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Introduction xi

INTRODUCTION

The main focus of this thesis lies on the spectral theory of random non-self-adjoint operators. In the case of self-adjoint or more generally normal operators on a complex Hilbert space we have a very good spectral theory due to the spectral theorem. However, for non-normal operators there is no such general result. This produces new challenges and makes the approach to this theory quite varied and exciting. Studying non-self-adjoint problems is an important area of mathematical research as they appear naturally in many different problems, such as

• in the theory of linear partial differential equations given by non-normal operators, e.g.:

the solvability theory evolution equations given by a non-normal operator the Kramers-Fokker-Planck type operators the damped wave equation linearized operators from models in fluid dynamics

• in mathematical physics, for example when studying scattering poles, also known as quantum resonances.

We begin by recalling some basic facts from operator theory. Let H be a separable complex Hilbert space and let P : D(P ) → H be a closed linear operator with domain D(P ), dense in H . We denote the resolvent set of P by ρ(P ) := ' z ∈ C; (Pz) : D(P ) → H is bijective with bounded inverse " .

For z ∈ ρ(P ) we call (Pz) -1 the resolvent of P at z. The spectrum of P is defined as σ(P ) := C\ρ(P).

To define the adjoint of P , set D(P * ) := {u ∈ H ; ∃v ∈ H : (P w|u) = (w|v) for all w ∈ D(P )} .

For each such u ∈ D(P * ), we define P * u = v where P * is called the adjoint of P . If P * = P , we say that P is self-adjoint. In this case (and even more generally in the case of normal operators, that is when P * P = P P * ) the spectral theorem (cf for example [START_REF]Functional Analysis[END_REF]) yields the following resolvent bound:

1 C C C C C C C C A : C N → C N .
A 0 is clearly non-normal and has the spectrum σ(A 0 ) = {0}. Perturbations of a large Jordan block have already been studied, cf. [START_REF]Elementary linear algebra for advanced spectral problems[END_REF][START_REF]Numerical linear algebra and solvability of partial differential equations[END_REF][START_REF] Davies | Perturbations of Jordan matrices[END_REF][START_REF] Guionnet | Convergence of the spectral measure of nonnormal matrices[END_REF]]. We will discuss the contributions of these authors in more detail further on in this text. M. Zworski [START_REF]Numerical linear algebra and solvability of partial differential equations[END_REF] noticed that for every z ∈ D(0, 1), there are associated exponentially accurate quasimodes when N → ∞. Hence the open unit disc is a region of spectral instability.

A simple way to see this is to notice that the Jordan block A 0 is nil-potent, i.e. A N 0 = 0. Therefore, for 0 < |z| < 1 using a Neumann series, one computes that

(A 0 -z) -1 = - 1 z N -1 X n=0 (-z -1 A 0 ) n .
xii Setting e N = (0, . . . , 0, 1) t ∈ C N , it follows that

(A 0 -z) -1 ≥ (A 0 -z) -1 e N ≥ 1 |z| N ,
where we use the matrix norm corresponding to the 2-norm on C N . For 0 < |z| < 1 the norm of the resolvent of A 0 is much larger than the inverse of the distance of z to the spectrum of A 0 (drastically opposed to what we would expect in the self-adjoint case), since here

(A 0 -z) -1 1 dist (z, σ(A 0 )) = 1 |z| .
In other words, the disc |z| < η < 1 is contained in the η N -pseudospectrum of A 0 .

In C \ D(0, 1) we have spectral stability (a good resolvent estimate), since A 0 = 1 which implies that for |z| > 1

(A 0 -z) -1 ≤ 1 |z| -1 .
Thus, if A δ = A 0 + δQ is a small perturbation of A 0 we expect the eigenvalues to move inside a small neighborhood of D(0, 1) (cf Figure 1). In the special case when Qu = (u|e 1 )e N , where (e j ) N 1 is the canonical basis in C N , the eigenvalues of A δ are of the form

δ 1/N e 2πi k/N , k ∈ Z/N Z,
so if we fix 0 < δ 1 and let N → ∞, the spectrum "will converge to a uniform distribution on S 1 ".

Example: Evolution equations Consider the case of evolution equations given by non-normal operator: Let ( ∂ t u(t , x) = Pu(t , x), u(x, 0) = u 0 (x), (0.0.4)

where we suppose that P is a closed, non-normal, densely defined operator on some complex Hilbert space H . A solution to (0.0.4) is formally given by e t P u 0 (x). However, for this expression to make sense, we need to know when P is the generator of a semi-group. The Hille-Yosida theorem (cf [START_REF] Evans | Partial Differential Equations[END_REF][START_REF] Yosida | Functional Analysis[END_REF]) states that P is the generator of e t P (t ≥ 0), a contraction semi-group (i.e. e t P ≤ 1) if and only if ]0, ∞[⊂ ρ(P ) and (P -λ) -1 ≤ λ -1 for λ > 0.

xiii On the other hand we have the following lower bound on the semi-group e t P ≥ e γt , ∀t ≥ 0, where γ = sup z∈σ(P )

Re z.

The precision of this bound depends strongly on the spectrum of P and is therefore strongly influenced by the effects of spectral instability. This can become of particular relevance when we are interested in solutions with respect to small perturbations of P or for the stability of numerical algorithms.

In the case of a certain class of non-linear evolution equation B. Sandstede and A. Scheel [START_REF] Sandstede | Basin boundaries and bifurcations near convective instabilities: a case study[END_REF] showed that in spite of the problem being spectrally stable (meaning that the relevant linearized operator has its spectrum in Re z < γ < 0) the solutions blow up with arbitrarily small initial data. This was generalized by J. Galkowski [START_REF] Galkowski | Nonlinear Instability in a Semiclassical Problem[END_REF][START_REF]Pseudospectra of semiclassical boundary value problems[END_REF] to a large class of non-linear evolution problems. He linked the blow up of the solutions to the fact that although the spectrum of the linearized problem is uniformly bounded away from Re z ≥ 0, the pseudospectrum of this operator has nonempty intersection with Re z ≥ 0. He emphasized therefore the importance of the pseudospectrum for the study of stability of solutions to non-linear evolution equations.

For a similar and simpler example illustrating with a Jordan block matrix this pseudospectral instability for non-linear systems, we refer the reader to the work of A. Raphael and M. Zworski [START_REF] Raphael | Pseudospectral effects and basins of attraction[END_REF]Sec. 3].

Example: Resonances Questions regarding the spectral theory of non-self-adjoint operators can appear very naturally even when studying a self-adjoint problem to begin with. A prominent example for this is the study of scattering poles or resonances for the Schrödinger equation in mathematical physics.

Recall that a particle such as an electron immersed in an electrostatic potential (as in the case of a hydrogen atom where the electron is immersed in the electrostatic potential emitted by a proton) moving through d -dimensional space is described via a square integrable function ψ 0 ∈ L 2 (R d ) called a state. According to the Copenhagen interpretation of quantum mechanics the quantity

ˆA |ψ 0 | 2 d x ¶ 1 2 , A ⊂ R d measurable,
corresponds to the probability to find the particle in A. The time evolution (t ≥ 0) of the state ψ 0 is determined by the Schrödinger equation

( i ∂ t ψ(t , x) = H ψ(t , x),
ψ(0, x) = ψ 0 (x). (0.0.5)

Here H = -∆ + V is called the Schrödinger operator where ∆ denotes the Laplace operator and V a multiplication operator describing an electrostatic potential. We assume here

V ∈ L ∞ comp (R n ; R)
for simplicity. H is an unbounded self-adjoint operator in L 2 (R n ) with domain given by the Sobolev space H 2 (R n ). The essential spectrum of H is given by [0, +∞[ (i.e. the essential spectrum of -∆) and in ] -∞, 0[ there can be only discrete eigenvalues -µ 2 j which correspond to bounded states of the system determined by H .

The equations (0.0.5) have a unique solution given by e -i t H ψ 0 . For the large time evolution, we need to take into account not only the effects of the discrete spectrum but also of the essential spectrum. A way to do this is by considering resonances which are given by showing that the resolvent (H -λ 2 ) -1 has a meromorphic continuation (cf [START_REF]Lectures on resonances[END_REF]) from the upper half plane C + to • C, in case the dimension n is odd, • the logarithmic covering space of C * , in case the dimension n is even,
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with values in the bounded operators from H 0 comp (R n ) to H 2 l oc (R n ). The poles of this meromorphic continuation are called resonances, with exception of the i µ j , and they can be used to study the large time behavior of e -i H t , in particular to expand solutions to the Schrödinger equation in exponentially decaying resonant modes. It is the resonances closest to real axis that give the principal contribution to this, wherefore there has been a large interest in the studying those for various operators (see for example [START_REF] Sjöstrand | Complex scaling and the distribution of scattering poles[END_REF][START_REF]Estimates on the number of scattering poles near the real axis for strictly convex obstacles[END_REF][START_REF] Burq | Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel[END_REF][START_REF]Lower bounds for shape resonances widths of long range Schrödinger operators[END_REF][START_REF] Klopp | Resonances for perturbations of a semiclassical periodic Schrödinger operator[END_REF][START_REF] Stefanov | Quasimodes and resonances: Sharp lower bounds[END_REF][START_REF] Tang | From quasimodes to resonances[END_REF][START_REF]Resonances for large one-dimensional "ergodic" systems[END_REF][START_REF]Weyl law for semi-classical resonances with randomly perturbed potentials[END_REF]).

However, finding the poles of the meromorphic continuation is not a self-adjoint problem anymore. Therefore, effects from spectral instability become relevant and interesting, as for example in the case of resonances of Random Schrödinger equations where we consider equations of the same type as (0.0.5) with the potential V being random. This describes physical systems of particles being immersed in a random environment which can be used to model for example disordered system such as "dirty" (super-)conductors, see for example [START_REF] Carmona | Spectral Theory of Random Schrödinger Operators, Probability and its Applications[END_REF][START_REF] Kirsch | An invitation to random Schrödinger operators[END_REF].

Appendix A In the appendix will display the MATLAB code used to obtain the numerical simulations presented throughout this thesis.

Notation

In this work we are going to use the following notations:

1. We will denote the Lebesgue measure on C d by L(d z). 

∂ α zzx := ∂ α 1 z ∂ α 2 z ∂ α 3
x .

3. We denote by f (x) g (x) that there exists a constant C > 0 such that

C -1 g (x) ≤ f (x) ≤ C g (x).
Moreover, when we write η, we mean some function f such that f η.

4. We work with the convention that when we write f = O (1) -1 then we mean implicitly that 0 < f = O (1).

5. We denote by f (x) g (x) that there exists some large constant C > 1 such that f (x) ≤ C -1 g (x).

6. We write χ 1 (x) χ 2 (x), with χ i ∈ C ∞ 0 , if supp χ 2 ⊂ supp (1 -χ 1 ).
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SPECTRA OF NON-SELF-ADJOINT RANDOM OPERATORS

1.1 | Random perturbations of non-self-adjoint semiclassical di erential operators

Semiclassical differential operators and the Weyl law We begin by recalling some standard notions of the framework of semiclassical differential operators which can be found for example in [START_REF]Semiclassical Analysis[END_REF][START_REF] Dimassi | Spectral Asymptotics in the Semi-Classical Limit[END_REF]. For h ∈]0, 1] consider

P (x, hD x ) = X |α|≤N a α (x)(hD x ) α , D x = 1 i ∂ ∂x , (1.1.1) 
where α = (α 1 , . . . , α n ) ∈ N n , |α| = α 1 + • • • + α n and

a α (x) ∈ C ∞ b (R n ) := ' u ∈ C ∞ (R n ); ∀α ∈ N n ∂ α u ∈ L ∞ (R n ).
"

The natural domain of P (x, hD x ) is the semiclassical Sobolev space H N sc (R n ) defined by

H N sc (R n ) := ( u ∈ L 2 (R n ); X |α|≤N (hD x ) α u 2 < ∞
) .

The formal adjoint of P is given by

P * (x, hD x ) = X |α|≤N (hD x ) α a α (x).
On the phase space T * R n , we denote by

p(x, ξ) = X |α|≤N a α (x)ξ α , (x, ξ) ∈ T * R n , (1.1.2)
the semiclassical principal symbol of P (x, hD x ), and we recall that the Poisson bracket of p and p is given by {p, p}

= ∂ ξ p • ∂ x p -∂ x p • ∂ ξ p.
We are interested in the spectral properties of P (x, hD x ) in the limit h → 0, which is called the semiclassical limit. The fundamental motivation behind studying such limits is to understand the relation between classical dynamics in phase space and quantum mechanics, when h → 0. A famous example is the Weyl law for the eigenvalues of the Schrödinger operator

P (x, hD x ) = -h 2 ∆ + V (x).
with a smooth potential V ∈ C ∞ (R n ; R) satisfying suitable growth conditions

( |∂ α V (x)| ≤ C α 〈x〉 k , ∀α ∈ N n , V (x) ≥ c〈x〉 k , for |x| ≥ R,
where R, k,C α , c > 0 are some constants. Then we have the following celebrated result linking the asymptotic behavior (as h → 0) of the number of eigenvalues of P (x, hD x ) in an interval I ⊂ R to the symplectic volume in phase space of p -1 (I ) (which is a classical quantity) where p = |ξ| 2 +V (x) is the semiclassical principal symbol of P (x, hD x ):

Theorem 1.1.1 (Weyl's law, see e.g. [START_REF]Semiclassical Analysis[END_REF]). Let P = P (x, hD x ) be as above and let I ⊂ R be an interval.

Then

#(σ(P ) ∩ I ) = 1 (2πh) n ˇp-1 (I ) d xd ξ + o(1) ¶ .
Such a Weyl law is known to hold for a large class of semiclassical self-adjoint pseudo-differential elliptic operators, see for example [START_REF] Dimassi | Spectral Asymptotics in the Semi-Classical Limit[END_REF][START_REF] Ivrii | Microlocal analysis and precise spectral asymptotics[END_REF][START_REF] Helffer | Comportement semi-classique du spectre des hamiltoniens quantiques elliptiques[END_REF].

Spectral instability for non-self-adjoint semiclassical differential operators Next, we are going to put the concept of spectral instability into context with the framework of semiclassical differential operators.

Since the principal symbol of the commutator 1 h [P, P * ] = 1 h (P P * -P * P ) is given by i -1 {p, p}, we see that the Poisson bracket of p and p being different than zero implies that the operator P is non-normal.

In [START_REF]Semi-classical States for Non-Self-Adjoint Schrödinger Operators[END_REF] E.B. Davies considers the one dimensional Schrödinger operator with complex potential P (x, hD x ) = (hD x ) 2 + V (x), V ∈ C ∞ (R) (1.1.3) and gives a construction of quasimodes. He proves that for all (x, ξ) ∈ T * R satisfying ξ = 0 and ImV (x) = 0, and all N ∈ N

∃u h ∈ L 2 (R), (P (x, hD x ) -z)u h ≤ C N h N u h L 2 , z = ξ 2 + V (x).
K. Pravda-Starov generalized this in [START_REF] Pravda-Starov | A general result about the pseudo-spectrum of Schrödinger operators[END_REF] by observing that there also exist quasimodes corresponding to points (x, ξ) ∈ T * R satisfying ξ = 0, ImV ( j ) (x) = 0, for j = 1, . . . , 2p, and ImV (2p+1) (x) = 0.

M. Zworski then observed in [START_REF] Zworski | A remark on a paper of E[END_REF] a relation between Davies' quasimode construction and L. Hörmander's Poisson bracket condition (cf. [START_REF] Hörmander | Differential Equations without Solutions[END_REF]) in the context of local non-solvability of linear partial differential equations stating that a (classical) differential operator P (x, D x ) with smooth coeffi- there exists a u h ∈ L 2 (R n ) with the property

(P (x, hD x ) -z)u h = O ¡ h ∞ ¢ u h L 2 , (1.1.5)
where u h is localized to a point in phase space ρ with p(ρ) = z, i.e. WF h (u h ) = {ρ}. We recall that for v = v(h), v L 2 = O (h -N ), for some fixed N , the semiclassical wavefront set of v, WF h (v), is defined by '

(x, ξ) ∈ T * R n : ∃a ∈ S (T * R n ), a(x, ξ) = 1, a w v L 2 = O (h ∞ ) "
where a w denotes the Weyl quantization of a, i.e.

a w (x, hD x )v(x) := 1 (2πh) n ˇe i h (x-y)•η a ‡ x + y 2 , η • v(y)d yd η.
In the case where P (x, hD x ) has analytic coefficients, we may replace O (h ∞ ) with O (e -1/C h ) in (1.1.5). We also refer the reader to the thesis of K. Pravda-Starov [START_REF]Étude du pseudo-spectre d'opérateurs non auto-adjoints[END_REF] where he relates the nonnegativity of odd iterations of the above bracket condition to the construction of quasimodes similar to the above.

In case of the one dimensional semiclassical Schrödinger operator with complex potential (1.1.3) considered by E.B. Davies, the condition ' Re p, Im p " (x, ξ) < 0 from (1.1.4) simplifies to ImV (x) = 0 and ξ = 0, as shown by Davies. In the case of multi-dimensional semiclassical Schrödinger operator with smooth complex potential the bracket condition from (1.1.4) becomes Im (ξ|∂ x V (x)) = 0.

Finally, let us remark that N. Dencker, J. Sjöstrand and M. Zworski give in [START_REF] Dencker | Pseudospectra of semiclassical (pseudo-) differential operators[END_REF] a direct proof of (1.1.5) (also in the context of semiclassical pseudo-differential operators).

-Hager's model

To study the effects of spectral instability in the framework of semiclassical (pseudo-)differential operators, M. Hager introduced in [START_REF]Instabilité spectrale semiclassique pour des opérateurs non-autoadjoints I: un modèle[END_REF] the following model operator: Hypothesis 1.1.2 (Hager's model). Let 0 < h 1, we consider on S 1 = R/2πZ the semiclassical differential operator P h : L 2 (S 1 ) → L 2 (S 1 ) given by P h := hD x + g (x), D x := 1 1 ), (1.1.6) where g ∈ C ∞ (S 1 ) is such that Im g has exactly two critical points and they are non-degenerate, one minimum and one maximum, say in a and b, with a < b < a + 2π and Im g (a) < Im g (b).

i d d x , g ∈ C ∞ (S
Without loss of generality we may assume that Im g (a) = 0.

The natural domain of P h is the semiclassical Sobolev space

H 1 sc (S 1 ) := n u ∈ L 2 (S 1 ) : ¡ u 2 + hD x u 2 ¢ 1 2 < ∞ o ,
where • denotes the L 2 -norm on S 1 if nothing else is specified. We will use the standard scalar products on L 2 (S 1 ) and C N defined by

( f |g ) := ˆS1 f (x)g (x)d x, f , g ∈ L 2 (S 1 ),
and We denote the semiclassical principal symbol of P h by p(x, ξ) = ξ + g (x), (x, ξ) ∈ T * S 1 .

(X |Y ) := N X i =1 X i Y i , X , Y ∈ C N .
(1.1.7)

The spectrum of P h is discrete with simple eigenvalues, given by

σ(P h ) = ' z ∈ C : z = 〈g 〉 + kh, k ∈ Z " , (1.1.8) 
where 〈g 〉 := (2π) -1 ´S1 g (y)d y.

-Adding a random perturbation

We are interested in the following random perturbation of P h :

Hypothesis 1.1.3 (Random Perturbation of Hager's model). Let P h be as in in Hypothesis 1.1.2. Define P δ h := P h + δQ ω = hD x + g (x) + δQ ω , (1.1.9)

where 0 < δ 1 and Q ω is an integral operator L 2 (S 1 ) → L 2 (S 1 ) of the form

Q ω u(x) := X | j |,|k|≤ j C 1 h k α j ,k (u|e k )e j (x).
(1.1.10)

Here x := max{n ∈ N : x ≥ n} for x ∈ R, C 1 > 0 is big enough, e k (x) := (2π) -1/2 e i kx , k ∈ Z, and α j ,k are complex valued independent and identically distributed random variables with complex Gaussian distribution law N C (0, 1).

Recall that a random variable α has complex Gaussian distribution law N C (0, 1) if

α * (P(d ω)) = 1 π e -αα L(d α)
where L(d α) denotes the Lebesgue measure on C and ω is the random parameter living in the sample space M of a probability space (M , A , P) with σ-algebra A and probability measure P.

α ∼ N C (0, 1) implies that E[α] = 0, and E

£ |α| 2 ⁄ = 1,
or in other words α ∼ N C (0, 1) has expectation 0 and variance 1. In the above, E[•] denotes the expectation with respect to the random variables.

The following results were obtained by W. Bordeaux-Montrieux [START_REF] Bordeaux-Montrieux | Loi de Weyl presque sûre et résolvent pour des opérateurs différentiels non-autoadjoints[END_REF].

Proposition 1.1.4 (W. Bordeaux-Montrieux [START_REF] Bordeaux-Montrieux | Loi de Weyl presque sûre et résolvent pour des opérateurs différentiels non-autoadjoints[END_REF]). There exists a C 0 > 0 such that the following holds: Let X j ∼ N C (0, σ 2 j ), 1 ≤ j ≤ N < ∞ be independent complex Gaussian random variables. Put s 1 = max σ 2 j . Then, for every x > 0, we have

P " N X j =1 |X j | 2 ≥ x # ≤ exp ˆC0 2s 1 N X j =1 σ 2 j - x 2s 1
! .

Corollary 1.1.5 (W. Bordeaux-Montrieux [START_REF] Bordeaux-Montrieux | Loi de Weyl presque sûre et résolvent pour des opérateurs différentiels non-autoadjoints[END_REF]). Let h > 0 and let Q ω HS denote the Hilbert-Schmidt norm of Q ω . If C > 0 is large enough, then

Q ω H S ≤ C h with probability ≥ 1 -e -1 C h 2 .
Here, the constant C > 0 in the probability estimate is not necessarily the same as before.

Since Q ω 2 H S = P |α j ,k (ω)| 2 , we can also view the above bound as restricting the support of the joint probability distribution of the random vector α = (α j k ) j ,k to a ball of radius C /h. Hence, to obtain a bounded perturbation we will work from now on in the restricted probability space: Hypothesis 1.1.6 (Restriction of random variables). Define N := (2 C 1 /h +1) 2 where C 1 > 0 is as in (1.1.10). We assume that for some constant C > 0

α ∈ B (0, R) ⊂ C N , R = C h . (1.1.11)
Furthermore, we assume that the coupling constant δ > 0 satisfies δ h 5/2 , (1. 1.12) which implies, for α ∈ B (0, R), that δ Q ω H S ≤ C h 3/2 . Hence, for α ∈ B (0, R), the operator Q ω is compact and the spectrum of P δ h is discrete.

Zone of spectral instability

Since in the present work we are in the semiclassical setting, we define similarly to (1.1.4)

Σ := p(T * S 1 ) ⊂ C, (1.1.13) 
where p is given in (1.1.7). In the case of (1.1.6) and (1.1.7) p(T * S 1 ) is already closed due to the ellipticity of P h .

Next, consider for z ∈ Ω Σ the equation z = p(x, ξ). It has precisely two solutions ρ ± (z) := (x ± (z), ξ ± (z)) where x ± (z) are given by Im g (x ± (z)) = Im z, ±Im g (x ± (z)) < 0 and ξ ± (z) = Re z -Re g (x ± (z)).

(1. 1.14) By the natural projection Π : R → S 1 = R/2πZ and a slight abuse of notation we identify the points x ± ∈ S 1 with points x ± ∈ R such that x --2π < x + < x -. Furthermore, we will identify S 1 with the interval [x --2π, x -[. Therefore, we see that in the case of (1.1.7), the bracket condition given in (1.1.4) is satisfied for any z ∈ Ω Σ since by (1.1.14) ' Re p, Im p " (x + (z), ξ + (z)) = Im g (x + (z)) < 0.

We will give more details on the construction of quasimodes for P h in Section 2.1.

For z close to the boundary of Σ the situation is different as we have a good resolvent estimate on ∂Σ. Since {p, {p, p}}(ρ) = 0 for all z 0 ∈ ∂Σ and all ρ ∈ p -1 (z 0 ), Theorem 1.1 in [START_REF]Resolvent Estimates for Non-Selfadjoint Operators via Semigroups, Around the Research of Vladimir Maz'ya III[END_REF] implies that there exists a constant C 0 > 0 such that for every constant C 1 > 0 there is a constant C 2 > 0 such that for |zz 0 | < C 1 (h ln 1 h ) 2/3 , h < 1 C 2 , the resolvent (P hz) -1 is well defined and satisfies .1.15) This implies for α as in (1.1.11) and δ = O (h M ), M = M (C 1 ,C ) > 0 large enough, that

(P h -z) -1 < C 0 h -2 3 exp C 0 h |z -z 0 | 3 2 ¶ . ( 1 
σ(P h + δQ ω ) ∩ D ˆz0 ,C 1 h ln 1 h ¶ 2/3 ! = .
(1.1.16)

Thus, there exists a tube of radius C 1 ¡ h ln 1 h ¢ 2/3 around ∂Σ void of the spectrum of the perturbed operator P δ h . Therefore, since we are interested in the eigenvalue distribution of P δ h , we assume from now on implicitly that Hypothesis 1.1.7 (Restriction of Σ). Let Σ ⊂ C be as in (1.1.13). Then, we let Ω Σ be open, relatively compact with dist (Ω, ∂Σ) > C ¡ h ln h -1 ¢ 2/3 for some constant C > 0.

(1.1.17)

1.1. RANDOM PERTURBATIONS OF NON-SELF-ADJOINT SEMICLASSICAL DIFFERENTIAL OPERATORS 1.1.3 -Review of previous and related results

In [START_REF]Instabilité spectrale semiclassique pour des opérateurs non-autoadjoints I: un modèle[END_REF] M. Hager showed the striking result that, although the eigenvalues of P h (cf (1.1.8)) do not follow a Weyl law, after adding a tiny random perturbation the eigenvalues of the perturbed operator P δ h follow in the interior of Σ a Weyl law with probability very close to one: Theorem 1.1.8 (M. Hager [START_REF]Instabilité spectrale semiclassique pour des opérateurs non-autoadjoints I: un modèle[END_REF]). Let Ω Σ be open and relatively compact such that dist (Ω, ∂Σ) > 1/C , for a C 1. Let Γ Ω be with C ∞ boundary. Let κ > 5/2 and let ε 0 > 0 be sufficiently small. Let δ = δ(h) satisfy e -ε 0 /h δ h κ and put ε = ε(h) = h ln(1/δ). Then with probability ≥ 1 -O ‡ δ 2 εh 5

• ,

# ‡ σ(P δ h ) ∩ Γ • = 1 2πh ˇp-1 (Γ) d xd ξ + O ε h ¶ .
M. Hager's result is particularly interesting when

δ 2
εh 5 1 and ε 1, as it would be for example the case when

ln 1 δ 1 h , δ h 11 4 .
Hager's result has been extended by W. Bordeaux-Montrieux in [START_REF] Bordeaux-Montrieux | Loi de Weyl presque sûre et résolvent pour des opérateurs différentiels non-autoadjoints[END_REF] to strips at a distance (-h ln δh)
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to the boundary of Σ:

Γ τ := {z ∈ Σ; C 1 ≤ Re z ≤ C 2 ,
Im z τ} , with (-h ln(δh)) 2/3 τ 1 (1. 1.18) where C 1 ,C 2 are constants independent of τ. W. Bordeaux-Montrieux showed in [START_REF] Bordeaux-Montrieux | Loi de Weyl presque sûre et résolvent pour des opérateurs différentiels non-autoadjoints[END_REF] that the eigenvalues of the perturbed operator P δ h follow also in Γ τ a Weyl law: Theorem 1.1.9 (W. Bordeaux-Montrieux [START_REF] Bordeaux-Montrieux | Loi de Weyl presque sûre et résolvent pour des opérateurs différentiels non-autoadjoints[END_REF]). Let κ, γ > 0 and let Γ τ be as above. Let δ = δ(h) satisfy C h κ ≤ δ hτ 1/4 h 2γ (ln h -1 ) 3 , and put ε = ε(h) = C γ h ln(hδ) -1 . Then with probability ≥ 1 -O ‡ h 2γ ετ 1/4 • ,

# ‡ σ(P δ h ) ∩ Γ τ • = 1 2πh ˇp-1 (Γ τ ) d xd ξ + O ε τ 1/4 h ¶ .
Furthermore, Hager and Bordeaux-Montrieux generalized their respective results to the case of one-dimensional semiclassical pseudo-differential operators, see [START_REF] Hager | Instabilité Spectrale Semiclassique d'Opérateurs Non-Autoadjoints II[END_REF][START_REF] Bordeaux-Montrieux | Loi de Weyl presque sûre et résolvent pour des opérateurs différentiels non-autoadjoints[END_REF]. In [START_REF] Hager | Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators[END_REF], M. Hager and J. Sjöstrand generalized Hager's result to the case of multi-dimensional semiclassical pseudodifferential operators.

There are many more interesting results about Weyl asymptotics of the eigenvalues of nonself-adjoint operators: in [START_REF] Christiansen | Probabilistic Weyl Laws for Quantized Tori[END_REF] M. Zworski and T.J. Christiansen proved a probabilistic Weyl law for the eigenvalues in the setting of small random perturbations of Toeplitz quantizations of complexvalued functions on an even dimensional torus. In [START_REF]Eigenvalue distribution for non-self-adjoint operators on compact manifolds with small multiplicative random perturbations[END_REF][START_REF]Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations[END_REF] J. Sjöstrand proved a Weyl law for the eigenvalues the case small multiplicative random perturbations of multi-dimensional semiclassical pseudo-differential operators similar to the class under consideration in [START_REF] Hager | Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators[END_REF].

-estions treated

The above mentioned results concern only the eigenvalues in the interior of the pseudospectrum and numerical simulations suggest that Weyl asymptotics break down when we approach the boundary of the pseudospectrum (cf Figures 1.1, 1.2 and 1.3). Furthermore, there have not been any results concerning the statistical interaction between eigenvalues.

Therefore, in the first part of this thesis we go back to the model operator P h introduced by Hager (cf Hypothesis 1.1.2) and we are interested in the following questions: On the left hand side we present the spectrum of the discretization of hD + exp(-i x) (approximated by a 3999 × 3999-matrix) perturbed with a random Gaussian matrix δR with h = 2 • 10 -3 and δ = 2 • 10 -12 . The black box indicates the region where we count the number of eigenvalues to obtain the image on the right hand side. There we show the integrated experimental density of eigenvalues, averaged over 400 realizations of random Gaussian matrices, and the integrated Weyl law. We can see clearly a region close to the boundary of the pseudospectrum where Weyl asymptotics of the eigenvalues breaks down.

1) Density of eigenvalues

What is the precises description of the density of eigenvalues of the randomly perturbed operator P δ h (cf (1.1.9)) in all of Σ (cf (1.1.13))?

2) 2-point interaction of eigenvalues How is the two-point interaction of eigenvalues of P δ h in the interior of Σ? Is it repulsive, attractive or neither?

| Average density of eigenvalues of Hager's model

We begin by establishing how to choose the strength of the perturbation. For this purpose we discuss some estimates on the norm of the resolvent of P h .

-The coupling δ

We give a description of the imaginary part of the action between ρ + (z) and ρ -(z). • S(z) ≥ 0;

• for Im z = 〈Im g 〉 the two integrals defining S are equal; S has its maximum at 〈Im g 〉 and is strictly monotonously decreasing on the interval [〈Im g 〉, Im g (b)] and strictly monotonously increasing on [Im g (a), 〈Im g 〉];

• its derivative is piecewise of class C ∞ with the only discontinuity at Im z = 〈Im g 〉. Moreover,

S(z) = ˆImz 〈Im g 〉 (∂ Im z S)(t )d t + S(〈Im g 〉), (∂ Im z S)(t ) := ( x -(t ) -x + (t ), if t ≤ 〈Im g 〉, x -(t ) -2π -x + (t ), if t > 〈Im g 〉. (1.2.2)
• S has the following asymptotic behavior for z ∈ Ω S(z) d (z) With the convention (P hz) -1 = ∞ for z ∈ σ(P h ) we have the following estimate on the resolvent growth of P h : Proposition 1.2.5. Let g (x) be as above. For z ∈ C and h > 0 define,

Φ(z, h) := ( -2πi h (z -〈g 〉), if Im z < 〈Im g 〉, 2πi h (z -〈g 〉), if Im z > 〈Im g 〉, where Re Φ(z, h) ≤ 0.
Then, under the assumptions of Definition 1.2.2 we have for z ∈ Ω Σ as in (1.2.1) that

(P h -z) -1 = π fl fl 1 -e Φ(z,h) fl fl -1 e S(z) h h ¡ i 2 {p, p}(ρ + ) i 2 {p, p}(ρ -) ¢ 1 4 (1 + O (h)) (1.2.3) e S(z) h h d (z) 1/4 , for |Im z -〈Im g 〉| > 1/C , C 1,
where fl fl 1e Φ(z,h) fl fl = 0 if and only if z ∈ σ(P h ). Moreover, fl fl fl1e Φ(z,h)

fl fl fl = 1 + O ‡ e -2π h |Im z-〈Im g 〉| • .
This proposition will be proven in Section 2.8.1. The growth of the norm of the resolvent away from the line Im z = 〈Im g 〉 is exponential and determined by the function S(z). A similar result valid for z ∈ Γ τ with h 2/3 τ 1 (cf (1.1.18)) has been obtained by W. Bordeaux-Montrieux [START_REF] Bordeaux-Montrieux | Loi de Weyl presque sûre et résolvent pour des opérateurs différentiels non-autoadjoints[END_REF][START_REF]Estimation de résolvante et construction de quasimode près du bord du pseudospectre[END_REF].

It will be very useful to write the coupling constant δ as follows:

Hypothesis 1.2.6. For h > 0, define

δ := δ(h) := he -0 (h) h with ¡ κ -1 2 ¢ h ln(h -1 ) + C h ≤ 0 (h) < S(〈Im g 〉)
for some κ > 0 and C > 0 large and where the last inequality is uniform in h > 0. This is equivalent to the bounds

he -S(〈Im g 〉) h < δ h κ .
Remark 1.2.7. The upper bound on ε 0 (h) has been chosen in order to produce eigenvalues sufficiently far away from the line Im z = 〈Im g 〉 where we find σ(P h ). The lower bound on ε 0 (h) is needed because we want to consider small random perturbations with respect to P h (cf. (1.1.12) and (1.1.16)). To describe the elements of the average density of eigenvalues, it will be very useful to introduce the following operators which have already been used in the study of the spectrum of P δ h by Sjöstrand [START_REF]Spectral properties of non-self-adjoint operators[END_REF]. For the readers convenience, we will give a short overview:

Let z ∈ C and we define the following z-dependent elliptic self-adjoint operators

Q(z), Q(z) : L 2 (S 1 ) → L 2 (S 1 )
where

Q(z) := (P h -z) * (P h -z), Q(z) := (P h -z)(P h -z) * (1.2.4) with domains D(Q(z)), D( Q(z)) = H 2 (S 1
). Since S 1 is compact and these are elliptic, non-negative, self-adjoint operators their spectra are discrete and contained in the interval [0, ∞[. Since

Q(z)u = 0 ⇒ (P h -z)u = 0 it follows that N (Q(z)) = N (P h -z) and N ( Q(z)) = N ((P h -z) * ). Furthermore, if λ = 0 is an eigenvalue of Q(z)
with corresponding eigenvector e λ we see that f λ := (P h -z)e λ is an eigenvector of Q(z) with the eigenvalue λ. Similarly, every non-vanishing eigenvalue of Q(z) is an eigenvalue of Q(z) and moreover, since P hz, (P hz) * are Fredholm operators of index 0 we see that

dim N (P h -z) = dim N ((P h -z) * ).
Hence the spectra of Q(z) and Q(z) are equal

σ(Q(z)) = σ( Q(z)) = {t 2 0 , t 2 1 , . . . }, 0 ≤ t j ∞. (1.2.5) 
We will show in Proposition 2.1.7 that for z ∈ Ω Σ (cf (1.2.1))

t 2 0 (z) ≤ O ‡ d (z) 1 2 he -2S h • , t 2 1 (z) ≥ d (z) 1 2 h O (1)
.

(1.2.6)

Now consider the orthonormal basis of L 2 (S 1 ) {e 0 , e 1 , . . . } (1.2.7)

consisting of the eigenfunctions of Q(z). By the previous observations we have

(P h -z)(P h -z) * (P h -z)e j = t 2 j (P h -z)e j .
Thus defining f 0 to be the normalized eigenvector of e Q corresponding to the eigenvalue t 2 0 and the vectors f j ∈ L 2 (S 1 ), for j ∈ N, as the normalization of (P hz)e j such that

(P h -z)e j = α j f j , (P h -z) * f j = β j e j with α j β j = t 2 j , (1.2.8) yields an orthonormal basis of L 2 (S 1 ) { f 0 , f 1 , . . . } (1.2.9)
consisting of the eigenfunctions of Q(z). Since

α j = ((P h -z)e j | f j ) = (e j |(P h -z) * f j ) = β j we can conclude that α j α j = t 2 j .
It is clear from (1.2.6), (1.2.8) that e 0 (z) (resp. f 0 (z)) is an exponentially accurate quasimode for P hz (resp. (P hz) * ). We will see in Section 2.1 that it is localized to ρ + (z) (resp. ρ -(z)). We will prove in the Sections 2.2.2 and 2.2.4 the following two formulas for the tunneling effect: CHAPTER 1. SPECTRA OF NON-SELF-ADJOINT RANDOM OPERATORS Proposition 1.2.8. Let z ∈ Ω Σ be as in (1.2.1) and let e 0 and f 0 be as in (1.2.7) and in (1.2.9). Furthermore, let S be as in Definition 1.2.2, let p be as in (1.1.7) and ρ ± be as in (1.1.14). Let h

2 3 d (z), then for all z ∈ Ω with |Im z -〈Im g 〉| > 1/C , C 1, |(e 0 | f 0 )| = ¡ i 2 {p, p}(ρ + ) i 2 {p, p}(ρ -) ¢ 1 4 πh |∂ Im z S(z)| (1 + K (z; h)) e -S(z) h ,
where K (z; h) depends smoothly on z and satisfies for all β ∈ N 2 that 

∂ β zz K (z; h) = O ‡ d (z) |β| 2 -3 4 h -|β|+
d (z), |([P h , χ]e 0 | f 0 )| = h ˆi 2 {p, p}(ρ + ) i 2 {p, p}(ρ -) π 2 ! 1 4 (1 + K (z; h)) e -S(z) h ,
where K (z; h) depends smoothly on z and satisfies for all β ∈ N 2 that

∂ β zz K (z; h) = O ‡ d (z) |β|-3 2 h 1-(|β|)
• .

-Average density of eigenvalues.

We begin by defining the point process of eigenvalues of the perturbed operator P δ h (cf Hypothesis 1.1.3).

Definition 1.2.10. Let P δ

h be as in Hypothesis 1.1.3, then we define the point process

Ξ := X z∈σ(P δ h ) δ z , (1.2.10)
where the eigenvalues are counted according to their multiplicities and δ z denotes the Diracmeasure at z.

Ξ is a well-defined random measure (cf. for example [START_REF] Daley | An Introduction to the Theory of Point Processes[END_REF]) since, for h > 0 small enough, P δ h is a random operator with discrete spectrum. To obtain an h-asymptotic formula for the average density of eigenvalues, we are interested in intensity measure of Ξ (with respect to the restriction in the random variables, see Hypothesis 1.1.6), i.e. the measure µ 1 defined by

T 1 (ϕ) := E £ Ξ(ϕ)1 B (0,R) ⁄ = ˆC ϕ(z)d µ 1 (z)
for all ϕ ∈ C 0 (Ω) with Ω Σ as in Hypothesis 1.1.7. The measure µ 1 is well defined since T 1 is a positive linear functional on C 0 (Ω).

Remark 1.2.11. Such an approach is employed with great success in the study of zeros of random polynomials and Gaussian analytic functions; we refer the reader to the works of B. Shiffman and S. Zelditch [START_REF]Equilibrium distribution of zeros of random polynomials[END_REF][START_REF]Number Variance of Random Zeros on Complex Manifolds[END_REF][START_REF] Shiffman | Distribution of Zeros of Random and Quantum Chaotic Sections of Positive Line Bundles[END_REF][START_REF] Shiffman | Convergence of random zeros on complex manifolds[END_REF], M. Sodin [START_REF] Sodin | Zeros of Gaussian Analytic Functions and Determinantal Point Processes[END_REF] an the book [START_REF] Hough | Zeros of Gaussian Analytic Functions and Determinantal Point Processes[END_REF] by J. Hough, M. Krishnapur, Y. Peres and B. Virág.

Our main result giving the average density of eigenvalues of P δ h is the following: Theorem 1.2.12. Let Ω Σ be as in Hypothesis 1.1.7. Let C > 0 be as in (1.1.11) and let C 1 > 0 be as in (1.1.10) such that C -C 1 > 0 is large enough. Let δ > 0 be as in Hypothesis 1.2.6 with κ > 4 large enough. Define N := (2 C 1 /h + 1) 2 and let B (0, R) ⊂ C N be the ball of radius R := C h -1 centered at zero. Then, there exists a C 2 > 0 such that for h > 0 small enough and for all ϕ ∈ C 0 (Ω) with the density

E £ Ξ(ϕ)1 B (0,R) ⁄ = ˆϕ(z)D(z,h,δ)L(d z) + O ‡ e - C 2 h 2 • , ( 1 
D(z, h, δ) = 1 + O ‡ δh -3 2 d (z) -1/4 • π Ψ(z; h, δ) exp{-Θ(z; h, δ)}, (1.2.12)
which depends smoothly on z and is independent of ϕ. Moreover,

Ψ(z; h, δ) = Ψ 1 (z; h) + Ψ 2 (z; h, δ) and for z ∈ Ω with d (z) (h ln h -1 ) 2/3 Ψ 1 (z; h) = 1 h ‰ i {p, p}(ρ + (z)) + i {p, p}(ρ -(z)) + O ¡ d (z) -2 ¢ , Ψ 2 (z; h, δ) = fl fl (e 0 | f 0 ) fl fl 2 δ 2 ¡ 1 + O ¡ d (z) -3/4 h 1/2 ¢¢ , Θ(z; h, δ) = fl fl ([P h , χ]e 0 | f 0 ) + O ¡ d (z) -1/4 h -5/2 δ 2 ¢fl fl 2 δ 2 (1 + O (h ∞ )) 1 + O e -d (z) 3/2 h ¶ ¶ . (1.2.13) Furthermore, in (1.2.11), O ‡ e - C 2 h 2 • means 〈T h , ϕ〉, where T h ∈ D (C) such that |〈T h , ϕ〉| ≤ C ϕ ∞ e - C 2 h 2
for all ϕ ∈ C 0 (Ω) where C > 0 is independent of h, δ and ϕ.

Let us give some comments on this result. The dominant part of the density of eigenvalues D consists of three parts: the first, Ψ 1 , is up to a small error the Lebesgue density of p * (d ξ ∧ d x), where d ξ ∧ d x is the symplectic form on T * S 1 and p is as in (1.1.7). We prove in Proposition 2.4.2 that

p * (d ξ ∧ d x) = σ(z)L(d z), with σ(z) := 2i {p, p}(ρ + (z)) + 2i {p, p}(ρ -(z)) ¶ . (1.2.14)
The second part, Ψ 2 , is given by a tunneling effect. Inside the ( hδ)-pseudospectrum its contribution can be absorbed in the error term of Ψ 1 . However, close to the boundary of the δ-pseudospectrum Ψ 2 becomes of order h -2 and thus yields a higher density of eigenvalues. This can be seen by comparing the more explicit formula for Ψ 2 given in Proposition 1.2.13 with the expression for the norm of the resolvent of P h given in Proposition 1.2.5. More details on the form of Ψ 2 in this zone will be given in Proposition 1.2.17.

The third part, exp{-Θ}, is also given by a tunneling effect and it plays the role of a cut-off function which exhibits double exponential decay outside the δ-pseudospectrum and is close to 1 inside. This will be made more precise in Section 1.2.4.

We have the following explicit formulas for these functions and their growth properties: Proposition 1.2.13. Under the assumptions of Definition 1.2.2 and Theorem 1.2.12, define for h > 0 and δ > 0 the functions

Θ 0 (z; h, δ) := h ¡ i 2 {p, p}(ρ + ) i 2 {p, p}(ρ -) ¢ 1 2 π e -2S h δ 2 .
Then, for |Im z -〈Im g 〉| > 1/C , C 1, 

Ψ 2 (z; h, δ) = ¡ i 2 {p, p}(ρ + ) i 2 {p, p}(ρ -) ¢ 1 2 πhδ 2 exp{ 2S h } |∂ Im z S(z)| 2 ˆ1 + O ˆh1/2 d (z) 3 4 !! Θ(z; h, δ) = Θ 0 (z; h, δ) ˆ1 + O ˆh 3 2 d (z) 1 4 !! + O ˆd (z) 1 4 δ h 2 + δ 2 d (z)
) i 2 {p, p}(ρ -) d (z), i {p, p}(ρ + (z)) + i {p, p}(ρ -(z)) 1 d (z) and Ψ 2 (z; h, δ) (d (z)) 3/2 e -2S h hδ 2 , Θ 0 (z; h, δ) h p d (z) fl fl fl1 -e Φ(z,h) fl fl fl e -2S h δ 2 .
In the next Subsection we will explain the asymptotic properties of the density appearing in (1.2.11).

-Properties of the average density of eigenvalues and its integral with respect to Im z

It will be sufficient for our purposes to consider rectangular subsets of Σ: for c < d define

Σ c,d := ‰ z ∈ Σ fl fl fl min x∈S 1 Im g (x) ≤ Im z ≤ max x∈S 1 Im g (x), c < Re z < d . (1.2.16)
Roughly speaking, there exist three regions in Σ:

(1) z ∈ Σ W ⊂ Σ ⇐⇒ (P h -z) -1 ( hδ) -1 , (2) z ∈ Σ R ⊂ Σ ⇐⇒ (P h -z) -1 δ -1 , (3) z ∈ Σ V ⊂ Σ ⇐⇒ (P h -z) -1 δ -1 ,
which depend on the strength of the coupling constant δ > 0. In Σ W , the average density is of order h -1 and is governed by the symplectic volume yielding a Weyl law. In Σ R , the average density spikes and Ψ 2 becomes the leading term and is of order h -2 and it yields in total a Poisson-type distribution, cf. Proposition 1.2.17. In Σ V , the average density is rapidly decaying, since

Θ (P h -z) -1 -2 δ -2 ,
which follows from Proposition 1.2.9 and Proposition 1.2.5.

Σ Σ

V Σ V Σ W Σ R Σ R σ(P h ) γ h + γ h - Figure 1.5:
The three zones in Σ with a schematic representation of γ h ± . The two boxes indicate zones where the integrated densities are equal up to a small error.

We will prove that there exist two smooth curves, Γ h ± , close to the boundary of the δ-pseudospectrum of P δ h , along which the average density of eigenvalues obtains its local maxima. Note that this is still inside the (C h -1 δ)-pseudospectrum of P δ h (cf Hypothesis 1.1.6) since pseudospectra are nested (meaning that σ ε 

1 (P δ h ) ⊂ σ ε 2 (P δ h ) for ε 1 < ε 2 ).
(h) such that ε 0 (h) = S(y ± (h)) with 1 C ¡ h ln h -1 ¢ 2 3 y -(h) < 〈Im g 〉 -ch ln h -1 < 〈Im g 〉 + ch ln h -1 < y + (h) Im g (b) - 1 C ¡ h ln h -1 ¢ 2 3 , for some constants C , c > 1. Furthermore, y -(h), (Im g (b) -y + (h)) (ε 0 (h)) 2/3 ;
2. there exists h 0 > 0 and a family of smooth curves, indexed by h ∈]h 0 , 0[,

γ h ± : ]c, d [-→ C with Re γ h ± (t ) = t such that |t 0 (γ h ± (t ))| = δ.
Moreover,

(P h -γ h ± (t )) -1 = δ -1 ,
and

Im γ h ± (Re z) = y ± (ε 0 (h)) 1 + O h ε 0 (h) ¶ ¶ .
Furthermore, there exists a constant C > 0 such that

d Im γ h ± d t (t ) = O exp • - ε 0 (h) C h ' ¶ .
3. there exists h 0 > 0 and a family of smooth curves, indexed by h ∈]h 0 , 0[,

Γ h ± : ]c, d [-→ C, Re Γ h ± (t ) = t ,
with Γ -⊂ {Im z < 〈Im g 〉} and Γ + ⊂ {Im z > 〈Im g 〉}, along which Im z → D(z, h) takes its local maxima on the vertical line Re z = const. and

d d t Im Γ h ± (t ) = O h 4 ε 0 (h) 4 ¶ .
Moreover, for all c < t < d 13/3 ¶ .

|Γ h ± (t ) -γ h ± (t )| ≤ O h 5 ε 0 (h)
With respect to the above described curves we prove the following properties of the average density of eigenvalues: Proposition 1.2.16. Let d ξ ∧ d x be the symplectic form on T * S 1 and p as in (1.1.7). Let ε 0 = ε 0 (h) be as in Hypothesis 1.2.6. Then, under the assumptions of Theorem 1.2.12 there exist α, β > 0 such that

1. for z ∈ Σ c,d with Im γ -(Re z) + α h ε 1/3 0 ln ε 1/3 0 h ≤ Im z ≤ Im γ + (Re z) -α h ε 1/3 0 ln ε 1/3 0 h we have that D(z; h, δ)L(d z) = 1 2πh p * (d ξ ∧ d x) + O ¡ d (z) -2 ¢ L(d z),
where D(z; h, δ) is the average density of eigenvalues of the operator of P δ h given in Theorem 1.2.12.

for

Ω 1 (β) := ‰ z ∈ Σ c,d fl fl fl Im γ -(Re z) - h ε 1/3 0 ln ˆβ ln ε 1/3 0 h ! ≤ Im z ≤ Im γ + (Re z) + h ε 1/3 0 ln ˆβ ln ε 1/3 0 h ! ,
we have that

ẑ∈Ω 1 (β) D(z; h, δ)L(d z) = Σc,d p * (d ξ ∧ d x) 2πh + O ε -2 3 0 ¶ . 3. for all ε > 0 and all Ω(ε) ⊂ Σ c,d \Ω 2 (β, ε) satisfying Hypothesis 1.1.7,
where

Ω 2 (β, ε) := ‰ z ∈ Σ c,d fl fl fl Im γ -(Re z) - h ε 1/3 0 ln ˆβ ln ε 1/3 0 h ! -ε ≤ Im z ≤ Im γ + (Re z) + h ε 1/3 0 ln ˆβ ln ε 1/3 0 h ! + ε ,
we have that

ˆΩ(ε) D(z; h, δ)L(d z) = O ‡ exp n -e ε C h o• .
Proposition 1.2.16 makes more precise the rough description of the behavior of the average density of eigenvalues, given at the beginning of this section: Point 1. tells us that in the interior of the δ-pseudospectrum, up to a distance of order h ln 1 h to the curves γ h ± (see Figure 1.5), the density is given by a Weyl law. Assertion 2. tells us that the eigenvalues accumulate strongly in the close vicinity of these curves such that when integrating the density in the box Ω 1 Σ c,d the number of eigenvalues is given (up to small error) by the integrated Weyl density in all of Σ c,d (cf Figure 1.5). This augmented density can be seen as the accumulated eigenvalues which would have been given by a Weyl law in the region from γ h ± up to the boundary ∂Σ (see also Figures 1.6 and 1.7 for an example).

