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SUMMARY:  

Computational Protein Design (CPD) is a very young research field which aims at providing predictive tools to complement 

protein engineering. Indeed, in addition to the theoretical understanding of fundamental properties and function of proteins, 

protein engineering has important applications in a broad range of fields, including biomedical applications, biotechnology, 

nanobiotechnology and the design of green reagents. CPD seeks at accelerating the design of proteins with wanted properties 

by enabling the exploration of larger sequence space while limiting the financial and human costs at experimental level.  

To succeed this endeavor, CPD requires three ingredients to be appropriately conceived: 1) a realistic modeling of the design 

system; 2) an accurate definition of objective functions for the target biochemical function or physico-chemical property; 3) 

and finally an efficient optimization framework to handle large combinatorial sizes.  

In this thesis, we addressed CPD problems with a special focus on combinatorial optimization. In a first series of studies, we 

applied for the first time the Cost Function Network optimization framework to solve CPD problems and found that in 

comparison to other existing methods, it brings several orders of magnitude speedup on a wide range of real CPD instances 

that include the stability design of proteins, protein-protein and protein-ligand complexes. A tailored criterion to define the 

mutation space of residues was also introduced in order to constrain output sequences to those expected by natural evolution 

through the integration of some structural properties of amino acids in the protein environment. The developed methods were 

finally integrated into a CPD-dedicated software in order to facilitate its accessibility to the scientific community.  
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RESUME :  

Le Design computationnel de protéines, en anglais « Computational Protein Design » (CPD), est un champ de 

recherche récent qui vise à fournir des outils de prédiction pour compléter l'ingénierie des protéines. En effet, 

outre la compréhension théorique des propriétés physico-chimiques fondamentales et fonctionnelles des 

protéines, l’ingénierie des protéines a d’importantes applications dans un large éventail de domaines, y compris 

dans la biomédecine, la biotechnologie, la nanobiotechnologie et la conception de composés respectueux de 

l’environnement. Le CPD cherche ainsi à accélérer le design de protéines dotées des propriétés désirées en 

permettant le traitement d’espaces de séquences de large taille tout en limitant les coûts financier et humain au 

niveau expérimental. 

Pour atteindre cet objectif, le CPD requière trois ingrédients conçus de manière appropriée: 1) une modélisation 

réaliste du système à remodeler; 2) une définition précise des fonctions objectives permettant de caractériser la 

fonction biochimique ou la propriété physico-chimique cible; 3) et enfin des méthodes d'optimisation efficaces 

pour gérer de grandes tailles de combinatoire. 

Dans cette thèse, nous avons abordé le CPD avec une attention particulière portée sur l’optimisation 

combinatoire. Dans une première série d'études, nous avons appliqué pour la première fois les méthodes 

d'optimisation de réseaux de fonctions de coût à la résolution de problèmes de CPD. Nous avons constaté qu’en 

comparaison des autres méthodes existantes, nos approches apportent une accélération du temps de calcul par 

plusieurs ordres de grandeur sur un large éventail de cas réels de CPD comprenant le design de la stabilité de 

protéines ainsi que de complexes protéine-protéine et protéine-ligand. Un critère pour définir l'espace de 

mutations des résidus a également été introduit afin de biaiser les séquences vers celles attendues par une 

évolution naturelle en prenant en compte des propriétés structurales des acides aminés. Les méthodes 

développées ont été intégrées dans un logiciel dédié au CPD afin de les rendre plus facilement accessibles à la 

communauté scientifique.  
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Introduction 

Over the years, research in biochemistry and biophysics has accumulated knowledge to under-
stand fundamental properties of biomolecules and their functions. Among biomolecules of prima-
ry importance are proteins. They are involved in a wide range of biological functions such as 
structural properties, signaling and catalysis. Their shape and the relationships between their 
structure and function have been widely investigated, enabling a fairly decent physico-chemical 
description and understanding of their properties and behaviors. With the ever-increasing number 
of biochemically characterized proteins and the growing number of protein structures available in 
databases, the exploration of structure-function interrelationships has become more and more 
approachable. Computational biology has also provided essential information to bridge the gap 
between static structural data and the huge amount of biochemical and kinetic information. More 
particularly, computational methods have led to major advances in the prediction of protein struc-
tures from their amino acid sequences, implementing principles of protein folding and their ener-
getics. Molecular modeling techniques have also been widely used to investigate conformational 
flexibility and its impact on biomolecular recognition and protein function. 

At a more applied level, there has been an increasing interest for proteins of all kinds (enzymes, 
antibodies, lectins, structural proteins, ...) for different uses in medicine (cancer therapy, autoim-
mune diseases, vaccines, neurodegenerative diseases, …), biotechnology (biosensors, biocata-
lysts, genetic/metabolic circuits, artificial biosynthetic pathways …) and/or nanotechnologies 
(construction of nano-devices and molecular machines, ...). Although the properties of natural 
proteins can be directly exploited, new, designed proteins, with novel functions or improved ac-
tivities, are of major interest in all these application areas. Hence, protein engineering has become 
a key technology that has proven to be efficient and useful to modulate both the structure and the 
function of polypeptides and generate proteins displaying desired properties. 

To increase the chances of success to tailor the wanted proteins, while reducing the human and 
financial costs, computational methods are in high demand. They allow guiding the evolution of 
the proteins on regions of their sequence space of particular relevance to achieve the desired 
function and thus reduce the size of mutant libraries to build and screen experimentally. This in-
tegration of computational approaches into engineering strategies has become essential to accel-
erate the design of neo-proteins. Computational Protein Design (CPD) methods have been devel-
oped for over a decade. They may involve the remodeling of a known protein scaffold in order to 
modify the protein function/activity, or, the complete (de novo) design of new protein to fulfill a 
particular function. The primary objective of CPD is the identification of a set of sequences that 
could fold into a predefined 3D scaffold, what is considered to be the inverse problem of protein 
folding prediction. In addition, CPD also addresses the requirements in order to find amino acid 
sequences that will optimize a desired property (physico-chemical property and/or biological 
function). 

In spite of the significant advances in the field, one of the main challenges remains the very-high 
dimensional search space, which is the composite space of all the possible amino-acid sequences 
and all the possible spatial conformations of the protein, what optimization algorithms have to 
handle. Addressing this issue requires fast and efficient algorithms for searching large spaces, the 
accuracy of which is a fundamental necessity for successful protein design. 
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My thesis fits into this context with the main objective being the development of novel computa-
tional methods dedicated to the efficient and accurate combinatorial optimization. In the first 

chapter of this thesis, we give an overview of the main underlying principles of Computational 
Protein Design, their current limitations and the challenges ahead, their application to tackle dif-
ferent cases of protein design and at last, we provide a comparative analysis of a selection of ex-
isting CPD softwares. In the second chapter, we introduce some basic definitions and formal-
isms of the Cost Function Network (CFN) framework that will provide fundamental knowledge 
to understand how we used state-of-the-art CFN methods in the third Chapter to solve CPD 
problems. In collaboration with specialists in the field of combinatorial optimization, we devel-
oped a CFN-based framework that also includes a physical modeling of the CPD problem. To the 
best of our knowledge, our studies constitute the first reported CFN-based CPD framework in the 
literature. Motivated by the results obtained, novel CFN-based methods were then derived and 
implemented into a CPD-dedicated software called osprey to facilitate its access to the scientific 
community.  

Results obtained within the frame of this thesis are reported as a series of three research articles 
already published and one that will shortly be submitted for publication in an international jour-
nal. 
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Over the past few decades, the Computational Protein Design (CPD) has been proven very useful 
with respect to the development of proteins for many different applications. Major successes 
were achieved both in terms of methodological developments as well as biotechnological and 
biomedical applications. 

In this field, pioneering work aimed at redesigning the hydrophobic core of existing proteins us-
ing simple knowledge about the stability of proteins [1]–[6]. Remarkably, these early successes 
led to the development of new properties not yet observed in nature [2], including the creation of 
a novel protein fold from scratch [7] as well as the amelioration of pharmacological properties of 
protein drugs [8]. Another milestone in CPD was achieved with the redesign of protein-protein 
interfaces including systems of biomedical interest [9], [10]. Early studies in this area were rapid-
ly followed by the successful engineering of metal-mediated protein interfaces and metalloen-
zymes [11], [12], which were chosen as initial models due to the well-established definition of 
the transition metal coordination. A more recent landmark in CPD was the de novo design of en-
zymes from scratch, displaying original catalytic activities for which there is no counterpart in 
nature [13]–[15].  

Such accomplishments were rendered possible thanks to the more and more realistic formulation 
of the design problem, especially with respect to i) the selection of suitable protein scaffolds for 
the design needs, ii) the treatment of protein flexibility in the design, in particular emanating 
from amino acid side-chains and protein backbone, iii) the development of well-adapted energy 
functions fast enough to allow high-throughput exploration of the sequence-conformation space, 
but still accurate enough to model properly protein properties and discriminate between sub-
optimal sequence-conformation models, iv) the development of objective functions to adequately 
describe the fitness of the physico-chemical property and/or biological function that is sought. 

Finally, significant algorithmic advances have been made to efficiently explore the associated 
sequence-conformation space and accurately predict the optimal sequence-conformation models. 
However, current trends in realistic representation of the design model require the development 
of more efficient algorithms to handle the huge sequence-conformation combinatorial space. 
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 The Computational Protein Design Framework 1.1

Given a protein 3D structure scaffold, the structure-based computational protein design aims to 
find an optimal or an ensemble of near-optimal sequences. It is thus viewed as an ‘inverse folding 
problem’. In addition to this primary goal, the CPD may seek to satisfy some design specific con-
straints. Physico-chemical properties and biological functions can be formulated as constraints 
(or objectives to the design). Schematically put, the CPD problem is to find, from an element of 
the structure space (the input scaffold), elements of the sequence-conformation space that are 
optimal with respect to the desired biological fitness expressed as an objective function. Inherent-
ly, structure-based design also requires considering the conformations accessible to the amino 
acids. Therefore, the search space of CPD is defined by both the possible amino acids and their 
associated conformations leading then to a composite sequence-conformation space modeling.  

The CPD problem is then formulated as an optimization problem. The search space is often dis-
cretized and the energetics of the design space is captured by a pairwise energy function. The 
accurate modeling of these two representations of the search space has its own challenges (which 
will be discussed thereafter in this chapter). The objective function(s), built on top of the energy 
function is sought to mathematically express the design needs and constraints. The resulting op-
timization problem has to be handled by fast and accurate algorithms. Both the size of the search 
space and the cost distribution of the objective function are limiting factors for the combinatorial 
optimization.  

Methodologies involved in a generic CPD framework can be clustered into three main compo-
nents (Fig 1-1): 

The first one is the modeling of the CPD problem which includes the selection of : (1) a protein 
3D structure template (i.e. a 3D scaffold) or the definition of a minimal catalytic site and its graft-
ing into a suited 3D protein scaffold for the de novo design of enzyme active site; (2) a search 
space by defining the variable amino acids of the molecular system to design (namely the muta-
ble amino acid residues and the flexible residues for which only the conformational variability is 
explored so as to readjust the protein conformation to mutations); (3) an objective function rele-
vant to the design target. 

The second component is the optimization phase which aims to find (the) solution(s) in accord-
ance with the defined objective function, given an initial input model. Both deterministic and 
stochastic optimization approaches have been widely applied for the computational redesign of 
relevant biological systems. 

The third phase is then the analysis and ranking of the design results which usually consists in 
performing further in silico simulations (such as Molecular Dynamics simulations, Free energy 
calculations,..), both more accurate and more costly in terms of CPU-time than CPD methods, on 
selected models resulting from the design with the aim of refining them with more realistic phys-
ical concepts. 

1.1. The CPD framework
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Following the computational design procedure, experimental validation (including stability as-
sessment, structural characterization, functional assays…) can then be performed on the most 
promising designed sequences. In many cases, an additional optimization of the designed en-
zymes by subsequent rounds of directed evolution can be conducted to randomly introduce addi-
tional mutations which can tune up the targeted property and catch up some imperfections of the 
CPD modeling [16].  

Needless to say that improvement of design methodologies will only be rendered possible by the 
availability of feedbacks from in silico refinement and experimental evaluation. Both successes 
and failures provide crucial information to enhance reliability and accuracy of computational 
methods [17] . 

 

Fig 1-1 A generic CPD flowchart.  

The CPD input model to the combinatorial optimization component is defined by the 3D structure template, the defi-
nition of the search space (the variable parts of the molecular system to design and their possible states), a pairwise-
decomposable function to compute energy of inter and intra molecular interactions along with objective function to 
be optimized. The scheme of the optimization can be either stochastic of deterministic. Usual tasks to perform are: 
GMEC search, the enumeration of a suboptimal set of solutions and ensemble-based design. All elements are de-
tailed thereafter in this section.  

1.1.1 The input protein 3D structure template  

The choice of the initial three-dimensional protein structure template is crucial to ensure its suita-
bility for the design needs. The protein structure template is mainly selected amongst high resolu-
tion 3D structures determined either from X-ray crystallography or solution NMR studies (and 
deposited in the Protein Data Bank: http://www.rcsb.org). In some cases, when no structure is 
available, a 3D model can be built by comparative modeling using the existing 3D structures of 

Chapter 1. Computational Protein Design (CPD): Paradigms, Methods and Challenges
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homologous proteins. The re-use of an existing structure has a practical advantage, since nature 
often produces proteins with vastly different functionalities using the same protein fold [18], 
[19].  

In some cases, when de novo design of proteins from scratch is undertaken, it might require novel 
hypothetical scaffolds which can be built using databases of protein 3D fragments. However, this 
leads to a tremendous increase in the number of adjustable degrees of freedom (DOFs) for the 
polypeptide backbone, what results in a highly complex dimensional search space. When consid-
ering the de novo design of an enzyme active site, quantum chemical calculations are also used to 
build beforehand a minimal active site (theozyme) which will be grafted in a next stage onto the 
chosen protein scaffold [20].  

1.1.2 The search space: degrees of freedom of the molecular system  

The definition of the search space involves the selection of variable amino acid residues, as well 
as the way their conformational variability is taken into account. Whole or a subset of amino acid 
residues of the system can be considered as variable. Some variable residues are considered as 
mutable and their possible states are defined by two levels of degrees of freedom (DOFs): the 
amino acid types permitted at each position and their possible conformations. The selection of the 
mutable residues will pre-condition the chances of success of the design. Depending on the ob-
jective of the design, some residues might not be tolerant to mutations. For example, catalytic 
residues cannot be considered mutable if the enzyme catalytic activity needs to be maintained. To 
select the group of amino acid types permitted at each mutable position, CPD often takes into 
account the location of the mutable residues within the protein structure in order to preferentially 
introduce hydrophobic amino acids in the protein core and hydrophilic ones at the surface and 
maintain a stable protein [6], [21], [22]. In addition to mutable residues, a set of flexible amino 
acid residues (where solely change of conformation is allowed) is also selected in order to enable 

adaptation of the protein structure to mutations.  

Amino acid residues have conformational DOFs, 
arising from the flexibility around their chemical 
bonds in a continuous angular space. The dihedral 
!-angles represent the DOFs of the amino acid side 
chains and the dihedral angles ! and ! from the 
main polypeptide chain, ! being mainly fixed. The 
real conformation space of a single amino acid can 
then be very large and ultimately, the size of the 
sequence-conformation space of a protein is con-
tinuous and huge. Consequently, for the sake of 
computational tractability, a first common approx-
imation is to represent the side chain DOFs by a set 
of discrete conformations. Therefore, their contin-
uous conformational space is approximated using 

discrete conformations defined by their inner dihedral angles which are called rotamers. These 
rotamers are low-energy side chain conformations derived from statistical analysis of high resolu-

Fig 1-2 Amino Acid Rotamers (example of phe-
nylalanine) 
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tion crystal structures of the Protein Data Bank (PDB) which highlighted that the side chains of 
amino acids in protein structures avoid most of the theoretical conformational space and appear 
frequently as clusters in !-angle space. An illustration for phenylalanine is given in Fig 1-2. In 
addition to the approximation made on the side chain conformational space, the classical model-
ing paradigm for CPD assumes a fixed protein backbone [23]. Therefore, the most basic CPD 
problem is viewed as a search for the optimal rotamers to fit on a given protein backbone. The 
search returning the optimal rotamers yields both side-chain conformations and the underlying 
designed sequence.  

These fixed-backbone and discrete rotamer approximations have the advantage to dramatically 
reduce computation time. The fixed-backbone assumption also avoids reliance on energy poten-
tials to discriminate between favorable and unfavorable backbone conformations. Despite these 
benefits, these conformational limitations have several consequences which limit the power of 
CPD approaches. Indeed, they artificially limit the natural degrees of freedom available to protein 
sequences folding into their stable conformations and thus may impair the CPD ability to repro-
duce native-like sequences [24]. In particular, numerous experiments have demonstrated that pro-
tein backbones adjust to sequence mutations [24]. Some side-chain conformations may be as-
signed with high energies and thus discarded during the search whereas slight backbone adjust-
ments could have helped to correct such problems. Therefore, fixed backbone approaches may 
neglect a significant portion of sequence space which can lead to well-folded and functional pro-
teins. Moreover, conformational changes of the protein backbone are crucial for the recognition 
and the interaction of proteins with their molecular partners such as a ligand, a cofactor, another 
protein… Therefore, further molecular flexibility has to be integrated in order to improve the 
accuracy of the predictions of the CPD approaches and extend the use of the latter to different 
design objectives. However, integration of more flexibility into CPD methods is a considerable 
challenge due to the huge increase in the combinatorial complexity and the needs for suitable 
optimization methods and accurate energy functions to discriminate effectively the multiple con-
formational states. In spite of these difficulties, several studies have tackled these challenges. 

 

Fig 1-3 Distribution of isoleucine conformations in !-space (adapted from [24]). The red region identifies the 
subspace covered by rigid rotamers (a) and continuous rotamers (b).  
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Recent works highlighted the gain in accuracy achieved by allowing additional flexibility result-
ing from the definition of a continuous rotamer space what reflects better the clusters of confor-
mations observed for amino acids [24]. The case of isoleucine is exemplified in Fig 1-3. In par-
ticular, a study showed that the use of continuous rotamers in CPD allows identifying low energy 
sequences and ultimately more native-like sequences [24].  

Various techniques have also been proposed to account for the flexibility of the backbone, both 
large-scale and local rearrangements. Mayo and coworkers incorporated backbone flexibility into 
the computational design of a novel protein topology, an !-helical tetramer with experimental 
validation, using well-characterized parameters of secondary structural elements [25]. However, 
this approach can only be applied if defined parametrical descriptions are available for the struc-
tural feature of interest. Random sampling of the backbone dihedral angles, previously described 
by Desjarlais and Handel [26] were also found effective in CPD experiments in combination with 
dihedral substitution using dihedral values extracted from the Protein Data Bank [7]. In a study 
using this later approach (conducted by Baker and coworkers), the CPD approach alternates be-
tween sequence optimization for a fixed backbone and backbone optimization for a fixed se-
quence. It has been successfully applied for the design of a novel protein fold [7]. Donald and 
coworkers also extended their fixed-backbone CPD approach to take into account the backbone 
flexibility by varying ! and ! dihedral angles continuously within a voxel [27]. Other algorithms 
handle the backbone flexibility by setting upper and lower bounds on pairs of Cα-Cα distances 
and on the backbone dihedral angles [28].  

The multi-copy backbone approach has been also employed in CPD. It uses several complete 
conformations of the backbone. These backbone conformations are used as template for multiple 
independent optimizations. Floudas and coworkers developed a method to calculate optimal se-
quences for a set of backbone templates derived from different structures of the same protein or 
extracted from molecular dynamics trajectories performed on the targeted protein [29]. They ap-
plied this approach to fully design the human β-definsin-2, a 41-residues peptide. The accuracy of 
the approach was assessed by comparison of the predicted sequences to the sequences of homol-
ogous proteins.  

While above mentioned studies are based on conformational backbone sampling approaches de-
veloped in the field of molecular modeling, some recent solutions rely on robotics-inspired meth-
ods, namely inverse kinematics (or Kinematic Closure KIC) and Cyclic Coordinate Descent 
(CCD) algorithms [30]–[33]. These methods divide the protein backbone into small flexible 
fragments that are connected by fixed points called joints. Accessible conformations of the frag-
ments are then searched while maintaining a constraint on joints in order to avoid chain breaks. 
The flexible backbone method based on CCD loop closure algorithm and fragment insertion 
method developed by the group of Baker optimizes backbone torsions until the break in the pep-
tide chain resulting from the fragment insertion falls below a set threshold [33]. A CPD approach 
iterating sequence design and loop conformation optimization by this method has been success-
fully applied for the redesign of three loops in the protein tenascin. The designed variants were 
experimentally verified to form stable folded protein structures [34]. 
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Following this success and in order to account for catalytic constraints involved in the design of 
enzyme’s active site, the group of Baker proposed a method combining fragment insertion with 
CCD closure together with active site side-chains constraints. This procedure was used to pro-
duce a change in specificity of 10!-fold in a human guanine deaminase for ammelide over gua-
nine [35]. The crystallographic structure of the redesigned loop was found within 1 Å !! rmsd of 
the proposed model.  

While backbone flexibility methods described above explore the angular space of the backbone 
degree of freedom, another trend in CPD is to model the DOFs of the main chain by discrete lo-
cal backbone states observed in 3D structures. Inspiration for such local perturbations came from 
observations that natural 3D structures usually undergo small characteristic backbone shift (3% 
of all residues) in order to accommodate changes in sequences [36]. These so-called backrub and 
shear motions (Fig 1-4) have been successfully applied to CPD [37]–[39]. The benchmark study 
on both GrsA-PheA and β1 protein domains [37] led to designed proteins with lower energies 
than those obtained from fixed-backbone approaches. Smith and Kortemme successfully applied 
their backrub-based method to model alternative side-chain conformations observed in high-
resolution crystal structures and to improve the prediction of conformational adjustments to sin-
gle point mutations over fixed backbone methods [38]. Following the same idea, Donald and 
coworkers have applied their backrub-based CPD method [37], combining sequence design and 
local backbone motion, to examine local backbone changes in both !-helix N-Cap and the gly-
cine-aromatic coupling in antiparallel β-sheet [40]. The approach successfully reproduced in sili-

co the N-Cap shift observed in natural protein structure for mutation of Ser/Thr to Asn/Asp. The 
computed shifts between mutants and wild-type for aromatic-glycine coupling in antiparallel β-
sheet were also similar to those experimentally observed. 

Although backrub approaches are efficient sampling methods to handle specific local backbone 
flexibility, the backrub is not a frequent type of motion (only 3% of all residues, mainly in ex-
tended structures [36]). Thus, it should be used in combination with other more general backbone 
flexibility modeling in order to better cover the natural backbone conformation space.  

Another fundamental challenge in CPD is the need to accommodate the large translational, rota-
tional and conformational degrees of freedom of a ligand within the already astronomically large 
sequence design calculations. When the ligand is a peptide, its conformational flexibility can be 
mostly described by discrete rotamer libraries, what is considered advantageous as it is consistent 
with the rotamer libraries used for sampling protein amino acid side chains. However, flexibility 
treatment of organic molecules, on the other hand, is often left to the user to pre-calculate an en-
semble of low energy ligand conformers (rotameric combinations) with fixed geometry. Software 
solutions to construct continuous ligand rotamer libraries, better adapted to the search techniques 
used to explore protein residue flexibility, are generally lacking. Efforts have also been devoted 
to develop methods of ligand placement in the active site. These approaches are generally based 
on: (i) the use of stationary, rigid-body ligand poses in a large number of individual protein de-
sign calculations [42]; (ii) the generation of a discrete set of ligand poses filling the active site by 
rotation and translation [43]; (iii) the targeted placement of small molecule variations with refer-
ence to a contacting side chain [43]; (iv) iterative cycles of rigid ligand docking and sequence 
optimization [44]. 
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Fig 1-4 Two examples of local backbone motions (adapted from [39] ): a) The Backrub motion involves a rotation of 
the central !! with respect to the axis defined by its two neighboring !! atoms. b) The Shear motion involves the 
displacement of a 3-peptide segment in a direction parallel to the axis defined by its external !! atoms.  

Recently, Donald’s group extended its CPD approach to handle further protein main chain con-
formational changes [41]. They integrated within the same framework, approaches to handle mul-
tiple types of backbone freedoms denoted as perturbations. They include both backrub and shear 
motions, loop closure, secondary structure adjustments… Benchmark tests showed the ability of 
the framework to produce lower energy sequence-conformations than CPD studies which consid-
ered no or limited backbone flexibility.  

1.1.3 The energy functions  

After the brief introduction on the methods for modeling (macro)molecular flexibility in CPD, we 
will focus in this section on the most common all-atom energy functions used in CPD. All energy 
terms used in CPD are either inherently additive or generally approximated to be so. This greatly 
helps to speed up calculations during the energy computation. In addition, because the pairwise 
energy can be pre-computed and stored, the sampling of the same rotamer or rotamer pairs during 
the search does not require re-computing the same individual energy contributions. This pairwise 
representation also determines the type of applicable algorithms as deterministic optimization 
approaches (discussed in Section 1.1.5) require the matrix to be pairwise. The optimization will 
then read this matrix to find the optimal combination of rotamer assignments. Thus, given the 
pairwise formulation of the energetics, the total energy (!total) of any given conformation has the 
following formulation in general:  

 
!total =  !! + ! !!  

!

+   ! !! , !!
!,!

 
 (1‐1) 

Where !! is a constant energy contribution capturing interactions between fixed parts of the 
model, ! !!  depends on rotamer ! at position ! and ! !! , !!  is the pairwise interaction energy 
between rotamer ! at position ! and rotamer ! at position !.  
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Interactions between residues of the protein but also with their partners (ligand, cofactors or other 
proteins or nucleic acids, for example) are estimated by two types of empirical energy functions: 
i) Physics-based energy functions that are more precise but often heavy in CPU time and ii) Sta-

tistical functions that are often faster and derived from experimental structures (Knowledge-
based). Hence, the type of commonly used energy expressions in CPD ranges from Molecular 
Mechanics (MM) force field energy functions to knowledge-based ones and also a combination 
of both.  

The first ones (MM-based) are often altered in order to fulfill the requirements of CPD (fast and 
yet accurate energy terms in order to be applicable to the enormous sequence-conformation 
space). The individual energy terms include atomic packing interactions such as dihedral angles 
and reduced Lennard-Jones (and MM terms for bond stretching and bond-angle contributions are 
not always used in CPD experiments, because ideal geometry of these components is often used), 
electrostatic interactions between charges and hydrogen bonds. The solvent is represented by an 
implicit model, its explicit consideration being too expensive. Other ad-hoc terms are also used, 
for example to estimate the entropy of the side chains or the propensity of secondary structure 
elements. However, the latter one is generally accounted in other energy terms such as the elec-
trostatic and Lennard-Jones, thus caution should be taken with the use of such additional terms.  

Knowledge-based terms are used to model a broad range of energy contributions. Hence, both a 
backbone torsional angle and a rotamer statistical potential that accounts for the self-energy of a 
given rotamer have been used [45]. A pairwise electrostatic potential is also defined based on the 
probability of finding two particular amino acids at a given distance [45]. Knowledge-based 
terms can model complex effects difficult to be considered otherwise in CPD experiments, how-
ever, one difficulty in handling such terms lies in the introduction of additional non-overlapping 
energy terms during the development of energy functions. 

A general energy function for CPD can be expressed in the form of a sum over individual empiri-
cal energy contributions !! (either Physics-based or Knowledge-based) with a weighting factor 
!!  : 

 
! =   !!!!

!

= !!"#!!"# +  !!"!#!!"!# + !!"#$!!"#$ +⋯ 
 (1‐2) 

The weighting factors are usually optimized to reproduce some structural properties of naturally 
occurring proteins.  

Finally, energy terms are not always straightforward to approximate both in an additive (interde-
pendence) and in a pairwise manner. When designing an energy function for CPD, it is very dif-
ficult to avoid the overcounting of the same physical effect within the various terms [46]. Such 
artefacts can bias the objective function toward structural or functional properties not wanted or 
an unrealistic potential with respect to the target fitness property. This issue thus hardens the goal 
of bridging the gap existing between the fitness of computationally designed and naturally occur-
ring proteins. Hence, for the CPD methodology to be accurate, both the selection of appropriate 
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energy terms and a correct balance between all these terms is to be accomplished [47]. This task 
is usually performed by optimizing the energy function using information derived from structural 
databases. One culprit with such knowledge-based optimization of energy functions is the as-
sumption that native sequences are optimal with respect to the fitness function. Indeed, it is well 
established for example that native sequences are not optimized for stability [48] because they 
evolved in the complex cellular environment under multiple opposite constraints and functional 
requirements. Even more, such kind of energy function optimization generates weights that are 
dependent on the fitness function used for the energy function optimization itself and it thus lim-
its its general applicability. An alternative approach is to train weights to predict the energy of 
mutations and pKa changes [49]. This method has the advantage of being defined as a change in 
free energy and not a fitness function. Hence, it has a wider applicability because of its independ-
ence with respect to any specific fitness function (such as stability or affinity) used in CPD exper-
iments. 

1.1.3.1 Lennard-Jones or van der Waals potential 

A 12-6 Lennard-Jones (LJ) potential is usually used to account for the vdW contributions. Be-
cause of the usage of both the fixed backbone and discrete side chain rotamers, the LJ potential is 
not used as such in CPD in order to avoid artificial steric clashes. Although an extended rotamer 
library could be used to reduce this effect, it may not be always sufficient [26]. Hence, different 
weighting factors have been used on the repulsive (decreasing with !!"

!!") and attractive (depends 

on !!"
!!) terms in order to address these issues [45], [50]. A uniform scaling of the vdW radii in 

order to avoid artefacts of CPD approximations has also been used [51], [52]. However, these 
types of adjustments, while very simple to apply, result in a displacement of the well of the vdW 
potential. Thus, a linearized LJ more suitable for CPD approximations without displacing the 
well of the vdW potential was proposed [53].  

1.1.3.2 Electrostatics and hydrogen bonds 

The design of functional proteins is highly dependent on the modeling accuracy of the polar ef-
fect. Polar interactions such as charge-charge interactions (including salt-bridges) and hydrogen 
bonding are highly important for the secondary structures of proteins and they play a preeminent 
role in the specificity of intra-molecular and intermolecular interactions. Such interactions need 
to be precisely modeled if one wants to design realistic and functional proteins, enzymes and pro-
tein interfaces. However, accurate modeling of such effects in a CPD study yet remains an un-
solved issue as it is strongly dependent on the local structural environment of interacting atoms 
which can be further modulated by the presence of the solvent.  

A distance-dependent Coulombic term is often used to represent electrostatic interactions be-
tween two charged atoms. For hydrogen bonds, the simplest model is to account them within the 
electrostatic terms (implicit hydrogen bond). This formalism also takes into account the apolar 
part of hydrogen bonds in the computation of the vdW component. However, this simplification 
does not consider the correct orientation of hydrogen bonds. To address this drawback, an orien-
tation-dependent hydrogen bond, based on geometric characteristics of hydrogen bonds observed 
in crystal structures, has been introduced by Baker and coworkers [54]. This model can be 
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viewed as an artificial covalent interaction. On a series of tests, their modeling led to more accu-
rate results than a sheer Coulomb distance-dependent electrostatic model. 

1.1.3.3 Solvent 

The interactions of the solvent with macromolecules in the design system can be grouped into 
three classes: vdW (not directly modeled in CPD to the best of our knowledge), hydrophobic and 
polar effects. The explicit representation of such effects is highly computer demanding [55], [56]. 
Hence, such methods are very often avoided in protein design wherein large variations in se-
quence must be considered in addition to the enormous conformational space. Thus, implicit sol-

vent models are often privileged. They allow calculating solvation energy terms without explicit 
representation of solvent atoms, which is often modeled as continuum media. Noteworthy, even 
the most accurate implicit solvent model, the so-called Finite-Difference Poisson Boltzmann 
(FDPB), is not tractable in CPD [57].  

A simple model of solvation is the so-called Coulomb Accessible Surface Area (CASA) where 
the presence of the solvent is modeled by two terms [58].The first term accounts for the screening 
of electrostatic interactions between charged atoms by the solvent. The protein and the solvent 
are considered as having the same dielectric constant. The second term is a surface energy term 
that favors exposure of polar side-chains and burial of hydrophobic ones. It is proportional to an 
exposure preference that varies upon the atomic types (derived from experimental values) and the 
exposed area of the interacting atoms. It is not pairwise, as one atom can be in contact with two 
(or more) other atoms and its exposed surface depends on the entire structure. A pairwise approx-
imation is thus needed [59], [60] in order to avoid overestimating this term. Of note, the most 
expensive part of this model it the computation of surface areas.  

A more accurate implicit solvent model is the Generalized Born model (GB). GB is a continuum 
electrostatic model in which, each atom is represented as a sphere with radius !! (the burial of the 
atom in the protein) and has a charge !!  at its center and a dielectric constant of !! at its interior. 

The solvent is represented by a high dielectric constant !!. Again, two terms are involved here. 
The first term of the GB energy represents the self-interaction of the atoms with the solvent, 
which is the interaction of an atom with the polarization it creates in the solvent. The second term 
is the GB pair interaction term. It describes the electrostatic interaction between two atoms 
through the polarization they create in the solvent environment. This term involves the charges of 
atoms and the so-called “gb-function” that depends on the entire structure coordinates (and thus, 
it is an inherently many-body function). Hence, it requires a pairwise approximation of atomic 
pair interaction terms for the calculations to be efficient. To this end, the GB model of Pokala and 
Handel which uses real atoms and backbone pseudo-atoms led to six order of magnitude speedup 
compared to the FDPB continuum model and successfully predicted the !!! of more than 200 
ionizable groups from fifteen different proteins [53]. A surface energy term was also taken into 
account within their GB model (GBSA). Similar continuum models such as Tanford-Kirkwood 
electrostatic interactions (TK) [61] harnessed by Havarnek and Harbury in order to make it less 
costly and the Lazaridis-Karplus model (LK) [62] are also in use. These last two examples have 
the advantage of not requiring the costly computation of surface area. 
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1.1.4 Fitness or objective functions 

In addition to the accurate and efficient definition of the energy function at the atomic level, CPD 
optimization requires, for a given experiment, the definition of an objective that builds a mapping 
between the conformation space and the fitness landscape. Both physico-chemical properties 
(such as thermodynamic stability, foldability, and solubility) and functional properties (such as 
binding to a small molecule or another macromolecule) can be modeled as objective functions 
which will be optimized to get a stable and well-folded protein. Of note, during optimization, 
several objectives can also be combined in a single function (multiple objectives function) and 
negative design can be used to simultaneously optimize a fitness function that considers two or 
more competing states.  

1.1.4.1 Designing for stability 

The development of an objective function for protein stability requires knowledge about the un-
folded state of the protein which unfortunately is not easily accessible. The thermodynamic sta-
bility is computed to approximate the folding free energy. The stability of a given sequence-
conformation is the difference ∆G between the total free energy of the folded state and the total 
energy of the unfolded state. The energy of this reference state is thus as important as the abso-
lute energy of the folded state itself (∆!!"#$%$ !"#"$). To generate models of the unfolded state, 

CPD methods usually use the common assumption that, in this state, the protein populates an 
ensemble of random extended structures. Hence, on average only very local interactions are ac-
counted within this state. It is usually dependent on the amino acid composition.  

A very simple and common model of the unfolded state is the extended tripeptide model where it 
is assumed that residues interact only with themselves and neighboring backbone and the sur-
rounding solvent [5], [63]. Thus, the entire protein is modeled by a collection of ! tripeptides of 
the form !"# − !! − !"# or !"# − !! − !"#, where ! is the size of the protein and !! the amino 
acid at position !. From this modeling, the contribution of the tripeptide !"# − !! − !"#, called 
its reference energy, only depends on the amino acid type at position !. The same force field for 
the calculation of the energy of the folded state is used to compute such contribution on a collec-
tion of tripeptides for every amino acid type and then it is averaged. The total energy of this state 
(∆!!"#), which serves as a reference, is computed as a sum of the contribution of individual 

tripeptides.  

Alternatively, the energy of such a state can also be calculated for each amino acid as a reference 
taking the best intra-rotamer energy of this given amino acid in the studied system and ignoring 
non-local interactions [64]. Another standard is to derive energy of the unfolded stated by max-
imizing the product (over amino acid type) of the Boltzmann factor of the self-energy of each 
amino acid type in a training data set of 3D protein structures [52]. Other methods such as that 
proposed by Serrano and coworkers implicitly account for the contribution of the reference state 
during the optimization of the energy function by fitting the weights of the objective function 
(free energy of unfolding in that study) to the changes in the stability of a mutant database [65]. 
The composition dependent reference state energy can also be computed from random sequence-
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structure fragments (with 13-residue length) extracted from 3D structure datasets [53]. This 
fragment-based model of the unfolded state, first suggested by Rose and coworkers, was found to 
be more accurate than the tripeptide model in predicting the relative stabilities of mutations [66]. 

Finally, the objective function for optimizing the thermodynamic stability (∆!!"#$%&') assumed to 

be proportional to the folding free energy is given by: 

  ∆!!"#$%&'  =  ∆!!"#$%$ !"#"$ −  ∆!!"# 

 (1‐3) 

1.1.4.2 Designing for binding and multiple objective design: a challenging problem 

The design for binding (enzyme active site and protein-protein interfaces) is a far more difficult 
task than altering the stability of a given protein. Since the evolution of new functions in nature 
might involve loss in stability [67], redesigning a binding interface requires a tight balance be-
tween preserving the stability of the protein and improving its binding or creating a new binding 
interface. Accurate modeling of enzyme’s activity requires sophisticated calculations (such as 
quantum chemical calculations) that are however intractable for CPD problems due to the huge 
number of sequence models that need to be evaluated. This task is further hardened by the need 
sometimes to handle multiple substrates than can intervene in complex reactions. Furthermore, as 
exemplified by the limited number of successful de novo designs of enzymes in the literature, the 
concept of creating an enzyme able to catalyze a new chemical reaction is a very harsh problem, 
for which it is not even possible to ensure beforehand the availability of a suitable scaffold to 
design for the target reaction.  

Also, for practical reason, the entropy of the active site is often neglected and allosteric effects 
that toggle the enzyme between active and inactive conformations are not always taken into ac-
count when designing an objective function. It has also recently been emphasized that the pre-
organization of the active site reduces the entropic cost upon binding and importantly electrostat-
ic pre-organization is a key to catalysis [68]. Thus, even the unbound state has to be somehow 
optimal in order to improve binding. Another modeling burden in engineering enzymes is the 
consideration of residues far away from the active site that still may have a critical long distance 
impact on the accommodation of active site residues. These mutations can compensate for the 
destabilizing effect of some mutations previously introduced to favor the binding [67]. Alterna-
tively, such amino acid residues located for example at the protein surface can also evolve to op-
timize substrate recognition. 

A simple scoring of the binding free energy is given by the following objective function (Equa-
tion (1-4)) that depends on the energy of the bound state (∆!!"#$%) and the energy of the free 
partner, ∆!!"#$!"% (corresponding to ∆G!"#$%&' + ∆G!"#$%& for a protein-ligand complex) :  

  ∆∆!!"#$"#% =  ∆!!"#$% −  ∆!!"#$!"%  

 (1‐4) 
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The amplitude of the binding energy is often small compared to the ∆!!"#$%&'  because of a 

smaller number of residues involved in the binding interaction. Hence, favoring the binding re-
quires finding a good balance between the contribution of ∆∆!!"#$"#% (contribution of residues at 
the binding interface) and the ∆!!"#$%&'. A two-step approach to the design of binding proteins 

involves the generation of suboptimal sequences within a given threshold of thermodynamic sta-
bility loss and next, these sequences are ranked according to their binding. Such approach can 
involve calculation of an ensemble of structures for selected mutants in both bound and unbound 
states. An averaged binding energy for selected mutants which can be estimated either by con-
ventional CPD approaches or during a refinement through MD simulations at equilibrium using 
an accurate continuum electrostatic model coupled with MM and surface area terms. Both ap-
proaches are based on the fundamental fact that binding is implemented by a thermodynamic en-

semble of low energy conformations [69]. Similarly, the so-called !∗ algorithm, is a recently 
introduced ranking procedure in the CPD framework to approximates the binding constant by 
means of conformational sampling of a Boltzmann ensemble [70], [71]. Of note, this stage is per-
formed at fixe sequence.  

Finally, following the fact that most mutations are destabilizing [16], [72], caution should be tak-
en when designing for binding. Indeed, it has been shown that 70% of mutations are destabiliz-
ing [73]. The so-called Pareto sets are suitable to handle such consideration because a destabiliz-
ing mutation that does not confer a decrease in binding energy is not part of the Pareto optimal 
set [74], [75]. Thus, a sheer CPD approach to the design of function (i.e. mutations are allowed at 
all steps) is based on the building of multiple objective functions that can enumerate a set of non-
dominated solutions (the Pareto optimal set) [74]. A multiple objective function combines a set 
of objectives into single objective function. Therefore optimization algorithms described hereaf-
ter should be applicable with such objective functions. The so-called Weighted Sum approach is 
the most common aggregate function used in CPD to formulate such multiple objectives problem 
[74]. Its formulation is given by:  

  !"#$%  =   1 − !  ∆!!"#$%&' + !∆!!"#$"#% 

 (1‐5) 

In this equation above, ! controls both the weight of the contribution of the free energy of fold-
ing and the binding energy. In order to enumerate a Pareto optimal set, ! was varied from 0.05 
to 0.95 by steps of 0.05 in an earlier report [74].  

1.1.5 Optimization algorithms: in the quest of a tradeoff between accuracy and speed 

The objective function which is expressed in terms of the energies of rotamers and pairs of inter-
actions is the target function to be minimized by the optimization algorithms. Several goals can 
be sought along this step such as the identification of the Global Minimum Energy Conformation 
(GMEC), the enumeration of a suboptimal solution set within a given interval of the GMEC, or 
the identification of a set of local minima, preferably including the GMEC. 

From an algorithmic point of view, the CPD problem is NP-hard [76]. Even more, the side chain 
placement problem (included in the CPD problem) is NP-complete to approximate [77]. Because 
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of this and of the high dimensional nature of the structure-based computational design, metaheu-
ristics, mainly stochastic methods have been extensively developed to solve practical CPD opti-
mization problems. The first family of stochastic methods in the CPD field is often variants of the 
Monte Carlo (MC) or the Genetic Algorithm (GA). Briefly, these approaches are characterized by 
random local choices made during one cycle of the optimization process. Thus, two independent 
runs can give different results corresponding to distinct local minima. Hence, such approaches do 
not guarantee the identification of the GMEC for a single heuristic cycle. However, their reason-
able CPU consumption allows performing thousands of runs in order to converge towards the 
GMEC. Thus, they are suitable to solving complex CPD problems. Another advantage of sto-
chastic methods is their ability of approximating thermodynamic properties of the macromolecu-
lar system by conformational sampling at equilibrium at room temperature and pressure. 

Wodak and coworkers performed a convergence analysis of stochastic methods [63]. From their 
discussion, a critical point appears to be the number of cycles. This issue is especially critical for 
the enumeration of a gap free list of solutions within a window of the GMEC. Hence, systematic 
analysis of the convergence of stochastic methods has to be performed to produce physically 
meaningful results. Albeit their advantages, the lack of provable guarantee with respect to the 
identification of the optimum of the objective function and ultimately their limited ability to pre-
cisely enumerate a suboptimal set of solutions in the vicinity of the GMEC makes their usage 
difficult in the context of the development of accurate scoring functions. Indeed, when discrepan-
cies are found between experimental results and in silico experiments, errors due to insufficient 
sampling from stochastic methods (and other metaheuristics) cannot be distinguished from im-
perfections stemming from the modeling and the design of fitness scoring functions. Thus, if er-
roneous conclusions are made, the development of energy and objective functions may lead to 
over or underweighting energy terms or including additional terms not appropriate. In addition, 
because metaheuristics are incapable of recognizing the GMEC, even when they already found it, 
subsequent runs may continue enumerating solutions (with possible redundancy). This behavior 
tends to degrade the speed of metaheuristic methods for high dimensional space problems [78].  

To alleviate these limitations and render more manageable iterative cycles between in silico op-
timizations, experimental testing and the conception of accurate fitness scoring and energy func-
tion, the development of complete exact deterministic methods is thus of uttermost interest. The 
most commonly used deterministic algorithm in CPD is the Dead-End Elimination (DEE), first 
introduced by Lasters and coworkers [79] for side chain placement problems. DEE being incom-
plete (i.e. it does not always converge to a single solution), it is often used in combination with 
the well-kwown exhaustive search algorithms !∗ in order to extract the solution(s) from the re-
maining search space [63], [80]. As an alternative, Integer Linear Programing (ILP) approaches 
have also been applied to the CPD problem [81] with encouraging performance as well as dy-
namic programming [82]. Some CPD experiments have also been performed using methods 
based on the mean field theory [83]–[86]. However, while being deterministic in the sense that 
they reproduce the same results in two subsequent runs, the GMEC might not always be identi-
fied by mean field-based methods. Of note, mean field-based stochastic methods also exist [87]. 

