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Abstract

There are three main results in this thesis. The first is existence and uniqueness of the solution in
viscosity sense for a system of nonlinear m variational integral-partial differential equations with inter-
connected obstacles. From the probabilistic point of view, this system is related to optimal stochastic
switching problem when the noise is driven by a Lévy process. As a by-product we obtain that the
value function of the switching problem is continuous and unique solution of its associated Hamilton-
Jacobi-Bellman system of equations. Next, we study a general class of min-max and max-min nonlinear
second-order integral-partial variational inequalities with interconnected bilateral obstacles, related to a
multiple modes zero-sum switching game with jumps. Using Perron’s method and by the help of systems
of penalized unilateral reflected backward SDEs with jumps, we construct a continuous with polynomial
growth viscosity solution, and a comparison result yields the uniqueness of the solution. At last, we deal
with the solutions of systems of PDEs with bilateral inter-connected obstacles of min-max and max-min
types in the Brownian framework. These systems arise naturally in stochastic switching zero-sum game
problems. We show that when the switching costs of one side are smooth, the solutions of the min-max
and max-min systems coincide. Furthermore, this solution is identified as the value function of the
zero-sum switching game.
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Résumé

Cette these est composée de trois parties. Dans la premiére nous montrons ’existence et 'unicité de la
solution continue et & croissance polynomiale, au sens viscosité, du systeme non linéaire de m équations
variationnelles de type intégro-différentiel a obstacles unilatéraux interconnectés. Ce systeme est lié au
probleme du switching optimal stochastique lorsque le bruit est dirigé par un processus de Lévy. Un cas
particulier du systeme correspond en effet a I’équation d’Hamilton-Jacobi-Bellman associé au probleme
du switching et la solution de ce systéme n’est rien d’autre que la fonction valeur du probleme. Ensuite,
nous étudions un systeme d’équations intégro-différentielles a obstacles bilatéraux interconnectés. Nous
montrons l’existence et I'unicité des solutions continus a croissance polynomiale, au sens viscosité, des
systemes min-max et max-min. La démarche conjugue les systemes d’EDSR réfléchies ainsi que la
méthode de Perron. Dans la derniere partie nous montrons 1’égalité des solutions des systéemes max-min
et min-max d’EDP lorsque le bruit est uniquement de type diffusion. Nous montrons que si les cotits
de switching sont assez réguliers alors ces solutions coincident. De plus elles sont caractérisées comme
fonction valeur du jeu de switching de somme nulle.
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Chapter 1

Introduction

1.1 General Results on Backward Stochastic Differential Equa-
tions

Let (2, F, P) be a probability space on which is defined a d-dimensional Brownian motion B := (By)i<7.
Let us denote by (F);<r the natural filtration of B and (F});<7 its completion with the P-null sets of
F. Define the following spaces:
e P, the set of Fy-progressively measurable, R"-valued processes on §2 x [0,T7;
o L2(F;)={n: F; — measurable R" — valued random variable s.t. E[|n|?] < oo};
e 52(0,T)={¢ : P, — measurable with continuous paths, s.t. E[sup[|p|?] < oo};

s<T

e H2(0,T) = {Z : P,, — measurable s.t. E[fOT |Zs|?ds] < oo}
e H'(0,T) = {Z : P, — measurable s.t. E[foT |Z,|2ds]z < ool

Definition 1.1.1. Let £ € L2 (Fr) be an R™-valued terminal condition and g(t,w,y,z): [0,T] x Q x
R™x R™*4 — R™ P, @B(R™ x R™*)-measurable. A solution for the m-dimensional BSDE associated
with parameters (g,§) is a pair of progressively measurable processes (Y, Z) = (Y, Zy)i<r with values in
R™ x R™*4 such that

VeS8, ZeH?
T T (1.1.1)
Yi=£6+ [ g(s,Ys, Zg)ds — [[ ZsdBs, Y0O<t<T.
The differential from of this equation is
—dY; = g(t, Y4, Zy)dt — Z,dBy, Yr =€. (1.1.2)

Hereafter g is called the coefficient and & the terminal value of the BSDE. The BSDE (1.1.1) has a unique
solution under the standard assumptions as follows:

(i) (9(,0,0))i<r € H2,
(i) g is uniformly Lipschitz with respect to (y, 2),i.e., there exists a constant C' > 0 such that
(H1){ for any (y,y/,2,2'):

lg(w,t,y,2) — g(w, t,y",2)| < C(ly —¥'| + 12 — 2'|), dt®@dP —a.e.

Theorem 1.1.1. (Pardouz and Peng [{9]) Under the assumption (H1), there exists a unique solution
(Y, Z) of the BSDE with parameters (g,§).

Using [t6’s formula we obtain the following a priori estimate.

Proposition 1.1.1. Let (Y, Z) be a solution of BSDE (1.1.1). Then there exists a constant ¢ > 0 such
that

T T
E[ sup [Vi[* + / \Z4[2d1] < cB¢[? + / 19(£,0,0)Pd]. (1.1.3)
0<t<T 0 0

When the coefficient is linear, we can get explicitly the component Y of the solution.

1



Proposition 1.1.2. (El Karoui, Peng, and Quenez [22]) Let (3, 1) be a bounded (R, R%)-valued progres-
sively measurable process, ¢ be an element of HZ(0,T) and & € L2(Fr). Consider the following linear
BSDE:

dY; = (th + Y10 + Ztut)dt — ZydBy; Yp =E&. (114)

(i) Equation (1.1.4) has a unique solution (Y,Z) € S3(0,T) x H2(0,T), and Y is given explicitly by

T
)/t = EKF@T + / Ft,sgbs‘Ft];
t

where (T'y s)s>¢ is the adjoint process defined by the forward linear SDE
Vs e [t, T, dlys =T 5(Bsds + psdBs) and T'yy = 1.
(i) If & and ¢ are both non-negative, then the process (Yi)i<T is non-negative.

In one-dimensional case, i.e., when m = 1, we have a comparison result between the Y’s as soon as
we can compare the associated coefficient and terminal values. More precisely,

Theorem 1.1.2. (El Karoui, Peng, and Quenez [22]) Let us consider the solutions (Y, Z) and (Y',Z’)
of two BSDEs associated with parameters (g,£) and (¢',¢'). We assume that g satisfies (H1), and
(g'(5,Y!, Z"))s<r is element of HE. If £ < & P —a.s. and g(t,Y/,Z]) < ¢'(t,Y/,Z}), dt ® dP — a.e.,
then,

Y; <Y/, Vte[0,T] P—a.s.

When the coefficients of the BSDE are deterministic functions of a diffusion process, the solution
(Y, Z) is also a deterministic function of the same process. If, in addition, a certain regularity on the
coefficients is introduced, it is possible to relate these functions with the pair (solution, gradient) of
some semi-linear PDE. The basic framework is the following: the randomness of the coefficient and the
terminal value of a Markvian BSDE comes from a diffusion process (X;f’”f)se[t’T], which is the strong
solution of a standard SDE:

te _ t,x t,x < <
{ dXt b(s, Xb%)ds + o(s, X0®)dBs, t<s<T (1.1.5)

Xb® =g, s €[0,t].

For any given (t,z) € [0,T] x R?, we will denote by (Y!*, ZL®) (s 7y the solution of the following BSDE:

S

{ —dY, = g(s, X", Yy, Zs)ds — ZsdBs, s <T;

Yo = w(xe), (1.1.6)

In order to have good estimates of the solution, we assume that the following condition is satisfied.

(H2):
(i) b and o are uniformly Lipschitz continuous with respect to x;
(ii) there exists a constant C s.t. for any (s, z),

o (s, 2)| + [b(s, 2)| < c(1 + |x]);

(iii) The function g : [0,7] x R x R™ x R™*4 — R™ is uniformly Lipschitz in (y,z) with Lipschitz
constant C, i.e.,
l9(s, @, 91, 21) — 98, 7,92, 22)| < Cllyr —ya| + |21 — 22]);

(iv) There exists two constants ¢ and p > 0 such that,
(s, 2y, 2)| + [V(2)] < (1 + |2]");
(v) The mapping © — (g(¢,,0,0), ¥(z)) is continuous.

Theorem 1.1.3. (Dellacherie and Meyer [15]) Under (H2), there exist two measurable deterministic
functions u(t,x) and d(t,z) such that the solution (Y"*, Z"*) of BSDE (1.1.6) is given by

Vit <s<T,YE" = u(s, X0") and Z4" = d(s, X5%)o (s, X5"), ds®@dP — a.e..



Let us now consider the following system of semilinear parabolic PDEs, where v is a R™-valued
function, defined on [0,7] x R? satisfying

% + Lu(t7 JU) + g(ta x) u(t7 JU), Do'u(t7 .Z')) = O v(t7 $) E [07 T] X Rd7 (1 1 7)
u(T,r) = ¥(x), Vr € RL. o
L is a second-order differential operator given by
d d
1 . 02 0
L= §i]2::1(00 )l,]m-‘r;bl%, DGU, = Duo. (118)

Under the assumptions (H2) on the coefficients, we can only consider the solution of PDE (1.1.7) in
viscosity sense. Moreover, we need to make the following restriction: for 1 <+4¢ < m, the i-th coordinate
of g, denoted by g;, depends only ont the i-th row of the matrix z. Therefore, the equation (1.1.7) can
be written as

ot

9ui 4 Lui(t, ) + gi(t, x, u(t, ), Dujo(t, ) =0, i=1,---m,
u(T,z) = ¥(x), Vo € R

Now let us introduce the definition of a viscosity solution:

Definition 1.1.2. Assume u € C[0,T] x R R™) and u(T,z) = V(z), for all v € RY. w is called a
viscosity subsolution (resp. supersolution) of PDE (1.1.7) if , for any 1 <i <m, ¢ € CH2([0,T] x R%)
and (t,z) € [0,T] x R? such that ¢(t,z) = u(t,x) and u(t,z) is a local mazimum (resp. minimum) of
U; — ¢;

% + Lo(t,x) + gi(t, z,u(t,x), (Doo)(t,z)) <0 (resp. > 0).

Moreover, u € C([0,T] x R R™) is called a viscosity solution of PDE (1.1.7) if it is both a viscosity
subsolution and a viscosity supersolution.

We now give the probabilistic interpretation of the viscosity solution of PDE (1.1.7) using (Y*, Z4*)
solution of the BSDE (1.1.5):

Theorem 1.1.4. (Pardouz and Peng [50]) Under Assumptions (H2), u = Y,"" is a viscosity solution
of PDE (1.1.7) and there exist two constants C and p, such that

lu(t,z)| < C(1+ |z|P), Y(t,z) € [0,T] x R

1.2 Systems of Integro-PDEs with Interconnected Obstacles and
Multi-Modes Switching Problem Driven by Lévy Process

Let us introduce the following spaces:

S? := {{p4,0 < t < T} is an R-valued, Fi-adapted RCLL (right continuous with left limits) process s.t.

E( sup \<pt|2) < oo} ; A? is the subspace of §? of non-decreasing continuous processes null at ¢t = 0 ;
0<t<T

H? := {{p;,0 <t < T} is an IR-valued, F;-progressively measurable process s.t. IE(fOT o) < oo}
2 := {2z = (£,)p>1 is an R-valued sequence s.t. |jz]|> == 3 22 < co};

i=1
H2(?) == {¢ = (¢1)i<t = (P7)n>1)e<T 8-t ¥n > 1, " is P-predictable process and

oo

T T
E(/O H%IIth)=Z]E(/O i dt) < oo}

i=1

L2 := {p is an R-valued, Fp-random variable such that E|gp|* < co}. O



1.2.1 Recalling some results for RBSDE

We first recall the Lévy-Khintchine formula of a Lévy process (L)<t whose characteristic exponent is
v, i.e., ‘
Voe R,  E(eft) =tO

with

1 )
U(f) =iab — §w292 +/ (ezex -1- i9$]l(m<1))n(dl‘)
R

1
= jaf — §w292 +/

|z|>1

(97 _ 1)T1(dz) + / (€97 — 1 — if2)[1(da)

0<|z|<1

where a € IR, @ > 0 and II is a measure concentrated on IR, setting II(0) = 0, so that the domain of
integration is the whole space IR and not only FE := IR\{0}, called the Lévy measure of X, satisfying:
(i) [Rr(LAz*)I(dz) < oo;

(i1) Je > 0,A > 0 s.t. f(fE e NI (dz) < +oo.

Those conditions (i)-(ii) imply that the Lévy process (L;);<r have moments of all orders. On the
other hand we have,

+oo )
/ |z|'TI(dx) < 0o, Wi> 2. (1.2.1)

— 00

Following Nualart-Schoutens (2000) we define, for every i > 1, the so-called power-jump processes
L) and their compensated version Y| also called Teugels martingales, as follows:

Ll(fl) =L
LElA) = ngt(ALs)iTt <Tandi>?2
v =1 — B(L{).

Note that for any t < T, E(L{") = t [ *'II(dz) is finite for any i > 2 ([46], pp.29).
An orthonormalization procedure can be applied to the martingales Y(¥) in order to obtain a set of

pairwise strongly orthonormal martingales (H (Z))z:}o such that each H( is a linear combination of the
(Y(j))jzl’i, i.e.,
H(l) = C,LJY(Z) + ...+ Ci’ly(l).

It has been shown in Nualart and Schoutens (2000) that the coefficients ¢; j, correspond to the orthonor-
malization of the polynomials 1, x, 2, ... with respect to the measure v(dz) = 2%I1(dx) + w25y (dx), where
o is the Diracmeasure in 0. Specifically the polynomials (g;)i>o defined by

i1 i—2 -
gi—1(x) = ¢ F i T et > 1

satisfy
/ 40 (2) @ (2)(d2) = S, , Y, > 0.
R

Next let us set 4 4
pi(z) = xqi—1(x) = ¢ 2’ + cm,lxl_l +.. .tz

]51(1‘) = I(qi_l(I) — qi_l(())) = Cz‘,ifﬁi + Ciﬂ'_lmiil + ...+ Ci72$2.
Then for any ¢ > 1 and ¢ < T we have:

HY =g s deii( ALY + oo+ ci2(AL)?} + i Ly — tE[esi(Ly) O+
..+ Ci72(L1)(2)] — tCi71E(L1)

= 4i-1(0) Lt + 30 <oy Pi(ALs) = E[Y o o<y Pi(AX)] = tqi1(0)E(Ly).
As a consequence, AHt(i) = p;(AL,) for each i > 1. In the particular case of i = 1, we obtain

HY = ¢4 (Ly — tE(Ly))



where
11 = [/ 2?T(dx) + w2]_% and E[L;] =a +/ 2I1(dx).
R |z|>1

Finally note that for any 4, j > 1 the predictable quadratic variation process is < H®, HU) >,= §;;t,Vt <
T. O
The main result in [47] is the following representation property.

Theorem 1.2.1. ([47], Remark 2). Let ¢ be a random wvariable of L?, then there exists a process
Z = (Z");>1 that belongs to H*((?) such that:

T . .
¢(=E()+ Z/O zZldH. O

i>1

As a consequence of Theorem 2.1.1, as in the framework of Brownian noise only, one can study
standard BSDEs or reflected ones. The result below related to existence and uniqueness of a solution for
a reflected BSDE driven by a Lévy process, is proved in [56]. Actually let us introduce a triplet (f,&,.5)
that satisfies:

Assumptions (A1)
(i) € a random variable of £2 which stands for the terminal value ;
(ii) f: [0,7] x @ x IR x £* — IR is a function such that the process (f(t,0,0)):<r belongs to H? and
there exists a constant x > 0 verifying
£ty 2) = £t )] < kly — o' + |2 = /), for every £,y,y/, = and 2"

(iii) S := (Si)o<i<r is a process of S? such that St < &, P — a.s., and whose jumps are inaccessible
stopping times. This in particular implies that for any ¢ < T, S = S;_, where S? is the predictable
projection of S (see e.g. [14], pp.58 for more details).

In [56], the authors have proved the following result related to existence and uniqueness of the solution
of a reflected BSDE whose noise is driven by a Lévy process.

Theorem 1.2.2. Assume that the triplet (f,£,S) satisfies Assumptions (A1), then there exists a unique
triplet of processes (Y,U, K) := ((Yy, U, K¢))i<r with values in IR x €* x IR such that:

(Y,U,K) € 8% x H(£?) x A?;
Yi =&+ [T f(s, Yo, U)ds + Kz — Ko — Y [T UWHD, i < T (1.2.2)
Y, > 8, vo<t<T, [T(v,- Ky 0. P — as.

The triplet (Y,U, K) is called the solution of the reflected BSDE associated with (f,£,5). O

Let us now introduce the following assumption on the process V.

Assumptions (A2): The process V = (V}});>1 verifies:

Z Vipi(ALy) > -1 dP®dt — a.e
i=1

and there exists a constant C' such that:

SNV <C, dP@dt—ae. O
i=1
We will give now a comparison theorem for RBSDE driven by a Lévy process.
Theorem 1.2.3. For i = 1,2, let (&,S% fi) be a triple which satisfies the same Assumptions as in
Theorem 1.1 and let (Y}, K}, U});<t be the solution of the RBSDE associated with (£;,S%, f;). Assume
that:
(Z) P— a.s, 51 2 52 and Vt € [OaT]a fl(t?yvu) Z f2(t7y7u); St1 Z St2 ;
1 2
(ii) For any UY,U? € H?(I?), there exists (VJU i )j>1 which depends on U' and U?, satisfies (A2)
and such that f1 verifies:
AEY2UD - A Y202 > (VOVS (U - U, dP @ dt — a.e..

Then P-a.s. for anyt < T, Y,' > Y2,



Next we are going to make a connection between reflected BSDEs and their associated PDEs with
obstacle. Consider the following SDE:

X0 =g +/ b(r, X" dr —|—/ o(r, X!")dL,, Vi <s<T, (1.2.3)
t t

and X1® = z if s < t, where we assume that the functions b and o are jointly continuous, Lipschitz
continuous w.r.t. z uniformly in ¢, i.e., there exists a constant C' > 0 such that for any t € [0,T],
z,x’ € IR, it holds,

lo(t,x) — a(t,z’)| + |b(t,z) — b(t,z")| < Clz — 2'|. (1.2.4)

o is uniformly bounded, b is of linear growth, i.e., there exists a constant C' > 0, such that for all
(t,x) € [0,T] x R,
b(t, @) < C(1+Jal), |o(t,2) < C. (1.25)

Under the above conditions, the process X% exists and is unique (see e.g. [42]), and satisfies:

Vp > 1, E[sup | XLP[P] < C(1 + |zf?). (1.2.6)
s<T

Next let us consider the following functions:
h:zeR— h(z) € R;
frtz,y,u) €[0,T] x Rx Rx1*— f(t,z,y,u) € R;
U:(t,z) €0, T]x R— ¥ € R,
which satisfy the following assumptions:
Assumptions (A3):

(i) h, ¥ and f(t,2,0,0) are jointly continuous and of polynomial growth, which we denote as h, ¥ and
f(t,x,0,0) € I, i.e., there exist positive constants C' and p such that: V(¢,z) € [0,T] x IR,

[h(@)] + [¥(t,2)| + [ f (¢t 2,0,0)| < C(1+ |z[7).

(ii) the mapping (y, z) — f(t,x,y, z) is Lipschitz continuous uniformly in (¢, x) ;
(iii) For any = € IR, h(z) > (T, x).
(iv) The generator satisfies,

f(t,:c,y,u) = h(t,l’,y, Zazuz)v V(t,x,y,u) € [OaT] x IR x IR x 62

i>1

where the mapping n € IR — h(¢,x,y,n) is non decreasing, and there exists a constant C' > 0, such
that V¢t € [0,T), 2,2’ € R, z,y € R,

|h(t,z,y,2) — h(t,z,y,2")| < Clz = 2|.
Further more (6%);>; is uniformly bounded i.e.

Zsup 10> < 00 P —a.s.,

i>1tS

and moreover Y., 0ip;(AL;) > 0, dt @ dP — a.e.. O
Noting that the assumption (A3)(iv) satisfies the assumption (ii) in Theorem 1.7, which allows us to
use comparison theorem in the proof of Theorem 1.8.

In the case of Markovian setting, i.e. when randomness stems from an exogenous process (X%)<r,

Yong Ren and Mohamed El Otmani have shown in [56] the relationship between RBSDE and IPDE. Let
(t,x) € [0,T] x IR* be fixed and let us consider the following reflected BSDE:

(Yie Utz Kb®) € 8% x H(#?) x A%
T T T T T T ;T T - T z,t i
YIS = h(XET) + [T f(r X7, Y0, 20y dr 4 KT — Kb — S [T zteidm, s <Ti (127)
i=1

Vs <T, YI® > WU(s, X\®) and fOT(YSm — (s, XL")dKE® =0, P — a.s..



There exists a continuous deterministic function u(t, ) which satisfies
V(t,x) € [0,T] x R*Vs € [t,T], YI* = u(s, X1®). (1.2.8)
Consider now the following IPDE:

{ min {u(t, x) — U(t, SL‘); —Opu(t,x) — ‘Cu(t7 'T) - f(t7 z,u(t, z), @(u)(t, l’))} =0 (1.2.9)
w(T,z) = h(x)
where L is the generator which has the following expression:
Lu(t,z) = (E[L1]o(t,z) + b(t, 2))0yu(t, ) + So(t,x)*w?02, u(t, x) (1.2.10)
+ flR[u(t, x+o(t,x)y) —u(t,x) — Ozu(t,x)o(t, )y|IL(dy) -
and
o(u)(t,a) = (L 0ult,@)o(t2) iz -

+ [p(ult,z +o(t,2)y) — ult.x) = dult,2)y)pu(y)IL(dy) )

k>1

Theorem 1.2.4. Under Assumption (AS3), the function u defined in (1.2.8) is continuous and is a
viscosity solution of (1.2.9). O

1.2.2 Motivation

In this paper, we study the existence and uniqueness of a solution to the system of integro-partial
differential equations (IPDEs in short) of the form: Vi =1,--- ,m,
min{ui(t, x) — max(ui(t, ) — gi; (t, 7));
Ve

_861? (t7 Z‘) - ‘Cul(t7$) - fi(taxa Uy, U, -~ ,Um)} =0 (1212)
ui(T, x) = hi(z)

where £ is a generator defined in (1.2.10) and associated with a stochastic differential equation whose
noise is driven by a Lévy process defined on a filtered probability space (2, F, (F)i<r, P) and then L is
a non local operator.

This system is related to a stochastic optimal switching problem since a particular case is actually
its associated Hamilton-Jacobi-Bellman system.

The multi-modes switching problem of interest is related to investment of a capital in the most
profitable economy in the globalization. More precisely, consider an agent that aims at investing a
capital in one of several economies denoted by €1, --- , €,,. His objective is to obtain the best return for
the investment. The capital is invested in the economy ¢; up to the time when the agent makes the
decision to switch it from €; to €; (i # j) because there is no longer enough profitability in ¢;. Moving
the capital from ¢; to €; incures expenditures which amount to g;;. Therefore, the agent should deal with
two main problem: what are the optimal successive times to move the capital, and when the decision to
switch from current economy is made, in which new economy will the capital be invested. More precisely,
let (as)sejo,7) be the following pure jump process:

(oo}
as = aglyg,y(s) + Zaj_11]9].71,9j](8), Vs < T,
j=1

where {6,},;>0 is an increasing sequence of stopping times with values in [0, 7] and («a;);>¢ are random
variable with values in A := {1,...,m} (the set of modes to which the controller can switch) such for any
J >0, a; is Fy,—measurable. The pair T = ((0;);>0, (a);j>0) is called a strategy of switching and when
it satisfies P[0, < T,¥n > 0] = 0 it is said admissible. Finally we denote by A} the set of admissible
strategies such that oy =7 and 6y = t.

Assume next that for any ¢ = 1,...,m, fi(t,z, (Yi)i=1,...m) = fi(t,x), i.e., f; does not depend on
(¥i)i=1,m- Let T be an admissible strategy of A! with which one associates a payoff given by:

T
JUt,x) = J(X)(t, ) == ]E[/ Fas)(: XE")ds =" ga, 10, (05, X0,) Lo, <1} + g (X7°)]
t

Jj=1



x x t,x t,x .
where fo(s) (8, X0%) = 304 filss X0 a(e)=i)s 8 € [t, T, (vesp. har (X5%) = 20ic 4 hi(Xp") jap=q) is
the instantaneous (resp. terminal) payoff when the strategy a (or T) is implemented while g;¢ is the
switching cost function when moving from mode i to mode £ (i, € A, i # £). Next let us define the
optimal payoff when starting from mode ¢ € A at time t by

u'(t,x) == riélfu J(1)(t, x) (1.2.13)

A similar problem has been already considered by Biswas et al. [8], however one should emphazise
that in that work, the switching costs are constant and do not depend on (¢, z). This latter feature makes
the problem easier to handle since one can directly work with the functions u; defined in (1.2.13).

Optimal switching problems are well documented in the literature (see e.g. [8, 13, 3, 11, 29, 32, 20,
34, 52, 60, 61, 19] etc. and the references therein), especially in connection with mathematical finance,
energy market, etc.

1.2.3 Main results

The main objective and novelty of this paper is to study system (1.2.12) without the restrictions made
by Biswas et al., [8] i.e., to allow the switching costs g;; to depend on (¢,z) and to show that (1.2.12)
has a unique solution. First let us introduce the following functions f;, h; and g;;, ¢, 7 € A:

fi 0 0,T]x R* x R™ x> — IR A
(t7 z, (yz)izl,mv u) — fi(ta z, (yz)izl,ma u)

h; (resp.gi;) : [0,T] x R¥ — IR
(t,x) — hi(t,x) (resp. g;;(t,x))

which satisfy:
Assumption (A4)
(I) For any i € A:

(i) the mapping (¢,z) — f;(t, o,y ,u) is continuous uniformly with respect to (', u) where 3y =

(Y")i=1,m ;
(i) the mapping (¥, u) — fi(t,x, ¥, u) is Lipschiz continuous uniformly w.r.t. (t,z) ;
(iii) f;(t,,0,0) is of polynomial growth w.r.t. (¢,z).

V) For any ) € , Xt, Yy € &7, there exists (V. LU i>1 which depends on an )
iv) Fi UL U? € H2(1?), X;,Y; € §2, th ists (V" *”"");>1 which depends on U* and U?
satisfies (A2) such that :

filt, X, Y3, U} — filt, X1, Y3, UF) > <VU1’U2’i, (U —U?))?, dP @ dt — a.e.;

(v) For any i € A, for any k # 4, the mapping yx — fi(t, 2, Y1, " s Yk—1, Yk, Yk+1, " *  Ym, &) 1S nON-
decreasing whenever the other components (¢, 2,91, , Yk—1, Yk+1, - » Ym, ) are fixed.

(IT) Vi,j € A, g;; = 0 and for i # j, g;x(t, z) is non-negative, continuous with polynomial growth and
satisfy the following non-free loop property: V(t,z) € [0,T] x R and for any sequence of indices i1, - , ik
such that ¢; = i, and card{iy,--- ,ix} = k — 1 we have:

Giio (t, (E) + Gisis (t, LU) + o+ Gy (t, (E) > 0, V(t, iU) S [0, T] X Rk.
(IT1) Vi € A, h; is continuous with polynomial growth and satisfies the following coherance conditions:

hi(x) 2 max (hy(x) — gi§(T,z)), Yz € R.
jeA™"



Our method is based on the link of (1.2.12) with systems of reflected BSDEs with inter-connected
obstacles driven by a Lévy process, i.e., systems of the following form: Vj =1,...,m, Vs < T,
Yot = p; (Xta: + fT f;(r, Xt (YFtw) e a, (UDT43) 21 )dr
- Zf UpetidHY + KRt - K3 s < T
Yg,a:t > mix{ykxt — (s, Xt0)}, Vs < T
Y7 = (Y — g3, X ARG = 0.

(1.2.14)

Under assumption (A4) on the data (f;)i=1,...,m, (Ri)i=1,...m and (gi;)i j=1,...m We show existence and
uniqueness of Fi-adapted processes (Y%t (U5*4%),5q, KI%t) . which satisfy (1.2.14). The proof is
given in two steps.

Step 1: Let us consider the following BSDEsS :

T o T
Y; = ?’X hJ(X;(E) +/ m?‘X fj({n X"E)xvy’r‘? T 7Yr7 UT)dr - Z/ UrldH'r(‘Z)
m s J=Lm - s

j=

and

T o0 T
Y, = min h;(X5") +/ min f;(r, XY, - ,Xr,ﬂr)dr—Z/ UldH®.,
j=1m s j=1m ; S

Foe n > 0 define (Y7, U™ K3") by:

Yin e S§2 Ui e H2((?), K" e A2

Yio =y
YL =h. (Xtal +f fJ th Yln 1 ,Y;j_l’n_17Y,r',j’n,Y,,:j+l’n_17
ok g 5[OS a2 1219

yJim > néa}qx(Yk” ! —gjk(s Xb®)), Vs < T

o IV = mase (V1 — g XL )] = 0

For i = 1,---,m, by induction we have: Vn,j, Vs < T, Y"1 < YJ" <Y, P —as., and
j =

E[ sup |Yi|?] < oco. The sequence (Y7"),>o has a limit denoted by Y7 for 1,---,m. By the
s€[0,T]

monotonic limit theorem in [25], Y7 € 8% and there exist U7 € H?(¢?), K7 € A?, such that

I = (X + [ fi(r Xt >dr—2f U dH + Kf — K], s < T

_ (1.2.16)
Y7 > max(YF — gjk(S,Xé’z))v <T,
keA; " °

where for any j € A, U7 is the weak limit of (U7"),,>1 in H?(¢?) and for any stopping time 7, K7 is the
weak limit of K™ in L?(Q, F,, P). Finally note that K7 is predictable since the processes K™J are so,
Vn > 1.

Let us now consider the following RBSDE:
Yﬂ‘ €82 Ule H2(£2) KJ e A2
_h XENY 4 [T filr, XPo Y, YL Y Y Y O )dr
_ Z f U;,JdHﬁ Q) + K —Ki, s<T; (1.2.17)

7 — max(YF — gi(r, X0F))]dKI = 0.

AJ> - b <
Y Ircrézzx(Y gjk(s, X5%)), Vs <T; fo max

Using Tanaka-Meyer’s formula (see e.g.[55], pp.216) on (Y7 — Y7)* between s and T, we can show:
P-ass., Y7 <Y for any j € A. On the other hand, since Vj € A, Y"1 < Y7, we have

kn—1 _ t,x < _ <T.
kHéﬁX(Y gik(s, X)) ng;‘X(Y gj(s, Xy7) Vs < T
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Then by Comparison Theorem, we obtain yin < yi , thus by taking limit, Y7 < Y7 which implies
YIi =Y Vje A

Next using It6’s formula with Y7 — Y7 we obtain, for any s € [0, 7],

/)

(Y7 = V9)2 = (Y = Vg)2 +2 5 (v =V )d(vi Vi)
)d[H”,Hk]r-

2 i Jo (U = U (U —

As YI =Y7 and taking expectation in both-hand sides of the previous equality to obtain
/ > (U = UM)dr] = 0.
i>1

It implies that U7 = U7, dt @ dP and finally K7 = K7 for any j € A.

Next by the assumptions on g;;, we can show that the predictable process K- 7 is continuous since it is
predictable. As j is arbitrary in A, then the processes K7 is continuous and taking into account (1.2.17),
we deduce that the triples (Y7,U7, K7), j € A, is a solution for system (1.2.14).

Step 2: Now we deal with the general case, and we introduce the operator © : [H?]™ — [H?|™, T — Y,
such that:

V) = hy(XE") + [T fi(r, X027 T, U dr f UridH" + K, — KI, Vs < T.

(1.2.18)

S

Y] > ma{VF — gyu(s.¥9)). Vs < T e - max (V¥ = g1 (s, Y7) kI = 0

By Step 1, we have the existence of Yj,_j € A. To get the uniqueness to the solution of (1.2.18), let
I := ((T')sefo,r))ica such that Vi € A, T" € H?. For s < T, let

T o0 T
V;a(.) = ha(T) (X’?z) + / fa(r) (7“, Xﬁ’zv F)Ta Nf)dr - Z/ NgﬂdHr(l) - Aa(T7 X%x) + Aa(sv X?I)

s

We can prove that Y7 = V& = ess sup V%, ¥(s,4) € [0,T] x {1,--- ,m} and the uniqueness follows (see
a€Al
Appendix Theorem 5.1.1).

It follows that © is well defined. Next let us define the following norm:

T
Yll2,6 := (E[/O e?*|Vs[*ds])>.

Then we prove that ,

2LTm

[O(r!) = ()2, < anl — T2 (1.2.19)

For (3 large enough, © is contraction on the Banach space (([H?])™,||.||2,3), then the fixed point theorem
ensures the existence of a unique Y such that ©(Y) = Y, which is the unique solution of system of
RBSDE (1.2.14). On the other hand there exist deterministic functions (u’(t,z))jca of polynomial
growth such that:

Vs € [t,T),YI™! = uf (s, X17). (1.2.20)

The next main result is the existence and uniqueness of a solution for the system of PDEs (1.2.12)
with interconected obstacles. For this objective we use its link with the system of RBSDEs (1.2.14).
However we are led to make, hereafter, the following additional assumption.

Assumption (A5): For any i € A, f; does not depend on the variable u € £2. O



11

In the Brownian framework of noise, the link between systems of PDEs with interconnected obstacles
and systems of reflected BSDEs with oblique reflection has been already stated in several papers (see
e.g. [22]). Therefore in this paper we extend this link to the setting where the noise is driven by a Lévy
process. Recall the system of IPDEs: Vi € A,

{ min{u;(t, ) — ?é%(uj(t,x) — gij(t,2)); — B (t, ) — Lug(t,x) — fi(t, @z, ur,un, -+ )} = 0;
wi (T, x) = hy(x)
where
Lu(t,x) = (E[L1]o(t,z) + b(t, x))0pu(t, z) + 3Tr[(coT)w? D2 u(t, z)]+
fR[u(tv T+ U(ta x)y) - ui(tv .’E) - %(ta ;U)O'(t, x)y]H(dy)

We are going to give the definition of viscosity solution of (1.2.21). So let us define by 1'%, 1?9 the
following non local terms:

I(t,z,¢) := ~/1R[¢(t’ z+o(t,z)y) —o(t,x) — %(tv z)o(t, z)y|Il(dy);
hta,0)= [ 0.0l 2) — 60,2) — Gt 1ot i)

B(t,2,0,0) = / ot ot 2) — ott2) —aott ()

Lou(t,z) = (E[L]o(t,x) + b(t,2))0,¢(t,x) + 1 Tr[(coT)w? D2, é(t, )]+
I}(t,z, ¢) + IZ(t,z,V,u).

By Lemma 5.1 in Appendix, I} (¢, z, ¢) and I?(t, z, q, ¢) verify the Assumption (NLT) which is introduced
by Barles et al.([6]).

Next, we give two definitions of the viscosity solution of (1.2.21), and according to [6] (pp.571), they
are equivalent. For locally bounded function u: (¢,z) € [0,7] x R — u(t,x) € R, we define its lower
semi-continuous (Isc for short) envelope w., and upper semi-continuous (usc for short) envelope u* as
following:

uy(t, o) = lim u(t',x'), u(t,x) = lim u(t', x').

(@) —(t,z), t/<T ' 2)—(t,x), t/<T

Definition 1.2.1. A function (u1,--- ,um) : [0,T] x R — R™ € I, such that for any i € A, u' is
Isc (resp. wusc), is said to be a wviscosity subsolution of (1.2.21) (resp. supsolution) if for any i € A,
u'(T,z) < hi(z) (resp. u'(T,x) > hi(x)); and for any test function ¢ € I, CY2([0,T] x R), if
(to,z0) € [0,T] x R is global mazimum (resp. minimum) point of u* — ¢,

o . 0 1.
min{u’ (to, o) — jﬂgg(uj (to, o) — gij (to, 0)); Tﬁ(toa z0) — L* (to, x0)

- fi(<t0,$07ul(t0,l‘0)7 e 7ui_1(t07x0)aui(t03x0>7 e 7um(t05$0))} S 0 (7"65]7- Z 0)7

(uh)™, is called a viscosity solution of (1.2.21) if (ul)™, (resp. (u™*)™,) is a viscosity supersolution
(resp. subsolution) of (1.2.21).

Definition 1.2.2. A function (u, -+ ,um) : [0,7] x R — R™ € Il, such that for any i € A, u® is lsc
(resp. usc), is said to be a viscosity subsolution of (1.2.21) (resp. supsolution) if u*(T,x) < hi(x) (resp.
u'(T,z) > hi(x)); and for any test function ¢ € CH2([0,T] x R), if (to, 7o) € [0,T] x R is a maximum
(resp. minimum) point of u* — o on [0,T] x B(xg,C§), where C is the bound of o, and & > 0,
. i j dp’ i
min{u (o, o) — max(u’ (o, o) — gi; (to, 20)); 5~ (to, 0) — Loy (to, 7o)
- fi((t07x07u1(t03x0)a e ,uiil(to,‘%o),ui(to,xo), e 7um(t0710))} <0 (7’6511 > 0)

(uh)™, is called a viscosity solution of (1.2.21) if (ul)™, (resp. (u'*)™,) is a viscosity supersolution
(resp. subsolution) of (1.2.21).
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Using the first definition, we can prove the following lemma:

Lemma 1.2.1. Let (u')™, be a supersolution of (1.2.21) then ¥y > 0,3X\g > 0 which does not depend
on 0 such that YA > \g and 0 >0, ¥ = (u;(t,x) + e~ |2|>7T2)™, is supersolution of (1.2.21).

Remark 1.2.1. If (u’), is a viscosity subsolution of (1.2.21) which belongs to 1, i.e. for some~y >0
and C >0, .

lui(t,z)| < C(1+ |z|7), V(t,z) €[0,T] x R* and i € A.
Then there exists Ao > 0 such that for any X > X\ and 6 > 0, U (t,z) = (u;(t, x) — O~ (1 + |2|>F2))m,
is subsolution of (1.2.21). O

The next theorem shows the relationship between (1.2.21) and (1.2.14), and so the existence of the
viscosity solution for (1.2.21).

Theorem 1.2.5. The function (u;(t,z))jca defined in (1.2.20), is a viscosity solution of (1.2.21), with
polynomaal growth.

For the sake of clarity, we divide the proof into two steps.
Stepl. First we will show that (u;)jca is a supersolution of (1.2.21). For all j € A, as u; is Isc, so
uj, = u;. Consider the sequence of function: u”(t,2) = Y;"™""  where ¥""* is the unique solution of

Y00 = minge s HO(XE) + [T minjea f;(r, X0o, Ym0 0 yjet0)dy
_ Zf UjactzOdH(Z
Y]a:tn _ H(]) tz +f f] th let,n717... ’}/;Jfl,m,t,nfl,}/:,z,t,n

)

) ) 1.2.22
Ym:ctn l)dr_zf U]xtzndH() K%I»t,n_Kg,x,t,n n:1’2,.,_’m ( )
yimtn > in:%x{ka” fn1 — gjr(s, XL™)}, Vs < T
€
(V34 — ma{YES4n 1 = gy, X0%) KL = 0.
kEA]'
By theorem 1.3 and induction, u;’(t, x) is the unique viscosity solution of
—4‘9’51’0 (t,x) — Lu?O(t, x) — minjea f;(t, z,u?0) = 0;
w0 (T, x) = minjea hj(z);
in{u?"(t,x) — In=L(t 2) — gjk(t, x));
mm{u (t, ) }g&f(u (t,x) = gk (t, )); (1.2.23)
__a%:n (t’ x) - ‘Cu]’n(t7 J?) - f](tv z, ul,n—17 e ,uj—l,n—17 uj7n7 T 7um,n—1)} = Oa
w™(T,x) = h;(x).
Also we know that, Vj € A, u} / u;, and for any n = 1,2,---, u} is continuous with polynomial
growth. This together with the monotonic condition on f;, i.e. for any ¢ € A, for any k # i, the
mapping yx — fi(t,x, Y1, s Yk—1,Yk, Yk+1, " * » Ym, u) is nondecreasing whenever the other components
(t, Y1y s Yk—1,Ykt+1, " ** »Ym,u) are fixed, using the similar way with Theorem 1 in [6], we can show
that 9
—g(t,x) — Lo (t,x) — fi(t,x,ut (t,2), w7t ), uf (¢ @), - u™ (¢ 2)) > 0.

We have know that Vj € A, v/ > max(u*(t,2) — gjx(t,x)) and v/ (T, x) = h;(z), so (u;)7L; is a super-

keA;
solution of (1.2.21).

Step2. Next we show that (u});jea is a subsolution of (1.2.21), using the same method as [30] we
can prove that:

mindu; (T, ) = hj(z); (T, ) — max(ui(T, z) = g5k (T, 2))} = 0.

this together with the non-free loop assumption on the cost function g;;, we can show that: u} (T,z) =
hj(zx), Vj € A. Noting that since u} " u; and u} is continuous, we have

ui(t,x) = lim sup™uj(t,z) = lim ul (t',x").

n—oo n—oo,t' —t,x’ —x
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Besides Vj € A and n > 0 we deduce from the construction of u;’ that :

uj (t, ) 2 max(up'(t, x) = gj(t, z)),

take the limit to obtain: Vj € A, Vz € R,

uj(t, x) > max(uf (t, x) — gj(t, z)).
IEA;

Next, fix j € A, for (¢,z) € [0,T[x R such that

ui(t,x) — Jlfnix(ul* (t,z) — gj(t,x)) > 0. (1.2.24)
€4;j

By the same way as Step 1, we have:

7%@71’) - £¢U*’j(t7l’) - fj(t,x,u*’l(t,x), T 7U*’j71(t7x)a U*’j(t,l‘), e 7U*’m(t7x)) < 0.

This together with (1.2.24) shows that (u})7.; is a subsolution of (1.2.21).
The second main result is a comparison theorem of subsolution and supersolution, from which we
can get the continuity and uniqueness of the viscosity soluion of (1.2.21).

Theorem 1.2.6. Let (u;);jca be a subsolution of (1.2.21), (vj)jea be a supsolution of (1.2.21) such that
Vi€ A, uj,v; €11y, then
V(t,z) € [0,T] x R, wu;(t,z) <wvj(t,x).

The proof is based on Jensen-Ishii’s Lemma [6]. For (¢,Z) which is the maximum point of u; (¢, z) —
wj(t,x), for € > 0 define test function as follows:

j o |z —yf?
(I)g(tvx7y) Ea u](t,a:) - wJ(tvy) - - = ¢(t7$)7
where
Y(t,x) = ple —z[* + |t — 12
Let (te, e, ye) be such that
@g(ts,xs,ys) = max @g(t,x,y).

(t,z,y)€[0,T]x R?

Then we proved two facts:

(i)

hm(uj(tEsz)ij(t&yE)) = (uj(ﬂ i')ij( 7j))

€
(i)
I = 1176(755,1'57(%3) + 1276(t871‘8aq2’ui)
o |2
< Il’é(te’ya —dy) + 12’6(7557:‘/87%61;7 w;) + O(‘Ef%l) +oc(1) + %05(1) +0p(1).

These with Jensen-Ishii’s Lemma, by contradiction and doubling variable technique we can prove that

V(t,z) € [0,T] x R, wuj(t,z) <v;(t, ).

The last main result is the existence and uniqueness of systems of IPDE (1.2.21), when (—f;),ca
verify [A4] (1)-(iv), i.e. Vj € A, k € A; f; is non-increasing in yj, which we rewrite as Assumption
(A4°):

(1) For any i € A:
(i) the mapping (¢,z) — fi(t,z, ¥') is continuous uniformly with respect to ¥ where § = (y")i=1.m ;

(ii)the mapping % + fi(t,z, ) is Lipschiz continuous uniformly w.r.t. (¢, ) ;
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(iii) f;(t,x,0) is of polynomial growth w.r.t. (¢,2).

(iv) For any i € A, for any k # i, the mapping yr — fi(t, 2,91, , Yk—1, Yk Ykt+1," " , Ym) IS nonin-
creasing whenever the other components (¢, 2,91, -, Yk—1, Yk+1, -, Ym) are fixed.

(2) Vi,j € A, g;s = 0 and for i # j, gjx(t,x) is non-negative, continuous with polynomial growth and
satisfy the following non-free loop property: V(t,z) € [0,T] x R and for any sequence of indices i1, - ,ij
such that ¢; = iy and card{iy, - ,ir} = k — 1 we have:

Girio (1) + iy (1, ) 4+ -+ 4+ gii, (t,2) > 0, Y(t,z) € [0,T] x R*.
(3) Vi € A, h; is continuous with polynomial growth and satisfies the following coherance conditions:

hi(e) > mas (b (x) — g5, (T, ), ¥ € R
JjeA™!
Theorem 1.2.7. If (f;)jeca verify [Ad4'], then systems of IPDE (1.2.21) has a unique continuous viscosity
solution (uj;)jea with polynomial growth.

1.3  Viscosity solution of system of variational inequalities with
interconnected bilateral obstacles and connections to mul-
tiple modes switching game of jump-diffusion processes

1.3.1 Preliminaries

Let (Q,F, (F;)i>0, P) be a stochastic basis such that F contains all P-null elements of F, and F,+ £

ﬂo Fire = Fi, t > 0, and suppose that the filtration is generated by the following two mutually inde-
£>
pendent process:

- a d-dimensional standard Brownian motion (W;):>o

- a Poisson random measure N on R, x E, where E = R' — {0} is equipped with its Borel field Bg, with
compensator v(dtde) = dtn(de), such that {N((0,]x A) = (N —v)((0,] x A) }o<i<7 is and F,-martingale
for all A € By satisfying n(A) < co. n is assumed to be a o-finite measure on (E, Bg) satisfying:

/ (1 A x?)n(dz) < oo. (1.3.1)
E

Let T be a fixed positive constant and A! (resp. A2%) denote the set of switching modes for player 1
(resp. player 2). Let m; (resp. ms) be the cardinal of the set A' (resp. A2?) and for (i,j) € A x A2,
Al = A — {i} and A2 = A% — {j}. Next, for 7 = (y* )(k eAlxa2 € R™X™2 For any y; € R, denote
by [¥%7, 1] the matrlx which is obtained from % by replacing the element y* with y;.

