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Résumé

Le Cloud Computing est de plus en plus utilisé pour le déploiement et l’exécution
des applications métiers et plus particulièrement des applications à base de services
(AbSs). L’élasticité à différents niveaux est l’une des propriétés fournies par le Cloud.
Son principe est de garantir la fourniture des ressources nécessaires et suffisantes pour
la continuité de l’exécution optimale des services Cloud. La fourniture des ressources
doit considérer la variation de la demande pour éviter la sous-utilisation et la sur-
utilisation de ces dernières. Il est évident que la fourniture d’infrastructures et/ou
de plateformes élastiques n’est pas suffisante pour assurer l’élasticité des applications
métiers déployées. En effet, il est aussi nécessaire de considérer l’élasticité au niveau
des applications. Ceci permet l’adaptation dynamique des applications déployées
selon la variation des demandes. Par conséquent, les applications métiers doivent
être fournies avec des mécanismes d’élasticité permettant leur adaptation tout en
assurant les propriétés fonctionnelles et non-fonctionnelles désirées.

Dans nos travaux, nous nous sommes intéressés à la fourniture d’une approche
holistique pour la modélisation, l’évaluation et la mise en oeuvre des mécanismes
d’élasticité des AbSs dans le Cloud. En premier lieu, nous avons proposé un modèle
formel pour l’élasticité des AbSs. Pour cela, nous avons modélisé les AbSs en utilisant
les réseaux de Petri et défini deux opérations d’élasticité (la duplication et la consolida-
tion). En outre, nous avons proposé de coupler ces deux opérations avec un contrôleur
d’élasticité. Pour assurer l’élasticité des AbSs, le contrôleur analyse l’exécution des
AbSs et prend des décisions sur les opérations d’élasticité (duplication/consolida-
tion). Après la définition de notre modèle pour l’élasticité des AbSs, nous nous
sommes intéressés à l’évaluation de l’élasticité avant de l’implémenter dans des en-
vironnements Cloud réels. Pour cela, nous avons proposé d’utiliser notre contrôleur
d’élasticité comme un Framework pour la validation et l’évaluation de l’élasticité en
utilisant des techniques de vérification et de simulation. Enfin, nous avons mis en oeu-
vre l’élasticité des AbSs dans des environnements Cloud réels. Pour cela, nous avons
proposé deux approches. La première approche encapsule les AbSs non-élastiques
dans des micro-conteneurs, étendus avec nos mécanismes d’élasticité, avant de les
déployer sur des infrastructures Cloud. La seconde approche intègre notre contrôleur
d’élasticité dans une infrastructure autonomique afin de permettre l’ajout dynamique
des fonctionnalités d’élasticité aux AbSs déployées sur des plateformes Cloud.

Mots-clés: Cloud Computing, Elasticité, Application à base de services, méthodes
formels.



Abstract

Cloud computing is being increasingly used for deploying and executing business
processes and particularly Service-based Business Processes (SBPs). Among other
properties, Cloud environments provide elasticity at different scopes. The principle
of elasticity is to ensure the provisioning of necessary and sufficient resources such that
a Cloud service continues running smoothly even when the number or quantity of its
utilization scales up or down, thereby avoiding under-utilization and over-utilization
of resources. It is obvious that provisioning of elastic infrastructures and/or platforms
is not sufficient to provide elasticity of deployed business processes. In fact, it is also
necessary to consider the elasticity at the application scope. This allows the adapta-
tion of deployed applications during their execution according to demands variation.
Therefore, business processes should be provided with elasticity mechanisms allowing
their adaptation to the workload changes while ensuring the desired functional and
non-functional properties.

In our work, we were interested in providing a holistic approach for modeling,
evaluating and provisioning of elastic SBPs in the Cloud. We started by proposing
a formal model for SBPs elasticity. To do this, we modeled SBPs using Petri nets
and defined two elasticity operations (duplication/consolidation). In addition, we
proposed to intertwine these elasticity operations with an elasticity controller that
monitors SBPs execution, analyzes monitoring information and executes the appro-
priate elasticity operation (duplication/consolidation) in order to enforce the elasticity
of SBPs. After facing the challenge of defining a model and mechanisms for SBPs
elasticity, we were interested in the evaluation of elasticity before implementing it in
real environments. To this end, we proposed to use our elasticity controller as a frame-
work for the validation and evaluation of elasticity using verification and simulation
techniques. Finally, we were interested in the provisioning of elasticity mechanisms
for SBPs in real Cloud environments. For this aim, we proposed two approaches.
The first approach packages non-elastic SBPs in micro-containers, extended with our
elasticity mechanisms, before deploying them in Cloud infrastructures. The second
approach integrates our elasticity controller in an autonomic infrastructure to dynam-
ically add elasticity facilities to SBPs deployed on Cloud platforms.

Keywords: Cloud Computing, Elasticity, Service-based Business Processes, For-
mal methods.
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Chapter 1

Introduction
G

Contents

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Motivation And Problem Statement . . . . . . . . . . . . . . . . 14

1.3 Objectives and Approach . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.1 Formal Model for SBPs Elasticity . . . . . . . . . . . . . . . . . . 16

1.3.2 Evaluation of Elasticity Strategies . . . . . . . . . . . . . . . . . . 17

1.3.3 Provisioning of Elasticity in the Cloud . . . . . . . . . . . . . . . . 17

1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.1 Context

Cloud computing is a new delivery model, based on the pay-as-you-go business princi-
ple, for IT services [14]. Cloud computing is now recognized as an effective paradigm
for developing and delivering services over the Internet. It typically involves provi-
sioning dynamically scalable and often virtualized resources. It delivers services at
the layers of infrastructure, platform and software. Cloud services use Cloud compo-
nents (such as databases, containers, VMs etc.) which themselves use Cloud resources
(such as CPU, memory, network). Adoption of Cloud computing reduces the main-
tenance complexity and cost for enterprise customers, and provides on-going revenue
for providers [15]. More and more companies are adopting the new economic model
offered by Cloud computing. For instance, a survey conducted by the Cloud Indus-
try Forum [16] in 2012, involving 300 companies, shows that 53% of the companies
are currently adopting the Cloud. The same survey showed that 73% of them are
planning to increase their adoption of Cloud services in the next 12 months.

Cloud environments are being increasingly used for deploying and executing busi-
ness processes and particularly service-based business processes [17]. A Service-based
Business Process (SBP) is a business process that consists in assembling a set of el-
ementary IT-enabled services which are related in terms of their contribution to the

13



14 Introduction

overall realization of the business process. As it has been the case with other tech-
nologies, the availability of Business Process Management (BPM) in the Cloud allows
imagining new usage scenarios. Typically, these scenarios include the execution of
thousands of processes (set of coordinated activities) during a very short period of
time requiring temporarily a very important amount of resources. Other than getting
new usage scenarios, Cloud users can benefit from Cloud infrastructures to execute
innovative solution in scenarios like political campaign management or crisis manage-
ment where the need for quick adaptation is at the essence but at the cost of very
sophisticated development. Novel and innovative approaches for modeling, deploying
and enactment of business processes should be developed to allow supporting the
scenario cited above and others in a safer and cost-effective way.

Among other properties, Cloud environments provide elasticity at different scopes.
According to Dustdar et al. [18], one of the key features driving the popularity of
Cloud computing is elasticity: resources must be managed by scaling up and down as
needed so that limited resources can be offered for potentially unlimited utilization.
The principle of elasticity is to ensure the provisioning of necessary and sufficient re-
sources such that a Cloud service continues running smoothly even when the number
or quantity of its utilization scales up or down, thereby avoiding under-utilization
and over-utilization of resources [19]. Provisioning of resources can be made using
vertical or horizontal elasticity [20]. Vertical elasticity increases or decreases resources
consumed by Cloud services while the horizontal elasticity replicates or removes in-
stances of Cloud services [11]. Elasticity can play an important role to respect the
agreements between the service’s user and its provider. From the user’s perspective,
the elasticity ensures an efficient provisioning of resources which maintains the QoS
(e.g., minimizing task execution time), without exceeding a given budget. From the
provider’s perspective, the elasticity maximizes the financial gain by ensuring better
use of computing resources and allowing multiple customers to be served simultane-
ously while keeping these customers satisfied [8, 21].

1.2 Motivation And Problem Statement

The adoption of Cloud computing could increase rapidly if providers prove their ability
to continuously ensure the required QoS of deployed business processes [22]. Indeed,
this is a challenging task because these latter are exposed to dynamic evolution and
workload fluctuation during their life-cycle. In order to preserve the QoS of deployed
business processes in such an environment, elasticity mechanisms should be offered by
Cloud providers in order to enable dynamic adaptation of resources consumed with
minimal cost and performance degradation.

It is obvious that provisioning of elastic infrastructures (e.g., based on elasticity
of virtual machines) and/or platforms (e.g. based on elasticity of process engines or
service containers), is not sufficient to provide elasticity of deployed business processes.
In fact, it is also necessary to consider the elasticity at the application scope. This
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allows the adaptation of deployed applications during their execution according to
demands variation. Therefore, business processes should be provided with elasticity
mechanisms allowing their adaptation to the workload changes while ensuring the
desired functional and non-functional properties.

When applied to SBPs, elasticity becomes a complicated problem with many issues
to be addressed. In this thesis we address elasticity of SBPs in the Cloud that mainly
raises the following questions:

• What model and mechanisms should be defined and developed to describe and
ensure SBPs elasticity?

• How to evaluate SBPs elasticity before implementing it in real Cloud environ-
ments?

• How to provision elasticity mechanisms for SBPs in real Cloud environments?

To describe SBPs elasticity, we need to have a model that allows the represen-
tation of SBPs as well as the different reconfigurations caused by the execution of
elasticity actions. We argue that it is beneficial to adopt formal models to describe
SBPs elasticity which provides rigorous description and allows verification of prop-
erties. Ensuring SBPs elasticity can be done using vertical or horizontal elasticity
mechanisms. Vertical mechanisms have to add/remove as resources as necessary to a
SBP by re-engineering it and/or its container. Horizontal mechanisms have to create
as copy as necessary of a SBP by duplicating the process or a part of it.

Evaluating SBPs elasticity consists in evaluating the strategies used for ensuring
the elasticity. An elasticity strategy is responsible of making decisions on the exe-
cution of elasticity mechanisms i.e., deciding when, where and how to use elasticity
mechanisms. Considering the abundance of possible strategies, it is necessary to eval-
uate and validate the correctness and performance of these strategies before using
them in real Cloud environments.

Any proposed approach for ensuring SBPs elasticity in the Cloud needs to be
validated in realistic environments to ensure its effectiveness in enhancing SBPs be-
haviors. To this end, it is necessary to provide mechanisms for the provisioning of
SBPs elasticity in real Cloud environments while considering both provisioning con-
texts: Infrastructure and Platform.

Many attempts to provide elasticity of SBPs have been proposed, but as we will
explain, almost all of them deal with the elasticity at the infrastructure scope. Fur-
thermore, most of the existing proposals related to elasticity at the application scope
are not suitable for SBPs since they do not consider the nature of the SBPs (i.e.,
elasticity at the scope of services). In addition, existing approaches for elasticity eval-
uation are limited to quantitative evaluation of strategies and do not allow formal
verification of the correctness of the elasticity strategies. Finally, approaches for the
provisioning of elasticity mechanisms in the Cloud require changing the nature of the
SBPs and/or actual Cloud environments.
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1.3 Objectives and Approach

Our work is mainly concerned with providing horizontal elasticity for SBPs. This
thesis does not discuss all the aspects related to elasticity. For example, we do not
deal with ensuring vertical elasticity of SBPs or managing the underlying Cloud in-
frastructure. While we believe that a lot of issues related to elasticity are important
to address, the provisioning of horizontal elasticity of SBPs discussed here is complex
enough to deserve a separate treatment.

We aim in this thesis at proposing an approach for ensuring horizontal elasticity
of SBPs in the Cloud. To do so, we propose to answer the three questions we raised
above by:

• Defining a formal model for describing and ensuring SBPs elasticity.

• Providing a framework for the validation and evaluation of SBPs elasticity.

• Providing mechanisms for the provisioning of elastic SBPs in real Cloud envi-
ronments.

1.3.1 Formal Model for SBPs Elasticity

Performing horizontal elasticity can be ensured by providing Cloud environments with
elasticity mechanisms that allow deployed SBPs to scale up and down. In order to
manage these elasticity mechanisms, two approaches can be used. The first approach
consists in producing a model for an elastic SBP which is the result of the composition
of the SBP model with models of mechanisms for elasticity. However, this approach
changes the nature of the deployed SBPs. The second approach that we propose to
adopt in our work consists in setting up a controller that continuously monitors SBPs
execution, analyzes monitoring information and executes appropriate actions (dupli-
cation/consolidation) in order to ensure the QoS of deployed SBPs while avoiding
over-provisioning and under-provisioning of resources.

In our work, we propose a formal model for SBPs elasticity that intertwines two
elasticity operations (duplication/consolidation) with a generic controller for elastic-
ity. Our goal is to provide a model for describing SBPs elasticity and mechanisms for
ensuring elasticity of SBPs at the scope of services.

To this end, we propose a SBP model, based on Petri nets, to describe SBPs while
allowing the representation of the notion of basic services. Using this SBP model, we
are able to define and formalize elasticity operations (duplication/consolidation) that
operate at the scope of services. These operations allow ensuring the SBP elasticity
by duplicating only services that are overloaded (bottlenecks). Furthermore, we prove
the correctness of these two elasticity operations on preserving the semantics of SBPs.
In addition, we show that, using our formal model, the elasticity of stateless, state-
ful and timed SBPs can be ensured. Moreover, we propose to model the elasticity
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controller using high level Petri nets. This controller is generic in order to allow the
implementation and execution of different elasticity strategies.

1.3.2 Evaluation of Elasticity Strategies

Elasticity strategies are responsible of making decisions on the execution of elasticity
mechanisms i.e., deciding when, where and how to use duplication/consolidation op-
erations. These strategies are responsible of guaranteeing provisioning of necessary
and sufficient resources that ensure a smooth functioning of deployed SBPs despite of
changes in SBPs solicitations. Many strategies can be proposed to ensure SBPs elas-
ticity. The abundance of possible strategies requires their evaluation and validation in
order to guarantee their effectiveness before using them in real Cloud environments.

In our work, we propose an evaluation approach that uses the previously defined
elasticity controller as a framework for the evaluation of different elasticity strategies.
Our goal is to show how we can perform, using our generic controller, validation and
comparison of elasticity strategies.

To evaluate elasticity strategies, we propose two evaluation approaches: The first
approach allows the validation of elasticity strategies using a verification technique.
The second approach allows the comparison between elasticity strategies using a sim-
ulation technique. On one hand, the verification-based approach allows performing
qualitative evaluations of elasticity strategies by using formal methods (e.g., model-
checking techniques). On the other hand, the simulation allows performing quanti-
tative evaluations of elasticity strategies by calculating performance indicators (e.g.,
resource consumption, time response) related to SBPs elasticity.

1.3.3 Provisioning of Elasticity in the Cloud

In order to provision elastic SBPs in the Cloud, we propose to go further in our work
by using our elasticity mechanisms in real Cloud environments. Our goal is to show
how we can use the elasticity mechanisms we have previously developed in order to
provision SBPs elasticity in real Cloud environments without changing the nature of
the SBPs or existing Cloud environments.

To this end, we propose two approaches for the provisioning of elastic SBPs while
considering two provisioning contexts: Cloud infrastructures and Cloud platforms.
The first approach consists in an end-to-end approach for the provisioning of elastic
SBPs on Cloud infrastructures. This approach packages non-elastic SBPs in micro-
containers, extended with our elasticity mechanisms, before deploying them in real
Cloud infrastructures. The second approach that we propose takes advantage of
existing PaaS mechanisms in order to ensure SBPs elasticity on Cloud platforms. In
this approach, we propose to integrate our elasticity controller in an autonomic loop
for Cloud resources in order to dynamically add elasticity facilities to SBPs in real
Cloud platforms.
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Any proposed solution for ensuring SBPs elasticity in the Cloud needs to be ex-
perimented and validated to ensure its effectiveness in enhancing SBPs behaviors. In
our work we experiment and validate our approaches in a realistic Cloud environment.
The validation includes the implementation aspects as well as the experiments and
their results.

1.4 Publications

This research led to the following publications:

Modeling SBPs Elasticity

• Mourad Amziani, Tarek Melliti and Samir Tata. A Generic Framework for
Service-based Business Process Elasticity in the Cloud (short paper). In the
10th International Conference on Business Process Management, BPM 2012,
Estonia, September 2012

• Mourad Amziani, Tarek Melliti and Samir Tata. Formal Modeling and Evalua-
tion of Service-based Business Process Elasticity in the Cloud. In the 22nd In-
ternational Conference on Collaboration Technologies and Infrastructure, IEEE
WETICE 2013, Tunisia, June 2013

Evaluating SBPs Elasticity

• Mourad Amziani, Tarek Melliti and Samir Tata. Formal Modeling and Eval-
uation of Stateful Service-based Business Process Elasticity in the Cloud. In
the 21st International Conference on Cooperative Information Systems, CoopIS
2013, Austria, September 2013

• Mourad Amziani, Käıs Klai, Tarek Melliti and Samir Tata. Time-based Eval-
uation of Service-based Business Process Elasticity in the Cloud. In the 5th
IEEE International Conference on Cloud Computing Technology and Science,
CloudCom 2013, United Kingdom, December 2013

Provisioning of Elastic SBPs in the Cloud

• Mohamed Mohamed, Mourad Amziani, Djamel Beläıd, Samir Tata and Tarek
Melliti. An Autonomic Approach to Manage Elasticity of Business Processes in
the Cloud. In Future Generation Computer Systems (Elsevier), October 2014,
ISSN 0167-739X.
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1.5 Thesis Structure

The remainder of this manuscript is organized as follows. Chapter 2 contains a de-
scription of the different concepts needed for understanding the rest of the work as
well as the state of the art on elasticity. In this chapter, we give the definitions of
Cloud Computing, SOA and Service-based Business Processes as well as Elasticity.
Furthermore, we give an overview of the state of the art related to elasticity. Therein,
we will cite the different works dealing with elasticity with highlights on the advan-
tages that we would like to have in our solution and the drawbacks that we would
like to avoid.

In chapter 3, which is dedicated to the first question we raised in the problem
statement, we present our proposals to model SBPs elasticity. The proposal entails
our elasticity approach to ensure elasticity at the scope of services and a formal model
that intertwines two elasticity operations (duplication/consolidation) with a generic
controller to ensure SBPs elasticity.

In chapter 4, which is dedicated to the second question we raised in the problem
statement, we push further our work by proposing to use the elasticity controller as
a framework for the evaluation of different elasticity strategies. In our approach we
propose to use two techniques for the evaluation of elasticity strategies: verification
and simulation.

In chapter 5, which is dedicated to the third question we raised in the problem
statement, we propose two approaches for the provisioning of elastic SBPs in real
Cloud environments. The first approach consists in an end-to-end approach for the
provisioning of elastic SBPs on Cloud infrastructures. The second approach consists
in an autonomic infrastructure that dynamically adds elasticity facilities to SBPs on
Cloud platforms.

Finally, we sum up our contributions in chapter 6. We conclude this last chapter
with some perspectives that we aim to tackle in future endeavours.
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2.1 Introduction

In this thesis we aim to provide elasticity mechanisms for Service-based Business
Processes (SBPs) in Cloud environments. In order to understand the remainder
of this manuscript, one should have a basic knowledge on different paradigms and
concepts related to our work. We dedicate the first section of this chapter to briefly
introduce these basics to the reader. In the second section, we discuss a selection of
works dealing with elasticity in Cloud environments.

2.2 Background

In this section, we introduce definitions and basics that are related to our work. To
do so, we start by presenting the context of our work which is Cloud Computing. Af-
terwards, we introduce the Service-Oriented Architecture and Service-based Business
Processes that represent the specific kind of applications that we basically target.
Finally, we define elasticity aspects we aim to deal with in our work.

21



22 Background & State of the Art

2.2.1 Cloud Computing

Cloud computing is an emerging paradigm in information technology. It is defined by
the National Institute of Standards and Technology (NIST) [1] as a model for enabling
ubiquitous, convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal management effort or service
provider interaction. Figure 2.1 shows an overview of Cloud computing reference ar-
chitecture viewed by NIST. It identifies the major actors, their activities and functions
in the Cloud. This Figure aims to facilitate the understanding of the requirements,
uses, characteristics and standards of Cloud computing.

Figure 2.1: Cloud Computing Conceptual Reference Model defined by NIST [1].

Cloud computing is characterized by its economic model based on ”pay-as-you-
go” model. This model allows a user to consume computing resources as needed.
Moreover, resources in the Cloud are accessible over the network through standard
mechanisms that promote use by different platforms. The resources are offered to con-
sumers using a multi-tenant model with heterogeneous resources assigned to consumer
on demand. These resources are provisioned in an elastic manner that allows scaling
up or down rapidly commensurate with demand. Furthermore, Cloud resources usage
can be monitored and controlled in order to respect the ”pay-as-you-go” model.

Services in the Cloud are basically delivered under three well discussed layers
namely the Infrastructure as a Service (IaaS), the Platform as a Service (PaaS) and
the Software as a Service (SaaS). Nowadays, more services appeared called generally
as XaaS that target a specific area. For example there is the DaaS for Desktop as a
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Service, NaaS for Network as a Service, etc.

• IaaS: Consumers are able to use infrastructure resources. These resources can
be virtual machines, storage resources and networks. The provider takes the
responsibility of installing, managing and maintaining these resources transpar-
ently.

• PaaS: Consumers are able to develop, deploy and manage their applications
onto the Cloud using the libraries, editors and services offered by the provider.
The provider takes the responsibility to provision, manage and maintain the
Infrastructure resources.

• SaaS: Consumers are able to use running applications on a IaaS or PaaS through
an interface. They are not responsible of managing or maintaining the used
Cloud infrastructure and/or platfrom .

Clouds can be provisioned following different models according to the user’s needs.
If the Cloud is used by a single organization, we talk about Private Cloud. In this
case, this organization owns the Cloud and is responsible of its management and
maintenance. However, if the Cloud is owned by different organizations, we are
talking about community or federation Cloud. Whenever the Cloud is exposed to
public use, we are talking about Public Cloud. In this case, an organization owns the
Cloud and manages it while it is used by other consumers. Finally, there is another
model in which the Cloud is composed of two or more Clouds called Hybrid Clouds.
In these Clouds there are Public or Private Clouds glued together.

2.2.2 Service-Oriented Architecture

Service-Oriented Architecture (SOA) is the outcome of the Web services developments
and standards in support of automated business integration [23] [24]. The purpose
of this architecture style is to address the requirements of loosely coupled, standards-
based, and protocol-independent distributed computing. As defined by Papazoglou
[25], SOA is a logical way of designing a software system to provide services to either
end user applications or other services distributed in a network through published and
discoverable interfaces.

The main building blocks in SOA are services. Services are self-describing com-
ponents that support rapid, low-cost development and deployment of distributed ap-
plications. Thus, using SOA, applications are defined as a composition of re-usable
software services, which implement the business logic of the application domain.

The SOA architectural style is structured around the three basic actors depicted in
Figure 2.2: Service Provider, Service Client and Service Registry while the interactions
between them involve publish, find and bind operations. Service Provider is the role
assumed by a software entity offering a service. Service Client is the role of a requestor
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Figure 2.2: SOA architecture

entity seeking to consume a specific service. However, Service Registry is the role of
an entity maintaining information on available services and the way to access them.

The benefit of this approach lies in the loose coupling of the services making up
an application. Services are provided by platform independent parts, implying that
a client using any computational platform, operating system and any programming
language can use the service. While different Service Providers and Service Clients
may use different technologies for implementing and accessing the business function-
ality, the representation of the functionalities on a higher level (services) is the same.
Therefore, it should be interesting to describe an application as a composition of
services in order to be implementation-agnostic. This allows the separation of the
business functionality from its implementation. Hence, an application can be exe-
cuted by composing different services provided by heterogeneous parts with respect
to their services descriptions.

2.2.3 Service-based Business Processes

A Business Process is a set of one or more linked procedures or activities that collec-
tively realize a business objective or policy goal, normally within the context of an
organizational structure defining functional roles and relationships. A process may
be wholly contained within a single organizational unit or may span several different
organizations, such as in a customer-supplier relationship [26].

A Service-based Business Process (SBP) is a business process that consists in as-
sembling a set of elementary IT-enabled services which are related in terms of their
contribution to the overall realization of the business process. A service is typically
the smallest unit of work that represents a module offering computation or data capa-
bilities. Services carry out the business activities of the considered SBP. Assembling
services into a SBP can be ensured using any appropriate service composition speci-
fications (e.g., BPEL).

SBPs can be designed using a wide variety of languages (BPMN, Petri nets, etc.).
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Figure 2.3: The principle of elasticity

Three types of languages can be identified [26]:

• Formal languages (Markov chains, Petri nets, etc.): These languages are
based on theoretical models. These languages are generally provided with un-
ambiguous semantics and allows analysis techniques (e.g., model checking and
simulation) to answer questions related to correctness and performance.

• Conceptual languages (BPMN, UML activity diagram, etc.): These lan-
guages are typically informal (higher-level languages), i.e., they do not have a
well-defined semantics and do not allow analysis.

• Execution languages (BPEL, etc.): These languages are “technical” lan-
guages that are used for specifying enactment of business processes.