Since DEE does not always converge to a single solution when it is faced with complex design 
problems, an enumeration algorithm such as !∗ is then applied to extract the GMEC from the 
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remaining space. Two executions of these types of algorithm combinations give the same result 
and they provide the best mathematical solution (GMEC) when they converge. In addition, enu-
merating a gap free list of sequence-conformations within a user-specified energy window is 
straightforward with such method. However, since convergence is not ensured and !∗ has an ex-
ponential time and space complexities, these methods can be extremely CPU-consuming. There-
fore, they have often been limited to systems of small or medium sizes.  

Thus, to provide provable accurate solutions to the CPD optimization problem, there is a crucial 
need to develop methods that give both the provable guarantee of complete exact deterministic 
approaches while being applicable to design systems of comparable size to those managed by 
metaheuristics. In subsection 1.1.5.1, stochastic approaches are briefly described with a focus on 
the MC and GA methods while subsection 1.1.5.2 reviews deterministic methods.  

1.1.5.1 Stochastic approaches 

Monte Carlo-based algorithms are the most commonly used heuristic algorithms in CPD [88]. In 
the field of structural bioinformatics, MC sampling has been first developed to sample protein 
conformations before its application to the CPD problem. The key feature is to rapidly generate 
local modifications of a starting structure and then accept or reject the new solution based on its 
evaluation using an objective function and an acceptation criterion. In an MC process, a Simulat-
ed Annealing metaheuristic is often applied (MCSA) in order to avoid local minima. The so-
called Metropolis criterion constitutes such a metaheuristic.  

The general shape of MC algorithms can be described as follows: a set of rotamers (of allowed 
amino acids) are first randomly picked for every variable position. Then, an iterative optimization 
procedure is applied in an attempt to converge to a minimum energy conformation [63], [89]. 
Each iteration cycle is called heuristic cycle and proceeds along the following manner: for each 
position (randomly selected), a rotamer that improves the value of the scoring function is repeat-
edly selected until the score no longer varies. In order to explore different local minima, an ener-
gy increase is accepted with a Boltzmann probability, thereby overcoming the energy barriers and 
local minima trapping. Thus, a simulated annealing can be coupled within the MC procedure by 
adding heating and cooling stages (MCSA) provided by the Metropolis criterion.  

A second type of stochastic algorithm widely used in the CPD field is the Genetic Algorithm 
[90], [91]. It simulates natural selection on a set of structures by performing three evolutionary 
processes: mutation, selection and crossover (recombination). While MC works on one sequence-
conformation at a time and tries to improve its score, genetic algorithms work on a population of 
sequence-conformations and attempt to improve the fitness of the population by applying muta-
tions followed by several cycles of selection to the whole population.  

GA runs as follows [78], [90]: a population of ! structures is generated beforehand and define 
the parent structures for the next evolutionary process. Parent structures are mutated according to 
a given probability distribution associated to rotamers and a set of best mutants is selected for 
recombination. Next, a selection tournament is then applied to the generated population of se-
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quence-structures: ! mutated sequences are picked at random. The best element form ! is select-
ed to build one instance of the next generation of sequence-conformations population. This selec-
tion step is repeated ! times in order to produce the whole population of the next generation. 

The whole procedure is then repeated until population equilibrium is reached. As in an MCSA 
procedure, a heating and cooling stage can be simulated at each step by varying the size of !, thus 
tailoring the pressure of selection.  

Finally, in order to further overcome local minima and improve the convergence of stochastic 
methods, hybrid methods which combine deterministic methods and stochastic ones such as the 
FASTER algorithm have also been developed and applied to CPD with significant improvement 
in the runtimes with respect to the identification of solutions which were nearly identical to the 
true GMEC [92], [93] .  

1.1.5.2 Deterministic approaches 

The Dead-End Elimination 

The Dead-End Elimination (DEE) algorithm prunes rotamers and rotamer pairs that cannot exist 
within the Global Minimum Energy Conformation (GMEC) [79]. Similar criteria also exist for 
discarding pairs of rotamers or combinations of rotamers of higher orders. These elimination cri-
teria are applied until convergence or a predefined number of steps are reached. DEE guarantees 
that the GMEC is found if the optimization converges but it does not guarantee the convergence.  

More formally, the original DEE single elimination criterion eliminates a rotamer !! at position ! 
if an alternate rotamer !! exists for which the worst energy contribution is smaller than the best 
energy contribution of !!. The original simple DEE criterion is given by the following equation: 

 
! !! + min

!

! !! , !!
!!!

 >  ! !! + max
!

! !! , !!
!!!

 
 (1‐6) 

Single rotamer elimination at one step modifies the conformational space, thus allowing further 
elimination at subsequent steps. The iteration continues until no dead-ending rotamers can be 
found. In addition, various elimination criteria have been developed in order to improve the elim-
ination efficiency of the original DEE. The so-called Goldstein DEE provides a more restrictive 
DEE criterion [94]. It considers that !! can be eliminated if its energy contribution is always low-
ered by using an alternate rotamer !! in the same conformational context (absent in the original 
formulation above) as expressed by the following equation: 

 
! !! −  ! !! + min

!

 ! !! , !! −  ! !! , !!    

!!!

 > 0 
 (1‐7) 

The Fig 1-5 exemplifies these two well-known single DEE pruning criterion.  
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Fig 1-5 Example of DEE elimination criteria 

Other important improvements include splitting criteria that allows to use several alternate rota-
mers in order to conjointly eliminate a given rotamer [95]. For a given rotamer under analysis, it 
splits the conformation space in two (or more) regions and seeks an alternate rotamer for !! in 
each region. The two regions must have a different rotamer choice for at least one position (! ≠
!).  

Following these developments, Donald and co-workers have also proposed a DEE algorithm that 
uses a divide-and-conqueror technique for more splitting efficiency [96]. It splits the confor-
mation space into different partitions (subspaces). Indeed, partitions are pruned independently to 
each other. Thus, this algorithm can take advantage of parallel computing to speed up the search. 
The minimum of the remaining conformations is the GMEC. 

Ultimately, most protein design procedures include an energy minimization step after the optimi-
zation step. Hence the so-called rigid-GMEC obtained using traditional DEE presented above and 
considering fixed backbone and discrete side chain rotamers may suffer from some geometrical 
restraints leading to high energies that will need to be relaxed. This remark pointed out the need 
to develop versions of DEE criteria provably accurate for design process that includes energy 
minimization steps. Donald and coworkers have proposed such criteria where rotamers are al-
lowed to move within a defined voxel [97]. The computed GMEC is denoted min-GMEC, by 
analogy to the rigid-GMEC. In addition, for the sake of further flexibility, criteria to handle the 
backbone flexibility have also been defined as well as for handling continuous rotamers (briefly 
introduced in Section 1.1.2) [24], [27], [41]. 

For the sake of computational efficiency, variants of DEE criteria use Monte Carlo computed 
“reference” energy (which should not be confused with the unfolded state energy) to eliminate 
rotamers [98] and identify dead-ending rotamer pairs. When the DEE procedure includes this 
stochastic bounding criteria as well as its flagging version for dead-ending pairs, it provides the 
GMEC when the algorithm converges. Otherwise, the remaining conformations dependent on the 
computed reference energy. Thence, whenever exact, the process is no longer deterministic.  

a) DEE Desmet b)  DEE Goldstein 
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The A∗ search algorithm 

!
∗ is a Best-First Search algorithm widely used in artificial intelligence [99]. In CPD, after DEE 

pruning, this complete search algorithm can be applied to the remaining rotamers [80]. Despite its 
exponential complexity, the advantage of the !∗ algorithm is that, the first identified confor-
mation is the GMEC. In addition, it can also enumerate energy conformations within a given 
threshold from the GMEC ranked in an increasing energy order.  

Briefly, the !∗ algorithm maintains a priority queue of nodes open for expansion. These nodes 
are the visited nodes so far for which children nodes are not visited yet. For a given node, its pri-
ority score is simply a lower bound on the lowest energy conformation accessible from that node. 
!
∗ picks the highest priority node from the expansion queue and selects one unassigned residue. 

The selected node is expanded by assigning the selected residue to each of its allowed rotamers. 
The associated energy lower bound is then computed using a so-called admissible heuristic. An 
admissible heuristic guarantees that the computed cost is a lower bound of the optimum. The 
search is terminated (for the GMEC search) if every variable residue has been assigned.  

The optimality of !∗ relies on the admissibility of the heuristic used to compute the lower bound. 
The heuristic is given by the following equation [80]:  

  ! !, ! = ! ! + ℎ(!, !) 

 (1‐8) 

In this equation, !(!,!) is the (under)estimated cost from node ! to the goal node (!). The com-
ponent !(!) is the cheapest cost so far from the root node to the current node (!) and corresponds 
to the contributions of the partial assignment. Thus the terms ! !  are simply given by:  

 

! ! =  !! + ! !!  

!!!

+   ! !! , !!

!!!

!!!

!

!!!

 

 (1‐9) 

The condition ! < ! in the equation is required to select only the already assigned variable.  

The term ℎ(!,!) is a heuristic function used to compute a lower bound on the cheapest cost from 
the current node to the goal node considering the contribution of unassigned variables. The ad-
missibility criterion requires to not overestimating this cost. Simply put, it estimates the cost re-
quired to complete the partially assigned conformation in an optimal way. The closer is this heu-
ristic to the real cost, the efficient is the search performed. The term ℎ(!,!) is given by:  

 

ℎ !,! =   min
!

! !! +   ! !! , !!

!!!

!!!

+   min
!

! !! , !!

!

!!!,!!!

!

!!!

 

 (1‐10) 
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Following this formulation of !, the first leaf node to be reached is the GMEC because every 
time a node is expanded, an underestimate of it score is used as its ! value and there is no succes-
sor node to be expanded at leaf nodes. Thus, the ! scores of leaf nodes are the true cost of the 
associated conformations. An illustration the !∗ algorithm is given in Fig 1-6. 

 

Fig 1-6 Illustration of the !∗ algorithm. In this toy CPD example, we have three variable positions {!!, !!, !!} with 
respectively rotamer sets {!, !, !}, {!, !, !}, {!, !}. Each variable corresponds to a level in the search tree. The values 
associated to nodes are the corresponded (!) score. At each step, the nodes present in the expansion queue are col-
ored in red. Already expanded nodes are colored in black (i.e. nodes for which we explored the successors). Subfig-
ures a)-d) represent the state of the search after four consecutive expansions. The expanded nodes from one step to 
the next step switch its color from red to black. At root, no variable have been assigned yet. In a) !! is selected as an 
initial variable. For all its allowed rotamers the associated score is computed and the new nodes are then added to the 
expansion queue (identified by the red color). In the next step in b), the best node (lowest score) from the expanded 
node is selected and the process in a) is repeated for variable !!. The resulting expansion adds three additional nodes 
to the expansion queue. Now, the best node has cost -15. Variable !! is selected again and expanded for that node 
leading to three additional nodes again with cost (−14,−11,−12). Hence, the best open node has cost −14 and the 
only unassigned variable from that node is !!. In d), !! is assigned to all its rotamers and two new nodes are added to 
the expansion queue (cost −13 and −12). Finally, the best node has cost −13 and all variables are assigned. Hence 
the GMEC has a cost −13 and the associated conformation is (!!, !); (!!, !); (!!, !).  

1.1.6 Some selected software implementations  

After introducing important algorithms developed in the CPD field or borrowed and adapted 
from artificial intelligence and computer sciences along with energy functions and modeling 
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trends in problem formulation, we outline in Table 1-1 some freely available academic software 
implementations dedicated to a pairwise CPD formulation that have been extensively tested over 
the last decade. For each program is indicated the type of modeling (discrete, continuous or both) 
with respect to the optimization step, the methods of optimization (deterministic, heuristic or 
both), and the main type of energy force field used (physics-based or knowledge-based). 

Table 1-1 Some selected CPD software implementations 

Software Modeling Optimization Force field 

osprey [100] Both Deterministic Physics-based 
rosettaDesign [101] Discrete Heuristic Knowledge-based 
xplor/proteus [102] Discrete Both Physics-based 
designer [63] Discrete Both Physics-based 
ipro [44] Discrete Heuristic Physics-based 
orbit [103] Discrete Both Physics-based 
protdes [104]  Discrete Heuristic Physics-based 

 Theoretical advances and applied interest of CPD 1.2

In this section, we will present some selected examples of structure-based computational protein 
design studies which target different objectives. A special focus will be placed on key results 
with respect to the underlying fundamental advances and the potential future applications ren-
dered possible both at the theoretical level and for biotechnology and biomedicine fields. Of 
course the section is not meant to be exhaustive; the CPD field is rich of interesting publications 
in this context.  

1.2.1 From improved thermal stability protein to novel protein scaffold design 

The mainstay paradigm in computational engineering of protein is based on the assumption that 
the core of proteins is mainly composed of hydrophobic residues and their surface is rich in hy-
drophilic ones, although protein core also includes polar residues and hydrophobic residues can 
also be found at protein surface [105]. Hence, pioneering CPD works mainly focused on the re-
design of the core of existing proteins in order to improve their stability and develop robust bio-
catalysts able to perform under harsh conditions what is of main interest for the development of 
industrial bioprocesses [1]–[6].  

In 1997, Mayo and coworkers used an automated framework to design de novo a protein se-
quence aiming at folding into a target zinc finger structure. Upon experimental validation, the 
designed sequence adopted a three-dimensional structure in solution whose root mean square 
deviation (rmsd) differed by less than 1.04 Å compared to the crystal structure [6]. Thus, for the 
first time, a CPD experiment was confirmed by an experimental crystallographic structure. Fol-
lowing this CPD success with proven structural accuracy, Kim and coworkers designed de novo 
several new proteins including proteins with structural features never observed so far in nature 
(namely right-hand !-helical trimers and tetramers) [25]. These designs led to protein structures 
with an impressive accuracy approaching 0.2 Å.  
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Due to geometric restraints induced by the protein backbone conformation, the redesign of natu-
rally occurring proteins remains to some extent dependent on the protein scaffold used as tem-
plate [7]. Indeed, an arbitrary backbone not found in nature may not be designable [106]. The 
utilization of such hypothetical scaffold to create novel proteins is a real challenge for computa-
tional protein design [106]. Therefore, the work conducted in 2003 by David Baker and cowork-
ers [7] was a true tour-de-force as they successfully achieved for the first time the design with 
atomic-level accuracy of a 93-residue protein, called Top7, adopting a novel globular !/β fold 
never reported before. This achievement opened new ways to create original proteins not yet ob-
served in nature and demonstrates the ability of CPD methodologies to design novel protein 
folds. 

1.2.2 Protein interfaces 

The design of protein interfaces holds great practical applications in the development of protein 
therapeutics and in nanobiotechnology through the design of self-assembling protein nanostruc-
tures [107]. In addition, both the creation of new vaccines through the design of proteins mimick-
ing antigenic epitopes and the prediction of drug-resistant mutants involve the design of specific 
protein-protein binding interfaces. 

In contrast to the design of protein scaffolds, the design of protein-protein interfaces faces a dif-
ferent challenge that aims at considering both the stability of the two binding partners (in order to 
preserve the folding of protein variants) and the affinity of redesigned or de novo designed inter-
faces. A basis for such task in CPD relies on the observation that hydrophobic patches are found 
at natural protein-protein interfaces. Although this is the easiest way to design binding interfaces, 
native protein-protein interfaces also exhibit important features such as networks of polar amino 
acid residues, more difficult to design artificially. An additional feature that makes the design of 
protein-protein interfaces more difficult is the presence of large conformational changes likely to 
occur upon the binding of two proteins. The binding event may be also accompanied by varia-
tions in the solvent exposure of some amino acid residues. These phenomena have to be carefully 
considered when designing protein-protein interfaces in order to be as accurate as possible [17]. 

The first structurally verified computational design of a protein-protein interface was reported by 
Clark and coworkers for the enhancement of the binding affinity between a specific antibody 
with the domain I of human integrin (VLA1), a cell-surface reporter present on some T-cells [9]. 
The crystal structure of a designed quadruple mutant confirmed the predicted contacts. On the 
same trend, in a study conducted by Baker and coworkers, a protein was computationally de-
signed to bind the conserved stem region of influenza hemagglutinin by enhancing the shape 
complementarity of the binding interface [10]. As a result, two designed mutants (out of 73) ex-
hibited binding affinity toward the stem region. Albeit the success rate of this study is very low, it 
demonstrates nevertheless the potential of computational tools for biomedical applications and 
underlines the necessary interplay between computation and experiments.  

Finally, following the observation that !-strand pairing stabilizes many naturally occurring inter-
faces (up to 8.8% of contacts in homodimers [108]) including antibody-antigen interactions 
[109], Kuhlman and coworkers demonstrated the applicability of this feature in a general compu-
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tational procedure to redesign binding interfaces mediated by intermolecular !-sheets [110]. As a 
benchmark study, a monomeric protein was remodeled to form a homodimer through inter-
molecular interactions involving solvent-exposed !-strands. Upon experimental characterization, 
one out of four designs confirmed the predicted model with a 1.0 Å rmsd.  

Noteworthy, while the majority of reported computational designs of protein interfaces aimed at 
altering existing binding interfaces and often led to low binding affinities, the first de novo design 
of a novel binding interface formed between two proteins was recently carried out and led to an 
impressive sub-nanomolar affinity [111]. Indeed, the de novo designed interface was 
experimentally shown to have a 1000-fold better dissociation constant (compared to previous 
reports). Two mutants obtained through directed evolution further improved the initial design 
(dissociation constant improved from 130nM to 180pM).  

1.2.3 Metal-mediated enzymes and biosensors 

The computational design of metal binding interfaces has been widely explored in order to vali-
date the potential of CPD methods within the context of small molecule binders and transition 
metal-mediated enzyme design. In 1991, Richards and coworkers introduced successfully, with 
experimental verification, a copper-binding site into the Escherichia coli thioredoxin using the 
natural geometry of the copper-binding site [112]. To do so, the geometric description of func-
tional groups (and their degrees of freedom) relevant to copper-binding and the surface shape 
complementary around the ligand were used to build a novel active site onto an inert protein scaf-
fold [113]. To build the new ligand binding site, the algorithm searches through a constellation of 
backbone positions, one that could lead to the stabilization of the ligand via appropriate amino 
acid side-chains. The new binding site is required to satisfy the user defined geometry and the 
degrees of freedom of appropriate partners and maintain intact the protein backbone. Albeit the 
experimental copper-binding mode turned out different from the predicted one, the designed pro-
tein variant was able to bind to copper providing thereby a simple and elegant proof-of-concept 
of the applicability of the CPD methodology to engineer molecular recognition using simple ge-
ometric criteria. Following this pioneering work, many successes have been reported in the field 
of metalloenzyme computational design, starting with the de novo design of a novel enzyme cata-
lyzing the dismutation of the superoxide anion [114], the design of mononuclear iron-sulfur cen-
ter with electron transfer activity [115], the design of zinc ion-mediated biosensor from maltose 
receptor through the manipulation of conformational equilibrium between maltose-bound and -
unbound states [116], and the design of biosensor specificity toward a number of small molecules 
including serotonin and trinitrotoluene [117]. These studies were followed in 2004 by the de novo 

design of a four-helix bundle fold with O2-dependent phenol-oxidase activity [118] and by the 
design of a calmodulin-dependent protein displaying up to 900-fold increase in binding specifici-
ty [11] as well as a metal-mediated symmetric homodimer of Rab4 binding domain whose x-ray 
structure showed a !! rmsd of 1.4Å compared to the computed model [12].  

1.2.4 Redesign and de novo design of enzymes  

Naturally occurring enzymes have already been found to catalyze a very broad range of chemical 
reactions. However, there is still a crucial need for novel biocatalysts able to perform not yet re-
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ported reactions (catalyzed by an enzyme) or displaying properties compatible with the needs of 
biotechnological and biomedical applications. In response to these needs, the de novo design of 
enzymes from scratch to develop tailored catalysts remains the holy grail of structure-based com-
putational design of enzymes. In recent years, important progress has been made in this field by 
means of computational methods alone or by combining the computational design with directed 
evolution techniques to accelerate the optimization process [119]. Some of the most important 
achievements are listed hereafter. 

The computational design of new functional proteins from scratch toward new ligand represents a 
great fundamental challenge and a real breakthrough for the development of enzyme-based bio-
technological processes. A first issue is that one has to find a relevant starting structure for the 
active site and protein scaffold. There is no assurance concerning the designability of the protein 
scaffold for the de novo designed reaction [106]. This is one main difference compared to the 
redesign of existing enzymes toward new ligand specificity which usually require to preserve an 
existing catalytic function while designing new recognition or altering the existing activity. The 
ultimate difficulty when designing for a new reaction is that failures are often hard to explain, 
whether they are due to the fact that the selected scaffold is not designable for the target reaction 
or to the inaccuracy of the CPD process [106]. 

Earliest reports rather focused on the redesign of existing enzymes in order to improve the bind-
ing affinity or to perform a substrate specificity switch, the design of metalloenzyme binding site, 
or the grafting of a catalytic activity already present in nature into an inert protein scaffold. One 
of the pioneering work aiming at introducing (nonmetal-mediated) catalytic activity into an arbi-
trary protein scaffold was conducted in 2001 by Mayo and coworkers who designed a histidine-
bearing catalyst for the hydrolysis of p-nitrophenyl acetate (PNPA) into p-nitrophenol [103]. The 
input scaffold used was an inert thioredoxin with respect to PNPA, thus demonstrating the ability 
of CPD methodology to generate de novo enzyme-like protein catalysts (protozymes) with cata-
lytic activities comparable to those of catalytic antibodies (Abs).  

A momentum was achieved in 2008 when David Baker and coworkers created from scratch an 
entirely new catalyst able to catalyze the Kemp elimination reaction, a proton transfer reaction 
that takes place in one step restricted by high activation-energy barriers [13]. Such reaction is not 
catalyzed by any known natural enzyme and therefore, this was the first demonstration of the 
creation of a novel catalyst with no counterpart in nature. In this work, the first challenge was to 
generate a detailed molecular model of the chemical reaction center including important func-
tional groups and catalytic residues oriented in productive conformation with respect to the sub-
strate. Using Quantum Chemical calculations, a library of the putative transition state models of 
the reaction were obtained in order to define the minimal active site (called theozymes) [120]. 
Next, inverse rotamers tree and geometric hashing techniques were used to select out of a large 
set of existing folds, the most suitable protein scaffolds able to accommodate the grafted theo-
zymes [20]. In the last stage, the overall complex was optimized through the introduction of se-
lected mutations and the rearrangement of amino acid side-chains. All designs were then evaluat-
ed and ranked using scoring functions to identify the most promising models to evaluate experi-
mentally. In this study, out of 59 designs (covering 17 different scaffolds), 8 exhibited measura-
ble activity. These active designs contained from 10 to 20 mutations. The moderate activity found 

1.2. Theoretical advances and applied interest of CPD

27



for the computationally predicted enzymes was subsequently enhanced at experimental level 
through several rounds of directed evolution which aimed at introducing subtle (distal) mutations 
beneficial for the activity of the designed variants. Indeed, these mutations are not straightfor-
ward to predict. They also overcome some of the weaknesses and approximations of CPD meth-
ods, in particular inaccuracies in the consideration of molecular flexibility induced by mutations 
during the design procedure and the use of objective functions not well-adapted to target bio-
chemical fitness. Such combined strategy led to a more than 200-fold improvement of the catalyt-
ic efficiency (!!"# !!"#$% ratio) compared to initial designed enzymes and the introduction of 
between 4 to 8 additional mutations. Hence, the final best design led up to a total of 10! 
!!"# !!"#$% ratio.  

The same year and using similar approach, David Baker and coworkers took up the challenge one 
step further with the creation also from scratch of a novel enzyme able to catalyze a retro-aldol 
reaction, that involves multiple steps, thus multiple intermediates that considerably complicated 
the design procedure [14]. Out of the 72 experimentally characterized predictions, 32 designs 
showed detectable catalytic activity with up to 10! of catalytic efficiency for the best design. 
These variants spanned over 10 different scaffolds and led to the introduction of up to 20 muta-
tions. Four different active site motifs were covered by the design. The crystal structure of two 
variants confirmed the correct placement of the catalytic residues, although their active site loops 
exhibited a distinct conformation due to the absence of explicit backbone flexibility [14].  

Finally, another important accomplishment was achieved in 2010 with the de novo design of an 
enzyme able to catalyze a stereoselective and bimolecular reaction, the Diels-Alder reaction. This 
reaction is a carbon-carbon bond forming reaction. The Diels-Alder reaction is a bimolecular and 
regio-selective reaction in one step. The relative bound position and orientation of the two sub-
strates have to be strictly satisfied. Hence, this was the most complex de novo enzymes success-
fully designed so far. Out of a total of 84 designs, two exhibited the so-called Diels-Alderase cat-
alytic activity. These primary designs were further improved by experimentally introducing 6 
additional mutations at positions in the vicinity of the catalytic site. This led to 100-fold im-
provement of the catalytic activity for six mutations for one of the initial design. The second ini-
tial design was further optimized in four of its variants with up to 20-fold improvement in the 
catalytic activity.  

However, although these realizations were considered as a real breakthrough for the fields of en-
zyme engineering, the methods have not yet reached a high level of quantitative predictive capa-
bility. The catalytic efficiency of these de novo designed enzymes remains far below that of natu-
rally occurring enzymes [121]. Further work is still needed to improve computational methods by 
better accounting for the flexibility of protein backbone and ligand as well as integrating more 
accurate energy functions. Also at a more fundamental level, there is a need to understand in 
more details enzyme catalytic mechanisms, key factors involved in molecular recognition, and 
more particularly the dynamics of the interactions which are often critical when studying protein-
ligand or protein-protein interactions.  

Chapter 1. Computational Protein Design (CPD): Paradigms, Methods and Challenges

28



Usually, CPD methods focus on the remodeling of a single state (or multiple static states) of the 
complex that is assumed to be critical for the catalytic step. The in silico design aims then at op-
timizing the set of mutations to introduce in the static protein in order to maximize the recogni-
tion of the substrate in its productive state. However, recent studies on the enzyme dynamics are 
pinpointing the importance of dynamics (protein flexibility, substrate binding, substrate accessi-
bility to buried active sites, product release …) onto catalysis. Although its role is still largely 
discussed in the literature, it is more and more established that molecular flexibility, involving 
both local flexibility but also large-scale conformational rearrangements occurring at different 
stages of catalysis, can be critical to pre-organize the catalytic step even though they might not be 
directly involved in the chemical step [68]. Although these aspects are still not very well taken 
into account during the design process by CPD methods, more and more, stability and dynamical 
behavior of top-ranked protein designs are evaluated using different types of molecular modeling 
techniques dedicated to the study of molecular motions. Methods such as classical Molecular 
Dynamics (MD), or biased Molecular Dynamics (Steered or Targeted Molecular Dynamics 
(SMD, TMD) [122], Random Accelerating Molecular Dynamics (RAMD) [123]) and also Mo-
lecular Robotics techniques [30] have been widely used to check protein stability before experi-
mental construction or after to verify reasons of failures, but also to identify key amino acid resi-
dues located farther away from the active site but still playing a role in protein activity or sub-
strate recognition.  

Finally, the importance of considering an ensemble of conformations instead of the only most 
stable conformation in order to achieve binding have also been well-established for non-covalent 
complexes [69]. Indeed, it is worth noting that non-covalent binding is achieved by a thermody-

namic ensemble of conformations. Hence, in order to account for such fundamental ground, ro-
tameric conformation ensemble-based scoring approaches such as !∗ have been introduced [70]. 
This also incorporates to some extend the dynamical aspect of binding as several conformations 
contribute to the score. Donald and coworkers applied the !∗ ranking approach to successfully 
redesign the phenylalanine adenylation domain (GrsA-PheA) with the goal of performing the 
same chemical reaction on a set of non-cognate substrates including tyrosine, arginine, glutamine, 
lysine, asparagine and leucine [71]. Experimental results on top ranked variants exhibited a speci-
ficity improvement toward leucine, arginine, glutamate, lysine, and aspartate and ultimately, a 
specificity switch from phenylalanine to leucine was achieved for several predicted mutants. In 
order to consider the additional macromolecular flexibility brought by the introduced mutation, 
this study included an additional step of in silico directed evolution to predict additional muta-
tions distal to the active site that improve the fitness of the mutants.  

 Concluding remarks, new trends and challenges ahead 1.3

We conclude this brief overview of methodological advances and selected outstanding results 
accomplished in the CPD field by recalling some important challenges that the CPD technology 
has to face in the near future in order to produce more accurate results.  
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1.3.1 Search space modeling 

Regarding the modeling aspect, although the formulation of the CPD problem is based on the use 
of a protein scaffold during the design process, the inherent dynamical property of the molecular 
system is still poorly taken into account. In particular, it is crucial to integrate some of the flexi-
bility of the polypeptide chain in the design process in order to alleviate the sensitivity of energy 
functions and improve accuracy of the predictions. However, the introduction of these additional 
degrees of freedom increases tremendously the complexity of the search space, what remains 
very difficult to handle efficiently. 

In addition to the flexibility of the main chain, a discrete representation of the side chain degrees 
of freedom alone is not sufficient to properly produce physically meaningful low energy confor-
mations. Indeed, the discretization of the search space is an important basis of the CPD that 
enormously reduces the size of the combinatorial problem. However, it introduces critical biases 
that also have to be carefully corrected for the search to be more accurate.  

To address this issue, two current solutions in use are the introduction of additional minimization 
of discrete states within a defined voxel in dihedral angle space along with the development of 
energy functions less sensitive to small geometric variations due to the discreteness of this geo-
metrical space [24], [124].  

1.3.2 Energy and objective functions 

Considering energy and objective functions, critically, the evaluation of the thermodynamic sta-
bility of proteins requires the definition of the unfolded state which has no counterpart in 3D 
structure databases. Thus, in silico models are usually built to fulfill this need and it is not obvi-
ous to know what an arbitrary protein would look like in the unfolded state even though an im-
portant assumption is that only very local interactions are allowed in this state. In order to design 
stable proteins, many studies in the field attempt to take advantage of structural features observed 
in protein structures. Examples are the burial of hydrophobic residues and the exposure of polar 
ones. However, the importance of buried polar residues in protein core have been highlighted by 
Mayo and coworkers [125]. The study exhibited a correlation between the number of core polar 
residues and the size of proteins from a survey of 263 globular proteins. It exemplified the im-
portance of intramolecular H-bonds for buried polar atoms, as previously revealed by McDonald 
and Thornton [126]. These interactions compensate for the unfavorable burial of polar amino 
acids. An elegant work have been initiated by Mayo and coworkers in order to account for such 
aspects by placing additional constraints on the introduction of polar residues in proteins core in 
contrast to the exclusion of polar residue from core design as widely applied [127]. Hydrogen 
bonding rules were generated for the introduction of polar and charged amino acids in proteins 
core [127]. These rules stem from statistical analysis of protein structures and define a minimum 
number of hydrogen bonds required for each polar side-chain. In the test case of the thioredoxin 
core design, this method led to improved thermodynamic stability in comparison to both the 
wild-type enzyme and the “no polar” strategy (where no polar amino acid is allowed in the pro-
tein core). More specifically for the recognition of small molecules, Hellinga and co-workers 
have successfully used hydrogen bonding satisfaction requirements to design soluble receptors 
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that bind trinitrotoluene, L-lactate or serotonin with high selectivity and affinity [117]. Their rule 
requires that donors and acceptors in the ligand must have a partner in the protein, thus control-
ling the introduction of polar amino acids in the vicinity of the ligand. A good understanding of 
such key features and their incorporation in objective functions may enhance the design of active 
sites, thermodynamic stability and structural specificity.  

Fundamentally, the solvent is as important as the protein and its partners for the design to be real-
istic. However, its explicit consideration in CPD is intractable wherein variation is sequence is 
considered in addition to the already challenging size of the conformation space at fixed se-
quence. Even the most accurate implicit representation of the solvent [60], [128] is impractical in 
CPD. Both physics-based and knowledge-based terms are designed in order to meet the require-
ment of accurate but yet fast to compute the solvent contribution. There is still a room for theoret-
ical advances in the implicit representation of such effect along with algorithmic development for 
effective calculations. In addition, because the implicit representation of the solvent is often in-
herently dependent on the coordinate of the whole macromolecular system, another question 
which remains unsolved is the building of accurate pairwise approximation of its representation 
[60]. 

More generally, the development of energy functions often involves the incorporation of addi-
tional terms in order to account for some experimental observation in both designed systems and 
3D crystal structures of naturally occurring proteins. Thus, from a physico-chemical point of 
view, all the terms are not always independent and weights are derived from training set (3D 
structures) in order to find a good balance. Handling the tradeoff of such cross-terms also remains 
an unsolved issue [46]. On the same trend, the engineering of biological functions involves con-
current objectives that have to be balanced in terms or physico-chemical properties and function. 
Multiple objective function design methods, first developed in the field of social sciences and 
economics are finding application in this context [74]. However, further studies are still needed in 
order to draw conclusions of general usage for both the understanding and the tailoring of bio-
chemical functions.  

1.3.3 Imperfection of predictions 

Ultimately, because approximations are made in the CPD modeling, both manual inspection and 
correction of the outputs of the optimization are often performed as well as in silico refinement of 
the CPD predictions using more accurate but also more costly methods on some selected designs. 
Manual corrections include reversion of some mutations not adequate. Recent studies are auto-
mating these tasks as part of the CPD experiment [129]. Also, in silico experiments such as MD 
simulations in the most efficient implicit solvent model as well as in explicit solvent are per-
formed in order to assess the quality of the predictions. In addition, when designing for the bind-
ing of a small molecule, short MD simulations gives insightful results with respect to conforma-
tional equilibrium state of the mutants. It also allows the accurate prediction of binding free ener-
gies [130]. On the same trend, a key element to the maturation of the CPD methodologies is 
feedback from experimental validation as both successful and failed designs can still bring im-
portant information regarding the aspects to improve in the models and methods [17], [131]. 
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Cost Function Networks (CFN) offer a powerful framework to address various combinatorial 
optimization problems. In this chapter, we introduce some basic definitions and formalisms of the 
CFN framework with the purpose of providing fundamental grounds that will help to understand 
how CFN was used in Chapter 3 for the first time to model and solve Computational Protein De-
sign (CPD) problems. 

A brief formal definition of the CFN model and its underlying optimization problem is first given 
in Subsection 2.1. Solving a CFN optimization problem involves enforcing some local properties 
called local consistencies. These notions are introduced in Subsections 0 afterwards. In Subsec-
tion 0 we outline a general CFN solver. We conclude this chapter by defining some alternative 
search strategies and metaheuristics in Subsection 2.4. 
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 Cost Function Networks  2.1

A Constraint Network is a mathematical model where a set of constraints are defined over a set of 
discrete variables. Each constraint restricts the permitted values for one or a subset of variables. 
The Constraint Satisfaction Problem (CSP) is to find a value for all variables that simultaneously 
satisfies all constraints (also called a solution). The CSP is NP-complete [1]. A Cost Function 
Network (CFN) extends the Constraint Network Framework by replacing constraints with cost 
functions [2], [3]. In a CFN, we are given a set of variables with an associated finite domain and 
a set of local cost functions (i.e., involving only a subset of all variables). The Weighted Con-
straint Satisfaction Problem (WCSP) is to find a value for all variables that minimizes the sum of 
all cost functions. CFNs have been used as a modeling framework for representing and solving 
various combinatorial optimization problems in many areas including bioinformatics and re-
source allocation [4]–[6].  

Formally, a CFN   is a triple           where                is a set of   variables. Each 
variable     has a discrete domain     . In the triple,   is a set of local cost functions. Each 
cost function      is defined over a subset of variables     (called its scope), has domain ∏       and takes its values in       . Forbidden value, pair and higher order joined assign-
ments are represented by infinite costs called hard constraints and all cost functions must be non-
negative. In practice, we may often know a “good” solution of cost  , making all solutions of cost 
above   uninteresting. All costs above k can then be considered as infinite. The projection of an 
assignment   on a set of variable   is an assignment of the variables   to their values in  . The 
cost of   for a local cost function is the value of the cost function for the projection of   to the 
scope ( ) of the function. The global cost of   is the sum of the costs of   over all local cost 
functions. It is usually assumed that   contains one constant cost function, with an empty scope, 
denoted   . A CFN   defines a joint cost distribution over all the variables   defined by the cost 
of the assignments. Since all cost functions in a CFN are non-negative, the constant cost function      defines a lower bound on this joint cost distribution.  

A so-called microstructure representation of CFN as a graph 
for a toy example is given in Fig 2-1. It has two variables       
represented by dashed circles. The domain values are repre-
sented by small circles (vertices,            ). The la-
bels of the vertices are the corresponding unary costs. Edges 
represent binary terms; the corresponding label is the cost. For 
clarity, edges which have zero cost are not represented and the 
label is not written when the cost = 1. The initial upper bound 
of the problem is 4.  

 
Fig 2-1 A toy example of CFN 
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 Local Consistencies 2.2

CFNs are simplified by enforcing a set of Local Consistency properties (LC). The enforcing algo-
rithms (presented thereafter) take as input any CFN and perform a set of transformations that pre-
serve equivalence of problems and yield a final equivalent problem that satisfies the CL property. 
Two CFNs defined other the same set of variables are equivalent if they define the same cost dis-
tribution on complete assignments [7]. These types of transformations are denoted Equivalence 
Preserving Transformations (EPT).  

Hierarchically, the simplest notion of local consistency is the Node Consistency (  ) [7]. A CFN 
satisfies the NC property if two conditions hold for all variables. Precisely, for each    : 1)        such that         and 2)            for all     . 

 

Fig 2-2 Six equivalent WCSPs 

The value which satisfies the first condition is denoted the unary support of  . The                 EPT operation in Algorithm 2-1 looks for and creates if needed a unary sup-
port for variable  . In our toy example,   is a unary support for  . If the    property does not 
hold for a given CFN, it can be enforced by the      procedure (Algorithm 2-2). It performs the                 operations for all variables in order to establish the first condition of the    
property. This process may increase the lower bound   . The second condition is established by 
the loop at line 2 of the      procedure. For all variables, it prunes each domain value   such 
that             . Note that these operations are local to single variables and do not involve 
simultaneously more than one variable. Hence, the associated time and space complexities are       where   is the maximum domain size [1]. In Fig 2-2, problem b) is an equivalent    var-
iant of problem a). Application of                 on problem a) has no effect because the 
minimum unary cost of variable   is 0 and                 increases    by 1 because the min-
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imum unary cost of   is 1. Finally the loop on line 2 of the      procedure has no effect on the 
resulting problem because all values already satisfy the second condition of the    property.  

A similar property exists at the arc level, denoted as Arc Consistency (  ) [1]. An assignment       is arc consistent with respect to     if it is node consistent and       such that           . The value   is called the (simple) support of   with respect to    . A variable verifies the    
property if all its values are    with respect to all    . Finally, A CFN is    if it is    and each 
variable   have a simple support toward all binary constraints     

 

Algorithm 2-1: Algorithms to propagate costs [7]. 

 

The    property is enforced by the      procedure in Algorithm 2-2 with time complexity       , where   is the number of constraints. The space complexity is       because a support 
has to be stored for each domain value for all constraints. It requires the                   pro-
cedure defined in Algorithm 2-3 in order to enforce simple supports (performed by the loop at 
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line 2 of the      procedure). It requires the queue   that maintains the list of variables for 
which simple supports are to be found. It is initially filled by all variables  .  

 

Algorithm 2-2: Enforcing   ,   ,     and     [8]. Initially      .  

 

The problem in Fig 2-2 c) is an equivalent    variant of the problems a) and b). Enforcing sim-
ple supports for a given variable is a local operation that involves only one cost function and its 
variables simultaneously. This local property limits the complexity of local consistency algo-
rithms. Similarly to the                 procedure for unary supports, cost units are projected 
from binary constraints toward unary constraints in order to enforce binary support (line 3 of the                   procedure). The                  procedure (Algorithm 2-1) performs this 
task by adding   cost units to       and subtracts the same amount of cost units to all              . We transform problem b) into problem c) (Fig 2-2 again) by applying                 . The reverse operation can be accomplished by the               ) proce-
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dure that adds   cost units to all               and retracts the same amount of cost units from      .  

An arc consistency property called Full Arc Consistency (   ) has been introduced with a 
stronger notion of support [7]. An assignment       is full arc consistent with respect to     if it is 
node consistent and       such that                 . Value   is called the full support of   with respect to constraint    . A variable satisfies the     property if all its values are     
with respect to all    . A CFN is     if it is    and each variable   has a full support with re-
spect to all binary constraints    . Full supports are enforced by the                       pro-
cedure in Algorithm 2-3. It requires both                  and               ) EPT opera-
tions [7]. 

Indeed, being a full support is stronger than being a simple support, but unfortunately,     is not 
a practical property because it may not be possible to enforce it for any arbitrary CFN [7]. 
Thence, intermediary arc consistency properties have been introduced to strengthen the CFN 
framework further than the basic    property. A common simplification is to consider an order-
ing of the variable set and enforce the arc consistency properties in one direction or another. 
Namely, a given arc consistency property with respect to the binary constraint     can be either 
enforced for all     or for all    .  
Thus, a variable   is Directional Arc Consistent (   ) if all its domain values have a full support 
with respect to every constraint     such that    . The property is established by the       pro-
cedure with time complexity        and space complexity      . In addition, if all its domain 
values have a simple support with respect to all     such that    , then   is said to be Full Direc-
tional Arc Consistent (    ). Finally, the CFN is      if all its variables are    and full direc-
tional arc consistent. It is established by the        procedure and the associated time com-
plexity is         [7]. The space complexity remains      . It requires   as in      and an 
additional queue   which maintains the list of variable for which a full support has to be found.  

If we consider problem in Fig 2-2 c) and the ordering    , application of                       produces problem d) after extension and problem e) after projection. 
Indeed, the quantities that can be projected (   ) and extended (   ) as computed by the algo-
rithm are                     ;                      ;                       and                     . Subsequently,                 builds 
problem f) and increases the lower bound (      ). 

The      property above ensures that every variable has a full support in one direction and a 
simple support in the other for all    . In the direction of the simple support, let say    , further 
work can be done in order to get closer to full directional arc consistency [7]. To reach this goal, 
an additional new notion of local consistency, called Existential Arc Consistency (   ) has been 
introduced as a complementary property to      [7]. 
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Algorithm 2-3: Algorithms to enforce supports [7]. 

 

In contrast to previous forms of arc consistency that require that all domain values have a binary 
support (either simple or full),     requires that at least, one value     , such that         
has a full support with respect to every     [7]. Such value is called the existential support of the 
variable and it is enforced by the                           procedure in Algorithm 2-3 (in 
one direction).  

The Existential Directional Arc Consistency (      property is satisfied by a given CFN if it 
satisfies both     and     . Algorithm 2-4 enforces      for any arbitrary binary WCSP 
with time complexity                 and space complexity       [7]. Because      im-
plies     , it also implies   ,    , and    (as explicit in Algorithm 2-4). The addition of 
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    makes      stronger (i.e., it can lead to tighter lower bound of an optimal solution) than 
any local consistency properties mentioned above. 

 

Algorithm 2-4: Enforcing     .   is an auxiliary queue. Initially,         [7]. 

 

Algorithm 2-4 requires three queues (     ) that store the set of variables for which a given 
local consistency property is to be enforced. The queues   and   have the same meaning as in      . The queue   maintains a list of variables for which an existential support has to be 
sought. An auxiliary queue   is used to efficiently build and maintain  . Note that   is traversed 
in a reverse order to the ordering used for   and  . The algorithm runs as long as one of the three 
queues is not empty (main loop at line 1) [7]. Four inner loops sequentially enforce    ,    ,    and   . The propagation queues are dynamically filled when the associated local consistency 
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property is possibly broken due to EPT operations performed during support enforcing or value 
pruning at any time (indicated by the Boolean value returned by support enforcing or pruning 
algorithms). 

 WCSP solvers – Complete search 2.3

A WCSP solver is usually a tree search algorithm that maintains a set of local consistency proper-
ties both at a processing step (at the root of the tree) and incrementally during the search at every 
visited node. The incremental nature of LC properties makes WCSP solvers powerful because 
values are pruned during search in addition to preprocessing pruning. This behavior leads to 
smaller, easier to solve problems. Generally a complete Depth-First Branch and Bound (DFBB) 
search is performed because of its low space complexity, but any exhaustive search strategy may 
apply [1]. Indeed, for every visited node in the DFBB search, a tight lower bound of the cost of 
an optimal solution of the corresponding subspace (  ) is computed by the embedded incremental 
local consistency property as exemplified by the                 procedure in Algorithm 

2-5. Hence    is increased during LC enforcing in a given subspace. A generic local consistency 
enforcing procedure is called at line 4 to check and enforce if needed locally consistency for the 
new subproblem. The partial assignment is recorded in  , and   is the current upper bound (which 
can be initially infinite). During this process, backtrack occurs when an inconsistency is detected: 
a domain wipeout due to value pruning by NC. When a leaf node is reached, the cost of the com-
plete assignment is used to update the upper bound of the WCSP. In other words, every subse-
quent WCSP associated to explored nodes must give a lower cost to be further expanded.  

 

Algorithm 2-5: Depth-First Branch and Bound Algorithm to maintain local consistencies [1]. 

