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1. Motivations  
La classification de paquets est à la base de nombreux services avancées dans les réseaux tels 
que les pare-feux, la détection et la prévention d’intrusion, l’équilibrage de charge, la gestion 
de la Qualité de service, etc. Cette opération consiste généralement en la comparison de 
champs d’entête des paquets par rapport à un ensemble de règles prédéfinies et à l’application 
des actions associées à ces règles aux paquets validant celles-ci. Au vu de son importance, la 
classification haute performance de paquets a été extensivement étudié durant les dix 
dernières années. Les approches classiques de classification sont généralement fondées sur des 
solutions matérielles dédiées. Mais, récemment les systèmes de classification logiciels ont 
attiré un intérêt croissant [1,2,3]. Dans la suite nous décrirons les raisons de cet intérêt.  
 

L’émergence des SDNs  

Les réseaux logiciels, défini par le sigle SDN (Software defined Network) sont des réseaux où 
les plans de contrôle et de données sont physiquement séparés. Des switches installés dans le 
cœur du réseau transfèrent les paquets en fonction de règles définies dans le plan de contrôle 
qui peut être distant. Cette séparation simplifie la gestion de réseaux étendus et complexes, et 
la définition de politiques de traitement dans ces réseaux. Néanmoins, pour que de telle 
solutions soient possible, il est nécessaire d’avoir un plan de données suffisamment flexible 
afin de transférer le plus rapidement possible ses différentes taches. L’architecture OpenFlow 
[4] est aujourd’hui le standard de facto qui donne les abstractions des fonctionnalités du plan 
de données. En suivant la spécification OpenFlow, un switch doit pouvoir appliquer une 
classification sur au moins 10 champs. Mais les matériels informatiques actuels ne peuvent pas 
gérer plus de quelques milliers de telles règles, e.g., la taille de la mémoire TCAM du 
commutateur HP ProCurve 5406zl ne permet pas de stocker plus de 1500 règles. Cette 
limitation du nombre de règles, réduit sérieusement le déploiement des réseaux SDN. De plus 
la version 1.3 de l’architecture OpenFlow recommande jusqu’à 30 champs optionnels pour la 
classification. Cette multitude de champs impose un challenge technique important sur la 
conception des matériels pour SDN. 
 
Dans [5] Martin Casado et ces co-auteurs proposent une solution pragmatique pour 
l’évolution des SDNs qui suggère de traiter le cœur du réseau et de l’accès de façon séparés. Le 
réseau d’accès se positionne à l’interface entre le réseau et les serveurs et clients terminaux et 
fourni des services réseaux comme la virtualisation, l’ingénierie de trafic, la qualité de service, 
etc. Le cœur de réseau, pour sa part ne transmet que des paquets à haute vitesse. Les auteurs 
de [5] proposent que le cœur et l’accès du réseau soient gérer par des contrôleurs 
indépendants. Similairement à MPLS, les routeurs du réseau d’accès ajoutent des étiquettes 
(tags) aux paquets qui sont transmis au cœur de réseau. Ces étiquettes sont utilisées dans le 
cœur de réseau pour simplifier la classification des paquets. Cette architecture est présentée 
dans la Figure 1. 
 
Le volume de trafic dans le réseau d’accès est relativement plus faible, mais les besoins en 
classification de paquets y sont aussi les plus importants. C’est donc à ce niveau qu’il faut 
concentrer le déploiement de solutions flexibles de classification logicielle qui se fondent sur 
plusieurs champs d’entête. L’exemple typique de ceci est donnée par les « Open vSwitch » [6] 
qui échangent les paquets entrants entre plusieurs machines virtuelles en utilisant une 
classification fondée sur des règles OpenFlow. Ainsi la classification de paquets est un des 
éléments principaux des SDN et la performance des ces algorithmes conditionne la 



performance de ces réseaux.  

 
Figure 1- architecture de réseaux SDN 

 

L’externalisation des services réseaux.  
L’informatique dans le nuage (Cloud computing) a permis la séparation de la propriété de 
l’infrastructure matérielle et des applications s’exécutant sur ceux-ci. Les services réseaux sont 
parmi les services de bases fournis par l’infrastructure informatique. Il est donc pertinent 
d’explorer la possibilité d’externaliser les services réseaux et les fonctionnalités ci-rattachant 
dans le nuage. Ceci permettrait de faire bénéficier aux services réseaux les bienfait de la 
virtualisation dans le nuage. Il y’a déjà plusieurs entreprises pionnière, comme AT&T, qui 
proposent déjà pare-feux dans le nuage, réduisant de cette façon le CAPEX/OPEX des petites 
entreprises.  Cisco a aussi produit une image de machine virtuelle implantant un pare-feu 
filtrant.  
La classification de paquet est une composante essentielle de ces systèmes virtualisés, et elle 
doit être implanté de façon logicielle afin de pouvoir être déployé sur des matériels 
quelconque.  
 

Le besoin de la virtualisation réseau  

De plus en plus dans la pratique, ont observe des centres de données partagés entre plusieurs 
acteurs ayant chacun leur propre plan d’adressage. Dans le cadre du nuage et la virtualisation, 
le matériel exécutant un service n’est pas déterminé et fixé à l’avance et il peut changer 
d’emplacement. On peut donc dans ce genre de scénario avoir une architecture réseau par 
acteur dans le centre de données et il convient de virtualiser le réseau afin de pouvoir exécuter 
sur un seul support matérielle plusieurs routeurs relatifs aux divers acteurs du réseau.  Dans 
[7], les auteurs montrent que dans ces scénarios, l’opérateur réseau a besoin de règles avec une 
granularité très fine afin de séparer le trafic réseaux entre les différentes propriétaires. Ces 
règles à grains fin consomment beaucoup de ressources matérielles et aboutissent même 
parfois à des pannes réseaux de grande ampleur [8]. Le débit d’addition de nouvelle règle peut 
atteindre 3000 changement par seconde et le nombre de règle à traiter dans ces scénarios peut 
facilement atteindre 60 K règles. Ceci aboutit à une consommation des ressources importantes 
et un besoin de mise à jour fréquentes de règles de classification qui n’est compatible qu’avec 
une implantation logicielle de la classification de paquets.  



 
Figure 2 : Architecture Multi-cœurs et performances des routeurs logiciel  

Les avancées dans les architectures multi‐cœurs et dans le parallélisme à grain fin  
Ainsi que je le montre dans la figure 2, le développement des processeurs multi-cœurs permet 
aujourd’hui d’atteindre des performances comparables aux routeurs commerciaux, mais avec 
un coût largement inférieur. Ceci s’est traduit depuis quelques années par plusieurs travaux de 
recherche visant à l’implantation de routeurs sur des architectures de serveurs communs 
[9,10,11]. Le system STORM de classification de paquets par logiciel [12] ainsi que le routeur 
logiciel accéléré à l’aide de GPU PacketShader [14] démontrent que la flexibilité et la 
performance élevée ne sont pas mutuellement exclusive sur les plateformes logicielles. Le 
projet PEARL décrit dans [13] est important puisque j’y ai contribué et développement 
l’architecture de ce système. 
 
Alors que les librairies de capture et de traitement de paquets telle que Netmap [15], DPDK 
(Data Plane Development Kit) réduisent le goulot d’étranglement des entrées/sorties dans le 
système d’exploitation et réduisent la complexité du développement d’application haute 
performance. Ainsi le goulot d’étranglement se transfère maintenant sur la classification 
efficace de paquets.  

2. Problématiques de recherche  
 

Dans cette thèse, je discuterai principalement de deux problèmes : un problème de 
classification en une seule dimension, le routage IP, et un problème de classification 
multidimensionnel fondés sur des arbres de décision. Le problème du routage IP consiste en 
la recherche du plus long préfixe correspondant à une adresse IP donnée. Je présente ce 
problème dans la figure 3 ci-dessous. 
 

Le routage IP est fondamentalement un problème de recherche plus long préfixe 
commun dans une table de routage contenant jusqu’à 500 K préfixes. Au vue de 



 
Figure 3- Routage IP par recherche de plus long préfixes communs 

 
l’augmentation constante des débits sur les liens réseaux, le temps qui reste pour faire une 
recherche de plus long préfixe se réduit de façon régulière. Ainsi sur un lien à 100 Gbps le 
temps restant pour la recherche de préfixes, est de l’ordre que quelques dizaines de 
nanosecondes. En plus de la vitesse de recherche, il faut aussi intégrer les changements dans 
les tables de routage. Nous montrons dans la figure 4 une courbe de variation du nombre de 
mises à jours dans les tables de routages IP qui montre un débit de changement de l’ordre de 
1000 mise à jour par seconde. 
 
 Le second thème de ma recherche a porté sur les ensembles de règles 
multidimensionnelles. Dans la Figure 5 nous montrons un système de classification typique et 
dans la Table 1 un ensemble de règles typique. Un ensemble de règles multidimensionnelles 
consiste en un ensemble d’intervalles définis sur plusieurs champs et une action à appliquer à 
un paquet qui vérifierait la règle. 

 

Table 1- exemple de règles multi-dimensionnelles typique 

 

Figure 4: Fréquence de mises à jours des tables de routages. 
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SIP DIP SP DP L4 protocol Act.

R1 10.1.0.0/16 191.243.60.0/24 0 : 65535 1521 : 1521 TCP DROP
R2 10.1.0.0/16 58.62.126.0/24 0 : 65535 1724 : 1724 TCP DROP
R3 10.3.7.0/24 58.62.126.0/24 0 : 65535 1521 : 1521 TCP PERMIT
R4 23.3.7.0/24 58.49.16.0/24 0 : 65535 14753 : 14753 TCP PERMIT
R5 23.5.7.0/24 58.49.16.0/24 0 : 65535 5631 : 5631 UDP RESET



 

Figure 5- Architecture de classification de paquets 

3. Contributions principales de la thèse  

Conception d’algorithme  
L’objectif principal de cette thèse, a été la conception d’algorithmes de classification de 
paquets rapide et efficace. A la différence des travaux précédents qui ont tenté de proposer un 
nouvel algorithme sans faire une analyse rétrospective afin de comprendre pourquoi les 
performances des algorithmes précédents étaient mauvaise, ma démarche dans cette thèse a 
été de commencer par une étude approfondie des algorithmes classiques de classification de 
paquets. Cette analyse m’a permis de lier les les propriétés intrinsèques des ensembles de 
règles à la performance des algorithmes de classification. Je me suis appuyé sur cette analyse 
pour proposer un cadre permettant aux ingénieurs de choisir, en fonction des propriétés des 
ensembles de règles, les briques algorithmes nécessaires à l’implantation d’algorithme de 
classification rapide et efficace.  

 Dans la suite je commencerai pas décrire les observations sur les propriétés des 
ensembles de règles. 

Propriétés des règles d’apprentissage 

Un ensemble de règles de classification de paquets peut être considérée comme une collection 
d’intervalles définis sur plusieurs champs. Nous présentons dans la table 2 un ensemble de 
règles contenant 6 règles définies sur 2 champs de 4 bits, où « * » signifie n’importe quelle  

 

 
Table 2- ensemble de règles de test 
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R1 111* * DROP
R2 110* * PERMIT
R3 * 010* DROP
R4 * 011* PERMIT
R5 01** 10** DROP
R6 * * PERMIT



 
Figure 6- Classification par arbre de décision 

 
valeur.  Cet ensemble de règles peut être transformé en 4 intervalles distinct sur le champ 1 
(R1 : [14,15], R2: [12,13] ; R5: [4,7] ; autre règles :[0,15]), et 4 sur le champ 2 (R3 :[4, 5] ; R4 : 
[6, 7] ; R5 : [8, 11] autres règles : [0, 15]). Une règle de classification de paquets peut être 
interprétée de façon géométrique : une règle définie sur k champs peut être considérée comme 
un k-orthotope, i.e., un hyper-rectangle dans l’espace de dimension k. Par exemple, la règle R1 
dans la table 2, définie dans l’espace des champs, une bande rectangulaire bi-dimensionnelle, 
où la largeur est 2 unités (de 14 à 15) dans le sens de l’axe du champ 1, et la longueur balaie la 
totalité de la portée du champ 2 où il y’a un symbole « * ». Similairement, la règle 3 définie une 
autre région rectangulaire, mais dont la largeur est dans le sens de l’axe du champ 2. Les 
différentes règles définissent chacune un k-orthotope qui peuvent se couper et définir des 
formes imbriqués et complexes. Un algorithme de classification est un algorithme auquel on 
donne les coordonnées d’un point dans l’espace et qui retourne l’identifiant du plus petit 
rectangle recouvrant ce point.  
 
 Maintenant étudions ce que fait un algorithme de classification utilisant un arbre de 
décision. Nous présentons dans la figure 6-b, un arbre de décision implantant la classification 
suivant les règles de la table 2. A la racine de l’arbre, une coupe est appliquée au champ 1 qui 
est divisé en deux parties [0,13] et [14,15]. Au second niveau, une coupe est appliquée au 
champ 2 qui est divisé en deux parties [0,5] et [6,15]. Ainsi chaque nœud dans l’arbre de 
décision peut être considéré comme une coupe appliquée dans une l’espace des champs. En 
appliquant ces coupes en suivant un chemin dans un arbre de décision, l’espace est partitionné 
en régions de plus plus en petites et ayant une intersection avec de moins en moins de k-
orthotopes. 
 

Finalement, la classification est efficace si à la fin il n’y a qu’une règle dans la région 
définie par la feuille du l’arbre de décision.  La description précédente permet de comprendre 
les propriétés de l’ensemble de règle ayant un impact important sur la performance de la 
classification. Quand les règles sont clairsemées comme dans la figure 7-a, les coupes peuvent 
de façon efficaces séparer les différentes règles nécessitant que peu d’empreinte mémoire. 
Néanmoins, on observe fréquemment dans les ensembles de règles observées en pratique des 
structures orthogonales comme celles présentées dans la figure 7-b. Dans l’ensemble des règles 
définies dans la table 2, les règles R1, R2, R3 et R4 sont orthogonales. Quand de telles 
structures existent dans l’ensemble des règles, aucune coupe ne permet de séparer l’espace en 
régions ne contenant qu’une seule règle. Au mieux peut on avoir O(NK) régions contenant K  
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Figure 7- Structures orthogonales et règles clairsemées  

règles orthogonales, où K est la dimension de l’espace et N le nombre de règles orthogonales.   
Quand ceci arrive, chaque règle orthogonale doit être dupliquée dans toutes feuilles de l’arbre 
de décision, ce qui aboutit à un gaspillage de mémoire et une empreinte mémoire très 
importante. 
 
 Une seconde propriété importante de l’ensemble de règles résulte de la comparaison 
entre les deux arbres de décision dans la Figure 6. L’arbre dans la Figure 6-a est un arbre 
obtenu en appliquant des coupes de tailles égales à chacune des dimensions, alors que celui 
dans la figure 6-b utilise des coupes de tailles inégales. L’utilisation de coupes à tailles égales, 
quand cela est possible, réduit l’empreinte mémoire pour le stockage ainsi que le nombre 
d’opérations nécessaire pour le parcours de l’arbre. Par contre les coupes à tailles égales 
peuvent résulter en des duplications de règles quand une règle coupe plusieurs intervalles, ou 
du gaspillage quand aucune règle n’existe dans un intervalle. Plus la taille des intervalles est 
uniforme, plus l’utilisation de coupes à tailles égales est efficace. Par contre les coupes à tailles 
inégales sont plus efficaces, quand la taille des intervalles est non-uniforme. Il est ainsi 
nécessaire d’évaluer par le biais de métriques l’uniformité de la taille des intervalles afin de 
décider de la bonne stratégie de coupes à appliquer.  
 

A cette fin j’ai développé durant ma thèse une méthodologie d’évaluation de 
l’uniformité des intervalles, par le biais d’arbres d’intervalles. L’arbre d’intervalles centrée est 
un arbre binaire permettant de représenter un ensemble d’intervalle. Chaque nœud de l’arbre 
d’intervalle contient des intervalles de règles et est représenté par un point x, le point médian 
de tous les intervalles contenus dans le nœud. La construction de l’arbre se fait en 
partitionnant l’ensemble des intervalles de règles contenus dans le nœud en trois sous-
ensembles : le premier sous-ensemble contient toutes les règles qui contiennent le point x, le 
second sous-ensemble, nommé le sous-ensemble de droite, contient toutes les règles qui sont 
complètement à droite du point x, et le sous-ensemble de gauche, contient toutes les règles 
complètement à gauche du point x. On construit le fils de droite du nœud en utilisant les 
intervalles dans le sous-ensemble de droite et le fils de gauche avec le sous-ensemble de 
gauche. Je présente dans la figure 8 un exemple d’arbre d’intervalle centré. La structure de 
l’arbre d’intervalles centrés construit sur chaque dimension de l’ensemble de règle donne une 
indication importante sur l’uniformité des règles. Les règles avec des intervalles larges sont 
généralement absorbées par les nœuds proches de la racine de l’arbre, alors que les intervalles 
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Figure 8- Arbre d’intervalle centrés 

 
courts sont généralement associés aux feuilles de l’arbre. Un arbre totalement équilibré 
signifie que tout l’intervalle rattaché à toutes règles est de même taille, et ainsi qu’une coupe 
en intervalles de tailles égale sera parfaite. Par contre un arbre non-équilibré privilégie une 
coupe en intervalles de tailles inégales. En pratique,  les arbres d’intervalles construits sur des 
ensembles de règles réalistes sont non équilibrés. Ils contiennent des nœuds ayant un seul fils, 
et des feuilles à divers niveaux de l’arbre. En fait ont peut analyser un arbre comme plusieurs 
sous-arbres quasi-équilibrés de tailles différents (voir figure 9). Afin de caractériser ces arbres, 
j’ai défini deux métriques pour les arbres d’intervalles. Je défini pour chaque nœud, sa 
profondeur d’équilibre BD comme la hauteur de l’arbre quasi-équilibré auquel le nœud 
appartient, et la distance d’équilibre D comme le nombre d’arbre quasi-équilibrés entre la 
racine de l’arbre et le nœud. La totalité de l’arbre est caractérisée par Dmax et BDmax, 
respectivement la valeur maximale de D et de BD pour tous les nœuds de l’arbre.  Une grande 
valeur de Dmax signifie que l’arbre contient beaucoup de sous-arbres de petites tailles et que les 
intervalles dans l’ensemble de règles ne sont pas uniformes. Par contre, une petite valeur de 
Dmax  signifie une couverture plus uniforme. 
 

Les observations précédentes sur les propriétés des ensembles de règles m’ont permis 
de développer un estimateur de la taille de l’empreinte mémoire nécessaire pour implanter un 
arbre de décision en utilisant les principaux algorithmes existants dans la littérature : hypercut 
[16, 17] et hypersplit [18]. 

 
Figure 9- structure de l’arbre d’intervalles centrés 
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Figure 10- Estimation de l’empreinte mémoire  

 

Cet estimateur qui n’utilise pas les détails d’implantation de chaque algorithme permet de 
prédire avec une bonne précision l’empreinte mémoire. Les résultats de cette estimation sont 
présentés dans la figure 10.  

 L’estimateur d’empreinte mémoire ainsi que la connaissance obtenue sur la structure 
des ensembles de règles m’a permet d’obtenir une compréhension fine des mécanismes 
contrôlant la complexité des algorithmes de classification de paquets. Dans la suite, je 
m’appuie sur cette compréhension afin de concevoir de nouveaux algorithmes ou d’améliorer 
ceux existant.  

Cadre décisionnel pour concevoir des algorithmes de classification  

Afin de comprendre quels sont les paramètres qui  jouent réellement sur la performance réelle 
des classificateurs de paquets logiciels, nous mesuré la performance de l’algorithme de 
classification HyperSplit sur 25 ensembles de règles. Les paramètres mesurés sont les taux de 
défaut de mémoire cache, la latence moyenne d’accès à la mémoire et la taille de l’empreinte 
mémoire. Je présente dans la figure 11 la relation de la taille de l’empreinte mémoire avec la 
latence moyenne d’accès à la mémoire et au taux de défaut de mémoire cache. 

 La figure 11 montre que la latence moyenne d’accès à ma mémoire augmente 
lentement quand la taille de la mémoire croît de 10 Ko à 10 Mo. A partir de 10 Mo la latence 
explose. Cette augmentation notable peut être expliqué en regardant la courbe du taux de 
défaut de mémoire cache et en prenant en compte la taille de la mémoire cache des 
processeurs de notre plateforme d’évaluation (4Mo de cache L3). La figure 11 montre que le 
taux de défaut de mémoire cache reste inférieur à 10%  quand l’empreinte mémoire est 
inférieure à 10 Mo, mais elle augmente brutalement à plus de 50% pour des tailles de 
mémoires plus grandes. Il apparaît ainsi que dès que la taille de l’empreinte mémoire dépasse 
la taille de la mémoire cache des processeurs le taux de défaut de mémoire augmente. Il est 
ainsi important de s’assurer que l’empreinte mémoire ne dépasse pas les 10 Mo. J’ai utilisé ce 
critère en combinaison avec l’estimateur de taille d’empreinte mémoire afin de construire un 
outil d’aide à la décision permettant de choisir l’algorithme le plus efficace pour un ensemble 
de règles données. Cet outil d’aide à la décision est appelé « smartsplit ». 

SmartSplit traite de deux décisions. Une première décision est liée à l’uniformité des 
intervalles de règles et est relative à la décision du type de la coupe a appliquée, et au choix de 

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

Actual Memory (Byte)

E
s
ti
m

a
te

d
 M

e
m

o
ry

 S
iz

e
 (

B
y
te

)







 

 

Figure 14- Cadre de décision liée à décision de découper l’ensemble de règles en sous-règles 

proposées permettent de réduite l’empreinte mémoire de l’algorithme HiCuts de 2 ~20 avec 
10% d’accès mémoire en moins. Similairement HyperSplit-op atteint une réduction 
d’empreinte mémoire 2~200 et 10 à 30% d’accès mémoire en moins. La dernière figure 
présente le débit mesuré en terme de volume de trafic traité par seconde.  Nous observons que 
sur un lien saturé avec des paquets de 64 octets, nous obtenons un débit supérieur à 20 Go par 
secondes sur la plupart des configuration en utilisant un seul cœur de calcul. En comparaison, 
les résultats présentés dans [12] qui définissent l’état de l’art ne dépassent pas 16 Go par 
seconde en utilisant 8 cœurs de calculs avec des paquets de 128 o. Ceci montre le gain 
important de performance que j’ai obtenu par rapport à l’état de l’art.   

 Un second cadre de décision que j’ai développé durant cette thèse, a été la décision liée 
à l’existence des structures orthogonales dans l’ensemble des règles et à la pertinence de 
découper l’ensemble en sous-ensembles sans règles orthogonales. Je commencerais par décrire 
la méthodologie de découpage de l’ensemble de règles. L’objectif de ce découpage est de se 
débarrasser des structures orthogonales qui aboutissent à une duplication importante des 
règles et une large empreinte mémoire. La méthodologie de découpage consiste initialement à 
construire pour chacun des champs IP source et destination, l’arbre des intervalles centrés et à 
calculer leur valeur du paramètre Dmax. Ensuite, nous trouvons les règles qui sont définies par 
un intervalle large sur chacune des adresses IP source et destination. Une règle est définie 
comme large sur une dimension si l’intervalle qui défini cette règle recouvre plus de la moitié 
de l’intervalle possible. Ainsi on peut définir sur l’adresse IP source et destination 4 
catégories : (large, large), (large, small), (small, large), (small, small). Les ensembles (large, 
large), (large, small), (small, large) définissent chacun un arbre de décision dans lequel il n’y a 
plus de règles orthogonales. L’ensemble des règles (small, small) est ajoutée à l’ensemble des 
règles (large, small) si Dmax (srcIP)< Dmax (dstIP), et aux règles (small, large) sinon. Ensuite sur 
chacun de ces arbres nous appliquons le cadre défini précédemment pour le choix de la 
méthode de coupe à appliquer : de taille égale ou de taille inégale. 
 

La décision sur la pertinence d’appliquer un découpage est décrite dans la figure 14. 
J’ai utilisé l’estimateur de taille de mémoire décrit précédemment pour calculer pour un 
ensemble de règles donnée la taille de l’empreinte mémoire sans découper en sous-ensembles  

Memory Estimator
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th
M th
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Build a single tree Build  multiple  trees





 

Table 4- Comparaison des débits atteint par Efficut et SmartSplit en millions  
de recherche par seconde 

Je présente dans la figure 15 la comparaison des performances atteintes par EffiCuts et 
SmartSplit. On peut observer que SmartSplit a largement de meilleures performances 
qu’EffiCuts aussi bien en terme d’empreingte mémoire qu’en terme d’accès mémoire, e.g., 
pour l’ensemble de règle fw5 contenant 100K règles, EffiCuts consomme 22.46 Mo de 
mémoire, alors que SmartSplit a seulement besoin de 1.98 Mo, un réduction de 11.3.  De plus 
en comparant l’empreinte mémoire après découpage de l’ensemble de règles avec celle-ci 
avant on observe que pour un même ensemble de règle l’empreinte mémoire passe de 
plusieurs Go à moins de 2 Mo. Autre point notable est que SmartSplit ne découpe l’ensemble 
de règles qu’en trois sous-ensembles alors qu’Efficuts peut découper en 9 sous-ensembles et 
avoir a gérer ainsi 9 sous arbres. Je présente dans la table 4 la comparaison des débits atteints 
par Efficuts et SmartSplit montre que SmartSplit atteint en moyenne un débit 3.8 supérieur.  

 
Ceci termine la description résumée d’une partie des contributions de ma thèse. C’est 

travaux ont aboutit a deux publications [20, 21]. 
 

PEARL : un prototype pour le SDN/NFV  

Déployer, expérimenter et tester de nouveaux protocoles et systèmes sur l’Internet a toujours 
été un défi important. La simulation n’a jamais remplacé le déploiement en réel de système et 
l’expérimentation in vivo. Ainsi l’accès à une plateforme programmable et flexible pouvant 
implanter du traitement de paquet a haut débit, et quo permettrait ainsi le déploiement et 
l’expérimentation des concepts développés en recherche en très importante. De plus, avec 
l’avancée graduelle vers les architecture de l’Internet du futur qui sera plus polymorphique 
que l’Internet monolithique actuel, il faudrait pouvoir permettre à plusieurs paradigme 
architecturaux de coexister, par exemple un routeur pourra avoir a gérer en même temps un  
réseau NDN  [22] et un réseau IP classique. Ainsi, les plateformes pour l’Internet du futur 
devront permettre l’exécution en parallèle, de plusieurs routeurs virtuels tout en assurant une 
indépendance entre ces instances virtuelles. 
 