2.2.4 Elasticity

In physics, elasticity is a property of an object which returns to its original form
after being deformed [27]. In Cloud environments, the principle of elasticity is to
ensure the provisioning of necessary and sufficient resources such that a Cloud service
continues running smoothly even when the number or quantity of its utilization scales
up or down, thereby avoiding under-utilization and over-utilization of resources [19].
According to Dustdar et al. [18], one of the key features driving the popularity of
Cloud computing is elasticity: resources must be managed by scaling up and down as
needed so that limited resources can be offered for potentially unlimited utilization.

Traditional provisioning of a fixed amount of IT resources is not suitable with high
dynamic environments such Cloud environments. Fixing an amount of resource that
could handle peak of demands would generate over-provisioning of resource at major
period of time which can leads to loss of money. In contrast, fixing an amount of
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resources that is not sufficient to handle demands would generate under-provisioning
of resources which can leads to loss of QoS. Ensuring elasticity allows having a resource
provisioning that automatically adapts to workload change in order to ensure QoS
while reducing cost.

If we consider the resources demands shown in Figure 2.3, the resource allocation
should allow the provisioning of sufficient resources in order to ensure the satisfaction
of demands at each period of time while avoiding the under-utilization of resources.
The Figure 2.3-(a) represents an example of a resources allocation approach to man-
age this kind of demands. As we can see, this resource allocation causes an under-
utilization of resources during an important portion of time. In addition, it causes
an over-utilization of resources during a certain period of time. The best solution in
this case, is to have an allocation of resources that automatically adapts to demands
variations while ensuring QoS and reducing cost (see Figure 2.3-(b)). This dynamic
adaptation to changes is what we call elasticity.

The elasticity can be defined by a set of characteristics (scope, metric, strategy
and method/technique) [21]:

Scope: is about the nature of the Cloud service we want to make elastic. It defines
where the elasticity actions are executed (Infrastructure, platform, application, data,
etc.)

Metric: is about the indicators that are used to make decisions about elasticity.
These metrics depend on the scope of elasticity we deal with:

• Resource type: storage, CPU, Business service, etc.

• Quantity, Quality: size, frequency, response time, etc.

• Price

Strategy: is about the policies that are used to make decisions about elasticity.
These strategies can be manual (e.g., ensured by human administrator) or automatic.
Manual strategies mean that a human administrator monitors deployed Cloud services
and performs elasticity actions when needed. Automatic strategies mean that an
elasticity component (e.g., controller) monitors the deployed Cloud service, collects
information about its execution, and performs elasticity actions according to user-
defined rules (e.g., SLA). These automatic strategies can be of the following types:

• Reactive strategies: are based on rules (Event-Condition-Action mechanisms).
When an event occurs and a condition is satisfied, an elasticity action is trig-
gered. The used conditions are generally threshold-based conditions (i.e., once
a given threshold is violated, an elasticity action is performed).

• Programmed strategies: are based on scheduled execution of an elasticity action
at a certain period of time (e.g., increase an online sales site’ resources during
the sales period).
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• Predictive strategies: are based on predictive-performance models and load fore-
casts. These strategies aim to anticipate future violations and perform elasticity
actions to avoid these violations.

• Hybrid strategies: a combination of a set of reactive, programmed or predictive
strategies.

Method/Technique: is about reconfiguration actions that are used to ensure
the elasticity. These actions can be:

• Duplication/Consolidation: consists of adding or removing instances (copies) of
a Cloud service.

• Resizing: consists in adding or removing resources (e.g., CPU, memory or stor-
age) to a Cloud service.

• The execution of these actions can produce consequences like bursting, migra-
tion, etc.

Provisioning of resources can be made using vertical or horizontal elasticity [20].
Vertical elasticity increases or decreases resources consumed by Cloud services (e.g.,
changing the CPU, adapting the memory size or bandwidth of VMs), while the hori-
zontal elasticity replicates or removes instances of Cloud services [11]. On one hand,
vertical elasticity can be performed by re-engineering of services/applications (at Soft-
ware layer) and/or application containers (at Platform layer). On the other hand,
horizontal elasticity can be perfomed by providing elasticity mechanisms (duplica-
tion/consolidation) that enforce elasticity of deployed SBPs.

2.3 State of the Art on Elasticity

In this section, we present a selection of works dealing with elasticity in Cloud and
Virtualized environments. In fact, a plethora of works exist in the literature aiming
at providing elasticity solutions. However, in this manuscript we refrain from citing
all these works to highlight a selection of them that we believe representative.

2.3.1 Analysis Criteria

Before presenting these approaches, we present in the following criteria we believe
important to consider when analysis the state of the art.

This manuscript is mainly concerned with providing elasticity of Service-based
Business Processes in the Cloud. To do this, elasticity should be provided at the
SaaS layer. Considering the nature of SBPs, we argue that achieving this goal has to
go through providing mechanisms for not only ensuring elasticity at the process scope
but also at the service scope. In fact, we think that it is not necessary to operate at
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the process scope while the bottlenecks can came from some services that compose
the process. In order to provide elasticity at the scope of services, we have to use
metrics that are related to services execution to take decision about SBPs elasticity.
For instance, we can consider performance indicators such as services response time,
services workload, etc.

We argue that it is beneficial to adopt formal models to describe SBPs elasticity.
These latter provide rigorous description of SBPs elasticity and allow verification of
properties related to elasticity and/or SBPs execution. In fact, since several strategies
can be used to make decisions about elasticity, it is necessary to be able to not only
compare strategies’ performance but also to formally verify the correctness of these
strategies before using them in real Cloud environments. In this context, it would be
interesting to be able to evaluate and use different strategies. To do this, elasticity
mechanisms should be generic in order to allow using different strategies.

In our work, we are interested in providing horizontal elasticity. We do not discuss
all the aspects that are relevant to elasticity. For example, we do not deal with
ensuring vertical elasticity of SBPs. While we believe that these issues are important,
the provisioning of horizontal elasticity of SBPs discussed here is complex enough
to deserve separate treatment. To manage SBPs elasticity, there are basically two
approaches. The first approach consists in producing a model for an elastic SBP
which is the result of the composition of the SBP model with models of elasticity
mechanisms [28]. This approach dedicates a controller for each service of the SBP
but changes the nature of the considered SBP. The second approach consists in setting
up a controller that enforces elasticity of deployed SBPs without changing the nature
of these latter. However, it is also necessary to take into account the controller
scalability in order to avoid having a single failure point.

In order to provision mechanisms for SBPs elasticity in real Cloud environments,
we need to keep in mind that any proposed solution should not change the nature of
existing Cloud environments and/or deployed applications. In addition, it should not
require any effort from the application developer/administrator in order to facilitate
its adoption.

In the following we discuss a selection of works dealing with elasticity in Cloud
environments. We start by presenting the works proposing models and mechanisms for
ensuring elasticity. Afterwards, we present the state of the art on elasticity evaluation.
Then, we present works dealing with provisioning of elasticity mechanisms in Cloud
environments. Note here that there are works that could be presented for one or more
areas. We conclude this section by a synthesis of the presented works comparing them
on the basis of the criteria that we dressed in our research objectives.

2.3.2 Models and Mechanisms of Elasticity

As stated before, elasticity can be ensured using mechanisms of duplication/consolida-
tion (i.e., horizontal elasticity). In our work, we are interested in providing elasticity
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of Service-based Business Processes (SBPs). To do this, elasticity mechanisms have to
be provided at the software (SaaS) layer. Duplication/consolidation mechanisms have
been widely considered in the areas of service adaptation (e.g., in order to meet QoS
constraint) [29], service availability [30] and fault tolerance [31]. These approaches
allow SBPs reconfiguration to respond to the change of workload. Nevertheless, the
proposed mechanisms duplicate the entire SBP and so, of all its services (elasticity
at the process scope) while the bottleneck can came from a single service or a cer-
tain number of services of the SBP. Indeed, the disadvantage of these approaches is
the unnecessary resources consumption caused by duplication of all services of the
considered SBP. We advocate in our work that it is not necessary to duplicate all
the services while the bottleneck can come from one or some services of the SBP. We
think that the duplication of only overloaded services can solve the elasticity problem
while avoiding unnecessary resources consumption.

Figure 2.4: Two-Tier SaaS Scaling and Schedule Architecture [2].

In the literature, few works discussed the elasticity at the service scope. In [2],
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authors considered scaling at both service and application scopes in order to ensure
elasticity. To this end, they proposed a two-tier SaaS scaling and scheduling ar-
chitecture that allows operating duplication actions at both application and service
scopes. In addition, they proposed a cluster-based resource allocation algorithm that
selects suitable servers’ nodes to run newly duplicated application/service instances.
An overview of the proposed architecture is given in Figure 2.4. As shown in this
latter, the Application/Service Load Balancer routes application (or service) calls to
the different instances. When all the application (or service) instances are overloaded,
it duplicates this instances by deploying a new application (or service) instance on a
new server node. The proposed architecture is composed of a set of components: The
Service Container component is the runtime environment for an application/service.
This component includes monitoring service, resource management service and secu-
rity service. The re-deployable Service Package component is a package that contains
the source and compiled codes of a service as well as related resources required to
deploy this service within its corresponding service container. The Service Replica/In-
stance component deploys the redeployable service package within its corresponding
service container. The Monitoring Service component monitors the performance of
service/application instances and sends alert if a service instance in underloaded or
overloaded. The Service Load Balancer component manages all instances of a ser-
vice belonged to an application instance. Finally, The Tenant Configuration Files
component contains the customization information for each tenant in multi-tenancy
architecture that the load balancer can use when creating new application/service
instances.

In [32], authors proposed an elasticity approach to ensure the QoS of multi-tier
Cloud applications while reducing costs. The proposed approach aims at detecting
the bottlenecks tiers in multi-tier applications and accordingly scales up or down these
overloaded tiers. To this end, they used an analytical model, based on queuing theory,
to capture the cost behavior of applications on every unit of time. This cost behavior
is used by an elasticity algorithm, called Cost-Aware Scaling (CAS) algorithm to
ensure the elasticity of deployed applications while spending as little cost as possible
to meet the required QoS. The CAS algorithm operates at the tiers-level by scaling
up and down only the overloaded tiers within applications. To do this, the algorithm
monitors and analyzes the incoming requests rate to detect workload changes. If a
change occurs, the algorithm triggers capacity estimation to obtain the updated server
set to add or remove. Using the result of this estimation, it updates the number of
servers by adding or removing servers in order to meet QoS requirements. On one
hand, the scaling up algorithm aims at reducing application response time while
keeping the deployment cost as low as possible. On the other hand, the scaling-down
algorithm aim at reducing the cost as much as possible while maintaining a satisfying
response time.

These two approaches discussed and proposed mechanisms for ensuring the elas-
ticity at the service scope. Nevertheless, the correctness of the proposed mechanisms
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is not proved since these approaches are not based on formal models. In addition,
the proposed mechanisms are not generic since they do not allow the use of different
elasticity strategies.

Several works have proposed to use a controller to manage elasticity. In [33], Ali-
Eldin et al. focused on ensuring horizontal elasticity of Cloud infrastructure. For this
aim, they proposed a hybrid controller that couples a reactive controller for scaling-
up and a proactive controller for scaling-down VMs. The reactive controller bases
its elasticity decisions on the current load while the proactive controller is basing
its decisions on the history of the load. The preference is given for the scaling-up
if there is a contradiction between the reactive controller and the predictive one.
A Cloud service is modeled, using queuing theory, as a closed loop control system.
In this model, the controller has to scale-up or scale-down VMs to ensure that no
requests are lost (QoS) while maintaining the number of VMs to a minimum. Authors
compared and evaluated, using simulation, different scenarios for coupling reactive
and proactive controllers. The evaluation results shown that coupling a reactive and
predictive controller is more efficient in maintaining QoS than using only a proactive
controller or a reactive controller.

Figure 2.5: Architecture for elastic resource provisioning of BPEL workflows [3].

In [3], authors proposed an approach for elastic resource provisioning of BPEL
workflows without changing the BPEL standard. To this end, they proposed to dy-
namically schedule service calls of a BPEL process over a set of hosts. The scheduling
process uses the load of each host as a metric to choose the most appropriate target
host. At each step of the workflow execution, the approach schedules the service calls
according to the load of the target hosts. When an appropriate host is chosen, the



32 Background & State of the Art

service call is routed to this host. If all the hosts are overloaded, the provisioning
component provides new hosts by starting new virtual machines (in Amazon’s EC2
infrastructure) and deploying the required components on them. The overall archi-
tecture is presented in Figure 2.5. This architecture is composed of three components:
The Dynamic Resolver component extends the BPEL engine’s invocation mechanism.
The Load Analyzer component collects information about the workload of hosts. The
Load Balancer component schedules service calls and manages hosts.

Figure 2.6: Vadara’s Architecture for Cloud applications elasticity [4].

In [4], authors proposed Vadara, a generic framework that provides an abstrac-
tion layer for existing Cloud providers allowing the use and development of elasticity
strategies in a unified manner. The proposed framework allows decoupling elasticity
strategies from underlying Cloud platforms, allowing the use of generic strategies.
To enforce the elasticity, they proposed to add an extension to Cloud platforms in
order to allow the interaction between the Provider’s components (i.e., monitoring
and scaling components) and the Vadara components. As shown in Figure 2.6, the
Vadara framework implements a set of components: a core component that config-
ures and initializes the framework components. A monitor component that collects,
aggregates and sends monitoring information to the decider component. The decider



State of the Art on Elasticity 33

receives monitoring information, analyzes them and sends the appropriate elasticity
actions to the scaler component. Afterwards, the scaler component requests the PaaS
scaling service in order to execute the elasticity actions chosen by the decider.

In these three latter approaches, the elasticity of Cloud services is managed using
an elasticity controller. However the elasticity mechanism (i.e., the controller) serves
all the deployed Cloud services and may be not elastic, consequently it could form a
single failure point.

Figure 2.7: Service provider architecture for elastic resource provisioning [5].

The work presented in [5] aims at addressing both vertical and horizontal elasticity
as a resource provisioning problem. To this end, authors proposed an algorithm that
operates in two phases: The first phase determines the optimal number and types
of VMs to be provisioned to respond to the estimated future demand (long-term re-
source reservation). The second phase acquires more resource if the reserved capacity
resource is no longer satisfied (on-demand resource allocation). In addition, a service
provider architecture is proposed. This architecture uses the two-phase algorithm in
order to ensure elastic resource provisioning while optimizing the operational cost. As
shown in Figure 2.7, the proposed architecture is composed of a Monitoring Engine
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component that monitors the workload and resource utilization, a Workload Ana-
lyzer component that uses analytical models to analyze the workload, a Prediction
Model component that predicts incoming demands and an Elasticity Planner compo-
nent that executes the two-phase algorithm in order to provide an optimal resource
provisioning. Finally, a Resource Broker component performs adaptive planning and
delivers resource to the IaaS Provider.

In [34], authors proposed an adaptation framework that autonomously scales the
amount of servers allocated to an application according to workload variations. The
proposed approach aims at reducing energy consumption while maintaining the ex-
pected performance. To do this, the framework transforms, using a model-driven ap-
proach, design models (applications and system models) into an analyzable stochastic
Petri net and generates the adaptation plan. A similar approach was proposed by
Ardagna et al. in [35], where they presented a framework for resource management
in multitier virtualized systems. This framework aims at ensuring a good tradeoff
between performance and energy consumption. To this end, the framework considers
both short-term planning (load balancing, capacity allocation and frequency scaling)
and long-term planning (server switching and application placement) problems.

Authors of [36], proposed a two-tiered resource allocation mechanism for elastic
provisioning of VMs’ resources in data centers. The proposed approach consists of lo-
cal and global resource allocation algorithms based on a two-level control model. The
local on-demand resource allocation on each server optimizes, based on scaling thresh-
old values, the resource allocation to VMs (in terms of CPU and memory) within a
server in an elastic manner, while the global on-demand resource allocation optimizes
indirectly the resource allocation among applications in the entire data center by ad-
justing the scaling threshold on each local resource allocation. The optimization of
resource allocation is done by preferentially giving resource to critical applications
when a resource concurrency occurs.

In all these four latter approaches, the elasticity is addressed only at the in-
frastructure scope (scaling up/down VMs) and remains not sufficient to ensure the
elasticity of deployed applications since they do not consider the elasticity at the
application/service scope.

2.3.3 Evaluation of Elasticity Strategies

To the best of our knowledge, few works were interested in the evaluation of elasticity
strategies.

In [37], authors proposed an approach for measuring and evaluating elasticity of
different Cloud platforms. They defined workload profiles to simulate different real-
istic load variation. These workload profiles are defined using a set of mathematical
functions (linear and exponential functions, etc.). Particularly, the proposed approach
allows Cloud users to measure and evaluate the financial implication of using elastic-
ity facilities offered by different Cloud platforms. The elasticity is measured at the
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point of view of users by analyzing resource provisioning behaviors on these Cloud
platforms. The measurement approach consists in calculating the financial penalty
attributed to user on the occurrence of under-provisioning or over-provisioning of re-
sources. The evaluation of an elasticity strategy is related to its efficiency in enhancing
the users’ benefits.

In [6], Suleiman et al. proposed an analytical model, using queuing theory, to
evaluate the influence of elasticity strategies on the performance of 3-tier applications
deployed on Cloud infrastructures. The proposed approach allows cloud users to eval-
uate different thresholds-based elasticity strategies and choose the most appropriate
one for their applications. Particularly, they studied the impact on application’ per-
formance (in terms of CPU utilization, application response time and the number of
servers) when the threshold values used by an elasticity strategy are changed. The
3-tier applications are modeled using queuing theory (see Figure 2.8). Each server
is represented as a queue. The web server acts like a Load Balancer by routing the
incoming requests over the set of application servers. Each application server sends
queries to the database server. The application tier is modeled as an M/M/m queue
where the servers are variable (m) and the calls arrival is represented as a Poisson
process. The proposed model can approximate the values of metrics such as CPU
utilization and the number of servers needed to ensure the satisfaction of demands.
In addition, they proposed scaling out and in algorithms, based on 3-tier applications
model, that simulate thresholds-based strategies that use CPU as metric to perform
elasticity actions on Cloud infrastructures. Note here, that this study consider only
reactive strategies and do not take into account other kind of strategies (e.g., predic-
tive).

In [38], authors proposed new metrics to evaluate the behavior of elasticity. Par-
ticularly, they defined the speed metric that consists in the average time it takes to
switch from an under-allocation state to a normal or over-allocation state for the
scaling up, and in the time to switch from an over-allocation state to a normal or
under-allocation state for the scaling down. In addition to the speed metric, a preci-
sion metric is proposed. This metric can be considered as the difference of the current
amount of allocated resource from the real resource demand. In [39], authors ex-
tended this previous work by proposing a benchmark methodology for the evaluation
of existing Cloud infrastructures. The evaluation approach compares the evolution
of resource demand with the quantity of resource allocated in order to analyze and
evaluate the elasticity of different Cloud infrastructures. To do this, they used load
variation profiles that consist in a mixture of several patterns. These load profiles
allows producing the same resource demand on all compared platforms according to
the elasticity characteristics of these infrastructures.

In [7] authors proposed a formal model for quantitative analysis of elasticity at
the infrastructure scope. To this end they proposed to use Markov Decision Processes
(MDP) to model elasticity actions. On one hand, the abundance of possible elasticity
actions is represented as a non-deterministic aspect. On the other hand, the effects
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Figure 2.8: The analytical model for elasticity evaluation [6].

of elasticity actions are represented as a probabilistic aspect. As shown in the MDP
model of Figure 2.9, each state represents a different cluster size (i.e., the number
of VMs). Transitions between states of the model represent elasticity actions (i.e.,
scaling the number of VMs). A transition starts from the actual state and goes to
the state that corresponds to the execution of the elasticity action (e.g., the state
after adding a new active VM). These transitions are mapped to a probability that
represents the probability to execute a specific elasticity action. Based on MDP
models, the proposed approach uses continuous online verification in order to execute
elasticity actions. To do this, the approach starts by instantiating a model according
to the workload and environment conditions. Then, this model is online verified in
order to execute elasticity actions. The proposed approach allows evaluating, in terms
of maximizing the system utility (i.e., avoiding over-provisioning), different elasticity
models and policies (reactive, Q-learning reinforcement learning etc.).

In [8], authors proposed ADVISE (evAluating clouD serVIce elaSticity bEhavior)
which is a framework for the evaluation of Cloud service elasticity behavior. This
framework is based on a learning process and a clustering-based evaluation process
that determines at runtime the expected elasticity behavior of Cloud service. On
one hand, this framework can be used to improve the decision quality of elasticity
controllers. On the other hand, it can be used in order to evaluate different elasticity
control processes and determine the most appropriate one regarding the considered
Cloud service and a particular situation. As shown in Figure 2.10, the Learning pro-
cess captures at some points of Cloud service execution (just after the enforcement of
the elasticity control process) information about the different metrics that can influ-
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Figure 2.9: Service provider architecture for elastic resource provisioning [7].

ence the behavior of Cloud service such as service structure and workload, deployment
strategies, the resource used by the service and the control processes enforced, etc.
Then, it transforms these metrics information to multi-dimensional points to compute
and evaluate the expected elasticity behavior.

Figure 2.10: Modeling Cloud service behavior process [8].
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Almost all of these works use elasticity strategies that are limited to infrastructure
metrics (e.g., CPU utilization) to base their decisions and do not consider metrics
related to deployed applications. In addition, these latter approaches are limited to
simulation-based (performance) evaluations and do not allow formal verification of
the correctness of elasticity strategies (e.g., model checking techniques).

2.3.4 Provisioning of Elasticity Mechanisms in the Cloud

In [9], the authors introduced the Vienna Platform for Elastic Processes (ViePEP), a
platform for realizing elastic processes in Cloud environment. Figure 2.11 presents the
architecture of the ViePEP platform. This platform is composed of a set of compo-
nents for controlling workflows executions (i.e., Workflow Manager component), load
balancing between service invocations (i.e., Load Balancer component) and optimiz-
ing the process landscape (i.e., Reasoner component). ViePEP allows the monitoring
of the process execution and the reasoning about optimizing resources utilization us-
ing the current and future system landscape. To do this, the platform can carry out a
set of elasticity actions e.g., starting (stopping) a new VM which hosts an overloaded
(underloaded) service. In [40, 41], the authors extended ViePEP with two works. The
first extension consists on a prediction and reasoning algorithm, based on knowledge
about the current and future process landscape, for elastic process execution. The
second extension consists on a scheduling and resource allocation algorithms, based on
user defined non-functional requirements, in order to optimize resources utilization.

In [10], authors proposed to modify actual Cloud infrastructures in order to sup-
port resources elasticity. As shown in Figure 2.12, they proposed to add a Forecasting
engine into the core layer of the OpenNebula architecture. This Forecast engine hosts
a prediction model that predicts at runtime the expected demand of applications
hosted within VMs. To do this, this engine takes as input the user’s workload and
predicts the optimal resource requirements. The workload is defined using request
rate and the number of requests per unit time while the performance is defined us-
ing the server processing time. The predicted resource requirements are used by
the resource manager of the Cloud infrastructure to provision the needed amount of
resource. In addition, they discussed a cost model to fix an optimal trade-off be-
tween over-allocation and under-allocation of resource by considering over-allocated
resource as cost (paying for unnecessary resources) and under-allocation as a penalty
cost (violation of the SLA).

Though these two latter approaches discuss provisioning of elasticity mechanisms
in the Cloud, they seem to be difficult to use in real Cloud environments. On one
hand, the ViePEP approach requires an effort to replace the existing engines for
running elastic processes. On the other hand, the second approach is difficult to
use in real world since it requires modifying actual Cloud infrastructures in order to
support resources elasticity.

In [11], the authors presented ElaaS, a service for managing elasticity in the Cloud.
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Figure 2.11: ViePEP Architecture [9]

ElaaS is implemented as a SaaS application that can be used in any Cloud environment
and Cloud-enabled application. It is composed of a set of pluggable components
(Figure 2.13): The ElaaS Core component coordinates the activities and processes.
The Application Manager acquires and analyzes information related to the user and
the application. The role of the Monitoring Manager is the communication with
the monitoring sources that can be at different layers (infrastructure, platform or
software specific monitoring KPIs). The Business Logic Manager is the decision
making component of the Framework. Note here that the business logic is not included
in the component in order to allow the use of different business logic depending on
the specific requirements of each application. Finally, The Action Manager relays the
action messages to the appropriate components of the application and/or platform
and produces a new deployment graph according the executed action. Therefore,
application elasticity is insured based on the deployment graph of the considered
application and its KPI.

In [42], the authors presented a framework for modeling and reasoning about non-
functional properties that should reflect elasticity of deployed business services. The
proposed framework considers not only elasticity properties but also business objec-
tives and constraints in order to find possible service provisioning solutions. To do
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Figure 2.12: Extending the OpenNebula architecture with a Forecasting engine [10].

Figure 2.13: ElaaS Components [11]
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this, the framework translates business objectives into a set of logic predicates and
optimization objectives. Business constraints are represented as a fact while elasticity
reasoning mechanisms are represented as a set of rules. As defined the elastic proper-
ties and mechanisms can tackle any application, since the characteristics of business
processes (structure or behavior) are not considered in the proposed approach.

