
HAL Id: tel-01223251
https://theses.hal.science/tel-01223251

Submitted on 2 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Some results on backward equations and stochastic
partial differential equations with singularities

Lambert Piozin

To cite this version:
Lambert Piozin. Some results on backward equations and stochastic partial differential equations
with singularities. Analysis of PDEs [math.AP]. Université du Maine, 2015. English. �NNT :
2015LEMA1004�. �tel-01223251�

https://theses.hal.science/tel-01223251
https://hal.archives-ouvertes.fr


UNIVERSITÉ DU MAINE - LE MANS

ECOLE DOCTORALE: STIM
SCIENCES, TECHNOLOGIES DE l’INFORMATION

ET MATHEMATIQUES

THESE
pour obtenir le titre de

Docteur de l’université du Maine

Specialité : Mathématiques appliquées

Soutenue par

Lambert Piozin

Quelques résultats sur les équations
rétrogrades et équations aux dérivées

partielles stochastiques avec
singularités.

Directeur de Thèse: Anis Matoussi

Co-directeur de Thèse: Alexandre Popier

preparée à l’université du Maine

Jury:

Directeur: Anis Matoussi - Université du Maine
Co-directeur: Alexandre Popier - Université du Maine

Rapporteurs: Philippe Briand - Université de Savoie
Bruno Saussereau - Université de Besançon

Examinateurs: Romuald Elie - Université Paris-Est Marne-la-Vallée
Saïd Hamadène - Université du Maine





i

Remerciements

Je voudrais remercier ici toutes les personnes qui ont su de quelque manière que ce soit m’aider,
m’encourager ou m’influencer positivement dans l’accomplissement de cette thèse.

Je tiens donc à remercier chaleureusement Anis Matoussi et Alexandre Popier, pour avoir
d’abord réussi tant bien que mal à supporter mon caractère si singulier (maudits INTJ!). Mais
aussi et surtout pour leurs inombrables conseils, leur écoute attentionnée et leur patience quasi
inépuisable à mon égard. C’est une chance unique d’avoir pu travailler à leurs côtés et une
expérience profondément enrichissante.

Je suis très sincèrement honoré que Philippe Briand et Bruno Saussereau aient accepté d’être
rapporteurs, je les en remercie vivement. Je suis très reconnaissant également à l’encontre de Ro-
muald Elie et Saïd Hamadène pour avoir bien voulu participer à ce jury en tant qu’examinateurs.

Mes remerciements vont également à l’ensemble de l’équipe du Laboratoire Manceau de
Mathématiques pour leur accueil. Pour avoir enseigné à leur côtés et disposé de leurs précieux
conseils, je tiens à citer: Ivan Suarez, Alexandre Brouste, Samir Ben Hariz, Sylvain Maugeais
et Gérard Leloup. Je voudrais aussi témoigner ma sympathie à l’égard de mes collègues de
bureau, doctorants et anciens doctorants: Ali, Achref, Fanny, Maroua, Samvel, Anastasiia,
Rym, Arij, Wissal, Lin, Xuzhe, Rui, Chunhao. Pour leur aide quant à l’organisation au quoti-
dien de la vie du laboratoire et pour leur sympathie, je remercie Brigitte Bougard et Irène Croset.

Je souhaite remercier infiniment ces enseignants de l’université Paris Dauphine qui réalisent un
travail pédagogique d’une qualité inouïe. Pour leurs sympathie, leur patience et pour avoir été
une réelle source de motivation et d’inspiration pour moi ainsi que pour bien d’autres, je tiens à
citer: Olivier Glass, Massimiliano Gubinelli, Nicolas Forcadel, Filippo Santambrogio, Guillaume
Carlier, Anne-Marie Boussion, Bruno Bouchard, Romuald Elie, Imen Ben Tahar, Rémi Rhodes,
Cyril Imbert, Eric Séré, Bruno Nazaret, Jimmy Lamboley, Joseph Lehec, et Guillaume Legendre.

Je voudrais exprimer toute ma sympathie pour les divers doctorants et anciens doctorants
rencontrés au cours des différents séminaires et colloques, pour leur intelligence, leur gentillesse
et leur convivialité, je pense entre autres à: Dylan Possamaï, Nabil Kazi-Tani, Chao Zhou,
Sébastien Choukroun, Romain Bompis, Guillaume Royer et Julien Grepat. Je tiens en particulier
à témoigner de ma profonde gratitude envers Dylan et Chao, travailler à leurs côtés fut un réel
plaisir.

Enfin pour leur soutien constant et leur capacité à me faire oublier n’importe quel tracas du
quotidien, je remercie ma famille ainsi que mes amis: Thomas S., Edouard, Quentin, Matthieu
A., Yann, Julien, Laurent, Matthieu G., Florian, Thomas M. pour ne citer que les plus proches.





ii

Résumé

Cette thèse est consacrée à l’étude de quelques problèmes dans le domaine des équations dif-
férentielles stochastiques rétrogrades (EDSR), et leurs applications aux équations aux dérivées
partielles (EDP) et à la finance.

Les deux premiers chapitres sont dédiés aux EDSR avec condition terminale singulière. Ce
type d’équations a été introduit par Popier dans [83], et pose le problème de l’existence de
solutions d’EDSR lorsque la condition terminale peut prendre la valeur +∞ sur un ensemble
de mesure non négligeable. Dans le premier chapitre, nous introduisons la notion d’équation
différentielle doublement stochastique rétrograde (EDDSR) avec condition terminale singulière.
Un premier travail consistera à étudier les EDDSR avec générateur monotone. Nous obtenons
ensuite un résultat d’existence par un schéma d’approximation en considérant une troncature
de la condition terminale. On peut vérifier assez aisément que le processus limite construit ainsi
satisfait la dynamique qui nous intéresse, et possède les bonnes propriétés d’intégration sur des
intervalles du type [0, T − δ]. En revanche la continuité en T est plus problématique, et est
obtenue par deux méthodes différentes selon les valeurs de q. La dernière partie de ce chapitre
vise à établir le lien avec les équations aux dérivées partielles stochastiques (EDPS), en utilisant
l’approche de type solution faible développée par Bally, Matoussi in [6].

Le second chapitre est dédié aux EDSR avec condition terminale singulière et sauts. Comme dans
le chapitre précédent la partie délicate sera de prouver la continuité en T . Nous formulons des
conditions suffisantes sur les sauts de la diffusion afin d’obtenir cette dernière. Une section est en-
suite vouée à établir le lien entre solution minimale de l’EDSR et équations intégro-différentielles.

Enfin un dernier chapitre est consacré aux équations différentielles stochastiques rétrogrades
du second ordre (2EDSR) doublement réfléchies. Nous avons cherché à établir l’existence et
l’unicité de telles équations en suivant une approche identique à celle développée dans [89] et
[90] par Soner, Touzi et Zhang. Pour ce faire, il nous a fallu dans un premier temps nous
concentrer sur le problème de réflexion par barrière supérieure des 2EDSR. Ce travail se situe
dans la continuité du papier [66], où Matoussi, Possamaï et Zhou considèrent le problème
de la réflexion par barrière inférieure. Contrairement aux EDSR classiques, le caractère non
linéaire propre aux 2EDSR rend le problème de réflexion non symétrique. Nous traitons ce
problème essentiellement sous l’hypothèse que la barrière supérieure est une semi-martingale
dont le processus à variation finie admet une décomposition de Jordan. Nous avons ensuite
combiné ces résultats à ceux développés dans [66] afin de donner une définition et un cadre aux
2EDSR doublement réfléchies. L’unicité est établie comme conséquence directe d’une propriété
de représentation. L’existence est obtenue en utilisant les espaces shiftés, et les distributions
de probabilité conditionnelles régulières. Enfin une partie application aux jeux de Dynkin et
options Israéliennes sous incertitude est traitée dans la dernière section.

Mots-clés: équations différentielles stochastiques rétrogrades du second ordre, analyse stochas-
tique quasi-sûre, jeux de Dynkin sous incertitude, équations différentielles doublement stochas-
tiques rétrogrades, condition terminale singulière, équations aux dérivées partielles stochastiques,
solutions de viscosité, équations différentielles stochastiques rétrogrades avec sauts, équations
intégro-différentielles.
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Abstract

This thesis is devoted to the study of some problems in the field of backward stochastic differen-
tial equations (BSDE), and their applications to partial differential equations (PDE) and finance.

The two first chapters are dedicated to BSDE with singular terminal conditions. This kind of
equations has been introduced by Popier in [83], and put forward the problem of existence of
BSDE solutions when the terminal condition is allowed to take the value +∞ on a non-negligible
set. In the first chapter, we introduce the notion of backward doubly stochastic differential
equations (BDSDE) with singular terminal condition. A first work consists in studying the
case of BDSDE with monotone generator. We then obtain existing result by an approximating
scheme built considering a truncation of the terminal condition. We can easily verify that
the limit process obtained satisfy the dynamic we are interested in, and possess the good
integrability properties on all intervals of type [0, T − δ]. On the other hand continuity in T is
more problematic and is proved with two different methods according to q values. The last part
of this chapter aim to establish the link with stochastic partial differential equations (SPDE),
using a weak solution approach developed by Bally, Matoussi in [6].

The second chapter is devoted to the BSDEs with singular terminal conditions and jumps.
As in the previous chapter the tricky part will be to prove continuity in T . We formulate
sufficient conditions on the jumps in order to obtain it. A section is then dedicated to establish
a link between a minimal solution of our BSDE and partial integro-differential equations (PIDE).

A last chapter is dedicated to doubly reflected second order backward stochastic differential
equations (2DRBSDE). We have been looking to establish existence and uniqueness for such
equations by following a similar approach developed by Soner, Touzi and Zhang in [89], [90]. In
order to obtain this, we had to focus first on the upper reflection problem for 2BSDEs. This work
is the continuity of [66], where Matoussi, Possamaï and Zhou considered the lower reflection
problem. Unlike classical BSDEs, the non-linearity nature of 2BSDE make this problem non
symmetrical. We treat this problem essentially under the hypothesis that the upper barrier is
a semi-martingale whose finite variation process admits a Jordan decomposition. We combined
then these results to those obtained in [66] to give a definition and a wellposedness context to
2DRBSDE. Uniqueness is established as a straight consequence of a representation property.
Existence is obtained using shifted spaces, and regular conditional probability distributions. A
last part is then consecrated to the link with some Dynkin games and Israeli options under
uncertainty.

Keywords: second order backward stochastic differential equations, quasi-sure stochastic anal-
ysis, Dynkin games with uncertainty, backward doubly stochastic differential equations, singu-
lar terminal conditions, stochastic partial differential equations, viscosity solutions, backward
stochastic differential equations with jumps, partial-integral differential equations.
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Chapter 1

Introduction

This thesis is devoted to the study of some issues in the field of backward stochastic differential
equations (BSDEs).
These equations has been first introduced by Bismut in 1973 [17], and then generalized by
Pardoux, Peng in 1990 [73]. A standard BSDE can be expressed as follows:

Yt = ξ +
∫ T

t
f(s, Ys, Zs)ds−

∫ T

t
ZsdWs, t ∈ [0, T ], P− a.s.

W is a standard Brownian Motion defined on a filtered probability space (Ω,F , (Ft)t≥0,P) with
(Ft)t≥0 the usual augmented filtration. The generator f is a progressively measurable function
and ξ the terminal value is supposed to be FT -measurable. The main difference with a classic
SDE is that the terminal value is fixed instead of the initial one. As a consequence the process Y
is defined at each time t backward in time. The solution is constituted by a couple of F-adapted
processes (Y, Z), with F the natural filtration associated to the Brownian motion. Since at
anytime Yt in its explicit writing let appear FT -measurable processes, the adapted nature of Y
is not obvious, Z plays that precise adaptability role.

In their seminal work [73], Pardoux and Peng established existence and uniqueness results for
this BSDE, for a generator f uniformly Lipschitz in y and z and ξ, f(., 0, 0) square integrable.
There has been since many works whose goal was to weaken those hypothesis.
The BSDEs are widely studied because they are deeply linked with the theory of partial dif-
ferential equations (PDEs). Indeed in a Markovian context, one can consider the following
forward-backward system:

Yt = g(XT ) +
∫ T

t
f(s,Xs, Ys, Zs)ds−

∫ T

t
ZsdWs (1.0.1)

Xt = x+
∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs

The functions f and g here are assumed to be deterministic. Consider now the following PDE:

∂tu(t, x) + Lu(t, x) + f(t, x, u(t, x),∇u(t, x)σ(t, x)) = 0, (t, x) ∈ [0, T )× R (1.0.2)

u(T, .) = g(.)

L, the infinitesimal generator of X is defined as follows:

Lφ :=
1
2
Tr(σσ∗D2φ) + b.∇φ

Recall ∇ and D2 are respectively the gradient and the Hessian matrix w.r.t. x.
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Then a simple application of Itô formula shows that if u is a strong solution to the PDE
1.0.2, then (Yt, Zt) := (u(t,Xt),∇u(t,Xt)σ(t,Xt)) provides a solution to the BSDE 1.0.1. This
probabilistic representation of the PDE allows one, finally to use probabilistic methods to
get numerical simulations of PDE solutions. Note that through this representation we get a
constraint on the class of PDE associated to a classical BSDE: one can only get this link with
quasi-linear PDE. These equations appear naturally in many problems in finance, for a more
complete overview regarding BSDEs and their applications, we refer the reader to the books
[28], [34], [63] and [76].

This thesis will be structured as follows: the two first chapters are devoted to singular terminal
condition BSDEs, once in a doubly stochastic framework and then considering BSDEs with
jumps. A third chapter is dedicated to the issue of doubly reflected 2BSDEs.

1.1 BSDEs with singular terminal condition, SPDEs and PIDEs

1.1.1 BDSDEs and SPDEs

In 1994, Pardoux and Peng [74] have introduced a new class of BSDE, called “doubly stochastic”
(BDSDE in short), which are related to a quasilinear parabolic stochastic partial differential
equations (SPDE in short). Roughly speaking, the BSDE becomes:

Yt = ξ +
∫ T

t
f (r, Yr, Zr) dr +

∫ T

t
g (r, Yr, Zr)

←−−
dBr −

∫ T

t
ZrdWr, 0 ≤ t ≤ T, (1.1.3)

where B is a Brownian motion, independent of W , and
←−−
dBr stands for the backward Itô integral

(see [75], [57]). These BSDEs are connected with the following type of stochastic PDEs: for
(t, x) ∈ [0, T ]× Rd

u(t, x) = h(x) +
∫ T

t
[Lu(s, x) + f(s, x, u(s, x), (∇uσ)(s, x))] ds (1.1.4)

+
∫ T

t
g(s, x, u(s, x), (∇uσ)(s, x))

←−−
dBr.

In [74], considering a square integrable terminal condition ξ the authors established existence
and uniqueness results for a BDSDE under the following Lipschitz hypothesis:

|f(t, y1, z1)− f(t, y2, z2)|2 ≤ C(|y1 − y2|2 + |z1 − z2|2) (Lip)

|g(t, y1, z1)− g(t, y2, z2)|2 ≤ C|y1 − y2|2 + ε|z1 − z2|2, 0 < ε < 1 (Lip2)

and under smoothness assumptions of the coefficients, Pardoux and Peng proved existence
and uniqueness of a classical solution for SPDE (1.1.4) and established the connection with
solutions of BDSDE (1.1.3). Indeed if we consider a Markovian framework, with a terminal
condition such as ξ = h(XT ) with h ∈ C3(Rd), growing at most like a polynomial function
at infinity and X a forward diffusion as in (1.0.1), with coefficients satisfying: b, σ ∈ C3 and
have bounded derivatives of all order. Then u(t, x) := Y t,x

t is the unique solution of SPDE (1.1.4).

In [6], Bally and Matoussi prove existence and uniqueness for solutions of SPDE (1.1.4) under
weaker assumptions: f and g are supposed to be Lipschitz continuous functions. Moreover
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they manage to find a weak formulation for SPDE and establish the link with BDSDE. To
summarize, they prove that the SPDE (1.1.4) has a unique solution u in a Sobolev space and
that Yt = u(t,Xt), Zt = (σ∗∇u)(t,Xt) is the unique solution of BDSDE (1.1.3). One of the
key tools is the theory of stochastic flows already used by Kunita [55, 56]. Under other smooth
assumptions on g, Buckdahn and Ma [21, 22] developed the notion of stochastic viscosity solution
for SPDE and proved existence and uniqueness of a (stochastically) bounded viscosity solution.

1.1.2 BSDEs with jumps and PIDEs

Jumps in BSDEs were first introduced by Li and Tang in [93] considering a Lipschitz generator
and a fixed point approach as in [73]. A solution of a standard BSDE with jumps is a triple
(Y, Z, U) satisfying:

Yt = ξ −
∫ T

t
f(s, Ys, Zs, Us)ds−

∫ T

t
ZsdWs −

∫ T

t

∫
E
Us(e)µ̃(ds, de) (1.1.5)

The additional stochastic integral considered, is an integral with respect to a compensated Pois-
son measure µ̃. Existence and uniqueness results has been established for a Lipschitz generator.
Since then, this branch has been deepened by many authors (for instance see [28],[52], [86]),
these kind of BSDEs are linked to a specific class of PDE, partial integro differential equations
(PIDEs) as studied in [9].

Barles, Buckdahn, Pardoux, indeed did exhibit the link between a BSDE with jumps in a Marko-
vian setup with a forward process X satisfying the following dynamic:

dXs = b(Xs)ds+ σ(Xs)dWs +
∫

E
β(Xs− , e)µ̃(ds, de)

and the following PIDE:

−∂tu(t, x)−Ku(t, x)− f(t, x, u(t, x),∇uσ(t, x), Bu(t, x)) = 0, (t, x) ∈ [0, T )× Rd

u(T, x) = g(x), x ∈ Rd

with K and B defined by:

Kφ(x) := Lφ(x) +
∫

E
(φ(x+ β(x, e))− φ(x)−∇φ(x).β(x, e))λ(de)

Bφ(x) :=
∫

E
(φ(x+ β(x, e))− φ(x))γ(x, e)λ(de)

It is important to note that in order to obtain this result the authors get a very specific depen-
dance in the jumps for their generator explicitly defined by the form of operator B.

