolkits specifically designed to develop, compile,
verify, test and deploy sensor application tasks for different
sensor platforms.

7) Reference Designs and Architectures: A comprehensive
virtualization platform for WSNs is required, one that cov-
ers all aspects: data acquisition from the sensors, end-to-end
communication (including data management and computation),

KHAN et al.: WIRELESS SENSOR NETWORK VIRTUALIZATION: A SURVEY

as well as service composition for end-user applications.
Such a platform will allow a deeper and complete search space
exploration to find the optimal solution for any given WSN
application. Furthermore, this complete framework will ensure
that all the relevant aspects can be modeled and evaluated
comprehensively. Decentralized architectures are required that
will enable robust and objective-based solutions depending
on application requirements like time sensitivity, QoS, and
QoM. Another important aspect is that most of the exist-
ing work focuses on the fixed WSNs but in the context of
IoT, we can expect more and more deployments of mobile
WSNs and even spontaneous ad hoc WSNs. These ad hoc
WSNs will be created when large number of sensors commu-
nicate together to provide on-demand services for a certain
time period and then cease to exist. Participatory sensing and
crowed-based sensing, using smart phones, are two forms of
the ad hoc WSNs. There is an early work in this area [92]
that aims to utilize external sensors with the smart phones.
This is achieved by means of a sensor virtualization module
developed for the android platform. Still we require more
solutions that focus on mobile, ad hoc WSNs and even hybrid
variations.

8) New Protocols, Algorithms and Simulation Tools: As
mentioned in the introduction, recently WSN virtualization
is getting attention from the research community and we’re
now seeing some new contributions in this area. For example,
in [93] a harmonized transmission protocol is presented that
combines transmissions from a sensor node when it is being
used by multiple concurrent applications. References [94] and
[95] put forth a reconfiguration scheme and a management
scheme, respectively, to manage concurrent applications over
a deployed WSN. It will be a good idea to have a capable
simulation tool to analyze and evaluate proposed protocols and
solutions, simply because initially it may not be possible to
have a sizeable WSN deployment for such purposes. A new
simulation tool is presented in [96] which simulates multiple
concurrent applications over a WSN. While it is a good start,
more effort is required to integrate such support in already well-
known and established simulation tools.

9) WSN Virtualization Business Model & Standardization:
A viable business model is required to allow broader (and
more commercial) acceptance of WSN virtualization. This can
be accomplished easily if WSN entities are decoupled into
distinct roles of WSN providers, virtual sensor providers, ser-
vice providers and third-party applications/service providers.
Allowing third-party applications will allow for the rapid devel-
opment of applications and solutions, since the existing compo-
nents will be reusable. Another benefit of such business model
is that it will pave the way for standardization activities in this
area. In our review of WSN virtualization area we strongly
felt the need for harmonization between different protocols,
data formats, encoding schemes, and consortium-led efforts
such as Sensor Web Enablement (SWE) [97]. Currently these
incompatibilities act as major roadblocks for proposing generic
and open solutions.

10) Energy Efficient Solutions: Energy efficiency will re-
main a key research area in WSNs, even more so when WSN
virtualization is involved. While we can safely predict that fu-

ture sensor nodes will be more capable and resourceful, energy
efficient communications, discovery, routing and applications
will still be required. So far the main focus has been on making
a sensor node sleep for maximum duration possible so that
it utilizes less energy. This strategy has worked reasonably
well for simple applications but this trend is not sustainable in
emerging IoT paradigm. Energy harvesting mechanisms need
to be incorporated with WSN platforms as main or alternative
source of energy. This will ensure that sensor nodes have a
continuous power supply in addition to their batteries. Example
of energy harvesting mechanisms are, use of ambient energy
like vibrations or solar energy to generate energy [98]. There
is considerable research work in this area [99] but commercial
platforms are missing.

11) Access Control, Authentication, and Accounting: An-
other important area is to provide a controlled access to de-
ployed WSN resources. In the context of the IoT, sensors
deployed by entities like city administrations will probably
allow for public access, but they will still require access control,
authentication and authorization. For example, such deploy-
ments will also be used for monitoring or security applications
along with public applications, hence providing access accord-
ing to users will be challenging. Another aspect is that it may
not be feasible for a single authority to deploy a WSN on a
large scale. For areas where WSN deployments are not possible,
participatory sensing can be used as an alternative. Motivating
private owners to share their deployed sensors and allow remote
access is a challenge. Incentives like tax rebates or reduced
utility rates need to be devised to encourage voluntary participa-
tion. Using a WSN deployment for monetary benefits brings in
the accounting issue—how to charge users in accordance with
service contracts.

12) WSN Virtualization Application Scenarios and Test-
Beds: Applications from domains such as smart cities, smart
health, smart homes, green computing and pervasive com-
puting can potentially use the WSN virtualization concept
for cost effective solutions. New trends like mobile WSNs,
participatory/crowd-based sensing, cloud-based remote sens-
ing and vehicular networks can also benefit from this con-
cept. The availability of test-bed setups like Smart Santander
[79] provides a massive basis for prototyping and evaluation
purposes.

VII. CONCLUSION

We have presented a detailed overview of WSN virtualiza-
tion, as well as the current state of the art. First we catego-
rized state-of-the-art into node-level, network-level and hybrid
solutions, and explained them. We then provided a critical
analysis of the existing state-of-the-art in each category and
evaluated them based on a set of requirements derived from
the motivating scenarios. Several research projects pertinent to
this topic were also presented. We outlined several important
research challenges and their possible solutions. WSN virtual-
ization is very much relevant in the context of the IoT, in which
small-scale devices, at an unprecedented scale, are expected
to provide services to multiple applications concurrently, but
we have yet to find a comprehensive solution that meets this
challenge.

IEEE COMMUNICATION SURVEYS & TUTORIALS

REFERENCES

[1] M. A. Feki, F. Kawsar, M. Boussard, and L. Trappeniers, “The Internet
of Things: The next technological revolution,” Computer, vol. 46, no. 2,
pp. 24–25, Feb. 2013.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: A survey,” Comput. Netw., vol. 38, no. 4, pp. 393–422,
Mar. 2002.

[3] S. Loveland, E. M. Dow, F. LeFevre, D. Beyer, and P. F. Chan, “Lever-
aging virtualization to optimize high-availability system configurations,”
IBM Syst. J., vol. 47, no. 4, pp. 591–604, 2008.

[4] N. M. M. K. Chowdhury and R. Boutaba, “Network virtualization: State
of the art and research challenges,” IEEE Commun. Mag., vol. 47, no. 7,
pp. 20–26, Jul. 2009.

[5] Z. J. Chong et al., “Autonomy for Mobility on Demand,” in Intelligent
Autonomous Systems, 12th ed., S. Lee, H. Cho, K.-J. Yoon, and J. Lee,
Eds. Berlin Germany: Springer-Verlag, 2013, pp. 671–682.

[6] G. Cardone, A. Cirri, A. Corradi, and L. Foschini, “The participact mobile
crowd sensing living lab: The testbed for smart cities,” IEEE Commun.
Mag., vol. 52, no. 10, pp. 78–85, Oct. 2014.

[7] H. Ma, D. Zhao, and P. Yuan, “Opportunities in mobile crowd sensing,”
IEEE Communications Magazine, vol. 52, no. 8, pp. 29–35, Aug. 2014.

[8] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Sensing as
a service model for smart cities supported by Internet of Things,” Trans.
Emerging Tel. Technol., vol. 25, no. 1, pp. 81–93, Jan. 2014.

[9] I. Khan, F. Belqasmi, R. Glitho, and N. Crespi, “A multi-layer architec-
ture for wireless sensor network virtualization,” in Proc. 6th Joint IFIP
WMNC, Dubai, UAE, 2013, pp. 1–4.

[10] L. Sarakis, T. Zahariadis, H.-C. Leligou, and M. Dohler, “A framework
for service provisioning in virtual sensor networks,” J. Wireless Commun.
Netw., vol. 2012, no. 1, pp. 1–19, Dec. 2012.

[11] A. Merentitis et al., “WSN Trends: Sensor infrastructure virtualization as
a driver towards the evolution of the Internet of Things,” in Proc. 7th Int.
Conf. UBICOMM, Porto, Portugal, 2013, pp. 113–118.

[12] R. Ramdhany and G. Coulson, “Towards the coexistence of divergent ap-
plications on smart city sensing infrastructure” in Proc. 4th Int. Workshop
CONET/UBICITEC, Philadelphia, PA, USA, Apr. 8, 2013, pp. 26–30

[13] E. Patouni, A. Merentitis, P. Panagiotopoulos, A. Glentis, and
N. Alonistioti, “Network virtualisation trends: Virtually anything is pos-
sible by connecting the unconnected,” in Proc. IEEE SDN4FNS, 2013,
pp. 1–7.

[14] S. Abdelwahab, B. Hamdaoui, M. Guizani, and A. Rayes, “Enabling smart
cloud services through remote sensing: An Internet of everything enabler,”
IEEE Internet Things J., vol. 1, no. 3, pp. 276–288, Jun. 2014.

[15] C. Liang and F. R. Yu, “Wireless network virtualization: A survey, some
research issues and challenges,” IEEE Commun. Surveys Tuts., vol. 17,
no. 1, pp. 358–380, 2015.

[16] M. M. Islam, M. M. Hassan, G.-W. Lee, and E.-N. Huh, “A survey
on virtualization of wireless sensor networks,” Sensors, vol. 12, no. 2,
pp. 2175–2207, Feb. 2012.

[17] M. M. Islam and E.-N. Huh, “Virtualization in wireless sensor network:
Challenges and opportunities,” J. Netw., vol. 7, no. 3, pp. 412–418,
Mar. 2012.

[18] Y. Yu, L. J. Rittle, V. Bhandari, and J. B. LeBrun, “Supporting concurrent
applications in wireless sensor networks,” in Proc. 4th Int. Conf. Embed-
ded Netw. Sensor Syst., New York, NY, USA, 2006, pp. 139–152.

[19] A. P. Jayasumana, Q. Han, and T. H. Illangasekare, “Virtual sensor
networks—A resource efficient approach for concurrent applications,” in
Proc. 4th ITNG, 2007, pp. 111–115.

[20] M. Ceriotti et al., “Monitoring heritage buildings with wireless sensor
networks: The Torre Aquila deployment,” in Proc. Int. Conf. Inf. Process.
Sensor Netw., Washington, DC, USA, 2009, pp. 277–288.

[21] X. Wang, J. Wang, Z. Zheng, Y. Xu, and M. Yang, “Service composition
in service-oriented wireless sensor networks with persistent queries,” in
Proc. 6th IEEE CCNC, 2009, pp. 1–5.

[22] W. Dargie and C. Poellabauer, Fundamentals of Wireless Sensor
Networks: Theory and Practice. Hoboken, NJ, USA: Wiley, 2010.

[23] R. Chu, L. Gu, Y. Liu, M. Li, and X. Lu, “SenSmart: adaptive stack
management for multitasking sensor networks,” IEEE Trans. Comput.,
vol. 62, no. 1, pp. 137–150, Jan. 2013.

[24] S. Nath, P. B. Gibbons, S. Seshan, and Z. Anderson, “Synopsis diffu-
sion for robust aggregation in sensor networks,” ACM Trans. Sen. Netw.,
vol. 4, no. 2, pp. 7:1–7:40, Apr. 2008.

[25] E. Baccelli, O. Hahm, M. Gunes, M. Wahlisch, and T. C. Schmidt “RIOT
OS: Towards an OS for the Internet of Things” in Proc. 32nd IEEE
INFOCOM Poster, 2013, pp. 79–80.

[26] H. Will, K. Schleiser, and J. Schiller, “A real-time kernel for wireless
sensor networks employed in rescue scenarios,” in Proc. IEEE 34th Conf.
LCN, 2009, pp. 834–841.

[27] E. Baccelli, O. Hahm, M. Gunes, M. Wahlisch, and T. C. Schmidt, “OS
for the IoT—Goals, challenges, and solutions,” in Proc. WISG, Troyes,
France, 2013, pp. 1–6.

[28] W. Dong et al., “SenSpire OS: A predictable, flexible, and efficient
operating system for wireless sensor networks,” IEEE Trans. Comput.,
vol. 60, no. 12, pp. 1788–1801, Dec. 2011.

[29] S. Bhatti et al. “MANTIS OS: An embedded multithreaded operating
system for wireless micro sensor platforms,” Mobile Netw. Appl., vol. 10,
no. 4, pp. 563–579, Aug. 2005.

[30] P. Levis et al., “TinyOS: An operating system for sensor networks,”
in Ambient Intelligence, W. Weber, J. M. Rabaey, and E. Aarts, Eds.
Berlin, Germany: Springer-Verlag, 2005, pp. 115–148.

[31] (Accessed 27/10/2014). [Online]. Available: www.cs.colorado.edu/~rhan/
sensornets.html

[32] Q. Cao, T. Abdelzaher, J. Stankovic, and T. He, “The LiteOS operating
system: Towards unix-like abstractions for wireless sensor networks,” in
Proc. Int. Conf. IPSN, 2008, pp. 233–244.

[33] S. Saruwatari, M. Suzuki, and H. Morikawa, “PAVENET OS: A compact
hard real-time operating system for precise sampling in wireless sensor
networks,” SICE J. Control, Meas., Syst. Integr., vol. 5, no. 1, pp. 24–33,
2012.

[34] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki—A lightweight and
flexible operating system for tiny networked sensors,” in Proc. 29th Annu.
IEEE Int. Conf. Local Comput. Netw., 2004, pp. 455–462.

[35] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, “Protothreads: Simplifying
event-driven programming of memory-constrained embedded systems,”
in Proc. 4th Int. Conf. Embedded Netw. Sensor Syst., New York, NY, USA,
2006, pp. 29–42.

[36] D. Yazar and A. Dunkels, “Efficient application integration in
IP-based sensor networks,” in Proc. 1st ACM Workshop Embedded
Sens. Syst. Energy-Efficiency Buildings, New York, NY, USA, 2009,
pp. 43–48.

[37] M. Durvy et al., “Making sensor networks IPv6 ready,” in Proc. 6th
ACM Conf. Embedded Netw. Sensor Syst., New York, NY, USA, 2008,
pp. 421–422.

[38] M. Kovatsch, S. Duquennoy, and A. Dunkels, “A low-power CoAP for
contiki,” in Proc. IEEE 8th Int. Conf. MASS, 2011, pp. 855–860.

[39] N. Tsiftes, A. Dunkels, Z. He, and T. Voigt, “Enabling large-scale storage
in sensor networks with the coffee file system,” in Proc. Int. Conf. Inf.
Process. Sensor Netw., Washington, DC, USA, 2009, pp. 349–360.

[40] K. Klues et al., “TOSThreads: Thread-safe and non-invasive preemp-
tion in tinyos,” in Proc. 7th ACM Conf. Embedded Netw. Sensor Syst.,
New York, NY, USA, 2009, pp. 127–140.

[41] J. Hui, “Deluge 2.0-TinyOS network programming,” 2005. [Online].
Available: http://www.cs.berkeley.edu/jwhui/research/deluge/deluge-
manual.pdf

[42] P. Levis and D. Culler, “Maté: A tiny virtual machine for sensor net-
works,” in Proc. 10th Int. Conf. Rec. IEEE IAS Annu. Meeting ASPLOSX,
San Jose, CA, USA, 2002, pp. 85–95.

[43] J. Koshy and R. Pandey, “VMSTAR: Synthesizing scalable runtime envi-
ronments for sensor networks,” in Proc. 3rd Int. Conf. Embedded Netw.
Sensor Syst., New York, NY, USA, 2005, pp. 243–254.

[44] R. Pandey and J. Wu, “BOTS: A constraint-based component system
for synthesizing scalable software systems,” in Proc. ACM SIGPLAN/
SIGBED Conf. Language, Compilers, Tool Support Embedded Syst.,
New York, NY, USA, 2006, pp. 189–198.

[45] J. Koshy and R. Pandey, “Remote incremental linking for energy-efficient
reprogramming of sensor networks,” in Proc. 2nd Eur. Workshop Wireless
Sensor Netw., 2005, pp. 354–365.

[46] D. Simon et al. “Java on the bare metal of wireless sensor devices: The
squawk java virtual machine,” in Proc. 2nd Int. Conf. Virtual Execution
Environ., New York, NY, USA, 2006, pp. 78–88.

[47] J. W. Muchow, Core J2ME Technology and MIDP. Englewood Cliffs,
NJ, USA: Prentice-Hall, 2001.

[48] C.-L. Fok, G.-C. Roman, and C. Lu, “Agilla: A mobile agent middleware
for self-adaptive wireless sensor networks,” ACM Trans. Autonom. Adapt.
Syst., vol. 4, no. 3, pp. 16:1–16:26, Jul. 2009.

[49] S. Bhattacharya, A. Saifullah, C. Lu, and G. Roman, “Multi-application
deployment in shared sensor networks based on quality of monitoring,” in
Proc. 16th IEEE RTAS, 2010, pp. 259–268.

KHAN et al.: WIRELESS SENSOR NETWORK VIRTUALIZATION: A SURVEY

[50] V. Gupta et al., “Nano-CF: A coordination framework for macro-
programming in wireless sensor networks,” in Proc. 8th Annu. IEEE
Commun. SECON, 2011, pp. 467–475.

[51] A. Eswaran, A. Rowe, and R. Rajkumar, “Nano-RK: An energy-aware
resource-centric RTOS for sensor networks,” in Proc. 26th IEEE Int.
RTSS, 2005, pp. 10–265.

[52] A. Rowe, K. Lakshmanan, H. Zhu, and R. Rajkumar, “Rate-harmonized
scheduling and its applicability to energy management,” IEEE Trans. Ind.
Informat., vol. 6, no. 3, pp. 265–275, Aug. 2010.

[53] A. Rowe et al., “Sensor Andrew: Large-scale campus-wide sensing
and actuation,” IBM J. Res. Develop., vol. 55, no. 1.2, pp. 6:1–6:14,
Jan. 2011.

[54] A. Muneeb and K. Langendoen. “A case for peer-to-peer network overlays
in sensor networks” in Proc. Int. WWSNA, 2007, pp. 56–61.

[55] G. Fersi, W. Louati, and M. B. Jemaa, “Distributed hash table-based
routing and data management in wireless sensor networks: A survey,”
Wireless Netw, vol. 19, no. 2, pp. 219–236, Feb. 2013.

[56] H. V. Luu and X. Tang. “Constructing rings overlay for robust data
collection in wireless sensor networks” J. Netw. Comput. Appl., vol. 36,
no. 5, pp. 1372–1386, Sep. 2013.

[57] A. A.-B Al-Mamou and H. Labiod, “ScatterPastry: An overlay routing
using a DHT over wireless sensor networks,” in Proc. Int. Conf. IPC,
2007, pp. 274–279.

[58] J. Hoebeke, E. D. Poorter, S. Bouckaert, I. Moerman, and P. Demeester,
“Managed ecosystems of networked objects,” Wireless Pers. Commun.,
vol. 58, no. 1, pp. 125–143, May 2011.

[59] I. Ishaq, J. Hoebeke, I. Moerman, and P. Demeester, “Internet of
things virtual networks: Bringing network virtualization to resource-
constrained devices,” in Proc. IEEE Int. Conf. GreenCom, 2012,
pp. 293–300.

[60] E. De Poorter, E. Troubleyn, I. Moerman, and P. Demeester, “IDRA:
A flexible system architecture for next generation wireless sensor net-
works,” Wireless Netw., vol. 17, no. 6, pp. 1423–1440, Aug. 2011.

[61] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The click
modular router,” ACM Trans. Comput. Syst., vol. 18, no. 3, pp. 263–297,
Aug. 2000.

[62] R. Tynan, G. M. P. O’Hare, M. J. O’Grady, and C. Muldoon, “Virtual
sensor networks: An embedded agent approach,” in Proc. ISPA, 2008,
pp. 926–932.

[63] C. Muldoon, G. M. P. O’Hare, and J. F. Bradley, “Towards reflective
mobile agents for resource-constrained mobile devices,” in Proc. 6th Int.
Joint Conf. Autonom. Agents Multiagent Syst., New York, NY, USA,
2007, pp. 141:1–141:3.

[64] H. M. N. D. Bandara, A. P. Jayasumana, and T. H. Illangasekare, “Cluster
tree based self organization of virtual sensor networks,” in Proc. IEEE
GLOBECOM Workshops, 2008, pp. 1–6.

[65] Q. Han, A. P. Jayasumana, T. Illangaskare, and T. Sakaki, “A wireless sen-
sor network based closed-loop system for subsurface contaminant plume
monitoring,” in Proc. IEEE IPDPS, 2008, pp. 1–5.

[66] M. Haghighi and D. Cliff, “Multi-agent support for multiple concurrent
applications and dynamic data-gathering in wireless sensor networks,” in
Proc. 7th Int. Conf. IMIS, 2013, pp. 320–325.

[67] R. B. Smith, “SPOTWorld and the sun SPOT,” in Proc. 6th Int. Conf. Inf.
Process. Sensor Netw., New York, NY, USA, 2007, pp. 565–566.

[68] A. Majeed and T. A. Zia, “Multi-set architecture for multi-applications
running on wireless sensor networks,” in Proc. IEEE 24th Int. Conf.
WAINA, 2010, pp. 299–304.

[69] J. Steffan, L. Fiege, M. Cilia, and A. Buchmann, “Towards multi-purpose
wireless sensor networks,” in Proc. Syst. Commun., 2005, pp. 336–341.

[70] I. Leontiadis, C. Efstratiou, C. Mascolo, and J. Crowcroft, “SenShare:
Transforming sensor networks into multi-application sensing infrastruc-
tures,” in Wireless Sensor Networks, G. P. Picco and W. Heinzelman,
Eds. Berlin, Germany: Springer-Verlag, 2012, pp. 65–81.

[71] J. W. Hui and D. Culler, “The dynamic behavior of a data dissem-
ination protocol for network programming at scale,” in Proc. 2nd
Int. Conf. Embedded Netw. Sensor Syst., New York, NY, USA, 2004,
pp. 81–94.

[72] J. Lu et al., “The smart thermostat: Using occupancy sensors to save
energy in homes,” in Proc. 8th ACM Conf. Embedded Netw. Sensor Syst.,
New York, NY, USA, 2010, pp. 211–224.

[73] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Collection
tree protocol,” in Proc. 7th ACM Conf. Embedded Netw. Sensor Syst.,
New York, NY, USA, 2009, pp. 1–14.

[74] M. Navarro, M. Antonucci, L. Sarakis, and T. Zahariadis, “VITRO archi-
tecture: Bringing virtualization to WSN world,” in Proc. IEEE 8th Int.
Conf. MASS, 2011, pp. 831–836.

[75] T. Zahariadis, P. Trakadas, H. C. Leligou, S. Maniatis, and P. Karkazis,
“A novel trust-aware geographical routing scheme for wireless sen-
sor networks,” Wireless Pers. Commun., vol. 69, no. 2, pp. 805–826,
Mar. 2013.

[76] P. Levis, “Experiences from a decade of tinyos development,” in Proc.
10th USENIX Conf. Oper. Syst. Des. Implementation, Berkeley, CA, USA,
2012, pp. 207–220.

[77] R. N. Murty et al., “CitySense: An urban-scale wireless sensor net-
work and testbed,” in Proc. Conf. Technol. Homeland Security, 2008,
pp. 583–588.

[78] C. Efstratiou, I. Leontiadis, C. Mascolo, and J. Crowcroft, “A Shared
Sensor Network Infrastructure,” in Proc. 8th ACM Conf. Embedded Netw.
Sensor Syst., New York, NY, USA, 2010, pp. 367–368.

[79] L. Sanchez et al., “SmartSantander: IoT experimentation over a smart city
testbed,” Comput. Net., vol. 61, pp. 217–238, Mar. 2014.

[80] F. Berkers et al., “Constructing a multi-sided business model for a smart
horizontal IoT service platform,” in Proc. 17th Int. Conf. ICIN 2013,
pp. 126–132.

[81] A. Andrushevich et al., “Leveraging multi-domain links via the Internet
of Things,” in Internet of Things, Smart Spaces, and Next Generation
Networking, S. Balandin, S. Andreev, and Y. Koucheryavy, Eds. Berlin,
Germany: Springer-Verlag, 2013, pp. 13–24.

[82] D. Irwin et al., “Towards a virtualized sensing environment,”
in Testbeds and Research Infrastructures. Development of Net-
works and Communities. Berlin, Germany: Springer-Verlag, 2011,
pp. 133–142.

[83] R. S. Oliver, I. Shcherbakov, and G. Fohler, “An operating system ab-
straction layer for portable applications in wireless sensor networks,” in
Proc. ACM Symp. Appl. Comput., 2010, pp. 742–748.

[84] J. Mäenpää, J. J. Bolonio, and S. Loreto, “Using RELOAD and CoAP for
wide area sensor and actuator networking,” J. Wireless Commun. Netw.,
vol. 2012, no. 1, pp. 1–22, Dec. 2012.

[85] Z. Shelby, “Embedded web services,” IEEE Wireless Commun., vol. 17,
no. 6, pp. 52–57, Dec. 2010.

[86] Z. Shelby et al., “Constrained Application Protocol (CoAP),” work in
progress, Internet Eng. Task Force-IETF, Fremont, CA, USA, Draft-ietf-
core-coap-18, Jun. 2013.

[87] S. Cheshire and M. Krochmal, “Multicast DNS,” IETF, Fremont, CA,
USA, RFC 6762, Feb. 2013.

[88] R. Glitho, M. Morrow, and P. Polakos, “A cloud based—Architecture
for cost-efficient applications and services provisioning in wire-
less sensor networks,” in Proc. 6th Joint IFIP WMNC, 2013,
pp. 1–4.

[89] H. Rowaihy et al., “Sensor-mission assignment in wireless sensor net-
works,” ACM Trans. Sensor Netw., vol. 6, no. 4, pp. 36:1–36:33,
Jul. 2010.

[90] M. Haghighi, “Market-based resource allocation for energy-efficient ex-
ecution of multiple concurrent applications in wireless sensor networks,”
in Mobile, Ubiquitous, and Intelligent Computing, J. H. Park, H. Adeli,
N. Park, and I. Woungang, Eds. Berlin, Germany: Springer-Verlag,
2014, pp. 173–178.

[91] W. Li, F. C. Delicato, P. F. Pires, and A. Y. Zomaya, “Energy-
efficient task allocation with quality of service provisioning for concur-
rent applications in multi-functional wireless sensor network systems,”
Concurrency Comput., Pract. Exp.., vol. 26, no. 11, pp. 1869–1888,
Aug. 2014.

[92] J. Ko, B.-B. Lee, S. G. Hong, and N. Kim, “Poster abstract: Virtual-
izing external wireless sensors for designing personalized smartphone
services,” in Proc. 12th Int. Conf. Inf. Process. Sensor Netw., New York,
NY, USA, 2013, pp. 353–354.

[93] V. Gupta, N. Pereira, E. Tovar, and R. Rajkumar, “Poster abstract:
A harmony of sensors: Achieving determinism in multi-application sen-
sor networks,” in Proc. 13th Int. Symp. Inf. Process. Sensor Netw.,
Piscataway, NJ, USA, 2014, pp. 299–300.

[94] C.-M. Hsieh, Z. Wang, and J. Henkel, “DANCE: Distributed application-
aware node configuration engine in shared reconfigurable sensor net-
works,” in Proc. Conf. Des., Autom. Test Eur., San Jose, CA, USA, 2013,
pp. 839–842.

[95] T. M. Cao, B. Bellata, and M. Oliver, “Design of a generic management
system for wireless sensor networks,” Ad Hoc Netw., vol. 20, pp. 16–35,
Sep. 2014.

[96] M. Haghighi, “An agent-based multi-model tool for simulating multiple
concurrent applications in WSNs” in Proc. 5th Int. Conf. Commun. Softw.
Netw. JACN, Malaysia, Jun. 2013, pp. 1–6.

[97] C. Reed et al., “Ogc sensor web enablement:overview and high level
achhitecture” in Proc. IEEE Autotestcon, 2007, pp. 372–380.

IEEE COMMUNICATION SURVEYS & TUTORIALS

[98] E. Gelenbe, D. Gesbert, D. Gunduz, H. Kulah, and E. Uysal-Biyikoglu,
“Energy harvesting communication networks: Optimization and demon-
stration (the E-CROPS project),” in Proc. 24th TIWDC, 2013, pp. 1–6.

[99] S. Sudevalayam and P. Kulkarni, “Energy harvesting sensor nodes: Sur-
vey and implications,” IEEE Commun. Surveys Tuts., vol. 13, no. 3,
pp. 443–461, Sep. 2011.

Imran Khan (S’11) received the B.S. degree in
computer science from COMSATS Institute of
IT, Pakistan, and the M.S. degree in multimedia
and communication from M.A. Jinnah University,
Pakistan. He was member of Center of Research in
Networks and Telecom (CoReNeT) from 2008 to
2010 and worked on projects funded by French Min-
istry of Foreign Affairs and Internet Society (ISOC).
Currently, he is pursuing the Ph.D. degree at Institut
Mines-Télécom, Télécom SudParis jointly with Paris
VI (UPMC). He is also a collaborating researcher

at Concordia University, Montreal, Canada, working on a project funded by
Cisco. He has contributed to the IETF standardization. His research interests are
Internet of Things (IoT), virtualization, cloud computing, service engineering,
and wireless sensor networks.

Fatna Belqasmi (M’09) received the M.Sc. de-
gree in electrical and computer engineering and
the Ph.D. degree from Concordia University,
Canada. Previously, she worked as a research
associate at Concordia University, Canada, and
as a researcher at Ericsson Canada. She was
part of the IST Ambient Network project (a re-
search project sponsored by the European Com-
mission within the Sixth Framework Programme
-FP6-). She worked as an R&D Engineer for Maroc
Telecom in Morocco. Currently, she is working as

Assistant Professor at Zayed University, Abu Dhabi, UAE. Her research inter-
ests include next generation networks, service engineering, distributed systems,
and networking technologies for emerging economies.