Malheureusement, les architectures classiques de traitement de paquet ne sont pas 
adaptées à la flexibilité que j’ai décrite plus haut. Ceci m’a motivé pour concevoir et construire 

une plateforme de routeur virtuel programmable, PEARL (ProgrammablE virtuAl Router 
pLatform), qui permet de garantir une très haute performance tout en validant des contraintes 
d’indépendance. Les défis de la conception de PEARL étaient multiples. Il fallait tout d’abord 

gérer la balance flexibilité vs. performance qui se traduit généralement par la volonté de  

Type Size AutoPC(MLPS) EffiCuts(MLPS) speedup

ACL
1K 11.3* 4.5 2.4
10K 6.9* 3.1 2.2
100K 8.6* 2.2 3.9

FW
1K 9.8* 2.4 4.1
10K 10.7 2.1 5.1
100K 7.4 2.5 3.0

IPC
1K 12.6* 3.0 4.25
10K 5.3* 1.48 3.6
100K 9.91 1.63 6.1

Average Speedup: 3.8





 

MAC & Figure 17-Architecture du plan de données de PEARL  

plusieurs ports réseaux. Ainsi une pile protocolaire IPv4, IPv6, OpenFlow peuvent être 
facilement déployé sur ces instances virtuelles. 
 
 L’architecture du plan de données de PEARL dans la carte de traitement matérielle, 
décrite dans la figure 17, permet de transférer l’étape de distribution de paquets aux 
différentes machines virtuelles qui est généralement le goulot d’étranglement de performance 
au niveau matériel ce qui permet une vitesse de transfert de paquet importante. Le plan de 
données est fondés sur un pipeline contenant deux chemins séparés : un chemin d’envoi et un 
chemin de réception.  De plus, la virtualisation LXC est suffisamment légère pour ne pas avoir 
d’impact important sur la performance. Ainsi la plateforme atteint un niveau de performance 
élevé. 
 La plateforme logicielle de PEARL consiste en plusieurs composants présentés dans la 
figure 18. Le composant vmmd fournit les fonctions de gestion de base nécessaire au routeur 
virtuel, et aux cartes de traitement de paquets. Le composant nacd fournit à toutes les cartes 
de traitement une interface uniforme vers l’extérieur de l’environnement virtualisé; Le 
composant routed s’occupe du routage et transforme les règles de transfert définies par le 
noyau ou l’application utilisateur en format uniforme pour chaque routeur virtuel afin de les 
implanter dans la TCAM. Le composant netio permet le transfert de paquets entre les 
interfaces physique et les interfaces virtuelles.  
 
 J’ai défini deux types de routeur virtuel dans PEARL : routeur virtuel de haute et basse 
priorités. Chaque instance de routeur virtuel haute priorité est lié à une paire de mémoire 
tampon Rx/Tx de la DMA et à un espace indépendant dans la mémoire TCAM. Grace à la 
capacité de recherche rapide de la TCAM, et des entrées/sorties rapides fournies par la carte 
matérielle, le routeur virtuel haute priorité peut atteindre un débit de transfert très important. 
Les routeurs virtuels basse priorité partagent tous ensembles une paire de mémoire tampons 
Rx/Tx, et n’utilisent pas la TCAM pour la recherche dans la table de routage.  
 
 Dans la suite, je présente les performances obtenues par la plateforme PEARL. La 
plateforme PEARL a été implanté sur un serveur équipé d’un processeur Xeon 2.5 GHz avec 
16 Go de RAM DDR2. Une carte matérielle spécialisée contenant des FPGAs ainsi qu’une 
TCAM a été ajouté à cette plateforme. Afin de montrer la flexibilité de la plateforme PEARL, 
j’ai évalué trois configuration : routeur IPv4 virtuel de haute performance, un routeur virtuel  

!



 

Figure 18- Architecture logicielle de PEARL 

virtuel IPv4/IPv6 au niveau noyau et un routeur IPv4 implanté en tant que routeur virtuel 
basse priorité.  J’ai mesuré pour chaque scenario avec des tailles de paquets (64, 512, 1518 
octets pour les paquets IPv4 et 78, 512 et 1518 pour les paquets IPv6). 

 La figure 19-a montre le débit atteint dans le premier scenarios en fonction du nombre 
du routeurs virtuels. Chacun des routeurs virtuels est implanté comme un routeur haute 
priorité. Nous observons que dès que le nombre d’instance de routeur virtuel atteint 2, nous 
atteignons la limite théorique de notre conception qui est de 4 Gbps.  

La figure 19-b illustre le débit en fonction du nombre d’instance de routeur virtuel 
IPv4/IPv6. Ici aussi les routeurs sont à haute priorité sauf qu’aucun routeur n’a d’espace 
dédiés dans TCAM, et d’autre terme l’espace des tables de routage est partagé dans la TCAM. 
On observe ici que le débit s’approche des 4 Go avec 4 instances de routeurs virtuels. 

La figure 19-c montre le débit atteint dans le troisième scénario, ou on ajoute des 
routeurs virtuels de basses priorités. Tous ces routeurs virtuels se partagent une paire de canal 
entrées/sorties Tx/Rx de la DMA.  On peut observer que le débit global dans ce scénario ne 
dépasse pas les 2 Gbps et que le goulot d’étranglement reste principalement le partage des 
paquets entre les différents routeurs virtuels. 

La plateforme PEARL a été le sujet d’une publication [23] qui a obtenu une grande 
visibilité car elle a été publiée dans un numéro spécial visant l’architecture de l’Internet du 
futur. 
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(a)- performance du scenario 1 de PEARL, routeur virtuel implanté en haute priorité en 

function du nombre d’instance de routeurs virtuels 

 
(b)-Performance de PEARL dans le scénario 2 

 
(c)- Performance de PEARL dans le scénario 3. 

Figure 19- Performance de la plateforme PEARL pour différents scénarios d’utilisation 
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Abstract

Packet classification consists of matching packet headers against a set of pre-defined

rules, and performing the action(s) associated with the matched rule(s). As a key

technology in the data-plane of network devices, packet classification has been widely

deployed in many network applications and services, such as firewalling, load bal-

ancing, VPNs etc. Packet classification has been extensively studied in the past two

decades. Traditional packet classification methods are usually based on specific hard-

ware. With the development of data center networking, software-defined networking,

and application-aware networking technology, packet classification methods based on

multi/many processor platform are becoming a new research interest. In this disserta-

tion, packet classification has been studied mainly in three aspects: algorithm design

framework, rule-set features analysis and algorithm implementation and optimization.

In the dissertation, we review multiple proposed algorithms and present a de-

cision tree based algorithm design framework. The framework decomposes vari-

ous existing packet classification algorithms into a combination of different types

of “meta-methods”, revealing the connection between different algorithms. Based on

this framework, we combine different “meta-methods” from different algorithms, and

propose two new algorithms, HyperSplit-op and HiCuts-op. The experiment results

show that HiCuts-op achieves 2 ∼ 20× less memory size, and 10% less memory ac-

cesses than HiCuts, while HyperSplit-op achieves 2 ∼ 200× less memory size, and

10% ∼ 30% less memory accesses than HyperSplit.

In the dissertation, we also explore the connections between the rule-set features

and the performance of various algorithms. We find that the “coverage uniformity”

of the rule-set has a significant impact on the classification speed, and the size of “or-

thogonal structure” rules usually determines the memory size of algorithms. Based

on these two observations, we propose a memory consumption model and a quantified

method for coverage uniformity. Using the two tools, we propose a new multi-decision
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tree algorithm — SmartSplit and a algorithm policy framework — AutoPC. Com-

pared to EffiCuts algorithm, SmartSplit achieves around 2.9× speedup and up to 10×

memory size reduction. For a given rule-set, AutoPC can automatically recommend

a “right” algorithm for the rule-set. Compared to using a single algorithm on all the

rulesets, AutoPC achieves in average 3.8 times faster.

We also analyze the connection between prefix length and the update overhead

for IP lookup algorithms. We observe that long prefixes will always result in more

memory accesses using Tree Bitmap algorithm while short prefixes will always result

in large update overhead in DIR-24-8. Through combining two algorithms, a hybrid

algorithm SplitLookup is proposed to reduce the update overhead. Experimental

results show that, the hybrid algorithm achieves 2 orders of magnitudes less in memory

accesses when performing short prefixes updating, but its lookup speed with DIR-24-8

is close.

In the dissertation, we implement and optimize multiple algorithms on the

multi/many core platform. For IP lookup, we implement two typical algorithms —

DIR-24-8 and Tree Bitmap, and present several optimization tricks for these two

algorithms. For multi-dimensional packet classification, we have implemented Hy-

perCuts/HiCuts and the variants of these two algorithms, Adaptive Binary Cuttings,

EffiCuts, HiCuts-op and HyperSplit-op. The SplitLookup algorithm has achieved

up to 40Gbps throughput on TILEPro64 many-core processor. The HiCuts-op and

HyperSplit-op have achieved up to 10 to 20Gbps throughput on a single core of Intel

processors.

In general, we study the packet classification algorithms from both the perspectives

of algorithm and rule-set features. We reveal the connections between the algorithmic

tricks and rule-set features and therefore develop an adaptive framework for rule-sets

with different features. We also implement various algorithms and compare the real
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performance of all these algorithms. Results in this dissertation provide insight for

new algorithm design and the guidelines for efficient algorithm implementation.
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Chapter 1

Introduction

1.1 Motivation

Packet classification enables advanced services in various network applications, such

as firewalling, network intrusion detection/prevention, load balancing and QoS etc.

In general, packet classification consists of matching packet headers against a set of

pre-defined rules, and performing the action(s) associated to the matched rule(s).

As one of the key technologies in many network devices, high performance packet

classification methods have been extensively studied in the past decade. Traditional

packet classification systems are usually based on dedicated hardware. However,

recently software based packet classification systems have attracted a lot of research

interests [7, 29, 47]. We will list the reason why software based packet classification

systems become important.

1.1.1 The needs of SDN(Software Defined Networking) evo-

lution

In Software Defined networks, the control plane and the data plane are physically

separated. The switches inside the network forward the packets based on the rules
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installed by the control plane. This physical separation eases both the management

of large and complex networks and programming network policies. To implement

such an architecture, however, a general packet forwarding plane is needed to execute

various dataplane lookup tasks. In the current development of SDN, the OpenFlow

[38] protocol is the de facto standard for the abstraction of data plane function.

According to the OpenFlow specification, OpenFlow switches need to provide at least

flexible packet classification on 10 fields. However, the hardware resources of current

commercial switches can only support a few thousands of 10 tuple rules – the TCAM

volume of HP ProCurve 5406zl switch is only capable of storing 1.5 thousands rules.

Such limited hardware resources severely hinder the deployment of SDN. Moreover,

with the development of SDN, more and more packet header fields have been added

in the specification. By the version 1.3, there are more than 30 optional fields in the

OpenFlow specification. These multiple matching fields impose technical challenges

to SDN development.

Martin Casado etc. proposed in [8] a pragmatic solution for SDN evolution. In

their paper, Martin suggests to treat Core Network and Edge Network separately.

The Edge Network provides interfaces between the network and the hosts, and also

provides network services such as virtualization, traffic engineering and QoS etc. The

Core Network only transfers the packets in high speed. Similar to MPLS, the edge

switches add different tags into different types of packets, and deliver these packets

into the network core. The network core and edge is managed by logical separated

controller. Figure 1.1 shows this network architecture.

The required packet processing performance at the edge of the network is not high

because of the low traffic volume of each host, but the Edge Network requires flexible

packet processing. Since current network switches use specific hardware for packet

forwarding, in the short term, it is difficult to provide programmability based on the

specific hardware.
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Edge Network is built by flexible 

software switches capable of 

providing multiple intelligent 

network services

Core Network is built by 

hardware switches capable of 

transforming packet in high 

speed.

Figure 1.1: The core and edge of SDN

Therefore, Edge Network devices will be built using mainly the software-based

systems on commodity hardware. Using efficient algorithms, these systems are capa-

ble of forwarding packets according to the flexible rules that specify multiple packet

header fields [75]. As a typical example, Open vSwitch [46] transforms packets based

on OpenFlow rules between multiple virtual machines.

The packet classification algorithm is one of the key algorithms in the above

software-based systems. The study on the adaption and performance of these algo-

rithms on software-based systems is therefore required for SDN evolution.

1.1.2 The needs of outsourcing network services

Cloud computing enables the separation of the ownership of the infrastructure and of

the applications. Since the network service is one of the basic services provided by the

IT infrastructure, researchers begin to explore the possibility of outsourcing network

functionality to the cloud, providing network services for multiple tenants. There are

already a lot of pioneers in the industry which aims to provide cloud-based network

services, such as AT&T that provides cloud firewalls, reducing the CAPEX/OPEX

of small enterprises.
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Cisco releases a software image [66] that can be deployed directly in mainstream

virtual machines as a firewall filtering packets. Many startups begin to provide cloud-

based systems, such as WAN optimizer provided by Aryaka [65], cloud-based IDS

(Intrusion Detection System) provided by ZScaler [76], and a middle-box architecture

offered by Embrance [67].

Packet classification is an important component in the above systems. Since these

systems are also built mostly on commodity hardware, the study on software-based

packet classification therefore meets the needs of outsourcing network services.

1.1.3 The needs of network virtualization

The paper [43] shows that in multi-tenants data centers, the network operators need

fine-grained rules to separate the network traffic between different tenants. These

fine-grained rules consume a lot of hardware resources for packet processing, and even

lead to network crash [64]. Experiments [43] show that when the number of newly

added flows grows at 3K/s, and the number of rules reaches to 60K, Open vSwitch

will consume 25% of one single CPU. Also, when the number of prefix combination

increases, Open vSwitch consumes more processing resources.

Therefore efficient packet classification algorithms are needed to process more

fine-grained rules and reduce resource consumption.

1.1.4 The advance of multi-core and commodity hardware

As shown in Figure 1.2, with the development of the commodity multi-core processors,

software-based routers are able to achieve the same performance as the commercial

routers, but with lower prices. The software routers and switches built on multi-

core processors [11,16,85], the software based packet classification system Storm [37],

the PEARL platform built on the commodity hardware with accelerated network

cards [81], and the GPU accelerated software-based router PacketShader [24] all

4



Figure 1.2: Multi-core and the performance of software-based router scaling

demonstrate that on the software platform, flexibility and high performance are not

mutually exclusive.

Meanwhile, the high performance I/O libraries, such as Netmap [49, 50],

DPDK(Data Plane Development Kit) [70], remove the I/O performance bottle-

neck in the operating system, and lower the complexity of developing network

applications with high performance. The efficient packet classification algorithms

running on commodity hardware therefore become a new bottleneck and have

attained new research interest [32, 79,83,84].

Packet classification plays an important role in SDN evolution, outsourcing net-

work services and network virtualization, so it is important to study the packet clas-

sification on the commodity hardware.
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Figure 1.3: IP lookup

1.2 Research problems in this thesis

This thesis will mainly discuss two basic classification problems: the single dimen-

sional packet classification and the multi-dimensional packet classification. For sin-

gle dimensional packet classification, IP lookup on many core chips is studied. For

multi-dimensional packet classification, the decision-tree based algorithms are mainly

studied in this thesis.

IP lookup is actually the longest prefix matching of IP addresses. As shown in Fig-

ure 1.3, the FIB (Forwarding Information Base) contains three prefixes: 10.21.0.0/16,

10.21.2.0/24 and 10.24.0.0/16. For the IP address 10.21.2.75, the matched prefixes in

the FIB are 10.21.0.0/16 and 10.21.2.0/24. Because the prefix length of 10.21.2.0/24 is

longer than that of 10.21.0.0/16, the final matched prefix of IP lookup is 10.21.2.0/24.

Besides the matching speed, IP lookup algorithms should also consider the update

cost of rules. According to the report of RouteViews [73], the peak update frequency

can reach to 1000 times per second (see Figure 1.4 where UPDs means the number of

prefix updates and WDLs means the number of prefix withdrawals). On many/multi

core platforms, frequent update of rules usually leads to the severe lock overhead,

reducing lookup performance.
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Figure 1.4: The update frequency peak in backbone network [72]

Figure 1.5: The packet classification system

SIP DIP SP DP L4 protocol Act.

R1 10.1.0.0/16 191.243.60.0/24 0 : 65535 1521 : 1521 TCP DROP
R2 10.1.0.0/16 58.62.126.0/24 0 : 65535 1724 : 1724 TCP DROP
R3 10.3.7.0/24 58.62.126.0/24 0 : 65535 1521 : 1521 TCP PERMIT
R4 23.3.7.0/24 58.49.16.0/24 0 : 65535 14753 : 14753 TCP PERMIT
R5 23.5.7.0/24 58.49.16.0/24 0 : 65535 5631 : 5631 UDP RESET

Table 1.1: A toy ruleset

Table 1.1 shows a typical multi-dimensional packet classification ruleset. In Table

1.1, each row shows one rule. The column named SIP shows source IP prefixes of

each rule and the DIP column shows the destination IP prefixes. SP and DP refers

to source and destination port ranges that each rule defines, and L4 protocol refers

7



to the Layer 4 protocols defined by each rule. The abbreviation of Act. means the

action that will be performed if the corresponding rule is matched.

Figure 1.5 shows a typical packet classification system. For each incoming packet,

the packet classification system will first parse the packet and retrieve the value on

the matched fields. These retrieved values will then be sent to the cache system

for a fast lookup. The cache system caches the previous lookup results for packets

belonging to the same flow. If there is a matched value in the cache system, the

match action is performed for the packet; if not, the retrieved values will be sent to

the packet classification engines for ruleset searching/matching. The action associated

to the rule with highest priority which matches the packet will be executed. Typical

actions include DROP, PERMIT, and RESET, etc. As the update frequency of

packet classification rules is usually low, most multi-dimensional packet classification

algorithms only support static rulesets.

The thesis will study the design and optimization of packet classification algo-

rithms, including:

1. Algorithm design: we will review typical packet classification algorithms and

propose an algorithm design framework. The framework will enable the other

researchers to design their own algorithms based on the feature of rulesets. We

also study the connection between ruleset features and algorithm performance,

and propose some automatic analysis tools to choose the right algorithmic policy

for a given ruleset.

2. Optimization tricks: We will evaluate the real performance of algorithms. We

also propose implementation tricks, including using special instructions to ac-

celerate key operations, and using huge pages to reduce TLB misses.
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1.3 Main contributions

1.3.1 The algorithm design framework

While the goal of the thesis is to design efficient packet classification algorithms and

systems, before exploring the new world, we need first review typical algorithms for

both single and multiple dimensional packet classification problems. In this work,

we find that most of the modern packet classification algorithms are based on the

exploration of ruleset features. We therefore compare the basic idea of different

algorithms from the perspective of ruleset features.

Especially, we present an algorithm framework that views the decision-tree based

algorithm as a combination of “meta” methods: field-choosing methods, field-cutting

methods and optimization tricks. Based on this framework, we improve the perfor-

mance of the existing algorithm by combining different “meta” methods of different

algorithms. We propose HiCuts-op and HyperSplit-op algorithms and the experiment

results show that compared to its original algorithm, the memory footprint of these

two algorithms has been reduced by 1 ∼ 2 orders of magnitudes, and the number of

memory accesses has been also reduced by 30% ∼ 50%.

1.3.2 Modeling the ruleset features

The connection between ruleset features and algorithm performance

We find that the performance of existing decision-tree based algorithms varies for

different rulesets. We therefore study the connection between the ruleset feature and

the performance of the algorithm. Our research results show that the “coverage-

uniformity” of the rulesets determines the number of memory accesses, while the

“orthogonal structure” inside the rulesets, the memory footprint of different algo-

rithms. For “coverage-uniformity”, we present a method capable of quantifying this

uniformity and choosing the right algorithm. We also propose a memory footprint
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model based on the feature of “orthogonal structure” which can roughly estimate the

memory footprint.

Besides the research interest, the memory footprint model can be used to estimate

the memory footprint of large rulesets (100K) in seconds. And the quantify method

can reveal the “coverage-uniformity” of the rulesets. These features are powerful to

guide the design of efficient packet classification algorithms.

We design the SmartSplit multi-decision tree algorithm and the AutoPC frame-

work based on the analysis of these two features. Compared to the state-of-art algo-

rithms, the number of memory accesses of SmartSplit is reduced by 1/2 in average, and

the memory footprint is reduced by up to 10 times. For a given ruleset, the AutoPC

framework is capable of choosing the “right” algorithm for the ruleset. Compared to

using only one algorithm, the lookup speed is increased by 3.8 times.

The SplitLookup algorithm

We also discuss the relationship between prefix length and update cost in IP lookup.

We observe that the number of memory accesses is linear with the prefix length

in Tree Bitmap; the update cost is small if the prefix length is short in DIR-24-8

algorithm. Based on this observation, we propose a hybrid algorithm SplitLookup.

SplitLookup achieves a lookup speed closed to DIR-24-8 while its update cost is 2

orders of magnitude lower than DIR-24-8.

1.3.3 Evaluating multiple packet classification algorithms

In the thesis, we have implemented and evaluated various existing algorithms and

proposed packet classification algorithms, including DIR-24-8, Tree Bitmap, Split-

Lookup, HyperCuts, HiCuts, Adaptive Binary Cuttings, EffiCuts and SmartSplit

algorithms. The experiment results show that the proposed IP lookup algorithm can

achieve 40Gbps throughput using 18 Tilera cores, and the proposed multi-dimensional
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packet classification algorithm can achieve nearly 10Gbps throughput on a single Intel

core under low locality traffic.

1.3.4 PEARL: A prototype for SDN/NFV

Finally, as we are targeting to solve the software-based packet classification prob-

lems in SDN/NFV, we build a prototype, namely PEARL, for testing software-based

algorithms. PEARL is built on a commodity server with specified FPGA network

cards with TCAMs for matching OpenFlow rules. We utilize light weight kernel-level

virtual machine LXC to isolate different network applications (or we call them virtual

routers). PEARL is capable of running both routing based network applications and

middle-boxes network applications. We will introduce the design of the system and

some primary performance evaluation results of PEARL.

1.4 Paper organization

We review the existing packet classification algorithms in Chapter 2 and propose

our insight on different algorithms. Chapter 3 presents our design framework for

decision-tree based algorithms. In Chapter 4, we explore the connection between

ruleset features and the performance of various algorithms. We present an evaluation

of typical IP lookup algorithms on a many-core processor and the SplitLookup IP

lookup algorithm in Chapter 5. The PEARL system is introduced in Chapter 6. All

work in this thesis will be concluded in Chapter 7.
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Chapter 2

State of art in packet classification

algorithms

In this chapter, we review the research on packet classification algorithms, including

typical packet classification problems, and main ideas of the state-of-art algorithms for

each packet classification problem. We reveal the key insight behind each algorithm

from the perspective of ruleset features and conclude that almost all the modern

packet classification algorithms are utilizing some “sparseness” inside the real packet

classification rulesets.

2.1 Packet classification problems

Packet classification is about matching specific packet header fields against a set of

pre-defined rules. Based on the number of classified fields, the packet classification

problems can be categorized into two different types: one is called single-dimensional

packet classification and the other is called multi-dimensional packet classification.

Typical single-dimensional packet classification includes the IP lookup in the router,

and the MAC lookup in the switches. Typical multi-dimensional packet classification
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includes Access Control List in the firewall, the policy routing in the router, and the

L2 ∼ L4 load balancing policies in the loader balancer.

We first formalized some important terms in packet classification problems.

• packet

A packet p contains d fields in its header. The value on these d fields are p[1],

p[2], . . . , p[d]. Each field is formed by a bit string with certain length. For the

field F , D(F ) means the boundary of all the possible values on the field F . For

example, the source port number in the TCP protocol is formed by 16 bits, so

we have D(F ) = [0, 65535].

• rule

A d-dimensional classification rule R is formed by d ranges, R[1], R[2], . . . ,

R[d] and an associated action R.act. For example, one IP forwarding rule is

usually formed by one range on the destination field and the forwarding port as

the action. If the packet p and the rule R satisfies ∀i ∈ [1, d], p[i] ∈ R[i], we say

that the packet p matches the rule R. We use p ∈ R to denote this relationship.

For one packet, there may be multiple rules matching it. In this case, the action

associated to the rule with highest priority R.pri will be performed.

In the forthcoming, we introduce the different ways of matching.

• exact match

If each range R[i], i ∈ [1, d] of one rule R is a specific value (meaning the range

include only one value), and the packet p satisfies p[i] = R[i], we call this an

exact match. In the real world, the MAC lookup in the switches and the flow

lookup in TCP/IP stack belong to this match.

• prefix match
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If each range R[i], i ∈ [1, d] of the rule R can be expressed by a prefix, also the

packet p satisfies p[i] ∈ p[i], we call the match between the packet p and the

rule R a prefix matching. The most common prefix match is IP lookup in the

router.

• range match

Range match is the most general form in all the matches. Actually, the prefix

match and exact match are special cases of range match.

We will study both the single and multiple dimension classification problems.

Specifically, we study the IP lookup problem and the multi-dimensional packet clas-

sification problem. The priorities of IP lookup rules are ordered by the length of

the prefixes, while the priorities of multi-dimensional classification rules are usually

defined manually. The IP lookup belongs to prefix match while the multi-dimensional

packet classification includes exact match and range match.

2.2 Typical packet classification solutions

Typical packet classification solutions can be categorized into two types: solutions

based on TCAM (Ternary Content Address Memory) and solutions based on RAM

(Random Access Memory). There are even hybrid solutions based on both TCAM

and RAM [35]. Because in this thesis we do not study TCAM-based solutions, here

we only briefly review the research on TCAM-based solutions.

The TCAM-based solutions provide deterministic and high performance. How-

ever, TCAMs are also expensive and power hungry devices with small capacity. Cur-

rent research on TCAM-based solutions aims to reduce the power consumption of

TCAM devices and increase the TCAM capacity. The key idea of reducing the power

consumption is to avoid the search on all the TCAM blocks. To do so, many research

works [36,58,82] split the ruleset into multiple small non-overlapped sub-rulesets and
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install these sub-rulesets on small TCAM blocks. Before the TCAM lookup, a simple

logic is used to determine the target TCAM block where the matched rule resides,

then this target TCAM block is searched while other blocks are disabled. One way to

increase the TCAM capacity is to reduce the storage requirement of a ruleset. The

main idea is to merge the rules which have the same action [17], remove redundant

rules [33], and translate the ruleset into an equivalent small ruleset [34, 39–41].

The RAM-based solutions are usually known as the algorithmic solutions. The al-

gorithmic solutions utilize efficient packet classification algorithms and build compact

data structures on RAM for packet classification, yielding cheap and power efficient

solutions. However, the RAM-based algorithms have unstable performance. The

algorithmic solutions usually use low latency but capacity limited on-chip memory

and higher latency but large external SRAM to store the data structure, and use

ASIC (appplication-specific integration circuit) or FPGA (Field Programmable Gate

Array) to implement the specific algorithms. Due to the current advance in multi-

core technology, many works [11, 16, 24] explore how to implement high performance

packet processing systems on commodity servers. Therefore, there are also researches

on the high performance software-based algorithms [32,79, 83,84].