1.1.3 BSDEs with singular terminal condition

The notion of backward stochastic differential equations (BSDE) with singular terminal condition
was first introduced in [83] in 2006. Indeed , Popier in [83] studied the behavior of solutions of
BSDE when the terminal condition is allowed to take infinite values on non-negligible set i.e.

P(ξ = +∞ or ξ = −∞) > 0.
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The idea behind the notion of solutions for such equations is the following, we want the couple
(Y, Z) to satisfy the classical dynamic, and to belong to the right spaces but strictly before T ,
and additionally we impose continuity in T for Y .
This has been done in order to obtain a generalization of the Feynman-Kac formula for non
linear partial differential equations (PDE) of the following form:

∂tu+ Lu− u|u|q = 0 (1.1.6)

with L defined as above.

This PDE has been widely studied by PDE arguments (see among others Baras and Pierre [7]
and Marcus and Veron in [64]). It is shown in [64] that every solution of this PDE can be
characterized by a final trace which is a couple (S, µ) where S is a closed subset of Rd and µ a
non-negative Radom measure on Rd\S.
The final trace can also be represented by a positive, outer regular Borel measure ν, and ν is not
necessary locally bounded. The two representations are related by:

∀A ⊂ Rm, A Borel,
{
ν(A) =∞ if A ∩ S 6= ∅
ν(A) = µ(A) if A ⊂ R.

The set S is the set of singular final points of u and it corresponds to a “blow-up” set of u.
Dynkin and Kuznetsov [30] and Le Gall [59] have proved same kind of results but in a
probabilistic framework by using the superprocesses theory.

In [83], the generator f is given by: f(y) = −y|y|q. A minimal solution is constructed by an
non decreasing approximation scheme. The main difficulty is the proof of continuity of the
minimal solution Y at time T . In general Y is a supersolution and the converse property was
proved under stronger sufficient conditions. See also [3] and [40] for other examples and for the
link with a stochastic control problem with terminal constraint. More recently aswell, Kruse
and Popier in [53] exposed an interesting application to optimal position targeting linked with
portfolio liquidation issue. In these papers the continuity problem is not studied.

Let us expose the example developed in [3]. Consider a functional J as follows:

J(x) = E
[∫ T

0
(ηt|ẋt|p + γt|xt|p)dt

]
and want to minimize it over all absolutely continuous paths (xt)t∈[0,T ] starting in x0 and ending
at 0 at T . This kind of control problems occurs for instance when an economic agent has to
close a position of x0 assets shares in a market with a stochastic price impact.
The first term

∫ T
0 (ηt|ẋt|p)dt can be interpreted as the liquidity cost induced by closing the

position, where η is a stochastic price impact factor. The second term is then seen as a measure
of the risk associated to the open position.

It has been shown in [3] that if η and γ satisfy some integrability condition, the following BSDE:

dYt =

(
(p− 1)

Y q
t

ηq−1
t

− γt

)
dt+ ZtdWt
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where q is the conjugate of p, with the singular terminal condition:

lim
t→T

Yt =∞

has a minimal solution. Moreover Y provides an optimal control given by:

x∗t = x0e
−

∫ t
0 (Ys

ηs
)q−1ds

and the value function is given by: J(x∗) = |x0|Y0.

1.1.4 Motivation, formulation of the problem

In the chapter 2 our aim is twofold, first we prove existence and uniqueness of the solution of
a BDSDE with monotone generator f , then we extend the results of [83] to BDSDE in order
to obtain a solution for a SPDE with singular terminal condition h. To our best knowlegde the
closest result concerning our first issue is in Aman [2]. Nevertheless we think that there is a lack
in this paper (proof 4.2). Indeed for monotone BSDE (g = 0) the existence of a solution relies
on the solvability of the BSDE:

Yt = ξ +
∫ T

t
f (r, Yr) dr −

∫ T

t
ZrdWr, 0 ≤ t ≤ T.

See among other the proof of Theorem 2.2 and Proposition 2.4 in [72]. To obtain a solution for
this BSDE, the main trick is to truncate the coefficients with suitable truncation functions in
order to have a bounded solution Y (see Proposition 2.2 in [18]). This can not be done for a
general BDSDE. Indeed take for example (ξ = f = 0 and g = 1):

Yt =
∫ T

t

←−−
dBr −

∫ T

t
ZrdWr = BT −Bt, 0 ≤ t ≤ T,

with Z = 0. Thus in order to prove existence of a solution for (1.1.3), one can not directly follow
the scheme of [72]. The first part of this chapter is devoted to the existence of a solution for
a monotone BDSDE (see Section 2.2) in the space E2 (see definition in the next section). To
realize this project we will restrict the class of functions f : they should satisfy a polynomial
growth condition (as in [18]). Until now we do not know how to extend this to general growth
condition as in [72] or [19].
The second goal of this work is to extend the results of [83] to the doubly stochastic framework.
We will consider the generator f(y) = −y|y|q with q ∈ R∗+ and a real FW

T -measurable and non
negative random variable ξ such that:

P(ξ = +∞) > 0. (1.1.7)

And we want to find a solution to the following BDSDE:

Yt = ξ −
∫ T

t
Ys|Ys|qds+

∫ T

t
g(s, Ys, Zs)

←−−
dBs −

∫ T

t
ZsdWs. (1.1.8)

The scheme to construct a solution is almost the same as in [83]. Let us emphasize one of main
technical difficulties. If g = 0, we can use the conditional expectation w.r.t. Ft to withdraw the
martingale part. If g 6= 0, this trick is useless and we have to be very careful when we want
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almost sure property of the solution. This BDSDE is connected with the stochastic PDE with
terminal condition h: for any 0 ≤ t ≤ T

u(t, x) = h(x) +
∫ T

t
(Lu(s, x)− u(s, x)|u(s, x)|q) ds

+
∫ T

t
g(s, u(s, x), σ(s, x)∇u(s, x))

←−−
dBs. (1.1.9)

If h is a smooth function we could use the result of Pardoux and Peng [74]. But here we will
assume that S = {h = +∞} is a closed non empty set and thus we will precise the notion of
solution for (1.1.9) in this case. Roughly speaking we will show that there is a minimal solution
u in the sense that u belongs to a Sobolev space and is a weak solution of the SPDE on any
interval [0, T − δ], δ > 0 and satisfies the terminal condition: u(t, x) goes to h(x) also in a weak
sense as t goes to T .

In Chapter 3 we would like to provide existence and unicity results for the following BSDE:

Yt = ξ −
∫ T

t
Ys|Ys|qds−

∫ T

t
ZsdWs −

∫ T

t

∫
E
Us(e)µ̃(ds, de) (1.1.10)

where the terminal condition ξ satisfies

P(ξ = +∞) > 0. (1.1.11)

It is already established that such a BSDE has a unique solution when the terminal condition ξ
belongs to Lp(Ω,FT ,P), p > 1 (see among others [9], [28], [52] or [93]). We would like to extend
this result when the terminal condition is singular, i.e. verifies (1.1.11). More precisely in [53]
(see Theorem 17 below) it is proved that the BSDE (1.1.10) with singular terminal condition has
a minimal super-solution (Y, Z, U) such that

lim inf
t→T

Yt ≥ ξ.

Since a priori estimates are not hard to establish, to obtain our existence results, we essentially
want to find sufficient conditions to have a.s.

lim
t→T

Yt = ξ. (1.1.12)

This problem was studied in [83] when there is no jump. In the Markovian framework and
for q > 2, Equality (1.1.12) was proved. Here we will follow the same idea. But we need
other technical assumptions on the jumps of the solution X of the forward SDE and the set
S = {ξ = +∞}.
The second part is devoted to the study of the related partial integro differential equation (PIDE
in short): for any x ∈ Rd, u(T, x) = g(x) and for any (t, x) ∈ [0, T [×Rd

∂

∂t
u(t, x) + Lu(t, x) + I(t, x, u)− u(t, x)|u(t, x)|q = 0 (1.1.13)

where L is given above and I is a integro-differential operator:

I(t, x, φ) =
∫

E
[φ(x+ h(t, x, e))− φ(x)− (∇φ)(x)h(t, x, e)]λ(de).
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If there is no jump, in [83] the following link is established between the solution Y t,x of the BSDE
(1.1.10) and the viscosity solution u of the PIDE (1.1.13):

u(t, x) = Y t,x
t

This relation is also obtained in [9] in the case where there are jumps and if the terminal function
g is of linear growth. Moreover several papers have studied the existence and the uniqueness of
the solution of such PIDE (see among others [1], [10], [13] or [48]).
To our best knowledges the study of (1.1.13) in the jump case and with a singularity at time T is
completely new. Singularity means that the set {g = +∞} is non empty. There is no probabilistic
representation of such PIDE using superprocesses. Hence the second aim of the chapter is to
prove that this minimal solution Y is the probabilistic representation of the minimal positive
viscosity solution u of the PIDE. Moreover we will show that the sufficient conditions for (1.1.12)
are also sufficient to ensure “continuity at time T ” of u.

1.1.5 Contributions to BDSDEs

Let us now precise our notations. W and B are independent Brownian motions defined on a
probability space (Ω,F ,P) with values in Rk and Rm. Let N denote the class of P-null sets of
F . For each t ∈ [0, T ], we define

Ft = FW
t ∨ FB

t,T

where for any process η, Fη
s,t = σ {ηr − ηs; s ≤ r ≤ t} ∨ N , Fη

t = Fη
0,t. As in [74] we define the

following filtration (Gt, t ∈ [0, T ]) by:

Gt = FW
t ∨ FB

0,T .

ξ is a FW
T -measurable and Rd-valued random variable.

We define by Hp(0, T ; Rn) the set of (classes of dP × dt a.e. equal) n dimensional jointly mea-
surable random processes (Xt, t ≥ 0) which satisty:

1. E
(∫ T

0
|Xt|2dt

)p/2

< +∞

2. Xt is Gt-measurable for a.e. t ∈ [0, T ].

We denote similarly by Sp(0, T ; Rn) the set of continuous n dimensional random processes which
satisfy:

1. E

(
sup

t∈[0,T ]
|Xt|p

)
< +∞

2. Xt is Gt-measurable for any t ∈ [0, T ].

Bp(0, T ) is the product Sp(0, T ; Rd)×Hp(0, T ; Rd×k). (Y, Z) ∈ Ep(0, T ) if (Y, Z) ∈ Bp(0, T ) and Yt

and Zt are Ft-measurable. Finally Cp,q([0, T ] × Rd; R) denotes the space of R-valued functions
defined on [0, T ] × Rd which are p-times continuously differentiable in t ∈ [0, T ] and q-times
continuously differentiable in x ∈ Rd. Cp,q

b ([0, T ]×Rd; R) is the subspace of Cp,q([0, T ]×Rd; R)
in which all functions have uniformly bounded partial derivatives; and Cp,q

c ([0, T ] × Rd; R) the
subspace of Cp,q([0, T ]× Rd; R) in which the functions have a compact support w.r.t. x ∈ Rd.
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Now we precise our assumptions on f and g. The functions f and g are defined on
[0, T ] × Ω × Rd × Rd×k with values respectively in Rd and Rd×m. Moreover we consider the
following assumptions.

Assumptions (A).

• The function y 7→ f(t, y, z) is continuous and there exists a constant µ such that for any
(t, y, y′, z) a.s.

〈y − y′, f(t, y, z)− f(t, y′, z)〉 ≤ µ|y − y′|2. (A1)

• There exists Kf such that for any (t, y, z, z′) a.s.

|f(t, y, z)− f(t, y, z′)|2 ≤ Kf |z − z′|2. (A2)

• There exists Cf ≥ 0 and p > 1 such that

|f(t, y, z)− f(t, 0, z)| ≤ Cf (1 + |y|p). (A3)

• There exists a constant Kg ≥ 0 and 0 < ε < 1 such that for any (t, y, y′, z, z′) a.s.

|g(t, y, z)− g(t, y′, z′)|2 ≤ Kg|y − y′|2 + ε|z − z′|2. (A4)

• Finally for any (t, y, z), f(t, y, z) and g(t, y, z) are Ft-measurable with

E
∫ T

0

(
|f(t, 0, 0)|2 + |g(t, 0, 0)|2

)
dt < +∞. (A5)

Remember that from [74] if f also satisfies: there exists K̃f such that for any (t, y, y′, z) a.s.

|f(t, y, z)− f(t, y′, z)| ≤ K̃f |y − y′| (1.1.14)

then there exists a unique solution (Y, Z) ∈ E2(0, T ) to the BDSDE (1.1.3). Note that (1.1.14)
implies that

|f(t, y, z)− f(t, 0, z)| ≤ K̃f |y|,

thus the growth assumption (A3) on f is satisfied with p = 1.
We emphasize the fact that the assumptions (A2), (A4) are exactly (Lip),(Lip2) from [74] thus
are somewhat standard when dealing with the doubly stochastic framework.
In Section 2.2 we will prove the following result.

Theorem 1. Under Assumptions (A) and if the terminal condition ξ satisfies

E(|ξ|2) < +∞, (1.1.15)

the BDSDE (1.1.3) has a unique solution (Y, Z) ∈ E2(0, T ).

Using the paper of Aman [2], this result can be extended to the Lp case: for p ∈ (1, 2)

E
∫ T

0
(|f(t, 0, 0)|p + |g(t, 0, 0)|p) dt+ E(|ξ|p) < +∞.
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There exists a unique solution in Ep(0, T ).
The next sections are devoted to the singular case. The generator f will be supposed to be
deterministic and given by: f(y) = −y|y|q for some q > 0. The aim is to prove existence of a
solution for BDSDE (1.1.8) when the non negative random variable ξ satisfies (1.1.7). A possible
extension of the notion of solution for a BDSDE with singular terminal condition could be the
following (see Definition 1 in [83]).

Definition 1 (Solution of the BDSDE (1.1.8)). Let q > 0 and ξ a FW
T -measurable non negative

random variable satisfying condition (1.1.7). We say that the process (Y, Z) is a solution of the
BDSDE (1.1.8) if (Y, Z) is such that (Yt, Zt) is Ft-measurable and:

(D1) for all 0 ≤ s ≤ t < T : Ys = Yt −
∫ t

s
Yr|Yr|qdr +

∫ t

s
g(r, Yr, Zr)

←−−
dBr −

∫ t

s
ZrdWr;

(D2) for all t ∈ [0, T [, E
(

sup
0≤s≤t

|Ys|2 +
∫ t

0
‖Zr‖2dr

)
< +∞;

(D3) P-a.s. lim
t→T

Yt = ξ.

A solution is said non negative if a.s. for any t ∈ [0, T ], Yt ≥ 0.

In order to define a wellposedness theory for DBSDE with singular terminal condition, we follow
the idea initiated in [83], but we’ll have to deal with the backward integral term which intervene
in a non-trivial way in some situations.

To obtain an a priori estimate of the solution we will assume that g(t, y, 0) = 0 for any (t, y)
a.s. This condition will ensure that our solutions will be non negative and bounded on any time
interval [0, T − δ] with δ > 0. Without this hypothesis, integrability of the solution would be
more challenging. In Section 2.3, we will prove the following result.

Theorem 2. There exists a process (Y, Z) satisfying Conditions (D1) and (D2) of Definition 8
and such that Y has a limit at time T with

lim
t→T

Yt ≥ ξ.

Moreover this solution is minimal: if (Ỹ , Z̃) is a non negative solution of (1.1.8), then a.s. for
any t, Ỹt ≥ Yt.

It means in particular that Yt has a left limit at time T .
In general we are not able to prove that (D3) holds. As in [83], we give sufficient conditions for
continuity and we prove it in the Markovian framework. Hence the first hypothesis on ξ is the
following:

ξ = h(XT ), (H1)

where h is a function defined on Rd with values in R+ such that the set of singularity S =
{h = +∞} is closed; and where XT is the value at t = T of a diffusion process or more precisely
the solution of a stochastic differential equation (in short SDE):

Xt = x+
∫ t

0
b(r,Xr)dr +

∫ t

0
σ(r,Xr)dWr, for t ∈ [0, T ]. (1.1.16)
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We will always assume that b and σ are defined on [0, T ] × Rd, with values respectively in Rd

and Rd×k, are measurable w.r.t. the Borelian σ-algebras, and that there exists a constant K > 0
s.t. for all t ∈ [0, T ] and for all (x, y) ∈ Rd × Rd:

1. Lipschitz condition:

|b(t, x)− b(t, y)|+ ‖σ(t, x)− σ(t, y)‖ ≤ K|x− y|; (L)

2. Growth condition:

|b(t, x)| ≤ K(1 + |x|) and ‖σ(t, x)‖ ≤ K(1 + |x|). (G)

It is well known that under the previous assumptions, Equation (1.1.16) has a unique strong
solution X.
We denote R = Rd \ S. The second hypothesis on ξ is: for all compact set K ⊂ R = Rd \
{h = +∞}

h(XT )1K(XT ) ∈ L1 (Ω,FT ,P; R) . (H2)

Unfortunately the above assumptions are not sufficient to prove continuity if q ≤ 2. Thus we
add the following conditions in order to use Malliavin calculus and to prove Equality (2.4.41).