Roch Glitho (SM’97) received the M.Sc. degrees
in business economics from University of Grenoble,
France, and in pure mathematics and in computer
science from University of Geneva, Switzerland. He
also received the Ph.D. (Tekn. Dr.) degree in tele-
informatics from the Royal Institute of Technol-
ogy, Stockholm, Sweden. He works in Montreal,
Canada, as an Associate Professor of networking
and telecommunications at the Concordia Institute
of Information Systems Engineering (CIISE) where
he leads the telecommunication service engineering

(TSE) research laboratory (http://users.encs.concordia.ca/~tse/). In the past,
he has worked in industry for almost a quarter of a century and has held
several senior technical positions at LM Ericsson in Sweden and Canada (e.g.,
expert, principal engineer, senior specialist). His industrial experience includes
research, international standards setting (e.g., contributions to ITU-T, ETSI,
TMF, ANSI, TIA, and 3GPP), product management, project management,
systems engineering and software/firmware design. In the past, he has served as
IEEE Communications Society distinguished lecturer, Editor-in-Chief of IEEE
COMMUNICATIONS MAGAZINE and Editor-in-Chief of IEEE COMMUNICA-
TIONS SURVEYS & TUTORIALS. His research areas are: virtualization and
cloud computing; machine-to-machine communications (M2M) and Internet of
Things; distributed systems (e.g., SOAP based—web services, RESTful web
services); rural communications and networking technologies for emerging
economies.

Noel Crespi (M’07–SM’08) received the master’s
degree from the Universities of Orsay (Paris 11) and
Kent (U.K.), a diplome d’ingénieur from Telecom
ParisTech, the Ph.D. and Habilitation from Paris
VI University (Paris-Sorbonne). From 1993, he was
with CLIP, Bouygues Telecom, and with Orange
Labs in 1995. He took leading roles in the creation
of new services with the successful conception and
launch of Orange prepaid service and in standardiza-
tion (from rapporteurship of IN standard to coordina-
tion of all mobile standards activities for Orange). In

1999, he joined Nortel Networks as telephony program manager, architecting
core network products for the EMEA region. He joined Institut Mines-Telecom
in 2002 and is currently Professor and Program Director, leading the Service
Architecture Lab. He coordinates the standardization activities for Institut
Mines-Telecom at ITUT, ETSI, and 3GPP. He is also an Adjunct Professor at
KAIST, an Affiliate Professor at Concordia University, and is on the four-person
Scientific Advisory Board of FTW (Austria). He is the Scientific Director the
French-Korean laboratory ILLUMINE. His current research interests are in
service architectures, services webification, social networks, and Internet of
Things/Services.

Monique Morrow (SM’09) holds the title of CTO
Cisco Services. Her focus is in developing strategic
technology and business architectures for Cisco cus-
tomers and partners. With over 13 years at Cisco, she
has made significant contributions in a wide range of
roles, from Customer Advocacy to Corporate Con-
sulting Engineering. With particular emphasis on the
Service Provider segment, her experience includes
roles in the field (Asia-Pacific) where she undertook
the goal of building a strong technology team, as well
as identifying and grooming a successor to assure a

smooth transition and continued excellence. She has consistently shown her
talent for forward thinking and risk taking in exploring market opportunities
for Cisco. She was an early visionary in the realm of MPLS as a technology
service enabler, and she was one of the leaders in developing new business
opportunities for Cisco in the Service Provider segment, SP NGN. She holds
three patents, and has an additional nine patent submissions filed with US
Patent Office. She is the co-author of several books, and has authored numerous
articles. She also maintains several technology blogs and is a major contributor
to Cisco’s Technology Radar, having achieved Gold Medalist Hall of Fame
status for her contributions. She is also very active in industry associations. She
is a new member of the Strategic Advisory Board for the School of Computer
Science at North Carolina State University. She is particularly passionate about
Girls in ICT and has been active at the ITU on this topic—presenting at the EU
Parliament in April of 2013 as an advocate for Cisco. Within the Office of the
CTO, first as an individual contributor, and now as CTO, she has built a strong
leadership team, and she continues to drive Cisco’s globalization and country
strategies.

Paul Polakos received the B.S., M.S., and Ph.D.
degrees in physics from Rensselaer Polytechnic In-
stitute and the University of Arizona. He is cur-
rently a Cisco Fellow and member of the Mobility
CTO team at Cisco Systems focusing on emerging
technologies for future Mobility systems. Prior to
joining Cisco, he was Senior Director of Wireless
Networking Research at Bell Labs, Alcatel-Lucent in
Murray Hill, NJ, USA, and Paris, France. During his
28 years at Bell Labs he worked on a broad variety of
topics in physics and in wireless networking research

including the flat-IP cellular network architecture, the Base Station Router,
femtocells, intelligent antennas and MIMO, radio and modem algorithms and
ASICSs, autonomic networks and dynamic network optimization. Prior to
joining Bell Labs, he was a member of the research staff at the Max-Planck
Institute for Physics and Astrophysics (Munich) and visiting scientist at CERN
and Fermilab. He is an author of more than 50 publications and 30 patents.

104 Paper I

Annex B
Paper II

105

n the last few years, wireless sensor networks (WSNs)
have become ubiquitous and are being used in a broad
array of application domains, including healthcare, agri-
culture, surveillance, and security. These WSNs are com-

posed of small-scale nodes that have the ability to sense,
compute, and communicate [1]. While early sensor nodes
were resource-constrained with limited capabilities, recent
advances in sensor hardware technology have made it possible
to produce sensor nodes that have more processing power and
memory, and prolonged battery life.

Virtualization is a key technique for the realization of the
future Internet, and it is indeed quite pertinent to explore it
in the context of WSNs. Virtualization makes it possible to
present physical computing resources by abstracting them into
logical units, enabling their efficient usage by multiple inde-
pendent users, including multiple concurrent applications [2].
Furthermore, it allows for the deployment of applications that
were not even envisioned during an infrastructure’s initial
deployment.

To date, realizations of WSNs have been domain-specific
and task-oriented. Applications are bundled with a WSN at
the time of deployment, and it is next to impossible to use the

same WSN for another application. This leads to redundant
deployments and underutilization of these resources. There
are two approaches to allow multiple applications to access
deployed WSN resources. One is to allow multiple applica-
tions to share the data gathered from a WSN. In this
approach, a sink/gateway node collects all the data from the
WSN and shares it among multiple users. For example, in [3],
WSNs are merged into the cloud by sending observed sensor
data through a host manager that lies outside the WSN. The
host manager simply collects the sensor data, profiles/aggre-
gates it, and then allows multiple applications to use it for
their own purposes.

The second approach is to use the capabilities of the indi-
vidual sensor nodes to execute multiple application tasks con-
currently, and allow applications to group these sensor nodes
together according to their requirements. The key difference
between the two approaches is that the former approach
allows the sharing of WSN data among multiple applications,
while the latter allows sharing of WSN nodes by multiple
applications. This article is focused on the second approach
because it makes it possible to provision more innovative
applications over the deployed WSNs, even applications that
were not envisioned a priori. This will greatly improve the
efficiency of deployed WSNs and will also encourage new
business models.

This article introduces the WSN virtualization concept, crit-
ically reviews the state of the art in WSN virtualization, and
proposes a new early architecture that focuses on fixed WSNs.
We illustrate the potential of the architecture by instantiating
it for a fire monitoring scenario [4] in which multiple applica-
tions share the same WSN. We have built a prototype to
demonstrate its feasibility and to measure its performance.
We also identify further research directions.

The next section presents a critical overview of the state of

I

104 IEEE Network • May/June 2015

Abstract
WSNs have become pervasive and are used in many applications and services.
Usually, deployments of WSNs are task-oriented and domain-specific, thereby pre-
cluding reuse when other applications and services are contemplated. This
inevitably leads to the proliferation of redundant WSN deployments. Virtualization
is a technology that can aid in tackling this issue, as it enables the sharing of
resources/infrastructure by multiple independent entities. In this article we critically
review the state of the art and propose a novel architecture for WSN virtualiza-
tion. The proposed architecture has four layers (physical layer, virtual sensor layer,
virtual sensor access layer, and overlay layer) and relies on a constrained applica-
tion protocol. We illustrate its potential by using it in a scenario where a single
WSN is shared by multiple applications, one of which is a fire monitoring applica-
tion. We present the proof-of-concept prototype we have built along with the per-
formance measurements, and discuss future research directions.

Wireless Sensor Network Virtualization:
Early Architecture and
Research Perspectives

Imran Khan, Fatna Belqasmi, Roch Glitho, Noel Crespi, Monique Morrow, and Paul Polakos

I

0890-8044/15/$25.00 © 2015 IEEE

Imran Khan and Noel Crespi are with Télécom SudParis.

Fatna Belqasmi is with Zayed University.

Roch Glitho is with Concordia University.

Monique Morrow and Paul Polakos are with Cisco Systems.

This article is an extended version of a short paper presented at the 6th
Joint IFIP Wireless and Mobile Networking Conference (WMNC ’13),
April 23–25, 2013, Dubai, UAE, under the title “A Multi-Layer Archi-
tecture for Wireless Sensor Network Virtualization.”

KHAN_LAYOUT_Layout 1 5/15/15 12:55 PM Page 104

the art. The proposed architecture is presented in the third
section. The fourth section discusses the implementation
alternatives with the proof-of-concept prototype and the
recorded performance measurements. The research directions
are discussed in the fifth section. We conclude in the last sec-
tion by discussing the lessons learned.

A Critical Overview of the State of the Art
There are two categories of WSN virtualization: node level
and network level. Figure 1 shows a high-level view of WSN
virtualization. WSN node-level virtualization allows multiple
applications to run their tasks concurrently on a single WSN
node [5] (Fig. 1a). This execution can be sequential (e.g.,
round-robin) or simultaneous, with context switching between
application tasks.

In WSN network-level virtualization, a subset of sensor
nodes belonging to a deployed WSN forms a virtual sensor
network (VSN) to execute given application tasks at a given
time [6], while the other sensor nodes remain available for
other application tasks. WSN network-level virtualization can
be achieved in two ways. Different VSNs can be created over
the same underlying WSN infrastructure (Fig. 1b), or sensor
nodes can form a single VSN over multiple WSNs in different
administrative domains (Fig. 1c). The latter is possible when
the sensor nodes can support the concurrent execution of
application tasks. This is the case these days because many
popular sensor operating systems (e.g., Contiki and Squawk
VM) that run on resource-constrained devices enable node-
level virtualization through the concurrent execution of appli-
cations’ tasks on the same sensor node.

Motivating Example and Requirements
In this section we first present a motivating example and then
draw requirements from it.

Motivating Example — A real-world deployment of a WSN is
presented in [7], in which a WSN is used to monitor the
impact of constructing a road tunnel under an ancient tower
in Italy, as it was feared that the tower could lose its ability to
stand on its own and might collapse during the construction.
Now consider that there are three users interested in the fate
of the tower. The first is the construction company, as it needs
to make sure that the tower does not lose its ability to stand
on its own; otherwise, it will have to pay a heavy fine. The sec-
ond user is the conservation board, which routinely monitors
all the ancient sites around the city. The third user is the local
municipality, which has to plan emergency remedial/rescue
actions in case the tower falls during the construction.

It is quite possible that the conservation board has already
deployed its own WSN to monitor the health of ancient sites,
including this tower. In this case the construction company
and local municipality can reuse the existing sensor nodes
during the construction period. In the absence of WSN virtu-
alization, there are only two possible solutions. One is to rely
on the information provided by the conservation board appli-
cation. However, this information may not be at the required
granularity level. Worse, some of the information that is need-
ed might simply not be available because the requirements of
the construction company and the local municipality were not
considered when the conservation board application was
designed and implemented. The second solution is that each
user deploys redundant WSN nodes, but this is an inefficient
approach.

Requirements — The first requirement is the support of node-
level virtualization to allow the execution of multiple applica-
tion tasks on the same sensor node. The second requirement
is the ability of sensor nodes to dynamically form groups to
execute isolated and transparent application tasks concurrent-
ly (i.e., support for WSN network-level virtualization). The
third requirement is support of application priority. In some
critical application scenarios such as fire monitoring, it is
important that other tasks have less priority than the one
reporting the fire event.

The fourth requirement is that the proposed solution
should be applicable to a wide range of applications and not
tailored for a particular scenario or domain, as is the case
with most solutions. The fifth requirement is that the pro-
posed solution should be platform-independent and not
depend on specific operating systems or customized/tailored
interfaces. The sixth and final requirement is that the solution
should address heterogeneity, that is, cope with sensor nodes
that have different capabilities (e.g., processing power, memo-
ry).

The State of the Art and Its Shortcomings
We divide the related work into three classes: node-level, net-
work-level, and hybrid virtualization solutions. The hybrid
solutions combine both node- and network-level virtualization.

Node-Level Virtualization — In order to achieve node-level vir-
tualization, mechanisms must be in place to allow deployed
WSN nodes to execute new application tasks as well as update
existing ones. One solution is to reprogram WSN nodes indi-
vidually, but that is neither feasible nor efficient. Wireless
reprogramming, on the other hand, allows large numbers of
WSN nodes to be updated with new application tasks with

IEEE Network • May/June 2015 105

Figure 1. WSN virtualization categories: a) a general-purpose sensor node; b) multiple VSNs over a single WSN; c) a single VSN
over multiple WSNs.

WSN 3WSN 2

VSN

WSN

VSN2

VSN3

VSN1

Application
3 task

Application
2 task

Virtual machine/manager/
hypervisor

Sensor operating system

Application
1 task

WSN 1

c)b)a)

KHAN_LAYOUT_Layout 1 5/15/15 12:55 PM Page 105

minimum effort. It is now the main mechanism used for node-
level virtualization. Two examples of node-level virtualization
based on wireless reprogramming are discussed below. Their
main drawback is platform dependence.

Maté [5] is a pioneering work that provides sequential exe-
cution of application tasks on resource-limited early-genera-
tion sensor nodes. It is a tiny virtual machine consisting of a
stack-based binary code interpreter and works on top of
TinyOS. Application tasks are divided into code capsule(s) of
up to 24 instructions and are executed one by one. A viral
code distribution scheme is used to propagate code and repro-
gram the sensor nodes. As there is tight coupling between the
application code and TinyOS, installing a new code requires
the replacement of the whole OS. There is no support for
application priority, and only a limited set of applications is
supported. Furthermore, the approach is not platform-inde-
pendent since it only works on TinyOS, but it does address
heterogeneity.

MANTIS [8] is a thread-based embedded operating system.
Programs are created as user-level threads with dedicated
memory space and static data attached to them at compile
time. Long-running threads can be preempted by short-run-
ning threads. The work on wireless reprogramming is ongoing
according to the authors. The techniques used are the wireless
reflashing of the OS and reprogramming of single threads.
Unlike Maté, MANTIS does provide application priority.
However, it is not platform-independent.

Network-Level Virtualization — In [6], sensor nodes form clus-
ters to support applications that monitor dynamic phenomena.
The sensor nodes within each cluster execute application(s)
tasks, meaning a sensor node can be part of multiple clusters.
With each cluster dedicated to an application, a WSN can be
utilized by multiple applications concurrently, hence realizing
network-level virtualization. Two illustrative applications are
presented as motivation. Unfortunately, the work is poor in
terms of technical details (e.g., how individual nodes execute
application tasks). Furthermore, there is no discussion of how
application priority, heterogeneity, and platform indepen-
dence are tackled. This work was extended in [9] in order to
facilitate the creation, operation, and maintenance of dynamic

clusters to achieve network-level virtualization. Once an event
is detected, sensor nodes are grouped as a dynamic cluster
tree by exchanging VSN formation messages. However, in
terms of our requirements, none of the drawbacks of [6] are
addressed.

The authors in [10] introduce the problem of mission
assignment in WSNs. The work can be related to network-
level virtualization because the WSN is able to support multi-
ple missions at the same time. Each mission uses a dedicated
subset of sensor nodes that are not shared with other mis-
sions. A mission assignment problem is modeled as a weight-
ed bipartite graph to optimally assign the sensor nodes to
missions. Achieving a mission produces a profit, so the goal is
to maximize profit by efficiently achieving as many missions as
possible. Both centralized and distributed solutions are pre-
sented, using proofs and algorithms including an energy-aware
solution. This solution does not consider any specific applica-
tion domain. Heterogeneity is addressed along with platform
independence. However, application task priority is not pro-
vided since each sensor node executes only one application
task at a time.

Hybrid Solutions — The authors in [11] discuss the SenShare
platform, which supports both WSN-node and network-level
virtualization. They consider TinyOS applications with an
embedded hardware abstraction layer. The underlying sensor
node resources are then accessed using a runtime layer on top
of TinyOS. Since TinyOS supports multiple tasks at the same
time, node-level virtualization is achieved. For network-level
virtualization, an overlay network using Collection Tree Pro-
tocol (CTP) is created to group sensor nodes executing the
same application. The physically scattered sensor nodes exe-
cuting the same application can be grouped into a single over-
lay network. SenShare is the first solution targeting
comprehensive WSN virtualization. It supports node- and net-
work-level virtualization, application priority, and heterogene-
ity, and it is independent of any application domain. However,
it is not platform-independent, as only TinyOS applications
are supported.

Melete [12] is an extension of Maté and supports both
node- and network-level virtualization. Concurrent execution

IEEE Network • May/June 2015106

Figure 2. Multi-layer WSN virtualization architecture.

End-user
application

End-user
application

Application overlay
Application overlay

Overlay layer
(independent

application overlay)

Virtual sensor
access layer
(functional

entities providing
unified interfaces to

support
heterogeneous
sensor nodes)

Virtual sensor layer
(logical

representation of
each sensor

executing multiple
tasks)

Physical layer
(heterogeneous

sensors, and
GTO nodes)

Ci

Ci

Ci
CiDi

Di
DiDi

Di

Di

Di

GiGi
Gi

PDiPDiPDiPDiPDi PCi
PDi

PDi
PDi PDi

Di Di
Di

Sensor
agent

B

B

B
B

B
BBB

B
B
B

B

B
B
B B

BB B

A
A

A
A
A A A

A
GTO node

GTO node

Wireless sensor
network B

Wireless sensor
network A

Wireless sensor
network C

AAAAA

A

A
AAAAA

A AA
AA

A

A A
A

Sensor
agent

Type A
sensor B

Type A sensor

Virtual
sensor

1

Virtual
sensor

2

Virtual
sensor

1

Virtual
sensor

2

Virtual
sensor

3

Sensor
agentInternet

Registration
server

Type B
sensor

KHAN_LAYOUT_Layout 1 5/15/15 12:55 PM Page 106

IEEE Network • May/June 2015 107

of application tasks is achieved by making the fol-
lowing enhancements to Maté: dedicated storage
and execution space for applications to allow con-
currency, and a code dissemination protocol to
allow selective and reactive (re)programming of
sensor nodes. For network-level virtualization it
uses a dynamic grouping technique of sensor
nodes. A sensor node can be part of more than
one logical group at the same time. The support-
ed network topology is a connected graph. Melete
does not support application priority and is not
platform-independent. It only supports a limited
set of applications, but it does tackle heterogene-
ity.

Proposed Architecture
In this section, we first present the architectural
principles. We then present our multi-layer archi-
tecture based on overlays, followed by a discus-
sion of the interfaces and the overlay creation
procedure.

Architectural Principles
The first architectural principle is that new appli-
cations/services are deployed as new overlays on
top of the physical WSN. Overlays have several
advantages: they are distributed, lack central con-
trol, and allow resource sharing [13]. The second
principle is that any given physical sensor node
can execute (locally) a task for a given application
deployed in the overlay. Any given sensor node
may execute several such application tasks at any
given time.

The third principle is that not all WSN nodes perform the
overlay-related operations, as they may not have enough capa-
bilities to support the overlay middleware. When that is the
case, they will delegate the operations to more powerful sen-
sors and even to other nodes. This principle in effect makes it
possible to address the heterogeneity requirement and enables
network-level virtualization for early-generation resource-con-
strained sensor nodes.

The fourth principle is that within the architecture there
are separate data and control paths. The sensor data (e.g.,
temperature values) is transmitted from sensor nodes to the
overlay application using the data path. The control data (e.g.,
changing application priority and overlay management) is sent
over the control path. This separation of paths makes it easy
to work on new protocols for each path independently.

The last principle is the use of emerging standards, aimed
at resource-constrained devices, to tackle the platform inde-
pendence challenge. These standards include protocols such
as the Constrained Application Protocol (CoAP) [14] and
DNS-Service Discovery (DNS-SD) [15], and standards such as
Sensor Model Language (SensorML) [16], Observations &
Measurements (O&M) [17] and Sensor Markup Language
(SenML) [18]. This principle of course implies the need for
converters/mappers for devices that do not support the stan-
dards.

CoAP is an application-layer transfer protocol, like HTTP,
designed to work with resource-constrained devices. It has less
overhead, memory, and processing requirements than HTTP.
DNS-SD offers service discovery in resource-constrained net-
works and allows for the seamless integration of such architec-
tures into the existing IP networks. SensorML provides
standard models and XML-based encoding to describe sensor
measurements and processes. It is able to provide interoper-

ability, automatic discovery, utilization, and sensor sharing.
O&M is a standard that defines encoding schemas for the
observations made by sensors. SenML provides a data model
for sensor measurements and simple metadata about sensors
in JSON, XML, and EXI formats.

Overall Architecture
Figure 2 shows our proposed multi-layer architecture, and
Table 1 provides the list of components used. There are four
layers (physical, virtual sensor, virtual sensor access, and over-
lay), two paths (data and control), five interfaces (data [Di],
proprietary Di ([PDi], control [Ci], proprietary Ci [PCi], and
gateway [Gi]), and a registration server.

At the physical layer we have independent WSNs that con-
sist of two types of sensor nodes, that is, resource constrained
(type A) and capable (type B) sensors. Each WSN also has
specialized nodes, called GTO nodes. Their role is to help
type A sensors join the application overlays and provide het-
erogeneity. Gateways, sink nodes, or type B sensors can act
as GTO nodes when required. For example, in the motivating
example in the previous section, if the existing sensors are of
type A, either the existing gateway node or type B sensors
deployed by the construction company can help those sensors
become part of the construction company overlay. This might
increase the complexity of the type B sensor nodes but does
allow flexibility.

The virtual sensor layer consists of the logical representa-
tion of each sensor executing multiple application tasks con-
currently. Each logical representation is called a virtual sensor
in our architecture, which is an abstraction of an application
task run by a sensor.

The virtual sensor access layer consists of sensor agents,
which ensure platform independence. This is achieved by pro-
viding standardized interfaces (Di and Ci) to interact with the

Table 1. Components of the architecture.

Abbreviation Component Remarks

— Type A sensor Legacy/resource-constrained sensor

— Type B sensor New-generation smart IP sensor
node

GTO node Gates-to-overlay
node

Gateway/sink node capable of
joining application overlays on
behalf of type A sensors

— Sensor agent
Functional entity providing a unified
interface to provide platform
independence

— Registration server Sensor repository

Di Data interface Interface to send sensor data to
application overlay

PDi Proprietary data
interface

Proprietary interface to send virtual
sensor data to sensor agent

Ci Control interface Interface to send/receive control
data from end-user application

PCi Proprietary control
interface

Proprietary interface to send/receive
control data from virtual sensor to
sensor agent

Gi Gates-to-overlay
interface

Interface to send/receive control
data between type A sensors and
type B sensors/GTO nodes

KHAN_LAYOUT_Layout 1 5/15/15 12:55 PM Page 107

IEEE Network • May/June 2015108

end-user applications, and are mapped onto platform-specific
(proprietary) interfaces (PDi and PCi) for the underlying
physical sensor nodes. Sensor agents can be implemented in
either capable (type B) sensors or GTO nodes.

The overlay layer consists of independent application-spe-
cific overlays (two are shown in Fig. 2, but there could be
many more). Each application overlay is created by the end-
user application and consists of virtual sensors that run the
overlay application tasks. An overlay protocol is used for mes-
sage exchange inside an overlay. A registration server, which
contains the details of the deployed sensor nodes, is used by
end-user applications to find sensor nodes.

Interfaces
The data path uses the data interface (Di) supported by all of
the sensor agents to send the data received from the virtual
sensors executing the end user’s application task to the appli-
cation overlays. The control path uses the control interface
(Ci) supported by all sensor agents to send/receive control
data. Examples of control data include sending requests to
change application priority and sampling frequency. The inter-
faces, PDi and PCi, are proprietary and are used by the sensor
agent to communicate with WSNs. Figure 3 shows high-level
examples of when sensor data is sent over PDi and Di inter-

faces (Fig. 3a) (when fire is detected) and
when a request to change application task
priority is sent over Ci and PCi interfaces
(Fig. 3b). In this case it is the priority of the
task running on sensor 02. The gates-to-over-
lay interface (Gi) is provided by all the sen-
sors as well as the GTO nodes. Any
communication from type B or GTO nodes
with type A sensors is done using this inter-
face.

Overlay Creation Procedure
This section describes the overlay creation
procedure. The creation of the overlay is a
three-step procedure initiated by the end-user
application. The first step is dynamic resource
discovery and overlay preconfiguration, allow-
ing the discovery of the sensors and GTO
nodes on the fly according to the require-
ments of the end-user application. The sec-
ond step is the activation of the overlay. The
selected sensor (type B) and GTO nodes
receive an overlay join request (or advertise-
ment) over the Ci interface. After joining the
overlay, the type B sensors and GTO nodes
(for type A sensors) may receive the applica-
tion task with its desired priority level. The
final step is the execution of the end-user
application, which begins when each sensor
starts executing the end-user application task.
Depending on the application requirements,
sensors may exchange messages among them-
selves in the overlay before sending any data
to the end-user application over the Di inter-
face.

Implementation Alternatives,
Proof of Concept Prototype, and
Measurements
Implementation Alternatives
Our proposed architecture consists of the

data plane, the control plane, and several interfaces that
belong to them. The Di interface, belonging to the data plane,
carries the actual data. The Ci and Gi interfaces carry control
messages and are part of the control plane.

There are several options for implementing a data plane
interface. Both HTTP and CoAP can be used as application-
layer protocols, but we chose CoAP as it will allow type A
nodes to support the same protocol for Di and Gi interfaces.
We use SenML specifications to encode the sensor data in
standard JSON format. The combination of SensorML and
O&M is another option, but we selected SenML since it is
less complex.

For the control plane, one candidate protocol is JXTA [19],
an open source peer-to-peer protocol specification that allows
the creation of independent, robust, and efficient overlay net-
works. ScatterPastry [20] is another option. For our work we
opted to use JXTA since its implementations are readily avail-
able.

Prototype
We implemented a simple brush fire scenario discussed in [4]
as a prototype. In this scenario, the city administration is
interested in the early detection of brush fire eruption and in
its evolution, using a WSN and a fire contour algorithm

Figure 3. Example of communication over data and control interfaces: a) send-
ing sensor data over PDi and Di interfaces; b) changing application task prior-
ity over PCi and Ci interfaces.

a)

b)

Di interface
PDi interface

Content-type = application/json
RadiogramConnection.send
(sensor01, 1376020076,
20.1, Cel)

PCi interface

RadiogramConnection.send
(task02, increase)

{”e”:[
 {”v”:20.1}],
 “bn”:”Sensor01”,
 “bt”:1376020076,
 “bu”:”Cel”
}

Ci interface

Content-type = application/json

{”e”:[
 {”n”:task02”},
 {”sv”:”increase task priority”}],
 “bn”:”Sensor02”,
 }

End-user
application

GTO node
[sensor agent]

Virtual sensor of
sensor01 [type A]

Virtual sensor
of sensor02

[type B]
GTO node

[sensor agent]
End-user

application

201 created

200 OK
return(true)

Fire detected

getinstance(tasks02Thread);

setPriority{DEFAULT+1)

KHAN_LAYOUT_Layout 1 5/15/15 12:55 PM Page 108

(FCA). Some houses in the area already have their own sen-
sors to detect fire. To accelerate the deployment of its appli-
cation and avoid redundancy, the city administration has
opted to deploy sensors in areas under its jurisdiction (i.e.,
streets and parks) and incorporate the sensor nodes already
deployed in private homes. The home owners get incentives
like tax rebates for allowing the use of their sensors by city
administration. The home gateways acts as GTO nodes. All of
the privately owned sensors execute two application tasks one
for the home owner and one for the city administration. Fig-
ure 4a shows the mapping of the scenario onto our architec-
ture.

We make the following assumptions. First, we assume that
the city administration has already discovered and sent its
application task to each of these sensors. The second assump-
tion is that all of the sensors in the prototype are type A sen-
sors that need a GTO node for overlay-related tasks. Third, as
it was not possible to generate a fire in a lab environment, the
city administration application task periodically measured the
temperature value in a sensor and sent it to the GTO node.
We used six Java SunSpots sensors, each executing three
application tasks concurrently. The application tasks were
coded in Java 2 Platform Micro Edition (J2ME). J2ME is a
robust, flexible Java platform that enables the development of
applications for mobile and embedded devices. The city
administration’s overlay network was implemented using a
Java-based implementation of JXTA, JXSE 2.6.

A RESTful web service is used by the city administration
node to receive fire alerts. Each GTO node, upon receiving
fire notification from its sensor, sends an HTTP POST mes-
sage to a URI (http:///FireContourService/events/fire/) to create
a fire event. The content type of the HTTP POST message is
set to application/senml+json, and the event data received
from Java SunSpot is mapped to JSON format according to
SenML specifications. Once the event is created, the city
administration node sends a fire notification message to the
peers in the overlay.

The overlay is created by the city admin node, acting as
rendezvous peer, by advertising its peer group (fire contour
service) using JXTA pipe advertisements before the fire
event. The GTO nodes join the fire contour service as edge
peers by replying to the received pipe advertisement. The
city admin node sends the fire notification message using
the JXTA multicast socket, which provides efficient mes-
sage exchange between members of the same peer group.
After the execution of the fire contour algorithm, the reply
message is sent directly to the city admin node instead of
being multicast.

The prototype uses a simple probabilistic fire contour
algorithm, considering that a distant house will send fire
notifications less frequently than a nearby house because
the fire is far from it. The city administration’s applica-
tion, created using JavaFX, receives the fire alert mes-
sages as wel l as the peers ’ rep l ies , and d i sp lays the

IEEE Network • May/June 2015 109

Figure 4. Instantiation of the architecture and prototype setup: a) instantiation of the architecture; b) prototype setup.