While the on-chip memory of ASIC/FPGA has a very low access latency (<

1ns), and also the access bit width can be adjusted to adapt to the requirement of

different algorithms, its capacity is quite small. The researches on algorithms focus on

designing compact data structure to fit these algorithm data structures into the small

on-chip memory. Meanwhile, since the classification speed is related to the number

of memory accesses, reducing both the memory accesses and the memory footprint

is the key challenge for packet classification algorithms. Although the Multi-core

hardware is different from the ASIC/FPGA, the memory hierarchy (Cache/DRAM)

of the multi-core platform also implies the importance of small memory footprint.
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On commodity servers, one access to L1/L2 cache usually needs several nanoseconds

while the memory access latency for DRAM is usually around 50 nanoseconds.

All in all, an efficient packet algorithm should satisfy the following conditions:

• Small memory footprint

The size of the memory footprint will determine whether or not the data struc-

ture of the algorithms can be cached or fit into the on-chip memory. Besides,

small memory footprint means that more rules can be processed with the same

capacity of the RAM device.

• Fast classification speed

Wire speed classification is necessary in many scenarios. In a 40Gbps link, the

packet classification system is required to complete 60 million lookups per sec-

ond. On the ASIC/FPGA hardware, the computing required by the algorithms

can be implemented in parallel, therefore the number of memory accesses is

usually a limited factor for the whole packet processing throughput. While in

the multi-core systems, the complexity of the operations is also a limited factor

for the classification speed.

As the control plane is also resource-constrained, some research work [48] proposes

that the preprocessing time of algorithms is also a criterion for algorithm comparison.

Long preprocessing time of the algorithms renders the packet classification system

incapable of being deployed in the scenarios which require frequent rule update.

2.3 IP lookup algorithms

We now introduce the IP lookup algorithms. The IP lookup algorithms can be cat-

egorized based on the used data structure: the trie based IP lookup algorithms and
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the hash based IP lookup algorithms. We will first introduce the time and space com-

plexity of basic IP lookup algorithms and then introduce some state-of-art algorithms

in each category.

2.3.1 A basic algorithm

The most basic IP lookup algorithm is based on the binary tree (or we call it single-bit

trie). Assuming that the IP address is of W bits and the ruleset consists of N rules,

the time complexity in the worst case is O
(

W
)

and the space complexity is O
(

NW
)

.

For a 32-bit IP address, a binary tree requires at most 32 memory accesses to finish

the lookup. In order to promote the classification speed and reduce the number of

memory accesses, multi-bit tree is then used for IP lookup. Multi-bit tree translates

the sub-trees of the original binary tree into a node in the multi-bit tree. For multi-bit

tree with the stride k, a node represents 2k nodes of a binary tree, the tree depth is

reduced to O
(

W/k
)

, while the space is increased to O
(

2kNW/k
)

.

2.3.2 Typical trie-based algorithms

The space complexity of the single bit trie is closed to optimal. However the main

drawback is the large number of memory accesses. Therefore the challenge for single-

bit trie-based algorithms is to reduce its memory accesses. While the multi-bit trie

reduces the number of memory accesses, its memory footprint is larger as each node

needs to encode multiple nodes of the binary tree. Therefore, the challenge for multi-

bit tree trie based algorithms is to design compact data structures to compress the

information stored in each node. We now introduce a typical single trie-based algo-

rithm, the path compression algorithm.
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Figure 2.1: Path Compressed Trie

Path Compression

Path Compression [42,53] collapses the single child nodes to reduce the height of the

binary tree. As shown in Figure 2.1, the parents of the leaf b and leaf c are single-child

node, and the ancestor of the leaf d has two single-child nodes. These single-child

nodes are useless for separating the rules, and therefore can be removed in the search

tree. The removal of these nodes not only saves memory but also reduce the tree

height. In Path Compression Trie, each non-leaf node stores the position of matching

bit. When searching the trie, at each node, the algorithm picks the specific bit in

the IP address and follows the corresponding branch according to the value of the

bit. To ensure a correct lookup, the leaf nodes store the concrete rule information. A

complete rule checking will be performed in the leaf node. In one trie searching path,

there may be multiple prefixes matching the target IP address, therefore multiple

rules may be checked in the lookup of a single IP. A linear search is needed to find

out the longest matching prefix.

In Figure 2.1, assuming that we need to look up the bit string 0010, the traversal

path includes the root node and the node b. There are prefixes residing in both

nodes. However, the bit string does not match the prefixes 000* stored in the node

b, therefore the final match result is the prefix *.
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Path Compression utilizes the “sparseness” in the shape of the binary tree and

reduces the compress tree. If the shape of the binary tree is close to a full binary

tree, the Path Compression will be degenerated to the binary tree.

Tree Bitmap

The Tree Bitmap algorithm [18] is a well-known trie-based IP lookup algorithm as it

has been adopted in Cisco CRS-I router. Tree Bitmap algorithm uses two bitmaps

to encode the shape of the subtrees, the internal bitmap and external bitmap. For a

k-bit subtree, the internal bitmap uses one bit per node to represent the existence of

the next-hop information in the special node, and the external bitmap uses one bit

per branch to represent all the possible “egress” branches of the k-bit subtree. The

k-bit subtree consists of at most 2k − 1 nodes, so the length of internal bitmap is

2k − 1 bits. As the k-bit subtree has at most 2k child nodes, the length of external

bitmap is therefore 2k bits.

Figure 2.2 shows the internal and external bitmap for a 3-bit subtree.

Figure 2.2: Tree Bitmap encoding

The internal bitmap is encoded by traversing the subtree in level order, and set

the bit if the traversed node contains a prefix. In the subtree shown in 2.2, only the

second node in the last level contains a prefix, so the internal bitmap contains only

one bit setting to 1. A 3-bit sub-tree consists of at most 8 “egress” branches, and

the 8 bit external nodes correspond to the existence of the 8 possible egress branches.
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We see in Figure 2.2, in a typical implementation of the Tree Bitmap, each node only

needs to record two bitmaps and one pointer.

Tree Bitmap compresses the memory footprint as each node only stores bits in-

stead of pointers for non-existent egress branches. It also supports fast update. We

will discuss the Tree Bitmap algorithm in detail in Section 5.2.1.

2.3.3 Shape Shifting

Figure 2.3: The Shape Shifting Encoding Scheme

The Shape Shifting algorithm uses the shape bitmap on the basis of Tree bitmap

encoding. The shape bitmap is actually a variant of the Succinct Data Structure [26].

For any binary tree consisting of k nodes, the shape bitmap can use 2k bits to record

the shape of the binary tree. For a binary consisting of k nodes, the internal bitmap

of the Shape Shifting is of k bits, while the external bitmap is of k+1 bits. Therefore,

each node in Shape Shifting tree needs 4k + 1 bits. Assuming that the height of the

binary tree is H, Tree Bitmap needs 2 × 2h − 1 bits, when the shape of the tree is

quite sparse (k ≪ 2h), the Shape Shifting will be an attractive scheme for its higher

space efficiency.

We see in Figure 2.3 that the nodes with dash line are redundant, as they do not

exist in the subtree. The Shape Shifting tree does not use any bit for these nodes,

while Tree Bitmap uses one bit for every possible node. However this “redundant
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removal” encoding technique is harmful for fast update as one update may turn these

non-existent nodes into existent nodes. In this case, the encode bitmap, even the

shape of Shape Shifting trie, may need to be completely changed.

When the binary tree is very sparse (there are a lot of single child nodes, recall

that k ≪ 2h), Shape Shifting will run faster than Tree Bitmap. This is because using

the same space, Shape Shifting tree can encode more nodes, therefore increase the

stride and reduce the height of Shape Shifting tree.

In essential, Shape Shifting explores the “sparseness” of the binary tree, improving

both the time and space complexity of Tree Bitmap. According to [54], Shape Shifting

on IPv6 rulesets runs two times faster than Tree Bitmap does.

Other Algorithms

Lulea [13] is another trie-based algorithms. Lulea splits the whole binary tree into

16, 8, 8 bit sub-trees. Besides, Lulea invents the Leaf Pushing technique that pushes

the prefixes stored in non-leaf nodes into leaf nodes, reducing the memory footprint

of the binary tree implementation. However, the Leaf Pushing technique renders the

update of prefixes difficult. Also it is quite difficult to extend Lulea algorithm to the

IPv6 addresses.

Unlike Lulea, LC trie [44] uses variable stride to adapt to the shape of the binary

tree. In LC trie, the stride is different for different rulesets.

There are some other IP lookup algorithms, such as using binary search on the

prefix lengths, and then performing one hash lookup for fixed length prefixes [78] etc.

Since these algorithms are rare to be seen in the real world, we will not introduce the

details of these algorithms.
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2.3.4 Hash-based IP lookup Algorithms

The basic idea

Compared to exact match, the longest prefix match is in fact the match on two

dimensions (length, value). As the hash lookup can only be used for exact match,

for the longest prefix match, one needs to conduct multiple hash tables for different

prefix lengths in the longest prefixes match. Since the IPv4 addresses is formed by

32 bits, 32 hash tables are needed for hash-based IP lookup.

Figure 2.4: Hash based IP lookup

Figure 2.4 shows the basic idea of hash-based IP lookup. For each hash table, the

IP address is masked with the corresponding mask code and then the masked value

is used for hash lookup. The search results of all the hash tables will be sent to an

arbitrator and the results with the highest priority (the longest prefix length) is the

final lookup result.

Assuming that each hash table lookup needs only O
(

1
)

lookup time, in the worst

case, the basic hash-based IP lookup algorithm needs O
(

W
)

time. Also, since hash-

tables support update, the hash based IP lookup algorithms can support incremental

rule update. However, there are still some drawbacks:
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1. There may be hash conflicts during the hash lookup, resulting in a nondeter-

ministic lookup performance.

2. Each hash table requires large memory. The hash table needs space for indexes

no matter there are prefixes stored or not. The large memory footprint renders

it difficult to store in the on-chip memory.

3. The length of IP prefix is not unevenly distributed in the real world, resulting

in the non-uniform hash-table. Some hash tables contain a lot of prefixes while

the others contain very few prefixes.

In order to overcome the issues listed above, many hash-based variants have been

proposed. Here, we only discuss the Bloom-Filter based IP lookup algorithms.

Bloom-Filter based IP lookup algorithms

Bloom-Filter based IP lookup algorithms utilize the bloom filter [5] to prune the

times of hash table probes required by the original one. Bloom Filter is in fact a

compact representation of membership information in a set, and can be used for the

membership query for this set. The key method is to use k hash functions to map

all the elements to one bit string. Each element is represented by k bits stored in k

locations in this bit string. BloomFilter uses very small memory footprint, therefore

can be fit into the on-chip memory for fast lookup.

The basic idea of Bloom-Filter based IP lookup algorithms is to use one bloomfilter

for each prefix lengths (each hash table) in the FIB. When lookup an IP address, all

the bloom filters are searched in parallel to determine whether or not there is a

matching prefix in a certain hash table. Only when the bloom filter reports that

there maybe a prefix match, the corresponding hash-table stored in the external

SRAM chips will be searched. Figure 2.5 shows the idea of this Bloom-Filter based

IP lookup algorithm.
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Figure 2.5: Bloom-Filter based IP lookup algorithm

The Bloom-Filter based IP lookup algorithms improve the original one by putting

bloom filter instead of hash table on the on-chip memory. The on-chip bloom filter not

only reduces the memory footprint, but also reduces the required hash table probes.

However, as mentioned above, the non-uniform distributed IP prefix lengths make

the size of bloom filters different. The paper [14] suggests to use mini-bloom filter

to adapt to this non-uniformity of IP prefix length distribution. When the number

of prefixes with certain prefix lengths is too large, one can use multiple mini bloom

filters as one big bloomfilter to store the prefixes.

The paper [56] presents DLB (Distributed and Load balanced BloomFilter, DLB)

for the non-uniformity of prefix lengths distribution. Unlike traditional bloom filters,

DLB uses W same-sized bloomfilter. Each prefix, no matter its prefix length, will

be hashed into W bloom filters. Each prefix takes one bit in each bloom filter. One

needs to query k bloomfilters in parallel for one IPv4 address lookup. The final search

result is the “AND” of all the search results of W bloom filters.

DLB is essential to divide a large bloom filter into multiple units of bloom filter.

This modularized design eases the hardware implementation. Meanwhile, all the
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prefixes will only use one bit in each bloom filter. In this case, no matter how the

distribution of prefix looks like, there will not be a single bloom filter with higher

load. DLB decouples the prefix lengths with the number of bloom filters, and solve

the problem induced by the non-uniformity of prefixes distribution. Figure 2.6 shows

the process of IP lookup using DLB.

Figure 2.6: Distributed BloomFilter

Other Algorithms

Multiple hashing can be used to overcome the non-deterministic performance induced

by hash conflict. The paper [60] presents “semi-perfect hash”, for a ruleset, the

hash table restricts the length of the conflict list into some certain value. However,

generating such a hash function is very time-consuming. The paper [6] proposes using

multiple independent hash functions for one item and put the item in the bucket with

the smallest load. However, one needs to perform multiple hash probes for one item.
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Multiple hashing does not need “semi-perfect hash” function. It uses multiple

independent hash functions to reduce the length of the conflict list in one hash table.

This idea can be used not only in IP lookup, but also in any search algorithm which

uses hash tables.

2.3.5 Conclusion

We have introduced some representative IP lookup algorithms. We see that all the

improvement of the IP lookup algorithms come from the needs to overcome some non-

uniformity inside the rulesets. For example, the Path Compressed Trie and Shape

Shifting Trie algorithms improve the basic binary trie through exploring the “sparse-

ness” of the binary trie. The hash-based IP lookup algorithms are trying to overcome

the non-uniformity of the prefix length distribution.

2.4 Multi-dimensional Packet Classification Algo-

rithms

The multi-dimensional packet classification algorithms can be categorized into three

types: decomposition algorithms, hash-based and the decision tree based algorithms.

We will first discuss the basic idea of multi-dimensional packet classification, and

introduce some typical packet classification algorithms.

2.4.1 Complexity of the basic problem

The simplest algorithm is to perform linear search of the rulesets. For a ruleset

consisting of n rules, the linear search needs O
(

n
)

time to finish the searching, and

needs O
(

n
)

space for storage. The algorithm uses the minimal space, but uses too

much searching time. It cannot be used in the high-speed packet classification system.
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In theory, the general packet classification problem has a very high degree of com-

plexity. Previous literature [9,10] states out that to search n ranges on k dimensions,

one needs either O
(

(log n)k−1
)

time for linear space or O
(

k∗(log n)
)

time using O
(

nk
)

space. For a search of 1000 rules (n = 1000, k = 4), one needs O
(

(log n)(4−1) = 1000
)

memory accesses or needs O
(

nk = 1012
)

space. This lower bound states out that

using algorithmic solution for packet classification, one needs either long search time

or large space. Neither is acceptable for the real system.

Fortunately, Gupta and McKeown etc. [23] investigated many real rulesets and find

that the real rulesets are usually sparse; this sparseness can therefore be exploited to

design heuristic algorithms for high-speed classification. Their observations are listed

below:

• In typical rulesets, the prefixes are usually non-overlapped. The ranges are

usually small in most rules.

• There are very few unique protocols specified in one rule. Most rules are speci-

fied for TCP/UDP protocols. Very few rules are specified for the ICMP, IGMP

protocol.

• Very few rules overlap with one another, meaning that one packet will match

few rules at the same time.

• One packet will match at most 20 source and destination IP prefixes specified in

one ruleset, which means that using source and destination IP field can separate

most of the rules.

Due to the high degree of complexity in theory, almost all the multi-dimensional

packet classification algorithms are based on the exploration of the features of the

real rulesets, and no algorithms can be efficient in all the rulesets. One algorithm

may have a performance variant in different rulesets. If one ruleset does not have the
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features that are assumed by one algorithm, the algorithm will not run fast on this

ruleset.

2.4.2 Decomposition based algorithms

The search on multiple dimensions can be decomposed into the combination of the

search on single dimension. Concretely, one can first perform longest prefix lookup

on the single field p[0], p[1], . . . , p[d] in the packets and combine the results to retrieve

the final search result. Figure 2.7 shows the Crossproducting algorithm [61].

Figure 2.7: the Crossproducting algorithm

Since the search on single field is independent, these search can be performed in

parallel in hardware. The main drawback is that the Crossproducting table requires

large memory. The Crossproducting algorithm needs to translate the ranges on the

single field into non-overlapped ranges. Assuming that the field F contain P (F ) non-

overlapped ranges, the crossproducting table needs O
(

P (F1)× P (F2)× · · ·× P (Fd)
)

prefixes. Usually, for a ruleset consisting of n rules, the crossproducting table needs

O
(

n2
)

space, therefore the Crossproducting algorithm is used for small rulesets.
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In order to overcome the large memory footprint of crossproducting table, the

paper [23] proposes the Recursive Flow Classification algorithm. This algorithm uses

middle crossproducting table to remove the redundant combination for small memory

footprint. Figure 2.8 shows the RFC algorithm.

Figure 2.8: The RFC algorithm

Again, RFC utilizes the “sparseness” feature of ruleset: the number of pre-

fix combinations in a ruleset is small. To illustrate this, we use Table 2.1 as an

example. We see in Table 2.1, on the fields F1 and F2, the prefix combinations

{B,C}, {B,D}, {B,E} do not exist. One can merge the search results of lookup

on F1 and F2 to eliminate these combination to reduce the memory size of the final

crossproducting table.

F1 F2 F3

A C G
A D G
A E H
B F I

Table 2.1: a 3-dimensional ruleset
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There is some other work [3,31] which is also based on multiple fields composition.

These algorithms do not rely on crossproducting table to merge the search results.

Instead, they use bit vector. In these algorithms, the size of bit vector is linear with

the size of ruleset. Therefore, these algorithms also need to manipulate wide bit

vectors. Due to the restriction of external SRAM, wide bit vectors need multiple

memory accesses to retrieve, so these algorithms are still useful for small rulesets.

2.4.3 Hash-based algorithms

Similar to the hash-based IP lookup algorithms, the hash-based algorithms for multi-

dimensional packet classification conduct multiple hash-tables for different prefix com-

binations in the rulesets. One needs multiple hash probes for one packet. These

algorithms are based on the observation that in one ruleset the number of prefix

combinations is far less than that of rules. Figure 2.9 shows a typical hash-based

algorithm, Tuple Space Search [59]. Similar to IP lookup, Tuple Space Search masks

the search key with different mask codes and performs the hash probe on the corre-

sponding hash table. In order to reduce the number of hash probes, one can use the

longest prefix search on a single field to prune the search space of prefix combinations.

As an important feature of TSS is that it supports incremental update, it has been

used in Open vSwitch [46].

Similar to IP lookup, there is also other work [15] using bloomfilter to prune the

number of hash probes.

2.4.4 Decision tree based algorithms

There are many recent works about the decision tree based packet classification algo-

rithms [20, 48, 55, 77, 80]. Decision-tree based algorithms can run as fast as the RFC

algorithm does, however uses fewer memory.
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Figure 2.9: The Tuple Space Search algorithm

Figure 2.10: The Decision Tree based algorithm and the Decomposition algorithms

Figure 2.10 compares the decision tree based algorithms and the decomposition al-

gorithms from the geographic perspective. A multi-dimensional rule R can be viewed

as a “hyper-rectangle” in the multi-dimensional space, and a packet can be viewed as a

point in this space. The search on rulesets is in fact to decide which “hyper-rectangle”

the point falls in. We can define the Cartesian product D(F1) × D(F2) × . . . D(Fd)

as the search space.

Different algorithms are actually using different cutting methods to reduce search

space until it includes one or a few rules. According to Figure 2.10, the decision-tree

based algorithm is essential to cut the search space iteratively. In each cut sub-space,

the algorithms choose different fields to cut based on the feature of the ruleset included
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in the sub-space. However, the decomposition algorithms are just cutting the whole

space on all the fields from the beginning. Therefore, compared to the decomposition

algorithms, the decision-tree based algorithms are capable of adapting to the ruleset

feature, and are likely to use less time and smaller space. The decision tree based

algorithm is like the Path Compression Trie on multiple dimensions. Both of them

are based on the similar data structure and the same lookup process (lookup the trie

and check the rules).

The decision-tree based algorithm [22,52,80] is an important branch of the multi-

dimensional packet classification algorithms. We will discuss the details in Chapter

3.

2.4.5 Conclusion

In this section, we discuss the multi-dimensional packet classification algorithms. We

see that similar to IP lookup, most multi-dimensional packet classification algorithms

are based on the exploration of some “sparseness” of the rulesets.

2.5 Key idea: exploit the “sparseness” of rulesets

Efficient packet classification algorithms have been studied for more than 20 years.

There are more than ten representative algorithms in both IP lookup and multi-

dimensional packet classification.

We have introduced the basic and the typical algorithms in both single and multi-

dimensional packet classification. In the review, we can see that most of these al-

gorithms are based on some observation of the “sparseness” feature of the rulesets.

Here we will give one example to illustrate how these algorithms utilize the features

of the ruleset.
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Assuming that we have the ruleset shown in Figure 2.11. The ruleset includes

two IP prefixes 10000* and 10001*. As shown in Figure 2.11, the binary tree needs

6 memory accesses for the search. However, the Path Compressed Trie compares the

fifth bit of the IP address, and separates the ruleset into two sub-rulesets including

only one rule. Therefore it only needs 1 memory access for trie lookup and 1 memory

access for rule checking. The hash-based algorithm finds that the two rules have

the same prefix length, so we can conduct one hash table for the ruleset, and only

one hash probe is needed for searching the ruleset. Tree Bitmap uses multi-stride

with compact encoding technique to reduce both the memory size and accesses while

Shape Shifting Trie uses more compact shape encoding for future improvement. At

last since TCAM supports wide search entry, it can also be viewed as a solution for

sparse rules. These algorithms utilize different “sparseness” feature of the rulesets to

achieve fast and efficient searching.

Figure 2.11: Exploring the “sparseness” of the rulesets
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The research goal of algorithmic solutions for packet classification is to explore

the “sparseness” of rulesets to fit into the limited resources of the real systems, and

to fulfill the needs of the network applications.

This chapter focuses on how different algorithms utilize the ruleset features. As a

reference, the paper [51] is a survey for IP lookup algorithms and the paper [57, 62]

are surveys for multi-dimensional packet classification algorithms.
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Chapter 3

Anatomy of Decision Tree

Algorithms: Framework and

Evaluation

Packet classification algorithms have been extensively studied. In the past decades,

as an important branch of packet classification algorithms, many decision-tree based

algorithms, such as HiCuts [22], HyperCuts [52], HyperSplit [48], have been proposed.

These algorithms adopt different heuristics and space division methods, achieving

high performance on different rulesets. Therefore, before exploring the new world, it

is necessary to evaluate the existing algorithms.

In this chapter, we review four typical decision-tree based algorithms and present

a design framework of decision tree algorithms. In the design framework, we view

each decision tree algorithm as a combination of three types of “meta” methods -

– the heuristic of choosing fields to partition, the space division methods and the

tricks that optimize the division results. We call these three types of method field

choosing, field cutting and optimization tricks respectively. We show that most of

existing decision tree based algorithms can be adapted into this framework, and the
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performance of the algorithms can sometimes be significantly improved by combing

different “meta” methods from the existing algorithms. We evaluate the classification

performance of existing and hybrid algorithms, the performance results show that the

hybrid algorithms outperforms the existing algorithms in both the memory access and

memory size.

3.1 Motivation

3.1.1 Studying the performance variation of existing algo-

rithms

Algorithms Ruleset Memory size Memory access

HyperCuts
IPC 10K 78MB 67
FW 10K 2.2GB 51

ABC-I
IPC 10K 5MB 70
FW 10K 9MB 48

HyperSplit
IPC 10K 11MB 38
FW 10K 770MB 53

Table 3.1: The performance results of different algorithms

In the evaluation of existing algorithms, we found that different algorithms per-

form quite differently on different rulesets. We show the performance results of three

typical algorithms on two rulesets. We use ClassBench [63] to generate one IPC and

FW ruleset IPC 10K and FW 10K. As shown in Table 3.1, the performance varies

when using different algorithms on different rulesets.

We see in Table 3.1 that, ABC algorithm has small memory footprint on IPC -

10K; however, its memory access is twice as that of HyperSplit. Although the memory

consumption of HyperSplit is 85× larger than that of ABC on FW 10K, HyperSplit

does not gain any advantages on the memory access. HyperCuts suffers on two

rulesets, and its memory consumptions on two rulesets are quite different.
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Table 3.1 shows that existing algorithms perform differently on different rulesets.

No algorithms achieve good performance on all the rulesets. This performance unpre-

dictability issue has severely hindered the adoption of packet classification algorithms

in the real world. We therefore study the reason of the performance variation. In this

chapter, we will study this problem from the algorithm perspective.

3.1.2 Evaluating and analyzing existing algorithms

Existing works mostly focus on proposing new algorithms, while very few of them

evaluate and analyze the existing algorithms. The evaluation of multiple packet

classification algorithms is needed as a performance benchmark for newly proposed

algorithms. The analysis of algorithm heuristics is also important. Existing algo-

rithms usually has some tunable parameters. In order to achieve a full understanding

of the performance, researchers have to conduct more experiments to test the impact

of different parameter settings on the performance results. However, by comparing

different heuristics of algorithms, one can also tell the internal differences of different

algorithms, understanding the advantages of algorithms without extra experiments.

The last motivation is that a full analysis and evaluation is helpful to reveal the

reason of performance variation. With the evaluation results (with recent algorithms

and with all types of ClassBench rulesets), we can identify that which possibility

among others is related to the poor heuristic of packet classification algorithms and

which is related to the features of rulesets.

3.2 Background

We now give a high-level introduction of packet classification algorithms. Table 3.2

shows a toy ruleset. We can see that, a packet classification rule is specified by the
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ranges on different fields and the action. On the same field, different rules may have

the same ranges. For example, R1 and R2 share the same ranges [0-3].

Rule# F1 F2 R.act
R1 [0-3] [5-8] drop
R2 [2-4] [5-7] drop
R3 [5-8] [2-7] permit
R4 [0-3] [1-4] drop
R5 [5-8] [1-4] permit

Table 3.2: An example ruleset

Decision-tree (DT) based algorithms are in fact geometric algorithms. Each packet

classification rule can be viewed as a “hyper-rectangle” in multi-dimensional space.

Through space partitioning on different dimensions, decision tree algorithms separate

rules through dividing the space into sub-spaces consisting of fewer rules, reducing

the search space of the whole rulesets. Figure 3.1 shows the decision tree built on the

ruleset shown in Figure 3.2.