1. The functions σ and b are bounded: there exists a constant K s.t.

∀(t, x) ∈ [0, T ]× Rd, |b(t, x)|+ ‖σ(t, x)‖ ≤ K. (B)

2. The second derivatives of σσ∗ belongs to L∞:

∂2σσ∗

∂xi∂xj
∈ L∞([0, T ]× Rd). (D)

3. σσ∗ is uniformly elliptic, i.e. there exists λ > 0 s.t. for all (t, x) ∈ [0, T ]× Rd:

∀y ∈ Rd, σσ∗(t, x)y.y ≥ λ|y|2. (E)

4. h is continuous from Rd to R+ and:

∀M ≥ 0, h is a Lipschitz function on the set OM = {|h| ≤M} . (H3)

Theorem 3. Under Assumptions (H1), (H2) and (L) and if

• either q > 2 and (G);

• or (B), (D), (E) and (H3);

the minimal non negative solution (Y, Z) of (1.1.8) satisfies (D3): a.s.

lim
t→T

Yt = ξ.
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Note that these conditions are identical to [83], nevertheless none of the proofs of this result
could be adapted directly to our doubly stochastic context. Moreover it seems surprising to us
that we do not get additional hypothesis on g by introducing a doubly stochastic framework,
other than (Lip), (Lip2) from [74].
Finally in section 2.5, we show that this minimal solution (Y, Z) of (1.1.8) is connected to the
minimal weak solution u of the SPDE (1.1.9). More precisely Xt,x is the solution of the SDE
(1.1.16) with initial condition x at time t and (Y t,x, Zt,x) is the minimal solution of the BDSDE
(1.1.8) with singular terminal condition ξ = h(Xt,x

T ).
Let us define the space H(0, T ) as in [6]. We take the following weight function ρ : Rd → R: for
κ > d

ρ(x) =
1

(1 + |x|)κ
. (1.1.17)

The constant κ will be fixed later. H(0, T ) is the set of the random fields {u(t, x); 0 ≤ t ≤ T, x ∈
Rd} such that u(t, x) is FB

t,T -measurable for each (t, x), u and σ∗∇u belong to L2((0, T ) × Ω ×
Rd; ds⊗ dP⊗ ρ(x)dx). On H(0, T ) we consider the following norm

‖u‖22 = E
∫ T

0

∫
Rd

(
|u(s, x)|2 + |(σ∗∇u)(s, x)|2

)
ρ(x)dx.

Theorem 4. The random field u defined by u(t, x) = Y t,x
t belongs to H(0, T − δ) for any δ > 0

and is a weak solution of the SPDE (1.1.9) on [0, T − δ] × Rd. At time T , u satisfies a.s.
lim inft→T u(t, x) ≥ h(x).
Moreover under the same assumptions of Theorem 3, for any function φ ∈ C∞c (Rd) with support
included in R, then

lim
t→T

E
(∫

Rd

u(t, x)φ(x)dx
)

=
∫

Rd

h(x)φ(x)dx.

Finally u is the minimal non negative solution of (1.1.9).

In order to prove this result, we proceeded in a few steps. First we noticed that (1.1.9) with
terminal function h ∧ n has an unique weak solution un thanks to [6] and this solution coincide
with the solution of the forward-backward system in the following sense: Y n,t,x

s = un(s,Xt,x
s ) ,

Zn,t,x
s = (σ∗∇un)(s,Xt,x

s ). We define then u as the limit of the random fields un. Then it is
easy to deduce an upper bound for u on [0, T − δ], and by dominated convergence we get that u
satisfies the two first properties of a weak solution. And since we have good a priori estimates
we can obtain that u satisfies the last property by a monotone convergence.
The last point: limt→T E

(∫
Rd u(t, x)φ(x)dx

)
=
∫

Rd h(x)φ(x)dx is obtained by proving inequali-
ties in both ways and standard arguments.

1.1.6 Contributions to BSDEs with jumps

Our setting is the same as in [9]. In the following we will consider W = (Wt)t∈R+ the standard
Brownian Motion on Rk, µ a Poisson random measure on R+ × E with compensator dtλ(de).
Here E := R`\{0}, E its Borel field and we assume that we have a stochastic basis (Ω,F ,P) and
the filtration (Ft, t ≥ 0) is generated by the two independent processes W and µ and we assume
that F0 contains all P-null elements of F . We will denote µ̃ is the compensated measure: for
any A ∈ E such that λ(A) < +∞, then µ̃([0, t]×A) = µ([0, t]×A)− tλ(A) is a martingale. λ is
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assumed to be a σ-finite measure on (E, E) satisfying∫
E
(1 ∧ |e|2)λ(de) < +∞.

In this chapter for a given T ≥ 0, we denote:

• P: the predictable σ-field on Ω× [0, T ] and

P̃ = P ⊗ E

• On Ω̃ = Ω × [0, T ] × E, a function that is P̃-measurable, is called predictable. Gloc(µ) is
the set of P̃-measurable functions ψ on Ω̃ such that for any t ≥ 0 a.s.∫ t

0

∫
E
(|ψs(e)|2 ∧ |ψs(e)|)λ(de) < +∞.

• D (resp. D(0, T )): the set of all progressively measurable càdlàg processes on R+ (resp.
on [0, T ]).

• Sp(0, T ) is the space of all processes X ∈ D(0, T ) such that

E

(
sup

t∈[0,T ]
|Xt|p

)
< +∞.

For simplicity, X∗ = supt∈[0,T ] |Xt|.

• Hp(0, T ) is the subspace of all processes X ∈ D(0, T ) such that

E

[(∫ T

0
|Xt|2dt

)p/2
]
< +∞.

• Lp
µ(0, T ) = Lp

µ(Ω× (0, T )× E): the set of processes ψ ∈ Gloc(µ) such that

E

[(∫ T

0

∫
E
|ψs(e)|2λ(de)ds

)p/2
]
< +∞.

• Lp
λ = Lp(E, λ; Rd): the set of measurable functions ψ : E → Rd such that

‖ψ‖p
Lp

λ
=
∫

E
|ψ(e)|pλ(de) < +∞.

• Bp
µ(0, T ) = Sp(0, T )×Hp(0, T )× Lp

µ(0, T ).

Definition 2. Let q > 0 and ξ a Ft-measurable non negative random variable such that P(ξ =
∞) > 0. We say (Y, Z, U) is a solution of (1.1.10) with singular terminal condition ξ if

• (Y, Z, U) belongs to B2(0, t) for any t < T .
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• for all 0 ≤ s ≤ t < T :

Ys = Yt −
∫ t

s
Yr|Yr|qdr −

∫ t

s
ZrdWr −

∫ t

s

∫
E
Us(e)µ̃(ds, de).

• Y is continuous at T : a.s.
lim
t→T

Yt = ξ.

If we consider the same approximating scheme as in [53], we define Y the limit process of Y n

where Y n satisfies the BSDE with jumps associated to the data (ξ ∧ n,U). Then we can obtain
this proposition.

Proposition 1. The process Y can be written as follows:

Yt =
(
q(T − t) + EFt

[
1
ξq

]
− φt

)−1/q

where φ is a non negative supermartingale. As a consequence, the process Y has a left limit in
T .

We suppose now our terminal condition is of the form: ξ = g(XT ). The function g is defined on
Rd with values in R+ ∪ {+∞} and we denote

S := {x ∈ Rd s.t. g(x) =∞}

the set of singularity points for the terminal condition induced by g. This set S is supposed to
be closed. We also denoted by Γ the boundary of S. The process X is the solution of a SDE
with jumps:

Xt = X0 +
∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs +

∫ t

0

∫
E
h(s,Xs− , e)µ̃(de, ds). (1.1.18)

The coefficients b : Ω×[0, T ]×Rd → Rd, σ : Ω×[0, T ]×Rd → Rd×k and h : Ω×[0, T ]×Rd×E → Rd

satisfy

Assumptions (B):

1. b, σ and h are jointly continuous w.r.t. (t, x) and Lipschitz continuous w.r.t. x uniformly
in t, e or ω, i.e. there exists a constant C such that for any (ω, t, e) ∈ Ω × [0, T ] × E, for
any x and y in Rd: a.s.

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ C|x− y| (L)

and ∫
E
|h(t, x, e)− h(t, y, e)|2λ(de) ≤ C|x− y|. (B2)

2. b, σ and h growth at most linearly:

|b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|). (G)
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3. h is bounded w.r.t. t and x and there exists a constant Ch such that a.s.

|h(t, x, e)| ≤ Ch(1 ∧ |e|). (B4)

Now the second hypothesis on ξ is: for all compact set K ⊂ Rd \ S

g(XT )1K(XT ) ∈ L1 (Ω,FT ,P) . (1.1.19)

Assumption (C):

• The boundary ∂S = Γ is compact and of class C2.

• For any x ∈ S, any s ∈ [0, T ] and λ-a.s.

x+ h(s, x, e) ∈ S.

Furthermore there exists a constant κ > 0 such that if x ∈ Γ, then for any s ∈ [0, T ],
d(x+ h(s, x, e),Γ) ≥ κ, λ-a.s.

Theorem 5. Under Assumptions (B) and (C), Y is continuous at T.

To have more regularity on u we add some conditions on the coefficients.

1. σ and b are bounded: there exists a constant C s.t.

∀(t, x) ∈ [0, T ]× Rd, |b(t, x)|+ ‖σ(t, x)‖ ≤ C; (B)

2. σσ∗ is uniformly elliptic, i.e. there exists λ > 0 s.t. for all (t, x) ∈ [0, T ]× Rd:

∀y ∈ Rd, σσ∗(t, x)y.y ≥ λ|y|2. (E)

Definition 3 (Viscosity solution with singular data). A function u is a viscosity solution of
(1.1.13) with terminal data g if u is a viscosity solution on [0, T [×Rd and satisfies:

lim
(t,x)→(T,x0)

u(t, x) = g(x0). (1.1.20)

Theorem 6. The function u is the minimal viscosity solution of (1.1.13) with terminal data g.

1.1.7 Perspectives

In the singular terminal condition framework, we assume the generator to be known and explicit
as:

f(ω, t, y, z) := −y|y|q

This allows us when the terminal condition is deterministic to obtain the following solution to
our BSDE (which becomes an ODE):

yC
t = (q(T − t) +

1
C

)−
1
q , Z ≡ 0
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Then by comparison theorem we easily get majorations for our processes Y n, Y n
t ≤ yn

t . And the
choice of our generator allows us to obtain some nice properties on yn that is: yn ≤ y∞, ∀n ∈ N
and y∞t <∞, ∀t < T .

One question that raises obviously is: can we describe a class of generators f for which existence
of a solution stands for a BSDE with singular terminal condition?
Noting that the previous ODE with a general generator f depending only on y can be written:

yt = C +
∫ T

t
f(ys)ds

⇔ y′(t) = −f(yt)

⇔
∫ T

t

y′(s)
f(ys)

ds = −(T − t)

⇔
∫ ∞

y(t)
− 1
f(u)

du = t− T <∞

We conjecture that our results can be extended to continuous and monotonic, functions f such
that 1/f ∈ L1([0;∞)). Nevertheless we face some difficulties, regarding a priori estimates,
existence of a limit and continuity at T our previous arguments does not work anymore.
Some recent works from [53] have made one step in that direction, indeed the authors have
weakened the conditions on the generator f , they consider a more general constraint type:

f(t, y, ψ) ≤ −ρ− 1
at
|y|r + f(t, 0, ψ)

and a future work could be to study the continuity at time T of a solution under this hypothesis.
Another generalization that could be made would be to remove the sign assumption on ξ. In the
two problems of singular terminal condition we assume ξ ≥ 0. We do think this is not necessary
and probably there is way to adapt the part 5 of [83] in order to obtain the same result with a
slightly more general terminal condition.

1.2 2DBSDEs and related game options

1.2.1 RBSDEs, DRBSDEs and applications

The notion of Reflected BSDE (RBSDE) has been introduced by El Karoui, Kapoudjian, Par-
doux, Peng, Quenez in [33]. In addition with the parameters (f, ξ), we consider a barrier process
S. In that situation the solution is a triple (Y, Z,K), with K non-decreasing, such that:

Yt = ξ +
∫ T

t
fs(Ys, Zs)ds+KT −Kt −

∫ T

t
ZsdBs, t ∈ [0, T ], P− a.s.

Yt ≥ St, t ∈ [0, T ], P− a.s.∫ T

0
(Yt − St)dKt = 0, P− a.s.

The role of the process K here is to push upward Y in order to keep it above the barrier S. The
last condition is known as the Skorohod condition and guarantees that the process K acts in a
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minimal way, that is to say only when the process Y reaches the lower barrier S. The RBSDEs
are linked with the problem of pricing American contingent claim by replication, especially in
constrained markets (see [35] and [32] for more details).

Building upon these results, Cvitanić and Karatzas [27] have introduced the notion of BSDEs
with two reflecting barriers. Roughly speaking, in [27] (see also [32] and [46] to name but a
few) the authors have looked for a solution to a BSDE whose Y component is forced to stay
between two prescribed processes L and U , (L ≤ U). More precisely, they were looking for
a quadruple of progressively measurable processes (Y, Z,K+,K−), where K+ and K− are in
addition non-decreasing such that

Yt = ξ +
∫ T

t
fs(Ys, Zs)ds+K−

T −K
−
t −K

+
T +K+

t −
∫ T

t
ZsdBs, t ∈ [0, T ], P− a.s.

Lt ≤ Yt ≤ Ut, t ∈ [0, T ], P− a.s.∫ T

0
(Yt − Lt)dK−

t =
∫ T

0
(Ut − Yt)dK+

t = 0, P− a.s.

These BSDEs have been developed especially in connection with Dynkin games, mixed differential
games and recallable options (see ([32], [45], [44] and [41]). It is now established that under
quite general assumptions, including in models with jumps, existence of a solution to a (simply)
reflected BSDE is guaranteed under mild conditions, whereas existence of a solution to a doubly
reflected BSDE (DRBSDE for short) is equivalent to the so-called Mokobodski condition. This
condition essentially postulates the existence of a quasimartingale between the barriers (see in
particular [43]). Note that in [43] authors did demonstrate that existence of local solutions is
equivalent to a weakened Mokobodski condition, roughly speaking the existence of a difference
of non-negative supermartingales between the barriers. As for uniqueness of solutions, it is
guaranteed under mild integrability conditions (see e.g. [43, Remark 4.1]). However, for practical
purposes, existence and uniqueness are not the only relevant results and may not be enough.
For instance, one can consider the problem of pricing convertible bonds in finance using the
DRBSDE theory (see [15], [16] and [26]). In this case, the state-process (first component) Y
may be interpreted in terms of an arbitrage price process for the bond. As demonstrated in [16],
the mere existence of a solution to the related DRBSDE is a result with important theoretical
consequences in terms of pricing and hedging the bond. Yet, in order to give further developments
to these results in Markovian set-ups, Crépey and Matoussi [26] have established bound and error
estimates and comparison theorem for DRBSDE, which require more regularity assumptions on
the barriers.

1.2.2 2BSDEs

More recently, motivated by numerical methods for fully nonlinear PDEs, second order BSDEs
(2BSDEs for short) were introduced by Cheredito, Soner, Touzi and Victoir in [24]. Then Soner,
Touzi and Zhang [89] proposed a new formulation and obtained a complete theory of existence
and uniqueness for such BSDEs. The main novelty in their approach is that they require that
the solution verifies the equation P−a.s. for every probability measure P in a non-dominated set.
Their approach therefore shares many connections with the deep theory of quasi-sure analysis
initiated by Denis and Martini [29] and the G-expectations developed by Peng [78].
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Intuitively speaking (we refer the reader to [89] for more details), the solution to a 2BSDE with
generator F and terminal condition ξ can be understood as a supremum in some sense of the
classical BSDEs with the same generator and terminal condition, but written under the different
probability measures considered. Following this intuition, a non-decreasing process K is added
to the solution and it somehow pushes (in a minimal way) the solution so that it stays above the
solutions of the classical BSDEs.

Following these results and motivated by the pricing of American contingent claims in markets
with volatility uncertainty, Matoussi, Possamaï and Zhou [66] used the methodology of [89] to
introduce a notion of reflected second order BSDEs, and proved existence and uniqueness in
the case of a lower obstacle. The fact that they consider only lower obstacles was absolutely
crucial. Indeed, as mentioned above, in that case, the effects due to the reflection and the second
order act in the same direction, in the sense that they both force the solution to stay above
some processes. One therefore only needs to add a non-decreasing process to the solution of
the equation. However, as soon as one tries to consider upper obstacles, the two effects start to
counterbalance each other and the situation changes drastically. This case was thus left open in
[66]. On a related note, we would like to refer the reader to the very recent article [31], which
gives some specific results for the optimal stopping problem under a non-linear expectation
(which roughly corresponds to a 2RBSDE with generator equal to 0). However, since it is a
"sup-sup" problem, it is only related to the lower reflected 2BSDEs. Even more recently and
after the completion of this work, Nutz and Zhang [68] managed to treat the same problem of
optimal stopping under non-linear expectations but now with an "inf-sup" formulation, which,
as shown by Proposition 2, is related to upper reflected 2BSDEs.

1.2.3 Motivation

The first aim of this chapter is to extend the results of [66] to the case of doubly reflected
second-order BSDEs when we assume enough regularity on one of the barriers (as in [26]) and
that the two barriers are completely separated (as in [42] and [43]). In that case, we show that
the right way to define a solution is to consider a 2BSDE where we add a process V which has
only bounded variations (see Definition 6). Our next step towards a theory of existence and
uniqueness is then to understand as much as possible how and when this bounded variation
process acts. Our key result is obtained in Proposition 4.3.5, and allows us to obtain a special
Jordan decomposition for V , in the sense that we can decompose it into the difference of two
non-decreasing processes which never act at the same time. Thanks to this result, we are then
able to obtain a priori estimates and a uniqueness result. Next, we reuse the methodology of [66]
to construct a solution.

We also show that these objects are related to non-standard optimal stopping games, thus gen-
eralizing the connection between DRBSDEs and Dynkin games first proved by Cvitanić and
Karatzas [27]. Finally, we show that the second order DRBSDEs allow to obtain super and sub-
hedging prices for American game options (also called Israeli options) in financial markets with
volatility uncertainty and that, under a technical assumption, they provide solutions of what we
call uncertain Dynkin games.
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1.2.4 Main results

Let Ω :=
{
ω ∈ C([0, T ],Rd) : ω0 = 0

}
be the canonical space equipped with the uniform norm

‖ω‖∞ := sup0≤t≤T |ωt|, B the canonical process, P0 the Wiener measure, F := {Ft}0≤t≤T the
filtration generated by B, and F+ :=

{
F+

t

}
0≤t≤T

the right limit of F. A probability measure P
will be called a local martingale measure if the canonical process B is a local martingale under
P. Then, using results of Bichteler [14] (see also Karandikar [50] for a modern account), the
quadratic variation 〈B〉 and its density â can be defined pathwise, and such that they coincide
with the usual definitions under any local martingale measure.