The last point of the proposition tells us that outside of a strip of the form of Ω 1 the density decays double-exponentially.

The density in the zone of spectral accumulation

We give a finer description of the density of eigenvalues close to its local maxima at Γ h ± :

Proposition 1.2.17. Assume the hypotheses of Theorem 1.2.12. Let S(z) be as in Definition 1.2.2 and let Ψ 2 (z; h, δ) and Θ(z; h, δ) be as in Theorem 1.2.12. Then for |Im z -〈Im g 〉| > 1/C with C 1 large enough,

Ψ 2 (z; h, δ)e -Θ(z;h,δ) = • |∂ Im z S(z)| 2 h 2 Θ(z; h, δ) ¡ 1 + O ¡ d (z) -3/4 h 1/2 ¢¢ + O ¡ d (z) 5/4 ¢ ' e -Θ(z;h,δ) .
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Let us give some remarks on this result. First, we see that we can approximate the second part of the density of eigenvalues by a Poisson type distribution. Second, since Θ (P hz) -2 -1 δ -2 , we see that the effects of the second part of the density vanish in the error term of Ψ 1 as long as

(P h -z) -1 ( hδ) -1 . However, for (P h -z) -1 δ -1 it is of order O (d (z)h -2
) and dominates the Weyl term.

-Example: Numerical simulations

To illustrate our results we look at the discretization of P h = hD + e -i x in Fourier space which is approximated by the (2N + 1) × (2N + 1)-matrix H = hD + E , N ∈ N, where D and E are defined by

D j ,k := ( j if j = k, 0 else and E j ,k := ( 1 if k = j + 1, 0 else, where j , k ∈ {-N , -N +1, . . . , N }. Let R be a (2N +1)×(2N +1
) random matrix, where the entries R j ,k are independent and identically distributed complex Gaussian random variables, R j ,k ∼ N C (0, 1). For h > 0 and δ > 0 as in Theorem 1.2.12, we let MATLAB calculate the spectrum σ(H + δR). Since here g (x) = e -i x (cf. (1.1.6)), it follows that in this case Σ is given by {z ∈ C; |Im z| ≤ 1} (cf. (1.1.13)).

Remark 1.2.18. Details regarding the MATLAB code used to obtain these simulations can be found in Appendix A.

We are going to perform our numerical experiments for the following two cases:

Polynomially small (in h) coupling δ We set the above parameters to be h = 2 • 10 -3 , δ = 2 • 10 -12 ≈ 0.1 • h 4 and N = 1999. Figure 1.6 shows the spectrum of H + δR computed by MATLAB. The black box indicates the region where we count the number of eigenvalues to obtain the density of eigenvalues presented in Figure 1.7. Outside this box the influence from the boundary effects from our N -dimensional matrix are too strong. Figure 1.7 compares the experimental (given by counting the number of eigenvalues in the black box restricted to Im z ≥ 0 and averaging over 400 realizations of random Gaussian matrices) and the theoretical (cf Theorem 1.2.12) density and integrated density of eigenvalues. Exponentially small (in h) coupling δ We set the above parameters to be h = 5•10 -2 , δ = exp(-1/h) and N = 1000. above, the black box indicates the region where we count the number of eigenvalues to obtain the density of eigenvalues presented in Figure 1.9. This figure compares the experimental (given by counting the number of eigenvalues in the black box restricted to Im z ≥ 0 and averaging over 400 realizations of random Gaussian matrices) and the theoretical (cf Theorem 1.2.12) density and integrated density of eigenvalues.

The Figures 1.6, 1.7, 1.8 and 1.9 confirm the theoretical result presented in Theorem 1.2.12 since the green lines, representing the plotted average density of eigenvalues given by Theorem 1.2.12, match perfectly the experimentally obtained density of eigenvalues. Furthermore, these figures show the three zones described in Section 1.2.4 (see also Proposition 1.2.16):

The first zone, is in the middle of the spectrum (cf. Figures 1.6, 1.8) corresponding to the zone where (P hz) -1

( hδ) -1 . There we see roughly an aequidistribution of points at distance h. The right hand side of Figures 1.7 and 1.9 shows that the number of eigenvalues in this zone is given by a Weyl law, as predicted by Proposition 1.2.16.

When comparing Figure 1.7 and 1.9 we can see clearly that the Weyl law breaks down earlier when the coupling constant δ gets smaller. Indeed, when δ > 0 is exponentially small in h > 0, the break down happens well in the interior of Σ, precisely as predicted by Proposition 1.2.16.

Another important property of this zone is that there is an increase in the density of the spectral points as we approach the boundary of Σ, see Figure 1.7. This is due to the fact that the density given by the Weyl law becomes more and more singular as we approach ∂Σ (cf. Proposition 1.2.14).

We will find the second zone by moving closer to the "edge" of the spectrum, see Figure 1.6 and 1.8. It can be characterized as the zone where (P hz) -1 δ -1 . Figures 1.7 and 1.9 show that there is a strong accumulation of the spectrum close to the boundary of the pseudospectrum. Furthermore, we see in the image on the right hand side of Figure 1.6 and of Figure 1.8 that the zone of accumulation of eigenvalues is in a small tube around roughly a straight line. This is exactly as predicted by Proposition 1.2.15 and Proposition 1.2.17. Finally, let us remark that when looking at the Figures 1.6 and 1.8, we note that in this zone the average distance between eigenvalues is much closer than in the first zone.

The third zone is between the spectral edge and the boundary of Σ where we find no spectrum at all. It can be characterized as the zone where (P hz) -1 δ -1 , a void region as described in Proposition 1.2.16 (cf. Figures 1.7 and 1.9).

Let us stress again that as δ gets smaller the zone of accumulation moves further into the interior of Σ, thus diminishing the zone determined by the Weyl law and increasing the zone void of eigenvalues. This effect is most drastic in the case of δ being exponentially small in h, see Figure 1.9.

| Two-point eigenvalue interaction of the eigenvalues in Hager's model

To study the two-point eigenvalue interaction we are interested in the second moment of the point process Ξ, see Definition 1.2.10. We begin by recalling some facts about second moments of point processes from [START_REF] Hough | Zeros of Gaussian Analytic Functions and Determinantal Point Processes[END_REF][START_REF] Daley | An Introduction to the Theory of Point Processes[END_REF], using the example of Ξ. The second moment (with respect to the restriction of the random variables introduced in Hypothesis 1.1.6) of Ξ is defined by the positive linear functional on C 0 (Ω 2 ), T 2 , defined by

T 2 (ϕ) := E 2 4 X z,w∈σ(P δ h ) ϕ(z, w)1 B (0,R) 3 5 = ˆC2 ϕ(z, w)d µ 2 (z, w)
for all ϕ ∈ C 0 (Ω 2 ). Here, we choose Ω Σ to be a subset of the interior of Σ: Continuing, note that we have the splitting Both terms are positive linear functionals on C 0 (Ω 2 ), and thus the above representation by the two measures e µ 2 and ν is well-defined. The measure e µ 2 is supported on the diagonal D := {(z, z); z ∈ Ω} and is given by the push-forward of µ 1 under the diagonal map f : Ω → D : x → (x, x), i.e. e µ 2 = f * µ 1 . The second measure, ν, is called the two-point intensity measure of Ξ and it is supported on Ω 2 \D. Their sum naturally yields µ 2 , i.e. µ 2 = e µ 2 + ν. We see that µ 2 is not absolutely continuous with respect to the Lebesgue measure on C 2 . However, this may be the case for the measure ν.

Hypothesis 1.
T 2 (ϕ) = E 2 4 X z∈σ(P δ h ) ϕ(z, z)1 B (0,R) 3 5 + E 2 6 6 4 X z,w∈σ(P δ h ) z =w ϕ(z, w)1 B (0,R)
To study the correlation of two points of the spectrum of P δ h , we are interested in the two-point intensity measure ν, given by

E 2 6 6 4 X z,w∈σ(P δ h ) z =w ϕ(z, w)1 B (0,R) 3 7 7 5 = ˆC2 ϕ(z, w)d ν(z, w). (1.3.3)
In particular, we will give an h-asymptotic formula for its Lebesgue density valid at a distance h 3/5 from the diagonal. For Ω as in (1.3.1) and C 2 > 0, we define the set 

D h (Ω,C 2 ) := {(z, w) ∈ Ω 2 ; |z -w| ≤ C 2 h 3/5 }. ( 1 
• σ h (z, w) = σ ¡ z+w 2 ¢ + O (h), • K (z, w; h) = σ h (z, w) |z-w| 2 4h (1 + O (|z -w| + h ∞ )), • D δ (z, w; h) = Λ(z,w) (2πh) 2 (1-e -2K ) ‡ 1 + O ‡ δh -8 5 •• + O ‡ e -D h 2 • , with Λ(z, w; h) =σ h (z, z)σ h (w, w) + σ h (z, w) 2 (1 + O (|z -w|))e -2K + σ h (z, w) 2 (1 + O (|z -w|)) e K sinh(K ) ¡ 2K 2 coth(K ) -4K ¢ + O ‡ h ∞ + δh -31 10
• and there exists a constant c > 0 such that for all

ϕ ∈ C ∞ 0 (Ω 2 \D h (Ω, c)) with ˆC2 ϕ(z, w)d ν(z, w) = ˆC2 ϕ(z, w)D δ (z, w; h)L(d (z, w)).
Recall from Theorem 1.2.12 that the one-point density of eigenvalues in Ω, as in (1.3.1), is given by

E[Ξ(ϕ)1 B (0,R) ] = ˆϕ(z)d(z;h)L(d z), ∀ϕ ∈ C 0 (Ω), where d (z; h) = 1 2πh σ(z) + O (1), (1.3.6) 
where σ(z) is as in (1.3.5). In other words, we know from Theorem 1.2.12 that the average density of eigenvalues in Ω is up to first order determined by symplectic volume form in phase space (we recall that here we only treat the case of Ω being in the interior of the pseudospectrum). Theorem 1.3.4 agrees very well with this result as that the leading terms to the density D δ (z, w; h) (cf. Theorem 1.3.4) are as well determined by symplectic volume form in phase space.

-Interaction

Using the formula obtained in Theorem 1.3.4, we will prove that two eigenvalues of P δ h exhibit the following interaction: Proposition 1.3.5. Under the hypothesis of Theorem 1.3.4, we have that • for h 4 7 |z -w| h

1 2 D δ (z, w; h) = σ 3 h (z, w)|z -w| 2 (4π) 2 h 3 1 + O |z -w| 2 h + δh -8 10 ¶ ¶ ; • for |z -w| (h ln h -1 ) 1 2 D δ (z, w; h) = σ(z)σ(w) + O (h) (2hπ) 2 ‡ 1 + O ‡ δh -8 5 •• .
Let us give some comments on this result: The fact that we cannot analyze the eigenvalue interaction completely up to the diagonal is due to some technical difficulties. In the above proposition, two eigenvalues of the perturbed operator P δ h show the following types of interaction: Short range repulsion The two-point density decays quadratically in |z-w| if two eigenvalues are too close, and we conjecture that this is the case for all z, w as above satisfying |z -w| h 

Long range decoupling

|z -w 0 | h 1 2 D δ w 0 (z; h) = σ 2 h (z)|z -w 0 | 2 8πh 2 1 + O |z -w 0 | 2 h + δh -8 5 ¶ ¶ 1; • for |z -w 0 | (h ln h -1 ) 1 2 D δ w 0 (z; h) = σ(z) + O (h) 2hπ ‡ 1 + O ‡ δh -8 5 •• .
In the above proposition we see that, given an eigenvalue w 0 ∈ σ(P δ h ), the density of finding another eigenvalue in the vicinity of w 0 shows the following behavior:

Short range repulsion

The density D δ w 0 (z; h) decays quadratically in σ h (z)|zw 0 | if the distance between z and w 0 is smaller than a term of order h 1 2 . Recall from Proposition 1.2.14 that σ(z) grows towards the boundary of Σ, hence the short range repulsion is weaker for Ω close to the boundary of Σ, as we expected from the numerical simulations, see Figure 1.6.

Long range decoupling

If the distance between z and w 0 is larger than a term of order (h ln h -1 ) 1 2 , the density D δ w 0 (z; h) is given up to a small error by the 1-point density d (z; h) (see (1.3.6)). Hence, we see that at these distances two eigenvalues of P δ h are up to a small error uncorrelated. To illustrate Proposition 1.3.6, Figure 1.10 shows a plot of of the principal terms of the conditional density D δ w 0 as a function of |z|, for w 0 = 0 and h = 0.01, assuming for simplicity that σ(z) = const. On the left hand side of the graph we see the quadratic decay, whereas on the right hand side the density is given by (2πh) -1 σ(z). We now turn away from the case of semiclassical differential operators and towards the case of large Jordan matrices. We are interested in the spectrum of a random perturbation of the large Jordan block A 0 : The spectrum of A 0 is

A 0 = 0 B B B B B B B B @
σ(A 0 ) = {0}.
As established in the introduction above, we have that the closed unit disc D(0, 1) is a zone of spectral instability and if A δ = A 0 + δQ is a small random perturbation of A 0 we expect the eigenvalues to move inside a small neighborhood of D(0, 1).

We are interested in the distribution of eigenvalues as the dimension of the matrix gets large, i.e. the limit N → ∞. This situation is inherently different from the above case of semiclassical differential operators since now we are considering here a problem with boundary.

We are interested in the small random perturbations of A 0 :

Hypothesis 1.4.1 (Random Perturbation of Jordan block). Let 0 < δ 1 and consider the following random perturbation of A 0 as in (1.4.1):

A δ = A 0 + δQ, Q = (q j ,k (ω)) 1≤ j ,k≤N , (1.4.2) 
where q j ,k (ω) are independent and identically distributed complex random variables, following the complex Gaussian law N C (0, 1).

E.B. Davies and M. Hager [START_REF] Davies | Perturbations of Jordan matrices[END_REF] studied random perturbations of A 0 . They showed that with probability close to 1, most of the eigenvalues are close to a circle: Theorem 1.4.2 (E.B. Davies-M. Hager [START_REF] Davies | Perturbations of Jordan matrices[END_REF]). Let A δ be as in Hypothesis 1.4.1. If 0 < δ ≤ N -7 , R = δ 1/N , σ > 0, then with probability ≥ 1 -2N -2 , we have σ(A δ ) ⊂ D(0, RN 3/N ) and

#(σ(A δ ) ∩ D(0, Re -σ )) ≤ 2 σ + 4 σ ln N .
A recent result by A. Guionnet, P. Matched Wood and O. Zeitouni [START_REF] Guionnet | Convergence of the spectral measure of nonnormal matrices[END_REF] implies that when δ is bounded from above by N -κ-1/2 for some κ > 0 and from below by some negative power of N , then 1

N X µ∈σ(A δ ) δ(z -µ) → the uniform measure on S 1 ,
weakly in probability.

estion

Our main focus lies on obtaining, for a small coupling constant δ, more information about the distribution of eigenvalues of A δ in the interior of a disc, where the result of Davies and Hager only yields a logarithmic upper bound on the number of eigenvalues (see Theorem 1.4.3 below).

In particular we are interested in a precise asymptotic formula (as N → ∞) for the density of eigenvalues in this region.

In order to obtain more information in this region, we will study the expected eigenvalue density, adapting the approach of [START_REF]The precise shape of the eigenvalue intensity for a class of non-selfadjoint operators under random perturbations[END_REF]. (For random polynomials and Gaussian analytic functions such results are more classical, [START_REF] Kac | On the average number of real roots of a random algebraic equation[END_REF][START_REF]Equilibrium distribution of zeros of random polynomials[END_REF][START_REF] Hough | Zeros of Gaussian Analytic Functions and Determinantal Point Processes[END_REF][START_REF] Sodin | Zeros of Gaussian Analytic Functions and Determinantal Point Processes[END_REF][START_REF]Number Variance of Random Zeros on Complex Manifolds[END_REF][START_REF] Shiffman | Convergence of random zeros on complex manifolds[END_REF]].) 

P( Q 2 HS ≥ x) ≤ exp C 0 2 N 2 - x 2 ¶ and hence if C 1 > 0 is large enough, Q 2 HS ≤ C 2 1 N 2 , with probability ≥ 1 -e -N 2 .
(1.4.3)

In particular (1.4.3) holds for the ordinary operator norm of Q. We now state the principal result.

Theorem 1.4.3. Let A δ be the N × N -matrix in (1.4.2) and restrict the attention to the parameter range e -N /O (1) ≤ δ 1, N 1. Let r 0 belong to a parameter range,

1 O (1) ≤ r 0 ≤ 1 - 1 N , r N -1 0 N δ (1 -r 0 ) 2 + δN 3 1, (1.4.4)
so that δ N -3 . Then, for all ϕ ∈ C 0 (D(0, r 0 -1/N ))

E " 1 B C N 2 (0,C 1 N ) (Q) X λ∈σ(A δ ) ϕ(λ) # = 1 2π ˆϕ(z)Ξ(z)L(d z),
where

Ξ(z) = 4 (1 -|z| 2 ) 2 1 + O |z| N -1 N δ (1 -|z|) 2 + δN 3 ¶ ¶ . (1.4.5)
is a continuous function independent of r 0 . C 1 > 0 is the constant in (1.4.3).

Let us give some comments on this result: Theorem 1.4.3 states that the average density of eigenvalues in the disk of radius r 0 -N -1 is given by (1.4.5). The result of E.B. Davies and M. Hager [START_REF] Davies | Perturbations of Jordan matrices[END_REF] (cf. Theorem 1.4.2) only yields a logarithmic upper bound in this region. Conditions 1 O (1) ≤ r 0 ≤ 1 -N -1 and (1.4.4) are needed to restrict the support of the test function ϕ to the disk inside the pseudospectrum where the average density of eigenvalues is determined by (1.4.5). Outside this disk we obtain no information, however we refer the reader to [START_REF] Sjöstrand | Non-self-adjoint differential operators, spectral asymptotics and random perturbations[END_REF] which treats this case and obtains a probabilistic angular Weyl law in a small neighborhood of the unit circle assuming larger perturbations.

Remark 1.4.4. However, we strongly believe that our methods can be extended to yield a complete average density of eigenvalues in the disk of radius r 0 satisfying 1 O (1) ≤ r 0 ≤ 1 -2/N , similar as in the case of Hager's model operator (cf. Section 1.2).

Condition (1.4.4) is equivalent to δN 3 1 and

r N -1 0 (1 -r 0 ) 2 δ N .
For this inequality to be satisfied, it is necessary that

r 0 < 1 -2(N + 1) -1 .
For such r 0 the function [0, r 0 ] r → r N -1 (1r ) 2 is increasing, and so inequality (1.4.4) is preserved if we replace r 0 by |z| ≤ r 0 and the remainder term in (1.4.5) is small.

The leading contribution to the density Ξ(z) is independent of N and is equal to the Lebesgue density of the volume form induced by the Poincaré metric on the disc D(0, 1). This yields a very 1.4. PERTURBATIONS OF LARGE JORDAN BLOCKS small density of eigenvalues close to the center of the disc D(0, 1) which is, however, growing towards the boundary of D(0, 1).

A similar result has been obtained by M. Sodin and B. Tsirelson in [START_REF] Sodin | Random complex zeroes, I. Asymptotic normality[END_REF] for the distribution of zeros of a certain class of random analytic functions with domain D(0, 1) linking the fact that the density is given by the volume form induced by the Poincaré metric on D(0, 1) to its invariance under the action of SL 2 (R).

-Numerical Simulations

To illustrate the result of Theorem 1.4.3, we present the following numerical calculations (Figure 1.11 and 1.12) for the eigenvalues of the N × N -matrix in (1.4.2), where N = 500 and the coupling constant δ varies from 10 -5 to 10 In Figure 1.11 and 1.12 we can see that most eigenvalues are in a close vicinity of the unit circle, confirming the results obtained by E.B. Davies and M. Hager [START_REF] Davies | Perturbations of Jordan matrices[END_REF] The left hand side shows the experimental integrated density of eigenvalues (averaged over 500 realizations), as a function of the radius, of a 1001 × 1001-Jordan block matrix perturbed with a random complex Gaussian matrix and with coupling δ = 2 • 10 -10 . The red line is the hyperbolic volume on the unit disk as a function of the radius. The right hand side presents a magnification of the left hand side, enlarging the zone where the approximation with the hyperbolic volume fails.

Furthermore, we can see that the density of eigenvalues in the interior of the unit disc grows towards the boundary of the disc, which is in agreement with the results obtained in Theorem 1.4.3 since the density Ξ (given in 1.4.5) grows towards the boundary.

Figures 1.13 compares the radial part of the density of the hyperbolic volume on the unit disk with the radial experimental (averaged over 500 realizations of random complex Gaussian matrices) density of eigenvalues of a 1001×1001-Jordan block matrix perturbed with a random complex Gaussian matrix with coupling δ = 2 • 10 -10 . Figures 1.14 shows the same for the respective integrated densities as functions of the radius. These Figures show that the average density and the average integrated density of eigenvalues of (1.4.2) are determined by the hyperbolic volume on the unit disk, as predicted by Theorem 1.4.3. Moreover, they show that here this approximation starts to break down at a radius of r 0 ≈ 0.977 which is where condition (1.4.4) starts to fail (for the above values of N and δ).

Finally, let us remark that on the right hand side of Figure 1.12 we can see the onset of a different phenomenon discussed in [START_REF] Sjöstrand | Non-self-adjoint differential operators, spectral asymptotics and random perturbations[END_REF]: When the perturbation becomes too strong the spectral band 1.5. METHODS AND IDEAS OF THE PROOFS will grow larger since the effects of the random Gaussian matrix will start to dominate over the Jordan block (we refer also to the circular law for the average density of eigenvalues of random complex Gaussian matrices, see for example [START_REF] Tao | Topics in Random Matrix Theory[END_REF]).

| Methods and ideas of the proofs

Chapters 2, 3 and 4 present the proofs of our main results and although they are self-contained we will give a short overview over the general strategy of the proofs of our main results (cf Theorems 1.2.12, 1.3.4 and 1.4.3) as a rough road map through the "labyrinth" of estimates.

Let H denote a complex separable Hilbert space. We are interested in the spectrum of a random perturbation of an operator P : D(P ) → H , of the form P δ,ω := P + δQ ω where 0 < δ 1 and Q ω is a random operator of the form

Q ω = X j ,k≤N α j ,k (ω)e * k e j ,
where N is sufficiently large, e 1 , e 2 , . . . is an orthonormal bases of H and where e * k e j u = (u|e k )e j , u ∈ H . Furthermore, α j ,k (ω) ∼ N C (0, 1) are independent and identically distributed Gaussian random variables with expectation 0 and variance 1. To obtain a compact perturbation we restrict the random variables to a large open ball, i.e. we assume that α ∈ B (0,C N ) ⊂ C N 2 , for some constant C > 1 large enough.

To obtain an effective description of the spectrum of P δ,ω we will set up an auxiliary problem.

Grushin problem

We give a short refresher on Grushin problems since they have become an essential tool and they form a key method in the present work. As reviewed in [START_REF]Elementary linear algebra for advanced spectral problems[END_REF], the central idea is to set up an auxiliary problem of the form

P -z R - R + 0 ¶ : H 1 ⊕ H --→ H 2 ⊕ H + ,
where P -z is the operator of interest and R ± are suitably chosen. We say that the Grushin problem is well-posed if this matrix of operators is bijective. If dim H -= dim H + < ∞, one usually writes

P -z R - R + 0 ¶ -1 = E (z) E + (z) E -(z) E -+ (z) ¶ .
The key observation, going back to the Shur complement formula or equivalently the Lyapunov-Schmidt bifurcation method, is that the operator P (z) : H 1 → H 2 is invertible if and only if the finite dimensional matrix E -+ (z) is invertible and when E -+ (z) is invertible, we have

P -1 (z) = E (z) -E + (z)E -1 -+ (z)E -(z).
E -+ (z) is sometimes called effective Hamiltonian. In the case of the large Jordan block we may take the vectors e 1 := (1, 0, . . . , 0) t ∈ C N , e N := (0, . . . , 0, 1) t ∈ C N , and set R + u = (u|e 1 ) and R -u-= u -e N (cf Section 4.2 and [START_REF]Elementary linear algebra for advanced spectral problems[END_REF]) to gain a well-posed Grushin problem. In the case of Hager's model operators will use quasimodes, see the paragraph entitled "quasimodes" below.

Grushin problem for the perturbed operator For δ > 0 small enough, we can use the same R ± as for the unperturbed operator P , to gain a well-posed Grushin problem for the perturbed operator

P δ,ω -z R - R + 0 ¶ : H 1 ⊕ H --→ H 2 ⊕ H + , with P δ,ω -z R - R + 0 ¶ -1 = ˆE δ,ω (z) E δ,ω + (z) E δ,ω -(z) E δ,ω -+ (z) ! .
Using E δ,ω -+ (z), we have an effective description of the spectrum of P δ,ω . In our case dim H ± = 1 (cf Section 2.2 and 4.2), wherefore σ(P δ,ω ) = (E δ,ω -+ ) -1 (0).

Quasimodes For Hager's operator P (cf Section 1.1.1), we will use quasimodes e ± for the unperturbed operator P and its adjoint P * to construct the auxiliary operators R ± by setting R + u = (u|e + ) and R -u-= u -e -(details will be given in Section 2.1 and 2.2). For e ± , we will use two kinds of quasimodes:

• The eigenfunctions e 0 and f 0 of the self-adjoint auxiliary operators Q(z) and e Q(z) (cf Section 1.2.2), which have the advantage of being valid in all of Σ, see (1.1.13), however, at the price of being less explicit.

• Local WKB approximate solutions e wkb and f wkb of the form

e wkb (x, z; h) = a(z; h)χ e (x, z, h)e i h φ + (x,z) , f wkb (x, z; h) = b(z; h)χ f (x, z, h)e i h φ -(x,z) ,
where φ ± (x, z) are phases satisfying the eikonal equations

p(x, ∂ x φ + ) = z, and p(x, ∂ x φ -) = z,
where p is the semiclassical principal symbol of P and p the one of P * . Furthermore, χ e, f (x, z, h) are smooth compactly supported cut-off functions and a(z; h) ∼ h -1/4 (a 0 (z) + ha 1 (z) + . . . ) and b(z; h) ∼ h -1/4 (b 0 (z) + hb 1 (z) + . . . ) are normalization factors. These quasimodes are more explicit than e 0 and f 0 , they are, however, only valid in certain subsets of Σ.

Moments of linear statistics Using the effective Hamiltonian E δ,ω

-+ (z) of the perturbed operator, we will study the first two moments of linear statistics of the random point process

Ξ := X z∈σ(P δ,ω ) δ z = X z∈(E δ,ω -+ ) -1 (0) δ z .
More precisely, we will study µ 1 the one-point intensity measure of Ξ, given by

E 2 4 X z∈(E δ,ω -+ ) -1 (0) ϕ(z) 1 B (0,C N ) (α) 3 5 = ˆC ϕ(z)d µ 1 (z)
where ϕ is a continuous compactly supported function. Moreover, we will study ν, the two-point intensity measure of Ξ, given by

E 2 6 6 4 X z,w∈(E δ,ω -+ ) -1 (0) z =w ϕ(z, w) 1 B (0,C N ) (α) 3 7 7 5 = ˆC2 ϕ(z, w)d ν(z, w).
In particular, we will examine their Lebesgue densities and use these to obtain Theorems 1.2.12, 1.3.4 and 1.4.3 and their consequences.

There are two essential steps involved in obtaining these densities:

1.6. SOME OPEN PROBLEMS

1. We obtain a formula to describe these densities.

(a) In the case of the Jordan block, E δ,ω -+ depends holomorphically on z and on the random variables α which is very useful. We will see that

T := n (z, α) ∈ Ω × B (0,C N ); E δ,ω -+ (z, α) = 0 o is a a smooth complex hypersurface in Ω × B (0,C N ) ⊂ C × C N 2 ,
where Ω ⊂ C is open, bounded and connected. Exploiting this, we will show that

E 2 4 X z∈(E δ -+ ) -1 (0) ϕ(z) 1 B (0,C N ) (α) 3 5 = ˆT ϕ(z)e -α * α (2i ) -N 2 d α ∧ d α, (1.5.1)
where we view (2i ) -N 2 d α ∧ d α as a complex (N 2 , N 2 )-form on Ω × B (0,C N ), restricted to T , which yields a non-negative differential form of maximal degree on T .

(b) In the case of Hager's model operator, E δ,ω -+ depends only smoothly on z but it satisfies additionally a ∂-equation, i.e. there exists a smooth function f δ such that

∂ z E δ -+ (z) + f δ (z)E δ -+ (z) = 0.
Using this, together with approximations of the delta function, we obtain an explicit formula for the one-point density:

E 2 4 X z∈(E δ -+ ) -1 (0) ϕ(z) 1 B (0,C N ) (α) 3 5 = lim ε→0 ˆϕ(z)D ε (z; h, δ)L(d z),
where D ε (z; h, δ) := π -N ˆB(0,CN) 2. The second step to analyze these densities will be to choose appropriate coordinates in the space of random variables: In the case of the one-point densities, we will find a vector X (z) ∈

χ ˆE δ -+ (z, α) ε ! 1 ε 2 fl fl fl∂ z E δ -+ (z, α)
C N 2 such that X (z) = 0 and

E δ,ω -+ (z, α) = 0 ⇒ ‡ X (z) • ∂ α • E δ,ω -+ (z, α) = 0.
Using this vector we have the following corresponding orthogonal decomposition

α = β 1 X (z) + β , β ∈ X (z) ⊥ , β 1 ∈ C.
Here, X (z) ⊥ is identified with C N 2 -1 via an orthonormal basis. Performing a change of variables corresponding to this choice of basis in the integrals (1.5.1) and (1.5.2), we will obtain (after a lengthy calculation) the desired asymptotic formulas describing the densities.

The case of the two-point density is similar.

| Some open problems

We end the introduction by discussing some interesting open problems on which we are currently working.

CHAPTER 1. SPECTRA OF NON-SELF-ADJOINT RANDOM OPERATORS 1.6.1 -Random perturbations of non-self-adjoint semiclassical pseudo-dierential operators

We have seen above some consequences of random perturbations on the spectra of non-selfadjoint operators. However, there are many more compelling open questions.

Generalizations of the results

The methods used to prove the result on Hager's model can be extended to a much broader class of one-dimensional semiclassical pseudo-differential operators. It would also be very interesting to consider the case of small multiplicative random perturbations of differential operators since these allow us to remain in the class of differential operators.

Furthermore, to obtain similar results on the average density in all of the pseudo-spectrum would be very interesting in the case of multi-dimensional semiclassical pseudo-differential operators.

The Jordan block matrix can be see as a model for a differential operator with boundary conditions. We have seen that in this case eigenvalues are produced through small random perturbations even outside the image of the principal symbol. Further investigating this phenomenon seems very promising.

Interaction close to the pseudospectral boundary

In the above we have only given a description of the interaction of two eigenvalues in the interior of the pseudospectrum. However, we still miss a description of the interaction of two eigenvalues close to the pseudospectral boundary. In view of the numerical simulations presented in Figure 1.1 and of Theorem 1.2.12 it is clear that the behavior of the eigenvalues changes completely when approaching the pseudospectral boundary.

Weaker non-self-adjointness

The class of semiclassical differential operators that we considered in this thesis (cf Section 1.1.1) has the property that the semiclassical principal symbol p (cf (1.1.7)) is complex valued. However, in the case of the damped wave equation (cf [START_REF]Asymptotic Distribution of Eigenfrequencies for Damped Wave Equations[END_REF]) the principal symbol is real-valued and the non-self-adjointness comes from the subprincipal symbol. The effects of random perturbations in this case are as of yet unknown.

-Resonances of random Schrödinger operators

Following the discussion on resonances of Schrödinger operators at the beginning of this chapter, we turn now to the particular case of discrete random Schrödinger operators. Here, the particle is restricted to move on the lattice Z d instead of the space R d . More precisely, we consider the random discrete Anderson model, introduced by P.W. Anderson [START_REF] Anderson | Absence of Diffusion in Certain Random Lattices[END_REF], that is, on 2 (Z d ),

H ω = -∆ + λV ω ,
where -∆ is the free discrete centered Laplace operator given by

(-∆u)(n) = X |m-n|=1 u(m), for u ∈ 2 (Z d ),
and V ω is a random potential

(V ω u)(n) = V ω (n)u(n), for u ∈ 2 (Z d ),
and λ > 0 the coupling constant. We assume that the random variables (V ω ) n∈Z d are independent identically distributed and that their common law admits a bounded compactly supported continuous density g .

1.6. SOME OPEN PROBLEMS

Properties of the Anderson model

The spectral theory of the Anderson model (and many other types of random Schrödinger operators) has been study extensively, see for example [START_REF] Figotin | Spectra of Random and Almost-Periodic Operators[END_REF][START_REF] Veselić | Existence and Regularity Properties of the Integrated Density of States of Random Schrödinger Operators[END_REF][START_REF] Hislop | Lectures on Random Schrödinger Operators[END_REF][START_REF] Combes | Generalized Eigenvalue-Counting Estimates for the Anderson Model[END_REF][START_REF] Germinet | Spectral statistics for random Schrödinger operators in the localized regime[END_REF][START_REF] Minami | Local Fluctuation of the Spectrum of a Multidimensional Anderson Tight Binding Model[END_REF][START_REF] Germinet | Bootstrap Multiscale Analysis and Localization in Random Media[END_REF][START_REF]Inverse tunneling estimates and applications to the study of spectral statistics of random operators on the real line[END_REF][START_REF] Rojas-Molina | Scale-free unique continuation estimates and applications to random Schrödinger operators[END_REF] and the references in [START_REF] Kirsch | An invitation to random Schrödinger operators[END_REF].

Let σ(H ω ) be the spectrum of H ω . It is known (see e.g. [START_REF] Figotin | Spectra of Random and Almost-Periodic Operators[END_REF]) that, ω-almost surely,

σ(H ω ) = Σ := [-2d , 2d ] + supp g . (1.6.1)
The Anderson model satisfies the following important hypotheses:

Wegner estimate (W) Let I Σ be a relatively compact open subset of the almost sure spectrum Σ. We say that a Wegner estimate hold in I , if there exists a C > 0 such that, for J ⊂ I , and a

cube Λ ⊂ Z d , one has E £ tr (1 J (H ω (Λ)) ⁄ ≤ C |J | |Λ|. (1.6.2)
Here, E[•] denotes the expectation with respect to the random variables and H ω (Λ) denotes the operator H ω restricted to the cube Λ ⊂ Z d with Dirichlet boundary conditions (other boundary conditions work as well, e.g. periodic boundary conditions). More precisely, for

L ≥ 1, Λ L = Λ denotes the cube -L, L d := [-L, L] d ∩Z d ⊂ Z d .
In the sequel we will write |Λ| → ∞, meaning that

L → ∞.
A Wegner estimate has been proven for many different random Schrödinger operators, such as the Anderson model, both in the discrete and the continuous case under quite general conditions on potentials and randomness, see for example [START_REF] Veselić | Existence and Regularity Properties of the Integrated Density of States of Random Schrödinger Operators[END_REF][START_REF] Hislop | Lectures on Random Schrödinger Operators[END_REF][START_REF] Combes | Generalized Eigenvalue-Counting Estimates for the Anderson Model[END_REF][START_REF] Germinet | Spectral statistics for random Schrödinger operators in the localized regime[END_REF]. The left hand side of (1.6.2) yields an upper bound on the probability to have at least one eigenvalue of the operator H ω (Λ) in J .

By (W), we have that the integrated density of states, defined by

N (E ) := lim |Λ|→∞ # {λ ∈ σ(H ω (Λ)); λ ≤ E } |Λ| ,
is the distribution function of a measure that is absolutely continuous with respect to the Lebesgue measure on R. We denote by R E → n(E ), defined E -almost everywhere, the density of states which is the Lebesgue density of the above measure. Furthermore, for any continuous function

ϕ : R → R, we have that ˆR ϕ(E )n(E )d E = E[〈δ 0 , ϕ(H ω )δ 0 〉].
Here,

δ i ∈ 2 (Z d ) is defined by δ i ( j ) = 0 for i = j and δ i ( j ) = 1 for i = j . In fact the collection {δ i } i ∈Z d is an orthonormal basis of 2 (Z d ).
Another important consequence of (W) is that any given E ∈ J is not an eigenvalues of σ(H ω (Λ)) for almost all ω.

Minami estimate (M) Let I Σ be a relatively compact open subset of the almost sure spectrum Σ. We say that a Minami estimate hold in I , if there exists a C > 0 such that, for J ⊂ I , and a cube Λ ⊂ Z d , one has

E £ tr (1 J (H ω (Λ)) £ tr (1 J (H ω (Λ)) -1 ⁄⁄ ≤ C (|J | |Λ|) 2 . (1.6.3)
The Minami estimate is proven for much less models than the Wegner estimate. However, in the case of the discrete Anderson model it has been proven to hold for I = Σ, see [START_REF] Minami | Local Fluctuation of the Spectrum of a Multidimensional Anderson Tight Binding Model[END_REF]. The right hand side can be lower bound by the probability to find at least two eigenvalues in J . The Minami estimate tells us that the eigenvalues of H ω (Λ) are ω-almost surely simple.

Localization (Loc)

Let I ⊂ Σ be a compact interval. We say that I lies in the region of complete localization if for all ξ ∈]0, 1[, we have sup

L>0 sup supp f ⊂I | f |≤1 E ˆX γ∈Z d e |γ| ξ 1 {0} f (H ω (Λ))1 {γ} 2 ! < ∞. (1.6.4)
Here, f is a Borel function on R. We note that (Loc) implies that the spectrum of H ω is pure point in I (cf [START_REF] Kirsch | An invitation to random Schrödinger operators[END_REF][START_REF]New characterization of the region of complete localization for random Schrödinger operators[END_REF]) with associated sub-exponentially decaying eigenfunctions. It is known that there exists a λ 0 such that for all λ ≥ λ 0 we have that (Loc) holds for all I ⊂ Σ (cf [START_REF] Aizenman | Localization at Large Disorder and at Extreme Energies: An Elementary Derivation[END_REF]).

In case of the discrete Anderson model we have the finite volume fractional moment method available. For I satisfying the finite volume fractional moment criteria (cf [START_REF] Aizenman | Finite-Volume Fractional-Moment Criteria for Anderson Localization[END_REF]) for large enough cubes Λ, we may replace e |γ| ξ in (1.6.4) by e η|γ| with η > 0. In particular for large enough coupling λ we have this for I = Σ, for large enough cubes Λ, with associated exponentially decaying eigenfunctions (cf [START_REF]Decorrelation estimates for the eigenlevels of the discrete Anderson model in the localized regime[END_REF][START_REF] Aizenman | Localization at Large Disorder and at Extreme Energies: An Elementary Derivation[END_REF]):

There exists ν(λ) > 0 such that, for any p > 0, there exists q > 0 and L 0 > 0 such that, for

L ≥ L 0 , with probability ≥ 1 -L -p , if (1) ϕ n,ω is a normalized eigenvector of H ω (Λ) associated to an eigenvalue E n,ω (Λ) ∈ Σ, (2) x n,ω ∈ Λ is a maximum of x → |ϕ n,ω (x)| in Λ, then, for x ∈ Λ, one has |ϕ n,ω (x)| ≤ L q e -ν(λ)|x-x n,ω | . (1.6.5)
Here, the point x n,ω is called a localization center for ϕ n,ω .

Resonances for a random potential restricted to a large box

The main object of interest is the self-adjoint operator

H ω,Λ := -∆ + λV ω χ Λ (1.6.6) as |Λ| → ∞. Here, χ Λ (n) = 1 if n ∈ Λ and 0 if not.
Since V ω χ Λ is compact and self-adjoint, it follows from Weyl's essential spectrum theorem (cf for example [START_REF] Reed | Analysis of Operators[END_REF]) that the essential spectrum of

H ω,Λ is that of -∆, that is [-2d , 2d ]. The operator H ω,Λ has therefore only discrete spectrum in R\[-2d,2d].
We are interested in giving a description of the resonances of the operator close to the real axis. These can be defined as the poles of the meromorphic continuation of the resolvent of H ω,Λ through ] -2d , 2d [.

Meromorphic continuation of the resolvent By the discrete Fourier transformation

F : 2 (Z d ) → L 2 (R d /(2πZ d )), we see that H 0 is a Fourier multiplier with symbol p(θ) := 2 d X k=1 cos θ k ∈ [-2d , 2d ] =: T d . (1.6.7)
p is a Morse function with critical values given by

Λ 0 := {-2d + 4k; 0 ≤ k ≤ d }.
(1.6.8)

Using (1.6.7), one has, for H 0 := -∆, for Im z > 0 and for n, m ∈ Z d , that the kernel of R 0 (z), the resolvent of H 0 , is given by

R 0 (z; n, m) := 〈(H 0 -z) -1 δ m |δ n 〉 = 1 (2π) d ˆTd e i (n-m)θ p(θ) -z d θ.
(1.6.9)

We are interested in the analytical continuation of (1.6.9) from C + when z crosses through ] -2d , 2d [. Analogous integrals have already been studied extensively, see e.g. [START_REF] Pham | Introduction à l'étude topologique singularités de Landau[END_REF][START_REF] Fotiadi | Applications of an isotopy theorem[END_REF][START_REF] Klopp | Resonances for perturbations of a semiclassical periodic Schrödinger operator[END_REF][START_REF]Resonances for large one-dimensional "ergodic" systems[END_REF], and one can prove the following result.

Theorem 1.6.1. The operator valued function

C + z → (H 0 -z) -1 admits an analytic continuation form C + to C\ ˆ] -∞, -2d ] ∪ [ 1≤k≤d -1 (-2d + 4k -i R + ) ∪ [2d , ∞[ ! with values in the operators from 2 comp (Z d ) to 2 l oc (Z d ).
1.6. SOME OPEN PROBLEMS Using analytic Fredholm theory, one deduces from Theorem 1.6.1 the following result.

Theorem 1.6.2. The operator valued function

C + z → R ω,Λ (z) := (H ω,Λ -z) -1 admits a meromor- phic continuation form C + to C\ ˆ] -∞, -2d ] ∪ [ 1≤k≤d -1 (-2d + 4k -i R + ) ∪ [2d , ∞[ ! with values in the operators from 2 comp (Z d ) to 2 l oc (Z d ).
The resonances are defined as the poles of this meromorphic continuation, see Figure 1.15. The case of d = 1 has been studied extensively by F. Klopp, see [START_REF]Resonances for large one-dimensional "ergodic" systems[END_REF]. Therein, Klopp gives a detailed description of the resonances of H ω,Λ and compares them to the case of resonances of periodic Schrödinger operators (i.e. the potential V is periodic and not random). He proves that in both cases there is a gap between the real axis and the resonances. However, remarkably, in the random case the width of this gap is exponentially small in L, whereas in the periodic case it is only polynomially small in L.

Theorem 1.6.3 (F. Klopp [START_REF]Resonances for large one-dimensional "ergodic" systems[END_REF]). Let d = 1 and let I be a compact interval in ] -2, 2[∩ Σ (cf (1.6.1)). Then, ω-almost surely, one has that for ε ∈]0, 1[, there exists L 0 > 0 such that, for L ≥ L 0 , there are no resonances of H ω,Λ in the rectangle

' z ∈ C; Re z ∈ I , Im z ≥ -e -ρL(1+ε) "
where ρ is the maximum of the Lyapunov exponent ρ(E ) on I .

We recall that the Lyapunov exponent ρ(E ) is defined as follows.

ρ(E ) := lim L→∞ ln T L (E , ω) L + 1 ,
where

T L (E , ω) is the L-step transfermatrix, i.e. T L (E , ω) := E -V ω (L) -1 1 0 ¶ • • • E -V ω (0) -1 1 0 ¶ .
The number resonances of H ω,Λ closest to the real axis is given asymptotically by the integrated density of states. Indeed, F. Klopp proves in [START_REF]Resonances for large one-dimensional "ergodic" systems[END_REF] the following result.

Theorem 1.6.4 (F. Klopp [START_REF]Resonances for large one-dimensional "ergodic" systems[END_REF]). Let d = 1 and let I be a compact interval in ] -2, 2[∩ Σ. Then, for any

κ ∈]0, 1[, ω-almost surely, one has # ' z resonance of H ω,Λ s.t Re z ∈ I , Im z ≤ -e -L κ " L -→ ˆI n(E )d E , L → ∞.
To prove this result Klopp uses the eigenvectors ϕ n,ω associated to the energies E n,ω (cf (1.6.5)) as quasimodes for the operator H ω,Λ to construct resonances (we refer also to the similar works [START_REF] Tang | From quasimodes to resonances[END_REF][START_REF] Stefanov | Quasimodes and resonances: Sharp lower bounds[END_REF]).

Using (M) and (Loc), for a large enough coupling constant λ, we have exponentially decaying eigenvectors ϕ n,ω associated to almost surely simple energies E n,ω . This should allow us to follow a strategy similar to Klopp's to prove the extension of Theorem 1.6.4 to d -dimensions. Due to some preliminary results we strongly believe that Theorem 1.6.4 holds true in the d -dimensional case.

Conjecture 1.6.5. Let I ⊂] -2d , 2d [∩ Σ be a compact interval. Then, for some constant C 1, ωalmost surely, one has

# ' z resonance of H ω,Λ s.t Re z ∈ I , Im z ≤ -e -C L " L -→ ˆI n(E )d E , L → ∞.
CHAPTER 2

AVERAGE DENSITY OF EIGENVALUES FOR A CLASS OF NON-SELF-ADJOINT OPERATORS UNDER RANDOM PERTURBATIONS

The intention of this chapter is to prove the results discussed in Section 1.2. We consider Hager's model operator (cf (1.1.9)), a non-self-adjoint h-differential model operator P h in the semiclassical limit (h → 0), subject to small random perturbations.

We study the intensity measure of the random point process of eigenvalues and prove an hasymptotic formula for the average density of eigenvalues. With this we show that there are three distinct regions of different spectral behavior in Σ: The interior of the pseudospectrum is solely governed by a Weyl law, close to its boundary there is a strong spectral accumulation given by a tunneling effect followed by a region where the density decays rapidly. The material presented in this chapter can be found in [START_REF]The precise shape of the eigenvalue intensity for a class of non-selfadjoint operators under random perturbations[END_REF].

| asimodes

The purpose of this section is to construct quasimodes for the operator

P h -z for z ∈ Ω Σ with Ω Σ is open, relatively compact with dist (Ω, ∂Σ) > C h 2/3 for some constant C > 0. (2.1.1)
We will in particular always assume that this assumption on Ω Σ is satisfied, if nothing else is specified.

We make the distinction between the following two cases:

Quasimodes in the interior of Σ We consider z being in the interior of Σ, i.e. z ∈ Ω i Σ such that there exists a constant

C Ω i > 0 such that dist (Ω i , ∂Σ) > 1 
C Ω i .
In this case, following the approach of Hager [START_REF]Instabilité spectrale semiclassique pour des opérateurs non-autoadjoints I: un modèle[END_REF], we can find quasimodes by a WKB construction for the operator (P hz); 

, i.e. z ∈ Ω ∩ (Ω a η ∪ Ω b η )
where, following the notation used in [START_REF] Bordeaux-Montrieux | Loi de Weyl presque sûre et résolvent pour des opérateurs différentiels non-autoadjoints[END_REF], we define for some constant C > 0

Ω a η := n z ∈ C : η C ≤ Im z ≤ C η o , Ω b η := n z ∈ C : η C ≤ (Im g (b) -Im z) ≤ C η o , (2.1.2)
with h 2/3 η ≤ const. (recall from Hypothesis 1.1.2 that Im g (a) = 0). The precise value of the above constant C > 0 is not important for the obtained asymptotic results. We will only consider the case z ∈ Ω a η since z ∈ Ω b η can be treated the same way. We may follow the approach of Bordeaux-Montrieux [START_REF] Bordeaux-Montrieux | Loi de Weyl presque sûre et résolvent pour des opérateurs différentiels non-autoadjoints[END_REF] and find quasimodes by a WKB construction for the rescaled operator

e P e h -e z := h η 3/2 D e x + g ( ηe x) η - z η := e hD e x + e g (e x) -e z, ( 2.1.3) 
with the rescaling

S 1 x = ηe x and e h := h η 3/2 .
Note that in this case demanding e h 1 implies the condition h 2/3 η. The rescaling is motivated by analyzing the Taylor expansion of Im g (x) around the critical point a yielding that for Im z → 0 |x ± (z) -a| η, (

where x ± (z) are as (1.1.14). This shows that the rescaling shifts the problem of constructing quasimodes for z close to the boundary of Σ to constructing quasimodes for z well in the interior of the range of the semiclassical principal symbol of the new operator e P e h . Remark 2.1.1. Throughout this text we shall work with the convention that when writing an estimate, e.g. O ¡ δ q η r h s ¢ or A η r h s , we implicitly set η = 1 when dist (z, ∂Σ)

> 1/C but keep η when z ∈ Ω a η .
Let us note, that by Taylor expansion we may deduce that S = S(z), as defined in Definition 1.2.2, satisfies S(z) η 3/2 (2.1.5)

-asimodes for the interior of

Σ Definition 2.1.2. Let z ∈ Ω i Σ and let x -, x + be as in the introduction. Let ψ ∈ C ∞ 0 (R) with supp ψ ⊂]0, 1[ and ´ψ(x)d x = 1. Define χ e ∈ C ∞ 0 (]x --2π, x -[) and χ f ∈ C ∞ 0 (]x + , x + + 2π[) by χ e (x, z; h) := ˆx -∞ h -1 2 ‰ ψ y -x -+ 2π h ¶ -ψ x --y h ¶ d y, χ f (x, z; h) := ˆx -∞ h -1 2 ‰ ψ y -x + h ¶ -ψ x + + 2π -y h ¶ d y. (2.1.6) Furthermore, define for x ∈]x --2π, x -[ φ + (x, z) := ˆx x + ¡ z -g (y) ¢ d y,
and for

x ∈]x + , x + + 2π[ φ -(x, z) := ˆx x - ¡ z -g (y) ¢ d y.
Consider the L 2 (S 1 )-normalized quasimodes

e wkb (x, z; h) := h -1 4 a(z; h)χ e (x, z; h)e i h φ + (x,z) ∈ C ∞ 0 (]x --2π, x -[) (2.1.7) and f wkb (x, z; h) := h -1 4 b(z; h)χ f (x, z; h)e i h φ -(x,z) ∈ C ∞ 0 (]x + , x + + 2π[) (2.1.8)
where a(z; h) and b(z; h) are normalization factors obtained by the stationary phase method. Thus, a(z; h) ∼ a 0 (z)

+ ha 1 (z) + • • • = 0 and b(z; h) ∼ b 0 (z) + hb 1 (z) + • • • = 0 depend
smoothly on z such that all derivatives with respect to z and z are bounded when h → 0.

The quasimodes e wkb and f wkb are WKB approximate null solutions to (P hz) and (P hz) * since locally

(P h -z)e i h φ + (x,z) = 0, and (P h -z) * e i h φ -(x,z) = 0.
This follows from the fact that φ ± (x, z) satisfy the eikonal equations

p(x, ∂ x φ + (x, z)) = z, and p(x, ∂ x φ -(x, z)) = z,
where p is as in (1.1.7). Furthermore, e wkb and f wkb are exponentially precise quasimodes since we have that

(P h -z)e wkb 2 = O ‡ he -S h • , and 
(P h -z) * f wkb 2 = O ‡ he -S h • ,
where S = S(z) is as in Definition 1.2.2. These estimates can be obtained similar to the proof of Proposition 2.1.7.

