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Abstract

This thesis addresses the problem of action recognition, i.e., how to
determine the type of action that is happening in a video and its temporal
localization.

First, we consider the problem of video representation—how to encode
videos in a robust way, such that the representation is suitable for a wide
variety of action classes, tasks and video types. We present an extensive eval-
uation study that explores the Fisher vector (FV) encoding as an alternative
to the bag of words (BOW) encoding; we further investigate different ways
of including spatial layout information. Our experiments show that the FV
encoding is superior to BOW both in terms of performance and efficiency.
For the localization task, we introduce two novel variants of non-maxima
supression that correct the bias towards windows that are too short.

Second, we improve the efficiency of the Fisher vector representation
in the context of action localization. Power and ¢, normalizations improve
Fisher vector performance, but hamper the use of efficient localization tech-
niques, such as, integral images or branch and bound. Our approximations
lead to a speedup of at least one order of magnitude, while maintaining
state-of-the-art action recognition and localization performance.

Third, we investigate the task of spatio-temporal action localization. A
major challenge is the size of the search space defined by spatio-temporal
tubes formed by sequences of bounding boxes along the frames. Recently,
methods that generate unsupervised detection proposals have proven to
be very effective for object detection in still images. Here, we introduce an
approach for extracting spatio-temporal region proposals. First, we extend a
recent 2D object proposal method, to produce spatio-temporal proposals by a
randomized supervoxel merging process. Second, we propose a new efficient
supervoxel method. Experimental results on the UCF Sports dataset show
that we obtain a recall of over 70% when extracting about 100 spatio-temporal
tubes per video.

Finally, in the appendix of the thesis, we present our winning submission
for the THUMOS 2014 challenge. For the classification task, we build upon
our FV-based video representation and complement the motion features with
appearance and audio features. For the localization task, we improve the
performance by including the classification score into the final localization
score.

Keywords. Action recognition e Action localization e Event recognition e
Video representation e Efficiency e Classification.
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Résumé

Cette these traite du probléme de la reconnaissance d’action, c’est-a-dire
de la détermination du type de I’action en cours, ainsi que de sa localisation
temporelle.

En premier lieu, nous traitons du probleme de a représentation vidéo
(comment encoder des vidéos de maniére robuste, de telle sorte que cette
représentation soit appropriée a une grande variété de classes d’action, de
taches et de types de vidéos). Nous proposons une évaluation approfondie
qui explore I'encodage par vecteur de Fisher (VF), une alternative au sac-de-
mots (SDM). Nous explorons de plus différentes manieres de tenir compte
de l'information de disposition spatiale. Notre étude prouve que VF est
supérieur au SDM en termes de performances et d’efficacité. Pour la tache
de localisation, nous introduisons deux nouvelles variantes de suppression
non-maximale qui corrige le biais envers des fenttres trop courtes.

En second lieu, nous améliorons 1'efficacité de la représentation par VF
pour la localisation d’action. Les normalisations puissance et ¢, améliorent
les performances mais nuisent a 1'utilisation de techniques de localisation
efficaces comme les images intégrales et les algorithmes par séparation et
évaluation. Nos approximations entrainent des accélérations d’au moins un
ordre de grandeur tout en maintenant les performances a 1’état de 'art en
reconnaissance et en localisation d’action.

En troisiéme lieu, nous étudions la tache de localisation spatio-temporelle
d’action. Une des difficultés majeures en est la taille de 1’espace de recherche
défini par les tubes spatio-temporels formés par des suites de boites en-
globantes au cours de images. Des méthodes pour engendrer de maniere
non-supervisée des propositions de détection ont récemment fait montre
d’une grande efficacité pour la détection d’objets dans les images figées. Ici,
nous introduisons une approche pour extraire des propositions de régions
spatio-temporelles. Nous étendons tout d’abord une méthode récente de
propositions d’objets 2D pour produire des propsoitions spatio-temporelles
par un processus de fusion aléatoire de supervoxels. Dans un second temps,
nous proposons une nouvelle méthode de supervoxels efficaces. Les résultats
expérimentaux sur la base UCF-Sports montrent que 1’on obtient un rappel
de 70% en extrayant cent tubes spatio-temporels par vidéo.

Pour finir, nous présentons dans 1’appendice de cette thése notre soumis-
sion gagnante au concours THUMOS 2014. Pour la tache de classification,
nous partons de notre représentation a base de VF a laquelle nous ajoutons
des descripteurs de mouvement, ainsi qu’audio. Pour la tache de localisation,
nous améliorons la performance en incluant le score de classification dans
celui, final, de localisation.

Mots-clés. Reconnaissance d’action e Localisation d’action e Reconnais-
sance d’évenements e Représentation vidéo e Efficacité e Classification.
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Chapter 1

Introduction

Contents
1.1 Context . .. . . . . o e
1.2 Goals . . . . . . o e

1.3 Contributions . . . . . . . . . ... .

In a red-tinted view we are shown a parking lot. Numbers in a white
monospaced font are flowing on both sides of the scene as each vehicle
is in turn segmented and identified: a Harley Davidson motorcycle, a
Yamaha one, a Plymouth sedan car. We enter into the bar at the end of
the car park and we detect and classify each person as male or female, as
mesomorphic, ectomorphic or endomorphic. We stop at a mesomorphic
male, the typical bearded, long-haired guy wearing a leather jacket. We
scan him slowly, from bottom to top, fitting 3D models to his calves,
thighs, torso, hands and head. The displayed message—match—indicate
that the recognition algorithm identified him as the target.

That is an idealized computer vision system as portrayed in the Ter-
minator 2 movie, see Figure 1.1. The Terminator view is able to analyze
data in real time and accurately detect objects and humans, perform face
recognition and scene understanding. Now, after almost 25 years since
the movie release, we might wonder if we have closed the gap between
science fiction and real-world applications.

The efforts of the computer vision community have certainly led to
impressive results on some tasks. A lot of effort has been put into face-
related tasks (detection, recognition, verification) and it has been shown
that they can match human performance [Taigman et al., 2014, Phillips
and O"Toole, 2014]. But the strongest case for their success comes from the
wide-spread adoption. We are using applications based on face detection

1
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Figure 1.1 — The Terminator view, an idealized computer vision system.

or recognition on a daily basis: almost any camera or mobile device is
able to perform face detection when taking a picture; social networks
can automatically tag our friends in the photos we upload. Another
application that has had a lot of commercial success is the Kinect console
from Microsoft. The device uses a 3D human pose estimation algorithm
to allow its user the control using the body movement.

This thesis has at its core the task of action recognition—a fundamen-
tal problem of computer vision that is yet to be solved. The goal is to
automatically output the action that is happening in a video. Action
recognition is one of the building blocks of an intelligent vision system.
But if machine vision a la Terminator seems far fetched, there are other
exciting applications in sight. One such example is Google Glass, a smart
device, which is worn similarly to a pair of glasses, but whose usual lenses
are replaced by a small screen and a camera. The most interesting and
controversial feature of the Google Glass is its video recording capability.
Being able to record all the daily activities will result into a tremendous
amount of information. In such a scenario only an automatic system can
aid us in organizing and understanding the data. A similar motivation
for automated systems comes from other applications as well: indexing
large collections of videos on video-sharing web-sites (YouTube, Vimeo);
monitoring the behaviour and activities in surveillance applications.

1.1 Context

Action recognition is still a recent field of research, but it grew swiftly
in the last couple of decades. We can trace back the first attempts at action
recognition in the beginning of the 1990s: classification of tennis strokes
[Yamato et al., 1992], gait recognition [Niyogi and Adelson, 1994], recogni-
tion of ballet steps [Campbell and Bobick, 1995]. Since then many vision
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researchers directed their efforts on the problem of action recognition and
by 2000 already seven review papers were published on action recognition
and related topics, such as motion estimation [Gavrila, 1999] or motion
extraction [Aggarwal and Cai, 1999].

Moeslund et al. [2006] identify four main stages of action recognition
systems: (i) initialization (detecting the human in the first frame of the
sequence); (ii) tracking (updating the human detections as the video pro-
gresses); (iii) modeling (representing the human, typically by estimating
its pose); (iv) classification (recognizing the action performed based on
the modeled features).

Early action recognition systems relied on previous work on model-
driven approaches [Roberts, 1963, Marr and Nishihara, 1978]. The initial
trend was to model the human as precisely as possible using prior infor-
mation about the human body. In one of the first papers that analyzes
human motion in videos, Hogg [1983] builds a 3D human model based on
cylinders. The human model had a hierarchical structure (the body has a
head, a torso, arms, legs; the leg has a calf and a lower-leg; the arm has a
lower-arm and upper-arm) and the model was pre-specified (a full page
of the paper was dedicated to enumerating the relative coordinates and
orientation of each body part). The human is detected by first subtracting
the background, then extracting the edges and the method is evaluated
by projecting the human model onto the images. Initially 3D volumetric
human models were used in action recognition [Rohr, 1994, Campbell
et al., 1996], but progressively simpler models, like silhouettes [ Yamato
etal., 1992, Brand, 1999], became a popular way of representing humans.
These avoid finding the location of each body part in 3D, and instead
estimate the 2D position of locations in each frame.

The problem of classification is often reduced to the problem of match-
ing: find the sequence in the training data set that aligns best with the
query sequence and predict the corresponding class. Given the temporal
nature of the data, tools from speech processing have been adapted and
become commonly used. Dynamic time warping (DTW; Sakoe and Chiba,
1978) is a well known technique to match a test pattern with a reference
pattern if their time scales are not perfectly aligned but when temporal
ordering constraints do hold. For example, [Darrell and Pentland, 1993]
use DTW for recognizing hand gestures. Another very popular method
is to use hidden Markov models (HMM; Rabiner, 1989), which can be
regarding as non-deterministic state machines that move from state to
state based on learnt probabilities. Matching involves the computation
of the probability that a particular HMM could have generated the test
sequence which corresponds to the observed image features. Numerous
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papers have leveraged the flexibility of HMMSs: Yamato et al. [1992] use
a discrete HMM to represent sequences over a set of vector quantized
silhouette features of tennis footage, Starner and Pentland [1995] use a
continuous HMM for recognition of American sign language, Wilson and
Bobick [1995] are recognizing hand gestures using a HMM.

Starting from the 2000’s, action recognition became one of the most
popular topics in the computer vision community. The vast number of
papers published in the literature each year stands as evidence for this.
In Chapter 2 we review recent work and look into more detail at related
methods.

1.2 Goals

This dissertation is concerned with three tasks of video understand-
ing: action recognition, event recognition and action localization. In the
following we briefly describe these tasks.

Action recognition The goal of recognition is to assign a query video to
one of the given classes. We assume that we have access to a train
dataset of videos with their corresponding class labels. According
to the type of action that is performed in the video, we divide recog-
nition into two tasks: action recognition and event recognition. See
Figure 1.2 for examples of actions and events.

Actions typically consist of a series of atomic movements, for exam-
ple, general body movement (walk, sit down, dive), human interac-
tions (kiss, shake hands, fight), interactions between a human and an
object (weight lifting, ride horse, kick ball). Actions are usually short,
lasting from few seconds to tens of seconds.

Event recognition Events are more complex than actions and they have
a greater semantic span. An event is not captured solely by the
movement of the people, but scene and sound can prove important
cues. For example, two different types of event categories are in-
structional tutorials (make a sandwich, change a vehicle tire, repair an
appliance) and social events (parade, birthday party, flash mob gather-
ing). Events usually last longer than actions, from tens of seconds to
minutes.

Action localization The goal of action localization is to identify where in
a video a given action is taking place. We distinguish two types of
action localization: temporal localization and spatio-temporal local-
ization. Temporal localization finds the temporal span of the action,
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shake hands

birthday party groom an animal make a sandwich

Figure 1.2 — Examples of actions (top row) and events (bottom row).

i.e. the beginning and ending frames. Spatio-temporal localization
tfinds where the action lies both in time and in space: temporally it
finds the beginning and ending frames, spatially it finds the bound-
ing box that encloses the region of interest. Figure 1.3 illustrates the
difference between temporal and spatio-temporal action localiza-
tion.

In this thesis we address two specific goals to improve the techniques
for video understanding.

1. Task-independent video representation We consider three tasks of
video understanding: action recognition, action localization, event
recognition. Albeit distinct, these tasks are intrinsically connected:
the success is determined by how well we encode the action into a
video representation. So instead of using a model specific for each
task, we aim to provide a single video representation, suitable for
all of them. A task-independent video representation is appealing
from an engineering point of view because it enables reuse. It also
allows us to transfer information from one task to another. One such
example is training classifiers for the action recognition task and
then using these classifiers to score chunks of video—the scores will
act as mid-level features for the event recognition task.

2. Efficiency We live in the age of big data and video makes no ex-
ception. For example, in 2014 for the TRECVID multimedia event



6 CHAPTER 1. INTRODUCTION

Figure 1.3 — Two action localization sub-tasks: temporal action localization
(top row) and spatio-temporal localization (bottom row). The red box in-
dicates correct localization for each of the two sub-tasks. Temporal action
localization is concerned with detecting the temporal boundaries. Spatio-
temporal action localization is concerned with detecting the temporal
boundaries and spatial boundaries, inside each selected frame.

detection competition there was provided a test set of about 200,000
videos totalling around 8,000 hours of video. Efficient video repre-
sentations are crucial for tackling such challenges. Another argu-
ment for efficiency is the task of action localization. The usual way of
finding the location of an action is by searching through all possible
locations and scales. This approach becomes quickly infeasible if
either the video grows in size or we increase the number of locations
and scales. We consider methods of pruning the state space of all
possible windows.

1.3 Contributions

This thesis makes the following three main contributions:

e We perform an in-depth evaluation of low-level local features and
encodings for three tasks: action recognition, temporal action local-
ization, event recognition. We consider two state-of-the-art low-level
features (dense trajectories and improved trajectories) and two of
the most popular encoding techniques (bag of words and Fisher
vectors). We also evaluate two different approaches of including
weak spatio-temporal information: spatial pyramid matching and
spatial Fisher vectors. For the task of action localization we observe
that the standard way of selecting the windows using non maximum
suppression (NMS) results in a large number of short windows. We
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propose a variant of NMS that corrects this issue without introduc-
ing any additional cost. This work was published in ICCV 2013
[Oneata et al., 2013]; we present it in Chapter 3.

e We introduce an approach for efficient temporal action localization.
A state-of-the-art representation is based on the Fisher vector encod-
ing whose performance is attributed to its high dimensionality and
non-linear normalizations. These two properties impact negatively
the efficiency, because of the large number of windows that need to
be evaluated. We propose a way to approximate the normalizations
by relying on pre-computed sums of local visual word assignments,
scores, and ¢ norms. This method allows to score an arbitrarily-
sized window in constant time and to reduce the computational cost
by an order of magnitude without any significant impact on the final
performance. This work was published in CVPR 2014 [Oneata et al.,
2014b]; we present it in Chapter 4.

e We propose an approach for making spatio-temporal action localiza-
tion more efficient. The idea is to reduce the number of windows to
be examined by generating spatio-temporal proposals. We build on
the recent approach of Manen et al. [2013] that uses a randomized
superpixel merging procedure to obtain object proposals. We extend
their approach to the 3D video domain, using supervoxels as the
units that will be merged into larger, video proposals. We also pro-
pose a supervoxel method that is based on hierarchical clustering of
per-frame extracted superpixels. This work was published in ECCV
2014 [Oneata et al., 2014a]; we present it in Chapter 5.

Appendix A presents our submission at the THUMOS 2014 challenge.
The task of the challenge is to evaluate action recognition and localization
approaches in realistic conditions. The data consists of untrimmed videos,
where the action may be short compared to the video length, and multiple
instances can be present in each video. For the classification task, we use
the Fisher vector representation and complement motion features with
appearance (SIFT, Color and CNN) and audio features (MFCC and ASR).
For the localization task, we improve the performance by including the
classification score into the final score of video slices. We have ranked
second for the classification task and first for the localization task.

Before moving to our main contributions, described in chapters 3, 4
and 5, we first review, in Chapter 2, related work for each of the three
tasks outlined above in Section 1.2. Finally we present our conclusions
and discussions in Chapter 6.






Chapter 2

Related work

Contents
2.1 Actionrecognition . ... ... ... ... ... L. 10
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In this chapter we present recent work on the problems of video un-
derstanding. We divide the related work by the task they address: action
recognition (Section 2.1), event recognition (Section 2.2), action localiza-
tion (Section 2.3). We draw the attention however that this separation
is rather rough. On one hand, techniques that are useful for one task
can prove useful for a different task. Take the example of local low-level
features, which we present in Subsection 2.1.1; even if they were devel-
oped in the context of action recognition, they were later successfully
applied for action localization, as building blocks of more sophisticated
models. On the other hand, seemingly different methods might share
similar underlying functionally. For example, Girshick et al. [2015] show
that deformable part models (see Subsection 2.3.1) can be casted as a
convolutional neural network (see Subsection 2.1.3).

There is a vast amount of papers published each year in the litera-
ture on action recognition and related topics. In this chapter, we mostly
address recent work. The interested reader can a get broader historical
overview by consulting the previously published reviews on the topics
[Gavrila, 1999, Moeslund et al., 2006, Poppe, 2010, Aggarwal and Ryoo,
2011, Weinland et al., 2011, Cheng et al., 2015]. Most of these papers
survey the task of action recognition, but Poppe [2010] presents also work
on the action localization task, while Jiang et al. [2013a] reviews the task
of event recognition.
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. Local Feature .
Video features encoding Classifier
Dictionary

Figure 2.1 — The action recognition pipeline.

2.1 Action recognition

An important moment in the development of action recognition is
the introduction of standardized datasets. At the beginning of the 2000s,
Schiildt et al. [2004] introduce the KTH dataset and Blank et al. [2005]
introduce the Weizmann dataset. Both these datasets contain sequences of
simple actions, like walking, running, waving, and are filmed in constrained
environments (e.g., fixed camera, a single dominant actor performing the
action). As performance on these datasets saturated, more challenging and
realistic datasets appeared, containing clips from movies, TV broadcasts
or consumer videos. On these datasets most of the previous methods
proved unreliable as their assumptions were too strict: none or constant
camera motion, lack of occlusions, the presence of a single person in the
scene [Moeslund and Granum, 2001].

The methods that were shown to cope best with the new challenges are
based on low-level local feature extraction, followed by bag of words en-
coding of the features. Figure 2.1 illustrates the video processing pipeline
for action recognition. We dedicate the first two subsections to describe
advances in these main stages: local feature extraction in Subsection 2.1.1
and the encoding methods and dictionary learning in Subsection 2.1.2.
Recently, it has been proposed the replacement of this pipeline with a deep
learning representation. We review these approaches in Subsection 2.1.3.

2.1.1 Local features

Local features encode appearance and motion information of small
video volumes (spatio-temporal features) or sequences of image patches
(trajectory features). They aim to provide an independent representation
of actions with respect to their spatio-temporal shifts and scales. Their
appeal comes from two reasons: (i) they make no assumptions on the
global structure of actions; (ii) they are extracted directly from the video.
In this way they are able to avoid error-prone pre-processing steps, such
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as, motion segmentation and tracking, and, as a consequence, they have
been shown to be robust under uncontrolled conditions (background
clutter, multiple motions). The performance of local features has been
demonstrated on a variety of data: movies [Laptev et al., 2008, Marszatek
et al., 2009], TV broadcasts [Niebles et al., 2010, Patron-Perez et al., 2010],
consumer videos [Liu et al., 2009].

Spatio-temporal features. Local spatio-temporal features aim to de-
scribe small three dimensional spatio-temporal volumes of the video
using local descriptors. The descriptors usually encode statistics of the
pixel distributions in different cells of the volume. Most of the approaches
can be viewed as extensions of image descriptors. Laptev et al. [2008]
encode local appearance with histograms of oriented gradients (HOG;
Dalal and Triggs, 2005 and local motion with histograms of optical flow
(HOF). Klaser et al. [2008] extends HOG to the space-time domain by
using histograms of 3D gradient orientations.

Spatio-temporal features are usually extracted at precise locations and
scales. These characteristics are selected by an interest point detector, whose
goal is to maximize the saliency and the stability under various pertur-
bations (e.g., scale, illumination). As for the features, the methods for
spatio-temporal interest point detectors draw inspiration from the image
counterpart: the Harris3D detector [Laptev, 2005] extends to the spatio-
temporal domain the Harris cornerness criterion [Harris and Stephens,
1988], the cuboids of Dollar et al. [2005] uses Gabor filters for the tempo-
ral domain, the Hessian detector of Willems et al. [2008] is a space-time
extension of the Hessian blob detector [Beaudet, 1978].

Trajectory features. In an early psychophysics study, [Johansson,
1973] shows that humans are able to recognize actions by looking only
at the motion of a few moving light displays attached to the body of the
person. Inspired by this observation, research efforts have been directed
into using trajectories—sequence of points tracked in time—to capture the
intrinsic dynamics of video data. Compared to the spatio-temporal fea-
tures, which treat the spatio-temporal volumes identically across the three
axes, trajectories model the temporal dimension separately from the spa-
tial ones. Some ways in which the feature points are tracked include using
the KLT tracker Messing et al. [2009], Matikainen et al. [2009], or matching
SIFT descriptors from consecutive frames Sun et al. [2009]. The resulting
trajectories are often described in terms of their velocity [Song et al., 2003,
Fanti et al., 2005, Messing et al., 2009], position [Song et al., 2003, Fanti
et al., 2005], curvature [Rao et al., 2002], but also local-appearance [Fanti
et al., 2005], saliency or shape [Gorelick et al., 2007].

Tracking feature points with long-term trajectories [Sand and Teller,
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2008, Brox and Malik, 2010] is often expensive and unreliable due to oc-
clusion, light changes and motion blur. Some approaches have shown
promising results by using shorter trajectories (tens of frames) and de-
scribing them with local features [Matikainen et al., 2009, Wang et al.,
2009]. The short-term trajectories are robust to drifting problems and
they are based on existing optical flow algorithms [Lucas and Kanade,
1981, Farnebédck, 2003]. The method of Wang et al. [2013a] describes lo-
cal information across a fixed small number of frames using histograms
of optical flow, histograms of oriented gradients and motion boundary
histograms. As opposed to most spatio-temporal features, they do not
rely on a interest point detector, but sample the feature points densely.
This approach results in more data to process, but it also leads to better
results. The patches that are missed by the interest point detector can
be discriminant for the task at hand, so it is recommended to rely on
the power of the statistical methods (encoding and classifier steps) to
automatically learn the right patterns. The dense trajectory method Wang
et al. [2013a] is further detailed in Section 3.1.

Despite camera motion will influence the mentioned features, very
few approaches consider it when extracting feature trajectories for ac-
tion recognition. Uemura et al. [2008] combine feature matching with
image segmentation to estimate the dominant camera motion, and then
separate feature tracks from the background. Wu et al. [2011] apply
a low-rank assumption to decompose feature trajectories into camera-
induced and object-induced components. Gaidon et al. [2013] use efficient
image-stitching techniques to compute the approximate motion of the
background plane and generate stabilized videos before extracting dense
trajectories [Wang and Schmid, 2013] for activity recognition.

2.1.2 Encoding methods

The goal of the encoding step is to aggregate local video features into a
global vector representation. Being able to represent a video by a fix-sized
vector allows us to leverage standard classification algorithms. Methods
like logistic regression or support vector machines have been studied for
a long time, they are well understood and many quality implementations
are available. Another advantage of the encoding step is its efficiency:
the memory footprint of the aggregated vector is usually smaller than
of the local features extracted from a video. Encoding methods are also
appealing because they are agnostic to the type of features. They encode
in the same manner different types of features and methods developed
for the image domain can be reused for video data with few changes.
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We distinguish three stages for a quantization-based encoding tech-
nique:

1. Finding the most representative cluster centers in the feature space;
2. Assigning local features to the selected cluster centers;
3. Modeling the statistics of the assigned features.

To illustrate these three steps, let us consider some examples. The
bag of words encoding (BOW; Csurka et al., 2004) chooses the clusters by
optimizing the k-means objective function, assigns the feature points to
the closest cluster (hard quantization), and models the space by count-
ing the number of points that were assigned to each cluster. The final
representation is the vector of counts, whose size is equal to the number
of centroids K. In the literature the cluster centers are also referred to as
words or visual words. The soft-assignment encoding (SA; Van Gemert
et al., 2010) is the soft version of BOW: it models the space using the
Gaussian mixture model (GMM), assigns to each cluster the feature points
according to their posterior probability (soft quantization), and models
the space by adding the posterior probabilities for each cluster. The final
representation has again a size equal to the number of centroids K. The
Fisher vector encoding (FV; Sanchez et al., 2013) is in turn a generalization
of the soft-assignment encoding, as it models the space by taking into ac-
count richer statistics: the mean and the variance of the assigned features
in addition to the sum of posterior probabilities. The FV representation
has a size of K + 2DK, where D is the size of the features and hence the
size of the mean and variance vectors. We further detail and evaluate
these three encodings in Chapter 3. In Table 2.1 we overview the main
encodings presented in this section.

Other popular encoding schemes are the vector of locally aggregated
descriptors (VLAD; Jégou et al., 2012) and the super vector coding (SVC;
Zhou et al., 2010). Both of them can be viewed as particular cases of the
FV encoding—they model the space using only the first-order moment,
ie., the mean of the feature points. In addition, VLAD is based on the
k-means clustering and uses hard quantization.

Inspired by the success of sparse modeling of image patches for image
denoising and inpainting, a series of encoding methods based on sparse
representations have been proposed. The super vector coding (SVC) of
Yang et al. [2009] is similar to BOW, but learns the visual words using an
objective function regularized by a sparsity-inducing term. The locality-
constrained linear encoding (LLC) of Wang et al. [2010] assigns a feature to
the closest M words and it expresses the feature as a linear combination of
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Method Learning Assign. Modeling Pooling Dimen.
BOW k-means hard counts average K

SA GMM soft counts average K

FV GMM soft counts, mean, variance average K+ 2DK
VLAD k-means hard mean average DK
svC sparse coding! sparse linear combination maximum K
LLC sparse coding® sparse linear combination maximum K

! The SVC objective is similar to the k-means objective, but uses an /; regularization.
2 As opposed to SVC, the LLC objective enforces the locality of the selected words.

Table 2.1 — Summary of the main characteristics of the presented encodings.

those M words. The final representation aggregates the linear combination
coefficients of the features using the max-pooling operator.