With the intuition of modeling, volatility uncertainty, we let PW denote the set of all local
martingale measures P such that

〈B〉 is absolutely continuous in t and â takes values in S>0
d , P− a.s., (1.2.21)

where S>0
d denotes the space of all d× d real valued positive definite matrices.

However, since this set is too large for our purpose (in particular there are examples of measures
in PW which do not satisfy the martingale representation property, see [88] for more details), we
will concentrate on the following subclass PS consisting of

Pα := P0 ◦ (Xα)−1 where Xα
t :=

∫ t

0
α1/2

s dBs, t ∈ [0, T ], P0 − a.s., (1.2.22)

for some F-progressively measurable process α taking values in S>0
d with

∫ T
0 |αt|dt < +∞, P0−a.s.

This subset has the convenient property that all its elements do satisfy the martingale represen-
tation property and the Blumenthal 0 − 1 law (see [88] for details) which are crucial tools for
the BSDE theory.

We consider a map Ht(ω, y, z, γ) : [0, T ]× Ω× R× Rd ×DH → R, where DH ⊂ Rd×d is a given
subset containing 0, whose Fenchel transform w.r.t. γ is denoted by

Ft(ω, y, z, a) := sup
γ∈DH

{
1
2
Tr(aγ)−Ht(ω, y, z, γ)

}
for a ∈ S>0

d ,

F̂t(y, z) := Ft(y, z, ât) and F̂ 0
t := F̂t(0, 0).

We denote by DFt(y,z) := {a, Ft(ω, y, z, a) < +∞} the domain of F in a for a fixed (t, ω, y, z).
As in [89] we fix a constant κ ∈ (1, 2] and restrict the probability measures in Pκ

H ⊂ PS

Definition 4. Pκ
H consists of all P ∈ PS such that

aP ≤ â ≤ āP, dt× dP− a.s. for some aP, āP ∈ S>0
d , and φ2,κ

H < +∞,

where

φ2,κ
H := sup

P∈Pκ
H

EP

ess sup
0≤t≤T

P
(

EH,P
t

[∫ T

0
|F̂ 0

s |κds
]) 2

κ

 .
Definition 5. We say that a property holds Pκ

H-quasi-surely (Pκ
H-q.s. for short) if it holds P-a.s.

for all P ∈ Pκ
H .
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We now state the main assumptions on the function F which will be our main interest in the
sequel

Assumption (D):

(i) The domain DFt(y,z) = DFt is independent of (ω, y, z).

(ii) For fixed (y, z, a), F is F-progressively measurable in DFt .

(iii) We have the following uniform Lipschitz-type property in y and z

∀(y, y′, z, z′, t, a, ω),
∣∣Ft(ω, y, z, a)− Ft(ω, y′, z′, a)

∣∣ ≤ C (∣∣y − y′∣∣+ ∣∣∣a1/2
(
z − z′

)∣∣∣) .
(iv) F is uniformly continuous in ω for the || · ||∞ norm.

(v) Pκ
H is not empty.

The following spaces and the corresponding norms will be used throughout the chapter. With
the exception of the space Lp,κ

H , they all are immediate extensions of the usual spaces to the
quasi-sure setting.

For p ≥ 1, Lp,κ
H denotes the space of all FT -measurable scalar r.v. ξ with

‖ξ‖p
Lp,κ

H
:= sup

P∈Pκ
H

EP [|ξ|p] < +∞.

Hp,κ
H denotes the space of all F+-progressively measurable Rd-valued processes Z with

‖Z‖pHp,κ
H

:= sup
P∈Pκ

H

EP

[(∫ T

0
|â1/2

t Zt|2dt
) p

2

]
< +∞.

Dp,κ
H denotes the space of all F+-progressively measurable R-valued processes Y with

Pκ
H − q.s. càdlàg paths, and ‖Y ‖pDp,κ

H
:= sup

P∈Pκ
H

EP

[
sup

0≤t≤T
|Yt|p

]
< +∞,

where càdlàg is the french acronym for "right-continuous with left-limits".

Ip,κ
H denotes the space of all F+-progressively measurable R-valued processes K null at 0 with

Pκ
H − q.s., càdlàg and non-decreasing paths, and ‖K‖pIp,κ

H
:= sup

P∈Pκ
H

EP [(KT )p] < +∞.

Vp,κ
H denotes the space of all F+-progressively measurable R-valued processes V null at 0 with

paths which are Pκ
H − q.s. càdlàg and of bounded variation, and such that

‖V ‖pVp,κ
H

:= sup
P∈Pκ

H

EP [(Var0,T(V))p] < +∞.

For each ξ ∈ L1,κ
H , P ∈ Pκ

H and t ∈ [0, T ] denote

EH,P
t [ξ] := ess supP

P′∈Pκ
H(t+,P)

EP′
t [ξ] where Pκ

H(t+,P) :=
{

P
′ ∈ Pκ

H : P
′
= P on F+

t

}
.
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Here EP
t [ξ] := EP[ξ|Ft]. Then we define for each p ≥ κ,

Lp,κ
H :=

{
ξ ∈ Lp,κ

H : ‖ξ‖Lp,κ
H

< +∞
}

where ‖ξ‖pLp,κ
H

:= sup
P∈Pκ

H

EP

[
ess sup
0≤t≤T

P
(
EH,P

t [|ξ|κ]
) p

κ

]
.

We denote by UCb(Ω) the collection of all bounded and uniformly continuous maps ξ : Ω → R
with respect to the ‖·‖∞-norm, and we let

Lp,κ
H := the closure of UCb(Ω) under the norm ‖·‖Lp,κ

H
, for every 1 ≤ κ ≤ p.

Finally, for every P ∈ Pκ
H , and for any p ≥ 1, Lp(P), Hp(P), Dp(P), Ip(P) and Vp(P) will denote

the corresponding usual spaces when there is only one measure P.

First, we consider a process S which will play the role of the upper obstacle. We will always
assume that S verifies the following properties

Assumption (E):

(i) S is F-progressively measurable and càdlàg.

(ii) S is uniformly continuous in ω in the sense that for all t

|St(ω)− St(ω̃)| ≤ ρ (‖ω − ω̃‖t) , ∀ (ω, ω̃) ∈ Ω2,

for some modulus of continuity ρ and where we define ‖ω‖t := sup
0≤s≤t

|ω(s)|.

(iii) S is a semimartingale for every P ∈ Pκ
H , with the decomposition

St = S0 +
∫ t

0
PsdBs +AP

t , P− a.s., for all P ∈ Pκ
H , (1.2.23)

where the AP are bounded variation processes with Jordan decomposition AP,+−AP,− and

ζ2,κ
H := sup

P∈Pκ
H

(
EP

[
ess supP

0≤t≤T
EH,P

t

[(∫ T

t

∣∣∣â1/2
s Ps

∣∣∣2 ds)κ/2

+
(
AP,+

T

)κ
]])2

< +∞.

(iv) S satisfies the following integrability condition

ψ2,κ
H := sup

P∈Pκ
H

EP

ess sup
0≤t≤T

P

(
EH,P

t

[
sup

0≤s≤T
|Ss|κ

]) 2
κ

 < +∞.

Next, we also consider a lower obstacle L which will be assumed to verify

Assumption (F):

(i) L is a F-progressively measurable càdlàg process.
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(ii) L is uniformly continuous in ω in the sense that for all t and for some modulus of continuity
ρ

|Lt(ω)− Lt(ω̃)| ≤ ρ (‖ω − ω̃‖t) , ∀ (ω, ω̃) ∈ Ω2.

(iii) For all t ∈ [0, T ], we have

Lt < St and Lt− < St− , Pκ
H − q.s.

(iv) We have the following integrability condition

ϕ2,κ
H := sup

P∈Pκ
H

EP

ess sup
0≤t≤T

P

(
EH,P

t

[(
sup

0≤s≤T
(Ls)

+

)κ]) 2
κ

 < +∞. (1.2.24)

We shall consider the following second order doubly reflected BSDE (2DRBSDE for short) with
upper obstacle S and lower obstacle L

Yt = ξ +
∫ T

t
F̂s(Ys, Zs)ds−

∫ T

t
ZsdBs + VT − Vt, 0 ≤ t ≤ T, Pκ

H − q.s. (1.2.25)

In order to give the definition of the 2DRBSDE, we first need to introduce the corresponding
standard doubly reflected BSDEs. Hence, for any P ∈ Pκ

H , F-stopping time τ , and Fτ -measurable
random variable ξ ∈ L2(P), let

(yP, zP, kP,+, kP,−) := (yP(τ, ξ), zP(τ, ξ), kP,+(τ, ξ), kP,−(τ, ξ)),

denote the unique solution to the following standard DRBSDE with upper obstacle S and lower
obstacle L (existence and uniqueness have been proved under these assumptions in [26] among
others)

yP
t = ξ +

∫ τ
t F̂s(yP

s , z
P
s )ds−

∫ τ
t z

P
s dBs + kP,−

τ − kP,−
t − kP,+

τ + kP,+
t , 0 ≤ t ≤ τ, P− a.s.

Lt ≤ yP
t ≤ St, P− a.s.∫ t

0

(
yP

s− − Ls−
)
dkP,−

s =
∫ t
0

(
Ss− − yP

s−

)
dkP,+

s = 0, P− a.s., ∀t ∈ [0, T ].
(1.2.26)

Everything is now ready for the

Definition 6. We say (Y, Z) ∈ D2,κ
H ×H2,κ

H is a solution to the 2DRBSDE (1.2.25) if

• YT = ξ, Pκ
H − q.s.

• ∀P ∈ Pκ
H , the process V P defined below has paths of bounded variation P− a.s.

V P
t := Y0 − Yt −

∫ t

0
F̂s(Ys, Zs)ds+

∫ t

0
ZsdBs, 0 ≤ t ≤ T, P− a.s. (1.2.27)
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• We have the following minimum condition for 0 ≤ t ≤ T

V P
t + kP,+

t − kP,−
t = ess infP

P′∈PH(t+,P)
EP′

t

[
V P′

T + kP′ ,+
T − kP′ ,−

T

]
, P− a.s., ∀P ∈ Pκ

H . (1.2.28)

• Lt ≤ Yt ≤ St, Pκ
H − q.s.

Moreover, if there exists an aggregator for the family (V P)P∈Pκ
H
, that is to say a progressively

measurable process V such that for all P ∈ Pκ
H ,

Vt = V P
t , t ∈ [0, T ], P− a.s.,

then we say that (Y, Z, V ) is a solution to the 2DRBSDE (1.2.25).

We have similarly as in Theorem 4.4 of [89]

Theorem 7. Let Assumption (D) hold. Assume ξ ∈ L2,κ
H and that (Y, Z) is a solution to the

2DRBSDE (1.2.25). Then, for any P ∈ Pκ
H and 0 ≤ t1 < t2 ≤ T ,

Yt1 = ess supP

P′∈Pκ
H(t+1 ,P)

yP′
t1 (t2, Yt2), P− a.s. (1.2.29)

Consequently, the 2DRBSDE (1.2.25) has at most one solution in D2,κ
H ×H2,κ

H .

We are able to deduce a comparison Theorem easily from the classical one for DRBSDEs (see
for instance [61]) and the representation (1.2.29) above.

Theorem 8. Let Assumptions (D), (E) and (F) hold. For i = 1, 2, let (Y i, Zi) be the solutions
to the 2DRBSDE (1.2.25) with terminal condition ξi, upper obstacle S and lower obstacle L.
Then, there exists a constant Cκ depending only on κ, T and the Lipschitz constant of F such
that ∥∥Y 1 − Y 2

∥∥
D2,κ

H
≤ C

∥∥ξ1 − ξ2∥∥L2,κ
H∥∥Z1 − Z2

∥∥2

H2,κ
H

+ sup
P∈Pκ

H

EP

[
sup

0≤t≤T

∣∣∣V P,+,1
t − V P,+,2

t

∣∣∣2 + sup
0≤t≤T

∣∣∣V P,−,1
t − V P,−,2

t

∣∣∣2]
≤ C

∥∥ξ1 − ξ2∥∥L2,κ
H

(∥∥ξ1∥∥L2,κ
H

+
∥∥ξ1∥∥L2,κ

H
+ (φ2,κ

H )1/2 + (ψ2,κ
H )1/2 + (ϕ2,κ

H )1/2 + (ζ2,κ
H )1/2

)
.

Now that we have proved the representation (1.2.29) and the a priori estimates of Theorems 4.3.7
and 4.3.8, we can show, as in the classical framework, that the solution Y of the 2DRBSDE is
linked to some kind of Dynkin game. For any t ∈ [0, T ], denote Tt,T the set of F-stopping times
taking values in [t, T ].

Proposition 2. Let (Y, Z) be the solution to the above 2DRBSDE (1.2.25). For any (τ, σ) ∈ T0,T ,
define

Rσ
τ := Sτ1τ<σ + Lσ1σ≤τ,σ<T + ξ1τ∧σ=T .

Then for each t ∈ [0, T ], for all P ∈ Pκ
H , we have P− a.s.

Yt = ess supP

P′∈Pκ
H(t+,P)

ess inf
τ∈Tt,T

ess sup
σ∈Tt,T

EP′
t

[∫ τ∧σ

t
F̂s(yP′

s , z
P′
s )ds+Rσ

τ

]
= ess supP

P′∈Pκ
H(t+,P)

ess sup
σ∈Tt,T

ess inf
τ∈Tt,T

EP′
t

[∫ τ∧σ

t
F̂s(yP′

s , z
P′
s )ds+Rσ

τ

]
.



1.2. 2DBSDEs and related game options 23

Moreover, for any γ ∈ [0, 1], we have P− a.s.

Yt = ess inf
τ∈Tt,T

ess sup
σ∈Tt,T

EP
t

[∫ τ∧σ

t
F̂s(Ys, Zs)ds+KP,γ

τ∧σ −K
P,γ
t +Rσ

τ

]
= ess sup

σ∈Tt,T

ess inf
τ∈Tt,T

EP
t

[∫ τ∧σ

t
F̂s(Ys, Zs)ds+KP,γ

τ∧σ −K
P,γ
t +Rσ

τ

]
,

where

KP,γ
t := γ

∫ t

0
1yP

s−
<Ss−

dV P
s + (1− γ)

∫ t

0
1Ys−>Ls−

dV P
s .

Furthermore, for any P ∈ Pκ
H , the following stopping times are ε-optimal

τ ε,P
t := inf

{
s ≥ t, yP

s ≥ Ss − ε, P− a.s.
}

and σε
t := inf {s ≥ t, Ys ≤ Ls + ε, Pκ

H − q.s.} .

Then, if we have more information on the obstacle S and its decomposition (1.2.23), we can give
a more explicit representation for the processes V P, just as in the classical case (see Proposition
4.2 in [35]).

Assumption (G)

S is a semi-martingale of the form

St = S0 +
∫ t

0
Usds+

∫ t

0
PsdBs + Ct, Pκ

H − q.s.

where C is càdlàg process of integrable variation such that the measure dCt is singular with
respect to the Lebesgue measure dt and which admits the following decomposition Ct = C+

t −C
−
t ,

where C+ and C− are non-decreasing processes. Besides, U and V are respectively R and Rd-
valued Ft progressively measurable processes such that∫ T

0
(|Ut|+ |Pt|2)dt+ C+

T + C−T ≤ +∞, Pκ
H − q.s.

Theorem 9. Let ξ ∈ L2,κ
H and let Assumptions (D), (E) and (F) hold. Then

1) There exists a unique solution (Y, Z) ∈ D2,κ
H ×H2,κ

H of the 2DRBSDE (1.2.25).
2) Moreover, if in addition we choose to work under either of the following model of set theory
(we refer the reader to [39] for more details)

(i) Zermelo-Fraenkel set theory with axiom of choice (ZFC) plus the Continuum Hypothesis
(CH).

(ii) ZFC plus the negation of CH plus Martin’s axiom.

Then there exists a unique solution (Y, Z, V ) ∈ D2,κ
H ×H2,κ

H × V2,κ
H of the 2DRBSDE (1.2.25).

Regarding applications, let us first recall the definition of an Israeli (or game) option, and we
refer the reader to [51], [41] and the references therein for more details. An Israeli option is a
contract between a broker (seller) and a trader (buyer). The specificity is that both can decide
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to exercise before the maturity date T . If the trader exercises first at a time t then the broker
pays him the (random) amount Lt. If the broker exercises before the trader at time t, the trader
will be given from him the quantity St ≥ Lt, and the difference St − Lt is as to be understood
as a penalty imposed on the seller for canceling the contract. In the case where they exercise
simultaneously at t, the trader payoff is Lt and if they both wait till the maturity of the contract
T , the trader receives the amount ξ. In other words, this is an American option which has the
specificity that the seller can also "exercise" early. This therefore is a typical Dynkin game. We
assume throughout this section that the processes L and S satisfy Assumptions (F) and (G).

To sum everything up, if we consider that the broker exercises at a stopping time τ ≤ T and the
trader at another time σ ≤ T then the trader receive from the broker the following payoff:

H(σ, τ) := Sτ1τ<σ + Lσ1σ≤τ + ξ1σ∧τ=T

Before introducing volatility uncertainty, let us first briefly recall how the fair price and the
hedging of such an option is related to DRBSDEs in a classical financial market. We fix a
probability measure P, and we assume that the market contains one riskless asset, whose price
is assumed w.l.o.g. to be equal to 1, and one risky asset. We furthermore assume that if the
broker adopts a strategy π (which is an adapted process in H2(P) representing the percentage of
his total wealth invested in the risky asset), then his wealth process has the following expression

XP
t = ξ +

∫ T

t
b(s,XP

s , π
P
s )ds−

∫ T

t
πP

sσsdWs ,P− a.s.

where W is a Brownian motion under P, b is convex and Lipschitz with respect to (x, π). We
also suppose that the process (b(t, 0, 0))t≤T is square-integrable and (σt)t≤T is invertible and its
inverse is bounded. It was then proved in [51] and [41] that the fair price and an hedging strategy
for the Israeli option described above can be obtained through the solution of a DRBSDE. More
precisely, we have

Theorem 10. The fair price of the game option and the corresponding hedging strategy are given
by the pair (yP, πP) ∈ D2(P)×H2(P) solving the following DRBSDE

yP
t = ξ +

∫ T
t b(s, yP

s , π
P
s )ds−

∫ T
t πP

sσsdWs + kP
t − kP

t , P− a.s.
Lt ≤ yP

t ≤ St, P− a.s.∫ T
0 (yP

t− − Lt−)dkP,−
t =

∫ T
0 (St− − yP

t−)dkP,+
t = 0.