City admin area
map display

City admin
node

RESTful city admin
web service

City admin overlay
(JXTA peer group) JXTA

peer E
JXTA

peer DJXTA
peer F

JXTA
peer C

JXTA
peer B

City
admin
JXTA
peer JXTA

peer A

City admin
application

City admin
overlay

Sensor
agent

Sensor
agent

Sensor agent

Di

PDi

PDi

Di

Gi

Gi

House A

Di

Ci
Ci

Ci

City admin
control task

City admin
task 1

Home
task

City admin
task 1

Home
task

GTO
node

GTO
node

Sensor B
Sensor C

Sensor F Sensor A

Sensor D

Sensor E

GTO
node

A USB

a) b)

City admin
task 1

House B

Public r
oad

Sensor agent

GTO
node

B USB

HTTP POST message
in JSON format

KHAN_LAYOUT_Layout 1 5/15/15 12:55 PM Page 109

output us ing the area map. JavaFX i s a se t o f Java
libraries that allow developers to rapidly design, create,
and deploy client applications that operate across diverse
platforms.

The prototype setup is illustrated in Fig. 4b. The city
administration application and its fire contour web service ran
on a laptop with an Intel Core i5 CPU clocked at 2.67 GHz,
and a 4 GB RAM with 32-bit Windows 7 Enterprise. The
other two laptops acted as GTO nodes for Java SunSpots and
ran three JXTA peers each. Their configurations were an
Intel Core i7 CPU clocked at 2.70 GHz with 8 GB RAM, 64-
bit Windows 7 Professional, an Intel Core i5 CPU clocked at
2.60 GHz, and a 4GB RAM with Windows 7 Enterprise. All
three laptops used JVM version 1.7.0_21 and were connected
to a private LAN.

Performance Measurements

Performance Metrics — The performance of the prototype was
assessed in terms of the following delays: HTTP POST delay
(HPD), overlay creation delay (OCD), and fire notification
delay (FND).

HPD is the time difference between when the GTO
node sends an HTTP POST request and when it receives
the corresponding success code (201 created). HPD is
calculated for each sensor. OCD is the time it takes to
set up the city administration overlay from a nonexistent
state to a ready state, when it advertises its fire contour
service and is ready to accept join requests. We measured
this delay inside the Java code to ensure that the OCD
does not include the JVM start-up delay. FND is mea-
sured as the time it takes for the city admin node to mul-
t icast f i re not i f icat ion messages to JXTA peers and
receive their replies after they execute the fire contour
algorithm. For each experiment we restarted the JVM
and cleared the previous JXTA configuration cache. All
delays are measured in milliseconds and calculated at the
sender side.

Performance Results — The HPD measurements are shown in
Fig. 5a (for clarity, only 15 measurements are shown). The
dark blue horizontal line shows the average delay for the 50
measurements, 18.96 ms. It is observed that the delay for the
first POST message is much larger than that for the subse-
quent messages. This long delay is due to the three-way hand-
shake of TCP connection that takes place during the first
POST message, whereas for subsequent requests a persistent
HTTP connection (a.k.a. HTTP keep-alive) reduces delay
considerably. Figure 5b shows the OCD of a city admin JXTA
peer with an average value of 1983 ms from 50 iterations indi-
cated by the horizontal blue line. The delay includes the
JXTA core startup, the creation of a fire contour service, the
related pipe advertisement, a JXTA multicast socket, and the
thread for accepting join requests from other JXTA peers.
For each iteration a new JXTA cache was generated instead
of using the old one. Figure 5c shows the average FND of five
sensors that executed a fire contour algorithm in response to
a notification message sent by a city admin JXTA peer. In this
case sensor E reported the fire. The average FND of five sen-
sors is 19.58 ms.

In order to determine the overhead of WSN virtualization,
we consider the scenario where sensors do not support node-
level virtualization and only execute city admin tasks. There
is also no network-level virtualization and no overlay network
for message exchange. In this case, the fire counter algorithm
will be executed by the GTO nodes after getting an HTTP
POST message from the city admin node. For a simple com-
parison, if we consider that the FND without WSN virtualiza-
tion is similar to HPD, that is, 18.96 ms, and FND with WSN
virtualization is 19.58 ms, then with WSN virtualization we
have approximately 3.27 percent overhead. This overhead is
due to the processing of XML-based JXTA messages. Our
implementation demonstrates that WSN virtualization is
indeed feasible and does not incur much overhead. Node-
level virtualization is achieved with Java SunSpots with very
little effort. Network-level virtualization is achieved using
JXTA, and once JXTA is operational, the delays are mini-

IEEE Network • May/June 2015110

Figure 5. Results: a) HTTP POST message delay; b) overlay creation delay; c) fire notification message delay.

Sensor A Sensor B Sensor C Sensor D Sensor F

1
Experiment number Experiment number

Overlay creation delay

a) b)

HTTP POST message delay

50

0

D
el

ay
 (

m
s)

100

150

200

250

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

1600

1500

D
el

ay
 (

m
s)

1700

1800

1900

2000

2100

2200

c)

Fire notification message delay

20.7 20.96

19.06

1

18.54 18.68

12

10

D
el

ay
 (

m
s)

14

16

18

20

22

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sensor A
Sensor B
Sensor C
Sensor D
Sensor E
Sensor F
Avg delay

OCD
Average OCD

KHAN_LAYOUT_Layout 1 5/15/15 12:55 PM Page 110

mal. OCD is inevitable, but in the long run, using JXTA is
beneficial as it provides a robust, highly scalable, and effi-
cient solution.

Overall, the results show the typical delays experienced in a
private LAN setting. The same JXTA pipe advertisement of
the fire contour service was used to send and receive the fire
notification messages over a JXTA multicast socket, which
greatly improved the overall performance.

Research Directions
WSN virtualization is a very rich research area, and our pro-
posed preliminary architecture has raised several interesting
issues. This section provides a non-exhaustive sample. The
first issue is a dynamic publication and discovery framework
for sensor and GTO nodes. In this work, we assumed a static
publication process where the sensor and GTO owners pub-
lish their nodes to a central repository. To automate the pro-
cess of WSN virtualization, an on-the-fly publication and
discovery mechanism would be required. A CoAP-based
framework could be used as starting point. For a centralized
solution, a CoAP resource directory (RD) mechanism can be
used, while a CoAP resource discovery mechanism would be
more appropriate for a distributed solution. Similarly, a DNS-
SD mechanism can be used in combination with CoAP to pro-
vide new solutions.

The choice of data formats for various interfaces is another
issue. The current OGC — O&M and SensorML specifica-
tions use the XML format, which is inefficient in resource-
constrained environments. SenML addresses this issue by
using JSON and EXI formats, and it works with both HTTP
and CoAP, but it also has some open issues. For example, we
can use it to specify simple metadata about measurements,
but there is no mechanism to provide such data for describing
the sensors, their capabilities, and their resources (memory,
space, and battery life) at a particular time. The possibility of
a lightweight mechanism for reporting a sensors’ runtime sta-
tus is very appealing. Similarly, a semantically enriched format
would be of particular use for creating intelligent sensor-
based systems in the context of the Internet of Things, which
is currently not possible with SenML.

An important issue is optimal task assignment to sensors.
The problem is essentially the mapping of end-user applica-
tion requirements to the available resources, which is very
challenging in a virtualized environment. Reference [10] pro-
poses a solution, but it assumes that every sensor executes a
single task, which is not the case in a virtualized environment.
However, it could be used as starting point for further
research. WSN-oriented overlay middleware is yet another
issue to investigate. We need an efficient solution that pre-
vents overlays from interacting in a harmful way when they
compete for underlying resources. JXTA and similar protocols
work well, but not in resource-constrained environments.
Some early attempts like [20] exist, but they must be com-
bined with the concept of WSN virtualization.

A signaling framework to support quality of service (QoS)
and session management is also needed. Issues like handling
application requests for setting/changing task priority will be
tackled by such a general QoS framework. There are several
signaling frameworks, such as SIP/RSVP, but they may not be
suitable for sensors. Again, a CoAP-based signaling protocol
is a potential solution. Using the virtualization concept for
mobile WSNs is also interesting, since they are becoming
more and more popular. Vehicular ad hoc networks, social
networks, and crowd-based sensing can provide concrete
application scenarios to motivate the virtualization of mobile
WSNs.

Lessons Learned
In this article we have proposed a new preliminary multi-layer
architecture for WSN virtualization and have identified sever-
al research directions.

We have learned several lessons. The first is that WSN
node-level virtualization is still in its infancy, and very few
WSN kits supporting node-level virtualization are readily
available. This is certainly due to the challenges of designing
hypervisors in resource-constrained environments. A second
lesson is that most existing WSN standard specifications perti-
nent to our work are still embryonic. SenML, for instance, is
very promising. However, in its present form, it is not suitable
for control functions. On the other hand, SensorML is com-
plex and not suitable for a general-purpose and efficient solu-
tion. A third lesson is that most existing overlay middleware is
unsuitable for WSNs because it is usually not designed for
resource-constrained devices. We used JXSE, which is one of
the best choices available. However, its current open source
implementation is rather old, and the future of the initiative is
uncertain.

Acknowledgments
This work is partially supported by Cisco Systems through
grant CG-576719, and by the Canadian National Science and
Engineering Research Council (NSERC) through the Canada
Research Chair in End-User Service Engineering for Commu-
nications Networks.

References
[1] I. F. Akyildiz et al., “Wireless Sensor Networks: A Survey,” Computer Net-

works, 38.4, 2002, pp. 393–422.
[2] S. Loveland et al., “Leveraging Virtualization to Optimize High-Availability

System Configurations,” IBM Sys. J., vol. 47, no. 4, 2008, pp. 591–604.
[3] M. Fazio et al., “Huge Amount of Heterogeneous Sensed Data Needs the

Cloud,” Proc. 9th IEEE Int’l. Multi-Conf. Systems, Signals and Devices,
Chemnitz, Germany, 20–23 Mar. 2012.

[4] I. Khan et al., “A Multi-Layer Architecture for Wireless Sensor Network Vir-
tualization,” Proc. 6th Joint IFIP Wireless and Mobile Networking Conf.,
Apr. 23–25, 2013, Dubai, UAE, pp. 1–4.

[5] P. Levis and D. Culler: “Maté: A Tiny Virtual Machine for Sensor Net-
works,” ASPLOSX: Proc. 10th Int’l. Conf. Architectural Support for Pro-
gramming Languages and Op. Sys., San Jose, CA, 2002, pp. 85–95.

[6] A. P. Jayasumana et al., “Virtual Sensor Networks a Resource Efficient
Approach for Concurrent Applications,” Proc. 4th Int’l. Conf. Info. Tech.,
2007, Las Vegas, NV, 2007, pp. 111–15

[7] M. Ceriotti et al., “Monitoring Heritage Buildings with Wireless Sensor
Networks: The Torre Aquila Deployment,” Proc. 2009 Int’l. Conf. Info. Pro-
cessing in Sensor Networks, IEEE Computer Society, 2009.

[8] S. Bhatti et al., “MANTIS OS: An Embedded Multithreaded Operating Sys-
tem for Wireless Micro Sensor Platforms,” Mobile Network Applications,
vol. 10, no. 4, 2005, pp.563–79.

[9] H. M. N. Dilum Bandara et al., “Cluster Tree Based Self Organization of
Virtual Sensor Networks,” Proc. IEEE GLOBECOM Wksp. Wireless Mesh
and Sensor Networks, New Orleans, LA, Nov. 2008.

[10] H. Rowaihy et al., “Sensor-Mission Assignment in Wireless Sensor Net-
works,” ACM Trans. Sensor Networks, 6.4, 2010, p. 36.

[11] I. Leontiadis et al., “SenShare: Transforming Sensor Networks into Multi-
Application Sensing Infrastructures,” Wireless Sensor Networks, Springer,
2012, pp. 65–81.

[12] Y. Yu et al., “Supporting Concurrent Applications in Wireless Sensor Net-
works,” Proc. 4th Int’l. Conf. Embedded Networked Sensor Systems, Boul-
der, CO, 2006, pp.139–52.

[13] E. K. Lua et al., “A Survey and Comparison of Peer-To-Peer Overlay Net-
work Schemes,” IEEE Commun. Surveys and Tutorials, vol. 7, no. 2,
2005, pp. 72–93.

[14] Z. Shelby “Embedded Web Services,” IEEE Wireless Commun., vol. 17,
no. 6, Dec. 2010, pp. 52–57.

[15] A. J. Jara et al., “Light-Weight Multicast DNS and DNS-SD (lmDNS-SD):
IPv6-Based Resource and Service Discovery for the Web of Things,” Proc.
Sixth Int’l Conf. Innovative Mobile and Internet Services in Ubiquitous
Computing, 2012, vol., no., 4–6 July 2012, pp. 731–38.

[16] M. Botts and A. Robin, “Sensor Model Language (SensorML),” Open
Geospatial Consortium (OGC) doc. no. 07-000, Wayland, MA.

[17] S. Cox, Ed., “Observations and Measurements — Part 1 — Observation
Schema,” OGC doc. no. 07-002r1, Wayland, MA.

IEEE Network • May/June 2015 111

KHAN_LAYOUT_Layout 1 5/15/15 12:55 PM Page 111

[18] Jennings et al., “draft-jennings-senml-10,” IETF Internet draft, Oct. 22,
2012; expired April 25, 2013.

[19] L. Gong, “JXTA: A Network Programming Environment.,” IEEE Internet
Comp., vol. 5.3, 2001, pp. 88–95.

[20] AAl-B. Mamou and H. Labiod, “ScatterPastry: An Overlay Routing Using
a DHT over Wireless Sensor Networks,” Proc. IEEE Int’l. Conf. Intelligent
Pervasive Computing, 2007, pp. 274–79.

Biographies
IMRAN KHAN [S] (imran@ieee.org) received his B.S. degree in computer sci-
ence from COMSATS Institute of IT, Pakistan, and his M.S. degree in multime-
dia and communication from M.A. Jinnah University, Pakistan. He was a
member of the Center of Research in Networks and Telecom (CoReNeT) from
2008 to 2010 and worked on projects funded by French Ministry of Foreign
Affairs and Internet Society (ISOC). Currently, he is pursuing his Ph.D. degree
at Institut Mines-Télécom, Télécom SudParis jointly with Paris VI (UPMC). He is
also a collaborating researcher at Concordia University, Montreal, Canada,
working on a project funded by Cisco. He has contributed to IETF standard-
ization. His research interests are Internet of Things (IoT), virtualization, cloud
computing, service engineering, and wireless sensor networks.

FATNA BELQASMI (fatna.belqasmi@zu.ac.ae) holds a Ph.D. and an M.Sc.
degree in electrical and computer engineering from Concordia University,
Canada. She is currently working as an assistant professor at Zayed Universi-
ty Abu Dhabi, United Arab Emirates. In the past, she worked as a research
associate at Concordia University, Canada, and as a researcher at Ericsson
Canada. She was part of the IST Ambient Network project (a research project
sponsored by the European Commission within the Sixth Framework Pro-
gramme -FP6-). She worked as an R&D engineer for Maroc Telecom in Moroc-
co. Her research interests include next generation networks, service
engineering, distributed systems, and networking technologies for emerging
economies.

ROCH GLITHO [SM] (http://users.encs.concordia.ca/~glitho/) holds a Ph.D.
(Tekn. Dr.) in tele-informatics (Royal Institute of Technology, Stockholm, Swe-
den) and M.Sc. degrees in business economics (University of Grenoble,
France), pure mathematics (University Geneva, Switzerland), and computer sci-
ence (University of Geneva). He works in Montreal, Canada, as an associate
professor of networking and telecommunications at the Concordia Institute of
Information Systems Engineering (CIISE) where he leads the telecommunication
service engineering (TSE) research laboratory (http://users.encs.concordia.
ca/~tse/). In the past he worked in industry for almost a quarter of a century,
holding several senior technical positions at LM Ericsson in Sweden and
Canada (e.g., expert, principal engineer, senior specialist). His industrial
experience includes research, international standards setting (e.g., contribu-
tions to ITU-T, ETSI, TMF, ANSI, TIA, and 3GPP), product management, pro-
ject management, systems engineering, and software/firmware design. In the
past he has served as an IEEE Communications Society Distinguished Lecturer,
Editor-In-Chief of IEEE Communications Magazine, and Editor-In-Chief of IEEE
Communications Surveys & Tutorials. His research areas are virtualization and
cloud computing, machine-to-machine communications (M2M) and Internet of
Things; distributed systems (e.g., SOAP-based web services, RESTful web ser-
vices); and rural communications and networking technologies for emerging
economies.

NOEL CRESPI (noel.crespi@mines-telecom.fr) received his Master’s degree from
the Universities of Orsay (Paris 11) and Kent (United Kingdom), a Diplome

d’Ingénieur from Telecom ParisTech, and his Ph.D. and Habilitation from Paris
VI University (Paris-Sorbonne). From 1993, he was with CLIP, Bouygues Tele-
com, and with Orange Labs in 1995. He took leading roles in the creation of
new services with the successful conception and launch of Orange prepaid
service and in standardization (from rapporteurship of the IN standard to
coordination of all mobile standards activities for Orange). In 1999, he joined
Nortel Networks as telephony program manager, architecting core network
products for the EMEA region. He joined Institut Mines-Telecom in 2002 and
is currently a professor and program director, leading the Service Architecture
Lab. He coordinates the standardization activities for Institut Mines-Telecom at
ITU-T, ETSI, and 3GPP. He is also an adjunct professor at the Korea
Advanced Institute of Science and Technology, an affiliate professor at Con-
cordia University, and is on the four-person Scientific Advisory Board of FTW
(Austria). He is the scientific director of the French-Korean laboratory ILLU-
MINE. His current research interests are in service architectures, services webi-
fication, social networks, and Internet of Things/Services.

MONIQUE MORROW (mmorrow@cisco.com) holds the title of CTO, Cisco Ser-
vices. Her focus is on developing strategic technology and business architec-
tures for Cisco customers and partners. With over 13 years at Cisco, she has
made significant contributions in a wide range of roles, from customer advo-
cacy to corporate consulting engineering. With particular emphasis on the ser-
vice provider segment, her experience includes roles in the field (Asia-Pacific)
where she undertook the goal of building a strong technology team, as well
as identifying and grooming a successor to ensure a smooth transition and
continued excellence. She has consistently shown her talent for forward think-
ing and risk taking in exploring market opportunities for Cisco. She was an
early visionary in the realm of MPLS as a technology service enabler, and
was one of the leaders in developing new business opportunities for Cisco in
the service provider segment, SP NGN. She holds three patents, and has an
additional nine patent submissions filed with the U.S. Patent Office. She is the
co-author of several books, and has authored numerous articles. She also
maintains several technology blogs, and is a major contributor to Cisco’s
Technology Radar, having achieved Gold Medalist Hall of Fame status for her
contributions. She is also very active in industry associations. She is a new
member of the Strategic Advisory Board for the School of Computer Science
at North Carolina State University. She is particularly passionate about Girls
in ICT and has been active at the ITU on this topic, presenting at the EU Par-
liament in April 2013 as an advocate for Cisco. Within the office of CTO,
first as an individual contributor and now as CTO, she has built a strong lead-
ership team, and she continues to drive Cisco’s globalization and country
strategies.

PAUL POLAKOS (ppolakos@cisco.com) is currently a Cisco Fellow and member
of the Mobility CTO team at Cisco Systems focusing on emerging technologies
for future mobility systems. Prior to joining Cisco, he was Senior Director of
Wireless Networking Research at Bell Labs, Alcatel-Lucent in Murray Hill, New
Jersey and Paris, France. During his 28 years at Bell Labs he worked on a
broad variety of topics in physics and wireless networking research, including
the flat-IP cellular network architecture, the base station router, femtocells, intel-
ligent antennas and MIMO, radio and modem algorithms and ASICSs, auto-
nomic networks, and dynamic network optimization. Prior to joining Bell Labs,
he was a member of the research staff at the Max-Planck Institute for Physics
and Astrophysics, Munich, Germany, and a visiting scientist at CERN and Fer-
milab. He holds B.S., M.S., and Ph.D. degrees in physics from Rensselaer
Polytechnic Institute and the University of Arizona, is a Bell Labs and Cisco
Fellow, and is an author of more than 50 publications and 30 patents.

IEEE Network • May/June 2015112

KHAN_LAYOUT_Layout 1 5/15/15 12:55 PM Page 112

Annex C
Paper III

115

Getting Virtualized Wireless Sensor Networks’ IaaS
Ready for PaaS

Imran Khan∗†, Fatima Zahra Errounda†, Sami Yangui†, Roch Glitho† and Noël Crespi∗
∗Institut Minés-Télécom, Télécom SudParis, 91011 Evry Cedex, France

Email: imran@ieee.org, noel.crespi@it-sudparis.eu
†Dept. CIISE, Concordia University, H3G 2W1, Montreal, Canada

Email: {f errou, s yangui} @encs.concordia.ca, glitho@ciise.concordia.ca

Abstract—With the recent advances in sensor hardware and
software, architectures for virtualized Wireless Sensor Networks
(vWSNs) are now emerging. Through node- and network-level vir-
tualization, vWSNs can be offered as Infrastructure-as-a-Service
(IaaS) which can aid in realizing the true potential of Internet-
of-Things (IoT). Cloud computing offers elastic provisioning of
large-scale infrastructures to multiple concurrent users where
Platform-as-a-Service (PaaS) interacts with IaaS in order to
efficiently host and execute applications over these infrastruc-
tures. Amalgamating IoT with cloud computing potentially allows
rapid application and service provisioning in an efficient, scalable
and robust manner. However, interactions between vWSNs and
PaaS are largely an unexplored area. Indeed, existing vWSN
IaaS are not yet ready for PaaS. This paper proposes a vWSN
IaaS architecture which is ready for interactions with PaaS. The
proposed architecture is based on our previous works and is
rooted in the fundamental differences between traditional IaaS
and vWSN IaaS. We built a prototype using Java Sunspot as the
WSN tool kit and made early performance measurements.

Keywords—Wireless Sensor Networks; Internet of Things;
Cloud Computing; Virtualization; IaaS; PaaS

I. INTRODUCTION

Since their mainstream introduction towards the end of 20th
century, Wireless Sensor Network (WSN) deployments have
been used as means to bridge the gap between the physical
world and the virtual world. With their ability to sense,
compute and communicate, WSNs provide their users with
the ability to react to various physical phenomenon and take
required actions [1]. WSNs are considered as basic building
blocks of Internet-of-Things (IoT) paradigm [2] where sen-
sors, along with multitude of everyday objects communicate,
interact and share data on a massive scale [3].

Cloud computing [4] paradigm allows several inherent
benefits (e.g., efficient usage of resources, scalability, elas-
ticity, and rapid provisioning of new applications). It has
three key facets: Software-as-a-Service (SaaS), Platform-as-a-
Service (PaaS) and Infrastructure-as-a-Service (IaaS). Service
providers use PaaS to provision applications and services as
SaaS on a pay-per-use basis to the end-users. PaaS ease the
provisioning process by adding levels of abstraction to the
infrastructure. This abstraction is achieved by using the virtual-
ization concept that allows sharing of resources by abstracting
them into multiple logical units on the same physical node [5].

WSNs can be virtualized at node-level [6] as well as at
network-level [7]. At node-level, multiple applications can

run tasks concurrently on a single WSN node, either sequen-
tially (round-robin) or simultaneously (context switching). At
network-level, groups of WSN nodes form Virtual Sensor
Networks (VSNs) to execute a given application task at a given
time. There can be multiple such groups in a WSN deployment,
each dedicated to a different application. A detailed survey
discussing the basics, motivation, benefits and existing works
on WSN virtualization can be found in [8].

Architectures that combine WSN node- and network-level
virtualization are now emerging (e.g., [9], [10] and [11]).
However, they are still not yet ready for PaaS. They lack
the appropriate design and architectural details to enable
proper interactions with the PaaS so that service providers
are able to efficiently provision new WSN applications and
services. The problem is challenging because vWSN IaaS are
fundamentally different from traditional IaaS. For example,
in traditional IaaS the concept of Virtual Machine (VM) is
used, which is characterized by its operating system, unique
global address, processing power and memory. On the other
hand, in vWSNs the concept of Virtual Sensor (VS) is used,
which is characterized by its sensor middleware, platform-
dependent localized address and scarcity of processing power
and memory. Moreover, issues like geospatial location and
sampling rate impose additional constraints.

This paper proposes an architecture to offer competent
vWSN IaaS, which is able to interact with PaaS to allow
service providers to rapidly provision WSN-based applications
and services. The proposed architecture is based on our previ-
ous work [10] and on the fundamental differences between the
vWSN IaaS and traditional IaaS that we have identified. Unlike
our previous work, this paper focuses on architectural design
and details to enable interactions between vWSN IaaS and
PaaS for dynamic provisioning of applications and services.

The paper is organized as follows. In Section II differences
between traditional IaaS and vWSN IaaS are presented along
with the requirements for a PaaS ready vWSN IaaS. Section
III presents the proposed vWSN architecture. Details on the
implementation and the results are presented in Section VI.
Section V discusses the lessons learned and future work while
Section VI concludes the paper.

II. FUNDAMENTAL DIFFERENCES BETWEEN WSN IAAS
AND TRADITIONAL IAAS

The fundamental differences between vWSN IaaS and
traditional IaaS stem from the differences between WSNs and

traditional networks. In this section, we first briefly discuss
how WSN and traditional networks differ before introducing
the fundamental differences between vWSN IaaS and tradi-
tional IaaS. Our analysis will be structured around the concepts
of VM (i.e., the fundamental element of traditional IaaS) and
VS (i.e., the fundamental element of vWSN IaaS). Finally, we
present a set of requirements for a PaaS ready vWSN IaaS.

A. Differences between WSN and Traditional Networks

WSNs are known to be resource-constrained environments
whose nodes typically have limited processing capability,
storage and are battery operated. The nodes have low duty
cycle [12] and operate only at specific intervals [13]. This
means that WSN nodes are not always available for applica-
tions. In traditional networks, nodes (server, computers) have
considerable resources and potentially have unlimited power
source allowing high duty cycle and high availability. This
fundamental difference has led to numerous research efforts
aimed at designing energy efficient protocols [14], simple data
formats [15] and simple application design [16] for WSNs.
Another important difference between the two network types
is the availability of protocols. IP rules traditional networks
whereas in WSN it is not much prevalent yet but there have
been efforts to bring IP to the WSN world [17], [18] and [19].
HTTP is not as much useful in WSNs as in traditional networks
but alternatives like CoAP [20] have emerged for WSNs. We
observe that the advent of IoT paradigm has prompted many
efforts to provide standard protocol support for WSNs [21].

B. Differences between VM and VS

A VM is defined as a logical unit that allows time and
resource sharing of host machines by partitioning them into
multiple dedicated execution environments [22]. Each VM has
a guest operating system that can access underlying resources.
On the other hand, a VS is a logical representation of the
physical sensor to allow sharing of its sensing capabilities (e.g.,
temperature and light sensing capabilities) [10]. VSs execute
multiple concurrent application tasks. On an abstract level, a
VS is similar to a VM, i.e., both provide a mechanism to
decouple physical resources from their host nodes in order to
be used by multiple users. For example, in traditional IaaS, the
resources of a host machine are represented by a VM Monitor
(VMM) or Hypervisor that allows multiple VMs to access
underlying resources [23]. In vWSN IaaS, if we consider the
example of Java SunSpots, the Squawk virtual machine [24]
provides a similar type of abstraction that allows multiple VSs
to access the sensing resources of a sensor. Still, there are
certain fundamental differences between the two. Table I lists
seven such differences, which are explained below.

The first difference is that a VM allows for the sharing of
resources (e.g., computing and storage) of the host machine,
whereas a VS allows sharing of sensing capabilities (e.g.,
temperature, light, humidity) by executing multiple application
tasks. The key difference is that a VM aims at sharing the host
machine resources, whereas a VS may use the computing and
storage of the host sensor, but it aims at sharing the sensing
capabilities of the host sensor. In Java SunSpots, for instance,
application tasks access the on-board sensors to sense the
physical phenomenon, and send the data accordingly.

The second difference is that multiple heterogeneous VMs
(in terms of operating systems) can be simultaneously de-
ployed on the same host. For instance, a host can support a
Linux-based VM and/or a Windows-based VM at the same
time. However, VSs are tightly coupled with their sensor
OS/middleware. For example, a sensor cannot support Contiki-
based VS and TinyOS-based VS at the same time.

The third difference is that multiple VMs can be deployed
in an isolated manner. The creation, deployment, and migration
of VMs does not affect the execution of existing VMs. On
the other hand, the deployment of new VS may disturb
the execution of existing VS(s). This is due to the limited
resources and the tight coupling between the VS and the sensor
OS/middleware. Similarly, migrating VS from one physical
sensor to another is not a standard feature yet. To the best
of our knowledge, Java SunSpots is the only platform that
provides support for VS migration (as serialized Java Isolates).
There is additional work in which a mobile agent-based system
for Java SunSpots is developed for VS migration [25].

The fourth difference is that VMs can be addressed by
other entities that are similar to their host machines. Each VM
can be assigned a public or private IP address and can be
accessed accordingly. However, there is currently no standard
mechanism for addressing a VS. Typically, a local ID is used
and may vary depending on the platform. This necessitates
some address mapping/translation mechanism to communicate
with a VS. For instance, in Java SunSpots, each VS can be
addressed by a MIDlet ID.

The fifth difference is that for a VM, there are no
power/energy-related issues, whereas a VS inherits these issues
from the host sensor nodes. This means that the creation,
deployment, and operation of a VS are not only dependent
on the capabilities/resources of the host sensor, but also on
its available energy. The always-on/always-available concept
is not applicable to WSN world.

The sixth difference is that for VMs, there are already
some open source and proprietary solutions (e.g., KVM and
VMware). However, no such solutions exist for VSs.

The seventh and final difference is that, at the IaaS level,
the role of a VM is to maximize the use of a host machines
resources (e.g., computing and storage), while the role of
a VS is to use the sensing capabilities of the host sensor
in an efficient manner. Therefore, to achieve cost-efficiency,
traditional IaaS may create several VMs on a limited number
of host machines. However, achieving cost-efficiency in vWSN
IaaS may not lead to the creation of several VSs on a few host
sensor nodes since the deployment of sensor nodes is strongly
correlated to the desired coverage of a geographic area.

C. Requirements for a PaaS Ready vWSN IaaS

The first requirement is that vWSN IaaS should support
standard interfaces for interacting with a PaaS API. These
standardized interfaces will allow easy instantiation, operation
and management of VSs from PaaS. RESTful interfaces are
lightweight and can be useful in resource-constrained environ-
ment like vWSN.