The pooling operation refers to how encodings of individual local
descriptors are aggregated together to a single vector representation. The
typical pooling operators are the sum and maximum functions. Sum
pooling is particularly appropriate for quantization-based encodings (e.g.,
BOW, SA, FV): encoding the features from the whole image is equiva-
lent to sum pooling the encodings belonging to the splits of the image.
Max-pooling is typical applied to sparsity-based encodings [Boureau
et al., 2010b] and it is motivated by biological evidence [Serre et al., 2005].
That said, there is nothing that restricts us from doing max-pooling on
quantization-based methods or alternatively average pooling on sparsity-
based encodings, see [Boureau et al., 2010a].

As shown in [Perronnin et al., 2010], normalizing the encoding impacts
significantly the final performance. While the theoretical motivation of
different normalizations is not always evident, from a practical point of
view the normalizations can introduce non-linearities in the data, which
increase the discriminative capabilities of the pipeline. The power nor-
malization [Perronnin et al., 2010] is an example of such a non-linear
transformation: each entry of the encoding is sign-squared rooted, that
is, transformed by the function f(x) = sgn(x)+/]x|. The power normal-
ization is motivated by the phenomenon of burstiness of visual words—a
visual word that appears in a video, it is more likely to occur again. So
the idea is to weight less the more frequent visual words than the less fre-
quent ones. Another common way of normalizing is by ensuring constant
norm for the encoding of each sample. We can ¢;-normalize non-negative
representations (such as BOW) and use them with distances between
distributions (such as x? distance). The ¢, normalization projects the data
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on the unit sphere, trying to avoid the problem of meaningless distances
in high-dimensional spaces. We discuss these normalizations in more
detail in Chapter 4, where we propose ways of approximating them for
efficiency reasons.

All these encoding techniques have been benchmarked for image
classification [Chatfield et al., 2011] as well video classification [Wang et al.,
2012b, Peng et al., 2014]. Wang et al. [2012b] survey the encoding methods
together with different pooling approaches (maximum and average) and
normalizations (¢; and ¢;). Peng et al. [2014] investigates also the impact
of various fusion approaches of low-level features. All three evaluation
papers show FV as the best performing encoding.

The Fisher vector encoding is based on a probabilistic model—the
encoding consists of the derivatives of the log-likelihood w.r.t. its parame-
ters [Jaakkola and Haussler, 1999]. The FV encoding that we previously
mentioned, of Sanchez et al. [2013], is based on the GMM model. Re-
cently, multiple variants of FVs have been proposed by considering other
probabilistic models. Sun and Nevatia [2013] models classifier scores on
temporal slices by using a FV computed on the transition probabilities
of an HMM model. Cai et al. [2014] incorporates features from various
sources in a principled manner by deriving FV on the probabilistic canon-
ical correlation analysis. Motivated by the fact that local features are not
accurately modeled by the Gaussian distribution, but by distributions
with heavier tails, Klein et al. [2014] derive FV using the Laplacian dis-
tribution and propose two models: a Laplacian mixture model and a
hybrid Gaussian-Laplacian mixture model. More complex models em-
ploy Bayesian ideas, that is, treat parameters as random variables, and
compute FV as the derivative of the log-likelihood w.r.t. to the hyper-
parameters [Cinbis et al., 2012, Liu et al., 2014]. The log-likelihood is
usually intractable in such cases and, hence, it is approximated. Cinbis
et al. [2012] consider a Bayesian GMM and approximate the log-likelihood
using variational inference techniques. They show that their model is
complex enough to capture non-iid patterns of the data. Liu et al. [2014]
propose a Gaussian distribution with a randomly generated mean vector.
They show that this model is equivalent to using a GMM with an infinite
number of components and obtain the Fisher vector by solving a sparse
coding problem.

The VLAD encoding has been shown to perform on par with FV on
image retrieval tasks, while being more compact [Jégou et al., 2012]. How-
ever, more effort has been put into further improving the representation.
Wu et al. [2014] give a new interpretation to the VLAD encoding as the
Maximum Entropy principle for feature learning and they also motivate
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the normalizations (square rooting of descriptors increase their normality)
and in the light of these observations propose a new normalization and
compression technique. Yang and Tian [2014] propose an encoding that
merges ideas from VLAD and sparse coding. As for the VLAD, they use
the first-order moment information, but they use sparse coding for the
assignment step. Sparse coding is also used to estimate the coefficients
for each feature and then they are aggregated using average pooling.

The step of finding the cluster centers or, more generally, basis vectors
is also known in the literature as dictionary learning or codebook learning.
The methods that we discussed use unsupervised methods, e.g., k-means,
GMM. Intuitively, optimizing over the partitioning of the feature space for
the task at hand should improve the performance. For example, Van der
Maaten [2011] and Sydorov et al. [2014] use FV and optimize jointly over
the Gaussian parameters and the classifier. The methods differ in the type
of classifier used—metric learning NCA for Van der Maaten [2011], SVM
for Sydorov et al. [2014]—, but the optimization is similar in both cases, as
it consists of two alternating steps: optimizing the classifier and learning
the dictionary. Peng et al. [2014] employ supervised dictionary learning
for VLAD. They optimize a cross-entropy objective function in the context
of classification w.r.t. centroid locations.

Influenced by the recent success of convolutional neural networks
(which we discuss in Subsection 2.1.3), deeper approaches have been
proposed in the context of encodings. The idea is to use the multiple layers
of encoding steps, by feeding the output of an encoding method to the
input of another encoding method. Simonyan et al. [2013b] use two layers
of FV. They encode FVs, which are extracted from rectangular image cells,
with another FV. A metric learning step is interposed between the layers
to reduce the dimensionality of the first FV layer. This was necessary to
keep the dimensionality of the final representation to a manageable size.
Peng et al. [2014] reuse the ideas, but with two main distinctions. They
consider action recognition instead of image classification and they pool
the first FV layer on 3D cuboids (instead of 2D image patches). The work
of Taralova et al. [2014] addresses also the task of action recognition, but
they use the BOW encoding for both layers and supervoxels as a pooling
support for the first BOW layer.

2.1.3 Deep learning

The local feature methods presented in Subsection 2.1.1 rely on incor-
porating into their design prior knowledge about desired invariances, e.g.,
w.r.t. rotation, illumination and scale. An alternative direction is to learn
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these invariances from data. This method was advocated by the neural
network community, but its utility was hampered by the lack of training
data and limited computing resources. Now that these problems start to
be overcome, neural networks have regained attention.

The first neural networks methods applied for the task of action recog-
nition were unsupervised and they were generalizations to 3D of previous
techniques for 2D images: Taylor et al. [2010] extends convolutional re-
stricted Boltzmann machines to the 3D spatio-temporal domain; Le et al.
[2011] proposes a two-stack convolutional independent subspace analysis.
They claim that it is possible to learn from data optical flow and motion
sensitive features that are similar to the brain’s V1 receptive fields.

Krizhevsky et al. [2012] won the ImageNet competition for image
classification using a deep convolutional neural network (CNN)—a se-
quence of three types of layers (convolutional, non-linear and pooling)
that ends up with a fully-connected layer used for classification. Their
method obtained about 40% relative improvement over the second ranked
method, which was relying on a combination of low-level features en-
coded with Fisher vectors (FV). Following this impressive result, deeper
and supervised neural networks have been applied to action recognition
also. Karpathy et al. [2014] uses a similar CNN to [Krizhevsky et al.,
2012] for action recognition and evaluates several fusion techniques over
the temporal dimension. Both Ji et al. [2013] and Tran et al. [2014] use
CNN with spatio-temporal 3D filters, but Tran et al. [2014] uses a deeper
architecture (eight layers compared to three) and trains on the full frame,
as opposed of using human detections as Ji et al. [2013].

However, the best results were obtained using CNN on optical flow
instead of appearance [Simonyan and Zisserman, 2014, Yue-Hei Ng et al,,
2015]. Simonyan and Zisserman [2014] proposes to use two CNNs: the
input to the first network is the appearance frame and the input to the
second network is a stack of densely computed optical flow features. The
CNN s are trained separately and the final prediction is the weighted
average of the individual predictions. Interestingly, they have shown that
deep learning provides complementary information to the usual local
teatures, and that the best performance is obtained when combining both.

2.2 Event recognition

The event recognition task has been popularized by the TRECVID
multimedia event detection (MED) competitions organized by National
Institute of Standards and Technology (NIST) since 2010. The end goal of
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the competition is to provide searching capabilities for users in multime-
dia video material. The videos released in the TRECVID dataset depict
events, such as, birthday party, changing a vehicle tire, making a sandwich).
Compared to actions, which are defined as a sequence of movements,
events are characterized more by semantics than the dynamics of the
action. Hence contextual cues (e.g., scene, audio) are important when
analyzing such videos. Some examples: in a birthday party video we expect
to hear people singing “Happy birthday!”; in a changing a vehicle tire video
the visual instructions are accompanied by audio instructions and textual
descriptions; in a making a sandwich video the action usually takes place in
a kitchen.

2.21 Complementary features

Given the importance of contextual features, going beyond motion
features proves crucial for good performance for event recognition tasks.
The top competitors on the TRECVID challenge [Jiang et al., 2010, Natara-
janetal., 2012, Aly et al., 2013] complement motion with other low-level
features (appearance, audio) and high-level optical character recognition
and speech recognition features.

The appearance features capture static information about the texture
and the shape of the scene. The most commonly used appearance features
are local features that were successfully used in object recognition tasks,
like scale invariant feature transform (SIFT; Lowe, 2004) or speeded-up
robust features (SURF; Bay et al., 2008). Global features that capture the
general shape of the scene are also often used; these include GIST descrip-
tors [Oliva and Torralba, 2001] or self-similarity descriptors [Shechtman
and Irani, 2007]. Color descriptors encode similar information to SIFT or
SURE, but they have been claimed to give a better invariance to illumina-
tion [Van de Sande et al., 2010].

The single most popular audio features are the mel-frequency cepstral
coefficients (MFCC; Rabiner and Juang, 1993). They are versatile features,
being used for a number of tasks, such as speech recognition, speaker
recognition, music retrieval. MFCC are based on the cepstrum—a non-
linear spectrum of a spectrum—, and use frequency bands that emulate
the human auditory system.

Working on multiple features raises the question of how to combine
multiple channels in order to obtain a single score. This is an important
question, because not all features are equally relevant and using noisy fea-
tures can adversely affect performance. We consider the typical pipeline
of local features — encoding — classifier, and we organize the fusion
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techniques into three types, according to the place where we fuse the
features:

Early fusion Combine the features before the encoding step;

Mid-level fusion Encode separately each feature and combine the encod-
ing before the classification step;

Late fusion Encode separately each feature and obtain a separate score
for each feature and combine the classification scores.

Probably the most commonly used fusion technique is the mid-level
fusion. Because many classification techniques rely on kernels to encode
similarities between pairs of samples, mid-level fusion corresponds to
averaging the kernel values across features; hence, in the literature is it
often referred to as kernel averaging [Gehler and Nowozin, 2009]. The
multiple kernel learning (MKL; Gonen and Alpaydin, 2011) algorithms
are popular extensions of kernel averaging and they aim at learning a
kernel combination weighting. More advanced MKL methods combine
the kernels in an hierarchical fashion [Bach, 2009, Hwang et al., 2012, Tang
et al.,, 2013]. Among those, Tang et al. [2013] consider the task of event
recognition. They learn a AND-OR tree for each concept. The leaves of
the AND-OR tree are the kernel matrices corresponding to each feature,
where the AND nodes average the kernels, the OR nodes select one of
multiple kernels. Peng et al. [2014] evaluate the three types of fusions
for action recognition and conclude that on average the mid-level fusion
performs best. Myers et al. [2014] compare nine late fusion techniques for
the task of event recognition and obtain the best results with the simple
arithmetic mean.

2.2.2 High-level features

Humans often describe objects or actions in terms of their constituent
parts. A forehand shot is “a shot made by swinging the racket across
one’s body with the hand moving palm-first.” If we are able to detect
that there is a racket in the scene and its movement follows a trajectory
across the body of the tennis player, then there are high chances that we
are witnessing a forehand shot. One line of research employs exactly this
idea—instead of directly predicting the class label of a video, first predict
labels for more atomic classes (also known as attributes), and based on
them make the final decision.

The idea of decomposing an action into primitives is not new. Early
neurobiological experiments suggest that the human visual system per-
ceives the visual input of an action as a sequence of motor primitives.
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Inspired by these results, researchers seek to define hierarchies of action.
Bobick [1997] identifies three components of the hierarchy: movements,
activities and actions. Movements are the most atomic primitives, they
require no contextual knowledge to be recognized; activities are sequences
of movement; actions are described on top of the activities and they ex-
hibit causal relationships or interactions with the environment. The work
of Intille and Bobick [1998] on American football recognition is an early
example of system that decomposes actions. Their primitives are move-
ments such as run in front, catch pass, turn toward. These are connected in a
rule-based Bayes network whose constraints are manually specified.

The power of high-level features lies in their interpretability. This
allows us not only to name the class, but also to describe more precisely
what is happening in a video. Many approaches use high-level features
to generate natural language from video [Kojima et al., 2002, Barbu et al.,
2012, Das et al., 2013, Rohrbach et al., 2013]. These methods use action
primitives, but also object or person detectors. The sentence generation
process often reduces to filling in template sentences with nouns and
verbs corresponding to the detected objects and actions. But recently
more data-driven approaches have been used. For example, Rohrbach
et al. [2013] adapt machine translation algorithms to link the semantic
representation of attributes to textual captions, which were gathered from
a separate corpus.

Another use of attributes is reducing the amount of data needed for
training. Farhadi et al. [2009] show that attributes significantly boost
performance when learning with few examples. Lampert et al. [2009b]
extend classifiers to classes that were not represented in the train set. This
is possible because the attributes are shared across classes and each class
can be manually described in terms of attributes.

The action bank method [Sadanand and Corso, 2012] represents a video
with high-level features by embedding it into a space spanned by the
action classifier scores. The action classifiers are applied on video sub-
volumes of various scales and then aggregated into a vector represen-
tation. Merler et al. [2012] introduces the equivalent of action bank for
event recognition, the concept bank. Similarly to the action bank it provides
an intermediate level semantic representation, but it uses a bank of se-
mantically broader and more diverse concepts (e.g., outdoors, construction,
clouds).

An active research topic is how to choose the basis of attributes. For
actions it is common to use fine grained motions [Liu et al., 2011, Sadanand
and Corso, 2012], while for events the detectors refer to coarser concepts
[Merler et al., 2012]. In an overview study, Habibian et al. [2013] explore
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the type, the specificity and the quality of the detectors in the context
of event recognition. Their best practice advice is to aim for increasing
the number of concepts rather than improving the quality of the concept
detectors. They also recommend to build a diverse concept bank—objects,
actions, scenes, people, animals—, and include both general and specific
concepts.

Several recent papers propose learning the most relevant concepts for
each event: Ma et al. [2013b] optimize jointly over the concept classifiers
and event classifiers; Mazloom et al. [2014] use cross-entropy optimization
to select the most informative concepts for each event; Zheng et al. [2014]
propose a greedy feature selection approach that optimizes a sub-modular
function; they show that their algorithm gives a nearly-optimal solution.

2.2.3 Structured models

The previously described methods—based on encodings like bag of
words or Fisher vector—are oblivious to the feature ordering. Videos as
well as images are, however, highly structured signals. Thus, it is not
surprising that many approaches incorporate this prior information into
the models.

An effective way of going beyond the orderless representations is the
spatial pyramid matching (SPM; Lazebnik et al., 2006). The idea is to
encode separately features belonging to different regions of the image and
then concatenate them into the final representation. SPM is particularly
suitable when categories share similar layout structure for example, scene
images. Laptev et al. [2008] show that this is also the case for videos. They
extend SPM for action recognition and find out that partitioning the video
in three horizontal stripes performs best.

The standard SPM pools the features over cells of a grid, but other
more flexible ways of partitioning the image have been investigated. For
example, Bilen et al. [2014] learn the cell sizes of a two-by-two grid by
inferring the intersection point of the vertical and horizontal splits. Other
ways of generalizing SPM is by learning weights for each cell [Bosch et al.,
2007] or by encoding the local features’ locations [Krapac et al., 2011, Yang
and Tian, 2014].

For event recognition, latent variable models are often used to explic-
itly model sub-events (their presence, duration, relative order). Li et al.
[2013a] and Vahdat et al. [2013] observe that the videos are not precisely
cropped around the action of interest. In order to remedy this problem,
they use latent models to infer which temporal segments are relevant
for each video and event. Tang et al. [2012] use a variable-length dis-
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criminative HMM model which infers latent sub-actions together with a
non-parametric duration distribution. Izadinia and Shah [2012] use a tree-
structured CRF to model co-occurrence relations among sub-events and
complex event categories, but require additional labeling of the sub-events
unlike Tang et al. [2012].

More sophisticated models have been proposed for the action recogni-
tion task. These usually aim to explicitly capture the spatial and temporal
structure of actions [Matikainen et al., 2010, Gaidon et al., 2011, Brendel
and Todorovic, 2011, Wang et al., 2014a]. Other authors have focused
on modeling interactions between people and objects [Gupta et al., 2009,
Prest et al., 2013], or used multiple instance learning to suppress irrelevant
background features [Sapienza et al., 2012].

2.3 Localization

We have described in the first chapter of the thesis two types of action
localization tasks. Most of the recent papers on action localization fall
into one of these categories: temporal localization [Duchenne et al., 2009,
Niebles et al., 2010, Gaidon et al., 2011], spatio-temporal localization
[Klaser et al., 2010, Tran and Yuan, 2011, Lan et al., 2011, Tran and Yuan,
2012, Tian et al., 2013, Wang et al., 2014b, Jain et al., 2014].

Other variations of action localization do exist, but are not standard.
Yuan et al. [2009] and Cao et al. [2012] aim to find the cuboid that best
covers the action. This task is called sub-volume search and, in terms of
localization granularity, it is situated somewhere between temporal and
spatio-temporal localization: more precise than temporal localization, but
less precise than spatio-temporal localization. Some of the methods for
spatio-temporal localization provide finer localizations than bounding
boxes, e.g., cell level Lan et al. [2011], pixel-level Jain et al. [2014]. How-
ever, the standard datasets are annotated at bounding box level and we
will not differentiate these categories.

Another direction of localization task is to use training data that is not
precisely annotated. The clips are a rough estimate of when an action
occurs and the goal is to refine temporal extents. Some examples include
the work of Duchenne et al. [2009], who employ discriminative cluster-
ing, and [Satkin and Hebert, 2010], who define a max-margin objective
function with temporal extents acting as latent variables.

In the following subsections, we detail the references mentioned above.
In Subsection 2.3.1 we present models that were shown to be suitable for
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localization and in Subsection 2.3.2 we review ways of dealing with the
pressing issue of efficiency.

2.3.1 Models for localization

The most straightforward way of performing localization is by treating
it as localized classification. This technique, known as sliding window,
it applies a classifier function to uniformly extracted windows (either
temporal or spatio-temporal) [Duchenne et al., 2009]. The window that
yields maximum score should correspond to the action’s location.

As we argued in Subsection 2.2.3, going beyond orderless representa-
tion is intuitive and often improves performance. Gaidon et al. [2011] use
a more structured model for temporal action localization. They model an
action as three consecutive sub-actions whose durations are learnt in a
non-parametric way. Each of the sub-actions is represented by the BOW
encoding.

Other structured models were inspired by object detection systems.
Felzenszwalb et al. [2010] revive the pictorial structure models [Fischler
and Elschlager, 1973]—a collection of parts with connections between cer-
tain pairs of parts—by taking advantage of modern features (histogram
of oriented gradients) and statistical methods (latent support vector ma-
chines). They propose the deformable part model (DPM), a latent-variable
model for object detection. DPM consists of a series of detectors: one for
the entire object, root filter, and others for its parts, part filters. The detec-
tors are combined into a scoring function by considering the maximum
individual scores and penalizing the displacement of the parts from an
initial configuration.

DPM was extended to both temporal [Niebles et al., 2010] and spatio-
temporal localization [Lan et al., 2011, Tian et al., 2013]. The model of
Niebles et al. [2010] infers temporal anchor points and scales for the sub-
events of each class. Based on these temporal locations, they pool features
and then compare them using the x? kernel. Tian et al. [2013] propose
a direct extension to the spatio-temporal domain by replacing the HOG
filters with the HOG-3D filters of [Kldser et al., 2008]. On the other hand,
the work of Lan et al. [2011] draws inspiration from the latent SVM of
Felzenszwalb et al. [2010] to treat the spatio-temporal task as a set of
image-level detection problems. Their latent variables model the location
of the person in each frame and the deformation cost enforces similar
locations across time. Lan et al. [2011] replace the DPM’s root filter with a
global appearance filter, which takes into account the recognition score.
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2.3.2 Efficiency

Efficiency is of particular importance in localization. State-of-the-
art detection systems evaluate around 100,000 windows for each image
[Felzenszwalb et al., 2010]. For object detection (sub-image search) the
number of candidate windows grows quadratically with the image size,
while for videos (sub-volume search) the growth is even more abrupt—
cubic in the video size. In this Subsection, we look at some approaches for
improving the efficiency of localization methods.

Cascade filters. A natural idea of improving efficiency is by filtering
out the initial pool of candidate windows based on a fast sequence of
pre-processing steps. These methods are reminiscent of the face detector
of Viola and Jones [2004], which relied on increasing complex classifiers
(cascade) to quickly discard uninteresting regions. For action localization
typical example of filters are human detector that retains only those frames
for which a human was detected [Lan et al., 2011, Klaser et al., 2010] or a
fast, albeit suboptimal, classifier that drops low-scoring windows [Klédser
et al., 2010]. Reducing the initial set of candidate windows, enable the use
of more expensive methods: non-linear classifiers in the case of Kladser
et al. [2010] or latent models in the case of Lan et al. [2011].

Optimization methods. A different class of efficient localization meth-
ods leverages the advances in optimization. Lampert et al. [2009a] use the
branch and bound algorithm to efficiently detect objects in images. Branch
and bound (BB) is a general optimization algorithm that can find the
optimal solution of a non-convex problem. In the worst case BB is as
expensive as exhaustive search, but we can improve its efficiency if we
provide it bounding function—a function that bounds the optimal solu-
tion from a subset of the search domain. Based on this bounding function,
BB prunes out parts of the search state space that give worse estimates
than the current solution. The BB variant of Lampert et al. [2009a] searches
over the set of all rectangular sub-images inside the query image, and
uses a bounding function derived from the classification scoring function.
Cao et al. [2010] and Yuan et al. [2009] extend the method of Lampert
et al. [2009a] to 3D and find the maximum scoring sub-volume inside a
video. In Section 4.3, we also employ the BB algorithm for the task of
action localization.

Dynamic programming is another optimization technique that was
employed for spatio-temporal localization. Tran and Yuan [2011] score
the cells of the video and connect the neighbouring cells in a lattice graph.
Using dynamic programming they find the path that yields the maximum
score (they assume the scores to be additive, so the score of a path is the
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sum of window scores).

Structured learning is yet another alternative to exhaustive search for
localization. Blaschko and Lampert [2008] were first to propose structured
learning for object localization and Tran and Yuan [2012] followed later
with an extension to spatio-temporal localization. The main idea of these
approaches is to regress the coordinates of the window directly from the
entire image. As opposed to using binary classification for localization,
which scores each window independently, structured learning takes into
account the correlations from the output space, i.e., overlapping windows
result in similar classification scores. Blaschko and Lampert [2008] use
these dependencies to improve performance and efficiency of both the
training and testing procedures. For the task of spatio-temporal action
localization, Tran and Yuan [2012] consider even more complex output
than [Blaschko and Lampert, 2008]: temporal sequences of the rectangle
bounds.

Proposals. A class of methods that avoids the windows at every
location and scale are the proposal methods. The idea is that from the
set of all possible windows only a few are relevant in the sense that they
contain an object. Using various image features, we can accurately decide
on the quality of the window for localization. Based on this observations,
Alexe et al. [2012] define a score that a certain window contains an object.
The objectness score is based on multiple cues, like saliency, color contrast,
edge density, superpixel straddling, which are combined with a Naive
Bayes classifier. Binarized normed gradients (BING; Cheng et al., 2014) are
a fast way of approximating the objectness score based on the normalized
gradients. They rescale each window to a small patch (8 x 8 pixels), then
they compute the norm of the gradients, which results in a 64D vector and
it is used for learning an generic objectness score using a cascaded SVM
framework. Zitnick and Dollar [2014] propose a another fast proposal
method that uses only edges information and a scoring function that
resembles the straddling measure of Alexe et al. [2012]: the number of
contours fully contained in the candidate box.

The methods of Van de Sande et al. [2011] and Manen et al. [2013]
build proposals based on image segmentations. The selective search
method [Van de Sande et al., 2011] constructs a tree of segmentations in a
bottom-up and greedy way. They use color histograms and geometrical
cues to define a distance between adjacent segments. The proposals
are generated as bounding boxes of segments at each node of the tree.
Manen et al. [2013], instead, define a randomized procedure to generate
propoasals: select a random starting segment, which is then grown with
adjacent segments (again, these are randomly selected, using a probability
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distribution inversely proportional to the distance function).

Other methods are based on figure-ground segmentation [Rother et al.,
2004], a binary segmentation technique that separates foreground objects
from their background. These type of proposal methods start with mul-
tiple seed regions and generate a separate figure-ground segmentation
for each seed. For example, Carreira and Sminchisescu [2012] solve a
large number of independent binary min-cut problems on an image grid,
at multiple scales. This step results in a set of segments which is then
filtered to remove small segments and then scored using using a classifier
trained on geometric features. Another related technique is the geodesic
object proposals of Krahenbiihl and Koltun [2014]. This approach uses
the geodesic distance to compute the distance between each pixel and
foreground-background masks. The resulting distance map exhibits stable
levels and a proposal is generated for each stable level by considering the
region that has a distance smaller than the corresponding stable level.