Moreover, for any ε > 0, the following stopping times are ε-optimal after t for the seller and the
buyer respectively

D1,ε,P
t := inf

{
s ≥ t, yP

s ≥ Ss − ε
}
, D2,ε,P

t := inf
{
s ≥ t, yP

s ≤ Ls + ε
}
.

Definition 7. For ξ ∈ L2,κ
H , we consider the following type of equations satisfied by a pair of

progressively-measurable processes (Y, Z)

• YT = ξ, Pκ
H − q.s.

• ∀P ∈ Pκ
H , the process V P defined below has paths of bounded variation P− a.s.

V P
t := Y0 − Yt −

∫ t

0
F̂s(Ys, Zs)ds+

∫ t

0
ZsdBs, 0 ≤ t ≤ T, P− a.s. (1.2.30)
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• We have the following maximum condition for 0 ≤ t ≤ T

V P
t + kP,+

t − kP,−
t = ess supP

P′∈PH(t+,P)

EP′
t

[
V P′

T + kP′ ,+
T − kP′ ,−

T

]
, P− a.s., ∀P ∈ Pκ

H . (1.2.31)

• Lt ≤ Yt ≤ St, Pκ
H − q.s.

Theorem 11. The superhedging and subhedging prices Y and Ỹ are respectively the unique
solution of the 2DRBSDE with terminal condition ξ, generator b, lower obstacle L, upper obstacle
S in the sense of Definitions 6 and 7 respectively. The corresponding hedging strategies are then
given by Z and Z̃.

Moreover, for any ε > 0 and for any P, the following stopping times are ε-optimal after t for the
seller and the buyer respectively

D1,ε,P
t := inf

{
s ≥ t, yP

s ≥ Ss − ε, P− a.s.
}
, D2,ε

t := inf {s ≥ t, Ys ≤ Ls + ε, Pκ
H − q.s.} .

Assumption (H)

We suppose that the following "min-max" property are satisfied. For any P ∈ Pκ
H

ess inf
τ∈Tt,T

ess sup
σ∈Tt,T

ess supP

P′∈Pκ
H(t+,P)

EP′
t [Rt(τ, σ)] = ess supP

P′∈Pκ
H(t+,P)

ess inf
τ∈Tt,T

ess sup
σ∈Tt,T

EP′
t [Rt(τ, σ)], P− a.s.

(1.2.32)

ess sup
σ∈Tt,T

ess inf
τ∈Tt,T

ess infP
P′∈Pκ

H(t+,P)
EP′

t [Rt(τ, σ)] = ess infP
P′∈Pκ

H(t+,P)
ess sup
σ∈Tt,T

ess inf
τ∈Tt,T

EP′
t [Rt(τ, σ)], P− a.s.

(1.2.33)

Theorem 12. Let Assumption (H) hold. Let (Y, Z) (resp. (Ỹ , Z̃)) be a solution to the 2DRB-
SDE in the sense of Definition 6 (resp. in the sense of Definition 7) with terminal condition ξ,
generator g, lower obstacle L and upper obstacle S. Then we have for any t ∈ [0, T ]

V t = Yt, Pκ
H − q.s.

V t = Ỹt, Pκ
H − q.s.

Moreover, unless Pκ
H is reduced to a singleton, we have V > V , Pκ

H − q.s.
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Introduction

We recall that a BDSDE is written as:

Yt = ξ +
∫ T

t
f (r, Yr, Zr) dr +

∫ T

t
g (r, Yr, Zr)

←−−
dBr −

∫ T

t
ZrdWr, 0 ≤ t ≤ T, (2.0.1)

where B is a Brownian motion, independent of W , and
←−−
dBr is the backward Itô integral. These

BSDE are connected with the following type of stochastic PDE: for (t, x) ∈ [0, T ]× Rd

u(t, x) = h(x) +
∫ T

t
[Lu(s, x) + f(s, x, u(s, x), (∇uσ)(s, x))] ds (2.0.2)

+
∫ T

t
g(s, x, u(s, x), (∇uσ)(s, x))

←−−
dBr.

The main goal of this chapter is to extend the results of [83] to BDSDE and to obtain a solution
for a SPDE with singular terminal condition h. But before we have to prove existence and
uniqueness of the solution of a BDSDE with monotone generator f . To our best knowlegde the
closest result on this topic is in Aman [2]. Nevertheless we think that there is a lack in this
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paper (proof 4.2). Indeed for monotone BSDE (g = 0) the existence of a solution relies on the
solvability of the BSDE:

Yt = ξ +
∫ T

t
f (r, Yr) dr −

∫ T

t
ZrdWr, 0 ≤ t ≤ T.

See among other the proof of Theorem 2.2 and Proposition 2.4 in [72]. To obtain a solution for
this BSDE, the main trick is to truncate the coefficients with suitable truncation functions in
order to have a bounded solution Y (see Proposition 2.2 in [18]). This can not be done for a
general BDSDE. Indeed take for example (ξ = f = 0 and g = 1):

Yt =
∫ T

t

←−−
dBr −

∫ T

t
ZrdWr = BT −Bt, 0 ≤ t ≤ T,

with Z = 0. Thus in order to prove existence of a solution for (2.0.1), one can not directly follow
the scheme of [72]. The first part of this paper is devoted to the existence of a solution for a
monotone BDSDE (see Section 2.2) in the space E2. To realize this project we will restrict the
class of functions f : they should satisfy a polynomial growth condition (as in [18]). Until now
we do not know how to extend this to general growth condition as in [72] or [19].
The second goal of this work is to extend the results of [83] to the doubly stochastic framework.
We will consider the generator f(y) = −y|y|q with q ∈ R∗+ and a real FW

T -measurable and non
negative random variable ξ such that:

P(ξ = +∞) > 0. (2.0.3)

And we want to find a solution to the following BDSDE:

Yt = ξ −
∫ T

t
Ys|Ys|qds+

∫ T

t
g(s, Ys, Zs)

←−−
dBs −

∫ T

t
ZsdWs. (2.0.4)

The scheme to construct a solution is almost the same as in [83]. Let us emphasize one of main
technical difficulties. If g = 0, we can use the conditional expectation w.r.t. Ft to withdraw the
martingale part. If g 6= 0, this trick is useless and we have to be very careful when we want
almost sure property of the solution. This BDSDE is connected with the stochastic PDE with
terminal condition h: for any 0 ≤ t ≤ T

u(t, x) = h(x) +
∫ T

t
(Lu(s, x)− u(s, x)|u(s, x)|q) ds

+
∫ T

t
g(s, u(s, x), σ(s, x)∇u(s, x))

←−−
dBs. (2.0.5)

If h is a smooth function we could use the result of Pardoux and Peng [74]. But here we will
assume that S = {h = +∞} is a closed non empty set and thus we will precise the notion of
solution for (2.0.5) in this case. Roughly speaking we will show that there is a minimal solution
u in the sense that u belongs to a Sobolev space and is a weak solution of the SPDE on any
interval [0, T − δ], δ > 0 and satisfies the terminal condition: u(t, x) goes to h(x) also in a weak
sense as t goes to T .
The chapter is decomposed as follows. In the first section, we give the mathematical setting and
our main contributions. In the next section, we study the existence and uniqueness of a class of
monotone BDSDE. In Section 2.3 we construct a (super)solution for the BDSDE with singular
terminal condition. In Section 2.4 we prove continuity at time T for this solution under sufficient
conditions. Finally in the last part, we connect BDSDE and SPDE with a singularity at time T .
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2.1 Setting and main results

Let us now precise our notations. W and B are independent Brownian motions defined on a
probability space (Ω,F ,P) with values in Rk and Rm. Let N denote the class of P-null sets of
F . For each t ∈ [0, T ], we define

Ft = FW
t ∨ FB

t,T

where for any process η, Fη
s,t = σ {ηr − ηs; s ≤ r ≤ t} ∨ N , Fη

t = Fη
0,t. As in [74] we define the

following filtration (Gt, t ∈ [0, T ]) by:

Gt = FW
t ∨ FB

0,T .

ξ is a FW
T -measurable and Rd-valued random variable.

We define by Hp(0, T ; Rn) the set of (classes of dP × dt a.e. equal) n dimensional jointly mea-
surable random processes (Xt, t ≥ 0) which satisty:

1. E
(∫ T

0
|Xt|2dt

)p/2

< +∞

2. Xt is Gt-measurable for a.e. t ∈ [0, T ].

We denote similarly by Sp(0, T ; Rn) the set of continuous n dimensional random processes which
satisfy:

1. E

(
sup

t∈[0,T ]
|Xt|p

)
< +∞

2. Xt is Gt-measurable for any t ∈ [0, T ].

Bp(0, T ) is the product Sp(0, T ; Rd)×Hp(0, T ; Rd×k). (Y, Z) ∈ Ep(0, T ) if (Y, Z) ∈ Bp(0, T ) and Yt

and Zt are Ft-measurable. Finally Cp,q([0, T ] × Rd; R) denotes the space of R-valued functions
defined on [0, T ] × Rd which are p-times continuously differentiable in t ∈ [0, T ] and q-times
continuously differentiable in x ∈ Rd. Cp,q

b ([0, T ]×Rd; R) is the subspace of Cp,q([0, T ]×Rd; R)
in which all functions have uniformly bounded partial derivatives; and Cp,q

c ([0, T ] × Rd; R) the
subspace of Cp,q([0, T ]× Rd; R) in which the functions have a compact support w.r.t. x ∈ Rd.
Now we precise our assumptions on f and g. The functions f and g are defined on
[0, T ] × Ω × Rd × Rd×k with values respectively in Rd and Rd×m. Moreover we consider the
following

Assumptions (A):

• The function y 7→ f(t, y, z) is continuous and there exists a constant µ such that for any
(t, y, y′, z) a.s.

〈y − y′, f(t, y, z)− f(t, y′, z)〉 ≤ µ|y − y′|2. (A1)

• There exists Kf such that for any (t, y, z, z′) a.s.

|f(t, y, z)− f(t, y, z′)|2 ≤ Kf |z − z′|2. (A2)

• There exists Cf ≥ 0 and p > 1 such that

|f(t, y, z)− f(t, 0, z)| ≤ Cf (1 + |y|p). (A3)
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• There exists a constant Kg ≥ 0 and 0 < ε < 1 such that for any (t, y, y′, z, z′) a.s.

|g(t, y, z)− g(t, y′, z′)|2 ≤ Kg|y − y′|2 + ε|z − z′|2. (A4)

• Finally for any (t, y, z), f(t, y, z) and g(t, y, z) are Ft measurable with

E
∫ T

0

(
|f(t, 0, 0)|2 + |g(t, 0, 0)|2

)
dt < +∞. (A5)

Remember that from [74] if f also satisfies: there exists K̃f such that for any (t, y, y′, z) a.s.

|f(t, y, z)− f(t, y′, z)| ≤ K̃f |y − y′| (2.1.6)

then there exists a unique solution (Y, Z) ∈ E2(0, T ) to the BDSDE (2.0.1). Note that (2.1.6)
implies that

|f(t, y, z)− f(t, 0, z)| ≤ K̃f |y|,

thus the growth assumption (A3) on f is satisfied with p = 1.
In Section 2.2 we will prove the following result.

Theorem 13. Under Assumptions (A) and if the terminal condition ξ satisfies

E(|ξ|2) < +∞, (2.1.7)

the BDSDE (2.0.1) has a unique solution (Y, Z) ∈ E2(0, T ).

Using the paper of Aman [2], this result can be extended to the Lp case: for p ∈ (1, 2)

E
∫ T

0
(|f(t, 0, 0)|p + |g(t, 0, 0)|p) dt+ E(|ξ|p) < +∞.

There exists a unique solution in Ep(0, T ).
The next sections are devoted to the singular case. The generator f will be supposed to be
deterministic and given by: f(y) = −y|y|q for some q > 0. The aim is to prove existence of a
solution for BDSDE (2.0.4) when the non negative random variable ξ satisfies (2.0.3). A possible
extension of the notion of solution for a BDSDE with singular terminal condition could be the
following (see Definition 1 in [83]).

Definition 8 (Solution of the BDSDE (2.0.4)). Let q > 0 and ξ a FW
T -measurable non negative

random variable satisfying condition (2.0.3). We say that the process (Y, Z) is a solution of the
BDSDE (2.0.4) if (Y, Z) is such that (Yt, Zt) is Ft-measurable and:

(D1) for all 0 ≤ s ≤ t < T : Ys = Yt −
∫ t

s
Yr|Yr|qdr +

∫ t

s
g(r, Yr, Zr)

←−−
dBr −

∫ t

s
ZrdWr;

(D2) for all t ∈ [0, T [, E
(

sup
0≤s≤t

|Ys|2 +
∫ t

0
‖Zr‖2dr

)
< +∞;

(D3) P-a.s. lim
t→T

Yt = ξ.

A solution is said non negative if a.s. for any t ∈ [0, T ], Yt ≥ 0.
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To obtain an a priori estimate of the solution we will assume that g(t, y, 0) = 0 for any (t, y)
a.s. This condition will ensure that our solutions will be non negative and bounded on any time
interval [0, T − δ] with δ > 0. Without this hypothesis, integrability of the solution would be
more challenging. In Section 2.3, we will prove the following result.

Theorem 14. There exists a process (Y, Z) satisfying Conditions (D1) and (D2) of Definition
8 and such that Y has a limit at time T with

lim
t→T

Yt ≥ ξ.

Moreover this solution is minimal: if (Ỹ , Z̃) is a non negative solution of (2.0.4), then a.s. for
any t, Ỹt ≥ Yt.

It means in particular that Yt has a left limit at time T .
In general we are not able to prove that (D3) holds. As in [83], we give sufficient conditions for
continuity and we prove it in the Markovian framework. Hence the first hypothesis on ξ is the
following:

ξ = h(XT ), (H1)

where h is a function defined on Rd with values in R+ such that the set of singularity S =
{h = +∞} is closed; and where XT is the value at t = T of a diffusion process or more precisely
the solution of a stochastic differential equation (in short SDE):

Xt = x+
∫ t

0
b(r,Xr)dr +

∫ t

0
σ(r,Xr)dWr, for t ∈ [0, T ]. (2.1.8)

We will always assume that b and σ are defined on [0, T ] × Rd, with values respectively in Rd

and Rd×k, are measurable w.r.t. the Borelian σ-algebras, and that there exists a constant K > 0
s.t. for all t ∈ [0, T ] and for all (x, y) ∈ Rd × Rd:

1. Lipschitz condition:

|b(t, x)− b(t, y)|+ ‖σ(t, x)− σ(t, y)‖ ≤ K|x− y|; (L)

2. Growth condition:

|b(t, x)| ≤ K(1 + |x|) and ‖σ(t, x)‖ ≤ K(1 + |x|). (G)

It is well known that under the previous assumptions, Equation (2.1.8) has a unique strong
solution X.
We denote R = Rd \ S. The second hypothesis on ξ is: for all compact set K ⊂ R = Rd \
{h = +∞}

h(XT )1K(XT ) ∈ L1 (Ω,FT ,P; R) . (H2)

Unfortunately the above assumptions are not sufficient to prove continuity if q ≤ 2. Thus we
add the following conditions in order to use Malliavin calculus and to prove Equality (2.4.41).

1. The functions σ and b are bounded: there exists a constant K s.t.

∀(t, x) ∈ [0, T ]× Rd, |b(t, x)|+ ‖σ(t, x)‖ ≤ K. (B)
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2. The second derivatives of σσ∗ belongs to L∞:

∂2σσ∗

∂xi∂xj
∈ L∞([0, T ]× Rd). (D)

3. σσ∗ is uniformly elliptic, i.e. there exists λ > 0 s.t. for all (t, x) ∈ [0, T ]× Rd:

∀y ∈ Rd, σσ∗(t, x)y.y ≥ λ|y|2. (E)

4. h is continuous from Rd to R+ and:

∀M ≥ 0, h is a Lipschitz function on the set OM = {|h| ≤M} . (H3)

Theorem 15. Under assumptions (H1), (H2) and (L) and if

• either q > 2 and (G);

• or (B), (D), (E) and (H3);

the minimal non negative solution (Y, Z) of (2.0.4) satisfies (D3): a.s.

lim
t→T

Yt = ξ.

Finally in section 2.5, we show that this minimal solution (Y, Z) of (2.0.4) is connected to the
minimal weak solution u of the SPDE (2.0.5). More precisely Xt,x is the solution of the SDE
(2.1.8) with initial condition x at time t and (Y t,x, Zt,x) is the minimal solution of the BDSDE
(2.0.4) with singular terminal condition ξ = h(Xt,x

T ).
Let us define the space H(0, T ) as in [6]. We take the following weight function ρ : Rd → R: for
κ > d

ρ(x) =
1

(1 + |x|)κ
. (2.1.9)

The constant κ will be fixed later. H(0, T ) is the set of the random fields {u(t, x); 0 ≤ t ≤ T, x ∈
Rd} such that u(t, x) is FB

t,T -measurable for each (t, x), u and σ∗∇u belong to L2((0, T ) × Ω ×
Rd; ds⊗ dP⊗ ρ(x)dx). On H(0, T ) we consider the following norm

‖u‖22 = E
∫ T

0

∫
Rd

(
|u(s, x)|2 + |(σ∗∇u)(s, x)|2

)
ρ(x)dx.