In the decision tree shown in Figure 3.1, each node represents a sub-space of the

full space (the space represented by the root node). In each intermediate node of

the decision tree, the tree building algorithms will choose one or multiple dimensions

(fields) to partition the space(in the figure, we use the word “cut” for this partition).

The building algorithms keep cutting the space until the number of rules overlapping

the subspace is less than a preset parameter binth. As shown in Figure 3.1, after

performing Cut 1 on the root node, the full space is divided into two sub-spaces. The

left sub-space contains three rules: R1, R2 and R4, while the right sub-space contains

two rules, R3 and R4. In the left sub-space, the building algorithm chooses the F2

field to partition, generating two sub-spaces consisting of R1, R2 and R4 separately.

At the same time, the right sub-space is also divided into two parts (the Leaf 3 and

Leaf 4). As Cut 3 crosses the rule R3, both Leaf 3 and Leaf 4 contain the rule R3.

In this case, we say the rule R3 is duplicated once.
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Figure 3.1: Decision tree algorithms

In this geometric view, each packet can be viewed as a coordinate in the multi-

dimensional space. The packet classification is in fact about finding the most specific

subspace in the decision tree where the point belongs. For example, in order to search

the packet shown in Figure 3.1, the searching algorithms will first locate the point in

the Leaf 3. Since Leaf 3 contains only one rule, the searching algorithm takes only

one more memory access to complete the rule matching. If doing linear searching

(checking rules one by one), one needs 5 memory accesses for 5 rules, but we reduce

the number of memory accesses from 5 to 2 memory accesses for tree traversing plus

one memory access for rule checking.

When designing packet classification algorithms, one needs to consider the fol-

lowing problems: 1) How to choose the dimension to cut in each intermediate node?

2) How to cut the space after choosing the dimension? An efficient DT algorithm

usually should meet two requirements, small memory footprint (the number of rule
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duplication is negligible) and few memory accesses (the height of algorithm tree is

small). In order to achieve these two goals, algorithms need to choose the “right”

dimension to perform efficient space division to separate rules.

Figure 3.2: The decision tree design framework

3.3 The DT-based algorithm design framework

In order to understand the main source of performance variation and explain the

performance degradation of different algorithms, we divide the building process of a

DT algorithm into three “meta” methods:

• Field choosing. Field choosing is usually based on the information of rules

contained in the current intermediate node.

• Field cutting. Field cutting is usually related to search speed. Complicated

field cutting methods usually slow down the searching on the CPU because

each operation needs more instructions.
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• Optimization tricks. After cutting the space, optimization tricks can help to

encode, compress or compact the memory size and the number of memory access

of the DT.

The proposed decision tree design framework is shown in Figure 3.2. Different

algorithms can be viewed as a combination of different meta methods listed in Figure

3.2. We will apply this design framework to four typical algorithms and compare them

by comparing their meta algorithms. The proposed decision tree design framework

can reveal the connection of different algorithms and explore the new possibilities of

algorithm design.

3.3.1 Field choosing and Field cutting

HiCuts

HiCuts is the first DT based algorithm. In each intermediate node, HiCuts will choose

the dimension that contains the most unique ranges, and cut the field into equal-sized

intervals (divide the interval into 21, 22, 23, . . . , 2k sub-intervals, each intervals has the

same length). For example, in Table 3.2, there are 3 unique ranges on the field F1:

[0-3], [2-4] and [5-8], there are 4 unique ranges on the field F2: [5-8], [5-7], [2-7] and

[1-4]. Therefore, HiCuts will choose F2 to cut.

HiCuts uses the cost function shown below to control the number of cuts in each

node. We denote the number of cut as np. Assuming that the target node contains

N rules, after choosing the cutting field, HiCuts chooses the largest possible np as

long as it satisfies the condition below. Therefore, the parameter spfac controls the

aggressiveness of cutting. Larger spfac usually means more cuts in one node and

large memory footprint induced by the rule duplication, while small spface trades

more memory accesses for smaller memory footprint due to fewer cutting in one node.

spfac is usually set at 1 ∼ 8.
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N × spafc ≥
∑

Nleaf + np (3.1)

HyperCuts

HyperCuts extends HiCuts by allowing each node to choose multiple dimensions to

cut. Its field choosing method is to choose the dimensions which have more than

average number of unique ranges. As mentioned, on F1 there are 3 unique ranges

while on F2 there are 4. The average unique ranges is therefore 3+4
2

= 3.5. Of the

field F1 and F2, only F2 contains excess unique ranges. Therefore, HyperCuts will

also choose F2 to cut.

Similar to HiCuts, HyperCuts adopts equal-sized field cutting. Assuming that

the chosen field set is {F1, F2, . . . , Fk}, HyperCuts will alternately cut each field into

21, 22, . . . , 2n intervals. Figure 3.3 shows the cutting process when the chosen filed

set contains F1 and F2. We use
∏
nc to denote the product of the number of cuts on

each field.
∏
nc is actually the total number of cuts on each node. Similar to HiCuts,

HyperCuts uses the largest possible
∏
nc as the number of cuts in each node as long

as the equation below is satisfied.

√
N × spafc ≥

∑

Nleaf +
∏

nc (3.2)

Besides allowing multiple dimensions to cut in each node, the HyperCuts paper

also proposes a lot of optimization tricks. We will introduce these tricks in the next

section.
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Figure 3.3: The cutting process of HyperCuts

HyperSplit

Compare to HiCuts and HyperCuts, HyperSplit [48] has different field choosing and

filed cutting methods. HyperSplit chooses a single dimension and split the interval

into two sub-intervals using a split value. Because the split value can be an arbitrary

one, the split sub-interval may have different lengths. This is different from HiCuts

and HyperCuts which only perform equal-sized cutting. We call this field cutting

method the unequal-sized cutting.

Meanwhile, HyperSplit’s field choosing method is not based on the number of

unique ranges. When choosing dimension to cut, HyperSplit first translates these

ranges into non-overlapped small ranges, and weights each non-overlapped range

based on the number of rules intersecting the range(See Figure 3.4). In the rule-

set shown in Table 3.2, the ranges on F1 can be translated into [0-1], [2-3], [4-4] and

[5-8]. Rules R1 and R4 intersect with the range [0-1] on F1, rules R1, R2 and R4

insect with the range [2-3], R4 intersects with the range [4-4] and rules R3 and R5

intersect with the range [5-8]. Therefore, the weights of [0-1], [2-3], [4-4] and [5-8]

are 2, 3, 2 and 1. HyperSplit computes the average range weight of each field, and

chooses the field with the smallest average range weight. For F1, the average range

weight is 2+3+2+1
1+1+1+1

= 2.

In fact, this field choosing method is actually to quantify the degree of dispersion

of ranges on a specific field. If on some fields, rules are evenly distributed on the
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ranges and these ranges are non-overlapped, it can be expected that the average

range weight of this field is small. On contrast, if rules are not evenly distributed,

and there are a lot of overlapped ranges, the average range weight of the target field

is large, and it is quite difficult to separate the rules by using this field.

Figure 3.4: Calculating the range weight

Adaptive Binary Cutting

ABC [55] algorithm is different from previous algorithms. First, ABC uses equal-sized

cutting, but it only cuts the field into two equal-sized intervals each time. Second,

ABC uses a new field choosing method. In each node of ABC tree, for each field,

ABC will first cut the field into two parts, and denote the number of rules overlapping

with the left sub-space as Rl, and the number of rules overlapping with right sub-

space as Rr. The original number of rules is R. ABC algorithm will choose the field

with smallest R2
l + R2

r − R2 to cut. The polynomial R2
l + R2

r − R2 is similar to the

cost function used in linear regression, so we call this field method the minimal cost

function for short.

Figure 3.5 shows the field choosing method of ABC. In each node, ABC will

evaluate all the fields. If choosing F1 to cut, due to the duplication of rule R3, the

cut subspace contains three rules each, therefore the “cost function” will be larger

than choosing F2. In fact, the field choosing method of ABC is to quantify the cost

of each binary equal-sized cut and choose the field with the smallest cost. When
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Figure 3.5: Minimal cost function

Rl = Rr = R
2
s, the cost function R2

l + R2
r − R2 achieves the smallest value. From

the information theory perspective, as the ruleset is divided into two sub-rulesets

containing equal number of rules, we say that this cut achieves the largest information

gain.

Because each time the ABC algorithm only divides the space into two subspaces,

the ABC tree is a binary tree without single child nodes. For such a binary tree,

the succinct data structure [26] can be used to encode the shape of the tree into a

bit string. Therefore, one can divide the built binary tree into fixed sized sub-trees,

and encode these sub-trees using succinct data structures. This encoding reduces the

number of memory accesses during the search of the ABC tree, and one needs only

one memory access to retrieve the bit-string for checking the multi-bit sub-tree. We

will introduce this data structure in the next section.

Comparing field choosing and field cutting methods

We have introduced the field choosing and field cutting methods of four efficient DT

based algorithms. By comparing these methods, we make two key observations here:

• The field choosing methods of HyperSplit and ABC methods are more sophis-

ticated than that of HiCuts and HyperCuts. The field choosing methods of
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HiCuts/HyperCuts are only based on the number of unique ranges, ignoring

the ranges overlapping information in the rulesets. The key difference is that

unlike HyperSplit/ABC, the HiCuts/HyperCuts algorithm lacks an evaluation

of the cutting cost when choosing fields. This will usually result in inefficient

rule separating.

• The cutting of HyperSplit/ABC is fine-grained. These two algorithms only

perform binary cuts in each node. After each binary cut, the algorithm will

again choose the right field to cut. This frequent field choosing actually makes

the cutting more efficient, because at each tiny step, the algorithm tries to

choose the best field for separating rules.

3.3.2 Optimization tricks

The optimization tricks are used after cutting the nodes. They are usually used to

optimize the cutting results for further cutting. In this section, we will introduce 6

popular optimization tricks.

Rule Overlap

Rule Overlap is to remove the redundant rules that are fully covered by the rules

with high priority in the cut sub-spaces. Figure 3.6 shows the idea of Rule Overlap.

In the figure, R1 is the rule with higher priority. In the right sub-space, the space

represented by R2 is fully covered by R1, meaning that if the packet falls into this

area, it will match R1 instead of R2. Therefore, in the built decision tree, R2 can be

removed in the right child node to save the memory.

In practice, Rule Overlap can reduce the memory size of algorithms significantly

[80]. Another benefit of using this trick is that unlike other tricks, Rule Overlap will

not complicate the searching of decision tree. The only overhead is that it makes

the building process time-consuming as for each rule, Rule Overlap needs to check if
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Figure 3.6: Rule Overlap

there is a rule with high priority which fully covers it. This usually leads to a O
(

N2
)

time complexity.

Bitmap

In the original implementation of HyperCuts, each node contains head information

and one pointer pointing to an array of pointers; each pointer points to one child node.

This pointer array worsens both time and space complexity of DT algorithms. First,

this pointer array itself consumes large memory. Second, thanks to the pointer array,

it needs two memory accesses, one for node, the other for the pointer array to locate

the position of the child node. One can reduce the extra memory size and memory

accesses using Bitmap. This bitmap is actually the encoding of the pointer array.

Each pointer has its own bit in the bitmap. The bit is set to 1 if the corresponding

pointer is not a null pointer. When locating the child node, one needs first find the

bit position of the target child, and then count how many bits are set to 1 in front the

target bit. This bit count is the offset value which can be used with the base pointer

to locate the child node. Figure 3.7 shows how this bitmap trick works. The bitmap

of node A is 101. If we need to locate the position of F, as shown in left sub-figure,

F corresponds to the third child in the original array, one needs to count how many
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set bits before the third bit. In this case, the number of the set bits is 1, so the F can

be located through baseptr + 1.

Figure 3.7: Using Bitmap to reduce the memory accesses and memory size

This bitmap trick can eliminate the extra memory access. However, since the size

of bitmap is limited, the number of cuts per node is therefore limited.

Rule shifting

Rule shifting is to shift the rules contained by all child nodes to the parent node. This

technique reduces the rule duplication. However, one needs more memory accesses

to retrieve the shift rules and perform matching. Figure 3.8 shows this optimization

tricks.

Figure 3.8: Rule shifting
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Node reuse

Real rulesets usually exhibit a non-uniform range distribution. In this case, equal-

sized cutting will generate a lot of identity child node (child nodes contain the same

rules). As shown in Figure 3.9, after the cuts, node A will have two identity nodes,

both containing rules R1 and R2. One can eliminate this redundancy by setting the

two pointers pointing to the same node. In fact, this trick merges some inefficient

cuts to adapt to the non-uniform range distribution. In Figure 3.9, the node reuse

technique turns equal-sized cuts (1/3 per node) into unequal-sized cuts (2/3 and 1/3).

Figure 3.9: Node reuse

Region Compaction

When the boundary of the rules does not reach to the boundary of the subspace, one

can compact the boundary of the subspace to make the space division more efficient

(see Figure 3.10). However this technique requires each node to record the boundary

information of the subspace, since the compaction makes the boundary irregular. For

an IPv4 address, the boundary information requires at least 8 bytes per node, which

is not a negligible overhead in many DT algorithm implementations.
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Figure 3.10: Region Compaction

Shape encoding

Shape encoding is used in ABC algorithm, while it also has applications in IP lookup

[54]. Shape encoding is based on the succinct data structure [26] which encodes the

shape of a binary tree into a bit string. Concretely, the encoding begins by traversing

the tree by level, and set the bit of traversed node with child nodes at 1 and that

with zero child nodes at 0. As the root node always has two child nodes, one can save

one bit for root node. We show a sub-tree of ABC tree in the left part of Figure 3.11.

The shape code of this tree is 010100. The sub-tree contains four leaves. Therefore

the node A of the ABC tree shown in the right contains four child nodes. The shape

encoding is very compact. Encoding a tree with k leaves requires only 2k − 2 bits.

Figure 3.11: Shape encoding
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While shape encoding can reduce the memory size of DT, it slows down the

searching process because the decoding requires operation bit by bit. We use ones(i, j)

to denote the number of “1” between the ith and jth bit in the shape code, and use

zero(i, j) to denote the number of “0” between the ith and (j− 1)th bit in the shape

code. Assuming that the currently decoded bit is at the ith bit in shape code S and

the input bit is x, the position of the next checked bit is 2 × ones(0, i) + x. If S(i)

equals to 0, we have already reached to the leaves of the tree, similar to the bitmap

trick, zero(0, i) is the offset for locating the child node; one can locate the position

of child node with baseptr + zero(0, i)

Assuming that the input bit string B = 111, the shape code S = 010100, the

decoding begins at the position i = 0, the first bit position is therefore 2×ones(0, 0)+

B(0) = 1. Since S(1) = 1, we continue the decoding. The next bit position is

2 × ones(0, 1) + B(1) = 3. Again, since S(3) = 1, the decoding continues. As

2×ones(0, 3)+B(1) = 5 and S(5) = 0, the decoding completes. Because zero(0, 5) =

3, the position of the child node is baseptr + 3, the position of the node E shown in

Figure 3.11.

We see that each step of the decoding relies on the result of last step. Therefore,

the decoding step is difficult to parallel. To decode the shape code of a sub-tree with

k leaves, one needs k clocks in the worst case. For a software implementation, each

step needs several cycles to compute the number of “1” or “0” bits which is quite an

overhead in data-plane.

Comparing different optimization tricks

We list all the pros and cons in Table 3.3. In practice, it is unnecessarily true that

adopting all optimization tricks will result in the best performance. This is because

that some tricks requires the extra information stored in the head information in the

node. Moreover, combining some optimization trick will bring extra complexity. For

51



example, Node reuse and Bitmap trick are usually not used together. When enabling

the Node reuse, the pointers in the pointer array may point to the same child node.

However, each bit in the bitmap can only represent if the corresponding pointer is none

or not, and it cannot tell that if more than two pointers share the same destination.

In this case, the algorithm designer needs to add another data structure to record

such information. This in fact adds more complexity in the searching process of DT,

slowing down the final performance.

Optimization
tricks

cons pros

Rule Overlap Reducing the memory
size significantly by re-
moving redundant rules.

Increasing the prepro-
cessing time. The time
complexity of this opti-
mization tricks is O

(

N2
)

when there are N rules
Bitmap Accessing one node re-

quires only one memory
size. Memory size is re-
duced also by eliminating
the pointer array

The fix-sized bitmap lim-
its the number of cuts per
node. This optimization
trick also cannot be used
with the Node reuse tech-
nique.

Rule shifting Reducing the memory
size by reducing the du-
plication of rules

Increasing the memory
accesses since one needs
to retrieve the shift rules
for each node.

Node reuse Reducing the memory
size by reusing the child
node.

Pointer array increase the
memory access and re-
quires extra memory.

Region com-
paction

Making the cuts more ef-
ficient by compacting the
node region.

This optimization trick
needs the boundary infor-
mation stored in the node
which increases the size of
the tree node.

Shape encoding Reducing the memory
size by encoding the
shape of the tree into a
bit string.

The searching may be
slow due to the compli-
cated decoding.

Table 3.3: The cons and pros of all the optimization tricks.
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The above optimization tricks can be categorized into four groups. Rule Overlap

alone should be put into one group, because this trick can be used in any DT-based al-

gorithms. Since Bitmap trick eliminates the pointer array, the rule shifting technique

can therefore utilize the saved space for adding an extra pointer per node pointing

to the shift rules. We therefore put Bitmap trick and rule shifting techniques in the

same group. We put Region Compaction and Node Reuse in one group. The last

group includes only shape encoding. In our evaluation, this technique is only used in

the ABC algorithm.

3.3.3 Discussion

We investigate many open sourced implementations [68,69,77] of DT algorithms and

show in Table 3.4 the meta methods of four typical DT based algorithms.

Algorithm
Meta methods

Field choosing Field cutting Optimization tricks
HiCuts most unique

ranges
equal-sized cut-
ting

Rule Overlap + Node
reuse + Region Compa-
tion

HyperCuts average unique
ranges

equal-sized cut-
ting

Rule Overlap+(Node
reuse, Region Com-
paction)
or (Bitmap trick, rule
Shifting)

HyperSplit minimal average
range weight

unequal-sized bi-
nary cutting

None

ABC minimal cost
function

equal-sized
binary cutting

Shape encoding + Rule
Overlap + Rule Shifting

Table 3.4: The meta methods of different algorithms

We have already compared different field choosing, field cutting methods and

optimization tricks in Section 3.3.1 and Section 3.3.2. A key insight here is that

the field choosing and field cutting methods can actually be decoupled, meaning

that we can improve one algorithm by “borrowing” the field choosing method from
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another algorithm. We acknowledge that the Field choosing methods of HiCuts and

HyperCuts are coarse-gained since they ignore the status of ranges overlapping in the

rulesets. We then use the field choosing methods of HyperSplit to improve HiCuts.

We call this modified HiCuts as HiCuts-op.

We also find that the original HyperSplit implementation does not use any opti-

mization tricks. Of all the optimization tricks, the Rule Overlap is the only technique

we can use for HyperSplit. We therefore improve HyperSplit by adding the Rule

Overlap technique. The modified HyperSplit is denoted as HyperSplit-op in the fol-

lowing.

3.4 Experiments Setup

3.4.1 Platform

We use a commodity server as the platform for performance evaluation. We show the

detailed information about the experimental platform in Table 3.5.

Hardware Setup
CPU 3.3GHz

L1 Cache: 256KB
L2 Cache: 1MB
L3 Cache: 4MB

Memory 24GB

Table 3.5: The setup of the experimental platform

3.4.2 Rulesets and traces

We use ClassBench [63] to generate synthetic rulesets. We have used all the types

of ClassBench including ACL, IPC, FW, in the total 24 rulesets (12 1K rulesets and

12 10K rulesets). We also use ClassBench to generate two types of traces: the high
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locality and low locality traces. On each trace, we measure the average lookup time

of the code as the speed of different algorithms.

3.4.3 Implementations

We implement HiCuts, HyperCuts, ABC algorithms. We use the code provided by

the authors for HyperSplit [69]. HyperSplit-op and HiCuts-op are implemented based

on the codes of HyperSplit and HiCuts. In order to maximize the performance, we

use different programs for tree building and searching. The tree-building program

will collect statistics of the decision tree such as memory size, the number of memory

accesses and the number of nodes. The searching code is optimized for performance.

For example, the Intel SSE instructions popcnt is used to count the number of “1” in

a bit string.

The searching speed of each algorithm is evaluated by matching against 1 million

five tuples. When performing searching, these five tuples are stored directly in the

array, and are searched one by one.

Figure 3.12: Meta methods of different algorithms

For a fair comparison, we set the binth = 16 for all the algorithms in our exper-

iments. For HiCuts and HyperCuts, the spfac is set to 4. The ABC paper presents

three variants of ABC algorithm. In our experiments, we use the one with the best

performance (smallest memory footprint and fewest memory accesses): ABC-I. For

the algorithms with Rule shifting technique, the number of shift rules is set to 1.

Because our platform supports 64 bits integer, we use 64-bit bit string for Bitmap
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optimization trick. The configuration of meta methods in different algorithms are

shown in Figure 3.12.

Algorithm Bytes Explanation
HiCuts 1 Head information, such as the field to cut, leaf node

labeletc.
1 Shift bit for locating the child nodes
2 The number of child nodes. Two bytes can support

65535 child nodes
4 The min value of the single dimension boundary
4 The pointer pointing to the pointer array.

HyperCuts-node-reuse 1 Head information, such as the chosen fields (at most
2) to cut

12 The boundary information for two dimensions.
Two min values are needed

2 Shift bit for locating the child nodes
4 The pointer pointing to the pointer array.

HyperCuts-bitmap 1 Head information
8 Bitmap. 64 bits for at most 64 cuttings
4 Pointer pointing to the pointer array.
4 The shift rule pointer. Only one pointer is sup-

ported.
1 4 bits for the shift bit on first field, 4 bits for the

shift bit on second field.
1 The total number of cuttings, at most 64.

ABC-I 1 Head information
4 32bit for shape code capable of encoding subtrees

with at most 16 leaves
2 bitmap for at most 16 child nodes.
4 One shift rule pointer
8 The field to cut for each leaf; 3 bits per field.
1 The pointer pointing to the child node pointer ar-

ray.
HyperSplit 8 The split value, the child node pointer etc

Table 3.6: The node information and size of different algorithms

We show the size and stored information of the node in different algorithms in

Figure 3.6. The HyperCuts variant with the Bitmap trick is denoted as HyperCuts-

bitmap, while the variant with the Node reuse technique is denoted as HyperCuts-

node-reuse.
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3.5 Experiment Results

3.5.1 Comparing memory size and memory accesses

We first compare the memory size and the memory accesses of the existing algo-

rithms. The number of memory accesses in the worst case is used as the criterion for

classification speed. In the HyperCuts-node-reuse and HiCuts algorithms, it requires

two memory accesses to access one node (one for accessing the node information and

one for accessing the pointer array). For simplicity, when performing linear searching,

we assume that each rule needs one memory access and every shifted rule needs one

extra memory access for rule checking.

Figure 3.13: The memory access of different algorithms

Figure 3.14: The memory size of different algorithms (bytes/rule)

We show the memory footprint and the memory accesses of different algorithms in

Figure 3.13 and Figure 3.14. As shown in Figure 3.14, of all the existing algorithms,
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the ABC-I has the smallest memory footprint. On some rulesets, especially the

firewall rulesets, the memory footprint of ABC-I algorithm is one to two orders of

magnitude smaller than that of HiCuts and HyperCuts. The memory footprint of

HyperSplit is close to that of ABC-I on some rulesets, while on other rulesets, such

as the FW10K rulesets, the memory size is 10 ∼ 100× larger than that of ABC-I.

We see in Figure 3.13, compared to other algorithms, HyperSplit requires only half

of the memory accesses on some rulesets. However, on some FW rulesets, HyperSplit

has severe performance degradation. As shown in Figure 3.13, the number of memory

accesses of HyperSplit doubles on the FW5 10K ruleset compared to HiCuts.

We can draw some conclusion from the existing experiment results:

1. As stated, we test two variants of HyperCuts, one with rule shifting and bitmap

trick, the other with node reuse and region compaction. In the results shown

in Figure 3.13 and Figure 3.14, we can see that these two variants achieve close

performance results. The node reuse trades memory accesses for transforming

the equal-sized cutting into unequal-sized, while the bitmap trick eliminates

the extra memory accesses at the cost of incapable of performing unequal-sized

cutting (See the discussion in 3.3.2). These two variants achieve the same

performance. We therefore conclude that the non-uniform distribution of ranges

in the rulesets is the main source of the large memory accesses of HyperCuts

and HiCuts.

2. While HiCuts/HyperCuts is capable of performing multiple cuts in one node,

HyperSplit uses nearly equal number of memory accesses through the binary

split. This shows that the HiCuts/HyperCuts fails in choosing a right dimension

to cut.

3. HyperSplit and ABC-I are better than HiCuts and HyperCuts. However, Hy-

perSplit suffers a severe performance degradation on some rulesets. We can
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expect a performance improvement after we find out the reason for the perfor-

mance degradation.

Figure 3.15: The memory accesses of optimized algorithms

Figure 3.16: The memory footprint of optimized algorithms(Byte/rule)

We show in Figure 3.15 and Figure 3.16 the memory footprint and the memory

accesses of the HyperSplit-op and HiCuts-op algorithms. We compare these two

algorithms with ABC-I, HiCuts and HyperSplit. As shown in Figure 3.16, HiCuts-

op achieves 2 ∼ 20× memory size reduction and 10% fewer memory accesses. The

memory size of HyperSplit-op is 2 ∼ 200× smaller than that of HyperSplit, while the

number of memory accesses reduces by 10% ∼ 30%.
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We can conclude that the inefficiency of HiCuts is related to its field choosing

method. The performance of HiCuts algorithm can be significantly improved by

changing its field choosing method. The reason for performance degradation of Hy-

perSplit is that the FW10K rulesets consist of too many redundant rules. After

removing these redundant rules, the memory footprint and the number of memory

accesses reduce significantly. Of all the algorithms, HyperSplit-op achieves the best

performance.

3.5.2 Real throughput

Figure 3.17: The throughput of different algorithms under the low locality traffic

Figure 3.17 and Figure 3.18 show the throughput of different algorithms under

the traffic with both low and high locality. Because the large memory footprint of

the HyperCuts algorithm on FW10K (> 1G), we did not evaluate the throughput

of HyperCuts on these rulesets. As shown in the two figures, even the network link

is saturated with 64 byte packets, and the HyperSplit-op and HiCuts-op algorithms

are capable of processing 10Gbps traffic by using a single core. The throughput

is 2 ∼ 5× compared to the other algorithms. Under the high locality traffic, our

algorithms achieve up to 15Gbps of throughput.
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Figure 3.18: The thoughput of different algorithms under the high locality traffic

Compared to the state-of-art work [37] which achieves 15Gbps of throughput

(traffic with 128 bytes packets) by performing the rule caching on 8 cores, our work

demonstrates by improving the algorithm that one can achieve the same or higher

throughput by using single core.