The second requirement is that once created, the VS should
be addressable similar to a VM in traditional IaaS. This

TABLE I. CONCEPTUAL DIFFERENCES BETWEEN VM AND VS

Virtual Machine Virtual Sensor

Logical representation of
host machine

Logical representation of sensing
capabilities of host sensor

Deployment of multiple
OS-heterogeneous VMs

Middleware-dependent
deployment of VS

Isolated deployment Non-isolated deployment

Standard IP-based
address mechanism

No standard mechanism
to address

Unlimited power supply
(for the physical host, i.e. server)

Battery operated
(for physical host; i.e., sensor)

Proprietary and
open source solutions Currently no solutions

Uses resources of host machine
(computing, storage)

Uses sensing capabilities of
host sensor

will allow PaaS to seamlessly manage these VSs (e.g. start,
stop, migrate and/or delete). Similarly, depending on the PaaS
requirements and vWSN IaaS capabilities, certain parameters
could be dynamically adjusted to configure VSs, such as
sampling rate, reporting interval or even task migration (e.g.
when monitoring dynamic events). In traditional IaaS, VMs
get IP address and are accessible from anywhere, whereas the
addressing mechanism of VSs depends on the platform and
can be either a task-ID, MIDlet-ID, or some variation of 64-
bit IEEE hardware address. A mapping scheme at vWSN IaaS
can be used to map global addresses to local ones.

The third requirement is that the vWSN IaaS should be
able to publish available services provided by the deployed
sensors. For application development, PaaS will need to dis-
cover services provided by sensors, for example it might
look for temperature service at a particular location for a
certain duration and upon finding appropriate sensor, proceed
to create a VS on it. In this situation a static or simple service
description will not suffice for publication, instead it should
include the spatial/temporal characteristics while considering
the current load on that particular sensor. A centralized or
distributed repository can be used for this purpose.

The fourth requirement is the lifecycle management and
monitoring of VSs by the vWSN IaaS. In resource-constrained
environments, VSs may not be as stable as VMs in tradi-
tional IaaS. Energy deficiency coupled with low bandwidth
and hardware issues make it difficult to have always-on or
always-available VSs. A robust VS lifecycle management and
monitoring will be useful, e.g. in releasing VS (deleting them)
when they are no longer in use, map application requirements
from PaaS to available sensors, and help in fault detection and
solution in the vWSN IaaS. However, satisfying spatial and
temporal requirements is not trivial.

The fifth and final requirement is the support for inter-
vWSN IaaS interactions. Typical WSN deployments will span
over a geographic area and may need to interact with each
other according to the requirements of the applications. Such
interaction needs to involve SLAs, policy enforcement and of
course deal with privacy and security issues.

Reference [8] provides an exhaustive survey of vWSN
solutions but none of them meets all these requirements.

III. PROPOSED WSN IAAS ARCHITECTURE

In this section, we first present our previous vWSN archi-
tecture since we use it as a starting point for this work. Later
we discuss our proposed vWSN IaaS architecture.

A. vWSN Architecture

This work is based on our previous work [10] in which we
proposed a vWSN architecture shown in Fig. 1. It is a multi-
layer architecture that exploits the capabilities of individual
sensor nodes to run concurrent application tasks at node-
level and dynamically assembles such nodes at network-level
for data sharing. The Physical layer has resource-constrained
sensors (e.g., TelosB motes) and capable sensors (e.g., Java
SunSpots). Since resource-constrained sensors may not support
WSN network-level virtualization, they rely on capable Gate-
to-Overlay (GTO) nodes (e.g., base station nodes, sink nodes
and capable sensors) for this purpose.

Next, in the Virtual Sensor layer, we have VSs that are
abstractions of the application tasks run by the physical sen-
sors. For each application, there is one VS running its task.
The third layer is the Virtual Sensor Access layer. It consists
of Sensor Agents (SAs) that provide platform independence
by using standardized north-bound interfaces and proprietary
south-bound interfaces. The final layer is the Overlay layer,
which consists of multiple application overlays that use the
deployed WSN. There are separate interfaces for data and
control messages. The architecture is platform independent,
applicable to different types of sensors, and does not cater any
specific application domain.

B. Proposed vWSN IaaS Architecture

The proposed vWSN IaaS architecture is shown in Fig. 2.
The following is the detailed description of the architecture.

The bottom two layers (WSN Infrastructure and Virtual
Sensors) are similar to the ones in the previous architecture
and consist of heterogeneous sensors, GTO nodes and virtual
sensors. The functionality of these two layers and the roles of
their entities are same as described in the Section III-A.

We have added a new layer called Virtual Sensor Manager,
which contains two new functional entities: The VS Manager
and VS Communicator. VS Manager receives requests to
instantiate, start, stop, delete, and migrate VS. Tasks such as
VS migration can only be accomplished if supported by the
vWSN IaaS. The task code, which is to be run by the VS, is
also disseminated through the VS Manager.

The VS Communicator supports platform-specific proto-
cols to interact with different sensor platforms to promote
platform heterogeneity. Examples of these protocols include
IEEE 802.15.4, Bluetooth, Cellular, and RESTful.

Next, we renamed the Virtual Sensor Access layer from
our previous architecture to the Virtualized WSN Infrastructure
Management layer to make it more appropriate for this work.
It now contains several new entities in addition as well as SAs.
SAs interact with the WSN PaaS components on behalf of the
VS in order to provide platform independence. The additional
entities are described as follows.

Wireless Sensor Network B

Ci

End User
Application

End User
Application

Application
Overlay

Application
OverlayCi

Registration
Server

Internet

GTO
Node

Gi

PDi
PDi

PDi PDi PDi

PDi

Di

Di

Di Di
Di

Sensor Agent

Ci

Di
Di

Sensor Agent

Physical
Layer

Virtual
Sensor
Layer

Overlay Layer
Virtual
Sensor

Access Layer

Wireless Sensor Network A

Gi
Type A
Sensor

Type A
Sensor

Type B
Sensor

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAp
Overlayyy

iiD
DDi

y

DDDi

Type B Sensor

Fig. 1. Original vWSN Architecture

The Sensor Description Repository contains all relevant
information about the deployed sensors, including their type,
properties (i.e., protocol, data format, supported sampling in-
tervals, physical location and supported units) and capabilities
(i.e., sensing abilities). The repository can be distributed or
centrally located and it is the responsibility of the WSN
infrastructure owner to keep it up-to-date.

The Sensor Discovery entity, interacts with the repository
to search for the required sensors using any criteria, e.g., sensor
type, location and its availability.

The VS Provider is the main entity that receives VS
creation requests from the WSN PaaS. Based on these requests,
sensors are selected from the repository. The VS Provider
also makes decision about when to create, start, or stop a
VS by communicating with the VS Manager. There is also
a small cache of the most recent sensors used by applications
to prevent the need to search for sensors every time a request
comes from the PaaS.

The VS Configurator entity prepares task codes based on
the requests received from the VS Provider. These tasks will
be run by a given VS. VS Configurator uses platform-specific
code templates that allow for configurable parameters. A code
template is a skeleton code file that does nothing useful on its
own but can read from a parameter list and run a desired task.
An example is the skeleton code that reads a manifest file (i.e.,
used in Java SunSpot platform) to initialize parameters such as
sensor type, sampling interval, desired unit, and an end-point
address to send data output. Creating these manifest files on
the fly is programmatically simple and can be easily achieved.

The VS Configurator should ideally be implemented in a
modular fashion to allow for the possibility of adding future
code templates when new types of sensors are deployed.
Additionally, VS Configurator compiles and generates the final
executable code (e.g., jar file for Java SunSpot).

The role of VS Scheduler entity is to create, start, stop,
and disseminate task codes either right away or at a later time,
depending on the application requirements. It interacts with
VS Manager to accomplish this.

The final layer is the Cloud Management layer, which

Wireless Sensor

Network B

GTO

Node

WSN

Infrastructure

Virtual

Sensors

Wireless Sensor

Network A

Type A

Sensor

Type A

Sensor

Type B

Sensor

Type B Sensor

Virtual

Sensor

Manager

Virtualized

WSN

Infrastructure

ManagementSensor Description

Repository

Cloud

Management

1

2

3

IaaS Access/Control Interface

Semantic

WSN Apps

Traditional

WSN Apps

Platform-as-a-Service

Sensor Agent

Sensor

Discovery

4

VS Cache

VS Provider

5

6

VS Configurator

Agent Agent Agent

7

VS Scheduler

8

VS Manager

VS Communicator

IEEE 802.15.4

9

10

Fig. 2. Proposed vWSN IaaS Architecture

includes an entity called the IaaS Access/Control Interface.
This interface exposes a RESTful API that allows multiple
users (i.e. PaaS) to interact with the deployed vWSN IaaS
through a set of REST-based operations.

IV. AN EARLY IMPLEMENTATION AND RESULTS

In this section, we first discuss a simple scenario used for
implementation. Then, we present our implementation choices
and prototype setup. Next, we discuss performance metrics and
finish off this section with a discussion on the results.

A. Implementation Scenario

A smart home application is required that allows home
owners to configure the use of their appliances when environ-
mental conditions change. For example, the A/C should start
automatically when temperature exceeds a given threshold.
Similarly, the deck lights should be turned-on automatically
when natural light drops below a given threshold.

The developer first discovers the light and temperature
services to design and create the smart home application. When
the application is deployed, the PaaS allocates an application
container along with two REST-Based interfaces. One interface
is for the VS corresponding to the light sensor and the other
for the VS corresponding to the temperature sensor.

B. Implementation Choices and Prototype Setup

The WSN infrastructure consists of Java SunSpots, which
have multiple on-board sensing capabilities. Unlike the earlier
generation of sensor nodes, Java SunSpots are quite capable
and are based on Java 2 Micro Edition (J2ME), which makes
them easier to program. The Squawk VM supports multi-
threading, making them suitable for our work. We used two
Java SunSpot kits: two base station nodes and four SunSpots
with on-board sensors. The vWSN IaaS layers were imple-
mented as a standalone application.

We programmed a simple PaaS, as a standalone Java
application. Eclipse IDE and JDK 1.7 were used for the
application development. The application code was annotated
with a description of the VS services and was given to
the developers beforehand. The smart home application was
developed as a simple Java application.

We used two laptops for the prototype. The first one had
the PaaS, and the second one had the vWSN IaaS. The two
laptops were connected via Ethernet and established as a
LAN network. The vWSN IaaS laptop was connected to the
Java SunSpot base stations to communicate with the remote
SunSpots Over-the-Air (OTA).

C. Performance Metrics

The performance of the prototype was assessed in terms
of the following metrics: VS Creation Delay (VSCD) and
VS Start Time (VSST). The time spent between the moment
the developer sends the application code to the PaaS for
deployment and the moment the PaaS sends the creation
requests to the vWSN IaaS was found to be negligible.

VSCD is the time spent between the moment the WSN
infrastructure receives the VS creation request from the PaaS
and the moment the VS is successfully created. Because
it is required to create a shared base station instance to
communicate with remote Java SunSpot OTA, we measured
two types of VSCD. In the first type, the shared base station
instance is created once and used repeatedly for VS creation,
hence it only shows VS creation delay. In the second type, a
shared base station is created every time a VS creation request
is received from the PaaS, hence it shows VS creation delay
plus the delay to create the shared base station instance.

VSST is the time spent when the WSN infrastructure
receives the VS start request from the PaaS and when the
corresponding VS is successfully started. All experiments were
repeated 50 times with a confidence interval of 95%.

D. Results

Fig. 3 shows the values of both types of VSCD over 50
iterations. On average, it took about 14.973 seconds to create
a VS on a remote Java SunSpot when the shared base station
was created once. However, for the second type of VSCD, the
average value increased by around 62%, to 24.282 seconds.
One reason for this increase is that the shared base station
instance spends some time probing for the available remote
SunSpots. This delay is unavoidable and is not related to our
architecture. Another reason for both of these high values is the
fact that we used Ant build tool (as required by Java SunSpot
platform) to first build, compile and create the executable file

0

5000

10000

15000

20000

25000

30000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

D
el

ay
 i

n
 m

il
li

se
co

n
d

s

Experiment Number

VS Creation Delay

VS Creation Delay without Creating Shared Base Station Instance

VS Creation Delay including Shared Base Station Instance Creation

Fig. 3. VS Creation Delay

3800

3900

4000

4100

4200

4300

4400

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

T
im

e
in

 m
il

li
se

co
n
d

s

Experiment Number

VS Start Time

VS Start Time Average VS Start Time

Fig. 4. VS Start Time

and then send it to remote Java SunSpots OTA. The last step
included the delay to synchronize the target Java SunSpot. The
actual dissemination of the VS code to the remote SunSpot
took the very less time.

Fig. 4 shows the VSST of the 50 iterations. On average,
it took 4.2 seconds to start the newly created VS after re-
ceiving the request from the PaaS. Again, this delay included
the remote SunSpot synchronization delay before the newly
created VS was started. Overall, these results are promising
and prompt us to explore the problem area further in order to
provide more optimized solutions.

V. LESSONS LEARNED AND FUTURE WORK

In this work, we have learned several lessons and have also
identified many research issues to further pursue.

The first lesson learned is that while RESTful interfaces
provide an easy way to access VSs, however, integrating them
with existing open source PaaS (e.g., CloudFoundry) will be
quite challenging. The second lesson is that there are other
capable sensor kits in addition to Java SunSpots, such as
Preon32 sensor kits from Virtenio GmbH [26] (Java-based
and similar to SunSpots) and Phidgets kit [27]. The third
lesson learned is that during the creation of VS on a Java
SunSpot, the execution of existing VSs is not disturbed. This
feature is very useful for ensuring that existing applications
do not suffer when new ones utilize a SunSpot. Similarly, the
VS migration feature is also supported by SunSpots, and we

intend to work on this in the future. The fourth lesson is that
the delay associated the creation of VSs will largely depend
on the platform. Java SunSpots need Ant build tool whose
performance heavily depends on the installed Java version and
the workload on the host machine.

As for the future work, first we plan to work towards the
complete implementation of the architecture as presented in
Section III-B and satisfy all the requirements mentioned in
Section II-C. To this end, we intend to incorporate additional
sensor platforms to allow for the heterogeneity of sensor nodes.
The Preon32 and Phidgets kits are two possible candidates.
Second we plan to work on exploiting the capabilities of avail-
able Java SunSpot kits by implementing the full features (e.g.,
VS stop, delete and migration to another remote SunSpot on
the fly) they offer. Third we plan to provide the VS reservation
mechanism by implementing a VS Scheduler entity, which
would be very useful for a business model wherein a vWSN
IaaS could be leased to users against certain incentives [28].

While this work focuses on the vWSN IaaS, we also felt the
need to have a capable PaaS for vWSNs IaaS, because existing
PaaS solutions do not consider the possibility of using VSs for
application and service provisioning. For example, there is a
need to discover and manage VSs and their details at the PaaS
level but currently there is no solution for this. Instead most
solutions simply receive sensor data and use it without taking
full advantage of a vWSN IaaS.

VI. CONCLUSION

In this paper we have presented an architecture for a
competent vWSN IaaS that is able to interact with the PaaS
to support the concurrent VS-based applications and services
deployment on-demand. The architecture uses the principles of
cloud computing and the basics of WSN virtualization to offer
WSN deployments as IaaS. Using a capable sensor kit, an early
implementation has demonstrated its feasibility. We have also
identified several interesting and potent research issues and
plan to tackle them in future contributions.

ACKNOWLEDGMENT

This work was supported in part by the Natural Science and
Engineering Council of Canada (NSERC) Canada Research
Chair in End-User Service Engineering for Communications
Networks and by an NSERC Discovery Grant.

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: a survey,” Computer Networks, vol. 38, no. 4, pp.
393422, Mar. 2002.

[2] G. Kortuem, F. Kawsar, D. Fitton, and V. Sundramoorthy, “Smart
objects as building blocks for the Internet of things, IEEE Internet
Computing, vol. 14, no. 1, pp. 4451, Jan. 2010.

[3] M. A. Feki, F. Kawsar, M. Boussard, and L. Trappeniers, The Internet
of Things: The Next Technological Revolution, Computer, vol. 46, no.
2, pp. 2425, 2013.

[4] L. M. Vaquero, L. Rodero-Merino, J. Caceres and M. Lindner, “A break
in the clouds,” ACM SIGCOMM Computer Communication Review, vol.
39, pp. 50, 2008.

[5] A. Khan, A. Zugenmaier, D. Jurca and W. Kellerer, “Network virtualiza-
tion: a hypervisor for the Internet?,” IEEE Communications Magazine,
vol. 50, pp. 136-143, 2012.

[6] P. Levis and D. Culler: “Mat: A tiny virtual machine for sensor net-
works, In ASPLOSX: Proceedings of the 10th International Conference
on Architectural Support for Programming Languages and Operating
Systems, San Jose, CA, 2002, pp. 85-95.

[7] A. P. Jayasumana, et al., “Virtual sensor networks a resource efficient
approach for concurrent applications, In Proc. Information Technology,
2007. ITNG07. Fourth International Conference on, Las Vegas, 2007,
pp. 111-115

[8] I. Khan, et al., “Wireless Sensor Network Virtualization: A Survey,”
Communications Surveys & Tutorials, IEEE, vol.PP, no.99, pp.1,1 2015,
doi: 10.1109/COMST.2015.2412971

[9] I. Leontiadis, et al. “SenShare: transforming sensor networks into multi-
application sensing infrastructures, Wireless Sensor Networks, Springer
Berlin Heidelberg, 2012, pp. 65-81.

[10] I. Khan, et al., “Wireless Sensor Network Virtualization: Early Archi-
tecture and Research Perspectives”, Accepted, IEEE Network. 2015

[11] I. Khan, et al., “A Data Annotation Architecture for Semantic Applica-
tions in Virtualized Wireless Sensor Networks”, in proceedings of 14th
IFIP/IEEE Symposium on Integrated Network and Service Management
(IM 2015) Technical Session, 2015, May 11-15, Ottawa, Canada.

[12] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network
survey,” Computer Networks, vol. 52, no. 12, pp. 2292-2330, Aug. 2008.

[13] R. C. Carrano, D. Passos, L. C. S. Magalhaes and C. V. N. Albuquerque,
“Survey and Taxonomy of Duty Cycling Mechanisms in Wireless
Sensor Networks,” IEEE Communications Surveys & Tutorials, vol. 16,
pp. 181-194, 2014.

[14] N. Pantazis,, S. Nikolidakis, and D. Vergados. “Energy-efficient routing
protocols in wireless sensor networks: A survey,” Communications
Surveys & Tutorials, IEEE, 15.2 (2013): 551-591.

[15] A. Gyrard, C. Bonnet, and K. Boudaoud, “A machine-to-machine
architecture to merge semantic sensor measurements,” in WWW 2013,
22nd International World Wide Web Conference, Doctoral Consortium,
Rio de Janeiro, BRAZIL, 2013.

[16] H. Alemdar and C. Ersoy, “Wireless sensor networks for healthcare: A
survey,” Computer Networks, vol. 54, pp. 2688-2710, 2010.

[17] J. Rodrigues, and P. ACS Neves. “A survey on IPBased wireless sensor
network solutions,” International Journal of Communication Systems
23.8, pp. 963-981.2010

[18] X. Wang and H. Qian, “Research on all-IP communication between
wireless sensor networks and IPv6 networks,” Computer Standards &
Interfaces, vol. 35, pp. 403-414, 2013.

[19] Hui, J., Ed., and P. Thubert, “Compression Format for IPv6 Datagrams
over IEEE 802.15.4-Based Networks”, RFC 6282, September 2011.

[20] Z. Shelby, “Embedded web services,” IEEE Wireless Communications,
vol. 17, pp. 52-57, 2010.

[21] M. Kamio, T. Yashiro, and K. Sakamura. “6LoWPAN framework for
efficient integration of embedded devices to the Internet of Things,”
Consumer Electronics (GCCE), 2014 IEEE 3rd Global Conference on.
IEEE, 2014. in 2014, pp. 302-303.

[22] V. Medina and J. M. Garca, “A survey of migration mechanisms of
virtual machines,” ACM Computing Surveys, vol. 46, pp. 1-33, 2014.

[23] J-Y., Hwang et al. “Xen on ARM: System virtualization using Xen
hypervisor for ARM-based secure mobile phones,” Consumer Commu-
nications and Networking Conference. 2008, 5th IEEE. pp. 257-261.

[24] D. Simon, et al. “Java on the bare metal of wireless sensor devices:
the squawk Java virtual machine,” Proceedings of the 2nd international
conference on Virtual execution environments. ACM, 2006.

[25] R. Lopes, F. Assis, and C. Montez. “MASPOT: A mobile agent system
for Sun SPOT., In Autonomous decentralized systems (ISADS), 2011
10th international symposium on, pp. 25-31. IEEE, 2011. Kobe, Japan

[26] Preon32 sensor kit – http://www.virtenio.com/en/products/evaluations-
kits.html - [accessed 20-04-2015]

[27] Phidgets kit – http://www.phidgets.com/products.php?category=18 [ac-
cessed 20-04-2015]

[28] Y. Zhang, J. Wen, “An IoT electric business model based on the protocol
of BitCoin”, in 2015 18th Int. Conf. Intelligence in Next Generation
Networks: Innovations in Services, Networks and Clouds (ICIN 2015),
Paris, France, Feb. 2015.

122 Paper III

Annex D
Paper IV

123

978-1-4673-5828-6/13/$31.00 c©2013 IEEE

Design and Analysis of Virtualization Framework for
Wireless Sensor Networks

Imran Khan
Institut Minés-Télécom, Télécom SudParis,

91011 Evry Cedex, France
imran@ieee.org

Abstract—Wireless Sensor Networks (WSNs) are used in many
application areas including health, agriculture and gaming. New
advances in sensor technology make it pertinent to consider
sharing a deployed WSN infrastructure by multiple applications,
including applications which are designed after the WSN deploy-
ment. For my PhD research I propose a novel WSN virtualization
framework that allows multiple users to run their application
tasks over underlying WSN resources in a transparent way. This
paper presents the overview of the proposed WSN virtualization
framework, related work, current status and future work.

Keywords—Wireless Sensor Networks; Virtualization; Overlay
Networks; Wireless Sensor Network Virtualization;

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are combinations of
micro-electro-mechanical systems, wireless communication
systems and digital electronics nodes that sense, compute and
communicate [1]. Up till now the real world deployments
of WSNs have been tailor-made solutions where applications
are bundled with a WSN at the time of deployment with no
possibility for other applications to re-use the deployed WSN.
Virtualization is a technique that presents physical resources
logically and enables their sharing and efficient usage [2].
The new generations of sensors [3] encourage us to consider
sharing them using virtualization.

WSN virtualization is a relatively new field and to the best of
our knowledge there is no mechanism to discover and publish
WSN resources for multiple, independent applications allow-
ing them to access these resources concurrently according to
their requirements. Also there are no WSN oriented protocols
for signaling, resource reservation and management for this
purpose. Overlays can be used to have multiple applications
access the WSN resources but they require careful analysis
because of the inherit WSN constraints.

The main contribution of this PhD work is to provide
a platform independent WSN virtualization framework con-
sisting of i) a general architecture for WSN virtualization,
ii) a dynamic discovery and publication framework, iii) a
middleware independent overlay protocol suitable for resource
constraint WSN nodes, and iv) a resource efficient signaling
protocol for resource reservation and session management.
None of the existing works deals with these issues.

The rest of the paper is organized as follows. Related work
is presented in Section II. Overview of the proposed WSN
virtualization framework is presented in Section III. Current

status and future directions are discussed in Section IV and
Section V concludes the paper.

II. RELATED WORK

In literature, the existing WSN virtualization solutions can
be classified into three categories, node level virtualization
[4], [5] network level virtualization [6] and hybrid solutions
[7], [8]. Our work considers both node and network level
virtualization, hence it is pertinent to compare it to the hybrid
solutions only. The authors in [7] provide a platform dependent
solution for WSN virtualization. The proposed solution works
on specific OS and hardware. Each application program uses
a hardware abstraction layer (HAL) to access underlying
WSN resources, which means that the developer needs to
be aware of the HAL, which in turn depends on the OS.
The solution in [8] is one of the pioneering work but falls
short of true WSN virtualization philosophy. The applications
are preconfigured and decided before the deployment of the
WSN. It is not possible to include new applications afterwards.
In [9] a software architecture FLEXOR is presented which
provides optimal implementation, and evaluation of protocols
with focus on reusability, QoE and user friendliness in WSN
development cycle. This platform, however, does not discuss
WSN virtualization. There is no discussion on how multiple
applications, developed using FLEXOR, will use the underly-
ing WSN resources concurrently.

III. WSN VIRTUALIZATION FRAMEWORK

A. Basic Principles
The first principle for WSN virtualization is that any new

application or a service is deployed as a new overlay on
top of the physical WSN. The second principle is that any
given physical sensor can execute (locally) task(s) for a given
application deployed in the overlay. Existing sensor kits such
as Java SunSpot [3] and operating systems like Contiki [10]
support concurrent execution of multiple applications. The
third and final principle is that some sensor may not have
enough capabilities to support the overlay middleware. When
this is the case, they will delegate such operations to more
powerful sensors and even to other nodes.

B. Proposed WSN Virtualization Framework
Figure 1 shows the proposed WSN virtualization framework.

In this framework heterogeneous sensor nodes with varying

Fig. 1. WSN Virtualization Framework

sensing capabilities are considered. All sensor nodes have
an OS that supports concurrent execution of the application
tasks and can communicate using variety of communication
protocols. There is a virtual sensor layer that consists of logical
instances of sensors executing distinct application tasks. E.g. if
a sensor executes two application tasks, it will have two virtual
sensors each dedicated to a single task. The number of virtual
sensors supported by a sensor node depends on its resources.

The end user applications create application specific over-
lays. The virtual sensors become part of these overlays as
overlay nodes and participate in the execution of the end user
applications as per the first principle of the framework. The
creation of virtual sensors is according to the second principle.
As for the final principle, there are certain nodes (e.g. gateways
or servers) that enable resource deficient sensor nodes to join
the application overlays. Such nodes are termed as Gate-to-
Overlay (GTO) nodes making up a GTO network helping
virtual sensors to join /leave application overlays.

IV. CURRENT STATUS AND FUTURE DIRECTIONS

A multi-layer general architecture for WSN virtualization
is presented in [11]. At present an initial prototype is under
development using Java SunSpot kit and JXTA middleware.
Depending on the progress and acceptance of this extended
abstract, initial results will be presented at the conference.

For future work, identified research issues include, a pub-
lication and discovery framework to allow different actors,
including sensors, to publish and discover on the fly. This
includes discovery of suitable sensors by the end user appli-
cations and discovery of GTO nodes by sensors to participate
in the application overlays.

The second issue is to find suitable overlay protocols, es-
pecially as these protocols should be middleware-independent
whenever possible. Another issue is to manage and prevent
overlays from interacting in a harmful way as they compete
for the underlying resources (WSN nodes in this case).

The third and final issue is regarding the signaling frame-
work. There are several signaling frameworks like SIP/RSVP
but they may not be suitable for resource-constrained devices.
A CoAP [12] based signaling framework is a potential solution.

V. CONCLUSION

In this paper an overview of WSN virtualization framework
and its related issues are presented and some key research
issues are also identified. After proposing general architecture,
currently work on initial prototype is in progress. WSN virtual-
ization is an emerging area of research that can potentially help
to realize the true potential of sensors. Much of this depends
on the advancements in the sensor hardware technology but
presently we have, in our hands, some capable devices that
can be used to initiate research activities in this area.

ACKNOWLEDGMENT

This work is supervised by Prof. Noel Crespi, Institut Mines-
Télécom, Télécom SudParis, France and Prof. Roch Glitho,
CIISE, Concordia University, Canada. The author would like
to thank Dr. Fatna Belqasmi for her comments.

REFERENCES

[1] Akyildiz, Ian F., et al. “Wireless sensor networks: a survey.”, Computer
networks 38.4 (2002): 393-422.

[2] S. Loveland, et.al, “Leveraging virtualization to optimize high-
availability system configurations”, IBM Systems Journal, vol. 47, no.4,
2008. 591-604.

[3] Smith, Randall B. “SPOTWorld and the Sun SPOT”, Information
Processing in Sensor Networks, 2007. IPSN 2007. 6th International
Symposium on. IEEE, Cambridge, MA, 2007. 565-566.

[4] P. Levis and D. Culler: “Maté: A tiny virtual machine for sensor net-
works”, In ASPLOSX: Proceedings of the 10th International Conference
on Architectural Support for Programming Languages and Operating
Systems, San Jose, CA, 2002, pp. 85-95.

[5] M. Navarro et al., “VITRO Architecture: Bringing Virtualization to
WSN World”, Mobile Ad-Hoc and Sensor Systems, IEEE 8th Inter-
national Conference on, Valencia, Spain, 2011, pp. 831-836

[6] A. P. Jayasumana, et al., “Virtual sensor networks a resource efficient
approach for concurrent applications”, In Proc. Information Technology,
2007. ITNG’07. Fourth International Conference on, Las Vegas, 2007,
pp. 111-115

[7] Leontiadis, Ilias, et al. “SenShare: transforming sensor networks into
multi-application sensing infrastructures”, Wireless Sensor Networks,
Springer Berlin Heidelberg, 2012, pp. 65-81.

[8] Y. Yu et al., “Supporting concurrent applications in wireless sensor net-
works”, 4th International Conference on Embedded Networked Sensor
Systems, SenSys06, Boulder, Colorado, 2006, pp.139-152

[9] Forster, Anna, et al. “Flexor: User friendly wireless sensor network
development and deployment”, World of Wireless, Mobile and Multi-
media Networks (WoWMoM), 2012 IEEE International Symposium on
a. IEEE, San Francisco, CA, 2012, pp. 1-9

[10] Dunkels, Adam et al., “Contiki-a lightweight and flexible operating
system for tiny networked sensors”, Local Computer Networks, 2004.
29th Annual IEEE International Conference on. IEEE, Tempa, FL,
2004, pp. 455-462.

[11] Khan, Imran, et al., “A Multi-Layer Architecture for Wireless Sensor
Network Virtualization”, in 6th Joint IFIP Wireless and Mobile Net-
working Conference (WMNC’13), April, 23-25, Dubai, UAE, 2013. To
appear.