The factors a(z; h) and b(z; h) are the asymptotic expansions of the normalization coefficients and it is easy to see that for all

β ∈ N 2 ∂ β zz a(z; h), ∂ β zz b(z; h) = O (h -|β| ).
(2.1.9)

We have the following explicit expressions for the leading terms of a(z; h) and b(z; h).

Lemma 2.1.3.

a 0 = -Im g (x + ) π ¶ 1 4
,

and b 0 = Im g (x -) π ¶ 1 4 .
(2.1.10)

Proof. We will show the proof only for a i 0 since the statement for b i 0 can be achieved by analogous steps. To gain the asymptotic expansion of the normalization coefficient use the stationary phase method to calculate

I h := h -1 2 ˆχe (x, z; h) 2 e -Φ(x,z) h d x,
where

-Φ(x, z) := i φ + (x, z) -i φ + (x, z) = -2Im ˆx x + (z) (z -g (y))d y.
On the support of χ e the phase Φ(x, z) has the unique critical point

x = x + (z) and it is non- degenerate since ∂ 2 xx Φ(x + (z), z) = -2Im g (x + (z)) > 0.
Thus the Morse Lemma (see e.g.: [START_REF] Grigis | Microlocal Analysis for Differential Operators[END_REF]) guar-

antees the existence of a local C ∞ diffeomorphism κ : V → U , where V ⊂ R is a neighborhood of x + (z) and U ⊂ R is a neighborhood of 0, such that Φ(κ -1 (x), z) = Φ(x + (z), z) + x 2 2 , κ -1 (0) = x + (z) and d κ d x (x + (z)) = |∂ 2 xx Φ(x + (z), z)| 1 2 = q -2Im g (x + (z)) = 0. (2.1.11) 2.1. QUASIMODES Let χ ∈ C ∞ 0 (R)
be supported in a small enough neighborhood of x + (z), assume that 1 ≥ χ ≥ 0 and suppose that χ ≡ 1 near x + (z). One then gets that

I h = 2π N X n=0 1 n! h 2 ¶ n (∆ n u)(0) + O (h N +1 ) with u(y) = χ e (κ -1 (y), z) 2 χ(κ -1 (y))|κ (κ -1 (y))| -1 . Since u(0) = (-2Im g (x + (z))) -1/2 , I h = π -Im g (x + (z)) ¶ 1 2 + O (h).
By the natural projection Π : R → S 1 as in Section 1.1.1 we can identify

C ∞ 0 (]x + , x + + 2π[) = {u ∈ C ∞ (S 1 ) : x + ∉ supp u} and C ∞ 0 (]x --2π, x -[) = {u ∈ C ∞ (S 1 ) : x -∉ supp u},
with the slight abuse of notation that on the left hand side x ± ∈ R and on the right hand side

x ± ∈ S 1 . This identification permits us to define e wkb (x, z; h), f wkb (x, z; h) on C ∞ (S 1 ).

-asimodes close to the boundary of Σ

Now let z ∈ Ω a η . Following [START_REF] Bordeaux-Montrieux | Loi de Weyl presque sûre et résolvent pour des opérateurs différentiels non-autoadjoints[END_REF], we will construct quasimodes for the operator P hz, for z close to the boundary of Σ, by looking at the rescaled operator e P e he z as defined in (2.1.3). Let us first note that i h φ + (x, z) and i h φ -(x, z) have the following behavior under the rescaling described at the beginning of this section:

i h φ + (x, z) = i h ˆx x + ¡ z -g (y) ¢ d y = i e h ˆe x e x + ¡ e z -e g ( e y) ¢ d e y =: i e h e φ + (e x, e z) (2.1.12) 
and analogously for i h φ -(x, z). Taylor expansion shows us that the rescaled phases e φ ± (e x, e z) have for z ∈ Ω a η a non-degenerate critical point e x ± (e z) and they satisfy the relation

x ± (z) = ηe x ± (e z). (2.1.13)
It is easy to see that locally 

+ o(1))| π ¶ 1 4 , z ∈ Ω a η , b η 0 (e z) = |Im g (a)(e x -(e z) -a/ η)(1 + o(1))| π ¶ 1 4 , z ∈ Ω a η .
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Remark 2.1.5. In Proposition 2.1.4, we stated the Taylor expansion of the first order terms of a η (z; h) and b η (z; h). However, note that we have

a 0 (z) = -Im g (x + (z)) π ¶ 1 4 = η 1 8 a η 0 (e z),
where a 0 is the first order term of the normalization coefficient a of the quasimode e wkb ; see Lemma 2.1.3. Similar for b η 0 .

Proof. We will consider the proof only for the case of e η wkb since the case of f η wkb is the same. By (2.1.13), (2.1.6) one computes that χ e ( ηe x, z; h/η 1/2 ) = χ e (e x, e z; e h)

Consider χ e (•, z; h/η 1/2 )e i h φ + (•,z) 2 L 2 (S 1 )
and perform the change of variables x = ηe x. Hence, 

ˆχe (x, z; h/η 1/2 ) 2 e -2 h Im φ + (x,z) d x = η ˆχe ¡ e x,
i h φ + (•,z) 2 L 2 (S 1 ) ∼ h 1 2 (c 0 (z) + hc 1 (z) + . . . ) with c 0 (z) = π -Im g (x + (z)) ¶ 1 2 .
Since χ e (x, z; h) ≡ χ e (x, z; h/η 1/2 ) locally around x + (z), we may conclude that for all k ∈ N 0

e c k (e z) = η 3k 2 + 1 4 c j (z).
In particular, the Taylor expansion around the critical point a yields that

e c 0 (e z) = π |Im g (a)(e x + (e z) -a/ η)(1 + o(1))| ¶ 1 2 , z ∈ Ω a η .
Thus, we conclude the statement of the proposition.

Considering the above describe quasimodes in the original variable x ∈ S 1 leads to the following

Definition 2.1.6. Let Ω Σ, z ∈ Ω ∩ Ω a η and set e h := h η 3/2 . Then define e η wkb (x, z; h) := h η 1/2 ¶ -1 4 a η (e z; e h)χ η e (x, z; h/η 1/2 )e i h φ + (x,z) and f η wkb (x, z; h) := h η 1/2 ¶ -1 4 b η (e z; e h)χ η f (x, z; h/η 1/2 )e i h φ -(x,z) ,
where

χ η e, f (x, z; h/η 1/2 ) = χ e, f (x, z; h/η 1/2
). We choose this notation to make the distinctions between the two cases z ∈ Ω i and z ∈ Ω a η more apparent.

Furthermore, we have the following estimates for the precision of the quasimodes e η wkb and f η wkb :

(P h -z)e η wkb 2 = O ‡ h 1/2 η 1/4 e -S h • , and 
(P h -z) * f η wkb 2 = O ‡ h 1/2 η 1/4 e -S h • ,
where S = S(z) is as in Definition 1.2.2 (recall as well that S η 3/2 , cf. (2.1.5)). These estimates can be obtained similar to the proof of Proposition 2.1.7. 

Q(z)

Recall Q and e Q given in Section 1.2.2. We will use the above defined quasimodes to prove estimates on the lowest eigenvalue of Q, t 2 0 . Furthermore, we will give estimates on the approximation of the eigenfunctions e 0 and f 0 by the quasimodes e wkb and f wkb . We will prove an extended version of a result in [START_REF]Spectral properties of non-self-adjoint operators[END_REF]Sec. 7.2 and 7.4]. Proposition 2.1.7. Let z ∈ Ω Σ and let S = S(z) be defined as in Definition 1.2.2. Then, for h

2 3 η ≤ 1/C t 2 0 (z) ≤ O ‡ η 1 2 he -2S h • .
Furthermore, there exists a constant C > 0, uniform in z ∈ Ω, such that

t 2 1 (z) -t 2 0 (z) ≥ η 1 2 h C for h > 0 small enough.
Remark 2.1.8. The case z ∈ Ω with dist (Ω, ∂Σ) > 1/C has been proven in [START_REF]Spectral properties of non-self-adjoint operators[END_REF]Sec. 7.1]. Since it will be useful further on we shall give a proof of the statement and indicate how to deduce the statement in the case of z ∈ Ω ∩ Ω a η .

Proof. Let us first suppose that z ∈ Ω i (cf. Section 2.1). Recall the definition of the self-adjoint operator Q(z) given in (1.2.4) and define

r := r (x, z; h) := Q(z)e wkb (x, z; h). (2.1.15) Recall, by (2.1.7), that e wkb (x, z; h) = h -1 4 a(z; h)χ e (x, z; h)e i h φ + (x,z) . Since x -(z) is smooth in z and
all its z-and z-derivatives are independent of h, it follows from (2.1.6) that for all α ∈ N 3 \{0}

∂ α zzx χ e (x, z; h) = O ‡ h -|α| 2 • , (2.1.16)
with support in

X -:=]x --2π, x --2π + h 1/2 [∪]x --h 1/2 , x -[. By definition of φ + (x, z) (P h -z)e i h φ + (x,z) = 0 for x ∈]x --2π, x -[. This implies (P h -z)e wkb (x, z) = h -1 4 a(z; h)[(P h -z), χ e (x, z; h)]e i h φ + (x,z) = h -1 4 a(z; h) h i ∂ x χ e (x, z; h)e i h φ + (x,z) .
(2.1.17)

Continuing, one computes that

(P h -z) * (P h -z)e wkb (x, z) = (2.1.18) a(z; h) h 3 4 i ‰ h i ∂ 2 xx χ e (x, z; h) + ∂ x χ e (x, z; h) ‡ ∂ x φ + + g (x) -z • e i h φ + .
where 

φ + = φ + (x, z). Since for x ∈ X - ∂ x φ + (x, z) + g (x) -z = z -g (x) + g (x) -z = -2i Im ¡ g (x) -z ¢ = O ‡ h 1 2 • , ( 2 
) = ˆO ‡ h 1 2 • 1 X -(x)e -Φ(x,z) h d x, (2.1.21)
where Φ(x, z) = 2 ´x x + (z) Im (z -g (y))d y. By Taylor's formula

( Φ(x, z) = Φ(x -(z), z) + O (h), for x ∈]x --h 1/2 , x -[ Φ(x, z) = Φ(x -(z) -2π, z) + O (h), for x ∈]x --2π, x --2π + h 1/2 [
and thus e -Φ(x,z)

h ≤ O ‡ e -2S h • ,
where S = min ‡

Im ´x- x + (z -g (y))d y, Im ´x--2π x + (z -g (y))d y • . Hence, (e wkb |Q(z)e wkb ) ≤ O ‡ h 1 2 e -2S h • ˆ1X -(x)d x = O ‡ he -2S h • , (2.1.22)
and, since

Q is self-adjoint, it follows that t 2 0 (z) = O ‡ he -2S(z) h • .
Similarly, one computes that

r 2 = O ‡ h 2 e -2S h • . (2.1.23)
The proof of the desired statement about t 

(z) = O ‡ hη 1/2 e -2S(z) h • . (2.1.25)
The estimate on t 2 1 (z)-t 2 0 (z) in the case z ∈ Ω∩Ω a η can be deduced as well by a rescaling argument:

note that t 2 1 (Q(z)) = t 2 1 (η 2 ( e P e h -e z) * ( e P e h -e z)
). The statement then follows by performing the same steps of the proof of Proposition 7.2 in [67, Sec. 7.1] in the rescaled space L 2 (S 1 / (η), ηd e x) and using the quasimode e η wkb (x, z) together with the estimate given in Proposition 4.3.5 in [START_REF] Bordeaux-Montrieux | Loi de Weyl presque sûre et résolvent pour des opérateurs différentiels non-autoadjoints[END_REF]. Proposition 2.1.9. Let z ∈ Ω Σ. Then the eigenvalue t 2 0 (z) is a smooth function of z and the eigenfunctions e 0 (z) and f 0 (z) can be chosen to have the same property.

Proof. Let us suppose first that z ∈ Ω i . The operator Q(z) is bounded in H 2 (S 1 ) → L 2 (S 1 ) and in norm real-analytic in z since for z 0 ∈ Ω Q(z) = Q(z 0 ) -(P -z 0 ) * (z -z 0 ) -(P -z 0 )(z -z 0 ) + |z -z 0 | 2 .
(2.1.26)

Let ζ be in the resolvent set ρ(Q(z)) of Q(z) and consider the resolvent

R(ζ,Q(z)) := (ζ -Q(z)) -1 .
By [41, II - §1.3] we know that the resolvent depends locally analytically on the variables ζ and z.

More precisely if ζ 0 ∉ σ(Q(z 0 )) for z 0 ∈ Ω then R(ζ,Q(z))
is holomorphic in ζ and real-analytic in z in a small neighborhood of ζ 0 and in a small neighborhood of z 0 .

Remark 2.1.10. The proof in [41, II - §1.3] is given in the case of finite dimensional spaces. However, it can be extended directly to bounded operators on Banach spaces.

QUASIMODES

By [41, IV - §3.5] we know that the simple eigenvalue t 2 0 (z) depends continuously on Q(z). Thus, by Proposition 2.1.7 and the continuity of t 2 0 (z) there exists, for h > 0 small enough, a constant D > 0 such that for all z in a neighborhood of a point z 0 ∈ Ω

t 2 1 (z) > h D .
Define γ to be the positively oriented circle of radius h/(2D) centered at 0 and consider the spectral projection of Q(z) onto the eigenspace associated with t 2 0 (z) ,z) to be a smooth quasimode for P hz for z ∈ Ω i as in Section 2.1 which depends smoothly on z. Thus, by setting

Π t 2 0 (z) = 1 2πi ˆγ R(ζ,Q(z))d ζ. Since the resolvent R(ζ,Q(z)) is smooth in z it follows that Π t 2 0 (z) is smooth in z. Now set e(x
e 0 (x, z, h) = Π t 2 0 (z)e wkb (x, z, h) Π t 2 0 (z)e wkb (-, z, h) ,
we deduce that also e 0 (x, z) depends smoothly on z. The statement for f 0 (z) follows by performing the same argument for e Q(z) instead of Q(z) and with the quasimode f wkb . Using that Π t 2 0 (z) and Q(z) are smooth and that the operator Π t 2 0 QΠ t 2 0 has finite rank we see by

t 2 0 (z) = tr ‡ Π t 2 0 (z)Q(z)Π t 2 0 (z) • that t 2 0 (z) is smooth.
In the case of z ∈ Ω ∩ Ω a η for h 2/3 η < const. we follow the exact same steps as above, mutatis mutandis. We take the estimate t 2 1 (z) > h η D for z in a neighborhood of a fixed z 0 ∈ Ω∩Ω a η (following from Proposition 2.1.7) and thus we pick, as above, e γ to be the positively oriented circle of radius h η/(2D) centered at 0. Hence, for

z ∈ Ω ∩ Ω a,b η Π t 2 0 (z) = 1 2πi ˆe γ R(ζ,Q(z))d ζ, e 0 (x, z, h) = Π t 2 0 (z)e η wkb (x, z, h) Π t 2 0 (z)e η wkb (-, z, h)
. Following the same arguments as above we conclude the statement of the proposition also in the case of z ∈ Ω ∩ Ω a η .

Proposition 2.1.11. Let z ∈ Ω Σ and let e 0 and f 0 be the eigenfunctions of the operators Q and e Q with respect to their smallest eigenvalue (as in Section 2.2.1). Let S = S(z) be defined as in Definition 1.2.2. Then

• for z ∈ Ω with dist (Ω, ∂Σ) > 1/C and for all β ∈ N 2 ∂ β zz (e 0 -e wkb ) , ∂ β zz ( f 0 -f wkb ) = O ‡ h -|β| e -S h • . (2.1.27)
Furthermore, the various z-and z-derivatives of e 0 , f 0 , e wkb and f wkb have at most temperate growth in 1/h, more precisely for all as in (2.1.15). Then, for all

β ∈ N 2 ∂ β zz e wkb , ∂ β zz f wkb , ∂ β zz e 0 , ∂ β zz f 0 = O ‡ h -|β| • ; (2.1.28) • for h 2/3 η < const ., z ∈ Ω ∩ Ω a η and for all β ∈ N 2 ∂ β zz (e 0 -e η wkb ) , ∂ β zz ( f 0 -f η wkb ) = O ‡ η |β| 2 h -|β| e -S h • . ( 2 
( f 0 -f wkb ) = O ‡ h -|β| e -1 C h • ; (2.1.31) • for h 2/3 η < const ., z ∈ Ω ∩ Ω a,b η and for all β ∈ N 2 ∂ β zz (e 0 -e η wkb ) , ∂ β zz ( f 0 -f η wkb ) = O η |β| 2 h -|β| e -η 3/2 h ¶ . ( 2 
β ∈ N 2 , supp ∂ β zz r ⊂]x --2π, x --2π + h 1/2 [∪]x --h 1/2 , x -[ and ∂ β zz r = O ‡ h 1-|β| e -S h • .
Proof. Using (2.1.16), (2.1.18) we conclude by the Leibniz rule that for

β ∈ N 2 ∂ β zz r = O ‡ h 3 4 -|β| • e i h φ + (x,z) which is supported in ]x --2π, x --2π + h 1/2 [∪]x --h 1/2 , x -[ and one computes that ∂ β zz r 2 = O ‡ h 2-2|β| e -2S h • . Lemma 2.1.16. Let Ω Σ such that dist (Ω, ∂Σ) > 1/C and let z ∈ Ω. Moreover, let Π t 2 0 : L 2 (S 1 ) →
Ce 0 denote the spectral projection of Q(z) onto the eigenspace associated with t 2 0 . Then,

∂ β zz Π t 2 0 (z) L 2 →H 2 sc = O ‡ h -|β| 2 • .
Proof. By virtue of Proposition 2.1.7 and the continuity of t 2 0 (z) there exists for h > 0 small enough a constant D > 0 such that for all z in a neighborhood of a point z 0 ∈ Ω

t 2 1 (z) > h D .
Let γ be the positively oriented circle of radius h/(2D) centered at 0. Note that γ is locally independent of z. Thus, we gain a path such that 0, t 2 1 (z) ∉ γ and which has length |γ| = hπ/D. For λ ∈ γ we have that

(λ -Q(z)) -1 = 1 dist (λ, σ(Q(z))) = O (|γ| -1 ). (2.1.33)
By (2.1.26) and the resolvent identity we see that

∂ z (λ -Q(z)) -1 = -(λ -Q(z)) -1 (P h -z) * (λ -Q(z)) -1 (2.1.34)
as well as

∂ z (λ -Q(z)) -1 = -(λ -Q(z)) -1 (P h -z)(λ -Q(z)) -1 . (2.1.35)
Similarly, we see that the higher derivatives

∂ n z ∂ m z (λ -Q(z)) -1 , for (n, m) ∈ N 2 \{0}
, are finite linear combinations of terms of the form

(λ -Q(z)) -1 ∂ α 1 zz (Q(z))(λ -Q(z)) -1 • • • ∂ α k zz (Q(z))(λ -Q(z)) -1 (2.1.36)
with α j = (1, 0), (0, 1), (1, 1) and

α 1 + • • • + α k = (n, m).
Thus it is sufficient to estimate the terms of the form

(P h -z)(Q(z) -λ) -1 and (P h -z) * (Q(z) -λ) -1 . Since Q(z) = (P h -z) * (P h -z), it follows that (P h -z)u 2 -|γ| u 2 ≤ |((Q(z) -λ)u|u)| ≤ (Q(z) -λ)u u . (2.1.37) Since Q(z) > 0 is self-adjoint and since dist (λ, σ(Q(z))) |γ| we have the a priori estimate (Q(z) -λ)u ≥ C |γ| u for all u ∈ H 2 sc (S 1 )
, where C > 0 is a constant locally uniform in z. This implies

(P h -z)u 2 ≤ ¡ (Q(z) -λ)u + |γ| u ¢ u ≤ e C (Q(z) -λ)u u ≤ C |γ| (Q(z) -λ)u 2 ,
where C > 0 is a constant uniform in z. Hence

(P h -z)(Q(z) -λ) -1 L 2 →L 2 = O ‡ |γ| -1 2 • .
Finally, note that since [P * h , P h ] = O H 2 sc →L 2 (h) we can replace P h by it's adjoint in (2.1.37) and gain the estimate

(P h -z) * (Q(z) -λ) -1 L 2 →L 2 = O ‡ |γ| -1 2 • .
Using (2.1.36) and the fact that |γ| = hπ/D we have that for all

β ∈ N 2 \{0} ∂ β zz (λ -Q(z)) -1 L 2 →H 2 sc = O ‡ h -|β|+2 2 • . (2.1.38) Since for u ∈ L 2 (S 1 ) 1 2πi ˆγ(λ -Q(z)) -1 ud λ = Π t 2 0 u, (2.1.38) implies ∂ β zz Π t 2 0 (z) L 2 →H 2 sc = O ‡ h -|β| 2 • .
Lemma 2.1.17. Under the assumptions of Lemma 2.1. [START_REF] Davies | Perturbations of Jordan matrices[END_REF] we have

∂ β zz e wkb (•, z) , ∂ β zz Π t 2 0 e wkb (•, z) = O ‡ h -|β| • .
Proof. Using (2.1.7), one computes that

∂ z e wkb (x, z) = h -1 4 ‰ ∂ z χ e (x, z; h)a i (z; h) + χ e (x, z; h)∂ z a i (z; h) +χ e (x, z; h)a i (z; h) i h ∂ z φ + (x, z) e i h φ + (x,z) .
By the triangular inequality, we get

∂ z e wkb (•, z) ≤ h -1 4 ∂ z χ e (•, z)a i (z; h)e i h φ + (•,z) + h -1 4 χ e (•, z)∂ z a i (z; h)e i h φ + (•,z) + h -1 4 χ e (•, z)a i (z; h)i h -1 ∂ z φ + (•, z)e i h φ + (•,z) . Recalling from (2.1.16) that ∂ z χ e (x, z; h) = O (h -1/2 ) is supported in ]x --2π, x --2π + h 1/2 [∪]x -- h 1/2 , x -[, one computes h -1 4 ∂ z χ e (•, z)a i (z; h)e i h φ + (•,z) = O ‡ h -1 2 e -S h
• .

Using (2.1.9), the stationary phase method implies

h -1 4 χ e (•, z)∂ z a i (z; h)e i h φ + (•,z) = O (h -1 ).
Furthermore, since

∂ z φ + (x, z) = ˆx x + (z) d y -ξ + (z)∂ z x + (z) (2.1.39)
it follows by the stationary phase method that

h -1 4 χ e (•, z)a i (z; h) i h ∂ z φ + (•, z)e i h φ + (•,z) = 1 h |ξ + (z)∂ z x + (z)| + O (1).
Hence, by putting all of the above together

∂ z e wkb (•, z) = O ¡ h -1 ¢ .
Similarly, using (2.1.9), (2.1.16), the stationary phase method implies

∂ β zz e wkb (•, z) = O ‡ h -|β| • .
Lemma 2.1.16 then implies by the Leibniz rule that

∂ β zz Π t 2 0 e wkb = O ‡ h -|β| • .
Remark 2.1.18. As in Lemma 2.1.17, we have for

z ∈ Ω with dist (Ω, ∂Σ) > 1/C ∂ β zz f wkb (•, z) = O ‡ h -|β| • and ∂ β zz e Π t 2 0 f wkb = O ‡ h -|β| • .
where e Π t 2 0 : L 2 (S 1 ) → C f 0 is the spectral projection of e Q(z) onto the eigenspace associated with the eigenvalue t 2 0 . 

If λ ∉ σ(Q(z)) ∪ {0} we have (λ -Q(z)) -1 e wkb = 1 λ e wkb + 1 λ (λ -Q(z)) -1 r.
As in the proof of Lemma 2.1.15, define γ to be the positively oriented circle of radius h/(2D) centered at 0. γ is locally independent of z. Thus, we gain a path such that 0, t 2 1 (z) ∉ γ and which has length |γ| = hπ/D. Hence 

1 2πi ˆγ(λ -Q(z)) -1 e wkb d λ = e wkb + 1 2πi ˆγ 1 λ (λ -Q(z)) -1 r d λ. ( 2 
1 2πi ˆγ 1 λ (λ -Q(z)) -1 r d λ = O ‡ e -S h • By (2.1.40) Π t 2 0 e wkb -e wkb = O ‡ e -S h • . (2.1.41)
Recall that e wkb is normalized. Pythagoras' theorem then implies

Π t 2 0 e wkb 2 = e wkb 2 -e wkb -Π t 2 0 e wkb 2 = 1 -O ‡ e -2S h • (2.1.42)
which yields 

e 0 = 1 Π t 2 0 e wkb Π t 2 0 e wkb = ‡ 1 + O ‡ e -2S h •• Π t 2 0 e wkb . ( 2 
∂ β zz (Π t 2 0 -1)e wkb = ∂ β zz 1 2πi ˆγ 1 λ (λ -Q(z)) -1 r d λ = O ‡ h -|β| e -S h • . ( 2 
L 2 (S 1 ,d x) = O ‡ η |β| 2 h -|β| e -S h
• .

The results on ∂ 

| Grushin problem for the unperturbed operator P h

To start with we give a short refresher on Grushin problems since they have become an essential tool in microlocal analysis and it is a key method to the present work. As reviewed in [START_REF]Elementary linear algebra for advanced spectral problems[END_REF], the central idea is to set up an auxiliary problem of the form

P (z) R - R + 0 ¶ : H 1 ⊕ H --→ H 2 ⊕ H + ,
where P (z) is the operator of interest and R ± are suitably chosen. We say that the Grushin problem is well-posed if this matrix of operators is bijective. If dim H -= dim H + < ∞, one usually writes

P (z) R - R + 0 ¶ -1 = E (z) E + (z) E -(z) E -+ (z) ¶ .
The key observation, going back to the Shur complement formula or equivalently the Lyapunov-Schmidt bifurcation method, is that the operator P (z) : H 1 → H 2 is invertible if and only if the finite dimensional matrix E -+ (z) is invertible and when E -+ (z) is invertible, we have

P -1 (z) = E (z) -E + (z)E -1 -+ (z)E -(z). E -+ (z) is sometimes called effective Hamiltonian.
The principal aim of this section is to introduce the three different Grushin Problems needed to study P δ h : one valid in all of Σ which is however less explicit (here we will follow the construction given in [67, Sec. 7.2 and 7.4]), and two very explicit Grushin Problems, one valid in the interior of Σ and one valid close to ∂Σ (here we will recall the construction given by Hager in [START_REF]Instabilité spectrale semiclassique pour des opérateurs non-autoadjoints I: un modèle[END_REF] respectively Bordeaux-Montrieux in [START_REF] Bordeaux-Montrieux | Loi de Weyl presque sûre et résolvent pour des opérateurs différentiels non-autoadjoints[END_REF]).

GRUSHIN PROBLEM FOR THE UNPERTURBED OPERATOR P H

-Grushin problem valid in all of Σ

Following the ideas of [START_REF]Spectral properties of non-self-adjoint operators[END_REF], we will use the eigenfunctions e 0 and f 0 to set up the Grushin problem Proposition 2.2.1. Let z ∈ Ω Σ be open and relatively compact, and let α 0 be as in (1.2.8). Define

R + : H 1 (S 1 ) -→ C : u -→ (u|e 0 ) R -: C -→ L 2 (S 1 ) : u --→ u -f 0 .
(2.2.1)

Then P (z) := P h -z R - R + 0 ¶ : H 1 (S 1 ) × C -→ L 2 (S 1 ) × C
is bijective with the bounded inverse

E (z) = E (z) E + (z) E -(z) E -+ (z) ¶ where E -(z)v = (v| f 0 ), E + (z)v + = v + e 0 and E (z) = (P h -z) -1 | ( f 0 ) ⊥ →(e 0 ) ⊥ and E -+ (z)v + = -α 0 v + .
Furthermore, we have the estimates

• for z ∈ Ω with dist (Ω, ∂Σ) > 1/C E -(z) L 2 →C , E + (z) C→H 1 = O (1), E (z) L 2 →H 1 = O (h -1/2 ), |E -+ (z)| = O ‡ he -S h • = O ‡ e -1 C h • ; (2.2.2) • for z ∈ Ω ∩ Ω a η with h 2 3 η < const. E -(z) L 2 →C , E + (z) C→H 1 = O (1), E (z) L 2 →H 1 = O ((h η) -1/2 ), |E -+ (z)| = O ‡ hη 1 4 e -S h • = O e -η 3/2 h ¶ . ( 2 

.2.3)

Proof. For a proof of the existence of the bounded inverse as well as the estimate for E (z

) L 2 →H 1 in the case of dist (Ω, ∂Σ) > 1/C see [67, Section 7.2].
The other estimate for E (z) L 2 →H 1 can be proven by performing the same steps as in the case of dist (Ω, ∂Σ) > 1/C , mutatis mutandis, together with the estimate given by Bordeaux-Montrieux in [START_REF] Bordeaux-Montrieux | Loi de Weyl presque sûre et résolvent pour des opérateurs différentiels non-autoadjoints[END_REF]Proposition 4.3.5]. The estimates for |E -+ (z)| follow from Proposition 2.1.7, whereas the estimates on E -(z) L 2 →C and E + (z) C→H 1 come from the fact that e 0 and f 0 are normalized.

Alternatively, one can conclude the result in the case of z ∈ Ω ∩ Ω a η by a rescaling argument similar to the one in the proof of Proposition 2.1.11.

-Tunneling

We prove now the following formula for a tunnel effect between e 0 which is microlocalized in ρ + (z) and f 0 which is microlocalized in ρ -(z) (cf. (1.1.14) and Proposition 2.2.7), from which we conclude Proposition 1.2.8. Recall in particular that S is the imaginary part of the action between ρ + (z) and ρ -(z) (cf. Definition 1.2.2). Proposition 2.2.2. Let z ∈ Ω Σ and let e 0 and f 0 be as in (1.2.6) and in (1.2.9). Furthermore, let Φ(z, h) be as in Proposition 1.2.5, let S be as in Definition 1.2.2 and let p be (1.1.7) as in and ρ ± be as in (1.1.14). Let h

2 3 η < const. Then, for all z ∈ Ω with |Im z -〈Im g 〉| > 1/C , C 1, |(e 0 | f 0 )| = ¡ i 2 {p, p}(ρ + ) i 2 {p, p}(ρ -) ¢ 1 4 πh |∂ Im z S(z)| ‡ 1 + O ‡ η -3 4 h 1 2 •• e -S h
where for all 

β ∈ N 2 ∂ β zz O ‡ η -3/4 h 1 2 • = O ‡ η |β| 2 -3 4 h -|β|+
η < const . ∂ Im z |(e 0 | f 0 )| 2 = 2 ¡ i 2 {p, p}(ρ + ) i 2 {p, p}(ρ -) ¢ 1 2 πh 2 |∂ Im z S(z)| 2 (-∂ Im z S(z))e -2S h + O ‡ η 5/4 h -3 2 e -2S h • , ∂ Re z |(e 0 | f 0 )| 2 , ∂ Re z ∂ Im z |(e 0 | f 0 )| 2 = O ‡ e -1 C h e -2S h • .
Remark 2.2.4. Let us point out that we can find an even more detailed formula for |(e 0 | f 0 )| (cf.

(2.2.9)) valid even for |Im z -〈Im g 〉| ≥ 1/C :

|(e 0 | f 0 )| = ¡ i 2 {p, p}(ρ + ) i 2 {p, p}(ρ -) ¢ 1 4 πh e -S h |∂ Im z S| 1 + 2π -|∂ Im z S| |∂ Im z S| e Re Φ ¶ + O ‡ e -S h • + O ‡ η 3/4 h -1 2 e -S h +Re Φ • Proof of Proposition 2.2.2. First, suppose that z ∈ Ω with dist (Ω, ∂Σ) > 1/C . Then, by Proposition 2.1.11 (e 0 | f 0 ) = (e 0 | f wkb ) + O ‡ e -S h • = (e wkb | f wkb ) + O ‡ e -S h • . (2.2.4)
Recall the definition of the quasimodes e wkb and f wkb from Section 2.1. Moreover, recall from Section 1.1.1 that by the natural projection Π : R → S 1 we identify S 1 with the interval [x -(z) -2π, x -(z)[. This choice leads to the fact that φ + is given by 

φ + (x) = ˆx x + (z) (z -g (y))d y on this interval, whereas φ -is given by φ -(x) = 8 > > < > > : ˆx x -(z) (z -g (y))d y, for x ∈ [x + (z), x -(z)[, ˆx x -(z)-2π (z -g (y))d y, for x ∈ [x -(z) -2π, x + (z)[. Define R := ab h = ¡ i 2 {p, p}(ρ + ) i 2 {p, p}(ρ -) ¢ 1 4 π + O ( h), ( 2 
) = Re i h ´x-(z)-2π x + (z) (z-g (y))d y ˆx+ (z) x -(z)-2π χ e (x)χ f (x)d x + Re i h ´x-(z) x + (z) (z-g (y))d y ˆx-(z) x + (z) χ e (x)χ f (x)d x. ( 2 
ˆx+ (z) x -(z)-2π χ e (x)χ f (x)d x = x + (z) -(x -(z) -2π) - ˆx--2π+ h x --2π (1 -χ e (x))d x - ˆx+ +2π x + +2π-h (1 -χ f (x))d x = x + (z) -(x -(z) -2π) + O ‡ h • , (2.2.7)
and similarly ˆx- (z) x + (z)

χ e (x)χ f (x)d x = x -(z) -x + (z) + O ‡ h • . (2.2.8)
Now let us assume that we are below the spectral line of P h , i.e. Im z ≤ 〈Im g 〉. There, we see that

|(e wkb | f wkb )| = |R|e -1 h Im ´x-(z) x + (z) (z-g (y))d y fl fl fl(x -(z) -x + (z)) + O ‡ h • + ‡ x + (z) -(x -(z) -2π) + O ‡ h •• e -2πi h (z-〈g 〉) fl fl fl.
Analogously, if we are above the spectral line, i.e. Im z ≥ 〈Im g 〉,

|(e wkb | f wkb )| = |R|e -1 h Im ´x-(z)-2π x + (z) (z-g (y))d y fl fl fl(x + (z) -(x + (z) -2π)) + O ‡ h • + ‡ x -(z) -x + (z) + O ‡ h •• e 2πi h (z-〈g 〉) fl fl fl.
Together with (2.2.4), we conclude that

|(e 0 | f 0 )| = ¡ i 2 {p, p}(ρ + ) i 2 {p, p}(ρ -) ¢ 1 4 πh e -S h |∂ Im z S| 1 + 2π -|∂ Im z S| |∂ Im z S| e Re Φ ¶ + O ‡ e -S h • + O ‡ η 3/4 h -1 2 e -S h +Re Φ • (2.2.9)
where Φ = Φ(z, h) is as in Proposition 1.2.5. Note that exp {Φ(z, h)} is exponentially small for |Im z -〈Im g 〉| > 1/C . Thus, • from the definition of R which is given as a product of the normalization coefficients of the quasimodes e wkb and f wkb . Thus, it is easy to see that 

|(e 0 | f 0 )| = ¡ i 2 {p, p}(ρ + ) i 2 {p, p}(ρ -) ¢ 1 4 πh e -S h |∂ Im z S(z)| ‡ 1 + O ‡ η -3/4 h 1 2 •• . ( 2 
∂ β zz O ‡ h • = O ‡ h -(|β|-1/2) • . ( 2 
∂ z ˆx--2π+ h x --2π (1 -χ e (x, z))d x = ‡ χ e (x --2π, z) -χ e (x --2π + h, z) • ∂ z x -- ˆx--2π+ h x --2π ∂ z χ e (x, z)d x. By (2.1.16) ˆx--2π+ h x --2π ∂ z χ e (x, z)d x = - ˆx--2π+ h x --2π ψ x -x -+ 2π h ¶ ∂ z x -(z)d x = -∂ z x -(z).
Since χ e (x --2π, z) = 0 and χ e (x --2π + h, z) = 1,

∂ z ˆx--2π+ h x --2π (1 -χ e (x, z))d x = 0.
(2.2.8) as well as the respective z-derivatives can be treated analogously, and we conclude that

∂ β zz O ( h) = 0 for all β ∈ N 2 \{0}
. Hence, we have

∂ n z ∂ m z O ‡ η -3/4 h 1 2 • = O ‡ η |β| 2 -3 4 h -|β|+ 1 2 • .
Finally, in the case where z ∈ Ω∩Ω a η we can conclude the statement by a rescaling argument similar as in the proof of Proposition 2.1.11.

Remark 2.2.5. It is a direct consequence of (2.2.6), (2.2.4) and Proposition 2.1.11 that

∂ β zz (e 0 | f 0 ) = O ‡ η |β|+3/2 2 h -(|β|+1/2) e -S h • ,
where we conclude the case where z ∈ Ω ∩ Ω a η by a rescaling argument similar as in the proof of Proposition 2.1.11.

Proof of Proposition 2.2.3. The first statement follows directly from Proposition 2.2.2. The statements regarding the derivatives can be derived by a direct calculation from Proposition 2.2.2 together with the fact that the z-respectively the z-derivative of the error term increases its growth at most by a term of order η 1/2 h -1 . Moreover, we use that e Φ is exponentially small in h due to |Im z -〈Im g 〉| > 1/C . Furthermore, we use that the prefactor

¡ i 2 {p, p}(ρ + ) i 2 {p, p}(ρ -)
¢ 1 4 is the first order term of R (cf. (2.2.5)). Recall that R is defined via the normalization coefficients of the quasimodes e wkb and f wkb . It is thus independent of Re z and its ∂ Im z derivative is of order O (η -1/4 ) which can be seen by the stationary phase method and a rescaling argument similar to the one in the proof of Proposition 2.1.11.

Now let us give estimates on the derivatives of the effective Hamiltonian E -+ (z).

Proposition 2.2.6. Let z ∈ Ω Σ and let E -+ (z) be as in Proposition 2.2.1. Then there exists a C > 0 such that for h > 0 small enough and all β ∈ N 2

|∂ β zz E -+ (z)| = O ‡ η |β|+1/2 2 h -|β|+1/2 e -S h • .
Proof. Take the ∂ z derivative and the ∂ z derivative of the first equation in (1.2.8) to gain

(P h -z)∂ z e 0 = (∂ z α 0 ) f 0 + α 0 ∂ z f 0 , (P h -z)∂ z e 0 -e 0 = (∂ z α 0 ) f 0 + α 0 ∂ z f 0 .
Now consider the scalar product of these equations with f 0 and recall from Proposition 2.2.1 that

E -+ (z) = -α 0 (z) to conclude ∂ z E -+ (z) = E -+ (z) ' (∂ z e 0 |e 0 ) -(∂ z f 0 | f 0 ) " and 
∂ z E -+ (z) = E -+ (z) ' (∂ z e 0 |e 0 ) -(∂ z f 0 | f 0 ) " + (e 0 | f 0 ). (2.2.12)
The statement of the Proposition then follows by repeated differentiation of (2.2.12) and induction using Remark 2.2. 

( f 0 -f wkb ) = O ‡ h -|α| e -S h
• .

Here, we set

∂ α zzx = ∂ α 1 z ∂ α 2 z ∂ α 3
x . Furthermore, the various z-, z-and x-derivatives of e 0 , f 0 , e wkb and f wkb have at most temperate growth in 1/h, more precisely

∂ α zzx e wkb , ∂ α zzx f wkb , ∂ α zzx e 0 , ∂ α zzx f 0 = O ¡ h -|α| ¢ for all α ∈ N 3 ; • for h 2/3 η < const ., z ∈ Ω ∩ Ω a η and for all α ∈ N 3 ∂ α zzx (e 0 -e η wkb ) , ∂ α zzx ( f 0 -f η wkb ) = O ‡ η α 1 +α 2 2 +α 3 h -|α| e -S h • .
Furthermore, the various z-, z-and x-derivatives of e 0 , f 0 , e η wkb and f η wkb have at most temperate growth in η/h, more precisely

∂ α zzx e η wkb , ∂ α zzx f η wkb , ∂ α zzx e 0 , ∂ α zzx f 0 = O ‡ η α 1 +α 2 2 +α 3 h -|α| • for all α ∈ N 3 .
Proof. Will show the proof in the case of e 0 (z) since the case of f 0 (z) is similar. Suppose first that z ∈ Ω with dist (Ω, ∂Σ) > 1/C . Recall from (1.2.8) that

(P h -z)e 0 = α 0 f 0 and (P h -z) * f 0 = α 0 e 0 (2.2.13)
First consider the ∂ n z ∂ m z derivatives of (2.2.13):

(P h -z)∂ n z ∂ m z e 0 (z) = n∂ n-1 z ∂ m z e 0 (z) + X |α 1 +β 1 |=n |α 2 +β 2 |=m ˆη + β β ! (∂ η α 0 (z))(∂ β f 0 (z)) (2.2.14)
and

(P h -z) * ∂ n z ∂ m z f 0 (z) = m∂ n z ∂ m-1 z f 0 (z) + X |α 1 +β 1 |=n |α 2 +β 2 |=m ˆη + β β ! (∂ η α 0 (z))∂ β e 0 (z)
and thus

h D x ∂ n z ∂ m z e 0 (z) ≤n ∂ n-1 z ∂ m z e 0 (z) + X |α 1 +β 1 |=n |α 2 +β 2 |=m ˆη + β β ! ∂ η α 0 (z) ∂ β f 0 (z) + g -z L ∞ (S 1 ) • ∂ n z ∂ m z e 0 (z) and h D x ∂ n z ∂ m z f 0 (z) ≤m ∂ n z ∂ m-1 z f 0 (z) + X |α 1 +β 1 |=n |α 2 +β 2 |=m ˆη + β β ! ∂ η α 0 (z) ∂ β e 0 (z) + g -z L ∞ (S 1 ) • ∂ n z ∂ m z f 0 (z) .
By Proposition 2.2.6, there exists a constant C > 0 such that 

|∂ k z ∂ j z α 0 (z)| = |∂ k z ∂ j z E -+ (z)| = O ‡ h -(k+ j ) e -S h • . ( 2 
D x ∂ n z ∂ m z e 0 (z) , D x ∂ n z ∂ m z f 0 (z) = O ¡ h -(n+m+1) ¢ .
Repeated differentiation of (2.2.14) and induction then yield that for all l ∈ N

D l x ∂ n z ∂ m z e 0 (z) , D l x ∂ n z ∂ m z f 0 (z) = O ‡ h -(l +n+m)
• .

The estimate

D l x ∂ n z ∂ m z e wkb , D l x ∂ n z ∂ m z f wkb = O ‡ h -(l +n+m) •
follows directly by the stationary phase method together with (2.1.9), (2.1.16). Finally, using (1.2.8), (2.1.7), consider 

(P h -z)(e 0 -e wkb ) = α 0 f 0 -h -1 4 a(z) h i ∂ x χ e e i h φ + (x) which implies for k ≥ 1 that (hD x ) k ∂ n z ∂ m z (e 0 -e wkb ) is equal to (hD x ) (k-1) ∂ n z ∂ m z (α 0 f 0 ) -(hD x ) (k-1) ∂ n z ∂ m z h -1 4 a(z) h i ∂ x χ e e i h φ + (x) ¶ + (hD x ) (k-1) ∂ n z ∂ m z (g (x) -z)(e 0 -e wkb

-Alternative Grushin problems for the unperturbed operator P h

In [START_REF]Instabilité spectrale semiclassique pour des opérateurs non-autoadjoints I: un modèle[END_REF] Hager set up a different Grushin problem for P h and z ∈ Ω i which results in a more explicit effective Hamiltonian E H -+ (z). To avert confusion, we will mark the elements of Hager's Grushin problem with an additional "H ".

Bordeaux-Montrieux in [START_REF] Bordeaux-Montrieux | Loi de Weyl presque sûre et résolvent pour des opérateurs différentiels non-autoadjoints[END_REF] then extended Hager's Grushin problem to z ∈ Ω ∩ Ω a η . It is very useful for the further discussion to have an explicit effective Hamiltonian. Thus we will briefly introduce Hager's Grushin problem P H and show that E -+ (z) and E H -+ (z) differ only by an exponentially small error. Proposition 2.2.8 ([32, 4]). For z ∈ Ω Σ, let x ± (z) ∈ R be as in (1.1.14).

• for z ∈ Ω with dist (Ω, ∂Σ) > 1/C : let I ± be open intervals, independent of z such that x ± (z) ∈ I ± , x ∓ (z) ∉ I ± for all z ∈ Ω. Let φ ± (x, z) be as in Definition 2.1.2. Then, there exist smooth functions c ± (z; h) > 0 such that c ± (z; h) ∼ h -1 4 ¡ c 0 ± (z) + hc 1 ± (z) + . . . ¢
and, for e + (z; h)

:= c + (z; h) exp( i φ + (x,z) h ) ∈ H 1 (I + ) and e -(z; h) := c -(z; h) exp( i φ -(x,z) h ) ∈ H 1 (I + ), e + L 2 (I + ) = 1 = e -L 2 (I -) .
Furthermore, we have

c 0 + (z) = -Im g (x + (z)) π ¶ 1 4
, and c 0

-(z) = Im g (x -(z)) π ¶ 1 4 . 53 
2.2. GRUSHIN PROBLEM FOR THE UNPERTURBED OPERATOR P H • for z ∈ Ω ∩ Ω a η with h 2/3 η < const .: let J ± be open intervals, such that x ± (Ω a η ) ∈ J ± , dist (J + , J -) > 1 C η 1/2 .
Define Ĩ± := S 1 \J ∓ . Let φ ± (x, z) be as in Definition 2.1.2 and set h := h/η 3/2 . Then, there exist smooth functions c ± (z; h) > 0 such that 

c η ± (z; h) ∼ h-1 4 η -1/4 ‡ c 0,η ± (z) + hc 1,η ± (z) + . . .
i φ + (x,z) h ) ∈ H 1 ( Ĩ+ ) and e η -(z; h) := c η -(z; h) exp( i φ -(x,z) h ) ∈ H 1 ( Ĩ+ ), e η + L 2 ( Ĩ+ ) = 1 = e η -L 2 ( Ĩ-) .
Furthermore, we have c 0,η

+ (z) = |Im g (a)( x+ ( z) -a/ η)(1 + o(1))| π ¶ 1 4 , z ∈ Ω a η , c 0,η -(z) = |Im g (a)( x-( z) -a/ η)(1 + o(1))| π ¶ 1 4 , z ∈ Ω a η .
Proof. For a proof of the first statement see [START_REF]Instabilité spectrale semiclassique pour des opérateurs non-autoadjoints I: un modèle[END_REF]. The second statement has been proven in [START_REF] Bordeaux-Montrieux | Loi de Weyl presque sûre et résolvent pour des opérateurs différentiels non-autoadjoints[END_REF] with the exception of the representation of c 0,η ± (z) which can be achieved by an analogous argument to the one used in the proof of Proposition 2.1.4.

Note that (P

h -z)e • + (x, z) = 0 on I + and that (P h -z) * e • -(x, z) = 0 on I -.
With these quasimodes Hager and then Bordeaux-Montrieux set up a Grushin problem P H and proved the existence of an inverse E H . Proposition 2.2.9 ([32]). For z ∈ Ω i Σ and x ± (z) as in (1.1.14). Let g ∈ C ∞ (S 1 ; C) be as in (1.1.6) and let a < b < a+2π where a denotes the minimum and b the maximum of Im g . Let J + ⊂ (b, a+2π) and J -⊂ (a, b) such that {x ± (z) : z ∈ Ω} ⊂ J ± . Let χ ± ∈ C ∞ c (I ± ) be such that χ ± ≡ 1 on J ± and supp (χ

+ ) ∩ supp (χ -) = . Define R H + : H 1 (S 1 ) -→ C : u -→ (u|χ + e + ) R H -: C -→ L 2 (S 1 ) : u --→ u -χ -e -.
Then

P H (z) := P h -z R H - R H + 0 ¶ : H 1 (S 1 ) × C -→ L 2 (S 1 ) × C
is bijective with the bounded inverse

E H (z) = E H (z) E H + (z) E H -(z) E H -+ (z) ¶ where E H (z) L 2 →H 1 = O (h -1/2 ), E H -(z) L 2 →C = O (1), E H + (z) C→H 1 = O (1), |E H -+ (z)| = O ‡ e -1 C h • . ( 2 

.2.16)

Furthermore,

E H -+ (z) = ˆ i 2 {p, p}(ρ + ) i 2 {p, p}(ρ -) ¶ 1 4 h π ¶ 1 2 + O ‡ h 3 2 • ! • ‡ e i h ´x- x + (z-g (y))d y -e i h ´x-+2π x + (z-g (y))d y • , (2.2.17)
where the prefactor of the exponentials depends only on Im z and has bounded derivatives of order O ( h).

Proof. See [START_REF]Instabilité spectrale semiclassique pour des opérateurs non-autoadjoints I: un modèle[END_REF].

Proposition 2.2.10 ([4]

). Let Ω Σ. For z ∈ Ω ∩ Ω a,b η and x ± (z) as in (1.1.14). Let g ∈ C ∞ (S 1 ) be as in (1.1.6). Let J ± and I ± be as in the second point of Proposition 2.2.8. Let

χ η ± ∈ C ∞ c (I ± ) such that χ η ± ≡ 1 on J ± and supp (χ η + ) ∩ supp (χ η -) = . Define R η + : H 1 (S 1 ) -→ C : u -→ (u|χ + e η + ) R η -: C -→ L 2 (S 1 ) : u --→ u -χ -e η -.
Then

P η (z) := P h -z R η - R η + 0 ¶ : H 1 (S 1 ) × C -→ L 2 (S 1 ) × C
is bijective with the bounded inverse

E η (z) = E η (z) E η + (z) E η -(z) E η -+ (z) ¶ where E η (z) L 2 →H 1 = O (( ηh) -1/2 ), E η -(z) L 2 →C = O (1), E η + (z) C→H 1 = O (1), |E η -+ (z)| = O η 1/4 h 1/2 e -η 3/2 h ¶ . ( 2 

.2.18)

Furthermore, 

E η -+ (z) = ‡ c 0,η + (z)c 0,η -(z) ¡ h η ¢ 1 2 + O ‡ h 3 2 η -5/4 •• • ‡ e i h ´x- x + (z-g (y))d y -e i h ´x-+2π x + (z-g (y))d y • , (2.2 

-Estimates on the e ective Hamiltonians

In [START_REF]Instabilité spectrale semiclassique pour des opérateurs non-autoadjoints I: un modèle[END_REF] Hager chose to represent S 1 as an interval between two of the periodically appearing minima of Im g and thus chose the notation for x ± accordingly (this notation was used in (2.2.17)). In our case however, we chose to represent S 1 as an interval between two of the periodically appearing maxima of Im g . This results in the following difference between notations:

x + (z) = x H + (z) -2π and x -(z) = x H -(z).
Thus, in our notation, we have for

• = H , η E • -+ (z) = V • (z, h) ‡ e i h ´x--2π x + (z-g (y))d y -e i h ´x- x + (z-g (y))d y • , ( 2 

.2.20)

where 

V • = V • (z, h) satisfies V • = 8 < : ¡ i 2 {p, p}(ρ + ) i 2 {p, p}(ρ -) ¢ 1 4 ‡ h π • 1 2 (1 + O (h)) , if • = H , z ∈ Ω i c 0,η + (z)c 0,η -(z) ¡ h η ¢ 1 2 ‡ 1 + O ‡ η -3 2 h •• , if • = η, z ∈ Ω a η . ( 2 
= 2i η fl fl flIm g (a)( x± ( z) -a/ η)(1 + o η (1)) fl fl fl , for z ∈ Ω a η .
Therefore, we may write for all z ∈ Ω Σ

V (z, h) := V • (z, h) = i 2 {p, p}(ρ + ) i 2 {p, p}(ρ -) ¶ 1 4 h π ¶ 1 2 ‡ 1 + O ‡ η -3 2 h •• (2.2.23)
where the first order term is η where Φ(z, h) is defined already in Proposition 1.2.5. For the readers convenience:

Φ(z, h) = ( -2πi h (z -〈g 〉), if Im z < 〈Im g 〉, 2πi h (z -〈g 〉), if Im z > 〈Im g 〉, Hence |E • -+ (z)| = V (z, h)e -S h fl fl fl1 -e Φ(z,h) fl fl fl . (2.2.25)
The aim of this section is to prove the following proposition.