A function ® : (t,z) € [0,7] x R — ®(t,z) € R is called of polynomial growth if there exist two
non-negative real constant C and v such that

@, 2)] < C(1+ [2]).

Hereafter, this class of functions is denoted by II,
We define the following spaces of processes, let:

P be the o-algebra of Fi-predictable subsets of Q x [0, T1;

£2 = {¢ is an R-valued, Fr-random variable such that ||¢]|2, := E|¢]* < oo};

H? = {{p,0 <t < T} is an IR-valued, F;-progressively measurable process s.t. |\<p||3{2 = E(fOT |g0t|2) <

oo};

8% := {{¢,0 <t < T} is an R-valued, F;-adapted RCLL process s.t. ||¢[|%. := E( sup lpe]?) < ool ;
0<t<T

A? is the subspace of S? of continuous non-decreasing processes null at ¢t = 0 ;

H2(N) := {U(e):Q%[0, T]x E — R which are PxBg measurable and s.t. ||U||H2(N =F fo I U (e)

oo}

n(de)dt) <
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In this paper, we investigate existence and uniqueness of viscosity solutions v’ (¢, z) := (v¥ (t, T))(i,j)c Al x A2
of the following system of variational inequalities with upper and lower interconnected obstacles: V(i,j) €
Al x A2,

min{(v¥ — LY[7))(t, z), maz{(v¥ — UY[V])(t, x), =0 (t,z) — Lv¥ (¢, z)
=g (t, z, (V' (t, @) (e arx a2, o (8, ) Do (¢, 2), BIvH (t,2))}} = 0 (1.3.2)
vI(T,z) = hi(z)

where, for any (¢,z) € [0,T] x R,

Lo(t,x) = b(t,x)Da(t, x) + 50°(t, 2) D2, d(t,7)
+ fE(d)(tv x+ ,B(LL', 6)) - ¢(t7 1‘) - D:I?(b(t’ l’)ﬁ(.’lﬁ, e))n(de),

Big(t,x) )
= fE(¢(t7 T+ ﬁ(l‘, 6)) - ¢(t> x))'yl] ('Tv e)n(de)7
and V(i,7) € A x A2,

LY [0t x) 1= max{ (0" — g, ) (t,0)} and UV [V])(t,2) == min{(v" = g;) (¢, 2)}-

Denote by
Ii(t.x,¢) = / (¢(t,x + B(z,€)) — ¢(t, z) — Dap(t, ) 3(x, €))n(de);

le]<é

I§(t,2,q,0) = / (@(t,z + B(z,€)) — o(t, ) — gB(x, €))n(de);

le|>6

177 (2, 0) = / (6(t,2 + B, €)) = d(t,2)7" (, e)n(de);

le|<é

7 (1w, 0) = / (6(t, 2+ Bz, €)) = 6(t,2)7" (@, e)n(de);

le|>6

I(t,z,¢) = /E(¢(t, z + B(z,€)) — (t,z) — Dagp(t, ) (2, €))n(de);

%7 (t,2,0) = / (@(t,x + Bz, €)) — $(t,x))7" (x, e)n(de);

E
Lou(t, z) = b(t, ) Do (t, 7) + %aQ(t, ) D30t @) + I'(t2,0) + I(t, 2, Dy, w),

The following assumptions will be in force throughout the rest of the paper.

(AO0) The functions b(t,x) and o (¢, z): [0,T] x R — R are jointly continuous in (¢, ), of linear growth in
(t,z) and Lipschitz continuous w.r.t. x, meaning that there exists a non-negative constant C' such that
for any (t,z,2’) € [0,T] x R we have:

bt 2)| + [o(t,2)| < C(L+ a), |o(t,) - o(t,a')| + [b(t, 2) - b(t, 2')| < Cla - .

The function 8 : R x E — R is measurable, continuous in x and such that for some real K and all e € F,
for any z,2’ € R,

1B(z,e)] < K(1Ale]), |B(z,e)—p(',e) < Klx—z'|(1A]e]).

(A1) For any (i,5) € A' x A%, g¥(t, 2,9 ,2,q) : Rx Rx R™*™ x R¥ x R — R,

(i) is continuous in (t, x) uniformly w.r.t. the other variables (¥, z,¢) and for any (¢, ) the mapping
(t,z) — ¢g"7(t,x,0,0,0) is of polynomial growth.
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(ii) satisfies the standard hypothesis of Lipschitz continuity w.r.t. the variables (¥, z,q), i.e. ¥(¢,7) €
[O7T} X R7 V(?la 72) € RmMxmz x RTIL]XTVLQ, (Zla ZZ) € Rd+da (qla q2) € R x Ra

97 (2, Y 1, 20,q1) — 97 (6,2, G 9, 20, 02)| < CUY1 = Yol + |21 — 22 + g1 — g2),
where, |7/| stands for the standard Euclidean norm of 7 in R™: x R™2.
(iii) ¢ — g% (t,z,v, 2, q) is non-decreasing, for all (t,x,y,z) € [0,T] x R x R™*™ x R.
Futhermore, let v : R x Bg — R such that there exists C' > 0,
0<~Y(xz,e) <C(1Ale|]), z€R,ecBg

V9 (x,e) =77 (2’ e)| < Clz —2'|(1 Ale]), z,2' € R,e € E.
We set
Pt 0) =tz [ (e (o, on(de),
B

for (t,z,y,z,u) € [0,t] x R x R™*™2 x R x L?(R,Bg,n). B B
Noting that under Assumption (A0) and (A1), by ([5]), I, IB”,I(%,I(?, Ig’BLJ,Ig’BU satisfy the Assump-
tion (NLT), which is given in appendix.

(A2) Monotonicity: For any (i,j) € A' x A% and any (k,) # (4,7) the mapping y*! — ¢ (t,z, Y, 2, 1)
is non-decreasing.
(A3) The functions h/(z) : R — R are continuous w.r.t. @, belong to class II, and satisfy

V(i,j) € A' x A%and x € R, max(h* (z) — 9., (T, z)) < R¥(z) < min (b (z) — (T, x)),
ke A} = leA?

where g;, and g, are given in the next assumption.
(A4) The no free loop property: The switching costs 9 and g;; are non-negative, jointly continuous in
(t,x), belong to I, and satisfy the following condition:

For any loop in A! x A2, i.e., any sequence of pairs (i1, j1), ..., (in, jn) of 't xI'? such that (iy,jy) =
(t1,71), card{(i1,41),...,(in,jN)} = N—1land Vg =1,...,N — 1, either iz = iq Or jg11 = jq, We
have V(¢,z) € [0,T] x IR¥,

> Gigig () #0, (1.3.3)

qg=1,N—1

where,V ¢ =1,....N =1, @i i, (t,x) = —g. . (&, 2) Wi 2i 0 + Gjpigr (G 2) g 25000

“lalg+1

Consider now the following SDE:
Xb* = er/ b(r, X5*)dr +/ o(r, XE®)dW, Jr/ / B(XL" e)N(drde), se[t,T],z € R.
t t t JE

The existence and uniqueness of the solution X%* follows from [5].

Next, we give three definitions of the viscosity solution of (1.3.2), and according to [5] (pp.571), they
are equivalent. For locally bounded function u: (¢,z) € [0,7] x R — u(t,x) € R, we define its lower
semi-continuous (Isc for short) envelope w,, and upper semi-continuous(usc for short) envelope u* as
following:

Uy (t, ) = lim u(t',x'), u(t,x) = lim u(t', x')
(' x)—(t,z), t/<T @)= (t,x), t/<T

Definition 1.3.1. A function U = (uij(t,x))(i’j)eAlez : [0,T) x R — RAYA® sych that for any
(i,5) € Al x A%, u" € 11, is Isc (resp. usc), is said to be a viscosity subsolution (resp. supsolution) of
(1.8.2) if for any test function p € CY2([0,T] x R), if (to, 7o) € [0,T] x R is a global mazimum (resp.



minimum) point of u™ — p,

min{(u¥ — LY [ﬂ)])(to, x0), maz{(u¥ — UY [7])(t0, Zo), —Opp(to, o) — b(to, xo)dup(to, To)
750— (thxO)angO(thxo) - I(t071'0, SO)

—g" (to, xo, (uM (to, T0)) (ke ar w42, 0 (to, 20)) s p(to, o), I (to, 20, ) }} < 0 (resp. > 0);

vI(T,z) < h¥(x)  (resp.>).

Definition 1.3.2. A function W = (u"(t,2)) jjearxaz @ [0,T] x R — RAY™A® such that for any
(i,7) € A' x A%, u¥ €11, is lsc (resp. usc), is said to be a viscosity subsolution (resp. supsolution) of
(1.8.2) if for any & > 0, (to, o) € (0,T) and a function ¢ € C12([0,T]x R), such that (to,z0) € [0, T]x R
is a maximum (resp. minimum) point of uI — ¢ on [0,T] x B(xg, K¢), where K is the bound of 3,

min{(u” — LY [W])(to, x0), max{(u — U9 [U])(to, 20), —Orp(to, T0) — b(to, 20)Fwp(to, To)

_50- (th xo)azzsp(t()a .’170) - Ig (t07 Zo, QS) - I(?(t07 Zo, 8@‘@7 Ul‘])

—g" (to, o, (Ukl(to»300))(k,l)eA1 A2, 0(to, 20)) 0z (to, o), I;’B” (to, o, ) + I?’B” (to,zo,u))}} <0 (resp. > 0);

v (T, x) <hV(x)  (resp. >).

Definition 1.3.3. (i) For a function u: [0,T] x R — R, lsc (resp. usc), we denote J u(t,z) the
parabolic subjet (resp. JTu(t,z) the parabolic superjet) of u at (t,z)€ [0,T] x R, as the set of triples
(p,q,M)€ R x R x S*; where S* is the set of symmetric real matrices of dimension k

1
wt' 2"y > u(t,x) +p(t’' —t) + (g, 2 —x) + §<x' —a, M(x' —z)) +o(Jt' —t| + |2’ — 2|)* (resp. <)

(ii) We denote J~u(t,z) (resp. Jtu(t,z)) the parabolic limiting superjet (resp. superjet) of u at (t,z),
as the set of triples (p,q,M)€ R x R x S* s.t.

(p,q, M) = lim (pp,qn, M,), (t,x)= lim (t,,zy)

where (Dn, Gn, My) € J~u(tn, p) (resp.JTu(ty, z,)) and u(t, ) = lim u(t,,z,).

(iti) A function W = (u"(t,x)) i jyearxaz : [0,T] x R — RAYXA® such, that for any (i,j) € A' x A2,
u” €11, is Isc (resp. usc), is said to be a viscosity subsolution (resp. supsolution) of (1.3.2) if for any
6 >0, (to, o) € (0,T)x R and a function ¢ € C*2([0,T]x R), if (to, x0) € [0, ] x R is a mazimum (resp.
minimum,) point of ud — ¢ on (0,T) x B(x, KS), and if (p,q, M) € J-ubI (ty,xo)(resp.J tubI (tg, z0))
with ¢ = Dy¢(to, o), p = Dod(to, x0), and M > D2, é(to, x0) (resp. M < D2 ¢(to,x0)), then:

min{(u” — LY[W])(to, x0), max{(u — U9 [W])(to, 20), —p — b(to, z0)q — %02(1607330)M — I} (to, o, 9)

I§(to7wqu,u13) — g% (to, o, (Ukl(tovffo))(k,l)eAle?»U(toaifo)qvI;’B (to, 0, ¢) + I(?’B (to, zo,u"))}} <0

(resp. > 0);

v (T,x) < h¥(x) (resp.>).

Definition 1.3.4. A function u = (u"(t, *))(ijyearxaz such that for any (i,j) € Al x A%, W e 11,
t

is called a viscosity solution of (1.3.2) if (ud (t,x)) i jycarx a2 (resp. (u uf;(t, 7)) (i j)earx a2 ) is a viscosity
supersolution (resp. subsolution) of (1.5.2).

1.3.2 Two approximating schemes

For n,m > 0, let (Y%Jmm Zijnm, Ui’j’”’m)(i,j)em « A2 be the solution of the following system of BSDEs.

(Yi,j,n,m, Zi,j,n,m’ Ui,j,n,m) c 82 % H2 % HQ(N),

d}/Si,j,n,m — _fifjin’m(37X£’x, (Ysk‘,l,‘n,m)(k’l)AGAle%Z;',j,n,m, U;l,j,n,m)ds
B 203 dB, + [ Ubimm(e)N(dsde), s < T.

Vi i (X47),

(1.3.4)
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where,
FoPmm (s, X0, (y7) (1jye arx a2, 25, Us)

= gi’j’”’m(S,Xﬁ’wa(ykl)(kl)eAle%st/ us(e)y”? (X0", e)n(de))
B

= gi7j (87 Xﬁ’x» (ykl)(kl)eAl X A2 Zsy / Us (6)7” (X?w? e)n(de))
E

ij ki _ Lz 1\ — _ i il _ = tz\1\+
+n(y ;?é?{?{y 9, (8, X)) —m(y lréli%{y Gu(s, XJ") )™

Let us recall that under Assumption (A1), the solution (Y7 Zuhmm [Thimmy ;o 41y 42 of (1.3.4)
exists and is unique (see [6]). By the assumption(A1)(iii), we have the comparison theorem for BSDE
with jumps (see [58] Theorem 2.4). The we have:

Proposition 1.3.1. For any (i,j) € A' x A% and n,m > 0 we have
P —a.s., YbWimm Lyhintlm gpg yiinmtl <yhinm gy e A x A2, (1.3.5)

Moreover, for any (i,j) € A x A% and n,m > 0, there exists a deterministic continuous function
vhm e Il such that, for any t < T,

yidnm — yiinm(s xtE) g e [t T, (1.3.6)
Finally, for any (i,7) € A' x A% and n,m >0,
B (t p) < pbITLM (L ) and vBPTT TN (L ) < 0BT (), (ta) €[0,T] x R (1.3.7)

The proof of first claim is based on the result by Xuehong Zhu (2010) ([62], Theorem 3.1) related
to the comparison of solutions of multi-dimensional BSDEs. The second claim is just the representation
of solutions of standard BSDEs with jumps by deterministic functions in the Markovian framework (see
[6]). The inequalities of (1.3.7) are obtained by taking s = ¢ in (1.3.5) in view of the representation
(1.3.6) of Yiimm by ¢hdmm and X6,

Now we will show two approximation schemes obtained from the sequence Y43™" (i, j) € Al x A?),,

of the solution of system (1.3.4). The first scheme is a sequence of decreasing reflected BSDEs with
interconnected lower obstacles: V(i,j) € Al x A2,

(Yidm, zidm gridm Khim) e 82 x H? x H2(N) x A%
Viam — R (Xp) 4 [P (o, X0, (VER) o e aaz, Z00m, Oy dr — [T 2097 dB,
— ! [ URm(e)N (drde) + K7™ — Kb, s < T;

Yiim > Q%{YS’W‘M —9,. (s, X0%)}, s<T;

T i gm vV k,j,m z [ Jm
fo (YS 5T — ]?éa‘lﬁ{y;k’]’ — gzk‘(s’X‘? )})sz’]v = O,

(1.3.8)
where, V(i,7) € A' x A2, m>0and s <T,

fi,j,M(S’Xz,a:, 7, z,u) ::gij7+,m(s’X§,m’ (ykl)(k,l)eAle2a Zv/ U(e)’}/ij(Xi’w, e)n(de))
E

=g (s, Xb", (ykl)(k,l)EAle%Za/ u (e)y7 (X7, e)n(de))
E
ij . T t,x\\\+
- — +7..(s, X .
MR e )

Thanks to the assumption (A1)-(A3) and non free loop assumption, by Theorem (5.4.1) in appendix,
the solution of (1.3.8) exists and is unique. Moreover, we have the following properties.
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Proposition 1.3.2. For any (i,7) € A' x A% and m > 0, we have:

(i) g o
lim E[ sup |[Y20m™ —Y5Hm 2] -0 (1.3.9)
n—oo 1<s<T

(i)

P —a.s., Ybim > ybimtl
(iii) There exists a deterministic continuous functions (ﬂk’l’m)(kJ)EAl x A2 tnlly such that, for everyt < T,
Yiim = ghdim(s, X0, s € [t,T). (1.3.10)
Moreover, ¥(i,j) € A* x A% and (t,x) € [0,T] x R*, a*P™(t,x) > a1 (t,x).
Finally, (a*7™)q jyearxa2 is the unique viscosity solution in the class Tly of the following system of

variational inequalities with inter-connected obstacles. ¥(i,j) € A x A2,

min{a®9™(t, ) — ma)g(ﬂk’j’m(t, z) — g, (t2)); —0ut ™ (t, x) — LatI™(t, x)
KEA Z

GOm0, (151, 2)) e s ean o ) DT (1 2), BIGIm () =0, (131D)
abdhm (T, x) = hi (x).
The second scheme is the increasing approximating scheme: V(i,j) € A! x A2,
(Yhan, ZB0m Uhin K € 82 x H? x H2(N) x A%
Y = WX 4 [ 1 0 X0 () persar, 220" U™ dr = [ 2077 dB,
= [ [y UM (e)N(drde) + K™ — K", s < T (1.3.12)
Y™ < min{yih" +gu(s, X07)}, s<T,

2
leA]

T i, : k.jmn | — x 4,4,m
Y™ _ mind{Y ™o +7. S,Xt’“L dKYI™ = 0’
fo (—s ZEA?{is g]l( s )}) 22 s

where, V(i,7) € A x A2, n>0and s <T,

FM (s, X5 Y 2ou) =g (s, X5 (v (rpear ><A2,Za/ u(e)y (X97, e)n(de))
B
:gij(S,X?Iv(ykl)(k,l)€A1XA2azv/ u(e)y?(Xg?, e)n(de))
E

i kj _ t,T\\)—
+n(y Q%(Y 9., (8, X))

Thanks to the assumption (A1)-(A3) and the non free loop assumption, by Theorem 5.4.1 in appendix,
the solution of (1.3.12) exists and is unique.

Proposition 1.3.3. For any (i,j) € A' x A% and n > 0, we have:
(% g y
lim E[ sup |YiFmm —yhim?] -0 (1.3.13)
m—oo  4<LelT
(i) For any n > 0, N N
P—as., YW < XW’TH_I-

(iii) There exits a unique my X mo-uplet of deterministic continuous functions (gk’l*”)(k’l)emxflz in 11,
such that, for everyt < T,
YOI = (s, X0, s € [, T). (1.3.14)

Moreover, ¥(i,7) € At x A% and (t,z) € [0,T] x R*, 9" (t,z) < uI"H(t, z).
Finally, (gi’jf”)(i7j)eA1XA2 is the unique viscosity solution in the class Il of the following system of
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variational inequalities with inter-connected obstacles. ¥(i,j) € A* x A2,

max{uI"(t, x) — mln( Bhn(t, @) + gyt )); =0 (8 x) — Lub7 (¢, x)
leA

G (b, @, (W ) (ke At x Az, 0 (8 @) Do (¢, x), BIubI" (8, x))} = 0 (1.3.15)
ubI (T, x) = hHI(z).

We define

a(t,z) ;= lim @™ (t,z), u"(t,z):= lim

m—00 n—o0

ub"(t, x).
Then, as a by-product of Proposition 1.3.2 and 1.3.3, we have:

Corollary 1.3.1. V(i,j) € Al x A%, the function u% (resp. u¥) is usc (resp. lsc). Moreover, i and
u" belong to I1,, for any (t,z) € [0,T] x R,

u(t,x) < a(t,z).

1.3.3 Main results

In this paper we will show the uniqueness and existence of solution for (1.3.2). To begin with, we need
the following lemma for the proof of uniqueness.

Lemma 1.3.1. Let (W) jyeaixaz (resp. (W) jyea1xaz) be anusc subsolution (resp. lsc supersolution)

(
of (1.3.2) which belongs to I1,. For (t,x) € [0,T] x R and let T'(t,z) be the following set:

D(t,z) := {(i,7) € A" x A2 (t,x) —w"(t,x) = max (uM(t,z) —w"(t, z))}.
(k,)EAL X A2

Then there exists (ig,jo) € I'(t,x) such that
u'odo (t, ) > L[] (t,x), wo(t,x) < U [wW](t,x). (1.3.16)
We then prove:

Theorem 1.3.1. Let (W W) i j)earxaz (Tesp. (E))(i,j)eAlez) is an usc subsolution (resp. lsc supersolu-
tion) of (1.3.2) which belongs to Il,. Then it holds that for any (i,j) € A' x A2,

u(t,x) <w(t,x), (t,x)€[0,T] x R.

Corollary 1.3.2. System (1.3.2) has at most one viscosity solution belongs to Ily, and it is necessary
continuous.

It will takes three steps to prove the existence.
Proposition 1.3.4. The family (ﬂij)(iyj)eAlez is a viscosity subsolution of the system (1.3.2).

Proposition 1.3.5. Let mg be fived in N. Then the family (aij7m0)(i’j)eAl « A2 18 a viscosity supersolution
of the system (1.3.2).

Consider now the set U,,, defined as follows.
(7 = (y¥ i i 1 2 g 4L < gtimo
Upmo = {0 := (u”) (i j)ear xa28.t.U is a subsolution of (1.3.2), V(i,j) € A" x A%, <u <a }.

Un, is not empty since it contains (@) (; jye a1xa2. Next for (t,2) € [0,T] x R and (4, j) € A' x A?, set

Moyt (t,x) = sup{uij (t, ), (ukl)(k)l)eAlez € Upg }-

Now we give the main result of this section, which mainly consists in adapting the Perron’s method to
construct a viscosity solution to (1.3.2).

Theorem 1.3.2. The family (mouij)(i’j)eAlez does not depend on mq and is the unique continuous
viscosity solution in the class I1, of the system (38.1.2). O
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1.4 On the identity of min-max and max-min solutions of Sys-
tems of Variational Inequalities with Interconnected Bilat-
eral Obstacles.

1.4.1 Assumptions and notations

Let T (resp. k, d) be a fixed positive constant (resp. two integers) and I'! (resp. I'?) denote the set of
switching modes for player 1 (resp. 2). For later use, we shall denote by A the cardinal of the product set
' x T2 and for (i, j) € T x T2, (T) ™" := T —{i} and ([?) ™ := T2—{j}. For § = (4*)x.pyeri xr2 € RY,
(i,5) € It x I'?, and y € IR, we denote by [(ykl)(w)eplsz_{i7j},y] the matrix obtained from the matrix
y= (ykl)(kvl)eplxlﬂ by replacing the element y* with Y.

For any (i,7) € I't x I'?] let

b: (t,z) €[0,T] x IRF — b(t,z) € IRF;

o: (t,x) €[0,T] x R* — o(t,z) € RF*Y;

9 (tx, 4, 2) € [0,T) x RFFAE s fU(t 2,47, 2) € IR;
g, : (tx) €[0,T] x IR* =g, () e R (ke (ThH)™);
gi: (t,x) €[0,T] x R* — gj(t,z) e R (1€ (T?)77);
hY : x € RF — hii(z) € IR.

R
~

A function @ : (t,z) € [0,T] x R* — ®(t,z) € IR is called of polynomial growth if there exist two
non-negative real constants C' and 7 such that

®(t,z)| < O+ |z|”), (t,z) €[0,T] x IR,

Hereafter, this class of functions is denoted by I1,. Let C12([0, 7] x IR¥) (or simply C12) denote the set
of real-valued functions defined on [0, 7] x IR*, which are once (resp. twice) differentiable w.r.t. ¢ (resp.
z) and with continuous derivatives.

The following assumptions on the data of the systems (1.4.7) and (1.4.8) are in force throughout the
paper.

(HO) The functions b and o are jointly continuous in (¢, z) and Lipschitz continuous w.r.t. « uniformly
in ¢, meaning that there exists a non-negative constant C' such that for any (¢, z,2’) € [0, T] x RF+¥
we have

lo(t,x) —a(t,z")| + |b(t,z) — b(t,z")| < Clz — 2’|

Therefore, they are also of linear growth w.r.t. z, i.e., there exists a constant C' such that for any
(t,z) € [0,T] x IRF,
bt 2)| + [o(t,2)| < C(1+ o).
(H1) Each function f%

(i) is continuous in (¢, ) uniformly w.r.t. the other variables (¥, z) and, for any (¢, ), the mapping
(t,z) — f9(t,2,0,0) is of polynomial growth.

(ii) is Lipschitz continuous with respect to the variables (i := (y/)(; j)er, xrs, z) uniformly in (¢, z),
ie ¥V (t,x) €[0,T] x RE, V (71, i) € R x RA, (21, 22) € RY x RY,

|fij(tax7gl7zl) - fij<tax7g2722)‘ < C('gjl - :'j?' + |Zl - 22|) ;
where, || stands for the standard Euclidean norm of  in IR*.

(H2) Monotonicity: Let § = (y*)(x1yer1 xr2. For any (i,7) € ' xT'? and any (k, 1) # (i, 5) the mapping
y* — fi(s,7,z) is non-decreasing.

(H3) The functions h%, which are the terminal conditions in the systems (1.4.7) and (1.4.8), are contin-
uous with respect to z, belong to class II, and satisfy V(i,j) € I'* x I'? and z € IR¥,

i g . " _
ker?ral)){—i (h (x) - ﬂik(T’$>) < h¥(z) < Zel(qué?—j (hl (@) +g5u(T, $)>'
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(H4) The no free loop property: The switching costs 9y and gj;; are non-negative, jointly continuous in
(t, ), belong to II, and satisfy the following condition:

For any loop in I'! x I'? i.e., any sequence of pairs (i1, j1),- .., (in,jn) of It x I'? such that
(in,Jn) = (i1,71), card{(¢1,41),---, (in,Jn)} =N —1land any ¢ = 1,..., N — 1, either ig41 = i,
Or jg+1 = jg, We have V(t,z) € [0,T] x IRF,

Z Pigig1 (ta I) 7é 07 (141)
¢=1,N—1
where, V ¢ =1,...,N =1, @; ., (t,x) = 7Qiqiq+1(t’x)niq#q+l + Gjgigir (G x) Mg 25000
This assumption implies in particular that
N—-1
V (i1,...,in) € (THY such that iy =iy and card{iy,...,in} = N — 1, Z Giivns > 0 (1.4.2)
p=1 7

and
N—-1
Y (ji,- i) € (TN such that jy = ji and card{ji,....in} =N =1, > g j,, >0.  (1.43)
p=1

By convention we set g;; =g. . =0.

Conditions (1.4.2) and (1.4.3) are classical in the literature of switching problems and usually referred
to as the no free loop property. O]

We now introduce the probabilistic tools we need later. Let (2, F, P) be a fixed probability space on
which is defined a standard d-dimensional Brownian motion B = (B;)o<;<7 whose natural filtration is
(F := 0{Bs,s < t})o<i<r. Let F = (F;)o<t<r be the completed filtration of (F})o<t<7 with the P-null
sets of F, hence (F;)o<i<r satisfies the usual conditions, i.e., it is right continuous and complete. On
the other hand let P be the o-algebra on [0,T] x Q of F-progressively measurable sets.

Next, let

(i) H** (¢ > 1) be the set of P-measurable and IR‘-valued processes w = (w;);<7 such that
IEIUOT |ws|2ds] < oo;

(ii) 82 (resp. S7) be the set of P-measurable continuous (resp. RCLL) processes such that E[sup, o [w¢]?] <
00.

(iii) \A? be the subset of §? of non-decreasing processes K = (K);<r such that Ky = 0.

For (t,z) € [0,T] x IR*, let X** be the diffusion process solution of the following standard SDE:
Vs e [t,T], Xt® =a+ [Jb(r,XE%)dr + [ o(r, XE®)dB,; XL® =2, s€[0,1]. (1.4.4)

S

Under Assumption (HO) on b and o, the process X** exists and is unique. Moreover, it satisfies the
following estimates: For all p > 1,

Efsup | X52[P] < C(1 + |z[?). (1.4.5)
s<T

Its infinitesimal generator £X is given, for every (¢,7) € [0,T] x IR* and ¢ € C12, by

k
1,]= .
= iTrloo " (t,x)D2,¢(t,x)] + b(t,z) " Dyop(t, z). O

1.4.2 Motivation

Let us consider the following two systems of partial differential equations (PDEs) with bilateral inter-
connected obstacles (i.e., the obstacles depend on the solution) of min-max and max-min types: for any
(i,j) € Tt x I'2, (t,z) € [0,T] x IR,

min {vij (t,2) — LY (&)(t, ) ; max {vij (t,2) — U (T)(t, 2);

_ 0T — LX (v (t,2) — fiI(t, x, (vm(t,z))w)erlxrz,a(t,x)TDmv”(t,x))}} =0;
v(T,z) = h (x)
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and
max {@ij (t,x) — U¥ (0)(t, z) ; min {T)ij(t, x) — LY (0)(t, x)
_atﬂij - X ({}ij)(tv l‘) - fij(tv €, (Tjkl(ta m))(k,l)erl xI'25 U(ta x)TDw'Dij (ta .13))}} =0;
09(T,x) = h¥(x)
(1.4.8)
where

(i) T and I'? are finite sets (possibly different);
(ii) For any (t,z) € [0,T] x IR*, #(t, ) = (v*(t,2)) (e xr2 and for any (i,5) € I'' x T2,

LI©)(ta) = max (09(t,2) - g, (L)}, UI@)(Eo) = min {7 (t,2) + gt.2).

(iii) £ is a second order generator associated with a diffusion process described below.

The systems (1.4.7) and (1.4.8) are of min-max and max-min types respectively. The barriers L*/ (%), U™ (7))
and L% (v),U% (v) depend on the solution ¥ and v of (1.4.7) and (1.4.8) respectively. They are related to
zero-sum switching game problems since actually, specific cases of these systems, stand for the Hamilton-

Jacobi-Bellman-Isaacs equations associated with those games.

Switching problems have recently attracted a lot of research activities, especially in connection with
mathematical finance, commodities, and in particular energy, markets, etc (see e.g. [13, 45, 10, 11,
23, 3, 18, 17, 20, 29, 30, 34, 36, 40, 43, 44, 54, 61, 19, 52, 60] and the references therein). Several
points of view, mainly dealing with control problems have been considered (theoritical and applied
[13, 45, 11, 18, 20, 29, 34, 54], numerics [10, 29], filtering and partial information [40]). However, except
[34, 36], problems related to games did not attract that much interest in the literature.

n [17], by means of systems of reflected backward stochastic differential equations (BSDEs) with
inter-connected obstacles in combination with Perron’s method, Djehiche et al. ([17]) have shown that
each of the systems (1.4.7) and (1.4.8) has a unique continuous solution with polynomial growth, under
classical assumptions on the data f¥, Gijs 950 h¥. The question of whether or not these solutions
coincide was conjectured as an open problem, leaving a possible connection of the solution of system
(1.4.7) and (1.4.8) with zero-sum switching games unanswered.

1.4.3 Main results

The main objective of this paper is two-fold: (i) to investigate under which additional assumptions on
the data of these problems, the unique solutions of systems (1.4.7) and (1.4.8) coincide; (ii) to make
a connection between this solution and the value function of the associated zero-sum switching game.
Indeed, we show that if the switching costs of one side, i.e. either (gi;); j)erixr2 or (gij)(i,j)eplxm, are
regular enough, then the solutions of the systems (1.4.7) and (1.4.8) coincide. Furthermore, we show
that this solution has a representation as a value function of a zero-sum switching game. To the best of
our knowledge these issues have not been addressed in the literature yet. The main strategy to obtain
these results is to show that the barriers, which depend on the solution, are comparable and then to
make use of Theorem 5.5.1 (whose proof in an appendix at the end of the paper) to conclude that the
solutions of the min-max and max-min systems coincide. This comparison is obtained under a regularity
assumption on (gi;) i, jyert xr2 Or (gij)(m)eplxpz. Theorem 5.5.1 extends a result derived in [27] on min-
max and max-min PDEs with fixed obstacles, where we relax the condition of strict separation between
the obstacles. To get the result that (1.4.7) and (1.4.8) coincide, we should be able to compare the
inter-connected obstacles of them, i.e.

(i) V(i,j) €T xT2 LY(0) <UY(D)
or (1.4.9)
(i) W(i,j) €T xT2, L) < U9 (D),
For that let us introduce the following assumption.
(H5):
(i) For any (i,j) € I'" x I'?] the functions g;; are C2. Moreover, D,g;; and D2 g;; belong to II,.
Furthermore, for any ji, ja, j3 € I's such that |{j1,j2, 75} = 3,

Gj15s (tvx) < Gj1js (tax) + Gjajs (t,x), V(t,x) € [OaT] X ]Rk'
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(ii) For any (i,j) € I'! x I'?, the function f% verifies the following estimate:
[f9(t x4, 27)] < O+ |zfP)
for some real constants C' and p.
Proposition 1.4.1. Under Assumptions (H0)-(H5) we have, for every (i,j) € ' x T'?,
L9 (@) < o9 < U (D)

The following estimate is the key to the proof of this proposition: For every (i,j) € I'! x I'? and
m > 0,

B{m [ 3 (R e, XU s} < O+ el (1.410)

le(r2)=i

where, Y is the unique solution of system of RBSDE (4.2.2) , and the constant C' is independent of m
and z. As a by product of Proposition 1.4.1 and Theorem 5.5.2 (displayed in the appendix), we have:

Theorem 1.4.1. Under Assumptions (HO0)-(H5), for any (i,j) € Tt x T2, it holds that
v =,

The next main result is the connection between this solution and the value function of the associated
zero-sum switching game. Let us made the following assumption:

(H6):
(i) For any (i,5) € ' x I'? the function ¥ does not depend on z%.
(ii) For any (i,j) € I'' x I'? the function f does not depend on (7, 2%). O

We first describe briefly the zero-sum switching game. Assume we have two players m; and w9 who
intervene on a system with the help of switching strategies. An admissible switching strategy for
(resp. m2) is a sequence 0 := (0, &n)n>0 (resp. v := (T, (n)n>0) Where for any n > 0,

(i) op (resp. 7,,) is an F-stopping times such that P-a.s., 0, < 0,41 < T (resp. 7 < Tn1 < T) ;

(i) &, (resp. () is arandom variable with values in I'! (resp. I'?) which is F, (resp. F, )-measurable

(iii) Plop, < T,¥n > 0] = Plr, <T,Vn>0]=0;
(iv) If (A%)s<7 and (BY)s<r are the F-adapted RCLL processes defined by:

Vselt,T), A= Zggn e (00 Xo) g, < and A%:}EAg,

n>1
and
vseltT) ;gcn 16 (T XpP ), <) and - By = lim BY.

Then, E[(A%)? + (BY)?] < cc. For any s < T, A% (resp. BY) is the cumulative switching cost at time s
for 71 (resp. m2) when she implements the strategy § (resp. v).

Next, for t € IR, i € T (resp. j € I'?), we say that the admissible strategy § := (0y,,&n)n>0 (resp.
= (T Gu)uzo) belongs AL (1) (resp. AL, (1) if
a0 =t, & =i, B[(A})’] < oo (resp. 10 =t, (o = j, E[(B})?] < 0).

Given an admissible strategy ¢ (resp. v) of my (resp. m2) one associates a stochastic process (us)s<r
(resp. (vs)s<r) which indicates along with time the current mode of 71 (resp. m2) and which is defined
by:

Vs < T, s = €0l{o0}(8) + Y Enmt Lo 1,01 (8) (e8P, 05 = Colimy(8) + D Cumalir, ym, (). (1411)

n>1 n>1
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Let now 0 = (0p,&n)n>0 (resp. v = (Tn, (u)n>0) be a strategy for mp (resp. m2) which belongs to
AL (t) (vesp. AJ_(t)). The interventions of the players are not free and generate a payoff which is a
reward (resp. cost) for m; (resp. m2) and whose expression is given by

T
Ju(8,v) = B[R (Xp) + / £ X5y, v,)dr — AL+ BE|F, (1.4.12)
t
where, for any (k,l) € T'' x I'2, we set f(s,z,k,1) = f¥(s,x), since f* is assumed to not depend on

(¥, 2).

Theorem 1.4.2. Suppose Assumptions (H0)-(H5) and (H6)-(ii) are satisfied. Then, for any (io,jo) €
' x T2,

viodo(t, z) = ess SUPse gio (1) €5 mfyaﬂJ2 (t)Jt(é, V) = ess mfyaﬂr(J2 (1) €55 SUPse qio (t)Jt(J, v), (1.4.13)
where Jy(0,v) is the payoff of the switching game defined in (1.4.12).

As a by product of Theorem (1.4.1) and the uniqueness of the solution of system (1.4.7) we have the
following result in the case when the functions f* depend also on 7.

Corollary 1.4.1. Suppose Assumptions (HO)-(H5) and (HG6)-(i) are satisfied and let (’Uij)(i’j)er‘lxl’ﬂ be
the unique solution of system (1.4.7) and (1.4.8). Then for any (t,z) € [0, T] x IR* and (iq,jo) € Tt x T2,

viodo(t, ) = ess SUPse pio €55 mfueAZPz Ji(8,v) = ess ianeA{T02 €58 SUPse gio Ji(8,v). (1.4.14)

where,

T
jt((S, l/) = E[huTUT (XT> + / fuTUT (’I“, Xf,’x, (’Ukl<’l"7 Xi’x))(k’l)epl ><F2)d’l" — Agﬂ + Brzyw‘]:t] (1415)
t
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Chapter 2

Systems of Integro-PDEs with
Interconnected Obstacles and
Multi-Modes Switching Problem
Driven by Lévy Process.

This chapter is a joint work with Said Hamadeéne.

2.1 Preliminaries

A Lévy process is an IR-valued RCLL (for right continuous with left limits) stochastic process L = {L;,t >
0} defined on a probability space (Q, F,P) with stationary and independent increments (Lo = 0) and
stochastically continuous.

For t < T let us set Fy = G, VN where G; := 0{L;,0 < s < t} and N is the P-null sets of F,
therefore {F;}i<r is complete and right continuous. Next by P we denote the o-algebra of predictable
processes on [0,7] x © and finally for any RCLL process (I't);< we denote by I';— := lims ~I's and
AT} :=T; —T;_ its jump at ¢, ¢t € (0,T).

We now introduce the following spaces:
(a) 82 := {¢ := {¢,0 < t < T} is an R-valued, F-adapted RCLL process s.t. E( sup |¢;|%) < oo} ;
0<t<T

A? is the subspace of S? of non-decreasing continuous processes null at ¢t = 0 ;
(b) H? := {¢ := {¢4,0 <t < T} is an IR-valued, F;-progressively measurable process s.t. IE(fOT loe*dt) <
oo};

[ee]
(c) £2 := {& = (xn)n>1 is an R-valued sequence s.t. [z]> := 3 22 < oo}
i=1

(d) H2(0?) := {p = (pt)t<r = ((¢})n>1)1<T such that ¥n > 1, p" is a P-measurable process and

E(ST oo *dt) = ;fi (ST [4i2dt) < oo};

£? ;= {¢, an R-valued and Fr-measurable random variable such that E[|£|?] < oo} ;
(e) T1, is the space of deterministic functions u(¢,z) from [0,7] x IR¥ into IR of polynomial growth, i.e.,
such that for some nonnegative constants p and C one has,

lu(t, )| < C(1 + |z|P), Y(t,z) € [0,T] x RF. O

Let us now recall the Lévy-Khintchine formula of a Lévy process (L;);<7r whose characteristic expo-
nent is ¥, i.e.,

Vi < T and 0 € R, E(eFt) = ¥

27
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with

1 )
() = iah — §w292 +/ (" — 1 — 0z (|4 <1))(dz)
R

1
= jaf — §w292 —|—/

o] >1

(% — 1)IT(d) + / (€97 1 — i02)T(dz)

0<]z|<1

where a € IR, w > 0 and II is a o-finite measure on IR* := IR — {0} (we II({0}) = 0 and then the domain
of integration is the whole space), called the Lévy measure of L, satisfying

/ (1 A 2*)II(dx) < oo (2.1.1)
R

and

Je>0,A>0 s.t./ AN (de) < +oo. (2.1.2)
(7516)C

Conditions (3.1.1)-(2.1.2) imply that for any ¢ > 2,
[ |2/ TI(dz) < oo
and then the process (L;);<r have moments of any order.

Next following Nualart-Schoutens [48] we define, for every ¢ > 1, the so-called power-jump processes
L% and their compensated version Y also called Teugels martingales, as follows: V¢ < T,

LY = Ly and for i > 2, LY = _ (AL, Y, = L —E(L{").

Note that for any t < T, E(L{") = t [ Tl(dx) < oo for any i > 2 ([46], pp.29).

An orthonormalization procedure can be applied to the martingales Y in order to obtain a set
of pairwise strongly orthonormal martingales (H (%)) ;>1 such that each H (1) is a linear combination of
(Y(j))jzl,i, i.e., -

H(Z) = Ci7iy(i) + ...+ Ci71Y(1).
It has been shown in [48] that the coefficients ¢; j, correspond to the orthonormalization of the polynomials

1,x,22%, ... with respect to the measure v(dz) = 22II(dz) + @2do(dz) (dp is the Dirac measure at 0).
Specifically the polynomials (g;);>0 defined by

Gim1(x) = ciir ™ i T4 e, > 1
satisfy
f]R @n (%) gm (2)v(dT) = S, Y, m > 0.

Next let us set . )
pi(z) = xqi—1(x) = ¢; ;2" + ci’i,lxlfl + .tz and
pi(z) = 2(gi—1(z) — ¢i—1(0)) = iz’ + ci 121 + o+ ¢ 022

Then for any ¢ > 1 and ¢ < T we have:
Ht(i) = 0csciiCiiilALs) 4 ...+ cin(ALs)*} + cin Ly — tE[eii (L) 4 .. 4 ¢i2(L1)P] — te; 1 E(Ly)
=qi—1(0)Le + 3 0oy« Pi(ALs) — tE[D g o<1 Pi(ALs)] — tqi—1(0)E(L1).

As a consequence, for any t < T and 7 > 1, AHt(i) = p;(AL;) for each ¢ > 1. In the particular case of
i = 1, we obtain
HY = ¢4 (L — tE(Ly))

where )
c11 = [ @ 1(dz) + @w?] "2 and E[L] = a + f\zlzl xIl(dx). (2.1.3)

Finally note that for any i, > 1 the predictable quadratic variation process of H®" and HU) is
(HO HOY, = §;;t, ¥t < T. O
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Remark 2.1.1. IfTI = 0, we are in the classical Brownian case and all non-zero degree polynomials g;(x)
will vanish, giving H(i)_ =0, i > 2. On the other hand, if Il only has mass at 1, we are in the Poisson
case and once more H® =0, i > 2. Both cases are degenerate ones in this Lévy process framework. [

The main result in the paper by Nualart-Schoutens [47] is the following representation property which
allows for developping the BSDE theory in this Lévy framework.

Theorem 2.1.1. ([47], pp.118). Let ¢ be a random variable of L2, then there exists a process Z = (Z');>1
that belongs to H?(€%) such that:

T
C=E()+ Z/ ZidHY. O
i>170
2.2 Systems of Reflected BSDEs with Oblique Reflection driven
by a Lévy process
2.2.1 Reflected BSDE driven by a Lévy process and their relationship with
IPDESs

As a consequence of Theorem 2.1.1, and as in the framework of Brownian noise only, one can study
standard BSDEs or reflected ones. The result below related to existence and uniqueness of a solution for
a reflected BSDE driven by a Lévy process, is proved in [56]. Indeed let us introduce a triplet (f,¢,.S)
that satisfies:

Assumptions (Al):

(i) € a random variable of £2 which stands for the terminal value ;

(ii) f: [0,7] x @ x IR x {> — IR is a function such that the process (f(t,0,0));<r belongs to H? and
there exists a constant x > 0 verifying

(b y,2) — £t )] < lly =y + 112 — #]l), for every t,y,y/, 2 and 2/
(iii) S := (S¢)o<t<r is a process of §? such that Sy < &, P — a.s., and whose jump times are inaccessible

stopping times. This in particular implies that for any ¢t < T, S? = S,_, where S? is the predictable
projection of S (see e.g. [14], pp.58 ) for more details on those notions.

In [56], the authors have proved the following result related to existence and uniqueness of the solution
of one barrier reflected BSDEs whose noise is driven by a Lévy process.

Theorem 2.2.1. Assume that the triple (f,£,S) satisfies Assumptions (Al). Then there exists a unique
triplet of processes (Y, U, K) := ((Ys, U, K¢))t<r with values in IR x €* x IR such that:

(Y,U,K) € 8% x H(£?) x A?;
Yo=¢+ [ f(s,Ys,Uy)ds + Kr — K, — Y [T UdH, vt < T (2.2.1)
i=1
Y, > 8, YO<t<T and [ (Y; —Si)dK; =0, P — a.s.
The triple (Y,U, K) is called the solution of the reflected BSDE associated with (f,€,5). O

To proceed we need to compare solutions of reflected BSDEs of types (2.2.1). So let us consider a
stochastic process V = (V;)i<r = (V¥)i>1 = ((V{!)i<r)i>1 which belongs to H?(¢?) and let M := (M;)i<r
be the stochastic integral defined by:

0ot
Vi< T, M := Z/ VidH®.
i=170
We next denote by e(M) := (e(M)¢)i<r the process that satisfies: V¢t < T,

eM)y =1+ /ts(M)s_dMS.
0
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By Doléans-Dade’s formula we have (see e.g. [55]):
1
Vt < T, (M), = exp {Mt S ILBUTY AMS} I 1 +am).
0<s<t 0<s<t
Let us now introduce the following assumption on the process V.

Assumptions (A2): The process V = (V¥);>1 = (V}})i<r)i>1 verifies:

> Vipi(ALy) > 1, dP@dt —a.e (2.2.2)

i=1

and there exists a constant C' such that:

oo

M IViP<C dPedt—ae. (2.2.3)

i=1
We then have:

Proposition 2.2.1. Assume that Assumption (A2) is fulfilled. Then, P-a.s., for anyt € [0,T], e(M); >
0 and (M) € §2.