One interesting fact shown in Figure 3.17 and Figure 3.18 is that the real through-

put of ABC-I is slow. This is because the decoding of shape code is slow on CPU.

The HiCuts-op achieves higher throughput with more memory footprint due to the

small average memory accesses for each lookup.

3.6 Conclusion

We present a design framework for decision-tree based algorithm, which views the DT

based algorithm as a combination of three types of meta methods: the field choosing,

the field cutting and the optimization tricks. We find that the field choosing method

is more important for designing an efficient DT based algorithm.

We analyze the cons and pros of different meta methods, and find out the reason

why some algorithms suffer severe performance degradation on some rulesets. We

find out that the Rule Overlap technique can reduce the memory footprint of the
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DT based algorithm significantly and the field choosing method based on the range

weight performs better than the method based on the number of unique ranges.

We therefore improve the HiCuts algorithm by changing its field choosing method,

and improve HyperSplit algorithm by using the Rule Overlap technique. The exper-

iment results show that the memory footprint of HiCuts and HyperSplit reduces by

1 ∼ 2 orders of magnitude. These two algorithms are capable of processing 10Gbps

and beyond traffic on a single core.
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Chapter 4

Meta algorithms for software-based

Packet Classification

4.1 Motivation

Although in the last chapter, we have revealed the reason of performance degradation

in different algorithms, and proposed two new algorithms HyperSplit-op and HiCuts-

op. We find that the performance variation issues still exist when the same algorithm

encounters different rulesets.

Algorithm Ruleset(size) Memory size Mem. accesses

HyperSplit
ACL1 100K 2.12MB 32
ACL2 100K 83MB 43

EffiCuts
ACL1 100K 3.23MB 65
ACL2 100K 4.81MB 136

Table 4.1: Performance comparison on different rulesets

To illustrate this issue, we present in Table 4.1 the performance in terms of mem-

ory size and maximum number of memory accesses1 of two state-of-art algorithms

1The number of memory accesses is the limiting factor, and thus a direct indicator, of classification
speed.
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(HyperSplit2 [48] and EffiCuts [77]) on two ACL rulesets. We can see that for two

similar firewall rulesets, ACL1 100K and ACL2 100K, containing nearly equal num-

ber of rules, the memory size needed by HyperSplit for ACL1 100K is around 40 times

larger than ACL2 100K (from 2.12MB to 83MB). While the memory requirement of

EffiCuts on ACL1 100K and ACL2 100K are nearly equal and small, the maximum

number of memory accesses needed by EffiCuts on ACL1 100K is 2 times that of

HyperSplit.

These wide variations in performance demonstrate how crucial applying, in prac-

tice, the “right” algorithm to a given ruleset, actually is. For example, recent CPUs

usually contain several Mbytes of last level cache and several GBytes of DRAM.

Therefore, the memory size of HyperSplit algorithm on ACL1 100K can fit in the

CPU’s cache but the memory size for ACL2 100K cannot. Generally accessing a

data in the external DRAM requires around 50 nanoseconds, while accessing a data

in cache requires only 1 ∼ 5 nanoseconds, meaning that one should use HyperSplit

algorithm on ACL1 100K for smaller memory size and fewer memory accesses, but

should use EffiCuts on ACL2 100K to trade more memory accesses for fewer memory

access latency. In general, for a given ruleset, we need to select a “right” algorithm

for the memory size and the number of memory accesses trade-off.

A straightforward method to solve the problem would be to implement various

algorithms on a given ruleset and choose the one with best performance results. How-

ever, packet processing platforms are often resource-constrained, and such comparison

is sometimes very time consuming (e.g. The HiCuts [22] algorithm may need over

24 hours to process some large rulesets [48]), making this approach at best impracti-

cal, and at worst infeasible in more dynamic environments, such as OpenFlow-based

networks or virtual data centers, where rulesets may change much faster than this

processing time.

2Here, we use an improved HyperSplit implementation, see Section 4.7 for details.
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(a) HiCuts
(b) HyperSplit

(c) EffiCuts

Figure 4.1: Decision trees built by different algorithms

In this work, we therefore seek to understand the reasons behind these observed

temporal and spacial performance variations, with a view to quickly identify the

“right” classification algorithm for a given subset. In Section 4.2, we analyze the

characteristics of rulesets that do have a primary bearing on both the memory foot-

print and classification speed and we review three of the main state-of-the-art packet

classification algorithms.

As the memory footprint of the ruleset for a given algorithm is an important

factor, we present in section 4.3 a memory consumption model, to be used as a fast

memory size checker, which helps to select for best memory-performance tradeoff.

In Section 4.4, we describe an offline recommendation algorithm that analyses

rulesets for the above mentioned characteristics, and recommends algorithms for the

given ruleset, based on classification performance alone. With this analysis tool,
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we present in Section 4.4 a new multi-tree algorithm SmartSplit. The SmartSplit

algorithm is built on recent work [77] that showed how to trade classification per-

formance for much reduction in memory consumption by splitting the ruleset into

several subsets and classifying against these subsets in sequence. However, going be-

yond [77] which uses HyperCuts [52] on every subset, SmartSplit seeks to maximize

classification speed, while meeting overall memory consumption constraints, by using

different classification algorithms for the stages of the classification sequence (e.g. for

the various sub-rulesets). We also present a packet classification framework AutoPC

in Section 4.5. The AutoPC framework, which is based on the memory consumption

model, tries to further improve the performance by avoiding ruleset splitting if the

memory size of rulesets is shown to be small.

Sections 4.6 and 4.7 present our evaluation methodology and experimental results,

respectively. Section 4.8 concludes the paper.

4.2 Background and Observations

We first give a brief review of factors explaining why the performance of packet

classification algorithms can exhibit wide variations from one ruleset to another. More

detailed explanations are available in [45]. A packet classification ruleset can be

considered as a collection of ranges defined on different fields. Table 4.2 shows an

example of classification ruleset containing 6 rules defined over two 4-bit fields, where

“*” represents a “don’t care” value. This ruleset can be translated into four distinct

ranges on Field1: [14, 15] (defined by rule R1), [12, 13] (R2), [4, 7] (R5), [0, 15] (all

rules); and four on Field 2: [4, 5] (R3), [6, 7] (R4), [8, 11] (R5), [0, 15] (all rules).

A packet classification ruleset has a simple geometric interpretation: packet clas-

sification rules defined on K fields can be viewed as defining K-orthotope, i.e. hyper-

rectangle in the K-dimensional space, and rulesets define intricate and overlapping
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Table 4.2: An example ruleset

Rule # Field 1 Field 2 Action

R1 111* * DROP
R2 110* * PERMIT
R3 * 010* DROP
R4 * 011* PERMIT
R5 01** 10** DROP
R6 * * PERMIT

patterns of such orthotopes. For example, rule R1 in Table 4.2 defines a rectangular

band over the two dimensional space of features, where the short side is 2 units long

(from 14 to 15, along the axis defined by Field 1), and the long side spans the whole

range of the second dimension. This structure results from the wildcard existing on

the second dimension field that generates a large range. Similarly, rule R3 defines

another rectangular region but with the short side along the second dimension.

4.2.1 Influence on temporal performance

A node in a packet classification decision tree (DT) can be considered as making a

spatial partition of the geometric space into non-overlapping parts. The aim of a

DT is to partition the space of features into regions that will hopefully contain the

smallest number of rules. Different classification algorithms apply different heuristics

for dividing the space. In particular two types of partitioning is applicable. The first

type is the “cut”, that consists of dividing a given range into multiple equal-sized

intervals, the second type is a “split”, consisting in dividing an interval at a split

point into two sub-intervals, a right and a left one.

At first glance the cut-based division seems more efficient than the split-based one.

Indeed, when ranges have roughly similar sizes and are uniformly distributed along a

dimension, equal-sized cuts can be very efficient at separating those ranges. However,

ranges observed in practice are sometimes non-uniformly distributed (e.g. dissimilar
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and/or in clusters along the dimension), in which case applying equal-sized cuts will

become inefficient as either some cuts will simply split a rule in regions of the space

where this rule has already been isolated, and/or deeper (i.e. finer-grained) cuts will

be necessary in other regions, to isolate clustered rules. Under such conditions, the

resulting DT would be skewed, with some branches significantly longer than others.

We need to evaluate the uniformity of ranges before applying cuts or split.

4.2.2 Influence on spatial performance

In real-world rulesets, some specific patterns are commonly encountered that can

have a bearing on the efficiency of the corresponding DT. Such patterns include:

orthogonal structures like that resulting from rules R1, R2, R3, R4 (a more general

case is show in Figure 4.2b), and sparse structures like the one defined by rule R5

(more general case is shown in Figure 4.2).

A major problem occurs when orthogonal structures are present in the ruleset.

In this case, rules cannot be completely separated into regions containing a single

rule with hyperplane divisions, and the best that can be achieved is to use divisions,

forming O(NK) regions containing K orthogonal rules, where N is the number of

orthogonal rules and K is the dimension of the feature space. Moreover, each division

is likely to intersect with O(N) other rules’ subregions. When this happens, each rule

that is cut has to be duplicated in the DT nodes as the cut does not separate these

rules, i.e. rules with orthogonal structure will cause a large amount of rule duplication

in Decision Tree based algorithms, creating large memory footprints.

On the other hand when the rule structure is sparse, O(N) spatial divisions can

isolate each rule without cutting through other rules, yielding modest memory re-

quirements.
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(a) sparse rules (b) orthogonal structure rules

Figure 4.2: Geometric View of Packet Classification Rules

4.2.3 Application to existing algorithms

We briefly describe three major packet classification algorithms proposed in the lit-

erature – HiCuts, HyperSplit and EffiCuts – and identify the specific factors that

negatively impact their performance. For illustration purposes, three decision trees

built on the example ruleset using three algorithms are shown in Figure 4.1 .

HiCuts and HyperCuts

We first describe HiCuts [22] and HyperCuts [52], two closely related and classical

DT based algorithms. The two algorithms work essentially by cutting the full range

of each dimension of the multi-dimensional feature space into equal-size intervals.

In Figure 4.1a, we show the decision tree generated by HiCuts algorithm where the

Field 1 is cut into 4 equal-sized sub-spaces: [0, 3], [4, 7], [8, 11], [12, 15], and Field 2

is further cut into 4 equal-sized sub-spaces. HiCut suffers from a combination of the

previous described issues. On one hand as the distribution of ranges is non-uniform,

e.g., the ranges in Table 4.2 leaves 50% of the full range [0, 15] uncovered, equal-sized

cutting becomes inefficient as several cuts are spurious. Moreover as orthogonal rules

are present, each spurious cuts, which intersects with orthogonal rules result in rule

duplication in several leaves of the decision tree. As empirically up to 90% of memory
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footprint of a built DT is consumed by pointers pointing to rules, rules duplication

increases the memory footprint significantly.

HyperCuts which extends HiCuts by allowing to cut multiple fields in each node

of the tree, suffers from the same issues caused by the inefficiency of equal-sized cuts

when there are non-uniform ranges.

HyperSplit

In order to overcome the non-uniformity of range coverage described earlier, Hyper-

Split [48] adopts a different method to separate rules. It splits the chosen field into

unequal ranges that contain nearly equal number of rules, e.g., in Figure 4.1b the

Field 1 is split into two unequal size intervals: [0, 13] and [14, 15], which separate

R1 and R2 using a single memory access. In order to minimize the number of com-

parison, HyperSplit implements a binary tree, i.e., each node contains only one split

point splitting the given range into two regions.

By using unequal-sized splitting, HyperSplit avoids unneeded cuts reducing the

memory footprint. However the main source of redundancy remains because splits

intersect with orthogonal rules. Moreover, the binary tree structure adopted by Hy-

perSplit increases the tree depth, resulting in more memory accesses than HiCuts and

HyperCuts.

EffiCuts

Instead of building a single decision tree for all the rules, EffiCuts [77] builds mul-

tiple trees for one ruleset. To do so, EffiCuts categorizes the ruleset-defined ranges

into small and large ranges. A range is labelled as large if it covers a large enough

proportion, determined by a threshold of the full range. Otherwise, this the range is

labelled as small. The threshold is set as 0.50 for most of fields. The ruleset shown

in Table 4.2 has one large range: [0, 15] and three small ranges : [14, 15], [12, 13] and
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[4, 7] on Field 1. Based on this labeling one can classify each rule in the ruleset into

at most 2K categories in {small, large}K for a K dimensional classifier. For example,

for the ruleset in Table 4.2, R1 and R2 are classified as (small, large), R3 and R4 as

(large, small), R5 as (small, small) and R6 as (large, large). EffiCuts builds sepa-

rate decision trees for rules in each category. We show in Figure 4.1c, the resulting

decision trees.

By putting rules with the large label on different fields in separate decision trees

rules, EffiCuts untangles existing “orthogonal structures” and remove completely the

induced rule duplication. This results in a dramatic reduction of the memory size

compared to HiCuts and HyperCuts. However, one need to traverse all trees in order

to find the most specific match, resulting in a large number of memory accesses and

this reduces significantly the throughput [77].

4.2.4 Discussions

The above description of different packet classifications gives insight for understand-

ing classification performance issues. Using the geometrical view, we observed the

major impact of “orthogonal structures” and the non-uniformity of range sizes on

memory footprint and on the performance. A noteworthy case happens when a rule-

set contains only small ranges in at least one of its dimension, like the ruleset in Table

4.3. For such cases one can separate all the rules, using a decision tree working only

on the dimension with only small ranges, as the cuts/splits on this dimension will not

intersect any “orthogonal structures” happening in other dimensions. In this case, us-

ing EffiCuts that would generate two trees for the two categories (small, small, large)

and (small, large, small), will be inefficient. The above observations, and the fact

that all in all the main issue is to be able to separate subregions with a small number

of memory accesses, drive us to propose these guidelines:
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Field 1 Field 2 Field 3

00* * 01
01* 01 *
10* * 10
11* 10 *

Table 4.3: Ruleset with a lot of distinct small ranges on Field 1

1. “Orthogonal structures” should be considered, and rules should be eventually

splitted in order to untangle these structures and avoid memory explosion.

2. When splitting a ruleset, if a dimension appears that contains only small ranges,

it should be used to separate the rules with a single tree.

3. Equal-sized cutting becomes more efficient when ruleset ranges are uniform, if

not splitting with non-equal sized intervals should be considered.

Indeed, these obvious observations, cannot be used by a network operator if the

structure of the ruleset is not analyzed. We therefore propose and evaluate methods

and algorithms that analyze rulesets in order to extract metrics that will help in

deciding the best packet classifier for a given ruleset.

4.3 Memory footprint estimation

Given a ruleset, the first concern is whether the size of built DT can fit in the avail-

able memory (CPU cache). As we saw in Section 4.2.2, orthogonal structures within

the ruleset are a major cause of large memory requirements. We have therefore to

characterize these orthogonal structures in order to estimate the DT memory foot-

print. The goal here is not derive a precise estimation of the memory footprint, it is

to use rulesets features in order to achieve a rough estimate which gives an order of

magnitude of the size.
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We will adopt the ruleset portioning into 2K categories in {small, large}K de-

scribed previously in EffiCuts [77]. As in practice, 50% ∼ 90% of the cuts or splits

are performed on the IP source and destination fields [55], we will first concentrate

on these two dimensions and ignore others, without losing much in estimation accu-

racy. We therefore analyze orthogonal structures involving only the IP source and

destination fields, and label rules as (small, small), (large, small), (small, large) or

(large, large) based on these fields. The number of rules in each category is denoted

respectively as ss, ls, sl, and ll.

To simplify, for the time being, we will assume that large range rules cover the

whole span of the associated dimension, i.e., the corresponding IP address range is

a wildcard. This will result in overestimation of the memory footprint which we will

address in the next section. We also denote the number of distinct ranges on the

source and destination IP fields as us and ud. These two values can be calculated by

a simple scan of the ruleset. Let α = us
us+ud

be the proportion of distinct source IP

ranges.

The (small, small) rules can be easily separated by either using source or destina-

tion IP ranges. We assume that they are separated by source or destination IP field

without duplication and in proportion to α and 1− α. The memory needed to sepa-

rating these (small, small) rules is therefore Mss = ((1− α)× ss+ α× ss)×PTR =

ss× PTR, where PTR is the size of a pointer (pointing to a rule).

Orthogonal structures are created by (small, large) and (large, small) rules.

When isolating the small range side of any of these rules (i.e. when cutting in the

direction of the dimension of their large range), all large ranges along the other

dimension are cut, resulting in the need to duplicate the corresponding rules on

either side of the cut. For instance, all the cuts (or splits) on source IP field, to

separate every (small, large) rules, will duplicate all (large, small) rules, generating
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ls duplicated (large, small) rules, and similarly for each (large, small) rule, there

will be sl duplicated (small, large) rules.

Furthermore, the ss × α rules labelled (small, small) that have been separated

using the source IP ranges, will also duplicate each (large, small) rule, and similarly

the ss × (1 − α) rules labelled (small, small), separated using the destination IP

ranges, will duplicate each (small, large) rule.

Overall, the upper bound on the number of duplication of (large, small) rules

is thus ls × (sl + ss × α), while that for the duplication of (small, large) rules is

sl × (ls + ss × (1 − α)). However, in practice DT algorithms stop building the DT

when there is at most a given threshold number, binth, of rules in any leave. This

means that the number of duplicates are over-estimated by a factor of binth
2

(2 rules

per leaves .vs. binth rules per leaves) yielding:

Mls = ls× sl + ss× α

binth/2
× PTR (4.1)

Msl = sl × ls+ ss× (1− α)

binth/2
× PTR (4.2)

The last category of rules, the (large, large) one, will get duplicated either by

splitting of cutting on source or destination IP fields. The (large, large) rules need

therefore a memory size:

Mll = ll × sl + ss× α

binth/2
× ls+ ss× (1− α)

binth/2
× PTR (4.3)

The total memory size is finally estimated as the sum of the four elements: M =

Mss +Mls +Msl +Mll.
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4.3.1 Improving memory size estimation

Our memory size model is based on two assumptions: 1) all cuts/splits on source

IP fields will definitely cause the duplication of (large, small) rules, while cuts/splits

on destination IP fields will definitely cause the duplication of (small, large) rules.

2) Cuts or splits in one decision tree are performed only on IP fields. All these

assumptions will lead to the over-estimation of the real memory size.

Figure 4.3: The distribution of (small, small) rules is skewed

First, the assumption that all orthogonal rules are duplicated over-estimates the

memory requirement, as some large ranges might not cover the full range and therefore

might not be duplicated in all cases. Second, splitting (small, small) rules does not

always lead to the duplication of either (small, large) or (large, small) rules. As

shown in Figure 4.3, (small, small) rules are not uniformly distributed. After the Cut

1 and Cut 2, cuts or splits in the subspace A, on either source and destination IP fields

will split (small, small) rules, however not cause any duplication of (small, large) or

(large, small) rules.

We can improve the memory estimation by partitioning the feature space into

smaller subspace. The key insight is that, in a smaller space, the first assumption is

more likely to hold as the large ranges are more likely the “full range” in the smaller

subspace.
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So in order to reduce the over-estimation and improve the quality of the mem-

ory footprint estimation, we first divide the large feature space into n equal-sized

rectangular sub-space, and apply the memory estimation model to each one of these

subs-space separately. We will illustrate this with the ruleset example in Figure 4.4.

In the initial memory estimate, R1 and R4 are considered as (large, small) rules,

and Cut 2 is supposed to cause duplication of R1 and R4. However, as the R1 and

R4 are not wide enough, they are not duplicated by Cut 2. After dividing the space

into sub-space, we can witness that any cut on the source IP field in sub-space A

(.resp. C) will surely cause the duplication of R1 and R4, but not in subspace B.

This therefore improves the memory footprint estimation.

R3

R4

Cut 1

Cut 2

Source IP

D
es

ti
n
at

io
n
 I

P

R2

R1

Sub-space A

Apply model on the 

sub-spaces

Sub-space B Sub-space C

Figure 4.4: Improved Memory Size model

It is noteworthy that in the process of dividing the space into sub-spaces, some

(large, large) rules may become fully covered by more specific and higher priority

rules in this sub-space. These redundant rules must be removed before calculating

parameters ll, ls, sl and ss of the the orthogonal structure in the subspace.

4.3.2 The bound of memory consumption

We now give a proof to show that when 1) there is no (large, large) and (small, small)

rules 2) cuts or splits are only allowed to be performed on IP fields, our memory
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consumption model gives actually the lower bound of the memory consumption of a

ruleset.

Proof: For separating (large, small) rules into X rules per leaves, one need at

least ls
X

splits, and all the (small, large) rules get duplicated. we have:

Msl = sl × ls

X
× PTR (4.4)

(4.5)

And similarly, for separating (small, large) rules into Y rules per leaves, we need

at least sl
Y
splits, and all the (large, small rules get duplicated. We therefore have:

Mls = ls× sl

Y
× PTR (4.6)

(4.7)

The total memory should be:

Mls +Msl = (sl × ls

X
+ ls× sl

Y
)× PTR = ls× sl × X + Y

XY
× PTR (4.8)

In each leaf, we have X + Y rules, and X + Y = binth. According to

XY ≤ (
X + Y

2
)2 = (

binth

2
)2 (4.9)

we have:
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Mls +Msl = ls× sl × X + Y

XY
× PTR ≥ 4× ls× sl

binth
× PTR (4.10)

Since there are no (small, small) and (large, large) rules, Mll and Mss should be

0. The Formulation 4.10 and 4.1 are actually equal, therefore that our memory model

estimates the lower bound in such special case.

Since the (small, small) rules do not duplicate a lot, usually Mss is small, so when

there are few (large, large) rules, the memory size estimation should be closed to the

actual memory size. We illustrate the rule splitting process in the proof in Figure 4.5.

Figure 4.5: The rule splitting process in the proof

4.3.3 Limitations

The assumption that all the splits are performed only on IP fields is also a source

of the memory size over-estimation, as splitting or cutting on other dimension can

reduce the impact of orthogonal structure (see Section 4.2.4).

However the main aim of the calculation in this section is to obtain a rough

estimate giving an order of magnitude of the memory footprint. We will show in

Section 4.7 that software based packet classification performances are not sensitive to

the precise memory size but roughly to its order of magnitude. Our memory footprint
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estimation can therefore be used as a fast memory size checker, especially for large

rulesets. We will also show a detailed analysis of the error of the memory estimation

in Section 4.7.

The last limitation of the model is that we assume that we can separate N rules

with N cuts/splits. While this is usually correct for splits, this can be incorrect for

cuts due to the inefficiency of equal-sized cutting over non-uniform rules. We expect

therefore better estimates for HyperSplit than HiCuts/HyperCuts.

4.4 Characterizing range distribution uniformity

As explained in the previous section the uniformity for small range distribution (we

call it coverage uniformity for short) is an important factor for deciding to apply cuts

or splits when building the decision tree. We show in Table 4.4 the number of unique

small ranges in large rulesets and observe that, the number of unique small ranges on

IP fields is usually comparable to the total number of rules. Therefore, the rulesets

can be separated only by the small ranges on IP fields and the uniformity of small

ranges on IP fields is important for choosing cut or split. In the forthcoming, we will

propose a simple variant of a centered interval tree [12] and characterize the coverage

uniformity by computing shape metrics on such trees.

4.4.1 Interval tree

A centered interval tree [12] is a well-known tree used to efficiently represent intervals

or ranges (in the context of packet classification). Each node of the interval tree is

defined by a center point which is used to separate ranges: The ranges completely

to the left of the center point (left ranges for short), those completely to the right

of the center point (right ranges), and those containing the center point. The latter

are then associated with the node itself (and removed from further consideration). A
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Ruleset unique src. unique dst. #src/rules(%) #dst/rules
IP small range IP small range

acl1 10K 4023 750 41% 7%
acl2 10K 6069 6527 64% 69%
acl3 10K 1017 1110 10% 11%
acl4 10K 918 1864 10% 19%
acl5 10K 371 1527 5% 21%
fw1 10K 3389 6665 36% 70%
fw2 10K 8309 3080 86% 32%
fw3 10K 2835 6209 31% 69%
fw4 10K 3884 6797 44% 76%
fw5 10K 3414 5327 39% 60%
ipc1 10K 1332 2768 14% 29%
ipc2 10K 4748 8923 47% 89%
acl1 100K 99053 236 99% 0.2%
acl2 100K 8315 8092 11% 11%
acl3 100K 85355 86603 86% 87%
acl4 100K 88434 32766 89% 33%
acl5 100K 43089 78952 43% 80%
fw1 100K 26976 66173 30% 74%
fw2 100K 81565 30602 85% 32%
fw3 100K 15960 62993 19% 75%
fw4 100K 38076 67073 45% 80%
fw5 100K 29786 54004 35% 64%
ipc1 100K 86210 90433 87% 91%
ipc2 100K 47228 89135 47% 89%

Table 4.4: the number of unique IP small ranges in large rulesets

left sub-tree is then built using the left ranges and a right sub-tree is built using the

right ranges. This procedure is repeated until all ranges have been associated with

nodes in the tree. Figure 4.6 shows the interval tree built on the ranges on the F1

field. Each node N in the interval tree contains the following information:

1. The split value. In the figure, we use intervals ([12, 15], [8, 9] etc.) to represent

the split value.

2. The ranges set recording all the ranges, denote as N.L(r). All the ranges in the

set include the split value.
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3. The total number of rules consisting of any range on the specific field in the

range set, denoted as N.numRules.

Figure 4.6: The interval tree data structure

While the original centered interval tree algorithm picks center points to keep the

tree as balanced as possible, we use a slightly different strategy to build a tree whose

shape will reflect the degree of uniformity in the ranges. We start with the full range,

its widest possible span, for the field under consideration and pick as centre point for

the root node the middle of this range. We then use the left (resp. right) half range

for the left (resp. right) child. Note that with this approach, the centre point in a

node depends solely on the original full range and the position of the node in the

tree. As in practice DT algorithms stop cuttings/splittings on nodes associated with

less then binth rules, we will stop the growth of our interval tree when the number of

rules associated with a node containing less than binth rules.

In the interval tree, the large ranges are likely to be “absorbed” by the nodes near

to the root, while the small ranges are usually associated with leaf nodes. So the shape

of interval trees actually represents the distribution of small ranges. The main insight

into our method is that centre points correspond to equal-sized cuts of the original full

range. And since a branch of the tree only growth if there are ranges on either side

of the corresponding centre point, a balanced tree would indicate uniform coverage of
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ranges. In such a case, an algorithm using equal-sized cuts (e.g. HiCuts/HyperCuts)

would very efficiently separate the ranges and these associated rules and produce a

very fast classifier.