 

 
DFBB explores a tree where each node is an assignment to a variable (or a domain split) [1]. 
Each leaf node corresponds to a complete assignment and internal nodes correspond to partial 
assignment. At each internal node, a variable   is selected form unassigned variables, and all its 
domain values are propagated either sequentially or by splitting    into two or more subsets con-
sidered also sequentially. The subtree below any given node is pruned if its lower bound is higher 
or equal to the current upper bound, meaning that a better solution cannot be found through any 
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extension of the associated partial assignment. Otherwise, a new unassigned variable   is selected 
and local consistencies are enforced again for new nodes created by assigning  .  
Finally, sophisticated variable and value ordering heuristics can be designed in order to efficient-
ly solve WCSPs by guiding the search. These notions will be extensively introduced in Chapter 

3 of this manuscript along with different strategies to perform branching and backtracking. 

 Alternative and complementary strategies 2.4

2.4.1 Alternative complete solvers  

In this subsection, we briefly summarize some alternative and hybrid approaches available. The 
aim here is to give some clues about available approaches and their complementary aspect. A full 
description of the corresponding algorithms can be found elsewhere in the associated papers. A 
common practice is to combine different methods, wherever heuristic or complete in order to get 
an efficient solver. This is the philosophy adopted for the toulbar2 solver [9]. 

Among complete methods, an appealing alternative strategy to Branch Bound in the Constraint 
Programming (CP) community (and others) is the Variable Elimination (VE) which is a dynamic 
programming approach [10]. It is also known as Bucket Elimination (BE) [11]. It synthetizes all 
optimal solutions by removing variables one by one. In BE, The order in which variables are 
eliminated is predefined. For each variable, BE dynamically infers an assignment that preserves 
the optimum. Prior to this elimination phase, each variable   is associated with a new constraint    resulting from the removal of   from  . The aggregate constraint    sums up the set of all the 
constraints (  ) having   in their scope.    is called the bucket associated to  . Each bucket is as-
sociated to the highest order variable of its scope. 

BE has an exponential worst case space complexity because the additional constraints    are built 
other all the neighbors of   (i.e., the other variables of all constraints where   is element of the 
scope). This characteristic limits the applicability of BE to combinatorial problems where the 
number of neighbors is small. Thence, an incomplete variant based on the concept of Mini-
Bucket (MB) has been introduced in order to overcome this drawback [12], [13]. Instead of con-
sidering all the neighboring variables of   to build   , only a subset is considered. MB does not 
guarantee to find the optimal solution but has been useful in providing tight lower bound for 
WCSP (and other type of) problems [14].  

Because of the quality of its lower bound (near to the optimum), hybrid strategies have been de-
vised in order to boost complete search by MB, commonly, a hybrid DFBB-MB [14], [15]. This 
hybrid was found to outperform several approaches in solving complex WCSP problems, but it is 
not usually better than local consistency based solvers.  

Apart from these complete approaches described above to handle WCSPs, computer science is 
rich of complete and heuristic methods that can find application in the CPD field. Thence, we 
have already selected some strategies to tackle CPD including 0/1 Linear Programming, 0/1 
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Quadratic, Programming, 0/1 Quadratic Optimization, Weighted Partial MaxSAT, Graphical 
Model optimization problems [16]. Some of the approaches were found impractical for CPD. 
Although some of them showed good performance with respect to available approach is the CPD 
community, none of the ones we assessed did outperform the CFN framework. 

2.4.2 Metaheuristics and hybrid strategies to solve WCSPs 

Because WCSP is NP-complete, several metaheuristics have been designed to address it. Local 
search and population based strategies constitute an important class of metaheuristic approaches 
which have found useful application for solving WCSP problems. In Chapter 1, we briefly intro-
duced Monte Carlo search (with Simulated Annealing) which is a local search and Genetic Algo-
rithm which is population based approach.  

A well-known local search approach widely used in the CP community is Tabu Search (TS) [17], 
[18]. TS is a metaheuristic that can be built on top of another heuristic. It allows overcoming lo-
cal minima through an intelligent interplay between two « opposite features ». First, during opti-
mization, it maintains a list of forbidden (or restricted) moves, referred to as the Tabu list. This 
list is derived from previously visited solutions. As a consequence, Tabu list prevents local min-
ima by restricting cycling moves. However, application of moves in the Tabu list may lead to 
solutions better than the best solution so far. Thus, a second ingredient, called aspiration criterion, 
is introduced to override Tabu moves when it is beneficial.  

While local search such as TS produces a new solution at each step, population based approaches, 
as implied by their name, produces at each step a set of candidate solutions. A branch and bound 
approach of this type is Beam Search (BS) [19]. BS maintains a limited list of promising candi-
dates constituting the so-called Beam (partial solutions), denoted  . The size of the beam is 
called the beam width (   ). An initial beam is created by assigning unassigned variables (one or 
more such that we get     elements). At each step of the algorithm, each element of the Beam 
( ) is extended in      different ways by assigning values to an unassigned variable. The best     elements of the newly produced partial solutions make up the Beam for the next step, and the 
process continues until complete assignments are found. Hence, some nodes are pruned because 
of the limited size of the Beam, and BS is an incomplete algorithm combining Branch and 
Bound, Best-First and Breadth-First search strategies. As a consequence of its incompleteness, 
the quality of BS is strongly dependent on the quality of the lower bound that drives the selec-
tions for the beam generation [20]. This emphasizes its possible complementary with MB or LC 
which provide a “good” lower bound.  

A second widespread population based approaches are Evolutionary Algorithms (EAs). EAs ap-
ply operations inspired from biological evolution to generate hybrid solutions for the next genera-
tion of the population. A representative approach of this class is Genetic Algorithm (GA) that we 
have already discussed in Chapter 1. Memetic Algorithm (MA) is an extension of GA were no 
explicit mutation is required during the evolution process [21], [22]. MA can be outlined trough 
four types of operations: i) generation of an initial population ; ii) cooperation of the elements of 
the current population to produce recombinant solutions ; iii) improvement of the newly generat-
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ed solutions by local search; iv) competition between the improved solutions to produce the next 
generation of the population. This process goes on until a termination condition is met.  

MA incorporates problem specific knowledge during the population generation in contrast to a 
sheer stochastic sampling, such as in the mutation step of GA. It is thus designed to benefit from 
local search and other heuristics. The formulation of the MA framework allows its synergic com-
bination with other algorithms in order to build efficient solvers. In a representative strategy, BS 
is used to produce partial solutions [20]. MB produces a tight lower bound on the resulting sub-
problem (can be replaced by LC), overcoming the drawback of BS. MB is used again to combine 
partial solutions (crossover operations) without any explicit mutations. TS subsequently complete 
and improve partial solutions. Such MA-MB-BS-TS hydride approaches are attractive and have 
been proven useful in solving challenging WCSP problems, but remains incomplete [20].  
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Within this chapter, cutting-edge optimization methods originating from artificial intelligence 
were combined to molecular modeling techniques to propose novel approaches aiming at han-
dling the high complexity of combinatorial sequence-conformation spaces inherent to Computa-
tional Protein Design (CPD).  

The chapter is composed of independent articles (that are already published or will shortly be 
submitted to an international journal). The article presented in Section 3-5 assesses the CFN 
modeling framework on the GMEC identification problem. The Section 3-6 considers a larger 
data set and modeling frameworks in order to assess furthermore the efficiency of the CFN 
framework. In Section 3-7, we address the suboptimal set enumeration problem. Finally, the CFN 
methods are integrated in a CPD-dedicated software and hybrid strategies are designed to enrich 
the proposed CFN-based framework in Section 3-8. 
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 Computational Protein Design as a Cost Function Network Optimization Problem 3.1

In collaboration with the group of Thomas Schiex (MIAT-INRA, Auzeville) specialized in com-
binatorial optimization methods, we modeled the CPD problem as a binary Cost Function Net-
work (CFN) and 0/1 Linear Programming (LP) problem. The performances of the CFN solver 
toulbar2 and the 0/1 LP solver cplex were compared to those of well-established CPD approaches 
to identify the Global Minimum Energy Conformation (GMEC) on a set of 12 protein design 
problems. Results highlighted the efficiency of the CFN methodology over other methods to 
solve CPD instances. The CFN-methods enabled the resolution of more CPD problems (10 vs 4 
for CFN and CPD-dedicated solver, respectively) and in most cases, it gave important speedups 
compared to one of the most commonly used deterministic algorithm in the field of Protein De-
sign, the Dead End Elimination (DEE)/A*, implemented in the osprey package. 

The results are detailed in an article published in the Proceedings of the 18th International Con-
ference on Principles and Practice of Constraint Programming (Québec, Canada, October, 8-12 
2012) [1] and are presented hereafter. 

3.1. CPD as a Cost Function Network optimization problem
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Computational Protein Design as a Cost Function

Network Optimization Problem
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1 UBIA, UR 875, INRA, F-31320 Castanet Tolosan, France
2 LISBP, INSA, UMR INRA 792/CNRS 5504, F-31400 Toulouse, France

Abstract. Proteins are chains of simple molecules called amino acids. The three-dimensional shape
of a protein and its amino acid composition define its biological function. Over millions of years,
living organisms have evolved and produced a large catalog of proteins. By exploring the space of
possible amino-acid sequences, protein engineering aims at similarly designing tailored proteins with
specific desirable properties. In Computational Protein Design (CPD), the challenge of identifying
a protein that performs a given task is defined as the combinatorial optimization problem of a
complex energy function over amino acid sequences.

In this paper, we introduce the CPD problem and some of the main approaches that have been
used to solve it. We then show how this problem directly reduces to Cost Function Network (CFN)
and 0/1LP optimization problems. We construct different real CPD instances to evaluate CFN
and 0/1LP algorithms as implemented in the toulbar2 and cplex solvers. We observe that CFN
algorithms bring important speedups compared to the CPD platform osprey but also to cplex.

1 Introduction

A protein is a sequence of basic building blocks called amino acids. Proteins are involved
in nearly all structural, catalytic, sensory, and regulatory functions of living systems [11].
Performance of these functions generally requires the assembly of proteins into well-defined
three-dimensional structures specified by their amino acid sequence. Over millions of years,
natural evolutionary processes have shaped and created proteins with novel structures
and functions by means of sequence variations, including mutations, recombinations and
duplications. Protein engineering techniques coupled with high-throughput automated
procedures offer today the possibility to mimic the evolutionary process on a greatly
accelerated time-scale, and thus increase the odds to identify the proteins of interest for
technological uses [29]. This holds great interest for medicine, biotechnology, synthetic
biology and nanotechnologies [27, 32, 15].

With a choice among 20 naturally occuring amino acids at every position, the size of
the combinatorial sequence space is however clearly out of reach of current experimental
methods, even for small proteins. Computational protein design (CPD) methods therefore
try to intelligently guide this process by producing a collection of proteins, intended
to be rich in functional proteins and whose size is small enough to be experimentally
evaluated. The challenge of choosing a sequence of amino acids to perform a given task
is formulated as an optimization problem, solvable computationally. It is often described
as the inverse problem of protein folding [28]: the three-dimensional structure is known
and we have to find amino acid sequences that folds into it. It can also be considered as a
highly combinatorial variant of side-chain positioning [35] because of possible amino acid
changes.

⋆ These authors contributed equally to this work.
⋆⋆ To whom correspondence should be addressed (Thomas.Schiex@toulouse.inra.fr and Sophie.Barbe@insa-

toulouse.fr).
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Different computational methods have been proposed over the years to solve this
problem and several success stories have demonstrated the outstanding potential of CPD
methods to engineer proteins with improved or novel properties. CPD has been success-
fully applied to increase protein thermostability and solubility; to alter specificity towards
some other molecules; and to design various binding sites and construct de novo enzymes
(see for example [18]).

Despite these significant advances, CPD methods still have to mature in order to better
guide and accelerate the construction of tailored proteins. In particular, more efficient
computational optimization techniques are needed to explore the vast protein sequence-
conformation combinatorial space.

In this paper, we model CPD problems as either binary Cost Function Network (CFN)
or 0/1LP problems. We compare the performance of the CFN solver toulbar2 and the
0/1LP solver cplex against that of well-established CPD approaches on various protein
design problems. On the various problems considered, the direct application of toulbar2,
a Depth First Branch and Bound algorithm maintaining soft local consistencies, resulted
in an improvement of several orders of magnitude compared to dedicated CPD methods
and also outperformed cplex. These preliminary results can probably be further improved
both by tuning our solver to the specific nature of the problem considered and by incor-
porating dedicated CPD preprocessing methods.

2 The Computational Protein Design approach

In CPD, we are given an existing protein corresponding to a native sequence of amino acids
folded into a 3D structure, which has previously been determined experimentally. The
task consists in modifying a given property of the protein (such as stability or functional
efficiency) through the mutation of a specific subset of amino acid residues in the sequence,
i.e. by affecting their identity and their 3D orientation (rotamers). The resulting designed
protein retains the overall folding of the original protein since we consider the protein
backbone as fixed and only alter the amino acid side chains (Fig. 1). The stability and
functional efficiency of a protein is correlated to its energy [1]. Therefore, we aim at finding
the conformation possessing the minimum total energy, called GMEC (Global Minimum
Energy Conformation). The energy of a conformation can be directly computed from
the amino acid sequence and rotamers by introducing substitutions within the native
structure.

Rotamers. The distribution of accessible conformations available to each amino acid side
chain is approximated using a set of discrete conformations defined by the value of their
inner dihedral angles. These conformations, or rotamers, are derived from the most fre-
quent conformations in the experimental repository of known protein structures PDB
(Protein Data Bank, www.wwpdb.org).

Energy function. Typical energy function approximations [3] use the assumption that
the amino acid identity substitutions and rotamers do not modify the folding of the
protein. They include non-bonded terms such as van der Waals and electrostatics, often
in conjunction with empirical contributions describing hydrogen bond. The surrounding
solvent effect is generally treated implicitly as a continuum. In addition, statistical terms
may be added in order to approximate the effect of mutations on the unfolded state or
the contribution of conformational entropy.
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Fig. 1. A local view of combinatorial sequence exploration considering a common backbone. Changes can be
caused by amino acid identity substitutions (for example D/L or R/Q) or by amino acid side-chain reorienta-
tions (rotamers) for a given amino acid. A typical rotamer library for one amino acid is shown on the right
(ARG=Arginine).

These energy functions can be reformulated in such a way that the terms are locally
decomposable. Then, the energy of a given protein defined by a choice of one specific
amino acid with an associated conformation (rotamer) for each residue, can be written
as:

E = Ec +
∑

i

E(ir) +
∑

i

∑

j>i

E(ir, js) (1)

where E is the potential energy of the protein, Ec is a constant energy contribution
capturing interactions between fixed parts of the model, E(ir) is the self energy of rotamer
r at position i capturing internal interactions or with fixed regions, and E(ir, js) is the
pairwise interaction energy between rotamer r at position i and rotamer s at position
j [9]. All terms are measured in kcal/mol and can be pre-computed and cached.

3 Existing approaches for the CPD

The protein design problem as defined above, with a rigid backbone, a discrete set of
rotamers, and pairwise energy functions has been proved to be NP-hard [31]. Hence,
a variety of meta-heuristics have been applied to it, including Monte Carlo simulated
annealing [21], genetic algorithms [33], and other algorithms [10]. The main weakness of
these approaches is that they may remain stuck in local minima and miss the GMEC
without notice.

However, there are several reasons motivating the exact solving of the problem. First,
because they know when an optimum is reached, exact methods may stop before meta-
heuristics. Voigt et al. [36] reported that the accuracy of metaheuristics also degrades
as problem size increases. More importantly, the use of exact search algorithms becomes
crucial in the usual experimental design cycle that goes through CPD modeling, solving,
protein synthesis and experimental evaluation: when unexpected experimental results are
obtained, the only possible culprit lies in the CPD model and not in the algorithm.
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Current exact methods for CPD mainly rely on the dead-end-elimination (DEE) the-
orem [9, 8] and the A∗ algorithm [24, 13]. From a constraint satisfaction perspective, the
DEE theorem can be seen as an extension of neighborhood substitutability [7, 20, 2]. DEE
is used as a pre-processing technique and removes rotamers that are locally dominated
by other rotamers, until a fixpoint is reached. The rotamer r at position i is removed if
there exists another rotamer u at the same position such that [9]:

E(ir) − E(iu) +
∑

j 6=i

min
s

E(ir, js) −
∑

j 6=i

max
s

E(iu, js) > 0

That is, r is removed if for any conformation with this r, we get a conformation with
lower energy if we substitute u for r.

Extensions to higher orders have been considered [14, 30, 25, 12]. These DEE criteria
preserve the optimum but may remove suboptimal solutions.

This DEE preprocessing is usually followed by an A∗ search method. After DEE prun-
ing, the A∗ algorithm allows to expand a sequence-conformation tree, so that sequence-
conformations are extracted and sorted on the basis of their energy values. At depth d of
the tree, the lower bound used by A∗ [13] is exactly the PFC-DAC lower bound [37, 23]
used in WCSP and later obsoleted by soft arc consistencies [34, 22, 5]:

d∑

i=1

E(ir) +
d∑

j=i+1

E(ir, js)

︸ ︷︷ ︸

Assigned

+
n∑

j=d+1

[ min
s

(E(js) +
d∑

i=1

E(ir, js)

︸ ︷︷ ︸

Forward checking

+
n∑

k=j+1

min
u

E(js, ku)

︸ ︷︷ ︸

DAC counts

)]

If the DEE algorithm does not significantly reduce the search space, the A∗ search tree
is too memory demanding and the problem cannot be solved. Therefore, to circumvent
these limitations and increase the ability of CPD to tackle problems with larger sequence-
conformation space, novel alternative methods are needed. Here, we show that state-of-
the-art methods for solving Cost Function Networks offer an attractive alternative to this
combined DEE/A∗ approach, to solve highly complex case studies of protein design.

4 Cost Function Network model

A Cost Function Network (CFN) is a pair (X, W ) where X = {1, . . . , n} is a set of n
variables and W a set of cost functions. Each variable i ∈ X has a finite domain Di of
values than can be assigned to it. A value a ∈ Di is denoted ia. For a set of variables
S ⊆ X, DS denotes the Cartesian product of the domain of the variables in S. For a given
tuple of values t, t[S] denotes the projection of t over S. A cost function wS ∈ W , with
scope S ⊆ X, is a function wS : DS 7→ [0, k] where k is a maximum integer cost used for
forbidden assignments. The Weighted Constraint Satisfaction Problem (WCSP) is to find
a complete assignment t minimizing the combined cost function

∑

wS∈W wS(t[S]). This
optimization problem has an associated NP-complete decision problem.

Modeling the CPD problem as a CFN is straightforward. The set of variables X
has one variable i per residue i. The domain of each variable is the set of (amino
acid,conformation) pairs in the rotamer library used. The energy function can be rep-
resented by 0-ary, unary and binary cost functions respectively capturing the constant
energy term Ec, the unary energy terms E(ir) and the binary energy terms E(ir, js).
There is just one discrepancy between the original formulation and the CFN model: en-
ergies are represented as arbitrary floating point numbers while CFN use positive integer
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costs. This can simply be fixed by first subtracting the minimum energy to all energies
and then by multiplying energies by a large integer constant M .

5 Integer Linear programming model

The resulting CFN can also be represented as a 0/1 linear programming problem using
the encoding proposed in [20]. For every value ir, there is a boolean variable di,r which is
equal to 1 iff i = r. Additional constraints enforce that exactly one value is selected for
each variable. For every pair of values of different variables (ir, js) involved in a binary
energy term, there is a boolean variable pi,r,j,s which is equal to 1 iff the pair (ir, js) is
used. Constraints enforce that a pair is used iff the corresponding values are used. Then,
finding a GMEC reduces to the following ILP:

min
∑

i,r E(ir).di,r +
∑

i,r,j,s E(ir, js).pi,r,j,s

s.t.
∑

r di,r = 1 (∀i)
∑

s pi,r,j,s = di,r (∀i, r, j)

This model is also the ILP model IP1 proposed in [19] for side-chain positioning. The
continuous relaxation of this 0/1 linear programming model is known do be the dual of the
LP problem encoded by Optimal Soft Arc Consistency [6, 5]. When the upper bound k is
infinite, OSAC is known to be stronger than any other soft “arc level” arc consistency and
especially stronger than the default Existential Directional Arc Consistency (EDAC) [22]
used in toulbar2. However, as soon as the upper bound k decreases to a finite value, soft
local consistencies may prune values and EDAC becomes incomparable with OSAC.

6 Experimental Results

We used a set of 12 protein design cases to evaluate the performance of toulbar2, cplex
and compare them with the DEE/A* approach implemented in osprey (open source ded-
icated Java CPD software). This set comprises 9 protein structures derived from the PDB
which were chosen for the high resolution of their 3D-structures and their distribution of
sizes and types. Diverse sizes of sequence-conformation combinatorial spaces were consid-
ered, varying by the number of mutable residues, the number of alternative amino acid
types at each position and the number of conformations for each amino acid (Table 1).
The Penultimate rotamer library was used [26].

Preparation of CPD instances. Missing heavy atoms in crystal structures and hydrogen
atoms were added with the tleap module of the AMBER9 software package [4]. Each
molecular system was then minimized in implicit solvent (Generalized Born model [17])
using the Sander program and the all-atom ff99 force field of AMBER9. All Ec, E(ir),
and E(ir, js) energies of rotamers (see Equation 1) were pre-computed using osprey. The
energy function consisted of the Amber electrostatic, van der Waals, and dihedral terms.
These calculations were performed on an Altix ICE 8200 supercomputer with 2,816 Intel
Nehalem EX 2.8 GHz cores. We used 32 cores and 128GB of RAM. The sequential CPU
time needed to compute the set of all energy cost functions is given in Table 1. Although
these computation times can be very large, they are also highly parallelizable. For n
residues to optimize with d possible (amino acid,conformation) pairs, there are n unary

and n.(n−1)
2

binary cost functions which can be computed independently.
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DEE/A* optimization. To solve the different protein design cases, we used osprey ver-
sion 1.0 (cs.duke.edu/donaldlab/osprey.php) which first filters rotamers ir such that
E(ir) > 30kcal/mol and pairs (ir, js) such that E(ir, js) > 100kcal/mol (pruningE and
stericE parameters). This step is followed by extensive DEE pre-processing (algOption =
3, includes simple Goldstein, Magic bullet pairs, 1 and 2-split positions, Bounds and pairs
pruning) and A∗ search. Only the GMEC conformation is generated by A∗ (initEw=0).
Computations were performed on a single core of an AMD Operon 6176 at 2.3 GHz, 4
GB of RAM, and a 100-hour time-out. There were no memory-out errors.

CFN and ILP optimization. The same problems (before DEE preprocessing and using
M = 108) have been tackled by cplex version 12.2 (parameters EPAGAP, EPGAP and
EPINT set to zero to avoid premature stop) and toulbar2 version 0.9.5 (mulcyber.
toulouse.inra.fr/projects/toulbar2/) using binary branching with an initial limited
discrepancy search phase [16] with a maximum discrepancy of 2 (options -d: -l=2, and
other default options including EDAC and no initial upper bound) and domains sorted
with increasing unary costs E(ir). These computations were performed on a single core
of an Intel Xeon E5430 core at 2.66 GHz with 64GB of RAM with a 100-hour time-out.

With the exception of one instance (1CM1), cplex significantly outperforms osprey.
On the other hand, toulbar2 is always faster than both cplex and osprey by at least
one order of magnitude and often many more, even accounting for the performance dis-
crepancy arising from the difference in the hardware we used. We have also verified that
the minimum energy reported by all 3 solvers is identical.

Table 1. For each instance: protein (PDB id.), amino acid sequence length, number of mutable residues, maximum
number of (amino acid, conformation) pairs, sequential time for computing E(·) energy functions, and CPU-time
for solving using osprey, cplex, and toulbar2. A ’-’ indicates that the 100-hour limit has been reached.

System name Size n d E(·) osprey cplex toulbar2

Thioredoxin (2TRX) 108 11 44 304 min. 27.1 sec. 2.6 sec. 0.1 sec.
Protein G (1PGB) 56 11 45 76 min. 49.3 sec. 14.7 sec. 0.1 sec.
Protein L (1HZ5) 64 12 45 114 min. 1,450 sec. 17.7 sec. 0.1 sec.
Ubiquitin (1UBI) 76 13 45 270 min. - 405.0 sec. 0.6 sec.
Protein G (1PGB) 56 11 148 1,096 min. - 2,245 min. 13.9 sec.
Protein L (1HZ5) 64 12 148 831 min. - 1,750 min. 14.6 sec.
Ubiquitin (1UBI) 76 13 148 1,967 min. - - 378 min.
Plastocyanin (2PCY) 99 18 44 484 min. - 89.5 sec. 0.5 sec.
Haloalkane Dehaloge-
nase (2DHC)

310 14 148 45,310 min. - - 77.4 sec.

Calmodulin (1CM1) 161 17 148 11,326 min. 121.9 sec. 1,707 sec. 2.0 sec.
Peptidyl-prolyl cis-trans
Isomerase (1PIN)

153 28 148 40,491 min. - - -

Cold-Shock (1C9O) 132 55 148 84,089 min. - - -

6.1 Explaining the differences

The ILP solver CPLEX is a totally closed-source black box. More generally, solvers are
complex systems involving various mechanisms. The effect of their interactions during
solving is hard to predict. Therefore, explaining the differences in efficiency observed
between the different approaches is not really obvious.

If we consider osprey first, it uses an obsolete lower bound instead of the more re-
cent incremental and stronger lower bounds offered by soft local consistencies such as
EDAC [22]. This, together with the associated informed value ordering provided by these
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local consistencies, may explain why toulbar2 outperforms osprey. Similarly, the LP
relaxation lower bound used in ILP is known (by duality) to be the same as the Optimal
Soft AC lower bound (when no upper bounding occurs, i.e. when k = +∞). Since OSAC
dominates all other local consistencies at the arc level, this provides an explanation for
the efficiency of cplex compared to osprey. Finally, the problem is deeply non linear.
It can be concisely formulated as a CFN but the ILP formulation is much more verbose.
This probably contributes, together with the upper bounding (provided by node consis-
tency) and value ordering heuristics of toulbar2, to the efficiency of toulbar2 compared
to cplex.

7 Conclusion

The simplest formal optimization problem underlying CPD looks for a Global Minimum
Energy Conformation (GMEC) over a rigid backbone and altered side-chains (identity and
conformation). It can easily be reduced to a binary Cost Function Network, with a very
dense graph and relatively large domains or to 0/1LP with a large number of variables.

On a variety of real instances, we have shown that state-of-the-art CFN algorithms
but also 0/1LP algorithms give important speedups compared to usual CPD algorithms
combining Dead End Elimination with A∗ as implemented in the osprey package. CFN
algorithms are the most efficient by far and have the advantage of requiring reasonable
space.

Although existing CFN algorithms still need to be extended and adapted to tackle such
problems, the rigid backbone method reported herein may contribute to the development
of more sophisticated flexible methods.
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 Computational protein design as an optimization problem 3.2

On the basis of the encouraging results of the first study, we evaluated the performances of other 
combinatorial optimization methods derived from artificial intelligence (0/1 Quadratic Program-
ming, 0/1 Quadratic optimization, Weighted Partial Mas SAT and Graphical Model Optimiza-
tion) on a larger set of CPD cases (40 vs 12) using a variety of solvers. Overall, this showed 
again that the CFN approach outperformed by several orders of magnitude other evaluated meth-
ods as well as the exact DEE/A* algorithm. Noteworthy, the incorporation of the suitably modi-
fied DEE algorithms enabled to further improve the results. The results are also included in this 
current chapter under the form of an article published in the Artificial Intelligence journal [2]. 
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LISBP, INSA, UMR INRA 792/CNRS 5504, F-31400 Toulouse, France

Steve Prestwich, Barry O’Sullivan

Cork Constraint Computation Centre, University College Cork, Ireland

Abstract

Proteins are chains of simple molecules called amino acids. The three-dimensional shape
of a protein and its amino acid composition define its biological function. Over millions
of years, living organisms have evolved a large catalog of proteins. By exploring the space
of possible amino acid sequences, protein engineering aims at similarly designing tailored
proteins with specific desirable properties. In Computational Protein Design (CPD), the
challenge of identifying a protein that performs a given task is defined as the combinatorial
optimization of a complex energy function over amino acid sequences.

In this paper, we introduce the CPD problem and some of the main approaches that
have been used by structural biologists to solve it, with an emphasis on the exact method
embodied in the dead-end elimination/A* algorithm (DEE/A*). The CPD problem is
a specific form of binary Cost Function Network (CFN, aka Weighted CSP). We show
how DEE algorithms can be incorporated and suitably modified to be maintained during
search, at reasonable computational cost.

We then evaluate the efficiency of CFN algorithms as implemented in our solver
toulbar2, on a set of real CPD instances built in collaboration with structural biologists.
The CPD problem can be easily reduced to 0/1 Linear Programming, 0/1 Quadratic Pro-
gramming, 0/1 Quadratic Optimization, Weighted Partial MaxSAT and Graphical Model
optimization problems. We compare toulbar2 with these different approaches using a
variety of solvers. We observe tremendous differences in the difficulty that each approach
has on these instances.

Overall, the CFN approach shows the best efficiency on these problems, improving by
several orders of magnitude against the exact DEE/A* approach. The introduction of
dead-end elimination before or during search allows to further improve these results.

Keywords: weighted constraint satisfaction problem, soft constraints, neighborhood
substitutability, constraint optimization, graphical model, cost function networks,
integer linear programming, quadratic programming, computational protein design,
bioinformatics, maximum a posteriori inference, maximum satisfiability
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1. Introduction

A protein is a sequence of basic building blocks called amino acids. Proteins are
involved in nearly all structural, catalytic, sensory, and regulatory functions of living sys-
tems [26]. Performing these functions generally requires that proteins are assembled into
well-defined three-dimensional structures specified by their amino acid sequence. Over
millions of years, natural evolutionary processes have shaped and created proteins with
novel structures and functions by means of sequence variations, including mutations,
recombinations and duplications. Protein engineering techniques coupled with high-
throughput automated procedures make it possible to mimic the evolutionary process
on a greatly accelerated time-scale, and thus increase the odds to identify the proteins of
interest for technological uses [71]. This holds great interest for medicine, synthetic biol-
ogy, nanotechnologies and biotechnologies [67, 75, 39]. In particular, protein engineering
has become a key technology to generate tailored enzymes able to perform novel specific
transformations under specific conditions. Such biochemical transformations enable to ac-
cess a large repertoire of small molecules for various applications such as biofuels, chemical
feedstocks and therapeutics [45, 11]. The development of enzymes with required substrate
selectivity, specificity and stability can also be profitable to overcome some of the difficul-
ties encountered in synthetic chemistry. In this field, the in vitro use of artificial enzymes
in combination with organic chemistry has led to innovative and efficient routes for the
production of high value molecules while meeting the increasing demand for ecofriendly
processes [61, 13]. Nowadays, protein engineering is also being explored to create non-
natural enzymes that can be combined in vivo with existing biosynthetic pathways, or be
used to create entirely new synthetic metabolic pathways not found in nature to access
novel biochemical products [28]. These latest approaches are central to the development
of synthetic biology. One significant example in this field is the full-scale production of
the antimalarial drug (artemisinin) from the engineered bacteria Escherichia coli [66].

With a choice among 20 naturally occurring amino acids at every position, the size
of the combinatorial sequence space is out of reach for current experimental methods,
even for short sequences. Computational protein design (CPD) methods therefore try to
intelligently guide the protein design process by producing a collection of proteins, that
is rich in functional proteins, but small enough to be experimentally evaluated. The chal-
lenge of choosing a sequence of amino acids to perform a given task is formulated as an
optimization problem, solvable computationally. It is often described as the inverse prob-
lem of protein folding [70]: the three-dimensional structure is known and we have to find
amino acid sequences that fold into it. It can also be considered as a highly combinatorial
variant of side-chain positioning [82] because of possible amino acid mutations.

Various computational methods have been proposed over the years to solve this prob-
lem and several success stories have demonstrated the outstanding potential of CPD
methods to engineer proteins with improved or novel properties. CPD has been success-
fully applied to increase protein thermostability and solubility; to alter specificity towards
some other molecules; and to design various binding sites and construct de novo enzymes
(see for example [46]).

Despite these significant advances, CPD methods must still mature in order to better
guide and accelerate the construction of tailored proteins. In particular, more efficient
computational optimization techniques are needed to explore the vast combinatorial space,
and to facilitate the incorporation of more realistic, flexible protein models. These meth-
ods need to be capable of not only identifying the optimal model, but also of enumerating
solutions close to the optimum.
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Figure 1: A representation of how amino acids, carrying specific side chains R and R′, can link together
through their core to form a chain (modified from wikipedia). One molecule of water is also generated in
the process.

We begin by defining the CPD problem with rigid backbone, and then introduce the
approach commonly used in structural biology to exactly solve CPD. This approach relies
on dead-end elimination (DEE), a specific form of dominance analysis that was introduced
in [24], and later strengthened in [37]. If this polynomial-time analysis does not solve the
problem, an A∗ algorithm is used to identify an optimal protein design.

We observe that the rigid backbone CPD problem can be naturally expressed as a
Cost Function Network (aka Weighted Constraint Satisfaction Problem). In this context,
DEE is similar to neighbourhood substitutability [27]. We show how DEE can be suit-
ably modified so as to be maintained during search at reasonable computational cost, in
collaboration with the usual soft local consistencies.

To evaluate the efficiency of the CFN approach, we model the CPD problem us-
ing several combinatorial optimization formalisms. We compare the performance of the
0/1 linear programming and 0/1 quadratic programming solver cplex, the semidefinite
programming based Boolean quadratic optimization tool biqmac, several weighted partial
MaxSAT solvers, the Markov random field optimization solvers daoopt and mplp [80], and
the CFN solver toulbar2, against that of a well-established CPD approach implement-
ing DEE/A∗, on various realistic protein design problems. We observe drastic differences
in the difficulty that these instances represent for different solvers, despite often closely
related models and solving techniques.

2. The Computational Protein Design approach

A protein is a sequence of organic compounds called amino acids. All amino acids
consist of a common peptidic core and a side chain with varying chemical properties (see
Figure 1). In a protein, amino acid cores are linked together in sequence to form the
backbone of the protein. A given protein folds into a 3D shape that is determined from
the sequence of amino acids. Depending upon the amino acid considered, the side chain
of each individual amino acid can be rotated along up to 4 dihedral angles relative to the
backbone. After Anfinsen’s work [3], the 3D structure of a protein can be considered to be
defined by the backbone and the set of side-chain rotations. This is called the conformation
of the protein and it determines its chemical reactivity and biological function.
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Figure 2: A local view of combinatorial sequence exploration considering a common backbone. Changes
can be caused by amino acid identity substitutions (for example D/L or R/Q) or by amino acid side-chain
reorientations (rotamers) for a given amino acid. A typical rotamer library for one amino acid is shown
on the right (ARG=Arginine).

Computational Protein Design is faced with several challenges. The first lies in the
exponential size of the conformational and protein sequence space that has to be explored,
which rapidly grows out of reach of computational approaches. Another obstacle to
overcome is the accurate structure prediction for a given sequence [47, 38]. Therefore, the
design problem is usually approached as an inverse folding problem [70], in order to reduce
the problem to the identification of an amino acid sequence that can fold into a target
3D-scaffold that matches the design objective [9]. In structural biology, the stability of
aconformation can be directly evaluated through the energy of the conformation, a stable
fold being of minimum energy [3].

In CPD, two approximations are common. First, it is assumed that the resulting
designed protein retains the overall folding of the chosen scaffold: the protein backbone is
considered fixed. At specific positions chosen by the computational biologist (or automatic
selection), the amino acid can be modified by changing the side chain as shown in Fig. 2.
Second, the domain of conformations available to each amino acid side chain is actually
continuous. This continuous domain is approximated using a set of discrete conformations
defined by the value of their inner dihedral angles. These conformations, or rotamers [44],
are derived from the most frequent conformations in the experimental repository of known
protein structures, PDB (Protein Data Bank, www.wwpdb.org). Different discretizations
have been used in constraint-based approaches to protein structure prediction [10].

The CPD is then formulated as the problem of identifying a conformation of minimum
energy via the mutation of a specific subset of amino acid residues, i.e. by affecting their
identity and their 3D orientations (rotamers). The conformation that minimizes the
energy is called the GMEC (Global Minimum Energy Conformation).

In order to solve this problem, we need a computationally tractable energetic model
to evaluate the energy of any combination of rotamers. We also require computational
optimization techniques that can efficiently explore the sequence-conformation space to
find the sequence-conformation model of global minimum energy.
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Energy functions. Various energy functions have been defined to make the energy compu-
tation manageable [7]. These energy functions include non-bonded terms such as van der
Waals and electrostatics terms, often in conjunction with empirical contributions describ-
ing hydrogen bonds. The surrounding solvent effect is generally treated implicitly as a
continuum. Statistical terms may be added in order to approximate the effect of mutations
on the unfolded state or the contribution of conformational entropy. Finally, collisions
between atoms (steric clashes) are also taken into account. In this work, we used the
state-of-the-art energy functions implemented in the CPD dedicated tool osprey 2.0 [30].

These energy functions can be reformulated in such a way that the terms are locally
decomposable. Then, the energy of a given protein conformation, defined by a choice of
one specific amino acid with an associated conformation (rotamer) for each residue, can
be written as:

E = E∅ +
∑

i

E(ir) +
∑

i

∑

j>i

E(ir, js) (1)

where E is the potential energy of the protein, E∅ is a constant energy contribution
capturing interactions between fixed parts of the model, E(ir) is the energy contribution
of rotamer r at position i capturing internal interactions (and a reference energy for the
associated amino acid) or interactions with fixed regions, and E(ir, js) is the pairwise
interaction energy between rotamer r at position i and rotamer s at position j [24]. This
decomposition brings two properties:

• Each term in the energy can be computed for each amino acid/rotamer (or pair for
E(ir, js)) independently.

• These energy terms, in kcal/mol, can be precomputed and cached, allowing to
quickly compute the energy of a design once a specific rotamer (an amino acid-
conformation pairing) has been chosen at each non-rigid position.

The rigid backbone dicrete rotamer Computational Protein Design problem is therefore
defined by a fixed backbone with a corresponding set of positions (residues), a rotamer
library and a set of energy functions. Each position i of the backbone is associated with
a subset Di of all (amino-acid,rotamer) pairs in the library. The problem is to identify at
each position i a pair from Di such that the overall energy E is minimized. In practice,
based on expert knowledge or on pecific design protocols, each position can be fixed (Di

is a singleton), flexible (all pairs in Di have the same amino-acid) or mutable (the general
situation).

2.1. Exact CPD methods

The protein design problem as defined above, with a rigid backbone, a discrete set
of rotamers, and pairwise energy functions has been proven to be NP-hard [74]. Hence,
a variety of meta-heuristics have been applied to it, including Monte Carlo simulated
annealing [53], genetic algorithms [77], and other algorithms [25]. The main weakness
of these approaches is that they may remain stuck in local minima and miss the GMEC
without notice.

However, there are several important motivations for solving the CPD problem ex-
actly. First, because they know when an optimum is reached, exact methods may stop
before meta-heuristics. Voigt et al. [84] reported that the accuracy of meta-heuristics also
degrades as problem size increases. More importantly, the use of exact search algorithms
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becomes crucial in the usual experimental design cycle, that goes through modelling, solv-
ing, protein synthesis and experimental evaluation: when unexpected experimental results
are obtained, the only possible culprit lies in the CPD model and not in the algorithm.

Current exact methods for CPD mainly rely on the dead-end elimination (DEE) the-
orem [24, 19] and the A∗ algorithm [58, 33]. DEE is used as a pre-processing technique
and removes rotamers that are locally dominated by other rotamers, until a fixpoint is
reached. The rotamer r at position i (denoted by ir) is removed if there exists another
rotamer u at the same position such that [24]:

E(ir) +
∑

j 6=i

min
s

E(ir, js) ≥ E(iu) +
∑

j 6=i

max
s

E(iu, js) (2)

This condition guarantees that for any conformation with this r, we get a conformation
with lower energy if we substitute u for r. Then, r can be removed from the list of possible
rotamers at position i. This local dominance criterion was later improved by Goldstein [37]
by directly comparing energies of each rotamer in the same conformation:

E(ir) − E(iu) +
∑

j 6=i

min
s

[E(ir, js) − E(iu, js)] ≥ 0 (3)

where the best and worst-cases are replaced by the worst difference in energy. It is easy to
see that this condition is always weaker than the previous one, and therefore applicable to
more cases. These two properties define polynomial time algorithms that prune dominated
values.

Since its introduction in 1992 by Desmet, DEE has become the fundamental tool
of exact CPD, and various extensions have been proposed [73, 63, 32]. All these DEE
criteria preserve the optimum but may remove suboptimal solutions. However CPD is
NP-hard, and DEE cannot solve all CPD instances. Therefore, DEE pre-processing is
usually followed by an A∗ search. After DEE pruning, the A∗ algorithm allows to expand
a sequence-conformation tree, so that sequence-conformations are extracted and sorted on
the basis of their energy values. The admissible heuristic used by A∗ is described in [33].

When the DEE algorithm does not significantly reduce the search space, the A∗ search
tree can be too slow or memory demanding and the problem cannot be solved. Therefore,
to circumvent these limitations and increase the ability of CPD to tackle problems with
larger sequence-conformation spaces, novel alternative methods are needed. We now
describe alternative state-of-the-art methods for solving the GMEC problem that offer
attractive alternatives to DEE/A∗.

3. From CPD to CFN

CPD instances can be directly represented as Cost Function Networks.

Definition 1. A Cost Function Network (CFN) is a pair (X, W ) where X = {1, . . . , n}
is a set of n variables and W is a set of cost functions. Each variable i ∈ X has a finite
domain Di of values that can be assigned to it. A value r ∈ Di is denoted ir. For a set
of variables S ⊆ X, DS denotes the Cartesian product of the domains of the variables in
S. For a given tuple of values t, t[S] denotes the projection of t over S. A cost function
wS ∈ W , with scope S ⊆ X, is a function wS : DS 7→ [0, k] where k is a maximum integer
cost used for forbidden assignments.
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We assume, without loss of generality, that every CFN includes at least one unary
cost function wi per variable i ∈ X and a nullary cost function w∅. All costs being non-
negative, the value of this constant function, w∅, provides a lower bound on the cost of
any assignment.

The Weighted Constraint Satisfaction Problem (WCSP) is to find a complete assign-
ment t minimizing the combined cost function

⊕

wS∈W wS(t[S]), where a⊕b = min(k, a+b)
is the k-bounded addition. This optimization problem has an associated NP-complete de-
cision problem. Notice that if k = 1, then the WCSP is nothing but the classical CSP
(and not the Max-CSP).

Modeling the CPD problem as a CFN is straightforward. The set of variables X
has one variable i per residue i. The domain of each variable is the set of (amino
acid,conformation) pairs in the rotamer library used. The global energy function can
be represented by 0-ary, unary and binary cost functions, capturing the constant energy
term w∅ = E∅, the unary energy terms wi(r) = E(ir), and the binary energy terms
wij(r, s) = E(ir, js), respectively. In the rest of the paper, for simplicity and consistency,
we use notations E∅, E(·) and E(·, ·) to denote cost functions and restrict ourselves to
binary CFN (extensions to higher orders are well-known).

Notice that there is one discrepancy between the original formulation and the CFN
model: energies are represented as arbitrary floating point numbers while CFN uses pos-
itive costs. This can simply be fixed by first subtracting the minimum energy from all
energies. These positive costs can then be multiplied by a large integer constant M and
rounded to the nearest integer if integer costs are required.

3.1. Local consistency in CFN
The usual exact approach to solve a CFN is to use a depth-first branch-and-bound

algorithm (DFBB). A family of efficient and incrementally computed lower bounds is
defined by local consistency properties.

Node consistency [54] (NC) requires that the domain of every variable i contains a
value r that has a zero unary cost (E(ir) = 0). This value is called the unary support
for i. Furthermore, in the scope of the variable i, all values should have a cost below k
(∀r ∈ Di, E∅ + E(ir) < k).

Soft arc consistency (AC∗) [79, 54] requires NC and also that every value r of every
variable i has a support on every cost function E(ir, js) involving i. A support of ir is a
value js ∈ Dj such that E(ir, js) = 0.

Stronger local consistencies such as Existential Directional Arc Consistency (EDAC)
have also been introduced [55]. See [14] for a review of existing local consistencies.

As in classical CSP, enforcing a local consistency property on a problem P involves
transforming P = (X, W ) into a problem P ′ = (X, W ′) that is equivalent to P (all com-
plete assignments keep the same cost) and that satisfies the considered local consistency
property. Enforcing a local consistency may increase E∅ and thus improve the lower
bound on the optimal cost. This bound is used to prune the search tree during DFBB.

Local consistency is enforced using Equivalence Preserving Transformations (EPTs)
that move costs between different cost functions [79, 54, 57, 18, 55, 15, 17, 16, 14]. For
example, a variable i violating the NC property because all its values ir have a non-zero
E(ir) cost, can be made NC by subtracting the minimum cost from all E(ir) and adding
this cost to E∅. The resulting network is equivalent to the original network, but it has
an increased lower bound E∅.

Interestingly, in CPD, the admissible heuristic used in the DEE/A∗ algorithm at depth
d of the search tree is [33]:
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d∑

i=1

[
E(ir) +

d∑

j=i+1

E(ir, js)
]

︸ ︷︷ ︸

Assigned

+
n∑

j=d+1

[
min

s
(E(js) +

d∑

i=1

E(ir, js)

︸ ︷︷ ︸

Forward checking

+
n∑

k=j+1

min
u

E(js, ku)

︸ ︷︷ ︸

DAC counts

)
]

From a WCSP perspective, interpreting energies as cost functions, this heuristic is
exactly the PFC-DAC lower bound [85, 56] used in WCSP. In WCSP, this lower bound is
considered obsolete, and indeed it is proven to be weaker than soft arc consistency [79].