Figure 2.14: The QoS-Aware Resource Elasticity (QRE) framework [12]

Authors of [12], proposed the QoS-Aware Resource Elasticity (QRE) framework
for ensuring resource elasticity of application while considering QoS requirements.
The proposed approach maps the application specific QoS attributes (in term of re-
sponse time and resource utilization) to Cloud resource specific attributes in order to
ensure QoS-aware resource elasticity. To this end, the proposed framework captures,
using an analytically model, the application behavior in order to estimate the applica-
tion workload needs in terms of allocated resources so that the QoS requirements are
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always satisfied. As shown in Figure 2.14, this framework is composed of the Work-
load Analyzer component that interacts with the applications users, and consults the
QoS mapper component to decide if a request is accepted or not. The Application
Centric Behavior Analyzer component analyzes the behavior of application in order
to predicate the arrival rate of different tasks with respect to the variation of arrival
rate and workload. The Resource Centric Behavior Analyzer component obtains,
using the IaaS monitoring component, the current resource usage information. The
QoS Mapper component maps the application specific QoS requirements to resource
specific allocations. To do this, it checks the Performance Database that contains
the workload mix and QoS attributes. Finally, the Elasticity controller component
receives the requests from the QoS Mapper for adding or removing VMs to the Cloud
infrastructure.

Authors of [13, 43] proposed a generic framework for managing elasticity of Cloud
applications. To this end, they proposed a Planification component integrated into
a MAPE (Monitor, Analyze, Plan and Execute) loop to provide elasticity while con-
sidering complex elasticity scenarios. The Planification component is about how an
application must be reconfigured according to an elasticity decision. As described in
Figure 2.15 When the Planification component receives an elasticity decision from
the Analyzer component, the Planification computes the new state of the considered
application (i.e., the new application architecture). To do this, it uses the initial
Extensional Model that describes the current state of the considered application (i.e.,
the current application architecture) and the Intensional Model that consists in a
template for all possible Extensional Models for the considered application (i.e., all
possible architectures of the application). The algorithm uses these two models to
compute and determine how the application will be modified (i.e., the new applica-
tion architecture) according to the elasticity decision (final extensional model). These
modifications consists in adding/removing a component/container, binding/unbind-
ing components, placing a component/container into a container, setting/unsetting a
parameter of a component/container.

While the idea of pushing elasticity management to the applications is interesting,
these four latter approaches are difficult to use since they assume an effort from
the application designer/administrator who will be in charge of delivering necessary
information for elasticity enforcement.

2.3.5 Synthesis of Related Work

In the literature, almost of the presented works dealing with the elasticity focus on the
infrastructure scope [5, 34, 35, 36]. These approaches allow the elasticity of VMs (i.e.,
adding/removing VMs according to workload variation) but they are not sufficient to
ensure the elasticity of deployed applications since they do not take into account the
nature of the application e.g., service-based applications.

To the best of our knowledge, most of the existing proposals related to elasticity
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Figure 2.15: Planification component for the elasticity of Cloud applications [13]

at the application scope mainly those we cite above are not suitable for service-based
applications. We think that addressing elasticity at the application scope is not
sufficient for ensuring the elasticity of this kind of applications. Elasticity should also
be ensured at the scope of services that compose these applications. In fact, we argue
in our work that it is unnecessary to duplicate or consolidate the entire application and
consequently all the services that compose it while the bottleneck can come from one
or some services of the application. In this context, some works have been proposed
to address the elasticity at the scope of services [2, 32]. Nevertheless, the correctness
of the proposed mechanisms is not proved since they are not based on a formal model.

Several approach proposed to use a controller to manage Cloud services elastic-
ity [33, 3]. However, the controller manages all the deployed Cloud services, which can
leads to the overload of the controller and consequently it could form a single failure
point. It would be interesting to be able to assign an elasticity controller at different
granularities according to environment requirements: a single controller for all the
deployed processes, a controller for each tenant (that corresponds to an enterprise)
or even a controller for each deployed process.

Another critical point in addressing elasticity is the ability to evaluate elasticity
strategies. In fact, it is necessary to be able to evaluate these strategies to guarantee
their effectiveness before using them in real Cloud environments. To the best of our
knowledge, none of the existing works proposes a formal approach for the verification
of the correctness of elasticity strategies. Indeed, almost approaches are limited to
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simulation-based (performance) evaluations [37, 6, 38, 39, 7, 8] and do not allow formal
verification of the correctness of elasticity strategies (e.g., model checking techniques).

There are two main approaches for the provisioning of elastic processes in Cloud
environments. The first approach consists in defining a novel environment for the ex-
ecution of elastic processes [9, 40, 41, 10]. Nevertheless, this kind of approach seems
to be difficult to use in real world since it requires an effort to replace/modify the ex-
isting engines and/or Cloud infrastructures. The second approach that we propose to
adopt in our work consists in providing mechanisms that allow provisioning of elastic
processes without changing the nature of the SBPs or existing Cloud environments.

In our work, we propose an elasticity approach that responds to all the discussed
criteria. Accordingly, in chapter 3, we propose an elasticity approach that intertwines
a formal model for SBPs elasticity that operate at the scope of services with a generic
controller for elasticity that can be used with different elasticity strategies and at
different granularities. In chapter 4, we propose an approach for evaluating SBPs
elasticity using both verification-based and simulation-based approaches. In chapter
5, we propose two approaches for the provisioning of elastic SBPs in real Cloud
environments (IaaS and PaaS contexts).

2.4 Conclusion

In the first part of this chapter, we introduced the basic concepts related to our
work. We presented Cloud Computing as the target environment of our research.
Afterwards, we presented the Service Oriented Architecture and a specified type of
application that we target namely Service-based Business Processes (SBPs). Then,
we presented the principle of elasticity.

In the second part of this chapter, we proposed an overview of the existing work
on different aspects related to elasticity. To this end, we started by discussing pro-
posed models and mechanisms for elasticity. Then, we were interested in proposed
approaches for the evaluation of elasticity. Afterwards, we studied works that deal
with provisioning of elasticity mechanisms in Cloud environments. Finally, we draw
a synthesis and we discuss how these works respond or not to the criteria listed in
2.3.1.



Chapter 3

Formal Model for SBPs
Elasticity

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Modeling Elasticity of SBPs . . . . . . . . . . . . . . . . . . . . . 46

3.2.1 Illustrating Example . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.2 Elasticity Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.3 Modeling Requirements . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Modeling of Stateless SBPs Elasticity . . . . . . . . . . . . . . . 50

3.3.1 Stateless SBP Modeling . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.2 Elasticity Operations . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.3 Correctness of Elasticity Operations . . . . . . . . . . . . . . . . . 55

3.4 Modeling of Stateful SBPs Elasticity . . . . . . . . . . . . . . . . 58

3.4.1 Stateful SBP Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.2 Elasticity Operations . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 Modeling of Timed SBPs Elasticity . . . . . . . . . . . . . . . . 63

3.5.1 Timed SBP Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5.2 Elasticity Operations . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6 Generic Controller for SBPs Elasticity . . . . . . . . . . . . . . . 68

3.6.1 Elasticity Controller . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.6.2 Formal Description of the Generic Controller . . . . . . . . . . . . 70

3.6.3 Illustrating Example of SBPs elasticity . . . . . . . . . . . . . . . . 72

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.1 Introduction

SBPs elasticity can be ensured by providing Cloud environments with elasticity mech-
anisms so that they can be able to adapt to the workload changes while ensuring the
desired functional and non-functional properties. Therefore, it is necessary to define
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a model and mechanisms that allow describing and ensuring SBPs elasticity. The
elasticity aims at ensuring the QoS of SBPs despite workload fluctuation. The QoS
can be impacted by the variation of the workload (e.g., in terms of number of invo-
cations) and measured using many indicators (response time, availability, reliability,
etc.). Therefore, it is necessary to have a model that allows representing the SBP
workload while allowing the measure of elasticity indicators (e.g., response time, re-
sources consumption). We argue, in our work, that it is beneficial to adopt formal
models to describe SBPs elasticity which provides rigorous description and allows
verification of properties.

In this chapter, we present our proposal to formally model SBPs elasticity. We
start by introducing our approach for modeling elasticity of SBPs. In our approach,
we advocate that handling elasticity does not only operate at the process scope but
it should also operate at the scope of services. Therefore, we propose a model for
describing SBPs while considering the notion of services workloads and services re-
sponse times. Using this SBP model, we will be able to define elasticity operations
(duplication/consolidation) that operate at the scope of services to ensure the elastic-
ity of stateless [44], stateful [45] and timed [46] SBPs. In our work, SBPs are modeled
as Petri nets and elasticity operations (service duplication/consolidation) are defined
and their correctness is formally proved [47]. Further, we will show how we can inter-
twine our elasticity operations (duplication/consolidation) with a controller to ensure
SBPs elasticity. For this, we define, using high level Petri nets, an elasticity controller
that monitors SBP execution, analyzes monitoring information and executes the ap-
propriate action (service duplication/consolidation) in order to enforce the elasticity
of deployed SBPs. This controller is generic in order to allow the implementation and
execution of different elasticity strategies.

3.2 Modeling Elasticity of SBPs

In this section, we introduce our approach for modeling elasticity of SBPs. To this
end, we start by illustrating our approach with a motivating example of an online
computer shopping SBP. Then, we propose elasticity mechanisms for ensuring SBPs
elasticity at the scope of services. Afterward, we discuss the requirements for modeling
SBPs.

3.2.1 Illustrating Example

Herein, we present an example of an online computer shopping SBP composed of four
services. This example will be used for illustration along this dissertation. Figure 3.1
presents the BPMN [48] model of the considered SBP. The four services that compose
the SBP are:

• Requests service (S1): receives requests to purchase a computer. Once the
service receives a request, it calls the Computer assembly service and the Invoice
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Figure 3.1: BPMN model of the SBP example of the online computer shopping service.

service.

• Computer assembly service (S2): performs the assembly of computer com-
ponents according to the requester desires.

• Invoice service (S3): makes the invoice related to the purchased computer.

• Delivery service (S4): delivers the computer with its invoice to the customer.

In our example, assuming that at a certain time the load of the SBP overcomes
its maximum capacity which can leads to loss of QoS, we have to make sure that the
SBP still runs and that all the requests are processed while maintaining the desired
QoS. One solution to maintain the SBP QoS would be to duplicate as many times as
necessary the entire process (and so, all the services that compose the SBP). How-
ever, this solution creates an over-provisioning of resources caused by the unnecessary
duplication of non-overloaded services. Therefore, we think that duplicating only the
bottleneck services is a better alternative while avoiding unnecessary resources con-
sumption. In our example, compared to S1, S3 and S4, S2 is a time and resources
consuming service, it is obvious that when considering elasticity, duplicating or con-
solidating instances of S2 could be enough to maintain the QoS of the entire SBP. So,
all we have to do is to duplicate the overloaded service (S2 in this case). Duplicating
this service consists on adding as copy as needed to handle the incoming load while
maintaining the required QoS.

Furthermore, assuming that at a certain time the load of the requests service
decreases whereby the service and its copies use more resources than required for the
same QoS. In this case, we have to consolidate the unnecessary copies of the service
in order to avoid resources under-utilization and thereby optimizing consumption of
Cloud resources.

3.2.2 Elasticity Mechanisms

A SBP is a business process that consists in assembling a set of elementary IT-enabled
services. These services realize the business activities of the considered SBP. Assem-
bling services into a SBP can be ensured using any appropriate service composition
specifications (e.g., BPMN [48] or BPEL [49]).
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Figure 3.2: SBP execution model of the online shopping service

SBPs elasticity can be ensured by providing Cloud environments with mechanisms
that allow a deployed SBP to scale up or down whenever needed. To scale up a
SBP, these elasticity mechanisms must duplicate the process in order to create as
instance as needed to handle the dynamically received requests. To scale down a
SBP, these mechanisms should consolidate the process in order to remove useless
instances, thereby avoiding under-utilization of resources.

We believe that elasticity mechanisms (duplication/consolidation) do not only
operate at the process scope but they should also operate at the scope of services. In
fact, we argue that it is unnecessary to duplicate or consolidate the entire SBP and
consequently all the services that compose it while the bottleneck can come from one
or some services of the SBP.

In order to manage SBPs elasticity using duplication and consolidation operations,
an elasticity controller can be used. This controller monitors SBP execution, analyzes
monitoring information and executes appropriate actions (duplication/consolidation)
in order to ensure elasticity of deployed SBPs.

3.2.3 Modeling Requirements

To model SBPs, several techniques can be used (BPEL [49], BPMN [48], Petri
nets [50], etc.). In our work, we are interested in the formal aspect of modeling.
So, we model the SBP using Petri nets. Many approaches have been used to model
SBPs using Petri nets. Generally these approaches represent the SBP execution model
which specifies how the processes and their services need to be executed and in what
order. In this latter, each service is represented by a transition. The places represent
the states between services. The execution model of the SBP of Figure 3.1 gives the
Petri net shown in Figure 3.2. As shown in this Figure, SBP services are represented
by transitions (S1, S2, S3 and S4) while the states between services are represented
by places (p1, p2, p3, p4, p5 and p6).

The SBPs execution model is suitable to verify behavioral properties. Neverthe-
less, this model does not provide a view of the evolution of loads on services which is
necessary to verify non-functional properties such as elasticity. Therefore, it is inter-
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Figure 3.3: Petri net of the SBP of the online computer shopping service.

esting to have a view of the way services are deployed and their loads. For that reason,
we propose to model SBPs using their deployment model in which we can represent
the way a process and its services are deployed and the load on each service of the
SBP. In our model, each service is represented by a place. The transitions represent
calls transfers between services according to the behavior specification of the SBP. In
fact, instead of focusing on the execution model of the process and its services, we
focus on the dynamic (evolution) of loads on each basic service participating in the
SBP. The SBP deployment model of the SBP execution model of Figure 3.2 gives the
Petri net shown in Figure 3.3. As shown in this Figure, SBP services are represented
by places (S1, S2, S3 and S4) while the calls transfers between services are repre-
sented by transitions (T0, T1, T2 and T3). The invocation of the SBP starts with
the execution of the service S1. The invocation of a service consists in adding a token
to its corresponding place (e.g., executing the service S1 consists in adding a token
to the place S1). Transferring a call from a service (or a set of services) to another
service (or other services) consists in firing the transition that connects these services
(e.g., transferring a call from the service S1 to services S2 and S3 consists in firing
the transition T1 which removes a token from the place S1 and adds a token in both
places S2 and S3). An invocation (a call) is processed when its corresponding token
is consumed by the firing of the transition T3.

The SBPs deployment model represents the way a process and its services are
deployed and the load on each services of the SBP. The advantage of using this de-
ployment model is to be able to represent information that are not expressible on the
execution model. This allows verifying some properties that cannot be verified in the
execution model e.g., QoS, deployment properties. Using the deployment model we
can, for example, monitor the load of a service (the number of current invocations
of a service) which is represented by the marking of its corresponding place. The
marking of places represents load distribution over services of the process. This facili-
tates the implementation of load-based mechanisms e.g., elasticity and load balancing
mechanisms.

To model SBPs, we have also to consider the different kind of SBPs. In fact, ser-
vices involved in a SBP can be stateless or stateful services. On one hand, a stateless
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service is a service that does not store its state between two service invocations. Each
service invocation is completely independent of previous invocations. On the other
hand, a stateful service is a service designed to store its state between invocations.
The different events (or some of them) and interactions that occurred during service
execution are taken into account to manage the service invocations. The state of a
stateful service can be represented by the user’s sessions and the data values specific
to this service. In addition, SBPs can be provided with temporal constraints on the
control flow of the SBPs. These timed SBPs allow having information about temporal
properties (delays, deadlines, etc.) on the SBPs execution. It is obvious that we have
to consider these kind of SBPs in our modeling approach of SBPs elasticity.

In this section, we presented our approach for modeling elasticity of SBPs. In our
approach, we argued that the elasticity must be ensured at the scope of services. In
the following, we propose a formal model for stateless SBPs elasticity (Section 3.3).
Afterward, we will propose two extensions to consider stateful SBPs (Section 3.4) and
timed SBPs (Section 3.5).

3.3 Modeling of Stateless SBPs Elasticity

In order to ensure elasticity of stateless SBPs, we start by introducing our formal
model, based on Petri nets, to describe SBPs and two elasticity operations (dupli-
cation and consolidation) that allow adding and removing copies of services while
preserving the semantics of the SBP. In addition, we prove the correctness of the
proposed elasticity operations.

3.3.1 Stateless SBP Modeling

To model stateless SBPs we used place/transition Petri nets (PN) [50]. In our model,
each service is represented by at least one place (the set of places of each service
are related with an equivalence relation). The transitions represent calls transfers
between services according to the behavioral specification of the SBP. The modeling
of the SBP of Figure 3.1 gives the Petri net shown in Figure 3.3.

Definition A stateless SBP model is a Petri net N =< P, T, Pre, Post,≡P ,≡T>:

– P : a set of places (represents the set of services/activities involving in a SBP).

– T : a set of transitions (represents the call transfers between services in a SBP).

– Pre : P × T → {0, 1}

– Post : T × P → {0, 1}

– ≡P⊆ P × P : an equivalence relation over P
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– ≡T⊆ T × T : an equivalence relation over T . We ignore the ≡T and ≡P if it is
clear from the context.

For a place p and a transition t we give the following notations:

– [p]≡P = {p′|(p, p′) ∈≡P }

– [t]≡T = {t′|(t, t′) ∈≡T }

– p• = {t ∈ T |Pre(p, t) = 1}

– •p = {t ∈ T |Post(t, p) = 1}

– t• = {p ∈ P |Post(t, p) = 1}

– •t = {p ∈ P |Pre(p, t) = 1}

The • notation can also be naturally extended to equivalent classes of places and/or
transitions as the union of its application to all the elements of the class e.g., [p]• =⋃
p′∈[p]

p′•.

We extend the notation [] to a set of places and transitions e.g., for some P ′ ⊆ P ,
[P ′]≡P = {[p]≡P |p ∈ P ′}.

Definition Let N be a Petri net, we define a net system S = 〈N,M〉 with M : P → N
a marking that associates to each place an amount of tokens. The marking is also
extended to equivalent classes i.e., M([p]) = Σ

p′∈[p]
M(p′).

In our model, the marking of a place models the number of invocations on its
corresponding service (i.e., each token represents a service call). The number of
invocations on a service can be considered as the workload of this service.

The marking of a Petri net represents a distribution of calls over the set of services
that compose the SBP. A Petri net system models a particular distribution of calls
over the services of a deployed SBP. We assume in our model that all service calls are
treated in the same manner.

Definition Given a net system S = 〈N,M〉 we say that a transition t is fireable in
the marking M , noted by M [t〉 iff ∀p ∈• t : M(p) ≥ 1. A class of transitions is fireable
in M , M [[t]〉, iff ∃t′ ∈ [t] : M [t′〉

Definition The firing of a transition t in marking M changes the marking to M ′ s.t.
∀p : M ′(p) = M(p) + (Post(t, p)−Pre(p, t)). We note the transition by M [t〉M ′. We
extend the transition notation to classes using M [[t]〉M ′ where M ′ ∈ {M ′′|∃t′ ∈ [t] :
M [t′〉M ′′}.
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3.3.2 Elasticity Operations

Elasticity operations are mechanisms to scale-up and down SBPs when needed. On
one hand, when a service has a lot of calls, it will be overloaded and this can lead
to loss of QoS. A solution to this overflow problem is to duplicate the service (create
a new instance of this service) in order to increase service capacity and ensure the
desired QoS with respect to the increased load.

On the other hand, when a service has few calls, it will use more resources than
required for the same QoS. A solution to this issue is to consolidate the service (remove
an unnecessary instance of this service) in order to avoid under utilization of resources.

Hereafter, we give the definition of two elasticity operators that duplicates/con-
solidates a service.

Place Duplication

Definition Let S = 〈N,M〉 be a net system and let p ∈ P , the duplication of p in
S that creates a new place pc (6∈ P ), noted as D(S, p, pc), leads to a new net system
S′ = 〈N ′,M ′〉 s.t

– P ′ = P ∪ {pc}

– T ′ = T ∪ T ′′ with T ′′ = {tc|t ∈ (•p∪ p•)∧ tc = η(t)} (η(t) generates a new copy
of t which is not in T ).

– Pre′ : P ′ × T ′ → {0, 1}

– Post′ : T ′ × P ′ → {0, 1}

– ≡P ′⊆ P ′×P ′ with ≡P ′=≡P ∪{(p, pc)}. The place p and its copy are equivalent.

– ≡T ′⊆ T ′ × T ′ with ≡T ′=≡T ∪{(t, tc)|tc ∈ T ′′ ∧ tc = n−1(t)}. Each transition is
equivalent to its copy.

– M ′ : P ′ → N with M ′(p′) = M(p′) if p′ 6= pc and 0 otherwise.

The Pre′ (respectively Post′) functions are defined as follow:

Pre′(p′, t′) =



Pre(p′, t′) p′ ∈ P ∧ t′ ∈ T
Pre(p′, t) t ∈ T ∧ t′ ∈ (T ′ \ T )

∧t′ ∈ [t]≡T ′

∧p′ ∈ (P \ {p})
Pre(p, t) t ∈ T ∧ t′ ∈ (T ′ \ T )

∧t′ ∈ [t]≡T ′ ∧ p
′ = pc

0 otherwise.
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Post′(t′, p′) =



Post(t′, p′) p′ ∈ P ∧ t′ ∈ T
Post(t, p′) t ∈ T ∧ t′ ∈ (T ′ \ T )

∧t′ ∈ [t]≡T ′

∧p′ ∈ (P \ {p})
Post(t, p) t ∈ T ∧ t′ ∈ (T ′ \ T )

∧t′ ∈ [t]≡T ′ ∧ p
′ = pc

0 otherwise.

Place Consolidation

Definition Let S = 〈N,M〉 be a net system and let p, pc be two places in N with
(p, pc) ∈≡P ∧p 6= pc, the consolidation of pc in p, noted as C(S, p, pc), is a new net
system S′ = 〈N ′,M ′〉 s.t

– N ′: is the net N after removing the place pc and the transitions (pc)• ∪• pc

– M ′ : P ′ → N with M ′(p) = M(p) +M(pc) and M ′(p′) = M(p′) if p′ 6= p.

We call well-defined net any net where the equivalent relation over places and transi-
tions are composed of copies resulted from duplication and/or consolidation operators.

Well-defined Net Let N0 be a net where ≡P0 and ≡T0 are the identity relations. We
call here well-defined net, any net N resulted from a finite application of duplication
and/or consolidation operators on N0.

Proposition 3.3.1 Let N be a well-defined net, the following properties are held on
N :

∀t1, t2 ∈ T : [t1] = [t2]⇒ [•t1] = [•t2] ∧ [t•1] = [t•2] (3.1)

∀p1, p2 ∈ P, t ∈ T : p1, p2 ∈ (•t ∪ t•)

⇒ p1 = p2 ∨ [p1] ∩ [p2] = ∅ (3.2)

∀t ∈ T : |[t]| =
∏

p∈(•t∪t•)

|[p]| (3.3)

Proof The proof of equations 3.1 and 3.2 can be derived from the definition of the
duplication and consolidation operators. We prove equation (3) by recurrence. Con-
sider a well-defined net system S = 〈N,M〉. If ≡T and ≡P are the identity relations,
then we have the equation 3.3 holds for N this because of |[x]| = 1 for any x ∈ P ∪T .
Consider now ≡T and ≡P are different from the identity relations in S and suppose
that equation 3.3 is true for S i.e.,

|[t]≡T | =
∏

p∈(•t∪t•)
|[p]≡P |
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Figure 3.4: Example of the elasticity of a SBP

By equations (1) and (2) we deduce for some p ∈ (•t ∪ t•) (w.l.o.g let we take p ∈• t)
that:

|p• ∩ [t]≡T | =
|[t]≡T

|
[p]≡P

=
∏

p′∈(•t∪t•)∧p′ 6=p
|[p′]≡P |.

Let we create a net system S′ by duplicating p. Then by definition of duplication we
will add |p• ∩ [t]≡T | of copies of t, so:

|[t]≡T ′ | = |[t]≡T |+ |p• ∩ [t]≡T | =
( ∏
p∈(•t∪t•)

|[p]≡P |
)

+

( ∏
p′∈(•t∪t•)∧p′ 6=p

|[p′]≡P |
)

=( ∏
p′∈(•t∪t•)∧p′ 6=p

|[p′]≡P |
)
∗ (1 + |[p′]≡P |) =

( ∏
p′∈(•t∪t•)∧p′ 6=p

|[p′]≡P ′ |
)
∗ (|[p′]≡P ′ |) =∏

p′∈(•t∪t•)
|[p′]≡P ′ |

The proof of the equation (3) for consolidation can be done in the same manner.

Example Figure 3.4-(a) shows an example of nets system that represents the SBP
of the computer shopping service described previously. The relations ≡P and ≡T are
the identity relations. Figure 3.4-(b) is the resulted system from the duplication of
s2 1, D((a), s2 1, s2 2). Figure 3.4(c) is the consolidation of the place s2 1 in its copy
s2 2, C((b), s2 2, s2 1). The boxes represent the equivalence relations.
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3.3.3 Correctness of Elasticity Operations

In order to guarantee that the semantics of the SBP is preserved by duplication and
consolidation operators we must prove that according to some equivalence relation,
any sequence of transformation on a SBP is equivalent, according to some properties,
to the original one. In our case here, as mentioned previously, the Petri net of a
SBP does not denote an execution model but a dynamic view on the evolution of
the SBP load (the marking). Therefore, we want to keep the same view of load
evolution regardless of any transformation of a net. In order to do so, the following
two properties have to be preserved:

Property 1

By any transformation of the net using duplication/consolidation operators, we do
not lose or create SBP invocations i.e., the load in terms of the number of requests
of all the copies of a given service must be the same as the load of the original one
without duplications/consolidations.