Theorem 16. The random field u defined by u(t, x) = Y t,x
t belongs to H(0, T − δ) for any

δ > 0 and is a weak solution of the SPDE (2.0.5) on [0, T − δ]× Rd. At time T , u satisfies a.s.
lim inft→T u(t, x) ≥ h(x).
Moreover under the same assumptions of Theorem 15, for any function φ ∈ C∞c (Rd) with support
included in R, then

lim
t→T

E
(∫

Rd

u(t, x)φ(x)dx
)

=
∫

Rd

h(x)φ(x)dx.

Finally u is the minimal non negative solution of (2.0.5).

The almost sure continuity of u at time T is still an open question. In [83], this property is proved
using viscosity solution arguments (relaxation of the boundary condition). Here we cannot do
the same trick. This point will be investigated in further publications.
In the continuation, unimportant constants will be denoted by C.
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2.2 Monotone BDSDE

As mentioned in the introduction and in the previous section, our first contribution is the exten-
sion of the result of Pardoux and Peng [74] with monotone condition (A1). We begin with the
particular case where f does not depend on z and g is a given random field.

2.2.1 Case with f(t, y, z) = f(t, y) and g(t, y, z) = gt

In this special case assume that there exists a solution to the BDSDE:

Yt = ξ +
∫ T

t
f (r, Yr) dr +

∫ T

t
gr
←−−
dBr −

∫ T

t
ZrdWr, 0 ≤ t ≤ T. (2.2.10)

Then we have

Yt +
∫ t

0
gr
←−−
dBr = ξ +

∫ T

0
gr
←−−
dBr +

∫ T

t
f (r, Yr) dr −

∫ T

t
ZrdWr, 0 ≤ t ≤ T.

Let us define:

Ut = Yt +
∫ t

0
gr
←−−
dBr, ζ = ξ +

∫ T

0
gr
←−−
dBr,

and

φ(t, y) = f

(
t, y −

∫ t

0
gr
←−−
dBr

)
.

Then (U,Z) satisfies:

Ut = ζ +
∫ T

t
φ (r, Ur) dr −

∫ T

t
ZrdWr, 0 ≤ t ≤ T. (2.2.11)

The terminal condition ζ is GT -measurable and the generator φ satisfies the following assump-
tions.

1. φ is continuous w.r.t. y and (A1) is true with the same constant µ.

2. From (A3), there exists p > 1 such that

|φ(t, y)| ≤ h(t) + Cφ(1 + |y|p). (2.2.12)

where Cφ = Cf2p−1 and

h(t) = |f(t, 0)|+ 2p−1

∣∣∣∣∫ t

0
gr
←−−
dBr

∣∣∣∣p .
On the solution (U,Z) we impose the following measurability constraints:

(M1). The process (U,Z) is adapted to the filtration (Gt, t ≥ 0).

(M2). The random variable Ut −
∫ t
0 gr
←−−
dBr is Ft-measurable for any 0 ≤ t ≤ T .
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Let us assume the boundedness hypothesis on ξ, g and f(t, 0): there exists a constant γ > 0
such that a.s. for any t ≥ 0,

|ξ|+ |f(t, 0)|+ |gt| ≤ γ. (2.2.13)

Hence for any q > 1

E
[
|ζ|q +

(∫ T

0
|h(t)|qdt

)]
< +∞.

From [18] or [72] there exists a unique solution (U,Z) ∈ B2(0, T ) to the BSDE (2.2.11) such that
(M1) holds and

E

[
sup

t∈[0,T ]
|Ut|2 +

(∫ T

0
|Zr|2dr

)]
< +∞.

Theorem 3.6 in [18] also gives that

E

[
sup

t∈[0,T ]
|Ut|2p +

(∫ T

0
|Zr|2dr

)p
]
< +∞.

But we cannot derive directly from this result that (M2) is satisfied, that is Ut −
∫ t
0 gr
←−−
dBr is Ft-

measurable for any 0 ≤ t ≤ T . Therefore we follow the proof of Proposition 3.5 in [18] to prove
the existence and uniqueness of the solution (U,Z) with the desired measurability conditions.

Proposition 3. Under Assumptions (A1), (A2), (A3) and (2.2.13), there exists a unique solu-
tion (U,Z) ∈ B2(0, T ) to the BSDE (2.2.11), such that (M1) and (M2) hold.

Proof. As written before, we sketch the proof of Proposition 3.5 in [18]. The details can be
found in [18] and we just emphasize the main differences. For any n ≥ 1, we define the following
function:

φ̃n(t, y) =

{
φ(t, y) if h(t) ≤ n,
n

|h(t)|φ(t, y) if h(t) > n.

This function is continuous w.r.t. y and (A1) still holds. Moreover

|φ̃n(t, y)| ≤ (|h(t)| ∧ n) + Cφ(1 + |y|p).

Then as in [18], we define
φn(t, .) = ρn ∗ (Θq(n)+1(φ̃n(t, .))),

where

• q(n) = de1/2(n+ 2Cφ)
√

1 + T 2e+ 1, where dre stands for the integer part of r;

• Θn is a smooth function with values in [0, 1] such that Θn(u) = 1 if |u| ≤ n, Θn(u) = 0 if
|u| ≥ n+ 1;

• ρn(u) = nkρ(nu) with ρ a C∞ non negative function with support equal to the unit ball
and such that

∫
ρ(u)du = 1.

Since ζ is in Lq(Ω) (for any q > 2p) there exists a unique solution (Un, V n) ∈ Bq(0, T ) to the
BSDE (see Theorem 4.2 in [19] or Theorem 5.1 in [36]):

Un
t = ζ +

∫ T

t
φn (r, Un

r ) dr −
∫ T

t
V n

r dWr, 0 ≤ t ≤ T. (2.2.14)
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Moreover for some constant Kp independent of n

E

[
sup

t∈[0,T ]
|Un

t |2p +
(∫ T

0
|V n

r |2dr
)p
]
≤ KpE

[
|ζ|2p +

(∫ T

0
(|h(r)|+ 2Cφ)dr

)2p
]
.

We have a strong convergence of the sequence (Un, V n) to (U,Z):

lim
n→+∞

E

[
sup

t∈[0,T ]
|Un

t − Ut|2 +
(∫ T

0
|V n

r − Zr|2dr
)]

= 0.

And (U,Z) is the solution of BSDE (2.2.11) satisfying condition (M1) and (U,Z) ∈ B2p(0, T ).
Now let us come to the measurability condition (M2). Recall that

φ(t, y) = f

(
t, y −

∫ t

0
gr
←−−
dBr

)
,

h(t) = |f(t, 0)|+ 2p−1

∣∣∣∣∫ t

0
gr
←−−
dBr

∣∣∣∣p ,
and the process f(t, .) is Ft-measurable. Hence for any y and t

φn(t, y +
∫ t

0
gr
←−−
dBr) = ρn ∗ (Θq(n)+1(φ̃n(t, .)))(y +

∫ t

0
gr
←−−
dBr)

=
∫
ρn(z)Θq(n)+1

(
φ̃n

(
t, y − z +

∫ t

0
gr
←−−
dBr

))
dz.

Now

φ̃n

(
t, x+

∫ t

0
gr
←−−
dBr

)
=

n

h(t) ∨ n
f(t, x) =

n

h(t)1h(t)≥n ∨ n
f(t, x),

Thus φn(t, y +
∫ t
0 gr
←−−
dBr) is measurable w.r.t. the σ-algebra Ft ∨ σ(h(t)1h(t)≥n). Let us denote

Hn = σ(h(t)1h(t)≥n, 0 ≤ t ≤ T ).

φn(t, y +
∫ t
0 gr
←−−
dBr) is measurable w.r.t. the σ-algebra Fn

t = Ft ∨Hn.
If we define

Y n
t = Un

t −
∫ t

0
gr
←−−
dBr,

then

Y n
t = ξ +

∫ T

t
gr
←−
Br +

∫ T

t
φn

(
r, Y n

r +
∫ r

0
gs
←−
Bs

)
dr −

∫ T

t
V n

r dWr, 0 ≤ t ≤ T.

We claim that Y n
t is measurable w.r.t. Ft ∨ Hn. Indeed let us recall that (Un, V n), solution of

(2.2.14), is obtained via a fixed-point theorem. We define the map Ψ : B2(0, T ) → B2(0, T ) by:
(U, V ) = Ψ(u, v) with

Ut = ζ +
∫ T

t
φn (r, ur) dr −

∫ T

t
VrdWr, 0 ≤ t ≤ T.

By classical arguments (see the details in [36], Theorem 2.1), Ψ is a contraction on B2(0, T ) (under
suitable norms) and (Un, V n) is the fixed point of Ψ. Set (Un,m, V n,m) for any m ∈ N as follows:
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for any t, (Un,0
t , V n,0

t ) = (
∫ t
0 gs
←−
Bs, 0) and for any m ≥ 1, (Un,m, V n,m) = Ψ(Un,m−1, V n,m−1).

This sequence converges in B2(0, T ) to (Un, V n). Therefore Y n is the limit in S2(0, T ) of Y n,m

defined by: Y n,0
t = 0 and

Y n,m
t = ξ +

∫ T

t
gr
←−
Br +

∫ T

t
φn

(
r, Y n,m−1

r +
∫ r

0
gs
←−
Bs

)
dr −

∫ T

t
V n,m

r dWr, 0 ≤ t ≤ T.

Now Y n,0
t is trivially Ft measurable and

Y n,m
t = E

[
ξ +

∫ T

t
gr
←−
Br

∣∣∣∣Gt

]
+ E

[∫ T

t
φn

(
r, Y n,m−1

r +
∫ r

0
gs
←−
Bs

)
dr

∣∣∣∣Gt

]
= E

[
ξ +

∫ T

t
gr
←−
Br

∣∣∣∣Gt

]
+ E

[
Θ
∣∣Gt

]
.

From [74] we know that the first term on the right hand side is Ft measurable. Assume that
Y n,m−1

t is Ft ∨Hn measurable. Since the same holds for φn

(
t, y +

∫ t
0 gs
←−
Bs

)
, Θ depends only on

FW
T ∨FB

t,T ∨Hn. Thus there is no independence between FB
t and Ft ∨ σ(Θ), but Y n,m

t depends
on FB

t only through Hn. Hence Y n,m
t is Ft ∨ Hn measurable. Passing through the limit, we

obtain the desired measurability condition on Y n.
Now for any m ∈ N, the sequence (Y n

t , n ≥ m) depends on the σ-algebra

Ft ∨Hm = Ft ∨

 ∨
n≥m

Hn

 .

Passing through the limit, we obtain that the limit Yt depends only on Ft ∨H∞ = Ft ∨
⋂

m∈N
Hm.

The next lemma shows that H∞ ⊂ F0. We deduce that Yt is Ft-measurable, which achieves the
proof. �

Lemma 1. The σ-algebra H∞ is trivial: for every A ∈ H∞, A or Ac = Ω \A is negligible.

Proof. Recall that f and g are supposed to be bounded by a constant γ and

h(t) = |f(t, 0)|+ 2p−1

∣∣∣∣∫ t

0
gr
←−−
dBr

∣∣∣∣p .
Thus for any n

P

(
sup

t∈[0,T ]
h(t) ≥ n

)
≤ P

(
sup

t∈[0,T ]

∣∣∣∣∫ t

0
gr
←−−
dBr

∣∣∣∣p ≥ 21−p(n− γ)

)
.

The Burkholder-Davis-Gundy inequality shows that

E

(
sup

t∈[0,T ]

∣∣∣∣∫ t

0
gr
←−−
dBr

∣∣∣∣p
)
≤ Cpγ

pT p/2.

And by Markov inequality for n > γ

P

(
sup

t∈[0,T ]

∣∣∣∣∫ t

0
gr
←−−
dBr

∣∣∣∣p ≥ 21−p(n− γ)

)
≤ Cpγ

pT p/2

21−p(n− γ)
.
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Note ζ = supt∈[0,T ] h(t). Now if A ∈ Hn, then we have two cases: either the set {ζ < n} is
included either in A or in Ac. And if n ≥ m, then {ζ < m} ⊂ {ζ < n}. Hence if A is in

∨
n≥m

Hn,

then {ζ < m} ⊂ A or A ∩ {ζ < m} = ∅. And thus P(A) ∧ P(Ac) ≤ C/(m − γ) for any m > γ.
Finally if A ∈ H∞ =

⋂
m∈N

∨
n≥m

Hn, then P(A) = 0 or P(A) = 1. �

From the previous lemma, if we define

Yt = Ut −
∫ t

0
gr
←−−
dBr

we obtain a solution (Y, Z) to the BDSDE:

Yt = ξ +
∫ T

t
f (r, Yr) dr +

∫ T

t
gr
←−−
dBr −

∫ T

t
ZrdWr, 0 ≤ t ≤ T.

From the boundedness assumption on g, we have:

E

[
sup

t∈[0,T ]
|Yt|2 +

(∫ T

0
|Zr|2dr

)]
< +∞.

From the previous proof Yt is Ft-measurable. Then using the same argument as in [74], the
process Zt is also Ft-measurable. In other words (Y, Z) ∈ E2(0, T ).
Now we only assume that

E
[
|ξ|2 +

∫ T

0
(|f(t, 0)|2 + |gt|2)dt

]
< +∞.

For any n ∈ N∗ define Θn by

Θn(y) =

 y if |y| ≤ n,
n
y

|y|
if |y| > n,

and ξn = Θn(ξ), gn
t = Θn(gt) and fn(t, y) = f(t, y) − f(t, 0) + Θn(f(t, 0)). Thus for a fixed n,

there exists a solution (Y n, Zn) to the BDSDE (2.2.10) with ξn, fn and gn instead of ξ, f and g:

Y n
t = ξn +

∫ T

t
fn (r, Y n

r ) dr +
∫ T

t
gn
r

←−−
dBr −

∫ T

t
Zn

r dWr, 0 ≤ t ≤ T.

Define for any n and m

∆ξ = ξm − ξn, ∆f(t, y) = fm(t, y)− fn(t, y), ∆gt = gm
t − gn

t ,

and
∆Yt = Y m

t − Y n
t , ∆Zt = Zm

t − Zn
t .

From the Itô formula with α = 2µ+ 1, we have:

eαt|∆Yt|2 +
∫ T

t
eαr|∆Zr|2dr = eαT |∆ξ|2 + 2

∫ T

t
eαs∆Ys(fm(s, Y m

s )− fn(s, Y n
s ))ds

−
∫ T

t
αeαs|∆Ys|2ds− 2

∫ T

t
eαs∆Ys∆ZsdWs − 2

∫ T

t
eαs∆Ys∆gs

←−−
dBs

+
∫ T

t
eαs|∆gs|2ds.
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From assumption (A1) on f and 2|ab| ≤ a2 + b2, we obtain:

eαt|∆Yt|2 +
∫ T

t
eαr|∆Zr|2dr ≤ eαT |∆ξ|2 +

∫ T

t
eαs|∆f(s, 0)|2ds

−2
∫ T

t
eαs∆Ys∆ZsdWs − 2

∫ T

t
eαs∆Ys∆gs

←−−
dBs +

∫ T

t
eαs|∆gs|2ds.

Using BDG inequality we deduce that there exists a constant C depending on α and T such that

E

[
sup

t∈[0,T ]
|∆Yt|2 +

∫ T

0
|∆Zr|2dr

]
≤ CE

[
|∆ξ|2 +

∫ T

0
|∆f(s, 0)|2ds+

∫ T

0
|∆gs|2ds

]
.

Therefore (Y n, Zn) is a Cauchy sequence which converges to (Y, Z) and the limit process (Y, Z) ∈
E2(0, T ) satisfies the BDSDE (2.2.10).

Remark 1. Can we assume a weaker growth condition on f ? Suppose that there exists a non
decreasing function ψ : R+ → R+ such that

|f(t, y)| ≤ |f(t, 0)|+ ψ(|y|).

Using the same transformation, we have to control:

|φ(t, y)| = |f(t, y +
∫ t

0
gr
←−−
dBr)| ≤ |f(t, 0)|+ ψ(|y +

∫ t

0
gr
←−−
dBr|).

If it is possible to find two functions ψ1 and ψ2 such that ψ(y + z) ≤ ψ1(y) + ψ2(z) and if
ψ2(|

∫ t
0 gr
←−−
dBr|) belongs to L2(Ω) for any bounded process gt, it may be possible to obtain a solution

with the desired properties to the BDSDE (2.0.1).
Until now we did not succeed to obtain an example which is not controlled by (A3) for some p
large enough.

2.2.2 General case

The general case can be deduced from the previous one by a fixed-point argument. Let us
construct the following sequence: (Y 0, Z0) = (0, 0) and for n ∈ N and any 0 ≤ t ≤ T

Y n+1
t = ξ +

∫ T

t
f
(
r, Y n+1

r , Zn
r

)
dr +

∫ T

t
g (r, Y n

r , Z
n
r )
←−−
dBr −

∫ T

t
Zn+1

r dWr. (2.2.15)

Indeed if

E

[
sup

t∈[0,T ]
|Y n

t |2 +
(∫ T

0
|Zn

r |2dr
)]

< +∞

then from (A4) and (A5), the process gn
r = g (r, Y n

r , Z
n
r ) satisfies

E
∫ T

0
|gn

r |2dr < +∞.

Moreover the process fn(r, 0) = f(r, 0, Zn
r ) verifies

E
∫ T

0
|f(r, 0, Zn

r )|2ds ≤ K2
fE
∫ T

0
|Zn

r |2dr + E
∫ T

0
|f(r, 0, 0)|2dr < +∞.
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The previous section shows that (Y n+1, Zn+1) exists and satisfies (2.2.15) with

E

[
sup

t∈[0,T ]
|Y n+1

t |2 +
(∫ T

0
|Zn+1

r |2dr
)]

< +∞.

Hence the sequence of processes (Y n, Zn) is well defined.
Now as before define for any n and m

∆Y n
t = Y n+1

t − Y n
t , ∆Zn

t = Zn+1
t − Zn

t , ∆gn
t = g(t, Y n+1

t , Zn+1
t )− g(t, Y n

t , Z
n
t ).