[12] Shelby, et al., “Constraint Application Protocol (CoAP), IETF, Internet-
Draft, draft-ietf-core-coap-13.txt (work in progress), 2012

126 Paper IV

Annex E
Paper V

127

This work-in-progress paper was presented as part of the main technical program at IFIP WMNC'2013

 978-1-4673-5616-9/13/$31.00 ©2013 IEEE

A Multi-Layer Architecture for Wireless Sensor

Network Virtualization

Imran Khan
+
, Fatna Belqasmi

*

+
Institut Mines-Télécom

Télécom SudParis

Evry, France

imran@ieee.org, noel.crespi@it-sudparis.eu

Roch Glitho
*
, Noel Crespi

+

*
Dept. CIISE

Concordia University

Montreal, Canada

fbelqasmi@alumni.concordia.ca, glitho@ece.concordia.ca

Abstract—Wireless sensor networks (WSNs) have become

pervasive and are used for a plethora of applications and

services. They are usually deployed with specific applications and

services; thereby precluding their re-use when other applications

and services are contemplated. This can inevitably lead to the

proliferation of redundant WSN deployments. Virtualization is a

technology that can aid in tackling this issue. It enables the

sharing of resources/infrastructures by multiple independent

entities. This position paper proposes a novel multi-layer

architecture for WSN virtualization and identifies the research

challenges. Related work is also discussed. We illustrate the

potential of the architecture by applying it to a scenario in which

WSNs are shared for fire monitoring.

Keywords-Wireless Sensor Networks; Virtualization; Overlay

Networks; Wireless Sensor Network Virtualization

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are amalgamations of
micro-electro-mechanical systems, wireless communication
systems and digital electronics nodes that sense, compute and
communicate [1]. They are made up of sensors, sinks and
gateway nodes. Virtualization is a technology that presents
physical resources logically, and enables their efficient usage
and sharing by multiple independent users [2]. The new
generations of WSN nodes have more and more resources (e.g.
storage, processing) [3]. It now makes sense to consider the
efficient usage and sharing of these resources through
virtualization. WSN virtualization enables the sharing of a
WSN infrastructure by multiple applications [4]. There are two
possible approaches to WSN virtualization. The first one is to
allow a subset of sensor nodes to execute an application, while
at the same time (preferably) another subset of sensor nodes
executes a different application [5]. These subsets can vary in
size and in number according to the application requirements.
The second approach is to exploit the capabilities of the
individual sensor nodes and execute multiple application tasks
[4], [6] and [7]. Each application task is run by a logically
distinct but identical physical sensor node.

This position paper proposes a new multilayer architecture
for WSN virtualization and discusses the related research
challenges. A real-life fire monitoring application scenario is
used for illustration throughout the paper. The rest of the paper
is organized as follows. A fire monitoring motivating scenario,

the requirements and related work are presented in Section II.
In Section III the proposed architecture is presented and its
applicability illustrated by the fire monitoring scenario.
Research issues are discussed in Section IV and Section V
concludes the paper.

II. FIRE MONITORING MOTIVATING SCENARIO,

REQUIREMENTS AND RELATED WORK

A. Fire Monitoring Motivating Scenario

Consider a city near an area where brush fire eruptions are
common and let us assume that the city administration wants to
monitor fires using a WSN and a fire contour algorithm [8].
Some private homes in the area already have sensor nodes to
detect fire. For this application, the city administration could
either deploy sensor nodes all over the city (even in private
homes), or only in areas under its jurisdiction (i.e. streets,
parks) and re-use the sensor nodes already deployed in private
homes. The former is not an efficient approach whereas the
latter approach is efficient and will avoid redundant WSN
deployments. In the latter approach, at least two applications
will share sensor nodes: one, belonging to home owners and
the other belonging to the city administration. Without
technologies such as virtualization this solution would be
‘mission impossible’.

B. Requirements

The first requirement that can be derived from the scenario
is the concurrent execution of tasks from multiple applications
by the sensor nodes. We call this WSN node-level
virtualization. The second requirement is the ability of WSN
nodes to dynamically form a group to perform isolated and
transparent execution of application tasks in such a way that
each group belongs to a different application. We term this
mechanism as network-level WSN virtualization. The third
requirement is support for the prioritization of the application
tasks. For certain events, this might be crucial. The final
requirement is that the proposed solution should be generic and
platform-independent.

C. Related Work

Table I provides a summarized view of the related work in
relation to the requirements identified in the previous section. It

shows that none of the existing proposals meets all of our
requirements.

The authors in [4] discuss SenShare platform, which
supports both WSN-node and network-level virtualization. A
runtime layer on top each sensor node supports multiple
applications. SenShare works on top of embedded Linux OS
and only supports TinyOS applications. A network-level
overlay is created to group WSN nodes executing similar
applications. In [5], WSN nodes form subsets to support
applications that monitor dynamic phenomena. Each
independent subset executes an application, supporting
network-level virtualization. Two illustrative applications are
also discussed. Maté [6] presents a pioneering work that
supports node level virtualization by means of a tiny virtual
machine and a stack-based interpreter. It was designed to work
on early generation, resource-constrained sensor nodes and is
quite restrictive.

Melete [7] is an extension of Maté and supports both node-
and network-level virtualization. At the node level, Melete
provides interleaved execution of multiple applications on a
sensor node. At a network level, Melete supports the logical
grouping of WSN nodes where each group is dedicated to a
single application. The sensor nodes can be part of more than
one logical group at the same time. VITRO [9] aims to
transform application-specific WSNs into large-scale virtual
networks supporting multiple applications. VITRO offers
node-level virtualization using a hypervisor that controls
virtualization-related tasks. Authors in [10] present a self-
organizing tree-based approach, as a possible solution to [5], to
facilitate the creation, operation and maintenance of dynamic
groups that facilitate WSN network level virtualization. The
solution ensures that no event remains undetected. MANTIS
[11] is an embedded operating system that supports the
simultaneous execution of threads on sensor nodes by using
context switching. It supports preemptive multithreading by
assigning priorities to threads.

TABLE I. SUMMARY OF RELATED WORK

Related

Work

Requirements

Node-Level

virtualization

Network-

Level

virtualization

Application

Priority

Platform

Independ

ence

SenShare Yes Yes Yes No

Maté Yes No No Hardware

Melete Yes Yes No No

VITRO Yes No No No

[5] No Yes No Yes

[10] No Yes No Yes

MANTIS Yes No Yes Software

III. PROPOSED ARCHITECTURE

In this section we discuss the architectural principles; the
layers, paths and nodes, the interfaces and the protocols. We

also illustrate them with a fire monitoring scenario. We
assume that all physical sensor nodes can execute concurrent
tasks assigned by applications and services. This assumption is
not far-fetched because existing sensor kits such as SunSpot
[12], operating systems like Contiki [13] and Squawk JVM
[14] do support concurrent task execution.

A. Architecture Princples

The first architectural principle is that any new
application/service (e.g. city administration application) is
deployed as a new overlay on top of the physical WSN.
Overlays have several advantages: they are distributed, lack
central control and allow resource sharing [15]. These features
make them an ideal candidate for WSN virtualization. The
second principle is that any given physical sensor node can
execute (locally) a task for a given application deployed in the
overlay. Any given sensor node may execute several such tasks
at any given time. These tasks include gathering sensor data
and sending event notifications to the overlay applications.

The third principle is that the overlay-related operations are not
necessarily performed by the sensor nodes directly concerned,
as they may not have enough capabilities to support the overlay
middleware. When that is the case, they will delegate the
operations to more powerful sensors and even to other nodes.
The fourth and final principle is that within the architecture
there are separate paths: data and signaling. The sensor data
(e.g. temperature values) is transmitted from sensor nodes to
the overlay application using the data path. The control data
(e.g. overlay initiation and overlay join request/reply messages)
is sent over the signaling path.

B. Layers, paths and functional entities

Figure 1 shows the layers, paths and nodes. There are three
layers (physical, virtual sensor and overlay) and two paths
(data and signaling). At the physical layer a WSN has two
types of sensor nodes. Type A sensor nodes perform overlay
management operations for themselves and on behalf of other
sensor nodes, whereas type B sensor nodes cannot. In figure 1
sensor Z is a type A node and sensors X and Y are type B
nodes. There is another network at the same layer, called the
Gates-to-Overlay (GTO) network, consisting of heterogeneous
nodes such as powerful sensors, gateways and sink nodes.
GTO nodes can communicate with the WSN sensor nodes and
help them to join the application overlays. In this architecture,
type B sensors have two options for joining the application
overlays, either via type A sensor nodes or via GTO nodes. In
figure 1, sensor Z can perform overlay management operations
for itself and for sensor Y, whereas sensor X uses a GTO node
to join the overlay.

The virtual sensor layer consists of the virtual sensors that
execute either overlay application tasks or overlay management
tasks. The virtual sensors of sensor X and sensor Y only
execute overlay application tasks, as they are type B nodes.
Sensor Z, a type A node, has three virtual sensors, two for the
overlay application tasks and one (VSZ2) for the overlay
management task. Both sensor Y and sensor Z use VSZ2 to
participate in application overlays. The overlay layer consists
of multiple application-specific overlays (for simplicity only
two overlays are shown). Each application overlay is created

by the end user application and consists of two types of nodes,
virtual sensors that run overlay application tasks and virtual
sensor/GTO nodes that run overlay management tasks.

Figure 1. General architecture

In these overlays the boundaries enforced by the physical
WSNs disappear, easily allowing data exchange between them.
As per the fourth architectural principle, there are separate
paths in the architecture between various entities. The
interfaces and protocols used at these paths are discussed in the
next section.

C. Interfaces and Protocols

In figure 1, the data path uses the data interface (Di)
provided by all the sensor nodes. This interface supports a
lightweight protocol, suitable for resource constrained devices
such as type B nodes. CoAP [16] is a candidate protocol for
this interface. The interface to the overlay (Oi) is used by the
signaling path and supports CoAP along with any suitable
overlay protocol, e.g. TChord [17], ScatterPastry [18] or JXTA
[19]. Both type A and GTO nodes provide this interface. The
Gate-to-overlay interface (Gi) is provided by all sensors as well
as GTO nodes. As type B nodes are not capable of supporting
any overlay protocol, they cannot receive specific overlay
messages. Type A and GTO nodes can receive such messages
and communicate over the Gi interface to prepare type B nodes
to join an overlay. Using CoAP for the Gi interface eliminates
the need for type B nodes to support another protocol.

D. Illustrative Use Case

Figure 2 illustrates the application of our architecture to the
fire monitoring scenario. The city administration and the home

owners deploy the fire detecting sensors in public streets and
private homes, respectively. It is possible that some sensors in
private homes are type A nodes and some are type B nodes. In
figure 2, home 1 and home 3 have type B nodes and home 2
has a type A node. Sensors X and Z use a home gateway and
city sensor A in the public street, respectively, to participate in
the city admin overlay. Sensor Y participates in the city admin
overlay on its own. It is assumed that owners register their
sensors with the city admin during their deployment.

The creation of the city admin overlay is a three step
process. The first step is overlay pre-configuration, which is
performed during offline registration. Data such as sensor
types, their capabilities, IDs and addresses for communication
are collected in this step. During this step it is determined
whether any sensor requires another node for joining the city
admin overlay. If so, then that node’s relevant information is
also collected along with any associated mapping/binding. All
this information is stored in a central repository (not shown in
fig. 2), which is easily accessible to the city administration.

The second step is the activation of the overlay. The city
admin application connects to the repository and retrieves a list
of sensors, along with all the details, to include them in its
overlay. An overlay invitation message is sent to the type A
and/or GTO nodes (Home gateway, VSY2 and city sensor A in
fig. 2) over the Oi interface. These nodes reply by sending
overlay join requests to perform overlay management
operations. The city admin then sends invitation message to the
virtual sensors that will be executing the city admin task
(VSX2, VSY3 and VSZ2 in fig. 2). It is assumed that the
virtual sensors already have the task code.

VSY2 poses no joining issue as its physical sensor is a type
A node, so it easily joins the city admin overlay as a logical
node (OVSY2) and sets up its data path with it. For VSX2 and
VSZ2, the overlay invitation message is received by home
gateway and city sensor A, respectively, on their Oi interfaces.
These nodes then send the overlay join message on behalf of
VSX2 and VSZ2. The city admin creates logical nodes in the
overlay (OVSX2 and OVSZ2) and sends the relevant IDs to
VSX2 and VSZ2 so they can to send their data (e.g. event
notifications) to the OVSX2 and OVSZ2. VSX2 and VSZ2
receive this data on their Gi interfaces from home gateway and
city sensor A respectively, and set up their respective data
paths with OVSX2 and OVSZ2 using the Di interface.

The third and final step is the execution of the end user
application, which is fire monitoring in this use case.
Whenever fire is detected by a physical sensor (e.g. sensor X),
its virtual sensor (VSX2) sends the gathered data to the
OVSX2 in the city admin overlay using the Di interface. Inside
the city admin overlay OVSX2 initiates the fire contour
computation based on the algorithm used by the city admin. It
is now able to share the received fire event data with its
neighboring overlay nodes. In the absence of this type of
overlay, the exchange of fire event data is not possible as each
sensor node is in its own private domain.

IV. RESEARCH CHALLENGES

The first challenge is providing a discovery and publication
framework. Such a framework will be used by the different

actors, including the resource constrained devices, to publish
and discover on the fly. The approach used in the previously
discussed use case (i.e. offline and static registration) has too
many limitations. A dynamic publication and discovery
mechanism that factors in the limitations of the resource
constrained devices is required.

Figure 2. Fire monitoring problem

The second challenge is the signaling framework. There are
several signaling frameworks, but they usually target resource
reservation (RSVP) and session management (e.g. SIP) and
may not be suitable for our needs. In addition, the framework
should be adequate for resource-constrained environments. A
potential direction is the design of a signaling framework that
uses CoAP as its underlying protocol.

 Yet another challenge is the protocols for data paths.
CoAP is an emerging protocol targeting resource constrained
devices and is an attractive option. However, CoAP presents
many issues that have not yet been solved. In addition, the use
of CoAP in an overlay environment remains to be investigated.

The fourth challenge is finding an efficient mechanism to
disseminate the application task to the sensors. Some solutions
are provided in [6], [7] and [13], but none is suited for the
requirements of WSN virtualization. A proposed solution must
provide the flexibility of updating the application task and the
modification of parameters at runtime for adaptive sampling.

A fifth challenge is the protocols to be used in the overlays,
especially as these protocols should be middleware-
independent whenever possible.

The final challenge is developing a viable business model
for WSN virtualization. While the use case discussed in this
paper does not provide the classical separation between WSN
infrastructure providers and WSN service providers, in a
realistic business model there may be other players as well, e.g.
GTO node providers, when these nodes do not belong to WSN.

V. CONCLUSION

 This position paper has proposed a three-layer architecture
for WSN virtualization and has discussed the related
challenges. The next step of our research will be a proof of
concept prototype that demonstrates its feasibility. After that

we will tackle the research issues we have identified: the
publication/discovery framework, the signaling framework, the
protocols for the data path, the framework for disseminating
the applications tasks to the sensors and finally the
middleware-independent protocols for the overlays.

REFERENCES

[1] Akyildiz, Ian F., et al. "Wireless sensor networks: a survey." Computer
networks 38.4 (2002): 393-422.

[2] S. Loveland, et.al, “Leveraging virtualization to optimize high-
availability system configurations”, IBM Systems Journal, vol. 47, no. 4,
2008. 591-604.

[3] Andréu, Javier, Jaime Viúdez, and Juan Holgado. "An ambient assisted-
living architecture based on wireless sensor networks." 3rd Symposium

of Ubiquitous Computing and Ambient Intelligence 2008. Springer
Berlin/Heidelberg, 2009. 239-248.

[4] Leontiadis, Ilias, et al. "SenShare: transforming sensor networks into
multi-application sensing infrastructures." Wireless Sensor Networks
(2012): 65-81.

[5] Jayasumana, Anura P., Qi Han, and Tissa H. Illangasekare. "Virtual
sensor networks-A resource efficient approach for concurrent
applications." Information Technology, 2007. ITNG'07. Fourth
International Conference on. IEEE, 2007. 111-115.

[6] Levis, Philip, and David Culler. "Maté: A tiny virtual machine for sensor
networks." ACM Sigplan Notices, Vol. 37. No. 10. ACM, 2002. 85-95.

[7] Yu, Yang, et al. "Supporting concurrent applications in wireless sensor
networks." Proceedings of the 4th international conference on
Embedded networked sensor systems. ACM, 2006. 139-152.

[8] Bhattacharya, Amiya, Meddage S. Fernando, and Partha Dasgupta.
"Community Sensor Grids: Virtualization for sharing across domains."
Proceedings of the First Workshop on Virtualization in Mobile
Computing. ACM, 2008. 49-54.

[9] Navarro, Monica, et al. "VITRO architecture: Bringing Virtualization to
WSN world." Mobile Adhoc and Sensor Systems (MASS), 2011 IEEE
8th International Conference on. IEEE, 2011. 831-836.

[10] Bandara, H. M. N., Anura P. Jayasumana, and Tissa H. Illangasekare.
"Cluster tree based self organization of virtual sensor networks."
GLOBECOM Workshops, 2008 IEEE. IEEE, 2008. 1-6.

[11] Bhatti, Shah, et al. "MANTIS OS: An embedded multithreaded
operating system for wireless micro sensor platforms." Mobile Networks
and Applications 10.4 (2005): 563-579.

[12] Smith, Randall B. "SPOTWorld and the Sun SPOT." Information

Processing in Sensor Networks, 2007. IPSN 2007. 6th International
Symposium on. IEEE, 2007. 565-566.

[13] Dunkels, Adam, Bjorn Gronvall, and Thiemo Voigt. "Contiki-a
lightweight and flexible operating system for tiny networked sensors."
Local Computer Networks, 2004. 29th Annual IEEE International
Conference on. IEEE, 2004. 455-462.

[14] Simon, Doug, et al. "Java™ on the bare metal of wireless sensor
devices: the squawk Java virtual machine." Proceedings of the 2nd

international conference on Virtual execution environments. ACM,
2006. 78-88.

[15] Lua, Eng Keong, et al. "A survey and comparison of peer-to-peer
overlay network schemes." IEEE Communications Surveys and
Tutorials 7.2 (2005): 72-93.

[16] Shelby, et al., “Constraint Application Protocol (CoAP)”, IETF,
Internet-Draft, draft-ietf-core-coap-13.txt (work in progress), 2012

[17] Ali, Muneeb, and Koen Langendoen. "A case for peer-to-peer network
overlays in sensor networks." International Workshop on Wireless
Sensor Network Architecture (WWSNA’07), 2007. 56-61.

[18] Al-Mamou, AA-B., and Houda Labiod. "ScatterPastry: An overlay
routing using a DHT over wireless sensor networks." Intelligent

Pervasive Computing, 2007. IPC. The 2007 International Conference
on. IEEE, 2007. 274-279.

[19] Gong, Li. "JXTA: A network programming environment." Internet
Computing, IEEE 5.3 (2001): 88-95.

132 Paper V

Annex F
Paper VI

133

A Data Annotation Architecture for Semantic
Applications in Virtualized Wireless Sensor

Networks

Imran Khan∗, Rifat Jafrin†, Fatima Zahra Errounda†, Roch Glitho†, Noël Crespi∗,
Monique Morrow‡ and Paul Polakos‡

∗Institut Minés-Télécom, Télécom SudParis, 91011 Evry Cedex, France
Email: imran@ieee.org, noel.crespi@it-sudparis.eu

†Dept. CIISE, Concordia University, H3G 2W1, Montreal, Canada
Email: {r jafri, f errou} @encs.concordia.ca, glitho@ciise.concordia.ca

‡CISCO Systems, Inc.
Email: {mmorrow, ppolakos} @cisco.com

Abstract—Wireless Sensor Networks (WSNs) have become
very popular and are being used in many application domains
(e.g. smart cities, security, gaming and agriculture). Virtualized
WSNs allow the same WSN to be shared by multiple applications.
Semantic applications are situation-aware and can potentially
play a critical role in virtualized WSNs. However, provisioning
them in such settings remains a challenge. The key reason is that
semantic applications’ provisioning mandates data annotation.
Unfortunately it is no easy task to annotate data collected in
virtualized WSNs. This paper proposes a data annotation ar-
chitecture for semantic applications in virtualized heterogeneous
WSNs. The architecture uses overlays as the cornerstone, and we
have built a prototype in the cloud environment using Google App
Engine. The early performance measurements are also presented.

Keywords—Wireless Sensor Networks; Semantic Web; Domain
Ontologies; WSN Virtualization; Data Annotation; Overlays

I. INTRODUCTION

Wireless Sensor Networks (WSNs) [1] consist of small-
scale devices that allow applications to observe various phys-
ical phenomenon and then react to the reported events. How-
ever, WSN deployments are usually tailored for predefined ap-
plications with no possibility for new applications to use them
concurrently. To address this, WSN virtualization that uses the
concept of concurrent application tasks running on a sensor
node and combines such nodes together to work for multiple
applications simultaneously has gained considerable attention
[2]–[4]. We have recently proposed an early architecture as a
solution for WSN virtualization [5].

Typically, virtualized WSNs provide sensor data in raw
format. However, classical WSN applications cannot interpret
the raw sensor data and understand its context. This makes it
almost impossible for their users to get the high-level details
of the events and infer additional knowledge to gain situational
awareness. For example, a fire monitoring application can only
receive a simple fire notification without additional details for
its end-user to understand the meanings and context of the fire
event, e.g. event status and its location.

Semantic applications, on the other hand, allow their users
to make queries such as what is the current status of the fire?

and what is the current location of the fire? to get results
like initial fire and in a public library respectively. Virtualized
WSNs typically monitor several real-time events at the same
time for different applications. Hence, some end-users of these
applications may wish to know the context of specific events.
This brings us to the need for a mechanism that annotates
the sensor data in a virtualized WSN. Annotating sensor data
in virtualized WSNs is quite challenging; since resources are
scarce,virtual sensors are created on-demand and may have
unpredictable lifetime.

In order to provision semantic applications we need to send
additional metadata along with raw sensor data. For example,
the raw sensor data for a fire monitoring application can be an-
notated with concepts such as observed property and location,
which are temperature and, longitude and latitude, respectively,
in this case. Semantic annotation has been a popular approach
for this purpose. It is defined as a metadata generation and
usage schema that can be used to provide new methods, as
well as to extend existing ones, to access new information
[6]. However, the semantic annotation process requires domain
concepts and the relationships that exist between them in order
to annotate data. An ontology is used to formally represent a
domain, its concepts and the relationships that exist [7]. Within
sensor domain, there are several efforts to develop ontologies,
e.g., the Semantic Sensor Network (SSN) Ontology developed
by the W3C Semantic Sensor Network Incubator Group [8]
and SensorML from the Open Geospatial Consortium (OGC)
[9]. SSN ontology is more general purpose because it is
application domain independent and provides concepts about
sensors and their observations.

This paper proposes a data annotation architecture for
semantic applications in virtualized WSN environments. We
extend our previous WSN virtualization architecture [5] to
cater for data annotation. We develop a base ontology by
extending the SSN ontology. We also develop a domain
ontology for the semantic application we have prototyped. The
fire monitoring semantic application receives annotated data
and uses the fire domain ontology, along with a reasoner, to
infer knowledge. An end-user can query over the annotated
data to get the real-time information of the fire event, such

as its status and location. The application is developed and
deployed in the cloud using Google App Engine (GAE) and
works in a heterogeneous virtualized WSN environment.

The rest of the paper is organized as follows: A motivating
scenario is presented in Section II, along with a set of require-
ments. We discuss our proposed architecture in Section III,
followed by our procedures and illustrative scenario in Section
IV. The prototype implementation and results are discussed in
Section V and an overview of the related work in Section VI.
Section VII presents lessons learned along with the future work
and Section VIII concludes the paper.

II. MOTIVATING SCENARIO AND REQUIREMENTS

In this section, we first present a motivating scenario and
then derive a set of requirements from it.

A. Motivating Scenario

We extend the motivating scenario presented in [5] for a
semantic application that monitors fire events in real time.

Consider a city near an area where brush fires are common
and where some houses already have their own sensors to
detect fire. The city administration is interested in using WSNs
for the early detection of brush fire events as well as to
monitor their course. To accelerate the deployment of their new
application and to avoid redundancy, the city administration
has opted to deploy sensors in areas under its jurisdiction
(i.e. streets and parks) and to re-use the WSN nodes already
deployed in private homes. These sensors have several sensing
capabilities, such as temperature, humidity, CO2 and dust
levels. They also execute multiple tasks (thanks to WSN virtu-
alization), some of which may belong to semantic applications.
The sensors, executing these tasks, provide annotated data for
several semantic applications.

This sensor deployment can be utilized for several semantic
applications. For example, the city administration’s applica-
tion can provide detailed information about fire events to its
users, rather than simple notifications. Another example is
of a weather applications that can use the same annotated
data to identify prevailing weather condition such as sunny,
haze, partial cloudy and snow. Similarly, a smart parking
application could use the same annotated data to determine the
current pollution levels and dynamically change the parking
fee accordingly. For example, when the pollution level is very
high, parking could be offered at a discount or even free.

B. Requirements

Based on the scenario described above, we derive the
following six requirements. First, the proposed architecture
should allow for the real-time annotation of sensor data. This
means that the sensor data should be annotated before sending
it to the semantic applications. The second requirement is that
the base ontology should be stored in the WSN in a distributed
manner, since it will be used to annotate the sensor data. The
third requirement is that the annotation should be done in a
distributed manner without relying on a central node. This
ensures that any node failure does not affect the annotation
process. The fourth requirement is that it should be possible to
enhance or to extend the ontology so that new concepts can be

integrated with the existing ones. The fifth requirement is that
the proposed solution should be applicable to heterogeneous
sensor platforms and the data formats that they use, to ensure
interoperability. The sixth and final requirement is the use of
standardized ontologies, so that all semantic application can
use standard concepts.

III. PROPOSED ARCHITECTURE

In this section, we begin by discussing our previous ar-
chitecture, since we use it as the basis for this work. Next,
we present the architectural principles, followed by the details
of layers and functional entities of the proposed architecture.
Finally we present the base ontology that we used for sensor
data annotation.

A. Our Starting Point

The work in this paper is based on our previous WSN
virtualization architecture [5] which is illustrated in Fig. 1.
The architecture consists of four layers. The physical layer
consists of sensor nodes that can run several application tasks
simultaneously. Two types of sensor nodes are considered in
the architecture. Type A sensors are resource-constrained sen-
sors that have very limited processing and storage capabilities,
e.g. TelosB motes. Type B sensors have better processing and
storage capabilities, e.g. Java SunSpots. Since Type A sensors
may not be capable enough to work together with other sensors
in a group, they rely on more powerful nodes called Gate-to-
Overlay (GTO) nodes for this purpose.

The virtual sensor layer abstracts the simultaneous tasks
run by the physical sensors as virtual sensors. In this paper
we use the terms virtual sensors and sensors interchangeably
for consistency. To provide platform independence, the virtual
sensor access layer consists of Sensor Agents (SAs). This
independence is achieved by using standardized north-bound
interfaces and proprietary south-bound interfaces. The final
layer consists of application overlays that run simultaneously
on top of the physical layer. There are separate interfaces for
data and control messages. Overall, the architecture provides
the flexibility of using multiple applications concurrently over
WSN deployments.

B. Architectural Principles

The first architectural principle is that the ontology used
to annotate the sensor data is separated as base and domain
ontologies. The former consists of concepts related to the
deployed sensors and their capabilities, and is stored in the
WSN, while the later consists of domain-specific, application-
related concepts and is typically stored in the application
domain. This basic principle allows the solution to become
independent of any application domain.

The second architectural principle is that we use two
independent overlays: one for data annotation and the other for
storing the base ontology. Overlays have several advantages:
they are distributed, they do not rely on centralized control and
they allow resource sharing [10].

The third architectural principle is that every virtual sensor
created for semantic application is represented in the annota-
tion overlay by a corresponding entity that annotates its data.

Fig. 1. WSN virtualization architecture

This means that every sensor sending data to semantic appli-
cations will have a dedicated entity for annotation purposes.

The fourth principle is that, for resource constrained sen-
sors, the annotations will be performed by capable sensors and
other powerful nodes, e.g. gateways. This principle ensures that
all kinds of sensors are available for the semantic applications.

C. Layers and Functional Entities

Fig. 2 shows the proposed architecture. It is based on
our previous WSN virtualization architecture, presented in
Section III-A. The physical layer remains the same while
the virtual sensor layer now consists of two types of virtual
sensors. The first group are the virtual sensors that are created
for semantic applications, referred to hereafter as semantic
virtual sensors. They are indicated as green-dashed boxes. The
second type of virtual sensors are created for non-semantic
applications, referred to hereafter as virtual sensors. These are
shown as orange-dashed boxes. The difference between these
two types of virtual sensors is that the raw sensor data from
the green-dashed ones will be annotated before being sent
to end-user semantic applications. The virtual sensor access
layer has two new functional entities and two overlays. The
functional entities are Annotation Agents (AAs) and Ontology
Agents (OAs). We term an agent as an entity that provides
a given functionality, therefore several agents are used in
our architecture. The Annotation overlay consists of AAs,
which annotate sensor data using the base ontology. They
communicate with Sensor Agents (SA) in the same overlay
to send the annotated data to the semantic applications. The
Ontology overlay consists of OAs, which are responsible for
storing the base ontology in a distributed manner. The OAs
act as super-peers and provide the requested ontology to the
AAs. They do not deal with the sensor data.

The architecture supports both semantic and non-semantic
applications. The Operations & Management (O&M) entity,
which is usually the infrastructure owner, is responsible for
providing the base ontology. Since O&M entity is aware of

Fig. 2. Proposed data annotation architecture

the type of sensors deployed in the WSN, it can easily develop
and disseminate the base ontology to the ontology overlay.

The architecture does not deal with the sensor discovery
mechanism and storage of sensor data in a repository for data
analysis. For the former, existing work such as [11], [12] can
be reused. In this work we assume that the sensors have already
been discovered and are stored in a registration server. For the
latter, we leave it to the applications to decide on the sensor
data storage since it is an application specific requirement.

The proposed architecture fulfills the set of requirements
mentioned in Section II.B. AAs allow real-time annotation of
sensor data in a distributed manner. OAs store the common
ontology and are distributed using the concept of overlays. The
base ontology can be extended by creating additional OAs.
The architecture is platform-independent thanks to the SAs.
As we use and extend SSN ontology in our work, the final
requirement is also fulfilled.