3.2. Maintaining dead-end elimination

Dead-end elimination is the key algorithmic tool of exact CPD solvers. From an AI
perspective, in the context of CSP (if k = 1), the DEE Equation 3 is equivalent to neigh-
borhood substitutability [27]. For MaxSAT, it is equivalent to the Dominating 1-clause
rule [68]. In the context of CFN, the authors of [59] introduced partial soft neighborhood
substitutability with a definition that is equivalent to Equation 3 for pairwise decomposed
energies.

The DEE Equation 3 (cf. Section 2.1) can be strengthened and adapted to the CFN
context as follows:

E(ir) − E(iu) +
∑

j 6=i

min
s

E∅+E(ir)+E(js)+E(ir,js)<k

[E(ir, js) − E(iu, js)] ≥ 0 (4)

This new condition differs from Equation 3 by the fact that some values have been
discarded from the min operation. These values correspond to forbidden assignments
because the sum of the corresponding binary term plus the two unary costs plus the
current lower bound E∅ (produced by soft arc consistency) is greater than or equal to the
current upper bound k. Such values s do not need to be considered by the min operation
because {ir, js} does not belong to any optimal solution, whereas {iu, js} may1.

Example 1. Let X = {1, 2, 3} be a set of three variables with domains D1 = {a, b, c},
D2 = {e, f}, and D3 = {g, h}. Suppose there are three cost functions, where E(1b) =
2, E(1a, 2e) = 2, E(1b, 2e) = E(1c, 2f ) = 1, E(1a, 3g) = E(1c, 3h) = 2, and all other
costs are null. Let k = 3. The problem is EDAC. Then, 1a dominates 1b as shown
by the new rule of Equation 4 that is satisfied: E(1b) − E(1a) + E(1b, 2f ) − E(1a, 2f ) +
min(E(1b, 3g) − E(1a, 3g), E(1b, 3h) − E(1a, 3h)) = 2 − 0 + 0 − 2 ≥ 0, discarding tuple
{2e} because E(1b, 2e) + E(1b) + E(2e) + E∅ = 1 + 2 + 0 + 0 ≥ k, whereas the old rule of
Equation 3 is unsatisfied: E(1b)−E(1a)+min(E(1b, 2e)−E(1a, 2e), E(1b, 2f )−E(1a, 2f ))+
min(E(1b, 3g) − E(1a, 3g), E(1b, 3h) − E(1a, 3h)) = 2 − 0 − 1 − 2 < 0.

In the following, we recall how to enforce Equation 4 by an immediate adaptation of
the original algorithm in [59]. Then, we present a modified version to partially enforce a
novel combination of Equation 4 and Equation 2 with a much lower time complexity.

1Depending on the definition of soft arc consistency, from [54] (as presented in Section 3.1) or from
[18], Equation 4 is stronger than or equivalent to Equation 3.
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3.2.1. Enforcing DEE

Assuming a soft arc consistent WCSP (see e.g., W-AC∗2001 algorithm in [57]), en-
forcing DEE is described by Algorithm 1. For each variable i, all the pairs of values
(u, r) ∈ Di × Di with u < r are checked by the function DominanceCheck to see if r is
dominated by u or, if not, vice versa (line 3). At most one dominated value is added to
the value removal queue ∆ at each inner loop iteration (line 2). Removing dominated
values (line 4) can make the problem arc inconsistent, requiring us to enforce soft arc
consistency again. Procedure AC∗-DEE successively enforces AC∗ and DEE until no value
removal is made by the enforcing algorithms.

Function DominanceCheck(i, u, r) computes the sum of worst-cost differences as de-
fined by Equation 4 and returns a non-empty set containing value r if Equation 4 is true,
meaning that r is dominated by value u. It exploits early breaks as soon as Equation 4
can be falsified (lines 5 and 6). Worst-cost differences are computed by the function getD-
ifference(j, i, u, r) applied to every binary cost function related to i, discarding forbidden
assignments with {ir, js} (line 8), as suggested by Equation 4. Worst-cost differences are
always negative or zero (line 7) due to AC∗.

The worst-case time complexity of getDifference is O(d) for binary WCSPs. Domi-
nanceCheck is O(nd) assuming a complete graph. Thus, the time complexity of one itera-
tion of Algorithm 1 (DEE) is O(nd2nd+nd) = O(n2d3). Interleaving DEE and AC∗ until
a fixed point is reached is done at most nd times, resulting in a worst-case time complexity
in O(n3d4). Its space complexity is O(nd2) when using the residues structure [59].

Note that using the new Equation 4 (line 8) or the Equation 3 (without line 8) does
not change the complexities.

3.2.2. Enforcing DEE1

In order to reduce the time (and space) complexity of pruning by dominance, we
test only one pair of values per variable. Hence the name, DEE1, for the new algorithm
described in Algorithm 2. We select the pair (u, r) ∈ Di × Di in an optimistic way such
that u is associated with the minimum unary cost and r to the maximum unary cost
(lines 9 and 10). Because arc consistency also implies node consistency, we always have
E(iu) = 0.2 If all the unary costs (including the maximum) are equal to zero (line 11), we
select as r the maximum domain value (or its minimum if this value is already used by u).
By doing so, we should favor more pruning on max-closed or submodular subproblems3.

Instead of just checking the new Equation 4 for the pair (u, r) alone, we use the
opportunity to also check the original DEE rule of Equation 2 for all the pairs (u, v)
such that v ∈ Di \ {u}. This is done in the function MultipleDominanceCheck (lines 15
and 16). Notice that Equation 2 simplifies to E(iv) ≥ ubu (line 16) due to AC∗. This
function computes at the same time the sum of maximum costs ubu for value u (lines 12
and 13) and the sum of worst-cost differences δur for the pair (u, r). The new function
getDifference-Maximum(j, i, u, r) now returns the worst-cost difference, as suggested by
Equation 4, and also the maximum cost in E(i, j) for i assigned u. When the maximum
cost of a value is null for all its cost functions, we can directly remove all the other values
in the domain avoiding any extra work (line 14). Finally, if the selected pair (u, r) for

2In practice, we set the value u to the unary support offered by NC [54] or EDAC [55].
3Assuming a problem with two variables i and j having the same domain and a single submodular

cost function, e.g., E(iu, js) = 0 if u ≤ s else u − s, or a single max-closed constraint, e.g., u < s, then
DEE1 assigns min(Di) to i and max(Dj) to j.
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Algorithm 1: Enforce DEE [59]

Procedure DEE((X,W ): AC∗ consistent WCSP)
∆ := ∅ ;
foreach i ∈ X do1

foreach (u, r) ∈ Di × Di such that u < r do2

R := DominanceCheck(i, u, r) ;
if R = ∅ then R := DominanceCheck(i, r, u) ;3

∆ := ∆ ∪ R ;

foreach ir ∈ ∆ do4

remove r from Di ;
Q := Q ∪ {i} ;

/* Check if value u dominates value r */
Function DominanceCheck(i, u, r): set of dominated values

δur := E(ir) − E(iu) ;
if δur < 0 then return ∅ ;5

foreach j ∈ X \ {i} do
δ := getDifference(j, i, u, r) ;
δur := δur + δ ;
if δur < 0 then return ∅ ;6

return {ir} /* δur ≥ 0 */ ;

/* Compute smallest difference in costs when using a instead of b */
Function getDifference(j, i, u, r): cost

δur := 0 ;7

foreach s ∈ Dj do

if E(ir, js) + E(ir) + E(js) + E∅ < k then8

δur := min(δur, E(ir, js) − E(iu, js)) ;

return δur ;

/* Enforce AC∗ and DEE */
Procedure AC∗-DEE()

Q := X ;
while Q 6= ∅ do

W-AC∗2001(Q) ;
DEE(Q) ;

the variable i satisfies Equation 4, removing the value r of Di, then a new pair for i
will be checked at the next iteration of Algorithm 2 in the modified procedure AC∗-DEE1

(replacing Algorithm 1 by Algorithm 2 in AC∗-DEE).
Notice that DEE1 is equivalent to DEE on problems with Boolean variables, such as

MaxSAT. For problems with non-Boolean domains, DEE1 is still able to detect and prune
several values per variable. Clearly, its time (resp. space) complexity is O(n3d2) (resp.
O(n) using only one residue per variable), reducing by a factor d2 the time and space
complexity compared to DEE.
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Algorithm 2: Enforce DEE1

Procedure DEE1((X, W ): AC∗ consistent WCSP)
∆ := ∅ ;
foreach i ∈ X do

u := arg minv∈Di
E(iv) ;9

r := arg maxv∈Di
E(iv) ;10

if u = r /* ∀v ∈ Di, E(iv) = 0 */ then11

if u = max(Di) then
r := min(Di) ;

else
r := max(Di) ;

R := MultipleDominanceCheck(i, u, r) ;
if R = ∅ then R := MultipleDominanceCheck(i, r, u) ;
∆ := ∆ ∪ R ;

foreach ir ∈ ∆ do
remove r from Di ;
Q := Q ∪ {i} ;

/* Check if value u dominates value r and possibly other values */
Function MultipleDominanceCheck(i, u, r): set of dominated values

δur := E(ir) − E(iu) ;
if δur < 0 then return ∅ ;
ubu := E(iu) ;12

foreach j ∈ X \ {i} do
(δ, ub) := getDifference-Maximum(j, i, u, r) ;
δur := δur + δ ;
ubu := ubu + ub ;13

if δur < 0 then return ∅ ;

if ubu = 0 then return {iv|v ∈ Di \ {u}} ;14

R := {ir} /* δur ≥ 0 */ ;
foreach v ∈ Di \ {u} do15

if (E(iv) ≥ ubu) then R := R ∪ {iv} ;16

return R ;

/* Compute smallest cost difference and maximum cost for value u */
Function getDifference-Maximum(j, i, u, r): pair of costs

δur := 0 ;
ubu := 0 ;
foreach s ∈ Dj do

if E(ir, js) + E(ir) + E(js) + E∅ < k then
δur := min(δur, E(ir, js) − E(iu, js)) ;

ubu := max(ubu, E(iu, js)) ;

return (δur, ubu) ;

/* Enforce AC∗ and DEE1 */
Procedure AC∗-DEE1()

Q := X ;
while Q 6= ∅ do

W-AC∗2001(Q) ;
DEE1(Q) ;
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4. Computational Protein Design instances

In our initial experiments with CPD in [2], we built 12 designs using the CPD dedi-
cated tool osprey 1.0. A new version of osprey being available since, we used this new
2.0 version [30] for all computations. Among different changes, this new version uses a
modified energy field that includes a new definition of the “reference energy” and a dif-
ferent rotamer library. We therefore rebuilt the 12 instances from [2] and additionally
created 35 extra instances from existing published designs, as described in [83]. We must
insist on the fact that the 12 rebuilt instances do not define the same energy landscape
or search space as the initial [2]’s instances (due to changes in rotamers set).

These designs include protein structures derived from the PDB that were chosen for
the high resolution of their 3D-structures, their use in the literature, and their distribu-
tion of sizes and types. Diverse sizes of sequence-conformation combinatorial spaces are
represented, varying by the number of mutable residues, the number of alternative amino
acid types at each position and the number of conformations for each amino acid. The
Penultimate rotamer library was used [64]. Over these 47 designs, we only report results
on the 40 designs for which a GMEC could be identified and proven by one of the tested
solvers. All 47 designs are available for download both in native and WCSP formats at
http://genotoul.toulouse.inra.fr/~tschiex/CPD-AIJ.

Preparation of CPD instances. Missing heavy atoms in crystal structures and hydrogen
atoms were added with the tleap module of the AMBER9 software package [12]. Each
molecular system was then minimized in implicit solvent (Generalized Born model [42])
using the Sander program and the all-atom ff99 force field of AMBER9. All E∅, E(ir),
and E(ir, js) energies of rotamers (see Equation 1) were pre-computed using osprey 2.0.
The energy function consisted of the Amber electrostatic, van der Waals and the solvent
terms. Rotamers and rotamer pairs leading to sterical clashes between molecules are
associated with huge energies (1038) representing forbidden combinations. For n residues

to optimize with d possible (amino acid,conformation) pairs, there are n unary and n.(n−1)
2

binary cost functions that can be computed independently.

Translation to WCSP format. The native CPD problems were translated to the WCSP
format before any pre-processing. To convert the floating point energies of a given instance
to non-negative integer costs, we subtracted the minimum energy to all energies and then
multiplied energies by an integer constant M and rounded to the nearest integer. The
initial upper bound k is set to the sum, over all cost functions, of the maximum energies
(excluding forbidden sterical clashes). High energies corresponding to sterical clashes are
represented as costs equal to the upper bound k (the forbidden cost). The resulting
WCSP model was used as the basis for all other solvers (except osprey). To keep a cost
magnitude compatible with all the compared solvers, we used M = 102. Experiments with
a finer discretization (M = 108) was used in previous experiments [83] with no significant
difference in computing efforts.

4.1. A new cost-based variable ordering heuristics

We analyzed the distribution of costs for the CPD problem in order to infer a new
variable ordering heuristics. Figure 3-left shows the histogram of a typical binary cost
function for one of the CPD instances (1ENH, one of the open instances). Although
the distribution has several modes, we chose to collect as an important feature of a cost
function its median cost, which is less sensitive to extrema than the mean cost.
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Figure 3: Histograms of E(1, 12) costs (left) and of median costs of all binary cost functions (right) for
the 1ENH instance (M = 102).

Figure 3-right shows the histogram of median costs for this instance. The problem
has 666 binary cost functions and we collected the median cost in every cost function.
The distribution of median costs has a heavy right tail. This feature can be exploited
during search to focus on the most important variables first. For that, we define a new
dynamic variable ordering heuristics selecting at each node of the search tree the variable
minimizing the ratio of its current domain size divided by the sum of the median costs of
all its current cost functions (including its unary cost function). The sum of the median
costs gives a rough estimate of the average lower bound increase if we select that variable,
relating this heuristics to strong branching in Operations Research [62, 1]. In order to
save computation time, median costs of binary cost functions are computed only once,
just after enforcing EDAC (and DEE), before the search.

5. Alternative models for the CPD

The rigid backbone CPD problem has a simple formulation and can be easily written
in a variety of combinatorial optimization frameworks. To evaluate CFN algorithms, the
new DEE1 algorithm and our domain specific heuristics, we compared these different
variants with a variety of other solvers, coming from different fields. We present now the
different models used in the comparison.

5.1. CPD as a probabilistic graphical model

The notion of graphical model has been mostly associated with probabilistic graphi-
cal models, the most famous examples of these are Markov random fields and Bayesian
networks [49]. In those formalisms, a concise description of a joint distribution of proba-
bilities over a set of variables is obtained through a factorization in local terms, involving
only few variables. For terms involving at most two variables, if vertices represent vari-
ables and edges represent terms, a factorization can be represented as a graph, hence the
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name of graphical models. The same idea is used for concisely describing set of solutions
(relations) in CSP or cost distributions in CFN.

Definition 2. A discrete Markov random field (MRF) is a pair (X, Φ) where X =
{1, . . . , n} is a set of n random variables and Φ is a set of potential functions. Each
variable i ∈ X has a finite domain Di of values that can be assigned to it. A potential
function φS ∈ Φ, with scope S ⊆ X, is a function φS : DS 7→ R.

A discrete Markov random field (MRF) implicitly defines a non-normalized probability
distribution over X. For a given tuple t, the probability of t is defined as:

P (t) =
exp(−

∑

φS∈Φ φS(t[S]))

Z

where Z is a normalizing constant.
From the sole point of view of optimization, the problem of finding an assignment

of maximum probability, also known as the maximum a posteriori (MAP) assignment
in a MRF or a minimum cost solution of a CFN (the Weighted CSP) are equivalent by
monotonicity of the exp() function. Some technical differences remain: CFN are restricted
to non-negative costs (and some tools are restricted to integer costs). Being focused on
optimization, CFN also emphasizes the possible existence of a finite upper bound k that
leads to the use of bounded addition to combine costs instead of plain addition of potentials
in MRFs.

The CPD problem can therefore directly be modeled as the MAP problem in a MRF
exactly as we have described for CFN before, additive using potentials to capture energies
(see for example [86]). Combinations of values with cost k (forbidden) are mapped to an
infinite additive potential or a 0 value if multiplicative (exponential) potentials are used.

These models can be solved using MAP-MRF solvers such as daoopt [69] (winner of
the Pascal Inference Challenge in 20114) or the recent version of the mplp [80] solver.

5.2. Integer linear programming model

A 0/1 linear programming (01LP) problem is defined by a linear criterion to optimize
over a set of Boolean variables under a conjunction of linear equalities and inequalities.
The previous optimization problem over a graphical model can also be represented as a
01LP problem using the encoding proposed in [51].

For every assignment ir of every variable i, there is a Boolean variable dir that is
equal to 1 iff i = r. Additional constraints enforce that exactly one value is selected for
each variable. For every pair of values of different variables (ir, js) involved in a binary
energy term, there is a Boolean variable pirjs that is equal to 1 iff the pair (ir, js) is used.
Constraints enforce that a pair is used iff the corresponding values are used. Then, finding
a GMEC reduces to the following ILP:

4See http://www.cs.huji.ac.il/project/PASCAL/.
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min
∑

i,r
E(ir) 6=k

E(ir).dir +
∑

i,r,j,s
j>i,E(ir,js) 6=k

E(ir, js).pirjs

s.t.
∑

r

dir = 1 (∀i) (5)

∑

s

pirjs = dir (∀i, r, j) (6)

dir = 0 (∀i, r)E(ir) = k (7)

pirjs = 0 (∀i, r, j, s)E(ir, js) = k (8)

dir ∈ {0, 1} (∀i, r) (9)

pirjs ∈ {0, 1} (∀i, r, j, s) (10)

This model is also the ILP model IP1 proposed in [48] for side-chain positioning. It
has a quadratic number of Boolean variables. Constraints (7) and (8) explicitely forbid
values and pairs with cost k (sterical clashes).

This model can be simplified by relaxing the integrality constraint on the pirjs: indeed,
if all dir are set to 0 or 1, the constraints (5) and (6) enforce that the pirjs are set to 0 or
1. The same observation has been previously done for in the context of the linearization
of a quadratic optimization model for wind farm design in [87]. In the rest of the paper,
except where it is otherwise mentioned, we relax constraint (10). This type of ILP model
can be handled by various ILP solvers such as IBM ILOG cplex.

5.3. 0/1 quadratic programming model

A 01QP problem is defined by a quadratic criterion to optimize over a set of Boolean
variables under a conjunction of linear equality and inequality constraints. A compact
encoding of the problem can be obtained using the ability of expressing the product of
Boolean variables, getting rid of a quadratic number of pirjs variables of the 01LP model.

For every value ir, there is again a Boolean variable dir that is equal to 1 iff i = r.
Additional linear constraints enforce that exactly one value is selected for each variable.
The use of a given pair of rotamers at positions (ir, js) can then be simply captured by
the product dir.djs. Then, finding a GMEC reduces to the following compact QP:

min
∑

i,r

E(ir).dir +
∑

i,r,j,s
j>i

E(ir, js).dir.djs

s.t.
∑

r

dir =1 (∀i)

dir ∈ {0, 1} (∀i, r)

dir = 0 (∀i, r)E(ir) = k (11)

dir + djs ≤ 1 (∀i, r, j, s)E(ir, js) = k (12)

Values and pairs generating sterical clashes are explicitely forbidden by constraints
(11) and (12). This model can be handled by the QP solver of IBM ILOG CPLEX.
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5.4. 0/1 quadratic optimization model

Another compact model can be obtained in the more restricted case of pure Boolean
Quadratic Optimization (BQO), where a quadratic criterion is optimized but no linear
constraints can be expressed.

For every value ir, there is again a Boolean variable dir that is equal to 1 iff i = r.
We must integrate the fact that exactly one value must be selected in each domain in the
criterion itself. To capture the fact that there is at most one value selected per domain,
we penalize the simultaneous selection of every pair ir, is of rotamers of the same variable
i with a sufficiently large penalty M . To guarantee that at least one value will be selected
in each domain, we shift all finite energies by a constant negative term N such that all
shifted finite energies are strictly negative. If an assignment selects no value in a given
domain, then selecting one value can only result in an assignment with a lower cost, by
introducing new negative terms in the global energy. An optimal solution must therefore
contain exactly one value per domain.

The corresponding model can be written as:

min
∑

i,r

(E(ir) − N).dir +
∑

i,r,j,s
j>i

(E(ir, js) − N).dir.djs +
∑

i,r,s
s>r

M.dir.dis

For N ,we just use the largest negative integer that is strictly below the opposite of
the largest finite energy in a given instance. M must be chosen in such a way that no
combination of energy can compensate for the cost M . The selection of one additional
value ir can just contribute to the criterion by the addition of the energy E(ir) and the
energies E(ir, js) for all other variables j and their rotamers js. M is therefore set to the
opposite of the largest negative integer below the most negative sum of these energies,
overall all variables i and rotamers ir.

The corresponding Boolean quadratic optimization problem can be solved using the
semidefinite programming based exact best-first branch-and-bound solver biqmac [78].

5.5. Weighted partial MaxSAT

Definition 3. A weighted partial MaxSAT (WPMS) instance is a set of pair 〈C, w〉,
where C is a clause and w is a number in N ∪ {∞}, which is called the weight of that
clause. A clause is a disjunction of literals. A literal is a Boolean variable or its negation.

If the weight of a clause is ∞, it is called a hard clause, otherwise it is a soft clause. The
objective is to find an assignment to the variables appearing in the clauses such that all
hard clauses are satisfied and the weight of all falsified soft clauses is minimized.

The CPD problem can be encoded into a WPMS instance. We present two encodings,
which are based on existing translations of CSP into SAT: the direct encoding [5], which
is closer to the CFN model, and the tuple encoding, which was presented but not named
by Bacchus [6] and is quite similar to the ILP model.

Direct encoding. In the direct encoding, we have one proposition dir for each variable/value
pair (i, r), which is true if variable i is assigned the value r. We have hard clauses
(¬dir ∨ ¬dis) for all i ∈ [1, n] and all r < s, r, s ∈ Di, as well as a hard clause (

∨

r dir)
for all i. These clauses ensure that the propositional encoding of the CFN allows exactly
one value for each variable. The cost functions are represented respectively by an empty
clause with weight E∅, unit clauses ¬dir with weight E(ir) and binary clauses ¬dir ∨¬djs

with weight E(ir, js).
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Tuple encoding. The tuple encoding encodes variable domains the same way as the direct
encoding, therefore we have a proposition dir for each variable/value pair i = r, along
with clauses that enforce that each variable is assigned exactly one value. The constant
and unary energy terms are also respectively represented as an empty soft clause with
weight E∅ and soft unit clauses ¬dir with weight E(ir).

For all non-zero pairwise energy term E(ir, js), we have a proposition pirjs as well
as the soft clause (¬pirjs) with weight E(ir, js). This represents the cost to pay if the
corresponding pair (energy term) is used. We also have the hard clauses (dir ∨ ¬pirjs)
and (djs ∨ ¬pirjs). These enforce that if a pair is used, the corresponding values must
be used. Finally, for all the pairs of variables (i, j) and all the values ir, hard clauses
(¬dir ∨

∨

s∈Dj
pirjs) enforce that if a value ir is used, one of the pair pirj· must be used.

This encoding is similar to the 01LP encoding and was originally proposed in the
context of SAT encodings for classical CSP [6]. Unit Propagation (UP) on the tuple
encoding enforces arc consistency in the original CSP (the set of values that are deleted
by enforcing AC have their corresponding literal set to false by UP).

5.6. Constraint programming model

In [72], a generic translation of WCSPs into crisp CSPs with extra cost variables has
been proposed. In this transformation, the decision variables remain the same as in the
original WCSP and every cost function is reified into a constraint, which applies on the
original cost function scope augmented by one extra variable representing the assignment
cost. This reification of costs into domain variables transforms a WCSP in a crisp CSP
with more variables and augmented arities. Typically, unary and binary cost functions
are converted into table constraints of arity two and three respectively. Another extra
cost variable encodes the global GMEC criterion, related by a sum constraint to all the
unary and binary cost variables. All the cost variables are positive integer bounded by
the same initial upper bound k as in the WCSP format.

The resulting CSP model has been expressed in the minizinc [65] constraint program-
ming (CP) language. It can be solved using any CP solvers such as gecode or mistral.

6. Experimental results

For computing the GMEC, all computations were performed on a single core of an
AMD Operon 6176 at 2.3 GHz, 128 GB of RAM, and a 9,000-second time-out. These
computations were performed on the GenoToul cluster.

6.1. Solvers tested

The solvers tested have different configurability in terms of parameters. Solvers such
as mplp offer essentially no tuning, while others offer a large number of options. SAT
solvers that participate routinely in the SAT competition have excellent default settings
and those settings were kept unmodified. For one solver that explicitly requires tuning,
we contacted the author for some advice. There is always a question whether dramatically
different results could be obtained by different settings. The situation here corresponds
to the situation of a non-naive user faced with several optimization tools.

DEE/A* optimization. The underlying principles of DEE/A* have been described in
Section 2.1. To solve the different protein design cases, we used osprey version 2.0
(cs.duke.edu/donaldlab/osprey.php). The procedure starts by extensive DEE pre-
processing (algOption = 3, includes simple Goldstein, Magic bullet pairs, 1 and 2-split
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positions, Bounds and pairs pruning) followed by A∗ search. Only the GMEC conforma-
tion is generated by A∗ (initEw=0).

CFN solver. toulbar2 is a depth-first branch-and-bound solver using soft local consis-
tencies for bounding and specific variable and value ordering heuristics for efficiency. The
default EDAC [55] consistency may simultaneously reformulate all the cost functions in-
volving one variable (a star subgraph). The default variable ordering strategy is based on
the Weighted Degree heuristics [8] with Last Conflict [60], while the default value ordering
consists in choosing for each variable its fully supported value as defined by EDAC.

We used toulbar2 version 0.9.6 (mulcyber.toulouse.inra.fr/projects/toulbar2/)
using binary branching and an initial limited discrepancy search phase [41] with discrep-
ancy less than or equal to 1. We tested this vanilla version (options -d: -l=1 -dee=0)
and incrementally introduced our new cost-based variable ordering heuristics (option -m)
and different levels of DEE processing: maintaining DEE1 during search (-dee=1), pre-
processing with DEE (-dee=4), both together (-dee=2), or maintaining DEE during
search (-dee=3).

daoopt solver. We decided to include daoopt as the winning solver of the 2011 PASCAL
probabilistic inference challenge in the ‘’MAP” category. We downloaded daoopt ver-
sion 1.1.2 from its repository (https://github.com/lotten/daoopt) and contacted the
author for some advice. The distributed version of daoopt is not the same as the PIC
challenge version. It lacks the Dual Decomposition bound strengthening component [69]
that relies on private code.

This solver relies on Stochastic Local Search for finding initial solutions followed by
depth-first AND/OR search [22] and mini-bucket lower bounds [23] for pruning. Mini-
bucket lower bounds require space and time in O(di) (where i is a user controlled pa-
rameter). CPD is certainly not an ideal domain for daoopt: the complete graph makes
AND/OR search useless and the large maximum domain size d makes mini-buckets space
and time intensive. We used the ‘’1 hour” settings for the PIC challenge from [69],
modified to account for the complete graph that makes optimization of the AND/OR
decomposition useless. This leads to the parameters -i 35 --slsX 10 --slsT 6 -lds

1 and tried to allocate different amounts of memory to mini-buckets (option -m with
500MB, 5GB or 50GB), the i parameter being then automatically set by the solver to use
a maximum amount of memory. We kept only the results for the best tuning (5GB, the
worst results being obtained with 50GB). Note that because of large domain sizes, and
the O(di) space complexity of mini-buckets, a fine tuning of this parameter should have
limited influence on the results.

The WCSP instances were transformed into the UAI ‘’MARKOV” format through
the application of an exponential transformation of costs into multiplicative potentials.
Costs above the upper bound were translated to zero potentials to preserve pruning. The
exponential basis was chosen so that the largest multiplicative potentials are equal to 1.

MPLP MAP-MRF solver. We downloaded the sources for the recent version 2 of the
mplp (Message Passing Linear Programming) implementation [80, 81] available at http:
//cs.nyu.edu/~dsontag/.

This solver uses a Message Passing based bound and duality theory to identify optimal
solutions of a MAP-MRF problem through successive tightening of subsets of variables.
The message passing used in mplp defines reparametrizations of the underlying MRF.
These reparametrizations are similar to the reformulations done by local consistencies in
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CFN [79, 18]. The solver is unique in all the solvers considered in that it does not use
branching but only increasingly strong inference by applying reparametrizations to set
of variables that initially contain only pairwise potentials, reasoning on stars [35], and
are incrementally enlarged to include several potentials and strengthen the corresponding
bound [81, 80].

All costs were divided by 1,000 and the optimality gap threshold kept to the default
of 2 · 10−4. The solver does not have any parameter.

ILP and QP optimization. We used cplex version 12.2 with parameters EPAGAP, EP-
GAP, and EPINT set to zero to avoid premature stop. No other tuning was done.

Boolean quadratic optimization. We used the biqmac [78] solver (http://biqmac.uni-klu.
ac.at/biqmaclib.html) from sources provided by Angelika Wiegele. biqmac is a branch-
and-bound solver relying on a strong Semi-Definite Programming (SDP) bound for Boolean
quadratic optimization. The SDP framework is known to provide strong bounds for a va-
riety of combinatorial optimization problems among which MaxCut and Max2SAT, with
guaranteed approximation ratios [36]. Two solver settings (with branching rule set to 2 or
3, as advised by the author) were tried with no significant difference in the performances.

Weighted partial MaxSAT optimization. The same problems have been translated to
WPMS using the two previously described encodings. There are two categories of com-
plete WPMS solvers that we consider here: branch-and-bound (B&B) solvers and sequence-
of-SAT solvers.

• Sequence-of-SAT solvers reformulate the WPMS problem as a series of SAT in-
stances that allow us to successively increase the lower bound or decrease the upper
bound for the optimal solution of the WPMS instance. A particular technique used
by several sequence-of-SAT solvers, such as WPM1 [4] and maxhs [20], is identifying
unsatisfiable cores of the WPMS instance. An unsatisfiable core is a subset of the
soft clauses of the instances which, taken together with the hard clauses of the in-
stances, cannot all be satisfied by any assignment. The sequence of SAT instances
then builds a collection of cores. The last SAT instance produces an assignment
that violates at least one clause from each core but satisfies all other clauses. This
assignment can be shown to be optimal.

• B&B solvers explore a backtracking search tree. At each node of the tree, they
compute a lower bound on the cost of the best solution that can be found in the
subtree rooted at that node. If that lower bound is higher than the cost of the best
solution found so far, the solver backtracks. The solver minimaxsat [43] employs
a method that is typically used in B&B solvers. In its case, the lower bound com-
putation consists in performing unit propagation over the entire formula, including
soft clauses. Unit propagation is able to detect some but not all unsatisfiable cores
of the reduced formula at the current node. These cores are collected and used to
transform the formula into an equivalent formula with a higher lower bound.

As B&B solvers, we have used akmaxsat [52] as it was among the best B&B performers
in the latest MaxSAT evaluation and minimaxsat [43], which was shown to be one of the
best solvers over all the instances of all MaxSAT evaluations in [21]. Among sequence-of-
SAT solvers, we have used bin-c-d, wpm1 and wpm2, which are among the best performers
in recent evaluations, as well as maxhs, which was shown to be the best solver for the entire
ensemble of instances of MaxSAT evaluations [21].
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Figure 4: A figure showing the number of problems that can be solved by each approach (X-axis) as a
function of cumulative time (Y-axis), assuming that each solver tackles problems in increasing order of
cpu-time needed to solve it.

We can observe that there exists a bijection between cores of the direct encoding of an
instance and cores of the tuple encoding. However, there exist cores in the tuple encoding
that can be detected just by unit propagation, but require a longer refutation in the direct
encoding. On the other hand, the tuple encoding is larger and hence unit propagation is
slower. Since both B&B and sequence-of-SAT solvers essentially rely on collecting cores
of the formula, both types of solver can benefit from the tuple encoding by detecting more
cores with less search. However, the overhead of performing unit propagation on a larger
formula may not pay off in runtime.

CP solvers. We used gecode version 4.2.0 (http://www.gecode.org/) and mistral ver-
sion 1.3.40 (using its Python interface numberjack at http://numberjack.ucc.ie/ and
http://github.com/eomahony/Numberjack/tree/fzn). mistral uses a Weighted De-
gree heuristics [8] and a restart strategy with geometric factor 1.3 and base 256. No
tuning was done for gecode.

All the Python and C translating scripts used are available together with the CPD
instances at http://genotoul.toulouse.inra.fr/~tschiex/CPD-AIJ.

6.2. Results

Several solvers were unable to solve any of the instances in the allocated 9,000 seconds
per problem. Despite the compact associated models, neither cplex for the quadratic
programming model, nor biqmac for the quadratic Boolean optimization model could
solve any single instance in less than 9,000 seconds. Similarly, most of the WPMS solvers
failed to solve any instance, in either of the two encoding tested. The only exception to
this is the maxhs solver when applied to the tuple encoding. Finally, neither gecode nor
mistral could solve any single instance. In Table 1, we therefore only report the results
obtained by the WPMS solver maxhs, the CPD solver osprey, the ILP solver cplex, the
MAP-MRF solvers daoopt and mplp, and the CFN solver toulbar2 in its vanilla version
(using the default variable ordering heuristics and no DEE).

The detailed results are given in Table 1. The table shows that the cpu-times are very
well correlated across different models and solvers, and show a clear ordering in terms
of difficulty of these problems for all solvers, from WPMS/maxhs, MAP-MRF/daoopt,
DEE/A∗/osprey, ILP/cplex, MAP-MRF/mplp, and CFN/toulbar2.
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Table 1: For each instance: protein (PDB id.), number of mutable residues, maximum domain size
(maximum number of rotamers), and CPU-time for solving using maxhs, daoopt, DEE/A*, cplex, mplp,
and toulbar2. A ‘-’ indicates that the corresponding solver did not prove optimality within the 9,000-
second time-out. A ’ !’ indicates the solver stops with a SEGV signal.

PDB
id.

n d maxhs daoopt DEE/A* cplex mplp toulbar2

2TRX 11 44 4,086 268.6 31.5 2.6 2.8 0.1

1PGB 11 45 5,209 300.4 135.3 3.6 0.5 0.1

1HZ5 12 45 5,695 350.2 75.0 7.6 16.7 0.1

1UBI 13 45 - 826.9 2,812.6 139.2 37.3 0.2

1PGB 11 148 - - 8,695.2 - 1,291 4.3

1HZ5 12 148 - - 2,398.3 1,555 1,217 2.4

1UBI 13 148 - - - - - 1,557

2PCY 18 44 - - 1,281.1 26.9 14.5 0.2

2DHC 14 148 - - - - 5,388 14.1

1CM1 17 148 - - 138.4 473.1 87.5 3.3

1MJC 28 182 3,698 631.7 4.6 4.1 0.8 0.1

1CSP 30 182 - - 200.0 1,380 1,264 0.8

1BK2 24 182 - - 93.2 125.0 114.9 0.6

1SHG 28 182 - - 138.0 39.4 ! 0.2

1CSK 30 49 - - 41.7 12.5 9.6 0.1

1SHF 30 56 - - 44.3 8.6 3.1 0.1

1FYN 23 186 - - 622.0 2,548 3,136 2.8

1PIN 28 194 - - - - - 3.7

1NXB 34 56 - - 11.1 17.0 4.5 0.2

1TEN 39 66 - - 113.0 45.4 17.1 0.2

1POH 46 182 - - 77.9 29.0 13.1 0.3

2DRI 37 186 - - - - 4,458 42.8

1FNA 38 48 - - 3,310 124.9 121.2 0.5

1UBI 40 182 - - - 2,572 979.4 2.4

1C9O 43 182 - - 2,310 1,635 155.7 1.8

1CTF 39 56 - - - 263.2 549.2 0.7

2PCY 46 56 - - 2,080 54.0 20.3 0.4

1DKT 46 190 - - 5,420 1,254 3,103 2.5

2TRX 61 186 - - 487.0 765.0 344.1 0.9

1CM1 42 186 - - - - - 17.4

1BRS 44 194 - - - - - 346.5

1CDL 40 186 - - - - - 341.8

1LZ1 59 57 - - - 601.6 1,084 1.5

1GVP 52 182 - - - - - 361.8

1RIS 56 182 - - - - 8,483 288.4

2RN2 69 66 - - - 480.8 565.2 1.2

1CSE 97 183 - - 367.0 172.9 60.9 0.7

1HNG 85 182 - - 5,590 2,360 5,934 2.8

3CHY 74 66 - - - - 8,691 59.6

1L63 83 182 - - - 1,480 1,779 2.9

4 5 25 29 33 40

The variant of the ILP model originally proposed by [51], where the pirjs variables
are constrained to be 0/1 variables was also tested. It was overall less efficient than the
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relaxed model we used. The ratio in terms of speedup was never very important (between
0.2 and 3.4 with a mean of 1.4 over all the solved instances) showing the robustness of
cplex. It is often claimed, following [86], that LP technology is not able to deal with
large instances of MRF. This experiment, on realistically designed instances of CPD,
using state-of-the-art energy functions, including sterical clashes, shows that the recent
12.2 version of cplex gives reasonably good results on these problems.

6.3. Non-vanilla toulbar2

The results obtained on the same 40 CPD instances using the vanilla toulbar2, en-
hanced with our new variable ordering heuristics and increasingly stronger DEE processing
are given in Table 2. None of the 7 open unreported instances could be solved by these
new variants.

The new variable ordering heuristics consistently offer improved results. The effect
of additional DEE processing is mostly visible on the difficult instances, the most visible
and persistent improvements being obtained when using DEE in pre-processing, and for
some instances (e.g., 1BRS, 1RIS) also maintaining DEE1 during search. They offer
speedups up to 6 (on 1GVP). Further tests on a variety of CFN benchmarks (http:
//costfunction.org) are reported in [34]. They show that DEE1 allows to solve more
problems and DEE1 is now a default option of toulbar2.
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Table 2: For each instance: CPU-time for solving using toulbar2 and different combinations of options
for DVO and DEE. A ‘-’ indicates that the corresponding solver did not prove optimality with the 9,000-
second time-out. The tb2 column gives the results obtained using the vanilla toulbar2 for reference.
The DVO corresponds to the activation of the new variable ordering heuristics described in Section 4.1.
This option is kept activated in all the remaining columns. These columns correspond respectively to
additionally maintaining DEE1 during search, pre-processing using DEE, doing both, and maintaining
DEE during search. The last line reports the number of times a method was faster than the others.

PDB n d tb2 DVO DEE1 DEEpre DEEpre DEE
+DEE1

2TRX 11 44 0.1 0.1 0.1 0.1 0.1 0.1

1PGB 11 45 0.1 0.1 0.1 0.1 0.1 0.1

1HZ5 12 45 0.1 0.1 0.1 0.1 0.1 0.1

1UBI 13 45 0.2 0.2 0.2 0.2 0.3 0.5
1PGB 11 148 4.3 3.8 3.4 3.1 8.6 15.1
1HZ5 12 148 2.4 2.4 2.3 2.2 3.1 3.5
1UBI 13 148 1,557 1,068 1,736 1,133 1,162 -
2PCY 18 44 0.2 0.2 0.2 0.2 0.2 0.2

2DHC 14 148 14.1 8.0 7.0 7.0 14.5 52.0
1CM1 17 148 3.3 3.1 3.2 3.1 3.1 3.1

1MJC 28 182 0.1 0.1 0.1 0.1 0.1 0.1

1CSP 30 182 0.8 0.6 0.5 0.7 0.7 0.8
1BK2 24 182 0.6 0.6 0.6 0.5 0.7 0.5

1SHG 28 182 0.2 0.2 0.2 0.2 0.2 0.2

1CSK 30 49 0.1 0.1 0.1 0.1 0.1 0.1

1SHF 30 56 0.1 0.1 0.1 0.1 0.1 0.1

1FYN 23 186 2.8 2.9 2.6 3.0 3.2 3.8
1PIN 28 194 3.7 3.0 3.0 4.8 6.2 12.0
1NXB 34 56 0.2 0.2 0.2 0.2 0.2 0.2

1TEN 39 66 0.2 0.2 0.2 0.2 0.2 0.2

1POH 46 182 0.3 0.3 0.3 0.4 0.4 0.4
2DRI 37 186 42.8 16.4 37.7 9.6 15.5 51.2
1FNA 38 48 0.5 0.4 0.3 0.4 0.4 0.5
1UBI 40 182 2.4 1.0 0.7 0.9 0.9 1.3
1C9O 43 182 1.8 1.5 1.7 2.3 2.4 3.6
1CTF 39 56 0.7 0.9 0.6 0.6 0.7 0.8
2PCY 46 56 0.4 0.4 0.4 0.4 0.4 0.4

1DKT 46 190 2.5 2.8 2.4 2.6 2.7 3.9
2TRX 61 186 0.9 0.9 0.9 1.8 1.7 1.9
1CM1 42 186 17.4 11.8 13.2 8.6 11.6 20.0
1BRS 44 194 346.5 241.4 135.4 70.4 60.1 129.0
1CDL 40 186 341.8 198.1 159.0 79.6 128.8 286.4
1LZ1 59 57 1.5 1.1 1.0 0.9 1.0 1.1
1GVP 52 182 361.8 248.5 408.2 38.3 66.8 163.5
1RIS 56 182 288.4 147.4 77.9 37.8 28.8 122.8
2RN2 69 66 1.2 1.1 1.1 1.2 1.1 1.2
1CSE 97 183 0.7 0.8 0.6 0.6 0.6 0.6

1HNG 85 182 2.8 2.4 2.3 3.1 2.8 3.6
3CHY 74 66 59.6 27.9 10.7 10.6 14.9 20.3
1L63 83 182 2.9 2.8 2.3 2.4 2.5 2.7

14 19 26 25 16 14
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6.4. Analysis of results

It is unusual to apply such a wide range of NP-complete solving methods on a common
set of benchmarks. Most comparisons are usually performed on a closely related family
of solvers, sharing a common modeling language (SAT, CSP, MRF. . . ).

Solvers are complex systems involving various mechanisms. The effect of their interac-
tions during solving is hard to predict. Therefore, explaining the differences in efficiency
observed between the different approaches is not straightforward. However, given the sim-
plicity of our encodings, the fact that these instances are challenging for some approaches
while at the same time being simpler to solve for other approaches should provide a source
of inspiration for solver designers.

Quadratic programming and Quadratic optimization. One of the first surprising results is
the difficulty of these instances for quadratic programming with cplex. The quadratic
model is very dense with nd Boolean variables only. cplex is a totally closed-source black
box but the behavior of the solver provides some information on its weak spot here. On
the simplest problems, QP/cplex consumes memory very quickly and grows a very large
node file. On the simple 2TRX problem (n = 11, first line of Table 1), QP/cplex solver
explored 51, 003, 970 nodes and was interrupted by the time-out with an optimality gap of
774%. This indicates a poor lower bound that leads to memory intensive best first search.
On bigger problems, the number of nodes is never large because each node takes quite a
time to explore. On the 1UBI problem (n = 13, d = 148), it explored only 5,233 nodes
with an unbounded gap. It is therefore reasonable to assume that the lower bound used
by cplex is too slow to compute on these problems and does not provide the additional
strength that would compensate for the computing cost.

The model we devised for BQO using biqmac is compact, with the same n.d 0/1 vari-
ables. biqmac uses a semidefinite programming lower bound that is known to provide
among the strongest polynomial time lower bounds for a variety of optimization prob-
lems [76]. Despite this, even the smallest CPD instances could not be solved. We tried to
extend the 9,000-second deadline for the simplest instance. After several hours of com-
puting, biqmac stopped and reported that only a few nodes had been explored. The SDP
technology used in biqmac may provide excellent bounds, but the time needed to compute
them is currently too large to offer a viable alternative for CPD. The biqmac library at
http://biqmac.uni-klu.ac.at/biqmaclib.html contains a variety of QP and (closely
related) MaxCut problems that can be used for benchmarking. We tested toulbar2 on
the 10 beasley instances of size n = 100. They are solved in less than 1 second each by
toulbar2, whereas biqmac took around 1 minute each, as reported in [78].

Integer linear programming. Considering 01LP, it is known that the continuous LP re-
laxation of the 0/1 linear programming model we used in Section 5.2 is the dual of the
LP problem encoded by Optimal Soft Arc Consistency (OSAC) [17, 14] when the upper
bound k used in CFN is infinite. OSAC is known to be stronger than any other soft arc
consistency level, including EDAC and Virtual Arc Consistency (VAC) [16]. However, as
soon as the upper bound k used for pruning in CFN decreases to a finite value, soft local
consistencies may prune values and EDAC becomes incomparable with the dual of these
relaxed LPs. To better evaluate the pruning power of cplex, we compared the number
of nodes it explored with those explored by toulbar2 in its vanilla mode or with the new
heuristics and DEE pre-processing. Table 3 shows that among the 28 instances solved,
18 are solved by cplex before search starts, 7 are solved by the non-vanilla version of
toulbar2 w/o backtracks. For the remaining less trivial problems, the number of nodes
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explored by cplex and toulbar2 are often similar with no clear winner. Overall, these
results show comparable pruning power. It also shows that the problems solved by cplex

are relatively simple problems but the computation of the lower bound is quite expensive
in cplex. It typically develops from 1 to 50 nodes per minute while toulbar2 develops
from 1 to 40 thousand nodes per minute. Note that the problems that are not solved
by cplex are much harder, requiring more than 120,000 nodes to explore for the hardest
solved problem (not shown in the Table).