Proof. First note that for any t < T,
AMy =3 "Vi A HY =3 Vipi(AL) > -1,
i=1 i=1

therefore for any ¢t < T, ¢(M;) > 0. Next by using Doléans-Dade’s formula and since
d(H® 7)), = dijds, we have: Vt < T,

£(M)? = e(2M + [M, M)),

[e%e] . (S Sl o] .
e [vian® 305 [ viviam©, w0,
i=170 0

i=1 j=1
=e(2) / VidH® + 3 / VilPds+» > / VAVIA(H®D, HD], — (HD, HW),)),
=1 =1 1=1 j=1

= c(pexp(y. [ 1VilPas)

where for ¢t < T,

e} t o0 00 t

No=2Y [ viam + 35 [ veviaao, m0), - 0 10,

i=170 i=1j=1"9

is a local martingale. On the other hand, the quantity fOT |Vi|2ds is bounded and e(N) > 0, then for
i=1

any t < T,
E[((M))?] < CE[e(N)o] < C

since £(V) is a supermartingale. It follows that (M) is not only a local martingale but also a martingale
and then by Doob’s maximal inequality it belongs to S2. O

Remark 2.2.1. The result of Proposition 3.1 still holds true if instead of (2.2.3) we only have
Z/ [Vilds < C, P—a.s. O (2.2.4)
i=170

Next for two processes U' = (Uf)g>1, i = 1,2, of H2(¢?) we define their scalar product in H?(¢?)
which we denote by (U, U?)? := ((U',U%)?)i<r as:

VE<T, (UL U2 = ULOUR(Y).

k>1
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Proposition 2.2.2. : Let £ € L2, ¢ = (ps)s<t € H?, § := (85)s<r a uniformly bounded process, and
finally let V.= (V¥);>1 € H2(?) satisfying (A2). Let (Y,U) := (Yy,Up)i<r € 8% x H2(¢?) be the solution
of the following BSDE:

T o0 T
VE<T, Y, =€+ / (s + 0sYa + (V,U)D)ds — Y / UidH. (2.2.5)
t i=1 t

Fort <T, let (X;)Se[t’T] be the process defined as follows:

&dr‘g(M)S

Vs e [t,T), Xt =eld . 2.2.6

Then for any t < T, Y; satisfies:
T
Y; = E[X%¢ —|—/ Xlpsds|F], P —a.s..
t
On the other hand, if (Y',U') € 8% x H?(¢2) is the solution of the BSDE:
T Y A
Y/ =¢ +/ f(s, Y, Ul)ds — Z/ UdH® vt <T (2.2.7)
¢ =t

where
F@, Y, U)) > o+ 6,Y, +(V, U, dP @ dt — a.s.

then for any t < T,
T
Y/ > E[XE¢ +/ Xtp.ds|F], P — a.s..
t
Proof. First note that the processes (Y,U) and (Y',U’) exist thanks to Theorem 3.1. Let us now fix

t € [0,T]. Since V satisfies (A2) then (M) > 0 which implies that (X!)sc(;,7] is defined. On the other
hand it satisfies

Vs € [t,T), dX! = X!_(5,ds + dM,)

and since ¢ is uniformly bounded then as in Proposition 3.1, one can show that E[supc(, 7 | X5[?] < oo.
Now by Ito’s formula, for any s € [t,T], we have

—d(Y.X!) = - Y,_dX! - X'_dY, - dY, X"],
=— X! Y, 6sds — Y, X! dM, + X! @.ds+ X! 6,Y.ds
- XL UaHY) = XYY Vivia(HY, HY)], - (HY, HY),)}
i>1 i=1 j=1
zngasds — dNg
where for any s € [t,T]
AN, =Y, X! Y VidHD + XE N UdHS + X1 N Vivid(HY, HD ] — (HD, HY)),).
i=1 i>1 i=1 j=1
Note that since X is uniformly square integrable, Y € S?, U € H?(¢?) and finally taking into account

Assumption (A2) on V, we get that N is a uniformly integrable martingale on [t,T]. Therefore taking
conditional expectation to obtain:

T
Y; = E[X%¢ +/ Xtods|Fi], P — a.s.
t

which is the desired result.
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We now focus on the second part of the claim. By Itd’s formula we have: Vs € [¢, T,

7d(Ys/X;) = - Ys/—dXE - Xz—dYs/ - d[Ylvxt}‘s

— XL Y] buds — Y] XL > VIAH + X! f(s,Y{,Ul)ds — X!y USdHY
i=1 i=1
- Xt Z Z V;U;jd[H(i), H(j)]s~
i=1j=1
Next since X! > 0 and taking into account the inequality satified by f to obtain:
—d(YX!) > Xlpsds —dN, P — a.s.,
where for any s € [t, T,
AN, = Y XL SOVIAHD - X0 Y USIHD - XY SO VUSa(HO, B - (O, HO).),
i=1 i=1j=1

But once more N’ is a uniformly integrable martingale then by taking the conditional expectation we
obtain:

T
Y/ > E[X%¢ —|—/ Xlpsds|F], P —a.s.
t
which completes the proof. O

We are now ready to give a comparison result of solutions of two BSDEs of type (2.2.1).

Proposition 2.2.3. For i = 1,2, let (f;,&;) be a pair that satisfies Assumption (A1)-(i),(%) and let
(YH,U?) € 8% x H2(£?) be the solution of the following BSDE: Vt < T,

T
Y;/’:fi-k/ fils, Y2, Ulds—Z/ U dHY
t

Assume that: )
(i) For any U',U? € H2(12), there exists a process VU U (VU U551 (which may depend on U'
and U?) satisfying (A2) such that f verifies:

AGYEUD) — A Y2 U > (VUU (U — U2, dP @ dt — a.e.; (2.2.8)
(1) P —a.s., & > & and
YA UR) > fot, Y2, UR),dP @ dt — ae.. (2.2.9)
Then P-a.s., Y} > Y2, Vvt € [0,T].
Proof. Let usset Y =Y —Y2 U =U'—U? and £ = ¢! — €2, then Vt € [0,T],

Vo= [T{Ai(s, YUY = fols, Y2, UR) s — S [ UldHY.
j=1

Next let us set:
Vs < T, 55:(f1(S7Y51ﬂUsl) fl(s Y U )) ( ) H{Y;éo} and QDS_fl(s’Ys27U32)_f2(57Ys2st2)'
Then by (2.2.9) we have, p, > 0, dP @ dt — a.e.. On the other hand (ds)sejo,7] is bounded since f; is

uniformly Lipschitz. Finally we have
A8, YUY = fos, Y2 U2) > g + 6.V, + (VUUP OV dP ®ds — ace..
Therefore thanks to Proposition 3.2 we get,

T
VE<T, Y; > E[XLE+ / Xlouds|Fy] > 0, P — a.s.
t
where (X!) ee,7) is defined in the same way as in (2.2.6) with the new processes ¢ and ¢. As X*, £ and

¢ are non-negative then for any ¢t < T, Y; > 0 which implies that P — a.s.,Vt < T,Y,! > Y;? since Y!
and Y2 are RCLL. The proof of the claim is now complete. O
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Remark 2.2.2. Conditions (2.2.8) and (2.2.9) can be replaced respectively by
F(t Y2 U = fot, Y2, U2) > (VU (U — U)P, dP @ dt — a.e. (2.2.10)

and
LY UN > £, U, dP @ dt — ae.. (2.2.11)

In this case, with the other properties, one can show in the same way that we actually have P-a.s.,
Yyi>vy2, O

Remark 2.2.3. Point (i) of Proposition 2.2.3 is satisfied in the following cases:

(i) f does not depend on the component u ;

(ii) If L reduces to a Poisson process, we have H®") =0 for all i > 2, then Assumption (A2) reads: (a)
V = (Vi)ieo,1) s bounded ; (b) for any stopping time T, such that AL; #0, V; > —1, P — a.s..

(iii) The generator f satisfies

fty,u) = h(t,y, > 0pul), V(t,y,u) € [0,T] x R* x (2

i>1

where the mapping n € IR — h(t,y,n) is non decreasing and uniformly Lipschitz and, on the other hand,
((02)i>1)e<T satisfies

S0P <C and > 0ipi(AL) >0, dt @ dP —a.e. O

i>1 i>1

We finally provide a comparison result of solutions of reflected BSDEs of type (2.2.1) which will be
useful in the sequel.

Proposition 2.2.4. For i = 1,2, let (&,S% f;) be a triple which satisfies Assumption (A1) and let
(Y, K U<t be the solution of the RBSDE associated with (&;, S, f;). Assume that:

(i) P —a.s, & > & and YVt € [0,T], fi(t,y,u) > fa(t,y,u) and S} > S? ;

(ii) f1 verifies condition (2.2.8).
Then P-a.s. for anyt < T, Y} > Y2,

Proof. For i = 1,2, let us consider the following sequence of processes (Y™, U"") € 8% x H2(¢?), n > 0,
that satisfy:

S

Vi =&+ [ fi(s, Y, UmYds +n [ (Yim = SD)mds — Y. [T UmIdHYD, vt < T
j=1

and let us denote by ‘
fin(s7y7u) = fl'(S,y,’U,) + Tl(y - 52)7

For any n > 0, f{* satisfies (2.2.8) and f* > f3. Therefore using the comparison result of Proposition
2.2.3, we deduce that: Vn > 0,
P—a.s,Vt<T,V;"" >Y>" (2.2.12)

But since f; verifies (2.2.8) then we can show, as in [31], Theorem 1.2.a, pp. 5, since the processes S°
do not have predictable jumps, that for i = 1,2 Y%" /Y in §2. Thus, inequality (2.2.12) implies that
P-as., Y1 >Y2 O

We are now going to make a connection between reflected BSDEs and their associated IPDEs with
obstacle. So let (t,z) € [0,T] x IR* and let (X! ®),<r be the solution of the following standard SDE
driven by the Lévy process L, i.e.,

tVs tVs
X =t [ b Xtk [ o XL, s < T, (2:213)
t t

where we assume that the functions b and o are jointly continuous, Lipschitz continuous w.r.t. z uniformly
in ¢, i.e., there exists a constant C' > 0 such that for any ¢t € [0,T], z,2’ € IR,

lo(t, ) — ot 2')| + [b(t, z) — b(t,2")] < Clz — 2. (2.2.14)
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As a consequence, the functions b(t,z) and o(¢,z) are of linear growth. We additionally assume that o
is bounded, i.e., there exists a constant C\, such that

Y(t,x) € [0,T] x R, |o(t,z)| < C,. (2.2.15)

Under the above conditions on b and o, the process X% exists and is unique (see e.g. [55], pp.249), and
satisfies:

Vp > 1, E[sup | X5¥|P] < C(1 + |z|P). (2.2.16)
s<T

Next let us consider the following functions:
h:z € R~ h(z) € R;
fo(ta,yu) €0,T] x R x 12— f(t,2,y,u) € R;
U: (t,x) €[0,T] x R+ U(t,x) € R,

which we assume satisfying:

Assumptions (A3):

(i) h, ¥ and f(¢,2,0,0) are jointly continuous and belong to II, ;

(ii) the mapping (y, z) — f(t,x,y, z) is Lipschitz continuous uniformly in (¢, z) ;
(iii) For any = € IR, h(z) > (T, x).

(iv) The generator f has the following form,

Ft,y,u) = h(te,y, > Ohug), V(tz,y,u) € [0,T) x R x ¢

i>1

where the mapping n € IR — h(t,x,y,n) is non decreasing, and there exists a constant C' > 0, such
that V¢ € [0,T), z,y,2,2 € R,

|h(t,z,y,2) — h(t,z,y,2") < Clz — 2|

Moreover (67);>1 satisfies

D 10> < C and Y 6ipi(ALy) > 0, dt ® dP — a.e..

i>1 i>1
Next let (t,2) € [0,7] x IR* be fixed and let us consider the following reflected BSDE:
(Ybe Ube K4e) € 8% x H((?) x A%
VI = h(XE") + [ fr XEo, Y1, UL dr + K — Kb — il JJ Utida? (2:2.17)

S

Vs <T, YP* > W(s, X0") and [ (Y7 — W(s, X07)dKL™ =0, P — a.s.

Under assumptions (A3)-(i), (ii), (iii), the reflected BSDE (2.2.17) is well-posed and has a unique solution
(Ytr gb® K4*) thanks to Theorem 3.1. Moreover the following estimate holds true:

T T 1,tx
B[ sup [VE#[2 4 [ {5y (U542} ds]
0<s<T

SCE[IMX?)IQ+foT|f(s,X§“,o,0)|2ds+ sup [W(s, X10)|?

| (2.2.18)
0<s<T '

On the other hand, the quantity
u(t,z) = Y%, (2.2.19)

is deterministic, continuous and satisfies
V(t,z) €[0,T] x R*, Vs € [t,T], Y1 = u(s, X1®).

Fore more details, one can see e.g. [57]. Finally note that under Assumptions (A3) and by (2.2.18) the
function u belongs also to II,.

Next let us introduce the following IPDE with obstacle:
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min {u(tVT) - \Il(ta .73), _8tu(t7x) - Lu(t,a:) - f(t7$7u(t7x)a @(U)(t,&?))} = Oa (t,l‘) € [OaT) X ]R7

u(T,z) = hz),

(2.2.20)

where £ is the generator associated with the process X** of (2.2.13) and which has the following
expression:

Lu(t,z) = (E[L1]o(t,z) + b(t, ))0yu(t, z) + o (t,z)?w?02, u(t, z)
+ Julult.x + o(t,2)y) — ult.2) - pult, 2)a(t, x)y]l1(dy)

and

O(u)(t,z) = (Lazu(t,x)o(t,x)]lkzl + /JR(u(t,x +o(t,x)y) —ult,z) — awu(t,x)y)pk(y)ﬂ(dy))

C1,1 k>1

where ¢ 1 is defined in (2.1.3).
We are going to consider solutions of (2.2.20) in viscosity sense whose definition is as follows:

Definition 2.2.1. A continuous function u: [0,T] x IR — IR is said to be a viscosity subsolution (resp.
supersolution) of (2.2.20) if for any (t,x) € [0,T) x IR and for any ¢ € CY2([0,T] x IR) N1, such that
o(t,z) = u(t,z) and p — u attains its global minimum (resp. mazimum) at (t,z),

{ min{u(tvx) - \I}(t»x); _at@(tvx) - ﬁap(t,x) - f(tvx’ Qo(t’ (ﬁ), (I)((P)(t’x))} < 07
u(T,z) < h(x);

(resp.
{ min{u(t, x) — W(t, x); —0p(t,x) — Lo(t,x) — f(t, @, 0(t,2), D(p)(t,2))} 2 0,
w(T,x) > h(x);).

The function u is said to be a viscosity solution of (2.2.20) if it is both its viscosity subsolution and
supersolution. O

In [56], Y.Ren and M.El Otmani have shown:

Theorem 2.2.2. ([56], Theorem 18) Assume that Assumption (A3) is fulfilled, then the function u
defined in (2.2.19) is a viscosity solution of (2.2.20). O

2.2.2 Systems of reflected BSDEs with inter-connected obstacles driven by
a Lévy process and multi-modes switching problem.

We now introduce the following functions f;, h; and g5, 7,5 € A:
fi (Y )imim,w) € [0,T] x R* x R™ x 02— f;(t, 2, (y")i=1,m,u) € R
gij : (t,x) €[0,T] x R* — g;;(t,z) € R
hi :x € R+ hi(z) € R

which we assume satisfying:

Assumption (A4)
(I) For any i € A:

(y)i

) The mapping (t,x) — fi(t,x, ¥ ,u) is continuous uniformly with respect to (', u) where 3 =

(i
i=1,m
(11) The mapping (¥, u) — fi(t,z, 5 ,u) is Lipschiz continuous uniformly w.r.t. (t,z) ;
iii) f;(¢,2,0,0) is measurable and of polynomial growth w.r.t. (¢, x).
0,0) i ble and of pol ial g h
. 1 2

(iv) For any U, U? € H2(1?), X,Y € 82, there exists YUl Ut o (VJU U ")j>1, i = 1,2, which may

depend on U! and U?, that satisfies (A2) and such that :

Filt, X, Yo, UL — filt, X3, Y3, U2) > (VI U5 (U — U2, dP @ dt —ae., i = 1,2; (2.2.21)

(V) For any 1€ A and k S A’L =A- {Z}7 the mapplng Y — fi(t7xayla S Yk—15Yks Y41, aymau)
is nondecreasing whenever the other components (¢, x,y1, - , Yk—1,Yk+1," " > Ym,u) are fixed.



36

(IT) Yi,j € A, g;; = 0 and for k # j, g;1(t, z) is non-negative, continuous with polynomial growth and
satisfy the following non-free loop property:

For any (¢t,z) € [0,T] x IR and for any sequence of indices 4y,---,éx such that i1 = 45 and
card{iy, -+ ,ix} =k — 1 we have
Giriz (t,l‘) + Givis (t7$> T+t Gii (t,l‘) > 0.

(IIT1) Vi € A, h; is continuous with polynomial growth and satisfies the following coherence condition:

hi(x) > nézjth(hj(x) —9;(T,z)),Vz € IR.
J i

We now describe precisely the switching problem. Let T = ((6,);>0,(¢;);>0) be an admissible
strategy and let a = (as)sejo,r] be the process defined by

Vs < T, as:= aoglyg,y(s) + Zaj,lll]gj_lgj](s),
j=1

where {6;},>0 is an increasing sequence of F;-stopping times with values in [0,T] and for j > 0, «; is
a random variable Fy,-measurable with values in A = {1,...,m}. If P[lim, 6,, < T] = 0, then the pair
{0;,a;};j>0 (or the process a) is called an admissible strategy of switching. Next we denote by (A%)s<r
the switching cost process associated with an admissible strategy a, which is defined as following:

Vs <T, AL = o, 10,05, Xy "), < and Af = lim A¢ (2.2.22)
Jj=1
where X% is the process given in (2.2.13). Next, for n < T and i € A, we denote by
A; := {a admissible strategy such that «g =i, 6 = n and E[(A%)?] < oo}.

Assume momentarily that for i € A, the function f; introduced previously does not depend on 3/ and
u. For ¢t <T and a given admissible strategy a € A}, we define the payoff J2(t,x) by:

T
Jia(t, :L') = E[/ fa(s)(s, Xﬁ’w)ds + ha(T) — A%]
t

where fos)(--.) = fu(...) (vesp. hqr)(.) = hi(.)) if at time s (vesp. T') a(s) = k (vesp. a(T) = k)
(k € A). Finally let us define

Ji(t,x) = sup JE(t,x), i =1,...,m. (2.2.23)

ac Al

As a by-product of our main result which is given in Theorem 4.3 below, we get that the functions
(J*(t,))i=1,...,m is the unique continuous viscosity solution of the Hamilton-Jacobi-Bellman system as-
sociated with this switching problem. O

Let (t,z) € [0,T] x IRF and let us consider the following system of reflected BSDEs with oblique
reflection: Vj =1,....m
Y7 eS8 UJeH* (%), Kie A
Vi = hy(XET) + [F fi(r XEE, Y Y2 Y U dr - Y [T URdHY + K — KT, Vs < T
i=1
Vs ST, Y7 > max{VF — gyu(s, X0%)} and [T{Y7 — ma VE — gyes, X% KT = 0.
keAj ’ keA;

(2.2.24)
Note that the solution of this BSDE depends actually on (¢, z) which we will omit for sake of simplicity,
as far as there is no confusion. We then have the following result related to existence and uniqueness of
the solution of (2.2.24).

Theorem 2.2.3. Assume that Assumption (A4)(I)(ii)-(iv), (A4)(I11) and (A4)(III) are fulfilled. Then
system of reflected BSDE with oblique reflection (2.2.24) has a unique solution.
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Proof. The proof follows the same lines as in [10] and [30]. It will be given in two steps.

Step 1: We will first assume that the functions f;, i € A, verify (A4)(I)(ii)-(v). The other assumptions
remain fixed.

Let us introduce the following standard BSDEs : Vs < T,
Y € 8% U e H*(P)

_ _ _ _ o0 _ . .
Vo= max by (X57) 4 [ max fy(r X7,V Y On)dr = 3 [ OldH? (2.2.25)
J m i=1
and
YeS&? Ue H2(€2)-
(2.2.26)

Y, = min hy(Xp%) + [ min fi(n X0 Y, Y, U dr = 3 [, UsdH.
J =1

Note that thanks to Theorem 1 in [48], each one of the above BSDEs has a unique solutions. Next for
j=1,---,mand n > 1, let us define (Y7 UJ" KI") by:
yin e &2 Uin e H2(%), Kime A?;
Yyiv=Y
Y;,j’n _ h t’r +f f] Xt,x Yl,n—l,___ ’Y’(‘j'—l,n—17y;-j,n7)/7j+l,n—l7._. ,Ym’n_l,Uﬂ’n)dT
- Z [FuiindH + K" — KIn, Vs < T;
— max(Y,Fr=1 — g (r, X5))]dKI = 0.

keA;
(2.2.27)
By induction we can show that system (2.2.27) has a unique solution for any fixed n > 1 since when
n is fixed, (2.2.27) reduces to m decoupled reflected BSDEs. On the other hand it is easily seen that
(Y,U,0) is also a solution of :

?”

n n— . T
Yj > ]?éaAX(Yk 1 7.9]]6(5 X ))7 Vs § T7 fo [

Y, = max h;(X5") + fST max fi(r, X5% Y, Y, Up)dr — 5 fST UidHY + Ky — K,,Vs < T
=1
7. > (Vs — g (s, X5, Y < 75 [T, — un(Fs g (o X, =0

Next since for any i € A, f; verifies Assumption A4(I), by Proposition 2.2.4 and an induction argument,
we get that P-a.s. for any j,n and s < T, Y"1 < YJ" < Y,. Then the sequence (YJ ™)n>0, has a limit
which we denote by Y7, for any j € A. By the monotonic limit theorem in [25], Y7 € S? and there exist

Ul e H?(0?), K7 € A2, such that: Vs < T,
Vi = hy(XE%) + [T fy (e, X0V, Uddr — S [T UiaH? + K — K,
i=1 2.2.28
YJ > max(Y — g1(s, X1)), ( )

kEA;

where for any j € A, U7 is the weak limit of (U7"),,>1 in H?(¢?) and for any stopping time 7, K7 is the
weak limit of KJ™ in L?(Q, F,,P). Finally note that K7 is predictable since the processes K™J are so,

for any n > 1.
Let us now consider the following RBSE:

YieS? Ule H2(¢?), Ki € 82, non-decreasing and K’g =0;
Ysj = hJ(X;m) + fsT fj(r’ Xﬁ’z’yrlv e 7Yrj71,ffrj7 Yrj+1v T 7Yrmv Uﬂ)dr
o0 A .. N A ~ .
> [T UaH? + K, — KI,¥s < T; (2.2.29)
i=1
7 k T . T
Yy > ,ﬁ%ﬁ’j(n = gjn(s, XP7)), Vs < T [y [V

r—

_ k _ . t,x Aj:
Iggj(iﬁf gir(r, X;20))]dK7 = 0.

According to Theorem 3.3 in [1], this equation has a unique solution. By Tanaka-Meyer’s formula (see
e.g.[55], Theorem 68, pp. 216), for all j € A:

T
(V=YD =07 =YD+ [ sy Ly T = ))
S

i ; 1 o .
+ Z []1{?7 -7 >0}(Y -V + Ligi _yi <y (Y7 =Y/ )]+ 5L?(YJ —Y9)
s<r<T
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where the process (LO(Y7 —Y7)),<p is the local time of the semi martingale (Y7 — Y7 )o<s<7 at 0 which
is a nonnegative process. Then we have

T
(V=YD 20 =YD+ [ U5y _ys T - ¥7)

T
SRS CONE N RPN 115 R GRS CRI G )

T
- fj(rv X;S-,m’ lea o aYrJa o aYrma U}j)]dr - / ]]'{er_fYTJ_>O}d(K7] - KTJ)
+ Z/ ]l{f/j_fyj_>0}( 3 gIdH®Y.
i=1v"%
First note that by (2.2.29), fST H{in_yji>0}d(]’§(7'z— —K7) < 0. Now by Assumption (A4)(I)(iv), we obtain:

T
(Ysj _)/sj)+ S/ ]]-{Yrj_,yrj_>0}[fj(r7X7t“7xa1/7"13'" aYrja"' aYrmaUg) _fj(r7X7t“7xa1/7"1)"' aYrja"' aYrmaUg)
+-fj(7ﬂvX7E7IaYr1"" aYrj"" a}/;m’ﬁg) *fj(T,Xﬁ’I,YTI,”' aYrja"' ,)/;m,Ug)]dT
o LT
O R R R
i=1"9%

T o T ro. A . ..
< / Ligs —vi sy OO =Y )Tdr + Z/ Ligi —yg sy VOO0 = U dr
s i=1v%

0o AT
-2 / Ly _yi sy (U7 = UF)dHD.
i=1v°

Next for £ < T let us set My = 3 JrvivUhidEY and Z, = ) Jo Uiy s gy (O = UF)aH.
- F

i
By Proposition 2.2.1, e(M) € 82, &(M) > 0 and E[¢(M)r] = 1. Then using Girsanov’s Theorem ([55],
pp-136), under the probability measure dP := (M )rdP, we obtain that the process

Zy=Zv— <M, Z >, t<T,

is a martingale and then

e T AU2U1,A,A .. i T A .. .. . ~
Esl>_ / Liys v sy VPO U2 dr=3 / Ly yi sy (U7 =UM)AH) = B (Zr—Z) = 0.

=179 i=1"%
Thus for any s < T,

T
Ba(V7 ~ V)" <Epl [ OV - Y7y i)

and finally by Gronwall’s Lemma, Vj € A, Vs < T, (YSJ — st)Jr =0 P—a.s. and then also P — a.s. since
those probabilities are equivalent. It implies that P-a.s., Y7 < Y7 for any j € A. On the other hand,
since Vn > 1,Vj € A, Y771 < Y7, then we have

k,n— k
Vo < T, max (Y™ L gn(s, X07) < max (Y - gjk(s, X0).

Therefore by comparison, we obtain Y7 < Y7, and then Y7 < Y7 which implies Y7 = Y7, Vj € A.

Next by Itd’s formula applied to (Y7 — Y7)2 we obtain: Vs € [0, 7],

(V7 - V9)2 = () Vi) +2 / Wi =V )ayi -+ Y / (U — O3 ) U — O3)d[H 1Y,
0 i=1 k=170
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AsYJ =Y and taking expectation in both-hand sides of the previous equality to obtain
T . . A .
IE[/ > (U =T} =0,
0 i>1

It implies that U7 = U7, dt ® dP and finally K7 = K7 for any j € A, i.e. (Y7,U7, K7) e verify (2.2.29).

Next we will show that the predictable process K7 does not have jumps. So assume there exists
j1 € A and a predictable stopping time 7 such that AVt = — A K/t = — A KJ1 < 0 (note that the
process K7 is predictable). Then by the second equality in (2.2.29) we have

J1 ko . t,x
YT* - k:rg%i (Y’rf g]lk(T’ X‘rf))' (2230)

Now let jo € A;, be the optimal index in (2.2.30), i.e.,
Ygi — 9i1.52 (7, X?m) = Yrji > Yrjl 2 Y7—j2 ~ 9j1.52 (T, X?m)

Note that g;, j,(T, X2%) = g, ;,(1, X1®) since the stopping time 7 is predictable, and the process

(X5%)<s<7 does not have predictable jump times. Thus AY?2 < 0 and once more we have,
Y72 = max (Y — gjn(r, X27)). (2.2.31)
keAj,

We can now repeat the same argument as many times as necessary, to deduce the existence of a loop
él, ---agp—hgp = El (p Z 2) and 12 7é ll such that

. ¢
YL = Y2 = gy (1, XPD), o YT =Y =g (7 X
which implies that
gey 6o (Tv X:,f) +e At 9,1,y (Tv X;S_,_m) =0
which is contradictory with Assumption (A4)(II). It implies that AKJ* = 0 and then K7' is continuous

since it is predictable. As j is arbitrary in A, then the processes K7 are continuous and taking into
account (2.2.29), we deduce that the triples (Y7, U7, K7);c 4, is a solution for system (2.2.24). O

Step 2: We now deal with the general case i.e. we assume that f;, i € A, do no longer satisfy the
monotonicity assumption (A4)(I)(v) but (A4)(I)(ii)-(iv) solely.

Let i € A and ty € [0,7] be fixed. For a € A} and I := (I'\)scp0,17)ica € [H?]™ := H* X --- x H?
(m times), we introduce the unique solution of the switched BSDE which is defined by: Vs € [tg, T,

" T _ oo T ) )
‘/sa = ha(T) (X’? ) + / fa(r) (T7 Xﬁyma FT? Nﬁ)dr - Z/ N;'l,ldH'rEZ) - A% + Ag (2232)
s i1 Vs

where V@ € §% and N® € H?2(¢?) (F-T) = (T%);ca). First note that the solution of this equation exists
and is unique since in setting, for s € [to, T, f/sa =V¢ — A2 and il% = ha(T) (X;I) — A% this equation
becomes standard and has a unique solution by Nualart et al.’s result (see [48], Theorem 1, pp.765).
Moreover as in [12] (see Appendix 5.1, Theorem 5.1.1) we have the following link between the BSDEs
(2.2.24) and (2.2.32), o

Y = CSSSUPe A; (Ve —AL) =VE — AL (2.2.33)

for some a* € Aj .

Next let us introduce the following mapping © defined on [H?]™ by
O : [H?]™ — [H?™

; ) 2.2.34
['=1)jear (Y7)jea ( )
where (Y7,U7, K7);ca is the unique solution of the following system of RBSDEs:
Yi = hy (X5 + [T fi(r, X0 T, UDdr — Y [T UdHY + K — K9, Vs <T.
‘ i=1 " (2.2.35)

j k j . (Tryi k j i _
Yy > max{Y — gjn(s, Y{)}, ¥s < T Jo Y7 - max {Y* — gji(s, YKL =0

S
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By the result proved in Step 1, © is well defined. Next for n € H? let us define || - ||2.5 by

T
1
Il = (E[ / |, 2ds])

which is a norm of H?, equivalent to ||.|| and (H?, || - ||2,3) is a Banach space. Let now I'! and I'? be two
processes of [H?|™ and for k = 1,2, let (Y%7, U K*7);c4 = O(TF), i.e., that satisfy: Vs < T,
kg _ ta T ta Tk 7k > (T prkodi g () k.j k.j
Y:e J = j(XT )+f5 fj(,r.?XT’ 71—‘r7Ur7])dT - Z fs UT)L dHT +KT - Ks’j
i=1

Y9 > max{ V0 — gj(s, X07)}; [y VI = max{Y} — gjo(s, X02)dRET = 0.
qGAj quj

Next let us define (}A/'J )jea through the following system of reflected BSDEs with oblique reflection:
Vs <T,

i p (b T, tr T 7 ) ta T 11 O™ (T i g
sz hj(XT )+fé fj(rﬂXr VFTVUr)vf](T7Xr 7Fr7Ur)dT Zf5 Ur dHT +KT Ks
=1

Vi > max{VZ - gjo(s,V9)}: [y [V7 — max{V — g;q(s, Y{)}|dKI =0,
qGA]‘ QGAJ'

S S

Now let ¢y € [0,7] and a an admissible strategy such that 6y = ¢y and E[(4%)?] < co. Next let us define
Vka |k =1,2, and V?, via BSDEs, by: Vs € [to, T],

A~ t T — A — A
V= ha(T) (XT’JC> + / fa(r)(r, X,t,’x, F},, Ng) V fa(r) (r, X:’x, Fg, Nf)d?‘
s
0o T
-3 / N dH® — A% + A
i=1"9%
and for k = 1,2,
T - > T . .
‘/;k)a = ha(T) (X;lm) + / fa(r) (7“, Xﬁ’aja Ffa Nf’a)dT - A%" + Ag - Z/ Nf)a’ldﬂ}(*l)'
s i=1"9%

By Proposition 5.1 in Appendix, we have:
i ks el 7 e’ :
Y = esSSUDge 47 (Vi — A¢), k=1,2and Y} = eSSSUP ¢ 4 (Vo —AL):=V2 — AL . (2.2.36)

In addition for s € [to, T, fq(s) verifies the inequality (2.2.21) of Assumption (A4)(I)(iv). Actually
let us set a; = aplyg,y(s) + § o119, ,0,)(s), s € [to, T], and let U',U? € H*(I?), X,Y € 8. For any
s € [to, T| we have: =

fa(s) (5, X, Yo, UY) = fa(s) (s, X5, Y5, U?)

= [fao(stsyxfstsl) - fao(SaXS7YSa USQ)}]]-{GOSSSGH}
+ Z [faj—1(37X37)/37 Usl) - faj71(85 Xs,Ys, Uf)]]l]e,-flﬂj](S)

1 >2
> (VU (Ut - U?))21(6,<s5<0:} D (VUL Ui (Ut = U2))21,_, 0,1(5)
— (VU (UL — U2))e. )
where for any s € [to, T,
vV Ve = V;Ul’UQ’ao]l{eogsgel} + Z AR Tyg,_,.0,1(8)-

Jj=2

But on [tg, T] x Q,

s 0 dP{3 VT 0 W (AL) < -1} £ 3 ds & PSS VIV )AL (w) < ~1) =0

i=1 JEA i=1
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which implies that on [tg, T] x © it holds
Z Vsi’Ul’Uz’“(“’) (W)pi(ALg(w)) > —1,ds @ dP — a.e.
i=1

On the other hand, on [ty, 7] x £,

oo oo
SRt < SESTVERN < ¢, ds @ dP — ace.
=1 LeA i=1

Thus the process VU U*:@ verifies Assumption (A2) and f*(*) satisfies Assumption (A4)(I)(iv) on [to, T].

Consequently, by the comparison result (Proposition 2.2.3), for any strategy a € A{O, P-a.s. for any
s € [to, T, V& > Vv V2% This combined with (2.2.36) leads to Y,.7 VY27 <Y/ = V2" — AZ". We
then deduce

1,(1* a,* l,j 3 a,* a,* 2,a* a,* 2,j 3 a,* a,*
Vi _Atogyto éVto _Ato andv;fo _Atogyl-fo tho _Ato

to
which implies
1,5 2,7 ~a* 1,a* Aot 2,a"
|)/t0j —)/;50‘7| S |‘/;0 _‘/t() |+|‘/to _‘/to | (2237)

Next we first estimate the quantity |f/t(; _ Vti,a* | For s € [to, T let us set AVS‘L* :: ‘A/Sa* B Vsl’“* and
AN = N¢" = N Applying It6’s Formula to the process ¢”*| A Vi'|* we obtain: Vs € [to, 7],

PIAVEP+ [T AN Pr

== B AVE Par =23 [ AV A NE an )
2. [ P DV Fur ()1 XET DL NE DV fao o), XE T2 NE) = (X5, DL )

— > % [l e ANE AN A(HO, HO), — (HO, HO),).
1=11=1

By the Lipschitz property of f;, j € A, and then of f,. and the fact that for any z,y € R, [z Vy —y| <
| — y| we have: Vs € [tg, T,

|fa*(r)(r7 X£7$7F}7N;~1*) \ fa*(r)(rv X£7IaF$aqu*) - fa*(r)(rv Xﬁ,w’ri’N},a*)l

< |fa*(r)(r7 Xﬁ’w,l—‘}n, Ng*) \ faj(t) (7’7 X7€7w7 F%7 N;}*) - faA*(r)Sra XﬁJ’I‘%’ Ng*)
+|fa*(7")(7n7 X*ﬁ’a:?]-—‘}wN;’l ) - fa*(r)(rv Xﬁ’mar}ﬂaNg’a )|

(2.2.38)

< LT, = D2 + [N = N2

)

The inequality 2zy < %xz + By? (>0 and z,y € IR) and (2.2.38) yield: Vs € [to, T},

6ﬁs| A ‘A/sa* 2 < 7fST eﬁr” ANﬂ*Her _ fST ﬁeﬁ’l“| A V'Ta_*

2d$ -2 Z fST eﬁr A ‘/7"a: A N:"a*dHﬁZ)
i=1

+2L [T 97| A VE|(IPL = T2 + [N — N2 |)dr

S5 TS AN AN d(HO, HO), (O, HO),)

1=1]=1

IN

— [T B A NG |2dr — [ 8P| AV 2ds — 23 [T BT AVE A N dHD
=1
T r a* 2 T g " o
+fo% [ioeﬁ | AV 2ds + L [0 ePr(|ITF — T2 4 [N& — NJ|)2dr
-3 fsT e AN A NLe"q([HO, HO), — (HO, HD),)

i=11=1

IA

22 [T ek =22y — 27, [T e AVE NS dH

e e [T e AN AN (HD, HO), — (HO, HO),),
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for B > 2L%. We deduce, in taking expectation,
Bs Cra* |2 217 4 Bripl 212
Vs € [to, T], E[e”*| A VY| ]§7E[ el = T2|7dr].
Similarly, we get also Vs € [to, T],
Bs|yra* 2,a™ 2 2L2 T Bripl 2|2

Ele™|Vy = Vo [l < 71*7[ e’ [Ty — I7 dr].

Therefore by (2.2.37) we obtain:
Bropy i _ y2dp2 < 87 m pape
Ele”Y,” = Y/ I7] < ?HF =I5 5. (2.2.39)

As tg is arbitrary in [0, 7] then by integration w.r.t. to we get

1O(T") = O(T?)|2,5 < T = T2||.5. (2.2.40)

It follows that for 3 large enough, © is contraction on the Banach space ([H?]™,||.||2,5), then it has a
fixed point (Y7);ea which has a version which is the unique solution of system of RBSDE (2.2.24). O

Remark 2.2.4. As a consequence of (2.2.39), there exists a constant C' > 0, such thatVj € A, s <T,
]E“Ysl’j - Yf’jﬁ < C||(Y1’j)jeA - (YQ’j)jeA”%,ﬁ- (2.2.41)
This estimate will be useful later. O

Corollary 2.2.1. Under Assumptions (A4)(I)(ii)-(iv), (A4)(II) and (A4)(IIl), there exist deterministic
lower semi-continuous functions (u?(t,x))jca of polynomial growth such that

V(t,z) €[0,T] x RF, Vs € [t,T], Y7 =/ (s, X!7), Vj € A.

S

Proof. This is a direct consequence of the construction by induction of the solution (Y7, U7, K7);c 4 given
in Step 1. Actually by Ren et al.’s result [56] there exist deterministic continuous functions of polynomial
growth @(t,z), u(t,r) and u/"(t,z), n > 0 and j € A, such that V(¢,z) € [0,T] x R¥, Vs € [t,T]

(a) _
Y, =a(s, X0") and Y, = u(s, X1).

(b) 4 .
Y™ =ul"(s, XET), V5 € A,

and _ _ -
Y <Yyir<yintl <y,

This yields for any n > 0 and (¢,2) € [0,T] x IRF,
E(tax) < un(t,l‘) < un+1(t’x) < ﬂ(t,%).

Thus w (t, z) := lim,, .., u/"(t,1), j € A, verify the required properties since (Y7"), converges to Y7,
j €A, in S 0

We now give a comparison result for solutions of systems (2.2.24). The induction argument allows to
compare the solution of the approximating schemes, by Proposition 2.2.3, and then to deduce the same
property for the limiting processes.

Remark 2.2.5. Let g_j, UJ,K7)jea be a solution of the system of RBSDEs (2.2.24) associated with
((fi)jea, (Gir)jkea, (hj)jea) which satisfy [Ad]. If for any j,k € A,
fi < fis by < hj, gie > Gk

then for any j € A, Y7 <Yi. [
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2.3 Existence and uniqueness of the solution for the system of
IPDEs with inter-connected obstacles

This section focuses on the main result of this paper which is the proof of existence and uniqueness of the
solution for a system of IPDEs. For this objective we use its link with the system of RBSDEs (2.2.24).
However we are led to make, hereafter, the following additional assumption.

Assumption (A5): For any i € A, f; does not depend on the variable u € £2. O
So we are going to consider the following system of IPDEs: Vi € A,
man{u;(t, ) — max(u,; (¢, ) — ¢;;(t, x));

JEA;

i(t
*atuz(t x) ‘Cui(tax) - fi(t71'>u1(t7x)a T >um(t7x))} = 07 (t,(ﬂ) € [OaT} X [OaT} X Rk;
u (T, z) = hi(x)

(2.3.1)
where
Lu(t,z) = L u(t,z) + T (t,2z,u)
with
Llu(t,z) := (E[L1]o(t,z) + b(t, 2))0yu(t, x) + 0(t,x)*@? D2 u(t, ) (2.3.2)
and Z(t, z,u) := [plult, x4+ o(t,x)y) — u(t,z) — pu(t, z)o(t,z)y]II(dy).
Note that for any ¢ € C12([0,T] x IR*) N1, and (¢,z) € [0,T] x IR*, the non-local term
I(t,z, ) = [plo(t,z+ o(t,z)y) — ¢(t,x) — Ox0(t, x)o (¢, z)y]I1(dy) (2.3.3)
is well-defined. Actually let 6 > 0 and let us define, for any ¢ € IR,
IVt @, ¢) = [, <50tz + o (t2)y) — ¢(t,2) — Du(t, x)o (¢, 2)y](dy), (2.3.4)
T3t 2, q,0) 1= J, o lultsx + ot 2)y) — u(t, ) — qolt, 2)y)T(dy) (235)

By application of Taylor’s expansion we have

o(t,x 4+ o(t,z)y) — o(t,x) — 0pp(t,x)o(t,x)y = fo o(t,z)2D2, é(t,x + o(t,z)r)(y — r)dr.

But there exists a constant Cy, such that for any |r| < 4, |D2,¢(t,x + o(t,2)r)| < Cy, since ¢ belongs
to C12. Therefore

|(,25(t,$ + U(ta :z:)y) - ¢(t,$) - 3x¢(ta$)0(t>$)y| S Ctz|y|2

which implies that Z%(¢, x, ¢) € IR. Next for any (t,z), Z?°(t,z, D,é(t,x),$) € IR since II integrates
any power function outside [—e¢, €]. Therefore Z(t,z,®) is well defined. O

We are now going to give the definition of a viscosity solution of (2.3.1). First for a locally bounded
function w: (¢t,z) € [0,T] x R — u(t,z) € IR, we define its lower semi-continuous (Isc for short) envelope
u, and upper semi-continuous (usc for short) envelope u* as following:

u(t,x) = lim w(t' 2", u(t,z) = lim u(t', x')
(@) —(t,z), t/<T (@)= (t,x), t/<T

Definition 2.3.1. A function (u1,--- ,uy) : [0,T] x IR — IR™ which belongs to I, such that for any
i€ A, u'is lsc (resp. usc), is said to be a viscosity subsolution (resp. supersolution) of (2.8.1) if for any
i€ A, pell,NCY2(0,T] x R), u'(T,x) < hi(x ') (resp. u YT,z) > hi(z)) and if (to,x0) € (0,T) x IR
is a global mazimum (resp. minimum) point of u’ — ¢,

min{u'(to, 70) — maxc{u (to, 70) ~ gis(f0,70)}: ~Orip(to, 70) ~ Lip(to, w0)

- fi(thxO’ul(t()?xO)v e 7ui_1(t07x0)7ui(t0;x0)a to aum(tme))} < 0 (T@Sp. > 0)7

The function (u®)™, is called a viscosity solution of (2.3.1) if (ul)™, and (u™*)™,) are respectively
viscosity supersolution and subsolution of (2.5.1).
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The following result is needed later.
Lemma 2.3.1. Let (u’)", be a supersolution of (2.3.1) which belongs to Il , i.e. for some v > 0 and
C >0,

[u'(t, )| < C(1 + |z|%amma), ¥(t,z) € [0,T] x R* and i € A.

Then there exists Ao > 0 such that for any X > X\g and 6 > 0, U (t,z) = (u;(t, x) +0e (14 |z|>72))m
is supersolution of (4.1).
Proof.  We use Definition 2.3.1. Let i € A be fixed and ¢* € C2 N 11, such that ¢ (s,y) — (u;(s,y) +
fe=2%(1+]y|*7*2)) has a global maximum in (t,x) € (0,7) x IR and ' (t, x) = u;(t, z)+0e M (1+|z|>7+2).
We then have:

min{ui(t,x) + e M1 4 |z[2H2) — max( gij(t, ) + (u;(t, ) + Ge (1 + |z[2F2)));
Jj€

i=1

. 1 .
— (@' (t, ) — O (1 + |2[>7F2)) — 79(, 2)*@w’ D3, (' (t, z) — 0e (1 + [2[*2))

— (o(t,x) E(L1) + b(t, 2)) Do (' (t, ) — 0 (1 4 [*7F2)) — /]R[wi(t, z+o(t,2)y)
— 0o+ (b )y = (02) — e M afT) — D, (1) — B[l 2o )yl (dy)
- fi(t,x,ﬂ))} >0.
Then
—0yp'(t, ) — LY (t, x) — fi(t,z, V (L, x))

(t,2))D ( e Ma|*r+?)