There are only a few extensions of proposal methods for action lo-
calization. Among those, Jain et al. [2014] provide the extension of the
selective search method [Van de Sande et al., 2011] to video. They start
from a video segmentation, the graph-based segmentation of Xu and
Corso [2012], and greedily build an hierarchical tree of proposals. Based
on these proposals, they are able to do spatio-temporal localization in
an efficient manner. In Chapter 5, we present another way of building
spatio-temporal object proposals based on the randomized procedure of
Manen et al. [2013].
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In this chapter we present our pipeline for action recognition. We
combine the state-of-the-art local dense trajectory features with the Fisher
vectors encoding method, to obtain a holistic video representation. Fisher
vectors have been shown to give superior performance over bag of words
and other encodings in image classification [Chatfield et al., 2011, Sdnchez
et al., 2013]. Our experimental results prove that the same conclusion
holds for a variety of recognition tasks and datasets in the video domain.

We consider three challenging problems to demonstrate the effective-
ness of our framework. First, we consider the classification of basic action
categories using six of the most challenging datasets. Second, we consider
the localization of actions in feature length movies, including four action
classes: drinking, smoking, sit down, and open door from [Duchenne
et al., 2009, Laptev and Pérez, 2007]. Third, we consider classification of

27
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more high-level complex event categories using the TRECVID MED 2011
dataset [Over et al., 2012].

On all three tasks we obtain state-of-the-art performance, improving
over earlier work that relies on combining more feature channels, or
using more complex models. For action localization in full length movies,
we also propose a modified non-maximum-suppression technique that
avoids a bias towards selecting short segments. This technique further
improves the detection performance.

The chapter is organized as follows. We start by reviewing the lo-
cal features, the dense trajectories and the improved dense trajectories
(Section 3.1), and the feature encoding techniques, the bag of words and
Fisher vectors (Section 3.2). Then, in Section 3.3, we discuss classification
and explain how to efficiently train and test when dealing with very high-
dimensional vectors, such as Fisher vectors. For the action localization
task we perform non-maximum-suppression (NMS); in Section 3.4, we
propose and motivate new variants of NMS. The datasets and evaluation
protocols are described in Section 3.5. Finally, the experimental results are
given in Section 3.6.

3.1 Local features

Realistic video data poses a series of challenges: intra-class variation
due to style and duration, background and motion clutter, occlusions and
camera motion, and the sheer amount of data that needs to be processed.
Local features are a robust way of handling these situations. The idea of
local features was first popularized for images, where local features—scale
invariant feature transform (SIFT; Lowe, 2004), histogram of oriented gra-
dients (HOG; Dalal and Triggs, 2005) or speeded up robust features (SURF;
Bay et al., 2008)—have been successfully applied for tasks like classifica-
tion, retrieval or detection. In videos, the extension of local features are
the space-time features [Dollar et al., 2005, Laptev, 2005]. Spatio-temporal
features produce robust representations under uncontrolled conditions,
as they make no assumptions about the global video structure and they
avoid non-trivial pre-processing steps (such as object tracking or motion
segmentation).

The success of local space-time features leads to a trend of generaliz-
ing classical descriptors from image to video, e.g., 3D-SIFT [Scovanner
et al., 2007], extended SURF [Willems et al., 2009], HOG3D [Kl&ser et al.,
2008], and local trinary patterns [Yeffet and Wolf, 2009]. Among the local
space-time features, the dense trajectories [Wang et al., 2013a] have been
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(a) Dense sampling (b) Tracking the feature points (c) Extracting the descriptors

Figure 3.1 — The steps of computing dense trajectories [Wang et al., 2013a].

shown to perform the best on a variety of datasets. In the following two
subsections, we review the dense trajectory features [Wang et al., 2013a]
and their improved variant, which includes camera stabilization [Wang
and Schmid, 2013].

3.1.1 Dense trajectory features

The dense trajectory features approach [Wang et al., 2013a] computes
local descriptors along short trajectories. We start by sampling feature
points on a dense spatial grid and across several spatial scales (Figure 3.1a).
Points in homogeneous areas are suppressed, as it is impossible to track
them reliably. The feature points are tracked in a dense optical flow
tield [Farnebéck, 2003] for only 15 frames in order to avoid drifting; then
new points are sampled to replace them (Figure 3.1b). We remove static
feature trajectories as they do not contain motion information, and also
prune trajectories with sudden large displacements.

For each trajectory, we compute HOG, HOF and MBH descriptors with
the same parameters as in [Wang et al., 2013a]; we do not use the trajectory
descriptor as it does not improve the overall performance significantly.
All three descriptors are computed in the space-time volume aligned with
the trajectory (Figure 3.1c). HOG [Dalal and Triggs, 2005] is based on the
orientation of image gradients and captures the static appearance infor-
mation. Both HOF [Laptev et al., 2008] and MBH [Dalal and Triggs, 2005]
measure motion information, and are based on optical flow. HOF directly
quantizes the orientation of flow vectors. MBH splits the optical flow into
horizontal and vertical components, and quantizes the derivatives of each
component. The final dimensions of the descriptors are 96 for HOG, 108
for HOF and 2 x 96 for the two MBH channels.

To normalize the histogram-based descriptors, i.e., HOG, HOF and
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(b) Optical flow

(c) Warped optical flow (d) Removed trajectories

Figure 3.2 — The improved trajectory features stabilize the camera motion
in order to enhance the quality of the optical flow and of the trajectories.

MBH, we apply the recent RootSIFT [Arandjelovic and Zisserman, 2012]
approach, i.e., square root each dimension after /; normalization. We
do not perform ¢; normalization as in [Wang et al., 2013a]. This slightly
improves the results without introducing additional computational cost.

3.1.2 Improved trajectory features

The improved trajectory features approach [Wang and Schmid, 2013]
builds upon the dense trajectory features by adding an additional camera
stabilization step. MBH is based on derivatives of optical flow, which
is a simple and efficient way to achieve robustness to camera motion.
However, MBH suppresses only certain camera motions (for example,
translation at constant depth; but not more complex movements like
zooming, panning or tilting) and, thus, we can benefit from explicit camera
motion estimation. Camera motion generates many irrelevant trajectories
in the background in realistic videos. We can prune them and only keep
trajectories from humans and objects of interest, if we know the camera
motion. Furthermore, given the camera motion, we can correct the optical
flow, so that the motion vectors are independent of camera motion. This
improves the performance of motion descriptors based on optical flow,
i.e., HOF (histograms of optical flow) and MBH. In Figure 3.2 we illustrate
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the difference between the original (Figure 3.2b) and the corrected optical
flow (Figure 3.2c¢).

The first stages—the sampling and the tracking of the feature points—
are done in the same way as for the dense trajectory features. The video is
stabilized by estimating a homography between each pair of consecutive
frames. We extract SURF features and motion vectors of optical flow and
match them using the RANSAC algorithm. The SURF and motion vec-
tors are complementary features: SURF focuses on blob-type structures,
while the motion vectors concentrate on corners and edges. Based on
the homography we warp the second frame and recompute the optical
flow [Farnebéck, 2003]. The motion descriptors (HOF and MBH) are com-
puted on the re-estimated optical flow, while the appearance descriptor
(HOG) remains unchanged. We further utilize these stabilized motion
vectors to remove background trajectories (Figure 3.2d): for each trajec-
tory, we compute the maximal magnitude of the motion vectors during its
length of 15 frames, if the maximal magnitude is lower than a threshold
then the trajectory is considered to be consistent with camera motion, and
thus removed.

Videos often focus on the humans performing the action. So it is very
common that humans dominate the frame, which can be a problem for
camera motion estimation as human motion is in general not consistent
with it. Wang and Schmid [2013] propose to use a human detector to
remove matches from human regions. We used state-of-the-art human
detector [Prest et al., 2012b], which adapts the general part-based human
detector [Felzenszwalb et al., 2010] to action datasets. The detector com-
bines several part detectors dedicated to different regions of the human
body (including full person, upper-body and face). It is trained using
the PASCAL VOCO07 training data for humans as well as near-frontal
upper-bodies from [Ferrari et al., 2008].

3.2 Feature encoding

The feature extraction step represents a video as a set of features. We
aggregate these features into a fixed-dimensional representation using
two encoding techniques: the bag of words and the Fisher vector. In order
to incorporate spatio-temporal location information of the features we
use the spatial pyramid matching and the spatial Fisher vector. All these
techniques are detailed below.
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3.2.1 Bag of words

The bag of words (BOW) encoding is one of the most popular and suc-
cessful approaches to encoding local features. It has been extensively
employed by the top competitors in the PASCAL VOC [Everingham et al.,
2009, 2010, 2011] and TRECVID challenges [Jiang et al., 2010, Natarajan
etal., 2011, Wang et al., 2012a] along the years. The term bag of words—
other analogous formulations are bag of features, bag of visual words or bag of
keypoints—has its origins in the natural language processing community
and it describes the technique of representing a document as an orderless
collection of words by counting how many times each word appears.
However, in the computer vision field the first similar methods have their
roots in the work on texture classification. In 1981, Julesz published his
theory of texture perception: texture, a global structure, can be decom-
posed into a few, local elementary units, which he called textons. The
discrimination of different textures is the result of the textons” identity
and not of their spatial arrangement. Julesz’s ideas re-emerged in the early
2000s, when Malik et al. [1999] defined the texton for gray-level images as
frequently co-occurring combinations of linear filter banks. The follow-
ing research on texture classification [Leung and Malik, 2001, Cula and
Dana, 2001] used these ideas: they built a vocabulary of textons and then
represented a texture as histogram of textons. While Leung and Malik
[2001] used the x? distance to compare histograms, Cula and Dana [2001]
used PCA to first project the histograms to a lower dimensional space and
then do nearest neighbour retrieval. The next work along these lines had
other applications such as category classification of zebras, cheetahs or
humans [Schmid, 2001] and material classification [Varma and Zisserman,
2002]. The first two papers that present the bag of words pipeline as it is
currently known are [Sivic and Zisserman, 2003] and [Csurka et al., 2004].

The bag of words encoding has two main steps:

Vocabulary training The first step is an unsupervised, training step in
which we find the visual words. This step is usually done using the
k-means clustering algorithm. Figure 3.3a illustrates the partitioning
of the feature space; the K visual words are indicated as p.

Quantization The second step represents the encoding: for each visual
word we count how many feature points are most similar to it; in
Figure 3.3a, we show the feature points assigned to a particular
visual word (u3). The bag of words representation is the count
histogram. A common normalization technique is to divide the
histogram counts by the number of features; this insures that the
representation is invariant to the size of the video.
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(a) The bag of words (BOW) encoding.  (b) The Fisher vector (FV) encoding.
The feature space is partitioned into = The features space is modelled by a
non-overlapping regions and for each ~ Gaussian mixture model and for each
cluster we count how many points are  cluster we represent the soft-assigned
assigned to it. points using their mean and variance.

Figure 3.3 — Illustration of the feature encoding methods (bag of words
and the Fisher vector). Each point represents a local feature and the points
indicated by yj denote the K visual words.

In recent years, many variants of bag of words have been proposed. For
our experiments, we replace the k-means with Gaussian mixture model
training and use soft quantization [Van Gemert et al., 2010]. Instead of
counting the number of features assigned to a particular visual word, we
sum the posterior probabilities. Soft-assignments have been reported to
yield better performance, and we can share the GMM vocabulary with
the Fisher vector encoding, thus making the results easier to compare.

3.2.2 Fisher vector

The Fisher vector (FV) encoding is the successor of bag of words. In a
recent evaluation study of feature pooling techniques for object recogni-
tion [Chatfield et al., 2011] FV was found to be the most effective encoding
technique. This evaluation also included bag of words (BOW), sparse cod-
ing techniques, and several variants. The Fisher vector encoding method
was first proposed by Jaakkola and Haussler [1999] to combine the flexibil-
ity of generative models and the performance of discriminative classifiers.
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One can derive the Fisher vector of a generative model by computing the
gradients of the log-likelihood with respect to the model’s parameters.
Jaakkola and Haussler [1999] exemplified the Fisher vector for the hidden
Markov model in the context of DNA sequence alignment; they showed
to obtain better results by using FV with discriminative models rather
than using the HMM model directly.

In computer vision, FV was popularized through the work of Per-
ronnin and Dance [2007], where they considered FV of the Gaussian
mixture model (GMM) model. Recently the FV has appeared as the start-
of-the-art representation for a wide variety of problems, including image
retrieval [Jégou et al., 2012], face verification [Simonyan et al., 2013a],
word spotting [Almazan et al., 2013], fine-grained image classification
[Gavves et al., 2013], object detection [Cinbis et al., 2013], semantic seg-
mentation [Li et al., 2013b], and texture classification [Cimpoi et al., 2014].

FV extends the BOW representation as it encodes both first and second-
order statistics between the video descriptors and a diagonal covariance
Gaussian mixture model (GMM). Higher-order statistics is the key ingre-
dient of FV and it is what offers its main advantage over BOW: the ability
to encode the rich space of descriptors in a compact, hence, efficient way.
As we will see later in the experimental part (Section 3.6.1) the BOW rep-
resentation can achieve comparable performance to FV, but at the expense
of working with very large codebooks (several orders of magnitude larger
than FV).

Another characteristic of FV is the use of GMM instead of the k-means
clustering. BOW encodes each descriptor to one of the existing words in
the k-means vocabulary (see Figure 3.3a). This hard assignment is prone
to be impacted by small changes in the descriptor space. In the FV case,
the video descriptors are soft-assigned to each Gaussian (see Figure 3.3b)
making the encoding step more robust.

In the following we provide the mathematical formulation for the FV
representation. Given a video, let x,, € RP denote the n-th D-dimensional
video descriptor, g, the soft-assignment of x;, to the k-th Gaussian, and 7y,
1 and oy are the weight, mean, and diagonal of the covariance matrix of
the k-th Gaussian respectively. After normalization with the inverse Fisher
information matrix (which renders the FV invariant to the parametriza-
tion) the D-dimensional gradients w.r.t. the mean and variance of the k-th
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Figure 3.4 — Schematic illustration of how the spatio-temporal information
is encoded. The densely sampled features are assigned to one of the visual
words (o, x, 0) and the location of each visual word is modelled either
using a fixed grid (left), Gaussian (middle) or both (right).
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For each descriptor type x,, we can represent the video as a 2DK
dimensional Fisher vector. To compute FV, we first reduce the descriptor
dimensionality by a factor of two using principal component analysis
(PCA), as in [Sanchez et al., 2013]. We then randomly sample a subset
of 1000 x K descriptors from the training set to estimate a GMM with K
Gaussians.

3.2.3 Weak spatio-temporal location information

To go beyond a completely orderless representation of the video con-
tent in a BOW histogram or FV, we consider including a weak notion of
spatio-temporal location information of the local features. For this pur-
pose, we use the spatio-temporal pyramid (STP) representation [Laptev
et al., 2008], and compute separate BOW or FV over cells in spatio-
temporal grids (Figure 3.4a). We also consider the spatial Fisher vector
(SFV) of [Krapac et al., 2011], which computes per visual word the mean
and variance of the 3D spatio-temporal location of the assigned features
(Figure 3.4b). This is similar to extending the (HOG, HOF or MBH) fea-
ture vectors with the 3D locations, as done in [McCann and Lowe, 2012,
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Sanchez et al., 2012]; the main difference being that the latter do clustering
on the extended feature vectors while this is not the case for the SFV. SFV
is also computed in every cell of STP (Figure 3.4c). To combine SFV with
BOW or FV, we simply concatenate them together.

3.3 Classification

The tasks that we are considering—action and event recognition, lo-
calization of action in movies—can all be cast as supervised classification
problems. We are given a training set with video samples and their as-
sociated class label and, at test time, for each unlabeled video sample
we need to automatically predict the classes it belongs to. For the action
localization task, a test sample is an entire movie and we ought to not
only name the action class, but also find all the temporal intervals where
it is occurring. We use the sliding window technique (generate smaller
video samples at uniform locations and of different lengths), the task is to
evaluate independently all these windows; this follows exactly the same
procedure as the standard classification scenario.

As the classification method, we choose a discriminative classifier,
the support vector machine (SVM, Cortes and Vapnik 1995). The SVM
objective function maximizes the margin of the hyperplane that separates
two sets of data. The key advantages of SVM are (i) the possibility of
using kernel functions; (ii) the objective function is convex, hence the
optimization achieves the global minimum; (iii) the strong generalization
performance. There are many SVM implementations available; we use
the LIBSVM package [Chang and Lin, 2011].

For BOW we consider both the linear and RBF-)? kernel, while for
FV we consider only the linear kernel. When using the linear kernel we
apply power and ¢, normalization on the feature vectors (BOW or FV) as
in [Perronnin et al., 2010, Sanchez et al., 2013]; in the case of the RBF-x?
kernel we use /1 normalization. To combine different descriptor types, we
encode each descriptor type separately and concatenate their normalized
BOW or FV representations together.

In the case of multi-class classification, we use a one-against-rest ap-
proach and select the class with the highest score. For the SVM hyper-
parameters, we set the class weight to be inversely proportional to the
number of samples in each class so that both positive and negative classes
contribute equally in the loss function. We set the regularization parame-
ter C by cross validation on the training set, by testing values in the range
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C e {3_2, 3-1 ... ,37}. In all experiments, we use the same settings as
stated above.

Implementation note. We train the classifier in the dual space by
pre-computing the kernel matrix. The FV dimensionality, D, is usually
in the order of hundreds of thousands, and it is much higher than the
number of training samples, N, which, in our case, does not exceed a
few thousands. So, it is more memory-efficient to use the kernel matrix,
of size N x N, than the design train matrix, of size N x D. For a linear
classifier, the kernel is just the inner product of the design matrix and
the concatenation of features corresponds to kernel addition. So one can
compute the kernels for each feature independently and then just add
them together.

At test time it is, however, more efficient to operate in the primal
than in the dual. To obtain the predictions in the primal we first need to
compute the primal weights, a D-dimensional vector. These are obtained
as a dot product between the N-dimensional vector of dual coefficients
and the training matrix; the cost of this operation is O(ND). The scores
on the test data are obtained by another dot product between the primal
weights and the test data, of size M x D; this step has O(MD) complexity.
The total cost of predicting in the primal is O(ND + MD). On the other
hand, to score the data in the dual we first compute the kernel matrix by
multiplying the test and train data, which scales in O(NMD). We then
compute the dot product between the dual coefficients and the kernel
matrix to obtain the predictions; this step results in a cost of O(NM). The
total cost of working in the dual is O(NMD + NM).

3.4 Non-maximum-suppression for
localization

For the action localization task we employ a temporal sliding window
approach. We score a large pool of candidate detections that are obtained
by sliding windows of various lengths across the video. Non-maximum
suppression (NMS) is performed to delete windows that have an overlap
greater than 20% with higher scoring windows. In practice, we use candi-
date windows of length 30, 60, 90, and 120 frames, and slide the windows
in steps of 30 frames.

Preliminary experiments on the Coffee and Cigarettes dataset showed
that there is a strong tendency for the NMS to retain short windows, see
Figure 3.5. This is due to the fact that if a relatively long action appears,
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Figure 3.5 — Histograms of the window sizes on the Coffee and Cigarettes
dataset after three variants of non-maximum suppression: classic non-
maximum suppression (NMS), dynamic programming non-maximum
suppression (DP-NMS), and re-scored non-maximum suppression (RS-
NMS). Two of the methods, NMS and DP-NMS, select mostly short win-
dows, 30-frames long, while the RS-NMS variant sets a bias towards
longer windows, 120-frames long. In practice we prefer longer windows
as they tend to better cover the action.

it is likely that there are short sub-sequences that just contain the most
characteristic features for the action. Longer windows might cover the
action better, but are likely to include less characteristic features as well
(even if they lead to positive classification by themselves), and might
include background features due to imperfect temporal alignment.

NMS greedily selects the highest scoring windows, being oblivious to
their duration. For example, if a short window scores just a bit more than a
longer window, the longer window is suppressed and the shorter one kept.
We propose a version of NMS that in such cases it prefers the selection of
longer windows. To achieve this, we define a global objective function that
corresponds to the area under the scoring curve of the selected windows.

We formalize this NMS variant as follows. We first divide the tem-
poral domain into T discrete temporal slices. With each temporal slice
t we associate a latent state z;, which is a window characterized by its
duration and the position where the given slice t occurs. Examples of
latent states are shown in Figure 3.6a. A pairwise potential {(z¢, z44+1) is
used to enforce that two consecutive states, z; and z;, 1, are consistent: if
the current selected state z; does not correspond to a ending window—a
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(a) Latent states for a given temporal slice ¢ (highlighted in blue). The latent state
(denoted by capital letters from A to F) are characterized by two values: their
duration and the position where the temporal slice t occurs. We denote by A the
duration of the base time slice.

t+1
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(b) Potentials for the latent states described above (A to F). The left matrix
shows the unary potentials. The entries correspond to the window scores for
each temporal slice, from 1 to T; s, denotes the score of a window starting
at slice b and lasting until slice e — 1. The right matrix indicates the pairwise
state transitions, from state ¢ to state t + 1. We indicate by 0 (green color) the
possible transitions and by —co (red color) the disallowed transitions. All possible
transitions are equally likely.

Figure 3.6 — The optimization problem for dynamic programming NMS
(DP-NMS).
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window for which the slice t appears in the last position—, then the next
state z;11 must be a continuation of that previous window, that is, have
the same duration, but an incremented position; otherwise, if the current
state z; corresponds to a ending window, the next state z;, 1 has to be a
starting window. Figure 3.6b, right, shows the transition costs between
consecutive latent states, as defined in Figure 3.6a. We maximize the
score based on an unary potential ¢(z;)that is defined as the score of the
window associated with the given state z; (see Figure 3.6b, left). Formally,
we optimize the following objective function:

T
maximize Y ¢(z;) + (21, 241), (3.3)

21,0 2T =1

where z; are the latent state variables; ¢ are the unary potential repre-
senting the window scores; and 1 are the binary potentials, which do not
impact the final score, but enforce the consistency constraint. We use the
dynamic programming Viterbi algorithm to compute the optimal solution
for the problem defined by Eq. (3.3), using a forwards and backwards
pass over the temporal slices. The runtime is linear in the number of
temporal slices, T. We refer to this method as dynamic programming NMS
or DP-NMS.

We have defined the optimization problem for DP-NMS such that if
a window is selected then its score is counted in the objective function
proportionally to the window’s duration. Based on this property we
define another NMS variant, similar to the original NMS in the sense that
it maximizes the score locally. The new NMS variant, which we refer to
as rescored NMS or RS-NSM, multiplies the score of each slice by their
duration and then applies standard NMS.

Figure 3.5 shows the histogram of durations of the windows that
pass the non-maximum suppression stage using the different techniques,
for the action smoking used in our experiments in Section 3.6.2. The
durations for the two proposed methods, DP-NMS and RS-NMS, have a
more uniform distribution than that for the standard NMS method, with
RS-NMS favouring the longest windows. This behaviour is also observed
in Figure 3.7, which gives an example of the different windows retained
for a specific video segment of the Coffee & Cigarettes movie. DP-NMS
selects longer windows than NMS; these windows maintain a high score
over a long period, as desired by the objective function, but they do not
align well with the action and the scores of the negative windows are
high. For this example, RS-NMS gives the best selection among the three
methods, as it one long segment that covers the action accurately.
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Figure 3.7 — Examples of window selection for the three variant of
non-maximum suppression: classic non-maximum suppression (NMS),
dynamic programming non-maximum suppression (DP-NMS), and re-
scored non-maximum suppression (RS-NMS). The green region denotes
the ground-truth action. For the NMS, the segments selected are too short.
The DP-NMS selects longer segments, but it does not align well with
the true action as it maximizes the total score over the whole video. The
RS-NMS strikes a good balance of the segment’s length and their score,
and it gives the best solution in this example.

3.5 Datasets used for experimental evaluation

In this section, we briefly describe the datasets and their evaluation
protocols for the three tasks. We use six challenging datasets for ac-
tion recognition (i.e., Hollywood2, HMDB51, Olympic Sports, High Five,
UCF50 and UCF101), Coftfee and Cigarettes and DLSBP for action lo-
calization, and TRECVID MED 2011 for large scale event detection. In
Figure 3.8, we show some sample frames from the datasets.

3.5.1 Action recognition

The Hollywood2 dataset [Marszalek et al., 2009] has been collected
from 69 different Hollywood movies and includes 12 action classes. It
contains 1,707 videos split into a training set (823 videos) and a test
set (884 videos). Training and test videos come from different movies.
The performance is measured by mean average precision (mAP) over all
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Figure 3.8 — From top to bottom, example frames from (a) Hollywood?2,
(b) HMDB?51, (c) Olympic Sports, (d) High Five, (e) UCF50, (f) UCF101,
(g) Coffee and Cigarettes, (h) DLSBP and (i) TRECVID MED 2011.

classes, as in [Marszatek et al., 2009].

The HMDB51 dataset [Kuehne et al., 2011] is collected from a variety
of sources ranging from digitized movies to YouTube videos. In total,
there are 51 action categories and 6,766 video sequences. We follow the
original protocol using three train-test splits [Kuehne et al., 2011]. For
every class and split, there are 70 videos for training and 30 videos for
testing. We report average accuracy over the three splits as performance
measure. Note that in all the experiments we use the original videos, not
the stabilized ones.

The Olympic Sports dataset [Niebles et al., 2010] consists of athletes
practicing different sports, which are collected from YouTube and anno-
tated using Amazon Mechanical Turk. There are 16 sports actions (such
as high-jump, pole-vault, basketball lay-up, discus), represented by a
total of 783 video sequences. We use 649 sequences for training and 134
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sequences for testing as recommended by the authors. We report mAP
over all classes, as in [Niebles et al., 2010].

The High Five dataset [Patron-Perez et al., 2010] consists of 300 video
clips extracted from 23 different TV shows. Each of the clips contains one
of four interactions: hand shake, high five, hug and kiss (50 videos for each
class). Negative examples (clips that don’t contain any of the interactions)
make up the remaining 100 videos. Though the dataset is relatively small,
it is challenging due to large intra-class variation, and all the action classes
are very similar to each other (i.e., interactions between two persons).
We follow the original setting in [Patron-Perez et al., 2010], and compute
average precision (AP) using a pre-defined two-fold cross-validation.

The UCF50 dataset [Reddy and Shah, 2013] has 50 action categories,
consisting of real-world videos taken from YouTube. The actions range
from general sports to daily life activities. For all 50 categories, the videos
are split into 25 groups. For each group, there are at least four action clips.
In total, there are 6,618 video clips. The video clips in the same group
may share some common features, such as the same person, similar back-
ground or viewpoint. We apply the leave-one-group-out cross-validation
as recommended in [Reddy and Shah, 2013] and report average accuracy
over all classes.