In fact, each node at the kth level of the tree, with the root being the level 0, covers

a portion 1
2k

of the full range. These range portions can be efficiently represented by

2k equal-sized cuts on the full range. Assume a node N resides in the kth level of the

interval tree, rules intersecting with the range portion managed by N can be found

by collecting associated rules in the path from the root to N . These intersected rules

will be duplicated when performing 2l, l > k equal-sized cuts on the full range. Since

rules in nodes at the same level of the tree are non-overlapping, a node is missing in

this tree means that there is no rules on that side of the parent node, in which case,

performing any cut in this interval would be useless (separate no rules but duplicate

the intersected rules). This means that the interval tree structure gives interesting

insights into the efficiency of using cuts. When the interval tree is balanced, or as will

be explained later quasi-balanced, it is meaningful to use cuts and there will be not

any, or better said not too many, spurious cuts. If the interval tree is un-balanced,

using splits will avoid these spurious cuts resulting in smaller duplicates.

However, a perfectly balanced interval tree may be too strict a condition to pick

equal-sized cutting. We therefore define quasi-balanced tree as a tree where the fol-

lowing condition is verified at each level of the tree:

#Nodes in the kth level

#Nodes in the (k − 1)th level
≥ Bratio (4.11)

As our interval tree is a binary tree, Bratio ∈ (0, 2]. We will set Bratio = 1.5 for

a good approximation of balance for the tree. Note that since we set Bratio > 1, a

quasi-balanced tree contains at least 3 nodes, and the height of one quasi-balanced

tree is at least 2. This is the reason why chains of isolated nodes do not belong to

any quasi-balanced subtrees as in Figure 4.7.
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4.4.2 Characterizing the shape of interval trees

In practice, interval trees built from rulesets are unbalanced, containing nodes with

single child or even leaves at various levels in the tree. These nodes break the overall

tree into several quasi-balanced subtrees (triangles) of different sizes (see Figure 4.7).

In order to characterize these quasi-balanced subtrees, we define two for each node

metrics: the balanced depth BD, the height of the quasi-balanced subtree the node

belongs to, and balance tree distance, D, the number of quasi-balanced sub-trees

between a given sub-tree and the top one.

Figure 4.7: Balanced Tree Distance and Balanced Tree Depth

The full interval tree is characterized by Dmax, the maximum value of balance tree

distance, and BDmax, the maximum balance depth, calculated over all quasi-balanced

subtrees. When the range coverage is non-uniform, the interval tree contains many

quasi-balanced sub-trees with small height values, and its Dmax will be large. On the

other hand, a small Dmax value means a more uniform coverage.

We show the complete measurement algorithm in Figure 4.8.

In Algorithm 4.8, the getBalanceDepth(root) computes the balance depth of

the quasi-balanced tree root at root, the getBTreeLeaves(root) return a node set

consisting of the child nodes of the leaf node of the quasi-balanced tree root at root.
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Algorithm 1 Measure (root, binth, step)

global BDmax = 0;
global Dmax = 0;
bd = getBalanceDepth(root);
{leaf} = getBTreeLeaves(root);
if bd > BDmax then
BDmax = bd;

end if
if step > Dmax then
Dmax = step;

end if
for leafNode ∈ {leaf} do
if ChildrenCount(leafNode) == 1 then
while ChildrenCount(leafNode) == 1 do
leafNode ← getChildren(leafNode);

end while
end if
if leafNode.numRule < binth or ChildrenCount(leafNode) == 0 then
continue;

end if
Measure (leafNode, binth, step+ 1);

end for

Figure 4.8: Measuring algorithm

Recall that the quasi-balanced tree contains at least 3 nodes. Here we give two

measurement results shown in Figure 4.9 to illustrate the limitation.

(a) BDmax = 2, Dmax = 2 (b) BDmax = 2, Dmax = 1

Figure 4.9: the measurement results of two interval trees
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4.4.3 Algorithm decision framework

In practice, we observed that small rulesets usually exhibits a non-uniform distribu-

tion of small ranges (non-uniform coverage), and therefore HyperSplit is suited to

them. However, as the size of rulesets grows, the size of orthogonal structure, as

well as the number of uniformly distributed ranges also grows. When our memory

footprint model indicates that the size of the built DT is too large, one needs to split

the ruleset into sub-rulesets and build a single DT for each set. However, due to the

probable existence of the “coverage uniformity” in some of the subsets, rather than

using HyperSplit algorithm on all the sub-rulesets, it is well worth checking whether

one sub-ruleset is uniform enough to warrant an attempt to use the faster classifier

(use HiCuts/HyperCuts algorithm) on each sub-ruleset or not.

Now that we have a metric for characterizing range coverage uniformity we can

use this metric to decide if cut based algorithms should be used or split based one.

Let us denote the height of an interval as H and Dmax the maximum number of

quasi-balanced trees from top to bottom.

If the height of each of the quasi-balanced tree is h1, h2, . . . , hn we have therefore

h1 + h2 + · · ·+ hn
︸ ︷︷ ︸

Dmax

= h×Dmax ≤ H (4.12)

where h is the average height of quasi-balanced trees. As quasi-balanced tree has at

least a height of 2, we will have h ≥ 2, so that:

2×Dmax ≤ h×Dmax ≤ H (4.13)

For matching a set of K non-overlapping small rules we need at best a binary

decision tree of height at least log2K. When using the interval tree, all rules in leaves
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are non overlapping and the overlapping rules are absorbed by rules in higher levels.

As explained before we stop the growth of interval tree when there are binth rules in

a node. Therefore the height of a balanced interval tree should be close to its lower

bound that log2(
#(non−overlapping rules)

binth
). On other hand if one wants make a partition

of all rules using splits he will need a decision tree of height at least log2
#rules

binth
,

so there is an interest in using a cut-based algorithm only if H < log2
#rules

binth
. This

means that when an interval tree height is between log2(
#(non−overlapping rules)

binth
) ≤ H <

log2(
#rules

binth
), there is a benefit in term of tree height or equivalently memory access

in using cut. The higher bound can be rewritten as Dmax <
1
2
log2

#rules

binth
. We will use

this last criterion to decide to implement a DT with cut or with splits. Indeed, the

closer is the tree height from its lower bound the more balanced will be the interval

tree.

4.4.4 SmartSplit algorithm

Now we can describe the SmartSplit algorithm that builds a multiple DT similar to

EffiCuts. We first categorize the rules in the ruleset into small and large based on

source and destination IPs. We put aside (large, large) rules and build a specific tree

for them that will use HyperSplit as these rules should be separated by port fields

that have generally non-uniform coverage.

Since (small, large), resp. (large, small), rules are mainly separated by source

IP field, resp. by destination IP field, we build the interval tree for both source

and destinationIP fields, and we calculate Dmax for both trees. We merge the set

of (small, small) rules with the (small, large) when Dmax(srcIP ) ≤ Dmax(dstIP ),

and with (large, small) rules when Dmax(dstIP ) < Dmax(srcIP ). This results in

two sub-rulesets, S1 containing (small, large) and S2 containing (large, small) rules.

One of S1 or S2 will also contains (small, small) rules.
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Now, we build for each one S1 and S2 a separate DT that will disentangle or-

thogonal structures. For the sub-ruleset containing only small ranges on source IP

.resp. destination IP field, we use Dmax(srcIP ) .resp. Dmax(dstIP ) for algorithm

recommendation using the criterion we had Dmax <
1
2
log2

#rules

binth
.

The SmartSplit algorithm is different from the EffiCuts algorithm from two per-

spectives. First, the SmartSplit algorithm only considers the “orthogonal structure”

on IP fields, and separates a ruleset into 3 sub-rulesets, while EffiCuts considers the

existence of “orthogonal structure” on both IP and port fields, resulting in 5 ∼ 9 sub-

rulesets. Large number of sub-rulesets results in a large number of memory access and

therefore lower classification throughput. Second, SmartSplit algorithm tries to max-

imize the classification speed by using different algorithms on different sub-rulesets,

while EffiCuts uses only a variant of HyperCuts on all the sub-rulesets.

Besides the above points, we applied a pruning trick in our implementation of

SmartSplit. As we have multiple trees, each should be sequentially tested in order to

find the most specific rules. However we store for each node in the decision tree the

index of the rule with minimal priority rule among all rules managed by the node.

After doing the search on the first tree we use the matched rule number resulting from

this first search and compare it to the minimal priority rule index stored at the node

and we pursue the search if and only if the index of minimal priority rule is less than

the already matched rule index. If not we prune the search for the whole decision

tree. As we observed that generally rules in the (small, small) set are more spe-

cific than rules in the (small, large) and the (large, small) set, that are more specific

than (large, large) rules, we first check the decision tree containing the (small, small)

rules, and we continue by the remaining (small, large) or (large, small) tree and we

finish with the (large, large) DT. This pruning optimization reduces the unneces-

sary memory access in multiple decision trees, improving the look up performance

significantly.
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Figure 4.10: The AutoPC framework

4.5 The AutoPC framework

Combining all the algorithms described above, we propose AutoPC, a framework for

autonomic construction of decision trees for packet classification. For a given ruleset,

AutoPC first estimates the memory size requirements. If the estimate is less than

a pre-defined threshold Mth, a single tree will be built using HyperSplit algorithm.

Otherwise, the ruleset will be processed with the SmartSplit algorithm. The complete

procedure of AutoPC is illustrated in Figure 4.10.

4.6 Experimental Methodology

In this section we will validate the analysis presented before. For this purpose we

have implemented HiCuts, HyperSplit and EffiCuts algorithms in our experiments.

In each node of HiCuts tree, we have used a pointer array instead of a bitmap to index

child nodes, allowing more cuts per node (at most 65536 cuts in our implementation).

However, in this case, each node needs 2 memory accesses (one for index array and
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Table 4.5: Node data structure size in bytes

HiCuts 1 header information (the dimension to cut, leaf or inter-
nal node flag etc.)

6 boundary information, 4 bytes are used to store the
min value of the boundary of one dimension. 2 bytes
are used to store the number of cuts.

1 1 byte is used for storing the bit shift value.
4 pointer to the children pointer array.

HyperSplit 8 4 bytes for the split point. Other bytes for the header
information.

one for node). Our HiCuts implementation enables Range Compaction and Node

Merging optimization however it disables the Rule Move Up for node size efficiency

[22].

For HyperSplit algorithm, the code from [69] is used. To note, when calculating

the memory size, the original source code does not account for the memory of rule

pointers, we add this part of memory for a fair comparison. Each node of HyperSplit

needs only one memory access.

For EffiCuts algorithm, we obtained the implementation from its authors and

enable all its optimization techniques. The spfac of EffiCuts is set to 8 while the

spfac of HiCuts is set to 4. The binth number is set to 16 for HiCuts, HyperSplit and

EffiCuts .

For SmartSplit algorithm, we found that the number of (large, large) rules are

usually small compared to the size of the original ruleset, we therefore use binth = 8

for the HyperSplit tree built over the (large, large) rules.

For all algorithms, we have stored each rule using 18 bytes [55]. Each rule needs

one memory access. Note that EffiCuts has its own way of calculating the number of

memory access (in their code, each rule needs less than one memory accesses). For a

fair comparison, we use the results directly from the code of EffiCuts.
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Table 4.5 shows the data structure of each node for HiCuts and HyperSplit. The

header size of one node in HiCuts is 12 bytes while each node of HyperSplit needs

only 8 bytes. The pointer size in all the algorithms is 4 bytes.

We use ClassBench [63] to generate synthetic rulesets. In our experiment, we have

used all available types of rules including Accesses Control List (ACL), Firewall (FW)

and IP Chain (IPC). For each type, we have generated rulesets containing from 1K

to 100K rules.

Our experiments include performance comparison on both memory size and mem-

ory accesses observed from the built decision tree as well as real evaluation of clas-

sification speed on a commodity server. The speed is measured through averaging

the lookup latency over a low locality traffic generated by ClassBench; Each trace

contains 1 millions of 5 tuples. All experiments are run on Ubuntu machines, with 8

cores, Intel i7 processors, 4MB L3 Cache and 24GB of DRAM.

4.7 Experiment Results

4.7.1 Memory Size and Real Performance

In order to explore the relationship between the memory size and the real performance

of packet classification on software based platform, we run the HyperSplit algorithm

on 25 example rulesets, with memory footprint ranging from less than 10K to larger

than 700MB. We measure the cache miss rate and the average memory access latency

of the HyperSplit matching process on our experimental platform and we show in

Figure 4.11 the relationship of memory size and memory access latency, and in Figure

4.12 the relationship of memory size and cache miss rate.

As can be seen in Figure 4.11, the memory access latency increases slowly with

memory size varying from 10KB to 1MB. When the memory size becomes larger

than 10MBytes, the latency explodes. The increasing memory access latency can be
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Figure 4.11: Average Memory Access Latency and Memory Size
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Figure 4.12: Cache Misses Rate and Memory size

explained by the fact that the memory footprint of the DT prohibits it to fit into the

processor cache memory of our platform (4MB of L3 cache). As shown in Figure 4.12,

the cache miss rate stays below 10% when the memory size is less than 107 Bytes,

and it increases significantly to around 50% when the memory size goes beyond 108

Bytes. Based on this observation we set the memory threshold Mth in the AutoPC

framework to 10MBytes to consider splitting rulesets when estimated memory size is

larger than 10MB.
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4.7.2 Memory estimation under different number of parti-

tions

We present our estimation on large rulesets using different n in Figure 4.19 - 4.18. We

see that, for ACL and IPC rules, increasing n will significantly reduce the memory

estimate. In contrast, for FW rules, the estimation does not change too much for

increasing n. This confirms that by dividing the space into n subspace, the memory

model will overcome the over-estimating introduced by non-uniformly distribution of

IP ranges.

Figure 4.13: acl10k Figure 4.14: acl100k

4.7.3 Estimated and Actual Memory

We apply our memory consumption model on 60 rulesets of various size consisting

of 1K, 5K, 10K, 20K and 50K rules. In the experiments, we first divide the source-

destination IP space into 256 equal-sized rectangular sub-space, and perform memory

size estimation in each sub-space to obtain a better estimate. We also set the binth

to different values (16 and 8) to evaluate its impact on the memory size estimation.

We present the estimated and observed memory footprint for binth = 16 in Figure ??

and for binth = 8 in Figure ??.

Both Figure ?? and Figure ??, show that the estimated and observed memory

size remain aligned around a perfect prediction line in logarithmic scale, meaning
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Figure 4.15: fw10k Figure 4.16: fw100k

Figure 4.17: ipc10k Figure 4.18: ipc100k
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Figure 4.19: Estimated and Actual mem-
ory size with binth = 16
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Figure 4.20: Estimated and Actual mem-
ory size with binth = 8

that the order of magnitude of the estimated memory is correct. As mentioned

before, the memory access latency increases with the order of magnitude of memory

size increases. Therefore, our memory consumption can be used to predict better the

classification performance of a ruleset than using the number of memory access.
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We show in Figure 4.21 the estimated and actual number of rulesets within the

special memory size interval. We see that our consumption model is capable of

identifying the rulesets into the right categories with small errors. In our experiment,

the average memory size estimate error (mean( est
actual

)) with binth = 16 is 2.57, and

with binth = 8 the error is 2.79.
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Figure 4.21: The estimated and actual number of rulesets for binth = 16(top) and
binth = 8(bottom)

We present the estimate and actual memory size of all the 100K rulesets with

binth = 16 in Table 4.6. The memory size varies from less than 1MBytes to several

GBytes, and the time for building a HyperSplit trees varies from tens of minutes to

several hours. In practice, HyperSplit algorithm has the smaller building time than
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HyperSplit Estimate
Ruleset Mem Time(s) Mem Time(s)

ac1 100K 834K 167 2.8M 0.4
acl2 100K 95M 234 150M 0.6
acl3 100K 250M 1794 1.2G 0.7
acl4 100K 104M 1061 674M 0.6
acl5 100K 498K 186 384K 0.4
ipc1 100K 836M 2424 508M 0.6
ipc2 100K 463M 1132 354M 0.6
fw1 100K 929M 2124 5.3G 1.7
fw2 100K 970M 2568 680M 0.8
fw3 100K 733M 1148 4.2G 1.9
fw4 100K 6.5G 6413 17.3G 10
fw5 100K 1.2G 1891 4.9G 2

Table 4.6: Estimated and Actual Memory size of Large rulesets

HiCuts and EffiCuts, e.g., the HyperCuts code usually takes 1 ∼ 2 hours while the

EffiCuts code usually takes 5 ∼ 9 hours to build a Decision tree.

Table 4.6 shows that our memory consumption model is able to detect in less than

one second that the large ruleset (acl1 100K and acl5 100K) which has small memory

footprint avoiding the application of SmartSplit and enabling fast classification with

small memory size and few memory accesses.

4.7.4 Study the error of the memory estimation

We now present more experiments here to illustrate that the reason why our memory

size model will over-estimate the memory size. Our experiments show that there are

two reasons which results in the memory size over-estimation:

1. The cutting/splitting on port/protocol fields. Our model assume that all the

cuts/splits are performed on IP field. However, the actual splits on IP fields is

actually around 60%. This assumption leads to an over-estimate on the number

of cuts required to separate the (large, small) and (small, large) rules. Because
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splits on other fields, can also be viewed as a way to untangle these “orthogonal”

rules, so the final memory size will be smaller than our estimate.

2. The non-uniformly distribution of IP ranges. For this, we proposed an improved

memory size model and we illustrated the effectiveness of this improvement in

Section 4.3 and Section 4.7.2.

We have already discussed the non-uniformity issues in Section 4.3.1. Here we will

show that the cutting/splitting on the port/protocol fields is another main source of

the memory size over-estimating.

We first present the splits distribution of each fields on uniform rulesets using

HyperSplits. The parameter n is set to 16 for memory size estimation.

Ruleset IP non-IP Actual estimate

FW1 10K 60% 40% 9.6M 55M
*FW2 10K 94% 6% 9.1M 8.08M
FW3 10K 56% 44% 9.8M 51M
FW4 10K 59% 41% 38M 92.3M
FW5 10K 63% 37% 13M 51M
IPC2 10K 98% 2% 4.6M 5.41M
IPC1 100K 70% 30% 724M 1.3G
*IPC2 100K 99% 1% 427M 530M
*FW2 100K 95% 5% 970M 805M
FW4 100K 58% 42% 5.6G 21.3G

Table 4.7: split distribution of each fields

From Table 4.7, we can see that for all the ruleset except fw2 10K, ipc2 100K

and fw2 100K, the number of splits on port are usually around half the total splits,

and this causes at most 4 times (See the equation 4.3. Since the number of cuts

on both source and destination IP field are over-estimated by 2 times, the memory

over-estimation is at most 4 times) over-estimation. On fw2 10K and ipc2 10K(also

ipc2 100K), since the splits on IP fields is nearly 100%, our estimation actually gives

very accurate estimation (the error is around 20%).

96



Ruleset Actual estimate error

FW1 10K 12M 8.69M -25%
*FW2 10K 8.2M 6.60M -19%
FW3 10K 12M 8.68M -27%
FW4 10K 5.5M 4.26M -29%
FW5 10K 14M 9.29M -50%
*IPC2 10K 4.6M 5.40M 14%
IPC1 100K 102M 140M 27%
IPC2 100K 424M 530.57M 25%
FW2 100K 864M 657M -25%
FW4 100K 596M 411M -31%

Table 4.8: estimate errors after restricting the split fields, n = 16.

We now show that the over-estimation comes from the assumption that all the

cuts or splits are performed on IP fields. We change the code of HyperSplit so that

all the splittings are restricted only on the IP fields. Before running HyperSplit on

the test rulesets, we need also to remove all the (large, large) rules, since these rules

can be only separated by port or protocol fields. Therefore, these rules will never be

separated in this modified algorithm implementation. Note that after removing these

(large, large) rules, the Mll in our memory model equals to 0.

From Table 4.8, we can see that, after restricting the splitting fields, our model

is quite accurate, the error is just around 20% ∼ 50%, and in the most rulesets, our

estimate is smaller than actual size. This confirms our proof shown in Section 4.7.2

that our memory model is actually estimating the low bound of the memory size.

We present in Table 4.9 the results of running the splitting restricted HyperSplit

on non-uniform rulesets.

We see in Table 4.9, all the rulesets, except ACL1 100K, having large actual

memory size than our estimate, and also, our estimate is closed to the actual memory

size. This, again, proves that our memory model is a lower bound if all the splits are

performed on IP fields. The average error is only 38% in Table 4.9.
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Ruleset Actual estimate est−actual
actual

acl1 10K 58K 50K -13%
acl2 10K 1088K 724K -33%
acl3 10K 1530K 885K -42%
acl4 10K 1633K 784K -51%
acl5 10K 38K 27K -28%
ipc1 10K 1011K 640K -36%
ipc2 10K 4615K 3687K -20%
ipc1 100K 102640K 82477K -19%
ipc2 100K 424699K 362845K -14%
acl1 100K 606K 1.39M 135%
acl2 100K 21452K 20214K -5%
acl3 100K 156750K 114819K -26%
acl4 100K 100746K 65379K -35%
acl5 100K 499K 384K -23%
fw1 100K 778530K 1233161K -36%
fw3 100K 977452K 724506K -25%
fw5 100K 1517341K 912632K -40%

Table 4.9: estimate errors after restring split field, n = 256.

However, the reason listed here can not explain why the over-estimation is usually

4×. We present a decision tree model shown in Figure 4.22 to show the reason. In

the model, the upper levels (1st to N − 1th level) contain nodes cuts/splits on IP

fields, while the bottom level contains nodes cuts/splits on other fields. Assume that

the decision tree is a balanced binary tree, we have observed that 50% cuts/splits are

performed on IP fields and 50% on other fields. Therefore we actually over-estimate

the cuts/splits on IP fields by 2 times (in the memory size model, we assume all

the cuts/splits are on the IP fields, however, in our decision tree model, only 50%

cuts/splits actually are). Recall that the Mll is calculated by the multiplication of the

cuts/splits on source IP and cuts/splits on destination IP (see Section 4.3 for details).

The Mll is therefore over-estimated by 4 times. Since Mll contributes mostly to the

whole memory estimate, our memory model is therefore over-estimated 4 times of the

actual memory.
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Figure 4.22: A decision tree model

Note that this decision model can also explain why most of cuts distribution is

usually closed to 50%(IP fields) to 50%(other fields) in Table 4.7.

4.7.5 Comparing SmartSplit and EffiCuts

In this section we compare EffiCuts and SmartSplit that both use multiple trees.

Figure 4.23 shows the memory size and number of memory accesses of EffiCuts and

SmartSplit. As shown in Figure 4.23, SmartSplit outperforms EffiCuts both in mem-

ory size and in number of memory accesses. For example for fw5 100K ruleset, Ef-

fiCuts consumes 22.46MB of memory size, while the memory size of SmartSplit is

only 1.98MB, about 11.3× smaller; for fw2 10K ruleset, the worst number of memory

accesses for EffiCuts is 75, while the number of memory accesses for SmartSplit is

only 18, about 4.1× less. These results show that using multiple algorithms for one

ruleset, improve greatly the performance. Moreover this validates the fact that the

“orthogonal structure” over IP fields is the main cause of high memory footprint for

single decision trees. Through untangling the “orthogonal structure”, the memory

size decreases dramatically from several giga-bytes to less than 2 mega-bytes.

Detailed information about large rulesets is shown in Table 4.10. As mentioned

above, the SmartSplit algorithm split rulesets into three sub-rulesets. We use Sm

to denote the sub-ruleset resulting from merging (small, small) rules with either
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Figure 4.23: Memory and Accesses for EffiCuts and SmartSplit

(small, large) or (large, small) rules, Sll to denote the sub-ruleset containing the

(large, large) rules and Ss for the other rules not merged with (small, small).

Among all sub-rulesets, Sm and Ss contain more than 80% of the rules. The

memory size and number of memory accesses of the decision trees built on Sm and

Ss usually contribute the most in the total performance results. We therefore present

the performance results of Sm and Ss in Table 4.10.

We observe in Table 4.10 that for all the FW 10K rulesets Dmax(srcIP ) and

Dmax(dstIP ) is very small, i.e., we have applied the HiCuts algorithm on both Sm
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Dmax mem. acc. EffiCuts

Ruleset srcIP dstIP Sm Ss
1
2
log2

#rules

binth
tree num.

fw1 10K 2 1 4 7 4 9
fw2 10K 2 2 4 4 4 7
fw3 10K 2 2 4 7 4 7
fw4 10K 4 2 10 18 4 9
fw5 10K 2 1 4 6 4 7
acl2 100K 13 13 32 25 6 7
acl3 100K 10 1 8 26 6 8
acl4 100K 10 12 31 27 6 8
ipc1 100K 1 1 8 6 6 9
ipc2 100K 2 1 6 5 6 3
fw1 100K 14 6 20 28 6 9
fw2 100K 4 2 4 18 6 7
fw3 100K 14 2 7 28 6 7
fw4 100K 5 4 27 18 6 9
fw5 100K 13 4 21 29 6 7

Table 4.10: Detailed Information of Large rulesets

and Ss. The large number of cuts per node makes the built tree “flat”, reducing the

total number of memory accesses of Sm and Ss from 8 to 28. Among 100K-rules

rulesets, the IPC rulesets have uniform range distribution on both IP fields, therefore

the total number of memory accesses of Sm and Ss is very small (only 11 and 14).

The FW 100K rulesets have uniform range distribution on destination IP field and

non-uniform range distribution on source IP field, so that SmartSplit applies Hyper-

Split on Ss resulting in small memory size, from 100KB to 400KB in our experiments,

and HiCuts on Sm for fewer memory accesses. We see the number of memory accesses

of Ss increases to around 30 while this value for Sm is still small. However, since the

SmartSplit algorithm only generates 3 sub-rulesets, the total number of memory ac-

cesses remains small, while, EffiCuts algorithm usually builds 5 ∼ 9 trees on large

rulesets and yields more than 100 memory accesses.
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Figure 4.24: Comparing the measured performance of SmartSplit and EffiCuts

4.7.6 Real Performance Evaluation

We implement an optimized and fast packet matching program capable of loading the

built tree data structure from multiple algorithms into memory and performing rule

matching using the resulting DTs. We implemented HiCuts, HyperSplit and Smart-

Split in the packet matching program, and used AutoPC framework to configure the

program. We also implement EffiCuts, but disabling the Node Co-lacation and

Equal-dense Cuts optimization tricks described in [77] to simplify the implementa-

tion. It is noteworthy that in Section 4.7.5, we compared SmartSplit with EffiCuts

enabling all its optimizations.

We first compare the real measured performance of SmartSplit and EffiCuts on

rulesets with large memory size in Figure 4.24. We see that SmartSplit runs signifi-

cantly faster than EffiCuts. For all the FW 10K rulesets, SmartSplit achieves beyond

10 Millions of Lookup Per Second (MLPS) while EffiCuts only achieves 2 ∼ 4 MPLS.

For larger rulesets, SmartSplit is usually 2 times faster than EffiCuts.