Table 3: For each instance solved by both cplex and toulbar2, we report the number of nodes explored
by each solver (with the number of backtracks in parentheses when available) and the number of nodes per
minute developed. toulbar2 is the vanilla version, toulbar2+ uses the new variable ordering heuristics
and DEE as pre-processing.

PDB
id.

n d cplex toulbar2 toulbar2+

nodes nd/min nodes (bt) nd/min nodes (bt) nd/min

2TRX 11 44 0 - 8 (0) 6857 10 (1) 7500
1PGB 11 45 0 - 17 (1) 11333 16 (1) 10667
1HZ5 12 45 0 - 25 (5) 15000 29 (7) 17400
1UBI 13 45 51 22.0 143 (61) 39000 82 (31) 24600
1HZ5 12 148 0 - 89 (34) 2225 54 (16) 1453
2PCY 18 44 0 - 53 (6) 13826 40 (9) 10909
1CM1 17 148 0 - 14 (0) 258 0 (0) 0

1MJC 28 182 0 - 22 (0) 14667 2 (0) 1714
1CSP 30 182 547 23.8 540 (245) 42078 42 (16) 3877
1BK2 24 182 3 1.4 28 (3) 2800 19 (3) 2375
1SHG 28 182 214 326 268 (101) 69913 51 (16) 19125
1CSK 30 49 0 - 38 (5) 20727 14 (3) 7636
1SHF 30 56 0 - 35 (4) 17500 12 (0) 6000
1FYN 23 186 0 - 84 (20) 1819 43 (8) 863
1NXB 34 56 0 - 30 (0) 9474 14 (0) 4667
1TEN 39 66 0 - 75 (6) 20455 22 (5) 6600
1POH 46 182 0 - 111 (5) 21484 15 (0) 2195
1FNA 38 48 0 - 189 (47) 25200 84 (28) 12600
1UBI 40 182 287 6.7 1,669 (766) 41900 539 (228) 36337
1C9O 43 182 49 1.8 222 (57) 7525 82 (16) 2112
1CTF 39 56 94 21.4 294 (95) 24845 110 (33) 10820
2PCY 46 56 0 - 62 (5) 10629 20 (0) 3158
1DKT 46 190 0 - 210 (36) 5122 134 (24) 3045
2TRX 61 186 6 0.5 111 (14) 7239 85 (16) 2818
1LZ1 59 57 735 73.5 807 (308) 31855 178 (53) 11609
2RN2 69 66 0 - 105 (17) 5385 110 (17) 5500
1CSE 97 183 0 - 94 (0) 8418 9 (0) 915
1HNG 85 182 48 1.2 411 (110) 8745 96 (21) 1870
1L63 83 182 0 - 196 (17) 4055 58 (3) 1468

Markov Random Field MAP. The relaxed LP is also equivalent, in the pairwise case, to
the LP relaxation of MRFs in the so-called local polytope [81]. In its original version [35],
mplp is only guaranteed to produce this LP bound if domains are Boolean. It is therefore
weaker than OSAC for CFN and comparable to Virtual AC [14]. With the recent additions
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described in [81, 80], mplp has the ability to incrementally tighten its bound by performing
local inference on several potentials (or cost functions) organized in cyclic structures.
The strength of this lower bound is such that mplp version 2 is often able to prove
optimality based just on this bound and the cost of the assignment that optimizes unary
reparameterized potentials. Still, weaker but faster CFN lower bounds combined with
search apparently offer a better solution on these realistic CPD instances.

In the MRF community, the inefficiency of pure LP on large MRF instances is well-
known [86]. These experiments show that, combined with branching, the incrementality
of the LP bound allows 01LP to get very decent results on these problems. However, the
quadratic size of the 01LP model probably explains the better efficiency of mplp.

MaxSAT. The most surprising result is probably the difficulty of these problems for
MaxSAT solvers, either branch-and-bound based or core-based. To analyze branch and
bound based algorithm behavior, we instrumented the two solvers MiniMaxSat and akmaxsat

to report the best upper bound found and the number of nodes explored. Additionally,
akmaxsat reports the lower bound computed at the root node of the search tree. In the
direct encoding, MiniMaxSat is fast and may explore up to 36 thousand nodes per second
(two orders of magnitude faster than toulbar2). In 15 problems, it was able to identify
sub-optimal solutions ending up with a non-trivial upper bound (within 3.2% to 0.26% of
the optimum) but never started the final optimality proof, showing a weak lower bound.
Indeed, the lower bound computed by akmaxsat at the root of the search tree is never
higher than 27% of the optimum. In contrast, the lower bound computed by toulbar2

at the root was often 99% of the optimum and never less than 97%. We conclude that
the direct encoding does not allow for strong propagation and lower bouds.

The tuple encoding was chosen to put WPMS solvers in a situation where UP applied
to a hardened version of the formula would be able to detect more unsatisfiable cores.
Since this operation is at the heart of the lower bounding procedures of such solvers, it
should allow the derivation of a stronger lower bound. Additionally, unit propagation on
the hardened version of the tuple encoding is equivalent to enforcing arc consistency on
the hardened CFN. In CFN, VAC precisely identifies subproblems whose hardened version
is arc inconsistent (and therefore define inconsistent cores) to increase the lower bound.
VAC is known to be capable of producing stronger lower bounds than the default local
consistency EDAC [55] used in toulbar2. Hence, the tuple encoding provides enough
information to give better lower bounds than what EDAC computes. The empirical
results verify that the lower bound computed at the root is much stronger with the tuple
encoding than with the direct encoding. For several instances akmaxsat computes a
lower bound that is 92% of the optimum. However, this is still far from the lower bound
computed by toulbar2. But the more important problem with this encoding is that with
a quadratic number of extra variables, both minimaxsat and akmaxsat were extremely
slow, exploring at most 2 nodes before the 9,000 second time-out and in several instances
timed out before even finishing the lower bound computation at the root node. They
never produced a single incumbent assignment.

On the other hand, the maxhs core-based solver is able to exploit the stronger tuple
encoding, being able to solve 4 problems to optimality. Analyzing the behaviour of maxhs
on these instances reveals that the solver spends almost all of its time trying to reduce
the size of the cores it finds, using a greedy minimization algorithm. This is because these
protein design instances contain some very large cores (tens of thousands of clauses) which
can not be significantly reduced in size. Such cores arise, for example, from the binary
cost functions in the CFN model. In this case, the core expresses the condition that the
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cost of at least one tuple in the cost function will be incurred, and the core therefore
contains as many clauses as there are tuples in the originating cost function. We observed
that as a result, maxhs is usually unable to complete its initial disjoint core phase within
the timeout. Given this observation, we also experimented with running maxhs with the
core minimization option turned off, on the set of 12 instances which update those in [2],
using the tuple encoding. With core minimization turned off, maxhs was able to complete
the disjoint core phase on all 12 instances. This allowed us to compare the lower bound
produced by the disjoint core phase of maxhs with the lower bound produced at the
root node by toulbar2. Over the 12 instances, the lower bound produced by maxhs was
between 84% and 98% of the lower bound produced by toulbar2, and it was calculated
within only 35 seconds except for two cases. Note that this bound calculated by maxhs

differs from that of toulbar2 in that maxhs uses a complete SAT solver to find the cores,
and the cores are strictly disjoint. Based on these observations, we believe the potential
to improve the performance of the maxhs approach on these instances is very promising.

For other core-based solvers, either because of the quadratic number of variables or
because of a different exploitation of non-AC/UP cores, these CPD instances remain very
hard. Whether it is a fundamental, technical, or implementation difference, identifying
the cause of this difference should allow to improve the existing WPMS technology.

Constraint programming. The generic translation of WCSPs into crisp CSPs suffers from
the large magnitude of costs, resulting in large domains for the extra cost variables with
very slow arc consistency propagation of table constraints, mistral develops approx.
215 nodes per minute. It also requires huge memory space for expressing the table

constraints. Only 4 instances among the 42 could fit into 128 GB during minizinc to
flatzinc translation. By dividing all costs by 100 (i.e., M = 1), mistral was able
to solve 4 instances (21 unsolved due to memory errors), including 2TRX (n = 11) in
47.3 seconds and 28,057 nodes, and gecode solved only one: 2TRX in 2,234 seconds
and 213,423 nodes (20 unsolved due to memory errors). The difference in performances
between the two solvers might come from the different search strategies, mistral used
restarts, but not gecode.

DEE/A*. The DEE/A* combination uses strong polynomial time dominance analysis
using several variants of dead-end elimination. This pre-processing is followed by best-
first search relying on an obsolete lower bound instead of the stronger lower bounds offered
by soft local consistencies such as EDAC [55], or the LP relaxation bound. To confirm
this, we computed the number of nodes explored by osprey during A∗ search. Except
for simple problems where DEE alone could solve the problem, osprey explored trees
larger than those explored by ILP or CFN by several orders of magnitude. On problem
1DKT, it explored more than 107 nodes while ILP/cplex solved the problem without
search and toulbar2 explored 134 nodes. This confirms the weakness of current bounds
in exact CPD algorithms. Otherwise, osprey is quite fast and can develop more than
110,000 nodes per minute. Despite the exploration of huge trees, no DEE/A* execution
led to memory exhaustion before time-out. With an extended time-out of 100 ours [83],
only 2 instances ultimately led to memory exhaustion. Iterative alternatives to A∗ such
as IDA∗ [50] would therefore probably have little influence on the results of DEE/A*.

7. Conclusions

The simplest formal optimization problem underlying CPD looks for a Global Mini-
mum Energy Conformation (GMEC) over a rigid backbone and altered side-chains (iden-
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tity and conformation). In computational biology, exact methods for solving the CPD
problem combine dominance analysis (DEE) and an A∗ search.

The CPD problem can also be directly formulated as a Cost Function Network, with a
very dense graph and relatively large domains. We have shown how DEE can be integrated
with local consistency with a reasonable time complexity.

The CPD can also be easily reduced to optimization in MRF, 01LP, 01QP, weighted
partial MaxSAT, and Boolean quadratic optimization, offering an ideal benchmark for a
large cross-technology comparison.

On a variety of real instances, we have shown that state-of-the-art optimization algo-
rithms on graphical models exploiting bounds based on the reformulation (or reparametriza-
tion) of the graphical model, but also 01LP algorithms, give important speedups compared
to usual CPD algorithms combining dead-end elimination with A∗. Among all the tested
solvers, toulbar2 was the most efficient solver and its efficiency was further improved by
the use of DEE during search.

We also showed that these CPD problems define challenging benchmarks for a va-
riety of solvers, including weighted partial MaxSAT solvers, either branch-and-bound
or core-based, and quadratic programming or quadratic optimization solvers, including
semidefinite programming based solvers.

In practice, it must be stressed that just finding the GMEC is not a final answer to real
CPD problems. CDP energies functions represent an approximation of the real physics
of proteins and optimizing a target score based on them (such as stability, affinity,. . . )
is not a guarantee of finding a successful design. Indeed, some designs may be so stable
that they are unable to accomplish the intended biological function. The usual approach
is therefore to design a large library of proteins whose sequences are extracted from all
solutions within a small threshold of energy of the GMEC. This problem is also efficiently
solved by toulbar2 [83].

Although it is easy to formulate as a discrete optimization problem, another important
limitation of the rigid backbone/rotamer CPD problem lies in the restrictions generated
by these two assumptions. In practice, rotamers offer a continuous range of rotations
along dihedral angles and backbones also have degrees of flexibility. Several approaches
have been proposed and introduced in osprey in the last few years that relax either
or both of these two assumptions while still offering a guarantee of optimality [40, 29,
31]. When flexibility counts, osprey is therefore a reference tool. All these approaches
ultimately require to solve the very same type of optimization problems involving a sum
of precomputed pairwise lower bounds on energy terms. In this context, it becomes
crucial to be able to enumerate all the solutions within a threshold of the optimum.
These approaches should therefore ultimately also benefit from algorithmic improvements
in GMEC optimization, as far as exhaustively enumerating all the solutions within a
threshold of the optimum is feasible.
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lard, L.A., Remaud-Siméon, M., 2009. Design of α-transglucosidases of controlled speci-
ficity for programmed chemoenzymatic synthesis of antigenic oligosaccharides. Journal of
the American Chemical Society 131, 7379–7389.

[14] Cooper, M., de Givry, S., Sanchez, M., Schiex, T., Zytnicki, M., Werner, T., 2010. Soft arc
consistency revisited. Artificial Intelligence 174, 449–478.

[15] Cooper, M.C., 2005. High-order consistency in Valued Constraint Satisfaction. Constraints
10, 283–305.

3.2. CPD as an optimization problem

99



[16] Cooper, M.C., de Givry, S., Sánchez, M., Schiex, T., Zytnicki, M., 2008. Virtual arc
consistency for weighted CSP., in: Proc. of AAAI’08, pp. 253–258.

[17] Cooper, M.C., de Givry, S., Schiex, T., 2007. Optimal soft arc consistency, in: Proc. of
IJCAI’2007, Hyderabad, India. pp. 68–73.

[18] Cooper, M.C., Schiex, T., 2004. Arc consistency for soft constraints. Artificial Intelligence
154, 199–227.

[19] Dahiyat, B.I., Mayo, S.L., 1996. Protein design automation. Protein science : a
publication of the Protein Society 5, 895–903. URL: http://www.pubmedcentral.nih.
gov/articlerender.fcgi?artid=2143401\&tool=pmcentrez\&rendertype=abstract,
doi:10.1002/pro.5560050511.

[20] Davies, J., Bacchus, F., 2011. Solving MAXSAT by solving a sequence of simpler SAT
instances, in: Principles and Practice of Constraint Programming–CP 2011. Springer, pp.
225–239.

[21] Davies, J., Bacchus, F., 2013. Exploiting the power of MIP solvers in MaxSAT, in: Theory
and Applications of Satisfiability Testing–SAT 2013, Springer. pp. 166–181.

[22] Dechter, R., Mateescu, R., 2007. AND/OR search spaces for graphical models. Artificial
intelligence 171, 73–106.

[23] Dechter, R., Rish, I., 2003. Mini-buckets: A general scheme for bounded inference. Journal
of the ACM (JACM) 50, 107–153.

[24] Desmet, J., De Maeyer, M., Hazes, B., Lasters, I., 1992. The dead-end elimination theorem
and its use in protein side-chain positioning. Nature 356, 539–42. URL: http://www.ncbi.
nlm.nih.gov/pubmed/21488406.

[25] Desmet, J., Spriet, J., Lasters, I., 2002. Fast and accurate side-chain topology and energy
refinement (FASTER) as a new method for protein structure optimization. Proteins 48, 31–
43. URL: http://www.ncbi.nlm.nih.gov/pubmed/12012335, doi:10.1002/prot.10131.

[26] Fersht, A., 1999. Structure and mechanism in protein science: a guide to enzyme catalysis
and protein folding. WH. Freemean and Co., New York.

[27] Freuder, E.C., 1991. Eliminating interchangeable values in constraint satisfaction problems,
in: Proc. of AAAI’91, Anaheim, CA. pp. 227–233.

[28] Fritz, B.R., Timmerman, L.E., Daringer, N.M., Leonard, J.N., Jewett, M.C., 2010. Biology
by design: from top to bottom and back. BioMed Research International 2010.

[29] Gainza, P., Roberts, K.E., Donald, B.R., 2012a. Protein design using continuous rotamers.
PLoS computational biology 8, e1002335.

[30] Gainza, P., Roberts, K.E., Georgiev, I., Lilien, R.H., Keedy, D.A., Chen, C.Y., Reza, F.,
Anderson, A.C., Richardson, D.C., Richardson, J.S., et al., 2012b. Osprey: Protein design
with ensembles, flexibility, and provable algorithms. Methods Enzymol .

[31] Georgiev, I., Keedy, D., Richardson, J.S., Richardson, D.C., Donald, B.R., 2008a. Algo-
rithm for backrub motions in protein design. Bioinformatics 24, i196–i204.

Chapter 3. Cost Function Network-based Framework for CPD

100



[32] Georgiev, I., Lilien, R.H., Donald, B.R., 2006. Improved Pruning algorithms and Divide-
and-Conquer strategies for Dead-End Elimination, with application to protein design. Bioin-
formatics (Oxford, England) 22, e174–83. URL: http://www.ncbi.nlm.nih.gov/pubmed/
16873469, doi:10.1093/bioinformatics/btl220.

[33] Georgiev, I., Lilien, R.H., Donald, B.R., 2008b. The minimized dead-end elimination crite-
rion and its application to protein redesign in a hybrid scoring and search algorithm for com-
puting partition functions over molecular ensembles. Journal of computational chemistry
29, 1527–42. URL: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=
3263346\&tool=pmcentrez\&rendertype=abstract, doi:10.1002/jcc.20909.

[34] de Givry, S., Prestwich, S., O’Sullivan, B., 2013. Dead-end elimination for weighted CSP,
in: Springer (Ed.), Principles and Practice of Constraint Programming–CP 2013.

[35] Globerson, A., Jaakkola, T.S., 2007. Fixing max-product: Convergent message passing
algorithms for map lp-relaxations, in: Advances in neural information processing systems,
pp. 553–560.

[36] Goemans, M.X., Williamson, D.P., 1995. Improved approximation algorithms for maxi-
mum cut and satisfiability problems using semidefinite programming. Journal of the ACM
(JACM) 42, 1115–1145.

[37] Goldstein, R.F., 1994. Efficient rotamer elimination applied to protein side-
chains and related spin glasses. Biophysical journal 66, 1335–40. URL:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1275854\&tool=

pmcentrez\&rendertype=abstract, doi:10.1016/S0006-3495(94)80923-3.

[38] Gront, D., Kulp, D.W., Vernon, R.M., Strauss, C.E., Baker, D., 2011. Generalized fragment
picking in rosetta: design, protocols and applications. PloS one 6, e23294.

[39] Grunwald, I., Rischka, K., Kast, S.M., Scheibel, T., Bargel, H., 2009. Mimicking biopoly-
mers on a molecular scale: nano(bio)technology based on engineered proteins. Philosophical
transactions. Series A, Mathematical, physical, and engineering sciences 367, 1727–47. URL:
http://www.ncbi.nlm.nih.gov/pubmed/19376768, doi:10.1098/rsta.2009.0012.

[40] Hallen, M.A., Keedy, D.A., Donald, B.R., 2013. Dead-end elimination with perturbations
(deeper): A provable protein design algorithm with continuous sidechain and backbone
flexibility. Proteins: Structure, Function, and Bioinformatics 81, 18–39.

[41] Harvey, W.D., Ginsberg, M.L., 1995. Limited discrepancy search, in: Proc. of the 14th

IJCAI, Montréal, Canada.
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optimization 

Next, we addressed another challenge of CPD which is the enumeration of a gap free list of 
suboptimal solutions. The generation of large ensembles of suboptimal solutions enables to com-
pensate approximations introduced in the modelling of the design problem. While the task of 
finding a set of near-optimal models proved to be an insurmountable computational hurdle for 
DEE/A*, the CFN-based methods successfully solved 30 out of the 35 design cases tested. 

Combining the CFN solver toulbar2 with the CPD-dedicated software osprey, we conceived a 
framework which goes from the modeling of the CPD system to the combinatorial optimization 
phase based on the last CFN developments. We also introduced new selection criteria for defin-
ing the allowed amino acids at each variable position taking into account its location in the 3D 
structure. This methodology relies on a more precise measurement of the burial of residues com-
pared to other methods described in the literature which are rather based on the measurement of 
the Solvent Accessible Surface Area of residues [3]–[5].  

This work was described in an article published in the Bioinformatics journal [6] and enclosed 
hereafter. 
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ABSTRACT 

Motivation: The main challenge for computational structure-based protein design (CPD) remains the combinatorial 

nature of the search space. Even in its simplest fixed-backbone formulation, CPD encompasses a computationally 

difficult NP-hard problem that prevents the exact exploration of complex systems defining large sequence-

conformation spaces.   

Results: We present here a CPD framework, based on Cost Function Network (CFN) solving, a recent exact 

combinatorial optimization technique, to efficiently handle highly complex combinatorial spaces encountered in 

various protein design problems. We show that the CFN-based approach is able to solve to optimality a variety of 

complex designs that could often not be solved using a usual CPD-dedicated tool or state-of-the-art exact Operations 

Research tools. Beyond the identification of the optimal solution, the global minimum energy conformation (GMEC), 

the CFN-based method is also able to quickly enumerate large ensembles of sub-optimal solutions of interest to 

rationally build experimental enzyme mutant libraries. 

Availability: The combined pipeline used to generate energetic models (based on a patched version of the open 

source solver osprey 2.0), the conversion to CFN models (based on Perl scripts) and CFN solving (based on the open 

source solver toulbar2) are all available at http://snp.toulouse.inra.fr/~tschiex/SpeedUp.tgz. 

Contacts: Sophie.Barbe@insa-toulouse.fr and  

Thomas.Schiex@toulouse.inra.fr 

Supplementary information: Available at Bioinformatics online. 

 

1 INTRODUCTION  

The engineering of tailored proteins with desired properties holds great interest for applications 
ranging from medicine, biotechnology (Nestl et al., 2011), and synthetic biology (Pleiss, 2011) to 
nanotechnologies (Grunwald et al., 2009). Although, directed evolution techniques coupled with 
high-throughput automated procedures have met with some success, they do not provide 
structural design principles to guide the rational design of novel proteins. The development of 
generic and effective protein engineering methodologies, both experimental and computational, is 
thus of utmost interest to speed-up the design of tailored proteins having the desired properties. 
Structure-based computational protein design (CPD) approaches have demonstrated their 
potential to adequately capture fundamental aspects of molecular recognition and interactions 
which have already enabled the successful (re)design of several enzymes for various purposes 
(Hellinga and Richards, 1991; Dahiyat and Mayo, 1997; Looger et al., 2003; Khare et al., 2012). 
Despite these outstanding results, the efficiency, predictability and reliability of CPD methods 
have shown that they still need to mature.  
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CPD is faced with several challenges. The first lies in the exponential size of the conformational 
and protein sequence space that has to be explored which rapidly grows out of reach of 
computational approaches. Another obstacle to overcome is the unsolved issue of accurate 
structure prediction for a given sequence. Therefore, the design problem is usually approached as 
an inverse folding problem (Pabo, 1983), in order to reduce the problem to the identification of 
an amino acid sequence that can fold into a target protein 3D-scaffold which matches the design 
objective (Bowie et al., 1991). This paradigm typically assumes a fixed protein backbone and, for 
each type of amino acid considered at a given position, allows the side-chains to move only 
among a set of discrete and low-energy conformations, called rotamers (Janin et al., 1978). CPD 
is thus formulated as an optimization problem which consists in choosing combinations of 
rotamers at designable specified positions such that the fold is stabilized and the desired property 
is achieved. In order to solve this problem, we need a computationally tractable energetic model 
to evaluate the energy of any combination of rotamers. We also require computational 
optimization techniques that can efficiently explore the sequence-conformation space to find the 
sequence-conformation model of global minimum energy (GMEC: Global Minimum-Energy 
Conformation) or an ensemble of low-energy sequence-conformation models. Indeed, several 
reasons can motivate the generation of multiple near-optimal solutions. First, the sequence-
conformation model with the lowest predicted energy may not fold into the targeted protein 
scaffold due to inaccuracies in the modeling of protein energetics (Kuhlman et al., 2003). 
Secondly, the GMEC solution may be so stabilized that it can lack the flexibility required to 
operate the protein biological function (Arnold, 2001). Such sub-optimal ensembles can then be 
analyzed in order to rationally guide the experimental construction of protein libraries while 
enhancing the chances of success to identify a protein hit. 
 
The protein design problem modeled with a rigid backbone, a discrete set of rotamers, and 
pairwise energy functions, has been proven to be NP-hard (Pierce and Winfree, 2002). Hence 
several meta-heuristic methods have been applied to it, including Monte-Carlo with simulated 
annealing (Kuhlman and Baker, 2000; Voigt et al., 2000), genetic algorithms (Desjarlais and 
Handel, 1995; Raha et al., 2000), and other methods (Wernisch et al., 2000; Desmet et al., 2002; 
Allen and Mayo, 2006). These approaches can usually find a relatively low-energy model fairly 
quickly but without any guarantees of completeness or accuracy. Indeed, these stochastic 
optimization routines may end up trapped in local minima and miss the GMEC with no 
indication.  
 
Conversely, there exist methods which solve the GMEC exactly, such as approaches based on the 
Dead-End Elimination (DEE) theorem (Desmet et al., 1992), on the Branch-and-Bound algorithm 
(Gordon and Mayo, 1999; Wernisch et al., 2000; Hong et al., 2009), on integer linear 
programming (Althaus et al., 2002; C. L. Kingsford et al., 2005) or on dynamic programming 
(Leaver-Fay et al., 2005). These exact methods offer several advantages. First, they ensure that 
discrepancies between CPD predictions and experimental results come exclusively from the 
inadequacies of the biophysical model and not from the algorithm. Next, because provable 
methods can determine that the optimum is reached, they may actually stop before meta-heuristic 
approaches. Finally, empirical studies on solving the GMEC problem reported that the accuracy 
of meta-heuristic approaches tend to degrade as the problem size increases (Voigt et al., 2000). 
 
In this paper, we modeled the CPD problem as either a binary Cost Function Network (CFN) or 
an Integer Linear Programming (ILP) problem (Section 2.4). We compared the performance of 
the open source CFN solver toulbar2 and the IBM™ ILOG ILP solver cplex against that of the 
combined DEE/A* approach as implemented in the dedicated CPD software osprey (Section 3.2), 
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for design problems (Section 3.1). The CFN-based method outperformed by several orders of 
magnitude the other methods both in identifying the GMEC but also in producing a set of low-
energy sequence-conformation models. This second step was not attainable in most of the study 
cases using DEE/A* (Section 3.4). Therefore, on the basis of the CFN approach, we propose a 
new CPD framework (Fig. 1). Our methodology, which we describe in Section 2, is well-adapted 
to solving exactly macromolecular design problems of large sequence-conformation spaces. It 
also has the potential to improve methods that integrate flexibility to a larger extent in protein 
design, as this considerably expands the size of the search space or may require solving a large 
number of GMEC instances (Humphris and Kortemme, 2008; Hallen et al., 2013). These aspects 
are highly relevant to CPD and we shall address them here. 
 

 

2 METHODS 

The CPD strategy introduced in this work (Fig. 1) is composed of five main stages discussed in 
more details in the following sub-sections. The whole CPD framework and the approaches used 
to handle the sequence-conformation combinatorial optimization problem were assessed for the 
design of more stable proteins and cofactor-bound proteins as well as protein-ligand and protein-
protein interfaces. 
 

2.1 Preparation of structural molecular systems  

Three-dimensional models of proteins in free and complex states were derived from their 
respective X-ray structures deposited in the PDB (Protein Data Bank) (Bernstein et al., 1977) 
(Table S1). Missing heavy atoms in crystal structures as well as hydrogen atoms were added 
using the tleap module of the Amber 9 software package (Case et al., 2006). Cofactors as well as 
crystallographic water molecules specified in SITE and LINK records of PDB files were kept in 
structural models. Histidine protonation states and disulfide bonds were assigned using the tleap 
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module. For multimeric proteins, the transformation matrix specified in the PDB file was applied 
to reproduce missing chains. Parameters for non-amino acid type ligands and co-factors were 
generated with the Antechamber module of Amber 9 (Wang et al., 2006). The molecular all-atom 
ff99SB (Hornak et al., 2006), Glycam06 (Kirschner et al., 2008) and gaff force fields (Wang et 
al., 2004) were used for the proteins, carbohydrates and other non-standard molecules, 
respectively. Each molecular system was then subjected to 500 steps of minimization with the 
Sander module of Amber 9, using the Generalized Born/Surface Area implicit solvent model 
(Hawkins et al., 1996). 
 

2.2 Definition of sequence-conformation spaces  

The residues of each protein were classified into three layers (labeled core, boundary or surface) 
according to their burial in the 3D-model (Fig. S1). This burial of residues was defined by 
calculating their solvation radius from atomic solvation radii, as defined by (Archontis and 
Simonson, 2005). The solvation radius    of residue   is given by:  

    ∑         ∑            

(1) 

 
where    and qi are the atomic solvation radius of atom   from residue   and its partial charge, 
respectively. From these calculations, three layers of decreasing residue-solvation radius from the 
core to the surface of the protein were defined. The set of amino acid types considered at each 
mutable residue (i.e., candidate positions for redesign) of the proteins (in their apo form or bound 
to a cofactor) depends on the layer to which the residue belongs to. Further details regarding the 
selection of designed positions and the allowed amino acids can be found in the Supplementary 
data. 
 

2.3 Computation of pairwise energies  

The total energy   total  of a sequence-conformation model defined by the selection of one 
specific amino acid associated with a given conformation (rotamer) for each variable amino acid 
type is assessed as follows:  

            ∑         ∑            
(2) 

 
where    is a constant energy contribution capturing interactions between fixed parts of the 
model,                    ref     is the difference between the self energy of rotamer   at 
position   capturing internal interactions or interactions with fixed regions           and its 
reference energy  ref     which corresponds to the lowest computed intra-rotamer energy for 
each amino acid type by variable residue position (Lippow et al., 2007) and          is the 
pairwise interaction energy between rotamer   at position   and rotamer   at position  . In this 
formulation, the conformations (i.e., rotamers) of amino acid-type ligands are processed as 
rotamers of amino acid side-chains.  
All pairwise energy terms were pre-computed and stored using osprey 2.0 (Gainza et al., 2013). 
These calculations were based on the Amber all-atom ff94 parameters implemented in osprey 2.0 
as well as on additional force field parameters generated from Glycam06 and gaff force fields 
using the Antechamber module of Amber 9. These parameters were added in the parameter files 
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of osprey 2.0 (Chen et al., 2009) and were used for modeling carbohydrates and other non-
standard molecules. The energy functions consisted in the sum of the Amber electrostatic terms 
(with a distance-dependent dielectric constant), van der Waals and dihedral energy terms and the 
EEF1 implicit solvation energy term. No cut-off was used for non-bonded interactions.  
 

2.4 Sequence-Conformation optimization 

The problem of finding the set of rotamers that will optimize the total energy ( total) was modeled 
as either a binary Cost Function Network (CFN) or an Integer Linear Programming (ILP) 
problems. The complete interaction graph and large tree-width excluded the use of dynamic 
programming (Leaver-Fay et al., 2005). The performance of CFN and ILP was compared against 
that of the combined DEE/A* CPD-dedicated approach.  
 
Cost Function Network model (CFN) 
A Cost Function Network, or Weighted Constraint Satisfaction Problem  , is composed of a set 
of local cost functions, each involving a set of specific variables (Schiex et al., 1995). CFNs have 
been used as a modeling framework for representing and solving various combinatorial 
optimization problems in bioinformatics and resource allocation (Cabon et al., 1999; de Givry et 
al., 2006; Zytnicki et al., 2008). 
 
Formally, a CFN   is a triple           where              is a set of   variables. Each 
variable     has a discrete domain     .   is a set of local cost functions. Each cost function      is defined over a subset of variables     (called its scope), has domain ∏   and takes 
its values in       . Cost functions must be non negative but are otherwise totally arbitrary 
and are often described by cost tables. The infinite cost is used to represent hard constraints. An 
assignment   is a mapping from variables to values from their domains. The cost of an 
assignment   for a local cost function is the value of the cost function for the projection of   to 
the scope of the function. The global cost of   is the sum of the costs of   over all local cost 
functions.  It is usually assumed that   contains one constant cost function, with an empty scope, 
denoted as   . A CFN   defines a joint cost distribution over all the variables   defined by the 
cost of the assignments. Since all cost functions in a CFN are non negative, the constant cost 
function      defines a lower bound on this joint cost distribution. Solving a CFN consists in 
finding an assignment that minimizes the joint cost distribution.  
 
Modeling a CPD problem as a CFN is straightforward. Each mutable or flexible residue   is 
represented by a variable  . The set of rotamers available to the residue defines the domain    of 
the variable  . Finally, each interaction energy term in  total can be represented as a cost function. 
The constant term    is captured as a constant cost function with empty scope. The terms      , 
which depend on one residue only, are captured as unary cost functions involving one variable   
each. Finally, interaction terms          can be captured as binary cost functions involving 
variables   and  . To enforce the non negativity requirement on cost functions, one can simply 
subtract the minimum of every cost function from its cost table. The joint cost distribution 
defined by the corresponding CFN is then equal to the energy, up to a known constant shift. The 
optimal solution of the CFN is an assignment that corresponds to a GMEC for the CPD problem. 
When the maximum number of available rotamers over all residues is  , the resulting binary 
CFN takes space in        . 
 
Solving a CFN consists in finding a combination of values for all the variables in   that 
minimizes the joint cost distribution. Such an optimal solution defines a GMEC for the CPD 
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problem. Existing exact algorithms for solving CFN are usually Depth-First Branch and Bound 
(DFBB) algorithms integrating strong incrementally computed polynomial time lower bounds. 
The use of depth-first search algorithms avoids the worst-case exponential space of the A* 
algorithm used in the DEE/A* approach. The incremental lower bounds are produced by 
algorithms that enforce so-called local consistencies  (Schiex, 2000; Larrosa and Schiex, 2004). 
Enforcing a local consistency on a given CFN   transforms it to an equivalent CFN    (defining 
the same joint cost distribution) with a possibly increased constant cost function   , providing an 
improved lower bound. This lower bound is used to prune the search tree and to delete rotamers.  
To identify the GMEC of all CPD instances, we used the open source toulbar21 solver (release 
0.9.7.0) with options -d: -l=3 -m and no initial upper bound. By default, toulbar2 maintains  
Existential Directional Arc Consistency (de Givry et al., 2005) for incremental lower bounding, 
dynamic value ordering (based on minimum unary cost) and a variable ordering heuristics (based 
on the median energy of terms involving a given residue following preprocessing) combined with 
last conflict heuristics (Lecoutre et al., 2009)). The counterpoint to the improved space 
complexity of a DFBB search instead of A* is that DFBB search cannot directly provide a sorted 
list of sub-optimal solutions. To enumerate all sub-optimal solutions within  cut      kcal       of the GMEC, we first computed the GMEC and its associated energy  GMEC as above and performed a second exhaustive search for all solutions with energy below  GMEC   cut (options –a and –ub in toulbar2 to respectively produce all solutions and set a 
global upper bound). 
 
Integer Linear Programming model (ILP) 
We also modeled the CPD problem as an integer linear program (01LP) problem using the usual 
translation from CFN to ILP initially proposed in (Koster et al., 1999). An ILP is defined by a 
linear criteria and a set of linear constraints on integer variables. For every value/rotamer    of the 
variable/residue  , we introduced one Boolean variable     that indicates whether the rotamer    is 
used (     ) or not (     ). In order to enable the expression of the energy as a linear 
function of variables, we introduced an extra Boolean variable       for every pair of rotamers        , capturing the fact that this pair of rotamers is used. The energy can then be expressed 
directly as the linear function to be minimized (the constant term can be ignored as it cannot 
change the optimal solution): 

 ∑              ∑                             
(3) 

 
Additional constraints enforce that exactly one rotamer is selected for each variable position and 
that a pair is used if and only if the corresponding values are used. Then, finding a GMEC 
reduces to the following ILP: 

    ∑              ∑                                 
(4) 

 

such that: ∑           ∑                   

                                                 
1 Toulbar2 is an international collaborative CFN solver development. All sources are available on our software forge 
at http://mulcyber.toulouse.inra.fr/projects/toulbar2. 
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The resulting ILP contains         variables and        constraints. It is equivalent to the 
model proposed for CPD in  (Kingsford et al., 2005). Note that since the objective function is 
non-linear, it is fundamentally impossible to express it in ILP without introducing a quadratic 
number of variables. Hence, this ILP model cannot be improved significantly in size.  
To identify the GMEC, we used the IBM™ ILOG ILP solver cplex (version 12.4.0.0) on this ILP 
with parameters EPAGAP, EPGAP and EPINT set to zero to avoid premature stop. 
 
 
Dead-End-Elimination / A* combined approach (DEE/A*) 
The DEE algorithm iteratively eliminates rotamers and pairs of rotamers which cannot possibly 
be part of the GMEC (Desmet et al., 1992) by using a dominance  criterion. The original DEE 
single elimination criterion removes a rotamer   at position   if there exists another rotamer u at 
the same position such that:  
 

             ∑                ∑                  
(5) 

 
In this case,   can be removed in this case because any conformation using   can be transformed 
into a lower energy conformation by substituting   for  . The pruning criterion is applied until a 
single solution remains (i.e., the GMEC) or all solutions outside an energy window of  cut have 
been pruned or otherwise when no more pruning is identified during a given round. The DEE 
pruning step is followed by an A* Branch-and-Bound like search which uses the remaining 
rotamers (Leach et al., 1998) to identify the GMEC or produces a sorted list of all models whose 
energy is within a specified energy  cut of the GMEC energy. The A* algorithm is a worst-case 
exponential space and exponential time algorithm whose efficiency is tightly linked to the quality 
of the heuristic admissible evaluation function used to decide which node to explore next. 
Interestingly, the heuristic used in the A* approach applied in this study is equivalent to the CFN 
heuristic used in the PFC-DAC algorithm (Wallace, 1996). This lower bound as well as an 
improved variant of it (Larrosa et al., 1998) have been obsoleted by the incremental local 
consistencies introduced in (Schiex, 2000). 
 
In this study, we used osprey 2.0 to perform the DEE/A* procedure in order to find the GMEC 
and sub-optimal models within a  cut                 of the GMEC energy (option         ). The procedure starts by extensive DEE (               which enables simple Goldstein, 
Magic bullet pairs, 1 and 2-split positions, Bounds and pairs pruning) and is followed by the A* 
search. We also optionally applied a procedure including a pre-filtering step before the DEE 

which eliminates rotamers    such that          kcal.mol-1 and pairs         such that              kcal.mol   (        and         parameters). 
 
All computations (toulbar2, cplex and osprey) were performed on one core of an AMD 
OpteronTM Processor 6176@2.3 GHz. We used 128GB of RAM and a 100 hours timeout. 
 

2.5 Analysis of top-score models 

For 4 design cases (1TEN, 1UBI, 2PCY, 1CSK), the 3D structure of the best conformation of 
each unique sequence found within a 2 kcal.mol-1 window of the GMEC energy was built using 
osprey 2. These 3D structure models were then subjected to 1000 steps of minimization with the 
Sander module of Amber 9, using the Generalized Born/Surface Area implicit solvent model. 
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During these minimizations, heavy atom positions were restrained using a harmonic potential 
(force constant = 1 kcal.mol-1.Å-2). The score of minimized structures was computed with osprey 
2.0.  Finally, the conformational variability of the minimized models was assessed by carrying 
out an optimization step allowing all variable amino acids (mutable and flexible) to repack. This 
step was performed using the CFN-based approach with a  cut of 0.2 kcal.mol-1 and involved the 
pre-computing of pairwise energy terms for each minimized model using osprey 2.  
 

3 RESULTS AND DISCUSSION 

3.1 Benchmark set  

A tailored benchmark set was produced in order to assess the performance of combinatorial 
optimization algorithms on sequence-conformation spaces of various sizes and complexity as 
well as the potential of the CPD methodology proposed herein (Fig. 1) for tackling the redesign 
of diverse structural systems involving free proteins or proteins bound to a cofactor, a ligand or a 
protein. The studied systems have all been extracted from previously published papers about 
protein engineering, in silico protein design or protein structural studies (see references Table 
S1). A detailed description of our benchmark preparation protocol is given in Supplementary 
data. 
 
In our benchmark set, the number of mutable residues varies from 3 to 119 (Table S1). They are 
located either in the core of (holo)proteins (except when data is available in the literature) or at 
the protein-protein or protein-ligand interfaces. We then defined a set of flexible residues (from 1 
to 93) (Table S1) that surrounds mutable positions and mainly occupies the core and the 
boundary regions of proteins. The resulting number of variable residues ranges then from 23 to 
120 and, given the penultimate rotamer library used, from 3 to 194 amino acid rotamers were 
considered at each variable position. Our resulting benchmark set covers thus a wide range of 
combinatorial spaces (from        to        ) and allows us to evaluate different combinatorial 
optimization problems of varying complexity.   
 

3.2 GMEC-based design  

First, we evaluated the performance of CFN and ILP methods for solving the GMEC 
identification problem exactly and compared them against the exact CPD-specific method 
DEE/A*. We compared the CFN solver toulbar2, the ILP solver cplex and the DEE/A* 
implemented in the osprey software on the benchmark set of 35 design cases (Table S1) and 
present the results in Table 1.  
 
Out of the 35 design cases, the CFN solver toulbar2 and the ILP solver cplex solved respectively 
30 and 27 cases within the 100-hour time-out whereas the DEE/A* CPD-dedicated approach 
identified only 18 GMEC (Table 1).  The A* step tends to be the time consuming step of the 
combined DEE/A* approach. Table S3 gives fractions of times spent during DEE and A* for 
each instances (the GMEC problem).  The DEE step converges in 30 cases while spending at 
worst 22.5% of the runtime in 29 cases, leaving A* with the remaining  77.5% run-time. 
Application of the CFN approach after DEE leads to shorter runtime and all the remaining 
GMECs are finally solved (Table S3). 
 
The DEE/A* method managed to find the 18 GMEC with CPU times ranging from a few minutes 
to over one hour. Only four cases (1MJC, 1CSK, 1SHF and 1NXB) corresponding to the 
exploration of small combinatorial spaces on small proteins took less than one minute to be 
solved. The DEE step converged to a single solution in only 3 instances (1MJC, 1NXB, 1CSE) 
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(Table S3). The A* search successfully identified 15 further GMEC using the sub-set of rotamers 
remaining after the DEE step. It failed for 12 instances due to time limit (10 cases) or memory 
limit (2 cases). In these cases, the size of the combinatorial search space of non-pruned rotamers 
after the DEE step ranged ~ 1019 to 1036. This was not a sufficient reduction to enable A* to 
extract the GMEC from the sub-set of remaining rotamers with the available computational 
resources. Finally, the DEE step failed to complete within the 100 hours time-out for 5 tests 
covering initial combinatorial spaces from ~ 1061 to 10249 and the highest number of variable 
residues at the surface of the proteins. One can expect the surface residues to be more flexible 
than the buried residues and such flexibility may then lead to a high density of conformations 
with similar energy and a corresponding increase in the complexity of the combinatorial space to 
be explored. These results clearly underline the limits of the DEE-based approach to handle large 
and complex problems.  
 

Table 1: CPU-time for solving the GMEC using DEE/A
*
 (osprey), ILP (cplex) and CFN (toulbar2). 

PDB 
Sequence 

Conformation 
Space Size 

Times (s) 

DEE/A* ILP CFN 

1MJC 4.36e+26 4.57. 3.94 0.08 
1CSP 5.02e+30 200.00 360.00 0.84 
1BK2 1.18e+32 93.20 303.00 0.65 
1SHG 2.13e+32 138.00 42.30 0.25 
1CSK 4.09e+32 41.70 24.90 0.15 
1SHF 1.05e+34 44.30 11.10 0.17 
1FYN 5.04e+36 622.00 2.26e+03 3.79 
1PIN 5.32e+39 9.54e+03 3.00e+03 3.99 
1NXB 2.61e+41 11.10 21.20 0.24 
1TEN 6.17e+43 113.00 81.70 0.33 
1POH 8.02e+43 77.90 31.80 0.45 
2DRI 1.16e+47  TA*  2.92e+5   24.5  
1FNA 3.02e+47 3.31e+03 419.00 0.73 
1UBI 2.43e+49 TA* 704.00 2.14 
1C9O 3.77e+49 2.31e+03 1.40e+03 2.20 
1CTF 3.95e+51 TA* 580.40 1.23 
2PCY 2.34e+52 2.08e+03 76.70 0.51 
1DKT 3.94e+58 5.42e+03 1.85e+03 3.95 
2TRX 9.02e+59 487.00 1.34e+03 1.7 
1PGB 5.10e+61 TDEE T T 
1CM1 3.73e+63  TA*  2.65e+04   19.2  
1BRS 1.67e+64 TA* 2.39e+05 426.0 
1ENH 6.65e+64 TDEE T T 
1CDL 5.68e+65 TA* T 191.1 
1LZ1 1.04e+72 TA* 1.25e+03 2.11 
2CI2 7.26e+75 TDEE T T 
1GVP 1.51e+78 TA* T 593.6 
1RIS 1.23e+80 TA* T 501.00 
2RN2 3.68e+80 MA* 1.14e+03 2.77 
1CSE 8.35e+82 367.00 205.93 1.36 
1HNG 3.70e+88 5.59e+03 4.15e+03 6.97 
3CHY 2.36e+92 TA* 2.91e+04 171.00 
1L63 2.17e+94 MA* 2.82e+03 6.41 
3HHR 2.98e+171 TDEE M T 
1STN 2.00e+249 TDEE M M 

# Nb of cases  
solved in 10 min  11 13 30 

# Nb of cases 
solved in 100 h 

 18 27 30 

A ‘M’ indicates an exceeded memory size (128G) and a ‘T‘ indicates an  exceeded computation time (100h).  For the DEE/A* 
approach, the A* and the DEE associated with M or T indicate the step during which occurred the exceeding of memory or 
computation time.  