The UCF101 dataset [Soomro et al., 2012] is extended from UCF50 with
additional 51 action categories. In total, there are 13,320 video clips. We
follow the evaluation guidline from the THUMOS 13 workshop [Jiang
et al., 2013b] using three train-test splits. In each split, clips from seven
of the 25 groups are used as test samples, and the rest for training. We
report average accuracy over the three splits as performance measure.

3.5.2 Action localization

The first dataset for action localization is extracted from the movie
Coffee and Cigarettes, and contains annotations for the actions drinking
and smoking [Laptev and Pérez, 2007]. The training set contains 41 and
70 examples for each class respectively. Additional training examples (32
and eight respectively) come from the movie Sea of Love, and another
33 lab-recorded drinking examples are included. The test sets consist
of about 20 minutes from Coffee and Cigarettes for drinking, with 38
positive examples; for smoking a sequence of about 18 minutes is used
that contains 42 positive examples.

The DLSBP dataset [Duchenne et al., 2009] contains annotations for
the actions sit down, and open door. The training data comes from 15
movies, and contains 51 sit down examples, as well as 38 for open door.
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The test data contains three full movies (Living in Oblivion, The Crying
Game, and The Graduate), which in total last for about 250 minutes, and
contain 86 sit down, and 91 open door samples.

To measure performance we compute the average precision (AP) score
as in [Duchenne et al., 2009, Gaidon et al., 2011, Klaser et al., 2010, Laptev
and Pérez, 2007]; considering a detection as correct when it overlaps (as
measured by intersection over union) by at least 20% with a ground truth
annotation.

3.5.3 Event recognition

The TRECVID MED 2011 dataset [Over et al., 2012] is the largest
dataset we consider. It consists of consumer videos from 15 categories that
are more complex than the basic actions considered in the other datasets,
e.g., changing a vehicle tire, or birthday party. For each category between
100 and 300 training videos are available. In addition, 9,600 videos are
available that do not contain any of the 15 categories; this data is referred
to as the null class. The test set consists of 32,000 videos, with a total
length of over 1,000 hours, and includes 30,500 videos of the null class.

We follow two experimental setups in order to compare our system to
previous work. The first setup is the one described above, which was also
used in the TRECVID 2011 MED challenge. The performance is evaluated
using average precision (AP) measure. The second setup is the one of
Tang et al. [2012]. They split the data into three subsets: EVENTS, which
contains 2,048 videos from the 15 categories, but doesn’t include the null
class; DEV-T, which contains 602 videos from the first five categories and
the 9,600 null videos; and DEV-O, which is the standard test set of 32,000
videos.! Asin [Tang et al., 2012], we train on the EVENTS set and report
the performance in AP on the DEV-T set for the first five categories and
on the DEV-O set for the remaining ten actions.

The videos in the TRECVID dataset vary strongly in size: durations
range from a few seconds to one hour, while the resolution ranges from
low quality 128 x 88 to full HD 1920 x 1080. We rescale the videos to a
width of at most 480 pixels, preserving the aspect ratio, and temporally
sub-sample them by discarding every second frame in order to make
the dataset computationally more tractable. These rescaling parameters
were selected on a subset of the MED dataset; we present an exhaustive
evaluation of the impact of the video resolution in Section 3.6.3. Finally, we

1. The number of videos in each subset varies slightly from the figures reported in
[Tang et al., 2012]. The reason is that there are multiple releases of the data. For our
experiments, we used the labels from the LDC2011E42 release.
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also randomly sample the generated features to reduce the computational
cost for feature encoding. This is done only for videos longer than 2000
frames, i.e., the sampling ratio is set to 2000 divided by the total number
of frames.

3.6 Experimental results

Below, we present our experimental evaluation results for action recog-
nition in Section 3.6.1, for action localization in Section 3.6.2, and for event
recognition in Section 3.6.3.

3.6.1 Action recognition

We first compare bag of words (BOW) and Fisher vectors (FV) for fea-
ture encoding, and evaluate the performance gain due to different motion
stabilization steps. Then, we assess the impact of removing inconsistent
matches based on human detection, and finally compare to the state of
the art.

Feature encoding with BOW and FV

We begin our experiments with the original non-stabilized MBH de-
scriptor [Wang et al., 2013a] and compare its performance using BOW and
FV under different parameter settings. For this initial set of experiments,
we chose the Hollywood2 and HMDB51 datasets as they are widely used
and are representative in difficulty and size for the task of action recog-
nition. We evaluate the effect of including weak geometric information
using the spatial Fisher vector (SFV) and spatio-temporal pyramids (STP).
We consider STP grids that divide the video in two temporal parts (T2)
and three spatial horizontal parts (H3). When using STP, we always con-
catenate the representations (i.e., BOW or FV) over the whole video. For
the case of T2-+H3, we concatenate all six BOW or FV representations (one
for the whole video, two for T2, and three for H3). Unlike STP, the SFV
has only a limited effect for FV on the representation size, as it just adds
six dimensions (for the spatio-temporal means and variances) for each
visual word. For the BOW representation, the situation is different, since
in that case there is only a single count per visual word, and the additional
six dimensions of the SFV multiply the signature size by a factor seven;
similar to the factor six for STP.
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Tables 3.1 and 3.2 list all the results using different settings on Holly-
wood2 and HMDB?51. It is obvious that increasing the number of Gaus-
sians K leads to significant performance gain for both BOW and FV. How-
ever, the performance of FV tends to saturate after K = 256, whereas
BOW keeps improving up to K = 1024. This is probably due to the high
dimensionality of FV which results in an earlier saturation. Both BOW
and FV benefit from including STP and SFV, which are complementary
since the best performance is always obtained when they are combined.

As expected, the RBF-)(2 kernel works better than the linear kernel
for BOW. Typically, the difference is around 4-5% on both Hollywood2
and HMDB51. When comparing different feature encoding strategies, the
FV usually outperforms BOW by 6-7% when using the same number of
visual words. Note that FV of 64 visual words is even better than BOW of
1024 visual words; confirming that for FV fewer visual words are needed
than for BOW.

We further explore the limits of BOW performance by using very
large vocabularies, i.e., with K up to 32,768; the results are shown in
Figure 3.9. For BOW, we use x? kernel and T2+H3 which give the best
results on both Hollywood2 (Table 3.1) and HMDB51 (Table 3.2). For
a fair comparison, we only use T2+H3 for FV without SFV. On both
Hollywood2 and HMDB51, the performance of BOW becomes saturated
when K is larger than 8, 192. If we compare BOW and FV representations
with similar dimensions (i.e., K = 32,768 for BOW and K between 64 and
128 for FV), FV still outperforms BOW by 2% on HMDB51 and both have
comparable performance for Hollywood2. Moreover, feature encoding
with large vocabularies is very time-consuming as shown in Figure 3.10,
where K = 32,768 for BOW is eight times slower than K = 128 for FV. This
can impose huge computational cost for large datasets such as TRECVID
MED. FV is also advantageous as it achieves excellent results with a linear
SVM which is more efficient than kernel SVMs. Note however, that the
classifier training time is negligible compared to the feature extraction
time, e.g. it takes around 200 seconds for FV with K = 256 to compute
the Gram matrix and to train the classifiers on the Hollywood2 dataset.
This is roughly equivalent to extracting features for 200 frames (about 10
seconds of video).

To sum up, we choose FV with both STP and SFV, and set K = 256 for
a good compromise between accuracy and computational complexity. We
use this setting in the rest of experiments unless stated otherwise.
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Bag-of-words

Fisher vector

x? kernel linear kernel linear kernel

K  STP BOW  BOW BOW+SFV FV FV4SFV
64 — 444 39.8 40.3 55.0 56.5
64 H3 48.0 449 45.0 57.9 59.2
64 T2 48.3 43.4 46.8 57.1 58.5
64 T2+H3 50.2 46.8 46.4 59.4 59.5
128 — 45.8 42.1 43.5 57.1 58.5
128 H3 51.3 46.2 48.1 58.8 60.0
128 T2 50.5 45.5 494 58.8 59.9
128 T2+H3 52.4 48.4 48.2 61.0 60.7
256 — 49.4 449 45.9 57.9 59.6
256 H3 52.9 46.0 50.6 59.0 61.0
256 T2 52.0 47.0 51.3 59.3 60.3
256 T2+4HS3 53.6 50.2 50.2 61.0 61.3
512 — 50.2 46.8 49.0 58.9 60.5
512 H3 53.1 49.5 51.2 59.5 61.5
512 T2 53.9 49.4 52.8 60.2 61.0
512 T2+4HS3 55.5 51.6 51.3 61.7 61.9
1024 — 52.3 48.5 50.4 58.9 60.9
1024 H3 55.6 50.6 52.6 59.4 61.2
1024 T2 54.6 52.0 54.5 59.7 60.7
1024 T24-H3 56.6 52.9 53.5 61.2 61.8

47

Table 3.1 — Comparison on the Hollywood?2 dataset of bag of words and
Fisher vectors using the non-stabilized MBH descriptor under different
parameter settings. We use ¢; normalization for the Xz kernel, and power

and /> normalization for the linear kernel.
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Bag-of-words Fisher vector
x? kernel linear kernel linear kernel

K  STP BOW  BOW BOW+SFV FV  FV+SEFV
64 — 30.5 28.3 28.0 45.8 47.9
64 H3 35.8 30.1 33.1 48.0 494
64 T2 34.9 30.9 32.5 48.3 49.5
64 T2+H3 37.1 32.5 34.2 50.3 51.1
128 — 33.8 31.9 32.2 48.2 50.3
128 H3 38.0 32.3 37.5 49.9 51.1
128 T2 38.2 32.9 36.2 50.2 51.1
128 T2+H3 40.5 35.8 37.9 51.9 52.6
256 — 36.6 33.1 35.0 50.0 51.9
256 H3 40.6 36.2 40.4 51.4 52.3
256 T2 41.3 35.7 39.7 51.5 52.0
256 T2+H3 43.5 39.2 41.2 52.6 53.2
512 — 40.3 35.6 37.9 51.3 53.2
512 H3 43.4 38.4 41.5 51.4 52.3
512 T2 42.6 39.1 42.2 52.2 53.3
512 T2+H3 45.2 42.1 43.5 52.7 53.7
1024 — 42.3 39.2 39.9 51.4 53.9
1024 H3 45.4 40.8 44.2 51.7 52.8
1024 T2 46.0 41.8 46.3 52.5 53.0
1024 T2-+H3 47.5 43.9 45.7 53.3 53.8

Table 3.2 — Comparison on the HMDB51 dataset of bag of words and
Fisher vectors using the non-stabilized MBH descriptor under different
parameter settings. We use ¢; normalization for the 7(2 kernel, and power
and /> normalization for the linear kernel.
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Figure 3.9 — Comparing the mAP performance of the bag of words (RBF-
x? kernel) and the Fisher vectors encoding (linear kernel) as a function of
the number of Gaussians (K). For both cases we use non-stabilized MBH
descriptors and include spatio-temporal information with STP (T2+H3),
but no SFV.
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Figure 3.10 — Comparing the speed (number of frames processed in a
second on a single core) of the bag of words (RBF-x? kernel) and the
Fisher vectors encoding (linear kernel) as a function of the number of
Gaussians (K). For both cases we use non-stabilized MBH descriptors and
include spatio-temporal information with STP (T24-H3), but no SFV. We
use a video from the Hollywood?2 dataset; it had a resolution of 720 x 480
pixels.
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Evaluation of local features

We compare the two types of low-level features that we described
in Section 3.1: the dense trajectories and the improved trajectories. For
the improved trajectories we use two variants by either using or not the
human detector. This gives us three features that we compare: (i) the
dense trajectories (DT), (ii) the improved trajectories that do not use of
the human detector (IT), (iii) the improved trajectories that use automatic
human detection (ITH). For all three features we compute HOG, HOF and
MBH descriptors as described in Section 3.1.1, and report results on all
the combinations of them. For the versions of the improved trajectories
we both warp the optical flow with the homography corresponding to the
camera motion and remove background trajectories consistent with the
homography. The results are presented in Table 3.3 for Hollywood2 and
HMDB51.

In the following, we discuss the results per descriptor. The results of
HOG are similar for different variants on both datasets. Since HOG is
designed to capture static appearance information, we do not expect that
compensating camera motion significantly improves its performance.

HOF benefits the most from stabilizing optical flow. On Hollywood?2,
the improvements are around 5%. On HMDB51, the improvements are
even higher: around 10%. After motion compensation, the performance
of HOF is comparable to that of MBH.

MBH is known for its robustness to camera motion [Wang et al., 2013a].
However, its performance still improves as optical flow improves and the
motion boundaries become clearer. We have over 2% improvement on
both datasets.

Combining HOF and MBH further improves the results as they are
complementary to each other. HOF represents zero-order motion infor-
mation, whereas MBH focuses on first-order derivatives. Combining all
three descriptors achieves the best performance, as shown in the last row
of Table 3.3.

Comparison to the state of the art

Table 3.4 compares our method with the most recent results reported
in the literature. On Hollywood2, all presented results [Jain et al., 2013,
Jiang et al., 2012, Mathe and Sminchisescu, 2012, Zhu et al., 2013] improve
dense trajectories in different ways. Mathe and Sminchisescu [2012] prune
background features based on visual saliency. Zhu et al. [2013] apply
multiple instance learning on top of dense trajectory features in order to
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O = I Hollywood2 HMDB51
) % /M
= = DT IT ITH DT IT ITH
° 51.3 51.8 53.0 420 43.1 444
° 564 61.8 624 433 523 52.3
e 613 633 63.6 532 562 569
o o 619 639 653 519 570 575
° e 63.0 639 64.7 56.3 57.8 587

e e 0620 657 652 532 583 583

e o o 636 661 668 559 59.3 60.1

Table 3.3 — Comparison of the local descriptor approaches—dense trajec-
tories (DT), improved trajectories (IT), and improved trajectories using
human detector (ITD)—and various descriptor combinations (HOG, HOF,
MBH). These experiments use SFV+4STP, K = 256.

learn mid-level “acton” to better represent human actions. Recently, Jain
et al. [2013] report 62.5% by decomposing visual motion to stabilize dense
trajectories. We further improve their results by over 4%.

HMDB51 [Kuehne et al., 2011] is a relatively new dataset. Jiang et al.
[2012] achieve 40.7% by modeling the relationship between dense trajec-
tory clusters. Ballas et al. [2013] report 51.8% by pooling dense trajectory
features from regions of interest using video structural cues estimated by
different saliency functions. The best previous result is from [Zhu et al.,
2013]. We improve it further by over 5%, and obtain 60.1% accuracy.

Olympic Sports [Niebles et al., 2010] contains significant camera mo-
tion, which results in a large number of trajectories in the background.
Li et al. [2013a] report 84.5% by dynamically pooling feature from the
most informative segments of the video. Wang et al. [2013b] propose
motion atom and phrase as a mid-level temporal part for representing
and classifying complex action, and achieve 84.9%. Gaidon et al. [2013]
model the motion hierarchies of dense trajectories [Wang et al., 2013a]
with tree structures and report 85.0%. Using our pipeline, we outperform
them by over 5%.

High Five [Patron-Perez et al., 2010] focuses on human interactions
and serves as a good testbed for various structure models applied to
action recognition. Ma et al. [2013a] propose hierarchical space-time
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Hollywood2 HMDB51
Jiang et al., 2012 59.5 Jiangetal., 2012 40.7
Mathe and Sminchisescu, 2012 61.0 Ballas et al., 2013 51.8
Zhu et al., 2013 61.4 Jainetal., 2013 52.1
Jain et al., 2013 62.5 Zhuetal, 2013 54.0
Dense traj. 63.6 Dense traj. 55.9
Improved traj. 66.1 Improved traj. 59.3
Improved traj. (human det.) 66.8 Improved traj. (human det.) 60.1
Olympic Sports High Five
Lietal, 2013a 84.5 Maetal, 2013a 53.3
Wang et al., 2013b 84.9 Yuetal, 2012 56.0
Gaidon et al., 2013 85.0 Gaidon etal., 2013 62.4
Dense traj. 85.8 Dense traj. 62.5
Improved traj. 89.6 Improved traj. 68.1
Improved traj. (human det.) 90.4 Improved traj. (human det.) 69.4
UCF50 UCF101
Shi et al., 2013 83.3 Pengetal., 2013 84.2
Wang et al., 2013b 85.7 Murthy and Goecke, 2013b ~ 85.4
Ballas et al., 2013 92.8 Karaman et al., 2013 85.7
Dense traj. 89.1 Dense traj. 83.5
Improved traj. 91.3 Improved traj. 85.7
Improved traj. (human det.) 91.7 Improved traj. (human det.) 86.0

Table 3.4 — Comparison of our results (HOG+HOF+MBH) to the state of
art. We present our results for FV encoding (K = 256) using SFV+STP.
Best result for each dataset is marked in bold.

segments as a new representation for simultaneous action recognition and
localization. They only extract the MBH descriptor from each segment
and report 53.3% as the final performance. Yu et al. [2012] propagate
Hough voting of STIP [Laptev et al., 2008] features in order to overcome
their sparseness, and achieve 56.0%. With our framework we achieve
69.4% on this challenging dataset.

UCF50 [Reddy and Shah, 2013] can be considered as an extension of
the widely used YouTube dataset [Liu et al., 2009]. Recently, Shi et al.
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[2013] report 83.3% using randomly sampled HOG, HOF, HOG3D and
MBH descriptors. Wang et al. [2013b] achieve 85.7%. The best result so far
is 92.8% from Ballas et al. [2013]. We obtain a similar accuracy of 91.7%.

UCF101 [Soomro et al., 2012] is used in the recent THUMOS’13 Action
Recognition Challenge [Jiang et al., 2013b]. All the top results are built on
different variants of dense trajectory features [Wang et al., 2013a]. Kara-
man et al. [2013] extract many features (such as HOG, HOF, MBH, STIP,
SIFT, etc.) and do late fusion with logistic regression to combine the out-
put of each feature channel. Murthy and Goecke [2013b] combine ordered
trajectories [Murthy and Goecke, 2013a] and improved trajectories [Wang
and Schmid, 2013], and apply Fisher vector to encode them. With our
framework we obtained 86.0%, and ranked first among all 16 participants.

3.6.2 Action localization

In our second set of experiments we consider the localization of four
actions (i.e., drinking, smoking, open door and sit down) in feature length
movies. We use the same encoding paramters as for action recognition:
K = 256 for Fisher vector with SFV+4STP. We first consider the effect of
different NMS variants using the improved trajectory features without
human detection. We then compare with the local features and discuss
the impact of human detection. Finally we present a comparison to the
state-of-the-art methods.

Evalution of NMS variants

We report all the results by combining HOG, HOF and MBH together,
and present them in Table 3.5. The dynamic programming version (DP-
NMS) is better than standard NMS on a single class and its overall per-
formance is slightly inferior to standard NMS. On the other hand, simple
rescoring (RS-NMS) significantly improves over standard NMS on two
out of four classes. By construction DP-NMS does not allow any overlap,
so we also test the other two methods, NMS and RS-NMS, with zero
overlap. The results show that for standard NMS zero or 20% overlap
does not significantly change the results on all four action classes, while
for RS-NMS zero overlap is beneficial on all classes. RS-NMS zero overlap
performs the best among all five different variants, thus we use it in the
remainder of the experiments.
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Drinking
Smoking
Open door
Sit Down
Average

Method  Overlap

NMS 20 732 323 233 286 393
RS-NMS 20 76.5 38.0 232 26.6 41.1
DP-NMS 0 714 36.7 21.0 23.6 38.2
NMS 0 741 324 242 289 399
RS-NMS 0 80.2 409 26.0 27.1 43.5

Table 3.5 — Evaluation of the non-maximum suppression variants: clas-
sic non-maximum suppression (NMS), dynamic programming non-
maximum suppression (DP-NMS), and re-scored non-maximum sup-
pression (RS-NMS). The overlap parameter (second column) indicates the
maximum overlap (intersection over union) allowed between any two
windows after non-maximum suppression. We use HOG+HOF+MBH
from improved trajectory features (without human detector) with FV
(K = 256) augmented by SFV+4STP.

Evaluation of local features

We present detailed experimental results in Table 3.6. We analyze all
the combinations of the three descriptors and compare the dense trajectory
teatures (DT) to the improved trajectory features, without (IT) and with
human detection (ITH),

We observe that combining all descriptors usually gives better per-
formance than individual descriptors. The improved trajectory features
are outperformed by the dense trajectory features on three out of four
classes for the case of HOG+HOF+MBH. Note that the results of different
descriptors and settings are less consistent than they are on action recog-
nition datasets, e.g., Table 3.3, as here we report the results for each class
separately. Furthermore, since the action localization datasets are much
smaller than action recognition ones, the number of positive examples
per category is limited, which renders the experimental results less stable.
In randomised experiments, where we leave one random positive test
sample out from the test set, we observe standard deviations of the same
order as the differences between the various settings (not shown for sake
of brevity).
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25.5
25.8

14.3
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25.2
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28.8
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26.4

29.6

27.1

27.6
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Table 3.6 — Comparison of dense trajectory features (DT) to the improved
trajectory features, without (IT) and with human detection (ITH). We use
Fisher vector (K = 256) with SFV+-STP to encode local descriptors, and
apply RS-NMS-0 for non-maximum suppression. We show results on
two datasets: the Coffee & Cigarettes dataset [Laptev and Pérez, 2007]
(drinking and smoking) and the DLSBP dataset [Duchenne et al., 2009]
(Open Door and Sit Down).

As for the impact of human detection, surprisingly leaving it out
performs better for drinking and smoking. Since Coffee & Cigarettes
essentially consists of scenes with static camera, this result might be due
to inaccuracies in the homography estimation.
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Laptev and Pérez, 2007 490 — — —
Duchenne et al., 2009 400 — 144 139
Kléaser et al., 2010 541 245 — —
Gaidon et al., 2011 57.0 31.0 164 19.8

RS-NMS zero overlap  80.2 409 26.0 27.1

Table 3.7 — Improved trajectory features without human detection com-
pared to the state of the art for localization. We use HOG+HOF+MBH
descriptors encoded with FV (K = 256) and SFV+STP, and apply RS-NMS
zero overlap for non-maximum suppression.

Comparison to the state of the art

In Table 3.7, we compare our RS-NMS zero overlap method with previ-
ously reported state-of-the-art results. As features we use HOG+HOF+MBH
of the improved trajectory features, but without human detection. We
obtain substantial improvements on all four action classes, despite the fact
that previous work used more elaborate techniques. For example, Kldser
et al. [2010] relied on human detection and tracking, while Gaidon et al.
[2011] requires finer annotations that indicate the position of characteristic
moments of the actions (actoms). The biggest difference comes from the
drinking class, where our result is over 23% better than that of [Gaidon
et al., 2011].

3.6.3 Event recognition

In our last set of experiments we consider the large-scale TRECVID
MED 2011 event recognition dataset. For this set of experiments, we do
not use the human detector during homography estimation. We took this
decision for practical reasons: running the human detector on 1, 000 hours
of video would have taken more than two weeks on 500 cores; the speed
is about 10 to 15 seconds per frame on a single core. We also leave out the
T2 split of STP, because of both performance and computational reasons.
We have found on a subset of TRECVID 2011 train data that the T2 of STP
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does not improve the results. This happens because the events do not
have a temporal structure that can be easily captured by the rigid STP, as
opposed to the actions that are temporally well cropped.

Evaluation of local features

Table 3.8 shows results on the TRECVID MED 2011 dataset. We con-
trast the different descriptors and their combinations for all ten event
categories. We observe that the MBH descriptors are best performing
among the individual channels. The fact that HOG outperforms HOF
demonstrates that there is rich contextual appearance information in the
scene as TRECVID MED contains complex event videos.

Between the two channel combinations, the best one is HOG+MBH,
followed by HOG+HOF and HOF+MBH. This order is given by the
complementarity of the features: both HOF and MBH encode motion
information, while HOG captures texture information. Combining all
three channels performs similarly to the best two-channel variant.

If we remove all spatio-temporal information (H3 and SFV), perfor-
mance drops from 45.9 to 43.8. This underlines the importance of weak
geometric information, even for the highly unstructured videos found in
TRECVID MED.

We consider the effect of re-scaling the videos to different resolutions
in Table 3.9 for both DT and IT. From the results we see that ITF always
improves over DTF: even on low resolutions there are enough feature
matches in order to estimate the homography reliably. The performance of
both DTF and ITF does not improve much when using higher resolutions
than 320.

The results in Table 3.9 also show that the gain from ITF on TRECVID
MED is less pronounced than the gain observed for action recognition.
This is possibly due to the generally poorer quality of the videos in this
dataset, e.g. due to motion blur in videos recorded by hand-held cameras.
In addition, a major challenge in this data set is that for many videos
the information characteristic for the category is limited to a relatively
short sub-sequence of the video. As a result the video representations are
effected by background clutter from irrelevant portions of the video. This
difficulty might limit the beneficial effects of the improved features.

Table 3.10 provides the speed (number of frames processed in one
second on a single core) of computing our video representations when
using the settings from Table 3.9. Computing ITF instead of DTF features
increases the runtime by a factor between 1.5 and 2. For our final setting
(videos resized to 480 px width, improved dense trajectories, HOG, HOF,
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Table 3.8 — Performance in terms of AP on the full TRECVID MED 2011
dataset. We use ITF and encode them with FV (K = 256). We also use SFV
and STP, but only with a horizontal stride (H3), and no temporal split (T2).
We rescale the video to a maximal width of 480 pixels.

MBH, stabilized without the human detector and encoded with FV and
H3 SPM and SFV), the number of frames processed in a second is 2.31.
Given that the videos have a frame rate of around 24 frames per second,
the slowdown factor with respect to the real video time is around 10x
on a single core. This translates in less than a day of computation for the
1000 hours of TRECVID test data on a 500-core cluster.

Comparison to the state of the art

We compare to the state-of-the-art in Table 3.11. We consider the
EVENTS/DEV-O split of the TRECVID MED 2011 dataset, since most
results are reported using this setup.

The top three results were reported by the following authors. Li et al.
[2013a] attained 12.3% by automatically segmenting videos into coherent
sub-sequences over which the features are pooled. Vahdat et al. [2013]
achieved 15.7% by using multiple kernel learning to combine different
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160 px 320 px 480 px 640 px

DT 40.6 449 43.0 44.3
IT 41.0 45.6 45.9 454

Table 3.9 — Performance in terms of AP on the full TRECVID MED 2011
dataset using either dense trajectory (DT) or improved trajectory (IT)
features. We study the impact of reducing the video resolutions for each
of the two types of features. For both IT and DT, we combine HOG, HOF
and MBH, and use FV (K = 256) augmented with SFV and STP, but only
use H3 and not T2 for STP.