From the Itô formula with α > 0, we have:

eαt|∆Y n
t |2 +

∫ T

t
eαr|∆Zn

r |2dr = 2
∫ T

t
eαs∆Y n

s (f(s, Y n+1
s , Zn

s )− f(s, Y n
s , Z

n−1
s ))ds

−
∫ T

t
αeαs|∆Y n

s |2ds− 2
∫ T

t
eαs∆Y n

s ∆Zn
s dWs − 2

∫ T

t
eαs∆Y n

s ∆gn−1
s

←−−
dBs

+
∫ T

t
eαs|∆gn−1

s |2ds.

Using the Lipschitz assumption on g, we have

|∆gn−1
s |2 ≤ Kg|∆Y n−1

s |2 + ε|∆Zn−1
s |2.

And
∆Y n

s (f(s, Y n+1
s , Zn

s )− f(s, Y n
s , Z

n−1
s )) ≤ µ|∆Y n

s |2 +
√
Kf |∆Y n

s ||∆Zn−1
s |.

Thus

eαt|∆Y n
t |2 +

∫ T

t
eαr|∆Zn

r |2dr ≤ (2µ− α)
∫ T

t
eαs|∆Y n

s |2ds (2.2.16)

+2
√
Kf

∫ T

t
eαs|∆Y n

s ||∆Zn−1
s |ds− 2

∫ T

t
eαs∆Y n

s ∆Zn
s dWs

−2
∫ T

t
eαs∆Y n

s ∆gn−1
s

←−−
dBs +Kg

∫ T

t
eαs|∆Y n−1

s |2ds+ ε

∫ T

t
eαs|∆Zn−1

s |2ds.

Using the inequality ab ≤ ηa2 + 1
η b

2, we have

2
√
Kf

∫ T

t
eαs|∆Y n

s ||∆Zn−1
s |ds ≤ ηKf

∫ T

t
eαs|∆Y n

s |2ds+
1
η

∫ T

t
|∆Zn−1

s |ds.

Therefore taking the expectation in (2.2.16) we deduce that

Eeαt|∆Y n
t |2 + E

∫ T

t
eαr|∆Zn

r |2dr ≤ (2µ+ ηKf − α)E
∫ T

t
eαs|∆Y n

s |2ds

+
(

1
η

+ ε

)
E
∫ T

t
eαs|∆Zn−1

s |ds+KgE
∫ T

t
eαs|∆Y n−1

s |2ds.

Take t = 0, η = 2
1−ε and α = 2µ+ 2Kf

1−ε + 2Kg

1+ε such that

E
∫ T

0
eαr|∆Zn

r |2dr +
2Kg

1 + ε
E
∫ T

0
eαs|∆Y n

s |2ds (2.2.17)

≤
(

1 + ε

2

)
E
∫ T

0
eαs|∆Zn−1

s |ds+
(

1 + ε

2

)
E
∫ T

0

2Kg

1 + ε
eαs|∆Y n−1

s |2ds.



40 Chapter 2. SPDE with singular terminal condition

Since (1+ ε)/2 < 1, the sequence (Y n, Zn) is a Cauchy sequence in L2((0, T )×Ω) and converges
to some process (Y, Z). Moreover by the BDG inequality we also obtain:

E sup
t∈[0,T ]

∣∣∣∣∫ T

t
eαs∆Y n

s ∆Zn
s dWs

∣∣∣∣ ≤ 4E
(∫ T

0
e2αs|∆Y n

s |2|∆Zn
s |2ds

)1/2

≤ 1
4

E

(
sup

t∈[0,T ]
eαt|∆Y n

t |2
)

+ 64E
∫ T

0
eαs|∆Zn

s |2ds,

and

E sup
t∈[0,T ]

∣∣∣∣∫ T

t
eαs∆Y n

s ∆gn−1
s

←−−
dBs

∣∣∣∣ ≤ 4E
(∫ T

0
e2αs|∆Y n

s |2|∆gn−1
s |2ds

)1/2

≤ 1
4

E

(
sup

t∈[0,T ]
eαt|∆Y n

t |2
)

+ 32E
∫ T

0
eαs|∆gn−1

s |2ds

≤ 1
4

E

(
sup

t∈[0,T ]
eαt|∆Y n

t |2
)

+ 32KgE
∫ T

0
eαs|∆Y n−1

s |2ds+ 32εE
∫ T

0
eαs|∆Zn−1

s |2ds.

Coming back to (2.2.16) and using (2.2.17) we have for some constant C

E sup
t∈[0,T ]

eαt|∆Y n
t |2 ≤ CE

∫ T

0
eαr|∆Zn−1

r |2dr + CE
∫ T

0
eαs|∆Y n−1

s |2ds.

We deduce also the convergence of Y n to Y under this strong topology. Therefore (Y, Z) satisfies
the general BDSDE:

Yt = ξ +
∫ T

t
f (r, Yr, Zr) dr +

∫ T

t
g (r, Yr, Zr)

←−−
dBr −

∫ T

t
ZrdWr, 0 ≤ t ≤ T.

Hence we have proved Theorem 13.

2.2.3 Extension, comparison result

The extension of Lp solutions, p ∈ (1, 2), is done in Aman [2] (see also Theorem 1.4 in [74] for
p > 2). We just want here to recall the comparison principle for BDSDE (see [87], [62] or [37]
on this topic). We will widely use the result in the next sections.

Proposition 4. Assume that BDSDE (2.0.1) with data (f1, g, ξ1) and (f2, g, ξ2) have solutions
(Y 1, Z1) and (Y 2, Z2) in E2(0, T ), respectively. The coefficient g satisfies (A4). If ξ1 ≤ ξ2, a.s.,
and f1 satisfies Assumptions (A1) and (A2), for all t ∈ [0, T ], f1(t, Y 2

t , Z
2
t ) ≤ f2(t, Y 2

t , Z
2
t ), a.s.

(resp. f2 satisfies (A1) and (A2), for all t ∈ [0, T ], f1(t, Y 1
t , Z

1
t ) ≤ f2(t, Y 1

t , Z
1
t ), a.s.), then we

have Y 1
t ≤ Y 2

t , a.s., for all t ∈ [0, T ].

Proof. The proof is almost the same as Lemma 3.1 in [62]. We define

(Ŷt, Ẑt) = (Y 1
t − Y 2

t , Z
1
t − Z2

t ), ξ = ξ1 − ξ2,

then (Ŷt, Ẑt) satisfies the following BDSDE: for all t ∈ [0, T ],

Ŷt = ξ̂ +
∫ T

t

[
f1
(
r, Y 1

r , Z
1
r

)
− f2

(
r, Y 2

r , Z
2
r

)]
dr

+
∫ T

t

[
g
(
r, Y 1

r , Z
1
r

)
− g

(
r, Y 2

r , Z
2
r

)]←−−
dBr −

∫ T

t
ẐrdWr.
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We apply Itô’s formula to (Ŷ +
t )2:

(Ŷ +
t )2 +

∫ T

t
1Ŷr>0|Ẑr|2dr ≤ (ξ̂+)2 + 2

∫ T

t
Ŷ +

r

[
f1
(
r, Y 1

r , Z
1
r

)
− f2

(
r, Y 2

r , Z
2
r

)]
dr

+2
∫ T

t
Ŷ +

r

[
g
(
r, Y 1

r , Z
1
r

)
− g

(
r, Y 2

r , Z
2
r

)]←−−
dBr

−2
∫ T

t
Ŷ +

r ẐrdWr +
∫ T

t
1Ŷr>0|g(r, Y

1
r , Z

1
r )− g(r, Y 2

r , Z
2
r )|2dr.

Now from (A1) and (A2)

Ŷ +
r

[
f1
(
r, Y 1

r , Z
1
r

)
− f2

(
r, Y 2

r , Z
2
r

)]
= Ŷ +

r

[
f1
(
r, Y 1

r , Z
1
r

)
− f1

(
r, Y 2

r , Z
2
r

)]
+ Ŷ +

r

[
f1
(
r, Y 2

r , Z
2
r

)
− f2

(
r, Y 2

r , Z
2
r

)]
≤ µ(Ŷ +

r )2 +Kf Ŷ
+
r |Ẑr|.

The rest of the proof is exactly the same as in [62]. Using Gronwall’s Lemma, we deduce that
E(Ŷ +

t )2 = 0 for any t ∈ [0, T ]. �

2.3 Singular terminal condition, construction of a minimal solu-
tion

From now on we assume that the terminal condition ξ satisfies the property (2.0.3):

P(ξ ≥ 0) = 1 and P(ξ = +∞) > 0.

For q > 0, let us consider the function f : R→ R, defined by f(y) = −y|y|q. f is continuous and
monotone, i.e. satisfies Condition (A1) with µ = 0: for all (y, y′) ∈ R2:

(y − y′)(f(y)− f(y′)) ≤ 0.

Condition (A3) is also satisfied with p = q+1. We also consider a function g : [0, T ]×Ω×R×Rd →
R and we assume that Condition (A4) holds.

2.3.1 Approximation

For every n ∈ N∗, we introduce ξn = ξ ∧ n. ξn belongs to L2 (Ω,FT ,P; R). We apply Theorem
13 with ξn as the final data, and we build a sequence of random processes (Y n, Zn) ∈ E2(0, T )
which satisfy (2.0.4).
From Proposition 4, if n ≤ m, 0 ≤ ξn ≤ ξm ≤ m, which implies for all t in [0, T ], a.s.,

Ξ0
t ≤ Y n

t ≤ Y m
t ≤ Ξm

t . (2.3.18)

Here Ξk is the first component of the unique solution (Ξk,Θk) in E2(0, T ) of (2.0.4) with a
deterministic terminal condition k. In order to have explicit and useful bound on Y m we will
assume that g(t, y, 0) = 0 for any (t, y) a.s. In this case for m ≥ 1,

Ξ0
t = 0, Ξm

t =

(
1

q(T − t) + 1
mq

) 1
q

.
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We define the progressively measurable R-valued process Y , as the increasing limit of the sequence
(Y n

t )n≥1:
∀t ∈ [0, T ], Yt = lim

n→+∞
Y n

t . (2.3.19)

Then we obtain

∀0 ≤ t ≤ T, 0 ≤ Yt ≤
(

1
q(T − t)

) 1
q

. (2.3.20)

In particular Y is finite on the interval [0, T [ and bounded on [0, T − δ] for all δ > 0.
Here we will prove the first part of Theorem 14, that is (Y, Z) satisfies properties (D1) and (D2)
of the definition 8. Moreover we will obtain that there exists a constant κ, depending on g, s.t.
for all t ∈ [0, T [,

E
∫ t

0
‖Zr‖2dr ≤

κ

(q(T − t))
2
q

, (2.3.21)

Proof. Let δ > 0 and s ∈ [0, T − δ]. For all 0 ≤ t ≤ s, Itô’s formula leads to the equality:

|Y n
t − Y m

t |2 +
∫ s

t
‖Zn

r − Zm
r ‖2dr = |Y n

s − Y m
s |2 − 2

∫ s

t
(Y n

r − Y m
r )(Zn

r − Zm
r )dWr

+2
∫ s

t
(Y n

r − Y m
r ) (f(Y n

r )− f(Y m
r )) dr

+2
∫ s

t
(Y n

r − Y m
r )(g(r, Y n

r , Z
n
r )− g(r, Y m

r , Zm
r ))
←−−
dBr

+
∫ s

t
|g(r, Y n

r , Z
n
r )− g(r, Y m

r , Zm
r )|2dr

≤ |Y n
s − Y m

s |2 +K

∫ s

t
|Y n

r − Y m
r |2dr + ε

∫ s

t
|Zn

r − Zm
r |2dr

−2
∫ s

t
(Y n

r − Y m
r )(Zn

r − Zm
r )dWr

+2
∫ s

t
(Y n

r − Y m
r )(g(r, Y n

r , Z
n
r )− g(r, Y m

r , Zm
r ))
←−−
dBr

from the monotonicity of f (Inequality (A1)) and the Lipschtiz property of g (Inequality (A4)).
From the properties (A4) and since (Y, Z) ∈ E2, we have:

E
(∫ s

t
(Y n

r − Y m
r )(Zn

r − Zm
r )dWr

)
= 0,

E
(∫ s

t
(Y n

r − Y m
r )(g(r, Y n

r , Z
n
r )− g(r, Y m

r , Zm
r ))
←−−
dBr

)
= 0.

From the Burkholder-Davis-Gundy inequality, we deduce the existence of a universal constant
C with:

E
(

sup
0≤t≤s

|Y n
t − Y m

t |2 +
∫ s

0
‖Zn

r − Zm
r ‖2dr

)
≤ C E

(
|Y n

s − Y m
s |2

)
. (2.3.22)

From the estimate (2.3.20), for s ≤ T − δ, Y n
s ≤ 1

(qδ)1/q and Ys ≤ 1
(qδ)1/q . Since Y n

s converges to
Ys a.s., the dominated convergence theorem and the previous inequality (2.3.22) imply:
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1. for all δ > 0, (Zn)n≥1 is a Cauchy sequence in L2(Ω × [0, T − δ]; Rd), and converges to
Z ∈ L2(Ω× [0, T − δ]; Rd),

2. (Y n)n≥1 converges to Y uniformly in mean-square on the interval [0, T − δ], in particular
Y is continuous on [0, T ),

3. (Y, Z) satisfies Equation (2.0.4) on [0, T ).

Since Yt is smaller than 1/(q(T − t))1/q by (2.3.20), and since Z ∈ L2(Ω× [0, T −δ]; Rd), applying
the Itô formula to |Y |2, with s < T and 0 ≤ t ≤ s, we obtain:

|Yt|2 +
∫ s

t
‖Zr‖2dr = |Ys|2 − 2

∫ s

t
YrZrdWr + 2

∫ s

t
Yrf(Yr)dr

+2
∫ s

t
Yrg(r, Yr, Zr)

←−−
dBr +

∫ s

t
|g(r, Yr, Zr)|2dr

≤ 1

(q(T − s))
2
q

− 2
∫ s

t
YrZrdWr + 2

∫ s

t
Yrg(r, Yr, Zr)

←−−
dBr

+K
∫ s

t
|Yr|2dr + ε

∫ s

t
|Zr|2dr,

again thanks to Inequalities (A1) and (A4). From (2.3.20), since Z ∈ L2([0, s]× Ω), we have:

E
∫ s

t
YrZrdWr = E

∫ s

t
Yrg(r, Yr, Zr)

←−−
dBr = 0.

Therefore, we deduce that there exists a constant κ depending on T , K and ε such that :

E
∫ s

0
‖Zr‖2dr ≤

κ

(q(T − s))
2
q

.

�
Remark that if g is equal to zero, κ is equal to one. And in general

κ =
1

1− ε
(1 +KT ).

We want to establish the following statement which completes Inequality (2.3.21).

Proposition 5. The next inequality is a sharper estimation on Z:

E
∫ T

0
(T − s)2/q‖Zs‖2ds ≤

8 +KT

1− ε

(
1
q

)2/q

. (2.3.23)

The constants K and ε are given by the assumption (A4).

Proof. First suppose there exists a constant α > 0 such that P-a.s. ξ ≥ α. In this case, by
comparison, for all integer n and all t ∈ [0, T ]:

Y n
t ≥

(
1

qT + 1/αq

)1/q

> 0.
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Let δ > 0 and θ : R→ R, θq : R→ R defined by:{
θ(x) =

√
x on [δ,+∞[,

θ(x) = 0 on ]−∞, 0],
and

{
θq(x) = x

1
2q on [δ,+∞[,

θq(x) = 0 on ]−∞, 0],

and such that θ and θq are non-negative, non-decreasing and in respectively C2(R) and C1(R).
We apply the Itô formula on [0, T − δ] to the function θq(T − t)θ(Y n

t ), with δ < (qT +1/αq)−1/q:

θq(δ)θ(Y n
T−δ)− θq(T )θ(Y n

0 ) =
1
2

∫ T−δ

0
(T − s)1/2q(Y n

s )1/2

(
(Y n

s )q − 1
q(T − s)

)
ds

+
1
2

∫ T−δ

0
(T − s)1/2q(Y n

s )−1/2Zn
s dWs

− 1
2

∫ T−δ

0
(T − s)1/2q(Y n

s )−1/2g(s, Y n
s , Z

n
s )
←−−
dBs

− 1
8

∫ T−δ

0
(T − s)1/2q ‖Zn

s ‖2 − g(s, Y n
s , Z

n
s )2

(Y n
s )3/2

ds.

If we define

Ψn
s =
‖Zn

s ‖2 − g(s, Y n
s , Z

n
s )2

(Y n
s )3/2

,

we have

1
8

∫ T−δ

0
(T − s)1/2qΨn

s ds ≤ T 1/2qθ(Y n
0 ) +

1
2

∫ T−δ

0
(T − s)1/2q(Y n

s )−1/2Zn
s dWs

+
1
2

∫ T−δ

0
(T − s)1/2q(Y n

s )1/2

(
(Y n

s )q − 1
q(T − s)

)
ds

−1
2

∫ T−δ

0
(T − s)1/2q(Y n

s )−1/2g(s, Y n
s , Z

n
s )
←−−
dBs

and since Y n
s ≤ 1/(q(T − s))1/q and T 1/qY n

0 ≤ q−1/q, taking the expectation we obtain:

1
8

E
∫ T−δ

0
(T − s)1/2qΨn

s ds ≤ θq(T )θ(Y n
0 ) ≤ (1/q)1/2q,

that is for all n and all δ > 0 :

E
∫ T−δ

0
(T − s)1/2qΨn

s ds ≤ 8(1/q)1/2q.