 
In order to improve the efficiency of the DEE-based approach, a pre-processing is usually applied 
to eliminate rotamers and pairs of rotamers of high energy which are not expected to appear in 
the GMEC. We then performed such pre-filtering using a 30 kcal.mol-1 threshold for rotamers 
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and a 100 kcal.mol-1 threshold for pairs of rotamers. Using these parameters in one instance 
(1CSE), the optimal solution after preprocessing did not match the GMEC obtained in the 
absence of this pre-processing step. However, when we increased the threshold for rotamers 30 to 
50 kcal.mol-1, the optimal solution remained the same with and without preprocessing. Besides 
losing the guarantee of optimality, the preprocessing step did not improve the performance of 
DEE/A* in terms of the number of instances that were solved (18 GMEC identified out of the 35 
cases) (Table S3). Furthermore, 7 instances required more CPU time for identifying the GMEC 
when preprocessing was used. 
 
The ILP solver cplex solved 9 additional instances from our benchmark set (2DRI, 1UBI, 1CTF, 
1CM1, 1BRS, 1LZ1, 2RN2, 3CHY, 1L63) compared to DEE/A* (Table 1). In all these cases, 
DEE/A* timed out during the A* search. Among these 9 design cases, only 2 (3CHY and 1L63) 
cover combinatorial spaces of greater size (~ 1092 and 1094) than the largest combinatorial 
problem (1HNG ~ 1088) solved by DEE/A* (Table 1). The other 18 instances solved by the cplex 
are the ones which were successfully solved by DEE/A*. Although the ILP solver was faster in 
13 of these 18 instances, the time is overall similar for both methods. Nevertheless, the total 
number of solved instances shows that the ILP solvers can be more efficient for several design 
cases, as previously reported (Allouche et al., 2012). More concise Quadratic Programming 
(cplex QP solver) and Partial Weighted MaxSAT (akmaxsat, MaxHS and Bin-Core-Dis solvers) 
models were also tried, to no avail.      
 
The CFN solver toulbar2 solved respectively 12 and 3 more cases compared to the DEE/A* and 
cplex (Table 1). Therefore, CFN only failed on 5 instances (1PGB, 1ENH, 2CI2, 3HHR, 1STN) 
out of the 35 handled. These instances correspond to vast combinatorial spaces (from about 1061 
to 10249) which mostly include variable residues scattered over the three layers of the proteins 
(Table S1). There are no cases solved by DEE/A* or ILP that CFN could not solve. Moreover, 
CFN outperformed the two other approaches by an impressive margin in terms of speed. Among 
the 30 instances successfully handled by CFN and including large combinatorial spaces, 11 cases 
were solved in less than one second, 23 in less than 10 seconds and only 5 instances required a 
few minutes. Given its running time performance and its success rate for handling large protein 
design problems, the CFN approach appears as an appealing alternative to current exact CPD-
dedicated methods, especially for solving highly complex GMEC-based design problems.  
 
There is no simple explanation for the performance advantage of the CFN solver toulbar2 over 
the ILP solver cplex and the DEE/A* implemented in the osprey. Indeed, solvers are complex 
systems involving various mechanisms. The effect of their interactions during solving is hard to 
predict. Moreover, the IBM™ ILOG ILP solver cplex is a totally closed-source industrial black 
box solver.  
 
Compared to the CFN solver toulbar2, osprey uses an obsolete lower bound instead of the more 
recent incremental and stronger lower bounds offered by soft local consistencies such as EDAC 
(Larrosa et al., 2005). This, together with the associated informed value ordering provided by 
these local consistencies, may explain why the CFN approach outperforms the DEE/A* method. 
Considering ILP, it is known that the LP relaxation lower bound used in ILP is (by duality) the 
same as the Optimal Soft AC (Cooper et al., 2010) lower bound when no upper bounding occurs. 
Since OSAC dominates all other local consistencies at the arc level, this provides an explanation 
for the efficiency of cplex compared to osprey. Finally, compared to ILP, the formulation of the 
deeply non linear problem is more direct in CFN. This probably contributes, together with the 
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upper bounding, variable and value ordering heuristics of toulbar2, to the efficiency of the CFN 
approach compared to ILP.  
 

3.3 Sub-optimal ensemble generation  

We also performed computational design tests to assess the ability of the CFN method to 
generate an ensemble of provably near-optimal sequence-conformation models in addition to the 
GMEC. The performance of the CFN approach was compared against DEE/A*. For this purpose, 
the 35 design cases of the benchmark set (Table S1) were again investigated using the CFN 
toulbar2 solver and the DEE/A* implemented in osprey software to access the set of sequence-
conformation models comprised within an energy window of 2 kcal.mol-1 of the GMEC energy.  
Out of the 35 design cases, the CFN solver toulbar2 managed to produce the sub-optimal 
ensembles of solutions for 30 design cases whereas the DEE/A* approach only successfully 
handled one instance (Table 2).  
 

Table 2: CPU-time for generating the ensemble of sub-optimal models (E cut =2 kcal/mol) using DEE/A
*
 (osprey)  and CFN 

(toulbar2). 

PDB 

Times (s) Number of 
sequence-

conformation 
solutions 

Number of 
different 

sequences 
    DEE/A*  CFN 

1MJC  TA*  41.99  2.11e+06   91  
1CSP MA* 5.91  1.18e+05   794  
1BK2 MA*  6.89   3.18e+05   2.19e+03  
1SHG MA* 13.38  6.46e+05   542  
1CSK MA*  9.04   4.48e+05   199  
1SHF 1.20e+05   0.92   3.07e+04   26  
1FYN  TDEE  14.40  4.05e+05   7.02e+03  
1PIN TDEE 8.99  1.62e+04   310  
1NXB TA* 1015.3  4.67e+07   526  
1TEN  TA*  135.7  6.42e+06   294  
1POH  TA*  1.74e+04   7.56e+08   177  
2DRI TDEE  209.0  4.94e+06   340  
1FNA  TA*  2.19e+03   9.87e+07   3.94e+03  
1UBI  TA* 11.10  3.04e+05   194  
1C9O  TDEE   83.12  3.37e+06   1.65e+03  
1CTF  TA*   439.5  1.96e+07   3.06e+04  
2PCY TA*  6.15   2.28e+05   144  
1DKT  TA*  2.37e+04   1.00e+09   2.83e+04  
2TRX  TA*  376.0   1.01e+09   132  
1PGB  TDEE   T  n.d  n.d  
1CM1 TDEE   117.8  3.01e+06   5.18e+03  
1BRS TDEE  1.57e+03   2.10e+06   2.09e+04  
1ENH  TDEE   T  n.d  n.d  
1CDL TDEE 669.4   1.22e+05   2.54e+03  
1LZ1  TA*   263.8  9.87e+06   546  
2CI2  TDEE   T  n.d  n.d  
1GVP  TDEE  1.66e+04   4.32e+08   3.13e+05  
1RIS  TDEE   3.01e+03   1.11e+08   1.24e+04  
2RN2  TA*   638.8  2.32e+07   4.00e+03  
1CSE  TA*  2.75e+03   8.00e+07   61  
1HNG  TA*  3.39e+03   1.08e+08   1.3e+03  
3CHY  TA*   370.0  3.52e+06   8.56e+03  
1L63  TA*  2.46e+04   8.00e+08   6.03e+03  
3HHR  TDEE   M n.d n.d   
1STN  TDEE   M  n.d n.d  

A ‘M’ indicates an exceeded memory size (128G) and a ‘T‘ indicates an exceeded computation time (100h). For the DEE/A* 
approach, the A* and the DEE associated with M or T indicate the step during which occurred the exceeding of memory or 
computation time.  

 
The DEE/A* approach failed for 34 instances due to time (30 cases) or memory (4 cases) limits. 
It only identified the set of near-optimal models for one instance (1SHF) among the 18 
successfully handled for the GMEC problem (Table 1). Although this solved instance 
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corresponds to one of the smallest investigated combinatorial spaces (~1034) (Table S1), ~ 37 
hours of computation were needed to find the ensemble of low-energy models compared to less 
than one second for the CFN approach. This running time is even larger than the ~7 hours 
required by the CFN method in the worst case (1L63) including an important combinatorial space 
(~1094) and a large number of sub-optimal solutions (8x108).  
Given the failure rate of the DEE/A* approach, we attempted to provide as input the information 
derived from the GMEC-based design tests carried out with the DEE/A* and CFN approaches to 
facilitate generation of the near-optimal ensembles. Despite having prior knowledge of the 
GMEC solution, the DEE/A* was not able to produce the set of sub-optimal models for the 
unsolved instances (data not shown).  
 
The CFN method only failed to identify the near-optimal ensemble on the 5 instances (1PGB, 
1ENH, 2CI2, 3HHR, 1STN) for which the GMEC problem was also unsolved (Table 1). In 
addition to the high success rate achieved by CFN, the method was also very efficient: 10 cases 
were solved by CFN in less than one minute, 18 required several minutes and only 4 instances 
needed several hours (Table 2).  
 
While the task of finding a set of low-energy sequence-conformation models proved to be an 
insurmountable computational hurdle for DEE/A* as implemented in osprey, the CFN solver 
toulbar2 successfully solved most of the design cases tested. Moreover, the CFN approach gave 
access to sets of provably sub-optimal solutions with outstanding running time performances.  
 
The CFN approach efficiently uses the knowledge of the GMEC solution in the enumeration 
procedure of the near-optimal models. The GMEC defines an upper bound corresponding to the 
energy of the GMEC + 2 kcal.mol-1. In CFN, this upper bound is systematically compared to the 
lower bound provided by local consistency enforcing. The DEE/A* implemented in osprey uses 
the same upper bound (parameter pruningE) but exploits a weaker lower bound. This likely 
explains the performance gap compared to the toulbar2 CFN solver. 
 

3.4 Sub-optimal ensemble analysis 

First, we analyzed the sequence and conformational variability of the near-optimal models 
obtained for 4 design cases (1CSK, 1TEN, 1UBI, 2PCY) of proteins adopting distinct structural 
folds (Table S2). These instances include from 9 to 16 mutable residues and from 21 to 30 
flexible residues (Table S1).  
 
Within a window of 2 kcal.mol-1 of the GMEC, the CFN-based approach produced over 105 
sequence-conformation models for each of the 4 design cases (Table 3). The score of these 
models is lower by as much as ~ 20 kcal.mol-1 than that of the wild-type model (Fig. S2c-S5c). In 
these ensembles of models, 144, 194, 199 and 294 unique sequences were found, respectively, 
for 2PCY, 1UBI, 1CSK and 1TEN design cases.  
 
Only few unique sequences were then generated compared to the high number of enumerated 
models within a small energy window of 2 kcal.mol-1 of the GMEC energy. However, when the 
experimental construction of the protein library is considered, it is important to have access to a 
larger ensemble of distinct sequences. For this purpose, the outstanding performances of the CFN 
solver (Table 2) could be harnessed to provably predict sub-optimal models distributed on a 
wider energy window of the GMEC and thus attempt to generate more diverse sequence 
ensembles.  
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For the 4 design cases, the wild-type amino acid was the most often either substituted by an 
amino acid of slightly larger size or conserved (Fig. S2a-S5a). Nevertheless, the entire wild-type 
sequence of the protein was never found within the sub-optimal ensembles. It is noteworthy that 
the mutable residues of glycine type were not found substituted by another amino acid type (Fig. 
S2a, S3a, S4a). The number of conformations adopted by each sequence decreases gradually as 
the energy value of the sequence becomes more unfavorable (Fig. S2d-S5d). The superposition of 
the best conformation of each unique sequence showed that each flexible residue adopts almost 
the same rotamer in all best conformations (Fig. S2b-S5b). Moreover, the orientation of mutable 
residue side-chains is similar in all the best models regardless the assigned amino-acid type.   
 
For the protein design problems studied here, we expected that mutations would favor the 
introduction of bulkier amino acids in order to fill up the free space available in the core of 
proteins. However, changes in amino acid sizes were subtle. A visual inspection of the 3D 
structures of mutants suggests that some slight adjustments of side-chains and/or backbone of 
surrounding residues could enable accommodation of larger side-chains which were here 
assigned with high interaction energies. This lack of conformational relaxation seems also to be 
at the origin of the observed conservation of glycine amino acid types. Therefore, the sequence 
selection may be biased and restricted by the lack of flexibility of surrounding residues. These 
results highlight the key role of the local molecular flexibility to extend the accessible sequence 
space, as shown by previous work (Bordner and Abagyan, 2004). We then subjected each unique 
sequence of the 4 sub-optimal ensembles to energy minimization in order to assess the effect of 
the relaxation of side-chains and backbone freedom degrees on the energy ranking of the 
sequence ensembles. Overall, the minimization decreased the energy values of these models from 
~ 20 to 60 kcal.mol-1 depending on the design case (Fig. S2c-S5c). Nonetheless, the superposition 
of the structures before and after minimization only showed slight rearrangements of protein side 
chains and backbone. This clearly indicates that slight geometrical adjustments can significantly 
lower model energies. The conformational variability of these low energy sequences were further 
investigated by carrying out an optimization step (with a  cut of 0.2 kcal.mol-1) which enables all 
variable amino acids (mutable and flexible) to be repacked. Despite an  cut value which is 10 
times smaller, the number of conformations adopted by each unique sequence was found 
extremely high whatever the energy ranking of the sequence (Fig. S2d-S5d). Therefore, the 
significant differences observed among mutants before minimization step, is probably the result 
of the discretization of conformational freedom degrees. The minimization step thus allows us to 
extend the accessible conformational space. Current trends in CPD refine the exact DEE/A* 
approach along various directions, allowing respectively for continuous rotamers (I. Georgiev et 
al., 2008; Gainza et al., 2012),  for continuous (Ivelin Georgiev and Bruce R. Donald, 2007) or 
discrete (I. Georgiev et al., 2008)   backbone conformation adjustments or both  (Hallen et al., 2013). 
The CFN approach can still be extended to handle such flexibilities descriptions.  
 
In addition to lowering the energy and increasing the conformational variability of models, the 
geometry relaxation step re-ranks the sequence ensemble. The GMEC obtained after 
minimization (refined-GMEC) does not match with the original GMEC. The energy values of the 
minimized sub-optimal models are spread within an energy window up to ~ 6 kcal.mol-1 of the 
refined-GMEC (Fig. S2c-S5c). Therefore, with a  cut of 2 kcal.mol-1, from 92 to 185 unique 
sequences depending on the design case would be removed of these minimized ensembles. Even 
on a small energy window, these results demonstrate the advantage of the post-minimization to 
re-rank and post-screen the most promising candidate sequences to evaluate experimentally. 
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4  CONCLUSION 

In this paper, we have formulated a novel open-source based computational framework to 
provably identify the GMEC as well as a set of low-energy protein sequences within the context 
of atomic protein design. This CFN-based approach provides remarkable speedups, allowing us 
to explore vast sequence-conformational spaces more efficiently than the DEE/A* algorithm or 
state-of-the-art ILP algorithms. Despite the significant change in terms of problem complexity, it 
is surprising to see that this efficiency extends to the generation of gap-free sets of sub-optimal 
solutions. This paper and the companion open source computational tools we offer will therefore 
facilitate the optimization of new CPD systems, without requiring expensive computational 
resources. 
 
Ultimately, we hope that CFN technology will allow complex CPD problems, mixing 
optimization of flexible systems and discrete integration (capturing entropic effects and affinity) 
to be directly tackled. 
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Supplementary data: Preparation of benchmark set  
The macromolecular diversity was generated on the basis of 35 high-quality crystal structures of proteins and complexes taken from the PDB (with a resolution of 2.9 Å or 

lower) which include proteins of various sizes (from 54 to 274 residues) and from different structural classes and folds, according to the SCOP classification (Table S2). Next, 
in order to explore sequence-conformation spaces relevant to the type of protein design targeted, a strategy was set up to define the set of mutable residues, the set of amino 
acid types allowed at each mutable position and finally the set of residues to repack. Hydrophobic amino acids (V,L,I,F,M,Y,W) were allowed at the core, hydrophilic amino 
acids (S,T,D,N,E,Q,H,K,R) at the surface and a combination of both sets in the boundary region. The alanine amino-acid was permitted at all three layers. The amino acid 
present at mutable positions in the wild-type protein was always allowed.  For the redesign of protein-protein and protein-ligand interfaces, all amino acid types, except pro-
line, were considered at each mutable position. The set of mutable residues was derived from experimental and computational literature (see references in Table S1) or de-
fined according to the design target: (i) all residues of the protein core were allowed to mutate for the design of proteins (either free or bound to a cofactor) ; (ii) the residues 
that have their C within a distance up to 8 Å of the center of mass of the ligand were set to mutable for the redesign of protein-ligand interactions; (iii)  the residues from one 
protein chain that have their C within a distance up to 8 Å of C from any residue belonging to the other protein chain were set to mutable for the redesign of protein-protein 
interfaces. In addition to mutable residues, a set of residues enabling repacking (i.e., flexible residues) was also defined depending on the design target: (i) all non-mutable 
residues of the core and the boundary regions were considered flexible for the protein design instances; (ii) non-mutable residues of the core and boundary layers which have 
their C within a distance of 12 Å from the center of mass of the ensemble of the mutable residues of the designed chain were set to repackable for the redesign of protein-
ligand and protein-protein interfaces. The protein backbone, the side-chains of non-variable residues (i.e., residues not set to mutable or repackable) and the non-amino acid 
type partners were kept fixed.  

This strategy seeks the best compromise between the size of each of these three sets that together determine the combinatorial complexity of the search space. The selection 
applied on these sets is highly dependent on the targeted design which is here the enhancement of the stability of proteins, holoproteins, as well as protein-ligand and protein-
protein interfaces. Protein stability is associated with the ability of proteins to fold properly under given conditions and to maintain this folding. 

Invariably, water-soluble proteins fold into structures that extensively bury hydrophobic residues into the core of the structure while simultaneously exposing polar amino 
acid side-chains at the surface to form favorable electrostatic interactions with aqueous solvent (Kauzmann, 1959). Nevertheless, the burial of hydrophilic residues within 
protein structures is not always thermodynamically unfavorable. Indeed, polar side-chains located inside proteins as well as at the interface between two proteins or a protein 
and a small molecule can play a structural role in the stabilization of the folded state and the intermolecular complexes (Bolon and Mayo, 2001; Bolon et al., 2003), in addi-
tion to their significant contribution to the specificity definition. However, the benefit of this burial which depends on molecular interactions and desolvation, appears to be 
extremely difficult to predict using current CPD energy functions. Therefore, in order to better reflect the distribution of amino acids types into well-folded native protein 
structures and to account for the limited capability of CPD energy functions to predict the effect of burying polar groups, we have adopted a restrictive approach widely used 
in CPD (Bolon et al., 2003). This approach confines protein core positions to hydrophobic amino acids, surface positions to hydrophilic amino acids and in contrast allows 
both hydrophobic and hydrophilic amino acids at boundary as well as protein-protein and protein-ligand interface regions. An automated way to stratify protein structures into 
three layers (core, boundary and surface) is then needed. For this purpose, previous work used either the exposed surface area of residues (Koga et al., 2012) or the Cα dis-
tances to the nearest exposed surface area residue along the Cα-Cβ vector (Dahiyat and Mayo, 1997). Herein, we implemented a residue classification method which aims to 
determine more precisely the burial of residues on the basis of the solvation radii of residues (Fig. S1).  
In addition to maximizing the integration of structure-based knowledge into CPD, the approach results in a reduction of the combinatorial complexity compared to the consid-
eration of all amino acid types at each mutable position. This reduction on the set of amino acid types may also allow us to handle more mutable positions or/and flexible 
residues. 
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Table S1: Benchmark set 

PDB N N-variable                
(mutable,        
flexible) 

N-variable corea       
(mutable,       
flexible) 

N-variable 
boundaryb           
(mutable,     
flexible) 

N-variable 
surfacec              
(mutable, 
flexible) 

N-rotamer 
ranged      
min-max 

Sequence-
Conformation 
Space Size 

Partners 

(Cofactor, Ligand, Protein) 

References 

1MJC 69 28 (3, 25) 11 (2, 9) 17 (1, 16) 0 (0, 0) 3-182 4.36e+26 - (Hillier et al., 1998) 
1CSP 67 30 (6, 24) 11 (0, 11) 16 (3, 13) 3 (3, 0) 3-182 5.02e+30 - (Perl and Schmid, 2001) 
1BK2 57 24 (11, 13) 8 (6, 2) 16 (5, 11) 0 (0, 0) 3-182 1.18e+32 - (Pokala and Handel, 2005) 
1SHG 57 28 (9, 19) 10 (8, 2) 18 (1, 17) 0 (0, 0) 3-182 2.13e+32 - (Ventura et al., 2002) 
1CSK 58 30 (9, 21) 9 (9, 0) 21 (0, 21) 0 (0, 0) 3-49 4.09e+32 - (Busch et al., 2008) 
1SHF 59 30 (9, 21) 9 (9, 0) 21(0, 21) 0 (0, 0) 3-56 1.05e+34 - (Northey et al., 2002) 
1FYN 62 23 (13, 10) 4 (1, 3) 13(8, 5) 6 (4, 0) 3-186 5.04e+36 Peptide-ligand (Schweiker et al., 2007) 
1PIN 154 28 (11, 17) 13 (3, 10) 13(6, 7) 2 (2, 0) 3-194 5.32e+39 Peptide-ligand,      - (Kraemer-Pecore et al., 2003) 
1NXB 62 34 (9, 25) 9 (9, 0) 25 (0, 25) 0 (0, 0) 3-56 2.61e+41       (Z. Liu et al., 2001) 
1TEN 90 39 (11, 28) 11 (11, 0) 28 (0, 28) 0 (0, 0) 3-66 6.17e+43 - (Dantas et al., 2003) 
1POH 85 46 (3, 43) 14 (0, 14) 32 (3, 29) 0 (0, 0) 3-182 8.02e+43       (Pokala and Handel, 2005) 
2DRI 271 37(10,27) 20 (8,  12)   17(2, 15) 0 (0, 0) 3-186 1.16e+47 Ribose (Boas and Harbury, 2008) 
1FNA 91 38 (15, 23) 15 (15, 0) 23 (0, 23) 0 (0, 0) 3-48 3.02e+47 - (Hamill et al., 2000) 
1UBI 76 40 (14, 26) 18 (13, 5) 22 (1, 21) 0 (0, 0) 3-182 2.43e+49 - (Ermolenko et al., 2003) 
1C9O 66 43 (11, 32) 14 (1, 13) 25 (6, 19) 4 (4, 0) 3-182 3.77e+49     (Perl et al., 2000; Perl and Schmid, 2001) 
1CTF 68 39 (20, 19) 20 (20, 0) 19 (0, 19) 0 (0, 0) 3-56 3.95e+51       (Busch et al., 2008) 
2PCY 99 46 (16, 30) 16 (16, 0) 30 (0, 30) 0 (0, 0) 3-56 2.34e+52 - (Gordon et al., 2003) 
1DKT 71 46 (14, 32) 14 (5, 9) 32 (9, 23) 0 (0, 0) 3-190 3.94e+58 - (Seeliger et al., 2003) 
2TRX 108 61 (6, 55) 21 (3,18) 40 ( 3, 37) 0 (0, 0) 3-186 9.02e+59 Cu2+ (D. Bolon et al., 2003) 
1PGB 56 31 (28, 3) 6 (5, 1) 13 (11, 2) 12 (12, 0) 5-182 5.10e+61 - (Lassila et al., 2002) 
1CM1 143 42(18,24) 23 (10, 13) 16(7, 9) 3 (1, 0) 3-186 3.73e+63 Calmodulin-dependant protein 

Kinase II alpha chain, Ca2+ 
(Yosef et al., 2009) 

1BRS 108 44  (19, 25) 13 (2, 11) 23 (10, 13) 8 (7, 0) 3-194 1.67e+64 Barstar protein chain-D (Pokala and Handel, 2005) 
1ENH 54 36 (27, 9) 7 (5, 2) 11 ( 4, 7) 18 (18, 0) 5-182 6.65e+64 - (Marshall et al., 2002) 
1CDL 142 40 (21, 19) 14 (8, 6) 22(12, 10) 4 (1, 0) 3-186 5.68e+65 Calmodulin-dependant protein 

Kinase II alpha chain, Ca2+ 
(Fromer and Yanover, 2009) 

1LZ1 130 59 (22, 37) 22 (22, 0) 37 ( 0, 37) 0 (0, 0) 3-57 1.04e+72 - (Baldwin et al., 1993) 
2CI2 65 51 (27, 24) 16 (8, 8) 29 (13, 16) 6 (6, 0) 3-183 7.26e+75 - (Fersht, 1995) 
1GVP 87 52 (28, 24) 17 (9, 8) 28 (12, 16) 7 (7, 0) 3-182 1.51e+78 - (Sandberg and Terwilliger, 1993), 
1RIS 97 56 (27, 29) 17 (14, 3) 37 (11, 26) 2 (2, 0) 3-182 1.23e+80 - (Dantas et al., 2003) 
2RN2 155 69 (27, 42) 27 (27, 0) 42 (0, 42) 0 (0, 0) 3-66 3.68e+80 - (Pokala and Handel, 2005) 
1CSE 274 97 (4, 93) 30 (0, 30) 65 (2, 63) 2 (2, 0) 3-183 8.35e+82 Ca2+ (Yi et al., 2003) 
1HNG 175 85 (13, 72) 19 (4, 15) 63 (6, 57) 3 (3, 0) 3-182 3.70e+88 - (Lorch et al., 1999; Poso et al., 2000) 
3CHY 128 74 (31, 43) 31 (31, 0) 43 (0, 43) 0 (0, 0) 3-66 2.36e+92       (Pokala and Handel, 2005) 
1L63 162 83 (21, 62) 21 (15, 6) 61 (5, 56) 1 (1, 0) 3-182 2.17e+94 Cl- (Baldwin et al., 1993; Blaber et al., 1994) 
3HHR 185 115 (45, 70) 46 (29, 17) 69 (16, 53) 0 (0, 0) 3-186 2.98e+171 - (Filikov et al., 2002) 
1STN 136 120 (119, 1) 27 (27, 0) 52 (51, 1) 41 (41, 0) 7-190 2.00e+249   - (Schwehm et al., 1998; Holder et al., 2001) 

For each instance:  system reference PDB id (PDB), number of residues (N),  number of designable residues of the whole system (N-variable),  number of  designable residues (N-variable) at each layer of the mutable 
chain  (acore,  bboundary, csurface),  dminimal and maximal number of rotamers per variable position, and references. 
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Table S2: Description of input models 

System name PDB R(Å) N Class Fold 

E.coli Cold-shock protein A 1MJC 2.00   69  All beta  OB-fold 
B. subtilis Cold-shock protein B  1CSP 2.45   67  All beta  OB-fold 
A-Spectrin SH3 domain mutant 1BK2 2.01   57  All beta  SH3-like barrel 
A-Spectrin SH3 domain  1SHG 1.80   57  All beta  SH3-like barrel 
C-SRC SH3 domain 1CSK 2.50   58  All beta  SH3-like barrel 
Fyn Tyrosine Kinase SH3 domain  1SHF 1.90   59  All beta  SH3-like barrel 
Phosphotransferase Fyn  1FYN 2.30  62 All beta  SH3-like barrel 
Peptidyl-prolyl cis-trans isomerase  1PIN 1.35  154 All beta;  (a+b) WW domain-like; FKBP-like 
Neurotoxin B 1NXB 1.38  62 Small proteins Snake toxin-like 
Tenascin fibronectin type III  domain 1TEN 1.80   90  All beta  Immunoglobulin-like beta-sandwich 
Histidine phosphorelay protein  1POH 2.00  85  (a+b) HPr-like 
D-ribose-binding protein 2DRI 1.60 271       (a/b)   Periplasmic binding protein-like I 
Fibronectin Cell-adhesion module type III 1FNA 1.80   91  All beta  Immunoglobulin-like beta-sandwich 
Ubiquitin 1UBI 1.80   76   (a+b) beta-Grasp (ubiquitin-like) 
B caldolyticus Cold-shock protein B 1C9O 1.17  66 All beta  OB-fold 
Ribosomal protein L7 /L12  C-Ter domain 1CTF 1.70  68 (a+b) ClpS-like 
Apoplastocyanin  2PCY 1.80   99  All beta  Cupredoxin-like 
Human cyclin dependent kinase subunit  1DKT 2.90  71 (a+b) Cell cycle regulatory proteins 
Thioredoxine 2TRX 1.68  108 (a/b) Thioredoxin fold 
Protein G domain B1  1PGB 1.92   56  (a+b) beta-Grasp (ubiquitin-like) 
Calmodulin 1CM1 2.00 143 All alpha  EF Hand-like 
Barnase  1BRS 2.00  108 (a+b) Microbial ribonucleases 
Engrailed homeodomain  1ENH 2.10   54  All alpha  DNA/RNA-binding 3-helical bundle 
Calmodulin 1CDL 2.00  142 All alpha  EF Hand-like 
Human Lyzozyme  1LZ1 1.50  130   (a+b) Lysozyme-like 
Chymotrypsin inhibitor 2 2CI2 2.00   65  (a+b) CI-2 family of serine protease inhibitors 
Gene V DNA binding protein 1GVP 1.60   87  All beta  OB-fold 
Ribosomal protein S6  1RIS 2.00   97  (a+b) Ferredoxin-like 
Ribonuclease H 2RN2 1.48  155   (a/b) Ribonuclease H-like motif 
Subtilisin Carlsberg 1CSE 1.20  274  (a/b) Subtilisin-like 
Cell Adhesion Molecule CD2  1HNG 2.80  175  All beta  Immunoglobulin-like beta-sandwich 
Signal transduction protein CheY   3CHY 1.66  128  (a/b) Flavodoxin-like 
Phage T4 lysozyme  1L63 1.75  162  (a+b) Lysozyme-like 
Human growth hormone   3HHR 2.80  185 All alpha  4-helical cytokines 
Staphylococcal nuclease  1STN 1.70  136  All beta  OB-fold 

For each instance: system name, reference PDB id (PDB), crystallographic resolution, number of residues (N), SCOP structural classification (Class and Fold).
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Table S3: Solving of the GMEC using DEE/A* without pre-processing (I) and with pre-processing (II) and DEE/CFN without pre-processing (I).    

PDB 

Space size Times(s) 

Inputa 
Outputb 

(I) 
Outputb 

(II) 
DEE (I) DEE (II) CFN (I) A*(I) A* (II) DEE/A*(I) DEE/A*(II) 

1MJC 4.36e+26 1.00 1.00 4.57 5.01 - - - 4.57 5.01 
1CSP 5.02e+30 4.44e+05 4.44e+05 186.00 103.00 0.01 13.70 7.58 200.00 111.00 
1BK2 1.18e+32 1.94e+06 4.42e+06 87.80 598.00 0.01 5.42 5.64 93.20 603.00 
1SHG 2.13e+32 6.21e+09 6.21e+09 77.30 79.80 0.02 60.50 61.20 138.00 141.00 
1CSK 4.09e+32 9.58e+06 9.58e+06 35.80 57.90 0.00 5.96 7.52 41.70 65.40 
1SHF 1.05e+34 3.51e+07 3.51e+07 38.40 131.00 0.01 5.89 93.30 44.30 224.00 
1FYN 5.04e+36 8.00 8.00 613.00 658.00 0.00 8.48 8.69 622.00 667.00 
1PIN 5.32e+39 1.02e+14 6.22e+05 8.48e+03 3.65e+03 0.00 1.06e+03 1.39e+03 9.54e+03 5.04e+03 
1NXB 2.61e+41 1.00 1.00 11.10 7.95 - - - 11.10 7.95 
1TEN 6.17e+43 2.58e+07 2.58e+07 94.50 98.10 0.01 18.60 21.20 1130 119.00 
1POH 8.02e+43 768.00 768.00 61.10 67.10 0.00 16.80 18.10 77.90 85.20 
2DRI 1.16e+47 1.78e+21   1.78e+21   7.89e+04  7.87e+04  2.1 T T T T 
1FNA 3.02e+47 3.77e+15 3.77e+15 973.00 882.00 0.05 2.33e+03 2.34e+03 3.31e+03 3.22e+03 
1UBI 2.43e+49 1.51e+20 1.51e+20 3.20e+03 3.64e+03 0.38 T T T T 
1C9O 3.77e+49 4.42e+07 8.00 2.28e+03 636.00 0.00 27.00 10.80 2.31e+03 647.00 
1CTF 3.95e+51 6.68e+20 6.68e+20 1.88e+03 1.89e+03 0.18 T T T T 
2PCY 2.34e+52 2.11e+15 2.11e+15 675.00 795.00 0.03 1.40e+03 1.40e+03 2.08e+03 2.20e+03 
1DKT 3.94e+58 2.06e+13 5.50e+13 1.41e+03 1.00e+03 0.03 4.01e+03 1.04e+04 5.42e+03 1.14e+04 
2TRX 9.02e+59 8.49e+07 8.49e+07 426.00 275.00 0.02 61.30 51.70 487.00 326.00 
1PGB 5.10e+61 T T T T Not reached Not reached Not reached T T 
1CM1 3.73e+63 2.05e+19   2.05e+19   4.28e+04  4.18e+04  0.07 T T T T 
1BRS 1.67e+64 2.34e+29 2.34e+29 8.10e+04 7.65e+04 5.85 T T T T 
1ENH 6.65e+64 T T T T Not reached Not reached Not reached T T 
1CDL 5.68e+65 1.45e+29 5.94e+26 1.94e+05 1.04e+05 0.87 T T T T 
1LZ1 1.04e+72 9.77e+22 6.91e+21 3.77e+03 3.28e+03 0.18 T T T T 
2CI2 7.26e+75 T T T T Not reached Not reached Not reached T T 
1GVP 1.51e+78 8.49e+28 8.49e+28 2.31e+04 2.27e+04 0.32 T T T T 
1RIS 1.23e+80 6.40e+39 6.40e+39 6.90e+04 6.89e+04 2.77 T T T T 
2RN2 3.68e+80 1.32e+22 1.55e+19 4.76e+03 3.78e+03 0.12 M T M T 
1CSE 8.35e+82 1.00 1.00 367.00 282.00 - - - 367.00 282.00 
1HNG 3.70e+88 6.91e+03 6.91e+03 5.21e+03 4.60e+03 0.01 377.00 233.00 5.59e+03 4.83e+03 
3CHY 2.36e+92 9.66e+36 7.87e+35 1.85e+04 1.78e+04 8.51 T T T T 
1L63 2.17e+94 6.92e+23 4.18e+21 5.03e+03 4.18e+03 0.08 M T M T 
3HHR 2.98e+171 T T T T Not reached Not reached Not reached T T 
1STN 2.00e+249 T T T T Not reached Not reached Not reached T T 

For each instance are indicated the ainput and boutput (after DEE) sequence-conformation space size. A ‘M’ indicates an exceeded memory size (128G) and a ‘T‘ indicates an  
exceeded computation time (100h). ‘-‘ indicates that the GMEC was identified during the DEE step.  
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Fig.  S1 Definition of Sequence-Conformation Spaces. aThe non-mutable residues of the core and boundary layers which have their C within a distance 
of 12 Å from the center of mass of the ensemble of the mutable residues were set to repackable for the redesign of protein-ligand and protein-protein inter-
faces. 
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Fig. S1  Score refinement and conformational analysis for 1CSK.  (a)  Comparison of near-optimal sequences generated by CFN-based approach, using 
Weblogo (Crooks et al., 2004). For each design position (horizontal axis), the total height quantifies the conservation (information content) at that position, 
where taller positions are more conserved; the relative height of each amino acid denotes its frequency in the design. Polar amino acids and  glycine 
(G,S,T,Y,C) are green, amide purple (N,Q), basic (K,R,H) blue, acidic (D,E) red and hydrophobic (A,V,L,I,P,W,F,M) are  black. The wild-type amino acids 
are given underneath the horizontal axis. The rate of mutations of the sequence ensemble, generated by CFN-based approach ranges from 55.56 to 88.89% 
for 1CSK (b)  Superimposition of minimized structures of all unique sequences (best conformation per sequence) using pymol (Schrödinger, 2010).  Mutable 
residues are colored as in (a), flexible residues are shown in grey.  (c)  Energy refinement: the scores of structures of all unique sequences are shown in blue, 
and those of the minimized corresponding structures in green. The wild-type model is added to the two sets. The horizontal orange line indicates the subse-
quent cutoff       of 2 kcal.mol-1, from the scores of minimized structures. (d)  Distribution of the number of conformations:  comparison between the num-
ber of conformations generated for each sequence, during the enumeration of the sub-optimal set (blue) and during the repacking of refined structures (red).  
A cutoff of 0.2 kcal.mol-1 (with respect to the sequence-specific minimum score) was used for repacking enumeration (red).   
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Fig. S3 Score refinement and conformational analysis for 2PCY. (a)  Comparison of near-optimal sequences generated by CFN-based approach, using 
Weblogo (Crooks et al., 2004). For each design position (horizontal axis), the total height quantifies the conservation (information content) at that position, 
where taller positions are more conserved; the relative height of each amino acid denotes its frequency in the design. Polar amino acids and  glycine 
(G,S,T,Y,C) are green, amide purple (N,Q), basic (K,R,H) blue, acidic (D,E) red and hydrophobic (A,V,L,I,P,W,F,M) are  black. The wild-type amino acids 
are given underneath the horizontal axis. The rate of mutations of the sequence ensemble, generated by CFN-based approach ranges from 25 to 56.25% for 
2PCY. (b)  Superimposition of minimized structures of all unique sequences (best conformation per sequence) using pymol (Schrödinger, 2010).  Mutable 
residues are colored as in (a), flexible residues are shown in grey.  (c)  Energy refinement: the scores of structures of all unique sequences are shown in blue, 
and those of the minimized corresponding structures in green. The wild-type model is added to the two sets. The horizontal orange line indicates the subse-
quent cutoff       of 2 kcal.mol-1, from the scores of minimized structures. (d)  Distribution of the number of conformations:  comparison between the num-
ber of conformations generated for each sequence, during the enumeration of the sub-optimal set (blue) and during the repacking of refined structures (red).  
A cutoff of 0.2 kcal.mol-1 (with respect to the sequence-specific minimum score) was used for repacking enumeration (red).   
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Fig. S4 Score refinement and conformational analysis for 1UBI. (a)  Comparison of near-optimal sequences generated by CFN-based approach, using 
Weblogo (Crooks et al., 2004). For each design position (horizontalaxis), the total height quantifies the conservation (information content) at that position, 
where taller positions are more conserved; the relative height of each amino acid denotes its frequency in the design. Polar amino acids and  glycine 
(G,S,T,Y,C) are green, amide purple (N,Q), basic (K,R,H) blue, acidic (D,E) red and hydrophobic (A,V,L,I,P,W,F,M) are  black. The wild-type amino acids 
are given underneath the horizontal axis. The rate of mutations of the sequence ensemble, generated by CFN-based approach ranges from 64.29 to 85.71% 
for 1UBI. (b)  Superimposition of minimized structures of all unique sequences (best conformation per sequence) using pymol (Schrödinger, 2010).  Mutable 
residues are colored as in (a), flexible residues are shown in grey.  (c)  Energy refinement: the scores of structures of all unique sequences are shown in blue, 
and those of the minimized corresponding structures in green. The wild-type model is added to the two sets. The horizontal orange line indicates the subse-
quent cutoff       of 2 kcal.mol-1, from the scores of minimized structures. (d)  Distribution of the number of conformations:  comparison between the num-
ber of conformations generated for each sequence, during the enumeration of the sub-optimal set (blue) and during the repacking of refined structures (red).  
A cutoff of 0.2 kcal.mol-1 (with respect to the sequence-specific minimum score) was used for repacking enumeration (red).   
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Fig. S5 Score refinement and conformational analysis for 1TEN. (a)  Comparison of near-optimal sequences generated by CFN-based approach, using 
Weblogo (Crooks et al., 2004). For each design position (horizontal axis), the total height quantifies the conservation (information content) at that position, 
where taller positions are more conserved; the relative height of each amino acid denotes its frequency in the design. Polar amino acids and  glycine 
(G,S,T,Y,C) are green, amide purple (N,Q), basic (K,R,H) blue, acidic (D,E) red and hydrophobic (A,V,L,I,P,W,F,M) are  black. The wild-type amino acids 
are given underneath the horizontal axis. The rate of mutations of the sequence ensemble, generated by CFN-based approach ranges from 36.36 to 81.82% 
for 1TEN. (b)  Superimposition of minimized structures of all unique sequences (best conformation per sequence) using pymol (Schrödinger, 2010).  Muta-
ble residues are colored as in (a), flexible residues are shown in grey.  (c)  Energy refinement: the scores of structures of all unique sequences are shown in 
blue, and those of the minimized corresponding structures in green. The wild-type model is added to the two sets. The horizontal orange line indicates the 
subsequent cutoff       of 2 kcal.mol-1, from the scores of minimized structures. (d)  Distribution of the number of conformations:  comparison between the 
number of conformations generated for each sequence, during the enumeration of the sub-optimal set (blue) and during the repacking of refined structures 
(red).  A cutoff of 0.2 kcal.mol-1 (with respect to the sequence-specific minimum score) was used for repacking enumeration (red).   
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 Fast search algorithms for Computational Protein Design 3.4

In order to render more accessible the CFN-based approaches to the scientific community, we 
implemented them into the osprey software during the three months that I spent in the group of 
Bruce Donald (University of Duke, North Carolina, USA). Another motivation for integrating the 
CFN methods into this software was to take advantage of the developments already carried out 
by Donald’s group, especially to handle the molecular flexibility in CPD. In addition, we pro-
posed novel methodological advances derived from CFN methods and new variable- and value- 
ordering heuristics to improve further the performances of the combinatorial optimization phase. 

This work is presented hereafter and it should be submitted shortly for publication. This is a 
joined work with Bruce Donald’s group and Thomas Schiex’s group. 
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Fast search algorithms for Computational Protein Design 

INTRODUCTION 

Computational Protein Design (CPD) has become a valuable tool for tailoring proteins with 
desired biophysical and functional properties and for assessing our understanding of protein 
sequence-structure-function relationships. By combining physico-chemical models governing 
relations between protein amino-acid composition and the protein three-dimensional structure 
with advanced computational algorithms, CPD seeks to identify one or a set of amino-acid 
sequences that fold into a given 3D-scaffold and that will bestow the re-designed protein with 
targeted properties. Such rational protein design approaches have been successfully applied to 
alter intrinsic properties (stability, binding affinity…) of existing proteins or to endow them new 
functionalities, thus leading to the generation of novel enzymatic catalysts, binding pairs of 
proteins, protein inhibitors, and large oligomeric ensembles[1]–[6].  The field of application of 
this technology is broad, ranging from medicine, biotechnology, and synthetic biology to 
nanotechnologies[7]–[9]. 
 
Despite its notable results, substantial methodological advances are still needed to improve CPD 
performances and extend its effective application. The success of CPD predictions actually 
depends on several elements, among which, the biologically meaningful modeling of the design 
problem, the accuracy of the energy and objective functions used to assess fitness of the predicted 
sequence-structures, and the efficiency of the search algorithms to find solutions in a timely 
manner. However, CPD approaches have to strike a compromise between speed and accuracy to 
face the exponential size of the search space defined by the composition of protein sequences and 
conformations. Most of the CPD methods rely thus on: 1) a coarse-graining of the structure as a 
sequence of discrete side-chains rotamers, 2) an assumption of minimal backbone conformational 
flexibility, where a fixed backbone or a set of possible backbones are used, and 3) an 
approximation of the energy model as a pairwise decomposition. The problem of searching for a 
model of global minimum energy (GMEC : Global Minimum-Energy Conformation) over the 
conformational space of rotamers and possibly backbones being NP-hard ([10]), a variety of 
methods, both meta-heuristics (Monte Carlo simulated annealing, genetic algorithms,…[11]) and 
provable algorithms (Dead-end elimination, Branch-and-bound algorithms, integer linear 
programming, dynamic programming,…[11]–[13]) have been proposed over the years. However, 
there is still a need for more efficient optimization techniques, capable of exploring vaster 
combinatorial spaces, representing more realistic, flexible protein models. 
 

ABSTRACT 

In previous work, we demonstrated the efficiency of Cost Function Network optimization on various Computational Protein Design 
problems against a broad range of combinatorial optimization technologies including 0/1 Linear Programming, 0/1 Quadratic Programming, 
0/1 Quadratic Optimization, Weighted Partial MaxSAT, Graphical Model optimization problems and the well establish CPD dedicated 
framework Dead-End Elimination/A* (DEE/A*). Along this line, the aim of the work disclosed herein was to develop new CPD-dedicated 
search algorithms and heuristics and to implement them into the well-established CPD package osprey.   
 