D. Base Ontology

We have built our base ontology by extending the SSN
ontology, since it is quite well-known and widely used to
describe sensors and their data. As mentioned before, the goal
of having a base ontology is to add metadata to the raw sensor
data before it is used by a particular application. We assume
that the WSN consists of temperature, humidity, light and
carbon sensors and thereby incorporate these type of sensors
and their observations in the base ontology. Fig. 3 shows the
part of the base ontology, related to temperature sensors.

IV. PROCEDURES AND ILLUSTRATIVE SCENARIO

In our architecture we need different procedures related to
the management and operational aspects of the annotation and
ontology overlays. The management procedures include the

Fig. 3. Temperature sensor part of the base ontology

following. 1) Selection of sensors and GTO nodes that will
play the role of i) OAs in the ontology overlay, and ii) AAs in
the annotation overlay. 2) The distribution of the ontology over
the OAs. These procedures are motivated by our architectural
principles mentioned in Section III.B.

The annotation process requires the ontology, which may
not be available with the AAs. This situation calls for an
ontology discovery procedure to allow the AAs to annotate the
sensor data. The operational procedures include the ontology
discovery and the sensor data annotation.

A. Management Procedures

According to the first and second architectural principles,
we store the base ontology in the WSN using the concept of
overlays, i.e. in the ontology overlay. The ontology overlay
consists of OAs that require sufficient storage space and an
efficient request/response mechanism. There are two types
of nodes that can act as OAs: GTO nodes, which store the
complete base ontology, and Type B sensors, which store part
of the base ontology.

According to the third architectural principle, each sensor is
represented by a corresponding AA in the annotation overlay.
However, the role of an AA requires certain capabilities for
computational-intensive tasks, such as the mapping sensor data
to the base ontology concepts and generating output files.
However, not all sensors are capable of performing these tasks,
especially the ones that have 16-bit processors and memory
on order of KBs, e.g., TelosB. For these sensors either Type
B sensors or GTO nodes can act as AAs on their behalf, in
accordance with the fourth architectural principle.

According to the second architectural principle, the base
ontology needs to be distributed. The following mechanism
is used for the distribution. GTO nodes contain the complete
base ontology, while Type B sensors only contain the parts of
the base ontology, related to phenomena that they sense. For
example, a Type B sensor with temperature sensing capability
will only contain the temperature portion of the base ontology.
In order to accomplish this distribution, the GTO nodes split
the base ontology into multiple parts and send it to the relevant
Type B sensor. The common ontology concepts are present in
each part. It is important to remember that since sensors are

prone to failure, it makes sense to have the same parts of the
base ontology present in multiple Type B sensors.

Both the GTO nodes and the Type B sensors can be
selected for the roles of AAs and OAs. However, the OAs in
the GTO nodes contain the complete base ontology, while the
OAs in Type B sensors only contain the part of the ontology
they require for annotation.

B. Operational Procedures

The first operational procedure is the ontology discovery.
There are two possible approaches, pro-active and reactive.
In the pro-active approach OAs, as super-peers, periodically
advertise the base ontology parts that they have. The AAs
then send their ontology requests in response to these adver-
tisements. In the reactive approach, AAs first determine the
sensing capabilities of the corresponding sensors, based on
which they send discovery request to their super-peers, for
the required part of the base ontology.

The second operational procedure is the data annotation,
which works as follows. The semantic virtual sensors send
their data in a standardized or proprietary format to the AAs.
Once an AA receives the raw sensor data, it first checks locally
if it has the required ontology to annotate it, if not, a discovery
request is sent to the ontology overlay. When it has the required
ontology, the AA annotates the raw sensor data, and sends it to
the SA. The SA is then responsible for sending the annotated
data to the semantic application.

C. Illustrative Scenario

The city administration and home owners deploy fire
detecting sensors in public streets and in private homes,
respectively. These sensors run multiple application tasks con-
currently, using virtual sensors and semantic virtual sensors.
The semantic virtual sensors send annotated data to the fire
monitoring semantic application. The application receives this
data and uses a reasoner to infer knowledge and to get detailed
information about fire events.

The annotation process works as follows (a sequence
diagram is presented in Fig. 4). Semantic virtual sensors send
their raw data in a standardized or proprietary format to
the AA. Once an AA receives the raw sensor data, it first
checks locally to determine if it has the required ontology
to annotate the data, if not it sends request message to an
OA for the required ontology. The OA may request another
OA for the required ontology if it does not store it. Once
the ontology is retrieved, it is sent to the AA, which then
annotates the raw sensor data using the received ontology
and sends it to the SA. The SA sends the annotated data to
the appropriate semantic application. The semantic application
applies the domain ontology and a set of rules using a reasoner
to infer additional knowledge. If a fire event is detected then
a notification is sent to the end-user. The end-user may query
for additional information such as fire status and location. In
Fig. 4, the end-user queries for the fire status and receives the
response, i.e. initial fire.

V. PROTOTYPE IMPLEMENTATION AND RESULTS

In this section we present our prototype in detail. First
we discuss the implementation choices we made, and then we

Fig. 4. Sequence diagram of the illustrative Scenario

present our prototype setup and the performance metrics. We
end this section with a discussion of the results.

A. Implementation Choices

We developed a fire monitoring semantic application for
our prototype based on the scenario presented in Section
II.A. The application is offered as Software as a Service
(SaaS) to the end-users. It was developed using the Apache
Jena Framework, which is an open source Java framework
for building semantic web and linked data applications. The
application was deployed in a cloud-based Google App Engine
(GAE), which is a Platform as a Service (PaaS) that allows the
development of SaaS applications without having to maintain a
server. We chose GAE because it makes it easy to deploy and
maintain applications. The annotation and ontology overlays
are implemented using the JXTA [13] protocol, an open source
peer-to-peer protocol specification that allows the creation of
independent, robust and efficient overlay networks.

The fire monitoring semantic application is a RESTful web
service that uses the following components:

1) Fire domain ontology: Contains the concepts of fire, its
states, and sensing events along with their states, such as tem-
perature (high, low), relative humidity (high, low) levels, CO2
(high, low) levels and location (city, park, and downtown). Fig.
5 shows some concepts of the fire domain ontology.

2) Jena Inference API: Used to reason over the annotated
data and to infer additional knowledge using a set of rules. We
developed several rules for our semantic application to provide
information to end-user about the fire events. Two examples
of rules are given below.

[Rule1: (?output ssn:hasValue ?Value)
greaterThan(?Value,80), (?output rdf:type
base:TemperatureOutput),
(?output base:hasUnit base:DegreeCelsius) ->
(?output fda:hasTemperatureType:
fda:HighTemperature)]

[Rule2: (?output fda:hasTemperatureType

Fig. 5. Some concept of the fire domain ontology

fda:HighTemperature)
(?output fda:hasHumidityLevel fda:LowHumidity)
(?output fda:hasCO2Level fda:HighCO2) ->
(?output fda:hasFireSituation fda: fireBlaze)]

3) Query Engine: Used to query annotated data. Below is
an example query to get event information like event time, its
value, location, and the status (fire event in this case).
SELECT ?Time ?Temperature ?Longitude
?Latitude ?Firesituation
WHERE {
?SunSpotOutput base:hasSensingTime ?Time.
?SunSpotOutput ssn:hasValue ?Temperature.
?Sunspot base:hasLongitude ?Longitude.
?Sunspot base:hasLatitude ?Latitude.
?SunSpotOutput fda:hasFireSituation
?Firesituation.
FILTER (regex(str(?Firesituation),
’http://www.semanticweb.org/WirelessSensor/
FireApplication#FireBlaze’, ’i’)
}

The functional entity AAs are in annotation overlay and have
the following components:

1) Web Server: Receives the sensor data;

2) JXTA Edge Peer: Participates in the overlay and request
the required parts of the base ontology;

3) RDF Generator: Annotates sensor data using the base
ontology; and

4) Web Client: Sends annotated data to semantic applica-
tion.

The functional entity OAs are in the ontology overlay and
have the following component:

1) JXTA Rendevous Peer: To store the base ontology and
send it to the requesting AA. We used the JXTA Content
Management System (CMS) to advertise the base ontology
available in each OA and send it to the requesting AAs.

The proposed architecture is implemented as Infrastructure
as a Service (IaaS), which allows us to link our solution to the
IaaS, PaaS and SaaS aspects of cloud computing paradigm.

(a) Configuration A (b) Configuration B (c) Configuration C

Fig. 6. Implementation Architecture

B. Prototype Setup

We used two different sensor kits for the prototype, Java
SunSpot and TelosB motes from AdvanticSys Kit. In total
we used 6 SunSpots (2 as base stations), 4 TelosB motes
(1 as border router) running Contiki OS. All these sensors
have multiple on-board sensing capabilities but differ in their
processing and storage abilities. In our implementation, TelosB
motes are Type A sensors and Java SunSpots are type B
sensors. All of the sensor were running multiple application
tasks. The Java SunSpots had three application tasks running
concurrently, periodically measuring temperature, light and
blinking LEDs. The TelosB motes had temperature, light, and
humidity tasks running concurrently. Type B sensors send their
data in SenML [14] format, which is a lightweight standard
data model which is suitable for sending sensor data. Type A
sensors send their data in simple string format. Fig. 6 shows
the three implementation configurations we used for evaluation
purposes. The details of these configurations are as follows:

1) Configuration A: We used Type A sensors (TelosB). The
semantic virtual sensors sent their raw data to a GTO node.
The GTO node (acting as an AA) downloaded the required
ontology from an OA and annotated the raw sensor data.
Lastly, the annotated data was sent to the fire monitoring
semantic application via SA.

2) Configuration B: We used Type B sensors (Java Sun-
Spots). The ontology used to annotate the data was stored
locally in the Type B sensors, hence there is no ontology
overlay. We implemented the AA in the Type B sensors using
µJena library [15]. This way they did not need any GTO node
to perform annotation on their behalf. Each semantic virtual
sensor generated the raw data, annotated it and sent it to the
fire monitoring semantic application via SA.

3) Configuration C: We used both Type A and Type B
sensors. All of the sensors sent their raw data over the Internet.

For Type A sensors, we used a Contiki border router to allow
them to directly communicate with the semantic application.
For Type B sensors, we used Java Socket-Proxy which com-
municated with the semantic application on their behalf. In
this configuration, the fire monitoring semantic application
performed the annotation itself. This allowed us to measure
the extra delay introduced by our approach.

C. Performance Metrics

The prototype’s performance was assessed in terms of
the following metrics: End-to-End Delay (E2ED), Ontology
Download Time (ODT), Impact of the scalability of AAs,
Expected Operation Time (EOT) of Java SunSpots, and the
Impact of tasks on current draw from Java SunSpots battery.

E2ED is the time difference between when the semantic
virtual sensors sent their raw data and when the corresponding
success code (200 OK) is received from the fire monitoring
semantic application. It includes the time taken by all interme-
diate steps (i.e. receiving raw data at AA, ontology discovery
and download (for configuration A), and annotation process).
ODT is the time it takes an AA to request and to receive
the required ontology from an OA. Impact of scalability of
AAs was studied in terms of discovery of an OA and ODT.
To find EOT of Java SunSpots, we executed both semantic
and non-semantic tasks continuously until the Spots died. For
this purpose no sleep or power saving mechanism was used.
Finally we determined the current draw from Java SunSpot
battery while in shallow-sleep mode (no task, radio ON),
executing semantic, and non-semantic tasks. The experiments
were repeated 50 times and their confidence interval is 95%.

D. Results

Fig. 7 shows the individual E2ED of the three configura-
tions. Configuration A has an average E2ED of 3566ms. The
actual annotation delay was negligible (less than 10ms), since

Fig. 7. End-to-End Delay

the AA was implemented on a laptop computer. The E2ED
of configuration B is the highest, at 4575ms. The average
annotation delay was 525ms, since the Java SunSpots were
annotating data themselves. We found that this longer time
was attributable to the low RAM size, only 1MB. Despite
this, SunSpots showed promise and were able to annotate
sensor data and run other tasks concurrently without any other
issues. The E2ED of configuration C is 3187ms. As expected,
the semantic application was able to annotate the sensor data
quickly but at the expense of developing the base ontology
and then implementing it in addition to the application logic.
Fig. 8 shows their average E2ED of all configurations after 50
repetitions. The average ODT for configuration A is 94ms as
shown in Fig. 9, which is typical in LAN environment using
JXTA protocol.

Since JXTA was used for implementation, it had direct
impact on the scalability part. The results in Fig. 10 show the
increase in OA discovery time when AAs increase. JXTA is
known to perform poorly when peers in the network increase
and this was demonstrated in this work. However, the increase
in AAs did not impact the ODT mainly because OA was
already discovered. Here the average ODT was around 100ms,
almost similar to the one shown in Fig. 9.

Fig. 11 shows the EOT of the Java SunSpots while running
a semantic and a non-semantic task, without using any sleep
mechanism. SunSpots lasted 571 and 603 minutes for semantic
and non-semantic tasks respectively in a lab environment. If
we consider extreme battery discharge (about 20%) then the
operation time reduces to 456 and 482 minutes respectively.
We also found that SunSpots draw 38mA current (base value)
during the shallow mode (no task, radio ON), 75.6mA for non-
semantic task (98% increase from base value) and 79.8mA for
semantic task (109% increase from base value).

For all three configurations, we also experienced delay due
to circumstances beyond our control, e.g. from time to time
GAE would start a new process for the fire monitoring se-
mantic application and reload it thereby incurring unnecessary
delay. We were able to determine this from the log files of our
fire monitoring semantic application.

We believe that for future semantic applications, it will be
important to use multiple WSN infrastructures that may not
be geographically co-located. In such cases, it will be difficult

Fig. 8. Average End-to-End Delay

Fig. 9. Ontology Download Time

to know beforehand, the capabilities of a WSN, the types of
sensors and their observations. Also for WSN infrastructure
owners may only want to share the sensor data instead of
exposing their infrastructure altogether. In such situations, it
makes sense to have an annotation mechanism that provides
annotated data to multiple semantic applications.

VI. RELATED WORK

A framework called semantic sensor web [7] annotates
sensor data and provides situational awareness. The annotation
is done using spatial, temporal and thematic metadata. In [16]
the Sensor Observation Service SOS from SWE is extended by
incorporating support for a semantic knowledge base. They use
spatial, temporal and thematic ontologies to annotate sensor
data. Both [7] and [16] rely on SWE, hence they are not
suitable for resources-constrained environments. A two-layer
architecture to annotate and query the sensor data is presented
in [17]. The sensor data is collected in a pattern dictionary, in
the back-end layer, to generate patterns along with semantic
annotations. The patterns are used to determine the type of a
new sensor and to automatically annotate its data. A crawler
is used to retrieve the sensor data from multiple WSNs and
store it after annotation. The front-end layer provides a GUI
that the end-user utilizes to send search requests. The work is
more focused on building automation domain.

In [18], the authors use their own SenMESO ontology
for annotation which is a combination of various domain
ontologies covering the sensor data and features of interest.

Fig. 10. OA Discovery Time When AAs Increase

Fig. 11. Expected Operation Time of Java SunSpots (always on)

The sensors send the observed data in SenML format to the
gateways. The gateway nodes generate an XML file and send
it to the aggregation gateways which use the stored ontologies
to annotate the sensor data and thereby allow different applica-
tions to use it. As an extension of this work, the authors present
a mechanism to annotate M2M data in [19]. The work focuses
on developing semantic-based M2M applications. The authors
designed an M3 ontology to integrate cross-domain M2M data.
There are no details regarding network architecture, but a web-
based prototype is available. Two cross-domain semantic-based
applications are also discussed.

Overall, the existing studies have several limitations, such
as domain-specific solutions, and their use of protocols such
as Sensor Web Enablement (SWE) [9] that are difficult to
setup and definitely not suitable for resource-constrained en-
vironments. Another limitation is that they are focused on
interoperability between sensors rather than their data.

VII. LESSONS LEARNED AND FUTURE WORK

We have learned several lessons. The first lesson is that
WSN node-level virtualization is still a potent research area
with very few solutions readily available. More efforts are
required from designing a capable WSN operating system
like [20] to unconventional energy harvesting mechanisms
for sensor nodes like [21]. The second lesson is that current
overlay middleware solutions are not suitable for WSNs be-

cause none has been designed to work with these resource-
constraint devices. JXTA is too heavy for sensor nodes and
its future is also uncertain. The third lesson is that there are
not many libraries for semantic annotation that can be used by
resource-constrained devices. We found an old J2ME-based
µJena library and after several modifications managed to use
it with Java SunSpots. However it only annotates data in N-
TRIPLE format, whereas standard Apache Jena Framework
supports multiple formats. Extensions to µJena library to
annotate sensor data similar to Apache Jena Framework can
be a useful contribution.

We have identified several key research issues that need
to be addressed. First is the optimal selection of sensor
nodes for the roles of AAs and OAs using energy-aware
algorithms. These algorithms also need to take into account
the characteristics of WSNs. Second issue is regarding the
management of base ontology, since new types of sensors
with new sensing capabilities may be deployed along with
the existing WSN infrastructure. There is a need to have an
easy to use mechanism to create and manage the ontology
and later distribute it in the WSN infrastructure in an efficient
manner. Third issue is that there is a need for lightweight
P2P middleware for capable sensor nodes. This would make
it possible for geographically-distributed sensors to share their
data efficiently.

The final but very important issue is the possible integra-
tion of our proposed architecture with Platform-as-a-Service
(PaaS) for the rapid provisioning of WSN application that
can be offered as SaaS. In our current implementation we
(partly) bypass Google Infrastructure for the interactions with
our virtualized WSN infrastructure. As future work, we plan
to integrate WSN infrastructure with a PaaS and allow its
management at a higher level of abstraction through dynamic
resource provisioning.

VIII. CONCLUSION

Semantic applications are being used in many application
areas such as life sciences, media, and information systems.
Annotating sensor data allows the end-users to get high-level
information about the real-world situations instead of raw
measurements of individual sensors. This could potentially
open doors to many new applications. In this paper we
have proposed an architecture for annotating sensor data in
virtualized WSNs where sensors run multiple application tasks
concurrently. Our architecture is applicable to both resource-
constrained and resource-full sensors. We have also demon-
strated the feasibility of the proposed architecture by realizing
a representative use case using heterogeneous sensors. Several
research issues have also been identified as future work.

ACKNOWLEDGMENT

This work is partially supported by CISCO systems through
grant CG-576719, and by the Canadian Natural Science and
Engineering Research Council (NSERC) through the Discov-
ery Grant program.

REFERENCES

[1] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network
survey,” Computer Networks, vol. 52, no. 12, pp. 2292-2330, Aug. 2008.

[2] I. Khan, F. Belqasmi, R. Glitho, and N. Crespi, “A multi-layer architec-
ture for wireless sensor network virtualization,” in Wireless and Mobile
Networking Conference (WMNC), 2013 6th Joint IFIP, Dubai, UAE,
pp. 14.

[3] A. Merentitis, et al., “WSN Trends: Sensor Infrastructure Virtualization
as a Driver Towards the Evolution of the Internet of Things,” presented
at the UBICOMM 2013, The Seventh International Conference on
Mobile Ubiquitous Computing, Systems, Services and Technologies,
Porto, Portugal, 2013, pp. 113-118.

[4] S. Abdelwahab, B. Hamdaoui, M. Guizani, and A. Rayes, “Enabling
Smart Cloud Services Through Remote Sensing: An Internet of Ev-
erything Enabler,” IEEE Internet of Things Journal, vol. 1, no. 3, pp.
276-288, Jun. 2014.

[5] I. Khan, F. Belqasmi, R. Glitho, N. Crespi, M. Morrow, and P.
Polakos, “Wireless Sensor Network Virtualization: Early Architecture
and Research Perspectives,” IEEE Network Magazine. (accepted for
publication), in-press.

[6] A. Kiryakov, B. Popov, I. Terziev, D. Manov, and D. Ognyanoff,
“Semantic annotation, indexing, and retrieval,” Web Semantics: Science,
Services and Agents on the World Wide Web, vol. 2, no. 1, pp. 49-79,
Dec. 2004.

[7] A. Sheth, C. Henson, and S. S. Sahoo, “Semantic Sensor Web,” IEEE
Internet Computing, vol. 12, no. 4, pp. 78-83, Jul. 2008.

[8] M. Compton, et al., “The SSN ontology of the W3C semantic sensor
network incubator group,” Web Semantics: Science, Services and Agents
on the World Wide Web, vol. 17, pp. 25-32, Dec. 2012.

[9] M. Botts, G. Percivall, C. Reed, and J. Davidson, “OGC R©Sensor Web
Enablement: Overview and High Level Architecture,” in GeoSensor
Networks, S. Nittel, A. Labrinidis, and A. Stefanidis, Eds. Springer
Berlin Heidelberg, 2008, pp. 175-190.

[10] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey
and comparison of peer-to-peer overlay network schemes,” IEEE Com-
munications Surveys Tutorials, vol. 7, no. 2, pp. 72-93, Second 2005.

[11] M. Liu, T. Leppanen, E. Harjula, Z. Ou, A. Ramalingam, M. Ylianttila,
and T. Ojala, “Distributed resource directory architecture in Machine-to-
Machine communications,” in 2013 IEEE 9th International Conference
on Wireless and Mobile Computing, Networking and Communications
(WiMob), Lyon, France, 2013, pp. 319324.

[12] J. Menp, J. J. Bolonio, and S. Loreto, “Using RELOAD and CoAP for
wide area sensor and actuator networking,” J Wireless Com Network,
vol. 2012, no. 1, pp. 122, Dec. 2012.

[13] L. Gong, “JXTA: a network programming environment,” IEEE Internet
Computing, vol. 5, no. 3, pp. 88-95, May 2001.

[14] C. Jennings, J. Arkko, and Z. Shelby, “Media Types for Sensor
Markup Language (SENML).” work-in-progress [Online]. Available:
https://tools.ietf.org/html/draft-jennings-senml-10. [Accessed: 29-Sep-
2014].

[15] F. Crivellaro, “µJena: Gestione di ontologie sui dispositivi mobile,”
Thesis, M.Sc., Politecnico di Milano, Milan, Italy, 2007.

[16] C. . Henson, J. K. Pschorr, A. Sheth, and K. Thirunarayan, “SemSOS:
Semantic sensor Observation Service,” in International Symposium on
Collaborative Technologies and Systems, 2009. CTS 09, Baltimore,
USA, 2009, pp. 44-53.

[17] D. Pfisterer, et al., “SPITFIRE: toward a semantic web of things,” IEEE
Communications Magazine, vol. 49, no. 11, pp. 40-48, Nov. 2011.

[18] A. Gyrard, C. Bonnet, and K. Boudaoud, “A machine-to-machine
architecture to merge semantic sensor measurements,” in WWW 2013,
22nd International World Wide Web Conference, Doctoral Consortium,
Rio de Janeiro, BRAZIL, 2013.

[19] A. Gyrard, C. Bonnet, and K. Boudaoud, “Enrich machine-to-machine
data with semantic web technologies for cross-domain applications,” in
2014 IEEE World Forum on Internet of Things (WF-IoT), Seoul, Korea,
2014, pp. 559-564.

[20] O. Hahm, E. Baccelli, H. Petersen, M. Whlisch, and T. C. Schmidt,
“Demonstration Abstract: Simply RIOT: Teaching and Experimental
Research in the Internet of Things,” in Proceedings of the 13th In-
ternational Symposium on Information Processing in Sensor Networks,
Piscataway, NJ, USA, 2014, pp. 329-330.

[21] E. Gelenbe, D. Gesbert, D. Gunduz, H. Kulah, and E. Uysal-Biyikoglu,
“Energy harvesting communication networks: Optimization and demon-

stration (the E-CROPS project),” in 2013 24th Tyrrhenian International
Workshop on Digital Communications - Green ICT (TIWDC), Sept. 23
- 25, 2013 Genoa, Italy, pp. 16.

Annex G
Paper VII

143

This paper is work-in-progress

Towards Provisioning of Semantic Applications over
Virtualized Wireless Sensor Network IaaS

Imran Khan×*+, Rifat Jafrin+, Jagruti Saho+ Roch Glitho+, Noel Crespi*
*Institut Mines-Télécom, Télécom SudParis, Evry, France

+Concordia University, Montreal, Canada
×imran@ieee.org

Abstract

Sharing a deployed Wireless Sensor Network (WSN) infrastructure among multiple, concurrent applications can help
realize the true potential of Internet-of-Things (IoT) and ubiquitous computing. Virtualized WSNs can help to achieve
such sharing where multiple applications and services use a deployed WSN infrastructure at the same time. These
applications and services may include semantic applications which are very much pertinent to provide situational
awareness to the end-users who are then able to understand the context of the events and make informed decisions.
However, provisioning of semantic applications in virtualized WSNs is not trivial. Another challenge, typically faced
by WSN infrastructure owners, is how to create and manage domain independent ontology, used for sensor data
annotation, which corresponds to their deployed infrastructure. In this paper we extend our previous work to i) allow
WSN infrastructure owners to create and manage the ontology, and ii) to facilitate the efficient sensor data annotation
in a distributed manner. For the former we present an ontology development and management application. For the later
we present a heuristic-based genetic algorithm to select capable nodes for storing the base ontology in a deployed WSN.
The ontology management extension is implemented and evaluated using a proof-of-concept prototype using Java
SunSpot kit while the simulation results of the algorithm are presented.

Keywords
Wireless Sensor Networks; Semantic Web; Domain Ontologies; Data Annotation; Overlay networks

1. Introduction

Recently the concept of Wireless Sensor Networks (WSNs) virtualization [1], [2], [3], [4] has gained attention that
uses the concept of multiple concurrent application tasks running on a sensor node. With this concept it has become
possible to offer a deployed WSN infrastructure for multiple applications and services. This is in contrast to the
traditional task-oriented, domain-specific deployments of WSNs [5] where applications came usually bundled with them
and it is prohibitively expensive and time-consuming to deploy new applications over these deployments. WSNs are
considered as one of the corner stones of the Internet-of-Things (IoT) paradigm [6] hence it is pertinent to offer them as
Infrastructure-as-a-Service (IaaS) using the same concepts as in Cloud Computing. The amalgamation of WSNs and
Cloud Computing results in virtualized WSN (vWSN) IaaS [7] that can decouple infrastructure from the applications
using it. This way newer applications and services could be provisioned as and when required.

Traditional WSN applications are built around the concept of receiving sensor data in raw format without any ability
to understand its context and meaning. Additionally, this raw sensor data fails to provide high-level details to gain
situational awareness because an end-user cannot make queries to better understand a situation. For example, a
traditional fire monitoring application can get only a notification about the fire eruption event but will not allow its user
to query for the details like where is the source of fire? Semantic applications, on the other hand, easily allow end-users
to make such queries to get results like ‘in a public library’. This allows for provisioning more rich and interactive
applications to the end-users. Another benefit of incorporating semantic concept to the WSNs is that we can have
standard way to share sensor data across different application domains. This can be particularly useful to achieve
interoperability among various vertical solutions which are typically found these days. With the increase in number of

This paper is work-in-progress

vWSN IaaS deployments by the third-party actors (public, community and research deployments) future WSN
deployments will have to support both traditional as well as semantic applications.

With this background, it is clear that we need efficient solutions to annotate sensor data using ontology concepts.
Recently we proposed an in-network, distributed sensor data annotation architecture [8] to provision traditional as well
as semantic applications over a vWSN IaaS. Capable nodes in the architecture store the ontology concepts, which are
later used for annotation purposes. This in-network annotation approach has many benefits than existing centralized
solutions that first store sensor data and later annotate it. For example, each capable sensor is able to annotate its data
directly in real-time.

However, for a general solution a standard ontology from the sensor domain is required. It will be helpful to have
the ontology which is independent of any application domain. The reason being that it is almost impossible to know all
future application that will possibly use a WSN infrastructure. This standard ontology should be developed, managed
and distributed over the network in an autonomous distributed manner by the WSN infrastructure owner. This mandates
an efficient ontology development and management solution. The solution should ease the development of the standard
ontology, update it (due to deployment of new sensors or removal of old ones), and send it to the capable nodes to allow
for distributed sensor data annotation.

This paper extends our previously proposed architecture by making the following contributions: An ontology
development and management application is presented that allows a WSN infrastructure owner to easily create and
manage the standard ontology. This web-based GUI application allows intuitive ontology creation and management
even for a novice user. Second contribution consist of several enhancements to the original architecture to disseminate
and store the developed ontology in the WSN infrastructure in a distributed manner. The concept of overlays is used for
ontology dissemination after it is developed, and also for the sensor data annotation. Finally we propose a heuristic-
based Genetic Algorithm (GA) to select capable nodes for storing the developed ontology. We use multi-objective
criteria to select best possible candidates (including capable sensors) for ontology storage. The GA tries to minimize
the energy and memory consumption by selecting candidate nodes in a near-optimal way.

The rest of the paper is organized as follow: In Section 2 a motivating scenario is presented along with a set of
requirements. In Section 3 we discuss the related work and evaluate them using the set of requirements. In Section 4 we
discuss our proposed architecture in detail. Section 5 presents our heuristic algorithm. Details regarding prototype
implementation and results are discussed in Section 6. Section 7 identifies the future work and concludes the paper.

2. Motivating Scenario & Requirements

In this section, we first present a general motivating scenario and then derive a set of requirements from it. More
specific motivational examples can be found in [1], [2] and [8].

A. Motivating Scenario
Let us assume that a WSN Infrastructure owner deploys its heterogeneous sensors having different capabilities on

a large geographic area to detect different physical phenomena. In the context of IoT such WSN Infrastructure owner
can be a city administration interested to provide smart city services to its citizens or a large scale R&D research project
such as SmartSantander [r9]. In these situations, the infrastructure owner is interested to offer the deployed WSN as
IaaS to users to provision multiple applications and services over it. Some of these could be semantic-based allowing
their users to infer additional knowledge about the detected physical phenomenon. Hence efficient sensor data
annotation mechanism is required in which it should be possible for WSN infrastructure owner to develop and manage
the ontology that will be used for the annotation purposes.

B. Requirements
Based on the scenario above, we derive the following five requirements.

This paper is work-in-progress

First, the proposed solution should be domain/application independent meaning that sensor data annotation should
not be domain/application specific. This can be achieved by using or extending standardized ontologies used for WSNs.

The second requirement is that the proposed solution should be able to deal with the infrastructure heterogeneity to
ensure interoperability. Any large scale WSN infrastructure will contain different sensors nodes with having different
sensing capabilities, data formats and other properties.