160 px 320 px 480 px 640 px

DT 30.67 7.12 3.24 2.23
IT 1872 4.97 2.31 1.38

Table 3.10 — The speed of computing our proposed video representation
using different resolutions on the TRECVID MED dataset. We measure the
speed as the number of frames that are processed in a second on a single
core. The experiments include both computing raw features (i.e., DT or
IT) and encoding them into a high dimensional Fisher vector (K = 256).

Method Features mAP
Tang et al., 2012 HOG3D 4.8
Vahdat and Mori, 2013 HOGS3D, textual information 8.4
Kim et al., 2013 HOG3D, MFCC 9.7
Lietal., 2013a STIP 12.3
Vahdat et al., 2013 HOG3D, SSIM, SIFT, color 15.7
Tang et al., 2013 HOG3D, ISA, GIST, HOG, SIFT, LBP ~ 21.8
texture, color and geometry
Improved trajectories (IT) HOG+HOF+MBH and SFV+H3 31.6

Table 3.11 — Performance in terms of AP on the TRECVID MED 2011
dataset using the EVENTS/DEV-O split. The feature settings are the same
as Table 3.8: improved trajectory features (HOG+HOF+MBH), encoded
with FV (K = 256) and SFV+H3.



60 CHAPTER 3. VIDEO REPRESENTATION

features, and latent variables to infer the relevant portions of the videos.
Tang et al. [2013] obtained the best reported result so far of 21.8%, using a
method based on AND-OR graphs to combine a large set of features in
different subsets.

We observe a dramatic improvement when comparing our result of
31.6% to the state of the art. In contrast to these other approaches, our
work focuses on good local features and their encoding, and then learns a
linear SVM classifier over concatenated Fisher vectors computed from the
HOG, HOF and MBH descriptors.

3.7 Conclusion

In this chapter we set up a robust and efficient pipeline for video repre-
sentation. We have demonstrated its effectiveness and flexibility through
an extensive evaluation on three challenging tasks: action recognition,
action localization in movies, and complex event recognition. As part of
our benchmark we have varied the local features (dense trajectories and
improved trajectories) and their encoding (bag of words and Fisher vec-
tors). We have shown that Fisher vector are a viable alternative to the bag
of words histograms, and that encoding weak geometric layout (spatio-
temporal pyramids or spatial Fisher vectors) is a straightforward way to
improve performance. We also found that action localization results can
be substantially improved by using a simple re-scoring technique before
applying NMS, to suppress a bias for too short windows. Our proposed
pipeline significantly outperform the state of the art on all three tasks. Our
approach can serve as a general pipeline for various video recognition
problems and we will reuse it in the subsequent chapters.
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The success of the Fisher vector (FV) representation can be ascribed
to a large extent to its high dimensionality, which makes it very effective
in combination with efficient linear classifiers. The flip side of its high
dimensionality—representations of tens to hundreds of thousands of
dimensions are more the rule than an exception—is, however, that it leads
to large storage and computational requirements.

Localization of actions in video, or objects in images, can be consid-
ered as a large-scale classification problem, where we want to find the
highest scoring windows in a video or image w.r.t. a classification model
of the category of interest. Unlike generic large-scale image classification,
however, the problem is highly structured in this case, in the sense that
all windows are crops of the same video or image under consideration.
This structure has been extensively exploited in the past. In particular,
when the features for a detection window are obtained as sums of local
features, integral images can be used to pre-compute cumulative feature
sums. Once the integral images are computed, these can be used to com-

61



62 CHAPTER 4. APPROXIMATELY NORMALIZED FISHER VECTORS

pute the sums of local features in constant time w.r.t. the window size.
Viola and Jones [2004] used this idea to efficiently compute Haar filters
for face detection. Recently, Chen et al. [2013] used the same idea to ag-
gregate scores of local features in an object detection system based on a
non-normalized FV representation. Another way to exploit the structure
of the localization problem is to use branch-and-bound search, as e.g. used
by Lampert et al. [2009a]. Instead of evaluating the score of one window
at a time, they hierarchically decompose the set of detection windows
and consider upper-bounds on the score of sets of windows to explore the
most promising ones first.

While the power and /; normalizations of Perronnin et al. [2010] have
proven effective to improve the performance of the FV, the resulting
normalized FV is no longer additive over local features. As a consequence,
these FV normalizations prevent the use of integral image techniques to
efficiently aggregate local features or scores.

Our first contribution, which we present in Section 4.2, is to show that
the FV normalizations can be approximated in a way that the score for an
arbitrarily large window can be computed in constant time, by relying on
pre-computed cumulative sums of local visual word assignments, scores,
and ¢, norms. Second, in Section 4.3, we show that with our approxima-
tions the normalized FV becomes amenable to efficient localization using
branch-and-bound search.

In our experimental evaluation, presented in Section 4.4, we validate
on two action classification benchmarks that our approximations have
only a limited impact on the effectiveness of the normalizations. Exper-
iments on two temporal action localization datasets demonstrate that
our approximations accelerate temporal localization by more than one
order of magnitude when using a temporal sliding window approach.
Branch-and-bound search brings further speedup when only the top scor-
ing windows need to be reported. Before presenting our contributions
and experiments in detail, we first discuss the most relevant related work
in Section 4.1.

4.1 Related work

The search space for multi-dimensional localization problems grow
exponentially: if we consider a D-dimensional grid with B bins per dimen-
sion, there are C = BP grid cells, and O(C?) windows defined over the
grid, see Figure 4.1. Exhaustive sliding window search is therefore costly,
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Figure 4.1 — The search space for multi-dimensional localization. Different
number of dimensions correspond to various tasks: D = 1 for tempo-
ral localization (left), D = 2 for spatial localization (middle), D = 3 for
spatio-temporal localization (right). The number of cells grows exponen-
tially with the number of dimensions, C = B D and the number of total
possible windows scales quadratically with the number of cells, O(C?), as
a window is defined by two cells: a starting cell and an ending one.

unless low-dimensional features in combination with linear classifiers are
used.

Viola and Jones [2004] introduced a face detector that combined ef-
ficient computation of Haar-filters over pixel intensities using integral
images, with a detection-cascade that progressively rejects detection win-
dows using an increasingly larger set of features. In this manner most
computation is spent on finely analyzing the most promising image re-
gions. Similar ideas were used by others for generic object category
detection using richer image representations based on the bag of words
(BOW) representation, by using progressively more expensive classifiers,
see e.g. [Harzallah et al., 2009, Vedaldi et al., 2009].

If an additive window representation is used—such as a non-normalized
BOW histogram—in combination with a linear classifier, several efficient
algorithms are available for localization. These algorithms exploit the
commutative property of the linear score function and the additivity of the
representation. For the one-dimensional case the problem then reduces to
the maximum subarray problem, which can be solved with a linear-time
dynamic programming algorithm [Bellman, 1957]. In the two-dimensional
case, An et al. [2009] presented an O(C3/2) algorithm, which was used
by Chen et al. [2013] for detection with non-normalized FVs. Another
approach, used by Lampert et al. [2009a], is branch-and-bound search, for
which the bounds are efficiently evaluated for additive features and linear
classifiers. Yuan et al. [2009] generalized this approach to spatio-temporal
localization in videos.
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Most of the recent work that uses FV representations for object and ac-
tion localization, and semantic segmentation, either uses non-normalized
FVs [Chen et al., 2013, Csurka and Perronnin, 2011], or explicitly computes
normalized FVs for all considered windows as in [Cinbis et al., 2013] or
as in Chapter 3. The recent work of Li et al. [2013b] is an exception to
this trend; they left out the power-normalization of the FV, but presented
an efficient approach to incorporate exact ¢, normalization. In this chap-
ter we present approximations to both the power and ¢, normalization,
which allows us to compute the score of a window by aggregating locally
precomputed and cached quantities. In particular, we store for each cell
and visual word the local sum of assignments, scores, and ¢, norms. This
representation has a size that is only three times larger than a local BOW
histogram, while leveraging the representational power of the normalized
FV.

A different line of work focuses on using category-independent pro-
posal methods, mainly driven by low-level contour and segmentation
cues, to produce a small set of candidate detection windows, see e.g.
[Alexe et al., 2012, Uijlings et al., 2013, Manen et al., 2013]. In this manner
a set of only 1,000 to 2,000 windows suffices to capture 95% of the objects
in the PASCAL VOC datasets. Since these techniques are decoupled from
the actual detector, they do not impose any constraints on the detector
or its features. In Chapter 5 we generalize such techniques to the video
domain. The spatio-temporal object proposals can be used in combination
with the approximate normalizations to further improve the efficiency of
localization.

4.2 Approximate Fisher vector normalization

Below, we first briefly restate the Fisher vector (FV) image represen-
tation (for a more detailed exposition, see Section 3.2), after which we
present our approximations to the power and ¢, normalization. Finally,
we analyze the complexity to compute the approximately normalized FV.

4.2.1 The Fisher vector and its normalizations

We apply the Fisher kernel principle [Perronnin and Dance, 2007] to
obtain representations of sets of N local features. The local features are
modeled as independent samples from a K-component Gaussian mixture
model (GMM). We use Gaussians with diagonal co-variance matrices;
let the vector 0} to denote these diagonals. Let x, € R? denote the n-
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th d-dimensional local feature, g, the soft-assignment of x, to the k-th
Gaussian, and 7tx and i the mixing weight and mean of the k-th Gaussian
respectively. The d-dimensional gradients w.r.t. the mean and variance of
the k-th Gaussian are given by:

N

G = Y Gk [Xn — i) / /0T, @.1)
n=1
N

Go, = Z qnk [(xn - .”k)2 - Uk} / 2(7%7‘(;(, (4.2)
n=1

where operations using ¢; should be understood as element-wise opera-
tions, and the normalization by the Fisher information matrix has already
been taken into account. The concatenation of these d dimensional gra-
dients, as G = [Gy, ..., Gk] with Gy = [Gy,, G¢,|, is then referred to as
the Fisher vector (FV), which is of dimension 2Kd. The gradient w.r.t. the
mixing weights of the GMM are generally ignored since they contribute
little discriminative power to the FV. See [Sdanchez et al., 2013] for a recent
comprehensive review of the FV image representation.

Two normalizations of the FV representation significantly improve its
performance [Perronnin et al., 2010]. The first of these is the power nor-
malization which consists in applying per-dimension a “signed” power,
by transforming each element of the FV as z < sgn(z)abs(z)?, with
0 < p < 1. The second normalization is the ¢, normalization, which
consists in rescaling the FV to have unit /, norm.

While these normalizations are common in practice [Perronnin et al.,
2010, Jégou et al., 2012, Arandjelovi¢ and Zisserman, 2013], the expla-
nations on why they work still vary. One recurrent motivation is the
phenomenon of burstiness—if a word appears once in a document, it is
more likely to occur again. Burstiness was first observed in natural lan-
guage [Church and Gale, 1995, Katz, 1996], but Jégou et al. [2009] have
shown that visual words also exhibit a similar behaviour. One problem
due to burstiness is that a few large components of the feature vector can
dominate and adversely impact the classification score. Another problem
was mentioned in [Cinbis et al., 2012]: if we assume a linear classifier for a
given category c, its scoring function f keeps increasing with the number
of words A, specific to the category c: f(h+ A;) = f(h) + f(Ac). This
effect is undesirable as we would like to obtain the same classification
score regardless of the size or quantity of the objects of interest. These
issues are alleviated by discounting the values of the feature vector by
element-wise power normalization and then re-normalizing the values by
¢> normalization.
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Other interpretations of the power normalization are offered in [Winn
et al., 2005, Perronnin et al., 2010, Jégou et al., 2012, Cinbis et al., 2012].
Perronnin et al. [2010] observe that FVs become sparser as the number
of Gaussians increases. They argue that /, distance is not an appropriate
measure for sparse data, so they propose to reduce the sparsity using the
power normalization. Winn et al. [2005] and Jégou et al. [2012] motivate
the power normalization as a variance stabilization transformation, assum-
ing that the data is well modeled by a Poisson distribution. Cinbis et al.
[2012] show that transformations similar to power normalization occur
when using more complex models that do not assume the independence
of visual words.

The ¢, normalization ensures that the video size does not impact the
distance between the corresponding feature vectors. Consider two videos
with very similar content, but one being just much longer than the other:
for example, let the second video be just the first video repeated several
times. In this case the Euclidean distance between the two video represen-
tations might be very large, but the relative distributions of the features
are identical. The ¢/, normalization cancels the effect of the magnitude,
as it can be shown that the Euclidean distance between ¢, normalized
vectors corresponds to using a distance based on the angle a between the
original vectors:

d(x,y) = |x[3+ lyll3 —2x"y (4.3)
=2(1—x"y) =2(1 —cosa). (4.4)

Another reason for the ¢, normalization is proposed in [Perronnin et al.,
2010], where they show that this normalization reduces the impact of the
background component into the final representation.

4.2.2 Approximate power normalization

Cinbis et al. [2012] have argued that the power normalization corrects
for the independence assumption that is made in the GMM model that
underpins the FV representation. They presented latent variable mod-
els which do not make this independence assumption, and experimen-
tally found that such models lead to similar performance improvements
as the power-normalization. In particular, they showed that the gradi-
ents w.r.t. the mixing weights in their non-i.i.d. model take the form of
discounted version of these gradients in the original i.i.d. model. The
transformation they found was the di-gamma function, which, like the
power-normalization, is a concave monotonic function.
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Based on this analysis, we propose an approximate version of the
power normalization. First, note that the gradients in G, are weighted
sums of contributions of local features. Let us write these in a more
compact manner as:

Gy = ankgnk = (Z an) Z InkSik (4.5)
n n n

Zm qmk ’

where g, and g, denote the weight and gradient contribution of the
n-th local descriptor for Gi. The last part of Eq. (4.5) re-interprets the FV
as a weighted average of local contributions, multiplied by the sum of
the weights. The power-normalization is computed as an element-wise
signed-power of Gi. In our approximation we, instead, apply the power
only to the (positive) sum of weights:

o
Gr = (Zm) Y dnkSuk (4.6)

Em Gmk

In our approximation, the power-normalization modifies the magnitude of
the gradient vector, but not its orientation (see Figure 4.2). We concatenate
the G; to form the normalized FV G.

Using our approximate power-normalization, a linear function can
now be computed by aggregating local scores. For a classifier weight
vector w = [wy, ..., wi] we have:

o—1
(w,G) =Y (W, Ge) =), (Z an) Y Sk (4.7)
k n n

k

where s,x = (W, .kgnk) denotes the score of the local non-normalized
FV, which is still additive over local terms.

4.2.3 Approximate ¢/, normalization

We now proceed with an approximation of the ¢, norm of G. The
squared ¢ norm is a sum of squared ¢, norms per Gaussian component:
1G5 = Lk G Gr, where

2(p—1)
Gy Gr = (2%) Y Gtk (Snier Smc) - (4.8)
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Figure 4.2 — Illustration of the Fisher vector Gy and the power normal-
izations: the Fisher vector after the exact (1/Gy) and approximated (Gy)
power normalization (we use the /- symbol to denote a power normal-
ization with p = 0.5). The figure depicts the descriptor space with each
descriptor shown as a blue cross. The contribution of the n-th descriptor
to the Fisher vector is indicated by the vector g,x. Our approximated
normalization Gy scales the magnitude of the Fisher vector Gy, as opposed
to the exact power normalization /Gy which changes also the orientation.

We approximate the double sum over dot products of local gradient
contributions by assuming that most of the local gradients will be near or-
thogonal for high-dimensional FVs. This leads to an approximation L(Gy)
of the squared ¢, norm of Gy in the form of a sum of local contributions:

2(p—1)
L(Gk) = (2 an) Y Tk (4.9)

where Ly = (guk, §uk) is the local squared /; norm. Summing these over
the visual words, we approximate ||G||3 with L(G) = Y L(Gi). The
approximated ¢, norm corresponds to summing only the diagonal terms
of the cross-product matrix, as shown in Figure 4.3.

Theoretically, we can show the following: (i) if the FV of local descrip-
tors are positively correlated (which we expect them to be in practice), our
approximated L2 norm is an underestimate of the true norm; (ii) in expec-
tation the approximation of £, norm is the true ¢, norm if the contributing
descriptors are independently distributed and with zero mean. To prove
these claims we start from the fact that the exact £, norm, L(Gy), equals to
the sum of diagonal terms of the cross-product matrix, which represents
our approximate ¢, norm, L(Gy), plus the sum of the off-diagonal terms
of the cross-product matrix (for brevity, we do not consider the power
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(c) Approximate, medium cell (d) Approximate, large cell

Figure 4.3 — Cross-product matrices between the local gradients g, that
contribute to the Fisher vector G;. The exact £, norm of the Fisher vector
can be obtained by summing the quantities in the cross-product matrix
(top left). For the approximated case (top right), we consider only the
diagonal elements of the matrix (the off-diagonal elements are assumed
to be zero). The bottom row highlights the values retained for the approx-
imated case when we increase the cell size. We analyze how the quality of
the approximated ¢, norm is impacted by the cell size in Section 4.4.



70 CHAPTER 4. APPROXIMATELY NORMALIZED FISHER VECTORS

normalization in the subsequent formulas):

L(Gk) = L(gk) + ZZ (qugmk)T (angnk) . (4-10)
m#n

The first claim holds if the FV of local descriptors are positively correlated:
(qugmk)T (9uk&nk) = 0 implies that L(Gy) > L(Gy). We empirically show
that indeed this is the case for FVs in Section 4.4.

To show the second claim we take the expectation of (4.10) w.r.t. de-
scriptor random variable x. Applying the linearity property of the expec-
tation, we obtain:

E+L(Gy) = ExL(Gy) + Y_ Y Ex (quigmt) | (Gukgut) - (411)
m#£n

Now we use the following two assumptions to cancel out the second term
from the right hand side, and conclude the proof: (a) the data is i.i.d., so
the expected value is multiplicative, that is E[XY] = E[X]E[Y] for X, Y
i.i.d. random variables; (b) the FVs have zero mean, that is E[G,] = 0.

4.2.4 Complexity of approximately normalized FVs

We combine the above approximations to compute a linear function of
our approximately normalized FV as

£(G;w) :<w g/r> (w, G) /F 4.12)

The 2Kd dimensional dot product (w, G) can be rewritten as a K dimen-
sional product between two vectors. The firstis s = [ Y, Su1, ..., ¥ Snk],
which collects the accumulated scores for each visual word, with s,
defined as above. The second is § = [ ¥, qu1,- - -, Ly uk|, which simi-
larly collects the weights by summing over the g, instead. Considering
Eq. (4.7), we then obtain:

(w,G) = <q(p*1),s> , (4.13)

where g(°~1) contains the element-wise powers of . Using Eq. (4.9),
we can similarly express L(G) as a K-dimensional dot product if we let
I = [, 9%n1, - - n 92xink] denote the vector of accumulated ¢ norms:

L(G) = <q2<P—1>,z>. (4.14)
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Combining these formulations we obtain the classification score as a ratio
of two dot products:

f(Giw) = (q®7V,s) [\ (g2e,1). (4.15)

The accumulated quantities—scores s, assignments g, norms [—are
all computed by aggregating local quantities over continuous regions
of the search space. The cost of obtaining these quantities scales with
the size of the region: a bigger window involves summing more local
quantities. With the help of integral images we can compute in constant
time these per-window quantities and the corresponding score function
f(G;w). Since the scores, assignments, and norms vary per visual word,
we need to compute three integral images for each visual word. As we
will see shortly, we are going to make use of integral images whenever
we deal with aggregation.

For the complexity analysis we assume we use a multidimensional
grid, with C cells in total. However, in Figure 4.4, to facilitate visualization
we illustrate the process of window scoring for a one dimensional grid
(D = 1), corresponding to the task of temporal localization. We consider
three normalization cases:

Exact normalization We apply the power and ¢, normalizations before
scoring a FV, as we have already described in Subsection 4.2.1. In
order to score a given window we first aggregate the FVs correspond-
ing to that window into a single vector, then normalize and score
this vector. We speed up the aggregation operation by computing
integral images over FVs.

No normalization We skip the normalizations and directly score a FV. As
for the exact case, we could first aggregate the FVs corresponding
to a given window into a single vector and then score it. But, be-
cause we assume linear classifiers, we have a more efficient way of
scoring a given window, by interchanging the two steps: first score
each temporal slice and then aggregate the local scores. Again we
speed up the aggregation (in this case of local scores) by working on
integral images.

Approximate normalization We use the proposed approximations as we
have detailed above, see Eq. (4.15). The score of a given window
in this case depends only on the per visual word quantities (scores,
assignments, ¢, norms), so we just store those instead of the full FVs.
We make use again of integral images to speed up the aggregation
of the per visual word quantities.
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ojlclcom

Score

Testdata X  Aggregated Fisher vector

(a) Exact normalization. For each location t and duration A, we aggregate the cor-
responding FVs into a single vector. We then apply the non-linear normalizations,
power and ¢, normalization, and score with the linear classifier w.

t
l A
—
— HEEE | ——
Local scores Score
Test data X

(b) No normalization. First we pre-compute the scores for each individual
temporal slice by computing the dot product X "w of the data matrix X with
the classifier weights w. Then we can efficiently score any window (f, A) by just
summing the local scores of the corresponding slices.

t
8,
@| [T11] |@Squzk@
~ T =00
I
Test data X

Per-visual word quantities

(c) Approximate normalization. First we pre-compute per-visual word quantities:
scores S, assignments ¢, norms Ix. Then, for a given window (¢, A), we
aggregate the quantities and combine them into the final score, see Eq. (4.15).

Figure 4.4 — Prediction step for temporal localization for three different
normalization cases: exact normalization, no normalization, approximate
normalization. In each case we are given the data matrix X € R?K4xC,
which contains a Fisher vector for each temporal slice, and the goal is to
score a given temporal interval, starting at slice t and lasting for A slices.
See the text for a discussion on the complexity of each of these three cases.
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Normalization Storage Pre-computing Window evaluation

Exact 2CKd O(CKd) O(Kd)
None C O(CKd) O(1)
Approximate 3CK O(CKd) O(K)

Table 4.1 - Summarizing the complexity analysis for the three normaliza-
tion cases. We remind that K denotes the number Gaussian clusters, d the
dimensionality of the local features, C the number of cells.

The first step in all the three cases is to aggregate the local FVs per
cell, and to compute the (multi-dimensional) integral image over these
cells. For exact normalization (Figure 4.4a), we need to compute 2Kd
integral images, since we first need to compute the full window-level FVs
before the normalizations can be applied. If do not use any normalization
(Figure 4.4b), we pre-score each temporal slice by computing the dot
product between the data matrix and the classifier weights; then we
compute the integral image over the array of scores. When using our
approximations (Figure 4.4c), we will compute 3K integral images that
accumulate the local weights, scores, and norms per visual word. The cost
of this step for all the three cases is O(CKd). Compared to storing the full
FV, our representation is 2d /3 times more compact, while compared to the
“nonormalization” case, our representation is 3K larger. When using, as in
our experiments, d = 192 for the local features, the storage requirements
for the approximate version are reduced by a factor 2 x 192/3 = 128,
compared to the exact version.

Once the integral images are available, the cost to score a window
of arbitrary size is O(K) with our approximations, as opposed to O(Kd)
when using exact normalization. We thus obtain an O(d) speedup for the
window scoring. Using no normalization is fastest, as we are able to score
any arbitrary window in constant time, O(1). We summarize these results
in Table 4.1.

The actual cost to obtain the integral images is slightly higher when
using our approximate normalizations, since at this stage we already
compute local scores and norms, and take powers of the weight sums.
When using exact normalization, we only sum local FVs at this stage. The
cost of the approximiate normalizations is, however, amortized as the
per-window scoring is a factor d faster; and exact normalization requires
taking powers of the full window-level FVs. In our experiments we assess
the speedup as observed in different practical settings, as well as the
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Figure 4.5 — The branching step of the branch-and-bound search algorithm.
The initial set of possible windows contains all the windows that start
between sj,, and spign, and end between ey, and ey;g (parent). This set
is split into two subsets by separating the windows by their ending point:
windows that finish before t( go into the first subset (child 1) and windows
that finish after to go into the second subset (child 2). The bounding step,
which we illustrate for the parent, depends on quantities computed on
the intersection (\An) and union (A) of all windows.

impact of the normalizations on the recognition performance.

4.3 Integration with branch-and-bound search

The approximations we presented above accelerate the scoring of
windows by aggregating locally pre-computed scores, weights, and norms.
A second method to speedup detection is to use a branch-and-bound
search instead of exhaustive search. The idea of branch-and-bound is
to evaluate upper bounds on the scores of windows in sets of detection
windows. Starting from the set of all possible windows, the search is
organized by hierarchically splitting sets of windows and computing
upper bounds on the scores. A set of detection windows A is defined as
a collection of tuples (s, e), denoting the starting and ending point of a
window:

A={(se)ls € [Slow/ Shighl, € € [elowzehigh]} ,

where s),,, € RP defines the earliest starting point for the windows in A
on the D-dimensional grid, and, similarly, sy, defines the latest starting
point for all windows in A, and ey, and ey;g define the earliest and
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(Stow €high) (Shigh/ @high)

End frame e
~

(shigh/ Clow)

Start frame s

(a) Contour plot of the IOU function with a given window (s*, e*). The rectangle
denoted by A represents the set of windows in the branch-and-bound iteration.

IOU
high

€low

End frame e

(b) IOU as a function of the end frame e only (we fix the starting frame). For any
two points ejy and epigp, their convex combination is greater than at least one of
them. By symmetry, the same holds true for the IOU as a function of the start
frame s. This means that the minimum is attained at the corners and not on the
edges of the rectangle.

Figure 4.6 — Analysis of the intersection-over-union (IOU) with a reference
window (s*,¢e*). The IOU is a function of the start and end frames. The
function is unimodal and its maximum is attained when it matches exactly
the reference window. If we constrain the search over a rectangle A, the
minimum value is obtained at one of the corners of the rectangle.
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latest end points. Sets of windows are split by either splitting the start
range or the end range on a single dimension, depending where the
range is maximum (see Figure 4.5). The sets are explored in a best-first
manner, which focuses on the most promising parts of the search space
first. See [Lampert et al., 2009a] for a comprehensive introduction to
branch-and-bound search.