> Oe M(1 4 [2]22) — L0 Mo(t, x)2w? D2, |x]|272 — (o(t, x) E(Ly) + b(t,
(dy) + fi(t,z, W (t,2))

_fR 96_’\t|x+a'(t m) |2’y+2 He—kt‘x|2'y+2 _ee—AtDw|x|2fy+2 ( )y

—filt,z, v (t,x))

> 0NN+ [2272) = o (t, 2= D102 — (o (t,2) B(Ly) + b(t,)) D]+
~ Jrllr+ o (62T~ 2T = DL 2 dy) + 32 CFL a7}
(2.3.6)
where C 0.0 is bounded by the Lipschiz constant of f; with respect to (y);— 1,--.,m Which is independent

of 6. But since ¢(y) = |y|**™2 € C12 N1I,, then the non-local term is well defined. Now let us set
U(p) = (b(a: + po(t,x)y), for p,z,y € R. First note that for any ¢, z,y we have

@+ ot 2)y[7? — 2772 — Dyfa| o (t x)yl

[ (1) = $(0) — Dy (0)]

| / (p)dpl

Clyl* (le2” + [y,

IN

Therefore
Sz + ot z)y[>H2 — [x[*7H2 — D[+ 20 (L, 2)y)T1(dy)

= Jyi<s |7+ ot )y — |2|27%2 — Dy |22 20 (¢, 2)yII(dy)
+ Jiyzs o+ ot 2)y7+2 — 2272 — Dy |22 20 (¢, 2)yII(dy)]

< O(1+ |z|?)
since the measure Il integrates any power function away from 0. Therefore there exists a constant

Ao € IRT which does not depend on 6 such that if A\ > A¢ then the right-hand side of (2.3.6) is non-
negative. Thus ¥ is a viscosity supersolution of (2.3.1), which is the desired result. O

Remark 2.3.1. In the same way one can show that if (u®)™, is a viscosity subsolution of (2.5.1) which
belongs to 11, i.e. for some v >0 and C > 0,

lu'(t,z)| < C(1+ |z|7), V(t,z) € [0,T] x R* and i € A.

Then there exists Ao > 0 such that for any X > g and 6 > 0, U (t,z) = (u;(t, x) — e (14 |z|>T2))m,
is subsolution of (2.5.1). O
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2.3.1 Existence of the viscosity solution

In this section we deal with the issue of existence of the viscosity solution of (2.3.1). Recall that
(Y7,U7, K7)je 4 is the unique solution of (2.2.24) and let (u;(f,z));ea be the functions defined in Corol-
lary 2.2.1.

Theorem 2.3.1. Assume Assumptions [A4] and [A5] and (2.2.14), (2.2.15) as well, then (u;(t,z))jca
is a viscosity solution of (2.3.1).

Proof. The proof will be divided into two steps.

Step 1: We first show that (uj)gnzl is a supersolution of (2.3.1). Note that for all j € A, as u; is Isc, we
then have uj, = u;. Next let us set u}(t,x) = Y0 where (Y@, Uhmtbe | KImbe). s the unique
solution of (2.2.27). As pointed out in Corollary 2.2.1, for any n > 0, (t,z) € [0,T] x IR* and s € [t, T],

Yt =l (s, X0") and ul (t,x) /" ui(t, @).

Additionally by induction, (u}l)je A, n > 0, are continuous, belong to II; and by Ren et al.’s result
(Theorem 2.2.2) verify in viscosity sense the following system (n > 1): Vj € A,

min{ui (t,2) — max (Wt @) — giu(t 2));
€4;

—Opud " (t, x) — Lu?™ (b, x) — fi(t, @, (whnm o g T g gl ,um’"_l)(t,a:))} =0;
uw™(T, x) = hj(x).
(2.3.7)
First note that for any j € A, u; verifies

uj(T,z) = hj(x) and u;(t, ) > ,ﬁ%ﬁff{uk(t’x) —gir(t, )}, Y(t,x) €[0,T] x IR

Next let (t,z) € (0,T)x IR and let j € A be fixed. Let ¢ be a function which belongs to C!+?([0, T'|x IR)NIL,
such that u; — ¢ has a strict global minimum in (¢, ) on [0,7] x IR* and wlog we assume that u;(t,z) =
o(t,xz). Now let § > 0 be fixed. Then (¢, ) is a global strict minimum of u; — ¢ in [0,T] x B(z, Cy0).
Next let (t,,,7,) be the global minimum of u} — ¢ on [0,7] x B(z, Cy6). Therefore

lim(t,, zn) = (t,2) and uj (t,, n) — u(t, ).
n

Actually let us consider a convergent subsequence of (¢, x, ), which we still denote by (t, ,), and let
set (t*,x*) its limit. Then
Ul (tn, n) = @(tn, Tn) < uj(t,x) — o(t, ). (2.3.8)

Taking the limit wrt n and since u;, = u; is lsc to obtain
uj(t*v 'T*) - ¢(t*7 1'*) < uj(t7 LU) - ¢(t7 iE)

As the minimum (¢, z) of uj — ¢ on [0, T] x IR¥ is strict then (t*,2*) = (t,x). It follows that the sequence
((tn,zn))n converges to (t,x). Going back now to (2.3.8) and in sending n to infinite we obtain

Uj(t, ) = u;(t,z) < liminf u?(tn,xn) < lim sup u;-’(tn,xn) < wu;(t,x)
which implies that uf (tn, v,) — u;(t,z) as n — oo.
Now for n large enough (tn,zn) € (0,T) x B(x,C,0) and it is the global minimum of u} — ¢ in
[0,7] x B(x,Cs0). As u} is a supersolution of (2.3.7), then by Definition 5.2.1 (see Appendix 5.2) we
have

— 0t (tn, ) — LrO(tn, Tn) — TV (tn, Ty @) — T2 (L, Ty Dot ), uP™) >
Tty xn, u(t, y), -+ w7 () u (), W T T (G, ),y - u™ T (L, ).
(2.3.9)
But there exists a subsequence of {n} such that:
(i) for any k € A, (' (t,, zn))n is convergent and then limy, u} ™ (ty, 2,) > up(t, ©) = ug.(t, 2) ;
(i) (Il’é(tmxna ¢))n — Il’d(taxa ¢) as n — 00 ;
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Sending now n to infinite (through the previous subsequence) in (2.3.9), using the fact that f; is
continuous and verifies (A4)(I)(v) and finally by Fatou’s Lemma to obtain:

—0ip(t,x) — L'o(t,x) — TV (t,x,0) >
12 5(t X Dx¢(t I‘) ) + fj(t7x7u1(tvgj)a e 7uj—1(tax)7uj(ta 'T)7uj+1(t7x)7 e 7UM(t7$))'

But u;(t,x) = ¢(t,x) and u; > ¢, then I*°(t,z, Dyp(t,z),u’) > I*°(t,z, D, ¢(t, x),$). Plugging now
this inequality in the previous one to obtain
_at¢(t7 ZII) - £1¢(ta $) - I(tv €, ¢) - fj(ta x, ul(ta .I‘), Tty uj—l(t7 1'), uj(t7 JL‘), uj-l—l(tv ZC), o auTVL(tv 'T’)) Z 0.

Therefore u; is a viscosity supersolution of

min{u;(t,z) — Iglix(uk(t ) — gjk(t, x));

€
-0y (t, x) — Luj(t,x) — fi(t, z,ui(t, x), - ,um(t,x))} = 0;

u;j(T,z) = hj(x).

As j is arbitrary then (u;);jea is a viscosity supersolution of (2.3.1). O

Step 2: We will now show that (u});ca is a subsolution of (2.3.1). As a first step we are going to show
that

Vi€ A, min{uj(T,z) — hj(z); uj(T,z)— Ircréax(uk(T z)—g;x(T,x))} = 0.

By definition of u} and since uj " u;, we have

min{uj(T, x) = h;j(x); wj(T,z) — g&x(uk(T z) = gir(T,2))} =2 0

Next suppose that for some zg € IR, 35 > 0, s.t.

min{u;(T, zo) — hj(xo); u;-‘(T, Zo) — ’?éz}qx(uZ(T, x0) — g5 (T, z0))} = 2e.
J
We will show that leads to a contradiction.
Let (tg, zr)k>1 — (T, w0) and w;(ty, %) — uj(T,20). We can find a sequence of functions (v")n>0 €
C12([0,T] x IR) of compact support such that v™ — uj, since uj is usc. On some neighborhood B,, of
(T, z¢) we have,

V(t,z) € By, min{v"(t,z) — hj(z); v"(¢, &) — max(uj(t,x) — gx(t,x))} > e (2.3.10)

keA;

Let us denote by By := [tg, T] x B(zy, k), for some 6% €]0, 1] small enough such that Bf C B,,. Since
uj is of polynomial growth, there exists ¢ > 0, such that \u}"| < con B,. We can then assume v™ > —2¢
on B,,. Define

de|lx — zp|?
an(t,x) = 'Un(t,l')‘i— % —+ \/T_t
k

Note that V" (¢, z) > v™(t,x) and
(u; = V" )(t,2) < —c Y(t, z) € [tg, T| x OB(zg, 6y, ). (2.3.11)

On the other hand, by Itd’s formula we have

N

— {QV(t,x) + LVt @)}
= —{owr o) +a(T - 1) )+{E(L1) (@) + bt 2)} (B0 (1, ) + 2(552))
3ot 2P (DL (t2) + i) + [l (b + ot ay) + fcle-sutoltall
HIT =)} —on(t ) — 2l — (7 - 0 — 0,0 (t2)o(t @)y — Setlo(t 2)ylT(dy) |

= {0 (t.2) + 0T~ 1)3) + {B(La)o(t,2) + blt, 2) (s (1.2) + o)
+io(t,2)?w*(D2,0"(t,z) + (5%)2)
+ [l (t, x + o(t, x)y) V" (t, 1) — O™ (¢, x)o(t, z)y|(dy)

t,z)yl
C|lT—X o(t,r C|lT—I 2 C\T—T
+fR 4 | (kéE)Z(t > 4 |(62)2k‘ 8 Eég)zk)U(tax)y}H(dQ)}«
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2

Note that ®(x) := 40'55%;' € C? N1, and v" € C"? and of compact support, then the two non-local
k

terms are bounded and d,v", ,0™, D% v™ are so. Since 9;(v/T —t) — —oo, when t — T, then we can

choose tj, large enough in front of §; and the derivatives of v™ to ensure that

—(O Vi (t, ) + LV (t,x) > 0, V(t,z) € BY. (2.3.12)

Consider now the stopping time 0F := inf{s > t, (s, Xx**) € Bﬁc} AT, where B,’?LC is the complement
of BF and 0 := inf{s > tg,u;(s, Xi%) = {H%X(Ul(saXﬁ’“’“) — gj(s, Xg™))} AT. Applying Ito’s
€4

formula with Vi (¢, z) on [tg, 0 A6)] and taking into account (2.3.11), (2.3.10), (2.3.12) and the fact that
Vi € CY2) to obtain:

0% Ny,
tr

Vi (tk,on) = V(0% A O, Xkt )

[b(r, XEom1) 0, Vi (1, XEETR) + 0,V (t, ) (ry X Eo"0)]dr

k k
0 1O o(r, Xtem) 0, Vi (r, Xt )d L, — + 0 1O o2 (r, Xemr) 292 Vit (r, X oo )dr

_tk 2 Jiy

= AV Xpem) = ViR (r, Xpe) — o (r, X70R) 0 Vi (r, Xpmo® ) A Ly}
tk<7‘§9ﬁ/\9k

(2.3.13)
Next let us deal with the last term of the last equality and let us set

h(s,y) = Vi (s, X2 + 0 (s, X2 )y) = Vit (s, XE™) = 0,V (s, X2 o (s, X7 )y,
By the mean value theorem we have

4c

5?(0(57 X )y)?
k

1 _
h(s,y) = 58@@"(5,){&“ +Xo(s, X)) (o(s, X )y)* +

where X is a stochastic processes which is valued in (0,1). As v™ is of compact support and ¢ is bounded
then

T
B[ [ s < o
0o JR
It follows that
E[ Z {an (7"7 Xﬁk’xk) - an(r, Xﬁiywk) - U(Tv Xﬁi@k)a&rvkn(rﬂ Xﬁiywk) A LT}]

t, <r<6k AB)

_E| /H | mspmiagas < .

Next going back to (2.3.13) and taking expectation to obtain

02 N0

N
Vit (b, o) = B[V (0 A Or, Xgioth ) — / (V3 (r, Xp2%%) 4 LV (r, X728 ) dr]
tr

Y

E[V;" 6y, Xég’”)ll{aggek} + Vi (O, X" ) L 20,3

E[{V; 0y, Xég’xk)ﬂ{ega} + VT, X" ) Lygn —ry Yo <o,y + Vit (Or, X5 ™ ) 1igx 50,3
> E[{(U;(GﬁyXég’xk) + 0 Lggr <7y + (€ 4 hy(X7™)) Lige _y } L gox <0,

+{e+ krgg»;(ui(Gb Xor ™) = g (O, Xg ™)) Mok 50,3

> Blu; (0 A Ok, Xpbin )] +cAe

0k N6y,
= Elu;(ts, 2x) — / fi(s, Xﬁ’“w’“, (w (s, Xﬁ"’w’“))lzlymds] +cAhe

tk

since the processes (Y7 = u/(., X.));jc stopped at time 6% A 6 solves an explicit RBSDE system with
triple of data given by ((f;)jea, (hj)jea, (gij)ijea). In addition, dK7%® = 0 on [tg,0)]. On the other
hand, (u?);ca € II; and then taking into account (2.2.16) and Assumption (A4)(1)(iii), we deduce that

0F NGy,
lim E[/ fj(s,Xg"’”"’, (ul(s7X£’“x’°))l:1’m)ds] =0.

k—o0 th
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Taking the limit in the previous inequalities yields:
klim Vit (te, xk) = klim V(g ) + VT — t, = 0™ (T, x0)
— 00 — 00
> klim uj(ty, o) +cNe=uj(T,m0) +cAe.
— 00

As o™ — uj pointwisely, then we get a contradiction, when taking the limit in the previous inequalities,
and the result follows, i.e., Vax € IR, Vj € A,

min{u; (T, z) — hy(z); uj(T, «) — max(u; (T, z) - gu(T,z))} = 0.

J

Finally the proof of
U;(T, 33) = h](l‘),Vj €A

is obtained in the same way as in ([30], pp.180) since the function g;;,4,j € A verify the non-free loop
property (A4)(II). O

Now let us show (u})jea is a subsolution of (2.3.1). First note that since u? ' wu; and u} is
continuous, we have o
wj(t,r) = limsup'u (t, ) = o tlllr_)nt s uf(t', '),
n—oo k] )
Besides Vj € A and n > 0 we deduce from the construction of u}l that

ul(t, @) > ggif(%“(t,w) — gj(t,z))

and by taking the limit in n we obtain: Vj € A, Vz € IR,

wj(t, z) = max(uf (t,x) — gj(t, ).
I€A;

Next fix j € A. Let (¢,z) € (0,T) x IR be such that

uj(t,x) — %%x(uf (t,x) —g;(t,x)) > 0. (2.3.14)

Let ¢ be a C12([0,T] x IR) N1I, function such that u¥ — ¢ has a global maximum at (¢, z) in [0, 7] x IR¥
which wlog we suppose strict and u;(t,z) = ¢(t, z). Therefore (¢, ) is a global strict maximum of u; — ¢
in [0,T] x B(x,C,d). On the other hand there exist subsequences {ny} and ((¢,, ,z ))i such that

NE? Nk
(s 2 Dk =k (62) and wi® (t,, 2, ) =& u; (4, ).
Let now (tn,,2n,) be the global maximum of u’* — ¢ on [0,7] x B(x,C,d). Therefore

(tngs Tn,) —% (t,2) and u;”“ (tngs Tny,) =k wj(t, ).

Actually let us consider a convergent subsequent of (¢, , 2y, ), which we still denote by (¢, ,2n,), and
let (¢,Z) be its limit. Then for some ko and for k > ko we have

u?k (tﬂk ) xnk) - (b(tnk ’ ‘Tnk) > u?k (t{nk ’ x{nk) - (b(t;zk ’ ‘/I;;zk) (2'3'15)
Taking the limit wrt k to obtain

As the maximum (t,z) of u; — ¢ on [0,T] x IR¥ is strict then (£,z) = (t,z). It follows that the sequence
((tny,s Tn,, ) converges to (¢,x). Going back now to (3.3.24) and in sending k to infinite we obtain

ui(t,z) > limksup Uit (tnys Tny) > limkinf Ui (tny, Tny) > limkinf uit (b, T, ) = ui(t,x)

which implies that u}* (t,,, s, ) — uj(t,x) as k — oo.
Now for k large enough,
(1) (tnisny) € (0,T) x B(z,Cy6) and is the global maximum of u}* — ¢ in (0,T) x B(x, C,0) ;

(i) U?k (tn, Tny) > ?elix(ufk_l (tngs Ty ) = Git(tngs Tny )
i
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As u”'* is a subsolution of (2.3.7), then by Definition 5.2.1 (see Appendix 5.2) we have

J
_8t¢(tnk , l'nk) - £1¢(tnk ) xnk) - Il"é(tnka Ty, ¢) - 1.2’6'(tnk y Ly s Dm¢(tnk , l'nk)v uj’nk) <
fj (tnk7xnk7ulﬂbk—l(tnk’xnk), e uuj_l7nk_1(tnka‘rnk)a ulo"k (tnk7$nk)7 ’U,J+1’nk_l(tnk,$nk), e uum)nk_l(tnk7xnk))‘

(2.3.16)
But there exists a subsequence of {n;} (which we still denote by {n;}) such that:

(i) for any I € A;, (u* " (tn,, Tn, )k is convergent and then limy u] =" (t,, , 2n, ) < uf(t, z) ;

(i) (ZY°(tny, Tps @))ny, — IO (t, 2, ¢) as k — oo.

Sending now k to infinite (through the previous subsequence) in (3.3.25), using the fact that f; is
continuous and verifies (A4)(I)(v) and finally by Lebesgue’s Theorem to obtain

_at(b(t?x) - Equ)(t,l‘) - Il’é(t7xu¢) S
Iz’é(t7x’ Dmaﬁ(t,x),uj) + fj(t’x7u>{(t’ ‘T)’ T ’u;—l(t’x)vu;(ta x),uj+1(t,x), e ’u:in(tvx))'

But u;(t,z) = ¢(t,x) and u; < ¢, then I%9(t,x, Dd(t,x),u;) < I*9(t,x, Dp(t,z), ). Plugging now
this inequality in the previous one to obtain

_8t¢(tax) - Ll(b(t,ﬂf) - I(t,$, ¢) - fj(t,ﬂf, Uf(t,l'), e 7u;—1(tax)7u;(t7x)a u;“(t,x), U aurn(t’x)) S 0.
Therefore u; is a viscosity subsolution of

min{u;(t, ) — max(ux(t, 2) — gju(t, 2));

—0wu(t, ) — Lu;(t,z) — fi(t,z,ui(t, @), -+ um(t, )} =05
ui (T, x) = hy(z).

As j is arbitrary then (u;);ea is a viscosity subsolution of (2.3.1). O

2.3.2 Uniqueness of the viscosity solution

We now give a comparison result of subsolution and supersolution of system (2.3.1), from which we get
the continuity and uniqueness of its solution.

Proposition 2.3.1. Assume Assumptions (A4) fulfilled. Let (u;)jea (resp. (wj)jea) be a subsolution
(resp. supersolution) of (2.3.1) which belongs to Il,. Then for any j € A,

V(t,z) € [0,T] x R, wu;(t,z) < w,;(t x)
Proof. Let 7 be a real constant such that for any j € A and (t,z) € [0,T] x IRF,
|uj (¢, 2)| + [w; (¢, 2)| < C(1 + [a]7).
To begin with we additionally assume the existence of a constant A such that A < —m. maj‘({Cj} (C;
JE
is the Lipschitz constant of f; w.r.t Y)and Vj € A, Yt 2,91, JYi—1s Y42, Yma Y > Y
fj(t7x7y1a L Yji—1,Y, 7ym) - fj(tvxayh e ayj—laylv e 7y7l’L) S )‘(y - y,) (2317)
Thanks to Lemma 4.1 and Remark 2.3.1, we know there exists v large enough such that for any 6 > 0,
wjou(t,x) =w;(t,x)+0e " z|>7T2 (resp. uj g, (t, ) = u;(t,z) — e " |z|>7T2). So it is enough to show

that
Vje A V(t,x)€[0,T] x R, ujg.(t,z) <wjg,(t x),

then taking limits as § — 0, the result follows. On the other hand by the growth condition there exists
a constant C' > 0 such that

Vie AV(t,x)€0,T] xR, st |z|>C, ujg,(t,z) <0< wjo.(t, ). (2.3.18)

Now for the sake of simplicity we merely denote w; g, (resp. w;g,) by u; (resp. w;).
To get the comparison result, we proceed by contradiction assuming that

3(2&1,1‘1) S [O,T] X ]R, such that meaj((uj(tl,xl) — w]'(tl,l‘l)) > 0.
J
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Taking into account the values of the subsolution and the supersolution at T', there exist (¢,Z) €
[0, T[xB(0,C) (wlog we assume that ¢ > 0), such that :

0< (2) —wit,
oy (L, x) — w;(t, 7))

— (t,x) — w;(t
e 00 rjnea;f(uj( ,x) —w;(t, x))

= max(u(,2) = w,(%.)).

We now define A as follows:

A= {j€ Au(t,z) —wi(t,z) = rl?eajc(uk(f, z) — wi(t, 7))} (2.3.19)
By the assumption (A4)(2), using the same argument as in ([30], pp. 171), we can prove that for some
JEA,
w;(t,Z) > max(ug(t, Z) — g;i(t, T)). (2.3.20)
kEAj

Let us now take such a j € A. For € > 0 and p > 0, let us define

2
@1, (t,2.9) 1= (1) — wy () — S i gl —
g,p\L L, Y) = UjlL, i\, Y plr—x|".
For any £ > 0 and p > 0, let (tg, g, yo) be such that
® (to, z0, = max Ol (t,x,y) = max o) (t,x,y).
fol0m030) = e mEX s T = (B Terl ™)

Note that the maximum exists since ®/  is usc and B(0,C)? is the closure of B(0,C)? and by (2.3.18)
the maximum on [0, 7] x IR? can only be reached in B(0,C)2. Finally let us point out that (o, o, yo)
depends actually on € and p which we omit for sake of simplicity. We then have,

_ 2
|0 —yol® +lto — 2 + plao — 7|4 (2.3.21)
g

The growth condition of u; and w; implies that M + [to — #I* + plwo — 2|* is bounded and hence
liH(l)(:L'O — o) = 0. Next by (3.3.6), for any subsequence (o,, Zo,, Yo, ); which converges to (t,Z, ),
E—

uj(t_,:i) — wj(f, Lf) < ’LL]‘(LT, 57) - wj(f, LZ'),

since u; is usc and wj is lsc. By the definition of (¢, Z) this last inequality is an equality. Using both the
definiton of ®/ , and (3.3.6), it implies that the sequence

lir%(to,mo,y(ﬁ = (f,i‘,i‘) (2.3.22)
E—
and once more from (3.3.6) we deduce
a2
lim 120 =90l _ (2.3.23)
e—0 5

Finally classically (see e.g. [30], pp. 173) we have also
tim (1 (0 20). 1w, (Fo.90) = (157, 2), w0, (7,7)). (2324

Next as the functions (ux)rea are usc and (gi;)ijea are continuous, and since the index j satisfies
(2.3.19), there exists r > 0 such that for (¢,z) € B((t,z),r) we have u;(t,z) > illejlx(uk(t,x) —gik(t, x)).
€4,

But by (3.3.9), (3.3.7) and once more since u; is usc then there exists gy such that for any 0 < & < &,
we have:

u;(to, xo) > max(ux(to, ro) — gij(to, zo))-
kEA;
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Now for e small enough, we are able to apply Jensen-Ishii’s Lemma for non local operators established
by Barles and Imbert ([6], pp.583) (one can see also [8], Lemma 4.1, pp.64) with u;, w; and ¢(t,z,y) =
2 —
@ + |t =t + p|zo — Z|* at the point (to, o, yo). For any § € (0, 1) there are p?, ¢%,p2%, ¢%, M2 and
MY real constants such that:

(i)
Pl — Pl = 01d(to, T0, o), a5 = 0x0(to, 0, Y0), a3 = —Iyd(to, o, o) (2.3.25)
and
MY 0 4 /1 —1 12p|lzg — Z|* 0
( ! _M3> <! (_1 ) ) +( 0 K (2.3.26)

(i) — p, — {o(to 20)E(L1) + b(to, 20) g, — »

—o(t s 2 2MO — fi(t 5 ) 2 ? m_
20—( 0, o) @M, — f;(to, o, (uk(to, To))r1) (2.3.27)
— 11’6(t07x07¢(t07 ) yO)) - [2’6(1607330,(]2,16]‘) S O’
e 1 i
(iii) —pg —{o(to, yo)E(L1) + b(t07yo)}qgu - §U(t0’y0)2sz3’ = Jilto, o, (wilto, y0))iza) (2.3.28)

— I176(t07y01 —¢(t0,$0, )) - 1276(t0’y0’q?”’wj) 2 0.

We are now going to provide estimates for the non-local terms. First let us define 1,(t, ) := plz — z|* +
[t — |2, By definition of (to, zo,vo), for any d,d’ € IR,

lzo +d' —yo — d|?
€

Yp(to, To).

uj(to, zo +d') — wj(to, yo + d) — — Yp(to, zo + d')

2
To — Yo
<u;(to, xo) — wj(to, yo) — M -

Therefore for z € IR, in taking d’ = o(tg,x0)z and d = o(tg, o)z, we obtain
’LLj (to, o + U(to, l’o)Z) — Uj (to, 1'0) — qga(to, 1’0)2’
(to,m0) =0 (to,y0)|* 2>

< wj(to, yo + o (to, yo)z) — wj(to, yo) — 4o (to, yo)z + o =
+1p,(to, ko + o (to, 20)z) — Vp(to, xo) — Dapp(to, xo)o(to, xo)2.

It implies that for any § > 0,

|£C0 —yo|2

1276(t07x0uq27uj) - I276(t07y07q2)7wj) S C + 12,6(t07$07DI¢p(t07‘rO)uwp) (2329)

since o(t, ) is uniformly Lipschitz w.r.t. . But it easy to check that

112 (to, 20, Dt (to, 20), ¥p)| < p/||>6{z|2+|zl4}ﬂ(dz),

On the other hand, since ¢ € C?

1176(t03x07¢(t07 '7y0))
f‘z‘gg{qb(to,xo + o (to, x0)z, yYo) — ¢(to, o, Yo) — Dad(to, o, yo)o (to, x0)z HI(dz)
olt, 20 [ ple™ + 6p(1 + |2 }=PTI(d2),

IN

and
I (to, yo, —¢(to, To, )
f|z|§5{—¢(to7 o, Yo + 0 (to, Y0)2) + B(to, zo,yo) + Dyd(to, o, yo)o (to, yo)z HI(dz)
= —5_10(t07y0)2 f\z\SzS |Z|2dH(Z)

Therefore we have

711’6@03‘%07 ¢(t07 '7y0)) + IL&(thyO, 7¢(t07x0, ))

> —o(to, z0)? f|z\§5{€_1 +6p(1 + |22)}2|2T(dz) — e~ 1o (to, yo ) f|z|§5 |2|2dI1(2). (2.3.30)
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Making now the difference between (3.3.14) and (3.3.15) yields

1
—w?[o(t, z0)? M?

— (% — 1Y) — [(o(to, m0) E(L1) + blto, z0)) gy — (o (to, yo)E(L1) + blto, Yo))qs] — 5 u

- J(t07 yO) Mi(z)z] [f] (t07 Zo, (Uk(to, SC()))ZL:l) - f] (t()v Yo, (U)k(to, yO))?:l)}
- 11’5(t07x0> ¢(t0, ~,y0)) + 11’6(t07y03 7¢(t071'0a )) - 12’6(150,.%0’ qgauj) + Iz’é(thyO,qgmwj) S 0.

Taking now into account (3.3.16) and (3.3.17) we get

— (P — pa) — [(o(to, m0) E(L1) + b(to, z0))qs — (o (to, yo) E(L1) + b(to, yo))du) — %WQ[U(tOJO)Z)MS
— o (to,y0)* MO — [f;(to, w0, (ur(to, w0)) ) — £ (tos Yo, (wk(to, Yo)) ey )]

~ olto,20)* | T8 B PTI) — <o, o) /| 2211 2)

z|<é
2

o —
C| 0 — Yol

c _12’6(1&0;anDCDd}p(t()va)va) SO

Next by using the properties satisfied by p%,¢%, p? . ¢, M2 and MY and sending § to 0 to obtain the
existence of a constant C; , such that for any fixed p we have limsup C, , < 0 and

e—0

—{fj(to, wo, ur(to, x0))i=1) — fi(to; zo, (wr(to, vo))i=1,)} < Cs p + P/IR{\ZF + [2[*}I(dz).  (2.3.31)

Next since f; is Lipschitz w.r.t. (yx)7, and by condition (2.3.17) we have
—A(u;(to, o) — wj(to, yo)) — D TLH(un(to, z0) — wi(to, yo)) < Ce,p + P/ {l2* + [2[*}11(d),
kEA, R
where TJ’; stands for the increment rate of f; with respect to yi (k # j), which, by monotonicity

condition (A4)(1)(v) on f;, is non-negative and bounded by C;. Thus

—A(u; (to, w0) = w;(to, y0)) < D TL(uk(to, w0) — wi(to, y0)) +Csp+p/ {12 + [2|*}11(d2)
kEA;

<C; 3 (unltos o) — wilto, o)™ + Cep+ p / {122 + |1} 1(d2).
keA;

Taking the limit superior in both hand-sides as ¢ — 0, once again wy, (resp. wy) is usc (resp. lsc) and
j €A, we get
—Au,;(t,7) —w;(t,z)) < Cj Z (ug (£, 7) — wi(£,2))" + ,O/R{|Z|2 + |2|*}(d2),
kEA,

finally take p — 0 to obtain,
—Mu;(¢, ) — w;(t,T)) Z (up(t,z) — wi(£,2))" < (m = 1)Cj(u;(£,7) — w;(t,7)).
€A;
)

But this is contradictory since u; (¢, Z
u; < wj.

—w;(t,Z) > 0 and —X > (m — 1)C;. Henceforth for any j € A,

We now consider the general case. Let (uj)jea (resp. (w;)jea) be a subsolution (resp. supersolution)
of (2.3.1). Denote i, (t,z) = eMu;(t, ) and w;(t,z) = eMw;(t, ). Then it is easy to show that (ii;) e
(resp. (Wj)jea) is a subsolution (resp. supersolution) of the following system of variational inequalities
which is similar to (2.2.20):

min{i; (t, x) — max (i (t, ) — Mg (t, 2));
J

— 0yt (t, ) — Laj(t, ) + Aaj(t,x) — e f;(t,, (e Mag)P )} = 0; (2.3.32)

@;(T,x) = e*Th;(z).
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Next let us set
Fi(t,z,Y) = =y +eMft,z, (e My)m,)

with A is chosen such that A = m(1 —1—11?32( Cy) where Cy, is the Lipschitz constant of fr w.r.t. to (y;)ica.
€

Then the functions Fj, k € A, verify condition (2.3.17). It follows, from Step 1, that Vj € A, 4; < w;
and then u; < wj;. The proof is now complete. O

As a by-product we have:

Theorem 2.3.2. Under Assumptions [A4], [A5], and (2.2.14), (2.2.15) as well, the system of varia-
tional inequalities with inter-connected obstacles (2.3.1) has a unique continuous viscosity solution with
polynomial growth. O

In the case when f;, j € A, do not depend on @, by the characterization (2.2.32)-(2.2.33) (see also
Remark 5.1.1), we deduce that the functions (u;(¢,z));ca are nothing but (J7(¢,z));ca. Thus, as a by
product of Theorem 2.3.2, we have:

Corollary 2.3.1. The value functions (J7(t,x))jca defined in (2.2.23) are continuous, belong to I,
and is the unique viscosity solution of the Hamilton-Jacobi-Bellman system associated with the stochastic
optimal switching problem. ]

2.3.3 Second existence and uniqueness result

In this section we consider the issue of existence and uniqueness of a solution for the systems of IPDEs
(2.3.1) when the functions (—f;);ca verify [A4](I). This turns into assuming that (f;),;ca verify, instead
of [A4](I)(v), the following:

[A4](T) For aDYj € A’ for any k # j7 the mapplng Y — fj(t7xayla"' sYk—1,Yks Yk+1, " ay’m) is
nonincreasing whenever the other components (¢,x, 41, , Yk—1,Yk+1," " > Ym) are fixed.

The other assumptions on (—f;)jc4 remain the same.

Theorem 2.3.3. Assume that Assumptions [A1]-[A3], [A5] are fulfillef and (—f;)jea verify [A4]. Then
the system of IPDEs (2.2.20) has a unique continuous and of polynomial growth solution which is more-
over unique.

Proof. : We first focus on the issue of existence.
For any j € A and X € R let us define F} by:

Fj(tvxa yla e 7ym) = eAtfj(va eiAtyla o ’67)\tym) - )‘y]
Since f; is uniformly Lipschitz w.r.t. (yi)r=1,m then Fj is so and for \ large enough, F; satisfies:

For any k = 1, m, the mapping yr — F;(t, 2, y1, -, Yk—1,Yks Yk+1," - - »Ym) is Nonincreasing when-
ever the other components (¢, 2, Y1, , Yk—1,Yk+1, ", Ym) are fixed.

Let us now consider the following iterative Picard sequence : Vj € A, Y709 = 0 and for n > 1, define:
(Y17n7 e 7Ym’n) = @((Yl’n717 e 7Ym’n71))

where © is the mapping defined in (2.2.34)-(2.2.35) where f; is replaced with F;. By (2.2.40), the
sequence (Y7");c 4 converges in ([H?]™,||.]|2,5) to the unique solution (Y7);c 4 of the system of RBSDEs
associated with

(F(s, X7yt ™)) jear (€T hi(X37))jea, (€M gjn(s, X0™))jkea)

So using an induction argument on n and Theorem 2.3.2, there exist deterministic continuous functions
with polynomial growth (u});ea such that:

Vn>0,j€AV(tz) €0t x RVs € [t,T],Y)" =ul(s, X,"). (2.3.33)
By (2.2.41), take s = t we obtain

Viin,q,t < T,z € R, [uf (t,0) — uf(t,2)| = E[[Y/" = Y/ ?] < Ol (V7" Yjea — (VI jeal3 -
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Thus for any j € A, (U?)nzo is of Cauchy type and converges pointwisely to a deterministic function wu;.
But (Y7);jea = O((Y7);ea), then once more by (2.2.41), we also have:

Vs € [0,T], E[IYY = Y™ < C(Y7)jea — (Y9 H)jeal3 5 (2.3.34)
By (2.3.33) we then obtain
Vi€ AVse[t,T],P —as., Y] =u;(s, X07). (2.3.35)

Next as © is a contraction then, by induction on n we have

n

. . C A
Yn,g >0, [[(Y?" ) e —Y7")jeall2s < . _%@ 1(Y7)jeall2,s

where Cg €]0, 1] is the constant of contraction of ©. Since the norms ||.|| and ||.||2, g are equivalent, then
there exists a constan C; such that :

Vn,q >0, [|(Y7"H ) e — Y7 jeal < CLCE(Y ) jeal.

Take now the limit as ¢ goes to +o0o and in the view of (2.3.34) and (2.3.35), if we take s = ¢t we deduce
that :
V(t, ) €0,T] x R, |u;(t,z) — uf(t,2)] < Cof|(Y7)jeal-

But it is easy to check that ||(Y?!) je al|2,5(t, z) is of polynomial growth (by (2.2.18) and since E[sup < | X1*|7]
is of polynomial growth for any v > 0) and since for any fixed n > 0, u? is so. Therefore for any j € A,
u; is of polynomial growth, i.e., belongs to Il,.

We will now show the continuity of u;. For any j € A, let us set

Y30 =00 4 | XE|P), s < T,

where C' and p are related to polynomial growth of (u;);ca, i.e.,
Vje A, |Juj(t,z) < CQ +|z|P), V(t,z)€[0,T] x IR.
Next for any n > 1 and j € A let us set
(VI Yy = @Yty

As © is a contraction then once more the sequence (Y?™)jea)n>0 converges in ([H?]™,|.|l2,5) to
(Y71%);c 4 the unique solution of the system of RBSDEs associated with

(F(s, X2yt y™)jeas (Thy(XE)) jea, (€ gjn(s, X0%))jken).
By the definition of Y70, we have
P—as., VjeAsc[tT], YIH* <yio
and taking into account of [A4](f) we obtain
Vi€ A Vs € [t,T), Fj(s, Xp", Y, 0r oo [ Y0) > Fy(s, XE7, V00 Y 0),

Next by the comparison result of Remark 2.2.5 and since (Y71)jca = O((Y79),ca) , (YI5%)jea =
O((Y7"7)jea) we get o ,
Vi€ A selt,T), Yt <yite

Now by an induction argument we obtain, for any n > 0 and j € A,
Vs € [t,T], Y2l <ydbte <yi2n, (2.3.36)

In the same way as previously there exist deterministic continuous functions 47 with polynomial growth
such that o
V(t,z) € [0,T) x R, se[t,T], Y™ =uj(s, X[7).

S
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Moreover for any j € A, the sequence (ﬁ?)n converges pointwisely to v and by (2.3.36) we have

Vie A, Yt ), ui(t,z) =lim a?”“(t,x) = lim \ ﬂ?”(t,x).

Therefore, uj, j € A, is both lsc and usc and then continuous. Finally as (Y74%),c4 = O((Y?5%);c4)
and Vj € A, YJ* =wu;(s, X5"), s € [t,T], with u; a deterministic continuous function with polynomial
growth, then (u;);ca is a viscosity solution for the corresponding system of IPDEs, thus (e~*u;) e is
a viscosity solution the system of IPDEs (4.1) with polynomial growth.

Let us now deal with the issue of uniqueness. Let (u;);ea be another solution of (2.3.1) which belongs
to I, and (Y7);eca € [H?™ such that for any j € A, s € [t,T],

T = (s, X07).

Define (Y74%);c 4 as follow:
(Y7 %)jea = O((Y77) jea)

Then there exist (%;);ca deterministic continuous functions with polynomial growth (@;);ec4 such that:
Vi€ A sseltT], Yt = (s, X5").
Moreover (4;);ea is the unique viscosity solution of the following system of IPDEs : Vj € A
min{a;(t,x) — ;?é%(ﬂk(t’x) = gjk(t, @));
—0Oyu;(t, @) — Li;(t, x) — f;(t, @, (U)kea)} = 0; (2.3.37)
(T, 2) = hy (x).

As (u;)jea is also a solution of (2.3.37), then by uniqueness of Theorem 2.3.3 we obtain 4; = u;, for any
j € A. Therefore

(Y91T)jea = O((Y77) jen).
As (Y7)jc4 is the unique fixed point of © in [H?]™, we then have
Vi€ AseltT), YIH* =Y.

It follows that Vj € A, u; = u;. Finally (u;(t,2))jca is the unique continuous with polynomial growth
functions viscosity solution of the system of IPDEs (4.1). O
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Chapter 3

Viscosity solution of system of
variational inequalities with
interconnected bilateral obstacles
and connections to multiple modes
switching game of jump-diffusion
processes

3.1 Preliminaries

Let (92, F, (F:)t>0, P) be a stochastic basis such that Fy contains all P-null elements of F, and F+ =

() Fite = Fi, t > 0, and suppose that the filtration is generated by the following two mutually inde-
e>0
pendent process:

- a d-dimensional standard Brownian motion (W}):>o

- a Poisson random measure N on R, x E, where £ = R' — {0} is equipped with its Borel field B, with
compensator v(dtde) = din(de), such that n(E) < oo, and {N((0,1] x A) = (N —v)((0,] x A)}o<i< is
and Fy-martingale for all A € By satisfying n(A) < co. n is assumed to be a o-finite measure on (F, Bg)
satisfying:

/ (1 A 2®)n(dz) < oo. (3.1.1)
E

Let T be a fixed positive constant and A! (resp. A2) denote the set of switching modes for player 1
(resp. player 2). Let m; (resp. ms) be the cardinal of the set A (resp. A2?) and for (i,j) € Al x A2,
Aj = A' — {i} and A3 := A* — {j}. Next, for Y = (") (k1yearxaz € R™>*™2. For any y; € R, denote
by [%%7,y1] the matrix which is obtained from 7 by replacing the element 3% with y;.

A function ® : (t,z) € [0,7] x R — ®(t,z) € R is called of polynomial growth if there exist two
non-negative real constant C' and v such that

@, 2)] < C(1 + [2]).

Hereafter, this class of functions is denoted by II,.
We now define the probabilistic tools and sets we need later. Let:

(i) P be the o-algebra of Fi-predictable subsets of Q x [0,T];

(ii) £2 := {p is an IR-valued, Fr-random variable such that ||¢[|%, := E[|¢|*] < oo};

(iii) H? := {{¢w,0 < t < T} is an IR-valued, Fy-progressively measurable process s.t. ||¢l|3. =
E(fy le*de) < oo

(iv) 8% := {{p¢,0 <t < T} is an IR-valued, Fi-adapted RCLL process s.t. ||¢||3: := E[supgc,<r loe’] <
oo} ; A? is the subspace of S? of continuous non-decreasing processes null at ¢ = 0 ; -

57
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(v) H3(N) := {U : Qx[0,T|xE — R, P®Bg-measurable and s.t. ||U||§{2( = fo [z |Ue(e)[Pn(de)dt) <
oo}
In this paper, we investigate existence and uniqueness of viscosity solutions #(t, z) := (v¥(t, T))(i,j)e Al x A2

of the following system of variational inequalities with upper and lower interconnected obstacles: V(i, j) €
Al x A2,

min{(v¥ — LY[0])(t, v); max{(v” — U [7])(t, 2);

—O (t, ) — LY (t, 1) — g (t, z, (V! (¢, ) (kyeAt x a2, 0(t, x)Dv (t, x), VN (t,z,v9))}} =0;

V(T z) = hl(z)

where for any (i,7) € Tt x I'? and (¢t,2) € [0,T] x R and ¢ € C12,

(3.1.2)

(a) LY[0](t, x) := maxye a1 {0™ (8, 2) — g, (t,2)} and U9 [0](t, x) := mine 42 {v" (£, 2) = G (t, ) };

(b) Lo(t, x) = b(t,2)Da0(t,x) + 50%(t, ) D3, (1, x)
+ [p(o(t,z + Bz, e)) — ¢t x) — Dyd(t, x)B(x, €))n(de);

(c) 15" (t,,0) = [(6(t,x + B(, €)) — b(t,2))7" (x, €)n(de).
Next for § > 0, (t,z) € [0,T] x IR*, ¢ € R, ¢ a C»? function and (i, j) € 't x I'2, let us set:

(d) IH(t,,0) = [, <5(6(t, 2+ B, €)) — Ot 3) — Das(t, 2)5(z, €))n(de);

() I3(t,2,0.0) = [}, 155(0(t, 2 + Bz, €)) — 6(t, 2) — gB(x, ¢))n(de);

(D IFE (t,2,8) = [ op(6(t.2 + Bla,e)) — b(t, )y (&, e)n(de);
(9) 128" (t,2,6) = [[,ps5(0(t, + Ble, ) — B(t,2))7" (2, e)n(de):
(W) I(t,2,6) = [(8(t, 2+ Blz.€) — Blt, x) — Dugs(t,2) 3w, ¢))n(de) = I} (t, x,6) + I2(t, x, Dat, 6);

(D) 177 (t,2.6) = [(0(t, 2+ Blz,€) — $(t, 2)) (. e)n(de) = P (t,2,8) + T2 (.2, 0);

(.7) ‘C¢u(ta I) = b(t? $)Dw¢(t, ‘T) + %02@? $>Dgw¢(t7 LE) + Ig (ta €, (/j)) + Ig(t z, Da:¢7 u)'

The following assumptions will be in force throughout the rest of the paper.

(AO0) The functions b(t,z) and o(¢,z): [0,7] x R — R are jointly continuous in (¢, z), of linear growth in
(t,x) and Lipschitz continuous w.r.t. z, meaning that there exists a non-negative constant C' such that
for any (¢,z,2') € [0,T] x R we have:

b(t, 2)| + lo(t,2)| < CA + |z]), |o(t,z) ot 2")| +[b(t, ) = b(t,2")| < Cla — ).

The function 3 : R x E — R is measurable, continuous in x and such that for some real K and all e € F,
for any z,2’ € R,

1B(z,e)] < K(1Ale]), |B(z,e)—p(z',e)| < Klx—z'|(1A]e]).

(A1) For any (i,7) € A x A%, g¥(t, 2,9 ,2,q) : Rx Rx R™*™ x R¥ x R — R,

(i) is continuous in (t, x) uniformly w.r.t. the other variables (¥, z,¢) and for any (¢, ) the mapping
(t,z) — ¢g"7(t,x,0,0,0) is of polynomial growth.
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(ii) satisfies the standard hypothesis of Lipschitz continuity w.r.t. the variables (¥, z,q), i.e. ¥(¢,7) €
[O7T} X R7V(71a 72) € RmMxmz x RTIL]XTVLQ, (Zl,ZQ) € R x R7 (QIan) € Rx R7
|gij(tvxv 717217 Q1) - gij(tvxa 727 22, q2)| < C(|71 - 72‘ + |Zl - ’22| + |q1 - qQDv

where, |7/| stands for the standard Euclidean norm of 7 in R™* x R™2.
(iii) ¢ — g% (t, 2,9, 2, q) is non-decreasing, for all (t,z,y,z) € [0,T] x R x R™*™ x R.

Futhermore, let 7 : R x Bg — R such that there exists C' > 0,
0 <~9%(x,e) <C(1Ale]), z€R,e€Bg
Y9 (x,e) =~ (2", e )| < Clz —2'|(1Ale]), z,2’ € R,e € E.
We set
fAtzy,2,u) = g”(tya%y,zy/EU(e)W(%e)N(dt?%

for (t,z,y,z,u) € [0,t] x R x R™*™2 x R x L?(R,Bg,n).