Proposition 2.2.12. Let z ∈ Ω Σ, let Φ(z, h) be as in Proposition 1.2.5 and let E -+ (z) the effective Hamiltonian given in Proposition 2.2.1. Then, for h > 0 small enough, there exists a constant C > 0 such that for h Proof of Proposition 1.2.9. Recall that (P hz)e 0 = α 0 f 0 (cf. (1.2.8)). Suppose first that z ∈ Ω with dist (Ω, ∂Σ) > 1/C . By Proposition 2.1.11 we find

¡ (1 -χ)(P h -z)e 0 | f 0 ¢ = α 0 ( f 0 |(1 -χ) f 0 ) = α 0 ‡ ( f wkb |(1 -χ) f wkb ) + O ‡ e -S h •• .
Since the phase of f wkb has no critical point on the support of χ, it follows that there exists a constant C > 0, depending on χ but uniform in z ∈ Ω, such that

¡ (1 -χ)(P h -z)e 0 | f 0 ¢ = O ‡ α 0 e -1 C h • .
By a similar argument we find that

¡ (P h -z)χe 0 | f 0 ¢ = α 0 ¡ χe 0 |e 0 ¢ = O ‡ α 0 e -1 C h
• .

In the case where z ∈ Ω ∩ Ω a η , we perform a rescaling argument similar to the one in the proof of Proposition 2.1.11. Thus,

¡ (1 -χ)(P h -z)e 0 | f 0 ¢ , ¡ (P h -z)χe 0 | f 0 ¢ = O ˆα0 exp ( - η 3 2 C h )! .
Note that Proposition 2.1.11 implies that each z-and z-derivative of the exponentially small error term increases its order of growth at most by factor of order O (η 1/2 h -1 ). Thus, using (1.2.8) yields

α 0 = ¡ (1 -χ + χ)(P h -z)e 0 | f 0 ¢ = ¡ [χ, P h ]e 0 | f 0 ¢ + O ˆα0 exp ( - η 3 2 C h )! (2.2.26)
The statement of the Proposition then follows by the fact that |α 0 | = |E -+ (z)| (cf. Proposition 2.2.1) together with Proposition 2.2.12.

We give some estimates on the elements of the Grushin problems introduced in Section 2.2. 

Proposition 2.2.13. Let Ω Σ, let E • -+ , E • ± , R • ± , E • be
Ω i ⊂ Ω ∂ β zz R • ± , ∂ β zz E • ± = O ‡ h -|β| • , |∂ β zz E H -+ | = O ‡ h -(|β|-1 2 ) e -S(z) h • , ∂ β zz E • = O ‡ h -(|β|+1/2)
• .

for • = -, η and for z

∈ Ω a,b η ⊂ Ω ∂ β zz R • ± , ∂ β zz E • ± = O ‡ η |β| 2 h -|β| • , |∂ β zz E η -+ | = O η |β|+1/2 2 h -(|β|-1 2 ) e -η 3/2 h ¶ , ∂ β zz E • = O ‡ η |β|-1/2 2 h -(|β|+1/2) • .
Proof. Recall the definition of R ± and E ± given in Proposition 2.2.1. By the estimates on the z-and z-derivatives of e 0 and f 0 given in Proposition 2.1.11, we may conclude for z ∈ Ω that 

∂ β zz E + C→L 2 , ∂ β zz R + H 1 →C ≤ ∂ β zz e 0 L 2 = O ‡ η |β| 2 h -|β| • , ∂ β zz E -L 2 →C , ∂ β zz R -C→L 2 ≤ ∂ β zz f 0 L 2 = O ‡ η |β| 2 h -|β| • , ( 2 
∂ z E (z) + E (z)(∂ z P (z))E (z) = 0, ∂ z E (z) + E (z)(∂ z P (z))E (z) = 0, which implies ∂ z E = -E (∂ z (P h -z))E -E + (∂ z R + )E -E (∂ z R -)E - = E 2 -E + (∂ z R + )E -E (∂ z R -)E - and ∂ z E (z) = -E + (z)(∂ z R + )E (z) -E (z)(∂ z R -)E -(z).
Thus, by induction we conclude from this, from (2.2.27) and from Proposition 2.2.1 that for z ∈ Ω

∂ β zz E (z) = O ‡ η |β|-1/2 2 h -(|β|+ 1 
2 )

• . 57 ´x-

x + (z-g (y))d y = e i h ´x--2π/ η x+ ( z-g ( ỹ))d ỹ -e i h ´x- x+ ( z-g ( ỹ))d ỹ ,
(2.1.5) implies

|∂ β zz E η -+ (z)| = η -|β| |∂ β z z E η -+ (z)| = O η |β|+1/2 2 h -(|β|-1 2 ) e η 3/2 h ¶ .
Proof of Proposition 2.2.12. Let • = H , η denote the quasimodes and elements of the Grushin problems corresponding to the different zones of z.

Since P • E • : L 2 (S 1 ) × C -→ L 2 (S 1
) × C let us introduce the following norm for an operatorvalued matrix A : L 2 (S 1 ) × C -→ L 2 (S 1 ) × C:

A ∞ := max 1≤i ≤2 2 X j =1 A i j ,
where A i j denotes the respective operator norm for A i j . Next, note that

P E • = ¡ P • + (P -P • ) ¢ E • = 1 + (P -P • )E • .
Estimates for (P -P • ) Recall the definition of P and of P • from the Propositions 2.2.1, 2.2.9 and 2.2.10 and note that

P -P • = 0 R --R • - R + -R • + 0 ¶ .
We will now prove that for all (n, m)

∈ N 2 ∂ β zz (R + -R • + ) H 1 (S 1 )→C ≤ ∂ β zz (e 0 -χ • + e • + ) = 8 > > < > > : O ‡ h -|β| e -1 C h • , for z ∈ Ω, dist (Ω, ∂Σ) > 1/C , O ˆη |β| 2 h -|β| e -η 3 2 h ! , for z ∈ Ω a η , (2.2.28) 
where the first estimate follows from the Cauchy-Schwartz inequality. Note that Let us first consider the case of z ∈ Ω with dist (Ω, ∂Σ) > 1/C : recall from Proposition 2.2.9 that all z-and z-derivatives of χ + are bounded independently of h > 0, whereas for the derivatives of χ e we have (2.1.16). Thus

∂ β zz (e 0 -χ • + e • + ) ≤ ∂ β zz (e • wkb -χ • + e • + ) + ∂ β zz (e 0 -e • wkb ) . ( 2 
∂ β zz χ + , ∂ β zz χ e = O (h -|β|/2 ).
Thus, since χ e (•, z) χ + for all z ∈ Ω i , which implies that x + (z) ∉ supp (χ e (•, z) -χ + ) for all z ∈ Ω i , the Leibniz rule then implies

∂ β zz ‡ ¡ χ e (•, z) -χ + ¢ e i h φ + (•,z) • ≤ O ‡ h -|β| e -F h • . (2.2.30)
where F > 0 is given by the infimum of Im φ(x, z) over all z ∈ Ω and all

x ∈ ˆ[ z∈Ω supp (χ e (•, z)) ! \{x ∈ I + : χ + ≡ 1}.
Note that F > 0 is strictly positive because x -(z) ∉ I + for all z ∈ Ω and χ + ∈ C ∞ 0 (I + ) (cf. Propositions 2.2.9 and 2.2.8).

Recall that h -1/4 a(z; h) and c + (z; h) are the normalization factors of e wkb and e + (cf. (2.1.7) and Proposition 2.2.8). Hence, for z ∈ Ω i ,

h -1 4 ∂ β zz a(z; h), ∂ β zz c + (z; h) = O ‡ h -(|β|+1/2)
• .

Thus the Leibniz rule and (2.2.30) imply 4 ), the Leibniz rule and the above imply that for z

|∂ β zz c + (z; h) -∂ β zz h -1/4 a(z; h)| = fl fl fl fl fl fl ∂ β zz ‡ χ e (•, z)e i h φ + (•,z) • - ‡ χ + e i h φ + (•,z) • ‡ χ e (•, z)e i h φ + (•,z) • ‡ χ + e i h φ + (•,z) • fl fl fl fl fl fl = O ‡ h -(|β|+1/2) e -F h • . Since h -1 4 a(z; h), c + (z; h) = O (h - 1 
∈ Ω i ∂ β zz ¡ e wkb -χ + e + ¢ ≤ O ‡ h -(|β|+1/2) e -F h • .
Thus there exists a constant C > 0, for h > 0 small enough, such that for z 

∈ Ω i ∂ β zz ¡ e wkb -χ + e + ¢ = O ‡ h -|β| e -1 C h • . ( 2 
∂ β zz ¡ e η wkb -χ η + e η + ¢ = O ˆη |β|+3/2 2 h -(|β|+1/2) e -η 3 2 h ! .
Absorbing the factor η 3/4 h -1/2 into e -η 3 2 h then yields the desired estimate. It is possible to achieve an analogous estimate for R --R • -, namely that for all z ∈ Ω and for all

(n, m) ∈ N 2 ∂ β zz (R --R • -) C→H 1 (S 1 ) = ∂ β zz ( f 0 -χ • -e • -) = 8 > > < > > : O ‡ h -|β| e -1 C h • , for z ∈ Ω, dist (Ω, ∂Σ) > 1/C , O ˆη |β| 2 h -|β| e -η 3 2 h ! , for z ∈ Ω a η , (2.2.32) 
This can be achieved by analogous reasoning as for the estimate on R + -R • + .

A formula for E -+ Using (2.2.28), (2.2.32), it follows that for h > 0 small enough

(P -P • )E • ∞ 1.
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P E • £ 1 + (P -P • )E • ⁄ -1 = 1.
We conclude that

E = E • X n≥0 (-1) n £ (P -P • )E • ⁄ n . Define g -:= R --R • -and g + := R + -R • + .
Hence, by Propositions 2.2.9 and 2.2.10 as well as by (2.2.29) and (2.2.28), there exists a constant C > 0 such that

(P -P • )E • = g -E • -g -E • -+ g + E • g + E • + ¶ = 0 @ O ‡ e -1 C h • E • -+ O ‡ e -1 C h • O ‡ e -1 C h • O ‡ e -1 C h • 1 A .
By induction it follows that for n ∈ N

£ (P -P • )E • ⁄ n = 0 @ O ‡ e -n C h • E • -+ O ‡ e -n C h • O ‡ e -n C h • O ‡ e -n C h • 1 A .
We conclude that

E -+ (z) = E • -+ 1 + X n≥1 O ‡ e -n C h • ¶ = E • -+ ‡ 1 + O ‡ e -1 C h •• .
Finally, by the estimates on g + and g + obtained above and by the estimates given in Proposition 2.2.13 we conclude the desired estimates on the z-and z-derivatives of the error term.

| Grushin problem for the perturbed operator P δ h

For δ > 0 small enough, we can use the Grushin problem for the unperturbed operator P h to gain a well-posed Grushin problem for the perturbed operator P δ h .

Proposition 2.3.1 ([67]

). Let z ∈ Ω Σ, let h 2/3 η ≤ const. and let R -, R + be as in Proposition 2.2.1. Then

P δ (z) := P δ h -z R - R + 0 ¶ : H 1 (S 1 ) × C -→ L 2 (S 1 ) × C
is bijective with the bounded inverse

E δ (z) = E δ (z) E δ + (z) E δ -(z) E δ -+ (z) ¶ where E δ (z) = E (z) + O η -1/2 ¡ δh -2 ¢ = O (η -1/4 h -1/2 ) E δ -(z) = E -(z) + O ¡ δη -1/4 h -3/2 ¢ = O (1) E δ + (z) = E + (z) + O ¡ δη -1/4 h -3/2 ¢ = O (1)
and

E δ -+ (z) = E -+ (z) -δ E -Q ω E + + ∞ X n=1 (-δ) n E -Q ω (EQ ω ) n E + ¶ = E -+ (z) -δ ¡ E -Q ω E + + O (δη -1/4 h -5/2 ) ¢ (2.3.1)
Proof. The statement follows immediately from Proposition 2.2.1 by use of the Neumann series.

By (2.2.2) we get

E -Q ω E + = X | j |,|k|≤ j C 1 h k α j ,k (e 0 |e k ) • (e j | f 0 ) = X | j |,|k|≤ j C 1 h k α j ,k b e 0 (k) b f 0 ( j ).
Recall from Corollary 1.1.5 that the random variables satisfy α ∈ B (0,C /h). For a more convenient notation we make the following definition:

Definition 2.3.2. For x ∈ R we shall denote the Gauss brackets by x := max{k ∈ Z : k ≤ x}. Let C 1 > 0 be big enough as above and define

N := (2 C 1 h +1) 2 . For z ∈ Ω Σ, let X (z) = (X j ,k (z)) | j |,|k|≤ C 1 h ∈ C N be given by X j ,k (z) = b e 0 (z; k) b f 0 (z; j ), for | j |, |k| ≤ " C 1 h " . Thus, for z ∈ Ω Σ and α ∈ B (0,C /h) ⊂ C N E δ -+ (z) = E -+ (z) -δ [X (z) • α + T (z, α)] , (2.3.2) 
where the dot-product X (z) • α is the bilinear one, and 

T (z, α) := ∞ X n=1 (-δ) n E -Q ω (EQ ω ) n E + = O (δη -1/4 h -5/2 ), ( 2 
; k) = O ‡ |k| -M dist (Ω, ∂Σ) -M 2 • , dist (Ω, ∂Σ) h 2 3
for all M ∈ N. In particular

X (z) 2 = 1 + O ¡ h ∞ ¢ .
Proof. We will show the proof in the case of e 0 (z) since the case of f 0 (z) is similar. Let us first suppose that z ∈ Ω with dist (Ω, ∂Σ) > 1/C . Recall the definition of the quasimode e wkb given in (2.1.7). By Proposition 2.2.7

b

e 0 (z; k) = ˆ ‡e wkb (z, x) + O C ∞ ‡ e -S 2h
•• e -i kx d x.

For k ∈ Z\{0}, repeated integration by parts using the operator

t L := i k d d x
applied to the error term yields by Proposition 2.2.7 that for all n ∈ N b

e 0 (z; k) = ˆewkb (z, x)e -i kx d x + O ¡ |k| -n h ∞ ¢ .
Define the phase function Φ(x, z) := (φ + (x, z)h -1kx). Since h|k| ≥ C is large enough and since Ω is relatively compact, it follows that

|∂ x Φ(x, z)| = |∂ x φ + (x, z)h -1 -k| ≥ C 1 |k| > 0.
Repeated integration by parts using the operator For z ∈ Ω ∩ Ω a η one performs a similar rescaling argument as in the proof of Proposition 2.1.11.

t L := 1 ∂ x Φ(x, z) D x
Since in the rescaled coordinates k = ηk, we conclude that for all n ∈ N

| b e 0 (z; k)| ≤ O ‡ η -n 2 |k| -n • .
Finally, by definition 2.3.2, Parseval identity and the estimates on the Fourier coefficients above, it follows that

X (z) 2 = X | j |,|k|≤ C 1 h | b e 0 (z; j )| 2 | b f 0 (z; k)| 2 = (e 0 (z)|e 0 (z))( f 0 (z)| f 0 (z)) + O ¡ h ∞ ¢ .
Since e 0 , f 0 = 1, we conclude the second statement of the Proposition.

The following is an extension of Proposition 2. 

∂ n z ∂ m z b e 0 (z; k), ∂ n z ∂ m z b f 0 (z; k) = ‡ |k| -M dist (Ω, ∂Σ) -M 2 • .
Furthermore,

∂ n z ∂ m z X (z) = O ‡ dist (Ω, ∂Σ) n+m 2 h -(n+m) • . Proof. Since ∂ n z ∂ m z b e 0 (z; k) = ˆ∂n z ∂ m z e 0 (z, x)e -i kx d x.
We then conclude similar to the proof of Proposition 2.3.

3 that for all N ∈ N |∂ n z ∂ m z b e 0 (z; k)| = O ‡ η -N 2 |k| -N • .
The second statement of the Proposition is a direct consequence of Parseval's identity and Proposition 2.1.11.

| Connections with symplectic volume and tunneling e ects

The first two terms of the effective Hamiltonian E δ -+ for the perturbed operator P δ h (cf. (2.3.2)) have a relation to the symplectic volume form on T * S 1 and to the tunneling effects described in Section 2.2.2. ) and ρ ± be as in (1.1.14). Let X (z) be as in Definition 2.3.2. Then we have for h > 0 small enough and h 2/3 η ≤ const. 

(∂ z X |∂ z X ) - |(∂ z X |X )| 2 X 2 = 1 h i {p, p}(ρ + (z)) - i {p, p}(ρ -(z)) ¶ + O (η -2 ),
1 h i {p, p}(ρ + (z)) - i {p, p}(ρ -(z)) ¶ L(d z) = 1 2h (d ξ -∧ d x --d ξ + ∧ d x + ) = 1 2h p * (d ξ ∧ d x)
Proof of Proposition 2.4.2. In the following we will conform to ideas from [START_REF]Instabilité spectrale semiclassique pour des opérateurs non-autoadjoints I: un modèle[END_REF][START_REF] Bordeaux-Montrieux | Loi de Weyl presque sûre et résolvent pour des opérateurs différentiels non-autoadjoints[END_REF][START_REF]Spectral properties of non-self-adjoint operators[END_REF]: Since p(x ± , ξ ± ) = z, we find the following system of linear equations

( p x • ∂ z x ± + p ξ • ∂ z ξ ± = 1 p x • ∂ z x ± + p ξ • ∂ z ξ ± = 0 and since x ± , ξ ± ∈ R ( p x • ∂ z x ± + p ξ • ∂ z ξ ± = 1 p x • ∂ z x ± + p ξ • ∂ z ξ ± = 0.
This system can be solved and we find

∂ z x ± = -p ξ {p, p} (ρ ± ), ∂ z x ± = p ξ {p, p} (ρ ± ) (2.4.1)
and

∂ z ξ ± = p x {p, p} (ρ ± ), ∂ z ξ ± = -p x {p, p} (ρ ± ).
Hence we have

d ξ ± ∧ d x ± = ¡ ∂ z ξ ± ∂ z x ± -∂ z ξ ± ∂ z x ± ¢ d z ∧ d z = 1 {p, p} (ρ ± ) ¶ d z ∧ d z.
Since the Lebesgue measure with the standard orientation of C can be represented as

L(d z) i 2 d z ∧ d z,
and the statement of the Proposition follows.

To prove Proposition 2.4.1 we first prove the following result.

Lemma 2.4.3. Let z ∈ Ω Σ such that dist (Ω, ∂Σ) > 1/C and let g ∈ C ∞ (C) and ρ ± be as in (1.1.14).

Let e wkb and f wkb be as in (2.1.7) and (2.1.8). Let Π e wkb : L 2 (S 1 ) → L 2 (S 1 ) and Π f wkb : L 2 (S 1 ) → L 2 (S 1 ) denote the orthogonal projections onto the subspaces spanned by e wkb and f wkb respectively. Then,

(1 -Π e wkb )∂ z e wkb (•, z) 2 = -1 2hIm g (x + (z)) + O (1), (1 -Π f wkb )∂ z f wkb (•, z) 2 = 1 2hIm g (x -(z))
+ O (1).

CONNECTIONS WITH SYMPLECTIC VOLUME AND TUNNELING EFFECTS

Remark 2.4.4. In the following, we shall regard z as a fixed parameter. Hence, by the support of functions depending on both x and z we mean the support with respect to the variable x.

Proof. We will consider only the case of e wkb since the case of f wkb is similar. One calculates 

∂ z e wkb (x, z) = h -1 4 ‰ ∂ z χ e (x,
) = h -1 2 ˆ ‡¡ ∂ z χ e (x, z) ¢ |a(z; h)| 2 + (∂ z a(z; h)) a(z; h)χ e (x, z) +|a(z; h)| 2 χ e (x, z) i h ∂ z φ + (x, z) ¶ χ e (x, z)e -Φ(x,z) h d x, (2.4.3)
where

Φ(x, z) := -i (φ + (x, z) -φ + (x, z)) = 2Im ˆx x + (z) (z -g (y))d y. (2.4.4)
First, we will compute

h -1 2 ˆ¡∂ z χ e (x, z) ¢ χ e (x, z)|a(z; h)| 2 e -Φ(x,z) h d x.
(2.4.5)

Using (2.1.16) and the fact that ˆ∂z χ e (x, z)χ e (x, z)e -Φ(x,z)

∂ z χ e (z, •) has support in ]x --2π, x --2π + h 1/2 [∪]x --h 1/2 , x -[, Taylor expansion of Φ(•, z) at x -and x --2π yields that e -Φ(x,z) h ≤ O ‡ e -2S h • , uniformly in ]x --2π, x --2π+h 1/2 [∪]x --h 1/2 ,
h d x = O ‡ h -1 2 e -2S h • . (2.4.6)
Next, we will treat the other two contributions to (2.4.3). First, consider

h -1 2 (∂ z a(z; h)) a(z; h) ˆχe (x, z) 2 e -Φ(x,z) h d x.
Since h -1 2 |a(z; h)| 2 is the normalization factor of e wkb 2 we see that

h -1 2 ∂ z a(z; h)a(z; h) ˆχe (x, z) 2 e -Φ(x,z) h d x = ∂ z a(z; h) a(z; h) . ( 2 

.4.7)

Let us now turn to the third contribution to (2.4.3)

I h := h -1 2 |a(z; h)| 2 ˆi h ∂ z φ + (x, z)χ e (x, z) 2 e -Φ(x,z) h d x.
The stationary phase method implies together with (2.1.10) that 

I h = i h ∂ z φ + (x + (z), z) + O (1
= e i h φ + (x,z) h 1/4 ‰ a(z; h)χ e (x, z) i h ¡ ∂ z φ + (x, z) -∂ z φ + (x + (z), z) ¢ + O L 2 (1).
(2.4.10)

It remains to treat

I h := a(z; h)χ e (x, z) i h 5 4 ¡ ∂ z φ + (x, z) -∂ z φ + (x + (z), z) ¢ e i h φ + (x,z) 2 = h -1 2 ˆχe (x, z) 2 |a(z; h)| 2 fl fl fl fl i h ¡ ∂ z φ + (x, z) -∂ z φ + (x + (z), z) ¢ fl fl fl fl 2 e -Φ(x,z) h d x, (2.4.11)
where Φ(x, z) is given in (2.4.4). This can be done by the stationary phase method, as in the proof of Lemma 2.1.3. Thus

I h = 2π N X n=0 1 n! h 2 ¶ n (∆ n y u)(0) + O (h N +1 ),
where

u(y) = χ e (κ -1 (y), z) 2 |a(z; h)| 2 |κ (κ -1 (y))| fl fl fl fl i h ¡ ∂ z φ + (κ -1 (y), z) -∂ z φ + (x + (z), z) ¢ fl fl fl fl 2 and κ : V → U is a local C ∞ diffeomorphism from V ⊂ R, a neighborhood of x + (z), to U ⊂ R, a neighborhood of 0, such that Φ(κ -1 (x), z) = Φ(x + (z), z) + x 2 2 ,
κ -1 (0) = x + (z) and

d κ d x (x + (z)) = |∂ 2 xx Φ(x + (z), z)| 1 2 = q -2Im g (x + (z)) = 0. (2.4.12)
This implies that u(0) = 0 and thus we have to calculate the second order term in the above asymptotics, i.e. ∆ y u(y) is equal to Thus, since χ e (κ -1 (0), z) = χ e (x + (z), z) = 1 (cf. Definition 2.1.2),

∆ y χ e (κ -1 (y), z) 2 |a(z; h)| 2 |κ (κ -1 (y))| ¶ fl fl fl fl i h ¡ ∂ z φ + (κ -1 (y), z) -∂ z φ + (x + , z) ¢ fl fl fl fl 2 + 2 d d y χ e (κ -1 (y), z) 2 |a(z; h)| 2 |κ (κ -1 (y))| ¶ d d y 1 h 2 fl fl ∂ z φ + (κ -1 (y), z) -∂ z φ + (x + , z) fl fl 2 + χ e (κ -1 (y), z) 2 |a(z; h)| 2 |κ (κ -1 (y))| ∆ y fl fl fl fl i h ¡ ∂ z φ + (κ -1 (y), z) -∂ z φ + (x + , z) ¢ fl
(∆ y u)(0) = 2|a(z; h)| 2 h 2 |κ (x + (z))| 3 .
Using (2.4.12)and (2.1.10), we have that

(∆ y u)(0) = 1 2πh 2 ¡ -Im g (x + (z)) ¢ -1 + O (h -1 )
which yields

I h = -1 2hIm g (x + (z)) + O (1).
This, together with (2.4.10), yields (1 

(1 -Π e wkb )∂ z e wkb (•, z) 2 = -1 2hIm g (x + (z)) + O (1
(∂ z X |∂ z X ) - |(∂ z X |X )| 2 X 2 = = (∂ z e 0 |∂ z e 0 ) -|(∂ z e 0 |e 0 )| 2 + (∂ z f 0 |∂ z f 0 ) -|( f 0 |∂ z f 0 )| 2 + O ¡ h ∞ ¢ . Suppose that z ∈ Ω with dist (Ω, ∂Σ) > 1/C .
-Π f wkb )∂ z f wkb 2 = ∂ z f wkb 2 -|(∂ z f wkb | f wkb )| 2 . (2.4.13) Hence (∂ z X |∂ z X ) - |(∂ z X |X )| 2 X 2 = (1 -Π e wkb )∂ z e wkb 2 + (1 -Π f wkb )∂ z f wkb 2 + O ‡ h -1 e -1 C h + h ∞ • . ( 2 
(∂ z X |∂ z X ) - |(∂ z X |X )| 2 X 2 = 1 h i {p, p}(ρ + (z)) - i {p, p}(ρ -(z)) ¶ + O (1) (2.4.15)
Now let us consider the case where z ∈ Ω ∩ Ω a η . Similar to Lemma 2.4.3 we get that

(1 -Π e η wkb )∂ z e η wkb (•, z) 2 L 2 (S 1 / η, ηd x) = - 1 
2 hIm g (x + (z)) + O (1), (1 -Π f η wkb )∂ z f η wkb (•, z) 2 L 2 (S 1 / η, ηd x) = 1 2 hIm g (x -(z)) + O (1),
where |Im g (x ± (z))| η. A rescaling argument, similar to the one in the proof of Proposition 2.1.11, and Corollary 2.1.13 then imply

(∂ z e 0 |∂ z e 0 ) -|(∂ z e 0 |e 0 )| 2 = - 1 
2 hIm g (x + (z)) + O (η -2 )
and similar for (

∂ z f 0 |∂ z f 0 ) -|( f 0 |∂ z f 0 )| 2 . Hence, (∂ z X |∂ z X ) - |(∂ z X |X )| 2 X 2 = 1 h i {p, p}(ρ + (z)) - i {p, p}(ρ -(z)) ¶ + O (η -2 )
with |{p, p}(ρ ± (z))| η. The statement on the derivatives of the error estimates follow by the Stationary phase method and the usual rescaling argument. 

-Link with the tunneling e ects

We will prove the following result in the light of Proposition 2.2.2.

Proposition 2.4.5. Let z ∈ Ω Σ, let X (z) be as in Definition 2.3.2 and let E -+ (z) be as in Proposition 2.2.1. Let S be as in Definition 1.2.2. Then,

fl fl fl fl ∂ z E -+ (z) -E -+ (z) (∂ z X (z)|X (z)) X (z) 2 -(e 0 | f 0 ) fl fl fl fl ≤ O ‡ h ∞ e -S h
• .

Proof of Proposition 2.4.5. Apply the ∂ z derivative to the first equation in (1.2.8),

(P h -z)∂ z e 0 -e 0 = ∂ z α 0 • f 0 + α 0 ∂ z f 0 .
Taking the scalar product with f 0 (which is L 2 -normalized) then yields

(∂ z e 0 |(P h -z) * f 0 ) -(e 0 | f 0 ) = ∂ z α 0 + α 0 (∂ z f 0 | f 0 ).
Recall from Proposition 2.2.1 that E -+ (z) = -α 0 (z) and use the second equation in (1.2.8) to see 

∂ z E -+ (z) -E -+ (z)((∂ z e 0 |e 0 ) -(∂ z f 0 | f 0 )) -(e 0 | f 0 ) = 0. ( 2 
(∂ z X |X ) = X | j |,|k|< C 1 h ‡ ∂ z b e 0 (z; j ) b f 0 (z; k) + b e 0 (z; j )∂ z b f 0 (z; k) • ‡ b e 0 (z; j ) b f 0 (z; k) • .
Proposition 2.3.3, Corollary 2.3.4 and the Parseval identity then imply

(∂ z X |X ) X 2 = (∂ z e 0 |e 0 ) + ( f 0 |∂ z f 0 ) + O ¡ h ∞ ¢ . ( 2.4.17) 
Note that in the above we also used that e 0 and f 0 are normalized. Since (

f 0 |∂ z f 0 ) = -(∂ z f 0 | f 0 )
we conclude by the triangular inequality

fl fl fl fl ∂ z E -+ (z) -E -+ (z) (∂ z X (z)|X (z)) X (z) 2 -(e 0 | f 0 ) fl fl fl fl ≤ O (h ∞ )|E -+ (z)|.
The statement of the proposition then follows by the estimate

|E -+ (z)| = O ‡ η 1 4 h 1 2 e -S h
• given in Proposition 2.2.6.

| Preparations for the distribution of eigenvalues of P δ h

To calculate the intensity measure of Ξ we make use of the following observations: 

-Counting zeros

∂ z g (z) + ∂ z F (z) • g (z) = 0 (2.5.1)
holds for all z ∈ Ω. The zeros of g form a discrete set of locally finite multiplicity.The notion of multiplicity here is the same as for holomorphic functions, more details can be found in the proof. Furthermore, for all ϕ ∈ C 0 (Ω)

¿ χ ‡ g ε • 1 ε 2 fl fl ∂ z g fl fl 2 , ϕ -→ X z∈g -1 (0) ϕ(z), ε → 0,
where χ ∈ C ∞ 0 (C) such that χ ≥ 0 and ´χ(w)L(d w) = 1 and the zeros are counted according to their multiplicities. is holomorphic in Ω. g has the same zeros as the holomorphic function (2.5.2). Thus, the zeros of g in Ω form a discrete set and the notion of the multiplicity of the zeros of g is well-defined since we can view the zeros as those of a holomorphic function.

Let z 0 ∈ g -1 (0) have multiplicity n. There exists a neighborhood W ⊂ Ω of z 0 such that W ∩ g -1 (0) = z 0 . Since e F (z) g (z) is holomorphic, there exists a neighborhood U ⊂ Ω of z 0 and a holomorphic function f : U → C such that for all z ∈ U f (z) = 0, and e F (z) g (z) = f (z)(zz 0 ) n .

(2.5.3)

Choose a λ > 0 such that |e -F (z) f (z) -e -F (z 0 ) f (z 0 )| < |e -F (z 0 ) f (z 0 )| for |z -z 0 | < λ.
In this disk we can define a single-valued branch of n q e -F (z) f (z). We take a test function ϕ ∈ C 0 (Ω) with

supp ϕ ⊂ (U ∩ W ∩ {z : |z -z 0 | < λ}) =: N (2.5.4)
and consider for ε > 0

¿ χ ‡ g ε • 1 ε 2 fl fl ∂ z g fl fl 2 , ϕ = 1 ε 2 N χ g (z) ε ¶ |∂ z g (z)| 2 ϕ(z)L(d z).
Let us perform a change of variables. Define

w := g (z) = (z -z 0 ) n e -F (z) f (z), (2.5.5) 
On computes that 

∂ z w(z) = (z -z 0 ) n-1 e -F (z) ¡ n f (z) + (z -z 0 )(∂ z f (z) -∂ z F (z) f (z)) ¢ , ∂ z w(z 0 ) = 0. ( 2 
|∂ z f (z) -∂ z F (z) f (z)|.
By (2.5.3) it follows that C (r 0 ) > 0 and we may assume that M (r 0 ) > 0 since else, it follows immediately from (2.5.6) that ∂ z w(z) = 0 for all z ∈ D(z 0 , r 0 )\{z 0 }. Let 0 < r < min{C (r 0 )n/(2M (r 0 )), r 0 }, the triangular inequality applied to (2.5.6) then implies that ∂ z w(z) = 0 for all z ∈ D(z 0 , r )\{z 0 }. The implicit function theorem implies that we can invert equation (2.5.5) for z in the disk D(z 0 , r )\{z 0 }, and w in the n-fold covering surface of w(D(z 0 , r )\{z 0 }).

Thus, if we denote the domain on each leaf of the covering by B k , for k = 1, . . . , n, as a subset of C, and the respective branch of g by g k we get for ε > 0 small enough

¿ χ ‡ g ε • 1 ε 2 fl fl ∂ z g fl fl 2 , ϕ = n X k=1 1 ε 2 ˆBk ϕ(g -1 k (w))χ ‡ w ε • (1 + O (w 2 ))L(d w), with g -1 k (0) = z 0 .
In the above we used that

L(d w) = ¡ |∂ z g (z)| 2 -|∂ z g (z)| 2 ¢ Ld (z)
and the ∂-equation (2.5.1) which implies

|∂ z g (z)| 2 = |∂ z F (z)g (z)| 2 = O (w 2 ).
Thus we can conclude

¿ χ ‡ g ε • 1 ε 2 fl fl ∂ z g fl fl 2 , ϕ -→ n X k=1 ϕ(z(0)) = nϕ(z 0 ), for ε → 0. (2.5.7)
Since g has at most countably many zeros in Ω, there exists some index set I ⊂ N such that we can denote the set of zeros of g in Ω by {z i } i ∈I := g -1 (0) ∩ Ω. Furthermore, let m(i ) for all i ∈ I denote the multiplicity of the respective zero z i .

For each zero z i we can construct a neighborhood N i , as above, such that for a test function with support in N i we have the convergence as in (2.5.7). By potentially shrinking the N i we can gain N i ∩ N j = for i = j . Consider the following locally finite open covering of

Ω Ω = ˆ[ i ∈I N i ! ∪ (Ω\{z i : i ∈ I }) .
Let {χ i } i ∈I ∪{0} be a partition of unity subordinate to this open covering such that

1 = X i ∈I χ i + χ 0 .
Here χ i ∈ C ∞ 0 (N i ) and χ i ≡ 1 in a neighborhood of z i for all i ∈ I . Furthermore, χ 0 ∈ C ∞ (Ω) and z i ∉ supp χ 0 for all i ∈ I . Let ϕ ∈ C 0 (Ω) be an arbitrary test function. By (2.5.7) we have for ε → 0

¿ χ ‡ g ε • 1 ε 2 fl fl ∂ z g fl fl 2 , ϕ = X i ∈I ¿ χ ‡ g ε • 1 ε 2 fl fl ∂ z g fl fl 2 , χ i ϕ → X i ∈I m(i )χ i (z i )ϕ(z i ).
Since g (z) = 0 for all z ∈ supp χ 0 we have for ε > 0 small enough

¿ χ ‡ g ε • 1 ε 2 fl fl ∂ z g fl fl 2 , χ 0 ϕ = 0
and we can conclude the statement of the Lemma. (2.5.8)

-An implicit function theorem

Assume that ξ ∈ D ¡ f (0), (a -c)R ¢ ⊂ C.
Then the equation f (z) = ξ has exactly one solution z = z(ξ) ∈ D(0, R) and it depends holomorphically on ξ.

Proof. For z ∈ D(0, R) f (z) = ˆz 0 ¡ a + g (w) ¢ d w + f (0) = az + f (0) +G(z),
where G(z) := ´z 0 g (w)d w. Now let us consider the equation

az + f (0) -ξ = 0.
The unique solution lies in the disk D(0, R) since

|ξ -f (0)| a < |a -c| a R < R.
Now consider for ε > 0 and for z ∈ D(0, R -ε) the equation

f (z) -ξ = az + f (0) -ξ +G(z) = 0.

A FORMULA FOR THE INTENSITY MEASURE OF THE POINT PROCESS OF EIGENVALUES OF P

δ H Recall that ξ ∈ D ¡ f (0), (a -c)R ¢ which implies that there exists a ε(ξ) > 0 such that |ξ -f (0)| ≤ (a -c)(R -ε(ξ)). Thus for all ε < ε(ξ) |az + f (0) -ξ| ≥ |az| -| f (0) -ξ| > a|z| -(a -c)(R -ε)
and, using that |G(z)| ≤ c|z|, we may conclude that for |z| = R -ε

|G(z)| < |az + f (0) -ξ|.
By Rouché's theorem we have that az + f (0) -ξ and f (z) -ξ have the same number of zeros in the disk D (0, R -ε). We also see that f (z) -ξ has no zero in D (0, R) \D (0, R -ε) and the result follows. 

Ω = {z = (z , z n ) ∈ C n : z ∈ Ω , |z n | < R z }
where R z > 0 is continuous in z . Furthermore, assume that • g , F : Ω -→ C are holomorphic such that g ∞ ≤ c, and for all z ∈ Ω :

∂ z n F (z) = a + g (z),
(2.5.9)

• Γ Ω is open so that inf z ∈Γ R z ≥ const. > 0, • ξ ∈ T z ∈Γ D ¡ F (z , 0), (a -c)R z ¢ ⊂ C.
Then, when z ∈ Γ, the equation F (z , z n ) = ξ has exactly one solution z n (z , ξ) ∈ D(0, R z ) and it depends holomorphically on ξ and on z ∈ Γ.

Proof. Lemma 2.5.2 implies the existence an uniqueness of the solutions z n (z , ξ) in each disk D(0, R z ). By (2.5.9) it follows that

∂F ∂z n (z , z n (z , ξ)) = 0 for all z ∈ Γ and all ξ ∈ D ¡ F (z , 0), (a -c)(R z -λ) ¢ .
Hence, the implicit function theorem implies that z n (z , ξ) depends holomorphically on ξ and z .

| A formula for the intensity measure of the point process of eigenvalues of P δ h

We prove the following formula for the intensity measure of Ξ (cf (1.2.10)):

Proposition 2.6.1. Let h 2/3 η < const. and let Ω := Ω a η Σ. Let C > 0 and let C 1 > 0 be as in (1.1.10) such that C -C 1 > 0 is large enough. Let δ be as in Hypothesis 1.2.6 with κ > 4, define N := (2 C 1 /h + 1) 2 and let B (0, R) ⊂ C N be the ball of radius R := C h -1 centered at zero. For z ∈ Ω let X (z) be as in Definition 2.3.2, let E -+ (z) be as in Proposition 2.2.1 and let e 0 and f 0 be as in (1.2.6) and (1.2.9). There exist functions

Ψ(z; h, δ) = (∂ z X |∂ z X ) - 1 X 2 |(∂ z X |X )| 2 + δ -2 fl fl (e 0 | f 0 )(1 + O ¡ h ∞ ¢ ) + O ¡ η 1/4 δ 2 h -7/2 ¢fl fl 2 + O ¡ δ 3 h -3 ¢ , ( 2 
.6.1)

Θ(z; h, δ) = |E -+ (z) + O ¡ δ 2 η -1/4 h -5/2 ¢ | 2 δ 2 X (z) 2 , (2.6.2)
and D > 0 and C > 0 such that for all ϕ ∈ C 0 (Ω) and for h > 0 small enough

E £ Ξ(ϕ)1 B (0,R) ⁄ = ˆϕ(z) 1 + O ¡ δη -1/4 h -3/2 ¢ π X 2 Ψ(z; h, δ)e -Θ(z;h,δ) L(d z) + O ‡ e -D h 2
• .

Here

, O ¡ η -1/4 δh -3/2 ¢ is independent of ϕ and O ‡ e -D h 2 • means 〈T h , ϕ〉 where T h ∈ D (C) such that |〈T h , ϕ〉| ≤ C ϕ ∞ e -D
h 2 for all ϕ ∈ C 0 (Ω) where C and D is independent of h, δ, η and ϕ. Moreover, the estimates in (2.6.1) and ( 2 

) = (E δ -+ ) -1 (0), thus Ξ (cf. Definition 1.2.10) satisfies Ξ = X z∈(E δ -+ ) -1 (0) δ z .
It has been shown in [START_REF]Spectral properties of non-self-adjoint operators[END_REF], that E δ -+ (z) satisfies a ∂-equation, i.e. there exists a smooth function

f δ : Ω → C such that ∂ z E δ -+ (z) + f δ (z)E δ -+ (z) = 0.
This implies that the zeros of E δ -+ (z) are isolated and countable and we may use the same notion of multiplicity as for holomorphic functions. In particular, E δ -+ (z) satisfies condition (2.5.1). Let χ be as in Lemma 2.5.1, then by Lemma 2.5.1, Fubini's theorem and the dominated convergence theorem we have

E 2 4 X z∈(E δ -+ ) -1 (0) ϕ(z) 1 B (0,R) 3 5 = lim ε→0 ˆϕ(z) ˆB(0,R) D(z, α)L(d α) ¶ L(d z),
where

D(z, α) = π -N χ ˆE δ -+ (z, α) ε ! 1 ε 2 fl fl fl∂ z E δ -+ (z, α) fl fl fl 2 e -αα .
(2.6.3)

Step II Next we give an estimate on ∂ z E δ -+ (z). By (2.3.2)

∂ z E δ -+ (z) = ∂ z E -+ (z) -δ (∂ z X (z) • α + ∂ z T (z, α)) , (2.6.4) 
where the derivative ∂ z acts on X (z) component wise and the dot-product ∂ z X (z)•α is bilinear. To estimate ∂ z T (z, α), recall (2.3.3) and consider the derivative

∂ z E -Q ω (EQ ω ) n E + = (∂ z E -)Q ω (EQ ω ) n E + + E -Q ω " n X j =1 (EQ ω ) j -1 (∂ z E )Q ω (EQ ω ) n-j # E + + E -Q ω (EQ ω ) n (∂ z E + ),
with the convention (EQ ω ) 0 = 1. Recall the Grushin problem from Proposition 2.2.1 and take the derivative with respect to z of the relation E (z)P (z) = 1 to obtain

∂ z E (z) + E (z)(∂ z P (z))E (z) = 0.
A direct calculation yields

∂ z E = -E (∂ z (P h -z))E -E + (∂ z R + )E -E (∂ z R -)E - = E 2 -E + (∂ z R + )E -E (∂ z R -)E -.
Recall the definition of R + and R -given in (2.2.1). By the estimates on the z-and z-derivatives of e 0 and f 0 given in Lemma 2.1.11, we conclude that 

∂ z R + H 1 →C , ∂ z R -C→L 2 = O ¡ η 1/2 h -1 ¢ . 2.
(z) L 2 →H 1 = O ((h η) -1/2
) and E ± = O (1), we have

∂ z E L 2 →H 1 = O (η 1/4 h -3/2 ).
Putting all of this together, we get that the series of ∂ z T (z, α) converges again geometrically and we gain the estimate

∂ z T (z, α) = O ¡ η 1/4 δh -7/2 ¢ .
(2.6.5)

Analogously, we conclude for all

β ∈ N 2 η -|β| 2 h |β| ∂ β zz T (z, α) = O ¡ η -1/4 δh -5/2 ¢ . (2.6.6) Thus, ∂ z E δ -+ (z) = ∂ z E -+ (z) -δ∂ z X (z) • α + O ¡ η 1/4 δh -7/2 ¢ .
Step III Consider the integral (2.6.3) and choose vectors e 1 , e 2 , • • • ∈ C N as a basis of the α-space such that e 1 = X / X and such that e 1 , e 2 and X / X , ∂ z X span the same space: Therefore, we perform a unitary transformation in the α-space such that with a slight abuse of notion

α = α 1 X (z) X (z) + α 2 b ˆ∂z X (z) ∂ z X (z) - (∂ z X (z)|X (z))X (z) ∂ z X (z) X (z) 2 ! + α ⊥ , (2.6.7) 
where

α 1 , α 2 ∈ C and α ⊥ ∈ C N -3 and b > 0 is a factor of normalization, b = ∂ z X (z) X (z) q ∂ z X (z) 2 X (z) 2 -|(∂ z X (z)|X (z))| 2 . ( 2.6.8) 
This change of variables is well defined by Lemma 2.4.1. In the following we will also use the notation (α 1 , α 2 , α ⊥ ) = (α 1 , α ). This choice of basis yields by (2.3.3) and (2.3.2)

E δ -+ (z) = E -+ (z) -δ X (z) α 1 + O ¡ η -1/4 δ 2 h -5/2 ¢ (2.6.9)
and by (2.6.4), (2.6.7), (2.6.8)

∂ z E δ -+ (z) = ∂ z E -+ (z) -δ (∂ z X (z)|X (z)) X (z) α 1 -δ ∂ z X (z) 2 - |(∂ z X (z)|X (z))| 2 X (z) 2 ¶ 1 2 α 2 + O ¡ η 1/4 δ 2 h -7/2 ¢ . (2.6.10) Now let us split the ball B (0, R), R = C h -1 , into two pieces: pick C 0 > 0 such that 0 < C 1 < C 0 < C and define R 0 := C 0 h -1 .
Then we shall consider one piece such that α C N -1 < R 0 and the other such that α C N -1 > R 0 . Hence, (2.6.3) is equal to

lim ε→0 ˆϕ(z) B(0,R) α C N -1 <R 0 D(z, α)L(d α)L(d z) + lim ε→0 ˆϕ(z) B(0,R) α C N -1 >R 0 D(z, α)L(d α)L(d z) =: I 1 (ϕ) + I 2 (ϕ).
(2.6.11)

Step IV In this step we will calculate I 1 (ϕ) of (2.6.11). There we perform a change of variables such that β := E δ -+ (z, α) is one of them. Due to (2.6.9) it is natural to express α 1 as a function of β and α . To this purpose we will apply Proposition 2.5.3 to the function E δ -+ (z, α):

E δ -+ (z, α 1 , α ) is holomorphic in α in ball of radius R = C h -1 centered at 0.
Here, α plays the role of z in the Proposition, in particular α 1 plays the role of z n . Recall (2.3.2) and note that since

T (z, α) = O ¡ η -1/4 δh -5/2 ¢ (cf. (2.

3.3)) we can conclude by the Cauchy inequalities that

∂ α 1 δT (z, α) = O ¡ η -1/4 δ 2 h -3/2 ¢ which implies ∂ α 1 E δ -+ (z, α 1 , α ) = -δ X (z) + O ¡ η -1/4 δ 2 h -3/2 ¢ .
(2.6.12) By Proposition 2.3.3 we have that

X (z) = 1 + O (h ∞ ) which implies that ∂ α 1 E δ -+ (z, α 1 , α ) = -δ ¡ 1 + O ¡ h ∞ + η -1/4 δh -3/2 ¢¢ .
Hence, E δ -+ (z, α) satisfies the assumptions of Proposition 2.5.3. Since we restricted α to α C N -1 < R 0 and since

|α 1 | < R 2 -α C N -1 =: R α ,
it follows by Proposition 2.5.3 that for

β ∈ \ α C N -1 <R 0 D ‡ E δ -+ (z, 0, α ), r α • (2.6.13) with r α ≥ δ ¡ 1 + O ¡ h ∞ + η -1/4 δh -3/2 ¢¢ q C 2 -C 2 0 h ≥ δh -1 1 > 0.
(2.6.14)

and h > 0 small enough, β = E δ -+ (z, α 1 , α ) has exactly one solution α 1 (β, α ) in the disk D(0, R α ) and it depends holomorphically on β and α . More precisely,

α 1 (β, α ) = -β + E -+ (z) + O ¡ η -1/4 δ 2 h -5/2 ¢ δ X (z) . (2.6.15) Furthermore, L(d α) = |∂ α 1 E δ -+ | -2 L(d β)L(d α )
. Since the support of χ is compact, we can restrict our attention to β and E δ -+ (z, 0, α ) in a small disk of radius ε > 0 centered at 0. By choosing ε < δh -1 /C , C > 0 large enough, as in (2.6.14) we see that β, E δ -+ (z, 0, α ) ∈ D(0, ε) implies (2.6.13). By performing this change of variables and by picking ε > 0 small enough as above, we get

I 1 (ϕ) = lim ε→0 ˆϕ(z) 8 < : Ĉ χ β ε ¶ 1 ε 2 Λ(β, z)L(d β) 9 = ; L(d z), (2.6.16) 
where Λ(β, z) depends smoothly on z and on β and, using (2.6.10), is given by

Λ(β, z) :=π -N ˆ α C N -1 <R 0 1 B (0,R) (α 1 , α ) fl fl fl∂ α 1 E δ -+ (α 1 , α , z) fl fl fl -2 • fl fl fl fl A(α, z) -β (∂ z X (z)|X (z)) X (z) 2 -B (z)α 2 + O ¡ η 1/4 δ 2 h -7/2 ¢ fl fl fl fl 2 • exp ( -α α - fl fl fl fl fl -β + E -+ (z) + O ¡ η -1/4 δ 2 h -5/2 ¢ δ X (z) fl fl fl fl fl 2 ) L(d α ), (2.6.17) 
where where α 1 = α 1 (β, α , z) and A(α, z), B (z) are defined as follows: 

A(α, z) : = ∂ z E -+ (z) - (∂ z X (z)|X (z)) X (z) 2 ¡ E -+ (z) + O ¡ η -1/4 δ 2 h -5/2 ¢¢ + O ¡ η 1/4 δ 2 h -7/2 ¢ = (e 0 | f 0 )(1 + O ¡ h ∞ ¢ ) + O ¡ η 1/4 δ 2 h -7/2 ¢ = O η 3/4 h -1 2 e -η 3/2 h ¶ + O ¡ η 1/4 δ 2 h -7/2 ¢ . ( 2 
(∂ z X (z)|X (z)) X (z) 2 fl fl fl fl ≤ ∂ z X (z) X (z) = ¡ 1 + O ¡ h ∞ ¢¢ O ¡ η 1/2 h -1 ¢ = O ¡ η 1/2 h -1 ¢
B (z) := δ ∂ z X (z) 2 - |(∂ z X (z)|X (z))| 2 X (z) 2 ¶ 1 2 = O ‡ η -1/4 δh -1 2 • . ( 2 
η -n+m 2 h n+m ∂ n z ∂ m z A(z) = O η 3/4 h -1 2 e -η 3/2 h ¶ + O ¡ η 1/4 δ 2 h -7/2 ¢ , η -n+m 2 h n+m ∂ n z ∂ m z B (z) = O ‡ η -1/4 δh -1 2 • .
(2.6.20)

Since Λ(β, z) is continuous in β, the dominated convergence theorem shows that

I 1 (ϕ) = ˆϕ(z)Λ(0, z)L(d z).
Next, let us look at the indicator function 1 B (0,R) (α 1 (β, α , z), α ) for α < R 0 : By (2.6.15) we have

|α 1 (0, α )| = fl fl E -+ (z) + O ¡ δ 2 h -5/2 ¢fl fl δ X (z) . Thus, 1 B (0,R) (α 1 (0, α , z), α ) = 1 if |α 1 (0, α )| 2 ≤ R 2 -R 2 0 = C 2 h 2 , α < R 2 0 and if R 2 -R 2 0 < |α 1 (0, α )| 2 < R 2 , α < R 2 0 -|α 1 (0, α )| 2 , and 1 B (0,R) (α 1 (0, α , z), α ) = 0 if R 2 ≤ |α 1 (0, α )| 2 , with C 2 := C 2 -C 2 0 .
Hence, we split Λ(0, z) into

Λ(0, z) = Λ(0, z) 1 { Θ(z;h,δ)≤ C h } (z) + 1 n C h < Θ(z;h,δ)<R o (z) ¶ =: Λ 1 (0, z) + Λ 2 (0, z), (2.6.21)
where

Θ(z; h, δ) := |E -+ (z) + O ¡ δ 2 η -1/4 h -5/2 ¢ | 2 δ 2 X (z) 2 .
We start by treating Λ 1 . Note that the function

{ α C N -1 < R 0 } α -→ exp n - fl fl α 1 (0, α , z) fl fl 2 o ∈ [0, 1]
is continuous, bounded and recall that (2.6.15) holds for all α ∈ { α C N -1 < R 0 }. Furthermore, note that all factors in the integral (2.6.17) are positive. Since the ball { α C N -1 < R 0 } is simply connected the intermediate value theorem yields

Λ 1 (0, z) =π -N 1 { Θ(z;h,δ)≤ C h } (z) fl fl δ X (z) + O ¡ η -1/4 δ 2 h -3/2 ¢fl fl -2 • exp{-Θ(z; h, δ)} ˆ α C N -1 <R 0 |A(α, z) -δB (z)α 2 | 2 e -α α L(d α ). (2.6.22)
Here we also applied (2.6.12). Before we can further simplify (2.6.22), let us prove the following technical Lemma: 

Lemma 2.6.3. Let h > 0, let C 0 ,C 1 > 0 and let N := (2 C 1 h + 1) 2 . Let n ∈ N N -1 , m ∈ N N -1 , let R 0 = C 0 /h and let α ∈ C N . If C 0 > C 1 > 0 are large enough and such that ln ˆ2 + eR 2 0 N -2 ! < R 2 0 2(N - 2 
π 1-N ˆ α C N -1 ≥R 0 α n α m e -α α L(d α ) fl fl fl fl fl ≤ π 1-N fl fl S 2N -3 fl fl ˆ∞ R 0 r 2u+2N -3 e -r 2 d r = 2 (N -2)! ˆ∞ R 2 0 τ u+N -2 e -τ d τ.
Repeated partial integration then yields 

2 (N -2)! e -R 2 0 u+N -2 X i =0 u + N -2 i ¶ (u + N -2 -i )!R 2i 0 . ( 2 
(u + N -2) (N -2)! e -R 2 0 u+N -2 X i =0 u + N -2 i ¶ u + N -2 e ¶ u+N -2-i R 2i 0 ≤ e (u + N -2) 2π(N -2) e -R 2 0 ‡ e N -2 • N -2 R 2 0 + u + N -2 e ¶ u+N -2 = e -R 2 0 e 2π r 1 + u N -2 ˆR2 0 e N -2 + 1 + u N -2 ! N -2 R 2 0 + u + N -2 e ¶ u .
Since u/(N -2) is bounded for h > 0 small, it remains to consider exp

( -R 2 0 + (N -2) ln ˆR2 0 e N -2 + 1 + u N -2 ! + u ln R 2 0 + u + N -2 e ¶ ) .
(2.6.24)

However, there exists a 1 > κ > 0 such that

-R 2 0 + (N -2) ln ˆR2 0 e N -2 + 1 + u N -2 ! ≤ -R 2 0 κ = - C 2 0 h 2 ,
which implies that (2.6.24) is dominated by exp

( - C 2 0 h 2 κ - h 2 O (1) ln(h) ¶ ) ,
and we conclude the statement of the Lemma for h > 0 small enough. 