New Best-First methods using the CFN lower bound as heuristic are introduced here and they led to an important speedup compared to the 
well-known         framework. A new CPD-dedicated CFN upper bound tuning heuristic has also been developed in order to improve the 
CFN-based search. This led to an important increase in the pruning efficiency at root node. Finally, we designed new cost-based ordering 
heuristics which gave comparable performance to the well-established heuristics.  
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This paper focuses on exact optimization techniques. Since provable methods know when a 
global optimum is reached, the search can be stopped with confidence and an exact solution 
obtained, sometimes in significantly less time than with meta-heuristics. It has also been 
observed that the accuracy of meta-heuristic approaches tends to degrade in unpredictable ways 
as the problem size increases [14]. Finally, exact methods are useful for improving biophysical 
models because they ensure that discrepancies between CPD predictions and experimental results 
come exclusively from modeling inadequacies and not from the algorithm. Currently, the most 
usual provable and deterministic methods for CPD rely on the Dead-End Elimination (DEE) 
theorem and the    algorithm [15]. DEE is used as a pre-processing method. It removes rotamers 
which are energetically dominated by other rotamers and therefore useless to identify a global 
optimum. This idea has later been extended to prune pairs or higher order combinations of 
rotamers at different residues in order to improve the pruning power [16]–[18]. However, because 
CPD is NP-hard, the polynomial time DEE algorithms usually cannot identify a unique sequence-
conformation model. It is followed by an    search (a Best-First search) which expands a 
sequence-conformation tree by tentatively assigning rotamers to residues. By relying on a 
dedicated admissible heuristics,     is able to produce an energy-sorted list of solutions. But the 
worst-case exponential time and memory consumption of    means that it can easily choke on 
problems with many undominated rotamers. 
 

In a recent work,  we have shown  that the rigid backbone discrete rotamer CPD problem could 
be formulated and efficiently solved as a Cost Function Network (CFN) [19]–[21]. CFN 
algorithms are able to handle complex combinatorial spaces which are out of reach of usual 
DEE/A* approaches as implemented in the CPD-dedicated software osprey [3], [22]. The 
toulbar2 CFN solver provides speedups of several orders of magnitude both to provably find the 
GMEC and to exhaustively enumerate ensembles of near-optimal solutions, offering an attractive 
alternative to the usual DEE/ A* approaches.   
 
Herein, we report further methodological advances derived from this CFN-based method [19]–
[21] together with their implementation within the osprey software. With this integration inside a 
usual CPD framework, it is possible to benefit from the speedups offered by CFN algorithms on a 
variety of problems tackled by osprey, including those that offer some flexibility modeling [23]. 
The performances of these methods have been assessed on the design of more stable proteins and 
cofactor-bound proteins, as well as protein-ligand and protein-protein interfaces. The results were 
ultimately compared to those obtained using the DEE/A* approach implemented in the osprey 
software. 
 

BACKGROUND 

The CPD problem formulation  

The rigid backbone and discrete rotamer CPD problem is defined by: i) a fixed backbone of a 
protein structure; ii) a set of amino-acid residues to be designed, called designable residues; iii) a 
group of allowed amino-acids for each designable residue and their respective set of discrete low 
energy side-chain conformations, so-called rotamers and iv) pairwise atomic energy functions to 
discriminate between models. Rotamers usually correspond to cluster centers of well represented 
amino-acid conformations within 3D protein structures. In the case of protein-ligand systems, the 
conformational flexibility of peptide ligands is described similarly by discrete rotamer libraries. 
In the case of non-peptide ligands, the treatment of organic molecule flexibility is often left to the 
user to pre-calculate an ensemble of low energy conformers for the ligand (playing the role of 
rotamer library). 
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A sequence-conformation model is defined by the choice of one specific amino-acid with one 
associated conformation (rotamer) for each designable residue. Its total energy (      ) is defined 
by:  
            ∑        ∑∑             (1) 

where    is a constant energy contribution capturing interactions between fixed parts of the 
model,       depends on  rotamer   at position   (and its reference energy) and          is the 
pairwise interaction energy between rotamer   at position   and rotamer   at position  .  
 
The combinatorial optimization problem is to find a complete rotamer assignment that provably 
minimizes       . 
 

Modeling CPD as a Cost Function Network  

The problem of finding the set of rotamers that will minimize the total energy (      ) can easily 
be formulated as a Cost Function Network problem (CFN) [19]–[21]. 
 
A CFN   is defined by a set of variables which are each involved in a set of local cost functions 
[24]. Formally, a CFN   is a triple           where              is a set of   variables. 
Each variable     has a discrete domain      that defines the set of values that it can take. A 
set of local cost functions   defines a network over  . Each cost function      is defined over a 
subset of variables     (called its scope), has a domain ∏       and takes integer values in             . The cost   represents a maximum tolerable cost, and can be infinite or set to a finite 
upper bound. In binary CFN, cost functions involve at most two variables. Values or pairs of 
values which are forbidden by a cost function are simply mapped to  . The global cost of a 
complete assignment   is defined as the sum of all cost functions on this assignment (or   if this 
sum is larger than  ). The Weighted Constraint Satisfaction Problem defined by   consists in 
finding an assignment of all variables that minimizes this global cost. Notice that it is usually 
assumed that   contains one constant cost function, with an empty scope, denoted as    . Since 
all cost functions in a CFN are non-negative, this constant cost function      defines a lower 
bound on the optimization problem.  
 
The CPD optimization problem, in its pairwise-decomposed form, can be easily formulated as a 
binary CFN. Every designable amino-acid residue   is represented by a variable   and the set of 
rotamers available to the residue defines its domain   . Then, each energy term in        is 
represented as a cost function [20], [21], [25]. The constant term    is captured as the constant 
cost function with empty scope (  ) and terms       and          are represented by unary and 
binary cost functions involving the variables of the corresponding residues. Energy terms can be  
mapped to positive integers through shifting and scaling according to desired precision [20], [21], 
[25]. Such operations preserve the set of optimal solutions and an optimal solution of the CFN is 
an assignment that defines a GMEC for the CPD problem. 
 
In contrast with CPD, where dominance analysis through the DEE theorem dominates, the 
fundamental idea in CFNs relies on so-called Equivalence Preserving Transformations (EPTs). 
An EPT is a local transformation of the CFN which can shift cost (or energy) between cost 
functions of intersecting scopes without changing the global energy distribution. These EPTs are 
iteratively applied in so-called local consistency enforcing algorithms that iterate EPTs until the 
CFN satisfies the local consistency property. Many of these local consistency properties and 
associated polynomial time enforcing algorithms have been defined. Depending on the locality of 
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the property, which may apply to one variable, one cost function or more, they are called Node, 
Arc or higher order consistencies. As an example, the node consistency of a variable   with 
associated cost function    requires that    contains at least one value   such that          and 
no value   such that that            (the forbidden cost). Equivalently, this means that there 
is at least one value that does not increase cost locally and no value that would lead to intolerable 
costs. If a variable does not satisfy these properties, then by deleting values and shifting costs to   , the variable can be made node consistent. The amount of pruning therefore increases with 
smaller values of the upper bound  . Arc consistencies are defined similarly but are significantly 
more involved (see eg. [26]–[28]). Globally, the essential effect of enforcing local consistencies 
is that values may be pruned and the constant cost function   , a global lower bound on the 
optimum, may be increased. This is obtained without changing the global energy distribution. 
 
Compared to local consistency enforcing, DEE, which has also been studied in CFN under the 
name of substitutability ([21], [29], [30]) does not preserve the global energy distribution as it 
may remove some (but not all) optimal solutions and sub-optimal solutions. 
 
Since local consistency algorithms are polynomial time algorithms, they cannot solve all CFNs 
and an exhaustive Depth First Branch and Bound (DFBB) tree search is used to provably solve 
the problem. Contrarily to the DEE/A* approach however, dominance and local consistency 
analysis are not performed only at the beginning of the search, as preprocessing, but also 
incrementally maintained at each node of the tree search. By increasingly simplifying the 
problem and strengthening the lower bound   , they give information that can be used to prune 
and heuristically guide the search in a tree defined by branching. 
 
Our recent work [19]–[21] highlighted the power of these DFBB method to efficiently solve 
various CPD problems and hence, spurred new developments to tackle more complex and 
challenging CPD problems. 
 
Branching schemes 

When preprocessing is unable to solve the problem, tree search algorithms such as A* or DFBB 
try to simplify the problem by making assumptions on variables. Each additional assumption 
generates a new node, son of the previous node. In the DFBB search, successive assumptions are 
made until either all variables become assigned to a single value:  a new solution is found and the 
upper bound   can be updated to its cost (we are only interested in better solutions), or the 
current lower bound     . In this last case, we know that with the current assumptions, we 
cannot reach a cost less than    and therefore less than  . We need to backtrack, that is we 
reconsider our last assumption and branch on a new assumption. 
 
The most obvious type of branching uses a chosen variable   and considers all its current values 
as possible assumptions. This is called n-ary branching. An alternative branching scheme consists 
in selecting a variable   and a value   and uses as assumptions the fact that the variable   either 
takes the value  , or not (and the value can be removed from the domain). By exploiting results 
in proof theory, this scheme has been shown to be more powerful than the previous one (with a 
given local consistency being maintained at each node, it may explore an exponentially smaller 
number of nodes than the previous one, and the converse is impossible [31]. N-ary branching can 
however be polynomially better on some problems. An even more general branching method is 
dichotomic branching where the domain of a chosen variable   is split in two chosen sets.  
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Variable and value ordering heuristics 

If branching schemes define the shape of the tree explored, DFBB also needs to choose the next 
assumption to make. Variable and value ordering heuristics are used to choose respectively the 
next variable to branch one and the next value to consider for this chosen variable.  
 
Variable ordering heuristics may have a tremendous effect on the efficiency of the search 
algorithm. They are all based on the ‘fail-first’ principle [32] : ‘To succeed, try first where you 
are most likely to fail’. Several measures have been used to try to evaluate the likelihood of 
failing by fixing a variable. One simple measure is the current size of the domain (dom) [32]. 
Under this measure, the variable which has the smallest domain should be assigned next. To take 
into account the number of cost functions that involve a variable (the so-called degree of the 
variable), more sophisticated heuristics select the variable that has the minimum ratio of the 
domain size over the current degree (dom/ddeg [33]), over the degree weighted by the number of 
failures observed in the past for each cost function (dom/wdeg [25], [34]) or by the sum of the 
median cost functions (dom/cmed [20], [21]). Additionally,  the last conflict heuristics [35] 
simply tries to select the last variable that led to inconsistency during search (if any). 
 
Once a variable is chosen, binary and n-ary scheme need to choose the next value to consider. 
The effect of value ordering heuristics is often less dramatic than for variables. However, a good 
value ordering heuristics may help to quickly find a good solution. Because we are then 
interested only in strictly better solutions, we may set   to the cost of this new solution and 
improve pruning. The most usual value ordering heuristics in CFNs is to choose first a value   
that has a unary cost        . Such a value always exists thanks to Node Consistency enforcing 
[36]. 
 
Limited Discrepancy Search 

If good value ordering heuristics may allow to quickly find a good solution, they may fail. This 
may be because of the very first assumption made that will not be reconsidered before a complete 
subtree is explored. Limited discrepancy search (LDS) [37] tries to overcome this situation by 
exploring only paths that have a bounded number of variable assignments that differs from those 
defined by the value heuristics (called discrepancies). LDS can often find good solutions much 
faster than DFBB search. The best solution found can be used to set the initial upper bound  . 
Obviously, the power of LDS strongly depends on the quality of the heuristic used for variable 
and value ordering. 
 

CONTRIBUTIONS OF THE CURRENT WORK  

The work reported herein provides novel CFN-based methodological advances targeted at highly 
complex CPD problems. It also makes most of the CFN framework together with our new 
developments more accessible to the CPD community by implementing them in the open source 
CPD framework osprey 2.0 [22]. Note that we focus in this section on these methodological 
developments, but all the technology described in the Background section has also been 
implemented in osprey within this work.  
 
Best-First search has several advantages over DFBB search. It is known that it always develops 
less nodes than DFBB if the same lower bound (or admissible heuristics in    terminology) is 
used. It is also able to directly produce a sorted list of solutions of increasing energies. In order to 
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assess the efficiency of local consistency enforcing and associated lower bound in this context, 
two Best-First approaches were developed. The first one is a plain    algorithm using the CFN 
lower bound as its admissible heuristics. It will be denoted as “Best-First” to avoid confusion 
with the traditional DEE/A* algorithm. The second one is another    algorithm using as 
heuristics a strengthened CFN lower bound, obtained by a limited DFBB exploration of the 
current node (using the best lower bound found at the leaves of this depth limited search as the 
new lower bound). This method is referred to as Best-First-DL. The performances of both search 
methods were compared to those of the traditional   search, commonly used in CPD, on various 
protein design problems.   
 
To better take into account the specificities of CPD, new variable and value ordering heuristics 
were designed and integrated within the CFN-based search. Their performances within DFBB 
search were assessed on real CPD instances.  
Since the initial value of the upper bound   may have a strong influence on pruning and therefore 
efficiency, we also developed a new amino-acid based upper bound heuristic to tighten the initial 
upper bound. Four heuristics to update this upper bound were compared with each other and a 
best option identified. Finally, specific properties of the CPD problems were used to build new 
binary branching strategies based on amino-acid types within the DFBB approach. 
 

METHODS 

New variable and value ordering heuristics 

In our previous work [21], we developed a new variable ordering heuristics (dom/cmed) based  
on the median costs in the cost table of all the cost functions involving each variable. 
 
Two new value heuristics, defined by dedicated value metrics, are proposed in this work: the 
value with a minimum metric should be selected first. For each value      a first metric 
combines the unary cost of the value with the median of all the cost that may incur with 
connected variables:                 ∑          [        ]    

(2) 

A more sophisticated variant also includes the unary costs of each neighbor variables, leading to:                 ∑          [              ]    (3) 

The corresponding value ordering heuristics are denoted cmed and vmed, respectively. Of note, in 
all our branching schemes, the unary support supplants the value ordering. Hence, except during 
LDS, the value ordering heuristics do not affect the sheer binary branching scheme. Nevertheless, 
when either a simple or amino acid-based dichotomic branching mechanism is activated, the 
heuristic is applied. These heuristics are used as a basis for the definition of our new side chain 
positioning-based upper bounding.  
 
As for variable ordering heuristics, we consider metrics defined by the ratio of the domain size 
over the median unary costs (dom/umed) and a second variable ordering heuristic using minimum 
over all values   of the ratio of the domain size by the metric          denoted as dom/vmed.  
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Side chain positioning-based upper bounding 

To quickly identify a good upper bound, we reduce the CPD problem to a side chain positioning 
(SCP) problem by restricting the domain of every mutable position to rotamers corresponding to 
an unique amino-acid. Clearly, the cost of any solution of this restricted SCP problem defines an 
upper bound of the original CPD problem. To this end, we use a generic heuristic        to select 
the amino-acid type (AA) at position  . Four such heuristics were considered. The first one selects 
the amino-acid of the rotamer selected by the current value ordering heuristic 
(Value−heuristic−AA). The second one selects the wild-type amino-acid if it is still available 
after local consistency enforcing and otherwise uses the first option 
(Wt−or−value−heuristic−AA). The third one (ArgMin−AA−min) selects the amino-acid that 
satisfies:                                                      (4) 

 
Finally, the last option (ArgMin−AA−median) selects the amino-acid that satisfies: 
                                                             (5) 

 
After solving the side chain placement problem and updating the upper bound  , local 
consistency enforcing is maintained on the initial CPD problem. All this is only done if at least 
one residue has more than one amino-acid identity in its domain following local consistency 
enforcing.  
 

New CFN amino-acid based branching schemes  

Our new amino acid selection heuristics        can be used to define novel dichotomic branching 
schemes. For a chosen variable  , an amino-acid is selected according to the        heuristic and 
a dichotomic branching is defined by a first set of values defined by the rotamers of  the selected 
amino-acid type, the second set containing remaining values. This dichotomic branching 
incrementally reduces the CPD problem to a side-chain placement issue: each time a branching is 
performed, the domain of a variable is restricted to a single amino-acid in the first branch. It is 
applied as a dichotomic branching scheme embedded in a binary branching. It can either be used 
in full (referred to as Binary-AA-Branch in the following) or only for domains of large sizes 
(referred to as limited-Binary-AA-Branch).  
 
Best-First Search with a CFN lower bound  

The completeness of the    search method used in the DEE/A* approach [38] relies on the use of 
a so-called “admissible heuristic function”. This function must provide an optimistic estimate of 
the total energy of all conformations below the current node, i.e. must be a lower bound on the 
optimum of the current problem. Thus, the lower bound defined by    and local consistency 
enforcing can be directly plugged in the   algorithm and replace the existing heuristics. 
 
Best-First search methods maintain a priority queue of open nodes for expansion. CFN 
processing by local consistency is performed on each node, pruning the domains of every 
associated sub-problem and offering the lower bound    as a priority. When a node is considered 
for the expansion, n-ary branching is used, local consistency is applied on each generated 
independent sub-problem and those that have a lower bound less than the current upper bound   
are inserted in the queue. 
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One of the major weakness of Best-First methods being worst-case exponential space because of 
this queue, a bounded depth refinement of the lower bound of every node considered for insertion 
in the expansion queue was implemented (referred to as Best-First-DL). If the obtained lower 
bound exceeds   there is no need to insert it in the queue. The depth limit used is an adjustable 
parameter.  
 

Our CFN-based CPD framework 

The overall strategy of the Cost Function-based CPD framework developed in this work is 
described in Figure 1. Local consistency (possibly with integrated DEE dominance analysis [21], 
[30]) is always maintained during the whole process. A first upper bound is sought by LDS and 
optionally, improved by solving the SCP problem defined by one selected heuristic       . 
Finally, the remaining search space is explored to extract the GMEC and enumerate suboptimal 
solutions when desired. Two main alternative search strategies can be performed: a Best-First 
Search or a DFBB. Subsequently, n-ary or binary branching may apply. Dichotomic amino-acid 
branching schemes and (simple) dichotomic split are both an option for binary branching. In all 
the search strategies, a dynamic variable and value ordering can be performed. Finally, when 
Best-First is combined with DFBB, we get Best-First-DL. 
 

 
The complete approach has been implemented in Osprey (version 2.0, [22]) which allows for 
discrete and continuous modeling of the protein conformation at the side-chain and backbone 
level [39]. All those models ultimately reduce to a CPD pairwise energy matrix which can be 
optimized by CFN-based algorithms. Thus, the present work increases the efficiency of this CPD 
package without losing provability, giving access to high dimensional protein design problems. 
 

Figure 1 CFN-based CPD Framework 
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RESULTS AND DISCUSSION 

The benchmark set of 30 CPD instances used in our previous studies [20], [21] was used to assess 
the performances brought by our contributions. This benchmark set includes a variety of protein 
structures, alone or in complex with a protein or a ligand, derived from high resolution structures 
deposited in the Protein Data Bank (PDB). In these selected systems, diverse sizes of sequence-
conformation spaces are present, varying by the number of mutable residues, the number of 
alternative amino-acid types at each position and the number of rotamers for each amino-acid.  
All computations were performed on one core of an AMD OpteronTM Processor 6176@2.3 GHz. 
We used 128GB of RAM and a 9,000 sec timeout. The integrated CFN with incremental DEE 
(DEE1 option) pruning option previously described was implemented here and activated in all 
CFN-based experiments [21]. 
 
First, the four heuristics designed for the SCP-based upper bound tuning were assessed against 
each other in order to identify the best option enabling to efficiently reduce the rotamer space 
before the search tree. Secondly, within the DFBB search method, we assessed the performance 
of the variables (with last conflict [35]) and values ordering heuristics, as well as those of the new 
amino-acid based dichotomic branching schemes for solving the GMEC identification problem. 
Finally, the performances of the new Best-First and Best-First-DL methods were compared to 
those of the    algorithm, for solving the GMEC identification problem as well as for 
enumerating an ensemble of sub-optimal models. 
 

Side-chain positioning based upper bounding 

When tree search is used, any value pruned at the root node also prunes an exponential number of 
conformations at leave nodes. Thus, any effort to increase pruning at the root node is likely to 
improve speed. This can be simply obtained by strengthening the initial upper bound  . 
 
We evaluated the effect of improved initial upper bounds provided by solving to optimality a 
simpler side chain positioning sub-problem [13] and using the optimum found as an upper bound 
of the initial CPD problem. The median cost variable ordering heuristic (dom/cmed) was used in 
conjunction with the increasing unary cost value ordering heuristic. DFBB with a binary 
branching scheme is used.   
 
We tested our four amino-acid selection heuristics (Value−heuristic−AA, 
Wt−or−value−heuristic−AA, ArgMin−AA−min and ArgMin−AA−median) and for reference we 
also performed a run without these options (Figure 2).  
 
Without any such initial upper bound, the GMEC could never be identified at the root node. With 
the initial SCP based upper bounding, respectively 20, 17, 18 and 17 cases (out of 23 solved 
cases) were immediately solved at the root node using respectively, the heuristics 
Value−heuristic−AA, Wt−or−value−heuristic−AA, ArgMin−AA−min and ArgMin−AA−median. 
As shown in Figure 2 with all four heuristics, up to 94% of values were pruned at the root node, 
instead of merely 41% without upper bounding. 
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Figure 2 Improvement of the pruning power at preprocessing step 

 
 

New variable and value ordering heuristics 

The performance of the two new variables ordering heuristics, dom/umed and dom/vmed as well 
as dom/cmed [20], [21] were assessed against the widely used variable ordering heuristic, 
dom/wdeg [34] and the simple dom heuristic[32] using the DFBB search method for identifying 
the GMEC (Table 1). A DFBB was performed and the option Value−heuristic−AA was used for 
amino-acid-based upper bound tuning heuristic at root (assessed thereafter). The increasing unary 
cost value ordering was performed.  
 
The new heuristic dom/vmed has the same time complexity as dom/cmed. The most expensive 
part of the heuristic is the contribution of binary terms. When considering variable  , dom/cmed  
involves the corresponding unary cost function    and all the binary cost functions    . However, 
dom/vmed involves also these terms but it additionally considers   . The second new variable 
ordering heuristric dom/umed is a simpler variant of dom/cmed. Indeed, only unary terms are 
considered in dom/umed.  
 
All the heuristics managed to solve the same 23 design cases with performances varying 
according to the instance considered. Among the 23 cases solved by DFBB with the dom/wdeg 
variable ordering heuristic (considered as reference), the GMEC was found faster (resp. slower) 
for 8(13), 12(11), 12(11) and 11(12) cases using respectively, dom, dom/cmed, dom/umed and 
dom/vmed. Thence, the new cost based variable ordering heuristics offer comparable 
performances to the widely used dom/wdeg heuristic (which is considered very efficient for 
increasing the speed of the search [25], [34]). The averaged performance gain in term of runtime 
for dom, dom/cmed, dom/umed and dom/vmed is respectively, 48.0; 223.7; 147.7 and 142.8 sec 
compared to dom/wdeg. 
 
Next, we also evaluated the efficiency of designed value ordering heuristics, vmed and cmed, in 
combination with the variable ordering heuristic dom/cmed (Table 1, columns dom/cmed + vmed 
and dom/cmed + cmed). The same 23 instances are all solved again. Adding vmed or cmed 
enabled to solve respectively 13(10) and 12(11) cases with lower (resp. greater) runtime 
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compared to the dom/wdeg reference. The averaged performance gains in term of runtime are 
respectively, 229.6 and 216.2. Therefore, this value ordering heuristics do not seem to provide 
additional performance gain compared to the usage of the increasing unary cost ordering (i.e. 
dom/cmed with default value ordering which led to a runtime gain of 223.7 compared to 
dom/wdeg, as mentioned above).  
 

 

 Table 1: Ordering heuristics  - CPU-time to solve the GMEC using DFBB.  

PDB 
accession 

code 

Sequence 
Conformation 
Space Size 

dom/wdeg dom dom/cmed dom/umed dom/vmed 
dom/cmed 

+ vmed 
dom/cmed 

+ cmed 

1MJC 4.36E+26 2.9 1.9 1.8 1.8 2.0 1.9 1.9 
1CSP 5.02E+30 125.6 136.7 40.7 111.5 32.9 38.9 43.0 
1BK2 1.18E+32 21.8 22.3 22.6 24.2 30.3 20.2 25.1 
1SHG 2.13E+32 16.4 16.4 13.7 28.4 12.0 13.8 13.6 
1CSK 4.09E+32 3.4 3.8 3.8 4.0 4.5 3.6 3.9 
1SHF 1.05E+34 3.5 3.4 3.6 3.6 4.1 3.8 4.2 
1FYN 5.04E+36 267.8 286.3 275.0 308.5 404.1 291.5 282.0 
1PIN 5.32E+39 468.3 468.6 347.7 505.6 530.1 361.0 374.1 

1NXB 2.61E+41 3.9 5.3 4.9 5.3 5.3 4.9 5.4 
1TEN 6.17E+43 7.6 7.6 8.6 6.4 8.4 8.4 9.4 
1POH 8.02E+43 17.2 17.0 17.3 14.9 15.8 15.4 16.7 
2DRI 1.16E+47 - - - - - - - 

1FNA 3.02E+47 109.7 177.1 121.8 65.0 123.8 111.6 106.7 
1UBI 2.43E+49 5,275.0 4,141.3 1,070.2 2,749.7 1,248.9 962.2 951.3 
1C9O 3.77E+49 436.3 422.6 223.2 338.5 205.2 186.9 190.5 
1CTF 3.95E+51 531.1 506.0 382.1 352.6 495.5 459.5 477.6 
2PCY 2.34E+52 10.7 12.6 9.4 9.2 11.7 13.2 11.3 
1DKT 3.94E+58 382.8 391.2 202.3 216.1 261.3 188.5 187.2 
2TRX 9.02E+59 124.7 125.6 138.2 132.0 120.2 134.0 126.2 
1CM1 3.73E+63 - - - - - - - 
1BRS 1.67E+64 - - - - - - - 
1CDL 5.68E+65 - - - - - - - 
1LZ1 1.04E+72 1,273.0 1,321.2 382.8 698.1 744.5 432.2 498.7 

1GVP 1.51E+78 - - - - - - - 
1RIS 1.23E+80 - - - - - - - 

2RN2 3.68E+80 316.4 283.0 247.0 275.7 412.4 222.8 414.2 
1CSE 8.35E+82 19.1 20.8 23.0 20.1 21.2 25.1 24.4 

1HNG 3.70E+88 946.4 876.9 1,712.2 1,063.8 2,417.7 1,629.5 1,668.6 
3CHY 2.36E+92 - - - - - - - 
1L63 2.17E+94 543.9 556.6 510.0 575.1 511.9 496.7 499.4 

# Nb of times faster (resp. 
slower) than dom/wdeg 

 8(13) 12(11) 12(11) 11(12) 13(10) 12(11) 

A ‘-’ indicates an exceeded memory size (128G) or computation time (9000 sec). 

 
 

Binary amino-acid Branching 

New binary branching heuristics which better take into consideration the CPD characteristics are 
proposed herein. Indeed, since values in CPD correspond to amino-acid rotamers, it is possible 
that restricting the set of allowed amino acids to the identity of a selected amino-acid (   ) gives 
lower cost compared to the opposite problem that excludes rotamers of amino acid type    . In 
that case, a binary branching at amino-acid level may speed up the search. Subsequent problems 
become simpler not only because of the domain size reduction but also because the initial CPD 
problem incrementally becomes a side chain placement problem which has been shown simpler 
to solve[13]. 
 
We used the reference ordering heuristic, dom/wdeg (as in Table 1) and the Value−heuristic−AA 
for amino-acid-based upper bound tuning heuristic at root. Of note, for Binary-AA-Branch and 
Limited-Binary-AA-Branch, this option is incrementally performed during the search (and not at 
root). Simple Binary branching plays the role of the reference experiment (since that option is 
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generally used to solve CFN), and we assessed against it, the N-ary branching, the Binary 
branching with dichotomic split, the Limited-Binary-AA-Branch and the Binary-AA-Branch 
(Table 2).  
 
 

Table 2: Assessment of branching options for CPU-time for solving the GMEC. 

PDB 
accession 
code 

Sequence 
Conformation Space 
Size 

Binary 
branching  

N-
Arybranching 

Binary branching with 
dichotomic split 

Limited-Binary-
AA-Branch 

Binary-AA-
Branch 

1MJC 4.36E+26 1.8 2.1 2.5 2.1 3.3 
1CSP 5.02E+30 40.7 26.3 51.1 31.6 32.1 
1BK2 1.18E+32 22.6 22.0 22.1 22.5 22.4 
1SHG 2.13E+32 13.7 8.0 10.8 9.6 8.5 
1CSK 4.09E+32 3.8 4.2 3.6 3.6 3.5 
1SHF 1.05E+34 3.6 3.7 3.9 3.5 3.4 
1FYN 5.04E+36 275.0 353.2 446.9 158.8 153.1 
1PIN 5.32E+39 347.7 1,651.0 - 305.8 311.1 

1NXB 2.61E+41 4.9 5.2 4.4 4.5 4.3 
1TEN 6.17E+43 8.6 8.0 6.8 8.4 7.7 
1POH 8.02E+43 17.3 16.1 16.2 18.4 17.4 
2DRI 1.16E+47 - - - - - 

1FNA 3.02E+47 121.8 113.2 67.3 74.2 83.1 
1UBI 2.43E+49 1,070.2 472.3 528.5 912.0 972.5 
1C9O 3.77E+49 223.2 466.5 173.0 186.7 178.5 
1CTF 3.95E+51 382.1 311.4 334.1 211.5 210.7 
2PCY 2.34E+52 9.4 10.3 9.9 9.8 10.1 
1DKT 3.94E+58 202.3 192.1 217.3 194.3 193.3 
2TRX 9.02E+59 138.2 129.3 291.8 130.5 135.8 
1CM1 3.73E+63 - - - - - 
1BRS 1.67E+64 - - - - - 
1CDL 5.68E+65 - - - - - 
1LZ1 1.04E+72 382.8 427.8 292.3 364.4 391.0 

1GVP 1.51E+78 - - - - - 
1RIS 1.23E+80 - - - - - 

2RN2 3.68E+80 247.0 241.7 165.6 222.2 202.7 
1CSE 8.35E+82 23.0 23.9 24.7 21.0 21.5 

1HNG 3.70E+88 1,712.2 704.2 706.9 1,026.5 1,017.9 
3CHY 2.36E+92 - - - - - 
1L63 2.17E+94 510.0 501.5 509.6 541.3 547.2 

# Nb of cases solved strictly faster (resp. slower) 
 than when using Binary branching 13(10)  14(9) 19(4) 18(5) 

A ‘-’ indicates an exceeded memory size (128G) or computation time (9000 sec). 

 
N-ary Branching, Binary branching with dichotomic split, limited-Binary-AA-Branch and 
Binary-AA-Branch enabled to find the GMEC with a faster (resp. slower) runtime for 
respectively 13(10), 14(9), 19(4) and 18(5) cases over the 23 cases solved by both approaches.  
Hence, the amino-acid based dichotomic branching schemes improved the binary branching as 
designed for and were shown to perform the best. Nevertheless, unexpectedly, N-ary Branching 
gives a slightly better performance compared to a plain binary branching.   
 
Best-First Search with a CFN lower bound  

The GMEC solving performances of the new Best-First and Best-First-DL algorithms using the 
CFN lower bound were compared to those of the usual    algorithm used in CPD after a DEE 
pre-processing. The same reference ordering and amino acid selection heuristics ()  of Table 1 
(Value−heuristic−AA) are used. For Best-First-DL, a depth limit of 3 was used. 
    solved 17 cases while Best-First and Best-First-DL managed to solve 21 cases within the 9000 
sec timeout (Table 3). On all the instances that were solved by    and by the CFN Best-First 
methods (15 cases), the CFN based methods were found to be faster by up to 2 orders of 
magnitude . With dead-lines of 900 sec, the A* approach solved 11 cases , while the Best-First 
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and Best-First-DL approaches solved 16 and 15 instances respectively. This clearly shows that 
the use of CFN lower bound instead of the traditional heuristic [38] used in    for CPD provides 
speedups, giving access to more complex designs. The variant using a bounded depth refinement 
of the lower bound does not perform better than a plain Best-First search.  
 
In our previous work, we have shown that the DFBB approach implemented in the toulbar2 
solver outperformed the DEE/A* approach of osprey by several orders of magnitude [20], [21], 
[25]. We therefore compared the performance of the DFBB now implemented in osprey against 
those of the Best-First and Best-First-DL (Table 3) . Out of the 30 design cases, the DFBB solved 
23 instances within the 9000 sec and DFBB only failed on 7 instances, which were also unsolved 
by the other methods. Among the 23 cases solved by DFBB, 21 were solved in less than 900 sec. 
The DFBB search method remains therefore overall more efficient than a Best-First search 
method for handling large protein design problems. 
 

Table 3: CPU-time for solving the GMEC using A*, Best-First,Best-First–DL and DFBB. 

PDB accession 
code 

Sequence Conformation 
Space Size 

 A* # Best-
First  

Best-First 
-DL 

DFBB  

1MJC 4.36E+26 4.6 1.9 1.7 1.8 
1CSP 5.02E+30 200.0 33.7 28.6 40.7 
1BK2 1.18E+32 93.2 23.6 25.6 22.6 
1SHG 2.13E+32 138.0 9.7 12.1 13.7 
1CSK 4.09E+32 41.7 3.9 4.5 3.8 
1SHF 1.05E+34 44.3 3.7 3.7 3.6 
1FYN 5.04E+36 622.0 364.1 377.1 275.0 
1PIN 5.32E+39  -  3,618.0 2,641.6 347.7 

1NXB 2.61E+41 11.1 5.5 5.7 4.9 
1TEN 6.17E+43 113.0 23.6 20.6 8.6 
1POH 8.02E+43 77.9 19.9 16.6 17.3 
2DRI 1.16E+47  -  - - - 

1FNA 3.02E+47 3,310 856.9 925.0 121.8 
1UBI 2.43E+49  -  1,876.8 1,720.6 1,070.2 
1C9O 3.77E+49 2,310 455.4 258.2 223.2 
1CTF 3.95E+51  -  2,381.1 - 382.1 
2PCY 2.34E+52 2,080 12.4 10.2 9.4 
1DKT 3.94E+58 5,420 206.7 190.2 202.3 
2TRX 9.02E+59 487.0 - 4,916.9 138.2 
1CM1 3.73E+63  -  - - - 
1BRS 1.67E+64  -  - - - 
1CDL 5.68E+65  -  - - - 
1LZ1 1.04E+72  -  1,523.2 3,369.3 382.8 

1GVP 1.51E+78  -  - - - 
1RIS 1.23E+80  -  - - - 

2RN2 3.68E+80  -  2,159.6 6,464.4 247.0 
1CSE 8.35E+82 367.0 24.9 25.4 23.0 

1HNG 3.70E+88 5,590 - - 1,712.2 
3CHY 2.36E+92  -  - - - 
1L63 2.17E+94  -  521.1 479.7 510.0 

# Nb of cases solved in 900 sec 
# Nb of cases solved in 9000 sec 

11 16 15 21 

17 21 21 23 

A ‘-’ indicates an exceeded memory size (128G) or computation time (9000 sec). 

# Results issued from [21] 

 

While Best-first search is known to explore less node than Depth First search when the same 
heuristic is used (variables and values), DFBB has the opportunity to improve its upper bound   
and therefore its heuristic while searching. This probably explains the performance gain of depth 
first equipped with the CFN lower bound. The polynomial space use of DFBB is also likely to 
help in the context of CPU processors using multiple levels of increasingly slow caches. 
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Enumeration  

Sequence-conformations within              of the GMEC were enumerated for 1SHF, the 
only case for which the enumeration was completed by DEE/A* with a run time of          
[20]. We performed both Binary branching and Binary-AA-Branch with DFBB. Best-First and 
Best-First-DL were also assessed. In the latter case, a simple Binary branching was performed.  
In all these experiments, the variable ordering dom/cmed and the increasing unary cost value 
ordering were used.   
 
Respectively, Binary branching, Binary-AA-Branch, Best-First and Best-First-DL took 25.07, 
23.21, 20.92 and 21.21 sec to enumerate all the conformations. Thus, from these settings, the 
CFN-based approaches gave performances approaching     speedup compared to A*. Of note, 
the CFN-based Best-First approaches benefit from the initial LDS at root. This might explain its 
comparative performance compared to runs based on DFBB. However, in contrast to the GMEC 
search, Best-First-DL did not perform better than a simple Best-First. This is somehow 
unsurprising to us because the gain in the upper bound update given by Best-First-DL during 
GMEC search is not useful during the enumeration phase. 
 

CONCLUSION 

This work reports the use of Cost Function Network optimization techniques to solve 
Computational Protein Design problems. Compared to prior work[19]–[21], it introduces novel 
search heuristics in order to speedup search methods, which were here implemented in a CPD-
dedicated software called osprey. The presented search algorithms have shown to be more 
efficient than optimization methods based on the        framework for both GMEC search and 
suboptimal solutions enumeration (which is performed in order to account for inaccuracies and 
approximations made in the CPD modeling). The implementation of these new methods in osprey 
enables novel opportunities for their use in combination with other functionalities already 
existing in this software, in particular for molecular flexibility modeling. 
 
Indeed, any macromolecular flexibility method that can be represented as an optimization 
problem with a single matrix and an upper bound can be performed with the presented CFN-
based methods. This includes the recently introduced provable DEEPer modeling[23], [40] that 
handles designs with discrete and continuous flexibility of side chains and backbone. Moreover, 
the speedup reached in the enumeration of conformations made in the current study, due to CFN 
modeling, may accelerate the ensemble-based CPD simulations, such as the    algorithm 
implemented in osprey [1].  
 
ACKNOWLEDGEMENTS 

This work has been funded by the “AgenceNationale de la Recherche”, references ANR 10-BLA-0214 
and ANR-12-MONU-0015-03. We thank the Computing Center of Region Midi-Pyrénées (CALMIP, 
Toulouse, France) and the GenoToul Bioinformatics Platform of INRA-Toulouse for providing computing 
resources and support. S. Traoré was supported by a grant from the INRA and the Region Midi-Pyrénées. 
 
 

REFERENCES 

[1] R. H. Lilien, B. W. Stevens, A. C. Anderson, B. R. Donald, J. Comput. Biol., 2005, DOI:10.1089/cmb.2005.12.740. 
[2] B. Stevens, R. Lilien, I. Georgiev, Biochemistry, 2006. 
[3] C. Chen, I. Georgiev, A. C. Anderson, B. R. Donald, 2009, 106. 

Chapter 3. Cost Function Network-based Framework for CPD

148



15 

[4] K. M. Frey, I. Georgiev, B. R. Donald, A. C. Anderson, Proc. Natl. Acad. Sci. U. S. A., 2010, 
DOI:10.1073/pnas.1002162107. 

[5] K. E. Roberts, P. R. Cushing, P. Boisguerin, D. R. Madden, B. R. Donald, 2011, 361–376. 
[6] N. P. King, J. B. Bale, W. Sheffler, D. E. McNamara, S. Gonen, T. Gonen, T. O. Yeates, D. Baker, Nature, 2014, 

DOI:10.1038/nature13404. 
[7] I. Grunwald, K. Rischka, S. M. Kast, T. Scheibel, H. Bargel, Philos. Trans. A. Math. Phys. Eng. Sci., 2009, 

DOI:10.1098/rsta.2009.0012. 
[8] B. M. Nestl, B. A. Nebel, B. Hauer, Curr. Opin. Chem. Biol., 2011, DOI:10.1016/j.cbpa.2010.11.019. 
[9] J. Pleiss, Curr. Opin. Biotechnol., 2011, DOI:10.1016/j.copbio.2011.03.004. 
[10] N. A. Pierce, E. Winfree, Protein Eng., 2002, 15, 779–782. 
[11] L. Wernisch, S. Hery, S. J. Wodak, J. Mol. Biol., 2000, DOI:10.1006/jmbi.2000.3984. 
[12] A. Leaver-Fay, B. Kuhlman, J. Snoeyink, Pac. Symp. Biocomput., 2005, 16–27. 
[13] C. L. Kingsford, B. Chazelle, M. Singh, Bioinformatics, 2005, DOI:10.1093/bioinformatics/bti144. 
[14] C. a Voigt, D. B. Gordon, S. L. Mayo, J. Mol. Biol., 2000, DOI:10.1006/jmbi.2000.3758. 
[15] J. Desmet, M. De Maeyer, B. Hazes, I. Lasters, Nature, 1992, 356, 539–542. 
[16] R. F. Goldstein, Biophys. J., 1994, DOI:10.1016/S0006-3495(94)80923-3. 
[17] N. A. Pierce, J. A. Spriet, J. Desmet, S. L. Mayo, P. E. T. Al, J. Comput. Chem., 2000, 21, 999–1009. 
[18] D. B. Gordon, G. K. Hom, S. L. Mayo, N. a Pierce, J. Comput. Chem., 2003, DOI:10.1002/jcc.10121. 
[19] D. Allouche, S. Traoré, I. André, S. de Givry, G. Katsirelos, S. Barbe, T. Schiex, in Proc.\ of CP-12; 2012Quebec City, 

Canada, 2012. 
[20] S. Traoré, D. Allouche, I. André, S. de Givry, G. Katsirelos, T. Schiex, S. Barbe, Bioinformatics, 2013, 

DOI:10.1093/bioinformatics/btt374. 
[21] D. Allouche, I. André, S. Barbe, J. Davies, S. de Givry, G. Katsirelos, B. O’Sullivan, S. Prestwich, T. Schiex, S. Traoré, 

Artif. Intell., 2014, DOI:10.1016/j.artint.2014.03.005. 
[22] P. Gainza, K. E. Roberts, I. Georgiev, R. H. Lilien, D. A. Keedy, C.-Y. Chen, F. Reza, A. C. Anderson, D. C. 

Richardson, J. S. Richardson, others, Methods Enzym., 2012. 
[23] P. Gainza, K. E. Roberts, B. R. Donald, PLoS Comput. Biol., 2012, DOI:10.1371/journal.pcbi.1002335. 
[24] T. Schiex, H. Fargier, G. Verfaillie, Int. Jt. Conf. Artif. Intell., 1995, 14, 631–639. 
[25] D. Allouche, S. Traoré, I. André, S. de Givry, G. Katsirelos, S. Barbe, T. Schiex, in Proc.\ of CP-12; 2012Quebec City, 

Canada, 2012. 
[26] M. Cooper, T. Schiex, Artif. Intell., 2004, DOI:10.1016/j.artint.2003.09.002. 
[27] J. Larrosa, T. Schiex, Artif. Intell., 2004, DOI:10.1016/j.artint.2004.05.004. 
[28] M. Cooper, S. de Givry, T. Schiex, in 8th International CP-06 Workshop on Preferences and Soft Constraints; 

2006Nantes, France, 2006. 
[29] C. Lecoutre, O. Roussel, D. E. Dehani, in Principles and Practice of Constraint Programming; 20122012. 
[30] S. de Givry, S. Prestwich, B. O’Sullivan, in Principles and Practice of Constraint Programming--CP 2013; 2013, 

Springer, Ed.; 2013. 
[31] D. Mitchell, …  Pract. Constraint Program. 2003, 2003. 
[32] R. M. Haralick, G. L. Elliot, Artif. Intell., 1980, 14, 263–313. 
[33] C. Bessière, J.-C. Régin, in Proc. of the Second International Conference on Principles and Practice of Constraint 

Programming; 1996Cambridge (MA), 1996. 
[34] C. Lecoutre, L. Sais, S. Tabary, V. Vidal, in ECAI 2006: 17th European Conference on Artificial Intelligence, August 

29-September 1, 2006, Riva del Garda, Italy: including Prestigious Applications of Intelligent Systems (PAIS 2006): 
proceedings; 20062006. 

[35] C. Lecoutre, L. Sa"is, S. Tabary, V. Vidal, Artif. Intell., 2009, 173, 1592,1614. 
[36] J. Larrosa, T. Schiex, Int. Jt. Conf. Artif. Intell., 2003, 18, 239–244. 
[37] W. D. Harvey, M. L. Ginsberg, in Proc.\ of the 14^{th} IJCAI; 1995Montr{é}al, Canada, 1995. 
[38] A. R. Leach, A. P. Lemon, Proteins, 1998, 33, 227–239. 
[39] M. A. Hallen, D. A. Keedy, B. R. Donald, Proteins, 2013, DOI:10.1002/prot.24150. 
[40] M. a Hallen, D. A. Keedy, B. R. Donald, Proteins Struct. Funct. Bioinforma., 2013, DOI:10.1002/prot.24150.  
 

3.4. Fast search algorithms for CPD

149



3.5 REFERENCES 

[1] D. Allouche, S. Traoré, I. André, S. de Givry, G. Katsirelos, S. Barbe, and T. Schiex, 
“Computational Protein Design as a Cost Function Network Optimization Problem,” in Proc.\ of 
CP-12, 2012. 

[2] D. Allouche, I. André, S. Barbe, J. Davies, S. de Givry, G. Katsirelos, B. O’Sullivan, S. Prestwich, 
T. Schiex, and S. Traoré, “Computational protein design as an optimization problem,” Artif. Intell., 
vol. 212, pp. 59–79, Mar. 2014. 

[3] B. I. Dahiyat, C. a Sarisky, and S. L. Mayo, “De novo protein design: towards fully automated 
sequence selection.,” J. Mol. Biol., vol. 273, no. 4, pp. 789–796, 1997. 

[4] B. Stevens, R. Lilien, and I. Georgiev, “Redesigning the PheA domain of gramicidin synthetase 
leads to a new understanding of the enzyme’s mechanism and selectivity,” Biochemistry, 2006. 

[5] N. Koga, R. Tatsumi-Koga, G. Liu, R. Xiao, T. B. Acton, G. T. Montelione, and D. Baker, 
“Principles for designing ideal protein structures.,” Nature, vol. 491, no. 7423, pp. 222–7, Nov. 
2012. 