Property 2

The dynamics in terms of load evolution of the original process must be preserved
in the transformed one i.e., for any reachable load distribution in the original net
there is an equivalent (according to property 1) reachable load distribution in the
transformed net.

We give now a definition of an equivalence relation between net systems that cover
the two previous properties.

Equivalence relation Let S = 〈N,M〉 and S′ = 〈N ′,M ′〉 be two net systems. Let
ρ1 : [P ]≡P → [P ′]≡P ′ (resp. ρ2 : [T ]≡T → [T ′]≡T ′ ) be two bijective functions that
associates to each equivalent class in P (resp. in T ) an equivalent class in P ′ (resp.
in T ′). We use ρ as the union of the two functions. Two net systems S and S′ are
equivalent according to ρ, noted by S ∼ρ S′, iff:

(a) ∀p ∈ P : M([p]≡P ) = M ′(ρ([p]≡P ))

(b) ∀t ∈ T : M [t〉M1 ⇒ ∃t′ ∈ ρ([t]≡T ) : M ′[t′〉M ′1 ∧ 〈N,M1〉 ∼ρ 〈N ′,M ′1〉

(c) ∀t′ ∈ T ′ : M ′[t′〉M ′1 ⇒ ∃t ∈ ρ−1([t′]≡T ′ ) : M [t〉M1 ∧ 〈N,M1〉 ∼ρ 〈N ′,M ′1〉

Proposition 3.3.2 Let N be a well-defined net and t a transition. If we consider
{p1, ....., pn} =• t ∪ t• then we have: ∀p′1, ....., p′n ⊆ P :

∧
i=1...n

p′i ∈ [pi] ⇒ ∃t′ ∈ [t] :

{p′1, ....., p′n} =• t′ ∪ t′•
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Proof The proposition states that any combination of places taken from the equiv-
alence classes of the pre-places of a transition is also a set of pre-places of one of
its copies (resp. post-places). While by definition we can show that for any transi-
tions t, t′ s.t. (t, t′) ∈≡T we have |•t| = |•t′| and |t•| = |t′•| by the constraints of the
equations (3.1) to (3.3) we can conclude the proof of the proposition.

Proposition 3.3.3 Let S = 〈N,M〉 and S′ = 〈N ′,M ′〉 = D(S, p1, p
c
1). Let ρ defined

as the union of ρ1([p]≡P ) = [p]≡P ′ for any p ∈ P and ρ2([t]≡T ) = [t]≡T ′ for any t ∈ T .
Let now some M1 ,M ′1 two reachable markings, respectively from M and M ′, such
that ∀p ∈ P : M1([p]≡P ) = M ′1(ρ([p]≡P )) then we have:
∃t ∈ T : M1[t〉 ⇔ ∃t′ ∈ ρ([t]≡T ) : M ′1[t

′〉.

Proof let t be a fireable transition from M1:
(⇔)∀p ∈• t : M1(p) ≥ 1
(⇔)∀p ∈• t : M1([p]≡P ) ≥ 1
(⇔)∀p ∈• t : M ′1(ρ([p]≡P )) ≥ 1
(⇔)∀p ∈• t : ∃p′ ∈ ρ([p]≡P ) : M ′1(p

′) ≥ 1
according to proposition 3.3.2
(⇔)∃t′ ∈ [t]≡T ′ : M ′1[t

′〉
(⇔)∃t′ ∈ ρ([t]≡T ) : M ′1[t

′〉

Theorem 3.3.4 Let S = 〈N,M〉 with N a well-defined nets and let S′ = 〈N ′,M ′〉 =
D(S, p1, p

c
1) we have:

S ∼ρ S′ where ρ is defined as in proposition 3.3.3.

Proof First, by definition, ρ is a bijection.

(a) By definition of duplication, we have M ′(pc1) = 0, so:

∀p ∈ P : M([p]≡P ) = M ′(ρ([p]≡P )) (3.4)

(b) We show now that for any two markings M1 and M ′1 respectively reachable from
M and M ′ s.t ∀p ∈ P : M1([p]≡P ) = M ′1(ρ([p]≡P )) then for all transitions fire-
able from M1 we can fire one of its copies in S′ from M ′1 and reach two markings
that conserve the marking over equivalent classes under the same ρ (and vice
versa).
Let M1[t1〉M2, according to proposition 3.3.3 we have M ′1[t

′
1〉M ′2 with t′1 ∈

ρ([t1]≡T )(t′1 ∈ [t1]≡T ′ ).
From equation 2 we know that only one place in an equivalent class will be
concerned by the firing of t1 (idem for t′1) so:

∀p ∈ P : M2([p]≡P ) = M1([p]≡P ) + (Post(t, p)− Pre(p, t))∧
∀p′ ∈ P ′ : M ′2([p′]≡P ′ ) =
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M1([p
′]≡P ′ ) + (Post′(t′, p′)− Pre′(p′, t′)) (3.5)

We know also, by definition of the duplication:

∀p ∈ P, p′ ∈ P ′, t ∈ T, t′ ∈ T ′ : [p]≡P ⊆ [p′]≡P ′ ∧ [t]≡T ⊆ [t′]≡T ′ ⇒

Pre(p, t) = Pre′(p′, t′) ∧ Post(t, p) = Post′(t′, p′) (3.6)

From equations (3.5) and (3.6) we conclude:

∀p ∈ P : M2([p]≡P ) = M ′2([p]≡P ′ ) (3.7)

and so ∀p ∈ P : M2([p]≡P ) = M ′2(ρ([p]≡P ))

(c) The proof of point (c) is similar to (b).

We can conclude that:

〈N,M2〉 ∼ρ 〈N ′,M ′2〉 (3.8)

and By induction on equations (3.4) and (3.8) we conclude that S ∼ρ S′

Theorem 3.3.5 Let S = 〈N,M〉 with N a well-defined net and let S′ = 〈N ′,M ′〉 =
C(S, p, pc) we have:

S ∼ρ S′ where ρ is defined as in proposition 3.3.3.

Proof For any a well-defined net system S we can always construct a net system S0
where S is resulted from a sequence of duplication on S0. By theorem 1 S ∼ρ S0. If
we consolidate a place in S producing the net system S′ then S′ is also a result from
a sequence of duplication on S0 and so S′ ∼ρ S0. We conclude that S ∼ρ S′

By theorem 3.3.4 and 3.3.5 we proved that for any finite sequence of application
duplication and/or consolidation operators on a well-defined net is also a well-defined
net that preserves the semantic of the original net.

Remark Let we consider a net system S = 〈N,M〉 s.t ∀p ∈ P, t ∈ T : |[p]| = |[t]| = 1.
Let v be a vector of natural number v ∈ NP such that vT ∗ C = 0 (i.e v is p− flot of
N). This means that Σ

p∈P
v(p) ∗M(p) = 0.

The theorem 3.3.5 proofs also that the vector v′ ∈ NP ′ with ∀p ∈ P,∀p′ ∈ [p], v(p) =
v′(p′) is also a p− flot for N’ (i.e v′T ∗ C′ = 0). Identically for T − flot.
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3.4 Modeling of Stateful SBPs Elasticity

As shown in the previous section, performing elasticity on stateless services can be
done using a service duplication/consolidation approach without taking into account
the state of the duplicated/consolidated service. However, performing elasticity on
stateful service needs more attention. In fact, in a duplication/consolidation approach
it is necessary to ensure that the state of the stateful service is taken into account by
the elasticity mechanisms at each duplication or consolidation. To solve this problem,
we propose to model stateful SBPs using Colored Petri Nets (CPN) [51]. In our model,
the management of user sessions is allowed by the use of colors. Each user session
represents a state of the service, and so, represents a color. On the other hand, to
model the data values specific to a stateful service, we propose to model each stateful
service by a stateless service and a database deployed as a service in which the data
values persistence of the service are stored during its execution. Each stateful service
of the SBP will have its specific database service that models the data values of all
user sessions. Note that we assume the existence of an elastic database (e.g., NoSQL
databases) in which the state of stateful services are stored. Consequently, there is
a need to render the process/services elastic but not the database service. In the
following, we do not discuss the elasticity of databases since it is out of scope of our
work.

3.4.1 Stateful SBP Modeling

To model stateful SBP we use Colored Petri Nets (CPN). Place/transition Petri nets
do not allow the modeling of data. CPN have been proposed to extend Petri nets
by modeling data with color. A Petri net is a colored Petri net if its tokens can
be distinguished by colors. Each place has an associated type determining the kind
of data that this place may contain. The marking of a given place is a multi-set of
values of the associated type. Arcs constraints are expressions that extract or produce
multi-sets with respect to the sources of target types.

In order to give a definition of the CPN, we give here, without a loss of generality,
a simple syntax and semantics for expressions.

– Types: Noted by Π, we range over by using π. Types are defined by the set
of values that compose them, π = {v0, ..., vi, ...}. Also, types can be defined by
applying set operations on them.

– Variables: Noted by X , we range over by Xi. Variables are typed and we use
Type(X ) to obtain the type of X .

– Function: Denoted by F , for a function f ∈ F with f : π → π′ we use Type(f)
to define its range type.



Modeling of Stateful SBPs Elasticity 59

Definition (Multi-set) : Let E be a set, a multi-set m on E is an application from
E to N, we write such a multi-set using the formal sum notation i.e m =

∑
0<i≤|E|

q′iei

(with qi ∈ N and ei ∈ E)1. We denote by M(E) the set of multi-sets of E.

We use E to define a color expression which can be a color constant, variable,
or a color function. Given an expression e ∈ E , we use V ar(e) to denote the set of
variables which appear in e.

Definition (CPN graph) : A stateful SBP model is a Colored Petri Net graph (CPN
graph) N=〈Σ,P , T ,cd,Pre,Post,≡P ,≡T 〉, where:

– Σ is a set of non-empty types, also called color sets (represents the set of user
sessions).

– P is a set of labeled places (represents the set of services/activities involved in
a SBP);

– T is a set of labeled transitions (represents the call transfers between services
according to the SBP behavioral specification);

– cd : P → Π is a function that associates to each place a color domain. Intuitively,
this means that each token in place p must have a data value that belongs to
cd(p);

– Pre (resp. Post): are forward (resp. backward) matrices, such that Pre :
P × T → E (resp. Post : P × T → M(E), represent the input (resp. output)
arc expressions.

– ≡P⊆ P × P : an equivalence relation over P . An equivalence relation between
copies of the same place: [p]≡P = {p′|(p, p′) ∈≡P }.

– ≡T⊆ T × T : an equivalence relation over T . An equivalence relation between
copies of the same transition: [t]≡T = {t′|(t, t′) ∈≡T }.

In our model, each service is represented by a place with a session identifier as an
associated type. Each service call is typed with its session identifier. The transitions
represent calls transfers between services according to the behavior specification of
the SBP while respecting the different user sessions.

As stated above, in order to manage the data values of stateful services, we add a
place (database service) for each stateful service of the SBP to model the data values
related to this stateful service. If the SBP contains a certain number of stateful
services, we will have the same number of database services so each database service
manage the data values of its corresponding stateful service. For each stateful service
s ∈ P :

1For simplicity we keep only the terms with qi 6= 0
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– P = P ∪ {sdb} (sdb: database service of the stateful service s)

– ∀t ∈ T : Pre(sdb, t) = Pre(s, t) ∧ Post(t, sdb) = Post(t, s)

For a place p and a transition t we denote •p and p• as the input and output
transitions set of place p, •t and t• as the input and output places set of transition t.

The • notation can also be naturally extended to equivalent classes of places
and/or transitions as the union of its application to all the elements of the class e.g.,
[p]• =

⋃
p′∈[p]

p′•. We extend the notation [] to a set of places and transitions e.g., for

some P ′ ⊆ P , [P ′]≡P = {[p]≡P |p ∈ P ′}. We ignore the ≡T and ≡P if it is clear from
the context.

Definition (Well-formed graph) A CPN graph N=〈Σ,P , T ,cd,Pre,Post,≡P ,≡T 〉 is
well formed iff: ∀t ∈ T, ∀p ∈ t•, we have V ar(Post(p, t)) ⊆ V ar(Pre(., t)) with
V ar(Pre(., t)) =

⋃
p′∈•t

var(Pre(p′, t)).

In a well-formed CPN graph, we restrict that for each transition, the output arc
expressions must be composed of the variables which are in the input arcs expressions.
To each CPN graph, we associate its terms incidence Matrix C (P ×T →M(E)) with
C = Post− Pre.

In the following, we define the behaviors (the dynamics) of a CPN System.

Definition (CPN Marking) A marking M of a CPN graph is a multiset vector in-
dexed by P , where ∀p ∈ P,M(p) ∈ M(cd(p)). The marking is also extended to
equivalent classes i.e. M([p]) = Σ

p′∈[p]
M(p′). The marking of a CPN represents a

distribution of calls over the set of services that compose the SBP. We assume in our
model that all service calls are treated in the same manner.

Definition (CPN system) A Colored Petri Net system (CPN system) is a pair
S=〈N,M〉 where N is a CPN graph and M is one of its marking. A CPN system
models a particular distribution of calls over the services of a deployed SBP.

We use u : V ar(Pre(., t)) → Σ with M ≥ Pre(., t)u to denote a binding of the
input arcs variables. 2

Definition Given a CPN system S = 〈N,M〉 and a transition t, we use M [t〉u to
denote that the transition t is fireable in the marking M by the use of u, and we use
the classic notation M [t〉 if u is not important (e.g., when u is unique). A class of
transitions is fireable in M , M [t〉u, iff ∃t′ ∈ [t] : M [t′〉u

2 u must respect the color domain of the places, i.e. , ∀p ∈• t, x ∈ var(Pre(p, t)), we have
u(x) ∈ cd(p).



Modeling of Stateful SBPs Elasticity 61

Definition Let M be a marking and t a transition, with M [t〉u for some u. The
firing of the transition t changes the marking of CPN from M to M ′ = M +C(., t)u.
We note the firing as M [t〉uM ′.

The transition firing represents the evolution of the load distribution after calls trans-
fer. The way that calls are transferred between services depends on the behavior
specification (workflow operators) of the SBP.

3.4.2 Elasticity Operations

Herein, we extend our elasticity operations (duplication/consolidation) to consider
stateful SBPs.

Place Duplication

Definition Let S = 〈N,M〉 be a CPN system and let p ∈ P , the duplication of p in
S by a new place pc (6∈ P ), noted as D(S, p, pc), is a new CPN system S′ = 〈N ′,M ′〉
s.t

– Σ′ = Σ

– P ′ = P ∪ {pc}

– T ′ = T ∪ T ′′ with T ′′ = {tc|t ∈ (•p∪ p•)∧ tc = η(t)} (η(t) generates a new copy
of t which is not in T ).

– cd′ : P ′ → Σ′ with cd′(p′) = cd(p′) for all p′ ∈ P and cd′(pc) = cd(p)

– Pre′ (resp. Post′): P ′ × T ′ → E (resp. P ′ × T ′ →M(E))

– ≡P ′⊆ P ′×P ′ with ≡P ′=≡P ∪{(p, pc)}. The place p and its copy are equivalent.

– ≡T ′⊆ T ′ × T ′ with ≡T ′=≡T ∪{(t, tc)|tc ∈ T ′′}. Each transition is equivalent to
its copy.

– M ′ : P ′ →M(cd(p)) with M ′(p′) = M(p′) if p′ 6= pc and ∅ otherwise.

The Pre′ (resp. Post′) functions are obtained by extending the Pre (resp. Post) to
the new added places and transitions as follow:

Pre′(p′, t′) =



Pre(p′, t′) p′ ∈ P ∧ t′ ∈ T
Pre(p′, t) t ∈ T ∧ t′ ∈ (T ′ \ T )

∧t′ ∈ [t]≡T ′

∧p′ ∈ (P \ {p})
Pre(p, t) t ∈ T ∧ t′ ∈ (T ′ \ T )

∧t′ ∈ [t]≡T ′ ∧ p
′ = pc

∅ otherwise.
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Figure 3.5: An example of the elasticity of the stateful SBP of the online computer
shopping service.

Post′ can be obtained by replacing Pre by Post.

Place Consolidation

Definition Let S = 〈N,M〉 be a CPN system and let p, pc be two places in N with
(p, pc) ∈≡P ∧p 6= pc, the consolidation of pc in p, noted as C(S, p, pc), is a new CPN
system S′ = 〈N ′,M ′〉 s.t

– N ′: is the net N after removing the place pc and the transitions (pc)• ∪• pc

– M ′ : P ′ →M(cd(p)) with M ′(p) = M(p)+M(pc) and M ′(p′) = M(p′) if p′ 6= p.

Example Figure 3.5-(a) represents the stateful SBP model (empty marking) of the
online computer shopping service of Figure 3.1. In this SBP, s2 1 is a stateful service
and all others are stateless services. s2db 1 is the database service that model the
data values related to the stateful service s2 1. Figure 3.5-(b) is the resulting system
from the duplication of the service s2 1 in (a), D((a), s2 1, s2 2). Figure 3.5-(c) is the
consolidation of the service s2 1 in its copy s2 2, C((b), s2 2, s2 1).
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Correctness of Elasticity Operations

In the previous section we applied the same structural duplication and consolidation
operations on classical Petri-net. The correctness of duplication/consolidation oper-
ators depends on the fact that cardinality of arcs (domain of pre and post functions)
are one or zero. If we restrict in the colored Petri nets the multi-sets expressions
on the arcs to a cardinality of one, then the proofs provided in the previous section
still holds for stateful SBPs. Note that this hypothesis is very realistic since different
instances of SBPs are not supposed to interact with each others. This means that the
duplication/consolidation operators preserve the semantics of stateful SBPs.

3.5 Modeling of Timed SBPs Elasticity

The two previously introduced models do not allow having information about tem-
poral properties on the SBP execution. This can result in misinterpreting the SBP
elasticity. To resolve this, we propose to go further by considering temporal con-
straints in modeling SBPs elasticity.

3.5.1 Timed SBP Modeling

To model timed SBPs, we used Timed Petri Nets (TdPN) [52]. Place/transition and
Colored Petri nets do not allow the modeling of time. TdPN have been proposed to
extend Petri nets by modeling time information. TdPN are Petri nets where tokens
are annotated with a real value that represents the age of the tokens in their current
places, arcs connecting places to transitions are annotated with time intervals that
represent the values that the age of tokens must have to be consumed by a transition
firing.

In our model, each service is represented by a place. The transitions represent call
transfers between services according to the behavior specification of the SBP. Tokens
represent the calls (invocations) of services. Ages of tokens represent the duration
of calls treatment in their current services. In our model, instead of focusing on the
execution model of the process and its services, we focus on the dynamic (evolution)
of loads on each basic service participating in the SBP.

Definition (TdPN) A timed SBP model is a Timed Petri Net (TdPN) N =<
P, T, Pre, Post,≡P ,≡T>:

– P : a set of places (represents the set of services/activities involved in a SBP).

– T : a set of transitions (represents the call transfers between services in a SBP).

– Pre ⊆ P × I × T : a finite set of input arcs where I is the set of time intervals
defined by I ::= [a, a]|[a, b]|[a,∞) where a, b ∈ N and a < b.
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– Post ⊆ T × P : a finite set of output arcs.

– ≡P⊆ P × P : an equivalence relation over P . An equivalence relation between
copies of the same place: [p]≡P = {p′|(p, p′) ∈≡P }.

– ≡T⊆ T × T : an equivalence relation over T . An equivalence relation between
copies of the same transition: [t]≡T = {t′|(t, t′) ∈≡T }.

For a place p and a transition t we give the following notations:

– p• = {t ∈ T |(p, I, t) ∈ Pre}

– •p = {t ∈ T |(t, p) ∈ Post}

– t• = {p ∈ P |(t, p) ∈ Post}

– •t = {p ∈ P |(p, I, t) ∈ Pre}

In the following, we define the behaviors (the dynamics) of a TdPN system.

Definition (TdPN Marking) Let N be a Timed Petri Net. A marking M on N is
a function M : P → B(R>=0) that associates to each place a finite multiset of non-
negative real numbers that represent the age of tokens that are currently at a given
place. The set of all markings over N is denoted by M(N).

Definition (TdPN system) A Timed Petri Net system (TdPN system) is a pair
S = 〈N,M〉 where N is a TdPN and M a marking. The marking of a TdPN represents
a distribution of calls and the age of these calls over the set of services that compose
the SBP. A TdPN system models a particular distribution of calls over the services
of a deployed SBP. A marked TdPN is a net system S = 〈N,M0〉 where N is a TdPN
and M0 is an initial marking on N where all tokens have the age 0.

Definition Given a net system S = 〈N,M〉 and a transition t, we say that t is
fireable in the marking M by tokens v = {(p, xp)|p ∈• t∧xp ∈M(p)∧xp ∈ Ip}, noted
by M [t〉v, if:

• For all input arcs there is a token in the input place with an age satisfying the
age guard of the arc, i.e. ∀(p, xp) ∈ v, np ∈ Ip where (p, xp) refers to a token in
the place p of age xp and Ip is the interval of the arc between p and t

As a consequence to this restriction:

• If the age of the token matches a value of the time interval associated to an arc
connecting its place to a transition, the token can be used to fire the transition.
Nevertheless, the transition is not forced to fire unless the age of the considered
token reaches the upper limit of the time interval (urgency in firing).
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• If the age of the token is lower than the lower limit of the time interval associated
to an arc connecting its place to a transition, the token cannot be used to fire
the transition and must wait for its age to increase.

• If the age of the token is higher than the upper limit of the time interval associ-
ated to an arc connecting its place to a transition, the token will never be used
to fire the transition. If the token can never be used to fire any transition, it
will be considered as an outdated and unusable token.

Definition Let M be a marking and t a transition, with M [t〉v for some v. The firing
of the transition t in M , noted by M [t〉vM ′, changes the marking to M ′ s.t.

M ′ =


M(p) \ {xp} ∀p ∈• t
M(p) ∪ {0} ∀p ∈ t•
M(p) ∀p /∈ (•t ∪ t•)

Where \ and ∪ are operations on multisets. Note that the firing of transitions
does not cause aging of tokens.

3.5.2 Elasticity Operations

Herein, we extend our elasticity operations (duplication/consolidation) to consider
timed SBPs.

Place Duplication

Definition Let S = 〈N,M〉 be a TdPN system and let p ∈ P , the duplication of p in
S by a new place pc (6∈ P ), noted as D(S, p, pc), is a new TdPN system S′ = 〈N ′,M ′〉
s.t

– P ′ = P ∪ {pc}

– T ′ = T ∪ T ′′ with T ′′ = {tc|t ∈ (•p∪ p•)∧ tc = η(t)} (η(t) generates a new copy
of t which is not in T ).

– Pre′ (resp. Post′): P ′ × I × T ′ (resp. T ′ × P ′)

– ≡P ′⊆ P ′×P ′ with ≡P ′=≡P ∪{(p, pc)}. The place p and its copy are equivalent.

– ≡T ′⊆ T ′ × T ′ with ≡T ′=≡T ∪{(t, tc)|tc ∈ T ′′}. Each transition is equivalent to
its copy.

– M ′ : P ′ → B(R>=0) with M ′(p′) = M(p′) if p′ 6= pc and ∅ otherwise.

The Pre′ (resp. Post′) functions are obtained by extending the Pre (resp. Post) to
the new added places and transitions as follows:
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Pre′(p′, I, t′) =



Pre(p′, I, t′) p′ ∈ P ∧ t′ ∈ T
Pre(p′, I, t) t ∈ T ∧ t′ ∈ (T ′ \ T )

∧t′ ∈ [t]≡T ′

∧p′ ∈ (P \ {p})
Pre(p, I, t) t ∈ T ∧ t′ ∈ (T ′ \ T )

∧t′ ∈ [t]≡T ′ ∧ p
′ = pc

∅ otherwise.

Post′ can be obtained by replacing Pre by Post.

Place Consolidation

Definition Let S = 〈N,M〉 be a TdPN system and let p, pc be two places in N with
(p, pc) ∈≡P ∧p 6= pc, the consolidation of pc in p, noted as C(S, p, pc), is a new TdPN
system S′ = 〈N ′,M ′〉 s.t

– N ′: is the net N after removing the place pc and the transitions (pc)• ∪• pc

– M ′ : P ′ → B(R>=0) with M ′(p) = M(p) +M(pc) and M ′(p′) = M(p′) if p′ 6= p.

Example Figure 3.6-(a) represents the timed SBP model (empty marking) of the
online computer shopping service of Figure 3.1. In this model, temporal constraints
are represented by time intervals that represent the values that tokens must have to
be consumed by a transition firing. For example, a token in the place s1 1 must have
an age values between 2 and 3 to be consumed by the transition t1 1. Figure 3.6-(b) is
the resulting system from the duplication of the service s2 1 in (a), D((a), s2 1, s2 2).
Figure 3.6-(c) is the consolidation of the service s2 1 in its copy s2 2, C((b), s2 2, s2 1).

We define the following notations to represent the four types of actions that can
be performed during the execution of the SBP model:

– T (x): action for the elapse of x unit of time.