The third requirement is that it should easy for the WSN infrastructure owner to create, extend and manage the
standard ontology without knowing technical/protocol details.

The fourth requirement is the distributed storage of the ontology in the WSN. This guarantees fault-tolerance and
allows remote sensors to find required ontology nearby instead of communicating with a central node that may be
multiple hops away.

The fifth requirement is that the real time annotation of sensor data should be supported. This can be particularly
useful for emergency applications that rely on sensors to get detect real-world events.

The sixth and the final requirement is that the sensor data annotation should be performed in a distributed manner
to ensure that node failures do not affect the annotation process.

3. Related Work

In this section we present existing solutions, similar to our research area, and evaluate them critically.

One of the earliest efforts to annotate sensor data with semantic metadata, to provide situational knowledge, is
proposed in Semantic Sensor Web (SSW) framework [r10]. This work is based on Sensor Web Enablement (SWE) from
OGC Semantic Web effort by W3C. SWE annotates the sensor data using temporal, spatial and thematic concepts. OGC
SWE languages are used for temporal and spatial annotation of sensor data. However thematic annotations are applied
using sensor data analysis or tags. The authors use the RDFa for the semantic annotation of the sensor data and domain
ontologies for providing concepts and relationships. Semantic Web Rule Language (SWRL) is used to reason over the
annotated data and to infer knowledge. Authors develop two proof-of-concept prototype applications using their
proposed architecture.

In [r11] a three layer architecture based on OGC SWE and semantic web is presented that facilitates the gathering,
processing and exploiting sensor data in real-time. They use Observations and Measurements (O&M) and SensorML
specifications for semantic specification of the sensors, their properties and their raw data. The first layer (data) involves
in collecting raw data from heterogeneous senor. Then the second layer (processing) aggregate those raw measurement,
transform them into XML format and forward it to the next layer. The third layer (semantic) process those aggregated
data by mapping them into ontology model contained in a database .The annotation are created at third layer and stored
in a knowledge base. An external reasoning tool is used to respond to the queries that the end user submits.

The work in [r12] discusses the outcomes of a large-scale European project SPITFIRE allowing transition from
semantic sensor web to semantic web-of-things. The work provides three main contributions: i) new sensor description
mechanism that easily integrates with Linked Open Data cloud (LOD). The data from the LOD can be used by different
applications/services. ii) Semi-automatic creation of semantic sensor descriptions. The sensor data is collected in a
pattern dictionary to generate patterns along with semantic annotations. The patterns help to determine the type of a new
sensor and automated annotation of its data. iii) Efficient search mechanism to find sensors and things based on their
current state. A crawler is used to retrieve the sensor data/metadata from multiple sources (sensors and web pages). The
gathered data is stored in an RDF triple store and later queried using SPARQL query engine. A reference implementation
architecture is presented as a proof-of-concept but performance measurements for validation are not presented.

This paper is work-in-progress

The work done in [r13] propose a new ontology SenMESO for sensor data annotation which is a combination of
various domain ontologies covering sensor data and features of interest. The gateway nodes receive sensor data in
different formats and convert it into XML format in order to support interoperability. The aggregation gateways
incorporate semantics to XML sensor data using RDF, RDFS, OWL and domain ontologies. In this work, the sensor
measurements, after annotation, are linked with the LOD (Link Open Data Cloud) where additional information can be
inferred using additional concepts. An online prototype is available to show viable of the proposed architecture.

The work [r14] focuses on developing semantic-based M2M applications by combining, enriching cross-domain
ontologies that exist in isolation but use similar concepts. The idea is to link and reuse the existing ontologies that have
been developed by the domain experts without using semantic web guidelines. The authors designed an M3 ontology
to integrate cross-domain M2M data providing a unified way to describe events, measurements and sensors. M3
ontology is an extension of SSN ontology, contains detailed description of more than 30 sensors and various domains.
New OWL properties are used to inter-link the same concepts present in different domain ontologies. Additionally
Linked Open Rules (LOR) concept is introduced to share and reuse semantic rules from different domains. Domain
rules are specified using semantic web rule language. Two cross-domain semantic-based applications are also discussed
but without any results.

In [r15] provide an approach to convert the sensor data in SenML format to RDF. A SenML reading from a sensor
is first transformed to RDF elements, then an array of RDF triples is generated and finally these RDF triples are
serialized to different formats. A prototype implementation is presented which is an application for monitoring water
quality of fish farms. The implementation results show the performance gains while using SenML as compared to other
data formats such as RDF, N-triple, and N3. Only the data from IoT devices (sensors) that send data in SenML can be
transformed to RDF, which is the main limitation of this work.

Table I shows the evaluation of the existing works against identified requirements.

Table I: Comparison of related work

Related-
Work

Use of
standard
ontologies

Applicable to
heterogeneous

sensors

Ontology
management
mechanism

Distributed
storage of the

ontology

Real-time
annotation of
sensor data

Annotation
mechanism

Ref [r10] Yes Yes No No No Centralized

Ref [r11] Yes Yes No No Yes Centralized

Ref [r12] Yes Yes Semi-
automatic No No Centralized

Ref [r13] Yes Yes No Yes Yes Decentralized

Ref [r14] Yes Yes No Yes Yes Decentralized

Ref [r15] No
Only those
supporting

SenML
No No Yes Centralized

This work Yes Yes Yes Yes Yes Decentralized

This paper is work-in-progress

4. Proposed Architecture

We begin by discussing the architecture we have proposed in our previous work concerning in-network, distributed
sensor data annotation in vWSNs since we use it as the basis for this paper. Later we present architectural principles
used to propose extended architecture and then the layers and functional entities.

A. Our Starting Point
The work in this paper is based on our previous WSN virtualization architecture [r8] which is illustrated in Fig. 1.

The architecture consists of four layers. The physical layer consists of sensor nodes that support node-level
virtualization. Both resource-constrained (e.g. TelosB, called Type A) as well as capable (e.g. Java SunSpots, called
Type B) sensor nodes are considered. Capable sensors as well as high-end machines (e.g. base stations and sink nodes)
act as Gates-to-Overlays (GTO) nodes to facilitate resource-constrained sensors to support node-level virtualization.
The second layer is Virtual Sensor layer that abstracts as virtual sensors, the simultaneous tasks run by the physical
sensors. There can be two types of virtual sensors: those who run semantic application tasks (and require data
annotation), called semantic virtual sensors and those who run non-semantic (traditional) application tasks, called virtual
sensors.

The Virtual Sensor Access layer has three functional entities (Annotation Agents (AAs), Ontology Agents (OAs)
and Sensor Agents (SAs)) and two overlays (Annotation and Ontology overlays). The Annotation overlay consists of
AAs, which annotate sensor data using the standard ontology. Each semantic virtual sensor is represented by a
corresponding AA in the Annotation overlay. Also in the same overlay are the SAs, which receive annotated as well as
non-annotated data from the virtual sensors and forward it to the end applications. The Ontology overlay consists of
OAs that store the standard ontology. These OAs act as super-peers and provide the ontology to the requesting AAs.
Final layer is Application Overlay layer which consists of multiple applications (semantic and non-semantic) over the
deployed vWSN IaaS.

Figure 1: Sensor data annotation architecture for vWSNs

This paper is work-in-progress

The architecture is based on the following assumptions: first it is assumed that the sensors have already been
discovered and are stored in a registration server. Applications and services that wish to utilize the sensors send queries
to the registration server. There are several existing works such as [r16], [r17] to accomplish this. Second assumption
is that the architecture does not store the sensor data (either raw or annotated). While it is perfectly possible to store
sensor data and use it for data analytics and visualization when required, but currently this feature is not provided.

The key challenge that we addressed in our previous architecture, was to provide in-network sensor data annotation
in a distributed manner in real-time unlike existing centralized solutions that first store the sensor data and later annotate
it. Another contribution was to make our proposed solution domain/application independent since it is difficult to
determine the type applications using WSN IaaS. This was achieved by using the concept of base ontology (related to
the deployed infrastructure) for sensor data annotation.

B. Architectural Principles
The first architectural principle is that the WSN infrastructure owner should have an easy-to-use mechanism to

develop and maintain base ontology.

The second architectural principle is that the base ontology, used to annotate the sensor data, will be stored in the
network using overlays. Overlays have advantages like, resource sharing and lack of central control for more distributed
solutions [r18]. They also make is easy to publish, search and receive the content in the overlay.

The third architectural principle is that the base ontology will be stored only in few selected capable nodes at a time
to in order to not to over burden the nodes. This will also keep the control traffic (concerning base ontology to minimum).
Whenever, network dynamics change or node failure occurs, the algorithm is executed again to select a new set of
capable nodes.

The fourth architectural principle is that in order to keep the execution of the node selection algorithm to minimum,
the base ontology should be replicated in the WSN infrastructure. This means that there will be multiple nodes storing
the same copy of the base ontology, thereby increasing robustness and fault-tolerance.

C. Proposed Architecture
Fig. 2 shows the proposed architecture. It is based on our previous WSN virtualization architecture presented in

Section 4-A. At physical layer there is a new node called WSN IaaS Manager that has a global view of the deployed
WSN infrastructure. In this architecture, WSN IaaS Manager is responsible to first select capable nodes for storing the
base ontology and then disseminate the ontology files over the ODi interface to the selected nodes. For this purpose a
multi-objective genetic algorithm is used. The virtual sensor access layer remains the same as in the previous
architecture.

There is a new functional entity in the ontology overlay in the virtual sensor access layer called Ontology Manager
(OM). The role of OM is to hold the base ontology and provide it to the Ontology Agents (OA) when requested. The
OM can be a centralized entity but in the proposed architecture, it is distributed over many capable nodes in the network
(i.e. GTO nodes and Type B sensors). The rest of the functional entities and the overlays in virtual sensor access layer
remain same as in previous architecture, i.e. the Annotation Agents (AA) request for the desired ontology from the
Ontology Agents (OA) and use it for annotating the raw sensor data. Complete base ontology is replicated and stored
in multiple OMs, while OAs store only portions of the base ontology. Finally, Sensor Agents (SA) in the Annotation
overlay send the annotated data to the semantic applications.

It is important to mention that a single node can play the role of multiple functional entities. For example, a GTO
node can act as OM, OA, SA and AA at the same time since it is much more resourceful than sensor nodes. On the other
hand, a Type B Sensor may fulfil only some of these roles at a time, e.g. as AA and/or OM only since it is not resourceful
as a GTO node.

This paper is work-in-progress

In order to develop and manage the base ontology, the WSN infrastructure owner uses the Ontology Development
and Management Application. WSN infrastructure owner can hire a domain expert or even out-source the ontology
development to a third-party. Once the base ontology is developed, it is provided to the WSN IaaS Manager who then
makes decision on where to send the base ontology in the network. The only entity, that can receive the base ontology
from the WSN IaaS Manager is the OM, hence it is important that OM have the most update version of the base ontology
at all times.

The architecture is based on the architectural principles, mentioned in the previous section and fulfils the
requirements mentioned in Section 3-B. According to first architectural principle, a web-based GUI application is
developed that allows an interactive and easy way to create base ontology. As per second principle, a dedicated overlay
(Ontology Overlay) is used for the storage of base ontology. Two functional entities, OM and OA are used to store
complete and partial base ontology files respectively. As per third principle, the WSN Infrastructure Manager selects
capable node using a multi-objective genetic algorithm whose details are presented in next section. Finally as per fourth
principle, multiple capable nodes are selected to act as OM in the deployed infrastructure.

Figure 2: Proposed Architecture

D. Ontology Development and Management Application
In order to facilitate the easy creation and maintenance of base ontology as web-based GUI application is developed.

Fig. 3 shows the screenshot of the application. It has the following functionality.

Fig. 4 illustrates the process of creating base ontology using the application. First step is that the ontology developer
first adds the concepts related to sensor domain. For each concept sensor type, output type, output unit and observed
property can be specified. This way different type of concepts can be included in the system, e.g., temperature, light,
carbon, each linked to the sensors deployed in the network. Whenever a new type of sensor is deployed in the network,
its information can be easily added in the ontology. For example, its name, attached sensor(s), sensor type, number of

This paper is work-in-progress

attached sensors, its dimensions and range of values it supports. This second step is optional. The third step is that once
the new concepts are included in the system, default ontology is used to incorporate these new concepts. For example,
we use the standard SSN ontology (as default ontology) and extend it with new concepts. In this step default ontology
is loaded from the local ontology database automatically. In the fourth step, the new concepts (mentioned as child
concepts) are included with the existing concepts automatically. In the fifth step, the values of property and domain
range are updated to reflect the new additions/modifications. Finally, the base ontology is created which can be used by
the sensor to annotate their data. Fig. 5 shows the newly created base ontology.

The application also provides option to modify/update existing concepts. All steps, except first and second, are
performed automatically, i.e. without any user input.

Figure 3: Ontology Development and Management Application

This paper is work-in-progress

Figure 4: Base Ontology Creation Process

Figure 5: Sample Base Ontology Created by the Ontology Developer

This paper is work-in-progress

E. Procedures
The proposed architecture needs certain procedures to operate properly. The procedures are classified as i)

management operations and ii) operational procedures.

The management procedures include the following. 1) Selection of sensors and GTO nodes that will play the role
of, i) OMs and OAs in the ontology overlay, and ii) AAs in the annotation overlay. 2) Distribution of base ontology
over OMs, 3) distribution of base ontology over OAs, and 4) Recovery from OA failures.

The operational procedures include the 1) ontology discovery by OAs, and 2) sensor data annotation. The first
operational procedure is needed in case AA does not have the ontology while the final operational procedure is the
actual annotation process.

1) Management Procedures
The management procedures pertinent to the selection of OAs and AAs are discussed in [r8] whereas the selection

of OM is as follows. The WSN IaaS Manager has most recent information of the network i.e. the GTO and sensor nodes,
and their current status regarding energy and storage space. Based on this information, WSN IaaS Manager selects, at
random, capable nodes to act as OMs along with a set of OAs. The set of OAs is determined after executing the genetic
algorithm whose details are presented in next section. Each OM receives complete base ontology, while the OAs receive
parts of the base ontology. The reason is that, in the architecture only GTO nodes will act as OMs while Type B sensors
will act as OAs. Therefore, storing parts of the base ontology in OAs makes sense since they are more resource-
constrained nodes. Another benefit is that when a concept is modified or extended, only OAs storing that particular part
will be updated instead of all OAs.

The ontology distribution over OMs is as follows: After the developed base ontology is received by WSN IaaS
Manager, it randomly selects a set of GTO nodes to act as OMs and provides them with the complete base ontology.
The base ontology is stored in multiple OMs to ensure redundancy.

The ontology distribution over OAs is as follows: The developed base ontology consists of multiple concepts such
as temperature, humidity, light, carbon, acceleration, pressure and so on.

Base ontology = concept_temperature + concept_humidity + … + concept_k

Since OAs are resource-constrained devices and may not need all concepts, OMs divide the base ontology into
multiple parts in such as a way that each part contains one complete concept. Then each of these parts are randomly sent
to the selected OAs. This strategy helps in situations where a WSN deployment contains heterogeneous sensors with
different capabilities but currently few applications are using only some of these capabilities. When a different concept
is required, OAs can easily request it from an OM in the ontology overlay.

The final management procedure is recovery from failures, i.e. when an OA fails due to any issue. When such failure
occurs it is important to select a new candidate to act as OA and provide it with the same part of the base ontology.
Since WSN IaaS Manager will be able to detect the OA (node) failure in the network, it will re-execute the same node
selection algorithm to find a suitable replacement of the failed sensor to act as OA. After joining the ontology overlay,
the new OA will be able to request for part of base ontology when required.

2) Operational Procedures
The first operational procedure is the ontology discovery and it can be proactive or reactive. In proactive approach,

OMs send parts of base ontology to the chosen OAs who then send these received parts to AAs even if there is no
semantic application using the vWSN infrastructure yet. In reactive approach, the virtual sensor executing task for
semantic application send data to AAs for annotation. If AA does not have the required concept, it will send ontology
request to OA. If the OA has the required concept, it will send it, otherwise the request will be sent to the OM.

This paper is work-in-progress

The second operational procedure is the data annotation, works as follows. The semantic virtual sensors send raw
sensor data to the AAs. Once an AA receives the sensor data, it first checks locally if it has the required ontology to
annotate it, if not a discovery request is sent to the ontology overlay. Finally AA annotates the sensor data, using the
received ontology, and sends it to SA. SA is then responsible for sending the annotated data to the semantic application.

5. Implementation and Results

In this section we present the implementation details using a prototype. The implementation shows the usage of
Ontology Development and Management Application and covers the ontology distribution using the architecture.

A. Implementation Choices
To develop Ontology Development and Management Application, the following software and technologies are

used: MySQL Database to store the base ontology. MySQL Database is a popular and easy to use database solution and
can be used to efficiently store the base ontology concepts along with details. Since the designed application is web-
based, it is hosted using open-source and popular web server Apache Tomcat. Tomcat implements many Java EE
specifications and provides a complete Java-based HTTP web server environment for Java code to run in. The Ontology
Development and Management Application itself is developed in Java using JAX-WS web services API. In order to
generate base ontology, using the stored concepts, as an RDF file we use the Protégé OWL API, open-source Java-
based library for OWL and RDF(S). The API makes it easy to load, save and modify OWL data models.

For creating annotation and ontology overlay, we used JXTA protocol which is an open source P2P protocol
specification to create independent, roust and efficient overlay networks. For this work we used java-based JXSE
implementation of JXTA. WSN IaaS Manager, OM and OA implement JXTA Rendezvous Peer functionality to store
the base ontology and its parts respectively. We used the JXTA Content Management System (CMS) to send the base
ontology from WSN IaaS Manager to OM, then from OM to OA and finally from OA to AA. JXTA CMS also makes
it easy to advertise and distribute the contents in the overlay. The functionality of AA is split into two parts: one is
implemented in the laptop as JXTA Edge Peer functionality to request for and receive the part of base ontology. The
second part is the actual annotation process implemented in Java SunSpot using the J2ME-based µJena library [r19].

B. Prototype Setup
Fig. 6 shows the prototype setup. We used three laptops connected to a private LAN. One laptop is used to host the

Ontology Development and Management Application and to act as WSN IaaS Manager. The second laptop acts as OM
while third laptop acted as OA and implements the partial functionality of AA, as mentioned before. The respective
functionalities of these entities were implemented as Java applications in all three laptops. One Java SunSpot kits was
used consisting of 1 base station node and 2 SunSpots with onboard sensors. Each SunSpot executed two application
tasks at the same time. The annotation functionality of AA was implemented in the SunSpots as mentioned before.

This paper is work-in-progress

Figure 6: Prototype Setup

C. Performance Metrics
The performance of the prototype was assessed in terms of the following metrics: Overlay Creation Delay (OCD),

Ontology Dissemination Time (ODisT) and Ontology Download Time (ODT). OCD is the time to create JXTA overlay
from a non-existent state to a ready state, when it is ready to accept join requests. We measured this delay inside the
Java code to ensure that the OCD does not include the JVM start-up delay. ODisT is the combination of the following
delays: i) Delay from ontology application to WSN IaaS Manager, ii) Delay from WSN IaaS Manager to OM, and iii)
Delay from OM to OAs. For ODT we measured the delay when an AA requests and receives the missing part of base
ontology from OA.

All these experiments were repeated 50 times with 95% confidence interval.

D. Results
Fig. 7 shows the OCD of 50 experiments as well as its average value. The average OCD is found to be 1906ms

from 50 experiments. It is important to remember that the OCD pretty much depends on the configurations of the
machines that act as JXTA peers and is unavoidable. However, it is experienced only during the overlay initiation phase
so does not necessarily make much impact during the sensor data annotation process.

This paper is work-in-progress

Figure 7: Overlay Creation Time

Figure 8 shows the ODisT which includes i) Delay from ontology application to WSN IaaS Manager, ii) Delay from
WSN IaaS Manager to OM, and iii) Delay from OM to OAs. During our experiments we found that the delay from
ontology application to WSN IaaS Manager is negligible since both entities were on the same laptop. Therefore this
delay is not included in the given results. The delay from WSN IaaS Manager is shown in vertical lines in Fig. 8. The
average delay is ~56ms. The delay from OM to OA is shown as dots in Fig. 8 and on the average it is about 54ms. In
total the average ODisT from 50 experiments is around 109ms.

Figure 8: Overlay Creation Time

Figure 9 shows the ODT when AA requested for the required part of the base ontology and received the
corresponding owl file. The average ODT from 50 experiments is ~137ms. The reason for higher ODT as compared to
the delay from WSN IaaS Manager to OM and delay from OM to OA is because ODT includes the request and reply
delay as AA first sent a request for the ontology file and later received it where as for the other delays there was no

0

500

1000

1500

2000

2500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Overlay Creation Delay (OCD)

ODC Average OCD

0

10

20

30

40

50

60

70

80

0

10

20

30

40

50

60

70

80

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Ti
m

e
in

 M
ill

is
ec

on
ds

Experiment Number

Ontology Distribution Time (ODisT)

WSN IaaS Manager to OM OM to OA

This paper is work-in-progress

request message, WSN IaaS Manager and OM simply sent the ontology file to the destination without receiving any
request message.

Figure 9: Ontology Download Time

6. Future Work and Conclusion

We have identified couple of work items as future work. First is to explore the possibility of using semantic web
for the efficient publication and discovery of the deployed WSN IaaS. So far we have only focused on the annotation
of sensor data in real-time but it would be interesting to find whether semantic web can help in publishing and
discovering sensors and their services in a virtualized WSN IaaS. This will provide a standard way of advertising the
capabilities and services of a deployment and make it easier for interested users to easily discover sensors according to
their requirements.

Utilization of a deployed WSN by multiple applications and services potentially opens avenues to new business
models and innovation. Virtualized WSNs make such utilization reality by allowing multiple application and services
to use deployed sensors for their tasks concurrently. Semantic-based WSN applications are more useful for their end-
users who instead of getting simple event notifications are able to get event details at a higher level of abstraction and
understand the context as well. In this paper our previous work is extended with new architectural enhancements to
allow a WSN infrastructure owner to easily create and manage ontologies related to the deployed infrastructure. These
developed ontologies are then used by sensors to annotate their data independent of any application domain.
Furthermore, we used a simple heuristic-based genetic algorithm to select capable nodes in the WSN to store the
different ontology files and provide them for annotation whenever required. A proof-of-concept prototype is developed
to show the feasibility of the proposed architecture.

This paper is work-in-progress

References

[1] – I. Khan, et al., "Wireless Sensor Network Virtualization: A Survey," Communications Surveys & Tutorials, IEEE
, vol.PP, no.99, pp.1,1, doi: 10.1109/COMST.2015.2412971, March 2015.

[2] – I. Khan, et al., “Wireless Sensor Network Virtualization: Early Architecture and Research Perspectives”, IEEE
Network Magazine, (accepted for publication), in-press. May/June 2015

[3] – I. Leontiadis, C. Efstratiou, C. Mascolo, and J. Crowcroft, “SenShare: Transforming Sensor Networks into Multi-
application Sensing Infrastructures,” in Wireless Sensor Networks, G. P. Picco and W. Heinzelman, Eds. Springer
Berlin Heidelberg, 2012, pp. 65–81.

[4] – M. Navarro, M. Antonucci, L. Sarakis, and T. Zahariadis, “VITRO Architecture: Bringing Virtualization to WSN
World,” in 2011 IEEE 8th International Conference on Mobile Adhoc and Sensor Systems (MASS), 2011, pp. 831–
836.

[5] – J. Yick, B. Mukherjee, and D. Ghosal. "Wireless sensor network survey." Computer networks 52.12 (2008): 2292-
2330.

[6] – M. A. Feki, F. Kawsar, M. Boussard, and L. Trappeniers, “The Internet of Things: The Next Technological
Revolution,” Computer, vol. 46, no. 2, pp. 24–25, 2013.

[7] – I. Khan, et al., "Getting Virtualized Wireless Sensor Networks’ IaaS Ready for PaaS", accepted for publication in
IoTIP-15 Workshop in 11th IEEE International Conference on Distributed Computing in Sensor Systems (IEEE
DCOSS 2015) conference, 2015, June 10-12, Fortaleza, Brazil

[8] – I. Khan, et al., "A Data Annotation Architecture for Semantic Applications in Virtualized Wireless Sensor
Networks", in proceedings of 14th IFIP/IEEE Symposium on Integrated Network and Service Management (IM
2015) – Technical Session, 2015, May 11-15, Ottawa, Canada.

[9] – L. Sanchez, et al., “SmartSantander: IoT experimentation over a smart city testbed,” Computer Networks, vol. 61,
pp. 217–238, Mar. 2014.

[10] – A. Sheth, C. Henson, and S. S. Sahoo, “Semantic Sensor Web,” IEEE Internet Computing, vol. 12, no. 4, pp. 78–
83, Jul. 2008.

[11] – A. Zafeiropoulos, et al., “A Semantic-Based Architecture for Sensor Data Fusion,” in The Second International
Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies, 2008. UBICOMM ’08, 2008,
pp. 116–121.

[12] – D. Pfisterer, et al., “SPITFIRE: toward a semantic web of things,” IEEE Communications Magazine, vol. 49, no.
11, pp. 40–48, Nov. 2011.

[13] – A. Gyrard, C. Bonnet, and K. Boudaoud, “A machine-to-machine architecture to merge semantic sensor
measurements,” in WWW 2013, 22nd International World Wide Web Conference, Doctoral Consortium, May 13-
17, 2013, Rio de Janeiro, Brazil, 2013.

[14] – A. Gyrard, C. Bonnet, and K. Boudaoud, “Enrich machine-to-machine data with semantic web technologies for
cross-domain applications,” in 2014 IEEE World Forum on Internet of Things (WF-IoT), 2014, pp. 559–564.

[15] – X. Su, H. Zhang, J. Riekki, A. Keränen, J. K. Nurminen, and L. Du, “Connecting IoT Sensors to Knowledge-
based Systems by Transforming SenML to RDF,” Procedia Comput. Sci., vol. 32, pp. 215–222, 2014.

This paper is work-in-progress

[16] – M. Liu, T. Leppanen, E. Harjula, Z. Ou, A. Ramalingam, M. Ylianttila, and T. Ojala, “Distributed resource
directory architecture in Machine-to-Machine communications,” in 2013 IEEE 9th International Conference on
Wireless and Mobile Computing, Networking and Communications (WiMob), 2013, pp. 319–324.

[17] – J. Mäenpää, J. J. Bolonio, and S. Loreto, “Using RELOAD and CoAP for wide area sensor and actuator
networking,” J Wireless Com Network, vol. 2012, no. 1, pp. 1–22, Dec. 2012.

[18] – E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey and comparison of peer-to-peer overlay
network schemes,” IEEE Communications Surveys Tutorials, vol. 7, no. 2, pp. 72–93, Second 2005.

[19] – F. Crivellaro, “μJena: Gestione di ontologie sui dispositivi mobile,” M.Sc., Politecnico di Milano, Milan, Italy,
2007.

160 Paper VII

Annex H
Paper VIII

161

A Genetic Algorithm-based Solution for Efficient
In-network Sensor Data Annotation in Virtualized

Wireless Sensor Networks

Imran Khan∗, Jagruti Sahoo†, Son Han∗, Roch Glitho† and Noël Crespi∗
∗Institut Minés-Télécom, Télécom SudParis, 91011 Evry Cedex, France

Email: imran@ieee.org, {son.han, noel.crespi} @it-sudparis.eu
†Dept. CIISE, Concordia University, H3G 2W1, Montreal, Canada

Email: jagrutiss@gmail.com, glitho@ciise.concordia.ca

Abstract—Sharing a deployed Wireless Sensor Network
(WSN) infrastructure among multiple, concurrent applications
can help realize the true potential of Internet-of-Things (IoT).
Virtualized WSNs can help to achieve such sharing where
multiple applications and services use a deployed WSN infras-
tructure at the same time. These applications and services may
include semantic applications which are very much pertinent
to provide situational awareness to the end-users who are then
able to understand the context of the events and make informed
decisions. However there is a fundamental issue of performing
sensor data annotation in an efficient manner in such networks. In
this paper we propose a heuristic-based genetic algorithm to select
capable nodes to perform in-network sensor data annotation in
virtualized WSN in a way that maximizes energy and storage
efficiency. Simulation results are also presented.

Keywords—Wireless Sensor Networks; Internet of Things; Se-
mantic Web; WSN Virtualization; Genetic Algorithm

I. INTRODUCTION

Recently the concept of Wireless Sensor Networks (WSNs)
virtualization [1], [2], [3], [4] has gained attention that uses the
concept of multiple concurrent application tasks running on a
sensor node. With this concept it has become possible to offer
a deployed WSN infrastructure to multiple applications and
services. This is in contrast to the traditional task-oriented,
domain-specific deployments of WSNs [5] where applications
came usually bundled with them. Normally it is prohibitively
expensive and time-consuming to deploy new applications over
the traditional deployments. WSNs are considered as one of
the building blocks of the Internet-of-Things (IoT) paradigm
[6] hence it is pertinent to explore the possibility of sharing
them among multiple applications and services.

Traditional WSN applications are built around the concept
of receiving sensor data in raw format without any ability
to understand its context and meaning. Additionally, this
raw sensor data fails to provide high-level details to gain
situational awareness because an end-user cannot make queries
to better understand a situation. For example, a traditional
fire monitoring application can get only a notification about
the fire eruption event but will not allow its user to query
for the details like where is the source of fire? Semantic
applications, on the other hand, easily allow end-users to make
such queries to get results like in a public library. This allows
for provisioning more rich and interactive applications to the

end-users. Another benefit of incorporating semantic concept
to the WSNs is that we can have standard way to share
sensor data across different application domains. This can be
particularly useful to achieve interoperability among various
vertical solutions which are typically found these days. With
the increase in number of WSN deployments by the third-party
actors (public, community and research deployments), future
WSN deployments will have to support both traditional as well
as semantic applications.

With this background, it is clear that we need efficient
solutions to annotate sensor data using ontology concepts.
Recently we proposed an in-network, distributed sensor data
annotation architecture [7] to provision traditional as well as
semantic applications over a vWSN IaaS. Capable nodes in the
architecture store the ontology concepts, which are later used
for annotation purposes. This in-network annotation approach
has many benefits than existing centralized solutions that first
store sensor data and later annotate it. For example, each
capable sensor is able to annotate its data directly in real-time.
However, being resource constrained networks, it makes sense
to use only limited number of sensors to perform intensive
tasks such as storing the ontology concepts and sharing them
for the annotation purposes. There needs to be a simple yet
efficient mechanism to select a set of capable nodes that store
ontology concepts.