π -N ˆ α C N -1 <R 0 |A -B α 2 | 2 exp n -α α o L(d α ).
(2.6.25)

We will investigate each term of (2.6.25) separately. Since B is constant in α and since

ˆ|α 2 | 2 exp(-α α )L(d α ) = π N -1 ,
we conclude, by Lemma 2.6.3 for C 0 > C 1 > 0 large enough and h > 0 small enough, that there exists a constant D > 0 such that

π -N ˆ α C N -1 <R 0 |B α 2 | 2 e -α α L(d α ) = π -1 |B | 2 + O ‡ η -1 2 δ 2 h -1 e -D h 2
• .

The mean value theorem, (2.6.18) and Lemma 2.6.3 imply that there exists a constant D > 0 (not necessarily the same as above) such that

π -N ˆ α C N -1 <R 0 |A| 2 exp n -α α o L(d α ) = π -1 |A| 2 + O ‡ e -D h 2
• .

Note that after the equality sign we have A = A( α , z) for an α ∈ B (0, R 0 ) given by the mean value theorem. Next, since (2.6.19) is independent of α,

π -N ˆ α C N -1 <R 0 AB α 2 e -α α L(d α ) = π -N B ˆ α C N -1 <R 0 Aα 2 e -α α L(d α ).
Since A(α, z) is holomorphic in α we gain from (2.6.18) by the Cauchy inequalities

|∂ α 2 A| = O ¡ η 1/4 δ 2 h -5/2 ¢ . ( 2 

.6.26)

Here we used that the first term in (2.6.18) is independent of α. Extend A to a function on C N -1 such that the above estimate still holds. Then, by Lemma 2.6.3 there exists a constant D > 0 such that

π -N B ˆ α C N -1 ≥R 0 Aα 2 e -α α L(d α ) = O η 1/2 h -1 δe -η 3/2 h + δ 3 h -4 ¶ e -D h 2 .
Here we used (2.6.18) and (2.6.19). Stokes' theorem and (2.6.26) imply

π -N B ˆCN-1 Aα 2 e -α α L(d α ) = π -N B ˆCN-1 ‡ ∂ α 2 A • e -α α L(d α ) ≤ O ¡ δ 3 h -3 ¢ .
Plugging the above into (2.6.25), we gather that there exist a constant D > 0 such that 

π -N ˆ α C N -1 <R 0 |A -B α 2 | 2 exp n -α α o L(d α ) = π -1 ¡ |A(z)| 2 + |B (z)| 2 ¢ + O ‡ δ 3 h -3 + e -D h 2 • =: δ 2 Ψ(z, h, δ). ( 2 
δ 2 π ‡ (∂ z X |∂ z X ) - 1 X 2 |(∂ z X |X )| 2 + δ -2 fl fl (e 0 | f 0 )(1 + O ¡ h ∞ ¢ ) + O ¡ η 1/4 δ 2 h -7/2 ¢fl fl 2 • .
The above, (2.6.27), (2.6.22) and

fl fl δ X (z) + O ¡ η -1/4 δ 2 h -3/2 ¢fl fl -2 = ¡ 1 + O ¡ η -1/4 δh -3/2 ¢¢ δ 2 π X (z) 2 ,
imply that for h > 0 small enough, there exists a constant D > 0 such that 

Λ 1 (0, z) := ¡ 1 + O ¡ η -1/4 δh -3/2 ¢¢ π X (z) 2 1 { Θ(z;h,δ)≤ C h } (z)Ψ(z, h, δ) exp -Θ(z;h,δ) . ( 2 
Λ 2 (0, z) ≤ e -e C h 2 O δ 4 η 1/2 h -7 + η 1/2 h -1 δe -η 3/2 h ¶ = O ‡ e -D h 2
• , for some D > 0. Thus, we can substitute 1 { Θ(z;h,δ)≤ C h } (z) with 1 in (2.6.28), up to an error of order O(e

-D h 2 ).
Step V In this step we will estimate I 2 (ϕ) of (2.6.11). Therefore, we increase the space of integration

B(0,R) α C N -1 >R 0 χ ˆE δ -+ (z, α) ε ! 1 ε 2 fl fl fl∂ z E δ -+ (z, α) fl fl fl 2 e -αα L(d α) ≤ B(0,2R) R 0 < α C N -1 <2R 0 χ ˆE δ -+ (z, α) ε ! 1 ε 2 fl fl fl∂ z E δ -+ (z, α) fl fl fl 2 e -αα L(d α) =: W ε .
It is easy to see that Lemma 2.5.2 holds true for the set B (0, 2R) ∩ {R 0 < α C N -1 < 2R 0 }, potentially by choosing a larger C > 0 in Corollary 1.1.5 larger. We can proceed as in Step IV: perform the same change of variables and the limit of ε → 0. This yields

lim ε→0 W ε =π -N R0 < α C N -1 <2R 0 1 B (0,2R) (α 1 (0, α , z), α ) fl fl ∂ α 1 β(α 1 , α , z) fl fl -2 • |A(α, z) -B (z)α 2 | 2 exp n -α α -Λ(z, h, δ) 2 o L(d α ).
By (2.6.18), (2.6.19) and Lemma 2.6.3 we see that there exists a constant D > 0 such that

π -N R0 < α C N -1 <2R 0 |A -B α 2 | 2 e -α α L(d α ) ≤ e - D h 2 O δ 4 η 1/2 h -7 + η 1/2 h -1 δe -η 3/2 h ¶ = O ‡ e -D h 2
• .

The statement about the derivatives of the error terms follows from (2.6.20), (2.6.6). In particular, we now strengthen assumption (2.1.1) and assume from now on that Ω Σ satisfies Hypothesis 1.1.7 if nothing else is specified, i.e. we assume that

Ω Σ is open, relatively compact with dist (Ω, ∂Σ) ¡ h ln h -1 ¢ 2/3 .
Recall the definition of Ω a η ∩ Ω given in (2.1.2):

Ω a η = n z ∈ Ω : η C ≤ Im z ≤ C η o for some constant C > 0. Define e Ω a η := n z ∈ Ω : η 2C ≤ Im z ≤ 2C η o .
Define η j := C -j , j ∈ N 0 , and consider the open covering of

Ω Ω ⊂ [ j ∈N 0 e Ω a η j ∪ ˆΩ\ [ j ∈N 0 Ω a η j ! ,
where dist (Ω\ S j ∈N 0 Ω a η j , ∂Σ) > 1/C , thus, conforming with the previous notation, we may define

Ω i := Ω\ [ j ∈N 0 Ω a η j .
Let {χ η j } j ∈N 0 be a partition of unity subordinate to this locally finite open subcovering such that

1 = X j ∈N χ η j + χ η 0 ,
in a neighborhood of Ω. Here, for j ∈ N, χ η j ∈ C ∞ 0 ( e Ω a η ), supported in either e Ω a η . Furthermore, χ η 0 ∈ C ∞ (Ω i ). This partition of unity together with Proposition 2.6.1 yields

E £ Ξ(ϕ)1 B (0,R) ⁄ = X j ∈N E £ Ξ(ϕχ η j )1 B (0,R) ⁄ + E £ Ξ(ϕχ 0 )1 B (0,R) ⁄ = X j ∈N ˆϕ(z)χ η j (z) 1 + O ‡ η -1/4 j δh -3/2 • π X 2 Ψ(z; h, δ)e -Θ j L(d z) + ˆϕ(z)χ 0 (z) 1 + O ¡ δh -3/2 ¢ π X 2 Ψ(z; h, δ)e -Θ 0 L(d z) + O ‡ e -D h 2 • .
where

Θ j := fl fl flE -+ (z) + O ‡ η -1/4 j δ 2 h -5/2 •fl fl fl 2 δ 2 X 2 , Θ 0 := |E -+ (z) + O ¡ δ 2 h -5/2 ¢ | 2 δ 2 X 2 .
Note that to gain the exponentially small error estimate in the above we used that the bound on the distribution T h ∈ D (C) (cf. Proposition 2.6.1) is independent of η. Thus, 

= |〈T h , ϕ〉| ≤ C ϕ ∞ e -D h 2 .
Analysis of the density Ψ Recall the formula for the density of eigenvalues given in Proposition 2.6.1. Define

Ψ 1 (z; h, δ) := (∂ z X |∂ z X ) - 1 X 2 |(∂ z X |X )| 2 + O ¡ δ 3 h -3 ¢ (2.7.1)
Since the error above is of order O (1), it follows from Proposition 2.4.1 that

Ψ 1 (z, h, δ) = 1 h ‰ i {p, p}(ρ + (z)) - i {p, p}(ρ -(z)) + O ¡ dist (z, ∂Σ) -2 ¢ ,
where we used that Im z η j for z ∈ Ω a η j . Proposition 2.4.2 implies

Ψ 1 (z, h, δ)L(d z) = 1 2h p * (d ξ ∧ d x) + O ¡ dist (z, ∂Σ) -2 ¢ L(d z).
Furthermore, Proposition 2.6.1 and Proposition 2.4.1 yield that

η -n+m 2 h n+m ∂ n z ∂ m z O ‡ η -2 j • = O ‡ η -2 j • ,
where

O ‡ η -2 j •
is the error term of Ψ 1 . Next, let us turn to the second part of Ψ:

δ -2 fl fl fl(e 0 | f 0 )(1 + O ¡ h ∞ ¢ ) + O ‡ η 1/4 j δ 2 h -7/2
•fl fl fl

2 = δ -2 fl fl (e 0 | f 0 ) fl fl 2 (1 + O ¡ h ∞ ¢ ) + O ‡ η 1/2 j δ 2 h -7 • + O ‡ η 1/4 j h -7/2 fl fl (e 0 | f 0 ) fl fl • = δ -2 fl fl (e 0 | f 0 ) fl fl 2 (1 + O ¡ h ∞ ¢ ) + O ‡ η j h -4 e -S h + η 1/2 j δ 2 h -7
• .

In the last line, we applied an estimate on fl fl (e 0 | f 0 ) fl fl which follows from Proposition 2.2.2 and from Remark 2.2.4. The error term O (η j h -4 e -S h ) is bounded by O (η j ) because η (-h ln h) 2/3 . We then absorb O (η j ) into the error term O (η -2 j ) of Ψ 1 as well as the error term O (η 1/2 j δ 2 h -7 ) ≤ O (η 1/2 j ). Then, one defines

Ψ 2 (z; h, δ) := fl fl (e 0 | f 0 ) fl fl 2 δ 2 ‡ 1 + O ‡ η -3/4 j h 1/2 •• . (2.7.2)
As in (2.6.20), the error estimates don't change if we apply η

-n+m 2 h n+m ∂ n z ∂ m z .
Analysis of the exponential Θ Recall from Proposition 2.2.1 that -α 0 = E -+ and use (2.2.26) to find that

E -+ (z) = ([P h , χ]e 0 | f 0 ) ˆ1 + O ˆexp " - η 3/2 j h #!! . Here χ ∈ C ∞ 0 (S 1 ) with χ ≡ 1 in a small open neighborhood of {x -(z); z ∈ Ω}. Thus, using X = (1 + O (h ∞ )) (cf. Proposition 2.3.
3), we have the following equation for Θ given in Proposition 2.6.1

Θ(z, h, δ) = fl fl flE -+ (z) + O ‡ η -1/4 j δ 2 h -5/2 •fl fl fl 2 δ 2 X 2 = fl fl fl([P h , χ]e 0 | f 0 ) + O ‡ η -1/4 j δ 2 h -5/2 •fl fl fl 2 δ 2 (1 + O (h ∞ )) ˆ1 + O ˆe- η 3/2 j h !! . (2.7.3)
As in (2.6.20), the error estimates stay invariant under the action of

η -n+m 2 j h n+m ∂ n z ∂ m z .
Finally, to conclude the density given in the Theorem, note that

1 + O ‡ η -1/4 j δh -3/2 • π X 2 = 1 + O ¡ dist (z, ∂Σ) -1/4 δh -3/2 ¢ π .
In the case of the operator P δ h , it is possible to state more explicit formulas for the different parts of the density of eigenvalues given in Theorem 1.2.12:

It follows by Propositions 2.4.1 and 2.4.2 that

1 2h p * (d ξ ∧ d x) = 1 h ‰ i {p, p}(ρ + (z)) + i {p, p}(ρ -(z)) L(d z) 1 h p dist (z, ∂Σ) L(d z)
where we used that Im z η j for z ∈ Ω a η . For our purposes we can assume that |Im z -〈Im g 〉| > 1/C , C 1, since inside this tube Ψ 2 and Θ are exponentially small in h > 0. In the case of Ψ 2 , this follows from the assumptions on δ (cf. Hypothesis 1.2.6) and from Remark 2.2.4. In the case of Θ, this follows from the assumptions on δ and Proposition 2.2.12 and (2.7.3). Thus, applying Proposition 2.2.2 to (2.7.2) yields

Ψ 2 (z; h, δ) = ¡ i 2 {p, p}(ρ + ) i 2 {p, p}(ρ -) ¢ 1 2 πhδ 2 |∂ Im z S(z)| 2 e -2S h ¡ 1 + O ¡ η -3/4 h 1/2 ¢¢ . (2.7.4)
As in (2.6.20), the error estimates don't change if we apply η

-n+m 2 h n+m ∂ n z ∂ m z . Moreover, since Im z η j for z ∈ Ω a η , Ψ 0 2 (z; h, δ) (dist (z, ∂Σ)) 3/2 e -2S h hδ 2 .
Apply Proposition 2.2.12 to (2.7.3) gives that

Θ(z, h, δ) =V (z, h) 2 e -2S h δ 2 ˆ1 + O ¡ h ∞ ¢ + O ˆe- η 3/2 j h !! + O ‡ η -1/2 j δ 2 h -5 • + O ‡ V h -5/2 e -S h • . (2.7.5) Since 0 ≤ V = O ‡ η 1/4 j h 1/2
• by (2.2.23), it follows that

Θ(z, h, δ) = h ¡ i 2 {p, p}(ρ + ) i 2 {p, p}(ρ -) ¢ 1 2 π e -2S h δ 2 ‡ 1 + O ‡ η -1/4 j h 3 2 •• + O ‡ η -1/2 j δ 2 h -5 • + O ‡ η 1/4 j h -2 e -S h • . Furthermore, for e -2S h δ -2 ≤ 1, the error term O ‡ η 1/4 j h -2 e -S h
• is bounded by O (η 1/4 j h -2 δ) since there we have that e -S h ≤ δ. For e -2S h δ -2 ≤ 1, we have that

O ‡ η 1/4 j h -2 e -S h • ≤ O ‡ η 1/4 j h -2 δe -2S h δ -2 • ≤ O ‡ η 1/4 j h 2 e -2S h δ -2
• .

Thus,

Θ(z, h, δ) = h ¡ i 2 {p, p}(ρ + ) i 2 {p, p}(ρ -) ¢ 1 2 π e -2S h δ 2 ‡ 1 + O ‡ η -1/4 j h 3 2 •• + O ‡ η 1/4 j h -2 δ + η -1/2 j δ 2 h -5 • . (2.7.6)
Analogous to (2.6.20), the error estimates stay for β ∈ N 2 invariant under the action of η

- |β| 2 j h |β| ∂ β zz . Moreover, Θ 0 (z; h, δ) h p dist (z, ∂Σ) e -2S h δ 2 .
We have thus proven Proposition 1.2.14 and Proposition 1.2.13. Since we will need it later on we will state the following formulas:

Lemma 2.7.1. Under the assumptions of Theorem 1.2.12 and for ¡ h ln h -1 ¢ 2/3 η < const, we have

∂ Im z Ψ 1 = - 1 4h Im g (x -) (Im g (x -)) 3 - Im g (x + ) (Im g (x + )) 3 ¶ + O ¡ η -2 ¢ = O ¡ η -3/2 h -1 ¢
and for |Im z -〈Im g 〉| > 1/C , C > 0 large enough,

∂ Im z Ψ 2 (z, h) = 2 ¡ i 2 {p, p}(ρ + ) i 2 {p, p}(ρ -) ¢ 1 2 πh 2 |∂ Im z S(z)| 2 (-∂ Im z S(z)) e -2S h δ 2 • ‡ 1 + O ‡ η -3/4 h 1 2 •• , ∂ Im z Θ(z, h) = 2 ¡ i 2 {p, p}(ρ + ) i 2 {p, p}(ρ -) ¢ 1 2 πδ 2 exp{-2S h } (-∂ Im z S(z)) ‡ 1 + O ‡ η -1/4 h 3 2 •• + O ¡ η 3/4 h -3 δ + δ 2 h -6 ¢ ,
Proof. Let us first treat Ψ 1 : Recall from the proof of Proposition 2.4.5 that Ψ 1 was given by an oscillatory integral where the phase vanishes at the critical point. Thus, the ∂ Im z derivative of the error term O ¡ η -2 ¢ grows at most by η -1 . Thus, taking the derivative of (2.7.1) yields

∂ Im z Ψ 1 = - 1 4h Im g (x -) (Im g (x -)) 3 - Im g (x + ) (Im g (x + )) 3 ¶ + O ¡ η -3 ¢ = O ¡ η -3/2 h -1 ¢ ,
where the last estimate follows from |2Im g (x ± | = |{p, p}(ρ ± | η (cf. Proposition 2.4.1) and from the fact that the z-and z-derivative of the error term grow at most by a factor of O (η 1/2 h -1 ). Now let us turn to Ψ 2 : one calculates from (2.7.4) that for |Im z -〈Im g 〉| > 1/C

∂ Im z Ψ 2 (z, h) = 2 ¡ i 2 {p, p}(ρ + ) i 2 {p, p}(ρ -) ¢ 1 2 πh 2 |∂ Im z S(z)| 2 (-∂ Im z S(z)) e -2S h δ 2 • ‡ 1 + O ‡ η -3/4 h 1 2
•• .

Here we used that the z-and z-derivative of the error terms grow at most by a factor of O (η 1/2 h -1 ).

Finally, let us turn to Θ: as in the proof of Proposition 2.2.3 one calculates the formula for ∂ Im z Θ from (2.7.6).

| Properties of the density

In this section we will discuss and prove the results stated in Section 1.2.4. 

-Local maximum of the average density

(P h -z) -1 = |t 0 (z)| -1 = |α 0 (z)| -1 .
Recall the Grushin problem posed in Proposition 2.2.1. Since E -1 -+ = -α 0 , it follows by Proposition 2.2.12 that • for 0 < h 1, there exist numbers y ± (h) such that ε 0 = S(y ± (h)) with

(P h -z) -1 = exp ' S h " V (z)|1 -e Φ(z) | ˆ1 + O ˆe-η 3 2 h !! , ( 2 
C -1 ¡ h ln h -1 ¢ 2 3 y -(h) < 〈Im g 〉 -ch ln h -1 < 〈Im g 〉 + ch ln h -1 < y + (h) Im g (b) -C -1 ¡ h ln h -1 ¢ 2 3 ,
for some constants C , c > 1. Furthermore,

y -(h), (Im g (b) -y + (h)) (ε 0 (h)) 2/3 ;
• there exists h 0 > 0 and a family of smooth curves, indexed by h ∈]h 0 , 0[,

γ h ± : ]c, d [-→ C with Re γ h ± (t ) = t such that |E -+ (γ h ± (t ))| = δ,
and

Im γ h ± (t ) = y ± (ε 0 (h)) 1 + O h ε 0 (h) ¶ ¶ .
Furthermore, there exists a constant C > 0 such that

d Im γ h ± d t (t ) = O exp • - ε 0 (h) C h ' ¶ .

Lemma 2.8.2. Assume the same hypothesis as in Lemma 2.8.1 and let D(z, h)

:= 1 + O ‡ δh -3 2 dist (z, ∂Σ) -1/4 • π Ψ(z; h, δ) exp{-Θ(z; h, δ)}
be the average density of eigenvalues of the operator of P δ h given in Theorem 1.2.12. Then, there exists h 0 > 0 and a family of smooth curves, indexed by h ∈]h 0 , 0[,

Γ h ± : ]c, d [-→ C, Re Γ h ± (t ) = t , with Γ -⊂ {Im z < 〈Im g 〉} and Γ + ⊂ {Im z > 〈Im g 〉}, along which Im z → D

(z, h) takes its local maxima on the vertical line

Re z = const. and d d t Im Γ h ± (t ) = O h 4 ε 0 (h) 4 ¶ .
Moreover, for all c < t < d 

|Γ h ± (t ) -γ h ± (t )| ≤ O h 5 ε 0 (h)
(P h -γ h ± ) -1 = δ -1 .
The third point has been proven with Lemma 2.8.2.

Proof of Lemma 2.8.1. Recall from Proposition 1.2.3 that S is strictly monotonous above and below the spectral line, i.e. Im z = 〈Im g 〉. Furthermore, recall from Hypothesis 1.2.6 that -

¡ κ -1 2 ¢ h ln h + C h ≤ 0 (h) < S(〈Im g 〉).
Thus, the implicit function theorem implies that there exist y ± (ε 0 (h)) ∈ R such that S(y ± (ε 0 (h))) = ε 0 (h). Note that in the case where ε 0 (h) is independent of h, the same holds true for y ± (ε 0 ). For the rest of the proof we will only treat the case where Im z ≤ 〈Im g 〉 (corresponding to y -) since the other case is similar. Consider z ∈ Ω Σ c,d with Re z = const. First, let us prove some a priori estimates: assume that there exists a ζ -with h 2/3 Im g (a 

) ≤ ζ -≤ 〈Im g 〉 such that |E -+ (Re z + i ζ -)|δ -1 = 1. Recall Proposition 1.2.3 and note that S(z) -ε 0 (h) = ˆImz 〈Im g 〉 (∂ Im z S)(t )d t + S(〈Im g 〉) -ε 0 (h) = ˆImz y -(ε 0 (h)) (∂ Im z S)(t )d t + S(y -(ε 0 (h))) -ε 0 (h). ( 2 
-〈Im g 〉| ≤ 1 C , C > 0 large enough, then |E -+ (Re z +i ζ -)|δ -1 ≤ O ‡ η 1/4 e -1

Dh

• for some D > 0 large. Thus, we may assume that, in case it exists,

|ζ --〈Im g 〉| > 1 C . (2.8.3) We conclude from (2.8.2) that y -(h) (ε 0 (h)) 2/3 (2.8.4)
and that for C > 0 large enough For z ∈ Ω ∩ Ω a η Σ c,d one calculates from by Proposition 2.2.12 that 

|〈Im g 〉 -y -(ε)| > 1 C . ( 2 
∂ Im z |E -+ (z)| = ( -V (z) ∂ Im z S(z) h |1 -e Φ(z) | ˆ1 + O ˆe-η 3 2 h !! + ∂ Im z " V (z)|1 -e Φ(z) | ˆ1 + O ˆe-η 3 2 h !!#) e -S(z) h , ( 2 
|∂ Im z V (z)| = O (h 1/2 η -3/4 ).
(2.8.7)

The a priori bound (2.8.3) implies that there exists a constant C > 1 such that

|1 -e Φ(z) | = 1 + O ‡ e -1 C h • , and 
∂ Im z |1 -e Φ(z) | = O ‡ e -1 C h • . (2.8.8)
The fact that

∂ Im z S(z) > 0 (cf. (1.2.3)) implies that ∂ Im z |E -+ (z)| < 0.
Note that in the case where dist (Ω, ∂Σ) > 1/C one sets in the above η = 1. Recall from Propositions 2.2.9 and 2.2.10 that V is independent of Re z. Using

∂ Re z |1 -e Φ(z) | = O ‡ e -1 C h • ,
we conclude that 

∂ Re z |E -+ (z)| = ∂ Re z " V (z)|1 -e Φ(z) | ˆ1 + O ˆe-η 3 2 h !!# e -S(z) h = O ˆe-η 3 2 h ! e -S(
||E -+ (Re z + i y -(h))| -|E -+ (γ h -(Re z))|| = |(∂ Im z |E -+ (z)|)(Re z + i ζ)| • |y -(h) -Im γ h -(Re z)|. Since |E -+ | = O ( hη 1/4 e -S h ) (cf. Proposition 2.2.6) and ∂ Im z |E -+ | -h -1/2 η 3/4 e -S h (cf. (2.8.6)), it follows that |y -(h) -Im γ h -(Re z)| = O ¡ η -1/2 h ¢ .
(2.8.10)

η y -(h) (ε 0 (h)) 2/3 implies that also Im γ h -(Re z) η (ε 0 (h)) 2/3
, and we conclude that

Im γ h -(Re z) = y -(ε 0 (h)) 1 + O h ε 0 (h) ¶ ¶ .
Finally, by

0 = d d Re z |E -+ (γ h -(Re z))| = ∂ Re z |E -+ (γ h -(Re z))| + ∂ Im z |E -+ (γ h -(Re z))| d Im γ h - d Re z (Re z).
and by (2.8.6 ) and (2.8.9) we may then conclude

d Im γ h - d Re z (Re z) = O e -η 3/2 h ¶ (2.8.11)
which, using η y -(h) (ε 0 (h)) 2/3 , yields the last statement of the Lemma.

Proof of Lemma 2.8.2. The idea of this proof is to search for the critical points of the average density of eigenvalues via the Banach fix point theorem. We shall only consider the case where Im z ≤ 〈Im g 〉 since the other case is similar.

Recall from Proposition 1.2.13 the explicit form the density given in Theorem 1.2.12. Proposition 2.4.1 and the fact that Im g has exactly two critical points imply that Ψ 1 is strictly monotonously decreasing. Thus, we may assume similar to (2.8.3) that for C > 0 large enough

|Im z -〈Im g 〉| > 1 C . (2.8.12) since else Ψ 2 = O (e - 1 
Dh ) with D > 0 large. Now, to find the critical points of the density of eigenvalues consider

π∂ Im z D(z, h) = ¡ ∂ Im z Ψ(z; h, δ) exp{-Θ(z; h, δ)} ¢ ¡ 1 + O ¡ δη -1/4 h -3/2 ¢¢ + Ψ(z; h, δ) exp{-Θ(z; h, δ)}O ¡ δη 1/4 h -5/2 ¢ = 0. (2.8.13)
Here we used that the z-and z-derivative of the error term O ¡ δη -1/4 h -3/2 ¢ increases its order of growth at most by a term of order O (η 1/2 h -1 ) (cf. Theorem 1.2.12). By

∂ Im z Ψ(z; h, δ)e -Θ(z;h,δ) = (∂ Im z Ψ 1 + ∂ Im z Ψ 2 -(Ψ 1 + Ψ 2 )∂ Im z Θ) e -Θ(z;h,δ) ,
and by Lemma 2.7.1 and Proposition 1.2.13, we can write (2.8.13) as

h -3 F (z, h, δ) + 2 e -2S h δ 2 |∂ Im z S(z)| 2 (-∂ Im z S(z)) ¡ i 2 {p, p}(ρ + ) i 2 {p, p}(ρ -) ¢ 1 2 πh 2 • ¡ 1 + O ¡ η -3/4 h 1/2 ¢¢ 0 @ (1 + O (η -3/2 h)) - h ¡ i 2 {p, p}(ρ + ) i 2 {p, p}(ρ -) ¢ 1 2 πδ 2 exp{-2S h } 1 A = 0, (2.8.14)
where F (z, h, δ) is a function depending smoothly on z, satisfying the bound

F (z, h, δ) - h 2 η 3/2 .
Here we used ∂ Im z Ψ 1 -(η 3/2 h) -1 which follows from Lemma 2.7.1 using the fact that Im g has only two critical points: a minimum at a and a maximum at b. Remark 2.8.3. In the case Im z > 〈Im g 〉 we find similarly that F (z, h, δ) h 2 η 3/2 . Furthermore, the functions in (2.8.14) are smooth in z and the z-and z-derivative increase their order of growth at most by O (η 1/2 h -1 ). Recall |E -+ (z)| as given in Proposition 2.2.12 and define

l (z) := |E -+ (z)| = h ¡ i 2 {p, p}(ρ + ) i 2 {p, p}(ρ -) ¢ 1 2 π e -2S h δ 2 (1 + O (η -3/2 h))
Thus, (2.8.14) is equal to zero if and only if

G(z, h, δ) + l (1 -l ) = 0, (2.8.15)
where G(z, h, δ) is a function depending smoothly on z, satisfying

G(z, h, δ) = F (z, h, δ) 2|∂ Im z S(z)| 2 (-∂ Im z S(z)) ¡ 1 + O ¡ η -3/4 h 1/2 ¢¢ h 2 η 3 .
The z-and z-derivative increase the order of growth of G at most by O (η 1 2 h -1 ). For l ≥ 0 to be a solution to (2.8.15), it is necessary that

l = 1 + h 2 O (1)η 3 .
Thus, l 1. Define the smooth function

z → t (z) := η 3 h 2 (l (z) -1),
with -c 0 ≤ t ≤ C 0 and c 0 ,C 0 > 0 large enough. As in (2.8.6) on calculates Substitute Im z = Im z(t ) in (2.8.15). To find the critical points, it is then enough to consider

h 2 η 3 ∂ Im z t = - 2∂ Im z S h ¡ 1 + O (η -3/2 h) ¢ l (Im z) - η 1/2
t -e G(t , Re z, h, δ) = 0, e G(t , Re z, h, δ) := G(Im z(t ), Re z, h, δ)) η -3 h 2 (1 + η -3 h 2 t )
and one finds

d d t e G(t , Re z, h, δ)) = O (h 2 η -3 ).
Thus, using t (γ h -) = 0 as starting point, which corresponds to l (γ h -) = 1, the Banach fixed-point theorem implies that for each Re z there exist a unique zero, t * -(Re z), of (2.8.14), it depends smoothly on Re z and satisfies

|t * -(Re z) -t (γ h -)| ≤ O (h 2 η -3 ).
(2.8.17) and

d t * -(Re z) d Re z = 1 1 - ‡ d d t e G • (t * -, Re z, h, δ) (∂ Re z e G)(t * -, Re z, h, δ)) = 1 1 + O (h 2 η -3 ) (∂ Re z e G)(t * -, Re z, h, δ)).
Since the z-and z-derivative applied to G increase its order of growth at most by O (η 1/2 h -1 ), we conclude that

d t * -(Re z) d Re z = O (η 1/2 h -1 ).
Taylor's formula applied to (Im z)(t ) yields that

(Im z)(t * ± (Re z)) = Im z(t (Im γ h ± (Re z))) + ˆt * ± (Re z) t (Im γ h ± (Re z)) d Im z d t (τ)d τ.
By (2.8.17) and (2.8.16) we conclude that

(Im z)(t * ± (Re z)) = Im γ h ± (Re z) + O (η -13/2 h 5 ) (2.8.18) 
and using (2.8.11) that

d d Re z (Im z)(t * ± (Re z)) = O ¡ η -6 h 4 ¢ .
It follows by Proposition 1.2.17 that the density has local maxima along the curves

Γ h ± (Re z) := (Re z, Im z(t * ± (Re z))).
Applying this definition to (2.8.18) yields that

|Im Γ h ± (Re z) -Im γ h ± (Re z)| ≤ O (η -13/2 h 5 )
for all z ∈ Σ c,d . By Lemma 2.8.1 we have that Im γ h ± (Re z) ε 0 (h) 2/3 . Thus,

Im Γ h ± (Re z) = Im γ h ± (Re z) ¡ 1 + O (ε 0 (h) -5 h 5 ) ¢ ,
which in particular implies that Im Γ h ± (Re z) ε 0 (h) 2/3 . This concludes the proof of the lemma.

Proof of Proposition 1.2.17. Proposition 1.2.13 implies that for |Im z -〈Im g 〉| > 1/C

Ψ 2 (z, h, δ) = ¡ i 2 {p, p}(ρ + ) i 2 {p, p}(ρ -) ¢ 1 2 πhδ 2 e -2S h |∂ Im z S(z)| 2 ¡ 1 + O ¡ η -3/4 h 1/2 ¢¢ (2.8.19) and Θ(z; h, δ) = h ¡ i 2 {p, p}(ρ + ) i 2 {p, p}(ρ -) ¢ 1 2 π e -2S h δ 2 ‡ 1 + O ‡ η -1/4 h 3 2 •• + O ¡ η 1/4 h -2 δ + η -1/2 δ 2 h -5 ¢ .
Thus, one calculates

fl fl fl fl Ψ 2 - |∂ Im z S| 2 h 2 Θ fl fl fl fl ≤ ¡ i 2 {p, p}(ρ + ) i 2 {p, p}(ρ -) ¢ 1 2 πhδ 2 e -2S h |∂ Im z S(z)| 2 O ‡ η -3 4 h 1 2 • + O ¡ η 5/4 h -4 δ + η 1/2 δ 2 h -7 ¢ ,
which implies the result given in Proposition 1.2.5.

Proof of Proposition 1.2.16. We will only consider the case z ∈ Σ c,d with Im z ≤ 〈Im g 〉 since the case of Im z > 〈Im g 〉 is similar.

A priori restrictions on the domain of integration Let y -(h) and γ -(Re z) be as in Lemma 2.8.1 and note that similarly to (2.8.2), we have

S(Im z) -ε 0 (h) = ˆImγ h - y -(h) (∂ Im z S)(t )d t + ˆImz Im γ h - (∂ Im z S)(t )d t .
(2.8.20)

Recall from (2.8.10) that (Im

γ h --y -(h)) = O (hη -1/2
). Then, one calculates using the mean value theorem and Proposition 1.2.3, similar as in the proof of Lemma 2.8.1 (cf. (2.8.4)), that

ˆImγ h - y -(h) (∂ Im z S)(t )d t = O (h).

and that ˆImz

Im γ h - (∂ Im z S)(t )d t (Im z -Im γ h -)η 1/2 ,
where η should be set to 1 in case of dist (z, ∂Σ c,d ) > 1/C . Next, (2.8.20) and Proposition 1.2.13 imply that

Θ(z; h, δ) = η 1/2 O (1) exp ( - (Im z -Im γ h -)η 1/2 h ) + O ¡ η 1/4 h -2 δ + η -1/2 δ 2 h -5 ¢ .
Here, we used that δ = h exp{-ε 0 (h) h }; see Hypothesis 1.2.6. Thus, for Im

γ h -< Im z < 〈Im g 〉 exp{-Θ(z; h, δ)} = ˆ1 + O ˆη1/2 exp ( - (Im z -Im γ h -)η 1/2 C h ) + η 1/4 h 2 !! (2.8.21) and for Im z ≤ Im γ h - 1 C exp ( -C η 1/2 exp " - (Im z -Im γ h -)η 1/2 C h #) ≤ exp{-Θ(z; h, δ)} ≤ C exp ( - η 1/2 C exp " - C (Im z -Im γ h -)η 1/2 h #)
. (2.8.22)

PROPERTIES OF THE DENSITY

Similarly, by Proposition 1.2.13

Ψ 2 (z; h, δ) ≤ η 3/2 O (1)h 2 ‡ 1 + O (η -1 )e Φ(z,h) • exp ( - (Im z -Im γ h -)η 1/2 C h ) .
Thus, for Im γ -(Re z) + αhη -1/2 ln η 1/2 h ≤ Im z ≤ 〈Im g 〉 with α > 0 large enough, we see that the average density of eigenvalues (cf. Theorem 1.2.12)

D(z, h, δ)L(d z) = 1 2h p * (d ξ ∧ d x) + O (η -2 )L(d z). (2.8.23)
We then conclude the first statement of the proposition.

Next, recall from Corollary 1.1.5 that restricting the probability space to the ball

B (0, R) of ra- dius R = C h -1 implies that Q ω ≤ C /h with probability ≥ ‡ 1 -e -1 C h 2 • . It follows from (P δ h -z) -1 = (P h -z) -1 X n≥1 (-δ) n ¡ Q ω (P h -z) -1 ¢ n that for z ∉ σ(P h ) such that δ Q ω (P h -z) -1 < 1, we have that z ∉ σ(P δ h ) with probability ≥ ‡ 1 -e -1 C h 2 • . Proposition 1.2.5 implies that with probability ≥ ‡ 1 -e -1 C h 2 • δ Q ω (P h -z) -1 ≤ C fl fl 1 -e Φ(z,h) fl fl -1 h 3/2 ¡ i 2 {p, p}(ρ + ) i 2 {p, p}(ρ -) ¢ 1 4 exp ‰ S(z) -ε 0 (h) h .
Here we used as well Hypothesis 1.2.6. Since S(z) η 3/2 , it follows that η ε 0 (h) 2/3 . Using the mean value theorem together with Proposition 2.8.1 implies that with probability ≥ ‡

• there are no eigenvalues of P δ h with

Im z ≤ β 1 := Im γ h --C h ε 0 (h) 1/3 ln ε 0 (h) 1/6 h ¶ , C 1.
Thus, to count eigenvalues it is sufficient to integrate the density given in Theorem 1.2.12 over subsets of

Σ c,d = ' z ∈ Σ c,d | β 1 ≤ Im z ≤ 〈Im g 〉, c < Re z < d " .
Similarly, for an α large enough as above, define

α 1 := Im γ -(Re z) + α h ε 1/3 0 ln ε 0 (h) 1/3
h and note that (2.8.23) implies the second statement of the proposition for Im z ≥ α 1 .

Approximate Primitive Define d (z) := dist (z, ∂Σ) and recall from (2.1.2) that η d (z). Recall that the density of eigenvalues given in Theorem 1.2.12 is given by Ψ 1 , Ψ 2 and Θ which are expressed explicitly in Proposition 1.2.13 and Theorem 1.2.12. Since Im g (x ± ) = Im z and ξ ± = Re z -Re g (x ± ) (cf (1.1.14)), we conclude together with Proposition 2.4.2 that for

β 1 ≤ Im z ≤ α 1 Ψ 1 (z; h) = 1 2h ∂ Im z (x -(z) -x + (z)) + O (d (z) -2 ) = 1 2h ∂ 2 Im z S(z) + O (d (z) -2 ).
Next, it follows by (2.8.19) and Lemma 2.7.1 that

|2hΨ 2 -(∂ Im z S)(-∂ Im z Θ)| = O ˆd (z) 3/4 h 1/2 e -2S h δ 2 ! + O (d (z) 3/4 h -3 δ).
Thus,

1 + O ¡ δd (z) -1/4 h -3/2 ¢ π {Ψ 1 (z; h) + Ψ 2 (z; h, δ)} e -Θ(z;h,δ) = 1 2πh ∂ Im z h (∂ Im z S(z))e -Θ(z;h,δ) i + R(z; h, δ)e -Θ(z;h,δ) , (2.8.24) 
where

R(z; h, δ) := O ˆd (z) -2 + d (z) 3/4 h -1/2 e -2S h δ 2 ! .
Let

β 1 ≤ β 2 ≤ α 1 .
Let us first treat the error term R. Similar as for (2.8.21), it follows that

R(z; h, δ) = O ˆd (z) -2 + d (z) -3/4 h -1/2 exp ( - (Im z -Im γ h -)d (z) 1/2 C h )! .
Hence,

fl fl fl ˆα1 β 1 R(z; h, δ)e -Θ(z;h,δ) d (Im z) fl fl fl ≤ [d (z) -1 ] α 1 β 1 O (1) exp{-Θ(Re z, α 1 ; h, δ)} + d (z) 1/4 h 1/2 O (1) exp " -exp ( - (Im z -Im γ h -)d (z) 1/2 C h )# fl fl fl α 1 β 1 = β -1 1 O (1) exp " -exp ( 
- (α 1 -Im γ h -)α 1/2 1 C h )# = ε 0 (h) -2/3 O (1) . (2.8.25) 
Next,

1 2πh ˆα1 β 2 ∂ Im z £ (∂ Im z S(z))e -Θ(z;h,δ) ⁄ L(Im z) = 1 2πh (x -(Im z) -x + (Im z))e -Θ(z;h,δ) fl fl fl α 1 β 2 . ( 2.8.26) 
Since,

Σc,d 0≤Im z≤α 1 1 2πh p * (d ξ ∧ d x)(d z) = 1 2πh (x -(α 1 ) -x + (α 1 )) ˆd c d Re z
we conclude by (2.8.22) the second statement of the proposition for

β 2 = Im γ -(Re z) - h ε 0 (h) 1/3 ln β ln ε 0 (h) 1/3
h ¶ with β > 0 large enough. The last statement of the proposition can be deduced similarly from (2.8.22), (2.8.26) and (2.8.25).

CHAPTER 3 EIGENVALUE INTERACTION FOR A CLASS OF NON-SELF-ADJOINT OPERATORS UNDER RANDOM PERTURBATIONS

The objective of this section is to build on the results obtained in Chapter 2 and to prove the results discussed in Section 1.3. We consider Hager's model operator P h (cf (1.1.9)) subject to random perturbations with a small coupling constant δ. We study the 2-point intensity measure of the random point process of eigenvalues of the randomly perturbed operator P δ h and prove an h-asymptotic formula for the average 2-point density of eigenvalues. With this we show that two eigenvalues of P δ h in the interior of Σ exhibit close range repulsion and long range decoupling. The results presented in this chapter can be found in [START_REF] Vogel | Eigenvalue interaction for a class of non-selfadjoint operators under random perturbations[END_REF].

| A formula for the two-point intensity measure

In this section we will give a short reminder of a well-posed Grushin problem for the perturbed operator P δ h which has already been used in Chapter 2 (see also [START_REF]Spectral properties of non-self-adjoint operators[END_REF][START_REF]Instabilité spectrale semiclassique pour des opérateurs non-autoadjoints I: un modèle[END_REF]). We will then employ the resulting effective Hamiltonians to derive a formula for the two-point intensity measure defined in (1.3.3).

We recall that we always suppose that Ω Σ is such that Hypothesis 1.3.1 is satisfied, if nothing else is specified.

A Grushin Problem for the perturbed operator P δ

h As was discussed in Chapter 2, we us the eigenfunctions of the operators Q and e Q (cf (1.2.4)) to create a well-posed Grushin Problem.

Proposition 3.1.1. Let z ∈ Ω Σ with dist (Ω, ∂Σ) > 1/C and let α 0 , e 0 and f 0 be as in (1.2.8). Define

R + : H 1 (S 1 ) -→ C : u -→ (u|e 0 ) R -: C -→ L 2 (S 1 ) : u --→ u -f 0 .
Then

P (z) := P h -z R - R + 0 ¶ : H 1 (S 1 ) × C -→ L 2 (S 1 ) × C
is bijective with the bounded inverse

E (z) = E (z) E + (z) E -(z) E -+ (z) ¶ 91 3.1. A FORMULA FOR THE TWO-POINT INTENSITY MEASURE where E -(z)v = (v| f 0 ), E + (z)v + = v + e 0 , E (z) = (P h -z) -1 | ( f 0 ) ⊥ →(e 0 ) ⊥ and E -+ (z)v + = -α 0 v + . Fur- thermore, we have the estimates for z ∈ Ω E -(z) L 2 →C , E + (z) C→H 1 = O (1), E (z) L 2 →H 1 = O (h -1/2 ), |E -+ (z)| = O ‡ he -S h • = O ‡ e -1 C h • ; (3.1.1)
Definition 3.1.2. For x ∈ R we denote the integer part of x by x . Let C 1 > 0 be big enough as above and define N := (2 C 1 h + 1) 2 . Let e 0 and f 0 be as in (1.2.8), let z ∈ Ω Σ and let b e 0 (z; •) and b f 0 (z; •) denote the Fourier coefficients of e 0 and f 0 . We define the vector 

X (z) = (X j ,k (z)) | j |,|k|≤ C 1 h ∈ C N to be given by X j ,k (z) = b e 0 (z; k) b f 0 (z; j ), for | j |, |k| ≤ " C 1 h " .
P δ (z) := P δ h -z R - R + 0 ¶ : H 1 (S 1 ) × C -→ L 2 (S 1 ) × C
is bijective with the bounded inverse

E δ (z) = E δ (z) E δ + (z) E δ -(z) E δ -+ (z) ¶ where E δ (z) = E (z) + O ¡ δh -2 ¢ = O (h -1/2 ) E δ -(z) = E -(z) + O ¡ δh -3/2 ¢ = O (1) E δ + (z) = E + (z) + O ¡ δh -3/2 ¢ = O (1) and E δ -+ (z) = E -+ (z) -δX (z) • α + T (z; α), (3.1.2) with X (z) • α = E -Q ω E + , α ∈ B (0, R), and T (z, α) := ∞ X n=1 (-δ) n+1 E -Q ω (EQ ω ) n E + = O (δ 2 h -5/2 ). (3.1.3)
Here, the dot-product X (z) • α is the natural bilinear one. 

z ∈ Ω, all α ∈ B (0, R) and all β ∈ N 2 ∂ β zz E -+ (z) = O ‡ h -|β|+1/2 e -S h • , and 
∂ β zz T (z, α) = O ‡ δ 2 h -(|β|+ 5 
2 )

• where S is as in Definition 1.2.2. Moreover, as remarked in [START_REF]Spectral properties of non-self-adjoint operators[END_REF] the effective Hamiltonian E δ -+ (z) satisfies a ∂-equation, i.e. there exists a smooth function f δ : Ω → C such that

∂ z E δ -+ (z) + f δ (z)E δ -+ (z) = 0.
This implies that the zeros of E δ -+ (z) are isolated and countable and we may use the same notion of multiplicity as for holomorphic functions.

-Counting zeros

By the above well-posed Grushin Problem for the perturbed operator P δ h we have that σ(P δ h ) = (E δ -+ ) -1 (0). Hence, to study the the two-point intensity measure ν defined in (1.3.3), we investigate the integral

π -N ˆB(0,R) X z,w∈(E δ -+ ) -1 (0) z =w ϕ(z, w) ¶ e -α * •α L(d α) = ˆC2 ϕ(z 1 , z 2 )d ν(z 1 , z 2 )
with ϕ ∈ C 0 (Ω × Ω). Using Remark 3.1.4, we see that the integral is finite since the number of pairs of zeros of E δ -+ (•, α) in supp ϕ is uniformly bounded for α ∈ B (0, R). Recall the definition of the point process Ξ given in (1.2.10). Using Lemma 2.5.1, we get the following regularization of the 2-fold counting measure

Ξ ⊗ Ξ 〈ϕ, Ξ ⊗ Ξ〉 = lim ε→0 + ˇϕ(z 1 , z 2 ) 2 Y j =1 ε -2 χ ˆE δ -+ (z l ) ε ! |∂ z l E δ -+ (z l )| 2 L(d z 1 )L(d z 2 ), where χ ∈ C ∞ 0 (C) such that ´χ(w)L(d w) = 1. Assuming that ϕ ∈ C 0 (Ω × Ω) is such that {(z, z); z ∈
Ω} ⊂ supp ϕ, we see by the Lebesgue dominated convergence theorem that the two-point intensity measure of the point process Ξ is given by

ˆC2 ϕ(z 1 , z 2 )d ν(z 1 , z 2 ) = lim ε→0 + ˇϕ(z 1 , z 2 )K δ ε (z 1 , z 2 ; h)L(d z 1 )L(d z 2 ) (3.1.4) with K δ ε (z 1 , z 2 ; h) := ˆB(0,R) " 2 Y l =1 ε -2 χ ˆE δ -+ (z l ) ε ! |∂ z l E δ -+ (z l )| 2 # e -α * α L(d α).
Using (3.1.2), we see that the main object of interest is the random vector

F δ (z, w, α; h) = 0 B B B @ E δ -+ (z) E δ -+ (w) (∂ z E δ -+ )(z) (∂ z E δ -+ )(w) 1 C C C A (3.1.5) = 0 B B B @ E -+ (z) E -+ (w) (∂ z E -+ )(z) (∂ z E -+ )(w) 1 C C C A -δ 0 B B B @ X (z) • α X (w) • α (∂ z X )(z) • α (∂ z X )(w) • α 1 C C C A + 0 B B B @ T (z, α) T (w, α) (∂ z T )(z, α) (∂ z T )(w, α) 1 C C C A .
It will be very useful in the sequel to define the following Gramian matrix G.