– x′R(t): action that fires x time the transition t .

– D(s): action that duplicates the service s.

– C(s, s′): action that consolidates the service s′ in its copy s.

A possible execution of the SBP of Figure 3.6-(a) with an initial marking M0 =
((s1 1, 0)) (one token with the age 0 in the place s1 1) is given bellow:

– (s1 1, 0)
T (2)−−−→ (s1 1, 2)
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Figure 3.6: An example of the elasticity of the timed SBP of the online computer
shopping service.

– (s1 1, 2)
1′R(t1 1)−−−−−→ (s2 1, 0), (s3 1, 0)

– (s2 1, 0), (s3 1, 0)
T (2)−−−→ (s2 1, 2), (s3 1, 2)

– (s2 1, 2), (s3 1, 2)
1′R(t2 1)−−−−−→ (s3 1, 0)

– (s3 1, 0)
T (3)−−−→ (s3 1, 3)

– (s3 1, 3)
1′R(t3 1)−−−−−→ ()

Correctness of Elasticity Operations

In the previous section we applied the same structural duplication and consolidation
operations on classical Petri-net. We proved that this two operations preserve the
structural and dynamical properties of the net modulo ≡T and ≡P relations. This
means that the duplication/consolidation properties preserve the semantics of Timed
SBPs.

In this section, we presented our formal model for SBPs elasticity. We showed that
our model can be used with different types of SBPs (stateless, stateful and timed). In
addition, we defined two elasticity operations (duplication/consolidation) that operate
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at the scope of services and we proved their correctness in preserving the semantics of
SBPs. In the next section, we will propose our approach to intertwine our elasticity
operations with an elasticity controller in order to ensure SBPs elasticity.

3.6 Generic Controller for SBPs Elasticity

Among others, there are two main approaches for managing elasticity of SBPs. For a
given SBP model, the first approach consists in producing a model for an elastic SBP
which is the result of the composition of the SBP model with models of mechanisms
for elasticity [28]. This approach dedicates a controller for each service of the SBP but
changes the nature of these latter. The second approach that we adopt in this work
consists in setting up a controller that continuously analyzes SBPs execution and
possibly generates reconfiguration actions in order to enforce elasticity of deployed
SBPs. One can assign a single controller for all the deployed processes, a controller for
each tenant (that corresponds to an enterprise) or even a controller for each deployed
process. We point out that the choice of the best deployment scenario needs a more
thorough study that we consider in our future work.

3.6.1 Elasticity Controller

A controller is usually represented by a control loop that consists on harvesting mon-
itoring data, analyzing them and generating reconfiguration actions to correct viola-
tions (self-healing and self-protecting) or to target a new state of the system (self-
configuring and self-optimizing) [53]. In our work, we are interested in setting up a
controller to ensure SBPs elasticity. Therefore, we propose to intertwine the elasticity
operations (duplication/consolidation) previously defined with a controller to ensure
SBPs elasticity. In this control loop (see Figure 3.7), the central element represents
the SBP for which we want to ensure elasticity. For this loop we need to collect
information about the SBP execution (workload, time response etc.). Afterward, we
need to analyze and reason about these information to decide on triggering elasticity
actions. We need also reconfiguration actions (duplication/consolidation) to carry
out changes to the SBP in order to ensure its elasticity. The different functions of the
elasticity control loop are defined as:

• Monitor function that collects, aggregates, filters and reports monitoring data
collected from the SBP;

• Analyze function that provides the mechanisms that correlate and model com-
plex situations and allow the controller to interpret the environment and the
state of the system according to some elasticity strategies;

• Reconfiguration function that provides the mechanisms that control the execu-
tion of reconfiguration actions (duplication/consolidation) needed to ensure the
SBP elasticity.
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Figure 3.7: An overview of the Control Loop for SBPs elasticity.

Several strategies can be used [54, 21, 55] to manage SBPs elasticity. A strategy
is responsible of making decisions on the execution of elasticity mechanisms i.e.,
deciding when, where and how to use these mechanisms. Generally, these strategies
can be predictive or reactive. Reactive strategies are based on Event-Condition-Action
rules while predictive strategies are based on predictive-performance models and load
forecasts. For example, if the monitoring data is related to a service response time,
we can specify a strategy that raises an alert if the value of the response time is over a
given threshold. Examples of these aspects will be detailed later in the next chapter.

The abundance of possible strategies requires a generic solution which allows the
implementation and execution of different elasticity strategies. For this reason, we
propose a framework, called generic Controller, for SBPs elasticity in which different
elasticity strategies can be implemented. Our generic Controller has the capability to
perform three actions:

• Routing: Is about the way a load of services is routed over the set of their
copies. It determines under which condition we transfer a call. We can think
of routing as a way to define a strategy to control the flow of the load. e.g.,
transfer a call if and only if the resulted marking does not violate the capacity
of the services.

• Duplication: Is about the creation of a new copy of an overloaded service in
order to meet its workload increase. The duplication action can be executed as
many times as necessary to get a sufficient number of service copies in order to
ensure the QoS of the SBP by avoiding resources under-provisioning.

• Consolidation: Is about the deletion of an unnecessary copy of a service in
order to meet its workload decrease. The consolidation action can be executed



70 Formal Model for SBPs Elasticity

as many times as necessary to get the minimal and optimal number of service
copies in order to avoid resources over-provisioning while maintaining the QoS
of the SBP.

If we consider the three actions that can be performed by the elasticity controller,
any combination of conditions associated with a decision of routing, duplication and
consolidation is an elasticity strategy.

In order to manage timed SBPs, we add to the controller a fourth action called
Time elapse. This action is about the time advancement on all tokens (calls) over the
services of the considered SBP. Adding this transition in our generic controller allows
the use of SBP model with or without time constraints (place/transition, colored and
timed Petri net model). Note that this action is used only with Timed SBPs.

3.6.2 Formal Description of the Generic Controller

As pointed out in the previous section our goal here is not to propose an additional
elasticity strategy, but a framework, called generic controller, to implement and ex-
ecute different strategies. We propose to model the controller as a high level Petri
net (HLPN). As classical Petri nets, HLPN is a place-transition bipartite graph. The
places are typed, a type can be any set of values (we denote by type(p) the type of the
place p). An arc connecting a place p and a transition t is labeled by a multiset of ex-
pressions of type type(p). Expression of a type type(p) can be any values of type(p),
a variable or any function with domain type(p). The transitions in HLPN can be
guarded by a condition i.e., expression of boolean type. The variables that appear
in a transition condition and the expressions of its output arcs must be restricted to
the variables that appear in the expressions of the input arcs. A marking of HLPN
is any function that associates to each place p a multiset of type(p). As in classical
Petri nets, a HLPN system is composed of a HLPN and a marking. A transition is
fireable, given a marking, if and only if there is a binding of the variables of its input
arcs that validate the condition. The firing of a transition, given a binding, removes
the instantiated multisets from input places and adds the instantiated multiset to the
output places. Let us mention that the dynamics of an HLPN system can be obtained
by computing the reachability graph exactly as classical Petri nets.

The structure of the controller is shown in Figure 3.8. The controller contains
one place (BP) of type net system. The marking of this place evolves either by
calls transfer (Routing), by the elapse of time (Time elapse), by the duplication of
an overloaded service (Duplication) or by the consolidation of an underused service
(Consolidation). These four transitions (actions) are guarded by conditions that
decide when, where and how to perform these actions:

• Routing: This transition is fireable if we can bind the variable Z to a net system
S = 〈N,M〉 where there exists a transition t fireable in S and the predicate
Ready R(S, t) is satisfied. The firing of the Routing transition adds the net
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Figure 3.8: HLPN model of the generic controller

system S after the firing of t (Next(Z, t) returns the marking after the firing of
t).

• Duplication: This transition is fireable if we can bind the variable Z to a net
system S = 〈N,M〉 where there exists a place s and the predicate ready D(Z, s)
is satisfied. The firing of the Duplication transition adds a new net system
resulted from the duplication of s in S.

• Consolidation: This transition is fireable if we can bind the variable Z to a net
system S = 〈N,M〉 where there exists two copies of the same service, s and s′,
and the predicate ready C(Z, s, s′) is satisfied. The firing of the Consolidation
transition adds a net system resulted from the consolidation of s′ in S.

• Time elapse: This transition is fireable if we can bind the variable Z to a net
system S = 〈N,M〉 where the predicate ready T (Z) is satisfied. The firing of
the Time elapse transition adds a net system resulted from the elapse of a time
unit in S.

The execution of these actions is performed after checking the guards of the exe-
cution of these actions (ready R, ready D, ready C, ready T ). The elasticity condi-
tions that decide when duplicate/consolidate a service are implemented in predicates
ready D (for duplication) and ready C (for consolidation) while the condition that
decides on how the service calls are routed is implemented in the predicate ready R.
The condition that decides how to increment time is implemented in the predicate
ready T . In our controller, the conditions (Ready D, Ready C, Ready R) are generic
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to allow the use of different elasticity strategies while the condition Ready T is imple-
mented to increment time. By instantiating the generic controller, one can implement
and execute different elasticity strategies.

3.6.3 Illustrating Example of SBPs elasticity

In order to illustrate our formal model for SBPs elasticity, we propose hereafter to
discuss an example scenario of the instantiation of our generic controller. To this end,
we propose to instantiate our elasticity controller to manage the elasticity of the SBP
example previously defined (Figure 3.3).

The SBP example is composed by four services (S1, S2, S3 and S4). In our
example, we assume that each service of the SBP is provided by a maximum threshold
capacities (noted Max t) that indicate when a service is over-loaded. Note here that
these thresholds represent the maximum number of calls on each service.

• Max t(s1) = 8. Max t(s2) = 5. Max t(s3) = 10. Max t(s4) = 7.

In order to manage the SBP elasticity, we propose in this example to use an
elasticity strategy that uses the load of services as a scaling indicator to take its
elasticity decisions. To do this, we have to instantiate the three generic predicate
Ready D, Ready C, Ready R:

• Ready D(S, s) : M(s) >Max t(s) ∧ @s′ ∈ [s] : M(s′) < Max t(s′).
It duplicates a copy s of service if all copies of this service have already reached
their maximal threshold.

• Ready C(S, s′, s) : M(s′) = 0 ∧M(s) < Max t(s).
It consolidates a copy s′ of service if this copy does not contain calls and there
is another copy s of the service that has not reached its maximum threshold.

• Ready R(S, t) : ∀s ∈ P : M ′(s) < Max t(s) with M [t〉M ′.
It routes a call if this call transfer does not cause a violation of the maximum
thresholds of services.

When the controller is instantiated (i.e., time t0), the SBP has an empty marking
(M(S1), M(S2), M(S3), M(S4))=(0, 0, 0, 0) which means that there is no invocation
of the SBP (see Figure 3.9). The controller observes the evolution of the SBP marking
and checks whenever an elasticity condition (Ready D or Ready C) is verified in order
to execute an elasticity action (duplication/consolidation).

Assuming that at a certain time t1, the SBP is invoked. The invocation consists in
adding tokens in the place S1 (each token represents a service call). We suppose that
the marking of the SBP evolves and leads to the following marking (M(S1), M(S2),
M(S3), M(S4))=(2, 4, 4, 0) which means that there are calls being proceeded on
some services of the SBP (As shown in Figure 3.10, 2 calls on the service S1 and 4
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Figure 3.9: The initial SBP managed by the elasticity Controller

calls on services S2 and S3). At this time, the controller analyzes this marking in
order to check if there is an elasticity action to perform. Since there is no condition
verified, no elasticity action is performed.

Figure 3.10: The SBP at time t1.

Assuming that at a certain time t2, the marking of the SBP is (M(S1), M(S2),
M(S3), M(S4)) = (2, 5, 5, 2) as shown in Figure 3.11-(a). At this time, the du-
plication condition Ready D is verified (i.e., the load of the service s2 has reached
its maximal threshold). Consequently, the controller performs a duplication action
that adds a new copy of the service S2 (see Figure 3.11-(b)). As we can see, the new
marking of the SBP is (M(S1), M(S2), M(S2′), M(S3), M(S4))=(2, 5, 0, 5, 2).
Note here that the marking of the new copy is empty.

Assuming that at a certain time t3, the marking of the SBP is (M(S1), M(S2),
M(S2′), M(S3), M(S4))=(0, 5, 2, 7, 2) as shown in Figure 3.12. At this time,
the controller analyzes this marking and does not perform an elasticity action (no
condition is verified).

Assuming that at a certain time t4, the marking of the SBP evolves and reaches the
marking (M(S1),M(S2),M(S2′),M(S3),M(S4))=(0, 3, 0, 3, 4) as shown in Figure
3.13-(a). At this time, the consolidation condition ready C is verified (i.e., there is
an empty copy of the service S2 and another copy of this service that has not reached
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Figure 3.11: Duplication of the service S2 at time t2.

Figure 3.12: The SBP at time t3.

its maximal threshold). Consequently, the controller performs a consolidation action
that removes the empty copy of the service S2 (see Figure 3.13-(b)) which produces
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the following marking (M(S1), M(S2), M(S3), M(S4))=(0, 3, 3, 4).

Figure 3.13: Consolidation of the service S2 at time t4.

The execution of the instantiated controller continues, according to the imple-
mented elasticity strategy, until there are no calls to process.

3.7 Conclusion

In this chapter, we proposed a formal model for SBPs elasticity that intertwines du-
plication/consolidation operations with an elasticity controller. We modeled SBPs
using Petri nets and formalized elasticity operations (duplication/consolidation) that
operate at the scope of services. We showed that our formal model ensures the elas-
ticity of stateless, stateful and timed SBPs while preserving the semantics of SBPs.
In addition, we proposed to intertwine our elasticity operations with a generic con-
troller that monitors SBP execution, analyzes monitoring information and executes
elasticity actions (duplication/consolidation) in order to ensure SBPs elasticity.

After facing the challenge of defining a model for ensuring SBPs elasticity at the
scope of services, we were interested in the evaluation of elasticity strategies. Elasticity
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strategies are used to decide on when, where and how to use duplication/consolida-
tion operations. In fact, several strategies can be used to manage SBPs elasticity.
The abundance of possible strategies requires their evaluation and validation. In the
next chapter, we propose to use our generic controller to evaluate elasticity strategies
in order to guarantee their effectiveness before using them in real Cloud environ-
ments. To this end, we will propose two types of evaluations: verification-based and
simulation-based evaluations.
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4.1 Introduction

In the previous chapter, we presented our formal model for ensuring SBPs elasticity.
The proposed model intertwines two elasticity operations (duplication and consoli-
dation) with a generic controller for SBPs elasticity. The generic controller monitors
SBPs execution, analyzes monitoring information and executes elasticity actions (du-
plication/consolidation) according to an elasticity strategy in order to ensure QoS of
SBPs and avoid over-provisioning and under-provisioning of resources.

Elasticity strategies are responsible of making decisions on the execution of elastic-
ity mechanisms i.e., deciding when, where and how to use duplication/consolidation
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operations. These strategies are responsible of guaranteeing provisioning of neces-
sary and sufficient resources that ensure a smooth functioning of the deployed SBP
despite of changes in its solicitations. The abundance of possible strategies requires
their validation and evaluation to guarantee their effectiveness before using them in
real Cloud environments.

In this chapter, we propose to use the previously defined elasticity controller as a
framework for the evaluation of different elasticity strategies. For this sake, we start
by introducing our approach for using the generic controller for the evaluation of
elasticity strategies. Then, we present an approach for validating elasticity strategies
using a verification-based approach. This approach allows formal verification of the
correctness of elasticity strategies (i.e., the ability of a strategy to satisfy some prop-
erties or not). Afterwards, we present an approach for comparing elasticity strategies
using a simulation-based approach. This approach allows comparing between differ-
ent elasticity strategies in terms of performance and reliability in order to choose
the most suitable one. For the Proof of Concept, we detail an example of validation
and comparison of elasticity strategies using the generic controller. To this end, we
present the implementation of the controller with the SNAKES toolkit and we detail
the evaluating scenarios that we used as well as the evaluation results.

4.2 Generic Controller for the Evaluation of Elasticity
Strategies

The generic controller has been designed to be able to manage SBPs elasticity with
different elasticity strategies. In our work, we propose to use the controller as a
framework for the evaluation of elasticity strategies. Using our generic controller, we
can validate and evaluate the effectiveness of these strategies before using them in real
Cloud environments. To do so, we have to instantiate and execute the controller with
the elasticity strategy we want to evaluate. The execution of the controller allows
observing and analyzing the behavior of this strategy.

In order to instantiate the controller, we have to define:

• The SBP to be managed by the controller. A SBP is defined by its structure
(services, calls transfer, etc.) and constraints (thresholds, time constraints,
etc.).

• The calls arrival on the SBP. A calls arrival represents the clients’ invocations of
the SBP. It is possible to define the calls arrival by providing an initial marking
to the SBP net, by adding a new transition in the controller that simulates the
arrival of calls and can change at any time the marking of the net system or by
generating the calls arrival using an arrival law (e.g., random, Poisson process,
etc.).
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Figure 4.1: Generic Controller for the Evaluation of Elasticity Strategies

• The elasticity strategy to evaluate. An elasticity strategy is defined by instanti-
ating the conditions that trigger each controller action i.e., Ready R for routing,
Ready D for duplication and Ready C for consolidation.

Once the controller is instantiated, it will monitor the execution of the SBP and
execute the needed actions (Routing, Duplication or Consolidation) in order to en-
sure the SBP elasticity (see Figure 4.1). At each step of the SBP execution, the
controller stores the needed information for evaluating the used elasticity strategy.
The execution of the instantiated controller allows analyzing the SBP execution with
respect to the implemented strategy, calls arrival and SBP constraints (thresholds,
time constraints, etc.). As we will see, analyzing the SBP execution allows checking
and observing many properties and indicators related to the SBP elasticity.

In our work, we propose a two-level evaluation approach for the evaluation of
elasticity strategies:

• Validating Elasticity Strategies: The first level consists in providing a
verification-based approach that validates the correctness of an elasticity strat-
egy. By correctness we mean the ability of a given elasticity strategy to verify
or not a set of properties (e.g., violation of QoS).

• Comparing Elasticity Strategies: The second level consists in providing
a simulation-based approach for comparing different elasticity strategies. By
comparing strategies we mean the ability to indicate the most efficient strategy
(e.g., in terms of performance).

It is important to note here that the evaluation results are related to the SBP
used in the evaluation process while considering the SBP characteristics and the calls
arrival scenario. Changing one of these parameters can produce different evaluation
results.

Considering this, our approach allows a SBP owner to evaluate different elasticity
strategies in order to choose the most adequate one according to its SBP. On one hand,
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the verification-based approach allows performing a qualitative evaluation of elasticity
strategies by using formal methods to verify if these strategies ensure some properties
or not (i.e., validation). On the other hand, the simulation-based approach allows
performing a quantitative evaluation of elasticity strategies by calculating indicators
related to SBPs elasticity (e.g., performance indicators). Coupling verification and
simulation allows having a global view about strategies effectiveness in ensuring SBPs
elasticity.

4.3 Validating Elasticity Strategies

In this section we aim at validating elasticity strategies. Validating a strategy consists
in formally verifying if this strategy satisfies some properties or not. To do this, we
propose a verification-based approach to validate elasticity strategies. In addition, we
present a proof of concept of the validation of elasticity strategies.

4.3.1 Verification-based Evaluation

In order to validate elasticity strategies, a verification-based approach can be used
to perform qualitative evaluations of elasticity strategies. In this approach, we can
generate using a HLPN tool the reachability graph of the elasticity controller in order
to analyze it with a model-checker and verify certain properties. The only restriction is
to limit the number of calls during the analysis phase. Otherwise this would generate
an infinite reachability graph. Note that there are tools to analyze unbounded CPN
nets but do not support any property [56].

The reachability graph [57] is the set of all system states reachable from the initial
state of a given Petri net. It can be represented as a directed graph that represents all
reachable states and state changes of the system. The reachability graph can be used
to answer a large set of analysis and verification questions concerning the behavior
of the system such as absence of deadlocks, the possibility of always being able to
reach a given state, and the guaranteed delivery of a given service. One of the most
popular analysis approaches is to specify and check requirements by inspecting the
reachability graph, e.g., model checking approaches [58].

Model checking [59] is an automated technique for the verification of systems
that are modeled as finite state models. It examines all possible system scenarios
in a systematic manner in order to verify that a given system model satisfies a cer-
tain property or not. Model checking is used to examine all system states to check
whether these states satisfy a given property. If a state is encountered that violates
the considered property, the model checker provides a counterexample that indicates
how the model could reach the undesired state. The counterexample describes an
execution path that leads from the initial system state to a state that violates the
property being verified.
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In our work, the controller reachability graph contains all the possible evolutions
of the SBP with respect to SBP constraints, calls arrival and the implemented elas-
ticity strategy. The resulted graph can be analyzed using a model-checking approach
to perform verification-based evaluations of elasticity strategies. A simplified exam-
ple of the reachability graph that can be generated for a given elasticity strategy is
shown in Figure 4.2. Several properties can be verified using model checking, these
properties can be generic properties (e.g., deadlock) or properties related to elasticity
(e.g., elasticity loop). In our work, we propose to verify some significant examples of
properties that are related to SBPs elasticity. These properties are given below:

• QoS violation: Let us assume that we associate for each service a maximal
threshold over which its QoS will decrease drastically. Using temporal logic,
one can check whether it is possible to reach a situation where one or some
services have exceeded their thresholds i.e., transfer a call to a copy of service
that has already reached its maximal capacity.

• Blocked services: Let us suppose a routing strategy that allows only transition
firing iff the next marking does not exceed the thresholds of some services. This
strategy modifies the semantics of SBPs (i.e., transition firing), it would be
interesting to check if this strategy, coupled with a duplication strategy, would
not cause a deadlock in the call transfer i.e., there are fireable transitions in the
SBP net system whereas the routing condition is no longer satisfied.

• Elasticity loop: Duplication and consolidation are costly activities. Given an
elasticity strategy, one can check if this strategy can provoke a loop of elasticity
i.e., a duplication followed by consolidation of the same service while there
is no (or few) calls arrival which means that the strategy causes unnecessary
duplication of services.

We point out that other properties (generic or related to elasticity) can be studied
and verified in the verification-based approach. In our work we aim at providing a
model that generates the reachability graph of the controller according to an elasticity
strategy. This model can then be used by existing verification tools in order to perform
verify other properties.

The verification-based approach allows performing qualitative evaluations of elas-
ticity strategies using model-checking techniques. This evaluation approach allows
verifying properties related to SBPs execution and/or elasticity.

4.3.2 Proof of Concept: Validating Elasticity Strategies

We present hereafter an example, for the proof of concept, of elasticity strategies val-
idation with the controller. To this end, we start by introducing the implementation
of the generic controller with the SNAKES toolkit. Then, we present the use case
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Figure 4.2: An example of the SNAKES reachability graph of an elasticity strategy

that we used for our evaluations. Afterwards, we detail and analyze the evaluation
results of these strategies using the verification-based approach.

4.3.2.1 Implementation of the generic Controller

In order to implement the controller, we propose to use the SNAKES toolkit [60].
The SNAKES toolkit is a general Petri net library designed with quick prototyping
in mind. To do this, SNAKES offers a flexible architecture based on a core library,
that defines a basic Petri net structure, complemented with a variety of extension
modules (i.e., plugins), that introduce additional features. The core library provides
a general model of Python-colored Petri nets: tokens are Python objects, transitions
guards are Python expressions and arcs can carry Python expressions.

The SNAKES toolkit allows defining a Petri net whose tokens are Petri nets (nets
in nets). We propose to implement our elasticity controller as a Petri net that will
have the SBP net as token. The transition of the controller (Routing, Duplication
and Consolidation) can synchronize the SBP transition firing (Routing) and modify
the structure of the SBP net (place duplication/consolidation).

Hereafter we present how we can implement the elasticity controller using SNAKES.
The first step consists in defining the SBP net to control. For this, we have to define
the SBP net places, transitions and arcs.
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de f token net (name) :

# SBP p l a c e s
net . add place ( Place (” s1 1 ” , [ ] ) )
net . add place ( Place (” s2 1 ” , [ ] ) )
. . .

# SBP t r a n s i t i o n s
net . a d d t r a n s i t i o n ( Trans i t i on (” t1 1 ”) )
net . a d d t r a n s i t i o n ( Trans i t i on (” t2 1 ”) )
. . .

# SBP arc s
net . add input (” s1 1 ” , ” t1 1 ” , Value ( dot ) )
net . add output (” s2 1 ” , ” t1 1 ” , Value ( dot ) )
. . .

r e turn net

After defining the SBP net, we define the controller net that will manage the
SBP net. The controller net is composed by a single place (BP) that will contain a
token that represents the SBP net. The controller net transitions represent the three
controller actions (routing, duplication and consolidation).

n = Petr iNet (” c o n t r o l e u r ”)

# The SBP
n . add place ( Place (”BP” , [ token net (”SBP ” ) ] ) )

# Routing
n . a d d t r a n s i t i o n ( Trans i t i on (” rout ing ” ,

Express ion (” ready R (S , t ) ” ) ) )
n . add input (”BP” , ” rout ing ” , Var iab le (”S ”) )
n . add output (”BP” , ” rout ing ” , Express ion (”R(S , t ) ” ) )

# Dupl i cat ion
n . a d d t r a n s i t i o n ( Trans i t i on (” d u p l i c a t i o n ” ,

Express ion (” ready D (S , s ) ” ) ) )
n . add input (”BP” , ” d u p l i c a t i o n ” , Var iab le (”S ”) )
n . add output (”BP” , ” d u p l i c a t i o n ” ,

Express ion (”D(S , s , new copy (S , s ) ) ” ) )
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Figure 4.3: Petri net of the SBP of the online computer shopping service.