In this paper we propose a heuristic-based Genetic Algo-
rithm (GA) to select capable nodes for storing the developed
ontology. We use multi-objective criteria to select best possible
candidates (including capable sensors) for ontology storage.
The GA is designed to select sensors with maximum energy
and storage space available at that time. We use two level
encoding scheme to model the problem. Simulations results of
the implementation are also presented.

The rest of the paper is organized as follow; a motivating
scenario is presented in Section II, along with a set of
requirements and brief overview of our previous work that we
use as basis for this work. In Section III proposed algorithm is
described in detail. Section IV presents the simulation results
while related work is discussed in Section V. Finally Section
VI concludes the paper along with discussion on future work.

II. BACKGROUND, MOTIVATING SCENARIO AND
REQUIREMENTS

In this section we first present overview of our architecture
that has been used as basis for this work. Later we present a
simple motivating scenario to show the problem addressed in
this paper. Finally a set of requirements is drawn from the
scenario which should be fulfilled by a solution.

A. Our Starting Point

The work in this paper is based on our previous WSN
virtualization architecture [7] which is illustrated in Fig. 1.
The architecture consists of four layers. The physical layer
consists of sensor nodes that support node-level virtualization.
Both resource-constrained (e.g. TelosB, called Type A) as well
as capable (e.g. Java SunSpots, called Type B) sensor nodes are
considered. Capable sensors as well as high-end machines (e.g.
base stations and sink nodes) act as Gates-to-Overlays (GTO)
nodes to facilitate resource-constrained sensors to support
node-level virtualization. The second layer is Virtual Sensor
layer that abstracts as virtual sensors, the simultaneous tasks
run by the physical sensors. There can be two types of virtual
sensors: ones running semantic application tasks (and require
data annotation), called semantic virtual sensors and ones
running non-semantic application tasks, called virtual sensors.

The Virtual Sensor Access layer has three functional
entities (Annotation Agents (AAs), Ontology Agents (OAs)
and Sensor Agents (SAs)) and two overlays (Annotation and
Ontology overlays). The Annotation overlay consists of AAs,
which annotate sensor data using the standard ontology. Each
semantic virtual sensor is represented by a corresponding AA
in the Annotation overlay. Also in the same overlay are the
SAs, which receive annotated as well as non-annotated data
from the virtual sensors and forward it to the end applications.
The Ontology overlay consists of OAs that store the standard
ontology. These OAs act as super-peers and provide the ontol-
ogy to the requesting AAs. Final layer is Application Overlay
layer which consists of multiple applications (semantic and
non-semantic) over the deployed vWSN IaaS.

The architecture is based on the following assumptions:
first it is assumed that the sensors have already been dis-
covered and are stored in a registration server. Applications
and services that wish to utilize the sensors send queries
to the registration server. There are several existing works
such as [8], [9] to accomplish this. Second assumption is that
the architecture does not store the sensor data (either raw or
annotated). While it is perfectly possible to store sensor data
and use it for data analytics and visualization when required,
but currently this feature is not provided.

The key challenge that we addressed in our previous
architecture, was to provide in-network sensor data annotation
in a distributed manner in real-time unlike existing centralized
solutions that first store the sensor data and later annotate it.
Another contribution was to make our proposed solution do-
main/application independent since it is difficult to determine
the type applications using WSN IaaS. This was achieved by
using the concept of base ontology (related to the deployed
infrastructure) for sensor data annotation.

Operations &

Management Entity

Type A

Sensor

AA

PDi

AA AA

Type B

Sensor

OA

OA
OA

Ontology Manager

GTO

Node

Physical

Layer

Annotation

Overlay

Ontology Overlay

Type A

Sensor

PDi
PDi

Type A

Sensor

Type B

Sensor

PDi

Virtual

Sensor

Layer

AA

SA

PDi PDi

Virtual Sensor

Access Layer

SA

Registration

Server

Internet

Di Di

AA = Annotation

Agent

OA = Ontology

Agent

SA = Sensor Agent

Application

Overlay

Layer

Non-Semantic

Application

Semantic

Application

Fig. 1. Data annotation architecture

B. Motivating Scenario

Let us assume that a WSN Infrastructure owner deploys
its heterogeneous sensors having different capabilities on a
large geographic area to detect different physical phenomena.
In the context of IoT such WSN Infrastructure owner can be a
city administration interested to provide smart city services
to its citizens or a large scale R&D research project such
as SmartSantander [10]. In these situations, the infrastructure
owner is interested to offer the deployed WSN as IaaS to users
to provision multiple applications and services over it. Some
of these could be semantic-based allowing their users to infer
additional knowledge about the detected physical phenomenon.

Now according to the architecture presented in previous
section, base ontology concepts need to be stored in the WSN
in a distributed manner. The failure prone and energy deficient
nature of WSN mandates that only few of the sensor nodes,
that have required energy and storage space available, be used
for storing the base ontology.

C. Requirements

Based on the scenario described above, we derive the
following three requirements. First requirement is that any pro-
posed solution should be applicable to large scale deployment
of sensors.

The second requirement is that the proposed solution
should try to achieve multiple objectives at the same time.
For example, energy level of sensors, available storage space
among others.

The third requirement is that the proposed solution should
be able to provide a set of sensors that will store the ontology
along with associated sensors that will request and receive the
ontology from them whenever required.

III. MULTI-OBJECTIVE GENETIC ALGORITHM FOR
SELECTING CAPABLE NODES

In this section we discuss the multi-objective GA for the
selection of capable nodes that will act as OAs.

A. Genetic Algorithm

Genetic Algorithm (GA) [11], [12] follow the process
of natural evolution by applying the principle of survival of
the fittest. GA works in an iterative manner that mimics the
natural selection of the fittest and elimination of the week
solutions. In each iteration the solutions are evaluated against
a fitness function, the ones that fulfil the criteria of the fitness
function are retained while others are screened out. Genetic
operations such as crossover, mutation are performed on the
fittest solutions to produce new generation of solutions. This
whole process is repeated until a certain condition is met.
During its execution, GA does not need any other input except
the fitness value to select most suitable and fittest solutions. In
literature, GA have been used for solving many optimization
and selection problems where the focus is to find many near-
optimal non-dominated solutions.

B. Capable Node Selection Problem

In our proposed architecture, ontology concepts are stored
in multiple capable sensor nodes in a distributed way. In order
to have a dynamic and lightweight solution, we propose to
select a set of capable nodes to store the ontology concepts
(i.e. act as OAs). In this work, we assume that all AAs are
able to act as OAs (in terms of capabilities). However, due to
limited resources of AAs (energy and memory), it is necessary
to select an optimal number of them that will act as OAs.
This selection needs to ensure that only nodes that fulfil the
energy and storage requirements, at that particular time, are
selected. Once a set of nodes is identified, ontology concepts
are provided to them. Thus in this work we have energy-
related requirements and memory related requirements. The
optimal selection of OAs can be modelled as a multi-objective
optimization problem where the objectives include maximizing
residual energy and maximizing residual storage. The solution
to this problem provides the OAs and their respective AAs.
We use the GA to solve the optimization problem. This genetic
algorithm is executed by a central node, i.e. Ontology Manager
(OM) shown in Fig. 1.

C. Problem Representation

We propose a two-level encoding scheme to encode a
chromosome for GA, illustrated in Fig. 2. The level-1 encoding
is used to represent the OAs; whereas the level-2 encoding is
used to represent the members (i.e. AAs) of each OA. The
two-level encoding is based on binary encoding. The level-
1 encoding consists of n binary bits, where n is number of
active sensors in the network. In the chromosome each gene
represents a sensor. A value of 0 in level-1 encoding means

Sensor S1 S2 S3 S4 S5 S6 S7 S8

Level-1

0 1 0 0 1 0

0 1 0

0 0 1

1 0 0

S2 S3 S6 S2 S3 S6

S2 S3 S6 S2 S3 S6 S2 S3 S6

Level-2

0 1 1 0 0 1 0 0

Fig. 2. Two-level encoding example

that the sensor is not selected to act as OA whereas a value
of 1 means it is selected to act as OA.

The level-2 encoding is described as follows. Each gene in
level-1 encoding that has 0 bit has a level-2 binary string.
Each such string consists of m bits where m is equal to
the number of 1 bits in level-1 encoding. To encode this, a
position is randomly chosen between 1 and m and is filled
with 1. Rest m-1 positions are filled with 0s. Note that,
numeric encoding could have been used for level-2 encoding.
However, binary encoding has an advantage of being flexible
in performing mutation operation as described later. The steps
of the encoding procedure are as follows.

/* Level-1 Encoding */

Generate a random binary strings ;
Randomly fill the bits with 1s and 0s ;

/* Level-2 Encoding */

For each bit with value 0 in level-1 ;
Create a binary string of length equal to number of 1′s
in level-1 ;
Choose a bit at random and put 1 ;
Fill all other bits in that string with 0 ;

IV. GA OPERATIONS

Crossover and mutation are the two genetic operations
performed on the chromosomes in a population. In a crossover
operation, genes from different chromosomes (parents) are
recombined to produce new chromosomes (children). The
crossover operation ensures that after many generations, best
features of the parents are carried to the next generation.

In the genetic algorithm, 2-point crossover is used. In
particular, the 2-point crossover operation is applied to level-1
encoding. When a gene is extracted from a parent chromo-
some, the corresponding level-2 encoding is also extracted.
Since the proposed encoding results in variable length level-
2 string for each chromosome, the crossover operation must
preserve the number of 1 bits in each chromosome. Thus, the
basic 2-point crossover operation cannot be applied directly
on the chromosomes. One way of resolving this issue is to
consider fixed length level-2 strings which also requires pre-
specifying the number 1 bits for the level-1 encoding for
each chromosome in the initial population. The basic 2-point
crossover operation on fixed length level-2 strings is illustrated
in Fig 3. The other way is to adopt a variant of 2 point

Parent 1 Parent 2

0 1 1 0 0 1 0 0

1 0 0 0 1 0 0 1 0 0 1 0 0 0 1

0 1 0 0 0 0 1 1

0 0 1

Crossover

Point

Crossover

Point

Child 1

0 0 0 1 1 1 0 0

0 1 0 1 0 0 1 0 0 0 1 0 0 0 1

Child 2

0 0 0 1 0 0 1 1

0 1 0 0 1 0 0 0 1 0 1 0 0 1 0

0 1 0 1 0 0 1 0 0 0 1 0

Fig. 3. Example 2-point crossover operation (fixed length level-2 string)

crossover operation [13] which preserves the number of 1 bits
in each chromosome that will be produced after crossover.

After the crossover operation, mutation operation is applied
to each child. During this operation two genes, selected at
random, are interchanged in a chromosome. In our case, the
mutation operator is applied in 2 steps to the level-2 strings. In
the first step, two genes that have 0 bits in level-1 encoding are
selected at random. Then, their level-2 strings are interchanged.

In the second step, a gene that has 0 bit in level-1 encoding
is selected at random. Then, in its level-2 binary string, a
random position corresponding to a 0 bit is selected. Then, this
0 bit is interchanged with the 1 bit. These steps are illustrated
in Fig. 4. Note that, with numeric encoding for level-2 strings,
only step-1 can be performed. Thus, using binary encoding for
level-2 strings results in flexibility in mutation operation.

Before

Mutation

Step 1

0 1 1 0 0 1 0 0

1 0 0 0 1 0 0 1 0 0 1 0 0 0 1

After

Mutation

Step 1

0 1 1 0 0 1 0 0

1 0 0 0 1 0 0 1 0

Random

genes

seleected

0 1 00 0 1

Before

Mutation

Step 2

0 1 1 0 0 1 0 0

1 0 0 0 1 0 0 1 00 1 00 0 1

After

Mutation

Step 2

0 1 1 0 0 1 0 0

1 0 0 0 1 0

A random

gene

selected

0 1 00 0 11 0 0

Fig. 4. Example mutation operation

A. Objective Functions

In order to select most promising and fittest individual
to produce new generation in each iteration, we use two
objectives function that allows us to compare the individuals.
Our main objectives are:

f1: Maximizing the residual energy of sensors
f2: Maximizing the residual storage of sensors

These objectives ensure that the total residual energy and
total residual memory of sensor nodes are maximized. For
computing f1, we adopted the following energy model.

)(***

)(***

0

4

0

2

dddlEl

dddlEl
E

mpelect

fselect

Tx

Where, ETx denotes energy consumed in sending l bit
of data to a node at distance d. Eelect is the amount of
energy consumption per bit to run the transmitter and receiver
circuitry. The details of other parameters can be found in [14].

The objective f1 is expressed as:

𝑓1 = 𝐸𝑚𝑎𝑥 ,𝑗 − 𝐸𝑟

𝑛𝑜 (𝑗)

𝑖=1

 + 𝐸𝑗 (𝑜)

𝑚

𝑗=1

Where,
m = number of sensors selected as OAs,
Emax,j = Current residual of energy of sensor j,
no(j) = Number of AAs for which sensor j act as OAs,
Er = Energy spent in communication between two sensors,
Ej(O) = Energy spent by sensor j in receiving ontology file

Emax,j is known from the status received from sensors
before executing GA. Er and Ej(O) are computed using the
above energy model.

The objective f2 is expressed as:

𝑓2 = 𝑀𝑚𝑎𝑥 ,𝑗 − 𝑀𝑗

𝑁𝐴

𝑖=1

 +𝑀𝑗 (𝑜)

𝑚

𝑗=1

Where,
m = number of sensors selected as OAs,
Mmax,j = Current value of storage of sensor j,
NA = Total no. of application tasks running in sensor j,
Mj = Storage needed for applications in sensor j,
Mj(O) = Storage needed for ontology file in sensor j

Since the OA selection problem is a multi-objective op-
timization problem, there is not one optimal solutions rather
a set of solutions called pareto-optimal solutions. However,
finding the best or a good trade-off solution is often difficult
as it requires a proper analysis of the pareto-front. Therefore,
multi-objective optimization problems are often solved using
scalarization or weight sum approach which transforms multi-
objective optimization to single-objective optimization.

𝑍 = 𝑊1 ∗ 𝑓1 + 𝑊2 ∗ 𝑓2

1,0 ,1 2121 WWWW

Using this approach, the new objective function is ex-
pressed as:

Where, W1 and W2 are weights and indicate the relative
importance of the objective functions. These weights can be
adjusted based on the need.

B. Implementation and Results

In this section we first discuss the simulation setup and
then discuss the results.

C. Simulation Setup

We implemented our algorithm using Apache Commons
Math library [15]. We execute the algorithm for large number
of sensors to get a near-optimal solution containing the list of
sensors that can act as OM in the deployed WSN IaaS. The
pseudo-code of the algorithm is shown below. The parameters
used for the implementation are shown in Table I.

Result: Set of capable nodes that can act as OAs

Input: Population size α
total number of sensors n
crossover probability β
mutation probability γ
number of iterations σ

Output: solution X

/* Initialization */
/* Level 1 Encoding */

1 Generate α random solutions of size n
2 for i← 0 to n do
3 individual[i] = randomInt[0, 1];

4 /* if individual[i] == 1 then it is
an OA */

5 /* else it is not an OA */
end

6 /* Level 2 Encoding */
7 for each individual k not Selected As OA in Level 1 do
8 Create a binary string of length m bits ;
9 /* where m is the number of 1s at

level-1 */
10 Fill one random bit of the string with 1 ;
11 Fill rest of the bits with 0 ;

end
12 repeat
13 crossOver(with β probability);
14 mutation(with γ probability);
15 fitnessEvalution();
16 replaceWithNewGeneration();
17 iterations++;

until iterations <= σ;
18 return Solution

Algorithm 1: Capable Node Selection Algorithm

TABLE I. PARAMETERS FOR GENETIC ALGORITHM

Population Size α 1000, 2000, 3000
Crossover Probability β 0.2, 0.5, 0.8
Mutation Probability γ 0.05
Number of Iterations σ 50
Elitism Rate 0.2

Since our work targets capable and advanced sensor plat-
forms, we considered Java SunSpots [16] for our simulation.
Java SunSpots have built-in rechargeable Li-ion battery with a
total energy of about 9590 joules. The current residual energy
of the sensors is fixed at random from 50% to 100% of this
value. A uniform value of 50j is assumed for communication
between OAs and AAs. Similarly a uniform value of 80j is
assumed for OAs to receive ontology file from the central OM
node. In our previous work [7] we developed the base on-
tology with multiple concepts (e.g. temperature, light, carbon,
humidity). The maximum ontology file size we had was around
8Kb for a single concept. In this work, we assume a storage
space of 10Kb for storing a single ontology file in an OA. In
addition to this we consider the scenario where OAs may be
executing applications tasks themselves. Here we assume that
each OA executes three application tasks. It is important to
mention that rev 8 of Java SunSpot provides about 7200Kb of
storage space of application tasks. Hence considering 10Kb for
ontology storage makes sense. Each experiment was repeated
10 times and the results presented here show the average values
of these experiments.

D. Results

The total fitness value of the optimal set of OAs is shown
in Fig. 5. It is important to mention that the values are higher
because fitness value of all OAs is combined. We observe that
the higher population size (i.e. more sensors) do not necessarily
lead to maximum fitness value. However, as iterations passed,
the fitness became larger. For this result we kept crossover rate
at 0.8. For each population size the best solution was found in
the last few iterations (e.g. 47th, 48th and 50th).

500000

700000

900000

1100000

1300000

1500000

1700000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

F
it

n
es

s
V

al
u

e

Generation #

Fitness Value of all OAs in the Fittest Individual

1000 Sensors 2000 Sensors 3000 Sensors

Fig. 5. Fitness value of all OAs in the fittest individual

156 164 162

844

1836

2838

0

500

1000

1500

2000

2500

3000

1000 Sensors 2000 Sensors 3000 Sensors

N
u

m
b

e
r

o
f

S
e
n

s
o

r

Average Number of OAs and AAs with Crossover

rate of 0.2

Number of OAs Number of AAs

Fig. 6. Average no. of OAs and AAs obtained with crossover rate of 0.2

The next results shows the number of OAs and AAs ob-
tained by using different crossover rates. Fig. 8, 9 and 10 show
the average number of OAs and AA obtained using crossover
probability of 0.2, 0.5 and 0.8 respectively. It is interesting to
note that the low crossover rate leads to less number of OAs.
This means that there will be more AAs associated with one
OA. As we increased the crossover probability, number of OAs
increased as well irrespective of the population size. Another
interesting observation is that there is not major increase in
number of OAs when population size increases. In fact the
number of OAs remain pretty much consistent irrespective of
the population size.

We also performed simulation by varying the mutation rate
but found that it did not have any major impact.

Overall these results provide us interesting insights and
motivate us to further improve the algorithm and solve other
research problems in this area.

V. RELATED WORK

The problem addressed in this paper is comparable to some
previous work that have used GA in WSN domain. In fact our
work is similar to the typical cluster head selection albeit for
different purposes. However, majority of the existing works
do not associate sensors, having different roles, to each other
which is a key requirement in our work.

The work in [17] presents a design optimization solution
in WSNs using GA. The authors use multiple objectives
to find the optimal operation mode of sensors and assigns
them specific roles so that the overall energy consumption is
minimized and application-specific requirements are satisfied.
The WSN is modelled as a square grid deployment with around
990 sensors. Sensor can either act as cluster-heads or as normal
sensors when they are active. However, this work does not
provide the association between sensors having different roles
as per our third requirement.

189 198 199

811

1802

2801

0

500

1000

1500

2000

2500

3000

1000 Sensors 2000 Sensors 3000 Sensors

N
u

m
b

e
r

o
f

S
e
n

s
o

r

Average Number of OAs and AAs with Crossover

rate of 0.5

Number of AAs Number of OAs

Fig. 7. Average no. of OAs and AAs obtained with crossover rate of 0.5

220 222 227

780

1778

2773

0

500

1000

1500

2000

2500

3000

1000 Sensors 2000 Sensors 3000 Sensors

N
u

m
b

e
r

o
f

S
e
n

s
o

r

Average Number of OAs and AAs with Crossover

rate of 0.8

Number of AAs Number of OAs

Fig. 8. Average no. of OAs and AAs obtained with crossover rate of 0.8

In [18] the optimal coverage problem is solved using the
multi-objective GA in WSNs. In order to provide maximum
possible coverage a subset of sensors need to be active. There
is a trade-off, more coverage means more active sensors hence
more energy consumption. Using GA the authors tried to find
minimum number of sensors required to provide full coverage.
However, this work also does not fulfil our third requirement.

In [19] GA is used to create clusters in WSN in an
efficient way. The work uses multi-objectives to select the
fittest chromosome. As part of the result, suitable cluster heads
are identified. This part is similar to our work, however the
member nodes for the cluster heads are not identified by the
GA, instead a minimum distance strategy is used by a base
station node. Therefore this work also does not fulfil out third
requirement.

The authors in [20] proposed a GA based approach to
perform load balancing for clustering in WSN. The work tries
to assign sensors to different gateways in a similar manner
to our work (AAs to OAs). However, their solution does
not achieve multi-objectives and only considers overlaod on
gateway nodes. Hence this work does not satisfy our second
requirement.

VI. CONCLUSION

In this paper we proposed a heuristic-based GA for optimal
selection of capable nodes (called OAs) to hold ontology files
in a WSN. The algorithm also associates sensors (called AAs)
to these capable sensor to get ontology files whenever required.
The proposed solution is centralized and is executed by main
node in the network.

There are also many avenues to extend this work. For
example, distance between OAs and AAs should be consid-
ered when associating them with each other. Similarly there
needs to be an update mechanism to mitigate the effects of
OA failures in the WSN, i.e. whenever OAs fail new ones
are selected automatically. Similarly, a network status update
mechanism is required to gather the current status of the
sensors, their available energy levels, and available storage. A
periodic heartbeat mechanism or an enhanced routing mech-
anism could be used for this purpose. Another possibility is
to find approaches which could support localized execution of
the GA. This would make it possible to deal with OA failures
locally thereby avoiding executing GA on the whole network.
Finally, in this work it is assumed that after finding the pairs
of OAs and AAs, the OM node disseminates the ontology files
to the selected OAs and notifies AAs about their potential OA.
However, how this is achieved needs further investigation.

REFERENCES

[1] I. Khan, F. Belqasmi, R. Glitho, N. Crespi, M. Morrow, and P. Polakos,
Wireless Sensor Network Virtualization: A Survey, IEEE Communica-
tions Surveys & Tutorials, vol. PP, no. 99, pp. 1-1, 2015.

[2] I. Khan, F. Belqasmi, R. Glitho, N. Crespi, M. Morrow, and P. Polakos,
Wireless sensor network virtualization: early architecture and research
perspectives, IEEE Network, vol. 29, no. 3, pp. 104-112, May 2015.

[3] I. Leontiadis, C. Efstratiou, C. Mascolo, and J. Crowcroft, SenShare:
Transforming Sensor Networks into Multi-application Sensing Infras-
tructures, in Wireless Sensor Networks, G. P. Picco and W. Heinzelman,
Eds. Springer Berlin Heidelberg, 2012, pp. 65-81.

[4] M. Navarro, M. Antonucci, L. Sarakis, and T. Zahariadis, VITRO
Architecture: Bringing Virtualization to WSN World, in 2011 IEEE
8th International Conference on Mobile Adhoc and Sensor Systems
(MASS), 2011, pp. 831-836.

[5] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network
survey,” Computer Networks, vol. 52, no. 12, pp. 2292-2330, Aug. 2008.

[6] M. A. Feki, F. Kawsar, M. Boussard, and L. Trappeniers, The Internet
of Things: The Next Technological Revolution, Computer, vol. 46, no.
2, pp. 24-25, 2013.

[7] I. Khan, et al., ”A data annotation architecture for semantic applications
in virtualized wireless sensor networks,” Integrated Network Manage-
ment (IM), 2015 IFIP/IEEE International Symposium on , vol., no.,
pp.27,35, 11-15 May 2015.

[8] M. Liu, T. Leppanen, E. Harjula, Z. Ou, A. Ramalingam, M. Ylianttila,
and T. Ojala, “Distributed resource directory architecture in Machine-to-
Machine communications,” in 2013 IEEE 9th International Conference
on Wireless and Mobile Computing, Networking and Communications
(WiMob), Lyon, France, 2013, pp. 319-324.

[9] J. Menp, J. J. Bolonio, and S. Loreto, “Using RELOAD and CoAP for
wide area sensor and actuator networking,” J Wireless Com Network,
vol. 2012, no. 1, pp. 1-22, Dec. 2012.

[10] L. Sanchez, et al., SmartSantander: IoT experimentation over a smart
city testbed, Computer Networks, vol. 61, pp. 217-238, Mar. 2014.

[11] J. H. Holland. Adaptation in natural and artificial systems: an intro-
ductory analysis with applications to biology, control, and artificial
intelligence. MIT press, 1992.

[12] D. Whitley, ”A genetic algorithm tutorial.” Statistics and Computing
4.2 (1994): 65-85.

[13] Y.C. Hou, Y.H. Chang, A new efficient encoding mode of genetic
algorithms for the generalized plant allocation problem, Journal of
Information Science and Engineering 20 (2004) 1019-1034.

[14] J.-M. Kim, S.-H. Park, Y.-J. Han, and T.-M. Chung, CHEF: Cluster
Head Election mechanism using Fuzzy logic in Wireless Sensor Net-
works, in 10th International Conference on Advanced Communication
Technology, 2008. ICACT 2008, vol. 1, pp. 654-659.

[15] Apache Software Foundation, Apache commons mathematics library,
2015, http://commons.apache.org/math/

[16] R. B. Smith, “SPOTWorld and the Sun SPOT,” in Proceedings of
the 6th International Conference on Information Processing in Sensor
Networks, New York, NY, USA, 2007, pp. 565-566.

[17] K. P. Ferentinos and T. A. Tsiligiridis, Adaptive design optimization of
wireless sensor networks using genetic algorithms, Computer Networks,
vol. 51, no. 4, pp. 1031-1051, Mar. 2007.

[18] J. Jia, J. Chen, G. Chang, and Z. Tan, Energy efficient coverage control
in wireless sensor networks based on multi-objective genetic algorithm,
Computers & Mathematics with Applications, vol. 57, no. 1112, pp.
1756-1766, Jun. 2009.

[19] S. Hussain, A. W. Matin, and O. Islam, ”Genetic Algorithm for Energy
Efficient Clusters in Wireless Sensor Networks”, ITNG, 2007, Infor-
mation Technology: New Generations, Third International Conference
on, Information Technology: New Generations, Third International
Conference on 2007, pp. 147-154.

[20] P. Kuila, S. K. Gupta, and P. K. Jana, A novel evolutionary approach for
load balanced clustering problem for wireless sensor networks, Swarm
and Evolutionary Computation, vol. 12, pp. 48-56, Oct. 2013.

Acronym

AA Annotation Agents
API Application Programming Interface
Ci Control interface
CoAP Constrained Application Protocol
Di Data interface
DNS-SD Domain Name System-based Service Discovery
E2ED End-to-End Delay
EOT Expected Operation Time
FCA Fire Contour Algorithm
FND Fire Notification Delay
GA Genetic Algorithm
Gi Gateway interface
GTO Gates-to-Overlays
GUI Graphical User Interface
HPD HTTP Post Delay
IaaS Infrastructure-as-a-Service
IETF Internet Engineering Task Force
IoT Internet-of-Things
IP Internet Protocol
IT Information Technology
JVM Java Virtual Machine
Kbps Kilobits per second
LAN Local Area Network
Mbps Megabits per second
O&M Operations & Management
OA Ontology Agents
OCD Overlay Creation Delay
ODisT Ontology Dissemination Time
ODT Ontology Download Time
OM Ontology Manager
OS Operating System
OTA Over-the-Air
OWL Web Ontology Language
P2P Peer-to-Peer
PaaS Platform-as-a-Service
PAC Peer Aware Communication
PCi Proprietary interface
PDi Proprietary Data interface
RDF Resource Description Framework
REST Representational State Transfer
SA Sensor Agent
SaaS Software-as-a-Service
SSN Semantic Sensor Network
TCP Transmission Control Protocol
VM Virtual Machine
VS Virtual Sensor
VSCD Virtual Sensor Creation Delay
VSN Virtual Sensor Network
VSST Virtual Sensor Start Time
vWSN virtualized Wireless Sensor Network
WPAN Wireless Personal Area Network
WSN Wireless Sensor Network

	Introduction
	Motivation and Research Problems
	Concepts and Research Methodology
	Concepts
	Research Methodology

	Contributions of the Thesis
	Thesis Organization
	Overview of My Publications

	Background and State-of-the-Art
	Introduction
	Basics of WSN Virtualization
	WSN Virtualization – Motivating Scenarios
	Fire Monitoring Scenario
	Heritage Building Monitoring

	WSN Virtualization – Requirements
	WSN Virtualization – Summary of State-of-the-Art
	Node-Level Virtualization
	Network-Level Virtualization
	Hybrid Solutions

	WSN Virtualization Projects and Research Issues
	Lessons Learned
	Summary

	Wireless Sensor Networks Virtualization Architecture
	Introduction
	Proposed Architecture
	Proof-of-Concept Prototype
	Performance Measurements and Results
	Enabling Interactions between Virtualized Wireless Sensor Networks’ IaaS and PaaS
	Extended Architecture
	Proof-of-Concept Prototype
	Performance Measurements and Results
	Lessons Learned
	Summary

	Data Annotation Architecture for Semantic Applications in Virtualized Wireless Sensor Networks
	Introduction
	Proposed Architecture
	Proof-of-Concept Prototype
	Performance Measurements and Results
	Lessons Learned
	Conclusion

	Provisioning of Semantic Applications over Virtualized Wireless Sensor Network IaaS
	Proposed Architecture
	Proof-of-Concept Prototype
	Performance Measurements and Results
	Multi-objective Genetic Algorithm for Capable Node Selection
	Problem Representation
	GA Operators
	Objective Functions

	Simulation Results
	Simulation Setup
	Results

	Lessons Learned
	Conclusion

	Conclusion
	Summary
	Future Work

	Bibliography
	Annex Paper I
	Annex Paper II
	Annex Paper III
	Annex Paper IV
	Annex Paper V
	Annex Paper VI
	Annex Paper VII
	Annex Paper VIII
	Acronym