The branch-and-bound search finds the best scoring window, but
sometimes we want to report the top k scoring windows. For example,
for temporal action localization it is often the case that multiple actions
appear in the same movie, and we would like to be able to detect all the
instances. We obtain the top k windows by running the branch-and-bound
algorithm k times, after each iteration removing the selected window from
the search space. To avoid redoing work at each run of the algorithm, we
share information—the set of windows and their corresponding bounds—
between the runs and expand it accordingly after each run.

As in Chapter 3, we apply non-maxima suppression (NMS) on the
scored windows, but instead of performing it after the branch-and-bound
search, we integrate it within the search. Such a strategy can improve the
efficiency of our algorithm, because it allows to prune parts of the search
state space. Sometimes all the windows in the current set .4 overlap more
than the NMS threshold with the one of the already selected windows; in
this case we can stop exploring the set .4, as any window selected from
A will be subsequently discarded by NMS. To determine if a given set
A still contains windows of interest, we observe that the intersection-
over-union (IOU) function is lower-bounded by the values obtained on
one of the following four windows: (siow, €low ), (Slow/ €high), (Shigh/ €low )/
(Shighr ehigh) ; if the IOU of any pre-selected window with all these four
windows is greater than the NMS threshold, then we stop exploring the set
A. See Figure 4.6 for a graphical explanation of this property; Figure 4.6a
illustrates the IOU function as a contour plot and the set of windows A as
a rectangle; the minimum value inside the rectangle is attained at one of
its four corners.

In the forthcoming subsections, we derive bounds for the score de-
fined in Eq. (4.12). For clarity of exposition, we start with a bound on a
simple additive score function, and then present bounds when adding
our approximate power and ¢, normalizations.

4.3.1 Upper-bound for additive linear classifiers

If the function is linear and additive in the local features it is easy to
obtain an upper bound by separating the positive and negative terms. In
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particular, consider such a function over the non-normalized FV G:

f(G,ZU) = <ZU, G> = ; (% Gk Zzsnk/

:Z 2 Suk + Z Snk]r (4.16)
k

n:5,, >0 n:s,,<0

where as before s,x = (wy, 4,xguk)- We can upper bound the score of the
FV of any window in a set of windows A by accumulating positive and
negative scores of the union A and intersection An of all windows in A
respectively:

FArw) - z[ Y et YT ] w17)

k HEAuiSnk>0 ﬂGAmZSnk<O

4.3.2 Bounding approximate power-normalization

When using our approximate power-normalization, a linear classifica-
tion score takes the form of Eq. (4.7):

-1
f60) = 0,6) =7 (zan) o @)

To bound this function for a set of windows A, we can use the previous
bound for the linear score terms )_,, s,,x. Provided the intersection An is
non-empty, the scalar multiplication with (¥, 7,.¢)” ~! can be bounded by
accumulating the weights over the intersection A, instead. For 0 < p < 1
this leads to the upper bound

A(A) =z< y an)pl Y st X

k neAn ne Ay neAn
Sk >0 Sk <0

If the intersection .An is empty, however, we obtain a trivial upper bound
f(A) = o0, since 00°~1) = oo for 0 < p < 1. To bound this case, we use the
interpretation of the normalized FV as a weighted average, c.f. Eq. (4.6),
and write:

f(Gw) =Y (an ) ZW (4.19)
k n

m Gmk
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It is then easy to see that we can upper bound the score as

p
f2(A Z( Y. an) max (W, &uk)- (4.20)

ne Ay

Since the latter bound relies on a non-linear max operation, we cannot
efficiently compute it using intergral images. Therefore, the bound f;(A)

is preferred if A # @.

4.3.3 Bounding with approximate ¢/, norm included

To upper bound a linear function of our approximately power and ¢,
normalized FVs, c.f. Eq. (4.12), for a set of windows A, we need to lower
bound the approximate ¢, norm:

2(p—1)
=) (Z an) Y gl (4.21)
k n n

Since 0 < p < 1, then 2(p — 1) < 0, so the first term can be bounded
summing over the union A instead. If the intersection .An is non-empty
we can bound the second term by summing over the intersection, and
obtain the lower-bound on L(G) as:

2(p—1)
Li(A) = z( y an) Y i w2

k neAy neAn

If the intersection is empty, we can instead of the sum over An, use the
minimum over A, to obtain the bound:

2(p-1)
Li(A) =} ( ) an> min gyl (4.23)
k I’ZGAU €

It is easy to verify that if An # @ then Ly(A) < Li(.A), thus in this case
L1 (\A) is the tightest of the two bounds.

4.4 Experiments

We use four datasets in our evaluation: Hollywood2, HMDB, Coffee
& Cigarettes and Duchenne; more information about the data and their
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evaluation protocol can be found in the previous chapter, see Section 3.5.
We reuse the video representation pipeline that we proposed in Chapter 3.
In the current subsection, we start by detailing the parameters used for
features and action localization. Then we show results for our approx-
imations in the context of action classification and, finally, evaluate the
speedup our approximations brings to temporal action localization.

Features. We use the dense trajectory features of Wang et al. [2013a],
with their standard parameters. We extract only MBH features and project
them to 64 dimensions with PCA. As in [Oneata et al., 2013], we use 1,000
GMM components for classification, and include position information
with spatial pyramids and spatial Fisher vectors. For temporal localization
we use a GMM with 128 components, and no position information. This
setting yields a FV of 804,000 dimensions for classifications and 16,384 for
localization.

Action localization parameters. For localization we consider tempo-
ral windows with lengths from 20 to 180 frames, with increments of 5
frames. We use a stride of five frames to locate the windows on the video.
We use zero-overlap non-maximum suppression, and re-scale the window
scores by the duration, as in Chapter 3. When using branch-and-bound,
window sets that are guaranteed to intersect already selected windows
are removed from the queue.

4.4.1 Effect of approximation on action classification

In our first experiment we consider the effect of the power and ¢
normalizations of the FV for action classification, and assess to which
degree our approximations maintain the performance benefits of the exact
normalizations. In our experiments we use the common setting of p = 0.5,
see e.g. [Chatfield et al., 2011, Jégou et al., 2012, Oneata et al., 2013], which
corresponds to a signed square-root.

The first four results in Table 4.2 assess the effectiveness of the exact
power and ¢, normalization for action classification. For both datasets the
power normalization is the most effective one, improving performance by
6.8 and 8.6 mAP points respectively. Adding ¢, normalization improves
results further by 0.4 and 0.5 mAP points respectively.

When using approximate power normalization (fifth line), but ex-
act /, normalization, performance drops only slightly for both datasets.
For Hollywood2 and HMDB the loss is only 0.3 and 0.1 points respec-
tively; which is respectively 2.0 and 5.3 points above not using power
normalization. Experimentally, we found that it is beneficial to apply
an additional element-wise standardization of the FV after approximate
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Power norm. ¢> normalization Hollywood2 HMDB
No No 56.2 43.1
Exact No 62.0 51.7
No Exact 60.1 46.8
Exact Exact 62.4 52.2
Approximate Exact 62.1 52.1
Approximate  Approximate, n =5 60.1 52.6
Approximate Approximate, n = 10 60.2 52.4
Approximate Approximate, n = 20 60.2 52.6
Approximate Approximate, n = 40 60.6 52.5
Approximate Approximate, n = 80 60.7 52.2
Approximate Approximate, n = 160 61.1 52.2
Wang et al., 2013a 59.9 48.3
Oneata et al., 2013 61.9 51.9
Jain et al., 2013 62.5 52.1
Wang and Schmid, 2013 64.3 57.2
ITH (Chapter 3) 66.8 60.1

Table 4.2 — Action classification performance. For the ¢, approximation
we evaluate using cells of n frames, for n = 5 to n = 160.

power normalization, and before ¢, normalization. If this is not done,
performance drops by about 1 point to 61.3% and 51.1% mAP respectively.
This standardization can absorbed in the classifier weight vector w, be-
fore computing the local scores s, and therefore does not impact the
computational efficiency of our approach.

The following six results show the effect of approximate ¢, normaliza-
tion for various temporal cell sizes over which the features are aggregated:
from 5 up to 160 frames. The smaller the cell size, the coarser our approxi-
mation, since more cross-terms will be ignored in our approximation. The
results show, however, that the classification performance is only slightly
impacted by using smaller cells. For Hollywood2 the best result of 61.1%
is obtained for cells of 160 frames, while using 5-frame cells yields 60.1%
mAP. For HMDB the variation in performance across different cell sizes is
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Figure 4.7 — Errors in the £, norm approximation, see text for details.

at most 0.4 points, with better performance for smaller cells.

We further analyze the ¢, norm approximation by considering the
ratio between the approximate and the true norm. In Figure 4.7 we
show the average of the ratio and its standard deviation for various
cell sizes measured on HMDB. Note that the ratio is generally smaller
than one, as expected. Moreover, even for small cell sizes the under
estimation is limited to about a factor two, with limited variation in the
under estimation factor. This explains the small impact on the recognition
performance observed above.

To show that our video representation is competitive with the state-
of-the-art, we include the results from Chapter 3 and four other recent
state-of-the-art results of [Jain et al., 2013, Oneata et al., 2013, Wang et al.,
2013a, Wang and Schmid, 2013]. Wang et al. [2013a] use a sum of RBF chi-
squared kernels over BOW histograms for HOG, HOF, and MBH features,
computed over six different SPM grids [Lazebnik et al., 2006], and using
4,000 visual words. The setup of Oneata et al. [2013] is comparable to the
one we used here. Jain et al. [2013] use camera motion stabilization before
computing MBH, HOG, and HOF features, in addition to their DCS flow
features. They aggregate these features using VLAD descriptors [Jégou
et al., 2012], a variant of FV. Our results from Chapter 3, as well as those
of Wang and Schmid [2013], use the improved dense trajectories with
human detector (ITH) encoded with FV, but we included also weak spatio-
temporal information (spatial pyramids, spatial Fisher vector).
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Drinking
Smoking
Open Door
Sit Down

Search Power 4y

Exh. No No 340 156 103 59
Exh. No Yes 61.1 55,5 24.1 18.3
Exh. Yes No 648 238 206 17.1
Exh. Yes Yes 64.8 554 284 19.0

Exh. Appr. Appr. 671 52.0 181 13.6

Oneata et al., 2013 639 505 265 18.2
Gaidon et al., 2011 57 31 164 19.8
Laptev and Pérez, 2007 49 — — —

Duchenne et al., 2009 40 — 144 139
IT (Chapter 3) 80.2 409 26.0 27.1

Table 4.3 — Action localization performance using either no, exact, or
approximate normalizations, and recent state-of-the-art results.

4.4.2 Temporal action localization

In our temporal action localization experiments, we compare using
exact normalizations and our approximations in terms of localization
performance and speed.

The localization results are presented in Table 4.3. As before, the
tirst four results consider the impact of the exact normalizations on per-
formance. For drinking and sit down the power and ¢, normalization
have a similar impact, and improve the results by about 30 and 12 mAP
points respectively. Using both normalizations does not bring further
improvements for drinking, but does improve results by 0.7 points for
sit down. For smoking and open door the ¢, normalization brings the
largest improvement of almost 40 and 14 mAP points respectively. Addi-
tional power normalization is not effective for smoking, but does bring an
improvement of 4.3 points for open door.

Next, we consider the impact of our approximate power and ¢, nor-
malizations. For drinking we obtain an AP of 67.1%, which is even 2.3
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Drinking
Smoking
Open Door
Sit Down

Search Power ly

Exh. No No 2.8 2.2 31.1 29.9

Exh. No Yes 954 922 1276.7 1168.3
Exh. Yes No 1463 1434 17943 17819
Exh. Yes Yes 160.3 151.0 1966.8 2036.4

Exh. Appr. Appr. 113 103 1406 138.0

Table 4.4 — Timings (secs.) for action localization using exhaustive search
with either no, exact, or approximate normalizations.

points above the results for exact normalization. For smoking our approx-
imations also lead to an AP of 52.0%, which is 3.4 points below the result
for exact normalization. For open door and sit down the results are 10.3
and 5.4 points below those obtained using exact normalization. They are,
however, still 7.8 and 7.7 points better than not using normalization. For
drinking and smoking the gain of our approximate normalization w.r.t.
no normalization is 33.1 and 36.4 mAP points.

We compare to the results from Chapter 3, where we have used the
improved trajectories, and we also include other recent state-of-the-art
results of [Duchenne et al., 2009, Gaidon et al., 2011, Laptev and Pérez,
2007, Oneata et al., 2013] to show that our results are competitive. The
results for [Laptev and Pérez, 2007] are taken from [Duchenne et al., 2009],
which have interpolated their spatio-temporal localization results to the
temporal domain. Our results with exact normalization are above the best
earlier reported results. Using our approximations this is still the case for
drinking and smoking, but not for open door and sit down.

The timing results in Table 4.4 show that our approximations lead to a
speedup of about one order of magnitude w.r.t. using exact normalization.
As compared to using no normalization, our approximations are about
four to five times slower, but leads to significantly better results.

Finally, we evaluate the speed of branch-and-bound search with our
approximations to find the top scoring temporal windows. In Table 4.5
we give an overview of the search times when searching for the ¢ highest
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o0 s ¢
- - s
e % 5§ O
= g (oW =
A 3) @) )
Pre-processing 7.65 699 93.01 9298
Exhaustive search 3.65 331 47.67 43.63

Branch and bound, top1 1.02 140 16.59 20.57
Branch and bound, top 10 1.71 2.44 35.41 30.32

Table 4.5 — Search times for the action detection datasets in seconds for ex-
haustive and branch-and-bound search, where both use our approximate
normalization.

scoring windows, for t = 1 and t = 10. Both exhaustive and branch-
and-bound search first pre-process all the cells in the temporal grid to
compute the local sums of scores, assignments, and norms. We separate
the time needed for pre-processing, and the actual search time. When
searching for the top window, branch-and-bound is between 2.1 and 3.6
times faster. For the top 10 windows, the speedup factors are between
1.3 and 2.4. Although faster than exhaustive search, overall the speedup
obtained using branch-and-bound is limited. This is because in our uni-
dimensional temporal search setup, the number of windows is only 32
times larger than the number of cells in the search grid. We expect larger
speedup for branch-and-bound when applied to 2D spatial, or 3D spatio-
temporal localization problems.

4,5 Conclusion

We have presented approximate versions of the power and ¢, nor-
malization of the Fisher vector representation. These approximations
allow efficient evaluation of linear score functions, by caching local per
visual word sums of scores, assignments, and norms. We also presented
corresponding upper-bounds that permit the use of our approximations
in branch-and-bound search. Experimental results for action classifica-
tion and localization show that these approximations only have a limited
impact on performance, while yielding speedups of at least one order
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of magnitude. When only the top-scoring window is required, branch-
and-bound search can further speedup localization by a factor between
2 to 4, excluding pre-processing. The efficient localization techniques
presented here are directly applicable to other localization tasks, such as
object localization in still images, and spatio-temporal action localization.
Since these tasks consider higher dimensional search spaces, we expect
the speedup of our approximations, as well as branch-and-bound search,
to be even larger than for temporal localization task that we considered
in this chapter. We plan to explore application of our approximations for
these tasks in future work.
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In the previous chapters we have investigated the problems of action
recognition and temporal action localization. In this chapter we turn our
attention towards the more challenging task of spatio-temporal localiza-
tion. The goal is to temporally locate the action of interest and for each
selected frame estimate a bounding box. The concatenation of bounding
boxes forms a spatio-temporal tube that locates the action both in space
and time.

Whereas the sliding window search is still viable for temporal action
localization, as we have seen in Chapter 3, this exhaustive search becomes
computationally prohibitive when searching in the much larger space
of spatio-temporal tubes. Efficient search methods for spatio-temporal
action localization have been proposed in the past, exploiting additivity
structures of bag-of-word representations and linear classifiers, e.g. us-
ing branch-and-bound search or dynamic programming [Tran and Yuan,
2011, Yuan et al., 2009]. These methods, however, do not apply when
the representation is non-additive, as is the case for the Fisher vector
representation used in recent state-of-the-art action classification methods,
due to its non-linear power and ¢, normalizations. We have addressed
this issue using approximate normalizations in Chapter 4, while others

87
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Temporal Spatio-temporal box  Spatio-temporal tube

Figure 5.1 — Illustration of the three localization scenarios.

turned towards more efficient implementations [Li et al., 2013b, Van de
Sande et al., 2014].

A more general technique to tackle this issue, which has recently
surfaced in the 2D object recognition literature, is the use of generic class-
independent detection proposals [Alexe et al., 2012, Endres and Hoiem,
2010, Manen et al., 2013, Uijlings et al., 2013, Krdhenbiihl and Koltun,
2014, Zitnick and Dollar, 2014]. These methods produce image-dependent
but unsupervised and class-independent tentative object bounding boxes,
which are then assessed by the detector. This enables the use of more
computationally expensive features, that would be too expensive to use
in sliding window approaches. Recent state-of-the-art object detectors
based on this approach use various representations, e.g. Fisher vectors
[Cinbis et al., 2013], max-pooling regionlets [Wang and Schmid, 2013],
and convolutional networks [Girshick et al., 2014].

In this chapter we explore how we can generate video tube proposals
for spatio-temporal action detection. We build on the recent approach
of Manen et al. [2013] that uses a randomized superpixel merging proce-
dure to obtain object proposals. We extend their approach to the spatio-
temporal domain, using supervoxels as the units that will be merged into
video tube proposals. We introduce spatial, temporal and spatio-temporal
pairwise supervoxel features that are used to learn a classifier that guides
the random merging process. Our proposals are based on a novel hierar-
chical spatio-temporal segmentation method (HST).We experimentally
evaluate our detection proposals, in combination with the new super-
voxel method as well as existing ones. This evaluation shows that the HST
supervoxels lead to more accurate proposals when compared to using
existing state-of-the-art supervoxel methods.

Below, we first review related work in more detail in Section 5.1. Then,
in Section 5.2 we present our supervoxel method, and in Section 5.3
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our tube proposal method. In Section 5.4 we present our experimental
evaluation results, and we conclude in Section 5.5.

5.1 Related work

In this section we discuss the most relevant related work on supervox-
els, and efficient detection methods based on object proposals and other
techniques.

5.1.1 Supervoxel methods

Instead of a complete survey of supervoxel methods, we concentrate
here on the approaches most related to our work. The recent evaluation by
Xu and Corso [2012] compares five different methods [Corso et al., 2008,
Felzenszwalb and Huttenlocher, 2004, Fowlkes et al., 2004, Grundmann
etal., 2010, Paris and Durand, 2007] to segment videos into supervoxels.
They identify GBH [Grundmann et al., 2010] and SWA [Corso et al., 2008]
as the most effective supervoxel methods according to several generic
and application independent criteria. SWA is a hierarchical segmentation
method that solves normalized cuts at each level. At the finest levels, it
defines similarities from voxel intensity differences, while at higher levels
it uses aggregate features which are computed over regions merged at
earlier levels. GBH is a hierarchical extension of the graph-based method
of Felzenszwalb and Huttenlocher [2004]. A streaming version of GBH
was introduced in [Xu et al., 2012], which performs similar to GBH, but at
a fraction of the cost by using overlapping temporal windows of the video
to optimize the segmentation. GBH, similar to SWA, also uses aggregate
features (such as color histograms) to define similarities once an initial
segmentation is performed based on intensity differences.

While SWA and GBH directly work on the 3D space-time voxel graph,
the recent VideoSEEDS approach of Van den Bergh et al. [2013] shows
that supervoxels of similar quality can be obtained by propagating 2D
superpixels computed over individual frames in a streaming manner. In
our own work we take a similar approach, in which we take per-frame
SLIC superpixels [Achanta et al., 2012] as the starting point, and merge
them spatially and temporally to form supervoxels. The advantage of
starting from per-frame superpixels is that the graphs that are used to
form larger supervoxels are much smaller than those based on individual
voxels. The superpixels themselves are also efficient to obtain since they
are extracted independently across frames.
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Since objects can appear at different scales, a single segmentation of a
video into supervoxels does typically not succeed in accurately capturing
all objects and either leads to under or over segmentation. Xu et al.
[2013] recently proposed a supervoxel hierarchy flattening approach that
selects a slice through such a hierarchy that can maximize a variety of
unsupervised or supervised criteria. In this manner the segmentation
scale can be locally adapted to the content. Our work is related, in the
sense that we also aim to use (hierarchical) supervoxel segmentation to
find regions that correspond to objects. Unlike Xu et al. [2013], however,
we do not restrict ourselves to finding a single segmentation of the video,
and instead allow for overlap between different detection hypotheses.

5.1.2 Object proposals for detection in video

Several spatio-temporal action detection approaches have been devel-
oped based on ideas originally developed for efficient object detection in
still images. Yuan et al. [2009] proposed an efficient branch-and-bound
search method to locate actions in space-time cuboids based on efficient
subwindow search [Lampert et al., 2009a]. Search over space-time cuboids
is, however, not desirable since the accuracy of the spatial localization will
be compromised as the object of interest undergoes large motion. Tran
and Yuan [2011] proposed an efficient method for spatio-temporal action
detection, which is based on dynamic programming to search over the
space of tubes that connect still-image bounding boxes that are scored
prior to the spatio-temporal search. Building the trellis, however, is com-
putationally expensive since it requires per frame a sliding-window based
scoring of all considered bounding boxes across different scales and aspect
ratios if the tube size is allowed to vary over time. Moreover, the efficiency
of such approaches relies on the additive structure of the score for a video
cuboid or tube. This prevents the use of state-of-the-art feature pooling
techniques that involve non-additive elements, including max-pooling
[Wang and Schmid, 2013], power and ¢, normalization for Fisher vector
representations [Perronnin et al., 2010] or second-order pooling [Carreira
et al., 2012].

Recently, several authors have proposed efficient implementations
[Li et al., 2013b, Van de Sande et al., 2014], while we have introduced
approximate normalizations in Chapter 4 to efficiently use the Fisher
vector representation. Our approximate normalizations, as well as the
fast local area independent representation (FLAIR) of Van de Sande et al.
[2014] assume rectangular regions in order to exploit integral images, but
this assumption does not hold for spatio-temporal tubes. A technique
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that is more general and applies to arbitrary representations is the use of
generic class-independent proposals [Alexe et al., 2012, Endres and Hoiem,
2010, Manen et al., 2013, Ujjlings et al., 2013], which have recently surfaced
in the context of 2D object localization. These methods rely on low-
level segmentation cues to generate in the order of several hundreds to
thousands of object proposals per image, which cover most of the objects.
Once the detection problem is reduced to assessing a relatively modest
number of object hypotheses, we can use stronger representations that
would otherwise have been prohibitively costly if employed in a sliding
window detector, see the recent state-of-the-art results in e.g. [Cinbis et al.,
2013, Girshick et al., 2014, Wang et al., 2013c]. Here we just discuss two of
the most effective object proposal methods. Uijlings et al. [2013] generate
proposals by performing a hierarchical clustering of superpixels. Each
node in the segmentation hierarchy produces a proposal given by the
bounding box of the merged superpixels. The approach of Manen et al.
[2013] similarly agglomerates superpixels, but does so in a randomized
manner. In Section 5.3 we show how this technique can be adapted for
space-time detection proposals based on supervoxel segmentation.

Van den Bergh et al. [2013] proposed a video objectness method based
on tracking windows that align well with supervoxel boundaries. The
tracking is based on the evolution of the supervoxels inside the tracked
window. Unlike [Manen et al., 2013, Uijlings et al., 2013] and our work,
however, their method is inherently dependent on the scale of the super-
voxels that produce the boundaries which define the objectness measure.

In parallel to our work, Jain et al. [2014] developed an extension of the
hierarchical clustering method of Uijlings et al. [2013] to the video domain
to obtain object proposals. The most notable difference with our work is
that they compute their initial supervoxels from an “independent motion
evidence” map. This map estimates for each pixel in each frame the
likelihood that its motion is different from the dominant motion. While
this approach is effective to segment out objects that are in motion w.r.t.
the background, it does not provide a mechanism to recover objects that
are static in the scene. Furthermore, estimating the dominant motion is
often error prone in real world videos.

Finally, several recent methods address the related but different prob-
lem of motion segmentation in video [Ma and Latecki, 2012, Papazoglou
and Ferrari, 2013, Zhang et al., 2013, Fragkiadaki et al., 2015]. Their goal
is to produce a pixel-wise segmentation of the dominant moving object in
videos. Unlike the methods discussed above, they produce a single esti-
mate of the dominant object, which is assumed to be at least partially in
motion. Both [Ma and Latecki, 2012] and [Zhang et al., 2013] are based on
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linking still-image object proposals from [Endres and Hoiem, 2010]. They
refine the window-based solution using a pixel-wise MRF. Papazoglou
and Ferrari [2013] proposed a method using motion boundaries to esti-
mate the outline of the object of interest, and refine these estimates using
an object appearance model. Instead of relying on object proposal bound-
ing boxes per frame, they rely on per-frame superpixel segmentation as
the base units over which the energy function is defined. Fragkiadaki et al.
[2015] start with object proposals for each frame, which they rank using a
moving objectness score and then extend temporarily the most promising
ones, based on dense optical flow. In our experiments we compare to the
results of Papazoglou and Ferrari [2013] on the YouTube Objects dataset.

5.2 Hierarchical supervoxels by
spatio-temporal merging

Our supervoxel approach starts from superpixels as basic building
blocks, and aggregates spatially and temporally connected superpixels us-
ing hierarchical clustering. In Section 5.2.1 we detail the superpixel graph
construction and the definition of the edge costs. Then, in Section 5.2.2
we present the hierarchical clustering approach which includes a novel
penalty term that prevents merging physically disconnected objects.

5.2.1 Construction of the superpixel graph

We use SLIC [Achanta et al., 2012] to independently segment each
video frame into N superpixels. SLIC superpixels have been shown to
accurately follow occlusion boundaries [Lu et al., 2013], and are efficient
to extract. For each superpixel n, we compute its mean color y(n) in Lab
space, a color histogram /1., (1) using ten bins per channel, and a flow
histogram hgq, (1) that uses nine orientation bins. We construct a graph
G = (S,€&), where S is the set of superpixels, and £ is the set of edges
between them. In Section 5.4.1 we detail how we set the parameters of the
graph weights using a small set of training images.