G := A B B * C ¶ ∈ C 4×4 , (3.1.6) 
with

A := (X (z)|X (z)) (X (z)|X (w)) (X (w)|X (z)) (X (w)|X (w)) ¶ , B := (X (z)|∂ z X (z)) (X (z)|∂ w X (w)) (X (w)|∂ z X (z)) (X (w)|∂ w X (w)) ¶ , C := (∂ z X (z)|∂ z X (z)) (∂ z X (z)|∂ w X (w)) (∂ w X (w)|∂ z X (z)) (∂ w X (w)|∂ w X (w)) ¶ . ( 3.1.7) 
Notice that the matrices A, B,C depend on h; see Definition 3.1.2. Next, we will state a formula for the Lebesgue density of the two-point intensity measure ν in terms of the permanent of the Shur complement of G, i.e Γ := C -B * A -1 B . The permanent of a matrix is defined as follows (cf. [START_REF] Mehta | Matrix Theory -Selected Topics and Useful Results[END_REF]):

Definition 3.1.5. Let (M i j ) i j = M ∈ C n×n be a square matrix and let S n denote the symmetric group of order n. The permanent of M is defined by

perm M := X σ∈S n n Y i =1 M i σ(i ) . (3.1.8)
Remark 3.1.6. Although the definition of the permanent resembles closely to that of the determinant, the two object are quite different. Many properties known to hold true for determinants, fail to be true for permanents. For our purposes it is enough to note that it is multi-linear and symmetric. For more details concerning permanents and their properties we refer the reader to [START_REF] Mehta | Matrix Theory -Selected Topics and Useful Results[END_REF].

We will prove the following result: 

D δ (z, w; h) = perm Γ(z, w; h) + O ‡ e -1 C h + δh -51 10 • π 2 ‡ p det A(z, w; h) + O ‡ δh -3 2 •• 2 + O ‡ e -D h 2 • .
and there exists a constant C 2 > 0 such that for all

ϕ ∈ C 0 (Ω 2 \D h (Ω,C 2 )) ˆC2 ϕ(z, w)d ν(z, w) = ˆC2 ϕ(z, w)D(z, w, h, δ)L(d (z, w)).
Remark 3.1.8. The proof of Proposition 3.1.7 will take up most of the rest of this chapter. Therefore we give a short overview on how we will proceed: In Section 3.2, we give a formula for the scalar product (X (z)|X (w)) by constructing holomorphic quasimodes for the operators (P hz) and (P hz) * to approximate the eigenfunction e 0 and f 0 , and by using the method of stationary phase.

In Section 3.3, we will use this formula to study the invertibility of the matrices G, A and Γ. Furthermore, we will study the permanent of Γ.

In Section 3.4, we give a proof of Proposition 3.1.7.

| Stationary Phase

In this section we are interested in the scalar product (X (z)|X (w)). Recall from Definition 3.1.2 that the vector X (z), z ∈ Ω, is given by X j ,k = b e 0 (z; k) b f 0 (z; j ), where e 0 and f 0 are the eigenfunctions of the operators Q(z) and e Q(z), respectively, associated to their first eigenvalue t 2 0 . The Fourier coefficients b e 0 (z; k), b f 0 (z; j ) and their z-and z-derivatives are of order

O (|k| -∞ ), O (| j | -∞ ), for | j |, |k| ≥ C /h with C > 0 large enough (cf Proposition 2.3.3 and 2.3.4). The Parseval identity implies that for z, w ∈ Ω (X (z)|X (w)) = (e 0 (z)|e 0 (w))( f 0 (w)| f 0 (z)) + O C ∞ (h ∞ ). (3.2.1)
The aim of this section is to prove the following result: Then, there exists a constant C > 0 such that for all (z, w)

∈ ∆ Ω (C ) := {(z, w) ∈ Ω 2 ; |z -w| < 1/C } (X (z)|X (w)) = e -1 h Φ(z;h)-1 h Φ(w;h) e 2 h Ψ(z,w;h) + O C ∞ ¡ h ∞ ¢
where:

• Φ(•; h) : Ω → R is a family of smooth functions depending only on i Im z, which satisfy 

Φ(z; h) =Im ˆx0 x + (z) (z -g (y))d y -Im ˆy0 x -(z) (z -g (y))d y + h 4 • ln πh -Im g (x + (z)) ¶ + ln πh Im g (x -(z)) ¶' + O (h 2 ). and ∂ 2 zz Φ (z; h) = 1 4 σ (z) + O (h). • Ψ(•, •; h) : ∆ Ω (C ) → C is
:= {(z, z); z ∈ Ω} ⊂ ∆ Ω (C ) of Φ(z; h), i.e. Ψ(z, z; h) = Φ 1 2 (z -z); h ¶ , ∂ z Ψ, ∂ w Ψ = O (|z -w| ∞ ).
Moreover, we have that Ψ(z, z) = Φ(z) and for z, w ∈ ∆ Ω (C ) with |z -w| 1,

Ψ(z, w; h) = X |α+β|≤2 1 2 |α+β| α!β! ∂ α z ∂ β z Φ ‡ z + w 2 ; h • (z -w) α (w -z) β + O (|z -w| 3 + h ∞ ), and 
2Re Ψ(z, w; h) -Φ(z; h) -Φ(w; h) = -∂ 2 zz Φ ‡ z + w 2 ; h • |z -w| 2 (1 + O (|z -w| + h ∞ ));
• the function Ψ(z, w; h) has the following symmetries:

Ψ(z, w; h) = Ψ(w, z; h) and (∂ z Ψ)(z, w; h) = (∂ w Ψ)(w, z; h).
Let us give some remarks on the above results: Note that the formula for Ψ stated above is simply a special case of the more general Taylor expansion

Ψ(z 0 + ζ, z 0 + ω; h) = X |α+β|≤2 1 2 |α+β| α!β! ∂ α z ∂ β z Φ (z 0 ; h) ζ α ω β + O ((ζ, ω) 3 + h ∞ ),
with z 0 ∈ Ω and |ζ|, |ω| 1.

Remark 3.2.2. Note that the formula for (X (z)|X (w)) is quite close to the notion of a Bergman kernel (see for example [START_REF]Semiclassical Analysis[END_REF]Sec. 13.3]). However, we will not use this notion in the sequel.

Next, we define for (z, w) ∈ ∆ Ω (C ), as in Proposition 3.2.1,

-K (z, w) : = 2Re Ψ(z, w; h) -Φ(z; h) -Φ(w; h) (3.2.2) = - ‡ σ ‡ z + w 2 • + O (h) • |z -w| 2 4 (1 + O (|z -w| + h ∞ )).
From the above Proposition we can immediately deduce some growth properties of certain quantities that will be become important in the sequel.

Corollary 3.2.3. Under the assumptions of Proposition 3.2.1, we have that

• |(X (z)|X (w))| = e -K (z,w) h + O C ∞ (h ∞ ) ; • X (z) 2 X (w) 2 ± |(X (z)|X (w))| 2 = ‡ 1 ± e -2K (z,w) h • + O C ∞ ¡ h ∞ ¢ ; • X (z) 2 X (w) 2 |(X (z)|X (w))| 2 = e -2K (z,w) h + O C ∞ ¡ h ∞ ¢ .
To prove Proposition 3.2.1, we will study the scalar products (e 0 (z)|e 0 (w)) and ( f 0 (w)| f 0 (z)).

3.2. STATIONARY PHASE 3.2.1 -The Scalar Product (e 0 (z)|e 0 (w))

We will prove Proposition 3.2.4. Let Ω Σ be as in Hypothesis 1.3.1 and let x + (z) be as in (1.1.14). Then, there exists a constant C > 0 such that for all (z, w)

∈ ∆ Ω (C ) := {(z, w) ∈ Ω 2 ; |z -w| < 1/C } (e 0 (z)|e 0 (w)) = e -1 h Φ 1 (z;h) e -1 h Φ 1 (w;h) e 2 h Ψ 1 (z,w;h) + O ¡ h ∞ ¢ , (3.2.3) 
where:

• Φ 1 (•; h) : Ω → R is a family of smooth functions depending only on i Im z, which satisfy 

Φ 1 (z; h) = Im ˆx0 x + (Im z) (z -g (y))d y + h 4 ln πh -Im g (x + ) ¶ + O (h 2 ). • Ψ 1 (•, •; h) : ∆ Ω (C ) → C is
:= {(z, z); z ∈ Ω} ⊂ ∆ Ω (C ) of Φ 1 (z; h), i.e. Ψ 1 (z, z; h) = Φ 1 1 2 (z -z); h ¶ , ∂ z Ψ 1 , ∂ w Ψ 1 = O (|z -w| ∞ ).
Moreover, for z, w ∈ ∆ Ω (C ) with |z -w| 1, one has that

Ψ 1 (z, w; h) = X |α+β|≤2 1 2 |α+β| α!β! ∂ α z ∂ β z Φ 1 ‡ z + w 2 ; h • (z -w) α (w -z) β + O (|z -w| 3 + h ∞ ),
and that

2Re Ψ 1 (z, w; h) -Φ 1 (z; h) -Φ 1 (w; h) = -∂ z ∂ z Φ 1 ‡ z + w 2 ; h • |z -w| 2 (1 + O (|z -w| + h ∞ ));
• the function Ψ 1 (z, w; h) has the following symmetries:

Ψ 1 (z, w; h) = Ψ 1 (w, z; h) and (∂ z Ψ 1 )(z, w; h) = (∂ w Ψ 1 )(w, z; h).
To prove Proposition 3.2.4, we begin by constructing an oscillating function to approximate e 0 (z). Let us recall from Section 1.1.1 that the points a, b ∈ S 1 denote the minimum and the maximum of Im g (x) and that for z ∈ Ω the points x ± (z) ∈ S 1 are the unique solutions to the equation Im g (x) = Im z. Furthermore, we will identify frequently S 1 with the interval [b -2π, b[. Moreover, let us recall that by the natural projection Π : R → S 1 = R/2πZ we identify the points

x ± , a, b ∈ S 1 with points x ± , a, b ∈ R such that b -2π < x + < a < x -< b. Let K + ⊂]b -2π, a[ be an open interval such that x + (z) ∈ K + for all z ∈ Ω. Let χ ∈ C ∞ 0 (]b -2π, a[) and define for x ∈ R e e 0 (x, z) := χ(x) exp i h ψ + (x, z) ¶ . (3.2.4)
where, for a fixed x 0 ∈ K + ,

ψ + (x, z) := ˆx x 0 ¡ z -g (y) ¢ d y. (3.2.5)
Remark 3.2.5. Note that the function u = exp(i ψ + (x, z)/h) is solution to (P hz)u = 0 on supp χ, since the phase function ψ + satisfies the eikonal equation

p(x, ∂ x ψ + ) = z.
Furthermore, let us remark that e e 0 (x, z) depends holomorphically on z.

Next, we are interested in the L 2 -norm of e e 0 .

Lemma 3.2.6. Let Ω Σ be as in Hypothesis 1.3.1. Then, there exists a family of smooth functions

Φ 1 (•; h) : Ω → R, such that Φ 1 (z; h) = Φ 1 (i Im z; h) = Im ˆx0 x + (Im z) (z -g (y))d y + h 4 ln πh -Im g (x + ) ¶ + O (h 2 )
and e e 0 (z) 2 = exp

‰ 2 h Φ 1 (z; h) .
Proof. In view of the definition of e e 0 (z), see (3.2.4) and (3.2.5), one gets that e e 0 (z

) 2 = ˆχ(x)e i h (ψ + (x,z)-ψ + (x,z)) d x = ˆχ(x)e -2 h Im ψ + (x,z) d x.
The critical point for Im ψ + (x, z) is given by the equation

Im ∂ x ψ + (x, z) = Im z -Im g (x) = 0, x ∈ supp χ.
The critical point, given by x + (Im z), is unique and it satisfies Im g (x + (Im z)) < 0, see (1.1.14). This implies in particular that the critical point is non-degenerate. More precisely,

Im (∂ 2 xx ψ + )(x + , z) = -Im g (x + ) > 0. (3.2.6)
The critical value of Im ψ + is given by

Im ψ + (x + (Im z), z) = Im ˆx+ (Im z) x 0 (z -g (y))d y ≤ 0.
Using the method of stationary phase, one gets e e 0 (z) 2 = s πh

Im (∂ 2 xx ψ + )(x + , z) (1 + O (h)) exp ‰ - 2Im ψ + (x + , z) h =: exp ‰ 2 h Φ 1 (z; h) ,
where Φ 1 is smooth in z. Using (3.2.6), one gets that

Φ 1 (z; h) = Im ˆx0 x + (Im z) (z -g (y))d y + h 4 ln πh -Im g (x + ) ¶ + O (h 2 ).
Recall from (1.2.7) that the function e 0 is an eigenfunction of the operator Q(z) (cf Section 1.2.2) corresponding to its first eigenvalue t 2 0 . We set

e 0 (z) = Π t 2 0 ‡ e -1 h Φ 1 (z;h) e e 0 (z) • Π t 2 0 ‡ e -1 h Φ 1 (z;h) e e 0 (z) • ,
where Π t 2 0 : L 2 (S 1 ) → Ce 0 denotes the spectral projection for Q(z) onto the eigenspace associated with t 2 0 . Next, we prove that up to an exponentially small error in 1/h, e 0 is given by the normalization of e e 0 .

Lemma 3.2.7. Let Ω Σ be as in Hypothesis 1.3.1. Then, there exists a constant C > 0 such that for all z ∈ Ω and all α ∈ N 2

∂ α z,z ‡ e 0 (z) -e -1 h Φ 1 (z;h) e e 0 (z) • = O ‡ h -|α| e -1 C h
• .
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Proof. The proof of the lemma is similar to the proof of Proposition 2.1.11.

This result implies that

(e 0 (z)|e 0 (w)) = e -1 h Φ 1 (z;h)-1 h Φ 1 (w;h) (e e 0 (z)|e e 0 (w)) + O C ∞ ‡ e -1 C h • . (3.2.7)
By Remark 3.2.5, (e e 0 (z)|e e 0 (w)) is holomorphic in z and anti-holomorphic in w. We can study this scalar product by the method of stationary phase:

Proof of Proposition 3.2.4. In view of (3.2.7), it remains to study the oscillatory integral

I (z, w) := (e e 0 (z)|e e 0 (w)) = ˆχ(x)exp i h Ψ + (x, z, w) ¶ d x, (3.2.8) 
where e e 0 (x, z) is given in (3.2.4) and Ψ + is defined by

Ψ + (x, z, w) := ψ + (x, z) -ψ + (x, w), z, w ∈ Ω. (3.2.9) 
Using (3.2.5),

Ψ + (x, z, w) = ˆx x 0 Re (z -w)d y + 2i ˆx x 0 h Im ‡ z + w 2 • -Im g (y) i d y. (3.2.10)
Since the imaginary part of Ψ + can be negative, we shift the phase function by the minimum of Im Ψ + .

Minimum of Im Ψ + . The critical points of the function x → Im Ψ(x, z, w) are given by the equation Im ( z+w2 ) = Im g (x). Since Ω is convex, this equation has, for |z -w| small enough, on the support of χ the unique solution x + ( z+w 2 ) ∈ R and it satisfies Im g (x + ( z+w 2 )) < 0 (cf. (1.1.14)). Moreover, it depends smoothly on z and w since g is smooth. Therefore,

(∂ 2 xx Im Ψ + ) ‡ x + ‡ z + w 2 • , z, w • = -2Im g x ‡ x + ‡ z + w 2 •• > 0,
which implies that x + ( z+w 2 ) is a minimum point, and that 2λ := 2λ(z, w)

: = Im Ψ + ‡ x + ‡ z + w 2 • , z, w • = 2 ˆx+ ( z+w 2 ) x 0 h Im ‡ z + w 2 • -Im g (y) i d y ≤ 0. (3.2.11) 
We define Θ + (x, z, w) := Ψ + (x, z, w)i λ, and notice that Im Θ + (x, z, w) ≥ 0. Hence, we can write (3.2.8) as follows:

I (z, w) = e -2λ h ˆχ(x)exp i h Θ + (x, z, w) ¶ d x. (3.2.12)
To study I (z, w) by the method of stationary phase, we are interested in the critical points of Θ + .

Critical points of Θ + . Clearly they are the same as for Ψ + (x, z, w). Note that for z = w one has that

Ψ + (x, z, z) = 2i Im ˆx x 0 (z -g (y))d y
which has, on the support of χ, the unique critical point x + and it satisfies Im g (x + ) < 0 (cf. (1.1.14)). Therefore, Im (∂ 2 xx Ψ + )(x + (z), z, z) = -2Im g x (x + (z)) > 0 which implies that x + is a non-degenerate critical point.

In the case where z = w the situation is more complicated. By (3.2.10) we see that if Re (z -w) = 0, for |z -w| small enough, the critical point is real and given by x + ( z+w 2 ), i.e. the minimum point of Im Ψ + .

However, if Re (z -w) = 0, we need to consider an almost x-analytic extension of Ψ + , which we shall denote by e Ψ + . As described in [START_REF] Melin | Fourier integral operators with complex-valued phase functions[END_REF], the "critical point" of e Ψ + is then given by ∂ x e Ψ + (x, z, w) = 0, and we will see, by the following result, that it "moves" to the complex plane.

Lemma 3.2.8. Let Ω Σ be as in (1.3.1). Let χ be as in (3.2.4) and let p be the principal symbol of P h (cf (1.1.7)). Let x + (z) be as in (1.1.14). Furthermore, let e ψ + denote an almost analytic extension of ψ + to a small complex neighborhood of the support of χ, and define e ψ * + (x) := e ψ + (x). Then, the there exists a C > 0 such that for (z, w) ∈ ∆ Ω (C ) the function

∂ x e Ψ + (x, z, w) = ∂ x e ψ + (x, z) -(∂ x e ψ + ) * (x, w)
has exactly one zero, x c + (z, w), and:

• it depends almost holomorphically on z and almost anti-holomorphically w at the diagonal ∆, i.e.

∂ w x c + (z, w), ∂ z x c + (z, w) = O (|z -w| ∞ );
• it is non-degenerate in the sense that

(∂ 2 xx e Ψ + )(x c + (z, w), z, w) = 0; • for z, w ∈ Ω with |z -w| < 1/C , C > 1 large enough, one has x c + (z, w) = x + ‡ z + w 2 • - Re (z -w) {p, p}(ρ + ¡ z+w 2 ¢ ) + O (|z -w| 2 ).
Remark 3.2.9. The proof of Lemma 3.2.8 will be given after the proof of Proposition 3.2.4.

Let e Ψ + denote an almost x-analytic extension of Ψ + . Using the method of stationary phase for complex-valued phase functions (cf. Theorem 2.3 in [48, p.148]) and Lemma 3.2.8, one gets that In (3.2.13), 2Ψ 1 (z, w) is given by the critical value of i e Ψ + and by the logarithm of the amplitude c(z, w, h), given by the stationary phase method, i.e.

I (z, w) = exp ‰ 2Ψ 1 (z, w; h) h + O ¡ h ∞ ¢ e -2λ h . ( 3 
2Ψ 1 (z, w; h) = i e Ψ + (x c + (z, w), z, w) + h ln c(z, w, h)
and c(z, w, h) ∼ c 0 (z, w) + hc 1 (z, w) + . . . which depends smoothly on z and w in the sense that all z-, z-,wand w-derivatives remain bounded as h → 0. e Ψ + (x, z, w) is by definition z-holomorphic, w-anti-holomorphic and smooth in x. By Lemma 3.2.8, we know that the critical point x c + (z, w) is almost z-holomorphic and almost w-anti-holomorphic in ∆ Ω (C ), a small neighborhood of the diagonal z = w. Hence, Ψ is almost z-holomorphic and almost w-anti-holomorphic in ∆ Ω (C ).

Equivalently, Ψ is an almost z-holomorphic and almost w-anti-holomorphic extension from the diagonal of Ψ 1 (z, z; h). Since Ψ 1 (z, z; h) = Φ 1 (z; h), we obtain by Taylor expansion up to order 2 of Ψ at ( z+w 2 , z+w 2 ), that

Ψ 1 (z, w; h) = X |α+β|≤2 1 2 |α+β| α!β! ∂ α z ∂ β z Φ 1 ‡ z + w 2 ; h • (z -w) α (w -z) β + O (|z -w| 3 + h ∞ ),
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for |z -w| small enough. Similarly,

Φ 1 (z; h) = X |α+β|≤2 1 2 |α+β| α!β! ∂ α z ∂ β z Φ 1 ‡ z + w 2 ; h • (z -w) α (z -w) β + O (|z -w| 3 + h ∞ ), which implies that 2Re Ψ 1 (z, w; h) = Φ 1 (z; h) + Φ 1 (w; h) -∂ α z ∂ β z Φ 1 ‡ z + w 2 ; h • |z -w| 2 + O (|z -w| 3 + h ∞ ),
concluding the proof of the second point of the proposition.

Finally, let us give a proof of the stated symmetries. The fact that Ψ 1 (z, w; h) = Ψ 1 (w, z; h) follows directly from the fact that (e 0 (z)|e 0 (w)) = (e 0 (w)|e 0 (z)). One then computes that

(∂ z Ψ 1 )(z, w; h) = ∂ z Ψ 1 (z, w; h) = ∂ z Ψ 1 (w, z; h) = (∂ w Ψ 1 )(w, z; h)
which concludes the proof of the Proposition.

Proof of Lemma 3.2.8. We are interested in the solutions of the following equation:

0 = (∂ x e ψ + )(x, z) -(∂ x e ψ + ) * (x, w) = z -w -e g (x) + e g * (x), (3.2.14) 
where e g denotes an almost analytic extension of g . Since dist (Ω, ∂Σ) > 1/C , it follows from the assumptions on g that Im g (x) > 0 for all x ∈ x + (Ω) ⊂ R. Since g depends smoothly on x, there exists a small complex open neighborhood V ⊂ C of x + (Ω) such that x + (Ω) ⊂ (V ∩ R) and such that for all x ∈ V e g x (x)e g x (x) = 0, e g x (x)e g x (x) = O (|Im x| ∞ ).

Thus, it follows by the implicit function theorem, that for (z, w) ∈ ∆ Ω (C ), with C > 0 large enough, there exists a unique solution x c + (z, w) to (3.2.14) and it depends smoothly on (z, w) ∈ ∆ Ω (C ). Furthermore, we have that x c + (z, z) = x + (z) ∈ R. Taking the z-and z-derivative of (3.2.14) at the critical point x c + yields that

∂ z x c + (z, w) = 1 + O (|Im x c + (z, w)| ∞ ) (∂ x e g )(x c + (z, w)) -(∂ x e g ) * (x c + (z, w)) , ∂ z x c + (z, w) = O (|Im x c + (z, w)| ∞ ) (∂ x e g )(x c + (z, w)) -(∂ x e g ) * (x c + (z, w)) (3.2.15)
and similarly that

∂ w x c + (z, w) = -1 + O (|Im x c + (z, w)| ∞ ) (∂ x e g )(x c + (z, w)) -(∂ x e g ) * (x c + (z, w)) , ∂ w x c + (z, w) = O (|Im x c + (z, w)| ∞ ) (∂ x e g )(x c + (z, w)) -(∂ x e g ) * (x c + (z, w)) . ( 3 

.2.16)

Using that Im x c + (z, z) = 0, one calculates that for z = w we have that

(∂ z x c + )(z, z) = ∂ z x + (z) = -(∂ w x c + )(z, z), and (∂ z x c + )(z, z) = 0 = (∂ w x c + )(z, z), ( 3.2.17) 
where

∂ z x + (z) = 1 2i Im g (x + (z)) .
Taylor's theorem implies that

x c + (z + ζ, z + ω) = x + (z) + ζ -ω 2i Im g (x + (z)) + O ((ζ, ω) 2 ).
Recall that the principal symbol of the operator P h is given by p(ρ) = ξ + g (x) (cf (1.1.7)), which implies that {p, p}(ρ ± (z) = -2i Im g (x ± (z)). To conclude the symmetric form of the Taylor expansion stated in the Lemma, we expand around the point ( z+w 2 , z+w 2 ), for |z -w| small enough, with ζ = z-w 2 and ω = -z-w 2 , which is possible since Ω is by (1.3.1) assumed to be convex. Finally, by taking the imaginary part of the Taylor expansion of x c + , we conclude by (3.2.15) and (3.2.16) that

∂ w x c + (z, w), ∂ z x c + (z, w) = O (|z -w| ∞ ).

-The Scalar Product

( f 0 (w)| f 0 (z))
We have, as in Section 3.2.1, Proposition 3.2.10. Let Ω Σ be as in Hypothesis 1.3.1 and let x -(z) be as in (1.1.14). Then, there exists a constant C > 0 such that for all (z, w)

∈ ∆ Ω (C ) := {(z, w) ∈ Ω 2 ; |z -w| < 1/C } ( f 0 (w)| f 0 (z)) = e -1 h Φ 2 (z;h) e -1 h Φ 2 (w;h) e 2 h Ψ 2 (z,w;h) + O ¡ h ∞ ¢ ,
where:

• Φ 2 (•; h) : Ω → R is a family of smooth functions depending only on Im z, which satisfy 

Φ 2 (z; h) = -Im ˆx0 x -(z) (z -g (y))d y + h 4 ln πh Im g (x -(z)) ¶ + O (h 2 ). • Ψ 2 (•, •; h) : ∆ Ω (C ) → C is
∂ z Ψ 2 , ∂ w Ψ 2 = O (|z -w| ∞ ), Ψ 2 (z, z; h) = Φ 2 1 2 (z -z); h ¶
Moreover, for z, w ∈ ∆ Ω (C ) with |z -w| 1, one has that

Ψ 2 (z, w; h) = X |α+β|≤2 1 2 |α+β| α!β! ∂ α z ∂ β z Φ 2 ‡ z + w 2 ; h • (z -w) α (w -z) β + O (|z -w| 3 + h ∞ ),
and that

2Re Ψ 2 (z, w; h) -Φ 2 (z; h) -Φ 2 (w; h) = -∂ z ∂ z Φ 2 ‡ z + w 2 ; h • |z -w| 2 (1 + O (|z -w| + h ∞ ));
• the function Ψ 2 (z, w; h) has the following symmetries:

Ψ 2 (z, w; h) = Ψ 2 (w, z; h) and (∂ z Ψ 2 )(z, w; h) = (∂ w Ψ 2 )(w, z; h).

-Link with the symplectic volume

Before the proof of Proposition 3. 

(∂ 2 zz Φ 1 )(z; h) + (∂ 2 zz Φ 2 )(z; h) = 1 4 1 Im g x (x -(Im z)) - 1 Im g x (x + (Im z)) ¶ + O (h).
Since -1 2i {p, p}(ρ ± ) = Im g x (x ± ), we conclude by Proposition 2.4.2 that

£ ∂ 2 zz Φ 1 )(z; h) + (∂ 2 zz Φ 2 )(z; h) ⁄ L(d z) = 1 4 p * (d ξ ∧ d x) + O (h)L(d z).
Proof of Proposition 3.2.1. The results follow immediately from (3.2.1) and the Propositions 3.2.4, 3.2.10 and 3.2.11.

| Gramian matrix

The aim of this section is to study the Gramian matrix G defined in (3.1.6) by

G := A B B * C ¶ ∈ C 4×4 ,
where

A := (X (z)|X (z)) (X (z)|X (w)) (X (w)|X (z)) (X (w)|X (w)) ¶ , B := (X (z)|∂ z X (z)) (X (z)|∂ w X (w)) (X (w)|∂ z X (z)) (X (w)|∂ w X (w)) ¶ , C := (∂ z X (z)|∂ z X (z)) (∂ z X (z)|∂ w X (w)) (∂ w X (w)|∂ z X (z)) (∂ w X (w)|∂ w X (w)) ¶ .
The invertibility of the matrix G will be essential to the proof of Proposition 3.1.7. Indeed, we prove the following result. |z -w| 1.

To prove Proposition 3.3.1 we will first study the matrices A and, if A -1 exists, the matrix Γ given by the Shur complement formula applied to G, i.e. 

Γ = C -B * A -1 B. ( 3 
det A(z, w) = 1 -e -2K (z,w) h + O C ∞ ¡ h ∞ ¢ ,
where K (z, w) is as in (3.2.2). Moreover,

• for |z -w| h ln h -1 det A(z, w) = 1 + O ¡ h C ¢ , C 1; • for |z -w| ≥ 1 O (1) h det A ≥ 1 O (1) 
;

• let N > 1 and let C > 1 be large enough, then for 1 C h N ≤ |z -w| ≤ 1 C h, det A(z, w) = |z -w| 2 2h σ ‡ z + w 2 • + O (h) + O (|z -w|) + O |z -w| 2 h ¶ ¶ + O C ∞ ¡ h ∞ ¢ ≥ h 2N -1 O (1) 
.

Since the matrix A is self-adjoint, we have a lower bound on the matrix norm of A by its smallest eigenvalue. Using Proposition 3.2.1 we see that tr A = 2 + O (h ∞ ) and one calculates that for a fixed N > 1 and for |z -w| ≥ h N O (1) the two eigenvalues of A are given by

λ 1,2 (z, w; h) = 1 ± e -K (z,w) h + O (h ∞ ).
By Taylor expansion we conclude the following result: 

A(z, w) = 1 -e -2K (z,w) h + O C ∞ ¡ h ∞ ¢ , with K (z, w) = ‡ σ ‡ z + w 2 • + O (h) • |z -w| 2 4 (1 + O (|z -w| + h ∞ )).
The first two estimates are then an immediate consequence of the above formula. In the case where |z -w| ≤ 1 C h, one computes, using Taylor's formula, that e -2K (z,w)

h = 1 - |z -w| 2 2h σ ‡ z + w 2 • + O (h) + O (|z -w|) + O |z -w| 2 h ¶ ¶ , which implies that det A(z, w) = |z -w| 2 2h σ ‡ z + w 2 • + O (h) + O (|z -w|) + O |z -w| 2 h ¶ ¶ + O C ∞ ¡ h ∞ ¢ ≥ h 2N -1 O (1) 
.

-The matrix Γ

We prove the following result. 

Γ = -4 h 2 ‡ 1 -e -2 h K (z,w) • ˆa1 a 1 e -2 h K (z,w) a 1 a 2 e 1 h (2i Im Ψ(z,w)-K (z,w)) a 2 a 1 e 1 h (-2i Im Ψ(z,w)-K (z,w)) a 2 a 2 e -2 h K (z,w) ! + 2 h ˆΨ zw (z, z; h) Ψ zw (z, w; h)e 1 h (2i Im Ψ(z,w)-K (z,w)) Ψ zw (w, z; h)e 1 h (-2i Im Ψ(z,w)-K (z,w))
Ψ zw (w, w; h)

! + O (h ∞ ).
We will give a proof of this result further below. First, we state formulae for the trace, the determinant and the permanent of Γ. 

tr Γ = 2 h ‡ e 2 h K (z,w) -1 • h ‡ Ψ zw (z, z; h) + Ψ zw (w, w; h) + O (h ∞ ) • ‡ e 2 h K (z,w) -1 • -2h -1 (|a 1 | 2 + |a 2 | 2 ) i , detΓ = - 16 
h 4 ‡ 1 -e -2 h K (z,w) • e -2 h K (z,w) h |a 1 a 2 | 2 + h 2 ¡ |a 1 | 2 (∂ 2 zw Ψ)(w, w; h) -2Re ' (∂ 2 zw Ψ)(w, z; h)a 1 a 2 " + |a 2 | 2 (∂ 2 zw Ψ)(z, z; h) ¢ i + 4 h 2 ‡ (∂ 2 zw Ψ)(z, z; h)(∂ 2 zw Ψ)(w, w; h) -(∂ 2 zw Ψ)(z, w; h)(∂ 2 zw Ψ)(w, z; h)e -2 h K (z,w) • + O (h ∞ )
and that perm Γ = 16

h 4 ‡ 1 -e -2 h K (z,w) • 2 e -2 h K (z,w) |a 1 a 2 | 2 ‡ 1 + e -2 h K (z,w) • - 8 h 3 ‡ 1 -e -2 h K (z,w) • e -2 h K (z,w) ¡ |a 1 | 2 (∂ 2 zw Ψ)(w, w; h) + 2Re ' (∂ 2 zw Ψ)(w, z; h)a 1 a 2 " + |a 2 | 2 (∂ 2 zw Ψ)(z, z; h) ¢ + 4 h 2 ‡ (∂ 2 zw Ψ)(z, z; h)(∂ 2 zw Ψ)(w, w; h) + (∂ 2 zw Ψ)(z, w; h)(∂ 2 zw Ψ)(w, z; h)e -2 h K (z,w) • + O (h ∞ ).
Proof. The result follows from a direct computation using Proposition 3.3.4; for the definition of the permanent of a matrix see (3.1.8).

We have the following bound on the trace of Γ: Proposition 3.3.6. Under the assumptions of Proposition 3.3.4, we have that for |z -w| h

0 < tr Γ ≤ O (h -1 ).
Let us turn to the proofs of the above propositions. We begin by considering a very helpful congruency transformation. In view of Proposition 3.2.1, we prove 

that Γ = Λ( e C -e B * e A -1 e B )Λ + O C ∞ ¡ h ∞ ¢ .
Proof. To abbreviate the notation, we define for (z, w) ∈ D Ω (C ) the following function F (z, w) := e -1 h Φ(z;h) e -1 h Φ(w;h) e 2 h Ψ(z,w;h) . By Proposition 3.2.1, we see that F is bounded by 1 and that all its derivatives are bounded polynomially in h -1 . Furthermore, the matrices A, B and C are given by

A(z, w) = A 0 (z, w) + O C ∞ ¡ h ∞ ¢ , B (z, w) = B 0 (z, w) + O C ∞ ¡ h ∞ ¢ , C (z, w) = C 0 (z, w) + O C ∞ ¡ h ∞ ¢ ,
where (z, w) ∈ D Ω (C ) and

A 0 (z, w) = F (z, z) F (z, w) F (w, z) F (w, w) ¶ , and 
B 0 (z, w) = (∂ w F )(z, z) (∂ w F )(z, w) (∂ w F )(w, z) (∂ w F )(w, w) ¶ ,
and

C 0 (z, w) = (∂ 2 zw F )(z, z) (∂ 2 zw F )(z, w) (∂ 2 zw F )(w, z) (∂ 2 zw F )(w, w) ¶ .
One computes that

(∂ w F )(z, w) = 1 h £ 2(∂ w Ψ)(z, w; h) -(∂ w )Φ(w; h) ⁄ e -1 h Φ(z;h)-1 h Φ(w;h) e 2 h Ψ(z,w) + O C ∞ ¡ h ∞ ¢ ,
and that

(∂ 2 zw F )(z, w) = 1 h 2 h [2(∂ z Ψ)(z, w; h) -(∂ z Φ)(z; h)] £ 2(∂ w Ψ)(z, w; h) -(∂ w Φ)(w; h) ⁄ + 2h(∂ 2 zw Ψ)(z, w; h) i e -1 h Φ(z 1 ;h)-1 h Φ(z 2 ;h) e 2 h Ψ(z 1 ,z 2 ) + O C ∞ ¡ h ∞ ¢ .
Using that det A 0 = det A + O (h ∞ ) and that det A ≥ h 2N -1 /O (1) for |z -w| ≥ h N /O (1) (cf. Proposition 3.3.2), we see that

Γ = C 0 -B * 0 A -1 0 B 0 + O ¡ h ∞ ¢ .
Defining,

Λ := ˆ∂z e -1 h Φ(z;h) 0 0 ∂ w e -1 h Φ(w;h)
! we see that

A 0 = Λ e AΛ, B 0 = Λ( e B )Λ + Λ e A(Λ ) + O C ∞ ¡ h ∞ ¢ , C 0 = Λ( e C )Λ + Λ( e B * )(Λ ) + Λ ( e B )Λ + Λ e A(Λ ) + O C ∞ ¡ h ∞ ¢ .
A direct computation then yields that ! .

Γ = Λ( e C -e B * e A -1 e B )Λ + O C ∞ ¡ (det A) -1 h ∞ ¢ .
To 

-K (z, w) = 2Re Ψ(z, w) -Φ(z) -Φ(w)
where Φ(z) = Ψ(z, z). Using (3.3.2), we find that the first matrix in (3.3.3) is equal to

-4 1 -e -2 h K (z,w) ˆa1 a 1 e 1 h (2Ψ(z,z)-2K (z,w)) a 1 a 2 e 2 h Ψ(z,w) a 2 a 1 e 2 h Ψ(w,z) a 2 a 2 e 1 h (2Ψ(w,w)-2K (z,w))
! .

It follows by Lemma 3.3.7 that

Γ = Λ e ΓΛ * + O C ∞ ¡ h ∞ ¢ .
In the last equality we used that det A is bounded from below by a power of h; see Lemma 3.3.7.

Carrying out the matrix multiplication Λ e ΓΛ * implies the statement of the proposition.

Proof of Proposition 3.3.1. The Shur complement formula yields that the determinant of the Gramian matrix G is given by detG = det A det Γ. Hence, using Proposition 3.3.2 and Corollary 3.3.5, we see that

detG = - 16 (1 + O (h ∞ )) h 4 e -2 h K (z,w) h |a 1 a 2 | 2 + h 2 ¡ |a 1 | 2 (∂ 2 zw Ψ)(w, w; h) -2Re ' (∂ 2 zw Ψ)(w, z; h)a 1 a 2 " + |a 2 | 2 (∂ 2 zw Ψ)(z, z; h) ¢ i + 4 h 2 ‡ (∂ 2 zw Ψ)(z, z; h)(∂ 2 zw Ψ)(w, w; h) -(∂ 2 zw Ψ)(z, w; h)(∂ 2 zw Ψ)(w, z; h)e -2 h K (z,w) • • ‡ 1 -e -2 h K (z,w) + O (h ∞ ) • + O (h ∞ ). (3.3.4)
Next, we consider the Taylor expansion of the terms a 1 and a 2 up to first order. Similarly as in Proposition 3.2.1, we develop around the point ( z+w 2 , z+w 2 ) and get that

a 1 = (∂ z Ψ)(z, z) -(∂ z Ψ)(z, w) = (∂ 2 z w Ψ) ‡ z + w 2 , z + w 2 • (z -w) + O (|z -w| 2 + h ∞ ) (3.3.5)
and

a 2 = (∂ z Ψ)(w, z) -(∂ z Ψ)(w, w) = (∂ 2 z w Ψ) ‡ z + w 2 , z + w 2 • (z -w) + O (|z -w| 2 + h ∞ ). (3.3.6)
Moreover, one has that for ζ, ω ∈ {z, w}

(∂ 2 z w Ψ) (ζ, ω) = (∂ 2 z w Ψ) ‡ z + w 2 , z + w 2 • + O (|z -w| + h ∞ ). (3.3.7)
Since we suppose that |z -w| h 3/5 , the above error term is equal to O (|z -w|). Since ∂ 2 z w Ψ is evaluated at a point on the diagonal, it follows from Proposition 3.2.1, that

(∂ 2 z w Ψ) ‡ z + w 2 , z + w 2 • = (∂ 2 z z Φ) ‡ z + w 2 , z + w 2 • = 1 4 σ ‡ z + w 2 • + O (h) =: 1 4 σ h (z, w). (3.3.8)
Plugging the above Taylor expansion into (3.3.4), one gets that detG is equal to

σ h (z, w) 2 4h 2 nh 1 + O (|z -w|) -(1 + O (|z -w|))e -2 h K (z,w) i ‡ 1 -e -2 h K (z,w) + O (h ∞ ) • -4e -2 h K (z,w) ˆ σ h (z, w)|z -w| 2 4h ¶ 2 (1 + O (|z -w|)) + σ h (z, w)|z -w| 2 4h O (|z -w|) !) + O (h ∞ ) = σ h (z, w) 2 4h 2 n ‡ 1 -e -2 h K (z,w) • 2 + O (|z -w|) ‡ 1 -e -2 h K (z,w) • + O (h ∞ ) -4e -2 h K (z,w) " σ h (z, w)|z -w| 2 4h ¶ 2 + O |z -w| 5 h 2 ¶ + O |z -w| 3 h ¶ #) .
Recall from (3.2.2) that K (z, w) |z -w| 2 , wherefore we see that detG is positive for |z -w| h. Next, we suppose that |z -w| h. Hence, one gets that 

detG = σ h (z, w) 2 e -2 h K (z,w) h 2 n sinh 2 K (z, w) h + O (|z -w|) ‡ e 2 h K (z,w) -1 • + O (h ∞ ) - " σ h (z, w)|z -w| 2 4h ¶ 2 + O |z -w| 5 h 2 ¶ + O |z -w| 3 h ¶ #) . ( 3 
= 1 4h 2 • σ h (z, z)σ h (w, w) + σ h (z, w) 2 (1 + O (|z -w|))e -2K (z,w) h + O (h ∞ ) + σ h (z, w) 2 (1 + O (|z -w|)) e K (z,w) h sinh K (z,w) h ˆ σ h (z, w)|z -w| 2 4h ¶ 2 2 coth K (z, w) h - σ h (z, w)|z -w| 2 h ! ' .
Proof 

perm Γ = 8 coth K h h 4 sinh K h e -1 h K (z,w) |4 -2 σ h (z, w) 2 (z -w) 2 (1 + O (|z -w|)| 2 - e -1 h K (z,w) 4h 3 sinh K h σ h (z, w) 3 |z -w| 2 (1 + O (|z -w|) + 1 4h 2 ‡ σ h (z, z)σ h (w, w) + σ h (z, w; h) 2 (1 + O (|z -w|)e -2 h K (z,w) • + O (h ∞ ).
Thus, one computes that perm Γ = σ h (z, w) 2 (1 + O (|z -w|)

4h 2 e 1 h K (z,w) sinh K h " σ h (z, w)|z -w| 2 4h ¶ 2 2 coth K h - σ h (z, w)|z -w| 2 h # + 1 4h 2 ‡ σ h (z, z)σ h (w, w) + σ h (z, w; h) 2 (1 + O (|z -w|)e -2 h K (z,w) • + O (h ∞ )
and we conclude the statement of the proposition.

| Proof of the results on the eigenvalue interaction

We begin by proving the results of Theorem 1. Proof of Proposition 1.3.5. First, let us treat the case of the long range interaction: we suppose that |z -w| (h ln h -1 ) 1 2 . Here, we have that for any power N > 1 the term w) remains bounded. Using that sinh K (z, w) ≥ O (h -C ) > 0 with C 1 and using that σ h (z, z) = σ(z) + O (h), it follows that 

σ h (z, w)|z -w| 2 4h ¶ N e -K (z,
D δ (z, w; h) = σ(z)σ(w) + O (h) (2hπ) 2 ‡ 1 + O ‡ δh -
D δ (z, w; h) = Λ(z, w) (2πh) 2 ¡ 1 -e -2K (z,w) ¢ ‡ 1 + O ‡ δh -8 5 •• + O ‡ e -D h 2 • (3.4.1) D δ (z, w; h) = Λ(z, w) ‡ 1 + O ‡ h ∞ + δh -51 10 •• + O ‡ e -D h 2
• , with Λ(z, w; h) equal to

σ h (z, z)σ h (w, w) + σ h (z, w) 2 (1 + O (|z -w|))e -2K (z,w) + O ‡ h ∞ + δh -31 10 • + σ h (z, w) 2 (1 + O (|z -w|))
e K (z,w) sinh K (z, w)

ˆ σ h (z, w)|z -w| 2 4h ¶ 2 2 coth K (z, w) - σ h (z, w)|z -w| 2 h ! .
Similarly to (3.3.7), we have that σ h (z, z) = σ h (z, w)(1+O (|z -w|). We start by considering the first term in (3.4.1): Λ(z, w)

(2πh) 2 ¡ 1 -e -2K (z,w) ¢ . (3.4.2)
Set σ h = σ h (z, w). Using the Taylor expansions of the functions sinh x, coth x and e -x , one computes, that (3.4.2) is equal to

1 hπ 2 σ h |z -w| 2 ‡ 1 + O ‡ |z-w| 2 h •• • σ 2 h (1 + O (|z -w|)) - σ 3 h |z -w| 2 4h (1 + O (|z -w|)) + σ 4 h |z -w| 4 4 2 h 2 1 + O |z -w| 2 h ¶ ¶ + ( σ 4 h |z -w| 4 3 • 4 4 h 2 1 + O |z -w| 4 h 2 ¶ ¶ -1 ) • • σ 2 h ‡ 1 -σ h |z-w| 2 4h (1 + O (|z -w|)) + σ 2 h |z-w| 4 2•4 2 h ‡ 1 + O ‡ |z-w| 2 h ••• 1 + O (|z -w|) + σ 2 h |z-w| 4 4 2 •6h ‡ 1 + O ‡ |z-w| 2 h •• + O ‡ h ∞ + δh -31 10 • 3 7 5 
which simplifies to 

Λ(z, w; h) = σ 3 h |z -w| 2 (4πh) 2 1 + O |z -w| 2 h ¶ ¶ . Hence, D δ (z, w; h) = σ 3 h |z -w| 2 (4πh) 2 1 + O |z -w| 2 h + δh -8 5 ¶ ¶ which concludes the proof. . Proof of Proposition 1.3.6. Using that σ h (z, w 0 ) = σ h (z, z)(1 + O (|z -w 0 |) (cf. ( 3 
(0, R) ⊂ C n = C n-m z ×C m w denote the complex open ball of radius R > 0 centered at 0. For z ∈ B C n-m (0, R 0 ), define R(z) := (R 2 -z 2 C n-m ) 1/2 . We consider a holomorphic function F : B (0, R) -→ C m such that
• for all (z, w) ∈ B (0, R) the Jacobian of F with respect to w is given by

∂F (z, w) ∂w = A +G(z, w),
where G : B (0, R) -→ C m×m is a matrix-valued holomorphic function and

• A ∈ GL m (C) such that A -1 • G(z, w) ≤ θ < 1 for all (z, w) ∈ B (0, R).
Then, for all z ∈ B C n-m (0, R 0 ) and for all y ∈ B C m (F (z, 0), 1-θ A -1 r ), with 0 < r < R(z), the equation

F (z, w) = y (3.4.3)
has exactly one solution w(z, y) ∈ B C m (0, R(z)), it satisfies w(z, y) ∈ B C m (0, r ) and it depends holomorphically on z and on y.

Remark 3.4.2. Observe that the choice of R 0 < R yields a uniform lower bound on R(z) and so we can choose the radius of the ball B C m (F (z, 0), 1-θ A -1 r ) uniformly in z. This will become important in the proof of Proposition 3.1.7.

Proof. Let z ∈ B C n-m (0, R 0 ) and set B C m (0, R(z)) w -→ e F (w) := F (z, w).
We begin by observing that d e F (w) is invertible for all w ∈ B C m (0, R(z)) and the norm of the inverse is bounded (uniformly in z). Indeed, for one has that

¡ d e F (w) ¢ -1 ≤ A -1 • (1 + A -1 G(z, w)) -1 ≤ A -1 1 -θ .
Claim #1: e F is injective. Let w 0 , w 1 ∈ B C m (0, R(z)) and define y i := e F (w i ). Hence, with w t := (1t )w 0 + t w 1 , we have that

d d t e F (w t ) = d e F (w t ) • (w 1 -w 0 ) = (A +G(z, w t )) • (w 1 -w 0 ).
Thus,

y 1 -y 0 = (A + H (z, w 1 , w 0 )) • (w 1 -w 0 ), H (z, w 1 , w 0 )) = ˆ1 0 G(z, w t )d t ,
where H (z, w 1 , w 0 ) ≤ sup B (0,R) G(z, w) . Therefore, A -1 • H (z, w 1 , w 0 ) ≤ θ < 1, and we see that (A + H (z, w 1 , w 0 )) is invertible and the norm of its inverse is ≤ A -1 1-θ (uniformly in z). Hence,

w 1 -w 0 ≤ A -1 1 -θ y 1 -y 0 , (3.4.4) 
and we conclude that e F is injective. In particular, we have proven the uniqueness of the solution to the equation (3.4.3).

Claim #2: Let 0 < r < R(z). Then, for all y ∈ B C m ( e F (0), 1-θ A -1 r ) there exists a w ∈ B C m (0, r ) such that e F (w) = y.
For y = e F (0), we take w = 0. Using the fact that d e F is invertible everywhere, the implicit function theorem implies that for all y ∈ B ( e F (0), ρ) there exists a solution w ∈ B C m (0, r ), if ρ > 0 is small enough (cf. (3.4.4)). Let y ∈ B C m ( e F (0), 1-θ A -1 r ), and define y t := (1t ) e F (0) + t y. Let t 0 ∈ [0, 1] be the supremum of e t ∈ [0, 1] such that there exists a solution to e F (w t ) = y t for all 0 ≤ t ≤ e t .
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We have already proven that t 0 > 0. As t t 0 we have that w t ∈ B C m (0, r ). Since B C m (0, r ) is relatively compact in B C m (0, R(z)), there exists a sequence t j t 0 such that w t j → e w with e w ∈ B C m (0, r ). Thus, e F ( e w) = y t 0 , and we see by (3.4.4) that e w ∈ B C m (0, r ). If t 0 < 1, we get by the implicit function theorem, that for all y ∈ B (y t 0 , δ), with δ > 0 small enough, there exists a solution w ∈ B C m (0, r ). Therefore, we can solve e F (w t ) = y t for all 0 < t < t 0 + δ, which is a contradiction. Hence, t 0 = 1, which concludes the proof of the existence of a solution.

Finally, note that for all (z, w) ∈ B (0, R) the Jacobian ∂F (z, w)/∂w is invertible and the norm of its inverse is uniformly bounded, indeed

∂F (z, w) ∂w ¶ -1 ≤ A -1 • (1 + A -1 G(z, w)) -1 ≤ A -1 1 -θ .
In particular, we have that the determinant of the Jacobian is never equal to 0, and we conclude by the holomorphic implicit function theorem that the solution w(z, y) to the equation (3.4.4) depends holomorphically on z and y.

Proof of Proposition 3.1.7. In view of (3.1.4), it remains to study the integral

I (z 1 , z 2 , h) = lim ε→0 + π -N ˆB(0,R) H δ ε (z 1 , z 2 , α; h)e -αα L(d α). ( 3.4.5) 
with

H δ ε (z 1 , z 2 , α; h) := 2 Y k=1 ε -2 χ ˆE δ -+ (z k , α) ε ! |∂ z k E δ -+ (z k , α)| 2 for 1/C ≥ |z 1 -z 2 | h 3/5
. We begin by performing a change of variables in the α-space.