# Conso l idat ion
n . a d d t r a n s i t i o n ( Trans i t i on (” c o n s o l i d a t i o n ” ,

Express ion (” ready C (S , s , sc ) ” ) ) )
n . add input (”BP” , ” c o n s o l i d a t i o n ” , Var iab le (”S ”) )
n . add output (”BP” , ” c o n s o l i d a t i o n ” , Express ion (”C(S , s , sc ) ” ) )

As we can see, each transition is guarded by a firing condition that represents
the condition of executing this action (ready R for the routing strategy, ready D for
the duplication strategy and ready C for the consolidation strategy). If one of these
conditions is verified, the transition is fired and the SBP net will be modified. For
example, in the case of duplication, if the duplication strategy (ready D) is verified
(ready D(S, s) return true), the duplication transition will consume the SBP net and
generate a new SBP net which is the resulted net after the duplication of the service
s (D(S, s, new copy(S, s))).

4.3.2.2 Use case

To instantiate the generic controller, we have to define the SBP to be controlled
along with the elasticity strategy and the calls arrival scenario that specifies the way
in which calls arrive to the SPB. Then, we have to implement the elasticity strategies
to evaluate.

We propose in this experiment to apply our elasticity approach on the SBP exam-
ple of the online computer shopping service (Figure 4.3) presented in chapter 3. This
SBP example is composed by 4 services (s1, s2, s3 and s4) with M0 = (0, 0, 0, 0) as its
initial marking. We assume in this example that each service of the SBP is provided
by a maximum and minimum threshold capacities (Max t and Min t). Above the
maximum threshold the QoS would no longer be guaranteed and under the minimum
threshold we have an over allocation of resources. Note here that these thresholds
represent the maximum number of running instances (calls) on each service. For this
experiment, we used the following thresholds:

• Max t(s1) = 5. Max t(s2) = 3. Max t(s3) = 5. Max t(s4) = 5.

• Min t(s1) = 1. Min t(s2) = 1. Min t(s3) = 1. Min t(s4) = 1.
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An invocation (a call) of the SBP is represented by adding a token to a copy of
the place s1, the invocation takes end by removing a token from a copy of the place
s4. As explained previously, the calls arrival can be defined by providing an initial
marking to the SBP net, by adding a new transition in the controller that simulates
the arrival of calls or by generating the calls arrival using an arrival law. In this use
case, we define the calls arrival on the SBP using a Poisson process with mean 2.

To decide if an elasticity action is needed or not, an elasticity strategy needs to
base its decision on some metrics (scaling indicators). In this example, we propose to
use load of services as metric (scaling indicator) to base our elasticity strategies. The
load of a service is represented by the number of tokens (marking) of its corresponding
place in the SBP net. Note here that it is also possible to use the response time as a
scaling indicator. To do this, we have to define a function that estimate the service
response time according to its load (the marking of the considered service).

In this use case, we propose to evaluate two strategies (Strategy 1 and Strategy
2) inspired from the literature [61, 62]. In addition, we propose to evaluate a third
strategy (Strategy 3) which is defined by us in order to illustrate the interest of our
evaluation approaches. The definition of a strategy consists in instantiating the three
generic predicates ready R, ready D and ready C (the predicate ready T is already
instantiated to increment the age of SBP tokens in the case of timed SBPs). Hereafter
the definition of the three strategies:

Strategy 1

In [61] an algorithm is proposed to scale up or down an application instance by
replication in response to a change in the workload.

• Ready D(S, s) : M(s) > Max t(s) ∧ @s′ ∈ [s] : M(s′) < Max t(s′) ∧ ∃t ∈• [s] :
M [t〉.
It duplicates a service s if all copies of this service have already reached their
maximal threshold. In addition, there is a call waiting to be transferred to this
service s.

• Ready C(S, s′, s) : M(s′) = 0 ∧M(s) 6Min t(s) ∧ @t ∈• [s] : M [t〉.
It consolidates a copy s′ of service if this copy does not contain calls (empty
copy) and there is another copy s of the service that has not reached its minimum
threshold. In addition, there is no call waiting to be transferred to this copy s.

• Ready R(S, t) : ∀s ∈ P : M ′(s) < Max t(s) with M [t〉M ′.
It routes a call if this call transfer does not cause a violation of the maximum
thresholds of services.
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Strategy 2

In [62] a scaling algorithm is proposed to scale up or down the number of instances
according to a threshold in each instance.

• Ready D(S, s) : M(s) >Max t(s) ∧ @s′ ∈ [s] : M(s′) < Max t(s′).
It duplicates a copy s of service if all copies of this service have already reached
their maximal threshold.

• Ready C(S, s′, s) : M(s′) = 0 ∧M(s) 6Min t(s).
It consolidates a copy s′ of service if this copy does not contain calls and there
is another copy s of the service that has not reached its minimum threshold.

• Ready R(S, t) : ∀s ∈ P : M ′(s) < Max t(s) with M [t〉M ′.
It uses the same routing strategy than strategy 1.

Strategy 3

We define a third strategy that implements only a routing strategy.

• Ready D(S, s) : false.
No duplication.

• Ready C(S, s′, s) : false.
No consolidation.

• Ready R(S, t) : ∀s ∈ P : M ′(s) < Max t(s) with M [t〉M ′.
It uses the same routing strategy than strategies 1 and 2.

4.3.2.3 Evaluation of Strategies

Now that we have defined the use case, we will use our generic controller to validate
the defined elasticity strategies. To do this, we will evaluate these strategies using a
verification-based approach that consists in generating the reachability graph of the
instantiated controller and analyzing this graph using model-checking techniques.

Once the controller is instantiated, we generate the reachability graph that con-
tains all the possible evolutions of the SBP with respect to SBP constraints, calls
arrival and used strategy. The analysis of this reachability graph generated allows
deducing some behavioral properties of the execution of the SBP controlled. These
properties are summarized in the Table 4.1.

The analysis of this table allows us to deduce some properties:

• All three strategies avoid QoS violations thanks to the routing strategy used by
the three strategies.
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Strategy 1 Strategy 2 Strategy 3

Qos
violation No No No

Blocked
services No No Yes

Elasticity
loop No Yes -

.

Table 4.1: Verification-based evaluation of elasticity strategies.

• Unlike strategy 3 that does not implement elasticity mechanisms, strategies 1
and 2 avoid blocking states by duplicating overloaded services.

• We notice also a difference between the strategies 1 and 2 in the presence of a
loop of elasticity. This difference is explained by the conditions of duplication
used by these strategies. Indeed, the conditions of duplication used in strategy
1 are more difficult to verify than the conditions of the strategy 2. So, the
controller using the strategy 2 will react faster to load increases. This fast
reaction in some cases can cause unnecessary elasticity loops.

As we can see in this use case, the verification-based approach allows the validation
of the strategy 1 according to the three properties that we have defined (QoS violation,
Blocked services and Elasticity loop).

4.4 Comparing Elasticity Strategies

Once the elasticity strategies are formally validated in terms of correctness, it is
interesting to be able to compare between these strategies to choose the most suitable
one considering the SBP to manage. In our work, we propose an approach to compare
elasticity strategies in terms of performance (resource consumption/response time)
and reliability (loss of calls/response time). To this end, we propose a simulation-
based approach for quantitative evaluations of elasticity strategies.

Simulation is a technique for analyzing dynamic systems. It allows understand-
ing the dynamic behavior of the simulated system, comparing scenarios, evaluating
different control strategies and optimizing performance. We propose in our work to
use simulation to study and compare the behavior of different elasticity strategies.
For this, we will simulate the SBP execution according to some elasticity strategies
in order to evaluate them.

The simulation-based approach allows evaluating elasticity strategies by defining
a set of indicators to analyze strategies’ behavior. For example an indicator that
computes the number of copies of each service, etc. The value of these indicators
will be calculated according to the evolution of the controller. The analysis of these
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indicators allows evaluating strategies’ behavior. Many parameters can be observed
and evaluated, we propose in our work two kind of evaluation based on simulation:
performance-based and reliability-based evaluations.

4.4.1 Performance-based Evaluation

The first kind of simulation-based evaluation that we propose consists in a performance-
based evaluation. In this kind of evaluation, we study the SBP performance with
different elasticity strategies. To perform this evaluation, we focus on two parameters
in order to answer two questions:

• How does the strategy influence the average response time of the SBP according
to the solicitations?

• How efficient is the resources allocation by the strategy to face the variation of
the SBP solicitations?

The average response time of the SBP can be calculated using the average work-
loads of its basic services. To do so, we implemented an indicator which stores, at
each step of the SBP evolution, the average of the number of running instances on
each of its basic services which can be obtained by dividing the number of tokens in
the SBP net by the number of places. Concerning resources we consider the number
of deployed services copies. We define two indicators. In the first indicator we store,
at each step of the SBP evolution, the minimum number of each service copies needed
to handle the current number of instances. Note that each copy of services can handle
its maximum threshold instances. The second indicator will store the real number of
the SBP services produced by a strategy.

4.4.2 Reliability-based Evaluation

The second kind of simulation-based evaluation consists in a reliability-based evalua-
tion. In this kind of evaluation, we study the influence of elasticity strategies on the
reliability of SBPs in terms of the ability of the strategy in treating SBP calls with a
minimal loss of calls. To perform this evaluation, we define two indicators:

• Call processing time: The time required for processing the received SBP calls.
We calculate the time required for the processing of each received call. This in-
dicator provides information about the time necessary for SBP calls processing.
Using this indicator we can observe the influence of the implemented strategy
on the SBP processing time according to the evolution of calls arrival.

• Loss of calls: The loss of calls is due to the outdated calls that can be caused
by the temporal constraints on the SBP during its execution (expired calls that
will never be treated). We calculate for each execution, the number of lost
calls according to calls arrival. This indicator provides information about the
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proportion of lost calls. Using this indicator we can observe the influence of the
implemented strategy on the proportion of lost calls according to the evolution
of calls arrival.

The simulation-based approach allows performing quantitative evaluations of elas-
ticity strategies by calculating performance indicators (resource consumption, process-
ing time, etc.) related to SBPs execution/elasticity.

4.4.3 Proof of Concept: Comparing Elasticity Strategies

Hereafter we propose to compare elasticity strategies using simulation. To this end, we
evaluated these strategies using two approaches: performance-based and reliability-
based evaluations.

In this proof of concept, we use the implementation of the generic controller with
the SNAKES toolkit described in Section 4.3.2.

4.4.3.1 Performance-based Evaluation

In this experiment, we used the SBP system of Figure 4.3 with M0 = (0, 0, 0, 0) as its
initial marking. The calls arrival on the SBP is defined using a Poisson process with
mean 2. This scenario was applied on the strategies 1 and 2 defined in Section 4.3.2.
For this evaluation we used the following thresholds:

• Max t(s1) = 5. Max t(s2) = 3. Max t(s3) = 5. Max t(s4) = 5.

• Min t(s1) = 1. Min t(s2) = 1. Min t(s3) = 1. Min t(s4) = 1.

Once the controller is instantiated and the performance indicators are defined,
the values of these indicators will be calculated according to the evolution of the con-
troller. In the performance-based approach, these indicators represent the resource
consumption and the average response time according SBP constraints, calls arrival
and used strategy (strategy 1 or strategy 2). The analysis of these performance indica-
tors allows the evaluation of strategies’ performance in terms of resource consumption
and average response time.

The average evolution of resources consumption with strategies 1 and 2 on all pos-
sible executions of the SBP (about 6000 possible executions) is shown in Figures 4.4
and 4.5. The analysis of this figure shows that both strategies provide the elasticity
of SBP by adapting its resources consumption according to the variation of resource
demands which avoids resources oversizing. Also, the resources demand never ex-
ceeds the resources consumption (i.e., the condition of routing). This guarantees the
availability of resources to provide required QoS and avoid resources over-utilization.

Figure 4.6 represents the evolution of average response time on one possible exe-
cution of the controller. We notice a difference between the strategies in the average
response time. We can see that strategy 2 ensures a better average response time than
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Figure 4.4: The average evolution of resources consumption with strategy 1

Figure 4.5: The average evolution of resources consumption with strategy 2

the strategy 1. In fact, The strategy 2 is more reactive than the strategy 1 which
causes more duplication/consolidation than strategy 1. The reactivity of the strategy
2 ensures a better average response time compared to strategy 1. The evolution of
resources consumption on one possible execution of the controller is shown in Figure
4.7. We can see that both strategies adapt the resources consumption according to
the resources demand. Using both strategies allows a better efficiency in resources
consumption, but there is an under-utilization of resources in some periods.

The analysis of these Figures shows a difference between the two strategies. The
strategy 2 ensures a better average response time but consume more resources than
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Figure 4.6: The evolution of average response time according to the average of de-
mands

Figure 4.7: The evolution of resources consumption according to the demand of re-
sources

strategy 1. This difference is explained by the conditions of elasticity used in these
strategies. Indeed, the conditions of strategy 1 are more difficult to verify than the
conditions of strategy 2 (i.e., the condition on the existence of service call waiting to
be transferred). So, the controller using strategy 2 reacts faster. Note here that the
reactivity of strategy 2 does not always mean better efficiency. In fact, this reactivity
can cause unnecessary duplication of services.
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4.4.3.2 Reliability-based Evaluation

In this experiment, we used the SBP system with time constraints shown in Figure 4.8
and we vary the initial marking of the SBP in order to simulate the calls arrival on
the SBP. This scenario was applied on elasticity strategies in order to observe the
evolution of the processing time and the proportion of lost calls during the SBP
execution. In this evaluation we used the following thresholds:

• Max t(s1) = 20. Max t(s2) = 3. Max t(s3) = 15. Max t(s4) = 15.

• Min t(s1) = 1. Min t(s2) = 1. Min t(s3) = 1. Min t(s4) = 1.

Figure 4.8: Petri net of the Timed SBP of the online computer shopping service.

Duplication/consolidation can be time-consuming operations. Therefore, it is nec-
essary to consider the cost of these operations in the evaluation results. We point
out that defining the cost of duplication and consolidation operations needs a sep-
arated treatment. In this example, we assume that the duplication has a temporal
cost defined as T dup = 1 (time required to create a new copy of a service). On the
other hand, we assume that the consolidation is not a consuming time operation (no
consumption of time for the removal of an empty copy of a service), consequently we
set the temporal cost for the consolidation as T con = 0.

In order to illustrate the reliability-based evaluation approach, we define a fourth
strategy that implements an algorithm which takes its elasticity decision depending
on the load of services and the way the load can be transferred between services.

Strategy 4

• Ready D(S, s) : ∃s′ ∈• (•s) : M([s′]) > Max t([s])−M([s]).
It duplicates a copy s of service if there is a service s′ ∈• (•s) where the load of
all copies of this service can overload the copies of service s when this load will
be transferred to these copies.

• Ready C(S, s′, s) : M(s′) = 0 ∧M(s) 6 Min t(s) ∧ @s′′ ∈• (•s′) : M([s′′]) >
Max t([s])−M([s]).
It consolidates a copy s′ of service if this copy does not contain calls and there
is another copy s that has not reached its minimum threshold. In addition, we
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Figure 4.9: the evolution of the minimal calls processing time according to load
variation

check that there is not a service s′′ ∈• (•s) where the load of all its copies can
overload the copies of the service s when this load will be transferred to these
copies.

• Ready R(S, t) : ∀s ∈ P : M ′(s) < Max t(s) with M [t〉M ′.
It uses the same routing strategy than all other strategies. It routes a call if this
call transfer does not cause a violation of the maximum thresholds of services.

Our goal in this evaluation is to calculate the reliability indicators according to
SBP constraints, calls arrival and used strategy (strategies 1, 2, 3 and 4). The analysis
of these indicators allows the evaluation of strategies’ reliability in terms of processing
time and proportion of lost calls. The evolution of the minimal calls processing time
according to load variations is shown in Figure 4.9. The Figure 4.10 represents the
evolution of the average calls processing time according to load variations. Figure 4.11
represents the evolution of the proportion of lost calls according to load variations.
From these Figures we can differentiate two phases:

• We observe at the beginning of the execution (load: 0-3 calls) that the number
of calls does not create an overload on services. In this case, we can see that
the SBP reacts the same way with the four strategies (in terms of processing
time and proportion of lost calls). This is explained by the fact that no dupli-
cation/consolidation is needed to handle the calls arrival. The four strategies
are going to use only their routing strategy.

• We observe that from a load value greater than 3 calls (load: 4-15 calls) the
number of calls creates an overload on the service s2 1 (max t(s2) = 3). In
this case, we can see that the process reacts in a different way according to the
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Figure 4.10: the evolution of the average calls processing time according to load
variation

Figure 4.11: the evolution of the proportion of lost calls according to load variation

implemented strategy. In fact, the strategy 3 does not allow duplication of the
overloaded service causing an important loss of calls. Strategies 1 and 2 react
only when the service s2 1 becomes overloaded by duplicating it. We can see
that these strategies are not suitable for ensuring the elasticity of SBPs with
temporal constraints because of their late reactions. This delay in the reaction
can cause a loss of calls. Strategy 4 prevents the overload of the service s2 1 by
duplicating it when the load of the service s1 1 (the service that will transfer its
calls to the service s2 1) may cause the overload of service s2 1 when its load
will be transferred to service s2 1. We can see that this strategy is more suitable
for ensuring the elasticity of the considered SBPs than the other strategies.
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We can observe that the SBP processing time with the strategy 3 is constant
from a load greater than 3. We explain this by the fact that the strategy will only
treat the first calls and will lose all other calls (which explains the high proportion
of loss). We can also observe that the processing time with the strategy 4 is higher
than the other strategies (especially with highest loads). We explain this by the fact
that this strategy is the most reliable, which means that it successfully treats more
calls compared to other strategies thereby increasing the overall processing time.

Hereafter, we give some possible executions of the SBP with the four strategies.
These executions result from an initial marking M0 = 4′(s1 1, 0)

We define the following notations to represent the four types of actions that can
be performed during the execution of the SBP model:

• T (x): action for the elapse of x unit of time.

• x′R(t): action that fires x time the transition t .

• D(s): action that duplicates the service s.

• C(s, s′): action that consolidates the service s′ in its copy s.

Strategy 3

This strategy does not implement duplication/consolidation mechanisms. So, when
the service s2 1 reached its maximum load threshold (max t(s2) = 3) we cannot
transfer a call to this service. It is necessary in this case to wait until the service is
done with one of its current calls in order to receive a new one. Nevertheless, in the
considered SBP if we wait until the service s2 1 finishes processing one of its calls and
transfer it to another service (s3 1), the call waiting to be transferred to the service
s2 1 will be expired (outdated call). Hereafter we give a possible execution of the
SBP with strategy 3:

• 4′(s1 1, 0)
T (2)−−−→ 4′(s1 1, 2)

• 4′(s1 1, 2)
3′R(t1 1)−−−−−→ 3′(s2 1, 0), 3′(s3 1, 0), (s1 1, 2)

• 3′(s2 1, 0), 3′(s3 1, 0), (s1 1, 2)
T (2)−−−→3′(s2 1, 2), 3′(s3 1, 2), (s1 1,4)

• 3′(s2 1, 2), 3′(s3 1, 2)
3′R(t2 1)−−−−−→ 3′(s3 1, 0)

• 3′(s3 1, 0)
T (3)−−−→ 3′(s3 1, 3)

• 3′(s3 1, 3)
3′R(t3 1)−−−−−→ ()

We can see in this execution that we lost a call which represents 25% of lost calls.
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Strategies 1 and 2

Both strategies use duplication/consolidation mechanisms that react when a service is
overloaded. In the considered SBP, when the service s2 1 reached its maximum load
threshold (max t(s2) = 3) both strategies duplicate it. The duplication of service
s2 1 can generate two types of execution (favorable or unfavorable execution). The
favorable execution solves the problem of overloaded service s2 1 while ensuring the
treatment of all calls, when the unfavorable execution results in the loss of calls despite
of the duplication of the overloaded service. Hereafter we give two possible executions
(a favorable and an unfavorable one) of the SBP with the strategies 1 and 2. The
favorable possible execution:

• 4′(s1 1, 0)
T (2)−−−→ 4′(s1 1, 2)

• 4′(s1 1, 2)
3′R(t11)−−−−−→ 3′(s2 1, 0), 3′(s3 1, 0), (s1 1, 2)

• 3′(s2 1, 0), 3′(s3 1, 0), (s1 1, 2)
D(s2 1)−−−−−→ 3′(s2 1, 1), 3′(s3 1, 1), (s1 1, 3)

• 3′(s2 1, 1), 3′(s3 1, 1), (s1 1, 3)
1′R(t1 1)−−−−−→ 3′(s2 1, 1), (s3 1, 1), (s2 2, 0), (s3 1, 0)

• 3′(s2 1, 1), 3′(s3 1, 1), (s2 2, 0), (s3 1, 0)
T (1)−−−→ 3′(s2 1, 2), 3′(s3 1, 2), (s2 2, 1), (s3 1, 1)

• 3′(s2 1, 2), 3′(s3 1, 2), (s2 2, 1), (s3 1, 1)
3′R(t2 1)−−−−−→ 3′(s3 1, 0), (s2 2, 1), (s3 1, 1)

• 3′(s3 1, 0), (s2 2, 1), (s3 1, 1)
T (1)−−−→ 3′(s3 1, 1), (s2 2, 2), (s3 1, 2)

• 3′(s3 1, 1), (s2 2, 2), (s3 1, 2)
1′R(t2 1)−−−−−→ 3′(s3 1, 1), (s3 1, 0)

• 3′(s3 1, 1), (s3 1, 0)
C(s2 2,s2 1)−−−−−−−→ 3′(s3 1, 1), (s3 1, 0)

• 3′(s3 1, 1), (s3 1, 0)
T (2)−−−→ 3′(s3 1, 3), (s3 1, 2)

• 3′(s3 1, 3), (s3 1, 2)
3′R(t3 1)−−−−−→ (s3 1, 2)

• (s3 1, 2)
T (1)−−−→ (s3 1, 3)

• (s3 1, 3)
1′R(t3 1)−−−−−→ ()

The unfavorable possible execution:

• 4′(s1 1, 0)
T (3)−−−→ 4′(s1 1, 3)

• 4′(s1 1, 3)
3′R(t1 1)−−−−−→ 3′(s2 1, 0), 3′(s3 1, 0), (s1 1, 3)
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• 3′(s2 1, 0), 3′(s3 1, 0), (s1 1, 3)
D(s2 1)−−−−−→ 3′(s2 1, 1), 3′(s3 1, 1), (s1 1,4)

• 3′(s2 1, 1), 3′(s3 1, 1)
T (1)−−−→ 3′(s2 1, 2), 3′(s3 1, 2)

• 3′(s2 1, 2), 3′(s3 1, 2)
3′R(t2 1)−−−−−→ 3′(s3 1, 0)

• 3′(s3 1, 0)
C(s2 2,s2 1)−−−−−−−→ 3′(s3 1, 0)

• 3′(s3 1, 0)
T (3)−−−→ 3′(s3 1, 3)

• 3′(s3 1, 3)
3′R(t3 1)−−−−−→ ()

We notice that in the favorable execution we handle all SBP calls without any loss
while in the unfavorable execution we lose a call (25% of loss). We observe that we
have an average of 16, 82% loss with strategy 1 and 17, 15% loss with strategy 2.

Strategy 4

The strategy uses duplication/consolidation mechanisms that react when there is a
possibility in the future, that a transfer of calls from a service to an another one creates
an overload on the second service. In the considered SBP, before transferring calls to
the service s2 1 the strategy duplicates the service s2 1 in order to have as copy as
necessary of the service according to the load that it may receive from another service
(s1 1). This strategy allows adaptation of the SBP in advance according to load that
each service may receive in the future. Hereafter we give a possible execution with
the strategy 4:

• 4′(s1 1, 0)
D(s2 1)−−−−−→ 4′(s1 1, 1)

• 4′(s1 1, 1)
T (2)−−−→ 4′(s1 1, 3)

• 4′(s1 1, 3)
3′R(t1 1)−−−−−→ 3′(s2 1, 0), 3′(s3 1, 0), (s1 1, 3)

• 3′(s2 1, 0), 3′(s3 1, 0), (s1 1, 3)
1′R(t1 2)−−−−−→ 3′(s2 1, 0), (s2 2, 0), 4′(s3 1, 0)

• 3′(s2 1, 0), (s2 2, 0), 4′(s3 1, 0)
T (3)−−−→ 3′(s2 1, 3), (s2 2, 3), 4′(s3 1, 3)

• 3′(s2 1, 3), (s2 2, 3), 4′(s3 1, 3)
3′R(t2 1)−−−−−→ (s2 2, 3), (s3 1, 3), 3′(s3 1, 0)

• (s2 2, 3), (s3 1, 3), 3′(s3 1, 0)
1′R(t2 2)−−−−−→ 4′(s3 1, 0)

• 4′(s3 1, 0)
C(s2 2,s2 1)−−−−−−−→ 4′(s3 1, 0)
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• 4′((s3 1, 0)
T (3)−−−→ 4′(s3 1, 3)

• 4′(s3 1, 3)
4′R(t3 1)−−−−−→ ()

4.5 Conclusion

Ensuring the effectiveness of elasticity requires using reliable strategies which are re-
sponsible on managing the execution of elasticity actions (duplication/consolidation).
Since that many strategies can be used to ensure SBPs elasticity, it is necessary to
evaluate and validate these strategies in order to ensure their effectiveness in provid-
ing SBPs elasticity before implementing them in real Cloud environments. In this
chapter, we proposed to use the previously defined elasticity controller as a frame-
work for the validation and evaluation of different elasticity strategies. Our evaluation
approach intertwines two techniques: verification and simulation. On one hand, the
verification allows formal verification of the correctness of elasticity strategies. On the
other hand, the simulation allows comparing between different elasticity strategies in
order to choose the most suitable one. For the Proof of Concept, we provided an
example of the usage of the generic controller for strategies evaluation.
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5.1 Introduction

Our work aim at proposing a novel approach for ensuring elasticity of SBPs in Cloud
environments. We have proposed in chapter 3 a formal model for SBPs elasticity that
features two elasticity operations (duplication/consolidation) and an elasticity con-
troller that allows using different elasticity strategies. In chapter 4, we have proposed
to use our elasticity controller as a framework for the evaluation of different elasticity
strategies before implementing them in real Cloud environments.
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In this chapter, we propose to go further by proposing an approach for the pro-
visioning of our elasticity mechanisms in the Cloud. Our goal is to show how we
can use the previously defined elasticity mechanisms to ensure SBPs elasticity in real
Cloud environments without changing the nature of the SBPs or existing Cloud en-
vironments. Provisioning of elastic SBPs in Cloud environments can be done in two
different contexts: Infrastructure (IaaS) context and platform (PaaS) context. In
our work, we propose two approaches for the provisioning of SBPs elasticity while
considering these two contexts.