We present in Table 4.11 the lookup speed of AutoPC and EffiCuts in terms

of millions of lookup per second (MLPS)3. The evaluation shows that the AutoPC

3the results marked with * means AutoPC builds a single tree on the ruleset
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Type Size AutoPC(MLPS) EffiCuts(MLPS) speedup

ACL
1K 11.3* 4.5 2.4
10K 6.9* 3.1 2.2
100K 8.6* 2.2 3.9

FW
1K 9.8* 2.4 4.1
10K 10.7 2.1 5.1
100K 7.4 2.5 3.0

IPC
1K 12.6* 3.0 4.25
10K 5.3* 1.48 3.6
100K 9.91 1.63 6.1

Average Speedup: 3.8

Table 4.11: Real Performance Evaluation of AutoPC and EffiCuts

framework is in average 3.8 times faster than using EffiCuts solely on different type

of rulesets.

4.8 CONCLUSION

In this work, we identify the intrinsic characteristics of rulesets that yield the perfor-

mance unpredictability issue in the decision-tree based algorithms. Based on these

observations, we propose a memory consumption model, a “coverage uniformity”

analysis algorithm and an framework capable of identifying which algorithm is suited

for a given ruleset through combining the model and the analysis algorithm.

The experimental results show that our method is effective and efficient. Our

SmartSplit algorithm is significantly faster and more memory efficient than the state-

of-the-art work, and our AutoPC framework can automatically perform memory size

and accesses tradeoff according to the given ruleset. In the experiments, compared to

EffiCuts, the SmartSplit algorithm has achieved up to 11 times less memory consump-

tion as well as up to 4 times few memory accesses. The real performance evaluation

shows that SmartSplit is usually 2 ∼ 4 times faster than EffiCuts. The AutoPC

framework achieves in average 3.8 times faster classification performance than using

EffiCuts solely on all the rulesets.
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Besides these performance improvements, we believe that the observations in this

chapter provide a new perspective to understand the connection between ruleset fea-

tures and the performance of various decision-tree based algorithms.
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Chapter 5

Evaluating and Optimizing IP

lookup on Manycore Processors

5.1 Introduction

We have discussed the multi-dimensional packet classification algorithms from algo-

rithmic and ruleset feature perspective. In this chapter, we will discuss another type

of packet classification problem: IP-lookup. Among all the forwarding tasks in the

data-plane of a router, IP lookup is obviously a critical one. Routing tables in nowa-

days core routers can easily grow to several hundred thousand of prefixes, resulting

in large FIB (forwarding information base) sizes and slow lookup speed.

In this work, we will evaluate the performance of algorithmic-based IPv4 lookup

algorithms on a popular highly multi-core processor, the TILEPro64 processors.

TILEPro64 processors contain 64 full programmable processing cores. A full

TILEPro64 development board that can support up to 8×1 Gbps plus a 1×10 Gbps

Ethernet Interface costs currently several thousand dollars, making this platform

affordable for practical usage as a software router. Indeed more powerful processors
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are available these days meaning that the results presented in this paper are just

lower bound on potential IP lookup speeds.

For the software IP lookup we choose two simple and practical algorithms, DIR-24-

8-BASIC [21] and Tree Bitmap [18]. DIR-24-8-BASIC is used in many software router

prototypes, such as RouteBricks [16], PacketShader [24] etc., while Tree Bitmap is a

well-known IP lookup algorithm with low memory footprint and fast lookup speed.

Other algorithms are either too complicated or not suitable for the multicore platform.

For example, Bloom Filter based IP lookup needs hardware implementation of several

hundreds of hash functions, that will need dedicated FPGAs, while our aim in this

paper is to study a software only implementation on a many-core platform.

In order to get a full understanding of performance of different algorithms, we do

our evaluation experiments on a routing table issued from RouteViews project [73]

and containing about 358K prefixes. We’ve found that, in a single core environment,

the DIR-24-8-BASIC algorithms run at least 3 times faster than Tree Bitmap on

all IP traces. However, the FIB size generated by Tree Bitmap is almost 20 times

lower than DIR-24-8-BASIC. In the parallel experiments, we have observed that the

run-to-complete execution model is superior to the pipeline model. Our experiment

shows that, by using only 18 cores out of 64 cores on TILEPro64, we can achieve a

lookup throughput of up to 60Mpps (almost 40Gbps for 64 bytes per packet) with a

power consumption of less than 20W [74], to be compared with 240W for GPU based

PacketShader. Moreover as the packet processing is done directly on the TILEPro64

processor the lookup delay is very small compared to the delay needed for batching

in PacketShader.

The contributions of this work can be summarized as follows: 1) we describe and

evaluate how IP lookup algorithms can be implemented in practice on a many-core

processor—TILEPro64. We implemented various optimization tricks, including both

algorithmic refinements and architecture specific optimizations. 2) We measured the
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performance of different IP lookup algorithms on many core chips using different

traces. 3) Based on our evaluation results, we propose a hybrid scheme SplitLookup

to combine the strengths of two algorithms. This hybrid scheme has the similar

performance with DIR-24-8-BASIC on single-core but has a much smaller update

overhead in the worst case.

The remainder of this paper is organized as follows. In Section 2, we will provide

some background, including the two algorithms and the TILEPro64. In Section 3,

we will present our implementation and the implemented optimizations. In Section

4, we will report our hardware setup and experimental evaluation. In Section 5, we

will present a hybrid IP lookup scheme and evaluate its performances. We conclude

this work in Section 6.

5.2 Background

5.2.1 The Tree bitmap algorithm

The Tree Bitmap algorithm is a multi-bit trie IP lookup algorithm using a clever

encoding scheme. Fig. 5.1 shows an example of a 3-bit stride Tree Bitmap trie.

In Fig. 5.1, we can see the whole binary trie is divided into several multi-bit nodes

having two bitmaps, the internal bitmap (IBM) and the external bitmap (EBM). The

IBM is used to represent the prefixes stored in this multi-bit node, and the EBM is

used to represent the position of the child of this multi-bit node.

We use the Node A as an example to show the encoding scheme of the IBM and

the EBM. A 3-bit sub-trie has 8 possible leaves. In Node A, only the first and fourth

leaves have the pointers to children. Thus the EBM of this node is 10010000. The

encoding scheme of IBM is a little bit complicated: we firstly turn this 3-bit sub-trie

into a full binary tree with 7 nodes by adding “virtual nodes”, then we traverse this

tree in level oder. In each level, we traverse the nodes from left to right. If the node
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Figure 5.1: The Tree Bitmap Algorithm

stores one prefix, we set the bit otherwise we clear the bit. In Node A, we have two

stored prefixes, P1= * and P2=01*. P1 is stored in the first node we traverse, so the

first bit of IBM is 1, P2 is stored in the fifth node, so we set the fifth bit of IBM. The

IBM of this node is 1000100. To note, a K stride node has a 2K bit EBM and 2K − 1

bit IBM. These bitmaps provide a compact way to store the location information of

the child node or prefixes. For example, if we search Node A with bits 011, we check

the fourth bit of IBM and also count the number of bit set to the left of fourth bit.

There is only one bit set, thus the child node’s address can be retrieved by P +1×S,

where P is the pointer stored in Node A, and S is the node size.

While checking EBM is easy, checking IBM is a little complicated. For example,

if we want to check IBM of Node A with bits 011, we need successively remove the

right-most bits of the bit sequence, and check the corresponding bit position in IBM,

until we find the bit set in that position. In the first iteration, we get 01 after remove

the last bit. We walk the sub-trie following 01, and stop at the node to check if there
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is one prefix stored. We firstly use the IBM traverse way to determine the number of

this node (fifth), and then check the corresponding bit in IBM. We find the fifth bit

of IBM is set, and we know there is a prefix matching 011. Same method described

above can be used to retrieve the location of this prefix.

5.2.2 The DIR-24-8-BASIC algorithm

Compared to the Tree Bitmap algorithm, DIR-24-8-BASIC is much simpler. It uses

two tables to store all the prefixes. The first table, TBL24 which uses the first 24

bits of an IP address as an index, stores all the prefixes with length shorter than 25

bits. If more than one prefixes share the same first 24 bits, the corresponding entry

of these prefixes in TBL24 is filled with a pointer pointing to a 256 entries block in

the second table, TBLlong, storing all the possible suffix of the left 8-bits. When

there is only a single prefix with matching first 24 bits, TBL24 contains the next hop

information. However TBLlong always contains the next hop information.

Figure 5.2: The DIR-24-8-BASIC Algorithm

An example is shown in Fig. 5.2, where no prefixes share the first 24 bits of Prefix

10.21.3.0/24, thus the egress A is directly stored in TBL24 ; Prefix 10.21.2/24 and

10.21.2.0/25 has the same first 24 bits, thus the corresponding entry in TBL24 stores

a pointer which points to the 12th block in TBLlong. When searching an IP address,

we first use the first 24-bits of IP address as an index to read one entry of Table
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Table 5.1: frequency and cache size

type clock frequency cache size
TILEPro64 700MHz L2 64KB / L3 4MB

E5506 2133MHz L2 1MB / L3 4MB

Table 5.2: cache system and cache miss penalty

type cache system penalty(cycles)
TILEPro64 distribute L2 8 / L3 30 ∼ 80

E5506 distribute L2 14 ∼ 15 / L3 ∼ 100

TBL24. Depending on the content of TBL24, the lookup is terminated or we proceed

to table TBLlong following the pointer in TBL24.The leftmost 8-bit of the IP address

are used to obtain the index of the prefix in Table TBLlong and access it with one

more memory access. Since currently, most of prefixes have length less than 25 bits

in the core routing table, it only takes one memory access to do any IP lookup.

5.2.3 The TILEPro64 architecture

TILEPro64 is a many-core processor based on Tile Architecture that consists of a

2D grid of homogeneous computing elements, called tiles or cores. Each tile is a

full-featured CPU that can independently run an entire operating system. As the

name implies, TILEPro64 consists of 8 × 8 cores, that is much larger compared to

mainstream multi-core processors, which usually have only 4 ∼ 8 cores. However,

TILEPro64 cores have differences with for example an Intel Xeon cores. Table 5.1

lists the differences between a TILEPro64 core and an Intel Xeon E5506 one.

As can be seen from Table 5.1 and Table 5.2, a TILEPro64 core is relatively weaker

than one in an Intel Xeon E5506. Therefore, while we can assign heavy processing

to a single Intel Xeon core, e.g. all the processing of a software router’s dataplane,

including the decoding, IP lookup, checksums, etc. in a single thread on a single

core of a Xeon E5506, on TILEPro64 we split different dataplane activities between

several cores. Following this, we have assigned entire cores of the TILEPro64 to only
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do IP lookup. As the programmable on-chip network on TILEPro64 can be used

to eliminate the communication overhead of adding to other cores other dataplane

activities, and the distributed cache system ensures that the cache isolation, we can

evaluate the IP lookup load independently of the other activities of the control plane

that will be assigned to other cores.

5.3 IP Lookup on TILEPro64

In this section, we present our implementation and detail the optimization tricks we

used.

5.3.1 Implementation

Tree Bitmap: We implemented two versions of this algorithm, TreeU16 and

TreeU32. The TreeU16 implementation uses the built-in type uint16 t in TILE64

core to store the bitmaps inside the multi-bit node. This implementation is specially

suitable for Tree Bitmap with 4 bits stride as it eliminates the overhead of querying

the stride information during the lookup process. The TreeU32 implementation is

more general and uses array uint32 t type to store the bitmaps. This implementation

can be tuned to any trie with 5 bits or more strides. In both implementations, a

single 32-bit pointer is used to point to both the child and result arrays. Therefore

each node of TreeU16 needs 2 × 2 + 4 = 8 Bytes, and each node of TreeU32 costs

2× 4× 2(stride−5) + 4 Bytes.

DIR-24-8-BASIC: We implemented DIR-24-8-BASIC using 32-bits integer for

each entry of both TBL24 and TBLlong. For each entry of Table TBL24, one bit is

used as a flag to signal if this entry point to TBLlong or if it is a definitive prefix,

5 bits are used to store the prefix length, and 26 bits are used to store an index or

a pointer to the next-hop information. The 26 bits index is necessary for lookup
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and update. In each entry of table TBLlong, 5-bits are used to store the prefix

length, and the leftover bits are used as a pointer to the next hop information. As

table TBL24 needs 224 entries, our implementation of DIR-24-8-BASIC needs at least

64MB DRAM memory (4 bytes per entry in table TBL24).

5.3.2 Optimization tricks

Large page

Rather than using by default the 4KBytes page, we have used 16MB large page in

our development. This optimization reduces the TLB misses during the IP lookup.

Algorithms like DIR-24-8-BASIC which uses a large amount of memory can be benefit

from this trick. In our experiment, we find this is even beneficial for the Tree Bitmap

which uses much less memory. Our experiment shows that this implementation detail

highly improves the performance the lookup by decreasing lookup time by almost 20%.

Initializing an array for trie

One way of improving the lookup speed is to implement a lookup table for the first

consecutive bits in the trie-based IP lookup. For example, for the first 13 bits of an

IP address, we build an initial array with 8K entries that enables fast access to the

node storing these prefixes. The array speeds up the lookup, however it increases the

update overhead. In our implementation of Tree Bitmap, we have used such an array

both in TreeU16 and TreeU32.

Counting the number of 1s in a bitmap

The Tree Bitmap algorithm needs to count how many 1s are in one bitmap. This

task can easily be done in hardware. However, in software, it is more complex and

one have to use a lookup table to get the number of 1s in one bitmap. This adds

more memory accesses during the lookup and degrades the performance. We use
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the special purpose arithmetic instruction popcount to count the number of 1s in a

bitmap. This instruction is common in many off the shelf processors.

Lazy checking

As mentioned above, one single multi-bit node can have two operations: checking

the EBM to find the “exit point” and checking the IBM for the prefixes inside the

node. Since the IBM checking is time consuming, we perform a lazy checking, i.e.

we only check the EBM of traversed node and we use an extra stack to store them;

when the searching cannot proceed to the next node, we pop the nodes in the stack to

perform IBM checking. As long as there is a single prefix match, the lookup process

terminates. Our experiment shows this trick can save up 30 to 50 cycles per lookup.

Fast internal bitmap checking

The checking of internal bitmap is time consuming. In the original implementation of

Tree Bitmap, for a k bit stride internal bitmap checking, one needs k clocks to check

the specific bit positions in the internal bitmap. In order to accelerate the checking,

we use a small lookup table and some specific bit instructions in our implementation.

For k bit stride internal bitmap, we construct a lookup table with 2k entries; each

entry corresponds to one possible input. In each entry, we store a pre-computed

bit string recording all the checking bit positions for the corresponding input. For

example, in the sub-tree shown in Figure 5.3, for the input bit string 000, one needs

to check the first, the second and the fourth bit in the internal bitmap, therefore the

pre-computed bit string is 1101000.

When checking the internal bitmap, we perform the “AND” operation between

the pre-computed bit string and the internal bitmap. The position of the first set bit

is the checking result. For example, in Figure 5.3, the internal bitmap is 1000100, the
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result bit string is 1000000, and the position of the first set bit is 0. Therefore the

internal bitmap checking returns 0.

Fortunately, most CPU provides a single instruction clz for the position searching

of the first set bit. Therefore, our implementation can finish checking using only a

few instructions (one table lookup, one “AND” and one clz).

Internal Bitmap

Pre-compute

Bit string

1000100

1101000

Result bit string 1000000

Search the first set

Bit (clz)
0

Figure 5.3: Fast internal bitmap checking

5.4 Performance Evaluation

In this section, we evaluate the performance of the two IP lookup algorithms with both

synthetic and real world traces. We discuss our evaluation traces and the performance

results in detail.

5.4.1 Evaluation Traces

The nature of the traces used to evaluate IP lookup is very important. An IP trace

with high locality can lead to a very high performance result because many memory

accesses cached in the L2 cache of CPU can be reused. Random IP traces, while

having limited locality, contain too many “invalid” IP addresses (IP address does

not match any prefix in one routing table), that usually have very short searching

path in the trie-based IP lookup algorithm. Using these trace can also result into
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“illusion” high performance. In order to get a full understanding of the performance

of IP lookup in software, we use both synthetic and real world traces. We use three

types of traces that are listed below:

Random Match: Let S be the set of all the prefixes in one routing table. We

use the prefixes in S to construct a binary trie and we leaf push this trie, i.e. all

the prefixes are stored only at the leaf nodes. We are representing as L(p) the leaf

nodes that stores the prefix p ∈ S. For any prefix p ∈ S , let us define a set, P (p),

containing all paths starting from the root node and ending at the leaf nodes that

belong to L(p). These paths can be viewed as the “leaf pushing” prefixes for the

original prefix p. For any prefix p ∈ S, we collect the longest path in P (p), and use

this paths to form a new prefix set. We call this set the Random Match Set. Random

Match traces are generated by repeating the following steps:

1. Choose randomly one prefix in the Random Match Set.

2. If the prefix is not 32-bit long, we use a random number to complement this

prefix into a 32-bit IP address.

The Random Match trace has three characteristics: 1) it is unbiased for all prefixes

in S; 2) it has low locality; 3) IP addresses in Random Match trace have the longest

searching path. Thus, the performance result gathered on this trace can be considered

as the worst case for all implementation. Fig. 5.4 shows how to construct a Random

Match trace.

Realistic Random Match: We now add some locality to our evaluation trace

thanks to realistic traces. We have used traces provided by CAIDA [30], and we

have extracted all the destination IP addresses. Unfortunately, these IP addresses

can not be used directly, because they are anonymized and many of them cannot

match any prefix in a real routing table. However the anonymization maintains the
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Figure 5.4: Random Match Trace Generation

prefix structure. Therefore, in order to generate a trace with realistic locality, we

have replaced the anonymized IP addresses with “valid” IP addresses:

1. We define an association array H mapping anonymized addresses to the “valid”

one.

2. For any anonymized IP p, if there exists H[p], we replace it with H[p]

3. If not, we generate a “valid” IP address q using the method described in random

match and we replace p with q, and let H[p] = q.

We can expect to have higher performance on this trace as realistic locality is

enforced.

Realistic and Filtered: For this trace we directly used the anonymized realistic

trace coming from CAIDA. We filtered out all “valid” IP addresses. This trace will

have the highest locality among the three kinds of traces. However the trace will only

match a small fraction prefixes in a routing table.
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Name unique IP addresses Generated from

Random Match 353398 routing tables from [73]
Realistic Random Match A 24424 [30]
Realistic and Filtered A 17020 [30]

Realistic Random Match B 81811 [30]
Realistic and Filtered B 41654 [30]

Table 5.3: Evaluation Traces

We have generated five traces: one Random Matched, two for Realistic Random

Matched and two Realistic and filtered ones. Each trace was containing 1 million IP

addresses. The detailed information for these traces is listed in Table 5.3.

5.4.2 Single-core Performance Evaluations

In each experiment, we have used two cores: one core only for loading the traces and

extracting the IP addresses, the other core receiving the IP addresses on the on-chip

network and doing the IP lookup. We have used two configurations for Tree Bitmap,

one using an initial array of 213 entries, and 4 bit stride; the second using an initial

array of 211 entries, and 7 bits of stride. We name them respectively TBP 13-4-4-4-3

and TBP 11-7-7-7. The memory footprint of FIB generated by DIR-24-8-BASIC,

TBP 13-4-4-4-4-3 and TBP 11-7-7-7 is respectively 69.1MB, 2.9MB and 4MB. Fig.

5.5 shows the performance results for a single core of TILEPro64.

From the Fig. 5.5, the following observations can be made. First, the lookup

speed is highly related to the number of memory accesses. Although the FIB size

of Tree Bitmap is almost 20 times less than DIR-24-8-BASIC, DIR-24-8-BASIC is

still 3 times faster. Second, the time spent on processing instructions can not be

ignored. Small stride leads to a faster IBM checking, which makes TBP 13-4-4-4-4-3

faster. Third, the locality of the trace determines the final performance. To note, we

measure the lookup speed in cycles. The clock frequency of TILEPro64 is 700MHz,
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Figure 5.5: Single core Performance Results

which means that each cycle is 1.4 ns. So in the single-core environment, at least

168ns are required per lookup for the fastest case.

5.4.3 Parallel Performance Evaluations

We have used for the experiment in this section two parallel execution models:

pipeline and run-to-complete model.

The pipeline model is only applied to the Tree Bitmap algorithm. In the pipeline

model, for each IP lookup, each core only needs to do the processing of one multi-bit

node (including both the IBM and EBM checking) in one level of the Tree Bitmap

trie, then transfer the intermediate result to the next core. There are many proposed

algorithms [28] [2] to balance the memory utilization of each pipeline stage. However

these works assume that the IP lookup engine has multiple single port memories.

For example, [28] splits the whole IP lookup into 24 stages, requiring 24 banks of

single port memory. TILE64Pro only has 4 DRAM memory interface which does not

conform this assumption. So we do not adopt any of these algorithms and simply

divide the Tree Bitmap trie by its levels.
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Figure 5.6: Pipeline Parallel Performance of Tree Bitmap

We use 5 cores for TBP 13-4-4-4-4-3 and 3 for TBP 11-7-7-7. It is noteworthy

that in the pipeline model, we cannot perform the “lazy checking” optimization trick.

We show in Fig. 5.6 the performance achieved by the pipeline. Compared to the Fig.

5.5, we can observe that the performance gain is about 3 fold. This can be explained

as most of the IP addresses in the evaluation traces match prefixes that have length

less than 25. Looking up these IP addresses only needs 3 to 4 memory accesses. So

in average, the speed up rate is around 3 times. And once again, TBP 13-4-4-4-4-3

is faster.

In Fig. 5.7-5.8 we show the performance achieved by the run-to-complete model.

In this approach, one core is used as a dispatcher that splits the workload by for-

warding the IP addresses to the other cores in a round-robin fashion. Whenever a

core finishes its lookup, a new IP address is forwarded to it and looked up. In this

model all algorithms parts run in parallel. In both figures, Limit represents the av-

erage transfer time of the on-chip network, it also provides an upper bound on the

performance we can achieve.
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Figure 5.7: Run-to-complete Parallel Performance of DIR-24-8-BASIC

Fig. 5.7 shows that the highest performance, about 20 cycles per lookup, is

achieved when the number of parallel cores reaches 8. This is equivalent to about

20Gbps of throughput when packets are 64 Bytes. TILEPro64 has four memory

controllers and we only use one of them in our experiment. This means that, if neces-

sary, the two memory controllers can be used to provide enough memory bandwidth

to support 18 cores (2 for dispatching and 16 for lookup) reaching a 40Gbps lookup

throughput.

In Fig. 5.8, as the number of lookup cores increased, the performance increased

almost linearly (or the lookup time decreases). However, we achieve at best 28 cycles

per lookup by using 16 cores, which is still slower than DIR-24-8-BASIC. This con-

firms that DIR-24-8-BASIC is superior in speed to tree bitmap (as it lookup time is

8ns less) at the cost of a memory footprint that is 20 times larger.
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(a) TBP 13-4-4-4-3

(b) TBP 13-4-4-4-3

Figure 5.8: Run-to-complete Parallel Performance of Tree Bitmap

5.5 A Hybrid IP Lookup Scheme: SplitLookup

From the evaluation above, we can conclude that the DIR-24-8-BASIC runs faster

than Tree Bitmap on average. However, this algorithm suffers from a high update

overhead. Suppose we want to delete a /8 prefix, we need 224−8 = 65536 memory

accesses. This worst case update overhead may become a performance bottleneck
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in practice. In contrast, the update overhead of Tree Bitmap is much less. In this

section, we propose a hybrid IP lookup scheme to combine the strength of both.

The root of high update overhead lies in the short prefixes (< /17) stored in

TBL24. These short prefixes overlap a large range in TBL24. Updating these prefixes

need to modify all the entries in this range. In order to prevent the high overhead,

one can put all these short prefixes in a Tree Bitmap trie. This will result as a side

effect, reducing the number of memory access, because these prefix are all near the

root node in the trie. In TBP 13-4-4-4-4-3, only one memory access is needed for

such short prefixes. As mentioned above, the lookup speed is highly related to the

number of memory access. So this hybrid scheme can also achieve high performance

for these short prefixes.

The basic idea of our hybrid lookup scheme is as follows:

1. Store the short prefixes of length 1 to 16 in a Tree Bitmap trie.

2. Store the prefixes of length 17 to 24 in the Table TBL24.

3. For the prefixes of length 25 to 32, we use only one entry in Table TBL24 to

store a pointer and put the remaining 8-bit in a sub-trie.

A simple comparison of update overhead is listed in Table 5.4. We measure the av-

erage memory operation accesses in both DIR-24-8-BASIC and TBP 13-4-4-4-3 when

adding and deleting all the /8 ∼ /16 prefixes in our routing table. There are 12894

prefixes in total. As mentioned, one entry of DIR-24-8-BASIC is 4 bytes; one node of

TBP 13-4-4-4-3 is 8 bytes. From the table, we can estimate the update overhead of

TBP-13-4-4-4-3 is about several hundreds times less than DIR-24-8-BASIC. Because

our hybrid algorithm uses the TBP 13-4-4-4-3 to store these prefixes, we can conclude

the update overhead of this hybrid algorithm is much less.

The lookup process on the hybrid scheme is similar to the lookup process in DIR-

24-8-BASIC. We first perform the long prefix lookup ( > /16) using Table TBL24
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Table 5.4: update overhead of two algorithms

Algorithms Add/Del Entry set Node copy Node alloc
DIR-24-8-BASIC Add 586.67 null null

Del 553.95 null null
TBP 13-4-4-4-3 Add 0.40 1.15 0.97

Del 0.39 1.43 0.97

Figure 5.9: Data Structure of the hybrid algorithm

and the attached sub-tries. If there are not any prefixes matching this IP address,

we perform the lookup process on the independent tree Bitmap trie which stores the

short prefixes. The data structure of the hybrid algorithm is shown in Fig 5.9.

Fig. 5.10 shows the performance achieved by our proposed hybrid scheme on a

single-core. We used the TBP 13-4-4-4-4-3 as the independent trie, and stride of 4 as

the sub multi-bit tree attached to Table TBL24.

From the Fig. 5.10, we see that, as we expected from the design, our hybrid

scheme achieves a performance similar with the DIR-24-8-BASIC. We now give a

brief analysis of the worst case update overhead. As mentioned above, the worst

case update overhead of our hybrid scheme is bound by the update overhead of Tree

Bitmap. When updating happens in Tree Bitmap algorithm, the worst case is to

reconstruct a full child array. In our case, we use a stride of 4, which means the

largest child array has up to 16 multi-bit nodes. So the update overhead is bounded
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Figure 5.10: Performance of our hybrid IP lookup scheme

by 16 × 8 = 256 bytes memory copy. Compared to DIR-24-8-BASIC, which needs

larger than 65536 memory accesses in the worst case, our scheme has a much less

update overhead. However the memory footprint of the hybrid scheme and the DIR-

24-8-BASIC are comparable as the TBL24 is reused.