Change of variables: For X (z) ∈ C N as in Definition 3.1.2, define the matrix

t V := ¡ X (z 1 ), X (z 2 ), ∂ z 1 X (z 1 ), ∂ z 2 X (z 2 ) ¢ ∈ C N ×4
and note that the Gramian matrix G (cf. (3.1.6)) satisfies

G = A B B * C ¶ = V • V * . Moreover, G is invertible by virtue of Proposition 3.3.1, since |z 1 -z 2 | h 3/5 . Next, we define the matrix U ∈ C 4×4 by U := 1 0 B * A -1 1 ¶ .
U is invertible and thus satisfies that (U -1 ) * = (U * ) -1 . Define the matrix

e G := A 0 0 Γ ¶ ∈ C 4×4 ,
and notice that

U A 0 0 Γ ¶ U * = 1 0 B * A -1 1 ¶ e G 1 A -1 B 0 1 ¶ = G.
We see that e G = U -1 G(U * ) -1 . Next, we define the matrix |z -w| 1 makes (1.3.4) necessary. This might be avoided by choosing another set of basis vectors.

e V * := (U -1 V ) * e G -1 e V * is
Next, we apply this change of variables to the vector F given in (3.1.5) and we get

F (z, α( e α); δ, h) = 0 B B B @ E -+ (z 1 ) E -+ (z 2 ) (∂ z E -+ )(z 1 ) (∂ z E -+ )(z 2 ) 1 C C C A -δ 0 B B B @ t X (z 1 ) t X (z 2 ) t (∂ z X )(z 1 ) t (∂ z X )(z 2 ) 1 C C C A • α( e α) + 0 B B B @ T (z 1 , α( e α)) T (z 2 , α( e α)) (∂ z T )(z 1 , α( e α)) (∂ z T )(z 2 , α( e α)) 1 C C C A = 0 B B B @ E -+ (z 1 ) E -+ (z 2 ) (∂ z E -+ )(z 1 ) (∂ z E -+ )(z 2 ) 1 C C C A -δ(V • e V ) • 0 B @ e α 1 . . . e α 4 1 C A + 0 B B B @ T (z 1 , α( e α)) T (z 2 , α( e α)) (∂ z T )(z 1 , α( e α)) (∂ z T )(z 2 , α( e α)) 1 C C C A . Furthermore, one computes that V e V = U e G 1 2 = ˆA 1 2 0 B * A -1 2 Γ 1 2 ! , (3.4.8) 
and we get that

F (z, α( e α); δ, h) = 0 B B B @ E -+ (z 1 ) E -+ (z 2 ) (∂ z E -+ )(z 1 ) (∂ z E -+ )(z 2 ) 1 C C C A -δU e G 1 2 • 0 B @ e α 1 . . . e α 4 1 C A + 0 B B B @ T (z 1 , α( e α)) T (z 2 , α( e α)) (∂ z T )(z 1 , α( e α)) (∂ z T )(z 2 , α( e α)) 1 C C C A .
Next, to simplify our notation, we call the e α variables again α. Also, to abbreviate our notation, define

µ(z, w; h) := E -+ (z 1 ) E -+ (z 2 ) ¶ and τ(z, α; h, δ) := T (z 1 , α) T (z 2 , α) ¶ . and ∂ z µ(z, w; h) := (∂ z E -+ )(z 1 ) (∂ z E -+ )(z 2 ) ¶ and ∂ z τ(z, α; h, δ) := (∂ z T )(z 1 , α) (∂ z T )(z 2 , α) ¶ . Remark 3.4.4. Recall that T (cf. (3.1. 3 
)) depends on h and on δ, though not explicit in the above notation.

When we write ∂ z µ and ∂ z τ the derivatives are to be understood component wise, each of which only depends either on z 1 or z 2 .
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Hence,

F δ (z, α) := F (z, α; δ, h) = µ(z, h, δ) ∂ z µ(z, h, δ) ¶ -δU e G 1 2 0 B @ α 1 . . . α 4 1 C A + τ(z, α, h, δ) ∂ z τ(z, α, h, δ) ¶ . (3.4.9)
As noted in Remark 3.1.4, µ and τ are smooth in z, and τ is holomorphic in α. Moreover, τ satisfies the estimates

τ i = O ¡ h -5/2 δ 2 ¢ , i = 1, 2 and ∂ z i τ i = O ¡ h -7/2 δ 2 ¢ , i = 1, 2; (3.4.10)
and µ satisfies the estimates

µ i = O ‡ h 1/2 e -S h • , ∂ z i µ i = O ‡ h -1/2 e -S h • , i = 1, 2 (3.4.11) 
with S as in Definition 1.2.2. Finally, we perform the above described change of variables in the integral (3.4.5), and, using the fact that we chose an orthonormal basis of the α-space, we get that

H δ ε (z 1 , z 2 , α; h) = 2 Y k=1 ε -2 χ ˆF δ k (z k , α) ε ! |F δ k+2 (z k , α)| 2 .
Next, let α = (α 1 , α 2 , α ) = ( e α, α ) and split the ball B (0, R), R = C h -1 , into two pieces: pick C 0 > 0 such that 0 < C 1 < C 0 < C < 2C 0 , and define R 0 = C 0 h -1 . Then, we perform the splitting:

I (z, h) = I 1 (z, h) + I 2 (z, h) with I 1 (z, h) := lim ε→0 + π -N B(0,R) α C N -2 ≤R 0 H δ ε (z 1 , z 2 , α; h)e -α * α L(d α).
and

I 2 (z, h) := lim ε→0 + π -N B(0,R) R 0 < α C N -2 <R H δ ε (z 1 , z 2 , α; h)e -α * α L(d α). ( 3 

.4.12)

The integral I 1 First, we perform a new change of variables in the α-space. Let β 1 , . . . ,

β N ∈ C such that β 1 = F δ 1 (z 1 , α), β 2 = F δ 2 (z 2 , α
) and β i = α i , for i = 3, . . . , N . We use the following notation: β = (β 1 , β 2 , β ) = ( e β, α ). It is sufficient to check that we can express e α = (α 1 , α 2 ) as a function of ( e β, α ). Therefore, we apply Lemma 3.4.1 to the function

F δ (z, α) = F δ 1 (z 1 , α) F δ 2 (z 2 , α) ¶ .
where α plays the role of (z, w) in the Lemma. In particular, e α plays the role of w. Let us check that the assumptions of Lemma 3.4.1 are satisfied: F δ (z, α) is by definition holomorphic in α. Using (3.4.9) and (3.4.8), we see that its Jacobian, with respect to the variables e α, is given by

∂F (z, α) ∂ e α = ∂τ ∂ e α -δA 1 2 
(3.4.13)

The Cauchy inequalities and (3.4.10) imply that

∂τ i ∂ e α j = O ‡ δ 2 h -3 2 • , i , j = 1, 2.
This estimate is uniform in α ∈ B (0, R) and (z 1 , z 2 ) ∈ supp ϕ. Expansion of the determinant yields that

det ∂τ ∂ e α -δA 1 2 ¶ = δ 2 ‡ det A + O ‡ δh -3 2 •• . ( 3 

.4.14)

Using that A is self-adjoint, we see by Corollary 3.3.3 that for (z 1 , z 2 ) ∈ supp ϕ

A -1 2 ≤ 1 min λ∈σ(A) λ ≤ O ‡ h -1 20 • . (3.4.15)
By the hypothesis (1.3.2), we have that δ h 7/2 . Hence, one gets that for all α ∈ B (0, R)

δ -1 A -1 2 • ∂ e α τ ≤ O ‡ δh -3 2 -1 20 • 1.
Hence F δ (z, α) satisfies the assumptions of Lemma 3.4.1. In the integral I 1 we restricted α to the open ball α C N -2 < R 0 . It follows by Lemma 3.4.1 that for all

e β ∈ B C 2 ‡ F δ (z; 0, α ), r • (3.4.16) with r : = δ A -1 2 -1 (1 -max α∈B (0,R) δ -1 A -1 2 • ∂ e α τ ) ¶ q R 2 -R 2 0 ≥ δh 1 20 -1 O (1) > 0,
the equation e β = F δ (z, e α, α ) has exactly one solution e α( e β, α ; z) in the ball

B ‡ 0, q R 2 -α 2 C N -2 • ).
Moreover, the solution satisfies e α( e β, α ; z) ∈ B (0, q R 2 -R 2 0 ), and it depends holomorphically on e β and α and is smooth in z. Using (3.4.9), we see that the solution is implicitly given by e α( e β, α ) = -δ -1 A - where τ satisfies the estimate (3.4.10). Since the support of χ is compact (cf. Section 3.1.1), we can restrict our attention to e β and F δ (z; 0, α ) in a small poly-disc of radius K ε > 0 centered at 0, with K > 0 large enough such that supp χ ⊂ D(0, K ). By choosing ε < δh/C , C > 0 large enough, we see that e β, F δ (z; 0, α ) ∈ D(0, K ε) × D(0, K ε) implies (3.4.16). From (3.4.8), (3.4.9) and (3.4.17), it follows that

F δ 3 (z, e α( e β, α ), α ) F δ 4 (z, e α( e β, α ), α ) ¶ = ∂ z ν + B * A -1 ( e β -ν) -δΓ 1 2 α 3 α 4 ¶ , (3.4.18) with ∂ z ν = (∂ z ν 1 , ∂ z ν 2 ) t = (∂ z µ)(z, h) + (∂ z τ)(z, e α( e β, α ), α , h, δ)
where ∂ z τ satisfies the estimate given in (3.4.10). Furthermore, (3.4.13) and (3.4.14) imply that

L(d e α) = δ -4 ‡ det A + O ‡ δh -3 2 •• -2 L(d e β) =: J ( e β, α )L(d e β) (3.4.19)
By performing this change of variables in the integral I 1 and by picking ε > 0 small enough as above, we get that I 1 is equal to The integrand of I 1 depends continuously on e β. Hence, by performing the limit ε → 0 + , we get

lim ε 0 π -N ě β∈D(0,K ε)×D(0,K ε) ( α( e β,α ),α )∈B (0,R) α C N -2 ≤R 0 H δ ε (z 1 , z 2 , e α 
I 1 (z, h) = π -N ( α(0,α ),α )∈B (0,R) α C N -2 ≤R 0 H δ 0 (z 1 , z 2 , e α(0, α ), α ; h)e -Φ(0,α ) J (0, α )L(d α ) (3.4.20) with H δ 0 (z 1 , z 2 , e α(0, α ), α ; h) = |F 3 (z, 0, α )F 4 (z, 0, α )| 2 .
Using (3.4.17), one computes that

Φ(0, α ) = 1 δ 2 ν * A -1 ν + (α ) * • α
and, using (3.4.18), we get 

F δ 3 (z, e α(0, α ), α ) F δ 4 (z, e α(0, α ), α ) ¶ = ∂ z ν -B * A -1 ν -δΓ 1 2 α 3 α 4 ¶ , ( 3 
α(0, α ) 2 = 1 δ 2 ν * A -1 ν ≤ C h 1 10 h O ‡ δ -2 e -2S h • + O ¡ δ 2 h -5 ¢ i , (3.4.22) 
where the constant C > 0 comes from the upper bound of A -1/2 -1 given in (3.4.15). By the Hypothesis (1.3.2), we conclude that e α(0, α ) 2 1

h 1 10
.

which implies that ( α(0, 0, α ), α ) ∈ B (0, R) for all α with α C N -2 ≤ R 0 . Hence,

I 1 (z, h) = π -N ˆ α C N -2 ≤R 0 |F 3 (z, 0, α )F 4 (z, 0, α )| 2 e -Φ(0,α ) J (0, α )L(d α ). (3.4.23)
Next, we want to apply a multi-dimensional version of the mean value theorem for integrals to (3.4.23). Indeed, let U ⊂ R n be open, relatively compact and path-connected, it then holds true that for a continuous function f : U → R and a positive integrable function g : U → R, there exists a y ∈ U such that

f (y) ˆU g (x)d x = ˆU f (x)g (x)d x.
Hence, the mean value theorem applied to (3.4.23) yields that

I 1 (z, h) = π -N J e -e ν * A -1 e ν δ 2 ˆ α C N -2 ≤R 0 |F 3 (z, 0, α )F 4 (z, 0, α )| 2 e -α α L(d α ).
Here, J denotes the evaluation of the Jacobian J (0, α ) (cf. (3.4.19)) at the intermediate point for α given by mean value theorem. Note that J depends smoothly on z 1 and z 2 because τ and A do.

Similarly, e ν above denotes the evaluation of the function ν(z, e α(0, α ), α , h, δ) at the intermediate point for α given by mean value theorem. It depends smoothly on z 1 and z 2 because µ and τ do. Moreover, using (3.4.10), we see that it satisfies

e ν = E -+ (z 1 ) E -+ (z 2 ) ¶ + O ‡ δ 2 h -5 2 
• .

In remains to study the integral

e I 1 (z, h) := π -N ˆ α C N -2 ≤R 0 |F 3 (z, 0, α )F 4 (z, 0, α )| 2 e -α α L(d α ).
Define the linear forms

l 1 (α ) = [Γ 1 2 ] 11 α 3 + [Γ 1 2 ] 12 α 4 , l 2 (α ) = [Γ 1 2 ] 21 α 3 + [Γ 1 2 ] 22 α 4 .
Using (3.4.21), we get that

F 3 (z, 0, α ) = (∂ z ν -B * A -1 ν) 1 -δl 1 (α ) = O ‡ h -3 5 e -S h + δ 2 h -36 10 • -δl 1 (α ). F 4 (z, 0, α ) = (∂ z ν -B * A -1 ν) 2 -δl 2 (α ) = O ‡ h -3 5 e -S h + δ 2 h -36 10 • -δl 2 (α ).
In 

= tr Γ ≤ O (h -1 2 ). Since α C N -2 ≤ R 0 , one gets |F 3 (z, 0, α )F 4 (z, 0, α )| 2 = δ 4 ‡ |l 1 (α )l 2 (α )| 2 + O ‡ e -1 C h + δh -51 10 •• ,
where the error estimate is uniform in α . Here we used as well that by the hypothesis (1.3.2), we have that

O (δ -1 e -S h ) = O (e -1 C h ). Hence, e I 1 (z, h) = δ 4 π -N ˆ α C N -2 ≤R 0 |l 1 (α )l 2 (α )| 2 e -α α L(d α ) + O ‡ δ 4 e -1 C h + δ 5 h -51 10 
• .

Extend the function |l 1 (α )l 2 (α )| 2 to the whole of C N -2 by a function that satisfies the same bounds, i.e. bounded by a term of order h -5 , and note that

π 2-N ˆ α C N -2 ≥R 0 |l 1 (α )l 2 (α )| 2 e -α α L(d α ) ≤ O ‡ e -D h 2 • .
Integration by parts yields that

π 2-N Ĉ N -2 |l 1 (α )l 2 (α )| 2 e -α α L(d α ) = π -2 ˆCN-2 e -e α e α 2 Y k=1 l k (∂ e α ) ˆ2 Y n=1 l n ( e α) ! L(d e α).
Note that for any permutation σ ∈ S n , where S n is the symmetric group, we have that (l i |l σ(i ) ) = Γ i σ(i ) . Thus, in view of (3.1.8), we have that

2 Y k=1 l k (∂ e α ) ˆ2 Y n=1 l n ( e α) ! = X σ∈S 2 (l 1 |l σ(1) )(l 2 |l σ(2) ) = perm Γ We conclude that I 1 (z, h) = perm Γ + O ‡ e -1 C h + δh -51 10 • π 2 ‡ det A + O ‡ δh -3 2 •• 2 + O ‡ e -D h 2 • ,
where we used the fact that det A ≥ h

O (1) for 1/C ≥ |z -w| h 3/5 , see Proposition 3.3.4, to obtain the last equality.

The integral I 2 In this step we will estimate the second integral of equation (3.4.12). Therefore, we will increase the space of integration

π -N B(0,R) R 0 < α C N -2 <R 2 Y k=1 ε -2 χ F k (z, α) ε ¶ |∂ z k F k (z, α)| 2 e -αα L(d α) ≤ π -N B(0,2R) R 0 < α C N -2 <2R 0 2 Y k=1 ε -2 χ F k (z, α) ε ¶ |∂ z k F k (z, α)| 2 e -αα L(d α) =: W ε .
It is easy to see that Lemma 3.4.1 holds true for the set B (0, 2R) ∩ {R 0 < α C N -2 < 2R 0 }. Therefore, we can proceed as for the integral I 1 : perform the same change of variables and perform the limit of ε → 0. As for I 1 , the integrand remains bounded by at most a finite power of h -1 which then yields that

lim ε→0 W ε = O ‡ e -D h 2 • ,
where the exponential decay comes from the fact that R

0 < α C N -2 . Therefore, ˆC2 ϕ 1 (z 1 )ϕ 2 (z 2 )d ν(z 1 , z 2 ) = ˆC2 ϕ 1 (z 1 )ϕ 2 (z 2 )D(z, h)L(d z 1 d z 2 ) with D(z, h, δ) = perm Γ + O ‡ e -1 C h + δh -51 10 • π 2 ‡ det A + O ‡ δh -3 2 •• 2 + O ‡ e -D h 2 • . 4.1. A GENERAL FORMULA Then Σ := {(z,Q) ∈ Ω × W ; g (z,Q) = 0}
is a smooth complex hypersurface in Ω × W and from (4.1.2) we see that

K φ = ˆΣ φ(z)m(Q)(2i ) -N 2 dQ ∧ dQ, (4.1.5)
where we view (2i ) -N 2 dQ ∧dQ as a complex (N 2 , N 2 )-form on Ω×W , restricted to Σ, which yields a non-negative differential form of maximal degree on Σ.

Before continuing, let us eliminate the assumption (4.1.2). Without that assumption, the integral in (4.1.3) is still well-defined. It suffices to show (4.1.5) for all φ ∈ C ∞ 0 (Ω 0 ×W 0 ) when Ω 0 ×W 0 is a sufficiently small open neighborhood of any given point (z 0 ,Q 0 ) ∈ Ω × W . When g (z 0 ,Q 0 ) = 0 or ∂ z g (z 0 , Ω 0 ) = 0 we already know that this holds, so we assume that for some m

≥ 2, ∂ k z g (z 0 ,Q 0 ) = 0 for 0 ≤ k ≤ m -1, ∂ m z g (z 0 ,Q 0 ) = 0. Put g ε (z,Q) = g (z,Q) + ε, ε ∈ neigh(0, C).
By Weierstrass' preparation theorem, if Ω 0 ,W 0 and r > 0 are small enough,

g ε (z,Q) = k(z,Q, ε)p(z,Q, ε) in Ω 0 × W 0 × D(0, r ),
where k is holomorphic and non-vanishing, and

p(z,Q, ε) = z m + p 1 (Q, ε)z m-1 + • • • + p m (Q, ε).
Here, p j (Q, ε) are holomorphic, and p j (0, 0

) = 0. The discriminant D(Q, ε) of the polynomial p(•,Q, ε) is holomorphic on W 0 × D(0, r ). It vanishes precisely when p(•,Q, ε) -or equivalently g ε (•,Q) -has a multiple root in Ω 0 . Now for 0 < |ε| 1, the m roots of g ε (•,Q 0 ) are simple, so D(Q 0 , ε) = 0. Thus, D(•, ε)
is not identically zero, so the zero set of D(•, ε) in W 0 is of measure 0 (assuming that we have chosen W 0 connected). This means that for 0 < |ε| 1, the function g ε (•,Q) has only simple roots in Ω for almost all Q ∈ W 0 .

Let Σ be the zero set of g , so that Σ → Σ 0 = Σ ∩ (Ω 0 × W 0 ) uniformly. We have

ˆˆX z; g (z,Q)=0 φ(z) ! m(Q)(2i ) -N 2 dQ ∧ dQ = ˆΣ φ(z)m(Q)(2i ) -N 2 dQ ∧ dQ for φ ∈ C ∞ 0 (Ω 0 ×W 0 )
, when > 0 is small enough, depending on φ, m. Passing to the limit = 0 we get (4.1.5) under the assumptions (4.1.1), (4.1.4), first for φ ∈ C ∞ 0 (Ω 0 ×W 0 ), and then by partition of unity for all φ ∈ C ∞ 0 (Ω ×W ). Notice that the result remains valid if we replace m(Q) by m(Q)1 B (Q) where B is a ball in W . Now we strengthen the assumption (4.1.4) by assuming that we have a non-zero Z (z) ∈ C N 2 depending smoothly on z ∈ Ω (the dependence will actually be holomorphic in the application below) such that g

(z,Q) = 0 ⇒ ‡ Z (z) • ∂ Q • g (z,Q) = 0. (4.1.6)
We have the corresponding orthogonal decomposition

Q = Q(α) = α 1 Z (z) + α , α ∈ Z (z) ⊥ , α 1 ∈ C,
and if we identify unitarily Z (z) ⊥ with C N 2 -1 by means of an orthonormal basis e 2 (z), ..., e N 2 (z), so that α = P N 2 2 α j e j (z) we get global coordinates α 1 , α 2 , ..., α N 2 on Q-space (i.e. W ). By the implicit function theorem, at least locally near any given point in Σ, we can represent Σ by α

1 = f (z, α ), α ∈ Z (z) ⊥ C N 2 -1
, where f is smooth. (In the specific situation below, this will be valid globally.) Clearly, since z, α 2 , ..., α N 2 are complex coordinates on Σ, we have on Σ that 1

(2i ) N 2 dQ ∧ dQ = J ( f ) d z ∧ d z 2i (2i ) 1-N 2 d α 2 ∧ d α 2 ∧ ... ∧ d α N 2 ∧ d α N 2 ,
where we view (2i ) -N 2 dQ ∧dQ as a complex (N 2 , N 2 )-form on Ω×W , restricted to Σ (as in (4.1.5)), and we use the convention that

J ( f ) d z ∧ d z 2i ≥ 0, (2i ) 1-N 2 d α 2 ∧ d α 2 ∧ ... ∧ d α N 2 ∧ d α N 2 > 0.
Thus

K φ = ˆφ(z)m ‡ f (z, α )Z (z) + α • J ( f )(z, α 2 , ..., α N 2 )× (2i ) -N 2 d z ∧ d z ∧ d α 2 ∧ d α 2 ∧ ... ∧ d α N 2 ∧ d α N 2 . (4.1.7)
The Jacobian J ( f ) is invariant under any z-dependent unitary change of variables, α 2 , ..., α N 2 → e α 2 , ..., e α N 2 , so for the calculation of J ( f ) at a given point (z 0 , α 0 ), we are free to choose the most appropriate orthonormal basis e 2 (z), ..., e N 2 (z) in Z (z) ⊥ depending smoothly on z. We write (4.1.7) as

K φ = ˆφ(z) e Ξ(z) d z ∧ d z 2i , (4.1.8) 
where the density e Ξ(z) is given by e 

Ξ(z) = ˆα = P N 2 2 α j e j (z) m( f (z, α )Z (z) + α )J ( f )(z, α 2 , ..., α N 2 )× (2i ) 1-N 2 d α 2 ∧ d α 2 ∧ ... ∧ d α N 2 ∧ d α N 2 . ( 4 
R + u = u 1 , u = (u 1 ... u N ) t ∈ C N . (4.2.1) Let R -: C → C N be defined by R -u -= (0 0 ... u -) t ∈ C N . (4.2.2)
Here, we identify vectors in C N with column matrices. Then for |z| < 1, the operator

A 0 = A 0 -z R - R + 0 ¶ : C N +1 → C N +1 (4.2.3)
is bijective. In fact, identifying

C N +1 2 ([1, 2, ..., N + 1]) 2 (Z/(N + 1)Z),
we have A 0 = τ -1 -zΠ N , where τu( j ) = u( j -1) (translation by 1 step to the right, keeping in mind that j ∈ Z/(N + 1)Z) and

Π N u = 1 [1,N ] u. Then A 0 = τ -1 (1 -zτΠ N ), (τΠ N ) N +1 = 0, A -1 0 = (1 + zτΠ N + (zτΠ N ) 2 + ... + (zτΠ N ) N ) • τ. Write E 0 := A -1 0 =: E 0 E 0 + E 0 -E 0 -+ ¶ . Then E 0 Π N (1 + zτΠ N + ...(zτΠ N ) N -1 )τΠ N , (4.2.4) 4.2. GRUSHIN PROBLEM FOR THE PERTURBED JORDAN BLOCK E 0 + = 0 B B B @ 1 z .. z N -1 1 C C C A , E 0 -= ¡ z N -1 z N -2 ... 1 ¢ , (4.2.5) E 0 -+ = z N . ( 4 

.2.6)

A quick way to check (4.2.5), (4.2.6) is to write A 0 as an (N + 1) × (N + 1)-matrix where we moved the last line to the top, with the lines labeled from 0 (≡ N +1 mod (N +1)Z) to N and the columns from 1 to N + 1.

Continuing, we see that 

E 0 ≤ G(|z|), E 0 ± ≤ G(|z|) 1 2 , E 0 -+ ≤ 1, ( 4 
A δ = A δ -z R - R + 0 ¶ (4.2.9)
is bijective with inverse

E δ = E δ E δ + E δ -E δ -+ ¶ ,
where

E δ =E 0 -E 0 δQE 0 + E 0 (δQE 0 ) 2 -... = E 0 (1 + δQE 0 ) -1 , E δ + =E 0 + -E 0 δQE 0 + + (E 0 δQ) 2 E 0 + -... = (1 + E 0 δQ) -1 E 0 + , E δ -=E 0 --E 0 -δQE 0 + E 0 -(δQE 0 ) 2 -... = E 0 -(1 + δQE 0 ) -1 , E δ -+ =E 0 -+ -E 0 -δQE 0 + + E 0 -δQE 0 δQE 0 + -... = E 0 -+ -E 0 -δQ(1 + E 0 δQ) -1 E 0 + . ( 4 

.2.10)

We get

E δ ≤ G(|z|) 1 -δ Q G(|z|) , E δ ± ≤ G(|z|) 1 2 1 -δ Q G(|z|) , |E δ -+ -E 0 -+ | ≤ δ Q G(|z|) 1 -δ Q G(|z|) . ( 4 

.2.11)

Indicating derivatives with respect to δ with dots and omitting sometimes the super-or sub-script δ, we have

Ė = -E Ȧ E = - EQE EQE + E -QE E -QE + . ¶ (4.2.12)
Integrating this from 0 to δ yields

E δ -E 0 ≤ G(|z|) 2 δ Q (1 -δ Q G(|z|)) 2 , E δ ± -E 0 ± ≤ G(|z|) 3 2 δ Q (1 -δ Q G(|z|)) 2 . ( 4 

.2.13)

We now sharpen the assumption that δ

Q G(|z|) < 1 to δ Q G(|z|) < 1/2. (4.2.14) Then E δ ≤ 2G(|z|), E δ ± ≤ 2G(|z|) 1 2 , |E δ -+ -E 0 -+ | ≤ 2δ Q G(|z|). ( 4 

.2.15)

Combining this with the identity Ė-+ = -E -QE + (recall that here the dot indicates a derivative with respect to δ) that follows from (4.2.12), we get Ė-+ + E 0 -QE 0 + ≤ 16G(|z|) 2 δ Q 2 , (4.2.16)

and after integration from 0 to δ,

E δ -+ = E 0 -+ -δE 0 -QE 0 + + O (1)G(|z|) 2 (δ Q ) 2 .
(4.2.17)

Using (4.2.5), (4.2.6) we get with Q = (q j ,k ),

E δ -+ = z N -δ N X j ,k=1
q j ,k z N -j +k-1 + O (1)G(|z|) 2 (δ Q ) 2 , (4.2.18) still under the assumption (4.2.14).

-Estimates for the e ective Hamiltonian

We now consider the situation of (1.4.2):

A δ = A 0 + δQ, Q = (q j ,k (ω)) N j ,k=1 , q j ,k (ω) ∼ N C (0, 1) independent.

W. Bordeaux-Montrieux [START_REF] Bordeaux-Montrieux | Loi de Weyl presque sûre et résolvent pour des opérateurs différentiels non-autoadjoints[END_REF] obtained the following result.

Proposition 4.2.1.

There exists a C 0 > 0 such that the following holds: Let X j ∼ N C (0, σ 2 j ), 1 ≤ j ≤ N < ∞ be independent complex Gaussian random variables. Put s 1 = max σ 2 j . Then, for every x > 0, we have

P " N X j =1 |X j | 2 ≥ x # ≤ exp ˆC0 2s 1 N X j =1 σ 2 j - x 2s 1
! .

According to this result we have

P ( Q 2 HS ≥ x) ≤ exp C 0 2 N 2 - x 2 ¶
and hence if C 1 > 0 is large enough, Similarly,

Q 2 HS ≤ C 2 1 N 2 ,
∂ z e g = ∂ z g + d Q g • N 2 X 2 α j ∂ z e j = N z N -1 -δQ • ∂ z Z + O (1) (GδN ) 2 r 0 -|z| + (-δZ • dQ + O (1)G 2 δ 2 N ) • N 2 X 2 α j ∂ z e j = N z N -1 -δα 1 ∂ z ¡ |Z | 2 ¢ -δ N 2 X 2 α j e j • ∂ z Z -δZ • N 2
∂ z e g = d Q g • ˆα1 ∂ z Z + N 2 X 2 α j ∂ z e j ! = ¡ -δZ • dQ + O (1)G 2 δ 2 N ¢ • ˆα1 ∂ z Z + N 2 X 2 α j ∂ z e j ! .
Up to remainders as in (4.2.33), this is equal to

-δα 1 Z • ∂ z Z -δ N 2 X 2 α j Z • ∂ z e j = -δα 1 ∂ z ¡ |Z | 2 ¢ -δ N 2 X 2 α j ∂ z ¡ Z • e j ¢ = -δα 1 ∂ z ¡ |Z | 2 ¢ .
Continuing, we know that We regroup the terms in (4.2.41) into sums with 1/s terms where e -νs has constant order of magnitude:

|Z (z)| = N -1 X 0 (zz) ν =: K (zz), ( 4 
P N ,k (s) = ∞ X µ=1 Σ(µ), Σ(µ) = X N + µ-1 s ≤ν<N + µ s ν k e -νs .
Here, since the sum Σ(µ) consists of 1/s terms of the order ν k e - Recalling (4.2.42) and the fact that s 1t , 1/2 ≤ t < 1, we get (4.2.37) when N = 1 and (4.2.38) when N ≥ 2. It remains to show (4.2.39) and it suffices to do so for 1/2 ≤ t ≤ 1 -C /N , N 1 and for C ≥ 1 sufficiently large but independent of N . Indeed, for 1 -C /N ≤ t ≤ 1 -1/O (N ), both M N ,k (t ) and M ∞,k (t ) are N 1+k . We can also exclude the case k = 0 where we have explicit formulae.

To get the equivalence (4.2.39) for 1/2 ≤ t ≤ 1 -C /N , k ≥ 1, it suffices, in view of (4.2.37), (4.2.38), to show that for such t and for N 1, we have

N k t N 1 -t ≤ 1 D 1 (1 -t ) k+1 ,
for any given D ≥ 1, provided that C is large enough. In other terms, we need 

t N (1 -t ) k ≤ 1 D N -k , for 1 
≤ 1 - C N ¶ N C N ¶ k = 1 + O C 1 N ¶ ¶ e -C C k N -k . This is ≤ N -k /D if C ≥ C (D), N ≥ N (C ).
For simplicity we will restrict the attention to the region

|z| ≤ r 0 -1/N ≤ 1 -2/N , (4.2.43) 
where G (1 -|z|) - 

∂ z f = (1 + O (GδN )) δ|Z (z)| 2 × ˆN z N -1 -δ f ∂ z ¡ |Z | 2 ¢ + O ¡ G 2 δ
∂ z f = (1 + O (GδN )) δ|Z (z)| 2 × ˆ-δ f ∂ z ¡ |Z | 2 ¢ + O ¡ G 2 δ 2 N ¢ fl fl fl fl fl f ∂ z Z + N 2
∂ α j f = O (1) G 2 δ 2 N δG 2 = O (δN ), 2 ≤ j ≤ N 2 . ( 4 

| Choosing appropriate coordinates

The next task will be to choose an orthonormal basis e 1 (z), e 2 , ..., e N 2 (z) in C N Proof. We choose e 1 (z) as in (4.3.1). Let e 3 (z 0 ), ..., e N 2 (z 0 ) be an orthonormal basis in ‡ CZ (z 0 ) ⊕ C∂ z Z (z 0 )

• ⊥ .

Then, we get an orthonormal family e 3 (z), ..., e N 2 (z) in e 1 (z) ⊥ in the following way:

Let V 0 be the isometry C N 2 -2 → C N 2 , defined by V 0 ν 0 j = e j (z 0 ), j = 3, ..., N 2 , where ν 0 3 , ..., ν 0 N 2 is the canonical basis in C N 2 -2 with a non-canonical labeling. Let π(z)u = (u|e 1 (z))e 1 (z) be the orthogonal projection onto Ce 1 (z). For z ∈ neigh (z 0 , C), let V (z) = (1 -π(z))V 0 . Then f j (z) = V (z)ν 0 j , j = 3, ..., N 2 form a linearly independent system in e 1 (z) ⊥ and we get an orthonormal system of vectors that span the same hyperplane in e 1 (z) ⊥ by Gram orthonormalization, e j (z) = V (z)(V * (z)V (z)) -1 2 ν 0 j , 3 ≤ j ≤ N 2 .

We have Thus, V (z) = V (z 0 ) + O (zz 0 ) 2 ) and we conclude that (4.3.3) holds. Let e 2 (z) be a normalized vector in (e 1 (z), e 3 (z), e 4 (z), ..., e N 2 (z)) ⊥ depending smoothly on z. Then e 1 (z), e 2 (z), ..., e N 2 (z) is an orthonormal basis and since e 3 (z 0 ), ..., e N 2 (z 0 ) are orthogonal to Z (z 0 ), ∂Z (z 0 ) by construction, we get (4.3.2).

V
We can make the following explicit choice: We next compute some scalar products and norms with Z and ∂ z Z . Recall that

Z (z) = ‡ z N -j +k-1 • N j ,k=1
and that |Z (z)| = K (|z| 2 ), K (t ) = P N -1 0 t ν . Repeating basically the same computation, we get

z∂ z Z = ‡ (N -j + k -1)z N -j +k-1 • N j ,k=1
, and

|z∂ z Z | 2 = N X j ,k=1
(Nj + k -1) 2 |z| 2(N -j +k-1) = N -1 X ν,µ=0 

(ν + µ) 2 |z| 2(ν+µ) = N -1 X 0 ν 2 |z| 2ν N -1 X 0 |z| 2µ + 2 N -1 X 0 ν|z| 2ν N -1 X 0 µ|z| 2µ + N -1 X 0 |z| 2ν N -1 X 0 µ 2 |z| 2µ = 2 ¡ K (t ∂ t ) 2 K + (t ∂ t K ) 2 ¢ t =|z| 2 .
=2(K t ∂ t K ) t =|z| 2 .
Then, by a straight forward calculation,

|∂ z Z | 2 - |(∂ z Z |Z )| 2 |Z | 2 = 2 t ¡ K (t ∂ t ) 2 K -(t ∂ t K ) 2 ¢ ¶ t =|z| 2 (4.3.7)
Here,

2 t ¡ K (t ∂ t ) 2 K -(t ∂ t K ) 2 ¢ = 2 t N -1 X 0 t ν N -1 X 0 ν 2 t ν - 2 t ˆN-1 X 0 νt ν ! 2 = N -1 X ν,µ=0 ¡ ν 2 + µ 2 -2νµ ¢ t ν+µ-1 = N -1 X ν,µ=0 (ν -µ) 2 t ν+µ-1 = 2N -3 X k=0 a k,N t k , where a k,N = X ν+µ-1=k 0≤ν,µ≤N -1 (ν -µ) 2 .
We observe that a k,N ≤ O (1)(1 + k) 3 uniformly with respect to N ,

a k,N = a k,∞ is independent of N for k ≤ N -2,
a k,∞ ≥ (1 + k) 3 /O (1).

We conclude that 1 where we recall that K = K N depends on N (cf. (4.2.34)) and that

C ¡ 1 + M N -1,3 ¢ ≤ 2 t ¡ K (t ∂ t ) 2 K -(t ∂ t K ) 2 ¢ ≤ C ¡ 1 + M 2N -2,
K N = K ∞ - t N 1 -t .
We have 8 <

:

t ∂ t K N = t ∂ t K ∞ + O ‡ N t N 1-t • , t ≤ 1 -1 N , (t ∂ t ) 2 K N = (t ∂ t ) 2 K ∞ + O ‡ N 2 t N 1-t • , t ≤ 1 -1 N , (4.3.9)
and it follows that We next show that we can take m = K (|z| 2 ). We have Thus we can take m = K (|z| 2 ) in (4.3.12). Let f 2 be the vector in (4.3.4) so that e 2 (z

2 t ¡ K N (t ∂ t ) 2 K N -(t ∂ t K N ) 2 ¢ - 2 t ¡ K ∞ (t ∂ t ) 2 K ∞ -(t ∂ t K ∞ ) 2 ¢ = O N 2 t N (1 -t ) 2 ¶ , ( 4 
∇ z e 1 = ∇ z Z |Z | - ∇ z |Z | |Z | 2 Z = ∇ z Z K - K ∇ z (zz) K 2 Z . ( 4 
) = | f 2 | -1 f 2 .
Recall that e j = U (z)ν 0 j , where we now know that ∇ z U (z) = O (K ). Write, 

∇ z f 2 = ∇ z ∂ z Z - X j =2 ‡ (∇ z ∂ z Z
∂ z f = O (1) δG 2 N |z| N -1 + δ |z| N δG 2 + δN 2 ¶ G 3 +G 2 δ 2 NG N + G 2 δ 2 N 2 r 0 -|z| ¶ = O (1) N |z| N -1 δG 2 + |z| N δG +GδN 2 + δN 2 r 0 -|z| ¶ .
In the last parenthesis the second term is dominated by the first one and the third term is dominated by the fourth. If we recall that r 0 -|z| ≥ 1/N , we get Proof. The differential form dQ 1 ∧dQ 2 ∧...∧dQ N 2 will change only by a factor of modulus one if we express Q in another fixed orthonormal basis and we will choose for that the basis e 1 (z 0 ), ..., e N 2 (z 0 ):

∂ z f = O (1) N |z| N -1 δG 2 + δN 3 ¶ . ( 4 
Q = N 2 X 1 Q k e k (z 0 ), Q k = (Q|e k (z 0 )). Write Q = α 1 Z (z) | {z } |Z (z)|e 1 (z) + N 2 X 2 α k e k (z)
and restrict to α 1 = f (z, α 2 , ..., α N 2 ), where we sometimes identify α ∈ Z (z) ⊥ with (α 2 , ..., α N 2 ): Taking z = z 0 until further notice, we get with α = (α 2 , ..., α N 2 ):

Q | α 1 = f (z,α ) = f (z, α )Z (z) + N 2
dQ j = (d z f + d α f )(Z |e j ) + f (∂ z Z |e j )d z + α 2 (d z e 2 |e j ) + ( d α j , j ≥ 2, 0, j = 1 .
Here, we used (4.3.3). The first term to the right is equal to (d z f + d α f )|Z | when j = 1 and it vanishes when j ≥ 2. The second term vanishes for j ≥ 3, by (4.3.2). The third term is equal to -α 2 (e 2 |d z e j ) (by differentiation of the identity (e 2 |e j ) = δ 2, j ) and it vanishes for j ≥ 3 (remember that we take z = z 0 ). Thus, for z = z 0 : 

dQ 1 = |Z |(d z f + d α f ) + f (∂ z Z

| Proof of Theorem 1.4.3

Let Q ∈ C N 2 be an N × N matrix whose entries are independent random variables ∼ N C (0, 1), so that the corresponding probability measure is

π -N 2 e -|Q| 2 (2i ) -N 2 dQ 1 ∧ dQ 1 ∧ ... ∧ dQ N 2 ∧ dQ N 2 = 1 (2πi ) N 2 e -|Q| 2 dQ ∧ dQ.
We are interested in • .

K φ = E ˆ1B C N 2 (0,
The sum of the other two integrals is equal to 

O (1) ˆ N |z| N -1 δG +GδN 3 + δNG 2 ¶2 +G N |z| N -1 δG +GδN 3 + δNG 2 ¶ ! = O (1) ˆ N |z| N -1 δG +GδN 3 ¶2 +G N |z| N -
K ∞ = 1/(1 -t ). Since ∂ t K ∞ = K 2 ∞ , we get t ∂ t K ∞ = t K 2 ∞ , (t ∂ t ) 2 K ∞ = t K 2 ∞ + 2t 2 K 3 ∞ ,
and 2 πt

(t ∂ t ) 2 K ∞ K ∞ - (t ∂ t K ∞ ) 2 K 2 ∞ ¶ = 2 π K 2 ∞ = 2 π 1 (1 -t ) 2 .
(4.4.8)

We next approximate the expression (4.4.7) with (4.4.8), using (4.3.10) and the fact that K = (1 + O (t N ))K ∞ (uniformly with respect to N ). The expression (4.4.7) is equal to

2 πt K 2 (K (t ∂ t ) 2 K -(t ∂ t K ) 2 ) = 2(1 + O (t N )) πt K 2 ∞ ¡ K ∞ (t ∂ t ) 2 K ∞ -(t ∂ t K ∞ ) 2 + O (N 2 t N K 2 ∞ ) ¢ .
Here, (t

∂ t K ∞ ) 2 = O (t 2 K 4 ∞ ), K ∞ (t ∂ t ) 2 K ∞ = O (t K 3 ∞ + t 2 K 4 ∞ ),
so the last expression becomes, 2 πt

(t ∂ t ) 2 K ∞ K ∞ - (t ∂ t K ∞ ) 2 K 2 ∞ ¶ + O (t N K ∞ + t N +1 K 2 ∞ + t N -1 N 2 ),
where the first two terms in the remainder are dominated by the last one. We conclude that the difference between the expressions (4.4.7) and (4.4.8) is O (t N -1 N 2 ), and using also (4. The remainder term can be written 

O (G 2 ) |z| 2(N -1) N 2 G 2 + |z|
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 1 Figure 1:The red star (in the center) depicts the spectrum of A 0 and the blue circles show the eigenvalues of A δ , a perturbation of A 0 (N = 500) with a Gaussian random matrix and coupling constant δ = 10 -4 .
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 2 For α ∈ N d , we define |α| := |α 1 | + • • • + |α d | and in particular, for d = 3, we set
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 1 RANDOM PERTURBATIONS OF NON-SELF-ADJOINT SEMICLASSICAL DIFFERENTIAL OPERATORS

  cients and principal symbol p is non-solvable in an open set Ω ⊂ R n if ∃ρ ∈ T * Ω\{0} s.t.: p(ρ) = 0 and 1 2i pseudo-differential operators) with semiclassical principal symbol p (see (1.1.2)) we have that for all z ∈ Λ -(p) = ' p(ρ) : ' Re p, Im p " (ρ) < 0 " ⊂ Σ(p) := p(T * R n ) (1.1.4)
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 111 Figure 1.1: Sections of the spectrum of the discretization of hD +exp(-i x) (approximated by a 6000×6000matrix) perturbed with a random Gaussian matrix δR with h = 2 • 10 -4 and δ = 2 • 10 -14 . The right hand side is a magnification of the upper boundary region of the picture on the left hand side.

Figure 1 . 2 :

 12 Figure 1.2:On the left hand side we present the spectrum of the discretization of hD + exp(-i x) (approximated by a 3999 × 3999-matrix) perturbed with a random Gaussian matrix δR with h = 2 • 10 -3 and δ = 2 • 10 -12 . The black box indicates the region where we count the number of eigenvalues to obtain the image on the right hand side. There we show the integrated experimental density of eigenvalues, averaged over 400 realizations of random Gaussian matrices, and the integrated Weyl law. We can see clearly a region close to the boundary of the pseudospectrum where Weyl asymptotics of the eigenvalues breaks down.
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 2137122123 Figure 1.3:On the left hand side we present the spectrum of the discretization of hD + exp(-i x) (approximated by a 1999 × 1999-matrix) perturbed with a random Gaussian matrix δR with h = 5 • 10 -2 and δ = exp(-1/h). The black box indicates the region where we count the number of eigenvalues to obtain the image on the right hand side. There we show the integrated experimental density of eigenvalues, averaged over 400 realizations of random Gaussian matrices, and the integrated Weyl law. Here, the Weyl law breaks down even more dramatically than in Figure1.2.
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 214 Figure 1.4: To illustrate Proposition 1.2.3 we show on the left hand side S(Im z), for g (x) = e -i x , compared to 2 • d (z) 3/2 for 0 ≤ Im z ≤ 1. Due to the above choice of g we have that here d (z) = (1 -Im z) for z ∈ Σ ∩ {z ∈ C; Im z ≥ 0} (cf. (1.1.13)). Similarly, we show on the right hand side |∂ Im z S(Im z)| compared to 3 • d (z) 1/2 .

Figure 1 . 6 :

 16 Figure 1.6: On the left hand side we present the spectrum of the discretization of hD + exp(-i x) (approximated by a 3999 × 3999-matrix) perturbed with a random Gaussian matrix δR with h = 2 • 10 -3 and δ = 2 • 10 -12 . The black box indicates the region where we count the number of eigenvalues to obtain Fig-ure1.7. The right hand side is a magnification of the central part of the spectrum depicted on the left hand side.
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 117 Figure 1.7: On the left hand side we compare the experimental and the theoretical (cf. Theorem 1.2.12) density of eigenvalues. On the right hand side we compare the experimental and the theoretical integrated density of eigenvalues with the integrated Weyl law. Here h = 2 • 10 -3 and δ = 2 • 10 -12 .
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 18 Figure 1.8:On the left hand side we present the spectrum of the discretization of hD + exp(-i x) (approximated by a 1999 × 1999-matrix) perturbed with a random Gaussian matrix δR with h = 5 • 10 -2 and δ = exp(-1/h). The black box indicates the region where we count the number of eigenvalues to obtain Figure1.9. The right hand side is a magnification of the central part of the spectrum depicted on the left hand side.
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 19 Figure1.9: Experimental (each point represents the mean, over 1000 realizations, number of eigenvalues in a small box) vs predicted eigenvalue density (i.e. the principal terms of the average eigenvalue density given in Theorem 1.2.12) for h = 5 • 10 -2 and δ = exp(-1/h).

  , z)d e µ 2 (z, z) + ˆC2 ϕ(z, w)d ν(z, w).

Figure 1 . 10 :

 110 Figure 1.10: Plot of the principal terms of conditional average density D δ w 0 (z; h) for w 0 = 0.
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 4 PERTURBATIONS OF LARGE JORDAN BLOCKS 1.4 | Perturbations of large Jordan blocks

CHAPTER 1 .

 1 SPECTRA OF NON-SELF-ADJOINT RANDOM OPERATORS 1.4.1 -Main results on perturbed Jordan block matrices According to Proposition 1.1.4 we have

Figure 1 . 11 :

 111 Figure 1.11: On the left hand side δ = 10 -5 and on the right hand side δ = 10 -4 .

Figure 1 . 12 :

 112 Figure 1.12: On the left hand side δ = 10 -3 and on the right hand side δ = 10 -2 .

Figure 1 .

 1 Figure 1.14:The left hand side shows the experimental integrated density of eigenvalues (averaged over 500 realizations), as a function of the radius, of a 1001 × 1001-Jordan block matrix perturbed with a random complex Gaussian matrix and with coupling δ = 2 • 10 -10 . The red line is the hyperbolic volume on the unit disk as a function of the radius. The right hand side presents a magnification of the left hand side, enlarging the zone where the approximation with the hyperbolic volume fails.

fl fl fl 2 e

 2 -αα L(d α). (1.5.2) Here, χ ∈ C ∞ 0 (C) such that χ ≥ 0 and ´χ(w)L(d w) = 1. The formula for the two-point density is similar.
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 1 SPECTRA OF NON-SELF-ADJOINT RANDOM OPERATORS

Figure 1 . 15 :

 115 Figure 1.15: Resonances as poles of the meromorphic continuation of the resolvent (H ω,Λz) -1 .
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 1 QUASIMODESQuasimodes close to the boundary Σ We consider z being close to the boundary of Σ

Proposition 2 . 1 . 4 .0 (e z) + e ha η 1 (0 (e z) + e hb η 1 ( 2 3

 214112 e x,z) = 0, Thus, the natural choice of quasimodes for z ∈ Ω ∩ Ω a η in the rescaled variables is as follows. Let Ω Σ, z ∈ Ω ∩ Ω a η and set e h := h η 3/2 . Then there exist functions a η (e z; e h) ∼ a η e z) + • • • = 0, b η (e z; e h) ∼ b η e z) + • • • = 0, depending smoothly on e z such that all e z-and e z-derivatives remain bounded as h → 0 and h e x,e z) , are L 2 (S 1 / η, ηd e x)-normalized. Here, χ e, f are as in Definition 2.1.2. Furthermore, a η 0 (e z) = |Im g (a)(e x + (e z)a/ η)(1

3 -

 3 Approximation of the eigenfunctions of Q(z) and e

.1. 32 )

 32 Remark 2.1.14. The proof of Proposition 2.1.11 is unfortunately somewhat long and technical and we have split it into several lemmas. Furthermore, we will only be discussing the results for e wkb (z), e η wkb (z) and e 0 (z), since the others can be obtained similarly. Lemma 2.1.15. Let Ω Σ such that dist (Ω, ∂Σ) > 1/C . For z ∈ Ω define r := r (x, z; h) := Q(z)e wkb (x, z)

  can be proven by the same rescaling argument.

  .2.10) Now let us discuss the ∂ β zz -derivatives of the errors. First let us treat the error term O ‡ h

• and, for e η +

 η (z; h) := c η + (z; h) exp(

  /4 for z ∈ Ω ∩ Ω a η

2 3 η

 23 ≤ const. |E -+ (z)| = V (z, h)e -S(z) h fl fl fl1e Φ(z,h) fl fl fl 1 + O e -η 3/2 h ¶ ¶ . Furthermore, for all β ∈ N 2 the ∂ β zz derivatives of the error terms are bounded and of order O ˆη |β| 2 h -|β| e -

5 . 2 . 3 . 3 .

 5233 .3.3) where the estimate comes from Proposition 2.3.1. Note that T (z, α) is C ∞ in z and holomorphic in α in a ball of radius C /h, B (0,C /h) ⊂ C N , by Corollary 1.1.Proposition Let z ∈ Ω Σ, let X (z) be as in Definition 2.3.2. Let h|k| ≥ C for C > 0 large enough, then the Fourier coefficients satisfy b e 0 (z; k), b f 0 (z

61 2. 4 .

 614 CONNECTIONS WITH SYMPLECTIC VOLUME AND TUNNELING EFFECTS yields that for all n ∈ N ˆewkb (z, x)e -i kx d x = O ¡ |k| -n ¢ . Thus, for all n ∈ N b e 0 (z; k) = O ¡ |k| -n ¢ .

3 . 3 . 2 . 3 . 4 . 2 3

 332342 Proposition Let z ∈ Ω Σ, let X (z) be as in Definition 2.3.2. Let h|k| ≥ C for C > 0 large enough, then for dist (Ω, ∂Σ) h and for all n, m ∈ N 0

CHAPTER 2 . 2 . 4 . 1 .

 2241 AVERAGE DENSITY OF EIGENVALUES FOR A CLASS OF NON-SELF-ADJOINT OPERATORS UNDER RANDOM PERTURBATIONS 2.4.1 -Link with the symplectic volume Proposition Let z ∈ Ω Σ and let p be as in (1.1.7

2 -2 h -|β| 2 • . Proposition 2 . 4 . 2 .

 22242 the error term O (η -2 ) are of order O ‡ η |β| Let z ∈ Ω Σ, let p be as in (1.1.7), let ρ ± be as in (1.1.14), and let d ξ ∧ d x be the symplectic form on T * S 1 . Then,

¡

  y = 0 the first and the second term of the right hand side vanish. By (2.1.39)∂ z φ + (κ -1 (y), z) -∂ z φ + (x + (z), z)
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 2 AVERAGE DENSITY OF EIGENVALUES FOR A CLASS OF NON-SELF-ADJOINT OPERATORS UNDER RANDOM PERTURBATIONS

Lemma 2 . 5 . 1 .