We dedicate the first section of this chapter to describe the provisioning require-
ments for our elasticity approach. Afterwards, we present our approaches for the
provisioning of elastic SBPs on Cloud infrastructures (section 5.3) and Cloud plat-
forms (section 5.4).

5.2 Provisioning Requirements

In order to provision SBPs elasticity in the Cloud according to our elasticity approach
(see Figure 5.1), we have to provide Cloud environments with mechanisms to meet
the provisioning requirements. As showed previously, in our elasticity approach we
need to:

• Operate at the scope of services that compose the SBP (i.e., duplicate/consoli-
date only the bottleneck services).

• Monitor these services to provide the elasticity controller with information about
the SBP execution.

• Manage the duplication and consolidation of services (i.e., adding/removing
copies, routing/balancing service calls).

Our goal here is to provision elastic SBPs in Cloud environments. This can be
done in two different contexts (IaaS and PaaS):

• Provisioning of Elastic SBPs in IaaS context: In this context, only infras-
tructure resources are provided (e.g., VMs). In order to provision our elasticity
approach for SBPs, we need to use service containers and/or process engines
that allow operating at the scope of services. One solution consists in modify-
ing existing containers and/or engines (e.g., apache ODE) to allow operating
at the scope of services. Another solution consists in using the micro-container
approach proposed in [63] [64] which is based on a simple idea that consists
in dedicating a micro-container to each deployed service. Each micro-container
can host and run its service and can be seen as a specialized container. This ap-
proach fits perfectly with an elasticity granularity that we consider to SBPs i.e.
the scope of services. In addition, a monitoring extension for micro-containers
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Figure 5.1: Elasticity approach for SBPs elasticity.

has been proposed in [65]. This extension provides mechanisms to collect, aggre-
gate, and report monitoring data on each deployed micro-container. However,
we still need to extend the micro-containers approach with mechanisms for en-
forcing SBPs elasticity (i.e., mechanisms of duplication/consolidation and an
elasticity controller) on Cloud infrastructures.

• Provisioning of Elastic SBPs in PaaS context: In this context, we can
take advantage of existing PaaS tools and mechanisms in order to provision
elasticity mechanisms for SBPs. In fact, almost Cloud platforms provide tools
and mechanisms for hosting and monitoring services as well as adding/removing
services instances. However, we still need to set up an elasticity controller that
monitors SBPs execution, analyzes monitoring data (using elasticity strategies)
and executes elasticity actions (duplication/consolidation).

In the following, we propose two approaches for the provisioning of elastic SBPs
in Cloud environments. The first approach packages non-elastic SBPs in micro-
containers, extended with our elasticity mechanisms, before deploying them in Cloud
infrastructures (IaaS). The second approach specializes an autonomic infrastructure
for Cloud resources in order to dynamically add elasticity facilities to SBPs on Cloud
platforms (PaaS).
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5.3 Provisioning of Elastic SBPs on Cloud infrastruc-
tures

In this section, we present our approach for the provisioning of elastic SBPs on Cloud
infrastructures. Provisioning of our elasticity mechanisms requires operating at the
scope of services. As stated before, this can be done using the micro-container ap-
proach for service provisioning in the Cloud [63] [64]. This approach fits perfectly with
an elasticity granularity that we consider to SBPs i.e. the scope of services. Therefore,
we propose in our work to extend the micro-containers approach, using our elasticity
mechanisms, in order to provision elastic SBPs on Cloud infrastructures.

We introduce the already performed service micro-containers and their correspon-
dent packaging framework in Section 5.3.1. Then, we present and discuss in Sec-
tion 5.3.2 our approach to extend the packaging framework in order to add elasticity
facilities to micro-containers. In Section 5.3.3, we experiment our proposal in a real
Cloud infrastructure.

5.3.1 Service micro-containers

In [63] [64], authors demonstrated that the use of classical service containers (e.g.,
Apache Tuscany, Apache ODE, Apache Axis, etc.) is not suitable for Cloud environ-
ments. In fact, they highlighted that classical service containers are neither scalable
nor elastic. To address these drawbacks, they proposed novel service containers called
micro-containers. This approach is based on a simple idea that consists in dedicat-
ing a micro-container to each deployed service in Cloud environments. Each micro-
container can host and run its service and can be seen as a specialized container.
Micro-containers are automatically generated and provide minimal and personalized
facilities to manage the life cycle of deployed services (e.g., services hosting, inter-
action with clients, etc.). For example, the micro-container approach does not have
a management competitions module as the approach assumes a single service per
container.

The design of the micro-container approach is composed of two main parts: (1) the
service micro-container, and (2) the generic packaging platform that builds the micro
container that contains the service to be deployed. An overview of the main compo-
nents of the packaging framework and architecture of generated micro-containers are
detailed in Figure 5.2.

To package a service and build the appropriate micro-container for it, one must
mainly provide for the deployment framework two elements:

1. The service to package with all its components (code, resources, etc.);

2. A deployment descriptor that specifies the container options.

The Processor module analyzes the deployment descriptor, process the service
source code, detects the service binding types, instantiates an appropriate Com-
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Figure 5.2: Service micro-container packaging framework.

munication module implementing these bindings from the Communication Generic
Package and associates it to the service sources. The same principle is also followed
for the selection of the invocation module to run the service once packaged in the
micro-container. Based on the service implementation programming language, the
appropriate invocation module is instantiated from the Invocation Generic Package.

The resulting code represents the generated micro-container code. It is composed
only of the necessary modules for the deployed service, no more, no less. Generated
micro-container hosts the service and implements its bindings regardless its commu-
nication protocol support as long as they are included in the Generic Communica-
tion Package and regardless the programming language as long as they are included
in the Invocation Generic Package. Adding new communication protocols or pro-
gramming languages support consists in adding the correspondent components in the
packaging framework generic packages.

Henceforth, each generated service micro-container consists at least of three mod-
ules:

• A Communication module to establish communication and to support connec-
tion protocol.

• An Invocation module to process ingoing and outgoing data into and out of the
server (packing and unpacking data).

• A Service module to store and invoke the packaged service and its contract
(service descriptor).

The framework provides also a generic client to invoke packaged service in a gen-
erated micro-container. The client setup is based on the service bindings type and
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information described in the contract. For example, for a Web service the contract
is a WSDL document [66] and needed informations to setup the client are described
in operation, input, output and service elements.

The design of the micro-container was made so that other modules can be added
as extensions or add-on to support other non-functional properties (e.g., See [67] for
mobility features support, See [65] for monitoring facilities support). We propose in
our work to extend the micro-container approach in order to support SBPs elasticity
on Cloud infrastructures.

5.3.2 Elastic Service micro-containers

Using micro-containers to host services corresponds perfectly to the need of addressing
SBPs elasticity in a fine-grained manner. Indeed, they allow operating at the scope of
services by deploying each service of the SBP in its specialized micro-container. As it
is, the service micro-container packaging framework can be extended with elasticity
faculties to support SBPs elasticity. To this end, we propose in this work to extend this
framework by adding an elasticity facilities package that implements our previously
defined elasticity mechanisms.

An overview of the extended deployment framework is described in Figure 5.3.
This extension consists in adding two modules:

• A Generic router module to manage the duplication/consolidation of services
(variation of the copies number).

• A Generic controller to monitor, analyze monitoring data and execute elasticity
actions (duplication/consolidation).

The input of the extended framework is the deployment descriptor of the SBP.
This latter is used to extract information about the services that compose the SBP as
well as the interactions between these services. The deployment framework generates
a service micro-container for each service of the SBP (i.e., as many micro-containers
as services).

Our previously defined elasticity approach ensures SBPs elasticity by adding/re-
moving services copies (i.e., service duplication/consolidation). To manage these ser-
vices copies and route invocations to them, we propose to generate a router compo-
nent for each service of the SBP. Each router is considered as a service and hence
deployed within a dedicated micro-container. The router is responsible for managing
the variation in the copies number of its considered service. It is also responsible of
balancing calls between these service copies (i.e., determining under which condition
a call is transferred over the set of service copies) according to its routing strategy
(e.g., Round Robin, Random, etc.). Each router has a routing table which contains
information about the different copies of its related service. Since initially a deployed
service has one copy, the routing table has one entry to that copy. This routing table
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Figure 5.3: Extended service micro-container packaging framework.

is updated after each elasticity action (add a new service entry in case of duplication
or remove an old service entry in case of consolidation).

Once the SBP services and their associated routers generated, we need to monitor
them in order to provide the elasticity controller with information about their exe-
cutions. To this end, we use the micro-container extension for monitoring proposed
in [65]. This monitoring extension provides the mechanisms to collect, aggregate, and
report monitoring data related to each service of the SBP. The metrics to monitor are
extracted from the services contracts. These collected data will be used by the elas-
ticity controller to decide on executing elasticity actions (duplication/consolidation).

The last step of our provisioning approach consists in the generation of the con-
troller to be deployed as a service within a micro-container. It receives and analyzes
the data according to the implemented elasticity strategy. The controller implements
two elasticity actions (duplication/consolidation) that are performed after verifying
the elasticity conditions (ready D for duplication and ready C for consolidation).
Note here that we can assign a single controller for all the deployed processes, a con-
troller for each subset or even a controller for each deployed process. We point out
that the choice of the best deployment scenario needs a more thorough study that
we consider in our future work. Consequently, to alleviate the burden, we propose in
this work to use one elasticity controller for each deployed SBP.

At this step, we presented the different steps that allow the provisioning of elastic
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Figure 5.4: Service micro-containers (a) duplication and consolidation (b) steps.

SBPs on Cloud infrastructures. Figure 5.4 shows how duplication/consolidation ac-
tions are performed. A first use of these duplication/consolidation actions is when a
service of the SBP is overloaded. The controller checks whenever the duplication con-
dition (ready D) is verified or not. If the condition is verified, the controller executes
a duplication action to add a new copy of the concerned service (Figure 5.4-(a),action
1). Then, the controller updates the router by adding the new entry to the routing
table (Figure 5.4-(a), actions 2 and 3). The second use case is when a service is un-
derloaded. If the consolidation condition (ready C) is verified, the controller applies
a consolidation action to remove the concerned copy of service from the routing table
(Figure 5.4-(b), actions 1 and 2). Then, the controller removes the concerned copy of
service (Figure 5.4-(b), action 3).

5.3.3 Experiment

In this section, we present and comment a use case scenario to show how we ensure
SBPs elasticity in a Cloud infrastructure according to our previously defined elasticity
approach. We start by detailing the use case that we realized. Then we present the
experiments scenarios and their results.

5.3.3.1 Use case

To realize our use case, we propose to ensure the elasticity of the previously defined
SBP of the online computer shopping service presented in Figure 3.1. This SBP is
composed of four elementary services that interact to ensure the business functionality
of the process. The interactions between these services are described in a PNML
document [68].

According to our extension detailed in Section 5.3.2, the packaging framework
execution induces the generation of a set of resources: four micro-containers to host
the SBP services, four routers to be deployed upstream the micro-containers and an
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Figure 5.5: An example of the provisioning of an elastic SBP

elasticity controller micro-container which analyzes the monitored data and performs
elasticity actions. Concretely, the obtained execution chain is presented in Figure 5.5.
The execution of this chain is equivalent to the execution of the initial process (Fig-
ure 3.1). Preserving the semantic functionality of the process is guaranteed by our
duplication/consolidation operations.

These micro-containers (i.e., services, routers and a controller) can be deployed
as standalone applications in one or several virtual machines provided by an IaaS
manager such as OpenNebula [69] or Openstack [70].

We propose in this use case to use services response times as a metric (scaling in-
dicator) to base our elasticity strategies. Consequently, each service micro-container
sends the response time of its hosted service to the controller. Afterwards, the con-
troller analyzes the received response times and decides to trigger an elasticity action
or not according to the implemented strategy. In order to illustrate our approach,
we propose to instantiate the controller with two elasticity strategies (strategy 1 and
strategy 2). These strategies trigger a duplication action if the response time is over
the max threshold (max t). In the other case, these strategies trigger a consolida-
tion action if the response time is under the min threshold (min t). Hereafter the
thresholds used for each strategy:

Strategy 1

• Max t(s1) = 5 ms. Max t(s2) = 10 ms. Max t(s3) = 5 ms. Max t(s4) = 5 ms.

• Min t(s1) = 2 ms. Min t(s2) = 5 ms. Min t(s3) = 1 ms. Min t(s4) = 1 ms.

Strategy 2

• Max t(s1) = 5 ms. Max t(s2) = 75 ms. Max t(s3) = 5 ms. Max t(s4) = 5 ms.

• Min t(s1) = 2 ms. Min t(s2) = 20 ms. Min t(s3) = 1 ms. Min t(s4) = 2 ms.
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Figure 5.6: Calls arrival scenarios for invoking the SBP

In our use case we choose two calls arrival scenarios to invoke the SBP (See
Figure 5.6). In the scenario 1, the calls arrival is constant (240 calls/min). In the
scenario 2, the calls arrival is variable (between 60 calls/min and 240 calls/min). The
client that we used to invoke the SBP is a REST client that sends requests to the
endpoint of the SBP.

5.3.3.2 Evaluation

To perform our evaluations we used the NCF (Network and Cloud Federation) ex-
perimental platform deployed at Telecom SudParis, France. The NCF experimental
platform aims at merging networks and Cloud concepts, technologies and architec-
tures into one common system. NCF users can acquire virtual resources to deploy
and validate their own solutions and architectures. The network is in constant evo-
lution and has for information: 380 Cores Intel Xeon Nehalem, 1.17 TB RAM and
100 TB as shared storage. Two Cloud managers allow managing this infrastructure
and virtual resources i.e., OpenNebula [69] and OpenStack [70]. In our case, we
used OpenNebula which is a virtual infrastructure engine that provides the needed
functionality to deploy and manage virtual machines (VMs) on a pool of distributed
physical resources. To create a VM, we can use one of the three predefined templates
offered by OpenNebula i.e. SMALL, MEDIUM and LARGE, or we can specify a new
template. During our experiments, we used our specific template with the following
characteristics: 4 cores (2.66 GHZ each core) and 4 Gigabytes of RAM.

In our evaluations, we deploy a SBP as standalone applications (using micro-
containers) in a virtual machine provided by OpenNebula. Our goal is to show how we
can provision elastic SBPs, according to our elasticity approach, in order to maintain
their QoS.
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To show the efficiency of our solution, we will answer to the following questions:

• How does the elasticity strategies enhance the response time of the SBP?

• How does the elasticity strategies influence the resource consumption of the
SBP?

We calculate the response time of the SBP before and after adding elasticity.
When we added elasticity, we used two elasticity strategies in order to evaluate the
influence that a strategy has on response time and resource consumption. To do this,
we deployed the SBP and used the REST Client to call it according to the calls arrival
scenarios defined previously (Figure 5.6). The experimental results with the scenario
1 are presented in Figures 5.7 and 5.8. The experimental results with the scenario 2
are presented in Figures 5.9 and 5.10.

Figure 5.7: Response time of the SBP before and after adding elasticity with the
scenario 1.

The analysis of the experimental results shows that the response time of the SBP
without our mechanisms is increasing proportionally with the number of clients calls.
Moreover, there is a loss of calls (42% in the case of scenario 1 and 8% in the case
of scenario 2) which is the result of the overload of the SBP. In contrast, using our
mechanisms, whenever the response time reached the max threshold of a service (i.e.,
75 ms in the case of strategy 1 and 10 ms in the case of strategy 2 for the service s2)
an elasticity action is triggered to duplicate the overloaded service by adding a new
instance to it. This elasticity action decreases the response time of all the SBP. If the
response time is under the min threshold (i.e., 20 ms in the case of strategy 1 and
5 ms in the case of strategy 2 for the service s2), an elasticity action is triggered to
consolidate the service instances. The experiments show the efficiency of our approach
to enhance the behavior of the SBP. In fact, the response time remains around the
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Figure 5.8: Memory consumption of the SBP before and after adding elasticity with
the scenario 1.

specified thresholds. The experiments show also that with the strategy 2, we reached
2000 clients calls without any loss of calls. As shown in the experimental results, in
some points, the response time is over the max threshold, this is due to the number
of clients calls sent before the elasticity action takes effect.

Figure 5.9: Response time of the SBP before and after adding elasticity with the
scenario 2.

The experimental results show that both strategies enhance the QoS of the SBP (in
terms of response time). However, using the strategy 1, we still have loss of calls (8% in
the case of scenario 1 and 4% in the case of scenario 2). In contrast, using the strategy
2, the SBP treats all calls without any loss of calls. This difference is explained by
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Figure 5.10: Memory consumption of the SBP before and after adding elasticity with
the scenario 2.

the difference on thresholds used in the two strategies. Indeed, the strategy 2 reacts
faster to the increase of the response time than strategy 1 which allows the treatment
of all calls, while the strategy 1 reacts late which cause a loss of calls. Based on the
results, the strategy 2 ensures a better efficiency and allows maintaining the QoS of
the deployed SBP in this use case. Over and above the response time of the SBP,
we measured the memory consumption of our SBP. The results shown in Figures 5.8
and 5.10 shows the difference between the memory consumption of a non-elastic SBP
and an elastic one (with strategy 1 and strategy 2). The memory consumption of a
non-elastic SBP is constant since each service has its allocated memory and no new
instances are added. Meanwhile, for an elastic SBP, the curve shows that the memory
consumption is changing whenever there is duplication or consolidation.

In this section, we proposed an end-to-end approach for the provisioning of elastic
SBPs in real Cloud infrastructures. Based on the already performed service micro-
container approach, we proposed to extend the packaging framework by adding new
generic modules implementing our elasticity mechanisms. We showed that our ap-
proach is efficient when applied to a real SBP deployed in a real Cloud infrastructure.
The obtained results show that we ensure the elasticity of deployed SBPs.

5.4 Provisioning of Elastic SBPs on Cloud platforms

In this section, we propose our approach for the provisioning of elastic SBPs on
Cloud platforms. To this end, we can use and take advantage of existing PaaS tools
and mechanisms (e.g., monitoring components, mechanisms for adding/removing in-
stances) to ensure SBPs elasticity. In order to provision elasticity on Cloud platforms,
we need to set up an elasticity controller to analyze monitoring data and manage elas-
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ticity mechanisms. To do this, we propose in our work to adapt and specialize the
autonomic infrastructure for Cloud resources proposed in [71] in order to ensure SBPs
elasticity on Cloud platforms [72].

We will start by introducing the proposed approach for autonomic management of
Cloud resources (Section 5.4.1). Afterwards, we propose to specialize an autonomic
infrastructure, based on the previously defined elasticity approach, to dynamically add
elasticity facilities to SBPs (Section 5.4.2). Finally, we will use the defined concepts
to realize a use case to experiment our autonomic infrastructure for SBPs elasticity
in a real Cloud platform (Section 5.4.3).

5.4.1 Autonomic Management for OCCI Resources

IBM [53] defines Autonomic Computing as the ability to manage computing resources
that automatically and dynamically respond to the requirements of the business based
on SLA. Autonomic management is usually presented as a Monitor, Analyze, Plane
and Execute (MAPE) loop [73, 74]. Autonomic management features for Cloud re-
sources are presented in Figure 5.11. In this autonomic loop, the central element
represents any Cloud resource for which we want to exhibit an autonomic behavior.

Figure 5.11: Autonomic control loop for a Cloud resource

Adding Autonomic Management for Cloud Resources

To add autonomic management features for Cloud resources, Mohamed et al. [71]
proposed an approach that dynamically adds the needed resources and extensions to
ensure the MAPE (Monitor, Analyze, Plan and Execute) functions.

In their approach, they proposed to extend the resource by adding the needed
mechanisms that allow to retrieve data from the resource and to execute reconfig-
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urations on it. The extensions consist in adding new functions that transforms the
resource into a managed Resource. The Monitoring function is ensured by adding
two extensions: (1) Polling extension that defines monitoring by polling functionality,
and (2) Subscription extension that defines monitoring by subscription functionality
as defined for a publish/subscribe system. In order to ensure the Execute function, a
Reconfiguration extension is added to allow applying reconfiguration actions on the
extended resource.

For the Analyze and Plan functions, they defined two new abstract resources
responsible of these functions. To support the Analyze function they define the Ana-
lyzer resource that allows analyzing monitoring data and eventually generating alerts
whenever the QoS is and/or will not be respected. Moreover, in order to support the
Plan function, they define the Planner resource that receives alerts from the Ana-
lyzer. Based on these alerts, the Planner may generate reconfiguration actions to be
applied on Resources. The customization of these abstract resources consists on spec-
ifying the strategies to be used by the Analyzer to process the incoming monitoring
information. These strategies are extracted from the SLA of the managed Resource.
The customization of the Planner is based on specifying the actions to be used for
the processing of the incoming alerts.

To be widely adapted among Cloud providers, the proposed approach was built
upon the Open Cloud Computing Interface (OCCI) standard.

OCCI extension for Autonomic Management

The Open Grid Forum defines the Open Cloud Computing Interface (OCCI) [75] as
”an abstraction of real world resources, including the means to identify, classify, asso-
ciate and extend those resources.” OCCI provides a model to represent resources and
an API to manage them. OCCI specifications consist essentially of three documents.
The first is OCCI Core [75] that formally describes the OCCI Core Model. As shown
in Figure 5.12, OCCI Core describes the Cloud resources as instances of the class
Entity which can be a Resource or a Link. Each Entity instance could be extended
using one or more instances of the class Mixin. The Mixin mechanism allows new
Resources capabilities to be added at instantiation time or at runtime. The second
document is OCCI HTTP Rendering [76] that describes how to interact with OCCI
Core using HTTP protocol. The third document is OCCI Infrastructure [77] that
is an extension of the Core Model to represent the Cloud infrastructure layer. The
OCCI model can be extended to cover different layers in the Cloud (i.e., IaaS [77],
PaaS [78], SaaS [79], etc.).

In order to provide all the mechanisms to establish an autonomic loop for Cloud
resources, an OCCI extension was proposed as shown in Figure 5.12. To dynamically
establish this loop, an Autonomic Manager is defined as a generic OCCI Resource.
It inspects a given SLA and carries out the list of actions to build the autonomic
computing infrastructure. From a given SLA, this Resource determines monitoring



114 Provisioning of Elasticity Mechanisms in the Cloud

Figure 5.12: OCCI extension for Autonomic Computing.

targets (i.e., the needed metrics to be monitored). It is also responsible of extracting
the strategies to be used by the Analyzer Resource and the reconfiguration actions to
be used by the Planner. After inspecting the contract (SLA), the Autonomic Manager
instantiates the needed Entities (i.e., Resources and Links). Then, it customizes these
Entities with the needed Mixins and eventually configures them with the needed
parameters.

The Autonomic Manager is responsible of extending a given resource to add the
Monitor and Execute functions. For this aim, three Mixins are defined to trans-
form any Resource to a managed Resource: (1) Polling Mixin describes the needed
operations to monitor a Resource by polling; (2) Subscription Mixin to manage sub-
scriptions on specific metrics in order to send notifications containing monitoring
data; and (3) The Reconfiguration Mixin that provides the needed functionalities to
ensure reconfiguration.

The Analyzer Resource is defined as a generic OCCI Resource that allows to ana-
lyze monitoring data and eventually to generate alerts. The Analyzer Resource could
be specified using Strategies Mixin collection. This Mixin implements a computation
strategy that triggers specific alerts based on incoming monitoring information. It
represents a function applied by the Analyzer to compare monitoring information val-
ues against previously defined conditions. Whenever a condition is not respected, the
Mixin instance makes the Analyzer trigger a specific alert. A Subscription is specified
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with a Mixin instance from the Subscription Tool Mixin collection. This Mixin may
describe the mechanism of the subscription (using HTTP, SMS, or email, etc.) or
may refer to an external program that handles this task. The Analyzer processes
the incoming monitoring notifications and eventually generates alerts whenever the
SLA is violated. The generated alerts are sent to the Planner. The Planner is a
generic OCCI Resource that receives alerts from the Analyzer. This Resource is an
abstract description that uses instances of Reconfiguration Actions Mixin collection
that implements a computation action to be applied on incoming alerts, the Planner
triggers reconfiguration actions on specific Resources using instances of this Mixin. It
can also refer to an external program that handles planning for reconfigurations.