(A2) Monotonicity: For any (i,5) € A' x A% and any (k,[) # (i,7) the mapping y*! — ¢ (¢t,z, 7, 2, u)
is non-decreasing.
(A3) The functions h%(x) : R — R are continuous w.r.t. z, belong to class II, and satisfy
V(i,j) € A x A%and x € R, max(h*(z) — g (T,z)) < h(z) < min(h'(z) — G,(T,z)),
ke Al =ik 1€ A? J

where g, and g, are given in the next assumption.
(A4) The no free loop property: The switching costs 9y and g;; are non-negative, jointly continuous in
(t,x), belong to I, and satisfy the following condition:

For any loop in A' x A2, i.e., any sequence of pairs (i1, j1), ..., (in,jn) of Al x A% such that (iy,jn) =
(t1,71), card{(i1,71),...,(in,jn)} = N—1land Vg =1,...,N — 1, either iz = iq Or jg41 = Jjq, We
have Y(¢,z) € [0,T] x IR¥,

> Gigig (tx) #0, (3.1.3)

qg=1,N—1
where, v g=1,...,N -1, Pigig1 (tax) = 7g7;qiq+1 (tvx)]liq;éiq+1 + gjqiq+1 (t7x)]qu;éjq+l'

To begin with let us point out that the non-local terms Z (¢, x, ¢) and 7B” (t,z, @) introduced previ-
ously are well defined under Assumptions (A0) and (A2) since for any function ¢ of class C1?, by the
mean value theorem, we have

|¢)(t,$ + ﬁ(l‘,@)) - d)(t,l‘) - 8L¢(t7x)ﬂ(e7x)‘ S Ctl,w|6(x’e)|2 S Ctl,w(l A |€|)2,

and

|6(t, 2 + Bz, €)) — (t,2)| < CF,1B(x,€)] < CFL (LA Je])
where C’t{m and Ct%r are bounded constants. They are the bounds of the first and second derivatives of
y — ¢(t,y) in B(z,Cg) where Cg is a bound of the function £.

Now consider the following SDE:
xer =[xty [orxmaw, s [ [ pociafde. selnTlee . (g
t t t
The existence and uniqueness of the solution X* follows from [5].
Next, we give two definitions of the viscosity solution of (3.1.2), and according to [33](proposition
5.1 in appendix), they are equivalent. For locally bounded function w: (¢,z) € [0,7] x R — u(t,z) € R,

we define its lower semi-continuous (Isc for short) envelope u., and upper semi-continuous(usc for short)
envelope u* as following:

us(t, z) = lim w(t',z'), u(t,z) =

im u(t’,z")
(t',z")—(t,x), '<T (t'a")—=(tx), ¥'<T
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Definition 3.1.1. A function W = (u(t,2))( jjearxaz @ [0,T] x R — RAY™A® such that for any
(i,7) € A' x A%, u¥ €11, is Isc (resp. usc), is said to be a viscosity subsolution (resp. supsolution) of
(3.1.2) if for any test function p € CY2([0,T] x R)N\I,, if (to,x0) € [0,T] x R is a global mazimum
(resp. minimum) point of ut — p,

min{(u” — LY [W])(to, xo), max{(u’ — U7 [x])(to, xo),

—0¢p(to, m0) — b(to, 20)029(to, x0) — 502 (to, x0) 02, ¢(t0, zo) — I3 (to, z0, ) — I (to, 70, 026, ¢)

—g" (to, zo, (u* (o, ©0)) (k.1year a2, 0 (Lo, 20)) 0w (to, 20), I; 2 (to, 20, &) + 137" (to, m0, ¢))}} < 0 (resp. > 0)
v (T, x) < hY(x) (resp. >).

—

Definition 3.1.2. A function W = (u"(t,2))ijearxaz @ [0,T] X R — RAYA” uch that for any
(i,7) € A' x A%, u¥ € 11, is lsc (resp. usc), is said to be a viscosity subsolution (resp. supsolution)
of (8.1.2) if for any (to,xo) € (0,T) x R, § > 0 and a function ¢ € C*2([0,T] x R)N1l, such that
u (tg, z0) = ¢(to, xo) and u’ —¢ has a global maximum (resp. minimum) at (to,x¢) on [0, T x B(xq, K&)
where K 1is the constant such that for any x € R, |B(x,e)] < K(1 Ale|), we have

min{(u” — LY[W])(to, z0), max{(u¥ — UY[%])(to, 7o), -
—019(to, wo) — b(to, 0)Dz0(to, z0) — 302 (to, 20)0%,¢(to, o) — I (to, w0, ¢) — I3 (to, 0, O, u)

—g (to, w0, (uM (to, 70)) (k1) e ar x a2, 0 (t, 20)) D p(to, 70), 13" (to, x0, @) + 137" (to, w0, u?))}} < 0 (resp. > 0)
v9(T,x) < h¥(x) (resp. >).
Definition 3.1.3. A function W = (u"(t, %)) jyearxaz such that for any (i,j) € A' x A?, v € Il
is called a viscosity solution of (3.1.2) if (ui (t,2)) @ j)c A x a2 (resp.(uf;(t, 7)) (i j)e a1 x a2 5 a viscosity
supersolution (resp. subsolution) of (3.1.2)

3.2 Approximation schemes of the solution of systems of re-
flected BSDEs

For n,m > 0, let (Y"3:1m  ZLJmm [Julmm) ;o a1y 42 be the solution of the following system of BSDEs.

(Yi‘,jfn,m’ Zi,j,n,'m.’ Ui,j,n,m) €82 x H? x f)_[2(]§/)7 N N
d}/SZj]jn’m — 7fz,j,n,m(§’ )((it,z7 (}/tsk’lm"m)(k,l)eAl ><1427Z§:,j,n,rn7 U;L,J,n,m)ds
+ZEm B, + [ U™ (e) N (dsde)

i i (),

(3.2.1)

where,

fi7j7n7m (Sa X.§7x7 (ym)(Zj)GAl xA25 %5, us) ::gi7j7n7m(57 X?xa (ykl)(kl)GAl X A25 Zs / us(e))‘” (X£7x7 e)n(de))
E

:gi,j (8, X?xa (ykl)(kl)eAl X A25 s /; us(e)Aij (X?Ia e)n(de))

+n(y? — ’gé‘cf;{ykj — g, (s, X))~

(G s il ey )+
m(y lrgg%{y Gi(s, X))
Let’s recall that under the assumption (A1), the solution (Y777 ZHImm [JH1M) ;e a1y g2 of (3.2.1)

exists and is unique(see [5]). By the assumption( A1)(3), we have the comparison theorem for BSDE with
jumps(see[58] Theorem 2.4). Next, let’s show the monotonicity properties for the matrix (Y55mm), .

Proposition 3.2.1. For any (i,j) € A' x A% and n,m > 0 we have
P —a.s., YbHimm Lybintlm gng yhimmtl <ybinm o5y e AL x A% (3.2.2)

Moreover, for any (i,7) € Al x A% and n,m > 0, there exists a deterministic continuous function
v e Il s.t., for any t < T,

yhdmem — ghdmm (g Xy g e [t T (3.2.3)
Finally, for any (i,j) € A x A% and n,m >0,

B (t p) < pbITL(E ) and BTN (L ) < 0BT (), (ta) €[0,T] x R (3.2.4)
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Proof. First, we recall the result by Xuehong Zhu (2010)([62] Theorem 3.1) related to the comparison of

solutions of multi-dimensional BSDEs. Actually, it is enough to show the for any ¢, (y* )(w)eAl w2, (T J)( ij)eAlx A2 €
Rmaxma (Zij)(z J)EAL X A2,

(Z7) (i jyearxaz € R™X™2 and (u)(; jyeatxaz, (W) yearxaz € L2(R,Bg,n)™ >, there exists a

constant C,

—4 Z yi_j(fi’j’nﬂ’m(sa X%, (Ui + Una) (ki) e A1 x 425 Zij Ui)
(i,7) AT x A2

— ([P (5, X0 (Phg) (kiye At x 42 Zij, Ui ))

<2 Y lgucol -z 0 Y ()

(1,5)EAT x A2 (i,5)€AL x A2
w2 3 [ Agsnl + (o) ~ @) Fr(de)
(i,j) €A x A2
+2 Z / gy cop[|(wis + wij(e) — @iz (€)™ * = |yg; 1 — 2415 (uij (e) — wiz(e))In(de)
(i,j) €A x A2

This inequality follows from the fact that, for any (i, ) € A x A2,
(@) f5mm (s, X0, (Yrt) earx a2, Zij, tig) < fo7 T (s, XDT (Yrt) (ke ar x a2, Zigs Wij)
(ii)For any (uki)(ryearxaz >0,
FoImm (s, XET (Yt + wkt) ear s az, Zigy wig) < FO0(8, X5 (Yk) (ke At x A2, Zigs Wij)-
(iii) % depends only on z;;,u;; and not on the other components zx, ug, (kl) # (ij).

(iv)¥(i,j) € Al x A2,

— Ay (f57 (5, X07, (T) (ye At x A2, gy wig) — FO7 (8, X0, (Gra) (k) e At x 425 Zig Tig))
<Cy) +2 [E 14y, 503 (ss + sz (€) — i3 (€)™ [P(de)
42 [ Lo+ 15 (6) = ()2 = i P = 25y ) — s (el

(i),(ii) and (iii) are easy to check, now we proof (iv), in the case that y;; > 0, (iv) is obvious, so we
discuss only when y;; < 0. The right-hand side of the inequality is non-negative, in fact,

/EH(yij + uij(e) =i (€) > — lyi;1* — 2yij (uij(€) — Uj(e))n(de)

-/ (s (€) — W5 (€))?n(de)
wij(e)—wij(e)<—yij
+f (=l 1? = 255 (ui5(€) — iy (€))In(de)
uij(e)—uij(e)>—yij
>0
So we consider only the case that

— Ay (F57™ (5, XE%, () (kye A1 x A2 Zig tig) — F277™ (8, X0%, (Ura) (k) e A1 x 42 Zig i)
= — yi; ((f27™™ (5, X207, (Una) (k) e a1 x A2, Zigs Wig) — [0 (8, X907, (Ura) (k1) e A1 x 425 Zig» Uij))
>0

By the assumption (A1)(iii), [, %;(e)v? (X5", e)n(de) > [, ui;(e)y? (X", e)n(de), otherwise the in-
equality above can not hold Next, by the assumption (A1)(ii), there exists a constant C' > 0 such
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that:
— Ay ((F7™ (5, X0 (Gra) (kiye ar a2, Zig Tig) — 7™ (8, X57, (Yrr) (k1) a1 x a2, Zij, i)
< dy,C /E A (X ) (55 (e) — ugg(€))n(de)
—_iy,C / Y (X ) Wiy (€) — iy (e))n(de)
wij(e)—ui;(e)<—yij
ay,C / A (X ) Wiy (e) — iy (e))n(de)
wij(e)—ui;(e)>—yij;
<402 / 22 (X7 eyn(de) + / (i5(€) — uis (e))?n(de)
E u

ij (€)= (e)<—y™
<K(y;;)% +2 /E Lgyis0pl (yij + wij(e) — @ij(e))~|*n(de)
+2 /E Liyia <oy [y +uij(e) = wig(e) ™1 = |y 1* — 2935 (wij(e) — @ij(e))In(de),
finally, we have (iv). Consequently, we have
P —a.s., Yhimm Lybhntlm

In the same way we can show that P — a.s., Y®»3™™+Tl < Y&imm  The second claim is just the
representation of solutions of standard BSDEs with jumps by deterministic functions in the Markovian
framework(see [5]). The inequalities of (3.2.4) are obtained by taking s = ¢ in (3.2.2) in view of the
representation (3.2.3) of Y%7 by ¢idmm and X6He, O

We will show two approximation schemes obtained from the sequence Y43™" (i j) € Al x A2%),
of the solution of system (3.2.1). The first scheme is a sequence of decreasing reflected BSDEs with
interconnected lower obstacles:V(i, j) € A! x A2

(Vidm, Zidm gidm {iim) e §2 x H? x H2(N) x A2

yidm = pid(X4®) 4 [T fram(p, Xte (FRIm) e, Z03m Giimydy — [T Zidimgp,
— [ [ Tm (e)N(drde) + Ky ™ — Kidm

YEIm > max{(YEIm g (s, XI)}, s<T,

keAl
(V0 — max (VR — g (s, X7) AR = 0,

(3.2.5)
where, V(i,7) € A' x A%, m > 0 and (s,X—}U,ZU7 Uy,

f_i’j’m(& X;’mv }—/)7 Zijv U”) ::gij’Jﬁm (57 X};’xa (Ykl)(k:,l)EAl X A2, Zija / Uij (e)’yij (X;:’xa e)n(de))
E

:gij(saXz’I7 (Ykl)(k,l)EA1XA2a Zija/ Ulj(e)’yzj(X?I?e)n(de))
E

. i il | = t,z\\\+
m(Y™" lrgg?}(Y +g(s, X)) T

Thanks to the assumption (A1)-(A3) and non free loop assumption, by Theorem (5.2) in appendix, the
solution of (3.2.5) exists and is unique. Moreover, we have the following properties.

Proposition 3.2.2. For any (i,7) € A' x A% and m > 0, we have:
(i) _

lim E[ sup |Y/9™m — YEI™ 2] (3.2.6)

n— o0 1<s<T
(ii)

P —a.s., Ybim > ybimtl
(iii) There exsits a unique A x A2-uplet of deterministic continuous functions (ﬂk’lvm)(k’l)eAlez in I,
such that, for everyt < T, o N
Y™ = gl (s, XETY s € [t T). (3.2.7)
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Moreover, ¥(i,7) € A' x A% and (t,x) € [0,T] x RE, a®I™(t, x) > ab3™mHL(¢, x).
Finally, (ﬂi’j’m)(i,j)eAlez is a viscosity solution in the class I, of the following system of variational
inequalities with inter-connected obstacles. V(i,j) € Al x A2,

o [d,0,m _ k,j,m _ .
{57 (15) = (5 (0,2) — g, (0, 2))

—0u I (t, x) — LabI ™ (t, x) — gt (t, z, (TR (e, T)) (ke x A2, 0 (t, x) D utd ™ (t, x), BYabh™(t,z))} =0

@™ (T,x) = hiv (x).
(3.2.8)

Proof. (i)It is enough to consider the case m = 0, since for any i,j € A! x A2, the function

(8,2, (4™ oyearxaz) = —mly” — min(y" +;(s,2)))
has the same properties as f%/ displayed in (A1) and (A2). First, let us show that V(i,5) € A' x A% and
n >0,
P—a.s., Ym0 <yhil (3.2.9)

First and w.l.o.g we may assume that f* is non-decreasing w.r.t. (ykl)(k,Z)EAlega since thanks to
assumption (A2), it is enough to multiply the solution by e*, where ) is appropriately chosen in order
to fall in this latter case, since f% is Lipschitz in y*?. Now, for fixed n, let us define recursively the
sequence (}77“7ij7”)k20 as follows: for kK =0 and any (¢,7) € A1 X Ag, we set y0idm .= Yii0 and, for any
k> 1, let us define (Ykiim zkiin kiin) ¢ §2 x H? x H2(N) as the solution of the following system
of BSDEs: V(i,j) € A X Aq,

—dY P = [ (s, X0, (YETVPOM) o, e iz, ZEDN OFIMds
+n(YFum — max(Yr-bln - g, (s, X5%)))"ds — ZkindB, — [, UE9 ()N (dsde) (3.2.10)

- leA}
T = s (X,
The solution of (3.2.10) exists since it is a multi-dimensional standard BSDE with a Lipschiz coefficient,

nothing that (?gkfl’pq*”)(p,q)emx,qz is already given. Since, n is fixed and the coefficient

P (s, w, (YP) (pyearxaz, 27, UT) i= f9(s, X0, (yP) (p.gyearxaz, 27, U”)+n(y”—lrrelirf(y”—gﬂ(& XoM))~

is Lipschitz w.r.t. ((yP)(p.q)earxaz, 27, U%), the sequence (Ykiim), o converges in S? to Ym0 ag
k — oo, for any i, j and n.
Using an induction argument w.r.t.k, we prove that for any 4, j and n,

P—a.s., YRUP <yul >0

Indeed, for k& = 0 the inequalities hold true through the definition of Y%%"  Assume not that these
inequalities are valid for some k& — 1, i.e. for any i, and n,

P —a.s., Yk bitn <yio (3.2.11)

Thus, taking into account that Y0 satisfies (3.2.5) with m = 0 and the fact that f% is non-decreasing
w.r.t. (yP9)p.q)eatxa2 then for any i, j and n, it holds

F9(s, X0 (VETIPEM) ) e arwaz, 29, U7 )ds + (V70 — max(YEH0" — g (s, X07))) ™
leAl =
S fij(sa Xﬁ,I7 (qu70)(p,q)6Al X A2, Zij, UU)
Using comparison result of solution of one dimensional BSDEs we obtain that for any ¢,j and n,

ykiin < Y0 q.g. Thus the property (3.2.11) is valid for any k. Taking the limit as k tends to
00, we obtain (3.2.9).

(3.2.9) together with (3.2.2) imply that H}A/ij €8st YHImO 2 Y. Now by Essaky’s monotonic
limit theorem in [24], there exist (Z%7, U, K*) € H? x H?(N) x A?:
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(a)f”j is RCLL and uniformly P-square integrable, for any stopping time 7, lim ' Y#/"0 = lA/T” .

n—oo

(b)K% is RCLL non-decreasing, K¢/ = 0 and for any stopping time 7, lim K" = K4 P —q.s..
n—oo

(¢)Z4 € H?, U € H?(N) and for any p € [1,2),

T T
lim E[/ |Zb3m0 — Zii|Pds] = 0, lim E[/ / |UE3m0 _ (71 |5 p(de)ds) = 0.
0 E

n—oo n—oo
(d)For any i,j € A' x A%, s < T,

hij(th + fT fij 7“ Xt,a:, (Yrkl)(k,l)eAlezaZAijaUZj) + R’;{ _ [A(;]
—f Z9dB, f I U (e)n(deds) (3.2.12)
Vi > maX{Y T —g..(s, Xt @)}

The remaining of the proof is in the same way with Theorem (5.2) in appendix, that is Y is regular(see
[33] page 14 for the definition of regular) and K/ is continuous and the Skorohod condition is satisfied
by using the no-free loop property (A4). So (Y, Z4 U K') satisfy (3.2.5) with m = 0, by the
uniqueness of the solution of (3.2.5), Y% = Y0 q.s., which completes the proof of (i).

(ii)is an immediate consequence of (i) and Proposition 3.1.

(iii)One can see Theorem 5.3 in Appendix for the proof of existence of @ in (3.2.8). Also it is similar as
theorem 4.1 in [33]. Actually, there is nonlocal-term 72" in the generator g*/ which is different from the

generator in [33], but since ZB” has the same proposition with the one in [33] and ¢ is non-decreasing
and Lipschitz continuous in the nonlocal-term, uniformly with respect to all the other variables, we can
use the same method to show the existence and uniqueness. Finally as Vs € [t,T], Y™ > YiJm+l
a.s., let s =t we get V(t,x) € [0,T] x R, ab9™(t,x) > u ™+ (¢ x). O

We now consider the increasing approximating scheme: V(i, j) € Al x A2
(Xi’j,n’Zi,j,n,gi,j,n,ﬁi,j,n) €82 xH? x HQ(N) % AQ;
yyn W‘(X“” )+ [T F i, X8 (VPP e arwaz, Z97 URMdr — [T 21T dB,
—f Jp UL (e N(drde) + K" — Kb

Yz,jn < mln{Y”"—i—gﬂ(s X )}7 s ST, (3.2.13)
leA
Ji (8~ i (YR 13,5, X AEE” =,
lEA

where, V(i,7) € Al x A%, n >0 and (s,?”, ZU Uh),

JE(s, X0 Y, 29, U) i=g " (s ,Xg»w,(Y’fl)(k,l)eAlez,Zij,/ U (e} (XL*, e)n(de))
E

:gij(sa X£7xa (Ykl)(k,l)EAl X A2, Zija / Uij (e)’yij (X£7xa e)n(de))
E

+n(YY —max(Y* — g (s, X5%))™
(V¥ — max(¥" g, (5, XL7))

Thanks to the assumption (A1)-(A3), by Theorem 5.4.1 in appendix, the solution of (3.2.13) exists and
is unique.

Next we give a analogous of Proposition 3.2, we do not give its proof since it is deduced from this
latter proposition in considering the equation satisfied by (=Y /", —z5" _yhimn _ gH9")

Proposition 3.2.3. For any (i,j) € A' x A% and n > 0, we have:
(i) - -
lim E[ sup [Y/5m™m — Yo" 2] -0 (3.2.14)
m— o0 1<s<T
(i) For any n > 0, N N
P— a.s., Xm,n < Xm,n+1.
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(iii) There exsits a unique Al x A2-uplet of deterministic continuous functions (gk’l’”)(kﬂl)eAWAz in Il
such that, for everyt < T, N N

Y =y (s, XET), s € [t, T). (3.2.15)
Moreover, ¥(i,7) € A' x A? and (t,x) € [0,T] x RF, w7/ (t,x) < ub3" (¢, x).
Finally, (gi’j’”)(i’j)eAlez is a viscosity solution in the class Il of the following system of variational
inequalities with inter-connected obstacles. V(i,j) € Al x A2,

mazx{u""(t, x) — min (" (¢, ) + G5, ©));
leA?
=0t (t, x) — Lu™" (¢, x) N o (3.2.16)
_gl%_’n(t? €T, (@k7l7n(t7 J"))(k,l)EAl X A2, U(t7 x)DacQLJ’n(t $), Bzguz,],n(t7 x))} =0
u (T, x) = hbI(x).

a’(t,x) ;= lm a"™(t,x), uv(t,x):= lim u"7"(t, x).

m—oo n—oo

Then, we can prove a by-product of Proposition 3.2 and 3.3:

Corollary 3.2.1. V(i,j) € Al x A2, the function % (resp. u is usc (resp. lsc). Moreover, i and
u" belong to I1,, for any (t,z) € [0,T] x R,

u(t,x) < u(t, z).

Proof. For any (i,j) € Ay X Aa, the function @ (resp. u%) is obtained as a decreasing (resp. increasing)
limit of continuous functions. Therefore, it is usc (resp. lsc). Next, for any (4,7) and n, m,

u Pt (ta) < w0t w), (tx) € [0,T] x R,
as the sequence (u%"™™),,>¢ is decreasing. Thus, taking the limit as m — oo we obtain,

YN < im0

Now using (3.2.3) and (3.2.6), it follows that, for any t < T and s € [t,T], Ym0 = 4i5n0(s X1.)
and the processes Y0 converges in S%, as n — oo, to Y¥? which is solution of (3.2.5) with m = 0.
Furthermore, by (3.2.15), there exists a deterministic continuous function %*-° with polynomial growth
such that for any t < T and s € [t,T], Y70 = 49(s, X®). Then taking s = ¢ and the limit as n — oo
to obtain
w(t,z) == lim u"(t,x) < lim w90t ) = a0t x), V(t,z) € [0,T] x R.
n—oo n—oo

But %0 and 4*" belong to II; and u?m <yt Thus , u € II,, for any (i,j) € Ay x Ay. In the
same way one can show that 4% € II,, for any (i,5) € A1 x As. The last inequality follows from (3.2.4)
and the definitions of @ and u%. O

3.3 Uniqueness and Existence of viscosity solution for system
of IPDEs

In this section we will show the uniqueness of viscosity solution of (3.1.2) as the corollary of a comparison
result. In the same way with [17], we can prove the following lemma.

Lemma 3.3.1. Let (W);,; € A' x A? (resp. (W)u; € A' x A?) is an usc subsolution (resp. lsc
supersolution) of (3.1.2) which belongs to I1,. For all (t,z) € [0,T] x R and let T'(t,z) be the following
set:
D(t,x) :={(i,j) € A x A%, w9 (t,2) —w"(t,x) = max (uF'(t,2) —w™(t,z))}.
(k) EAL X A2
Then there exists (ig,jo) € I'(t,x) such that
w0 (¢, ) > L[] (¢, z), w'lo(t,x) < U[w](t,x). (3.3.1)

Now we give the comparison theorem.
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Theorem 3.3.1. Let (UW)(; ;) € A' x A? (resp. (W) € A' x A?) is an usc subsolution (resp. lsc
supersolution) of (3.1.2) which belongs to Il,. Then it holds that for any (i,j) € A' x A?,

u(t,x) <w(t,x), (t,x)€[0,T] x R.
Proof. We peoceed by contradiction, let (¢g,z9) € [0,T] x R such that there exists € > 0,

max(u” — w™)(tg, 29) > 0. (3.3.2)
i

Next, w.l.o.g. assume that for any (i,j) € A! x A2,

lim (u" —w")(t,z) = —o0, (3.3.3)

r— 00
otherwise one may replace w* with w"7%" defined by
w O (t x) = w (¢, x) + O |3t x), (t,2) € [0,T] x R,

which is still an usc supersolution of (3.1.2) for § > 0 and v > vy which satisdies (3.3.3). It suffices to
show that u% (t, z) < wh3%" (¢, ), (t,z) € [0,T] x R, since by taking the limit as § — 0, we deduce that
u(t,z) < w¥(t,x), (t,z) € [0,T] x R. Thus assume that (3.3.2) and (3.3.3) are satisfied. Then there
exists R > 0 such that

i 0] — ij 0] — ij 0] * *
ot gl et = max (et —w)(E o)} = max{(ut - w?) (7, 2T},
(3.3.4)

where, (t*,2*) € [0,T] x B(0,r), where B(0,r) denotes the ball in R with center the origin and radius
7, since by definition u% (T, z) < w™ (T, x), for all (i,7) € A* x A%, Next we will finish the proof in two
steps: Step 1. First we make the following assumption on the functions (9*); jycarxa2. For all A >
cij(my xma—1), (i,7) € AL x A%, (t, 2,7y, 2,U) € [0,T] x Rx R™>*™2 x Rx R, and (u,v) € R?s.t.u > v,

gtz [Y u), 2, U) — g7 (t,x, [, 0], 2,U) < =A(u —v), (3.3.5)
where ¢;; is the Lipschitz constant of ¢*/ w.r.t.y. Next, let (io, jo) € ['(t*,2*) that satisfies (3.3.1). For
€>0,p>0,let (bi?bjo be the function defined as follows:

D (1,7,9) = (o (1,7) — wioH (1,y) — I 2 gl — o

Let (to, 2o, yo) be such that

losJo (¢ , X0, = max oo t,r,y) = max plodo (¢ x,
0TI = el T DT = (B P ()

which exists since which exists since @50 is usc and B(0, r)? is the closure of B(0,7)?. Then we have
10,50 (4% * *\ __ .10, * * 10,7 * *
QOJo(t", a", %) = wol (7, ) — w0 (t7, 27)

|$0 - yo\2

< yiosdo (t*,z%) — w'0:30 (t*,2%) + + [to — t*|2 + plzo — z* 4 (3.3.6)

< u'd (tg, o) — w7 (to, yo)
. . . . 2
The growth condition of w70 and w7 implies that M + |to — t*|? + p|ro — x*|* is bounded and
hence lirr(lj(mo — 7o) = 0. Next by (3.3.6), for any subsequence (to,, Zo,, Yo, ); which converges to (¢, Z, %),
€E—

uio’jo(t*,fv*) . wio,jO(t*7$*) < t0+do (E’ z)— w?oJo (f, z),

since w70 is usc and w0 is [sc. By the definition of (¢*,z*) this last inequality is an equality. Using
both the definiton of ®{7° and (3.3.6), it implies that the sequence

lir%(to,xo,yo) = (t*, 2", z") (3.3.7)
and once more from (3.3.6) we deduce

2
lim 120 = %0l” _ (3.3.8)

e—0 €
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Finally classically (see e.g. [17], pp. 14) we have also
gg%(uj (th 'IO)’ Wi (t07 yO)) = (uj (t*v ]3*), wy (t*7 Z‘*)) (339)

Next recalling that w70 (resp. w'9°) is usc (resp. lsc) and satisfies (3.3.1), then for € small enough
and there exists a subsequence which we still index by €, we obtain

W (tg, ) > max (uP (to, 30) — g, (t0,70)), (3:3.10)
keAl Ziok
and
w7 (tg, yo) < Z?j? (W (to. o) = Fjp1(to, Y0))- (3.3.11)

Jo
We are able to apply Jensen-Ishii’s Lemma for non local operators established by Barles and Imbert
. . . . 2
([5], pp-583) (one can see also [8], Lemma 4.1, pp.64) with w070, w*J° and ¢(t,z,y) := @ + |t —
t*|? + plz — 2*|* at the point (to, z0, yo)-
For any ¢ € (0,1) there are pt,, ¢S, pS, and ¢, elements of IR and M, M¢ two non-negative constants
such that:

(i)
PZ _piu = 8t¢(t07x07y0)a q; = x¢(t0,$07?/0)7 qfu = - y¢(t07$07@/0) (3312)
and . ,
M, 0 12|z — x* 0 2/1 -1
< 0 —M3> < D2, 6(to, 20, y0) = < | 00 | 0> += (_1 1 ) ; (3.3.13)

) 1 . ’
(ii) —py — b(toszo)qy, — §U(t07930)2MZ — 9" (to, w0, (u" (to, 20)) (i,5)e At x a2, 0 (to, T0) gy,

I(%,Biovjo (to,-’EO, ¢(t07 .7y0)) + I;,Bio,jo (to,l‘o,UiO’jO)) (3314)
- I(%(t()a Zo, ¢)(th ©y yo)) - Ig(t(h Zo, qfu uio,jo) S 0 3
€ € 1 € 10,7 iJ €
(ili) — p§, — b(to,yo)as, — ia(to,yoyMw — 4" (to, yo, (W (to, Y0)) (i,j)e a1 x a2, 0 (to, Yo)dy,»
(3.3.15)

137 (to, 0, —6(t0, w0,.)) + I3 (to, o, wio1))
- I(%(t(% Yo, _d)(th Zo, )) - I(?(t()v Yo, q'Leu’ wioyjo) 2 0.

Next we are going to provide estimates for the non-local terms. Define ¢, (¢, z) := plz — a*|* + |t — t*|%.
By definition of (tg, zo, yo), for any d,d’ € IR,

u'o I (tg, xo + d') — w'do (tg, yo + d) — M — Yp(to, ro +d')

. . 2
< I (tg, wp) — w0 (b, yo) — 2L — (¢, ap).
Therefore for z € F, in taking d = 3(z¢, z) and d’ = B(yo, 2), we obtain

w90 (tg, 2o + B(zo, 2)) — u'90 (tg, zo) — q5B(z0, 2) .
< w0 (t, o + By, 2)) = W (t0, o) — a5 Blyo, =) + 12l Pl
+1p,(to, 2o + B(20,2)) — ¥p(to, 20) — Dathy(to, x0)B(wo, 2)-

By assumption (A0), for any 6 > 0,

o o 2
Ig(t()ax()v(béuulo’ﬂ]) - Ig(t07y07q161)7w10’]0) S M fle‘ztg(l A ‘6|)27’L(d6) + Ig(t()axOvDaﬂ/}p(t(%xO)?wp)

< K@ + 152(7507 Zo, Dxd)p(t(h ‘To)a lbp)
(3.3.16)
It is easy to check that

113 (to, w0, Dathp(to, o), 1p)| < Cp/ {12)* + |2|*}n(dz).

|z|=6
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On the other hand, since ¢ € C? and § is bounded,
Ii (to, zo, ¢(to, -, 40)) = f\e|§5{¢(to,l’o + B(zo,€),90) — d(to, T, yo) — Dxd(to, o, yo)B(xo, €) }n(de)

z0,e)? Kglp
= Cly flzs P dn(e) < =22 [ o5(1 A le])*n(de)
and

Ig (t07 Yo, _¢(t07 Zo, )) = f|e|§5{_¢(t07 Zo, Yo + ﬁ(y07 6)) + (b(t()v Zo, yO) + Dy¢(t07 Zo, yo)ﬁ(yo, e)}n(de)

2 K?
Mdn(e) > Zew f|e|S5(1 A le])?n(de).

€

_ 2
- CE,P le|<d

Therefore we have
—I5(to, w0, ¢(to, -, yo)) + L5 (to, yo, —#(to, o, .)) > *% f|e‘§5(1 A le])?n(de). (3.3.17)
Now by the definition of (t*,2*) and (3.3.9), for € small enough, d,d’ € IR,
w90 (tg, o + d') — w0 (to, yo + d) < w7 (tg, w0) — w7 (to,yo)-
Therefore for z € E, in taking d = §(xo, 2) and d' = B(yo, z), we obtain

w90 (tg, zo + B(x0, 2)) — w9 (tg, )
< qto.do (t07y0 + ﬂ(yo,z)) _ qtosdo (t07y0> + 18(z0,2)=B(y0,2) |2 —=2(z0—y0) (B(z0,2) —B(y0,2))
+1,(to, w0 + B0, 2)) — Vp(to, o).

Since %0 is nonnegative, and by the assumption on 3,for any J > 0,

o o o 2
I(?’B 0o (to,,’Bo, uio’jo) — I§7B 0o (t07y0,w’°’30) < I(?’B oo (to, X0, (bp) + O(M), (3318)
€

and it is easy to check that

122 (10, 20, 0,)| < Cp /

|z[>

{Iz* + I2|*}n(d2).
§

On the other hand, since ¢ € C?,

I;’Bio’jo (to, z0, &(to, -, 40)) = [i1<s{8(t0, @0 + B(zo, €),50) — B(to, To, Yo) }7"*7° (e, xo)n(de)

< Oelff f|e|§5 |B(x0, €)[y*7° (e, z0)dn(e)

and

I§7Bio,j0 (th Yo, _¢(t07 Zo, )) = |e|§5{_¢(t07 Zo, Yo + ﬁ(yoa 6)) + ¢(t07 Zo, yO)}7i07j0 (6, yO)n(de)

z _062,,;9 le|<é 1B(y0, €)|v" 7 (e, yo)dn(e).

By the assumption of 3 and for € small enough,
I;7B10,]0 (t0,$07¢(t07~7y0)) _I;me’JO (t07y0a_¢(t07m05-)) S Kfp/ (1 A |e|)2n(de) (3319>
e|<é
Making now the difference between (3.3.14) and (3.3.15) yields

1
— (5, — pS,) — [blto, 20)qs — blto, yo)d,] — s[o(to, x0)* M — o (to, yo)* M)
2

— [g"%° (to, o, (u” (to, 0)) (i) et x a2, 0 (to, 0) Gy,
137 (to, w0, 0o, o)) + 13 (o, 0, u )
— 99 (to, yo, (W (t0, Y0)) i.1ye a1 x 42, 0 (t0, Y0) 5 )
L7 (to, 0, —(to, w0, ) + 13 (to, yo, w'))]

- Il7é(t0a Zo, ¢(t07 '7y0)) + 1176(t0a Yo, _¢(t07x07 )) - I2)6(t07x07q27ui07j0) + 12’5(t07y03 quwiodo)
<0.
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Taking now into account (3.3.16) and (3.3.17), let 6 — 0, we get

1
- (pz 7p16u) - [b(t()?xo)qz - b(th yO)qZ)} - 7[0—(t07x0)2M5, - J(to,yo)zMg]

2
. .. iQ,J i0,J F—
— [g"%° (to, w0, (u" (to, 0))(i.jy e a1 x a2, 0 (Fo, 20)aly, 1577 (to, o, &0, y0)) + I3 (to, w0, u™))
o g 10,4 i0,J o
— g">7°(to, o, (w" (to, yo))(i,j)eAle%U(to,yo)q;’f§’3 " (to, 0, (to, -, Yo)) + IE’B " (to, xo, uioI0))]

To — 2
- K|Oy0|/|>5(l/\ le|)?n(de) < Cp/]R{|z\2+ |2|*}n(d2).

€

and finally as usual, by (3.3.18) and (3.3.19) and the assumption on g*+J°, the exists a constant C. ,
such that for any fixed p > 0, limsup,_,y ,_,g Cc,, < 0 and

. . i0sd P04 o

- {glo’jo(to,l‘m(uzj(to,xo))(i7j)eA1XAz,0(t07x0)qz,f§’B0 0(t0,$0,¢(t0,.,y0)) +I§7BO 0(t0’$05u107jo))
. - i0,d i0+d .

_glowjo(t()va)(wzj(t07y0))(i7j)€A1XA27a(t07y0)q1€“I§7B0 0(t07x0a¢(t0a'ay0)) +I§7BO O(t()a'rofu'lovjo))}

<CoptCp / {12 + |2} n(d2).
R

By the convergence to zero of (x9—) and the Lipschitz condition of g* with respect to (u*! (¢, T0))(k,1)e Al x A2,
and using condition (3.3.5) we obtain:

(w090 (tg, o) —w' 9 (tg, yo)) — > B (u* (to, m0)—w (to, y0)) < Co+CP/ {[212+12["}n(d=),
(1.1) € AL X A2% (i o) "

where [ﬁfp stands for the increment rate of f%+J° with respect to u* which is uniformly bounded with
respect to €, p, and non-negative, thanks to the monotonicity assumption (A2). Therefore,

)\(uimjo (tO; xO) _ wio,jo (tO; yo))

< Y A Cem) ~ 0t g0)) + Cupt Cp [ (a4 [2])n(d)
(i.4) € AT X A (i0 o) o
SKe () Y @ta0) 0t s0) + Cup +-Cp [ (1 4 1214 n(dz).
R

(1,5) €AY X A2#(io,j0)
Taking the limit as € — 0, p — 0,

)\(uimjo (t*, $*> — qtosdo (t*, x*))

= H@_)O Kep(f00) > (u™ (to, x0) — w™ (o, yo))*
(4,5)EAT x A% (io,jo0)
< K(f7) Z lim (u" (to, z0) — w" (to,y0)) "

n—oo

(4,5) €A X A% (i0,50)

< K(fig,jg) Z (ui’j(t*,aj*) o wi’j(t*,’l}*))Jr,

(i,5) €A x A25£(io,jo)
since u® (resp. w') is usc (resp. lsc). As (ig, jo) € T(t*,x*), we obtain
Au'odo (¢ ) — w0 (¢*, 1)) < C(f7090)(my x mg — 1)(u090 (t*, %) — w0 (t*, 2%)).

But this is contradictory with (3.3.4) and (3.3.5), thus, for any (i,7) € Al x A%, u¥ < w".

Step 2. Now we deal with the general case. For arbitarary A € R, if (u); jyca1x a2(resp.(w™); jye a1 x a2)
be a subsolution (resp. supersolution) of (3.1.2). Denote @¥ = e~y (¢, x) and w9 = e~ Mw¥ (t,x). It
is easy to show that 4% (¢, z)(resp.ww% (t,r)) is a subsoltion (resp. supersolution) of the following system
of variational inequalities with oblique reflection : V(i,j) € A! x A2,

min{t9 (t,z) — max{o¥ (¢, z) — e_’\tg,l(t, x)}, max{0" (t, z) — min {0 (¢, 2) + e Mg (¢, 2)},
leAl = keA?
—0y 0% (t, ) — LV (t,2) — A0V (¢, )
—eMgli(t, x, (eMoFl(t, ) (k,1yeAr x a2, 0 (L, 2)eM DY (t, x), e BY5Y (t, )} =0
V9(T,x) = e~ T AR (1)
(3.3.20)
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But, by choosing A large enough the functions

Fij(taxa ukl(tvx))(k,l)EAle27Za U)

= Au + eiktgi](tvxv (ektukl(ta I))(k},l)eAleQa e)\tzve)\tU)7 (7”]) € Al x A2a

satisfy condition (3.3.5). Hence thanks to the result stated in step 1, we have 4% < w¥, (i,j) € Al x A%
Thus, v < w¥, for any (i,5) € A* x A2, which is the desired result. O

Corollary 3.3.1. System (3.1.2) has at most one viscosity solution belongs to 114, and it is necessary
continuous.

Now we prove the existence, this will be done in 3 steps.
Proposition 3.3.1. The family (") (; jyca1x a2 is a viscosity subsolution of the system (3.1.2).
Proof. Recall that V(i,7) € A x A2, 4% = lim,, \, u”'™, so 4" is usc, and
a’(T,z) = h'(z), =€ R.
For a fixed (i,7) € A* x A2, we suppose that there exists ey > 0 s.t.
a' (t,x) > LYa)(t, ) + eo,

otherwise the subsolution property holds. Thanks to the decreasing convergence of (@*™),,>0 to 4",
there exists mg such that for any m > mg, we have

Tt ) > LI (@) et waz] (b 7) + %0 (3.3.21)

Next, since V(i,j) € A' x A%, m > 0, @™ and LY[(GP9"™)(, earx a2] are continuous, there exists a
neighborhood ©,, of (¢, z) such that

@ a') 2 DY@ pgearxarl (@) + 0 (Eha') € O (3.3.22)
By the same argument of [17](page 17), we have
a < U"[a). (3.3.23)

Let ¢ be a C12([0, T] x IR)NI1, function such that @ — ¢ has a global maximum at (t, z) in [0, 7] x IR*
which wlog we suppose strict and @' (¢, ) = ¢(t, z). Therefore (t,z) is a global strict maximum of 4% — ¢
in [0,7] x B(z, K¢). On the other hand there exist subsequences {my} and ((t;,, ,;, ))x such that

((trny> Trn, )k =k (t, ) and @i (trags Tony) =k a'(t, x).

Let now (¢, ,Tm,) be the global maximum of 4™ — ¢ on [0,7] x B(x, KJ). Therefore
(tmes Tmy) =k (6 2) and u™ (tm,, Ty, ) —k a'd e (t, x).

Actually let us consider a convergent subsequent of (¢, , m, ), which we still denote by (¢, , Tm, ), and
let (£,7) be its limit. Then for some k¢ and for k > ko we have

TR (tmk7xmk) - ¢)(tmk7‘rmk) > ' (t/ , ) - ¢(t/ z, ) (3'3'24)

u mp? Mg My ? Mg

Taking the limit wrt k to obtain
aij(ﬂ ‘i‘) - ¢(t_7 ‘i‘) > aij(twr) - gb(t,ZC)

As the maximum (¢, ) of 4% — ¢ on [0, T] x IR* is strict then (¢,z) = (¢, ). It follows that the sequence
((tmy» Tmy, )k converges to (t,z). Going back now to (3.3.24) and in sending & to infinite we obtain

a e (¢ ) > Hmsup @™ (ty, , Ty, ) > limkinf TR
k

mg? “my

(trng > Ty ) = limkinf a el al ) =a"(t,x)

which implies that @™ (t,,, , Ty, ) — @9 (t, ) as k — oo.
Now for k large enough,
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(i) (tmy,Tm,) € (0,T) x B(z, K0) and is the global maximum of wdme — ¢ in (0,T) x B(z, K9§) ;
(i) @9 (b s Ty, ) > L@ gye a1 5 a2) (i > Ty, )-

As @™ is a subsolution of (3.2.8), then by Definition 2.2, we have

_Ot(ﬁ(tmk s xmk) - £1¢(tmk , xmk) - Ig (tmk » LTy, s ¢) - Ig(tmk s Ty s Dw¢<tnk , xnk>7 aij7mk) <
gl'7 (tmk ) xmk ) (akJ’mk (tmk ) xmk))(k,l)GAl ><A27 U(tmk ) .'L'mk )Dwa’h],mk (tmk; mmk ); (3325)

Y ij o
Ig,B (tmk,:ﬂmk,gb)+_’[(?3 (mkvl'mk,ul’J’mk)).

But there exists a subsequence of {my} (which we still denote by {my}) such that:

(i) for any (k,1) € A} x A3, (k- bme=1(t,.  2m, )k is convergent and then limy, @®b™ =1 (t,,, 2y, ) <
a*(t,x) ;

(i) (Z5 (tmgs Ty, @)y, — L5 (t, @, ¢) as k — oo;

(ii1) (Z5" (s @mies )i = 7 (8,,0) as b — oc.

Sending now k to infinite, using the fact that g% is continuous and verifies (A2) and finally by
Lebesgue’s Theorem to obtain

—0i(t, x) — L1o(t, x) — Ij(t, x, 9) < 3
I3 (t, x, Dyg(t, ), u) + J( @, (P (t, 7)) (k1) a1 x a2, 0 (8, ) Dy (¢, ),
77 (4w, 0) + 1277 (8,2, 09)).

But @ (t,2) = ¢(t,x) and @ < ¢, then T2(t, x, Dod(t,x), @) < T3(t,, Dpo(t, @), 6) and [27” (t, 2, a) <

Ig’B” (t,z,¢) . Plugging now this inequality in the previous one to obtain
—0(t,x) = L1(t, x) = T(t,x,0) — g (¢, @, (@ (t,2)) 1 e ar x a2, 0t 2) Dot (1, 2), TP (¢, 2, 6)) <
Therefore 4% is a viscosity subsolution of

mm{(v” _ LU[?])(t,x),max{( 9 — U”[U D(t, ), 3 y g
—_aﬂ)” (t, Q?) —'_,Cv“(t,x) _ glj (t7337 (U ( )) k) EAL X A2 O'(t,-l?)Da;U” (t,x),IB J (t7 Z‘,’UU))}} =0
V(T 2) = ()

As i, j is arbitrary then (ﬂij)(i,j)eAlez is a viscosity subsolution of (3.1.2).
L]

Proposition 3.3.2. Let mg be fized in N. Then the family (@™ 0)(i,j)e Al x A2 18 @ viscosity supersolution
of the system (5.1.2).