[6] S. Traoré, D. Allouche, I. André, S. de Givry, G. Katsirelos, T. Schiex, and S. Barbe, “A new 
framework for computational protein design through cost function network optimization.,” 
Bioinformatics, vol. 29, no. 17, pp. 2129–36, 2013.  

 

  

Chapter 3. Cost Function Network-based Framework for CPD

150



4 Concluding Remarks & Outlook

Contents
4.1 Outline of the main results and their implications . . . . . . . . . . 153

4.2 Addressing the many energetically equivalent conformation issues 154

4.3 Improving the CPD input model(s) . . . . . . . . . . . . . . . . . . 155

4.4 Toward Multiple Objective Optimization & experimental appli-
cations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

151





In this chapter, we present the main conclusions drawn from the work carried out during this the-
sis and we outline the current limitations of the CPD approaches along with directions for future 
work.  

 Outline of the main results and their implications 4.1

Along this thesis, we mainly focused on the development and the assessment of algorithmic strat-
egies in order to efficiently solve Computational Protein Design problems. From a computational 
point of view, state-of-the-art Combinatorial Optimization techniques have been found highly 
effective in handling the underlying optimization problem of CPD. This led us to propose novel 
frameworks dedicated to CPD and based on Cost Function Networks (CFN).  

To the best of our knowledge, this was the first time these methods were used in the CPD field. 
The obtained results demonstrate the efficiency of CFN techniques to accomplish the optimiza-
tion phase on a variety of instances (varying in their nature and their combinatorial size). Com-
pared to complete deterministic methods commonly used in CPD, such as the       , CFN-
based approaches solved CPD problems faster by several orders of magnitude and enabled the 
identification of both optimal solutions (GMEC) and ensembles of sub-optimal solutions [1], [2]. 
Moreover, these CFN-based methods turned out to be more efficient than several other solvers 
issued from recent research in artificial intelligence [3]. These encouraging results led us to inte-
grate these methods into a CPD-dedicated software, osprey, developed by Donald’s group. The 
incorporation of these methods into this software aimed at facilitating the combined utilization of 
these methods with the flexibility models and methods developed for CPD by Donald’s group to 
better account for protein inherent dynamics. In particular, side chain and backbone flexibility 
models resulting in a single matrix and an upper bound are straightforward to solve by the CFN 
methodologies. Flexible backbone and Backrub motions only need to perform a pre-computation 
of the backrub angle values of variable positions before calculating the matrix. This just results in 
a change of the minimizer used during matrix computation and energy evaluation and thus, does 
not affect the optimization step. Our current integrated CFN-based framework within the osprey 
package already benefits from these features. In the near future, other types of perturbations al-
ready present in the last version of osprey (i.e. DEEPer [4]) could also be utilized in combination 
with CFN optimization to handle larger conformational changes.  

In CPD experiments, the matrix computation often includes minimization. Since the individual 
terms of the matrix are calculated and minimized separately, they provide a lower bound of the 
corresponding terms calculated in the context of the complete conformation which is not availa-
ble during the matrix calculation phase. Along the computation (and minimization) of each ele-
ment of the matrix, the side chain of only one or two positions is present, the other positions are 
missing at this stage. Let’s refer to the introduced pairwise approximation error             . If   is the number of designable positions, this corresponds to a total error of          for each com-

plete conformation. For example, if      and       (which is an optimistic hypothesis, this 
value can easily reach more than              per designable position[5]), the total pairwise 
approximation error is                . To compensate for this error, optimization can be ad-
dressed in two different ways. First, the associated optimization problem can be considered as a 
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continuous optimization problem [5]. In this case, all solutions within a window of at least                 must be exhaustively enumerated. These solutions are then all individually 
minimized to find the minimized optimum or a suboptimal set. This solution is used by exact 
deterministic approaches to preserve the minimized optimum. A large amount of solutions can 
however be discarded by this approach if their minimized energies fall outside the error interval 
(plus the enumeration window) afterwards. Although very accurate (i.e. it provides the true min-
imized GMEC), this approach aiming at correcting the pairwise approximation error can be very 
expensive in terms of solutions to enumerate and minimize (vainly for most of them). An alterna-
tive is to address the problem as a discrete optimization problem and attempt to correct the pair-
wise approximation errors. Correction factors can be applied to the minimized matrix so as to 
reduce the error [6] as well as some ad-hoc modeling scheme using side chain carbon pseudo 
atoms to mimic missing side chains during matrix computation [7]. 

Other types of approximations are made in order to estimate some properties. The binding con-
stant is estimated by means of populations of rotameric conformations for both the bound and 
unbound states. In this context, ensemble-based methods such as the hybrid approach           include: i) a sequence prediction step followed by ii) a step consisting in the ranking of se-
quences using the corresponding    score (which approximate the binding constant). Indeed, the        algorithm is used in both steps. In the first step, it is used to enumerate suboptimal en-
sembles of sequence-conformations and in the second step, it is applied to enumerate the confor-
mation ensemble for a fixed sequence in order to assess their associated   score. Hence, the ef-
fectiveness of these steps is highly dependent on the speed of the algorithm to enumerate the 
suboptimal ensembles. Thus, the performance gain achieved with the CFN framework compared 
to the        algorithm should be transposable also into this context. 

 Addressing the many energetically equivalent conformation issues  4.2

The primary objective of CPD is to produce a rank ordered list of mutants that satisfies a given 
design target with the aim of guiding the experimental construction of a set of sequences. Often, a 
certain interval within which all solutions are enumerated is defined to set the upper bound used 
during the CPD optimization with exact deterministic methods [5], [8], [9]. Such enumeration, 
and also metaheuristics, can lead to a very large number of conformations while not giving any 
guaranty regarding the diversity of the generated sequences. This diversity depends on the energy 
distribution of the sequences near the GMEC (for exact deterministic methods and near local 
minima for metaheuristics). Thus, the optimization may spend a large part of the runtime to enu-
merate a variety of conformations for a single sequence. Top energy sequences will actually pro-
vide a large number of acceptable conformations [2] and take most of the runtime while, in con-
trast, some other sequences are ignored during the CPD enumeration if their score is slightly out-
side the defined interval while they could become acceptable solutions upon refinement. Never-
theless, generating one single conformation per sequence would be sufficient in a first step of 
filtering, and subsequent refinements could handle conformational variability and entropic effects 
(and Boltzmann ensembles [10], [11]). If only one conformation per sequence is enumerated in 
the first place, we can focus on the enumeration of a larger number of sequences for further re-
finement and more accurate sequence scoring and ranking afterwards. Some approaches have 
been proposed to address the sequence redundancy problem of near-optimal solutions by intro-
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ducing a constraint to forbid already found sequences during the optimization [12]. However, this 
information has to be propagated during the search in order to skip multiple conformations of a 
single sequence. 

An alternative to this strategy that we are currently exploring in our laboratory is the a priori en-
forcement of the sequence diversity by partitioning the sequence space using amino acid similari-
ties. Suppose a partitioning of the amino acids into two groups (the method applies of course for 
any grouping): apolar on one side and the remaining amino acids on the other side. The allowed 
amino acids at a mutable position can be split into two groups respecting the above partitioning 
rules. If we have   mutable residues, that corresponds to    independent similarity-based parti-
tions. Of course, flexible positions do not affect the number of partitions. With a small number of 
mutable residues like in core or active site design, the sub-problems can easily be solved in paral-
lel on a small number of clusters cpus. For       , we get 1024 partitions, with 32 cpus and 10 
sec for solving a GMEC (using toulbar2 for example to solve them [1], [2]). Solving the 1024 
independent GMECs in parallel will take around 320 sec. The GMEC of each partition will rep-
resent the best solutions of the partitions. A partition here is a group of similar sequences (de-
pending on the amino acid type grouping). The amino acid grouping could be finer but a large 
number of groups may lead to a huge number of partitions:   , where   is the number of amino 
acid groups per position. Interestingly, this optimization reduces to the classic CPD optimization 
when the number of groups is one per position (leading to only one sequence partition). Inde-
pendent suboptimal enumeration can also be carried out for each sequence similarity-based parti-
tion in order to overcome approximation inaccuracies. In order to limit the number of partitions, 
the partitioning positions can be limited to a subset of mutable residues. Of note, the approach 
does not completely suppress the sequence redundancy but can strongly reduce it. 

 Improving the CPD input model(s)  4.3

Often, CPD starts from a 3D model derived from crystallographic coordinates. However, crystal-
lographic structures are static and obtained under non-physiological conditions, what can affect 
the quality of CPD predictions. Therefore, to compensate for this drawback, molecular dynamics 
simulations can be carried out at room temperature and pressure on the protein initially derived 
from crystallographic structure in order to generate a relaxed 3D model which is more realistic 
under biologically active conditions. This equilibrated model extracted from molecular dynamics 
can then be used as starting point for CPD studies instead of the crystallographic structure. Addi-
tionally, several equilibrated models can also be used in order to perform multiple backbone de-
sign [13]. Another complementary option is to use the side-chain conformational variability ob-
served in these ensembles of models to enrich rotamer libraries on the fly. 

 Toward multiple objective optimization & experimental applications 4.4

The computational design of molecular recognition, whether in the case of a protein-ligand, pro-
tein-protein or protein-nucleic acid interactions, aims at introducing mutations in the protein to 
optimize interactions at the interface (or create de novo a new interface) while preserving the 
foldability of the protein (and the stability of the complex). Hence, the nature of the associated 
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optimization problem is inherently a multiple criteria optimization problem, also known as Mul-
tiple Objective Optimization (MOO) problem. Simply put, MOO involves the development of an 
aggregate objective function (also called utility function) which combines a set of different objec-
tives. The resulting problem is then solved by a single objective solver where the objective func-
tion is the aggregate function. Efficient solvers are available to handle single objective optimiza-
tion problems. However, the effective conception of an aggregate function for multiple criteria 
problems is an unsolved issue in the CPD field (and others) [14]–[16]. The Weighted Sum ap-
proach is commonly used because of its simplicity. The Weighted Sum utility function reduces 
the multiple objective problems to a single objective optimization problem by associating a scalar 
weight to each objective.  

The elementary task of interest is thus to minimize the aggregate function. In MOO, the initial 
optimization problem is to find a solution that simultaneously minimizes all the objectives, re-
gardless of the weight. Such a solution is often called the utopia point, because it generally does 
not exist in the design space [17]. This requirement is thus softened by rather seeking the so-
called Pareto Set or Pareto Front. The Pareto Set is composed of solutions that are not dominated 
by another solution with respect to one objective without an increase in at least one other objec-
tive. All the elements of the Pareto Set are mathematically equivalent. 

A well-studied issue in the MOO field arises from the fact that the involved objective functions 
can have very different magnitudes. This is well known to affect the accuracy of MOO and re-
ferred to as magnitude problem or dimensionality problem [17]. Thus, many forms of mathemati-
cal transformation functions have been introduced (in the MOO field) in order to address this 
pitfall and make the problem dimensionless while preserving the meaning of optimal solutions 
and elements of the Pareto Set. In an ongoing work, we are addressing this issue by designing 
and assessing CPD dedicated transformation functions that suppress the dimensionality between 
the affinity and stability objective functions.  

Another fundamental element that strongly controls the effectiveness of the MOO is the formula-
tion of the aggregate function itself. Although the Weighted Sum approach is widespread in the 
CPD field, its performance is highly dependent on the correct choice and variation of weights 
which is not straightforward for an arbitrary MOO problem [17]. In addition, it is known to be 
unsuited to non-convex MOO problems. An attractive approach which does not suffer from these 
drawbacks is the so-called Physical Programming [17]–[19]. This approach does not use any 
weighting and its superiority over Weighted Sum has been extensively shown in the MOO field 
along with its capacity to completely extract the Pareto Set, given boundary constraints on the 
objectives. The aggregate function of Physical Programming is also very simple and similar to 
the Weighted Sum formulation. It associates a so-called Class Function to each objective which 
serves as individual utility function with additional soft constraint expressed as bounding con-
straints for each objective. The Class Functions are obtained by the application of transformation 
functions to the objectives. From a CPD point of view, the additional constraints can be simply 
modeled by using upper bounds. We are currently designing and assessing such an approach to 
solve multiple criteria CPD problems.  
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Finally, to conclude this manuscript, it is worth noting that experimental validation is a necessary 
step either for real applications or to get insightful feedbacks to improve CPD methodologies. In 
order to carefully consider those aspects, we have made algorithmic choices that more effectively 
decouple the different steps involved in CPD, what renders feedbacks easier to interpret and ex-
ploit. Because provable algorithms make no error with respect to the input model, feedbacks from 
experiments will greatly help to improve the input model (including both design space represen-
tation and selection of objective functions). Hence, the computational developments presented in 
this manuscript might be useful in the near future for predicting sequences leading to proteins and 
enzymes of interest for practical applications.  
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 Introduction 5.1

 Le design computationnel de protéines, en anglais « Computational Protein Design » (CPD), vise 
à remodeler des protéines existantes afin de les doter de propriétés physico-chimiques et fonc-
tionnelles améliorées ou nouvelles tout en préservant le repliement de la protéine de départ. Du-
rant ces dernières décennies, le CPD s’est avéré être un champ de recherche très prometteur au vu 
des différents succès de conception de protéines aux propriétés désirées qu’il a permis 
d’accomplir [1]–[10]. Il s’agit d’une approche complémentaire des méthodes expérimentales 
permettant de guider et d’accélérer l’ingénierie des protéines et ainsi, de réduire les couts hu-
mains et financiers. En guise d’illustration, pour une protéine de taille moyenne, de 300 résidus 
d’acides aminés, avec à chaque position, l’introduction possible de chacun des 20 acides aminés 
naturels, l’espace théorique de séquences aurait une taille de      . Une inspection exhaustive de 
cet espace pour identifier les combinaisons de mutations les plus bénéfiques pour la propriété 
recherchée est ainsi hors de portée des approches expérimentales. Seulement une infime partie de 
cet espace pourrait être effectivement exploré expérimentalement. Le CPD intervient alors pour 
rationaliser cette sélection.  

Dans ce contexte, nous nous sommes intéressés au développement de nouvelles méthodes de 
CPD pour faciliter la conception de nouvelles enzymes. Le CPD s’appuie sur trois composantes 
majeures. La première concerne la modélisation du système moléculaire à traiter, incluant no-
tamment le choix de la protéine de départ et des degrés de liberté associés. La deuxième repose 
sur l’utilisation de fonctions mathématiques adéquates (fonctions objectives) capables d’évaluer 
virtuellement les propriétés cibles. La troisième composante fait appel à des méthodes 
d’optimisation combinatoires efficaces pour explorer et filtrer ces larges espaces de séquences-
conformations. Nous résumerons succinctement ces étapes dans la Section 5.2. Le cycle de CPD 
est souvent suivi par une étape ultérieure d’analyse d’un sous-ensemble des résultats les plus 
prometteurs en faisant appel à des méthodes de modélisation plus fines mais aussi plus couteuses 
en temps de calcul.  

Malgré les avancées méthodologiques réalisées ces dernières années dans le domaine du CPD, de 
nombreux défis restent à relever pour améliorer la fiabilité de prédiction de ces approches et 
étendre leurs domaines d’applications. En particulier, l’un des obstacles majeurs rencontrés par le 
CPD est la taille exorbitante de l’espace combinatoire à explorer. Dans le cadre de cette thèse, 
nous avons recherché d’autres solutions calculatoires permettant un filtrage plus efficace de ces 
vastes espaces de recherche. C’est pourquoi, nous nous sommes intéressés aux dernières avan-
cées méthodologiques réalisées dans le domaine de l’intelligence artificielle. Ainsi, en collabora-
tion avec l'équipe de Thomas Schiex du MIAT-INRA Toulouse, nous avons adapté et évalué dif-
férents algorithmes d’optimisation combinatoire pour traiter les espaces combinatoires complexes 
du CPD. Ces nouvelles approches, basées sur l'optimisation de réseaux de fonctions de coûts 
(CFN) se sont avérées bien plus efficaces pour traiter des problèmes difficiles de design de pro-
téines par rapport aux méthodes habituellement utilisées en CPD [11]–[13]. Sur la base de ces 
nouvelles approches d’optimisation combinatoire, nous avons proposé un nouveau Framework 
dédié au CPD [12]. De plus, nous avons également implémenté ces méthodes dans un outil de 
référence de CPD, osprey [14] pour qu’à terme ces nouvelles approches puissent être couplées 
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aux techniques récentes de traitement de la flexibilité moléculaire, développées par le groupe de 
B. Donald à l’Université de Duke-USA (où j’ai effectué un séjour de 3 mois durant ma thèse).  

 Stratégies de Design Computationnel de Protéines 5.2

La modélisation du problème de CPD se décompose en trois étapes : i) sélection d’une structure 
tridimensionnelle (3D) protéique fournissant le châssis moléculaire le mieux adapté aux objectifs 
de design considérés ; ii) définition de l’espace de recherche impliquant le choix des résidus va-
riables et les états (identités et/ou conformations) qu’ils peuvent adopter ; iii) définition de fonc-
tions objectives adaptées au problème du design et basées sur des potentiels énergétiques ca-
pables de discriminer rapidement et précisément les solutions optimales.  

5.2.1 Représentation de l’espace de design  

Une des conditions de base du CPD est la préservation du repliement de la protéine de départ. 
Pour cela, la modification de la conformation du squelette, quand elle est permise, suit un prin-
cipe minimaliste. De faibles variations peuvent être autorisées en prenant notamment en compte 
des conformations observées expérimentalement. La flexibilité des chaînes latérales est quant à 
elle modélisée par des ensembles discrets de conformations majoritairement observées dans la 
Protein Data Bank (PDB), appelées rotamères. Outre sa variabilité conformationnelle, l’identité 
du résidu d’acide aminé mutable peut être changée par un des 20 acides aminés naturels ou bien 
un sous-ensemble. A noter que les acides aminés de type proline, glycine et cystéine sont souvent 
exclus pour préserver les éléments de structures secondaires.  

5.2.2 Fonctions d’énergie et fonctions objectives  

Par un souci de simplification, les termes d’énergie utilisés en CPD sont approximés pour être 
additifs par paires de rotamères, ce qui permet un pré-calcul et stockage des énergies 
d’interaction. Ainsi, l'échantillonnage plusieurs fois du même rotamère ou paires de rotamères ne 
nécessite pas de recalculer les contributions individuelles. Cette représentation accélère les mé-
thodes heuristiques d’optimisation et est une condition requise pour les approches d'optimisation 
exactes déterministes (brièvement introduites ci-après). Durant la phase d’optimisation, la ma-
trice sera donc lue pour trouver la combinaison optimale d’affectation des rotamères aux posi-
tions variables. Ainsi, l'énergie totale, dénommée       , d'une conformation de la protéine est 
donnée par la formule suivante: 

            ∑         ∑            
 (5-1) 

   est l’énergie d’interaction entre les parties fixes du modèle (elle n’est pas utilisée dans 
l’optimisation),        est un terme d’énergie dépendant du rotamère   à la position   et           
est l'énergie d'interaction de paire entre le rotamère   à la position   et le rotamère   à position  . 
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Les interactions entre les résidus de la protéine, ou avec leurs partenaires (ligands, cofacteurs ou 
autres protéines ou des acides nucléiques, par exemple) sont estimées à l’aide de deux types de 
fonctions d'énergie empiriques. Il peut s’agir de fonctions basées sur les principes de la phy-
sique qui sont en général précises mais souvent lourdes en terme de temps de calcul ou de fonc-
tions basées sur la connaissance (statistique) qui sont généralement plus rapides. Ainsi, les fonc-
tions utilisées en CPD peuvent inclure celles issues : i) des champs de force de Mécanique Molé-
culaire (MM), ii) de l’analyse statistique de données expérimentales ou bien iii) une combinaison 
des deux.  

Ainsi, les termes énergétiques individuels incluent généralement les interactions atomiques de 
« packing » tels que les angles dièdres et le Lennard-Jones. Les contributions de liaison et d’angle 
de liaison prises en compte en MM ne sont habituellement pas utilisées en CPD car leur géomé-
trie idéale est souvent utilisée. Les interactions électrostatiques et les liaisons hydrogènes sont 
également considérées. Par ailleurs, le solvant est généralement représenté par un modèle impli-
cite car sa modélisation explicite serait trop couteuse. D’autres termes ad hoc peuvent également 
être utilisés, par exemple pour estimer l'entropie des chaînes latérales ou la propension des élé-
ments de structure secondaire.  

Outre la définition précise de la fonction d'énergie au niveau atomique, la phase d’optimisation 
nécessite, pour un design donné, la définition d'une ou plusieurs fonctions objectives permettant 
d’établir la correspondance entre l'espace de séquence-conformation et le paysage de la fonction 
de fitness. Plus précisément, les propriétés physico-chimiques (tels que la stabilité thermodyna-
mique, le repliement et la solubilité) et les propriétés fonctionnelles (telles que la liaison à une 
petite molécule ou une autre macromolécule) doivent être modélisées comme des fonctions ob-
jectives à optimiser pour obtenir une protéine stable et fonctionnelle. À noter que, lors de l'opti-
misation, plusieurs objectifs peuvent être agrégés en une seule fonction (autrement appelée opti-
misation à objectifs multiples). Le design négatif peut également être utilisé pour optimiser si-
multanément une fonction de fitness qui tient compte de deux ou plusieurs états concurrents où 
l’un des états doit être discriminé. En guise d’exemple pour le design de stabilité, une définition 
de l’état déplié est requise. La fonction objective sera donc une différence entre l’énergie totale et 
l’énergie de l’état déplié.  

5.2.3 Optimisation combinatoire 

5.2.3.1 Les approches habituelles en CPD 

Sur la base de ces fonctions objectives, des algorithmes d’optimisation combinatoire sont utilisés 
pour rechercher la conformation du minimum global d’énergie, autrement appelée en anglais 
«Global Minimum Energy Conformation» (GMEC), ou un ensemble de solutions de basses éner-
gies. Du point de vue algorithmique, le problème de CPD est NP-difficile [15]. De plus, le pro-
blème de placement de chaînes latérales s'est avéré NP-complet à approximer [16]. Pour cette 
raison, et au vu de la dimension élevée de l’espace de séquence-conformation, des méthodes heu-
ristiques ont été largement développées pour résoudre les problèmes d'optimisation du CPD. La 
première famille de méthodes de cette classe est constituée souvent de variantes du Monte Carlo 
(MC) [17] ou de l'Algorithme Génétique (GA) [18], [19]. Il s’agit d’approches stochastiques, 

5.2. Stratégies de Design Computationnel de Protéines

163



basées sur des choix locaux aléatoires au cours de cycles d'optimisation. Ainsi, deux cycles heu-
ristiques indépendants peuvent donner des résultats différents, correspondants à des minima lo-
caux distincts. Par conséquent, bien que ces approches ne garantissent pas l'identification du 
GMEC en un seul cycle heuristique, leur consommation raisonnable en CPU permet de réaliser 
des centaines de milliers de cycles heuristiques afin de converger vers le GMEC. Elles sont donc 
appropriées pour traiter des problèmes complexes de CPD. Cependant, le nombre de cycles, no-
tamment pour le problème d’énumération d’ensembles sous-optimaux, semble être un point cri-
tique pour les approches heuristiques [17]. Par conséquent, une analyse systématique de la con-
vergence de ces méthodes doit être effectuée pour produire des résultats significatifs. Ainsi, mal-
gré leurs avantages en termes de temps de calcul, ces méthodes ne garantissent pas l'identification 
de l'optimum de la fonction objective. Ainsi, lorsque les résultats expérimentaux et les expé-
riences in silico diffèrent, il est difficile de savoir si l’écart est lié à un échantillonnage insuffisant 
par ces méthodes heuristiques ou à des imprécisions dans la modélisation du problème. De plus, 
ces approches étant incapables de reconnaître le GMEC même si celui-ci a été énuméré, de nom-
breux cycles supplémentaires peuvent être effectués inutilement, ce qui tend à dégrader la vitesse 
de ces méthodes heuristiques pour des problèmes de grandes dimensions [20]. 

Pour pallier à ces limitations et faciliter les cycles itératifs entre optimisation in silico et essais 
expérimentaux, les méthodes déterministes présentent un intérêt majeur. L'algorithme de ce type 
le plus couramment utilisé repose sur le théorème de «Dead-End Elimination » (DEE) [21] en 
combinaison avec le    afin d'extraire la (les) solution(s) de l’espace restant après élagage par le 
DEE [17], [22]. Des approches de programmation linéaire en nombres entiers (ILP) et de pro-
grammation dynamique [23] ont été également appliquées au CPD [24] avec des performances 
encourageantes. Des simulations de CPD ont été également réalisées à l'aide de méthodes basées 
sur la théorie du champ moyen [25]–[28]. Cependant, bien que déterministes puisque deux simu-
lations conduisent aux mêmes résultats, ces méthodes basées sur le champ moyen ne sont néan-
moins pas complètes dans la mesure où l’identification du GMEC n’est pas garantie.  

L'approche de DEE élimine un rotamère dans une position tout en s'assurant qu'il ne peut exister 
au sein de la solution optimale. Des critères similaires existent également pour éliminer des paires 
de rotamères ou des combinaisons de rotamères d'ordres supérieurs. Ces critères d'élimination 
sont appliqués jusqu'à convergence ou jusqu’à un nombre prédéfini d'étapes. Toutefois, étant 
donné que le DEE ne converge pas toujours vers une solution unique lorsqu'il est confronté à des 
problèmes de CPD complexes, un algorithme d'énumération tel que    est ensuite appliqué pour 
extraire le GMEC de l'espace restant. Deux exécutions de ce type de combinaison d’algorithmes 
donnent le même résultat, et fournissent la meilleure solution mathématique, le GMEC, lors-
qu'elles convergent. De plus, des solutions sous-optimales peuvent être énumérées dans une fe-
nêtre d'énergie spécifiée par l'utilisateur. Cependant, la convergence n'est pas assurée et ces mé-
thodes peuvent être extrêmement consommatrices de CPU. Ainsi, elles peuvent échouer pour 
traiter des problèmes de CPD complexes.  

Dès lors, de nouvelles approches déterministes exactes et complètes sont nécessaires afin de sur-
passer les limitations des méthodes actuelles et faire face à des designs de haute complexité com-
binatoire.  
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5.2.3.2 Une nouvelle approche pour le CPD : les réseaux de fonction de cout  

Un réseau de contraintes est un modèle mathématique où un ensemble de contraintes est défini 
sur un ensemble de variables discrètes. Chaque contrainte limite les valeurs autorisées pour une 
ou un sous-ensemble de variables. Le Problème de Satisfaction de Contraintes (CSP) est de trou-
ver simultanément une valeur pour chacune des variables de manière à satisfaire à toutes les con-
traintes (également appelée une solution). Le CSP est NP-complet [29]. Un réseau de fonction de 
coût (CFN pour «Cost Function Network») élargit le cadre des réseaux de contraintes en rempla-
çant les contraintes avec des fonctions de coût [30], [31]. Dans un CFN, nous avons un ensemble 
de variables avec chacun un domaine fini associé et un ensemble de fonctions de coût locales 
(c’est-à-dire impliquant uniquement un sous-ensemble de toutes les variables). Le problème de 
satisfaction de contrainte pondéré (WCSP pour « Weighted CSP ») est de trouver une valeur pour 
toutes les variables qui minimise la somme de toutes les fonctions de coût. Les CFNs ont été uti-
lisés comme un outil de modélisation pour représenter et résoudre des problèmes d'optimisation 
combinatoire dans de nombreux domaines, incluant la bioinformatique et l’affectation des res-
sources [32]–[34]. 

Formellement, un CFN   est un triplet           avec                   un ensemble de   
variables. Chaque variable     possède un domaine discret     . Dans le triplet,   est un 
ensemble de fonctions de coût locales. Chaque fonction de coût      est définie sur un sous-
ensemble de variables     (appelé sa portée), a comme domaine ∏       et prend ses valeurs 
dans       . Les valeurs, paires et affectations jointes d’ordre supérieures sont représentées 
par des coûts infinis appelés contraintes dures et toutes les fonctions de coût doivent être non 
négatives. Souvent, dans la pratique, nous connaissons une « bonne » solution de coût  , rendant 
toutes les solutions de coût supérieure à   inintéressantes. Toutes ces solutions de coût au-delà de   peuvent ainsi être considérées comme infini. Le coût d’une affectation   est la somme des 
coûts de toutes les fonctions de coût locales. Il est généralement supposé que   contienne une 
fonction de coût constante, avec une portée vide, notée   . Un CFN   définit une distribution des 
coûts joints sur toutes les variables   définies par le coût des affectations. Étant donné que toutes 
les fonctions de coût dans un CFN sont non négatives, la fonction de coût constante     définit 
un minorant sur cette distribution.  

La Fig 5-1 est ce qu'on appelle une représentation en microstruc-
ture de CFN sous forme de graphe sur un exemple très simple. 
Les deux variables impliqués       sont représentées par des 
cercles en pointillés. Les valeurs de domaine sont représentées 
par de petits cercles (sommets,            ). Les étiquettes 
des sommets sont les coûts unaires correspondants. Les arêtes 
représentent des termes binaires, l'étiquette correspondante est 
son coût. Pour plus de clarté, les arêtes qui ont un coût nul ne 
sont pas représentées et l'étiquette n'est pas écrite quand le coût = 
1. Le majorant initial du problème est 4. Fig 5-1 Un exemple de CFN 
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Le problème de CPD se modélise assez naturellement sous la forme d’un réseau de fonctions de 
coût. En effet, chaque résidu variable du CPD est représenté par une variable   du CFN, son en-
semble de rotamères permis étant modélisé par   . Le terme constant dans        peut être captu-
ré par   , les termes       sont modélisés par les fonctions locales d’arité unaire et les termes          sont capturés par les fonctions locales d’arité binaire. On peut ainsi modéliser le pro-
blème d’optimisation du CPD comme un WCSP binaire. Pour faire cette correspondance entre 
WCSP et CPD, il est nécessaire d’appliquer une transformation des énergies (des nombres réels), 
en nombres naturels. Pour ce faire, le minimum de la matrice d’énergie est retranché à tous les 
termes de la matrice pour avoir des réels positifs, suivi de leur multiplication par une puissance 
de 10 pour avoir un nombre voulu de chiffres après la virgule. L’optimum du WCSP ainsi formu-
lé est le GMEC du problème de CPD.  

Le problème de WCSP est généralement résolu par des algorithmes de recherche en profondeur 
d’abord avec séparation-évaluation (« Depth-First Branch and Bound »). Ils intègrent à chaque 
nœud, des méthodes incrémentales de cohérence d’arc qui maintiennent en temps polynomial un 
minorant fort sur le problème d’optimisation [35], [36]. La maintenance de ces propriétés de co-
hérence d’arc, en plus d’incrémenter le minorant, permet d’élaguer l’arbre de recherche en sup-
primant des rotamères incompatibles avec au moins une contrainte. Ce majorant est initialement 
infini et est mis à jour à chaque fois qu’une conformation complète est identifiée. La recherche 
est terminée quand le minorant devient supérieur ou égal au majorant 

 De nouvelles approches basées sur les réseaux de fonctions de coût (CFN) 5.3

Les travaux de ma thèse furent principalement consacrés à l’évaluation de nouvelles méthodes 
d’optimisation exactes déterministes pour traiter des tailles de combinatoire aussi larges que 
celles explorées par les méthodes heuristiques. En collaboration avec l’équipe MIAT-INRA, spé-
cialisée dans l’optimisation combinatoire, nous avons adapté pour la première fois des approches 
basées sur les réseaux de fonctions de coût (CFN) au problème de CPD et évalué leurs perfor-
mances sur plusieurs cas de design de protéines.  

Dans un premier temps, ces approches basées sur le CFN ont été évaluées sur un jeu de 12 cas 
distincts de design de protéines. Elles se sont avérées bien plus efficaces en terme de temps de 
calcul pour identifier le GMEC que les approches habituellement utilisées en CPD et basées sur 
le       . De par l’accélération du calcul (par plusieurs ordres de grandeur), elles ont permis de 
trouver la solution optimale pour de nombreux cas non résolus par les autres méthodes. Ces tra-
vaux sont décrits dans un article publié dans les proceedings du « 18th International Conference 
on Principles and Practice of Constraint Programming » (Québec, Canada, October, 8-12 2012) 
[11]. 

Sur la base de ces résultats encourageants, nous avons alors évalué les performances d’autres 
méthodes d’optimisation combinatoire (0/1 Linear Programming 0/1 Quadratic Programming, 0/1 
Quadratic optimization, Weighted Partial Max SAT and Graphical Model Optimization) sur un 
jeu plus large de cas de CPD (40 au lieu de 12). Ces travaux ont montré que les méthodes CFN 
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sont bien plus efficaces que toutes les autres approches testées (Fig 5-2). Ces résultats sont pré-
sentés dans un article publié dans Artificial Intelligence [13].  

Fig 5-2 Evalution de différentes méthodes d’optimisation combinatoire (solveurs toulbar2 (CFN), osprey 
(DEE/A*, cplex (0/1 Linear Programming), MaxHS (Weighted Partial Mas SAT), mplp et daoopt (Graphical Model 
Optimization)) pour résoudre différents problèmes de design de protéines. Axe X : Nombre de problèmes résolus ; 
Axe Y : Temps CPU alloué pour résoudre chaque problème [13]. 

Au vu des performances de ces approches basées sur le CFN pour résoudre le problème 
d’identification du GMEC, nous avons alors appliqué ces méthodes pour traiter un autre pro-
blème du CPD qui est l’énumération d’un ensemble de solutions sous-optimales dans un inter-
valle défini au-delà de l’optimum. Un intervalle de              a été utilisé dans notre études. 
Nous avons imposé une limite de temps de 100h et une limite de mémoire de 128G. Sur 35 cas de 
designs (Tableau 5-1), les méthodes basées sur le CFN ont réussi à énumérer les solutions sous-
optimales pour 30 cas (en 7 heures de calcul pour le plus long) alors que le        n’a pu les 
énumérer que pour un seul cas. L’approche        a ainsi échoué pour 34 cas soit à cause des 
limites de temps (30 cas) ou de mémoire (4 cas). Bien que la seule instance qu’elle ait résolue 
((1SHF) corresponde à l'un des plus petits espaces combinatoires étudiées (      ), ~ 37 heures 
de calcul ont quand même été nécessaires pour trouver l'ensemble des modèles de basse énergie. 
La même instance a été résolue par le CFN en moins d’une seconde. Plus encore, le temps de 
calcul le plus long pour le CFN fut observé pour 1L63 qui a requis ~7h (pour un espace combina-
toire de       ) pour énumérer un grand nombre de solutions sous-optimales (       ). 

Au cours de cette étude, nous avons également introduit de nouveaux critères de choix de 
l’espace de mutations, basés sur la mesure de l’enfouissement des résidus. Alors que de nom-
breux travaux de CPD mesurent l’aire de la surface exposée au solvant pour évaluer la localisa-
tion des résidus mutables dans la structure 3D et ainsi définir les acides aminés autorisés à ces 
positions [37]–[39], notre approche repose quant à elle sur une mesure de l’enfouissement des 
résidus plus précise : le rayon de solvatation des résidus [40]. Dans le cadre de ces travaux, nous 
avons alors proposé un nouveau Framework permettant de réaliser un calcul de CPD complet, 
allant de la modélisation du problème jusqu’à l’optimisation combinatoire basée sur le CFN, en 
combinant l’utilisation de deux outils : un logiciel dédié au CPD, osprey (développé à l’université 
de Duke, USA, équipe de B. Donald) et le solveur CFN, toulbar2 (développé au MIAT-INRA, 
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équipe de T. Schiex). L’ensemble de ces travaux a donné lieu à un article publié dans Bioinfor-
matics [12]. 

Tableau 5-1 Temps CPU pour l’identification du GMEC en utilisant DEE/A* (osprey), ILP (cplex) and CFN 
(toulbar2) [12]. 

 

Un ‘M’ indique que la limite de mémoire a été dépassée (128G) et un ‘T’ indique que la limite de temps de calcul est dépassée (100h). Pour l’approche DEE / A *, le A 
* et le DEE notés en indice de M ou T indiquent l'étape au cours de laquelle a eu lieu le dépassement de la limite de temps de calcul ou de mémoire. 

Enfin, nous avons aussi implémenté les approches basées sur le CFN directement dans le logiciel 
osprey afin de faciliter leur accès à la communauté scientifique. Ces travaux ont été réalisés pen-
dant le séjour de trois mois que j'ai réalisé au sein du groupe de B. Donald (Université de Duke, 
Caroline du Nord, États-Unis). Une autre motivation pour intégrer les méthodes CFN dans ce 
logiciel était de bénéficier des développements déjà réalisés par le groupe de B. Donald, notam-
ment pour le traitement de la flexibilité moléculaire. De plus, nous avons proposé de nouvelles 
avancées méthodologiques dérivées des approches de CFN ainsi que de nouvelles heuristiques 
d’ordonnancement de variables et de valeurs pour améliorer encore davantage les performances 
de la phase d'optimisation combinatoire. Ces travaux sont décrits dans ce manuscrit et un article 
sera très prochainement soumis à Journal of Computational Chemistry. 

PDB Taille espace de Séquence-Conformation  Temps (s) 

DEE/A* ILP CFN 
1MJC 4.36e+26 4.57. 3.94 0.08 
1CSP 5.02e+30 200.00 360.00 0.84 
1BK2 1.18e+32 93.20 303.00 0.65 
1SHG 2.13e+32 138.00 42.30 0.25 
1CSK 4.09e+32 41.70 24.90 0.15 
1SHF 1.05e+34 44.30 11.10 0.17 
1FYN 5.04e+36 622.00 2.26e+03 3.79 
1PIN 5.32e+39 9.54e+03 3.00e+03 3.99 
1NXB 2.61e+41 11.10 21.20 0.24 
1TEN 6.17e+43 113.00 81.70 0.33 
1POH 8.02e+43 77.90 31.80 0.45 
2DRI 1.16e+47  TA*  2.92e+5  24.5  
1FNA 3.02e+47 3.31e+03 419.00 0.73 
1UBI 2.43e+49 TA* 704.00 2.14 
1C9O 3.77e+49 2.31e+03 1.40e+03 2.20 
1CTF 3.95e+51 TA* 580.40 1.23 
2PCY 2.34e+52 2.08e+03 76.70 0.51 
1DKT 3.94e+58 5.42e+03 1.85e+03 3.95 
2TRX 9.02e+59 487.00 1.34e+03 1.7 
1PGB 5.10e+61 TDEE T T 
1CM1 3.73e+63  TA*  2.65e+04   19.2  
1BRS 1.67e+64 TA* 2.39e+05 426.0 
1ENH 6.65e+64 TDEE T T 
1CDL 5.68e+65 TA* T 191.1 
1LZ1 1.04e+72 TA* 1.25e+03 2.11 
2CI2 7.26e+75 TDEE T T 
1GVP 1.51e+78 TA* T 593.6 
1RIS 1.23e+80 TA* T 501.00 
2RN2 3.68e+80 MA* 1.14e+03 2.77 
1CSE 8.35e+82 367.00 205.93 1.36 
1HNG 3.70e+88 5.59e+03 4.15e+03 6.97 
3CHY 2.36e+92 TA* 2.91e+04 171.00 
1L63 2.17e+94 MA* 2.82e+03 6.41 
3HHR 2.98e+171 TDEE M T 
1STN 2.00e+249 TDEE M M 
# Nb de cas résolus en 10 min  11 13 30 
# Nb de cas résolus en 100 h  18 27 30 
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 Conclusion et perspectives 5.4

Dans le cadre de cette thèse, nos travaux ont été centrés sur le problème de l’optimisation combi-
natoire en CPD. Différentes méthodes dérivées de la recherche en Intelligence Artificielle ont été 
adaptées et évaluées sur des problèmes variés de design de protéines. Ainsi, un nouveau Frame-
work complètement dédié au CPD et basé sur des méthodes d’optimisation combinatoire jamais 
mises en œuvre auparavant dans le domaine du CPD a pu être proposé.  

L’adaptation au CPD des méthodes basées sur les réseaux de fonctions de coût a conduit à une 
accélération de l’optimisation de la combinatoire de plusieurs ordres de grandeurs par rapport aux 
approches existantes dédiées au CPD. En effet, leur efficacité a pu être éprouvée à la fois sur le 
problème d’obtention du GMEC et sur le problème d’énumération d’ensembles de solutions 
sous-optimales. Elles se sont avérées efficaces pour la résolution exacte du problème d'optimisa-
tion du CPD (recherche du GMEC), ainsi que pour l'énumération d'ensembles de modèles 
proches de l'optimum. Alors que dans de nombreux cas de design, l’approche        a échoué 
dans l’identification du GMEC ou dans l’énumération des modèles sous-optimaux, notre Frame-
work basé sur le CFN s’est avéré capable quant à lui de résoudre ces problèmes avec des temps 
de calcul extrêmement courts sur monoprocesseur, allant de moins d’une seconde à quelques mi-
nutes pour l’identification du GMEC à quelques heures pour l’énumération d’un ensemble de 
modèles sous-optimaux (dans un intervalle de              du GMEC). Ainsi, nos travaux ont 
conduit à proposer un Framework performant pour le CPD basé sur des méthodes originales is-
sues d’intelligence artificielle.  

En ce qui concerne la suite de ce travail, plusieurs pistes d’amélioration de notre méthodologie de 
CPD sont envisagées. Tout d’abord une tendance en CPD est d’améliorer la prise en compte de la 
flexibilité moléculaire, notamment en introduisant des rotamères continus et/ou des minimisa-
tions des rotamères rigides durant le calcul de matrices [41]. Certaines approches couplent cela 
avec une optimisation « continue » de manière à couvrir l’optimum de l’espace continu, ce qui a 
pour conséquence d’améliorer les prédictions [41]. Cependant, ces approches restent très cou-
teuses en temps CPU et sont donc limitées à de petites tailles de combinatoires. Une alternative 
plus réaliste serait de continuer à faire de l’optimisation discrète mais avec des rotamères conti-
nus et des minimisations tout en essayant d’améliorer conjointement la concordance entre les 
valeurs d’énergie totale issues des conformations complètes et celles issues de la discrétisation de 
la matrice.  

Par ailleurs, un problème majeur dans l’énumération d’ensemble de solutions sous-optimales est 
la redondance de conformations pour la même séquence et la présence de solutions très proches 
énergétiquement sans que cela n’augmente la diversité de séquences. Pour pallier à ce problème, 
nous avons entamé une réflexion qui vise à structurer l’espace des mutations de manière à forcer 
la diversité de séquences au détriment de la redondance de conformations. En effet, l’objectif 
premier n’est pas une étude de l’entropie conformationnelle mais bien l’identification de diverses 
séquences sous-optimales. La redondance est donc utile mais seulement dans un second temps 
avec un échantillonnage plus poussé que ce qui est faisable pendant l’identification des sé-
quences.  
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Quand il s’agit de réaliser le design d’interfaces protéine-protéine, protéine-ligand ou bien en-
zyme-substrat, une tendance est de considérer non pas une seule conformation par mutant mais 
un ensemble thermodynamique de conformations, appelé ensemble de Boltzmann [42]. Ces ap-
proches effectuent un classement des mutants sur la base d’une évaluation de l’affinité de liaison 
entre les deux molécules en faisant appel à des méthodes classiques de calcul d’énergie libre de 
liaison ou bien à de nouvelles méthodes, appelées    [42]. Ces approches ont été appliquées avec 
succès pour des designs d’interactions protéine-protéine et enzyme-substrat [38], [42]–[45]. Ce-
pendant, l’efficacité de ces méthodes peut être limitée par le filtrage préalable de l’espace de mu-
tations qui peut élaguer des mutants alors qu’ils auraient pu être classés en tête de liste par le    
ou les calculs d’énergie libre. Le développement de méthode d’optimisation à objectifs multiples 
trouve tout son intérêt dans ce contexte. 

Enfin, un autre point d’amélioration possible du CPD réside dans la préparation du modèle tridi-
mensionnel de départ du design. Le CPD utilise habituellement des modèles 3D épurés à partir de 
coordonnées cristallographiques. Toutefois, ces modèles statiques peuvent être biaisés par les 
conditions expérimentales (pH, température, pression, solvant, contacts cristallins, ..). Pour con-
tourner ces problèmes, il serait possible d’utiliser comme modèle de départ une ou plusieurs con-
formations à l’équilibre thermodynamique issus de simulations de dynamique moléculaire dans 
les conditions voulues (i.e., par exemple à pression, température et pH physiologique). D’autre 
part, les conformations des chaines latérales observées à l’équilibre pourraient être ajoutées à la 
volée à la librairie de rotamères en tant que rotamères natifs durant le calcul de matrice (comme 
c’est déjà souvent le cas en CPD mais sur le modèle structural de départ uniquement).  

Pour finir, il est important de noter que l'expérimentation biologique est une étape essentielle du 
CPD pour acquérir des informations qui permettront d’améliorer les méthodologies développées. 
Pour faciliter l’intégration des données issues de l’expérimentation, nous avons effectué des 
choix algorithmiques permettant de découpler l’étape d’optimisation du reste de la procédure de 
CPD. De cette façon, tout progrès sur l’optimisation reste bien sûr un acquis, et les feedbacks des 
expériences biologiques devraient permettre de déceler les imperfections dans la formulation du 
problème et des fonctions objectives utilisées pour mesurer les propriétés recherchées.  
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