Spatial neighbor connections. Spatial connection edges are created
per frame for each pair of neighboring superpixels n and m, and their
weight wP (n,m) is given by the weighted sum of distances based on
several cues that we detail below:

wP (1’1, m) = “}ldﬁ (n/ m) + “coldcol(nr m) + ‘Xﬂowdﬂow(nr m)
+mbdmb (n/ m) + “edgededge(nr m)/ (5.1)
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Figure 5.2 — Illustration of our supervoxel construction. From left to
right: video frame, detected edges, flow boundaries, superpixels, and
hierarchical clustering result at the level with eight supervoxels.

where d,(n,m) = min(||u(n) — u(m)||,30) is the robust thresholded-
distance between the color means [Pele and Werman, 2009], do(n, m)
and dgqy (1, m) are chi-squared distances between the color and flow his-
tograms. In our implementation we use the LDOF optical flow method of
Brox and Malik [2011].

The last two terms, dpp, (17, m) and degge (11, m), are geodesic distances
between the superpixels centroids, efficiently computed using the distance
transform [Weber et al., 2008]. We use the norm of the gradient of the
flow and the output of the recent structured edge detector [Dollar and
Zitnick, 2013] respectively, to define their geodesic pixel-wise cost. In
practice, it means that if two superpixels are separated by an edge—either
intensity-based or motion-based—the distance between them will increase
proportionally to the edge strength. See Figure 5.2 for an illustration of
these two distance terms.

Second-order spatial connections. We also add second-order spatial
edges to connect neighbors of neighbors. The rationale behind this setting
is to be robust to small occlusions. Imagine, e.g., the case of a lamp post
in front of a tree: we would like the two parts of the tree to be connected
together before they are merged with the lamp post. In this case we drop
the geodesic distances, since they are affected by occlusions, and add a
constant penalty aop,p, instead:

wzhop(n, m) = aydy(n,m) + aeoideol (1, 1) + dowdgiow (1, m) + Xohofd-2)

Whenever a second-order neighbor can be reached through an interme-
diate neighbor k with a smaller distance, i.e. when w®P (1, k) + wP (k, m) <
w?'°P (11, m), we remove the second-order edge between 1 and m. This
avoids spurious connections between physically disconnected regions,
and also significantly reduces the number of edges in the graph.

Temporal neighbor connections. Temporal connections are naturally
introduced using optical flow. We connect each superpixel with its neigh-
bor in the next frame indicated by the flow. Because the flow is sometimes
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noisy, we enforce a one-to-one correspondence in the temporal connec-
tivity. More precisely, for each superpixel at frame t, we compute its
best match match in frame t + 1 according to flow and pixel-wise color
difference. We run this procedure in the opposite temporal direction as
well, and keep only reciprocal connections. For two temporally connected
superpixels n and m, we set the edge weight to:

wt(n/ m) = ‘X;d}l(n/ m) + aéoldcol(n/ m) + “Eowdﬂow(nr m) (5.3)

This is similar to the spatial edge weight, but excludes the motion and
contour boundaries as we do not have a temporal counterpart for them.

5.2.2 Hierarchical clustering

Once the superpixel graph G = (S, £) is constructed, we run a hier-
archical clustering with average linkage [Arbeldez et al., 2011]. For two
clusters A C S and B C S, we denote the set of edges connecting them as
B(A,B) = {(n,m)|ne€ A,me B,(n,m) € E}. By construction, B(A, B)
only contains edges at the boundary between A and B, or slightly deeper
for the second-order connections. We define the distance between A and
Bas

w(A,B) = ) w(n,m). (5.4)

1
|B(A’ B) | (n,m)eB(A,B)

This corresponds to measuring the distance between two clusters as the
average edge weight along their common boundary. Because the graph is
sparse, the clustering can be computed efficiently: if the number of connec-
tions per superpixel is independent of the number of superpixels—as is
the case in practice—the complexity is linear in the number of superpixels.

While such a clustering approach gives good results for image seg-
mentation [Arbeldez et al., 2011], its temporal extension tends to group
clusters corresponding to different physical objects that are only acciden-
tally connected in a small number of frames, see Figure 5.3. We propose
a simple solution to solve this issue. We add a penalty ag4;s acting as a
virtual edge for each frame where the two clusters are present but not in
contact:

A,B)w(A, B) +s(A, B)agis
c(A,B)+s(A,B) ’

oA, B) = < (5.5)

where c(A, B) is the number of frames where A and B are connected by
direct or second-order spatial connections, and s(A, B) is the number of
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Figure 5.3 — [llustration of several supervoxels (SV) during the hierarchical
clustering. While SV#1 and SV#2 can be merged without penalty, merging
SV#1 and SV#3 will trigger a penalty ag;s in the form of a virtual edge
added in all frames where both are present but not in contact.

frames where both are present but not connected. In practice, we set
n4is to the cost of the last merge of a hierarchical clustering performed
preliminarily without temporal penalty, which corresponds to the weight
of the hardest merge.

For an illustration of the supervoxel clustering process see the two
right-most panels of Figure 5.2 which show the SLIC superpixels, and
the hierarchical clustering result obtained from them. Figure 5.4 shows
examples of the segmentation method at various levels of the hierarchy.
The resulting supervoxels are heterogeneous in size: the humans are
segmented into small supervoxels, while the background into larger ones.
The difference in the granularity is caused by the features we use: motion
and appearance vary more for the humans than for the background.
Choosing a finer level of the segmentation hierarchy (the images on the
right) further accentuates further the bimodal size distribution—humans
are oversegmented more than the background.

The overall complexity of our method is linear in the number of frames.
In practice, about 99% of the computational cost is devoted to computing
LDOF optical flow [Brox and Malik, 2011]. Concretely, for a video of
55 frames with resolution 400 x 720 pixels, computing the flow with
LDOF takes 13.8 minutes (about 15s/fr), computing the SLIC superpixels
9.7s, computing superpixels connection weights 7.8s, and performing
hierarchical clustering 1.7s (all times are given for a single core @3.6GHz).
Our method can benefit from the existing GPU implementation of LDOF
[Sundaram et al., 2010], as well as a trivial parallelization over frames for
the per-frame feature pipeline to compute SLIC, edges, and flow.
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Figure 5.4 — Examples of segmentation at various levels of the hierarchy.

5.3 Spatio-temporal object detection proposals

In this section we describe how to produce spatio-temporal object
detection proposals based on a given supervoxel segmentation.

5.3.1 Randomized supervoxel agglomeration

We extend the region growing method of Manen et al. [2013], which
is a randomized form of Prim’s maximum spanning tree algorithm. It
starts from a random seed superpixel, and iteratively adds nodes that are
connected to the ones that are already selected, as shown in Figure 5.5. In-
stead of adding the node with the maximum edge, as in Prim’s algorithm,
edges are sampled with probability proportional to the edge weight. The
edge weight wy;, that connects two superpixels n and m is given by a
logistic discriminant classifier that linearly combines several pairwise
features over superpixels, and predicts whether two superpixels belong
to the same object or not.

At each merging step t a random stopping criterion is evaluated. The
stopping probability is given as (1 — wy, + s(a;)) /2, which is the average
of two terms. The first, (1 — wy,;), is the probability (as given by the
classifier) that the sampled edge connects superpixels that belong to
different objects. This term avoids growing the proposal across object
boundaries. The second term, s(a;) gives the fraction of objects in the
training dataset that is smaller than the size a; of the current proposal. This
term ensures that the size distribution of the proposals roughly reflects
the size distribution of objects on the training set. The sampling process
can be repeated to produce any desired number of detection proposals.

To apply this method for spatio-temporal proposals, we consider a
graph over the supervoxels, with connections between all supervoxels
that are connected by a regular 3D 6-connected graph over the individual
voxels. To ensure that we sample proposals that last for the full video
duration, we continue the merging process as long as the full duration



5.3. SPATIO-TEMPORAL OBJECT DETECTION PROPOSALS 97

~, C ~; C
d/ \e/ d/ \e/
\f/ \8 \f/—\g
t=20 t=1
~ C ~~. .
L \.7 L \.7
\f/ \g \f/ \g

t=2

t=3

Figure 5.5 — Steps of the randomized supervoxel proposal algorithm. Each
node corresponds to a supervoxel. The edges indicate a neighbouring
connection between two supervoxels. At each step the algorithm selects
one node that connects with the existing agglomeration.

of the video is not covered, and use the stopping criterion only after
that point. Once a merged set of supervoxels is obtained, we produce a
space-time tube by taking in each frame the bounding box of the selected
supervoxels in that frame. Examples of resulting space-time tubes are
shown in Figure 5.6.

5.3.2 Learning supervoxel similarities

We train a logistic discriminant model to map a collection of pairwise
features to a confidence value that two supervoxels should be merged. To
this end we generate a training set of supervoxel pairs from a collection
of training videos. Each supervoxel is labeled as positive if it is contained
for at least 60% inside a ground truth object, and negative otherwise. We
then collect pairs of neighboring supervoxels that are either both positive,
which leads to a positive pair, or for which one is positive and the other is
negative, which leads to a negative pair. Neighboring supervoxel pairs
that are both negative are not used for training.
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Figure 5.6 — Examples of spatio-temporal proposals.

We use eight different pairwise features between supervoxels, and list
them below.

1. Color feature. We use the chi-squared distance between supervoxel
color histograms feolor(17,m) = dy2(heo1(n), heol(m)). We use the
same color histogram as used for our supervoxels, i.e. using ten bins
per channel in the Lab space.

2. Flow feature. We measure chi-squared distances between histograms
of optical flow fow (1,m) = d,2(hgow (1), haow(m)). Here we also
use the same histograms as before, i.e. using LDOF [Brox and Malik,
2011] and nine orientation bins.

3. Size feature. The size feature favors merging small supervoxels first,
and is defined as the sum of the volumes of the two supervoxels:
fsize(n,m) = an + ap. The volumes a, and a,, are normalized by
dividing over the volume of the full video.

4. Fill feature. The fill feature that favors merging supervoxels that
form a compact region, and measures to which degree the two super-
voxels fill their bounding box: fuy(n, m) = (an + am)/bpm, where
bum is the volume of the 3D bounding box of the two supervoxels,
again normalized by the video volume.
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5. Spatial size feature. This feature only considers the spatial ex-
tent of the supervoxels, and not their duration: fg,eop(n, m) =

m Yote (tmUtn) al, + al,, where t, is a set of frames in which super-

voxel n exists, while atn denotes the area of the supervoxel in frame
t, normalized by the frame area.

6. Spatial fill feature. Similarly, the fill feature can be made duration
invariant by averaging over time: fgpp(n,m) = m Yt (tnUtn) (al +

at,)/bt,,, where bl gives the area of the bounding box in frame t.

7. Temporal size feature. In analogy to the spatial size feature, we also
consider the joint duration fquration (1, M) = |tm U ty|/T, where T is
the duration of the video.

8. Temporal overlap feature. We measure to what extent the super-
voxels last over the same period of time by intersection over union:
foverlap(n/m) = |tm O tn| /|t U .

The color (1), size (3) and fill (4) features are similar to those used by
Manen et al. [2013] and Uijlings et al. [2013] for still-image object detection
proposals. Besides these features, we also include features based on optical
flow, as well as size and fill features that consider separately the spatial
and temporal extent of the supervoxels (2, 5, 6, 7, 8). We do not include
the motion boundary and edge features of Section 5.2, since these are not
defined for neighboring supervoxels that have no temporal overlap.

In our experiments we use the same set of eight features regardless
of the underlying supervoxel segmentation method, but we do train spe-
cific weights for each segmentation method to account for their different
characteristics.

5.4 Experimental evaluation results

Before presenting our experimental results, we first describe the ex-
perimental setup, datasets, and evaluation protocols in Section 5.4.1. We
then evaluate our supervoxel algorithm in Section 5.4.2, and our spatio-
temporal detection proposals in Section 5.4.3.

5.4.1 Experimental setup

Supervoxel segmentation. We evaluate our supervoxel method on
the Xiph.org benchmark of Chen and Corso [2010], using the following
two of the evaluation measures proposed in [Xu and Corso, 2012]. The
3D segmentation accuracy averages over all ground truth segments g the
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Figure 5.7 — Examples of annotations: on top showing the existing an-
notations for UCF Sports, on bottom, our re-annotations. The previous
annotations were usually too loose (first three columns), but sometimes
they were just imprecise (last column).

following accuracy: the volume of ¢ covered by supervoxels that have
more than 50% of their volume inside g, divided by the volume of g. The
3D undersegmentation error averages the following error over all ground
truth segments: the total volume of supervoxels that intersect ¢ minus the
volume of g, divided by the volume of g.

Spatio-temporal detection proposals. The first dataset we use is UCF
Sports [Rodriguez et al., 2008], which consists of 150 videos of 10 sports:
diving, golf, kicking, lifting, horse riding, running, skating, swinging,
high bar, and walking. We use five videos of each class for training our
supervoxel similarities, and to select other hyperparameters such as the
granularity of the base segmentation level. The remaining 100 videos are
used for testing. Since the original ground-truth data is not very precise,
we re-annotated the objects more accurately every 20 frames. These
annotations, as well as the train-test division, are all publicly available on
our project webpage. !

The second dataset we consider is the YouTube Objects dataset [Prest
et al., 2012a]. It contains a total of 1407 video shots divided over ten
object categories. Each video contains one dominant object, for which a
bounding box annotation is available in only one frame.

Similar to the 2D object proposal evaluation in [Uijlings et al., 2013], we
measure performance using the best average overlap (BAO) of proposals
with ground truth actions and objects. The BAO of a ground truth object
v is given by the proposal p in the set of proposals P, for v that maximizes
the average overlap with the ground truth bounding boxes across all

1. Seehttp://lear.inrialpes.fr/~oneata/3Dproposals.
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annotated frames. More formally:

BAO(v) = max 1 Y Overlap(p;, b}), (5.6)
pEP, |Tv (T,

where T is the set of frames for object v with ground-truth annotation,
and b, denotes the bounding box of v in frame ¢, and p' is the bounding
box of the proposal in that frame. We measure the per-frame overlap in
the usual intersection-over-union sense. Compared to the segmentation
metrics, which match many super-voxels to a single groundtruth segment,
the proposal performance matches a single object to the groundtruth.

Based on the BAO we compute the mean BAO (mBAO) across all
ground truth actions/objects. We also consider the correct localization
(CorLoc) rate, as in [Papazoglou and Ferrari, 2013], which measures the
fraction of objects for which the BAO is above 50%.

5.4.2 Experimental evaluation of supervoxel
segmentation

Setting of supervoxel parameters. For our supervoxel method we
set the number of SLIC superpixels to N = 1,000 per frame. We set
the parameters of the hierarchical superpixel merging weights using a
9D grid search over their values, and evaluate the performance using
a subset of 10 videos from the UCF Sports training set. For a given set
of parameters, we generate the segmentation hierarchy, and for each
node 7 in the hierarchy we evaluate the precision and recall w.r.t. the
ground-truth object bounding box in all annotated frames. Precision p(#)
is defined as the fraction of the supervoxel that is inside the ground-truth
box, and recall 7(n) the fraction of the ground-truth box that is inside the
supervoxel. We then compute the maximum score of the product of recall
and precision F(n) = p(n)r(n) across all supervoxels in the hierarchy, and
take the average of max, F(n) across all annotated frames in all videos.

In experiments on the Xiph.org benchmark we do not use boundary
features, since the resolution of 240x 160 of the videos in this data set is
too small to obtain accurate boundary estimates.

Supervoxel segmentation evaluation results. We compare our ap-
proach to GBH [Grundmann et al., 2010] and SWA [Corso et al., 2008], as
well as the GB [Felzenszwalb and Huttenlocher, 2004], Nystrom [Fowlkes
et al., 2004], and meanshift [Paris and Durand, 2007] methods as evaluated
in [Xu and Corso, 2012]. We used the publicly available implementation
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Figure 5.8 — Comparison of our and state-of-the-art supervoxel methods
on the Xiph.org benchmark.

Figure 5.9 — Supervoxel comparison on videos of UCF Sports: video
frames (top), GBH-Flow (middle), ours (bottom). For each video both
methods are set to produce the same number of supervoxels.

in LIBSVX. 2 For GBH we also used the online processing service which
also uses optical flow features that are not included in the SVX implemen-
tation. ®

For our own method we also evaluate the effect of the penalty term
ng4is that penalizes spatially distant supervoxel clusters.

The evaluation results are presented in Figure 5.8. In terms of segmen-
tation accuracy (left) our method is comparable to the best methods: GBH
and GBH-Flow. For the undersegmentation error (middle) our method
gives significantly worse results than the best results obtained with GBH.
The discrepancy of the evaluation results across these measures is due
to the fact that our method tends to produce larger supervoxels, as well
as many tiny supervoxels that consist of single isolated superpixels. Fig-
ure 5.9 illustrates this in comparison to GBH-Flow, where both methods

2. See http://www.cse.buffalo.edu/~jcorso/r/supervoxels.
3. Seehttp://www.cc.gatech.edu/cpl/projects/videosegmentation.
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Figure 5.10 — Evaluation in terms of mBAO (left) and 50% CorLoc (right) of
our, GBH, and GBH-Flow supervoxels on the UCF Sports train set using
1,000 proposals as a function of the supervoxel granularity. We show
results with (solid) and without (dashed) the full-duration constraint.

are set to produce the same number of supervoxels for each video. Our
method seems to produce less supervoxels due to isolated superpixels,
which constitute more than 50% of the supervoxels. The undersegmenta-
tion error suffers from this, since a large supervoxel that overlaps a ground
truth segment by a small fraction can deteriorate the error significantly.

Our method improves in both evaluation measures with the addition
of the penalty term a5 for spatially disconnected components, demon-
strating its effectiveness. We therefore include it in all further experiments.

We compare the run times of the different supervoxel methods in
the right panel of Figure 5.8. We do not include the GBH-Flow method
here, since we ran it over the online service which does not allow us to
evaluate its run time. As compared to GBH, the top performing method,
our method runs one to two orders of magnitudes faster. Compared to
the fastest method, GB, our method is only about 4 times slower, but we
perform better in terms of 3D segmentation accuracy and similarly in
terms of 3D undersegmentation error.

5.4.3 Evaluation of spatio-tempoal detection proposals

Video tube proposals for UCF Sports. In our first experiment we
consider the performance using supervoxels from GBH, GBH-Flow, and
our method with different granularities, i.e. different numbers of extracted
supervoxels. In Figure 5.10 we compare the performance on the training
set of the UCF Sports dataset. We consider the performance using 1,000
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Figure 5.11 — UCF Sports test set performance against the number of
proposals for our, GBH and GBH-Flow supervoxels. We show results with
(solid) and without (dashed) the full-duration constraint. In the bottom
plots, the filled area indicates the standard deviation of the performance
given multiple samples of proposals.

proposals for different granularities. We train the logistic discriminant
model for each segmentation and granularity. The results show that
our supervoxels lead to substantially better proposals. The full-duration
temporal constraint, which accepts proposals only if they span the full
duration of the video, improves results for all methods. It is particularly
important for our supervoxels when using finer segmentations, probably
because it helps to deal with very short supervoxels that are frequent
in our approach. Based on the mBAO performance we choose for each
supervoxel method the optimal granularity, which will be used on the test
set.

The results for the UCF Sports test set are given in Figure 5.11. For
both evaluation measures, we need far fewer proposals for a given level of
performance using our supervoxels, as compared to using GBH or GBH-
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Figure 5.12 — UCF Sports test set performance against the number of
proposals for the direct proposals baseline (DP) and the random Prim
(RP) For our segmentation method we have included two levels of the
segmentation: the best obtained on the train set (RP-09) and a finer level
(RP-15).

Flow supervoxels. Also in this case the full-duration temporal constraint
benefits the performance, particularly so when generating few proposals
using our supervoxels. For the following experiments we enforce the
full-duration temporal constraint for the proposals.

The supervoxel agglomeration algorithm is a randomized procedure,
so it produces different results for different runs. To measure the variance
in performance across runs, we perform a sampling procedure: we first
generate N = 10000 proposals, then for a desired number of proposals
M, we sample M proposals out of N without replacement. We repeat the
sampling procedure 100 times and average the results. The bottom plots
from Figure 5.11 show the mean and one standard deviation of the mea-
sures as a function of the number of proposals M = {1,4,...,8196}. As
expected there the result variance is large when generating few proposals
and it decreases with the number of proposals. The CorLoc measure has
a larger variance than mBAO, because the discrete nature of the CorLoc
metric.

Next, we compare the randomized merging algorithm to a baseline
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Figure 5.13 — Best achievable performance for GBH and our segmentations.
The circles indicate the segmentation levels we cross-validated on the
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Figure 5.14 — Evaluating the features for our segmentation using the
random Prim algorithm with the temporal constraint.

that generates proposals directly from a segmentation method. For a
given segmentation, it converts each supervoxel into a tube proposal by
enclosing it into a bounding box for each frames it appears in. We vary
the number of proposals by changing the level of the segmentation: we
start with the proposals generated from the coarsest segmentation and
incrementally add proposals obtained at finer levels. We call this method
direct proposals (DP). Figure 5.12 show the results for DP and the random-
ized merging algorithm, random Prim (RP), for the three segmentation
methods. DP obtains good recall when using around 100 proposals, but
after that point the performance stagnates, as the supervoxels become too
small to correctly cover the object of interest. For the GBH and GBH-Flow
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segmentations, RP outperforms DP as we generate more proposals. On
the other hand, using our segmentation, RP performs better when using
fewer proposals, but it also plateaus after 100 proposals. This behaviour
happens because our segmentation is coarse and RP is unable to generate
new tubes. For this reason, we experiment with a finer level (RP-15 in
the figure). At this level our method performs better in the limit. Sur-
prisingly, it also improves the previous results that used the granularity
cross-validated on the UCF Sports train set (RP-09).

Figure 5.13 shows an upper bound on the performance for GBH and
our segmentations. We find the best achievable performance by selecting
the supervoxels such that they cover the groundtruth the best. More
precisely, we first select all the supervoxels that are fully contained by the
groundtruth, then we add supervoxels one by one, starting with those
that are overlapping most with the groundtruth, until the average overlap
between the groundtruth and the constructed tube starts decreasing; at
that moment we stop the algorithm. The results show that as the segmen-
tation grows finer, the best attainable performance goes up; this confirms
that theoretically we can achieve perfect performance if the we have a
fine enough segmentation. The results also indicate that our segmentation
method is better for the proposal generation task than GBH, because it
obtains a better possible recall given a number of supervoxels. For GBH
we obtain an mBAO of 57.9% by using 8,196 proposals, while the upper
bound on the mBAO for the same level is 59.6% (indicated by the circled
point in Figure 5.13); for our segmentation method we obtain an mBAO
of 60.8% by using 8,196 proposals, while the upper bound on the mBAO
for the same level is 68.2%. These differences can be explained by various
factors: not generating enough proposals, enforcing the full-duration tem-
poral constraint, or allowing disconnected tubes in the upper bound. The
50% CorLoc measure has an elbow point at around 200 supervoxels for
our segmentation; that point corresponds to level 15, which we previously
used in the previous experiment shown in Figure 5.12.

In Figure 5.14, we investigate the importance of the different features
in the randomized merging algorithm. We compare four variants of
feature combinations: color, flow, geometric (the combination of features
3-8 from Section 5.3.2) and all the features For these experiments we use
only our segmentation. We observe that the geometric features are the
most important ones and they perform as well as using the entire feature
combination. Having good features is of particular importance when we
want to generate only a few proposals. To find which of the geometric
features is dominant, we include the weights learnt on the geometric
features in Table 5.1. According to these results, the randomized merging
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Table 5.1 — Learnt weights for the combination of geometric features.

favours the aggregation of temporarily overlapping supervoxels and of
small supervoxels.

Video Tube Proposals for YouTube Objects. We now evaluate our
approach on the YouTube Objects dataset. We use the randomized merg-
ing algorithm at two levels of our segmentation, at level 9 (RP-09) and
at level 15 (RP-15). For comparison, we consider two previous method:
the video object segmentation method of [Papazoglou and Ferrari, 2013],
and the weakly supervised learning method of Prest et al. [2012a]. The
video object segmentation approach of Papazoglou and Ferrari [2013] is
unsupervised, and only outputs a single segmentation per shot. Prest
et al. [2012a] used the method of Brox and Malik [2010] to output coherent
motion segments, to which they fit spatio-temporal tubes. This leads
to between 3 and 15 tubes per shot. They then use weakly supervised
training to automatically select the tube corresponding to the object of
interest, exploiting class labels given at the video level. We report their
results, and the result for the best tube among the proposals from [Brox
and Malik, 2010].

Figure 5.15 compares the aforementioned methods to ours when using
between one and 8,196 proposals. When using 16 proposals, comparable
to the number produced by Brox and Malik [2010], we obtain 49.6%
CorLoc using the segmentation at level 9 (RP-09), a result that is almost
15% points above the 34.8% of Brox and Malik [2010]. As compared to the
video object segmentation method of Papazoglou and Ferrari [2013], our
method obtains similar results when using 16 proposals, but we further
improve when more proposals are used. Prest et al. [2012a] obtain similar
results to ours with a single proposal, but their method is class-dependent.
As for the UCF-Sport, we observe that a finer segmentation gives better
results if we use more proposals.
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Figure 5.15 — Performance on the YouTube Objects dataset (50% CorLoc),
as a function of the number of proposals. We show results for two levels of
our supervoxel hierarchy (depicted as lines) and compare to other related
methods (depicted as points): the long term-tracks of Brox and Malik
[2010], the automatic tube selection of Prest et al. [2012a], the video object
segmentation of Papazoglou and Ferrari [2013].

5.4.4 Discussion

Our experiments to suggest that the supervoxel evaluation measures
of Xu and Corso [2012] are not directly indicative of the performance on
proposal generation task. In its hierarchical clustering process our method
quickly agglomerates large segments for objects, while also retaining a
set of small fragments. In contrast, other methods, such as GBH, steadily
produce larger segments from smaller ones, which leads to more homo-
geneously sized supervoxels. See Figure 5.9 for an example of our and
GBH supervoxels at a given frame, and Figure 5.16 for the distribution of
supervoxel durations. It seems that our more heterogeneous size distribu-
tion is advantageous for proposal generation, since good proposals can be
made by merging a few large supervoxels. For spatio-temporal segmen-
tation as measured by the supervoxel benchmark metrics, however, this
unbalanced size distribution is sub-optimal since it is more likely to be
imprecise at the object boundaries. Recent supervoxel evaluation metrics
proposed by Galasso et al. [2013], which also assess temporal consistency
and hierarchies, might be more related to the properties that are important
for proposal generation.
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binning of the duration, which is measured in frames. Both methods are
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5.5 Conclusion

In this chapter we have introduced a proposal algorithm, which can
be used for the more general task of spatio-temporal localization. Our
system has two main components.