Proof. By the Proposition 3.2, the triples (Ym0, Z#:mo {id:mo [id:mo) ;oo 41, 42 introduced in (3.2.5),
solve the following system of reflected BSDEss:V(i, j) € A! x A2,

(Yi,j ;Mo Zijmg {7id-mao Ki,j mo) e S2 x H? x HZ(N) % AZ;
Yo = (X — [T i (r, XU (VRL00) o vy ga, Z0, G dr 4 [T Z63moa,
+ [T [ Tpimo (e )N(drde) + Kphmo — Kbimo

yiamo > maX{YkJmO — 9. (S,Xt’z)}, s <T,
keAl

Ji (0720 — mas V2570 — g, (s, XL AR =0,

(3.3.26)
where, V(i,7) € A x A2, m >0 and (s, Y ¥, Z9 UY),

fi,j7m0 <57 X‘?Ia }_/)7 ZU’ UZ]) :fu(sv X‘?Ia (Ykl)(k,l)GAl X A2 ZU7 UU)
—mo(Y — min(Y" +g; (s, X07)) "

=g" (5, X2%, (Y*) (eyearxaz, 27, / U7 (e)y" (X", e)n(de))
E

—mo(YV — lrni‘n(Y +7,(s, X0")) T

Zgij’J“mO (s, Xﬁ’zy (Ykl)(lc,l)eAl X A2, Zij, / Uij(e)Vij (Xﬁ’zy e)n(de))
E



72

Furthermore, there exsits a unique A! x A%-uplet of deterministic continuous functions (ﬁk’l’mo)( k) €A x A2
in II, such that, for every ¢t < T,

Ym0 — g (5, X07), s € [1T),

By Theorem 5.1 in Appendix, it follows that u7™0 is a viscosity solution for the following PDE with
two obstacles:

min{(t, z) — maxe 1 {a9 (6,2) — g (t,2)},

max{0(t,x) — uh"mo(t,x) v Minge 42 (athmo(t,z) — g(t, z)),

_atg(t7 x) - Ea(t7 IE) - gl] (tv xz, (ﬂkl)mo (tv x))(k,l)EAl X A2, O-(ta x)Dzﬂ(t, SE), IBij (tv &€, a(tv IE)))}} =0
O(T,z) = hid(z)

Next, let (t,x) € [t,T] x R and (p,q, M) € J~aP™(t, ). As @*/™° is a solution in a viscosity sense
of the previous PDE with two obstacles then it holds that

a o (t, ) > max{a o (tx) — g, (¢ )} (3.3.27)
k€Al =t

and
e (597 (1, 2) — T (1, 1)V minge g2 (797 (4, 7) — gt 2)):
J
—P— E(QvM)aij7m0 (t’ .Z‘) - gij (tv T, (akl,mo (t’ x))(k,l)GAl x A2 U(tv x)Qa IBU (t’ Z, o (tv .7;)))} > 0.

But, for any constants a,b € R we have a — (aVb) < a—b and thus a — (aVbd) > 0= a—b>0.
Therefore, we have

max{ﬂijmo (t,z) — minleA? (ﬂihmo (t,x) — gu(t,x));
—p— E(qM)ﬂij’mO (t,z) — g% (t, z, (ﬂkl’mo (t,2)) (kyearx a2, o(t, x)q, 18" (t, x, u'hmo (t,z)))} > 0.

Combining this inequality with (3.3.27) and since @™ (T, x) = h* (x) it follows that u/™° is a viscosity
supersolution of the system

min{6(t,x) — maxge o {ah 0 (1, 2) — g, (¢, 2)}, ma{0(t, @) — mine 42 (@00 (1, 7) = Gt @),
—0,0(t, ) — LO(t,x) — g (t, @, (@0 (, 7)) (e arx a2, 0 (8, 2) Dbt 2) 1B (8, 2,0(t, )} =0
0(T,x) = h ()

Since (i, §) is arbitrary in Al x A2, the system of continuous functions (%*>™o )(i,j)eA? x A2 18 a supersolution
of (3.1.2). O

Consider the set Up,, defined as follows.
Uy = {0 1= (u7)(; jyear x azs.t.U is subsolution of (3.1.2) and V(i, j) € A* x A?, a7 < w7 < ghmoy,
Un, is not empty since it contains (u)(; jye a1x 2. Next for (t,2) € [0,T] x R and (i, j) € A' x A?, set:
Moyt (t,x) = sup{uij (t, ), (ukl)(k,l)eAl wA2 € Uy}

Now we give the main result of this section. To begin with we give a third definition of viscosity solution,
in the same way with [5]Proposition 1), we can prove that they are equivalent.

Definition 3.3.1. (i) For a function u: [0,T] x R — R, lsc (resp. wusc), we denote J u(t,z) the
parabolic subjet (resp. JTu(t,z) the parabolic superjet ) of u at (t,x)e [0,T] x R, as the set of triples
(p,;M)E R x R x S*; where S* is the set of symmetric real matrices of dimension k

u(t' ') > u(t,z) + p(t' —t) — (¢, —z) + %(m' — 2, M2 —z)) +o(|t —t| + |2/ — z|)* (resp. <)

(ii) We denote J~u(t,z) (resp. Jtu(t,x)) the parabolic limiting superjet (resp. superjet) of u at (t,z),
as the set of triples (p,q,M)€ R x R x S* s.t.

(pvqu) = lim (meImMn)a (t»x) = lim (tnaxn)

n—oo
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where (P, qn, M) € Ju(tn, xn)(resp.J u(ty, x,)) and u(t,z) = lim u(ty,,z,).

(iti) A function W = (W (t,z)); jyearxaz : [0,T] x R — RAYXA® guch, that for any (i,§) € A' x A2,
u” e Il is lsc (resp. usc), is said to be a viscosity subsolution (resp. supsolution) of (3.1.2) if for
any test function ¢ € CH2([0,T] x R), § > 0, if (to,z0) € [0,7] x R is a mazimum (resp. minimum)
point of utd — ¢ on [0,T] x B(zo, K§) where K is the same as in definition 2.2, and if (p,q, M) €
J=ub (tg, o) (resp.J tubd (tg, xg)) with ¢ = Dyg(to, o), p = Dud(to, x0), and M > D2 _¢(to,xo) (resp.
M < ng¢(t03x0))7 then:

min{(u¥ — LY [W))(to, o), maz{(u’ — UY [7])@0,330), -
—p — b(to, x0)q — 202 (to, mo) M — I} (to, 0, ) — I? (to, zo, q,u"’)

_'g'ij(t07x05 (u_kl(t()vxo))(k? l)EAT X A2, O-(t07x0)Q711 B (t07x07 ¢) + I§7BLJ (t07x07 Ul]))}} S 0 (Tesp. 2 O)
v (T,x) < h¥(x) (resp. >)

Theorem 3.3.2. The family (mouij)(i’j)eAlez does not depend on mgy and is the unique continuous
viscosity solution in the class I, of the system (3.1.2).

Proof. Note that for any (i,7) € A x A%, a7 <™ 4% < ™0, Since "/ and 4™ are of polynomial
growth, then (m"u”)(z jyeaix a2 belongs to Il;. The remaining of the proof is divided into two steps, to
easy notation, we denote ("0u* J)(z,j)eAleQ by (ut )( j)eAlx A2 as no confusion is possible.

Step 1. First we show that (u™); jyearxaz is a subsolution of (3.1.2). It is clear that for any
(t,z) € [0,T) x R, " < u® < @™o, This implies that a*7 < u™* < @™o since 4% is usc and a%™o
is continuous. Therefore, for any x € R, since @ (T, z) = "™ = h¥(x), we have u"*(T,z) = h¥ (x).
For the fixed (i,j) € A' x A2, let (ajﬂ')(?’_j)eAlez be an arbitrary element of U,,,. Then, for any
(t,x) € [0,T] x R and any (p,q, M) € JTa*(t,z) we have

min{ (a** _L_ij[(~kl*)(k nearxaz])(t, x) mazx{(a'* Uij[(@_kl’*)(k neatxaz])(t, ),
—P— L q,M)alL*(tv ) g”(t z, ( K, *)(k l)eA1><A2’ (tvx)%IB (t x ulﬂ*( ,.13)))}} >0

By definition we have 4% < 4% and then 4%* < u%*. By the monotonicity property (A2), we have

min{(a"* L”[( )(k,_l)eAle?])(f ), maz{(a"* Uij:[(ukl’*)(k,l)eAlxAz])(t ),
=P = Ligan @77 (t,2) = g7 (12, (W) L jye s xans @) o (6 0)a, TP7 (8, @9 (8, 2))) 1 > 0

This means that @ (¢, z) is a subsotluion of the following equation.
min{(w — L7 [(u**) e ar x a2]) (¢, @), maz{ (w — U7 [(uF*) g, 1y e arxa2]) (E, ),
ij *)1J Y
-p— ‘C(%M)w -9 / (t’ €, [(ukL )(gc,l);é(i,j)eAl X A2 U)], O-(ta x)qa IB (ty Zz, UJ))}} =0
Relying on the lower semi continuity of the function

(t7 xr,w,p,q, M) — mln{(w - L’L] [(ukl7*)(k,l)€A1 XAQ])(t’ .T),
max{(w — U”[(uk‘lf*)(k,l)emXAz_]_)(t, x), B
== Lgmw—g"(t,z, [(Ukl’*)gc,z);é(i,j)efllXAQ, wl,o(t,x)g, I8 (t,2,w))}}

and using Lemma 4.2 in Crandall et al.(1992)([12],pp.23), related to suprema of subsolutions, combined
with the above result, it holds that u*/ is a subsolution of the following equation
min{(w — LI ) g nearxaz]) (8, ), maz{(w — U9 [(u) o e ar xaz)) (£ ),
_p - E(‘]M)w_ gU (t7 .’17, [(ukl’*)z@’l)¢(i,j)6Al X A2 ’LU]7 J(t7 x)‘L IB (t7 JJ, ’U}))}} = 0 (3328)
u (T, x) = h" (z).

Since (i, ) is arbitrary in A* x A2, (u")(; j)ea1x a2 is a subsolution of (3.1.2).

Step 2. Now we will use Perron’s method to show that (u"); jycarx a2 is a viscosity supersolution
of (3.1.2). Note that for any (i, ) € A x A2,

o i i ij — —ij,mo _ =ij,mo
u’ =u) <wu <ul <uwl" =u"r"o,
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since ™0 is continuous and u% is lsc. Therefore, for any x € R,
u'?(T,z) = h' (z) (3.3.29)

since w" (T, z) = h'(z) = u?™°(T,z). Assume that (u™)(; jyea1x a2 is not a supersolution for (3.1.2),
then taking into account of (3.3.29) and Remark 2.1, there exists at least on pair (i, j) such that u/ does
not satisfy the viscosity supersolution property: means that for some point (tg,xo) € [0,7] x R there
exists a triple (p,q, M) in J~(u))(to, zo) such that

{ mm{(uf - Lij[ﬂ)*})(to,a:o),max{(uij —UY[W.])(to, m0), -
—p — Lganud (to, mo) — g% (to, zo, (u¥(to, o)) (k1ye a1 x a2, 0 (to, T0)q, TP (to, 2o, u¥ (to, 20)))}} < O

(3.3.30)
Now for any positive d, v and r, set us~ and B, as follows:
y 1
usy = ! (to, @) + 0+ q(x = w0) + p(t —to) + 5 (M = 27)(x — 20)?,
and
B, :={(t,z) € [0,T] x R, s.t. |t — to| + |z — mo| < r}.

Using (3.3.30) and continuity of all the data, choosing 4, v small enough we obtain

min{(u + 6 — L9 [W.]))(to, x0), maz{(u + & — U [W.])(to, z0),

—p — Lg,m—24)(ud (to, z0) + 9) (3.3.31)

_g” (t()a Zo, [(ufl(t07 xO))l(l‘i:vl);ﬁ(i,j)eAl X A2 u,fkj (th '1:0) + 5]3 0(t07 xO)Q7
IB” (th Zo, (uij (to, ‘TO) + 5)))}} < Oa

noting that V(t, z) € [0,T] x R, § — IB” (t,, (u” (t, ) +6) is continuous. Next, let us define the function
T as follows.

Y(t,2) = min{us (1) — max(ul? — g, )(t,2), maz{us (t,2) ~ min(ul! — 7,)(t,2),(6,2)}),
i =t J

where,

g

w(tv x) = _p_'c(q,M—?y)uis,’Y(tv x)_gij (ta xz, [(uil (ta x))(iyl)#i,j)em w A2 WSy (t, 1’)]7 U(t; Sﬂ)q, IB” (t, xZ, ué,'y(ta :L')))

First we note that from (3.3.31), Y(to,x0) < 0, since us~(to, o) = u¥ (to,z0) + 6. On the other
hand by the continuity of us., Assumptions (A1), (A2) on f¥ and finally the lower semi-continuity
of (ufl)(k’Z)GAlez, we can check that T is usc. Thus for any € > 0, there exists n > 0 s.t. for any
(t,z) € B, we have Y(to,xz0) > Y(t,z) —e. Since Y(to, o) < 0, choosing ¢ small enough we deduce that
T(t,x) < 0 for any (t,x) € B,, with an appropriate 7. It follows that the function us~ is a viscosity
subsolution on B, of the following system.

min{(o(t, ©) — L9[W.])(t, x), maz{(e(t, ) — UY[W.])(t,2),
*atg(ta ‘T) - ﬁg(t, ‘T) - g” (ta €z, [(ufl (t7 z))ééyl)#i,j)em X A2 Q(tv :C)]v
o(t,x)Dyolt, ), 17" (t, 2, 0(t, x)))}} = 0.

Since, for any (k1) € Al x A2, uf < uFbmo and f¥ satisfies the monotonicity condition (A2), us.
is also a viscosity solution on B, of the system

min{(e(t, z) — L9[W*])(t, ), maz{(o(t, ) — U9 [u*])(t, ),

—atQ(tv x) - EQ(t, x) - gij (L‘, Zz, [(Ukh*(tv x))gc,l);é(i,j)eAl X A25 Q(t; 33)]’ (3-3~32)
U(ta I)ng(tv I’), 157 (ta xz, Q(t7 IE)))}} =0.

Next, as (p,q, M) € J~ (uij(to,xo)) then
3 g 3 1
u(t,x) 2w 2 u(to, 2o) + p(t —to) + q(z — 20) + 5 M(z — 20)? + o(|t = to]) + ol|x — wo[*).

Take § = %7, it is easily seen that
u(t, x) > us~(t, ),



(0]

as soon as % < |z — z¢| < r and r small enough. Take r < 7 and consider the function R

ﬂij(t ) = max(uij(t,x),u(;ﬁ(t,x)), if (t,x) € By,
T wb(t ), otherwise.

Then taking into account of (3.3.32), and using Lemma 4.2 in Crandall et al. (1992)([12]), it follows that
@ is a subsolution of (3.3.28). Next, as % > u% and using once more the monotonicity assumption
(A2) on f* we get that [(u*') 1)4¢.5), @] a also a subsolution of (3.1.2) which belongs to II;. Thus,
thanks to the comparison theorem 4.1, [(u’“l)(kﬁl#(i,j),ﬂij] belongs also to U,,,. Finally in view of the
definition of u¥, there exists a sequence (t, &y, u” (tn, 2n))n>1 that converges to (to, zo, u? (to, 20))n>1-
This implies that

lirrln(ﬂij — U (b, x,) = (usy — u¥)(to, xo) = u¥ (to, x0) + & — u (to, o) > 0.
It means that there are points (t,,z,) such that @%(t,,z,) > u"(t,,z,). But this contradicts the
definition of u, since [(u’“l)(w)#(i,j),ﬂ”] belongs also to Uy,,. Therefore, (u'7); j)caixa2 is also a
supersolution for (3.1.2). Now, by the Corollary 4.1, ("°u")(; jyearxa2 (i.e. (u'7)(; j)earxa2) dose not
depend on my is the unique continuous viscosity solution in the class II; of (3.1.2). O
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Chapter 4

On the identity of min-max and
max-min solutions of Systems of
Variational Inequalities with
Interconnected Bilateral Obstacles.

This chapter is a joint work with Boualem Djehiche, Said Hamadéne and Marie-Amelie Morlais.

4.1 Notations and first results

Let us consider the following two systems of partial differential equations (PDEs) with bilateral inter-
connected obstacles (i.e., the obstacles depend on the solution) of min-max and max-min types: for any
(i,7) € Tt x T2, (t,x) € [0,T] x R*,

min {vij(t,a:) L (%)(t,x) ; max {vij(t,a:) U (0)(t, z);

0 — LX) (6, w) — F (@, (0 (1, 2)) gopyers xra, ot @) T D (t2)) | | = 0
v9(T,x) = h"(x)

(4.1.1)
and
max {@ij(t,x) U™ (0)(t, ) ; min {T)”(t,x) — LY (D) (t,x)
05 — LX) (t) — £ (8, 2)) e s, o) Do (82) )} = 0
09(T,x) = h¥(x)
(4.1.2)
where

(i) T'! and I'? are finite sets (possibly different);
(ii) For any (t,z) € [0,T] x IR*, #(t, ) = (v*(t,2)) . 1)eri xr2 and for any (i,5) € I'' x T2,

LI@)(ta) = max {o9(t,) - g (o)}, UV @(to) = min (07(t,) + g5t}

(iii) £ is a second order generator associated with a diffusion process described below.

The systems (4.1.1) and (4.1.2) are of min-max and max-min types respectively. The barriers L* (¥), U" (¥))
and L% (), U% () depend on the solution & and @ of (4.1.1) and (4.1.2) respectively. They are related to
zero-sum switching game problems since actually, specific cases of these systems, stand for the Hamilton-
Jacobi-Bellman-Isaacs equations associated with those games.

Let T (resp. k, d) be a fixed positive constant (resp. two integers) and I'* (resp. I'?) denote the set of
switching modes for player 1 (resp. 2). For later use, we shall denote by A the cardinal of the product set

' xT2 and for (4, 5) € T' xT2, (I'") " :=T'—{i} and (I*) ™7 := T2~ {j}. For § = (y")(kpyeri x> € R,

7
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(i,4) € Tt x I'?, and y € IR, we denote by [(ykl)(kyl)emsz,{iyj}ﬂ] the matrix obtained from the matrix

7= (y*)(k,errxr2 by replacing the element y*/ with y.

For any (i,7) € I'' x T'?] let

b: (t,z) €[0,T] x IRF — b(t,z) € IRF;

o: (t,z) €[0,T] x R* — o(t,z) € RF*;

9 (tx,9,2) € [0,T] x RFAT s fii(t 2,4,2) € IR;
g, (tx) €0, T xRF—g. (t,x)e R (ke (T~
gji: (t,x) €[0,T) x RF — g;(t,z) e R (1 € (T?)79);
hi : x € RF — h¥(x) € IR.

A function @ : (t,z) € [0,T] x R +— ®(t,z) € IR is called of polynomial growth if there exist two
non-negative real constants C' and v such that

B(t.2)| < C(L+[a]),  (ta) € [0,7] x R,

Hereafter, this class of functions is denoted by II,. Let C12([0,T] x IR¥) (or simply C1?) denote the set
of real-valued functions defined on [0, 7] x IR*, which are once (resp. twice) differentiable w.r.t. ¢ (resp.
x) and with continuous derivatives.

The following assumptions on the data of the systems (4.1.1) and (4.1.2) are in force throughout the
paper.

(HO)

(H1)

(H2)

(H3)

The functions b and o are jointly continuous in (¢,2) and Lipschitz continuous w.r.t. = uniformly
in ¢, meaning that there exists a non-negative constant C' such that for any (¢, z,2’) € [0, T] x RF+¥

we have
lo(t,z) —a(t,a")| + |b(t, z) — b(t,2")| < Clz — a'|.

Therefore, they are also of linear growth w.r.t. z, i.e., there exists a constant C' such that for any
(t,x) € [0,T] x R*,

b(t, )| + |o(t, z)] < C(1 + |x]).
Each function f%

(i) is continuous in (¢, ) uniformly w.r.t. the other variables (¥, z) and, for any (¢, x), the mapping
(t,x) — f¥(t,z,0,0) is of polynomial growth.

(ii) is Lipschitz continuous with respect to the variables (i := (y*/)(; jyer, xr,, #) uniformly in (¢, z),
ie. V(t,x) €[0,T] x R*, V (i1, %) € R* x RY, (21, 22) € R? x RY,
(2, g1, 21) = [9 (6 @, 0, 22)| < C (11 — Gl + |21 — 221)

where, |¢j] stands for the standard Euclidean norm of ¢ in IR*.
Monotonicity: Let § = (y*),1yeri«xrz. For any (i,5) € IT* xI'? and any (k,[) # (i, j) the mapping
y* — fii(s, ¥, 2) is non-decreasing.

The functions A%, which are the terminal conditions in the systems (4.1.1) and (4.1.2), are contin-
uous with respect to x, belong to class II; and satisfy

. 1, 2 k ki _ ij - il _
YV (i,j) eT" xI'* and = € IR", ker&al))i_i (™ (z) 9., (T, z)) < hY(z) < leg}y)l—j (R (@) + g (T, z)).

The no free loop property: The switching costs 9 and g;; are non-negative, jointly continuous in
(t,z), belong to II,; and satisfy the following condition:

For any loop in I'! x I'2 i.e., any sequence of pairs (i1, j1),-.., (in,jn) of I'' x I'? such that
(in,Jn) = (i1,71), card{(¢1,/1),.--, (in,jn)} =N —1land any ¢ = 1,..., N — 1, either ig41 = i,
OF jg+1 = jg, We have V(t,z) € [0,T] x IRF,

Z Pigige: (t,x) #0, (4.1.3)

qg=1,N—-1

Wherea v q= 17 e 7N - 17 (piqiq+1 (t7 SC) = _g i (t? ’r)]liq5£iq+1 + gjqqurl (t’ z)]qu7éjq+l :

“qlq+1
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This assumption implies in particular that

—1
VY (i1,...,in) € (THY such that iy =i; and card{iy,...,in} = N — 1, Z g. >0 (4.1.4)

7’Lk7ik}+1
=1

S|

and
N—-1
Y (j1,- .-, dn) € (TN such that jy = ji and card{jy,...,jn} =N =1, Y G jooy >0.  (4.15)
p=1

By convention we set g;; =g

Conditions (4.1.4) and (4.1.5) are classical in the literature of switching problems and usually referred
to as the no free loop property. O

We now introduce the probabilistic tools we need later. Let (2, F, P) be a fixed probability space on
which is defined a standard d-dimensional Brownian motion B = (B;)o<¢<7 whose natural filtration is
(F := 0{Bs,s < t})o<i<r. Let F = (F;)o<t<r be the completed filtration of (F?)o<¢<7 with the P-null
sets of F, hence (F;)o<i<r satisfies the usual conditions, i.e., it is right continuous and complete. On
the other hand let P be the og-algebra on [0, 7] x 2 of F-progressively measurable sets.

Next, let

(i) H?¢ (¢ > 1) be the set of P-measurable and IR’-valued processes w = (w;);<7 such that
E[fOT |ws |2ds] < oo;

(ii) 82 (resp. S7) be the set of P-measurable continuous (resp. RCLL) processes such that E[sup, < [w]?] <
0.

(iii) \A? be the subset of S? of non-decreasing processes K = (K;);<r such that Ky = 0.

For (t,z) € [0,T] x IR¥, let X** be the diffusion process solution of the following standard SDE:
Vs e [t,T], Xt® =a+ [Cb(r,XE%)dr + [ o(r, XE®)dB,; XL® =a, s€[0,t]. (4.1.6)

Under Assumption (HO) on b and o, the process X" exists and is unique. Moreover, it satisfies the
following estimates: For all p > 1,

Esup | X52|P] < C(1 + |2]?). (4.1.7)
s<T

Its infinitesimal generator £X is given, for every (¢,7) € [0,T] x IR* and ¢ € C12, by

k
£X¢(t7x) = % 21(0'0‘*(tax))l,Jagle(b(ux) +Zi:1,k bl(t7x)awL¢<t7x) (4 1 8)
i,j= 1.
1Tr(oo T (t,2)D2,¢(t,x)] + b(t,z) " Dyg(t,z). O
Under Assumptions (H0)-(H4), we have
Theorem 4.1.1. ([/17], Theorems 5.4 and 5.5) There exists a unique continuous viscosity solution in
the class I1, (@ij)(iyj)erlxIQ (resp. (yij)(i,j)eI‘IXFZ) of the following system: V(i,j) € ' x T'2,
min { (0¥ — LY (@) (¢, 2), max { (0¥ — U (@) (t, ),
*atq_}ij (t, ‘T) - ‘CX (ﬂij)(tv SC) - fij (ta x, (l_)kl (tv x))(k,l)el“l xI'2y UT(tv x)Dm'Uij (ta (17))}} = Oa <419>
v(T,x) = h¥(x)
(resp.
max { (w9 — U(@))(t, 2); min { @V - L9 (@) (¢, 2);
0w (b ) — LX)t w) — F( @, @ 0)gers a0 (@) Dari( @)} =0, (4110)
Vi3 (T, ) = i ().
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In order to obtain the solutions of the systems (4.1.9) and (4.1.10) Djehiche et al. ([17]) introduce the
following sequences of backward reflected BSDEs with inter-connected obstacles: Ym,n > 0, V(i,j) €
't x I?,

Piim € 82, Zidm ¢ H2d and Rim e A2

Vigm = pid (XET) 4 [T fiam (e, X0T (VFM) o perere, Z0M™)dr 4 [T dK™ — [T ZitmdB,, s < T;

yim > vEm g (s, X!")}, s < T,
2 Doax A 9,,(5: X)) s <

JTWm — mase - ATE™ — g (s, X2 dREm = 0
(4.1.11)
and
yim e §2, Z0n € H24 and K9 € A? ;
Yiim = h”(Xt )+ f f“ o, XET (YR ") (k1) T x T2 Z9m)dr — fST Z9mdB, — fST dKim s < T;
yiin < ming ¢ p2)-i (Y —l—g]l(s Xt ), s <T;
f()T(Ysijm - minle(lﬂ)’j ()/sil’n =+ gﬂ(sv X37 )))dsz’n =0

(4.1.12)
where, for any (i,7) € I'' x I'?, n,m > 0 and (s, x, i, 2),
Fij,m = ij ij ij ij ; il | = +
Fm (s, 2, 4,27) = f9(s, 2, (") gpyerrxre, 27) —m(y — legﬂléf)lﬁj(y "+ gu(s,2))) (4.1.13)
and
(s, 2,9, 29) = f9(s, 2, (y*) kyerixrz, 27) + n(y¥ — kg{}%}){ﬁ(ykj —gik(s,x)))f. (4.1.14)

Under Assumptions (HO)-(H4) it is shown in [30] (see also [11] or [32]) that each one of the systems
(4.1.11) and (4.1.12) has a unique solution (Y™ Zim [i:m) and (Yim, Z4m K™ respectively.
In addition, they enjoy the following properties:

(i) For any m,n >0 and (i,5) € T'! x I'?

yim > yimtl s yiintl s yiin, (4.1.15)
(ii) For any n,m > 0 and (i,5) € I'' x I'? there exist deterministic continuous functions %™ and v%:"
such that for any (¢,z) € [0,T] x IR* and s € [t,T], we have
VI = 99 (s, X07) and Y0 =i (s, X0,
Moreover, from (4.1.15) we easily deduce that, for any n,m > 0 and (4,5) € I'! x I'?,
Azj m > ~17,m+1 > ,Uij,n—i-l Z ,Uij,n. (4116)

Finally, for any m > 0 (resp. n > 0), O, := (0""™); jyeri xr2 (vesp. vy = (V"9™)(; jyeri xr2) is the unique
continuous viscosity solution, in the class II,, of the following system of PDEs with inter-connected
obstacles: V(i,7) € T' x I'2, V¥(¢,2) € [0,T] x IRF,
min{( ij,m sz(g )( ) —8 {}z’j,m _ [:X( i, m)(t l‘)
= fiam (Rt ) er xr, o (1 0) T Dyt () | =0,
09 (T, x) = h' (z)
(resp.
max { (V9" — U (5,))(t, 2); O3 (¢, 7) — £X (v57)(t, )
= PN (8, @, (0 (1, 0)) g per x0T (2 Dyt ) | =0,
VT, x) = h (x)).
(iii) For (i,j) € I'* x I'’? and (t,z) € [0,T] x IR¥, let us set
v (t,x) = lim N 0™ (t ) and  vY(t,z) = lim 0" (t, x).

n—oo

Then, using Perron’s method, it is shown that (0%7); jyerixr2 (resp. (v%)( j)erixr2) is continuous,
belongs to II; and is the unique viscosity solution, in class Iy, of system (4.1.9) (resp. (4.1.10)). Finally,
by construction and in view of (4.1.16), it holds that, for any (i,5) € T't x I'?,

v <94, (4.1.17)
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4.2 Equality of min-max and max-min solutions

In [17], the question whether or not for any (i,j) € I'* x I'?, v¥ = 9% was left open. This was mainly
due to the fact we have not been able to compare the inter- connected obstacles neither in (4.1.9) nor in
(4.1.10).

Actually, had we known that
(i) ¥(i.5) €Tt xT?, L9(0) < U(0)

or (4.2.1)
(i) V(i,j) et xT? LY (3) <UY(D)

then we would have deduced from Theorem 5.5.1 in Appendix and the uniqueness of the solution of
(4.1.9) or (4.1.10) that for any (i,7) € I'* x '}, 9% = v¥. In this section we are going to investigate
under which additional regularity assumptions on the data of the problem, one of the inequalities in
(4.2.1) is satisfied to be able to conclude that ¥¥ = v%, for any (i,j) € 't x I'?, i.e., the solutions of
(4.1.9) and (4.1.10) are the same.

For that let us introduce the following assumption.
(H5):

(i) For any (i,j) € I'' x I'? the functions g;; are C2. Moreover, D,g;; and D2 g;; belong to II,.
Furthermore, for any ji, j2, j3 € I's such that |{j1, j2, 5} = 3,

s (t:2) < Gijo (t,2) + gy (t,2), ¥(t,2) € 0,T] x R,
(ii) For any (i,5) € I' x I'2] the function f¥ verifies the following estimate:
[f9(t 2,4, 27)] < O+ |2fP)
for some real constants C' and p.

Remark 4.2.1. By Ité6’s formula, for ant (i,j) € ' x T'?,

gw( Xt’z)
Gij (s, Xor) =

i ( +ft gzj s, Xb7) ds+ft 2Gij (8, X0")o (s, X*)dBs, s € [t,T]
ij(575f)a s <t.

Hereafter, we denote by
a(s) == LX(gi;) (s, X07),  b9(s) := Dypgij(s, XE%)o (s, X07), s<T.
Proposition 4.2.1. Under Assumptions (H0)-(H5) we have, for every (i,j) € 't x T'?,
L (F) < 59 < U (5).
Proof. We derive this inequality through the following three steps.

Step 1: For any m >0, (i,5) € T' x I'? and (¢,z) € [0,7] x IR, let us consider the system of reflected
BSDEs with one inter-connected obstacles:

yim e 82, 7itm e H24 and K™ € A7 ;
Y/z'j m h’b] t z +f fzj m qu,ac7 (Yq«kl’m)(k,l)el“lxr% va;j’m)dr + fsT dk;’j,m _ fsT va;j’mdBr, s<T;

yim > VR g (s, XE)}, s < T
2 Zoax 1{ 9 (s St <

Jo (V™ — maxge - {YEI™ — g, (s, Xb")}AKP™ = 0,
(4.2.2)
where,
.fi%m(S)mvg’a Z”) = fzj(87x7?ja Z”) —m Z (y” _yll _gjl(svx))+' (423)

le(I‘Q)’j

By Corollary 2, in [30], the solution of this system exists and is unique and there exist deterministic
continuous functions (’lvjij’"l)(i,j)er‘lxrﬂ, which belong also to II, such that, for any 7,5 and m > 0, it
holds that

Vs € [ta T]v Y/;ij,m =0 m( 7Xst;’x)'
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Moreover, the family of functions o, := (’lv)ij’m)(i’j)eplxr2 is the unique continuous solution in viscosity
sense in II,; of the following system of PDEs with obstacles:

rm%me—Uq%»@@;
—@@Wm%mx)—cxu%%mXux)—f”m%uxxﬁmm%ux»wﬁepxp%au¢wTD@wJW%Lx»}::Q
VI(T, x) = h¥ (x).

Finally, by the Comparison Theorem (see [30], Remark 1), since fiamtl < fiim and fij7‘r2|m < fim <
f9m we have, V(i,j) € I'' x I'? and m > 0,

ijml - ij. T - i,
yidm+ < yism and yii T2 |m < yidm < yii m’
which implies that, for any (i,7) € 't x I'? and m > 0,

ptdsm+1 < 99 and §9T2lm < Hm < fidm

Then, for any (i, j) € T'! x F_Q_, the sequence (T}i_j ™) m>0 is decreasing and converges, uniformly on compact
subsets of [0,7] x IRF, to v since lim,, o, 9™ (t, ) = v% (¢, z), for any (¢,z) € [0,T] x IR*.

Step 2: The following estimate holds: For every (i,5) € I'* x I'> and m > 0,

IE m/ Z {yim _yibm g (s, X5® )}ers} < C(1+ |z, (4.2.4)
le(r2)—

where, the constant C' is independent of m and =x.

We first give a representation of Y™ as the optimal payoff of a switching problem. Indeed, let § :=
(Tn, Gu)n>0 be an admissible strategy of switching, i.e.,

(a) (Tn)n>0 is an increasing sequence of stopping times such that P[r, < T,¥n > 0] = 0;

(b) Vn >0, ¢, is a random variable with values in I'! and F, -measurable;

(c) Let (A%)s<7 be the RCLL F;-adapted process defined by

Vs e [0,T), AS= ZgCnf . (Tn, X )]1{T <y and A} = SIE%A?

n>1

Then, E[(A%)?] < co. The quantity A% stands for the switching cost at terminal time 7" when the
strategy ¢ is implemented.

Next, with an admissible strategy § := (7,,(n)n>0 We associate a piecewise constant process a =
(as)sejo,r) defined by

a5 = Goll{ro) (s +§:@1hnhm(> s<T. (4.2.5)
J=1

For any s > 19, as is the mode indicator at time s. Note that there is a bijection between the processes
a and the admissible strategies d, therefore hereafter A is nothing else but A°.
Finally, for any fixed i € I'! and a real constant 6 € [0, T, we denote by A} the following set:

b= {5 = (T, Cn)n>0 admissible strategy such that 7o = 6 and (o = z}
Now, for an admissible strategy 6 = (7,,, &n)n>0, Or equivalently a, let us define the pair of processes

(U™ Vaim) which belongs to S2 x H?? solution of the following BSDE (which is of non standard
form): For every s < T,

T T
02 = BTIKr) [ L P, X070, Gy — [ 0ma, — (a5 - A2, (120

S

where, for any s > 7 and (7, 2) € R'T, f@m(s, X% 4, 2) (vesp. f%(s, X1",7,%)) is equal to

FOm(s, X7 (0™ (5, X07)) (hpyert xr2—{(e.)1- U, 2)
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(resp. '
F9 (s, XE7 [(0% (s, XE™)) (k. nyer xr2—{(e.)3- U] Z))

if at time s, a(s) = £. Let us point out that since a is admissible, the solution of equation (4.2.6) exists
and is unique. Furthermore, we have the following representation of Y™ (see e.g. [30, 35] for more
details on this representation):

V7™ = ess supaeAé{f]g’j’m — A3}, 0<T. (4.2.7)
Note that even though the function f%™ depend on y*!, (k,1) # (i,7), the representation (4.2.7) still
holds since the solution of system of reflected BSDEs (4.2.2) is unique. It follows that, for any j,I € I'2
and 0 < T,
Crij,m oril,m — T “raj,m “ral,m — T
(V"™ =Yg — g (0, Xg") T < ess supge s (U7 — Ug™™ — g;u(0, X)) (4.2.8)
We now examine (Ug7"™ — U™ — gj1(0, Xy*))*. Define the set B as follows:
Bji = {(s,w) €[0,T] x Q, such that U™ — U™ — g, (s, X1*) > 0}

and, for any s € [0, T,
waalm .= gaim _ gabm _ g, (s, X540,

Then, by It6-Tanaka’s formula, we have, for every s € [0, T,
(Wt e g [ ALt o 1 drg S oy L, ooy (W7 )% = 3050 L, () (W) )
= [ L, () (9 (r, X0, 039 = fo(r, X0, URm) — affydr
— [T 1g,,(r) (Verm — valm bl dB,
where, L%75™ is the local time at 0 of the semimartingale W ®75™ Splitting the difference

ANajim(r)i=m Y g, (r)(WEmy T —m " 1, (r)(WeHm)
§"#] g7

as

Ajim(r) = mlg, () WHIET = 1, (W™ om0 g, (r) (W) F — (Wl ®),
330" A

the previous formula can be rewritten as follows: Vs € [0, T],
(Wedtmyt g [ AL o [ s, (r)(Wedtm) *dr

= ST L () (r, X0, D Viedm) — o, Xt Db, Vo) — aft)dr

4.2.9
m [F 1g,, () (Wl rdr — [T 1, (r) (Vadm — Vebm — pil)dB, )
= [ AP { gy L, ) (W) = (W ™m) ]}
But, g;i(t,z) + qij(t, ) > g;;(t,z) = 0. Thus, we obtain that, for every (t,z) € [0,T] x IR¥,
yeR", yj—y—gjut,x) >0 N{y € R™, yi —y; — Gi,;(t, x) > 0} =0,
from which we deduce that
g, (r)(Wom™* =0, vr € [0, T). (4.2.10)

Relying next on the elementary inequality a* — b™ < (a — b)™, it holds

a,jj’,m a,lj” ,m rral,m raj,m — x — z\\ T
lBj,l(r)[(Wr I )+7(Wr A )ﬂ < 1Bj,z(7') (Url’ 7Urj’ 7glj”(raX£’ )+gjj”(7an£’ )) . (4'2'11)
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Using here that the family of penalty costs satisfies g; ;» < gj + g;;» we deduce that

{yeR™, yj —yi — gu(t,x) >0} N{y € R™, yp —y; — Gi» (t,z) + gz (t,z) > 0} =0
which therefore yields

VT € [9,T], 18].11(7“) (UglJﬂ — U;l_]m — glj” (7"7 X,’E"L) + gjj” (T, X,,t,"ll))-i_ = 0 (4212)

Going back now to (4.2.9), applying It6’s formula to e =™ (W®35™)+ and taking into account of (4.2.10),
(4.2.11) and (4.2.12) to obtain: Vs € [0, T1,

(W;z,jhm)Jr < fsT ]-Bjﬁl, (T)efm(rfs)(f'aj (T‘, Xﬁ,a:’ U;Lj}m) Vraj,m) o fal(r’ X;szv’ U;ﬂzl,m7 Vral,m) _ Uil)d’f’
. fsT ]-B]»J (T)e—m(r_s) (VTaj,m _ v;al,m _ Ugl)dBr.

Now in taking the conditional expectation and making use of estimates of Assumptions (HO)-(H5)
(namely the polynomial growth of the functions) we obtain: Vs € [0, T],

(Wbt < B[ 1, (r)emC~)(1 + |XE7[7)drl 7]
< CE[(1 + sup,<p | XL7[P)| F).
Recall now (4.2.8) to obtain

MYy = Y5 = 9500, X)) < CE[(1+ sup [X7717)| o] (4.2.13)

and then in taking into account estimate (4.1.7) on X»* we obtain

mE{ Y (V" Vi = g0, X)) < O+ [al?), VOST.
I#j

As 0 is arbitrary in [0,7] then by integration with respect to df in the previous inequality we obtain
(4.2.4).

Step 3 : For any (t,2¢) € [0,T] x IR¥ and (i,7) € T'* x T2,

LY (3)(to, mo) < 0 (to, z0) < U (¥)(to, zo).

We first claim that 0% (to, o) > L% (0)(to, o) holds. Indeed, by construction of ™ := (09"™); ier1yr2

one has 9™ (ty, z0) > L (G,)(to, o). Therefore, taking the limit w.r.t. m, we obtain v (tg, z) >
Lij (’ff) (to, l‘o).

We now show that 9% (tg, z¢) < U%(T)(to, o). First, assume that 9% (tg,z0) > LY (7)(tg,20). Then,
relying on the viscosity subsolution property of v% yields

min {(@ij — L¥(8))(to, z0); max {(w‘j — U(#))(to, z0):
—0,0% (o, xo) — LX(09)(to, x0) — [ (to, zo, (¥ (to, 20)) (k,1yer sz,a(to,xO)TDmﬁij(tmxo))}} <0,

which implies that
max { (07 — UY)(ty, 20); 010" (to, z0) — L¥(57) = 7 (to, z0, (0" (to, 20)) e pers r2)) | < 0.

Hence, (0% — U%(0))(tg, z0) < 0.
Suppose now that at (tg, zg) we have 9 (to, x¢) = L (v)(to, 29). Proceeding by contradiction we suppose

in addition that - -
Je>0, (07 —UY(0))(to,x0) > €. (4.2.14)
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Using both the continuity of (¢,z) +— "9 (¢,x) and (¢,z) — U%(9)(t,r) and the uniform convergence on
compact subsets of (0"™),, to % we claim that for some strictly positive p and for m large enough it
holds that

-

Vm > mo, V(t,l’) € B((to, xO)a ,0); (Ole - Uzj(vm))(tvx) > %a

with B((to, 7o), p) = {(t,z) € [0,T] x R¥ s.t. |t —to| < p, |z — m0| < p}. -

Without loss of generality we can now assume [to,to + p] C [to,T]. By the definition of U"(9,,), there
exists one index [y # j such that the inequalities

,Dij,m _ (,lv)ilo,m + g]lo) 2

and €
Z (@ij,m _gibm _ §jl)+ > 3 (4.2.15)

hold on the ball B((to,zo), p)-

Let us now introduce the following stopping time 7x:
X = 1nf{s > th X£07IO ¢ B((t07x0)7p)} A (tO + p)

We then have, for all m > my,

mlE / Z(ﬁ”’m(s, Xlowoy (17”’7"(57X§0’”) + gjl(s,X§°’$°))+ds > ng(TX —tg) — 00,

o 15
(4.2.16)
as m — oo. But, this is contradictory to (4.2.4). Then 9% (tg,x9) < U%(7))(to,z0) and the proof is
complete. O

As a by product of Proposition 4.2.1 and Theorem 5.5.2 (displayed in the appendix), we have:

Theorem 4.2.1. Under Assumptions (H0)-(H5), for any (i,j) € Tt x I'%, it holds that

v =Y.

Remark 4.2.2. (i) The result of Theorem 5.5.2 (see the appendiz) is still valid if (HO)-(H/4) are in force
and the functions (gij)(i,j)el"lx]_‘ﬂ verify (H5).

(ii) From (4.2.13) and Doob’s inequality we have, for every (t,z) € [0,T] x IRF,

mPE{ SV - VI = ga(s, XEO) T2} < OO [af*), s < T, (4.2.17)
I#35

where, C' is a constant. O

4.3 The min-max solution as a the value of the zero-sum switch-
ing game

Let us consider now the following assumption which is used later:
(H6):
(i) For any (i,j) € ' x I'?, the function ¥ does not depend on z%.
(ii) For any (i,j) € I'' x I'? the function f% does not depend on (¢, 2%). O

Once for all, in this section we suppose that Assumptions (HO)-(H5) hold.

Set
Y7 =0"(s,X0%), s €T] and (i,j) €' x T2
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We then have the following representation of Y% as the value function of a Dynkin game. This is a
by-product of Theorems 4.1.1, 5.5.2 and Propositions 4.2.1 and 5.5.10 (displayed in the appendix) since
the barriers

LY (%) = max (Ukj —-g.

G
ne g,) and UY(7)= min (v" + gj1)

are comparable, i.e., L (¥) < U% (%) for any 1, j.

Proposition 4.3.1. Assume that Assumptions (HO)-(H5) and (H6)-(i) are fulfilled. For any (i,j) €
't xT'? and s € [t,T] we have,

v(s, XLT) =Y

S
= €55 SUP;>5 €SS in, TZSE{ f:/\T fij (7“, Xﬁ’ma (vkl(ra Xﬁ}z))(k,l)EFl sz)dr

+{rnaxke(l“l)*i{fukj (Ua X;’z) ~ Y (Ja Xctr’z)}}]]-[a<7—]

+ minle(rz)—j {Uil (T7 X-fjx) + gjl (Ta Xﬁ’x)}ﬂ[T§U<T]

Fhij (XET) L gy |fs} (43.1)

= ess inf. > ess Squ'ZSE{ fscr/\r [ (r, X5, (0¥ (r, Xﬁ’z))(k,l)erlxrz)dr
+{rnan;e(Fl)_i{vkj (U’ X;’z) - gik(aa Achtr’z)}}]]-[U<7—]+
minle(Fz)’j {vil (T, X7t—7x) + gjl(T’ X7é7x)}]1[7'§a<T]

+hij(X;”)n[T:U:T}|fs}. O

On the other hand, it is shown in ([28], Theorem 3.1) , that Y% is the unique local solution of the
two barriers reflected BSDEs associated with (f% (s, X5, ),
hij (X5"), LY (0)(s, Xb®), U%(T)(s, Xb%)). Precisely we have:

Proposition 4.3.2. Let (i,j) € T'' x T'? be fized. For any stopping time T > t, there exists another
stopping time §; > 7, P — a.s. (0, depends also on i,j but we omit it as far as there is no confusion)
and three processes Z0T K957 such that:
(i) Yy = hi(X5") ;
(ii)

ZuT e HZA K9ET € A? and non-decreasing ;

Vs € [1,8,], Y = Y37 + [27 fi(r, X0, (V) e yerisrz)dr — [0 Z9dB, + [0 dKPHT — [T AT

Li(7)(s, XL®) <Y <UY(0)(s, X1®), Vs € [t,T] ;

27 (V23 = L09(5) (o, X07)) K = 0 and. [ (¥ — U(0) 1, X07)) A~ = 0y

(4.3.2)

(iii) Let v, and 6, be the following two stopping times:

Yy i=inf{s > 7, Y¥ = LY (0)(s, X!)} AT and 0, := inf{s > 7, Y9 =U"(¥)(s, X.")} AT.

Then, P —a.s., v, V0, <94,. O

4.3.1 Description of the zero-sum switching game

We now address the issue of the relationship between the value function of a zero-sum switching game
and the functions (v'7)(; j)er: xr2 solution of system (4.1.9). We first suppose that Assumption (H6)-(ii)
is satisfied, i.e., f does not depend on (%, 2¥), for any (i,j) € I'' x I'2.

To begin with let us describe briefly the zero-sum switching game. Assume we have two players my
and 7 who intervene on a system with the help of switching strategies. An admissible switching strategy
for w1 (resp. m2) is a sequence 0 := (0y, &y )n>0 (Tesp. v = (Tn, (n)n>0) Where for any n > 0,
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(i) op (resp. 7,) is an F-stopping times such that P-a.s., o, < 0pqp1 < T (resp. 7, < Thp1 <T)
(i) &, (resp. () is arandom variable with values in I'! (resp. I'?) which is F, (resp. F,, )-measurable

(iii) P[0n<TVn>0] Plr, <T,¥n>0]=0;
(iv) If (A%)s<7 and (BY)s<r are the F-adapted RCLL processes defined by:

Vselt,T), A= Zg5 (On, X2")1[5,<s and Al = lirr%Ag,
n—1 n S—

n>1
and
Vselt,T), ;gCn 16n (Tn, X )I[Tngs] and B = SIE%,B;/

Then, E[(A%)? + (B%)?] < co. For any s < T, AS (resp. BY) is the cumulative switching cost at time s
for 71 (resp. m2) when she implements the strategy d (resp. v).