This approach provides an on demand and generic autonomic infrastructure for
Cloud resources in Cloud environments. In our work, we propose to adopt and adapt
this autonomic infrastructure in order to provide SBPs elasticity facilities on Cloud
platforms.

5.4.2 Autonomic Approach for SBPs elasticity

In this section, we propose to specialize the previously defined autonomic infrastruc-
ture for Cloud resources in order to ensure the elasticity of SBPs on Cloud platforms.
To do this, we will start by presenting a general view of the usage of the previ-
ously defined OCCI Entities (i.e., Resources and Links) and Mixins to establish our
autonomic computing infrastructure for SBPs elasticity. Afterwards, we detail the
implementation aspects of our proposal.

5.4.2.1 Autonomic Infrastructure for SBPs elasticity

We propose to specialize the autonomic infrastructure, based on our previously defined
elasticity approach, to dynamically add elasticity facilities to SBPs (see Figure 5.13).
The elasticity controller will cover the Analyze and Plan functions of the MAPE loop
in order to ensure SBPs elasticity. To do this, we merely break our elasticity controller
previously defined between the Analyzer and the Planner Resources. Consequently,
the elasticity conditions (ready D and ready C ) are implemented as instances of the
Strategies Mixin while the elasticity actions (duplication and consolidation) are imple-
mented as instances of the Reconfiguration Actions Mixin. Notwithstanding, spurred
by the fact that almost all the existing PaaS providers offer the routing functionality,
we delegate the routing mechanisms to the targeted environment in which we will
deploy our SBP.

To establish our autonomic computing infrastructure, we start by setting up our
OCCI Server. This server is responsible of instantiating any OCCI Entity. The first
Resource instantiated in this server is the Autonomic Manager Resource. Based on
the SLA, the Autonomic Manager detects the attributes or services that need to be
monitored for the managed Resource (i.e., SBP). Consequently, it extends the man-
aged Resource by monitoring Mixins (i.e., Polling and/or Subscription). Moreover, it
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Figure 5.13: Autonomic Computing Infrastructure establishment for SBP elasticity.

extends it by a Reconfiguration Mixin to enable reconfigurations (i.e., service dupli-
cation/consolidation). The Autonomic Manager sends a request to the OCCI Server
to instantiate the Mixed OCCI Resource (i.e., the basic Resource with their newly
added Mixins). Whenever the managed Resource is ready, the Autonomic Manager
orders the Server to deploy and start it.

The next step realized by the Autonomic Manager is to instantiate and customize
the needed Resources and Links in order to establish the autonomic infrastructure.
For ease of presentation, we refrain from presenting all the Mixins in Figure 5.13.
Therefore, we kept just the needed Mixins instances of Strategies Mixin (i.e., elasticity
strategies) and Reconfiguration Actions Mixin (i.e., elasticity actions). In fact elas-
ticity strategies could be described as instances of Strategies Mixin (see Figure 5.12).
In addition, elasticity actions could be described as instances of the Reconfiguration
Actions Mixin (see Figure 5.12).

The Autonomic Manager instantiates the Analyzer and subscribes it to the man-
aged Resource. At the reception of a notification, the Analyzer uses Strategies Mixin
to process incoming monitoring information. If one of the strategies is verified, the
Analyzer may raise alerts to the Planner. Accordingly, the Autonomic Manager in-
stantiates the Planner and links it to the Analyzer. The Planner generates a plan
for reconfiguration actions. As shown in Figure 5.13, the used plans are responsible
of generating elasticity actions. The last step is to link the Planner to the managed
Resource in order to use the generated reconfiguration actions and apply them on the
managed Resource.

5.4.2.2 Implementation

To implement the different Resources, Links and Mixins that we previously defined
we used a JAVA implementation provided by OCCI working group called occi4java
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[80]. This implementation is developed by the OCCI working group according to the
specifications. The project is divided in three parts. Each of these parts corresponds
to one of the three basic documents of OCCI specifications (i.e., OCCI Core, OCCI
Infrastructure and OCCI HTTP Rendering). Using occi4java, we extended the Re-
source class to create our own resources for autonomic computing. We also extended
the Link class to define our links.

Since the Mixin mechanism is not a native functionality for JAVA, we used the
mixin4j framework [81]. This framework allows creating java Mixins by the use of
annotations. We used this framework to implement the different Mixins containing
the needed functionalities for our autonomic infrastructure.

For REST HTTP Rendering, the occi4java project uses Restlet framework [82].
Restlet is an easy framework that allows adding REST mechanisms. After adding
the needed libraries, one needs just to add the Restlet annotations to implement the
different REST actions (i.e., POST, GET, PUT and DELETE). Then to set up the
server, one has to create one or more Restlet Components and attach the resources to
them. We used the proposed annotations to define the needed actions for our OCCI
Resources, Links and Mixins. That allowed us to use the HTTP REST Rendering to
manage our autonomic infrastructure. And in order to enforce the scalability of our
solution, we implemented different Restlet Components to allow the distribution of
our infrastructure.

Finally, we used WS-Agreement to describe the SLA (see Listing 5.1). WS-
Agreement is an extensible language to describe SLAs. The extendability of this lan-
guage allows defining user specific elements and using them in the SLA. In our exam-
ple, we were able to specify the attribute that needs to be monitored and their different
thresholds. We added new elements to describe the analysis strategies (i.e., <strat-
egy:Ready D>) and the reconfiguration actions (i.e, <plan:ReconfigurationAction>).

To realize our use case, we implemented different monitoring Mixins. The first one
uses the REST API proposed by NewRelic [83] service integrated in CloudFoundry
PaaS. This Mixin gets the needed information about the application and creates
notifications related to the monitored attributes. The second one consists on applying
a transformation on the byte-code of the application to make it send notifications
about its execution time [84].

Listing 5.1: WS-Agreement sample

1<?xml version=” 1 .0 ” encoding=”UTF−8”?>
2<wsag:AgreementOffer AgreementId=”ab97c409”>
3 <wsag:Name>xs:CFApplicationAg</wsag:Name>
4 <wsag:AgreementContext>
5 . . .
6 </wsag:AgreementContext>
7 <wsag:Terms>
8 <wsag :Al l>
9 <wsag:GuaranteeTerm wsag:Name=”g1” wsag:Obl igated=” Serv i c eProv ide r ”>

10 <wsag :Se rv i c eLeve lOb j e c t i v e>
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11 <wsag:KPITarget>
12 <wsag:KPIName>t ime re sponse maxthresho lds</wsag:KPIName>
13 <wsag:CustomServiceLevel
14 xmlns :x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s t ance ”
15 xmlns:exp=” ht tp : //www. telecom−sudpar i s . com/exp”>
16 <exp :Les s>
17 <exp :Var iab l e>S1 maxthreshold</ exp :Var iab l e>
18 <exp:Value>100ms</ exp:Value>
19 <exp :Var iab l e>S2 maxthreshold</ exp :Var iab l e>
20 <exp:Value>1000ms</ exp:Value>
21 <exp :Var iab l e>S3 maxthreshold</ exp :Var iab l e>
22 <exp:Value>100ms</ exp:Value>
23 <exp :Var iab l e>S4 maxthreshold</ exp :Var iab l e>
24 <exp:Value>100ms</ exp:Value>
25 . . .
26 </ exp :Les s>
27 </wsag:CustomServiceLevel>
28 <wsag:KPIName>t ime re sponse minthre sho ld s</wsag:KPIName>
29 <wsag:CustomServiceLevel
30 xmlns :x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s t ance ”
31 xmlns:exp=” ht tp : //www. telecom−sudpar i s . com/exp”>
32 <exp :Greater>
33 <exp :Var iab l e>S1 minthresho ld</ exp :Var iab l e>
34 <exp:Value>10ms</ exp:Value>
35 <exp :Var iab l e>S2 minthresho ld</ exp :Var iab l e>
36 <exp:Value>10ms</ exp:Value>
37 <exp :Var iab l e>S3 minthresho ld</ exp :Var iab l e>
38 <exp:Value>500ms</ exp:Value>
39 <exp :Var iab l e>S4 minthresho ld</ exp :Var iab l e>
40 <exp:Value>10ms</ exp:Value>
41 . . .
42 </ exp:Greater>
43 </wsag:CustomServiceLevel>
44 </wsag:KPITarget>
45 </ wsag :Se rv i c eLeve lOb j e c t i v e>
46 <wsag :Bus ines sVa lueL i s t>
47 <wsag:CustomBusinessValue
48 xmln s : s t r a t=” ht tp : //www. telecom−sudpar i s . com/ s t r a t ”>
49 <strategy:Ready D>
50 Dupl i cat ion cond i t i on
51 </ strategy:Ready D>
52 <strategy:Ready C>
53 Conso l idat i on cond i t i on
54 </ strategy:Ready C>
55 . . .
56 </wsag:CustomBusinessValue>
57 <wsag:CustomBusinessValue
58 xmlns : a c t i o=” ht tp : //www. telecom−sudpar i s . com/ a c t i o ”>
59 <s t r a t :Re con f i gu r a t i onAc t i on>
60 Dupl i cat ion
61 </ s t r a t :Re con f i gu r a t i onAc t i on>
62 <s t r a t :Re con f i gu r a t i onAc t i on>
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63 Conso l idat i on
64 </ s t r a t :Re con f i gu r a t i onAc t i on>
65 . . .
66 </wsag:CustomBusinessValue>
67 </wsag :Bus ines sVa lueL i s t>
68 </wsag:GuaranteeTerm>
69 </wsag :Al l>
70 </wsag:Terms>
71</wsag:AgreementOffer>

5.4.3 Experiment

In order to validate our work, we implemented an OCCI server that supports the
previously described resources. We also implemented the OCCI compliant API that
allows to seamlessly interacting with different PaaS Providers. Then, we realized
preliminary experiments to test the efficiency of our proposal. In the following, we
describe the different aspects of our implementation as well as the experiment results.

5.4.3.1 Use Case

To experiment our work we propose a real use case that consists on the deployment
of a SBP on the public PaaS CloudFoundry [85]. We would like to establish an
autonomic infrastructure to render the SBP elastic.

For the SaaS and PaaS descriptions we are using a generic model that was proposed
in [86]. We use also a generic API called COAPS [87][88] that allows to seamlessly
interact with different PaaS in a generic manner. This API exposes a set of generic
and RESTful HTTP operations (i.e. GET, POST, PUT and DELETE) for Cloud
applications management and provisioning regarding the target PaaS. It provides an
abstraction layer for existing PaaS allowing PaaS application provisioning in a unified
manner.

To render the SBP elastic, we chose to use thresholds-based elasticity strategies
that base their duplication/consolidation decisions on SBP response time metric.
Consequently, we need to gather monitoring data related to the response time of
each service and analyze these data. If the response time is over the max threshold
we need to trigger a duplication action traduced to a call to COAPS to add more
instances of the application. In the other case, if the response time is under the min
threshold, we need to trigger a consolidation action traduced to a call to COAPS to
remove an instance of the application. The different thresholds, analysis strategies
and reconfiguration actions could be extracted from a previously defined SLA contract
(Listing 5.1).

The input of our OCCI Server is a SLA describing the SBP and its requirements
as well as the needed details for the autonomic aspects. It is passed to the Autonomic
Manager in the following HTTP POST request:
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> POST http://localhost:8182/amanager

> Category: amanager; class="kind";

X-OCCI-Attribute: name=AManager

X-OCCI-Attribute: version=1

X-OCCI-Attribute: slalocation=location

Content-Type: text/occi

The Autonomic Manager uses the SLA to build the environment where to deploy
the SBP. It carries on the list of queries to the OCCI Server to deploy and start the
different services after adding the needed Mixins (i.e., monitoring and reconfiguration
Mixins). To deploy and start the services, the OCCI Server uses the actions proposed
by COAPS to this end. In the realized use case, the Subscription Mixin uses a
NewRelic monitoring service [83] to get monitoring data.

After the provisioning of the SBP, the Autonomic Manager proceeds to the instan-
tiation of all the needed Resources and Links via the OCCI Server. From the SLA, the
Autonomic Manager detects the need to monitor the response time of each service. It
extracts also the defined thresholds as well as the analysis elasticity strategies and the
reconfiguration actions. These information are described using user specific elements
that we added to WS-Agreement. As shown in Listing 5.1 example the max and min
thresholds of the service s2 are fixed respectively to 1000 and 500 ms. The moni-
toring data gathered by the Subscription Mixin are parsed by this latter. It extracts
the response time of each service and sends eventual notifications to the Analyzer.
For each notification, the Analyzer applies its elasticity strategies to verify that the
response time is between min and max thresholds. If the SLA is not respected, the
Analyzer resource triggers an alert targeting the Planner. This Planner generates
reconfiguration actions to duplicate or consolidate the concerned service.

At this step, we showed how the Autonomic Manager can instantiate the auto-
nomic loop with all the needed Resources, Links and Mixins. A usage example of
this infrastructure is when a service of the SBP is overloaded. The response time of
this service changes and becomes greater than max threshold. Using its Subscrip-
tion Mixin, the concerned service generates a notification containing the new value
of the monitored attribute. At the reception of the notification, this latter applies
its strategies to verify if the SLA is violated or not. If the ready D is verified. The
Analyzer raises an alert and send it to the Planner. Receiving this alert, the Planner
generates the needed reconfiguration actions to ensure the Duplication. This latter
asks COAPS to add more instances to the concerned service.

In [89], a description of the realized work is available. The page contains a link
to download an archive of all the implementations. The archive includes also a user
guide document that explains how to test the project using a SBP. In the same page,
the client that we used to invoke the SBP is available.
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5.4.3.2 Evaluation

In order to validate our proposal, we present in this section the use case that we
realized to this end. We describe the experiments environment and the preliminary
results.

Evaluation Environment

To perform our experiments we used the NCF (Network and Cloud Federation) ex-
perimental platform deployed in our laboratory and described in Section 5.3.3.2.

In our tests we were focused on the PaaS and SaaS layers. Specifically, we deploy
a SBP (i.e, SaaS) on the public PaaS CloudFoundry. Our goal is to show how we
specialize an autonomic infrastructure to ensure SBPs elasticity.

For this aim, we implement the SBP of the online computer shopping service
presented previously. We included the needed information related to the deployment
of the application and the establishment of the infrastructure in a SLA expressed
with the extended WS-Agreement that we presented in Section 5.4.3.1. Afterwards,
we run our OCCI Server on VMs deployed by OpenNebula IaaS manager. Then,
we instantiate an Autonomic Manager to deploy and start the different services of
the SBP enforced with monitoring and reconfiguration Mixins on CloudFoundry using
COAPS. After that, it continues the establishment of the previously defined Resources
in order to build the autonomic infrastructure.

Evaluation Result

To show the efficiency of a solution there are different criteria to take into account.
For our experiments, we fixed three criteria to verify:

• The time of the establishment of our infrastructure must be acceptable com-
pared with the time of the Resource (the SBP in this use case) deployment;

• The time of the reconfiguration of the Resource (i.e., the SBP) must be con-
vincing compared with the deployment time of a new Resource;

• The Autonomic infrastructure must enhance the QoS of the managed Resource
(i.e., in our use case it must improve the SBP response time).

For the first criteria, we took different measurements of the time needed to deploy
and start a SBP and the time needed to build the related autonomic infrastructure.
The measurements show that the deployment and starting time depends on the size
of the services of the SBP. However, the establishment of the rest of the autonomic
infrastructure is independent of the Resource. To deploy our test SBP composed of
four services to CloudFoundry we measured 152.09 seconds. To start this same SBP
we measured 33.9 seconds. The time needed to establish the autonomic infrastructure
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Figure 5.14: Response time of the SBP before and after adding our Autonomic In-
frastructure.

Figure 5.15: Memory consumption of the SBP before and after adding our Autonomic
Infrastructure.

is independent of the SBP size and is around 15.9 seconds. This time is encouraging
since it is negligible compared to the SBP deployment and starting time.

During this series of experiments, we measured also the needed time to apply a
reconfiguration action (i.e., duplication or consolidation). The needed time to recon-
figure a service is about 11.6 seconds. Indeed, this time is negligible compared to the
needed time to redeploy and start the SBP.

In order to validate the third criteria that we fixed, we had to compare the QoS
(i.e., response time in our case) of the SBP in CloudFoundry before and after adding
our autonomic infrastructure. To this end, we developed a REST Client able to call
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the deployed SBP. We deployed this client on different VMs in order to launch a big
number of parallel calls. This is to create a client query burst targeting the SBP. In
each series of these experiments we modified the number of the used clients targeting
our SBP and we saved the measured response times. The results of this evaluation
are shown in Figure 5.14.

The response time of the SBP without our mechanisms is increasing proportionally
with the number of clients queries. Moreover, after 1600 clients, the SBP went down.
In contrast, using our mechanisms, whenever the response time reached the max
threshold that we specified in the SLA (i.e., 1000 ms for the service s2 in this case),
a reconfiguration action is triggered to duplicate the overloaded service by adding a
new instance to it. This reconfiguration decreases the response time of all the SBP. If
the response time is under the min threshold that we specified in the SLA(i.e., 500 ms
for the service s2 in this case), a reconfiguration action is triggered to consolidate the
service instances. The experiments show the efficiency of our approach to enhance the
behavior of the SBP. In fact, over 700 clients, the response time remains around the
specified thresholds. The experiments show also that we reached 2000 clients without
any downtime of the SBP. In some points, the response time can be over the max
threshold, this is due to the number of clients queries sent before the elasticity action
takes effect.

Over and above the response time of the SBP, we measured the memory consump-
tion of our SBP. The results in Figure 5.15 shows the difference between the memory
consumption of a traditional SBP and an elastic one. The memory consumption of a
traditional SBP is constant since each service has its allocated memory and no new
instances are added. Meanwhile, for an elastic SBP, the curve shows that the memory
consumption is changing whenever there is a duplication or a consolidation. The cost
of a duplication correspond to 512 mb that represents the size of an added service
instance.

In this section, we proposed an autonomic approach for managing SBPs elasticity
on Cloud platforms. To this end, we propose an approach for integrating our elasticity
controller in an autonomic infrastructure in order to provide SBPs with elasticity
facilities. In addition, we proved that our approach is efficient when applied on a
realistic situation. The obtained results show that we verify the different considered
criteria.

5.5 Conclusion

In this chapter, we proposed two approaches for the provisioning of SBPs elasticity in
the Cloud. On one hand, we proposed an end-to-end approach for the provisioning of
elastic SBPs on Cloud infrastructures by packaging SBPs in elastic micro-containers.
On the other hand, we proposed an autonomic approach to manage SBPs elasticity on
Cloud platforms by integrating our elasticity controller in an autonomic infrastructure
for Cloud resources. We showed the feasibility and efficiency of our elasticity approach
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in addressing elasticity in the Cloud. We presented the different experiments that we
realized to validate and prove the efficiency of our work in real Cloud environments.
Indeed, the results are encouraging. At the same time, they opened new perspectives.
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6.1 Contributions

In this thesis, we dressed a list of objectives in order to provide a solution that satisfies
our requirements for modeling, evaluating and provisioning of SBPs elasticity in the
Cloud. We started by studying different existing works related to elasticity. Our
study of the state of the art was divided into three parts treating respectively models
and mechanisms of elasticity, evaluation of elasticity and provisioning of elasticity
mechanisms in the Cloud. Afterwards, we made a synthesis of the presented works to
recapitulate the advantages and drawbacks of each one. Consequently, we proposed
three major contributions in order to cover the different objectives that we dressed
for our solution.

As a first contribution, we proposed a formal model for SBPs elasticity that inter-
twines duplication/consolidation operations with an elasticity controller. To do this,
we modeled SBPs using Petri nets and formalized elasticity operations (duplication/-
consolidation) that operate at the scope of services. We showed that our model can
ensure the elasticity of stateless, stateful and timed SBPS while preserving the seman-
tics of these latter. In addition, we proposed a generic controller, modeled using high
level Petri nets, that monitors SBP execution, analyzes monitoring information (based
on elasticity strategies) and executes elasticity actions (duplication/consolidation) in
order to ensure SBPs elasticity.

After facing the challenge of defining a formal model for ensuring SBPs elasticity at
the scope of services, we were interested in the evaluation of elasticity strategies that
are used by the elasticity controller to decide on when, where and how to use dupli-
cation/consolidation operations. To this end, we proposed an approach that uses the
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previously defined generic controller as a framework for the validation and evaluation
of different elasticity strategies before using them in real Cloud environments. Our
evaluation approach allows validating the correctness of elasticity strategies (using
verification) and comparing between strategies (using simulation).

In order to go further in our reasoning, we proposed to provide mechanisms for the
provisioning of elastic SBPs in the Cloud. In fact, any proposed approach for ensuring
SBPs elasticity needs to be validated in real Cloud environments. To this end, we
proposed two approaches for the provisioning of elastic SBPs while considering two
provisioning contexts: IaaS and PaaS. The first approach consists in an end-to-end
approach for the provisioning of elastic SBPs on Cloud infrastructures. This approach
packages non-elastic SBPs in micro-containers, extended with our elasticity mecha-
nisms, before deploying them in real Cloud infrastructures. The second approach
consists in an autonomic approach for managing SBPs elasticity on Cloud platforms.
This approach integrates our elasticity controller in an autonomic infrastructure in
order to dynamically add elasticity facilities to SBPs in real Cloud platforms.

The contributions that we presented in this manuscript respect the research ob-
jectives that we dressed in the beginning of this work.

6.2 Perspectives

In this thesis, we face different complex problems regarding SBPs elasticity. We solved
several research problems and we included others in our future work. We divided our
future work to short-term and long-term perspectives.

6.2.1 Short-term perspectives

As short-term perspectives, we aim at addressing different research problems by ex-
tending our already done work with three extensions:

Currently, our elasticity approach considers the workload of services (in terms of
number of calls) as metrics to take elasticity decisions. In addition, all service calls
are treated in the same manner. As a first extension of our work, we will consider
additional functional and non-functional properties. To this end, we should identify
such properties, define how to monitor them and develop mechanisms to configure
elasticity according to them. For example, we can consider a price property that
allows ensuring SBPs elasticity while respecting a given budget fixed by the user (i.e.,
we can use the price property as an elasticity constraint). Another example consists
in refining our SBP model to consider different kinds of service calls (i.e., be able
to differentiate between calls). In fact, it would be interesting to be able to identify
different groups of calls ranging from the most priority ones to the ones that can suffer
from loss of QoS. To do this, we can annotate service calls (tokens) with colors (i.e.,
each color will have specific characteristics).
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The second extension consists in providing a Domain Specific Language (DSL) for
defining reactive, predictive and hybrid elasticity strategies. It would be interesting to
have a language for defining elasticity strategies in a unified manner while considering
different kinds of strategies.

The last extension consists in investigating different scenarios for the deployment
of elasticity controllers in the Cloud. In fact, a controller can be assigned for all the
deployed SBPs, for each subset of SBPs or even for each deployed SBP. To this end,
we plan to consider the collaboration between deployed controllers in order to achieve
a global elasticity objective.

6.2.2 Long-term perspectives: Mixing Multi-tenancy and Elasticity
of Business Processes

Cloud computing is particularly interesting in situations where many organizations
need to support similar processes. For example, smart cities, administrations, agen-
cies, etc. all need to support similar processes but they also need local and controlled
variations of these similar processes. Therefore, Cloud platforms should provision
multi-tenancy mechanisms such that business processes can be customized to tenants
while allowing them to share resources. In fact, it is not realistic to enforce “one size
fits all” as tenants may have different needs and preferences.

There are mainly three approaches developed for multi-tenancy in Cloud environ-
ments [90]. These approaches require varying the degree of resource sharing and the
development complexity:

• Approach 1. sharing a single business process instance among all tenants,

• Approach 2. running tenant specific process instances on a shared process en-
gine,

• Approach 3. running tenant specific process instances on a dedicated process
engine.

Approaches 2 and 3 are based on deployment techniques. They provide a very
low level degree of resource sharing. In approach 1, all tenants share the OS, the
process engine and a single instance of the business process. This is accomplished by
parameterizing a single instance of a business process with a tenant identification pa-
rameter. However, the drawback of this approach is its high development complexity
which could prevent democratization of such technique.

Our objective is to extend our approach for business processes elasticity with
multi-tenancy mechanisms in order to ensure different preferences of tenants (hold-
ers). To do this, we aim at using configurable business processes to support multi-
tenancy and elasticity mechanisms in an integrated way. Actually, we propose to use
configurable languages not only for modeling purpose, as it is the case in the state of
the art, but also for supporting multi-tenancy and elasticity at the runtime. To this
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end, we will (1) define an operational semantics for a particular configurable language
(C-WF-nets) to support multi-tenancy, and (2) extend control mechanisms to decide
about how, when and where elasticity is applied while taking into account the multi-
tenancy property (i.e., Identifying parts or services that are elastic, multi-tenant,
elastic and multi-tenant or mono-tenant and non elastic).
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