First, we have presented a new supervoxel method, that performs a
hierarchical clustering of superpixels in a graph with spatial and tempo-
ral connections. Experimental results demonstrate that our supervoxel
method is efficient, and leads to state-of-the-art 3D segmentation accuracy.
Its 3D undersegmentation error is significantly worse than the state-of-
the-art, which is due to the fact that up to 50% of the final supervoxels
consist of isolated superpixels. We believe that it is possible to significantly
improve the undersegmentation error by agglomerating the isolated su-
perpixels as a post-processing step.

Second, we have adapted the randomized Prim object proposal method
to the spatio-temporal domain. To this end we have introduced a set of
new pairwise supervoxel features, which are used to learn a similarity
measure that favors grouping supervoxels that belong to the same phys-
ical object. Our results show that using the supervoxels leads to better
proposals than using existing state-of-the-art supervoxel methods.



Chapter 6

Conclusions

Contents
6.1 Summary of contributions . . . . ... ... . L. 111
6.2 Future research perspectives . . ... ... ....... 113

In this thesis we have focused on three tasks that stem from the chal-
lenging problem of video understanding: action recognition, event recog-
nition and action localization. Our contributions aim at two main goals:
(i) build a robust, task-independent video representation; (ii) improve the
efficiency of the methods, particularly for the localization task.

This chapter is organized as follows: Section 6.1 summarizes the contri-
butions of the thesis and puts them in the context of our goals; Section 6.2
gives directions for further research inspired from the work done in the
thesis.

6.1 Summary of contributions

Below we restate the contributions of the thesis and relate them to the
goals we presented in the introduction.

In Chapter 3 we have compared local feature methods, encoding tech-
niques and different ways of incorporating weak spatio-temporal informa-
tion. We have found that the video representation based on the improved
dense trajectories and the Fisher vector encoding obtains the best results.
The excellent performance was confirmed across multiple datasets and
tasks: action recognition on six popular benchmark datasets, event recog-
nition in over 1,000 hours of video, action localization in feature-length
movies. We also showed that our video representation surpasses more

111
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sophisticated and highly-specialized models and, hence, it constitutes a
robust and task-independent representation.

In Section 3.4, we have investigated how the action localization perfor-
mance is affected by short windows that are retained by the non maxima
suppression (NMS) algorithm. We propose a direct approach to mitigate
this problem: re-score the windows by their duration before the NMS step.
The re-scoring can be interpreted as setting a prior on longer windows.
Empirical results show that this method brings significant improvements
in the localization performance.

In Section 3.6.1, we show that the Fisher vector (FV) encoding is more
efficient than its more popular counterpart, the bag of words (BOW)
encoding. The computation cost of both BOW and FV grows linearly with
the number of clusters, but FV can achieve better performance than BOW
given the same number of clusters. In practice we have found FV suitable
for large-scale datasets, such as the TRECVID MED dataset.

In Chapter 4 we improve the efficiency of FV in the context of action
localization. We observed that if the scoring function was additive in the
features, then we could localize the action by operating directly on the
scored features. For example, temporal localization could be solved by
using the efficient maximum sub-array search. But the FV normalizations
are non-linear and, consequently, they break the additive property of the
scoring function. Our contribution is an approximation that linearizes
the normalizations for each of the k components of the Fisher vector,
corresponding to the K Gaussian clusters. We show promising results, as
we are able to obtain a speed-up of about an order of magnitude at a very
little cost in performance.

In Chapter 5 we have improved the efficiency of localization by reduc-
ing the number of candidate windows. For spatio-temporal localization,
exhaustive search over the space of tubes is infeasible. So we employ a
proposal algorithm, the random Prim method, to group together super-
voxels based on their appearance and geometric similarity. We show
that only a few hundred proposals are sufficient to cover more than 60%
of the ground-truth windows with at least 50% overlap. In Section 5.2
we compare the supervoxels produced by the graph-based hierarchical
segmentation (GBH; Grundmann et al., 2010) and a novel method based
on hierarchical clustering and features such as color, flow, edges, motion
boundaries. We show that the new method is faster and performs better
for the task of proposal generation than GBH. Given the segmentation, our
proposal algorithm is generally fast, taking around a couple of minutes
for each video.
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6.2 Future research perspectives

In the following we describe how each of our three contributions can
be further extended or combined.

Video representation The field of video understanding is progress-
ing at a rapid pace, with numerous action recognition methods being
regularly proposed. Our video representation constitutes a solid base-
line for these recent methods. But we also believe that our pipeline is
mature enough to be a building block for other, higher-level applications
and real-life products. Content-based video indexing and wearable de-
vices are examples of applications that could benefit from a robust video
representation. However, in order to make the step towards real-word
applications, more engineering efforts are required. First, an easy-to-use
interface is mandatory if we want our representation to deployed on mul-
tiple platforms (web, mobile). Second, we should aim to further improve
the speed of the pipeline. The computational cost is critical for real-world
applications: wearable systems usually require real-time processing and
low memory consumption; indexing applications deal with very large
quantities of data. Currently, the speed of our pipeline is limited by
the optical flow computation. Thus, it would be worthwhile exploring
how faster optical flow methods, e.g., [Tao et al., 2012], impact the final
recognition performance.

Another direction of research could be towards a better understanding
of what lies behind the strong performance. Visualization is one way to
deepen our understanding, and it is currently successfully applied for
convolutional neural network features [Zeiler and Fergus, 2014, Zhou
et al.,, 2014]. We would like to investigate what are the local features or
the dictionary components that are the most relevant for the classification
task. We can get intuition in this direction by scoring local features or the
dictionary centroids; similar work was done for images [Marszatek et al.,
2009, Gandhi et al., 2013].

Approximating normalization of Fisher vectors We have applied
our approximated FV normalization for the task of temporal action local-
ization. The same idea is, however, useful whenever the bottleneck lies in
the aggregation of the FV features. The most direct extensions are object
detection in images and sub-volume action localization in videos. For
these tasks branch-and-bound (BB) formulations have already been pro-
posed [Lampert et al., 2009a, Yuan et al., 2009], hence, we can adapt those
models by incorporating our bounding function, which is based on the
approximated FV normalization. Even if not straightforward, we believe
that it is possible to give a similar BB formulation for spatio-temporal
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localization. The problem lies in the irregularity of the state search space:
a window has a more complex representation than just the two opposite
corners, as it was the case for the previous tasks. Assuming that our
video is represented as super-voxels connected in a graph, the goal of
spatio-temporal localization is to find the subgraph which maximizes
the classification score. We represent the subgraph as a vector of binary
values, one for each node of the full graph, denoting the inclusion or
exclusion. At each iteration of the BB algorithm we branch over one of
the binary variables, thus reducing the state space by half. BB has already
been applied for graph partitioning and similar ideas might be exploited.

The Codemaps method Li et al. [2013b] proposes an exact way of
speeding-up the ¢, normalization. The idea is to store a matrix of pre-
computed inner products between the FVs corresponding to the slices.
Based on those quantities we can efficiently compute the ¢, norm of an
arbitrary region by summing up their corresponding partial ¢/, norms.
As we have already seen in our results, and showed also by Cinbis et al.
[2013], the ¢ normalization is crucial for good localization performance.
The Codemaps method induces an additional memory cost (storing the
matrix of partial £, norms), which can be significant if we are interested in
fine localization (i.e., we need to store a large number of slices). We could
reduce the cost by assuming a maximum size for our windows. In this
case, we will not need to save all the pairwise inner-products, but only for
those units that are withing the maximum size. This induces significant
sparsity in the matrix, making the use of Codemaps possible in practice.

The intuition of our normalization is based on the work of Cinbis
et al. [2012]. They were the first to take a step towards a more principled
motivation of the power normalization. We would like to encourage
however further theoretical investigation in this direction. We believe that
this could enable further contributions and ideas.

Spatio-temporal proposals Proposals for videos are still largely un-
explored. An obvious direction of research would be to draw more in-
spiration from the image proposal techniques and investigate their use
for generating spatio-temporal proposals. We believe that the community
could benefit from an extensive evaluation of the individual components
of a general proposal method. A general proposal method can be decom-
posed into the three parts: segmentation, features, aggregation. In the
following we give some pointer on what could be explored on each of the
three directions.

Segmentation There is an abundance of video segmentation methods,
e.g., [Corso et al., 2008, Grundmann et al., 2010, Xu et al., 2012,
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Van den Bergh et al., 2013, Xu et al., 2013]. Most of those have been
benchmarked in the context of segmentation [Xu and Corso, 2012],
using metrics like the segmentation accuracy or under-segmentation
error. However, as we have already seen in our experiments, Sec-
tion 5.4, the segmentation performance is not particularly indicative
of the recall performance on the proposal generation task. Thus, we
suggest evaluating the segmentation algorithms for the task at hand.

Features In our work, as well as in related studies [Papazoglou and Fer-
rari, 2013, Jain et al., 2014], the proposals algorithm defines the simi-
larity between pairs of super-voxels based on various appearance-
based and geometrical features. These features are the input of a
binary function—the similarity function—, but there exist features
that are specific to unary functions. Examples of this type of features
are those defined by Alexe et al. [2012] in the objectness measure:
saliency, colour contrast, edge density, location. Some unary po-
tential have also been proposed for videos. For example, Van den
Bergh et al. [2013] proposes an objectness measure reminiscent of
the straddling score [Alexe et al., 2012], which favors those propos-
als that fit tightly the bounding box; the objecteness is extended
to videos by averaging over the temporal domain. We can derive
unary features that favor the moving regions, based on previous
work: (i) Papazoglou and Ferrari [2013] use inside-outside maps on
motion boundaries to identify which pixels are inside the moving
objects; (ii) Jain et al. [2014] propose independent motion evidence of
that captures the residual motion in small sub-volumes. The unary
potentials can be directly incorporated into the aggregation process,
but we could use them to seed the proposal algorithm or to score
and rank the obtained proposals. These uses should improve the
recall at a fixed number of proposals.

Aggregation The way in which the super-voxels are aggregated into
larger units influences the type of proposals we obtain. In our case
we grow the proposals in a randomized manner starting from a
random seed supervoxel. The probabilistic nature of our method
ensures a diverse set of proposals. In theory, we can achieve perfect
recall given a fine enough segmentation and a large enough number
of runs. By contrast, the hierarchical aggregation [Van de Sande
etal., 2011, Jain et al., 2014] is a deterministic method and it might
be affected by merging wrong segments early on in the building
process. These hierarchical approaches achieve variety by either
changing the base segmentations [Van de Sande et al., 2011] or the
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features [Jain et al., 2014]. Another way of obtaining proposals from
a base segmentation is by using graph cut algorithms. For videos,
Papazoglou and Ferrari [2013] use graph cut to obtain a single pro-
posal per video, but models that generate more proposals could be
inspired from the work on images [Carreira and Sminchisescu, 2012,
Krahenbiihl and Koltun, 2014].

Another direction to explore is the amount of supervision involved
in the proposal generation process. Similar to [Manen et al., 2013], our
method uses supervision to learn a weight combination for the differ-
ent features. Others possible uses of supervision are proposal scoring
[Carreira and Sminchisescu, 2012, Alexe et al., 2012] and seed placement
Krdhenbtiihl and Koltun [2014]. If our final goal is action localization,
we can assume that we have access to classifiers for each of the action
categories. So, we can incorporate more supervision into the proposal
generation process by using the classifier score as a feature. This method
produces class-specific proposals. This idea could benefit from our work
on approximated normalization, because computing scores on groups of
super-voxels can induce a significant computational cost.

In our work we have seen that by enforcing a full duration constraint
of the spatio-temporal tubes we can improve results. However, this
constraint is too strict sometimes: it happens that the object is occluded or
disappears from the scene. We could favor temporarily long proposals
in a soft way. For example, we could adapt the probability distribution
(from which we draw select a new super-voxel to be added) based on the
current shape of the proposal. If the proposal is not long enough, favor
the supervoxels that increase the duration of the tube.
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Appendix A
Participation to THUMOS 2014

In this chapter we describe our entry in the THUMOS Challenge 2014.
The goal of the THUMOS Challenge is to evaluate action recognition
approaches in realistic conditions. In particular the test data consists
of untrimmed videos, where the action may be short compared to the
video length, and multiple instances can be present in each video. We
have ranked second for the classification task and first for the temporal
localization task. For full details on the definition of the challenge, task,
datasets, and results, we refer to the challenge website [Jiang et al., 2014].

Below, we describe our systems for classification and localization in
Section A.1, and present experimental results in Section A.2.

A1 System description

We first describe our classification system to recognize untrimmed
action videos in Section A.1.1. The localization system presented in Sec-
tion A.1.2 is similar, but trained to recognize temporally cropped actions
instead of complete untrimmed videos. The localization system also ex-
ploits the classification scores obtained for complete videos as a contextual
feature.

A.1.1 Classification

For our classification system we build upon the video representation
that we developed in Chapter 3: the Fisher vector (FV; Sanchez et al., 2013)
encoding of improved dense trajectory features [Wang and Schmid, 2013].
We choose to use a vocabulary of size 256, rescale the videos to be at most
320 pixels wide, and skip every second frame when decoding the video.
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Figure A.1 — The classification system. We illustrate the types of features,
which we extract for each video, and how we encode them and combine
their classification scores.

Feature extraction. Compared to the experiments in Chapter 3, we
complement the motion-based features with several new features (see
Figure A.1 for a summary illustration of the classification system). We
add static visual appearance information through the following features:

1. SIFT: we extract SIFT features [Lowe, 2004] on a dense multi-scale
grid, and encode these in a FV using a vocabulary of size 1024. We
extract SIFT on one frame out of 60, and aggregate all descriptors in
a single FV.

2. Color: we extract color features based on local mean and variance
of the color channels [Clinchant et al., 2008] every 60-th frame, and
encode them in a single FV with a vocabulary size 1024.

3. CNN: we extract a 4K dimensional feature using a convolutional
network trained on the ImageNet 2010 Challenge data. We use the
CAFFE implementation [Jia, 2013], and retain the layer six activa-
tions after applying the linear rectification (which clips negative
values to zero). We also experimented with using layer seven or
eight, but found worse performance. We extract CNN features in
every 10-th frame, and average them into a single feature vector.
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In addition to the visual features, we also extract features from the
audio stream:

1. MFCC: we down-sample the original audio track to 16 kHz with
16 bit resolution and then compute Mel-frequency cepstral coeffi-
cients (MFCC) with a window size of 25 ms and a step-size of 10 ms,
keeping the first 12 coefficients of the final cosine transformation
plus the energy of the signal. We enhance the MFCCs with their
tirst and second order derivatives. The MFCC features are then
aggregated into a FV with a vocabulary size of 256.

2. ASR: for ASR we used state-of-the art speech transcription systems
available for 16 languages [Lamel, 2012, Lamel and Gauvain, 2008].
The files were processed by first performing speaker diarization, fol-
lowed by language identification (LID) and then transcription. The
system for identified language was used if the LID confidence score
was above 0.7, else an English system as used. The vast majority
of documents were in English, with a number in Spanish, German,
Russian, French as well as a few in 8 other languages. Therefore,
we only used the English transcripts, and represent them using a
bag-of-word encoding of 110K words.

Classifier training. To train the action classification models, we train
SVM classifiers in a 1-vs-rest approach. We perform early fusion to the
dense trajectory features, by concatenating FVs for the MHB, HOG, and
HOF channels. Similarly we early fuse the two local image features: SIFT
and color. We, then, learn a per-class late-fusion of the SVM classifiers
trained on the early fusion channels and the CNN, MFCC, and ASR
features.

We also investigated the effect of using different parts of the training
data. The Train part consists of 13,320 trimmed action clips across the 101
action classes. The Validation part consists of 1,010 untrimmed videos
across the 101 action classes (10 per class), which are representative for
the test videos. Finally, the Background part consists of 2,500 untrimmed
videos not corresponding to any of the action classes.

A.1.2 Localization

To assess our performance we split the 1010 videos from the Validation
split into two equal parts; we used one of them as train split and the other
one as test.

For the temporal action localization task we only use the dense tra-
jectory features, since the remaining features are more likely to capture
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Figure A.2 — Two methods for window rescoring: clip duration (left) and
class-specific action duration (right).
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Figure A.3 — We incorporate the classification score into the localization
system by taking a weighted average between the classification and local-
ization scores. We obtain the classification score for each video as shown
in Figure A.1.

contextual information rather than information that can be used for pre-
cise action localization.

We train 1-vs-rest SVM classifiers, albeit using only trimmed action
examples from the Train and Validation sets as positives. As negatives
we use (i) all examples from other classes of the Train part of the data,
(ii) all untrimmed videos in the Background part of the data, (iii) all
untrimmed videos of other classes in the Validation part of the data, and
(iv) all trimmed examples of other classes in the Validation part of the
data. In addition we performed one round of hard-negative mining on
the Validation set, based on a preliminary version of the detector, and
used these as additional negatives.

For testing we use temporal detection windows with a duration of
10, 20, 30, 40, 50, 60, 70, 80, 90, 100, and 150 frames, which we slide
with a stride of 10 frames over the video. After scoring the windows,
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Feature mAP

MBH 52.02 +24
HOF 50.38 +19
HOG 48.79 +23

CNN 48.42 +20

Color 37.36 +17
SIFT 37.17 +18

ASR 20.77 +1.0
MECC 1897 +15

Table A.1 — Evaluation of individual features for the classification task.

we apply non-maximum suppression to enforce that non of the retained
windows are overlapping. We consider a window to be a correct match if
its intersection over union with a groundtruth window exceeds 50%.

As in Chapter 3, we re-score the detection windows by multiplying the
localization score by the duration of the window (see Figure A.2a). This
avoids a bias towards detecting too small video fragments. In addition,
we experimented with a class-specific duration prior, estimated from the
training data (see Figure A.2b).

Finally, we combine the window’s localization score with the video’s
classification score for the same action class (see Figure A.3). This pulls-in
additional contextual information from the complete video that is not
available in the temporal window features. We take a weighted average
of these scores; the weight is determined using the Validation set.

A.2 Results

In this section we present experimental results obtained on the Valida-
tion set.

A.2.1 Classification results

For the classification task we split the Validation set into 30 train/test
folds. For each training fold we select 7 samples from each class, with the



146 APPENDIX A. PARTICIPATION TO THUMOS 2014

Fusion mAP
Early fusion (EF)

EF1: MBH + HOF + HOG 64.35 +23
EF2: SIFT + Color 45.78 +23
Late fusion (LF)

LF1: EF1 + EF2 69.62 +2.18
LF2: EF1 + EF2 + CNN 71.06 +2.00
LF3: EF1 + EF2 + CNN + MFCC 73.65 +1.90
LF4: EF1 + EF2 + CNN + ASR 76.26 +1.85

LF5: EF1 + EF2 + CNN + MFCC + ASR  77.84 +1.70

Table A.2 — Evaluation of combinations of features for the classification
task.

test fold containing the remaining 3 samples. We report the mean and the
standard deviation of the mAP score across these 30 folds.

Table A.1 presents an evaluation of the individual features. The results
show that the visual features are the strongest, in particular the motion
features. Table A.2 shows an evaluation of various combinations of fea-
tures. Combining features significantly improves the results, e.g. from
52.02% mAP for MBH, to 64.35% for MBH + HOF + HOG. When combin-
ing all features, we obtain 77.84% mAP. Interestingly, the high-level ASR
feature brings more than 4% mAP improvement when all other features
are already included. Table A.3 shows the top ten classes which benefited
most from the inclusion of audio features (MFCC and ASR). We notice that
these classes are related to music or musical instruments (band marching,
playing dhol, blowing candles), or they contain instructional snippets
(apply lipstick, tennis swing, blow dry hair), or they are characterized by
commentary (cricket shot, parallel bars).

Next, we evaluate the effect of using different parts of the training data
and test on the held-out part of the validation set, see above description
of the cross-validation procedure. The results in Table A.4 clearly show
the importance of using both the trimmed (in Train) and untrimmed (in
Validation) examples; untrimmed videos are important since these are
representative of the test set, and the trimmed examples are important
because they are roughly 10 times more of them. The videos in the Back-
ground set were not useful, probably because there are enough negative
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Absolute gain from

Class name audio features
Band marching +32.7
Cricket shot +32.5
Apply lipstick +31.9
Tennis swing +31.2
Brushing teeth +30.7
Blow dry hair +27.6
Playing dhol +25.6
Parallel bars +24.2
Blowing candles +22.1
Playing sitar +19.0

Table A.3 —The top ten classes whose performance was improved the most
by the use of audio features. The classes are sorted in decreasing order
by the mAP difference between visual-audio classifier and visual-only
classifier.

Validation Y Y Y Y
Train Y Y Y Y
Background Y Y Y

LE5S mAP  70.40 <16 68.74 +22 77.84 +17 67.94 +19 67.90 +22 77.70 +18

Table A.4 — Evaluation of different parts of the training data for the classi-
fication task.

samples across the Train and Validation dataset. In conclusion, we used
the Train and full Validation sets in our submitted classification results.

We have submitted two runs for the classification task. The primary
run (Run #1) was the full-fledged system, which includes all the channels,
visual and audio; this run corresponds to LF5 in Table A.2. For the
secondary run (Run #2) we have used a visual-only system, corresponding
to LF3 in Table A.2. As in our validation experiments, including the audio
features improves the performance significantly: from 63.6% mAP for
Run #2 to 67.2% mAP for Run #1 on the test set.
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System Rescoring Remarks mAP
L1 clip duration K=64, MBH 12.56
L2 clip duration K=64, MBH+HOF+HOG 14.58
L3 clip duration K=256, MBH+HOF+HOG 19.17
L3+C, A =02 clip duration Run #3 21.63
L3+C, A =0.2 class specific prior, Train+ Val. 21.57
L3+C,A =0.25 class specific prior, Validation Run #1 26.57

L3+C*, A =025

L3

class specific prior, Validation

class specific prior, Validation

Run #2, C* visual-only 26.52

24.43

Table A.5 — Evaluation of action localization using the localization (L) and
classification (C) system. The combined score is a weighted average which
weights the localization score by A and the classification score by (1 — A).
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Figure A.4 — Duration histograms of positive action instances across the
20 classes used for localization for the Train (left) and Validation (right)
part of the data.

A.2.2 Localization results

For our localization system we have to compute features and scores for
many temporal windows, and this is much more costly than the classifica-
tion of entire videos. Therefore, we first evaluated the effect of using only
MBH or all three trajectory features, and the impact of using a smaller
vocabulary of size 64 vs. using the one of size 256 used for classification.
In these experiments we use the rescored non-maxima suppression tech-
nique, which we introduced in Chapter 3. This means we rescore the
windows by their duration. The first three rows of Table A.5 show that
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the performance drops significantly if we use a smaller vocabulary, or
use only MBH features. Therefore, we keep all trajectory features and the
vocabulary of size 256 in all remaining experiments.

In the remaining experiments in Table A.5 we consider the benefit of
including the classification score as a contextual feature to improve the
localization performance. The trade-off between the classification and
localization score is determined cross-validation. The classification and
localization scores are first normalized to be zero-mean and unit-variance
so that the scores are comparable, and the combination weight has a
natural interpretation. In the first experiment (row 4) we combine the best
detector L3 (with mAP 19.17%) with the classification model using all our
channels, which leads to an improved mAP of 21.63%. This is the system
submitted as Run #3.

Instead of rescoring with the clip duration, we also considered rescor-
ing with a class-specific prior on the duration (obtained using a histogram
estimate). This leads to a similar performance of 21.57% mAP.

We observed a difference in the duration distribution of positive action
instances in the Train and Validation part of the data, see Figure A.4.
This difference is explained by different annotation protocols and teams
used to annotate these parts of the data. Therefore, we also considered
using a prior estimate based on the validation data only. This leads to a
significantly improved localization mAP of 26.57%. This is the system we
submitted as Run #1.

Finally, submitted Run #2 is similar to Run #1, but is a vision-only
run that excludes the MFCC and ASR audio features in the classification
model. The system corresponding to the Run #2 obtains a performance of
26.52% mAP on our test split. Interestingly, in this case the audio features
do not have a signifiant impact. To verify that the localization still benefits
from the classifier when using the stronger prior, we also include a last
run that uses this prior without the classification score (last row). This
leads to a reduction in performance to 24.43%, showing that global video
context is useful in the localization task, even when using the strong prior
on duration.

We present in Table A.6 the results from the competition for the three
runs we have described above. Surprisingly, our primary run (Run #1) is
outperformed by the other two runs at any evaluation overlap, but the
performance differences are small.
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Overlap
0.1 02 03 04 05

Run#1 3411 3228 2818 20.83 1391
Run#2 3439 3264 28.48 20.94 13.85
Run#3 36.57 33.60 2699 20.75 14.36

Table A.6 — Final results for the localization task for our three runs as a
function of the evaluation overlap (how much a window has to overlap
with the groundtruth in order to be considered a match).
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Figure A.5 — Snapshots from the top four ranked test videos for the three
easiest classes for the classification task.

Haircut n

e.

=,

HandstandWalk

Figure A.6 — Snapshots from the top four ranked test videos for the three
hardest classes for the classification task.
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A.3 Conclusion

We have described our submission to the THUMOS 2014 Challenge,
and presented an experimental evaluation of its components. Our main
tindings are as follows: (i) Additional visual and audio features signif-
icantly improve over a system based on dense trajectory features only
(as we used in our winning entry in the 2013 THUMOS Challenge). This
improved our results from 64.35% mAP to 77.84% mAP in our evaluation.
(ii) For action classification in untrimmed videos it is beneficial to include
representative untrimmed training videos in addition to trimmed action
examples. This improved our results from 68.74% mAP to 77.84% mAP in
our classification experiments. (iii) For action localization in untrimmed
videos it is beneficial to use global video features, which we included
in the form of the video classification scores. This improved our results
from 19.17% mAP to 21.63% mAP in our localization experiments. We
conclude by showing examples of our results, figures A.5 and A.6, on the
test data for the classification task for the three easiest and hardest classes
(according to the results on the Validation set).