Next, for t € IR, i € T'? (resp. j € FQ),_ we say that the admissible strategy § = (o, & )n>0 (resp.
V= (T, (n)n>0) belongs A (t) (resp. AL (1)) if
oo = ta 50 = Z.a E[(A%)2] <00 (resp. To = t7 CO = j) E[(BTV“)Q] < OO)

Given an admissible strategy ¢ (resp. v) of my (resp. m2) one associates a stochastic process (us)s<r
(resp. (vs)s<r) which indicates along with time the current mode of 71 (resp. m2) and which is defined
by:

Vs < T, s = &ol{oo}(5) + O &n-1ljo,_y.0,1(5) (resD. vs = Coliry(s) + D Cno1ljr,_, r1(5)). (4.3.3)

n>1 n>1

~Let now ¢ :_(Un,fn)nzo (resp. v = (Tn,(n)n>0) be a strategy for my (resp. ) which belongs to
Al (t) (vesp. AJ_(t)). The interventions of the players are not free and generate a payoff which is a
reward (resp. cost) for 71 (resp. m2) and whose expression is given by

T
Ji(8,v) := E[R"TVT (X71) +/ f(r, X% ., v, )dr — A3 + BY|F, (4.3.4)
¢

where, for any (k,1) € T' x T2, we set f(s,z,k,1) = f*(s,2), since f* is assumed to not depend on
(7,29).

As usual in the literature of zero-sum games, we are interested in the following issue:
Does this zero-sum switching game have a value, that is, does the following equality hold?

ess infueA3;2(t)eSS sup(;eAin(t)Jt(é, V) = ess SUPse s (1058 infueAZ,z(t)Jt(‘S’ v)

In the remaining part of this section, we focus on this issue.

For later use, let us introduce two new families of auxiliary processes (/%) jerz (resp. (U)ier1)
associated with a given admissible strategy & (resp. v) of 7 (resp mo). They are defined by: Vj € I'?,

U € 83, 257 € W24, K—% € A2,
U89 = hMI(XE") + [T fr, X0 up, j)dr — [T Z29dB, — (A5 — AS) — (K% — K709), s € [t,T);

Vs € 1,71, U39 < mingsy (024 + g, sz)) and [T {09 — ming g (U3 + gi(r, X)) }K 59 =0,
(4.3.5)
and for any i € T'!

U e8;, Z e H*, KT e A
Ui = B 4 [T p(r, X0 v, )dr — [T ZEVdB, + (BY — BY) + (K™ — KFv), s € [t,T];

Vs € [t,T), Ui > maxpzi{UF" — g (s, X1™)} and f (Uf’j —maxx {UF — g, (1, Xﬁ“ﬁ}) dK v =0.
(1.3.6)
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These equations are actually not of standard form, but by an obvious change of variables one can easily
show that they have unique solutions. On the other hand, let us point out that thanks to the connection
between the standard switching problem and multidimensional RBSDE with a lower interconnected
obstacle (see e.g. [18] or [34]) the family (U%7 — A%)jere (resp. (UM + BY);er1) of processes verifies:

vaj = ess ianeAgr?(t){Jt((S, v)+ A%} and UY = ess SUPsear w1Je(6,v) — BY'}. (4.3.7)

4.3.2 the relationship between the zero-sum switching game and the min-
max solution

We now give the main result of this section. It relates (Y7)s<r = (0" (s, X5%))s<r, (i,5) € ' x T2,

with the value of the zero-sum switching game described above.

Theorem 4.3.1. Suppose Assumptions (HO0)-(H5) and (H6)-(ii) are satisfied. Then, for any (io,jo) €
'l x I?,

viodo (¢, z) = Y00 = ess SUPse 4o (1) €55 mfyeAg (t)Jt(é, V) = ess mfueAZ}‘; (1) €55 SWPse g0 (t)Jt(é7 v).
(4.3.8)

Proof: Recall the definition of (Yij’m7Zij’m,Kij’m)(i7j)€F1XF2, m > 0, given in (4.2.2). In order to
alleviate notations, we denote it simply by (Y™, ZWm K9™); oepiype, m > 0: V(i,j) € Tt x T2,

yiim e 82 ziim ¢ H24 and K9™ € A? ;
Yim = pia(Xp®) + fsT Jam (e, X5 (YER™) o perixre )dr + (K™ — K9m) — fsT ZiH™mdB,, Vs € [t,T];

Yijﬂn > ij,m —q 7xt,:t , Vs € t,T,
s _kerglFa;;_i{ s 9. (5, X)), Vs € [t T

T ij,m j,m T j,m
J; (V™ —maxge - Y™ — g (s, X07)})AKZ™ =0
(4.3.9)
where, we recall that, for any s € [t,T], m > 0 and (i,5) € T'! x I'?,

17,m x 17 x 17 % = T +
FOm™(s, X050 = [ (s, X0 =m0 (¥ = (" + gals, X0T)
le(r2)—J

As already mentioned above, we know that, for any (i,j) € I't x I'2, Y¥™ —_ Y% in §2. For sake of
clarity, we divide the proof into two steps

Step 1: For any (ig,jo) € I't x I'?

Y;inO = ess Sup(;EAirOl (t){Ut&jO - Ag} (4310>

Let 6 = (07,&)1>0 be a strategy of A% (t). We are going first to show that Y;0do > 7840 — A3 So let
us define the processes (Y%7™) cp2 and (U‘S’j’m)jepz as follows:

(i) vj e I'?,
Vs € [t,T), Y0 = Y8 M lgcicq,,) and YR =R TI(X0T),
1>0
where,
Vs € [t,T), YEIm =" Yy (4.3.11)

q€eT?
The process Y%7™ is well defined since the sum contains only finite many terms since the strategy ¢ is
admissible and then P[o; < T,Vl > 0] = 0. On the other hand, at time 0 < o; < T, Y%7™ has a jump
which is equal to Y5H9™ — ygi-im,

(ii) The processes (/%) jer2 are defined as the solution of the following non standard multi-dimensional
BSDE: Vj € I'?,

Ui = W) 4 [T X ) S (00— D8 — gy
(4.3.12)

—(Af — A — [T VsimdB,, s € [t,T).
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Note that (%™ + A%)jcre is a solution of a standard multidimensional BSDE whose coefficient is
Lipschitz. As those latter processes exist, then so are (U 8,3,m) jer2. On the other hand, as for the system
given in (4.1.12), the sequence of processes ((U‘S’j’m)jelﬂ)mzo converges in 87 toward (U‘S’j)jepz. We
now prove the following: for any m > 0, j € I'?,

Yo > g, (4.3.13)

For any j € I'? let us define K%7™ and Z%/™ as follows: Vs € [t,T],

SAOTI+1
8,5,m .__ 0,5,m __ B
z55m ._§ ZE9 ™M (g <scopy,]  and KS“”—E/ dKS§Im™,
S

1>0 1>0 Y SN0

where, Z57™ and K$J™ are defined in the same way as in (4.3.11). Once more there is no definition prob-
lem of those processes since § is admissible. Therefore the triple of processes (Y 3™, Z%3m [K03m), .,
verifies: Vs € [t,T),

T

_ + 2121(Y(r§,lj’m - Y0§ll71J7m)]1[0'z§s]
— Yt&g,m _ fts {f’u,rj(’l"7 Xﬁvm)dr -+ mzl#j (Yré’j’m _ Yré,l,m 7 gﬂ(r, Xf,’””))+dr + Zf,j,mdBr . dK;s,j,m}
=Y (Yo, 0 =Y g, (01, XET) L, <q + AL

Y'sé,j,m _ )/t&j,m _ j;s {fuTj (’I", Xﬁ’“")dr + leyéj (Yé,j,m _ Yré,l,m _ Qﬂ(?‘, Xﬁ’””))+dr + Zﬁ’j’mdBr _ dKTz?,j,m}

3

Next, let us define A%3™ by:

A:dm . —1Jy o1
R T

1>1

(01, X0 p,<g for se[t,T) and flglj = lim A%
& l - s—T

which is an F-adapted non-decreasing process. As the strategy 0 is admissible, then writing backwardly
between s A o, and oy, V s the equation for the process Y%7™ and taking the limit k& — oo, we obtain:
Vi e T2,

v I+ [1 {9 X0 = m T (VI = Y — g XE)

_ _ e (4.3.14)
—Z3mAB, + AR — (Af — A9) 4 (AR — A, s € [1,T)

This equation implies also that E[(A%"™)?] < co. Comparing now equation (4.3.14) for (Y5, Z3IM™) e (1]
and the one satisfied by (Uf’j’m,ffs‘s’j’m)se[t’ﬂ we have, by uniqueness of the solution of the multi-
dimensional BSDE (4.3.12), that

yodm _g(ASTT — ATy 4 (K5I — K09 | F | = US9™ Vs e [t,T] and jeT?  (4.3.15)
As the processes A%7™ and K%7™ are non-decreasing then
yoam > gsim s e [t,T).
Taking now the limit w.r.t. m, we obtain that

Yol — lim Yio9™ > lim {Y2P™ — A%} > lim {029™ - A9 = U89 — A%, VjeT2

m— 00 m—00

Step 2: In order to complete the proof of the claim we construct a strategy 6 of Ao (t) such that

0,50 __ 779,Jo0
oo = o,

Let us first define the strategy 6= (&, 07 )i>0 as follows:
(i) & =i, 05 = t.
(ii) Next, for any ! > 1, we define o and & by:

S

O'Z* = inf {S > 0'1*71, 315517le = MmaXpgzer | (ijo — gf* k(S,X;’r)>} A T,
Sl-1
(4.3.16)
* kjo _ * t,x
gl € argmaxk, k#ES {Yal" leilk(al aXal" )} .
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We first prove that § verifies
P({w, VI>0, of(w)<T})=0. (4.3.17)

We proceed by contradiction. Assume that the last property does not hold. As the set I'! is finite then
one can find a loop (i1,42,---,4 =141) of exactly { — 1 (I > 2) indices and a subsequence (l,),>0 (which
may depend on w) satisfying l,+1 — I, > [ and such that:

P (Yiijo =Y —g (o] XUE), o Y =Y g (o] Xbro), Wp> o) > 0.

x * X *
o o o 'yt o o i i ly+l—1 o
Ip Ip Fiqiz ! Ip+i—1 Ip+i—1 ip_yip ™ ot Ip+i—1

Next, let us set 7% by 7*(w) := lim,, ol (w), then by taking the limit in the previous equalities we obtain

) o -
(7%, X5T), -0 Yo —yide _ g

, Y . L
T Zi 11

P(V¥ =y —g

Zi1i2

(T*,Xjf”)) >0
Since i; = i;, we obtain

-1
* t,xy
P (Zgikikﬂ(T LX) = O) >0
k=1

which contradicts to the so called non free loop property and then § satisfies (4.3.17).

Let us show that E[(A%)?] < oco. First note that due to the non-free loop property E[(42)?] < .
Next let us introduce the process Y%7° by setting

Vselt,T), Ys&jO = Z}/f;jol{ﬂffs<af+1} and Yg’jo = hug(T)jO» (4.3.18)
1>0

where, (ug(s))se[tyT], as in (4.3.12), is the RCLL process associated with § which indicates the mode of
m at time s when the strategy 0 is implemented. Next, by the local solution property of Proposition
4.3.2, for any [ > 0, we have

&' 3] ol ¥j » &l Jo,— &l jo,— oy &rJ * % .
}/S l* .0 = Ya;+10 + fs o fgl*]_o (’I“, X;’T)d’l“ - (KU%+? o Ksl ’ ) - fs e Zrl OdBT’ Vs € [Ul ’al+1 ’
yiid < min,,e 2o {Yfl 7+ Giop(s, XL¥)}, Vs € o, 0715

5 VS iy s (YT g5, X DK =0,

(4.3.19)
where, Z%70 and K70~ are fixed processes which depend actually on o, for all I > 0. Let us now
define Z%90 and K?%7Jo:~ by:
sAo[

Z390 =" 78 j°11[c,;§5<07+1[ and  KJio~ = Z/ dAKS0T . s e[t T).

1>0 120 7 shoT

We note that, by definition, we have, for any [ > 0,

f*j 51*+1j * t,x o
{Y(’;Jrl - Y01+1 + gir&r“ (Ul+1’ Xgl*+1)}1{a;‘+1<T} =0.

Then, taking into account the jump of Yo at 07,1 (when smaller than T') which is equal to Ygl“jO —

LY
Yfli ]10 and by (4.3.17), we have, for every s € [t, T],
+

ystijo - hug(T)jo (X;w) _ (Ai _ Af) + fST f(r Xﬁ’x,uf,jo)dr _ (Kivjm— _ K§7j07—) _ fST vadeBr,
(4.3.20)
which implies that

Y390 = Y90 4 (AL — A9) + K390 — [ f(r, Xb* ul, jo)dr + [ Z290dB,, Vs € [t,T].

r

As Y5:do belongs to S then a localization procedure and Fatou’s Lemma permit to deduce that

E[A] + K37°7] < co.
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Thus, for any s € [t, T,
E[(4} — AD) (K" — Kl0o)| 7 7 7
= E[h @130 (X5 + [ f(r, X%, ud, jo)dr| F] — Y290
s 1 xT T S - T s T 5 -
= E[h’u (T).do (X’;': ) =+ ftT f(T’, va, 7Ui,j0)d’l"‘fs] - {YSJ’JO + ft f(rra Xﬁ’ ,Ui,jo)d’l"}.
(4.3.21)

Therefore, the right-hand side of the previous equality is a supermartingale which moreover, by Doob’s
inequality, belongs to SZ. Hence, using a result by Dellacherie-Meyer ([15], pp. 220-221) we deduce that

E[{A} + K37°F] < oo,
since the right-hand side of (4.3.21) belongs to S7. Thus, the strategy § is admissible.
It remains now to show that ¥;09%0 = {7290 — A9,
The equality (4.3.15) applied with § reads as:
yddom _ R[(ASdom _ A3doim) 4 (gDdom _ feddomy| £ ] = 30m Vs € [t, T). (4.3.22)
Therefore, the process (Yf’jo’m -U Sg Jom) _p is a supermartingale which satisfies

sup E[sup |Y§’jo’m — Uf’j"’m|2] < 00,
m>0 s<T

since, for any (i,7) € I't x I'2,

sup Efsup{|Y,;7"| + [UZ™[}?] < oo.
m>0 s<T

Once more, by a Dellacherie-Meyer’s result ([15], pp. 220-221), we obtain

sup E[{ A270™ 4 K3:90m32) < o0 (4.3.23)
m>0
But,

A8.0.m . §i1dom v & Go,m tw i8.d0m _ 1o 78,0,
Ao = Z(Yali ! Y ’ +g§l*71§l* (‘Tl*vXal* Nr<g for se[t,T) and A" = shi% Ao
1>1

and, by definition of the strategy ¢, for any [ > 0, it holds

§*J 6* Jo * _
{Ygi o _ Yo-llj:ll + g‘gl*fltrl (UlJrl, X0;+1)}1°'f+1<T = O

141

As the strategy 6 is admissible (i.e. for w fixed there is only a finite many o} such that of < T) and
YHom N, Y as m — oo in §? then P — a.s., Abdom () as m — oo, for any s € [t, T]. Therefore,
with (4.3.23) we deduce that Agijg’m — 0 in L'(dP).

Next, we shall show that there exists a subsequence of {m} which we still denote by {m} such that
for any [ > 0, the random variable

p=l o
+1 *im

3 / T AKST™ 0 weakly in L2(dP).

p=0 »

To begin with, by using (4.2.17), let {m} be a subsequence such that for any (i, j) € I'* x I'?
(m Yy (Y™ = Y™ — g, X07) ) reqe
1]

converges weakly in H* to a process (a),c; 77-

We only consider the sequence (f:f dKST™) o= ( :I dKJo™), < since for the other cases a similar
x > >
procedure applies (keep in mind that we should have P[o} > o] > 0, otherwise this case is irrelevant
and then one should begin with the next case, i.e, taking p = 1). For s € [t,07] and from (4.3.9) we have
YT = VO 7 0 XU = 7, (VY g X0
_ f:l Zﬁjo’mdB,« + K;jif”m _ K;jo,m.
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As Y'tjom converges to Yo in S2, by Ito’s formula, we have:

(1) 5P, E[(K™)2) < oo

(ii) the sequence (ZF°™ll[y<,+]) converges in H?4 to some process ZVo.
Now, for s < o7, define

. . .. S —_ . $ .. s ..
Kﬁjo = Y;”O _ Y'Sljo =+ / Z:‘]()dBT 4 / a:ﬂ]o dr — / fio (7‘, Xﬁ’w)dT‘
i t t

Then, the process K%° is continuous on [t,0%]. Moreover, using the weak convergence pointed out
previously, for any any stopping time 7 € [t,0}], KYo™ —, Ko weakly in L?(dP).

Next, let 7 be a stopping time such that t < 7 < o}. The properties of K™ (especially the Skorokhod
condition) combined with the uniform convergence of (Y7'™),, to Y7 and the definition of o7, i.e.,

Vs <o}, Yo > Igg{{ﬂkjo - gik(s,Xﬁ’I)}

imply the existence of some mg(w) such that if m > mg then K¥0™ = 0. Therefore, the sequence
(Kido:m) . converges P —a.s. to 0 and by (i) above it converges also in L?2~¢(dP) to 0 and then K0 = (.

Finally by continuity we have K%° = 0 for any s € [t,o}] and then the sequence (ftgI dEKEIomy <
converges weakly in L?(dP) to 0. As we can do the same for the other sequences, the claim holds.

Let [ be fixed. By using (4.3.22) between ¢ and o} one obtains:
Yf,joﬂn _ E[yj}jmm + (Ai}jmm _ Af,joam) + Kf;*jo’m|.7:t] — UEJOWI _ E[Uj%jmmu:t].

Taking now the weak limit w.r.t. m (at least through the subsequence constructed above) we obtain
that

Yf,jo _ E[Yli;jo‘ft} _ ﬁt&jo _ E[Uf}j0|~7:t]~

Finally, taking the limit as | — co, noting that YTg’jO = Ug’j“ = h“g(T)jO, we obtain

Y;&jo _ Utts,jo.
Thus, in view of the definition of §, we have
Ytio,jo _ Yt&jo _ Af _ UEJO _ Af.
Now, taking into account of (4.3.7), the first equality holds.

Finally, in order to obtain the second equality of (4.3.8), it is enough to consider the approximating
increasing scheme (which is the opposite of (4.3.9)) and which can be transformed into a decreasing
scheme by taking its opposite sign. Then, from the result of Step 1, we have

—0™090 (¢, 2) = —Y,090 = ess SUP,, ¢ 4do €55 inf — J:(6,v)

Se A

and the proof is finished. O
As a by product of Theorem (4.3.1) and the uniqueness of the solution of system (4.1.9) we have the
following result in the case when the functions f* depend also on j.

Corollary 4.3.1. Suppose Assumptions (H0)-(H5) and (H6)-(i) are satisfied and let (v'9)(; jerixre be
the unique solution of system (4.1.9) and (4.1.10). Then for any (t,z) € [0, T] x IR and (i¢, jo) € ' xI'2,

viodo(t, x) = ess SUP;se i €55 mfueAZg Ji(8,v) = ess mfueAZg ess SUPse qio Ji(8,v). (4.3.24)

where,

T
Ji(6,v) = E[h"7"7 (X7) + / S (r, X0, (05, XE)) opyeraxra)dr — A5+ BYIF] (4.3.25)
t
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Proof: Let (U)ij)(i)j)er'lxl‘ﬂ be the unique solution in viscosity sense of the following system of PDEs
with inter-connected obstacles: V(i,j) € I't x T'?,

min { (w' — L9 (@))(t, 2); max { (w" — U (@) (¢, 2);
O (1) = £X (W)t 2) — [9(ta, (0 (@) gpersare) |} =0 (4:320)
w(T,z) = h¥ ().

Then, by Theorem 4.3.1 we have, for any (t,z) € [0,7] x IRF and (g, jo) € T'* x I'2,

whdo(t, 1) = ess SUP;e yio €55 infueAi}Oz Ji(6,v) = ess infueAZg ess Sup;e 4io Ji(6,v). (4.3.27)
But (v"7)(; jyerixr2 is also solution of the system (4.3.26), then by uniqueness for any (4,j) € T'* x I'?,
v = w¥. Plug now this equality in (4.3.27) to obtain the desired result. O

Remark 4.3.1. We have also the following relation: ¥(ig,jo) € I'' x I'2,

viodo(t, z) = SUPse qi0 (1) infyeA_Zr[J2 ®) E[J:(6,v)] = infueAZg(t) SUPs ¢ 4i0 (¢) E[J:(6,v)]. (4.3.28)

4.4 Conclusion

In this paper, we have given appropriate conditions on the data of both the min-max and max-min
systems so that their respective unique viscosity solutions coincide. These unique continuous viscosity
solution have been constructed by means of a penalization procedure in the recent paper [17]. The main
difficulty faced in that paper is that the two obstacles are interconnected and therefore not comparable.
For this reason and without the separation of the two barriers, we cannot apply the classical relationship
between doubly reflected BSDESs, system of PDEs with lower and upper obstacles and the underlying
game obtained e.g. in [27]). By providing appropriate regularity conditions so that comparison holds,
we establish in the present paper that the solutions of the Min-Max and Max-Min systems coincide.
Finally, under further conditions on the drivers, this solution can be interpreted as the value function of
a switching game.

We note that to obtain the required condition of comparison, we rely on the regularity of penalty
costs. We also need to get precise estimates of penalized terms which can be obtained by controlling
the growth of the driver. Our analysis deeply relies on the Markovian setting, therefore it seems quite
natural to ask whether one can study the switching game in the general non-Markovian case. We leave
this question for future research. O
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Chapter 5

APPENDIX

5.1 Representation of the value function of the stochastic opti-
mal switching problem

Let T := (0., &n)n>0 be an admissible strategy of switching and let a = (as)se[o,7] be the process defined
by

Vs < T, as = aglig, (s +Za] 1130, ,0,(5)- (5.1.1)

Let to € [0,7T] a i= ((T9)sepo,17)jea € [H?™. Let us define (when it exists) the pair of processes
(Ve,N?) = (V s )se[o,T] as the solution of the following BSDE:

Ve e S, N©e H2(12)
z T = & T ; i
VE = hary(XE") + [T 1 iy fage (7 X2%, Ty NS dr — ; JENeidHY — A% + A9, s € [0,T),

(5.1.2)

where IT; = (I'*)gea and A® is the cumulative switching cost associated with the strategy a or T (see
(2.2.22) for its definition). This BSDE is not a standard one, but in assuming that E[(4%)?] < oo
and by setting up V¢ = V¢ — A%, it becomes a standard one and therefore we deduce the existence
and uniqueness of the process (V¢, N%) since the RCLL process A® is adapted and square integrable.
Obviously if for some j € A, a belongs to A then (V% N®) exists and is unique.

Theorem 5.1.1. Under Assumption (A4), the solution of BSDE (5.1.2) satisfies: Vj € A,
Yy, ! = esssup,e gy (Vig — A1), P —as. (5.1.3)

where (Y') ;e 4 is the first component of the solution of the BSDE (2.2.35). Thus the solution of (2.2.35)
18 unique. Moreover there exists a* € A] such that YF’J = V“ — A“

Proof. By Theorem 3.4, let (Y17, UT9 K1), 4 be the solution of the system (2.2.35). Let a € A{O and
let us define

f(%:(Kl’J— to,J +Z K, — K, FC'”)annd

0 n+1
n>1

Vi>1and r <T,UD =Y US* 'l <pcp,,, and U* = (U");5)
n>0

95
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Therefore

. . 01 . o 91 .. . . .
Ytro"J = Yelz’j + / fj(r, Xf"w71—_‘7“>7 UE7])dT - Z/ Ug’ldegz) + (Kglu - KI}:]J)
to i=1 t()

> (Y™ = Giran (01, X5) Lo, <) + Ljoy =17 harg (X5) +/ fa@r (r, X5®, T, US)dr

to

e 91 . . . .
-3 / USdHD + (Kg7 — K;7)
i=1 %o
r 92 N o0 02 i .
=Y, ger+ [ fam(r, XP5 Ty US)dr = /t UsidH®
1=1 0

to
T T Ta T, T
+ (Kgl - Kto ) + (K92 t— K91 1) - gi,a1(91»X§1 )1[01<T]-
Repeat now this procedue as many times as necessary and since a is an admissible startegy (i.e. P[f,, <
T,Vn > 0] = 0) we obtain:
Y 2 by (X5 + [ fuin (r X0% T U = Y [ OB A Ry (54)
to i=1 to

As K% >0 and by (5.1.2) we have

. T — — > T ) : .
Ytl(:J - V;f(; + A?O > / (fa(r) (T7 Xﬁyxarrv U:) - fa(r)(ra Xf-JvFMN;}))dr - Z/ (U:J - N:'l’l)dH;'Z)
to i=1 7 to

oo

T T
> [ et e s Neyds = 3 [ - N

to i=17to
Next by Girsanov’s Theorem ([55], pp.136), under the probability measure dP := (> i W“’Ua>Na’idHﬁi))TdP,
=1

(M, := ftf)(VmUa’Na,U“ — N9Pds— Y fg(U,ﬁ“ — Nﬁ”)dHﬁl))te[tmT] is a martingale, and by taking con-
i=1

ditional expectation of Ytl(;] = Vio + Af,, we obtain

. T a a > T . . .
Es[Yy7 — Ve + AL |Fs] > Ep| / (VeUSNT Ue — N*YPds — / (U** — NYdHD|F,] = 0.
i=1“to

to
Thus Ytl(:’j >V, P — a.s. and then, since P and P are equivalent, for any a € A{O,

Yl >V~ AL P —as.. (5.1.5)

&)
Next let us consider a* the strategy defined by a*(r) = agly,y(r) + > o 1L« g=)(r), r < T,
j=1

i—17j
where 05 = 19, af = j and for n > 0,

s = Inf{r 2 07, V0 = o (VI — g a(r, XPO)EAT,

*
Xn

and
of = arg max {Y,F — gae 1 (07, X507 )}
n+ pnax Yo ok Onpns Agh

Let us show that a* € AJ. We first prove that P[0} < T, Vn > 0] = 0. We proceed by contradiction
assuming that P[07 < T, ¥n > 0] > 0. By definition of 6}, we then have

T, T,a;, t,x
77[}/(9:”r1 _ Y92+1 1 _ ga;’a:*l(e;‘LJthe;H), anyq € Agx, Vn > 0] > 0.
But A is finite, then there is a loop 49,1, - ik, %0 (i1 # %o) of elements of A and a subsequence

(ng(w))g>0 such that:

,P[Yof‘j;“ = Yz;:iHl = Giriiga (a* Xiﬁgq )7 1=0,--,k, (ik+1 = Z‘0)7 Vg > 0] > 0. (516)

b
a+1 gt Tatl g4
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Next let us consider 0* = lim,, .o 0} and © = {0} < 6*,Yn > 0}. Due to the non-free loop property
Pl(6* < T)N©O° =0 and then #* is an accessible stopping time (see e.g. [16], pp.214 for more details).
But for any j € A, the process Y7 has only inaccessible jump times and 6* is accessible. Therefore for
any j € A, AYJ. =0,P — a.s.. Going back to (2.3.9) and take the limit w.r.t. ¢ to obtain:

Plio,iy (0F, X55) + -+ + giyio (07, Xp) = 0] > 0,
which contradicts the no-loop property. We then have P[H; <T, V¥j>0]=0.

Now it remains to prove that E[(A%)? < oc] and a* is optimal in AJ for the switching problem
(5.1.3). Since (YI");c 4 solves the RBSDE (2.2.35) and by the definition of a*, it yields:

e’} 9;‘ .
Z/ Ue - kdg® (5.1.7)
t

. . I *
Y;E’] = Ygli’] + / Jar () (r, Xﬁ’x> 1—_‘;, U )dr —
1 to k=1 0

since K[+ — Kgfj = 0 holds for any r € [to,07]. But

r,j Taf * t,x t,x
Ye;] = (Yef f - gjaf(‘glee; ))1[0f<T] + hj (X7 )1[6)f:T]

then
j T,af * T ,T
V! = (Yo —gjaf(apX;; Nior <1y + by (X771 jp: =1
0* — - o0 0* -
+ S0 fa oy (o, XE7, T US Y dr — Y [ U FdH®
Iat . k=1 (5.1.8)
=Yy gy <) + i (X7 ) Loy =)

o1 z O a* e [ k “
+ft0 f“*(r)(r’Xf“’ I, UY )dr_kz_:1fto U; ’deqE ) — Aj..

*
1

But we can do the same for the quantity Y;;ai].[gf <7) to obtain

03 e 03
T T,aj T x a” a”
Yo g <1y = Yo, g ey Hhay (X7 )1[9*:T]1[9;<T]+/9* Far (o (r, XE7 T, US )dr =) /0 U kdg®
1 k=1""1

Plug now this equality in the previous one and since a3 is the optimal index at 65 to obtain:
r,j Taj * t, t, t,
V' = (Yo,™ = araz (03, X5 ) Lios <11 + hag (X7 ) o;=r) Loy <1) + i (X7") Ljos =)
05 Xt,z IT) Ua* dr — =S 05 Ua*,de(k) 7Aa*
g Far ) (X5 T, U ) = 3 ], U H = Ay

r (5.1.9)

= Yo, " Lo <1 + hog (X7 Loz =11 Loy <1y + hyj (X7")1po; =11
05 z o o X ox o* k o
+ L; fa*(r)(rﬂ Xﬁ’ L, Ur )d’l‘ - kzl L/; Ur ’deﬁ ) AG;

Repeating now this procedure as many times as necessary and since 73[6‘; < T, Vj>0]=0 to get
. — * =S} x *
}/SFJ = ha* (T) (X’;'zf) + ft’f fa*(r) (Ta val'z7 FT? U;} )d’l’ - Z fg; U;l ’deﬁk) - A(YI“ . (5110)
k=1

Now since I' € [H?]™, U*" € H?(I?) and Y 7 € 82, we deduce from (5.1.10) that E[(A% )?] < co. Next
by (5.1.2),
. . ; T - . T - .
Ve AL YT = J;zo Jar @y (r, XE T N — [ fore(ry(r, X127, T, US )dr
= X f (Ve U Ryan
k=1

> LZ<VQ*’Na*’Ua*7Na* o Ua*y;‘n’d’r — kzl ft,:(N;l*,k _ U;l*fk)dH’l(’k)‘

Once more using Girsanov’s theorem as previously, to obtain Ez [Vt‘g* — A?O — Ytl;Z F;,] > 0 and then

Vt‘;* — A?; - Ytl(:l >0, P — a.s. Taking now into account (5.1.5) leads to the desired result. O

Remark 5.1.1. As a by product of (5.1.3) we have also:

Vj € A, E[Yy '] = sup E[VZ? - A¢]. O
aEA{O
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5.2 Second definition of a viscosity solution

Definition 5.2.1. A function (u1, -+ ,uy,) : [0,T] x IR — IR™ € 11, such that for any i € A, u® is lsc
(resp. usc), is said to be a viscosity subsolution of (4.1) (resp. supersolution) if: Vi € A,

(i) u*(T,x) < hi(x) (resp. v'(T,z) > h;(z))

(ii) for any ¥ (to,ro) € (0,T) x IR, 6 > 0 and a function p € C**([0,T] x IR) NIl such that
u'(to, o) = @(to, o) and u;— has a global maximum (resp. minimum,) at (to, zo) on [0, T x B(zq, C,6),
we have

mm{“i(tov o) — ?éi}lx(“j(tov 20) — gij(to, 20)); —Orp(to, x0) — L1 p(t, ) — IV (t, , )
- 1276(t7$7Dmﬁp(t7x)aui)

— filto, zo, u' (to, o), -+, u' " (to, o), u' (to, T0), - - - ,um(to,ﬂ?o))} <0 (resp.>0).

The functions (u)™, is called a viscosity solution of (2.3.1) if (ul)™, and u™*)™, are respectively
viscosity supersolution and viscosity subsolution of (2.3.1).

Proposition 5.2.1. Definitions (5.2.1) and (2.3.1) are equivalent.

Proof. First let us show that Def. 5.2.1 implies Def. 2.3.1. We prove it only for the subsolution case since
the supersolution one is similar. Let (u%);c4 be a subsolution of system (2.2.20) according to Definition
5.2.1. Wlog assume that u’, i € A, is usc. Thus for any i € A, u*(T,z) < h;(x), for any z € IR. Next let
us fix i € A, (to,z0) € (0,T) x IR and finally let us consider ¢ € II, [ C*2([0,T] x IR), such that u’ — ¢
has a global maximum at (to,z¢) in [0, T] x IR*. Next let us set ¢(t,z) := p(t, ) + u;(to, v0) — @(to, To).
Then ¢ belongs to II, (N CH2([0,7] x IR) and u; — @ has a global maximum at (to,zo) in [0, 7] x IR* and
verifies @(tg, o) := u’(to, zo). Applying now Def. 5.2.1 with ¢ yields:

min{ui(to,xo) - jHEIEZX(Uj(fowo) — gij(to, 20)); —Brp(to, xo) — L o(to, z0)
- 11’5(t07 Zo, SD) - Zz’é(toa o, Ui,y ngo(to, IO))

- fi((t07x07u1(t0ax0)a e 7ui_1(t0a'r0)aui(t07x0)7 e 7um(t03x0>)} S O
for any 0 > 0. Next since (to, 7o) € (0,T) x IR is global maximum point of u® — ¢, we then have

u'(to, zo + o (to, T0)y) — u'(to, z0) < @(to, To + o (to, 20)y) — ¢(to, o)

which implies that 129 (tg, 2o, Dp(to, zo), u’) < I?9(tg, z0, Dap(to, o), ¢) and then
min{u’(to, o) — jnéix(uj(toﬂ’o) — 9ij (to, %0)); —Owp(to, zo) — Lep(to, xo)

- fi((t07x07u1(t07x0)7 e aui_l(t()?‘ro)?ui(t(); m0)7 e aum(tO; CCO))} S 0

which means that (u");c4 is a subsolution for (2.2.20) according to Def. 2.3.1.

We are going now to show that Def.2.3.1 implies Def. 5.2.1. Once more let us consider (u%);ca
a subsolution of system (2.2.20) according to Definition 2.3.1 which, wlog, we assume that they are
usc functions. Then for any i € A, u*(T,z) < h;(x), for all z € IR. Next let us fix § > 0, i € A,
(to, o) € (0,T) x B(zg,Cyd) and finally let us consider ¢ € I, C*2([0,T] x IR), such that u’ — ¢
has a global maximum at (to,z0) on [0,7] x B(zg,Cyd) and u'(to,z0) = ¢(to,z0). But there exists a
function ¢ which belongs to I, () C*?([0, 7] x IR) such that u— @ attains a global maximum in (¢, zo) on
[0,T] x IR and satisfying (s, y) = ¢(s,y), for any (s,y) such that |(s,y) — (to, zo)| < 02”5 . Consequently
we have also

Bxp(to, x0) = Brp(to, o), Dap(to, o) = Dap(to, x0), D3, P(to, o) = D3,¢(to, o), u(to, o) = @(to, xo)-

(5.2.1)
Next for any € > 0, there exists ¢, element of C12([0,7] x IR) such that u; < ¢, < @ and @, — u; as
e — 0, a.e. (see e.g. Lemma 4.7 in [37] or [2]). It implies that u; — ¢. and . — @ have a global maximum
at (to, o) on [0,T] x IR*. Therefore, on the one hand, we have

Drpe(to, xo) = 0i(to, ), Dae(to,x0) = Da@(to, o), Daypelto, o) < D2, 3(to, o) (5.2.2)
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and, on the other hand, by Def. 2.3.1 it holds

min{ui(to,xo) - jné%x{uj(to,:co) — gij(to, o) };
—31#76(750, 3?0) - &Pe(to,iﬂo) - fi(to,fﬂmul(to, mO)a T (5.2.3)
W (to, o), wilty, @), -+, u™(to, 7o) } < 0.

Now (see (2.3.2) for the definition of L)

‘E(pe(th IO) = El@e(tOJO) +I(t0,l’0, SOF)

and by (5.2.1) and (5.2.2)

Lo (to, m0) < L(to, z0). (5.2.4)
On the other hand
I(to,x0, ) = I3 (to, 20, 9c) +I*3 (to, 20, Datpe(to, 20), 0c)
S Il’g(to, Zo, SZ) + 1-2’5 (to, Zo, Dm<p(t0a CC()), Qoe) (525)
3§ S
=1I" (t07 Zo, (10) + I%2 (th Zo, Da:(p(tO; 330)5 906)'

Plug now (5.2.4) and (5.2.5) in (5.2.3) to get

(o ; s
mm{u’(to,xo) - jnézzx{uj (to, z0) — gij(to, o)} ; —Orpe(to, wo) — L (to, 20) — T2 (to, o, ¥)

—IQ‘% (to, Zo, DIQD(to, Z‘o), 905) - fi(to, o, ul (to, .130), cee ,’ui_l(to, .2?0), ui(to, l‘o), ey um(to7 l‘o))}
<0.
(5.2.6)
Take now the limit as € — 0 in (5.2.1), using the Lebesgue dominated convergence theorem and by the
following inequality (since u; < ¢ in [0,7T] x B(zg, Cy9))

fg<|z|§5(¢(to, zo + o (to, 20)2) — ¢(to, To) — Dap(to, 0)o (to, vo)2}dIl(2) >
f%<|z|§6(ui(to’ To + O'(to, wo)Z) — ui(to, Zo) — DJ_n(p(to, (,Co)O’(to, ,To)Z}dH(Z)

we obtain
mi”{ui(to,xo) - ].Hé%(uj(fo,xo) — gi;(to, 20)); —0pp(to, mo) — L (o, z0)
— I (tg, 20, ) — T*° (to, o, us, Daep(to, 20))
— (o, w0, u" (o, 0), -+ '™ (to, @0), ' (to, o), -+, u™ (t, 7)) | <0
which is the desired result. O

5.3 BSDE with two reflected barriers

1 Representation of a penalization scheme of two barriers reflected BSDE
Forn >0 let (Y™, Z", u™, K™) be the solution of the following one barrier reflected BSDE.

(Y™, Zn U™ K™) € 82 x H? x H2(N) x A?;

Yr=¢— [Dgdr—n [TV — Hy)vds + [1 ZMdB, + [T [, Ur(e)N(drde) + K — K
st Z LS7 S S T?

JE(Yr = Ly)dK? =0,

(5.3.1)

where, the processes L and H belongs to S2, (9s)sefo,1) € H2, € is square integrable and Fr-measurable.
Moreover, we require that L < H and Ly < £. The solution (Y™, Z", U™, K™) exists and is unique (see

e.g. [5]). Set K"~ = nfg(YS” — H,)"ds, then K;"~ € A? and fOT(Y" — YV Hg)K™~ = 0. Therefore,

S
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the equation (5.3.1) can be expressed as a BSDE with two reflecting barrier in the following manner.
Forallt <T,

(Y™, 27 U™ K™) € 8% x H? x H2(N) x A2

vr=¢— [Tgdr+ [T ZdB, + [T [LUMe)N(drde) + Kt — KI' — (Kiv™ — KI'7)
L,<Y"<YPVH, s<T,

Jo (Y2 = L)dK? = [/ (Y = YI'V Hy)dKb~ =0,

(5.3.2)

S

Thus, a result by Hamadéne and Hassani [27] allows to represent Y™ as a value function of a Dynkin
game, i.e., it holds true that for any ¢t < T,

thn = €SS8Sup ess H;f; E[‘/ZT/\T gsds + La]l[a<7'] + (Y'rn \ HT)]I[T§17<T] + gl[T:G:T] |Ft]
o>t TZ

= ess inf esssup EU;,UAT gsds + Lo]]-[a<'r] + (YTn v HT)]]-[T§0<T] + E:u-['r:o:T] |Ft]a

T2t o>t

where 7 and o are F-stopping times.
2 Relation with double obstacle variational inequality
Let g(t,x,y, z,u) satisfies the Assumption (Al), L : (¢t,z) — L(t,x) and H : (t,x) — H(t,z) are jointly
continuous and of polynomial growth, i.e., there exist positve constant C' and p such that: V(¢ z) €
[0,T] x R,

IL(t, )] + H(t,2)] < C(1+ [af?).

The functions h(z) : R — R are continuous w.r.t. z, belong to class II;. Furthermore, for any (s,z) €
[0,T] x R:
L(s,x) < H(s,z),and L(T,z) < h(z) < H(T, z).

Now let (Yy, Zs, Us, K, K )s<r be the solution of the BSDE with two reflecting barriers associated with
(9(s, X%y, 2,u), W(X3"), L(s, X5®), H(s, X1®), which exists and is unique by Theorem 2.2 [27].(Their
function g does not depend on u, the reason is to use comparison theorem, but in our case, if g satisfies the
assumption (A1), we have also the comparison theorem by [5].) For n > 0, let ("Y;)s<7(resp.("Ys)s<T)
be the first component of the unique solution of the BSDE with on reflecting lower (resp. upper) barrier
associated with (g(s, X0, y, z,u) — n(H(s, X5® — y) =, hW(X%"), L(s, X1®)) (resp. (g(s, X%y, 2,u) —
n(L(s, Xt* — y)~, h(X5"), H(s, X*)))). Tt has been shown in [5], that for any n > 0 there exist
functions "u(t, z) and "a, (¢t,z) € [0,7] x R, such that

Vs € [t,T], nY; =" U(S7X£,x) and n}_/s =" ﬁ<S>X§7w)7

where "u (resp. ") is continuous with polynomial growth and be a viscosity solution for the following
obstacle prblem:

(resp.
max{v(t,xz) — H(t,z), —0w(t,x) — Lo(t, x)
—g(t,z,v(t, x),0(t, x) Dyv(t, x), Bu(t, x)) + n(L(t,z) —v(t,z))"} = 0
o(T, ) = h(z),
where,

,C(;S(t,l’) = b(t,x)ngb(t,x)+%az(t,m)nggb(t,x)—i—/E(gﬁ(t,x—i—ﬂ(m,e))—¢(t,x)—Dmgb(t,x)ﬂ(m,e))n(de),

Bo(t, ) = [E (6t 2+ Bl e)) — B(t, 7))y (x, e)n(de).

The comparison result allows us to infer that ("Y),>¢ (resp. ("Y),>0) is a decreasing (resp. increasing)
sequence, moreover they converge in 82 to Y. Therefore for any (¢,z) € [0,7] x R, the sequence
("Y (t,x))n>0 (resp. ("u(t,x))n>0) converges decreasingly (resp. increasingly) to the same limit u(t, z) :=
Y; which satisfies Yy = u(s, X4%) for any s € [s,T]. u is continuous with polynomial growth since "u



101

and " are so. It implies that the convergence of "u and "« to w are uniform on compact subsets of
[0,7] x R. Now consider the following obstacle problem:

min{v(t,z) — L(t,z), mazlv(t,z) — H(t, x),
—0w(t,x) — Lo(t,x) — g(t, z,v(t, x),0(t,z)Dyv(t, z), Bu(t,z))]} =0 (5.3.3)
o(T,z) = h(x)

Theorem 5.3.1. The function u defined above is a viscosity solution of (5.5.4) and for any (t,z) €
[0,T] x R and any stopping times v, € Ty where Ty is the set of Fy stopping time take values in [t,T],

u(t,z) = inf sup th(y o) = sup lélf Jiz(V,0) = T o005, 00,2),
t

V€Tt geT cET V
where
B (s, X0% Yo, Zo, [ U(NXET e)nlde))ds + Lo, X Loy
Jia(ro) = THE XS <o) + 9(X7 )]]-[u o—11]

if B[ 1905, X% Yo, Za, [ U(e)sMXE®, e)n(de))|ds] < oo
400 else;

where, 6y, :==inf{s > t,Yy = H(s, X}!")} AT and 0, , == inf{s >t,Ys = L(s, XL")} AT.

Proof. First we show that u is a viscosity subsolution of (5.5.4). Note that u(T,z) = h(x) and L(¢t,z) <
u(t,z) < H(t,z), for any ¢ € C12([0,T] x R)(1I, and for any local maximum point (¢,z) € [0,T] x R
of u — ¢ such that u(t,z) > L(t, x), let (t,,2,) be a sequence of local maximum points of "u — ¢ such
that (t,,x,) converges to (¢,x). For n large enough we have "u(t,,z,) > L(tn, x,), then we have

- 8t¢(tnaxn) - b(tnzxn) w¢(tn; xn) + ;U (tn; xn)D ¢<tnaxn>

+ / (6(tnsn + B(ns€)) — Db, Tn) — Duh(tns22)B(an, ¢))n(de)
E
- g(tru Tn, nu(tna xn)a U(tna xn)Dm¢(tna ’Jjn),/ (¢(tna T + ﬂ(xn’ 6)) - ¢(tn7 xn))y(zna e)n(de))

+ n(H (tn, xn) =" u(tn,z,))” <0 §
Note that since lim,_ o z, = z, and ¢ is a C1? function
|6(tn, @n + B(an, €)) = $tns @) — Dud(tn, 4)B(zn,€)| < ClB(zn, €)* < K*(1+ [e])?,
and

|(@(tn, @0 + B(@n, €)) = B(tn, 20)) (20, €)] < ClB(wn, €)ly(wn, €) < KF(1+[e])? + %Kg(l +el)?.