 251 Let Ω ⊂ C be open and convex and let g , F : Ω -→ C be C ∞ such that g ≡ 0 and

.5. 6 )

 6 Let r 0 > 0 be such that D(z 0 , r 0 ) ⊂ U , and define C (r 0 ) := min z∈D(z 0 ,r 0 )| f (z)| and M (r 0 ) := max z∈D(z 0 ,r 0 )

Lemma 2 . 5 . 2 .

 252 Let R > 0 and a > c ≥ 0 be constants. Let D(0, R) ⊂ C be the open disk of radius R centered at 0 and let g , f : D(0, R) -→ C be holomorphic such that g ∞ ≤ c, and for all z ∈ D(0, R) : ∂ z f (z) = a + g (z).

Proposition 2 . 5 . 3 .

 253 Let a > c ≥ 0 be constants, n ∈ N, let Ω ⊂ C n be open, bounded and of the form

  ) , then, for h > 0 small enough, there exists a constant D n,m =: D > 0 such that

  h , ϕχ η j 〉 fl fl fl fl fl

First, we prove

  the resolvent estimate given in Proposition 1.2.5. Proof of Proposition 1.2.5. Recall from Section 1.2.2 that the operator Q(z) is self-adjoint and that |t 0 (z)| = |α 0 (z)|. It follows that

.8. 5 )( 2 . 8 . 4 )

 5284 , (2.8.5) and Hypothesis 1.2.6 imply, for κ > 1 large enough, the first point of the Lemma. Now let us prove the existence of the points ζ -. More precisely, we will prove that for z ∈ ΩΣ c,d with Im z < 〈Im g 〉 -1/C (cf. (2.8.3)) and fixed Re z there exist exactly one ζ -such that |E -+ (Re z, ζ -)|δ -1 = 1.

.8. 6 )

 6 Recall that V is the product of the normalization factors of the quasimodes e wkb and f wkb when z ∈ Ω with dist (Ω, ∂Σ) > 1/C and the product of the normalization factors of the quasimodes e η wkb and f η wkb when z ∈ Ω ∩ Ω a η (cf. (2.2.21)). Since the derivative with respect to Im z of the imaginary part of their phase function Im φ ± is equal to zero at x ± , it follows that

Proposition 3 . 1 . 3 .

 313 Let z ∈ Ω Σ. Let N be as in Definition 3.1.2 and let B (0, R) ⊂ C N be the ball of radius R := C /h, C > 0 large, centered at 0. Let R -, R + be as in Proposition 3.1.1. Then

Remark 3 . 1 . 4 .

 314 The effective Hamiltonian E δ -+ (z) depends smoothly on z ∈ Ω and holomorphically on α ∈ B (0, R) ⊂ C N . As in (2.6.6) and Proposition 2.2.6, we have the following estimates: for all

Proposition 3 . 1 . 7 .

 317 Let Ω Σ be as in Hypothesis 1.3.1. Let δ > 0 be as in Hypothesis 1.3.2 and let Γ = C -B * A -1 B . Moreover, let D(Ω,C 2 ) be as in(1.3.4). Then, there exists a smooth function

Proposition 3 . 2 . 1 .

 321 Let Ω Σ be as in Hypothesis 1.3.1 and let x ± (z) be as in(1.1.14). Furthermore, for z ∈ Ω let σ(z) denote the Lebesgue density of the direct image of the symplectic volume form on T * S 1 under the principal symbol p, i.e. σ(z)L(d z) = p * (d ξ ∧ d x).

  a family of smooth functions which are almost z-holomorphic and almost w-anti-holomorphic extensions from the diagonal ∆

  a family of smooth functions which are almost z-holomorphic and almost w-anti-holomorphic extensions from the diagonal ∆

  a family of smooth functions which are almost z-holomorphic and almost w-anti-holomorphic extensions from the diagonal ∆ := {(z, z); z ∈ Ω} ⊂ ∆ Ω (C ) of Φ 2 (z; h), i.e.

Proposition 3 . 3 . 1 .

 331 Let Ω Σ be as in (1.3.1) and let z, w ∈ Ω. Then, detG(z, w) > 0 for h 3 5

Corollary 3 . 3 . 5 .

 335 Under the assumptions of Proposition 3.3.4, we have that

Lemma 3 . 3 . 7 .

 337 Let Ω Σ be as in(1.3.1), and let D Ω (C ), Φ(z; h) and Ψ(z, w; h) be as in Proposition 3.2.1, for (z, w) ∈ D Ω (C ). Let Γ be as in(3.3.1). Define the matrices e

Proof of Proposition 3 . 3 . 4 .A = e 2 h 2 h 4 h

 334224 In view of Lemma 3.3.7, it remains to consider the matrix e Γ := e Ce B * e A -1 e B .In the sequel we will suppress the h-dependency of the function Ψ to abbreviate our notation.Recall the definition of e A from Lemma 3.3.7 and note that det e Ψ(z,z) e Ψ(w,w)e Re Ψ(z,w) ≤ |z -w|, Proposition 3.2.1 implies that det e A is positive. Hence, the inverse of e A exists and is given by e A

3 . 4 , 6 .

 346 Proposition 1.3.5 and of Proposition 1.3.Proof of Theorem 1.3.4. The result follows directly from Proposition 3.1.7 with the density D given by Proposition 3.3.8 and by Proposition 3.3.2.

Lemma 3 . 4 . 1 .

 341 .3.7) and (3.3.8)), the result of Proposition 1.3.6 follows from Proposition 1.3.5. It remains to prove Proposition 3.1.7. However, first, we state a global version of the implicit function theorem. Let 0 < R 0 < R, let n, m ∈ N, with n > m, and let B

  ( e β, α ), α ; h)e -Φ( e β,α ) J ( e β, α )L(d α )L(d e β), where Φ( e β, α ) := e α( e β, α ) * • e α( e β, α ) + (α ) * • α .

.1. 9 ) 4 . 2 |

 942 Grushin problem for the perturbed Jordan block4.2.1 -Se ing up an auxiliary problemFollowing[START_REF]Elementary linear algebra for advanced spectral problems[END_REF], we introduce an auxiliary Grushin problem. Define R + : C N → C by

2 α

 2 the 4th terms on the right hand side of the last expression add up to δ∂ z ˆN2 X j e j • Z ! = δ∂ z (0) = 0, and we get (4.2.32).

  (N s+µ) ,Σ(µ) e -(N s+µ) -(N s+µ) (N s + µ) k s k+1 .Hence,P N ,k (s) e -N s s k+1 ∞ X µ=1 e -µ (N s + µ) k e -N s s k+1 (N s + 1) k = e -N s s N + 1 s ¶ k .

2 ≤ t ≤ 1

 21 -C N , when C = C (D) is large enough and N ≥ N (C ) 1. The left hand side in this inequality is an increasing function of t on the interval [0, 1/ (1+ k/N )]. If t ≤ 1 -C /N ≤ 1/(1 + k/N ) (which is fulfilled when C ≥ 2k and N N (C )) it is

2 with e 1 ( 1 ) 4 . 3 . 1 . 2 ,

 114312 z) = |Z (z)| -1 Z (z)such that we get a good control over P N 2 2 α j ∂ z e j , P N 2 2 α j ∂ z e j and such thatdQ 1 ∧ ... ∧ dQ N 2 | α 1 = f (z,α )can be expressed easily up to small errors. Consider a point z 0 ∈ D(0, r 0 -N -1 ). We shall see below that the vectors Z (z), ∂ z Z (z) are linearly independent for every z ∈ D(0, Proposition There exists an orthonormal basis e 1 (z), e 2 (z), ..., e N 2 (z) in C N depending smoothly on z ∈ neigh (z 0 ) such that e 1 (z) = |Z (z)| -1 Z (z), (4.3.1)Ce 1 (z 0 ) ⊕ Ce 2 (z 0 ) = CZ (z 0 ) ⊕ ∂ z Z (z 0 ), (4.3.2) e j (z)e j (z 0 ) = O ((zz 0 ) 2 ), j ≥ 3. (4.3.3)

  (z)ν 0 j = (1 -π(z))e j (z 0 ) = e j (z 0 ) -(e j (z 0 )|e 1 (z))e 1 (z), (e j (z 0 )|e 1 (z)) = (e j (z 0 )|Z (z))|Z (z)| = O ((zz 0 ) 2 ), since (e j (z 0 )|Z (z)) = e j (z 0 ) • Z (z) =: k(z) is a holomorphic function of z with k(z 0 ) = (e j (z 0 )|Z (z 0 )) = 0, k (z 0 ) = (e j (z 0 )|∂ z Z (z 0 )) = 0.

e 2 (

 2 z) = | f 2 | -1 f 2 , f 2 = ∂ z Z (z) -X j =2 (∂ z Z (z)|e j (z))e j (z), (4.3.4) so that for z = z 0 , e 2 (z 0 ) = | f 2 (z 0 )| -1 f 2 (z 0 ), f 2 (z 0 ) = ∂ z Z (z 0 ) -(∂ z Z (z 0 )|e 1 (z 0))e 1 (z 0 ).(4.3.5) 

( 4

 4 j + k -1)|z| 2(N -j +k-µ)|z|2(ν+µ) 

.3. 10 ) 2 =

 102 for t ≤ 1 -1/N . Proposition 4.3.2 and (4.3.7) give|∂ z Z | 2 -|(∂ z Z |Z )| 2 |Z | 2 K (|z| 2 ) 4 . (4.3.11) This implies that ∂ z Z , Z are linearly independent. Assume that|∇ z e 1 (z)| = O (m)for some weight m ≥ 1. We shall see below that this holds when m = K (|z| 2 ). Then∇ z Π = O (m) and hence ∇ z V = O (m). It follows that ∇ z (V * (z)V (z)) = O (m). By standard (Cauchy-Riesz) functional calculus, using also thatV (z) -1 = O (1), we get ∇ z (V * (z)V (z)) -1 O (m). Hence ∇ z U (z) = O (m), where U (z) = V (z)(V * (z)V (z)) -1/2is the isometry appearing in the proof of Proposition 4.3.1. Since ∇ z e j = (∇ z U (z))ν 0 j , we conclude that ∇ z U (z) = O (m), so fl

1 2 t =|z| 2 =

 12 ∂ t ) 2 K + (t ∂ t K ) 2 ¢ ¶ O (K 2 ).Since Z is holomorphic, this leads to the same estimates for |∇ z Z | and |∇ z Z |, and |∂ 2 z Z | = O (K 3 ), for |z| < 1 -N -1 , by the Cauchy inequalities. Using this in (4.3.13), we get |∇ z e 1 | = O (K ). (4.3.14)

2 X 3 ( 2 X 3 ( 2 X 3 ( 2 X 3 ( 2 X 3 (≤ O ( 1 )

 23232323231 |e j )e j + (∂ z Z |∇ z e j )e j + (∂ z Z |e j )∇ z e j • . Here, |∇ z ∂ z Z | = O (K 3 ), as we have just seen. It is also clear that the term for j = 1 in the sum above is O (K 3 ). It remains to study |I + II + III| ≤ |I| + |II| + |III|, whereI = N ∇ z ∂ z Z |e j )e j , II = N ∂ z Z |∇ z e j )e j , III = N ∂ z Z |e j )∇ z e j . 131 4.3. CHOOSING APPROPRIATE COORDINATES Here, |I| ≤ |∇ z ∂ z Z | = O (K 3 ) and by (4.3.12) we have |III| ≤ O (K )|∂ z Z | = O (K 3 ). Further, II = N ∂ z Z |(∇ z U (z))ν 0 j )e j = N (∇ z U (z)) * ∂ z Z |ν 0 j )e j , so |II| = |(∇ z U (z)) * ∂ z Z | = O (K )K 2 = O (K 3 ). Thus, |∇ z f 2 | = O (K 3 ). (4.3.15)Recall from (4.3.5) that for z = z 0 ,f 2 = ∂ z Z -(∂ z Z |e 1 )e 1 , | f 2 | 2 = |∂ z Z | 2 -|(∂ z Z |Z )| 2 |Z | , so by (4.3.11), | f 2 (z 0 )| K (|z 0 | 2 ) 2 , Hence, | f 2 (z)| K 2 , z ∈ neigh (z 0 ).From this, (4.3.4) and (4.3.11), we conclude first that∇ z | f 2 | = O (K 3) and then that|∇ z e 2 | = O (K ).(4.3.16)This completes the proof of the fact that we can take m = K above. In particular (4.3.12) holds withm = K (|z| 2 ) G(|z|), G|α| ≤ O (1)G N , (4.3.17) where we used the assumption that |Q| ≤ C 1 N in the last step. Combining this with (4.2.53), (4.2.52), (4.2.47), (4.2.35) and the observation prior to Proposition 4.2.4, we get

Proposition 4 . 3 . 3 . 2 + O ( 1 )( 4 . 3 . 20 )

 433214320 We express Q in the canonical basis in CN 2 or in any other fixed orthonormal basis. Let e 1 (z), ..., e N 2 (z) be an orthonormal basis in C N 2 depending smoothly on z and with e 1 (z) = |Z (z)| -1 Z (z), Ce 1 (z) ⊕ Ce 2 (z) = CZ (z) ⊕ ∂ z Z (z). Write Q = α 1 Z (z) + P N 22 α j e j (z), and recall that the hypersurface{(z,Q) ∈ D(0, r 0 -1/N ) × B (0,C 1 N ); E δ -+ (z,Q) = 0} is given by (4.2.46) with f as in (4.2.47). Then the restriction of dQ ∧dQ to this hypersurface, is given by dQ∧ dQ = J ( f )d z ∧ d z ∧ d α ∧ d α , J ( f ) N |z| N -1 δG +GδN 3 + |α 2 |δNG 2 ¶2 + O (1)|α 2 |G N |z| N -1 δG +GδN 3 + |α 2 |G 2 δN ¶ . Here α = (α 2 , ..., α N 2 ), d α ∧ d α = d α 2 ∧ d α 2 ∧ ... ∧ d α N 2 ∧ d α N 2 .

X 2 α 2 X 2 X 2 X

 2222 k e k (z).Then,Q j = f (Z (z)|e j (z 0 )) + N k=2 α k (e k (z)|e j (z 0 )), dQ j =(d z f + d α f )(Z (z)|e j (z 0 )) + f (d z Z (z)|e j (z 0 )) + N k=2 α k (d z e k (z)|e j (z 0 )) + N k=2 d α k (e k (z)|e j (z 0 )).

2 1 N 2 π 1 N 1 δG +GδN 3 + 1 π

 221131 1) X λ∈σ(A 0 +δQ) φ(λ) ! , φ ∈ C 0 (D(0, r 0 -1/N ), (4.4.1) which is of the form (4.1.3) withm(Q) = 1 B C N 2 (Q)π -N 2 e -|Q|2 , (4.4.2) so we have (4.1.8), (4.1.9) with J ( f ) as in (4.3.20) and f as in (4.2.46). More explicitly, e Ξ(z) = ˆ|f | 2 |Z (z)| 2 +|α | 2 ≤C -N 2 e -| f (z,α )| 2 |Z (z)| 2 -|α | 2 J ( f )(z, α )L(d α ).By (4.2.47), (4.2.20), (4.2.25) : | f | ≤ O (1) , for all z ∈ D(0, r 0 ), (4.4.3) implying that | f |G 1, for all z ∈ D(0, r 0 ). Equivalently, by the same reasoning as after (4.2.26), f (z,α )| 2 |Z (z)| 2 = 1 + O (1)N 2 |z| N δNG + δNG ¶2 , and using (4.3.20), we get eΞ(z) = ˆ1 + O (1)N 2 |z| N δNG + δNG ¶2 ! × |(e 2 |∂ z Z )| 2 |Z | 2 ˆ|(f |Z |,α )|≤C 1 N |α 2 | 2 e -|α | 2 π 1-N 2 L(d α ) + O (1) ˆe-|α | 2 N |z| N -|α 2 |δNG 2 ¶2 π 1-N 2 L(d α ) +O (1) ˆe-|α | 2 |α 2 |G N |z| N -1 δG +GδN 3 + |α 2 |δNG 2 ¶ π 1-N 2 L(d α ). Since | f ||Z | N , the first integral is equal to ˆC |w| 2 e -|w| 2 L(d w) + O ‡ e -N 2 /O (1) • = 1 + O ‡ e -N 2 /O (1) 

4 . 5 )

 45 , we get, e Ξ(z) = 2 π(1 -|z| 2 ) 2 + O (|z| 2(N -1) N 2 ) + O (1) ˆG2 N 2 |z| N -1 δG 2 + δN 2 ¶2 +G 2 N |z| N -1 δG 2 + δN 2 ¶ ! .
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Remark 1.2.4. Note that in (1.2.2) we chose to define

∂ Im z S(z) := x -(z)x + (z) for Im z = 〈Im g 〉.

We will keep this definition throughout this text. Furthermore, we will keep the definition d (z) := dist (z, ∂Σ) throughout this entire work.

  Moreover, let D(z, h, δ) be the average density of eigenvalues of the operator of P δ h given in Theorem 1.2.12. Then, 1. for 0 < h 1, there exist numbers y ±

1.2. AVERAGE DENSITY OF EIGENVALUES OF HAGER'S MODEL Proposition 1.2.15. Let z ∈ Ω Σ c,d with Σ c,d as in (1.2.16), let S(z) be as in Definition 1.2.2 and let t 2 0 (z) be as in (1.2.5). Let δ > 0 and ε 0 (h) be as in Hypothesis 1.2.6 with κ > 4 large enough.

Theorem 1.3.4. Let

  Ω Σ be as in(1.3.1). Let δ > 0 be as in Hypothesis 1.3.2 with κ > 51/10. Let ν be the measure defined in (1.3.3) and let σ(z) be as in(1.3.5). Then, for |z -w| ≤ 1/C with C > 1 large enough, there exist smooth functions

	1.3. TWO-POINT EIGENVALUE INTERACTION OF THE EIGENVALUES IN HAGER'S MODEL
		.3.4)
	Before we state our main result of this section, recall from (1.2.14) that the direct image p z)L(d z),	(1.3.5)
	where σ(z) is smooth.	

* (d ξ∧d x) of the symplectic volume form d ξ ∧ d x on T * S 1 is of the form p * (d ξ ∧ d x) = σ(

  -2 .
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  (cf Theorem 1.4.2) as well as by A. Guionnet, P. Matched Wood and O. Zeitouni. • 10 -10 . The red line is the radial part of density of the hyperbolic volume form on the unit disk. The right hand side presents a magnification of the left hand side, enlarging the zone where the approximation with the hyperbolic volume fails.
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	Figure 1.13: The left hand side shows the experimental density of eigenvalues (averaged over 500 realiza-
	tions), as a function of the radius, of a 1001 × 1001-Jordan block matrix perturbed with a random complex
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  ∈ Ω Σ, in the case where Ω is independent of h > 0 and has a positive distance to the boundary of Σ we have 1/C ≤ S ≤ C for some constant C > 0. Thus, we may formulate the corresponding estimates of Proposition 2.1.11 uniformly in z;• for h 2/3 η < const . and z ∈ Ω∩Ω a η (2.1.5) implies estimates uniform in z but η dependent.

							η wkb and f	η wkb have at most temperate
	growth in η/h, more precisely									
	∂	β zz e	η wkb , ∂	β zz f	η wkb , ∂	β zz e 0 , ∂	β zz f 0 = O	‡	η	|β| 2 h -|β|	•	(2.1.30)
	for all β ∈ N 2 .											
	Remark 2.1.12. Let us recall that									
	• for z This implies the following											
	Corollary 2.1.13. Under the assumptions of Proposition 2.1.11,					

.1.29) Furthermore, the various z-and z-derivatives of e 0 , f 0 , e • for z ∈ Ω i there exists a constant C > 0 such that for all β ∈ N 2 ∂ β zz (e 0e wkb ) , ∂ β zz

  5, the estimate |E -+ (z)| = O (η

	1 4 h	1 2 e -S h ) given in (2.2.2) and (2.2.3) and the
	estimates given in Proposition 2.1.11.	

Finally, Proposition 2.2.2 permits us to prove the following extension of Proposition 2.1.11: Proposition 2.2.7. Let z ∈ Ω Σ and let e 0 and f 0 be the eigenfunctions of the operators Q and Q with respect to their smallest eigenvalue (as in Section 2.2.1). Let S = S(z) be defined as in Definition 1.2.2. Then • for z ∈ Ω with dist (Ω, ∂Σ) > 1/C and for all α ∈ N 3 ∂ α zzx (e 0e wkb ) , ∂ α zzx

  Note that Taylor expansion around the point a yields {p, p}(ρ ± ) = -2i Im g (x ± ) (2.2.22)

	2.2. GRUSHIN PROBLEM FOR THE UNPERTURBED OPERATOR P H
	.2.21)
	55

  as in the Propositions 2.2.1, 2.2.9 and 2.2.10, where • = -, H , η with "-" symbolizing no index. Furthermore, let S(z) as in Definition 1.2.2. Then we have the following estimates 1. for • = -, H and for z ∈

  Recall from Proposition 2.2.1 that E (z)P (z) = 1. Thus, note that

.2.27) and thus prove the corresponding "-"-cases in the Proposition. The estimates for the other cases of R • ± and E • ± then follow from (2.2.27), (2.2.28) and (2.2.32).

  • (z) , for • = η, H , can be conclude by following the same steps and by using the corresponding estimates on R • ± and E • ± and the Propositions 2.2.9 and 2.2.10. It remains to prove the estimates on |∂ (z)|: let us first consider the case where z ∈ Ω i ⊂ Ω. Recall (2.2.20) and recall from Proposition 2.2.9 that the prefactor V H (z) has bounded z-and z-derivatives of order O ( h). Thus, the statement follows immediately.In the case where z ∈ Ω a,b η ⊂ Ω, recall (2.2.20) and from Proposition 2.2.10 that the prefactor V η (z) has bounded z-and z-derivatives of order O (

					β zz E	η -+ (z)| and |∂ -+ p β zz E H h η). Using that
	e	i h	´x--2π x +	(z-g (y))d y -e	i h

2.2. GRUSHIN PROBLEM FOR THE UNPERTURBED OPERATOR P H

The estimates on ∂ β zz E

  Definition 2.1.6 and Proposition 2.2.8. A rescaling argument similar to the one in the proof of Proposition 2.1.11 then implies

.2.31) Now let us consider the case z ∈ Ω∩Ω a,b η : recall the quasimodes e η wkb and e η + as given in

  ).

	Proof of Proposition 2.4.1. Recall that e 0 (z) (respectively f 0 (z)) denotes an eigenfunction of the z-
	dependent operator Q(z) (respectively Q(z)). Using Definition 2.3.2, Proposition 2.3.3, Corollary
	2.3.4 and the Parseval identity one computes that

  6. A FORMULA FOR THE INTENSITY MEASURE OF THE POINT PROCESS OF EIGENVALUES OF P δ H Similarly, we have the same estimates on ∂ z E + C→L 2 and ∂ z E -H 1 →C . Thus, since E

  .6.18) 2.6. A FORMULA FOR THE INTENSITY MEASURE OF THE POINT PROCESS OF EIGENVALUES OF P δ

	H
	The second identity for A is due to Proposition 2.4.5 and the following estimate
	fl fl fl fl

  which follows from Propositions 2.3.3 and 2.3.4. In the last line we used Proposition 2.2.6 together with (2.1.5). Furthermore, recall by Step II and Step III that A(α, z) is holomorphic in α.

	Similarly, we define

  2.6. A FORMULA FOR THE INTENSITY MEASURE OF THE POINT PROCESS OF EIGENVALUES OF P δ

H

Let us return to (2.6.22): We are interested in the integral

  .6.27) By (2.6.18) and (2.6.19), we see that π -1 (|A(z)| 2 + |B (z)| 2 ) is equal to

  First, we will give the proof the principal result of Section 1.2:Proof of Theorem 1.2.12. Due to (1.1.15) and Hypothesis 1.1.6 we have that, for κ > 4 (as in Hypothesis 1.2.6) large enough, that (1.1.16) holds. Therefore, we assume that

	2.7. AVERAGE DENSITY OF EIGENVALUES
	2.7 | Average Density of Eigenvalues		
	¡ h ln 1 h	¢ 2/3	η ≤ C ,
	where C > 0 is a constant.		

  We have split the proof of Proposition 1.2.15 into the following two Lemmata: Let z ∈ Ω Σ c,d with Σ c,d as in(1.2.16) and let S(z) be as in Definition 1.2.2. Let δ > 0 and ε(h) be as in Hypothesis 1.2.6 with κ > 1 large enough. Moreover, let E -+ (z) be as in Proposition 2.2.1. Then,

	2.8. PROPERTIES OF THE DENSITY
	Lemma 2.8.1.

.8.1) which together with (2.2.23) implies (1.2.3). The result about the asymptotic behavior of the resolvent follows from the above together with the fact that |{p, p}(ρ ± )| η (cf. Proposition 2.4.1).

  13/3 ¶ .

Proof of Proposition 1.2.15. The first two points of the proposition follow from Lemma 2.8.1 together with the observations that |E -+ (z)| = |α 0 | = |t 0 (z)| (cf. Proposition 2.2.1) and that by (2.8.1)

  .8.2) Recall Proposition 2.2.12 and Hypothesis 1.2.6. It follows by (2.8.2), that if |ζ -

  This implies that the gradient |E -+ (z)| is non-zero for all z with |Im z -〈Im g 〉| > 1/C (cf. (2.8.3)) and thus we may conclude by the implicit function theorem, that for δ as above there exist locally smooth curves γ h -(Re z) := (Re z, ζ -(ε 0 (h), Re z) such that |E -+ (γ h -)| = δ. Furthermore, we may extend γ -(Re z) smoothly for c < Re z < d . By the mean value theorem applied to |E -+ (z)|, there exists a ζ between y -(h) and Im γ h -(Re z) such that

	z) h .	(2.8.9)

  C 0 we may continue (Im z)(t ) smoothly to all open subsets of the domain of t .

				Furthermore, we
	conclude that	d (Im z) d t	-η -7/2 h 3	(2.8.16)

h , where we used that ∂ Im z S η (cf. Proposition 1.2.3) and that

∂ Im z ¡ i 2 {p, p}(ρ + ) i 2 {p, p}(ρ -) ¢ 1 2 is of order O (η -1/2

) due to the scaling z = zη as in the proof of Proposition 2.1.11. The implicit function theorem then implies that we may locally invert and that t → (Im z)(t ) is smooth. Since -c 0 ≤ t ≤

  2.1, let us give a short description of the connection between the functions Φ 1 (z; h), Φ 2 (z; h) in Proposition 3.2.4, 3.2.10, and the symplectic volume form on the phase space T * S 1 . Let z ∈ Ω Σ be as in (1.3.1) and let Φ 1 and Φ 2 be as in Propositions 3.2.4 and 3.2.10. Furthermore, let p be the principal symbol of P h (cf (1.1.7)), let ρ ± ∈ T * S 1 be the two solutions to p(ρ) = z, see(1.1.14). Then, Using that x ± (t ), with t = Im z, is the solution to the equation Im g (x ± (t )) = t with

	Proposition 3.2.11. σ h (z) : =	£	(∂ 2 zz Ψ 1 )(z; h) + (∂ 2 zz Φ 2 )(z; h)	⁄
	=	1 4 ˆ1 1 2i {p, p}(ρ -(z))	+	1 2i {p, p}(ρ + (z)) 1	!	+ O (h)
	is, up to an error of order h, one-fourth of the Lebesgue density of the direct image, under the prin-
	cipal symbol p, of the symplectic volume form d ξ ∧ d x on T * S 1 , i.e.
	σ h (z)L(d z) =	1 4	p * (d ξ ∧ d x) + O (h)L(d z)
	Proof. ∓Im g x (x ± (t )) < 0
	(cf (1.1.14)), we get that					
			x ± (t ) = ±	1 Im g x (x ± (t ))	< 0.
	Using Propositions 3.2.4 and 3.2.10, one then computes that

  We begin by studying the determinant of A. It is non-zero if and only if the vectors X (z) and X (w) are not co-linear. In particular we are interested in a lower bound of this determinant for z and w close. Let Ω Σ be as in Hypothesis 1.3.1. For |z -w| ≤ 1/C , with C > 1 large enough (cf. Proposition 3.2.1), we have

	3.3.1 -The matrix A
	Proposition 3.3.2.
	.3.1)

Corollary 3.3.3.

  Under the assumptions of Proposition 3.3.2, we have that for N ≥ 1 and |z -w| ≥

	h N				
	O (1)	min λ∈σ(A)	λ ≥	2 h N -1 O (1)	.
	Proof of Proposition 3.3.2. By Corollary 3.2.3 and (3.2.2), one has that
	det				

  calculate e B * , we use Lemma 3.3.7 and the symmetries of the function Ψ(z, w) given in Proposition 3.2.1. Indeed, one gets that

	M 12 = -Ψ z (z, w)Ψ w (z, w)e	1 h (4Ψ(z,w)+2Ψ(w,z)) +	£ Ψ z (z, z)Ψ w (z, w)
			+ Ψ z (z, w)Ψ w (w, w) -Ψ z (z, z)Ψ w (w, w) ⁄ e	2 h (Ψ(z,z)+Ψ(z,w)+Ψ(w,w)) ,
	and					
	M 22 =Ψ z (w, w)Ψ w (w, w)e	1 h (2Ψ(z,z)+4Ψ(w,w)) +	£ Ψ z (w, z)Ψ w (z, w)
			-Ψ z (w, w)Ψ w (z, w) -Ψ z (w, z)Ψ w (w, w)	⁄ e	1 h (2Ψ(w,w)+4Re Ψ(z,w)) .
	Since the matrix M is clearly self-adjoint, one has that M 21 = M 12 . Comparing the coefficients of M
	with with those of h 2 (det e A/4) e C (cf. Lemma 3.3.7) and using the symmetries of Ψ (cf. Proposition
	3.2.1), we see that				
	h 2	e Γ =	det e A -4	a 2 a 1 e ˆa1 a 1 e 2 h (Ψ(z,z)+Ψ(w,z)+Ψ(w,w)) 1 h (2Ψ(z,z)+4Re Ψ(z,w))	a 2 a 2 e a 1 a 2 e 2 h (Ψ(z,z)+Ψ(z,w)+Ψ(w,w)) 1 h (2Ψ(w,w)+4Re Ψ(z,w))	!
			+ 2h	ˆΨ Ψ zw (w, z; h)e zw (z, z; h)e	2 h Ψ(z,z) 2 h Ψ(w,z) Ψ zw (w, w; h)e Ψ zw (z, w; h)e	2 h Ψ(z,w) 2 h Ψ(w,w)	!	(3.3.3)
	with a i as in the hypothesis of Proposition 3.3.4. Recall from (3.2.2) that the function K (z, w) is
	defined by					
			e B * := 2h -1	ˆΨ Ψ z (w, z)e z (z, z)e	2 h Ψ(z,z) 2 h Ψ(w,z) Ψ z (w, w)e Ψ z (z, w)e	h Ψ(w,w) 2 2 h Ψ(z,w)	!
	and one computes that M := h e B *	e A -1 h e B is given by
							M =	det e A 4	M 21 M 22 M 11 M 12	¶
	with					
	M 11 =Ψ z (z, z)Ψ w (z, z)e	1 h (4Ψ(z,z)+2Ψ(w,w)) +	£ Ψ z (z, w)Ψ w (w, z)
			-Ψ z (z, w)Ψ w (z, z) -Ψ z (z, z)Ψ w (w, z) ⁄ e	1 h (2Ψ(z,z)+4Re Ψ(z,w)) ,

  it follows that for |z -w| h the trace of Γ is positive. Furthermore, the above inequality applied to(3.3.11), implies the upper bound stated in the Proposition.The permanent of the matrix Γ (cf. (3.3.1)) is vital to the 2-point density of eigenvalues and therefore, we shall give a more detailed description of it than the one given in Corollary 3.3.5. Let σ h (z, w) be as in Theorem 1.3.4 and let K (z, w) be as in (3.2.2). Under the assumptions of Proposition 3.3.4, we have that for N > 1 and 1 C h N ≤ |z -w|,

	3.3.3 -The permanent of Γ		
	Proposition 3.3.8. perm Γ(z, w; h)					
											.3.9)
	Using the Taylor expansion of the sinh x and (3.2.2), one gets that
		sinh 2 K (z, w) h	-	4h σ h (z, w)|z -w| 2	¶ 2
		≥	1 3	σ h (z, w)|z -w| 2 4h	¶ 4	(1 + O (|z -w|)) + O	σ h (z, w)|z -w| 5 h 2	¶	.	(3.3.10)
	Note that the principal term on the right hand side of the inequality dominates the error terms.
	The same holds true for the other error terms in (3.3.9).
	Next, let us suppose that h 3/5 |z -w|	h. Since
								O (|z -w|)	‡	e	2 h K (z,w) -1	•	= O	|z -w| 3 h	¶	,
	it follows by (3.3.9) and (3.3.10) that detG is positive for |z -w| h 3/5 .
	Proof of Proposition 3.3.6. Using (3.3.5), (3.3.6) and (3.3.7), one gets that
			tr Γ =	2h	‡	σ h (z, w) e 2 h K (z,w) -1	•	h ‡	e	2 h K (z,w) -1	•	(1 + O (|z -w|))
											-	σ h (z, w)|z -w| 2 2h	(1 + O (|z -w|))	i	.	(3.3.11)
	Since									
	e	2 h K (z,w) -1 ≥	σ h (z, w)|z -w| 2 2h	(1 + O (|z -w|)) +	σ h (z, w)|z -w| 4 8h 2	(1 + O (|z -w|)),

  . Applying (3.3.5), (3.3.6) and (3.3.7) to the formula for perm Γ given in Proposition 3.3.6 and using the notation introduced in (3.3.8), one gets that

  an isometry since e V e V * = 1 C 4 . Thus, its columns form an orthonormal family in C N . It follows from(3.4.6) that the kernel of V and of e V are equal, i.e. N (V ) = N ( e V ). The same holds true for the range of e V and ofV , i.e. R(V ) = R( e V ).Next, we choose an orthonormal basis, e 1 , . . . , e N ∈ C N , of the space of random variables α such that e V * 1 , . . . , e V * 4 , the column vectors of the matrix e V * , are among them. In particular, let e i = e V * i for i = 1, . . . , 4, and let e 5 , . . . , e N be in the orthogonal complement of the space spanned by e 1 , . . . , e 4 .Remark 3.4.3. The fact that we can only guarantee the invertibility of G for h

	Hence, we write for α ∈ C N		
	α =	N X i =1	e α i e i ,
	where e α = ( e α 1 , . . . , e α N ) ∈ C N . Moreover, note that	
	α * • α = e α * • e α.	(3.4.7)
			3
			5

  the last equation we used(3.4.10),(3.4.11),(3.4.15) and the fact that the Hilbert-Schmidt norm of B * is ≤ 1 hO (1) which follows from the fact that elements of the matrix B * are bounded by a term of order h -1 . By Proposition 3.3.6, one gets that the Hilbert-Schmidt norm of Γ

			1 2 is bounded, indeed one has
	that	Γ	1 2 HS

  with probability ≥ 1e -N 2 . (4.2.19) In particular (4.2.19) holds for the ordinary operator norm of Q. In the following, we often write |•| for the Hilbert-Schmidt norm • HS and we shall work under the assumption that |Q| ≤ C 1 N . We let |z| < 1 and assume: δNG(|z|) 1. (4.2.20) Then with probability ≥ 1e -N 2 , we have (4.2.14), (4.2.18) which give for g (z,Q):= E δ -+ , For e g (z, α 1 , α ) = g (z, α 1 Z (z) + α ), α = P N 2 2α j e j we have that∂ z e g = N z N -1 -δα 1 ∂ zProof. The leading terms in (4.2.32), (4.2.33) can be obtained formally from (4.2.28) by applying ∂ z , ∂ z and we also notice that∂ z |Z | 2 = Z • ∂ z Z , ∂ z |Z | 2 = Z • ∂ z Z .However it is not clear how to handle the remainder in (4.2.28), so we verify (4.2.32), (4.2.33), using (4.2.27), (4.2.31):

	¡ |Z | 2 ¢	+ O (1)	(GδN ) 2 r 0 -|z|	+ O (1)G 2 δ 2 N	fl fl fl fl fl	N 2 X 2	α j ∂ z e j	fl fl fl fl fl	,	(4.2.32)
	∂ z e g = -δα 1 ∂ z	¡ |Z | 2 ¢	+ O (1)G 2 δ 2 N	fl fl fl fl fl	α 1 ∂ z Z +	N 2 X 2	α j ∂ z e j	fl fl fl fl fl	.	(4.2.33)

g (z,Q) = z Nδ(Q|Z (z)) + O (1)(G(|z|)δN ) 2 . (4.2.21)

Here, Z is given by

Z = ‡ z N -j +k-1 • N j ,k=1

Lemma 4.2.3.

  .2.34) Let K be as in(4.2.34).For k ∈ N, 2 ≤ N ∈ N ∪ {+∞}, 0 ≤ t < 1, we put M N ,k (t ) = = K N (t ) = M N ,0 (t ) + 1, K (t ) M N -1,1 (t ) + 1.For all fixed C > 0 and k ∈ N, we have uniformly,M N ,k (t ) M ∞,k (t ), for 0 ≤ t ≤ 1 -1Notice that under the assumption on t in (4.2.39), the estimate (4.2.38) becomesM ∞,k (t ) -M N ,k (t ) t N N k 1t .We also see that in any region 1 -O (1)/N ≤ t < 1, we have M N ,k (t ) N k+1 , so together with (4.2.39), (4.2.37), this shows that

			N -1 X	ν k t ν ,	(4.2.36)
				ν=1			
	so that						
	K (t ) For each fixed k ∈ N, we have uniformly with respect to N , t :
	M ∞,k (t )	t (1 -t ) k+1 ,	(4.2.37)
	M ∞,k (t ) -M N ,k (t )		t N 1 -t	N +	1 1 -t	¶ k	.	(4.2.38)
								C N	, N ≥ 2.	(4.2.39)
	M N ,k (t ) t min	1 1 -t	, N	¶ k+1	.	(4.2.40)
	∂ z ∂ z	¡ |Z (z)| 2 ¢ ¡ |Z (z)| 2 ¢	= 2K K z, = 2K K z.	(4.2.35)

Observe also that K (t ) G(t ) and that G(|z|) G(|z|

2 

).

The following result implies that K (t ) and K (t ) 2 are of the same order of magnitude. 125

4.2. GRUSHIN PROBLEM FOR THE PERTURBED JORDAN BLOCK Proposition 4.2.4. Proof. The statements are easy to verify when 0 ≤ t ≤ 1 -1/O (1) and the N -dependent statements (4.2.38), (4.2.39) are clearly true when N ≤ O (1). Thus we can assume that 1/2 ≤ t < 1 and N 1.

Write t = e -s so that 0 < s ≤ 1/O (1) and notice that s 1t . For N ∈ N, we put

P N ,k (s) = ∞ X ν=N ν k e -

νs , (4.2.41) so that P N ,k (s) = ( M ∞,k (t ) when N = 1, M ∞,k (t ) -M N ,k (t ) when N ≥ 2. (4.2.42)

  This is 1 for |z| ≤ 1/2 and for 1/2 ≤ |z| < 1 -1/N it is in view of Proposition 4.2.4 and the subsequent observationM N ,0 M N ,2 + M 2 t ) 4 , t = |z| 2 .In the region (4.2.43) we get:|Z (z)| G(|z|) 2 . (4.2.44) (4.2.35), (4.2.43), (4.2.44) will be used in (4.2.32), (4.2.33). Combining the implicit function theorem and Rouché's theorem to (4.2.28),we see that for |α | < C 1 N , α = P N 2 α j e j ∈ Z (z) ⊥ , the equation Since e g is holomorphic in α 1 , α and in α 1 , α 2 , ..., α N 2 , we see that f is holomorphic in α and in α 2 , ..., α N 2 Applying ∂ α 2 , ..., ∂ α N 2 to (4.2.45), we get (4.2.30), (4.2.32), (4.2.33) with (4.2.48) and (4.2.49), we get

					4.3. CHOOSING APPROPRIATE COORDINATES
	Hence,					
	(	∂ z f = -∂ z f = -	¡ ∂ α 1 e g ¢ -1 ∂ z e g , ¡ ∂ α 1 e g ¢ -1 ∂ z e g .		(4.2.48)
	∂ α j f = -	¡	∂ α 1 e g ¢ -1 ∂ α j e g , 2 ≤ j ≤ N 2 .	(4.2.49)
	Combining (4.2.29) in the form,					
	∂ α 1 e g (z, α) = -(1 + O (G(|z|)δN ))δ|Z (z)| 2 ,
						.
						t =|z| 2
					1	
				N ,1 (1 e g (z, α 1 , α ) = 0		(4.2.45)
	has a unique solution					
	α 1 = f (z, α ) ∈ D(0,C 1 N /G(|z|)).	(4.2.46)
	Here, we also use (4.2.20), (4.2.25). Moreover, f satisfies	
	f (z, α ) =	z N δ|Z | 2 + O (1)δN 2 = O (1)	|z| N δG 2 + δN 2	¶	.	(4.2.47)

1 

, G (1 -|z|) -2 . It follows from the calculation (4.3.6) below, that

|∂ z Z | 2 = 2 t ¡ K (t ∂ t ) 2 K + (t ∂ t K ) 2 ¢ ¶

Differentiating the equation (4.2.45) (where α 1 = f ) we get

∂ z e g + ∂ α e g ∂ z f = 0, ∂ z e g + ∂ α e g ∂ z f = 0.

  .2.52) From (4.2.35) and the observation prior to Proposition 4.2.4 we know that

		∂ z	¡ |Z | 2 ¢	, ∂ z	¡ |Z | 2 ¢	G(|z|) 3 |z|.		
	Recall also that |Z | G(|z|). Using this in (4.2.50), (4.2.51), we get		
	∂ z f =	O (1) δG 2 × ˆN |z| N -1 + δ| f |G 3 |z| + O	¡ G 2 δ 2 N	¢	fl fl fl fl fl	N 2 X 2	α j ∂ z e j	fl fl fl fl fl	+ O (1)	r 0 -|z| G 2 δ 2 N 2	)	!	.	(4.2.53)

  3 ¢ and (4.2.40) shows that the first and third members are of the same order of magnitude, + M ∞,3 (t ), for 0 ≤ t ≤ 1 -1/N . From this and Proposition 4.2.4 we get:∂ t ) 2 K -(t ∂ t K ) 2 ) K 4 , 0 < t ≤ 1 -1/N ,(4.3.8) 

		1 + M N ,3 (t ) min	1 -t 1	, N	¶ 4
	which is 1 Proposition 4.3.2. We have			
	2 t	(K (t		

  G + N |z| N +G 2 δ 2 N 3 +GδN 2 ¶ .

										.3.18)
	Similarly, from (4.2.51), (4.2.44) we get				
	∂ z f =	O (1) δG 2 δ	|z| N δG 2 + δN 2	¶	G 3 +G 2 δ 2 N	|z| N δG 2 + δN 2	¶	G 2 +G N	¶ ¶
	= O (1)	|z| N δG	+ δN 2				

Using (4.2.20), we get

∂ z f = O (1) |z| N δG + δN 2 G ¶ , (

4

.3.19) see (4.2.47). This will be used together with the estimates ∂ α j f = O (δN ) in (4.2.52).

  |e 1 )d z -α 2 (e 2 |d z e 1 ), dQ 2 = d α 2 + f (∂ z Z |e 2 )d z -α 2 (e 2 |d z e 2 ), dQ j = d α j , j ≥ 3.When forming dQ 1 ∧dQ 1 ∧...∧dQ N 2 ∧dQ N 2 we see that the terms in d α j for j ≥ 3 in the expression for dQ 1 will not contribute, so in that expression we can replaced α f by ∂ α 2 f d α 2 .Using (4.3.18), 133 4.4. PROOF OF THEOREM 1.4.3 (4.3.19), (4.2.52), (4.2.47),(4.2.44) this gives, where "≡" means equivalence up to terms that do not influence the 2N 2 form above:dQ 1 ≡ -α 2 (e 2 |d z e 1 ) + O (1) N |z| N -1 δG +GδN 3 ¶ d z + O (1) |z| N δ +G 2 δN 2 ¶ d z + O (δNG)d α 2 .Similarly, using also(4.3.16),dQ 2 = d α 2 + O |z| N δ + δN 2 G 2 + |α 2 |G ¶ d z + O (|α 2 |G) d z.When computing dQ 1 ∧ dQ 2 we notice that the terms in d z ∧ d z will not contribute to the 2N 2 -form dQ 1 ∧ dQ 1 ∧ ... ∧ dQ N 2 ∧ dQ N 2 . We getdQ 1 ∧ dQ 2 ≡ -α 2 (e 2 |d z e 1 ) ∧ d α 2 + O (1) N |z| N -1 δG +GδN 3 + |α 2 |δNG 2 ¶ d z ∧ d α 2 + O (1) |z| N δ +G 2 δN 2 + |α 2 |δNG 2 ¶ d z ∧ d α 2 . |∂ z Z )d z ∧ d α 2 = O (1)α 2 Gd z ∧ d α 2 .Notice that dQ 1 ∧ dQ 1 ∧ dQ 2 ∧ dQ 2 = -dQ 1 ∧ dQ 2 ∧ dQ 1 ∧ dQ 2 . From (4.3.21) and its complex conjugate we getdQ 1 ∧ dQ 1 ∧ dQ 2 ∧ dQ 2 + |α 2 |δNG 2 ¶2 +O (1)|α 2 |G N |z| N -1 δG +GδN 3 + |α 2 |G 2 δN ¶ ¶ d z ∧ d z ∧ d α 2 ∧ d α 2 .

																		(4.3.21)
	Here,																
	(e 2 |d z e 1 ) =	‡	e 2 |d z	¡	|Z | -1 ¢	Z	•	=	‡	e 2 ||Z | -1 d z Z	•	+	‡	e 2 |d z	¡ |Z | -1 ¢	Z	•
	= |Z | -1 e 2 |∂ - ‡ α 2 |Z | (e 2 ≡ ˆ-|α 2 | 2 |Z | 2 fl fl fl ‡ e 2 |∂ z Z •fl fl fl 2 + O (1)	N |z| N -1 δG	+GδN 3				

z Z d z • + 0 = |Z | -1 (e 2 |∂ z Z )d z,

so the first term in (4.3.21) is equal to

  We next study the leading term in(4.4.5), given by|(∂ z Z |e 2 )| 2 π|Z | 2 . (4.4.6)Since ∂ z Z belongs to the span of e 1 = ∂ z Z /|Z | and e 2 , we have|(∂ z Z |e 2 )| 2 = |∂ z Z | 2 -|(∂ z Z |e 1 )| 2 ,so the leading term (4.4.6) is 1 π|Z | 2 ˆ|∂ z Z | 2t ν is the function appearing in Proposition 4.3.2. Let us first compute the limiting quantity obtained by replacing K = K N in (4.4.7) by

									4.4. PROOF OF THEOREM 1.4.3
						|(∂ z Z |Z )| 2 |Z | 2	!	,
	which by (4.3.7) is equal to						
			2 πt	(t ∂ t ) 2 K K	-	(t ∂ t K ) 2 K 2	¶	t =|z| 2	.	(4.4.7)
	Here, K = K N (t ) =	P N -1 0						
							δG	1	+GδN 3	¶ !	.
	Noticing that							
				|(e 2 |∂ z Z )| 2 |Z | 2	= O (G 2 ),
	we deduce that							
		e Ξ(z) =	|(e 2 |∂ z Z )| 2 |Z | 2						(4.4.5)
						135	

+ O (1) ˆG2 N 2 |z| N -1 δG 2 + δN 2 ¶2 +G 2 N |z| N -1 δG 2 + δN 2 ¶ ! .

  2(N -1) N 2 δ 2 G 4 + δ 2 N 6 + |z| N -1 N δG 2 + δN 3 ¶ .CHAPTER 4. INTERIOR EIGENVALUE DENSITY OF JORDAN MATRICES WITH RANDOM PERTURBATIONSwhich is much larger than the first term. We now strengthen (4.4.3) to

			|z| N -1 δG 2 + δN 2	1 N	,
	or equivalently to						
			|z| N -1 N δG 2 + δN 3 1.	(4.4.10)
	Then remainder in (4.4.9) becomes				
			O (G 2 )	|z| N -1 N δG 2 + δN 3	¶	,
	and (4.4.9) becomes	e Ξ(z) =	2 π(1 -|z| 2 ) 2 1 + O	|z| N -1 N δG 2 + δN 3	¶ ¶	.	(4.4.11)
	Setting e Ξ = 1 2π Ξ concludes the proof of Theorem 1.4.3.		
	By (4.4.3), 1						
				G 2	N 4 ,		
				136			

δG N 2 , so the second term is

|z| 2(N -1) N 2

the two-point density is given by the product of two one-point densities (cf.(1.3.6)). This means that at this distance two eigenvalues are placed in average in an uncorrelated way.

1.6. SOME OPEN PROBLEMS

2.8. PROPERTIES OF THE DENSITY

∈ C N ×4 . (3.4.6)

4.4. PROOF OF THEOREM 1.4.3

CHAPTER 4

INTERIOR EIGENVALUE DENSITY OF JORDAN MATRICES WITH RANDOM PERTURBATIONS

The aim of this chapter is to study the eigenvalue distribution of a large Jordan block subject to a small random Gaussian perturbation, as was discussed in Section 1.4, and give a precise asymptotic description of the expected eigenvalue density in the interior of a circle thereby extending an existing result of E.B. Davies and M. Hager [START_REF] Davies | Perturbations of Jordan matrices[END_REF]. In particular, we prove the results described in Section 1.4. The results presented here are due to J. Sjöstrand and M. Vogel [START_REF] Sjöstrand | Interior eigenvalue density of Jordan matrices with random perturbations[END_REF].

| A general formula

To start with, we shall obtain a general formula (due to [START_REF]The precise shape of the eigenvalue intensity for a class of non-selfadjoint operators under random perturbations[END_REF] in a similar context). Our treatment is slightly different in that we avoid the use of approximations of the delta function and also that we have more holomorphy available.

Let g (z,Q) be a holomorphic function on Let φ ∈ C ∞ 0 (Ω) and let m ∈ C 0 (W ). We are interested in

where we frequently identify the Lebesgue measure with a differential form,

In (4.1.3) we count the zeros of g (•,Q) with their multiplicity and notice that the integral is finite: For every compact set K ⊂ W the number of zeros of g (•,Q) in supp φ, counted with their multiplicity, is uniformly bounded, for Q ∈ K . This follows from Jensen's formula. Now assume,

Remark 4.2.2. The above Z will play in the following the role of the Z in (4.1.6).

A straight forward calculation shows that More precisely, we work in a disc D(0, r 0 ), where

and C 1. In fact, the first inequality in (4.2.26) can be written m(r 0 ) ≤ C -1 δC 1 N and m(r

] so the inequality is preserved if we replace r 0 by |z| for |z| ≤ r 0 . Similarly, the second inequality holds after the same replacement since G is increasing.

In view of (4.2.20), we see that

is also much smaller than the upper bound on the middle term. By the Cauchy inequalities,

The norm of the first term is δG G 2 δ 2 N , since GδN 1. (When applying the Cauchy inequalities, we should shrink the radius R = C 1 N by a factor θ < 1, but we have room for that, if we let C 1 be a little larger than necessary to start with.) Writing

we identify g (z,Q) with a function e g (z, α) which is holomorphic in α for every fixed z and satisfies