5.6 Conclusion

To summarize, in this work, we implemented two widely used IP lookup algorithms on

TILEPro64 and evaluated the performance of them with both synthetic and real world

traces. We have achieved a throughput of 40 Gbps by using 18 cores of TILEPro64.

Compared to the work of PacketShader which uses GPUs [24] to do the IP lookup,

the power consumption of our solution is much lower. We also found that, on our

platform, the IP lookup speed is highly related to the number of memory accesses.

Although the small sized FIB can be easily cached, IP lookup with less memory

accesses is always faster. We evaluated the performance of different parallel model.

Our experiments show that the run-to-complete model is more efficient on many core
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chips. In the end of this paper, we propose a new hybrid IP lookup scheme which

provides a low bound to the worst case update overhead for DIR-24-8-BASIC. Our

work demonstrates the performance power of many core chips, and also gains some

insight into the IP lookup on many-core processors.
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Chapter 6

PEARL: A Programmable Virtual

Router Platform

6.1 Introduction

Deploying, experimenting and testing new protocols and systems over Internet have

always been a major issue. While, one could use simulation tools for the evaluation of

a new systems aimed toward large-scale deployment, real experimentation in experi-

mental environment with realistic enough settings, such as real traffic workload and

application mix are mandatory. Therefore easy programmable platforms that can

support high-performance packet forwarding and enable parallels deployment and

experiment of different research ideas are highly demanded. Moreover, we are mov-

ing toward a future Internet architecture that seems to be polymorphic rather than

monolithic, i.e., the architecture will have to accommodate simultaneous coexistence

of several architecture (like the Named Data Network (NDN) [27], etc.) including

the current Internet. Therefore future Internet could be based on platforms running

different architectures in virtual slices enabling independent programming and con-

figuration of functions of each individual slice. Current commercial routers, the most
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important building blocks of the Internet, while attaining very high performance,

only offer a very limited access to the researchers and developers to their internal

component to implement and deploy innovative networking architecture. In contrast,

open software based routers naturally facilitate the access and adaptation of almost

all their components however, often with a low packet processing performance. As an

example, recent OpenFlow switches [38] provides flexibility by allowing programmers

to configure the 10-tuple of flow table entries, enabling to change the packet process-

ing of a flow. OpenFlow switches are not ready for non-IP based packet flows, such

as NDN. Moreover, while the switches allow a number of slices for different routing

protocols through the FlowVisor, the slices are not isolated in terms of processing

capacity, memory and bandwidth. Motivated by these facts, we have designed and

built a ProgrammablE virtuAl Router pLatform, named PEARL that can guarantee

high performance. The challenges are two-fold: first to manage the flexibility vs.

performance trade-off that translates into pushing functionality to hardware for per-

formance vs. programming them in software for flexibility, second to ensure isolation

between virtual router instances both in hardware and software with low performance

overhead. This chapter describes the PEARL routers architecture, its key components

and the performance results. It shows that PEARL meets the design goals of flex-

ibility, high performance and isolation. In the next section, we describe the design

goals of the PEARL platform. These goals can be taken as the main features of our

designed platform. We then detail the design and implementation of the platform,

including both hardware and software platforms. In the next section, we evaluate the

performance of a PEARL based router using the SPIRENT TestCenter by injecting

into it both IPv4 and IPv6 traffic. Finally, we briefly summarize the related works,

and conclude the paper.
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6.2 Design Goals

In the past few years, several future Internet architectures and protocols at differ-

ent layers have been proposed to cope with the challenges that the current Internet

faces [6]. Evaluating the reliability and the performance of these proposed innova-

tive mechanisms is mandatory before envisioning a real scale deployment. Besides

theoretically evaluating the performance of a system and simulating these implemen-

tations, one needs to deploy them in a production network with real user behavior,

traffic workload, resource distribution, and applications mixture. However, a major

principle in experimental deployment is the “No harm” principle that states that

normal services on a production network should not be impacted by the deployment

of a new service. Moreover, no unique architecture or protocol stack will be able

to support all actual and future Internet services and we might need specific packet

processing for given services. Obviously, a flexible router platform with high-speed

packet processing ability and support of multiple parallel and virtualized independent

architectures is extremely attractive for both Internet research and operation. Based

on this observation one can define isolation, flexibility, and high performance as the

needed characteristics and the design goals of a router platform future Internet. In

particular, the platform should be able to cope with various types of packets includ-

ing IPv4, IPv6, even non-IP and be able to apply packet routing as well as circuit

switching. Various software solutions like Quagga or XORP [25] have provided such

flexible platform that is able to adapt their packet-processing components as well

as to customize the functionalities of their data, control and management planes.

However, these approaches fail to be fast enough to be used in operational context

where a wire-speed is needed. Nevertheless, by adding and configuring convenient

hardware packet processing resources such as FPGA, CPU cores and memory stor-

age, one can hope to meet the performance requirements. Indeed, flexibility and high

performance are in conflict in most situations. Flexibility requires more function-
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alities to be implemented in software to maximize the programmability. On other

hand, high performance cannot be reached in software and needs custom hardware.

A major challenge for PEARL is to allocate enough hardware and multi-cores in order

to achieve both flexibility and high performance. Another design goal is related to

isolation. By isolation we mean a mechanism that enables different architectures or

protocols running in parallel on separate virtual router instances without impacting

each other performances. In order to achieve isolation, we should provide a mech-

anism that will ensure that one instance can only use its allocated hardware (CPU

cores and cycles, memory, resources, etc.) and software resources (lookup routing ta-

bles, packet queue, etc.) and is forbidden to access resources of other instances even

when they are idle. We need also a dispatching component that will ensure that IP

or non-IP packets are delivered to specified instances following custom rules defined

over MAC layer parameters, protocols, flow label or packet header fields.

The PEARL offers high flexibility through the custom configurations of both hard-

ware data path and software data path. Multiple isolated packet streams and vir-

tualization techniques enable the isolation among virtual router instances, while the

fast lookup hardware provides the capacity to achieve high performance.

6.3 Platform design and Implementation

6.3.1 System Overview

PEARL uses commodity multi-core CPU hardware platforms that run generic soft-

ware as well as specialized packet-processing cards for high performance packet pro-

cessing as shown in Figure 6.1. The virtualization environment is build using the

Linux-based LXC solution [4, 71]. This enables multiple virtual router instances to

run in parallel over a CPU core or one router instance over multiple CPU cores. Each

virtual machine can be logically viewed as a separate host. The hardware platform

129



 

M
A

C
 &

 P
H

Y

RX Process

DMA Interface

PCIE Bus

IO
 Stream

IO
 S

tream

Net IO Proxy

VM 1

APPs

IP / Non-IP

Protocol

VM 2

APPs

IP / Non-IP

Protocol

VM 3

APPs

IP / Non-IP

Protocol

VM 

4

VM 

5

VM 

N

TX Process

IO
 S

trea
m

IO
 S

trea
m

Figure 6.1: Overview of PEARL architecture

contains a FPGA-based packet processing card with embedded TCAM and SRAM.

This card enables fast packet processing and strong isolation.

Isolation. PEARL implements multiple simultaneous fast virtual data planes by

allocating separate hardware resources to each virtual data plane. This facilitates

strong isolation among the hardware virtual data planes. Moreover, LXC takes ad-

vantage of a group of the kernel features (namespace, cgroup) to ensure isolation in

software between virtual router instances. A multi-stream high-performance DMA

engine is also used in PEARL which receives and transmits packets via high-speed

PCI Express bus between hardware and software platforms. Each IO stream can be

either assigned to a dedicated virtual router or shared by several virtual routers using

a net IO proxy. Flexibility. We use TAP/TUN device as the network interface

in each virtual machine. Each virtual machine could be considered as a standard

Linux host containing multiple network ports. Thus, the IPv4, IPv6, OpenFlow,

even Non-IP protocol stack can be easily loaded. Adding new functions to router is

also convenient though programming Linux applications. For example, to load IPv4
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Figure 6.2: PEARL hardware data plane architectural

or IPv6, Quagga routing software suite can be used as the control plane inside each

Linux container.

High performance. The operations of routing table lookup and packets dispatch

to different virtual machines are always the performance bottleneck. PEARL offloads

these two operations into hardware to achieve high speed packet forwarding. In

addition, since LXC is a light weight virtualization technique with low overhead, the

performance is further improved.

Hardware platform

To provide both high performance and strong isolation in PEARL, we design a spe-

cialized packet processing card. Figure 6.2 shows the architecture of hardware data

plane. It is a pipeline-based architecture which consists of two main data paths: the

transmitting and the receiving data path. The receiving data path is responsible for

processing the ingress packets, and the transmitting data path, the egress packets. In

what follows, the processing stages of the pipeline are detailed.

Header Extractor. For each incoming packet, one or many fields are extracted

from the packet header. These fields are used for virtual router ID (VID) lookup
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in the next processing stage. For IP-based protocols, a 10-tuple, defined following

OpenFlow, is extracted, while for non-IP protocols, the MAC address is extracted.

VID Lookup. Each virtual router in the platform is marked by a unique VID.

This stage classifies the packet based on the fields extracted in the previous stage.

For the storage and lookup of the fields, we use a TCAM which can be configured

by the users. Due to the special features of TCAM, each field of the rules in VID

lookup table can be a wildcard. Hence, PEARL can classify packets of any kind of

protocols into different virtual routers as long as they are Ethernet based, such as

IPV4, IPv6 and non-IP protocols. The VID lookup table is managed by a software

controller which enables users to define the fields as needed. The VID of the virtual

router to which a packet belongs is appended on the packet as a custom header.

Routing Table Lookup. In a network virtualization environment, each virtual

router should have a distinct routing table. Since there are no standards for non-

IP protocols until now, we only consider the storage and lookup of routing tables

for IP-based protocols in hardware. It is worth noting that routing tables for non-IP

protocols can be accommodated through FPGA in the cards. Given limited hardware

resources, we implement four routing tables in the current design. The tables are

stored in TCAM as well. We take the VID combined with destination IP address as

the search key. The VID part of the key is performing exact matching and the IP part

is performing the longest prefix matching in TCAM. Once a packet matches in the

hardware, it will be sent to the kernel for further processing, greatly improving the

packet forwarding performance. For non-IP protocols or the IP-based protocols that

are not accommodated in the hardware, we integrate a CPU transceiver module. The

module is responsible for transmitting the packet to the CPU directly without looking

up routing tables. Whether a packet should be transmitted by the CPU transceiver

module or not is completely determined by the software. With the flexibility offered
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by the CPU transceiver module, it is easy to integrate more flexible software virtual

data planes into PEARL.

Action Logic. The result of routing table lookup is the next hop information

which is stored in a SRAM-based table, including output card number, output port

number, the destination MAC address and so on. It defines how to process the

packet, so it can be considered as an action associated with each entry of the routing

tables. Based on the next hop information, this stage performs some decisions such as

forwarding, dropping, broadcasting, decrementing TTL and updating MAC address.

Multi-stream DMA Engine. To accelerate the IO performance and greatly ex-

ploit the parallel processing power of multi-core processor, we design a multi-stream

high-performance DMA engine in PEARL. It can receive packets of different virtual

routers from the network card to different memory regions in the host, and transmit

packets in the opposite direction via the high-speed PCI Express bus. From a soft-

ware programmers perspective, there are multiple independent DMA engines, and the

packets of different virtual routers are directed into different memory regions, which

is convenient and lockless for programming. Meanwhile, we make a tradeoff between

flexibility and high performance of DMA transfer mechanism, and carefully redesign

the DMA engine in FPGA. The DMA engine can transfer packets to the pre-allocated

huge static buffer at contiguous memory locations. It greatly decreases the number

of memory accesses required to transfer a packet to CPU. Each packet transported

between the CPU and the network card is equipped with a custom header which is

used for carrying processing information to the destination, such as the matching

results.

Output Scheduler. The egress packets sent back by the CPU are scheduled

based on their output port number, which is a specific field in the custom header

of the packet. Each physical output port is equipped with an output queue. The

scheduler puts each packet in the appropriate output queue for transmitting.

133



DMA Tx/Rx
Network Cards

DMA Tx/Rx

netio_proxy

routed vmmd
new 

protocols

tap0

low_proxy

veth0..4 veth0..4

applications

Physical machine
high-priority

virtual router
low-priority

virtual router

macvlan

user space

kernel space

driver

nacd
plug-in

registers
DMA Tx/Rx

Figure 6.3: Packet Processing Path in software

6.3.2 Software Platform

Our software platform of PEARL consists of several components as shown in Fig-

ure 6.3. These include vmmd to provide the basic management functions for virtual

routers and packet processing cards; nacd, to offer a uniform interface to the un-

derlying processing cards outside the virtual environment; routed to translate the

forwarding rules generated by the kernel or user applications into a uniform format

in each virtual router, and install these rules into the TCAM of the processing cards;

netio proxy to transmit the packets between the physical interfaces and virtual in-

terfaces, and low proxy to dispatch packets into low priority virtual routers which

share one pair of DMA Rx/Tx buffers. With different configuration and combination

of these programs, PEARL can generate different types of virtual routers to achieve

flexibility.

There are two types of virtual routers in PEARL: high and low priority virtual

routers. Each high-priority virtual router is assigned with one pair of DMA Rx/Tx

buffers and an independent TCAM space for lookup. With the high-speed lookup

based on TCAM, and efficient IO channels provided by the hardware, the virtual

router can achieve the maximum throughput in PEARL platform. For low-priority
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virtual routers, all the virtual routers share only one pair of DMA Rx/Tx buffers

and they cannot utilize TCAM for lookup. The macvlan kernel module is used to

dispatch packets between multiple virtual routers. The applications inside the low

priority virtual routers can use the socket APIs to capture packets from the virtual

interfaces. Each packets needs to go through at least 2 times context switch (system

calls) during the transmission to the user application, resulting in a relatively low IO

performance.

We take IPv4 and IPv6 as two Internet protocols to show how the virtual routers

can be easily implemented on PEARL. High-priority IPv4 virtual router. To

create a high-priority IPv4 virtual router in our platform, the vmmd process first

starts a new Linux container with several virtual interfaces, and collects the MAC

address of each virtual interface, and installs these addresses in the underlying cards

via the nacd process so that the hardware can identify the packets heading to this

virtual router, and copy the packet into the certain DMA Tx buffer which is assigned

to this virtual router. Then, the routed process is launched in the new container.

It extracts the routes through the NETLINK socket inside the virtual router and

installs routes and the forwarding action in hardware, so the hardware can fill a

little structure in the memory to notify the netio proxy process when a packet

matches a route in TCAM. The netio proxy process delivers the packets either to

the virtual interface or directly to the physical interface according to the forwarding

action in memory. For example, most of time, normal packets will match a route in

the hardware. When the netio proxy receives these packets, it will directly send

them through a DMA Tx buffer. An ARP request packet will not match any rules

in the TCAM, and the netio proxy process will deliver this packet to the virtual

interface, receive the corresponding ARP reply packet from the virtual interface, and

then send it to the physical interface.
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Low-priority virtual router. To create low priority virtual routers, a tap device

is set up by the vmmd process (tap0). Low priority virtual routers are configured to

share the network traffic of this tap device through the macvlan mechanism. The

low proxy process acts like a bridge, transmitting packets between DMA buffers

and the tap device in both directions. Noting that the MAC addresses of the virtual

interfaces are generated randomly, we can encode the MAC addresses to identify

virtual interface where the packet comes from. For example, we can use the last byte

of the MAC address to identify the virtual interfaces if the low proxy process receives

a packet with source MAC address 02:00:00:00:00:00, it knows that the packet is from

the first virtual interface in one of the low priority virtual routers, and transmits

the packet to the first physical interface immediately. We adopted this method in

the low proxy process and vmmd process, and use the second byte to identify

the different low priority virtual routers. It not only saves the time consumed by

inefficient MAC hash lookup to determine where the packet comes from, but also

saves space in TCAM, because all the low priority virtual routes only need one rule

in TCAM (02:*:00:00:00:*).

IPv4/IPv6 virtual router with kernel forwarding. In this configuration,

the routed process does not extract the route from the kernel routing table; instead,

it enables the ip forward options of the kernel. As a result, all packets will match

the default route in TCAM without the forwarding action. The netio proxy process

transmits all these packets into the virtual interfaces, so that the kernel will forward

the packet instead of the underlying hardware. The tap/tun device is used as the

virtual interface. Since the netio proxy is a user space process, each packet needs

two system calls to complete the whole forwarding.

User-defined virtual router. User-defined packet process process can be im-

plemented as a plug-in loaded by the netio proxy process, which makes the PEARL

extensible. We opened the basic packet APIs to the users, such as read packet(),
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send packet(). Users can write their own process module in C Language, and runs

it in the independent virtual routers. For the light-weight applications which do

not need to deal with huge amount of network traffic, users can also write a socket

program in either high or low priority virtual routers.

6.3.3 Evaluation and Discussion

We implemented PEARL prototype using a common server with our specialized net-

work card. The common server is equipped with an Xeon 2.5GHz 64-bit CPU and

16G DDR2 RAM. The OS-level virtualization techniques Linux Containers (LXC) is

used to isolate the different virtual routers (VR).

In order to demonstrate the performance and flexibility of PEARL, our implemen-

tation is evaluated in three different configurations: high performance IPv4 virtual

router, kernel forwarding IPv4/IPv6 virtual router, and IPv4 forwarding in low pri-

ority virtual router.

We conducted 4 independent sub-networks with SPRIENT TestCenter to measure

the performance of the three configurations in 1-4 VRs. Three different lengths of

packet (64, 512 and 1518) are used (for IPv6 packet, the packet length is 78, 512 and

1518. 78 bytes is the minimal IPv6 packet length supported by TestCenter).

Figure 6.4 shows the throughputs of an increasing numbers of VRs using Config-

uration 1. Each virtual data plane has been assigned with a pair of DMA RX/TX

buffers and the independent routing table space in the TCAM, resulting in an efficient

IO performance and a high speed IP lookup. The result shows that when the number

of the VR reaches to 2, the throughput of minimal IPv4 packet of PEARL is up to

4Gbps, the maximum theoretical speed of our implementation.

Figure 6.5 illustrates the throughputs of an increasing number of VRs using Con-

figuration 2. Each virtual data plane has the same configuration as Configuration 1,

except that no virtual data plane has its own routing space in TCAM. In Figure 5,
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the throughput of minimal IPv4/IPv6 packet forwarding is only 100Mbps when there

is only one VR. It is because we used the original kernel for packet forwarding i.e.

each packet needs to go through 2 times context switch and 3 times memory copy in

our design. We can optimize this by re-implementing the forwarding functions as a

plug-in in the netio proxy process in VR.
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Figure 6.6 shows the throughputs of an increasing numbers of low priority VRs

using Configuration 3. Low priority VRs share only one pair of DMA TX/RX IO

channel and cannot take advantage of TCAM to speed up the IP Lookup. It can be

used to verify the applications which handle little traffic (new routing protocols etc).

We can see from the results that the total throughputs of the minimal IPv4 packet

remain 60Mbps as the number of VR increases. The macvlan module used for the

sharing of the network traffic between multiple VRs results in a long kernel path for

the packet processing, so the total performance is even lower than the IPv4 kernel

forwarding in the Configuration 2. We can improve the performance by developing a

new mechanism that suit for our case.

6.4 Related Work

Recent researches, such as vRouter Project [19], RouteBricks [16] and Packet-

Shader [24], have exploited the tremendous power of modern multi-core CPUs and

multi-queue network interface cards (NICs) in building high-performance software

routers on commodity hardware. However, the commodity hardware is not good
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enough for such applications. They pointed out that memory latency or IO per-

formance becomes the bottleneck for small packets in such platforms. Due to the

complexity of DMA transfer mechanism in commodity NICs, the performance of

high speed PCI Express bus has not been fully exploited. Meanwhile, the traditional

DMA transfer and routing table lookup result in multiple memory accesses, limiting

the forwarding performance for small packets. To address both the IO and memory

access bottleneck in PEARL, we make a balance between the flexibility of commod-

ity hardware and the high performance of FPGA-based specialized hardware. We

simplify the DMA transfer mechanism and redesign the DMA engine to accelerate

IO performance, and offload the routing table lookup operation to the hardware

platform. OpenFlow [38] enables rapid innovation of various new protocols, and

divides the function into control plane and data plane. PEARL has the similar idea

to divide the function between software and hardware. However, PEARL does host

multiple virtual data plane in hardware itself, which could offer both strong isolation

and high performance, while OpenFlow does not. Another work, SwitchBlade [1]

has presented a modular architecture of virtualized data plane in FPGA-based

hardware platform. However, PEARL makes some important improvements and has

two unique features in hardware data plane. First PEARL dispatches packets into

different virtual routers based on the 10-tuple, but SwitchBlade only classifies packets

based on MAC addresses. With the flexibility of the 10-tuple and wildcard, PEARL

has the capability to classify packets based on the protocol of any layer. For example,

PEARL can specify the packets of a critical application with a dedicated fast path

based on its TCP flow information, which makes it easy to guarantee QoS for critical

applications. In this case, it resembles a predefined virtual link in a circuited-switch

network. Second, all the packets, even those matched in hardware, are transmitted

to the CPU in PEARL. This is especially beneficial for scalability in a single physical
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machine with more FPGA cards. However, it is not clear how to forward packets

between different ports in different cards in SwitchBlade architecture.

6.5 Conclusion

We aim at using flexible routers to bridge the gap between new Internet protocols and

the practical test deployment. To this end, this work presents a programmable virtual

router platform, PEARL. The platform allows users to easily implement new Internet

protocols and run multiple isolated virtual data planes concurrently. A PEARL router

consists of a hardware data plane and a software data plane with DMA engines for

packet transmission. The hardware data plane is built on top of a FPGA based packet

processing card with TCAM embedded. The card facilitates fast packet processing

and IO virtualization. The software plane is built by a number of modular components

and provides easy programmable interfaces. We have implemented and evaluated the

virtual routers running on PEARL.

Our future work includes designing a hybrid algorithm which can take advantage

of TCAMs to improve the performance of packet classification on PEARL.
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Chapter 7

Conclusion

Packet classification is a core concern for network services. With the development

of cloud computing and Software Defined Networking, efficient software-based packet

classification has become a new research interest.

In this thesis, we have reviewed typical packet classification algorithms, such as

IP lookup algorithms and multi-dimensional packet classification algorithms. We

find that most algorithms exploit the “sparseness” feature to achieve fast algorith-

mic packet classification. In IP lookup algorithms, different algorithms exploit the

different ruleset features, such as non-uniform prefix length distribution, and the bi-

nary tree built from the FIB table has a lot of single child nodes (the sparseness

in the shape of the binary tree), etc. Similarly, in multi-dimensional packet classi-

fication algorithms, the rulesets exhibit some features such as few prefixes combina-

tions, non-uniform range distribution. Different from IP lookup which has a bounded

lookup time complexity, the performance of multi-dimensional packet classification

algorithms rely heavily on the ruleset features. Therefore when evaluating typical

packet classification algorithms on different rulesets, we find a wide variation of per-

formance results.
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In order to understand the root cause of high performance variation, we have

studied the impact of both algorithm design and ruleset features on the overall per-

formance. In the algorithm design, we have reviewed four typical packet classification

algorithms, and presented an algorithm design framework. In this algorithm frame-

work, we view each decision-tree based algorithm as a combination of three types

of meta methods, and present two new variants – HyperSplit-op and HiCuts-op by

mixing the meta methods from different algorithms. Through experiments, we find

that the memory footprint of these two variants is 1 ∼ 2 orders of magnitudes smaller

than those of the previous ones, and their classification speed is 1× faster. On the

low locality traffic, the two variant algorithms achieve 4 ∼ 9 Gbps throughput. More

importantly, these results reveal that part of the reason of the wide performance vari-

ation is due to the use of unsophisticated field choosing methods or a lack of necessary

optimization tricks. These observations provide a solid foundation for the study of

the connection between ruleset features and the performance of different algorithms.

In our research, we find that the ruleset feature usually determines the final per-

formance of majority algorithms. Our research results show that the “coverage-

uniformity” of the rulesets determines the number of memory accesses, while the

“orthogonal structure” inside the rulesets, the memory footprint of different algo-

rithms. For “coverage-uniformity”, we present a method capable of quantifying this

uniformity and choosing the right algorithm. We also propose a memory footprint

model based on the feature of “orthogonal structure” which can roughly estimate the

memory footprint.

The memory footprint model can be used to estimate the memory footprint of

large rulesets (100K) in seconds. And the quantify method can be used to reveal the

“coverage-uniformity” of the rulesets. These features are powerful to guide the design

of efficient packet classification algorithms.
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Then we design the SmartSplit multi-decision tree algorithm and AutoPC frame-

work based on the analysis of these two features. Compared to the state-of-art algo-

rithms, the memory accesses of SmartSplit are reduced by one time, and the memory

footprint is reduced by up to 10 times. For a given ruleset, the AutoPC framework

is capable of choosing the “right” algorithm for the ruleset. Compared to using only

one algorithm, the lookup speed is increased by 3.8 times.

Besides studying the feature of multi-dimensional rulesets, we have also studied

the connection between prefix length and update cost in IP lookup. We observe that

the number of memory accesses is linear with the prefix length in Tree Bitmap; the

update cost is small if the prefix length is short in DIR-24-8 algorithm. Based on

this observation, we propose a hybrid algorithm SplitLookup. SplitLookup achieves a

lookup speed close to DIR-24-8 while its update cost is 2 orders of magnitude smaller

than DIR-24-8. On the Tilera many-core chip, SplitLookup can achieve 40Gbps of

64B packets.

At last, we design PEARL, a flexible and easy-to-program platform for network

applications. In PEARL, the whole packet processing can be reprogrammed, and dif-

ferent network applications can be easily isolated using LXC containers. Our experi-

ment shows that while flexible, PEARL can also provide 4×1 Gbps packet forwarding

of 64B packets.

Packet classification has been extensively studied in the past decades. However,

the challenges remain as the needs of flexible network architecture supporting more

and more new network applications. This thesis reviews a lot of typical packet clas-

sification algorithms, including IP lookup algorithm and multi-dimensional packet

classification algorithms, and conclude that particular ruleset features usually deter-

mine the performance of many existing algorithms. The thesis has proposed several

methods for analyzing the ruleset features and guiding the design of new algorithms

or the choice of existing algorithms. The methods and algorithms proposed in this
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thesis have been extensively evaluated on software-based platform. experiments show

that our approach is effective and efficient. Future work includes exploring the rule-

set features which are related to the TCAM based packet classification solutions, and

designing hybrid algorithms for TCAM and algorithm based packet classification, etc.
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