These combine with Dominated convergence theorem,

lim (P(tn, xn + B(xn, €)) — @(tn, Xn) — Dad(tn, xn)0(xn, €))n(de)

n—oo Jp
= /E((ﬁ(tvx + ﬁ(ﬂ?, 8)) - ¢(t,$) - Dz¢(t’x)6(x’ e))n(de),
and

lim (¢(tn7 Tn + ﬂ(xna e)) - ¢(tn7 xn))r)/(xnv e)n(de) = /E(¢(t’ T+ ﬁ(xv 6)) - (b(t’ a:))w(m, e)n(de)

n—o0 E

Now from the continuity of the functions and the uniform convergence, we have

- at¢(t>$) - b(t7$>Dw¢(tax) + 30'2(@3})1)51,(?(@1')

+ / (Ot 2 + B, €)) — B(t,x) — Dy(t, 2)B(x e))n(de)

E
— g(t,z,ult,2), o(t, ) Dyd(t, ), /E (@t + Bz, €)) — d(t, 7))y, €)n(de))
<0.

In a similar way we can show that u is also a viscosity supersolution. O
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5.4 Viscosity solution of system of variational inequalities with
interconnected bilateral obstacles and connections to mul-
tiple modes switching game of jump-diffusion processes

First let A :={1,--- ,m}, and let us introduce the following functions f;, h; and g;;, ,7 € A:

gt [O,T]x_]kaBmXB — R A

(t,(E, (yl)izl,mau) — gl(t,fﬂ, (yl)i:Lmvu)
h; (resp. gij) : [0,T] x R¥ — IR
(t,x) — h;(t, z) (resp. gi;(t,))

which satisfy:
Assumption (H1)
(I) For any i € A, ¢'(t,z, Y ,2,q) : Rx Rx R™" x R x R — R,

(i) is continuous in (¢, ) uniformly w.r.t. the other variables (Y, 2,q) and for any (¢, z) the mapping
(t,z) — ¢*(t,,0,0,0) is of polynomial growth.

(ii) satisfies the standard hypothesis of Lipschitz continuity w.r.t. the variables (¥, z,q), i.e. ¥(t,z) €
[0,T] x RY(Y1,Y2) € R™ x R™,(21,22) € Rx R,(q1,q2) € R x R,
|gi(t7xa 717217q1) - 9%@%?2;227(]2” S C(‘?l - 72| + |Zl - 22‘ + |Q1 - q2|)7

where, |7/ | stands for the standard Euclidean norm of 3 in R™.
(iii) ¢ — ¢'(t, 7,9, 2, q) is non-decreasing, for all (t,z,y,2) € [0,T] x R x R™ x R.

Futhermore, let 7% : R x Bg — R such that there exists C > 0,
0<~'(z,e) <C(AAle|), z€R,ecBg
IV (z,e) —~'(a',e)| < Clz —2'|(1 Ale]), z,2" € R,e € E.
We set

Filt, oy 2w) = gt 2y, 2, [E (o) (z, yn(de),

for (t,z,y,z,u) € [0,t] x R x R™ x R x L*(R,Bg,n).

m

(iv) Monotonicity: For any i € A and any k # i the mapping y* — ¢*(t,z,y*, -+ , 9%, - ,y™, z,u) is
non-decreasing.

(IT) Vi € A, gi; = 0 and for ¢ # j, g;;(¢t, ) is non-negative, continuous with polynomial growth and
satisfy the following non-free loop property: V(t,z) € [0,T] x R and for any sequence of indices i1, - ,ix
such that i; = i and card{iy,--- ,ix} = k — 1 we have:

Givio (1) + iy (1, ) 4+ -+ 4+ gi5, (t,2) > 0, Y(t,z) € [0,T] x IR*.
(ITT) Vi € A, h; is continuous with polynomial growth and satisfies the following coherance conditions:

hi(x) 2 max (h;(x) - gi§(T,z)), Yz € R.
jeA™?

Now let (¢,z) € [0,T] x IR* and let us consider the following system of reflected BSDEs with oblique
reflection: Vj =1,....m

YieS&82 77 e H?, Ui eH2(N), KieA?
Yi = hy (X5 + [T i XER Y Y2 Y, 23, Ud)dr — [T Z3dB, — [T [, Ui(e)N (drde)
+K3 — KI, Vs <T;
Vs ST, Y7 2 max{VE - gyu(s, X09)} and [ {Y7 — max{Y¥ - gyu(s, X0)}dKT = 0.
keAj k€A,
(5.4.1)
We then have the following result:
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Theorem 5.4.1. Assume that Assumption (H1) is fulfilled. Then system of reflected BSDE with oblique
reflection (5.4.1) has a unique solution.

Proof. Tt will be given in two steps.

Step 1: Let us consider the following BSDEs :

Y, :jm%i%hj(X%z)+/8ijﬁ>7;fj(r7Xf,’””,Yr,-- Y, Z.,U, )dr—/s Z,.dB, / / U, (e)N(drde)
and

Y, :jrznlir}nh X5 / min f;(r, Xty ---Y,,2Z,0, )dr—/s Z,dB, / / N(drde).
First note that the above BSDEs have unique solutions thanks to Theorem 2.1 in [5]. For j =1,--- ,m

and n > 1, let us define (Y7 U7 K7") by:

yin ¢ SQ,Zj’n c HQ, Uim e HQ(N), Kimn e A2

Y0 = Y,

Y;j,n — hj (X;x) + fST fj (’,ﬂ7 Xﬁ,x’ }/7‘1,11—1’ .. ’}/Tj—l,n—l7 Y'Tj,n7 }/Tj+l,n—l7 . ,Ym,n—17 Zﬂ"n, U,j’n)dT
— [T zimaB, — [T [, UI™(e)N(drde) + K3" — K™, s < T;

yin > ,ggf(Ys’“’”‘l —gjr(s, X1)), ¥s < T3 [/ [V — max (VB0 — g (r, X62))|dK™ = 0.

! keA;
(5.4.2)
By induction on n we can show that system (5.4.2) has a unique soluton for any fixed n > 1. On the
other hand it is easy to show that (Y, U,0) is also a solution of :

Y, = max h;(X:") +f maxf](rXt’zY Y Z,, U, dr—f Z,dB, f [ Ur(e)N(drde) + Kt — K,

j=1lm

Y. > (Y, - g(s, X0, Vs <T: [T, = max(7. = gye(s. XE))dR, =0.

Next since Vi € A, f; verifies the Assumption H1(I), by induction we have: Vn,j, Vs < T, Y1 <

YJ" <Y, P—a.s.,and E[ sup |Ys|?] < co. Then sequence (Y7™), >, has a limit which we denote
s€[0,T]

by Y7, for any j € A. By the monotonic limit theorem in [24](Theorem 3.1, pp697), Y7 € 8% and there

exist Z7 € H2, U7 € H*(N), K7 € A? such that

Y;h(X“” +]Tfj L XLT YL Y2 Y 20, U dr — [T ZidB,

- f [ Ul(e)N(drde) + K, — K (5.4.3)
YJ > maX(Y — gjk(s, XL ))
kEA,

where for any j € A, U7 is the weak limit of (U7™),,>1 in H2(N), Z7 is the weak limit of Z/" in H? and
for any stopping time 7, K7 is the weak limit of K2" in L?(Q, F,, P). Finally note that K7 is predictable
since the processes K™7 are so, Vn > 1.

Let us now consider the following RBSE:

YVie&? ZjeH?, U/eH2(N), KieA?

VI = h;(Xh") +fo] (r, Xﬁ”,le,- YL Y Y Y 20 U Ydr

_ f ZidB, — [* [, Ui(e)N(drde) (5.4.4)
VKL — KI, Vs <T;

k T Tyrj k . ,T i
Vs < T7 Ys] 2 ]IcréaA};{Ys _gjk(S7X£ )} and fo {Ysj - Igé%}f{yvs _gjk(san >}ng =0.

According to Theorem 1.2 in [31], this equation has a unique solution. Apply Tanaka-Meyer’s formula
(see e.g.[55] on (Y — Y/)T in [s,T], we can prove that P-a.s., Y7 < Y7 for any j € A. On the other
hand, since Vn > 1,Vj € A, Y7"~1 < Y7 we have

kn—1 _ t,x < _ t,x <
kHéﬁX(Y gik(8, X5)) ng;‘X(Y gik(s, X)), Vs < T.
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Then by Comparison Theorem, we obtain Y77 < yi , thus Y7 < Y7 which implies Y7 = yi , Vi e A

Next using Itd’s formula with Y7 — Y7 and taking expectation in both-hand sides, we obtain

T T
Bl @ -zipa+ [ [ @)~ 00 aedn) = o

It implies that Z/ = 27, U = U7, dt ® dP and finally K7 = K7 for any j € A, i.e. (Y7, 29,07, K7 ca
verify (5.4.4).

Next we will show that the predictable process K7 does not have jumps. So assume there exists
j1 € A and a predictable stopping time 7 such that AVt = — A K/t = — A KJ1 < 0. Then by the
second equality in (5.4.4) we have

Y' = max (YF — gjn(r, X57)). (5.4.5)
keA—I1

Now let jo € A7/t be the optimal index in (5.4.5), i.e
Y,gi — 951,42 (T, Xﬂtjl) = Y'rjl > Y'rj1 2 Ysz = 951,52 (T Xim)

Note that g;, j,(T, X2%) = g;,.5,(1, X4®) since the stopping time 7 is predictable, and the process
(X5")1<s<r does not have predictable jump. Thus AY?2 < 0 and once more we have,

Y2 = max (YE — gjn(r, X57)). (5.4.6)
ke A—I2

We can now repeat the same argument as many times as necessary, and then we deduce the existence of
aloop ¢y, ....,¢p_1,¢p, = {1 and Iy # l; such that

4 Y4 t,x Lp—1 £ t,x
Y2 =Y2 — g0 (1, X75), -, Y2 =Y P — Glp_1,4yp (m, X72).

Therefore
gél,ég (Ta X:-,f) -+ 92,, 1,4 (T7 th—f) =0

which is contradictory with Assumption (A4)(II). It implies that AKJ' = 0 and then K71 is continuous

since it is predictable. As j is arbitrary in A, then the processes K7 is continuous and taking into account

(5.4.4), we deduce that the triples (Y7, Z7, U7, K7), j € A, is a solution for system (5.4.1). O
Next for s < T let us define the process (as)s<r for:

Qg 1= Oéo]l{go} +ZO[] 1]1]9] 10;] ( ) (547)

where {6;},>0 is an increasing sequence of stopping times with values in [0,T] (6 = 0) and for j > 0,
«; is a random variable Iy -measurable with values in A = {1,...,m}. If P[lim, 6, < T] = 0, then the
pair {6;, a;};>0 is called an admissible strategy of switching . Next we denote by (A%)s<r the switching
cost process associated with the process a, which is defined as following:

Vs < T, A = E gajiha].(é’j,X;’,I)]l[g.<s]7 AT = lim AY and E[(A‘IT)Q] < 00,
J J s—T
Jj=1

where X% is the process given in (3.1.4). Now, for ¢ < T we denote by A} := {a, := aglyg,}(s) +
Zl aj—11yp;,_,0;(s)

j=

is admissible strategy, ag =14,00 = 0,61 >t and E[(A$)?] < co}. For I' := ((I'})scp0,17)ica, such that
Vi € A, T € H?, we introduce the unique solution of the switched BSDE:V¥s < T,

T
V) = hoor (X57) + / £, X0, T, M, N )dr — / MdB,

/ / N (e)N (dedr) — A*(T, X57) + A%(s, X1%).
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As the same way in [12], we can prove that Y7 = V& = ess sup V.2, V(s,4) € [0,T] x {1,--- ,m} and
ac Al
the uniqueness follows.

Step 2: Now we deal with the general case. Let © : [H?]™ be H? x --- x H?(m times) and we introduce
the operator © : [H?]™ — [H?]™, T - Y:

Y7 = hy(XE") + [F i, X070, 20, U dr — [1 ZidB, — [T [, Ui(e)N(drde) + K} — K, Vs < T.
Y > max{Y — gji(s, YY)}, Vs < T Jo V7 - max{Y — gji(s, Y{)}dK] = 0
cAj €A

S

(5.4.8)
By Step 1, O is well defined. Next for Y € H? let us define || - ||2.5 by:

T
Yll2,5 = (E[/O 7|V, [2ds])?,

which is a norm of H2 Let_F1 and T'? be two processes in the Banach space (([H?])™, .
k=1,2,let (Y*I UM K*J),c satisfy:

2.3), and for

Y9 = by (X5 + [T f;0r, X520, 205 UpRYdr — [T Z3%aB, — [T [, Ui*(e)N (drde)
+K — KR
Y9 > max{Y 1 — gi (s, YEI) Y [T VI = max{Y[1 — g;o(s, Y}9)}dKET = 0.

qEA; qEA;

Let (as)i<s<7 be a admissible strategy defined in (5.4.7) and define Y7, V.4, V7% as follows:
)A/sj = hj(Xé“’m) + ng fj(T, X£7Iﬂ Fvlﬂﬂ ZA7]'> Uﬂ) \ fj(T, Xﬁ’x> FE, Z% Uvj)dr
— [P ZidB, — [T [, Ui(e)N(drde) + K3 — K}
V7 > ma{ Ve = gg(s, VI o V7 = ma{ Ve = gj(s, V) HAKL =0,
geEA; qeEA;

S S

T
Vsa = ha(T)(X%x) + / fa(r) (T’ X:’z’ Fév Mf, Nf) N fa(r)(n Xﬁﬂjv ng Mﬁ, Nf)dr

T T
- / M dB, — / / U2(e)N(drde) — AY(T, X5%) + A%(s, X1).
s s E

For k=1,2:

T
VR = Ry () [0, X0 T M NE)dr — AT, XE) + A%, XE)

T T .
- / MokdB, — / / U () N (drde),
s s E

by Theorem 5.1 in Appendix, we have

YR =ess sup VP, k=1,2, YJ=esssup V2 :=V2. (5.4.9)
acAl acAl

In addition, for any admissible strategy as = aglyg,}(s)+ > aj—11js,_,0,](5), it is easy to check that
j=1

1) satisfies the Assumption Assumption (H1)(1)(iii).

Now by Theorem 3.2, we have V¢ > V51av V2@ for any strategy a € A{ , this combined with (2.2.36)
leads to Y7 vV Y2J < VS“* = }Afsj , since a* is an admissible strategy for the representation (2.2.36) of
Y19, Y27 and the optimal strategy of V¢, we deduce that vihe <ylhi < VS“* and V2% < V27 < VS“*,
and this leads to

L e N e e N e (5:4.10)

First we estimate [V — V1¢"|. Denoting AVS := Vo —V1he" and AN := No" — Nb" | we apply
It6’s Formula to the process €| A V& |? and compute
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T T
eﬁS|Aw*|2+/ A|Mﬁ*|2dr+/ /eﬁwANg*(e)Fn(de)dr
s S E
T * T * * T * * A
. / BePT| AV [2ds — 2 / ¢ AV MO dB, — 2 / / ¢ AV AN (¢)N(drde)
s s s E
T * * A * A * * A * A *
+2/ AT AV (r, X0 TE 28 NS )V Y (r, X5 T2 287 NOT)
- fa* (Tv X:7x7 Fla ZATLQ* ) erﬂ*)]dr
By the Lipschitz property of f and the fact that |z Vy —y| < |z — y|,

f¢ (r, X5, DL, 28 NS YV f97 (r, X052, T2, 287 NOT) — £ (r, X, T8, Z5  NEeT)|
<SL(T) —T2[+ |28 — Z2* |+ INS — Ni’a*Hﬁz(N))

Combine these two estimates with the inequality 2zy < %xQ + By*(8 > 0)

eﬂs| A ‘A/sa*

L (7 T - T . R
2< 5/ eﬁ’"|Fi7F§|2dr72/ AT AV ME dBer/ /eﬁmv:_ A N® (e)N(drde)
s E

S S

for 8> L.

We deduce E[e”s] A VA |?] < %E[fST eIt — T2|dr]. Similarly, we get also Vs < T, Eles|Ve" —

V2e 2] < %E[LT ePr|TL —T'2|dr]. Since s is arbitary, we going back to (5.4.10), squaring and taking the
expectation, we have

: ; 2L
E[sgg ey, — VP < Fnrl —T?||2p (5.4.11)
n=
Therefore we have,
2LTm
[O(I'") = (%) |25 < 3 I — T2l 5 (5.4.12)

For 3 large enough ,0 is contraction on the Banach space (([H?])™, ||.||2.), then the fixed point theorem
ensures the existence of a unique Y such that ©(Y) = Y, which is the unique solution of system of
RBSDE (5.4.1) O

Corollary 5.4.1. Under Assumptions (H1), there exist deterministic lower semi-continuous functions
(u? (t,z))jea of polynomial growth such that

V(t,x) € [0,T] x R*, Vs € [t,T], YJ = u (s, X1™"), Vj € A.

The proof is same as Corollary 3.1 in [33]. Now let us consider now the following system of IPDEs:
Vi€ A,
min{u;(t, ) — max(u;(t,z) — gi; (¢, x));
JEA;

—0pu;(t,x) — Lui(t, ) — gi(t, @, (u;)T, (¢, 2), 0 (t, v) Dowi(t, :U),IBi (t,z,u;(t,z,)))} =0, (5.4.13)
(t,z) € 0,T] x [0,T] x IR;
ui (T, x) = h;(x)

where
Lu(t,x) = L u(t,x) + T(t, 2, u)

with
Llu(t,z) := b(t,z)0u(t, ) + 50 (t,x)? D2, u(t, x) and

It ) = /E (6(t, 2 + Bl €)) — B(t, ) — Dyd(t, )B(, ))n(de);

% (1,0, 0) = / 6tz + Bz, €)) — o(t, 2))7 (x, €)n(de).
E
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And define:
I(% (tv Z, ¢) = / (¢(tv T+ ﬁ(xv 6)) - ¢(t’ :L') - Dm¢(tv x)ﬁ(m, e))n(de);

le|<d

Iz?(t7$>Q7 (b) = / (¢(t,:v + B(xa 6)) - gb(t,{L‘) - qﬂ(l', 6))’)’L(d€);

le| =6

L7 (@, 0) = / (¢t + B(x, €)) — &(t,x))7' (z, e)n(de);

le|<d

B (00) = [ (@t + o)) = 6t )z e)n(de),

lel>6
and of cause, for any ¢ € Il,, (t,z,p) € R®, Z2(t,x,p, ¢) and I(?’Bij (t,z, @) are well defined.
Theorem 5.4.2. Assume Assumptions (H1), then (u;j(t,x))jea is a viscosity solution of (5.4.13).

Proof. We just show the main different steps with the proof of Theorem 4.1 in [33].

First we show that (u;)jL; is a supersolution of (5.4.13). Noting that for all j € A, as u; is Isc,
we have u;, = u;. Next let us set uff(t,z) = Y/ where (YOt Uit KImbE) 4 s the unique
solution of (5.4.2). As pointed out in Corollary 5.4.1, for any n > 0, (t,z) € [0,T] x IR¥ and s € [t, T,

yimte = uff (s, X0%) and uff (t, ) /" u;(t, z).

Additionally by induction, (u?) jea, n > 0, are continuous, belong to 1I, and by Barles et al.’s result
([5]) verify in viscosity sense the following system (n > 1): Vj € A,

mz’n{uj”‘(t,x) - inzzx(uj’"’l(um) — g;k(t, x));

. c4; . . .
*atu],n(t :E) - ‘Cuj’n(fa ‘T) - gj (t7 €z, ul’n717 T ujilmlila u],n7 u]+1,n71’ o 7um,n71, (5414)
ot @) Do (1, ), I (t, 2,0 (1, 2,))) | = 0
uwh™(T,z) = hj(x).

First note that for any j € A, u; verifies

uj(T,z) = hj(x) and u;(t, ) > iré:}qx{uk(t,x) — gix(t,x)}, Y(t,x) € [0,T] x R

Next let (t,z) € (0,T)x IR and let j € A be fixed. Let ¢ be a function which belongs to C!+?([0, T'|x IR)NII,
such that u; — ¢ has a strict global minimum in (¢, ) on [0, 7] x IR* and wlog we assume that u;(t,z) =
¢(t,x). Now let 6 > 0 be fixed. Then (¢, ) is a global strict minimum of u; — ¢ in [0,T] x B(xz, K9).

Next let (t,,,7,) be the global minimum of u? — ¢ on [0,7] x B(z, K4). Therefore

lim(t,, z,) = (t,z) and uj (t,, z,) — u(t, ).
n

Actually let us consider a convergent subsequence of (¢, ), which we still denote by (t,,z,), and let
set (t*,x*) its limit. Then
ul (tn, n) — @(tn, Tn) < uj(t, ) — o(t, ). (5.4.15)

Taking the limit wrt n and since u;, = u; is lsc to obtain
Uj(t*,x*) - ¢(t*7x*) < Uj(t,.’L’) - ¢(t,$)

As the minimum (¢, z) of uj — ¢ on [0, T] x IRF is strict then (¢*,z*) = (t,z). It follows that the sequence
((tn, zn))n converges to (t,x). Going back now to (5.4.15) and in sending n to infintite we obtain

uje(t, ) = u;(t, x) < 1imninf uf (tn, ) < limsupuf (tn, zn) < u;(t, o)
g n

which implies that uf (tn, r,) — u;(t,z) as n — oo.
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Now for n large enough (t,,r,) € (0,T7) x B(z, K§) and it is the global minimum of u} — ¢ in
[0,T] x B(z, K&). As u is a supersolution of (5.4.14), then by Definition 2.2, we have

=0 p(tn, Tn) — £1¢(tnv Ty) — Zl’é(tnv Tp, §) — I?’a(tn» T, an(ls(tn, Tn), uj’n) >
f](trw Tn, ’U/Ln_l(t’na il'n)7 e 7’U/]_1’n—1(t’na l‘n), uj7n(tna l’n), uj+1’n_1(tn7 $n), e 7um,n—1(tn7 :En)u

0 (b @) Dyt ™ (t, 20), IV (ty 0, 8) + T2F (L, 0, uI™)).
(5.4.16)

But there exists a subsequence of {n} such that:

(i) for any k € A, (u} ' (tn,zn))n is convergent and then limy, u} ™ (t,, 2,) > ug(t, ©) ;

(i) (Z5 (tn, Tn, @))n — T3 (t, @, ) as n — o0 ;

(ii)) (T2 (tn, 20, 8))n — ToP (t, 2, ¢) as n — oo.

Sending now n to infinite (through the previous subsequence) in (5.4.16), using the fact that g; is
continuous and verifies (A4)(I)(v) and finally by Fatou’s Lemma to obtain:

*atd)(tv :L’) - £1¢(t, IL‘) - Ig (t7 z, ¢) Z
Ig(ta z, Dm(b(ta .’E), u’ + 9gj (t» x, ul(tv :L")v te vujfl(tv x)a Uy (ta .’E), uj+1<ta (E), Tty um(ta .’E),
o(t, ) Dyt (t,x), [V (t,2,0) + 125 (t, 2, 07)).
But u;(t,x) = ¢(t,z) and u; > ¢, then I%9(t,x, D,d(t, ), u;) > I%9(t, 2, D, ¢(t, 7), ¢) and 125 (t,z,uj) >
I8 (t, 2, ). Plugging now this inequality in the previous one to obtain
—0p(t,x) — L1P(t,x) — I(t, 2, ¢) — gj(t, @, (u;)ica(t, z), o(t,x) Dyusj, 15 (t,z,u;)) > 0.
Therefore u; is a viscosity supersolution of
min{u;(t,x) — ,inix(uk(t’ z) — gk(t, x));
cAj )
_atuj (t’ .Z‘) - ‘Cuj (t7 l‘) —9j (t7 T, (ui)iEA(ta J)), U(tv l‘)Dwu]', 1% (tv z, u]))} =0;
u; (T, z) = hj(z).
As j is arbitrary then (u;);ea is a viscosity supersolution of (5.4.13). O

Now we will now show that (u});jea is a subsolution of (5.4.13). First we have:

Vi € A, min{uj(T,z) = hj(z); uj(T, ) — max(ui(T,z) - gju(T,2))} = 0,

and
uj(T,x) = hj(x),Vj € A.

The proof is same as Theorem 4.1 in [33]. O

Now let us show (u})jea is a subsolution of (5.4.13). First note that since u} " u; and u} is
continuous, we have o

uj(t,r) = limsup'uj (t,r) = lim i (t,2).
n—oo n—oo,t’ —t,x’ —x

Besides Vj € A and n > 0 we deduce from the construction of u;’ that

u (t2) 2 ma(uf (1. 2) — g(t,))

and by taking the limit in n we obtain: Vj € A, Vx € IR,

wj(t, z) = max(uf (t, x) — gj(t, ).
I€A;

Next fix j € A. Let (t,z) € (0,T) x IR be such that

uj(t,x) — ?el%}-((u? (t,x) —g;(t,x)) > 0. (5.4.17)
Let ¢ be a C12([0,T] x IR) NI, function such that u% — ¢ has a global maximum at (t,z) in [0, 7] x IR
which wlog we suppose strict and u; (¢, ) = ¢(¢,z). Therefore (¢,z) is a global strict maximum of u; — ¢
in [0,7] x B(z, K§). On the other hand there exist subsequences {ny} and ((¢/, ,z}, ))x such that

ng? Nk

((t;kax;k))k —k (t,l’) and u;lk (t;zkax;%) —k u;(tax)'
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Let now (tn,,n,) be the global maximum of u’* — ¢ on [0,7] x B(x, KJ). Therefore
(tng, Tny) =k (8 2) and uZ* (tn,, 20, ) —k uj(t, ).

Actually let us consider a convergent subsequent of (¢, ,x,, ), which we still denote by (¢, ,xx, ), and
let (¢,Z) be its limit. Then for some ko and for k > ko we have

u?k (tnk7xnk) - ¢(tnk?xnk) > unk (t k7g:;7,k) ¢(tl ng’ ;lk) (5'418)

Taking the limit wrt k to obtain

ui(t,z) — ¢(t, ) > uj(t,x) — o(t, ).

As the maximum (¢,z) of uj; — ¢ on [0, 7] x IR¥ is strict then (£,Z) = (¢, ). It follows that the sequence
((tnys T, )k converges to (¢,x). Going back now to (5.4.18) and in sending k to infinite we obtain

ui(t,z) > limksup u* (b Tny,) 2> limkinf it (tnys Tny) 2> limkinf uit (t, v, ) = ui(t, )

ne?““Ng

which implies that u}* (t,,, s, ) — uj(t,x) as k — oo.
Now for k large enough,
(1) (tngsxn,) € (0,T) x B(z, K¢) and is the global maximum of u;* — ¢ in (0,7") x B(z, K9) ;

(ii) u;'lk (tnk’x"k) > mix(u;”‘ 1(tnk7xnk) - gjl(tnk’mnk))-

As ug"“ is a subsolution of (5.4.14), then by Definition 2.2, we have
_8t¢(tnmxnk) - ‘Cl¢(tnkaxnk) I(S( nk,fEnk,QS) 6( nkvxnka m(zs(tnmxnk)vuj’nk) S

fj(tnkyxnk7ul’nk_l(tnk,xnk)> o u‘l Lk = 1( nkaxnk) U]’nk( nk7xnk>7uj+1’nk_1(tnk;mnk)7' t 7u7”’nk_1(tnk7$nk)a

. J .
O-(tnk b xnk )D:Euj’nk (t’nk ) xnk)vz(%’B (tnk k) xnk k) d)) + I§ ( Nk x’ﬂk k) uj)nk))'

But there exists a subsequence of {n;} (which we still denote by {nx}) such that:
(i) for any I € A;, (u™* " (tn,, Tn, )k is convergent and then limy u ™" (t,, , 2n, ) < uf(t, z) ;
(i) (Z3(t nk7xnk’¢))nk Il’é(ta%@ as k — oo;
(i) (Z5 (tng Tngs D)) = T2, 9) as ks — o0

Sending now k to infinite (through the previous subsequence) in (5.4.19), using the fact that g; is
continuous and verifies (H1) and finally by Lebesgue’s Theorem to obtain

—at(b(t,$) - £1¢(t,$) - Il,é(ta'r) ¢) S ) .
T29(t,x, Dyo(t, x), uf) + gi(t, @, (u )ica(t, ), o(t, ) Dy (t, x)7I§’BJ (t,z,d) + I}B] (t,z,u})).

But u;(t,x) = ¢(t, z) and uj < ¢, then T29(t, x, Dpd(t, x), uf) < T29(t,x, Dpb(t, x), ) and Zl B (t,z,u}) <

I;BJ (t,z, ¢). Plugging now this inequality in the previous one to obtain
*atd)(t l’) - £1¢(t7 :C) - Z(tv €, ¢) —3gj (t7 z, (U?)ieA(t» I), U(t7 I)DTU; (ta ‘T)7Z(SBJ (tv €, ¢)) < 0
Therefore u; is a viscosity subsolution of
minfu;(t, x) — ;ﬂ%@fi(“’“(t’ ) = gjk(t, ));

—0wu;(t, ) — Lu;j(t,x) — g;(t, x, (Wi)ica, o(t, x, ) Dyu,;(t, x), 15’ (t,z,u;))} = 0;
(T, ) = ().

As j is arbitrary then (u;);jea is a viscosity subsolution of (5.4.13). O

5.5 Viscosity solution of PDE with two obstacle of min-max
type

Let (t,z) € [0,T] x IR* and (X! ®)s<r be the solution of the standard SDE given in (4.1.6) where the
functions b and o satisfy Assumption (HO). Let us now consider the following functions:

g r€RF+— g(x) R

f (t,z,y,2) € [0,T] x RFt1*d s f(t,2,y,2) € R
H: (t,z)€[0,T] x RF— H(t,x) € R

L: (t,z)€0,T] x RF+— L(t,z) € IR
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We assume that all those functions are continuous and satisfy the following assumptions (A1)-(A2).
(A1): Vte[0,T],z€ RF, y,y/ € R, 2,2 € R?,

(i) lg(@)| +[f(t,2,0,0)[ + [H(t, )| + [L(t, x)| < C(1 + |z[*),

(i) [f(t, 2y, 2) = f(t, 2,9, 2) < Clly — ¢/ + |2 = 2)),
(i) L(t,z) < H(t,x) and L(T,z) < g(x) < H(T, x),

where C' and p are some positive constants.

(A2): For each R > 0, there is a continuous function ¢ such that ¢r(0) =0 and

[f(t 2, y,2) = f(t 2y, 2)] < or((1+ [2])]z — 2'])

for all t € (0,7), |z|, |2'|, |y| < R and 2z € R%.

Next for n > 0, let ("Y5®)s<r (vesp. ("Y%)s<r) be the first component of the unique solution of
the BSDE with one reflecting lower (resp. upper) barrier associated with the triple
(f(sv X;’I’ y) - n(H(Sv X;’$) - y)i’ g(X;”m)’ L(s’ Xﬁ’w))
(resp. (f(s, Xb% y, 2) + n(L(s, X5%) — y) T, g(X5"), H(s, X®))), which exists and is unique (see e.g.
[22]). It has been shown in [22] that, under Assumptions (HO) and (A1)-(A2), for any n > 0 there exist
deterministic functions "u(t, ) and "4, (t,x) € [0,T] x IR*, such that

Vs € [t, T, ”Yst’z =" u(s,X};’I) and "YET =" (s, X(f’””),

where "u (resp. ™) is continuous with uniform polynomial growth i.e. there exist two non negative real
constants C' and p such that

["u(t,x)| (resp.|"a(t,z)|) < C1+ |z|P), V(t,z) € [0,T] x RF.

Moreover it is a unique viscosity solution, in the classe Il , of the following PDE with obstacle:

min {U(t, x) — Lt, ) ; —d0(t,z) — LXv(t, )
(@0t @), ot 2) T Dad(t @) + n(H(t,2) — ot )~ | =0, (5:5.1)
o(T,z) = g(x),
(resp.
max {v(t, ) — H(t,z) ; —0w(t, ) — LXv(t, )
(2 0(t,2), 0t 2) T Dyv(t @) + n(L(t,2) = v(t,2))” b =0, (5.5.2)
(T, x) = g(x)).

By comparison (see e.g. [27]) we easily deduce that the sequence of processes ("Y' %),,>¢ (resp. ("Y5%),>0)
is decreasing (resp. increasing), moreover they converge in S? to a same processes (Y.'%);<7 which sat-

isfies
L(s, X0*) < YD < H(s,XL"), Vs <T.

Therefore for any (¢,z) € [0, 7] x IR¥, the sequence ("u(t, z)),>0 (vesp. ("i(t,x))n>0) converges decreas-
ingly (resp. increasingly) to the same limit

u(t, ) == Y" (5.5.3)
which verifies
w(T,z) = g(z) and L(t,z) < u(t,z) < H(t,z),Y(t,z) € [0,T] x IR.

Next as "u and "u are continuous and belong to II,, then the function u belongs also to II,; and is
also continuous since it is both lsc and usc. By Dini’s Theorem we deduce that the convergence of the
sequence ("u),>o (resp. ("i)n>0) is uniform on compact subsets of [0, 7] x IR*.

Next let us consider the following PDE with two obstacles of min-max type:
min {v(t7 x) — L(t,z) ; max [v(t, x) — H(t,x);
—Ow(t,z) — LXv(t,x) — f(t,z,v(t, x),a(t,x)Tva(t,x))}} =0; (5.5.4)
o(T,z) = g(z).

To begin with, we are going to give the notion of viscosity solution of (5.5.4).
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Definition 5.5.1. Let v be a function which belongs to C([0,T] x IR*). It is called a viscosity:
(i) subsolution of (5.5.4) if v(T,z) < g(z) and for any ¢ € C¥2([0,T] x IR*) and any local mazimum
point (t,x) € (0,T) x IRF of v — ¢, we have

min {v(t,x) — L(t,x); max |:U(t, x) — H(t,z); —0pp(t,x) — LXG(t, x) — f(t, 7, 0(t, x),a(t,m)TDwﬂt,x))} } <0.

(i3) supersolution of (5.5.4) if v(T,x) > g(z) and for any ¢ € CH2([0,T] x IR*) and any local minimum
point (t,z) € (0,T) x IRF of v — ¢, we have

min{v(t, x)—L(t, x); max [U(t, x)—H(t, x); —0,0(t, ) —LXp(t, x)— f(t, x,0(t, x),0(t, )" Dyt x))} } > 0.

(1) solution of (5.5.4) if it is both a viscosity subsolution and supersolution. O
Theorem 5.5.1. The function u defined in (5.5.3) is a viscosity solution of (5.5.4).

Proof. First we show that u is a viscosity subsolution of (5.5.4). Note that u(T,z) = g(x) and L(t,z) <
u(t,z) < H(t,r). Let now ¢ € C12 and (t,7) € (0,T) x IR* be a local maximum of u — ¢ in [0, T] x IR¥
such that w(t,z) > L(t,x). Let (t,,z,) be a sequence of local maximum points of "u — ¢ such that
(tn,xn) converges to (t,x) (such a sequence exists because of the uniform convergence of "u to u on
compact subsets (see e.g. [39], pp.117). For n large enough we have "u(t,, x,) > L(t,, z,) and since "u
is a viscosity solution of (5.5.1) then

_8t¢(tn’ xn) - [’X¢(tn7 xn) - f(tru -Tnyn U(tna Jjn)a U(tny J)n)TDxd)(tn, J?n))
< 7n(H(tn7x") =" U(tn,;pn))* <0.

Now by the continuity of the functions and the uniform convergence, we have
_at¢(t7 JJ) - £X¢(t7 .17) - f(t7 Zz, u(ta I)v U(t? x)TDw¢(ta .Z‘)) <0.

Thus w is a viscosity subsolution of (5.5.4). In a similar way we can show that u is also a viscosity
supersolution. O

The following result is of comparison type between sub. and supersolutions of (5.5.4). Namely we
have:

Proposition 5.5.1. Assume that Assumptions (H0), (A1)-(A2) are in force. Then if v (resp. u) is
a viscosity supersolution (resp. subsolution) of (5.5.4) with polynomial growth, then for all (t,x) €
[0,T] x IR* we have u(t,z) < v(t,x).

Proof. Step (i): First we proof that v > L and u < H.

By the definition of supersolution, it is clear that v > L. Let us now show that u(t,z) < H(t,x).
Suppose that for t < T, u(t,x) > H(t,x). Therefore we have t < T and u(¢,x) — L(t,z) > 0 since H > L.
Now if ¢ is a test function for u at (¢,z) € (0,7) x IR* then

min {u(t, x) — L(t, z), max [u(t7 x) — H(t,z), —0:p(t, x)

—L6(t,3) = f(t,,ult, 2), Dago(t,2))| } >0,
which is contradictory. Thus u < H.
Step (ii): Let us define v/ := vAH and v’ = uV L, then v’ is a viscosity supersolution and v’ is a viscosity
subsolution of (5.5.4).

In fact, since H(T,z) > g(z), then v'(T,z) = v(T,z) A H(T,z) > g(z). Let now (¢t,z) € (0,T) x IR¥
and ¢ € C*2 such that (¢,z) is a local minimum point of v/ — ¢ in [0, T] x IR*. If v(¢,z) < H(t,x), then
v'(t,x) = v(t, ) and by continuity, (¢, z) is also a local minimum point of v —¢. Since v is a supersolution
of (5.5.4), then v’ verifies

min {v’(t, x,) — L(t, x); max [U’(t, x) — H(t,x); =0 p(t, x)
—Lo(t,x) — f(t, 0 (¢, x),a(t,x)TDm(;S(t,x))]} > 0.
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Next if v(t,z) > H(t,z), then v'(¢t,z) = H(¢,z). Since H(t,x) — L(t,z) > 0, then we have

min {H(t, x) — L(t, z); max [H(t, x) — H(t,x); —0:p(t, x)
Lot x) — f(t,x, H(t,z), Dma(t,x))}} > 0.

Thus v’ is a viscosity supersolution of (5.5.4). In the same way we can prove v’ is a subsolution of (5.5.4).

Step (iii): Modification of the problem.
Let A € IR and &, ) and & be the functions defined on IR* as

E(a) = (1+Jz”),
= &() " Dyé(w) = pr(1+ |2*) 7!
k(@) = &(@) " DZ,8(x) = p(1+ [2) " e —p(p = 2) (1 + [2[*) Pz @2

where p is chosen in such a way that @ and © below are bounded and converge uniformly to 0 as ||| — oo.
It exists since u and v are both in II,. Next let us consider the followings

), 0(t,x) == eME () (t, 2),
: x), H(t,z) = e Me Y (x)H(t, z),
e (@)g(w),
Lo:=LYp+ <000, Dy >+{2Tr((c0 T )k)+ < b,n > —A}p
ft,z,y,2) = M (@) f(t, @, e ME()y, e ME(a) 2 + e M Dyg(x)o(t, 2)y).

Therefore one can easily check that @ (resp. v) is a viscosity subsolution (resp. supersolution) of

min {ﬂ(t, x) — L(t,x); max [ﬂ(u x) — H(t,x);
~dyalt,x) — La(t,z) — f(t,z,a(t,z), ot x)TDwa(t,x))} } — 0 (5.5.5)
(T, 7) = §(a).

Let now F be the function from [0, T] x IR*+1T4 x S, (S}, is the space of symmetric real matrices of
dimension k) which with (¢, z,y, z, M) associates F(t,z,y,z, M) € IR and verifying

F(t,x,a(t,x), Dya(t,x), D2 a(t,x)) = Li(t,x) + f(t,z,u(t,x), o(t,x) " Dya(t, z)).

We choose A great enough in such a way that the mapping y € R —— F(t,z,y,z, M) € IR is strictly
decreasing for all (t,z,z, M) € [0,T] x IRF*1 x S;,. Finally note that for all e > 0 the function v + ¢ is
also a supersolution solution of (5.5.5). Therefore in order to obtain the comparison result it is enough
to show that w < v + % and then to take the limit as € — 0.

Step (iv): Last part of the proof.
We are going to show by contradiction that: VR > 0

sup  (u/(t,x) —'(t,x) — E)+ < sup  (u/(t,x) —'(t,x) — E)+ (5.5.6)

te[0,T),e|<R ¢ t€[0,7].|z|=R ¢

where now L (resp. H) is L (vesp. H), u' = uV L, v = v A H, and finally f is f which is defined
previously. Note that from Steps (i)-(ii), ' (resp. v') is a viscosity subsolution (resp. supersolution) of
(5.5.5) and due to assumption (Al), v’ < H and v > L.

So suppose that for some R > 0

e

d:= sup (d(t,z)—'(t,x) — §)+ >  sup  (W(t,x) = (t, ) t>+ > 0.

t€[0,T],|z|<R t t€[0,T],Jx|=R

For each n > 0, let (¢, 2y, yn) be a point in the compact set [0, T] x Br x Br where Bg = {z € IRF; |z| <
R}, and the continuous function

ult,a,y) = o/ (ta) = v/(ty) — - —nlz —y?
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achieves its maximum. As u’ and v’ are bounded this maximum belongs to (0,T) x Bg x Bg. By Lemma
8.7 in [22], there exists (pn, Xn,Yn) € IR X Sk X S, such that:

(i) nlxn - yn|2 — 0 as n — oo;

(ii) @' (tn, zn) = V' (tns yn) + & + 05

(i) (P, 2n = yn), Xn) € T (0 (b, 20));

(V) (Prs (20 = Yn), Yn) € J57 (V' (tns yn) + £);
Xn 0 I _—

(V)< 0 —Yn><3n<—l 1 )

where J%(u/(t,z)) (resp. J* 7 (V/(t,x) + €)) is respectively the limiting superjet (resp. subjet) of v’
(resp. v'(t,x) + §) ( see e.g. [12], pp. 728 or [26], pp. 210).

Next as v’ is continuous, combined with point (i), we deduce the existence of N > 0 such that for
any n > N, [v/(t,, @) — V' (tn, yn)| < §. Therefore for n > No,

ul(tmxn) > U/(tmy”) + i t9
> 0/ (tns @) = [0/ (bn, @) = 0/ (bn, Y| + £ +
>V (tny 20) + £ + 8

which implies that for any n > Ny, v/(tn, ,) > v'(tn, z,). On the other hand, by the results obtained
in Steps (i)-(ii),

H(tn,xn) > utn, xn) V Lty n) = 0 (tn, 1n) > V' (tn, 2n) = 0(tn, Tn) A H(tn, 2n) > L(t,, x,)

and then v'(t,,z,) < H(tn,2z,) and o' (t,,zn) > L(tn,z,). As v’ (resp. v' + £) is a sub (resp. super)
solution of ((5.5.4) modified), we then have

1
—Pn — QTT(UUT(tm ) X)) = < b,n(Tn — yn) > —f(tn; Tn, u/(tn,:cn),n(:cn —yn)) <0,
and
1 T / € €
—Pn — iTT(O'U (tnayn)Yn)* < bvn(xn - yn) > 7f(tn7ynav (t7uyn) + Tan(xn - yn)) 2 th
then

& <A, = %TT(O’O‘T(tn,xn>Xn — 00 (tn, 2n)Yn)
Ff(tn, Tn, ' (tn, o0 ), (T — Yn)) — ftn, Yn, V' (tns Yn) + Jrian(xn —Yn))-

With the same argument as in ([22], pp. 734), under (HO),(A1)-(A2), we obtain that liminf,, . A, <0
and then ¢ < 0 which is contradictory. Finally taking the limits in (5.5.6), first when R — oo then
€ — 00, we obtain v/ < v’ and then u < v. O

As a by-product we have:

Theorem 5.5.2. Under (H0),(A1) and (A2) we have:
(i) There is a unique continuous viscosity solution of (5.5.4) with polynomial growth ;
(ii) The function u is also a unique viscosity solution, in the class Iy, for the following maz-min
problem:
max {v(t,ac) — H(t,z) ; min [v(t,x) — L(t,x);
—ow(t,x) — LXv(t, ) — f(t,z,v(t, z), a(t,x)Tva(t,x))} } =0; (5.5.7)
o(T, z) = g(x).
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Proof. (i) The existence follows from Theorem 5.5.1 and uniqueness follows from Proposition 5.5.1.

(ii) The construction of the function u implies that w = —u is the unique viscosity solution in the class
11, of the following system:

min {w(t, x) + H(t,z), min [w(t, x) + L(t, x),
Ot @) = Lu(t, @) + f(t,2, ~w(t,2), ~o(t,2) Dyw(t,2)] } =0, (05
w(T,2) = —g(a).

Thus —w = w is the unique solution in the class II, of system (5.5.8) (see e.g. [6], pp.18). O

In terms of BSDEs the process Y%* defined in (5.5.3) is a local solution for the two barriers reflected
BSDE associated with (f(s, X5%,y, 2), g(X5%), L(s, X-®), H(s, X5®)). Namely we have the following
result:

Proposition 5.5.2. ([28], Theorem 3.1) For any stopping time T, there exists another stopping time
8. > 7, P —a.s. and three processes Z7, K*7 such that:
(i) Y5 = g(X7") ;
(i)
ZT e H*4 K*+7 € 8% and non-decreasing ;
Vs € [1,6,], YT = YT 4 [0 fr, XET, VIR Z0)dr — [ Z7dB, + [T AR — [ dK T
L(Sng’x) < Yst’x < H(Ssz’z)a Vs € [taT] ;
S (¥ = LG X)) ARG =0 and [ (V] — U(r, XE7))dE7T = 0

T r

(5.5.9)
(iii) Let v, and 0, be the following two stopping times:
vy = inf{s > 7, YI" = L (s, X"V AT and 0, := inf{s > 7,Y* = U(s, X0")} AT.
Then P —a.s., v V0, < 0;.
The process Y5 is unique to satisfy (i)-(iii). O

Finally in the case when f does not depend on z we have the following charaterization of Y% as the
value function of a zero-sum Dynkin game.

Proposition 5.5.3. (/28], pp.894) The process Y werifies: for any stopping time 6 > t,
YT = ess sup,ysgess inf, >9]E{ AT f(r, XE® YT dr

+L(O’, thfvz)]l[o<‘r] + H(T7 X-? )]1[7'<0'<T] + g(X )]1[7' =o=T] |f9}

0

= ess inf,>gess supo>9E{ [N, XE® YT dr
+L(0>X )ﬂ[a<-r] + H (T, X )ﬂ[r<a<T] +9(X )]I[T o=T] |*7:9}

(5.5.10)
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