Using the assumption (A4) on g, we have

(1− ε) ‖Z
n
s ‖2

(Y n
s )3/2

≤ Ψn
s +K(Y n

s )1/2,

which implies

(1− ε)E
∫ T−δ

0
(T − s)1/2q ‖Zn

s ‖2

(Y n
s )3/2

ds ≤ 8(1/q)1/2q +KE
∫ T−δ

0
(T − s)1/2q(Y n

s )1/2ds

≤ 8(1/q)1/2q +KE
∫ T−δ

0
(T − s)1/2q

(
1

q(T − s)

)1/(2q)

ds ≤ (1/q)1/2q(8 +KT ).
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Now, since 1/Y n
s ≥ (q(T − s))1/q, letting δ → 0 and with the Fatou lemma, we deduce that

E
∫ T

0
(T − s)2/q‖Zs‖2ds ≤

8 +KT

1− ε
(1/q)2/q.

Now we come back to the case ξ ≥ 0. We can not apply the Itô formula because we do not have
any positive lower bound for Y n. We will approach Y n in the following way. We define for n ≥ 1
and m ≥ 1, ξn,m by:

ξn,m = (ξ ∧ n) ∨ 1
m
.

This random variable is in L2 and is greater or equal to 1/m a.s. The BSDE (2.0.4), with ξn,m

as terminal condition, has a unique solution (Ỹ n,m, Z̃n,m). It is immediate that if m ≤ m′ and
n ≤ n′ then:

Ỹ n,m′ ≤ Ỹ n′,m.

As for the sequence Y n, we can define Ỹ m as the limit when n grows to +∞ of Ỹ n,m. This limit
Ỹ m is greater than Y = limn→+∞ Y n. But for any m and n, for t ∈ [0, T ]:∣∣∣Ỹ n,m

t − Y n
t

∣∣∣2 = |ξn,m − ξn|2 − 2
∫ T

t

[
Ỹ n,m

r − Y n
r

] [(
Ỹ n,m

r

)q+1
− (Y n

r )q+1

]
dr

−2
∫ T

t

[
Ỹ n,m

r − Y n
r

] [
Z̃n,m

r − Zn
r

]
dWr −

∫ T

t

[
Z̃n,m

r − Zn
r

]2
dr

+2
∫ T

t

[
Ỹ n,m

r − Y n
r

] [
g(r, Ỹ n,m

r , Z̃n,m
r )− g(r, Y n

r , Z
n
r )
]←−−
dBr

+
∫ T

t

[
g(r, Ỹ n,m

r , Z̃n,m
r )− g(r, Y n

r , Z
n
r )
]2
dr

≤ |ξn,m − ξn|2 − 2
∫ T

t

[
Ỹ n,m

r − Y n
r

] [
Z̃n,m

r − Zn
r

]
dWr

+2
∫ T

t

[
Ỹ n,m

r − Y n
r

] [
g(r, Ỹ n,m

r , Z̃n,m
r )− g(r, Y n

r , Z
n
r )
]←−−
dBr

−(1− ε)
∫ T

t

[
Z̃n,m

r − Zn
r

]2
dr + (1 +K)

∫ T

t

[
Ỹ n,m

r − Y n
r

]2
dr (2.3.24)

and taking the expectation:

E
∣∣∣Ỹ n,m

t − Y n
t

∣∣∣2 ≤ E |ξn,m − ξn|2 + (1 +K)
∫ T

t
E
[
Ỹ n,m

r − Y n
r

]2
dr.

Gronwall lemma shows that for any t ∈ [0, T ]:

E
∣∣∣Ỹ n,m

t − Y n
t

∣∣∣2 ≤ e(1+K)T E |ξn,m − ξn|2 ≤ e(1+K)T 1
m2

. (2.3.25)

To conclude we fix δ > 0 and we apply the Itô formula to the process (T − .)2/q
∣∣∣Ỹ n,m − Y n

∣∣∣2.
This leads to the inequality:

(1− ε)E
∫ T−δ

0
(T − r)2/q

∥∥∥Z̃n,m
r − Zn

r

∥∥∥2
dr ≤ 2

q
E
∫ T−δ

0
(T − s)(2/q)−1

∣∣∣Ỹ n,m
s − Y n

s

∣∣∣2 ds
+(δ)2/qE

∣∣∣Ỹ n,m
T−δ − Y

n
T−δ

∣∣∣2
+KE

∫ T−δ

0
(T − r)2/q

(
Ỹ n,m

r − Y n
r

)2
dr.
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Let δ go to 0 in the previous inequality. We can do that because (T − .)(2/q)−1 is integrable on
the interval [0, T ] and because of (2.3.25). Finally we have

(1− ε)E
∫ T

0
(T − r)2/q

∥∥∥Z̃n,m
r − Zn

r

∥∥∥2
dr ≤ e(1+K)T

m2

[
2
q

∫ T

0
(T − s)(2/q)−1ds+K

∫ T

0
(T − s)(2/q)ds

]
=

T 2/qe(1+K)T

m2

(
1 +

KT

1 + 2/q

)
.

Therefore, for all η > 0 :

E
∫ T

0
(T − r)2/q ‖Zn

r ‖
2 dr ≤ (1 + η)E

∫ T

0
(T − r)2/q

∥∥∥Z̃n,m
r

∥∥∥2
dr

+ (1 +
1
η
)E
∫ T

0
(T − r)2/q

∥∥∥Z̃n,m
r − Zn

r

∥∥∥2
dr

≤ (1 + η)
8 +KT

1− ε
(1/q)2/q + (1 +

1
η
)
T 2/qe(1+K)T

m2(1− ε)

(
1 +

KT

1 + 2/q

)
.

We have applied the previous result to Z̃n,m. Now we let first m go to +∞ and then η go to 0,
we have:

E
∫ T

0
(T − r)2/q ‖Zn

r ‖
2 dr ≤ 8 +KT

1− ε
(1/q)2/q.

The result follows by letting finally n go to ∞ and this achieves the proof of the proposition. �

2.3.2 Existence of a limit at time T

From now, the process Y is continuous on [0, T [ and we define YT = ξ. The main difficulty will
be to prove the continuity at time T . It is easy to show that:

ξ ≤ lim inf
t→T

Yt. (2.3.26)

Indeed, for all n ≥ 1 and all t ∈ [0, T ], Y n
t ≤ Yt, therefore:

ξ ∧ n = lim inf
t→T

Y n
t ≤ lim inf

t→T
Yt.

Thus, Y is lower semi-continuous on [0, T ] (this is clear since Y is the supremum of continuous
functions). But now we will show that Y has a limit on the left at time T . We will distinguich the
case when ξ is greater than a positive constant from the case ξ non-negative. This will complete
the proof of Theorem 14.

2.3.2.1 The case ξ bounded away from zero.

We can show that Y has a limit on the left at T by using Itô’s formula applied to the process
1/(Y n)q. Suppose there exists a real α > 0 such that ξ ≥ α > 0, P-a.s. Then from Proposition
4 (and since g(t, y, 0) = 0), for every n ∈ N∗ and every 0 ≤ t ≤ T :

n ≥ Y n
t ≥

(
1

q(T − t) + 1/αq

)1/q

≥
(

1
qT + 1/αq

)1/q

> 0.
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By the Itô formula

1
(Y n

t )q
=

1
(ξ ∧ n)q

+ q(T − t)− q(q + 1)
2

∫ T

t

‖Zn
s ‖2

(Y n
s )q+2ds+

∫ T

t

qZn
s

(Y n
s )q+1dWs

−q
∫ T

t

g(s, Y n
s , Z

n
s )

(Y n
s )1+q

←−−
dBs +

q(q + 1)
2

∫ T

t

(g(s, Y n
s , Z

n
s ))2

(Y n
s )2+q

ds

=
1

(ξ ∧ n)q
+ q(T − t) +

∫ T

t

qZn
s

(Y n
s )q+1dWs (2.3.27)

−q
∫ T

t

g(s, Y n
s , Z

n
s )

(Y n
s )1+q

←−−
dBs −

q(q + 1)
2

∫ T

t
Ψn

s ds,

where

Ψn
s =
‖Zn

s ‖2 − (g(s, Y n
s , Z

n
s ))2

(Y n
s )q+2 .

Or for any t ∈ [0, T ]:

E
1

(Y n
t )q

= E
(

1
(ξ ∧ n)q

)
+ q(T − t)− q(q + 1)

2
E
∫ T

t
Ψn

s ds.

This shows that

sup
n∈N

E
∫ T

0
Ψn

s ds < +∞. (2.3.28)

From the assumption on g, we have

(1− ε) ‖Z
n
s ‖2

(Y n
s )q+2 −K

1
(Y n

s )q ≤ Ψn
s ⇒ (1− ε) ‖Z

n
s ‖2

(Y n
s )q+2 ≤ Ψn

s +K
1

(Y n
s )q . (2.3.29)

Form this inequality and Inequality (2.3.28) we deduce that

sup
n∈N

E
∫ T

0

(
‖Zn

s ‖2

(Y n
s )q+2 +

(g(s, Y n
s , Z

n
s ))2

(Y n
s )2+q

)
ds < +∞.

Hence the two sequences ∫ T

t

qZn
s

(Y n
s )q+1dWs and

∫ T

t

g(s, Y n
s , Z

n
s )

(Y n
s )1+q

←−−
dBs

converge weakly in L2 to some stochastic integrals (the proof is classical and uses Mazur’s lemma
(see [95], chapter V.1, Theorem 2, for example)):∫ T

t
UsdWs and

∫ T

t
Vs
←−−
dBs.

Now we decompose Ψn as follows

Ψn
s = (Ψn

s )+ − (Ψn
s )−,

where x+ (resp. x−) denotes the positive (resp. negative) part of x. Again from Inequality
(2.3.29) we deduce that

(1− ε) ‖Z
n
s ‖2

(Y n
s )q+2 −K

1
(Y n

s )q ≤ Ψn
s = (Ψn

s )+ − (Ψn
s )− ≤ ‖Zn

s ‖2

(Y n
s )q+2 ,
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and therefore

0 ≤ (Ψn
s )− ≤ K 1

(Y n
s )q ≤ K(qT +

1
αq

).

Therefore for any t ∈ [0, T ]:

0 ≤ q(q + 1)
2

∫ T

t
(Ψn

s )−ds ≤ q(q + 1)
2

K(qT +
1
αq

)(T − t). (2.3.30)

If we define

Γt = lim inf
n→+∞

q(q + 1)
2

EGt

∫ T

t
(Ψn

s )−ds,

we obtain that Γ is a non negative bounded process. Since (Ψn)− is non negative, it is straight-
forward that Γ is a supermartingale. Moreover the dominated convergence theorem proves that
Γ is a continuous process such that: lim

t→T
Γt = 0.

Coming back to(2.3.27) and taking the conditional expectation, we have

q(q + 1)
2

EGt

∫ T

t
Ψn

s ds = EGt

(
1

(ξ ∧ n)q

)
− 1

(Y n
t )q

+ q(T − t)

+qEGt

∫ T

t

g(s, Y n
s , Z

n
s )

(Y n
s )1+q

←−−
dBs,

and the right hand side converges weakly in L2. Therefore if we define

Θt = lim sup
n→+∞

q(q + 1)
2

EGt

∫ T

t
(Ψn

s )+ds,

taking the weak limit, we obtain

Θt − Γt = EGt

(
1
ξq

)
− 1

(Yt)q
+ q(T − t) + qEGt

∫ T

t
Vs
←−−
dBs.

We can remark that (Θt)0≤t<T is a non-negative supermartingale and for any t ∈ [0, T ]:

1
(Yt)q

= q(T − t) + EGt

(
1
ξq

)
−Θt + Γt + qEGt

∫ T

t
Vs
←−−
dBs.

Θ being a right-continuous non-negative supermartingale, the limit of Θt as t goes to T exists
P-a.s. and this limit ΘT− is finite P-a.s. The same holds for the backward Itô integral with limit
MT = 0. The L1-bounded martingale EGt

(
1
ξq

)
converges a.s. to 1/ξq, as t goes to T , then the

limit of Yt as t→ T exists and is equal to:

lim
t→T, t<T

Yt =
1

( 1
ξq −ΘT−)1/q

.

If we were able to prove that ΘT− is zero a.s., we would have shown that YT = ξ.
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2.3.2.2 The case ξ non negative

Now we just assume that ξ ≥ 0. We cannot apply the Itô formula to 1/(Y n)q because we have
no positive lower bound for Y n. We define for n ≥ 1 and m ≥ 1, ξn,m by:

ξn,m = (ξ ∧ n) ∨ 1
m
,

This random variable is in L2 and is greater or equal to 1/m a.s. , with ξn,m as terminal condition,
has a unique solution (Ỹ n,m, Z̃n,m) of our BSDE (2.0.4). Let us come back to (2.3.25). We have
already proved that

E
∣∣∣Ỹ n,m

t − Y n
t

∣∣∣2 ≤ e(1+K)T E |ξn,m − ξn|2 ≤ e(1+K)T 1
m2

.

Now using (2.3.24) with t = 0 and taking the expectation we obtain first:

(1− ε)E
∫ T

0

[
Z̃n,m

r − Zn
r

]2
dr ≤

(
1 + (1 +K)Te(1+K)T

) 1
m2

from which we deduce that the two stochastic integrals in (2.3.24) are true martingales. Therefore
we can use Burckholder-Davis-Gundy inequality and once again from (2.3.24) there exists a
constant C such that:

E

(
sup

t∈[0,T ]

∣∣∣Ỹ n,m
t − Y n

t

∣∣∣2) ≤ C

m2
.

From Fatou’s lemma the same inequality holds for Ỹ m − Y . Since Ỹ m has a limit on the left at
T , so does Y .

2.3.3 Minimal solution

In this section we will achieve the proof of Theorem 14. Let (Ỹ , Z̃) be another non negative
solution of BDSDE (2.0.4) in the sense of Definition 8. Note that we will only use that

lim inf
t→T

Ỹt ≥ ξ

(and not the stronger condition (D3)). Then a.s. for any t ∈ [0, T ], Yt ≤ Ỹt.

Lemma 2. With the assumptions of Theorem 14, we prove:

∀t ∈ [0, T ], Ỹt ≤
(

1
q(T − t)

) 1
q

.

Proof. For every 0 < h < T , we define on [0, T − h]

Λh(t) =
(

1
q(T − h− t)

) 1
q

.

Λh is the solution of the ordinary differential equation:

Λ′h(t) = (Λh(t))1+q
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with final condition Λh(T − h) = +∞. But on the interval [0, T − h], (Ỹ , Z̃) is a solution of the
BDSDE (2.0.4) with final condition ỸT−h. From the assumptions ỸT−h is in L2(Ω), so is finite
a.s. Now we take the difference between Ỹ and Λh for all 0 ≤ t ≤ s < T − h:

Ŷt = Ỹt − Λh(t) = Ỹs − Λh(s)−
∫ s

t

[(
Ỹr

)1+q
− Λh(r)1+q

]
dr

+
∫ s

t

[
g(r, Ỹr, Z̃r)− g(r,Λh(r), 0)

]←−−
dBr −

∫ s

t
Z̃rdWr.

Recall that g(t, y, 0) = 0. We apply Itô’s formula to (Ŷ +
t )2 between t and s:

(Ŷ +
t )2 ≤ (Ŷ +

s )2 − 2
∫ s

t
Ŷ +

r

(
Λh(r)1+q −

(
Ỹr

)1+q
)
dr

+ 2
∫ s

t
Ŷ +

r g(r, Ỹr, Z̃r)
←−−
dBr − 2

∫ s

t
Ŷ +

r Z̃rdWr

+
∫ s

t
1Ŷr>0|g(r, Ỹr, Z̃r)− g(r,Λh(r), 0)|2dr −

∫ s

t
1Ŷr>0|Z̃r|2dr

The generator f of this BDSDE satisfies Condition (A1) with µ = 0, and g satisfies (A4). Thus

(Ŷ +
t )2 ≤ (Ŷ +

s )2 +Kg

∫ s

t
(Ŷ +

r )2dr − (1− ε)
∫ s

t
1Ŷr>0|Z̃r|2dr

+ 2
∫ s

t
Ŷ +

r g(r, Ỹr, Z̃r)
←−−
dBr − 2

∫ s

t
Ŷ +

r Z̃rdWr.

We take the expectation of both sides. Since (Ỹ , Z̃) is in E2(0, s), the martingale part disappears
and we deduce that:

E(Ŷ +
t )2 ≤ E(Ŷ +

s )2 +Kg

∫ s

t
E(Ŷ +

r )2dr.

By Gronwall’s inequality we obtain:

E(Ŷ +
t )2 ≤ eKg(s−t)E(Ŷ +

s )2.

Remark that for any 0 ≤ t ≤ T − h

0 ≤ Ŷ +
t ≤ sup

0≤t≤T−h
Ỹt = ΞT−h.

Since Ỹ ∈ S2(0, T − h; R+), ΞT−h ∈ L2(Ω). By dominated convergence theorem as s goes to
T − h:

E(Ŷ +
t )2 ≤ eKg(T−h−t)E(Ŷ +

T−h)2 = 0.

Thus Ỹt ≤ Λh(t) for all t ∈ [0, T −h] and for all 0 < h < T . So it is clear that for every t ∈ [0, T ]:

Ỹt ≤
(

1
q(T − t)

) 1
q

.

This achieves the proof of the Lemma. �
Let us prove now minimality of our solution. We will prove that Ỹ is greater than Y n for all
n ∈ N, which implies that Y is the minimal solution. Let (Y n, Zn) be the solution of the BSDE
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(2.0.4) with ξ ∧ n as terminal condition. By comparison with the solution of the same BSDE
with the deterministic terminal data n:

Y n
t ≤

(
1

q(T − t) + 1/nq

)1/q

≤ n.

Between the instants 0 ≤ t ≤ s < T :

Ŷt = Y n
t − Ỹt =

(
Y n

s − Ỹs

)
−
∫ s

t

(
(Ỹr)1+q − (Y n

r )1+q
)
dr −

∫ s

t

(
Zn

r − Z̃r

)
dWr

+
∫ s

t

[
g(r, Y n

r , Z
n
r )− g(r, Ỹr, Z̃r)

]←−−
dBr.

Once again we apply Itô’s formula to (Ŷ +
t )2:

(Ŷ +
t )2 ≤ (Ŷ +

s )2 − 2
∫ s

t
Ŷ +

r

(
(Y n

r )1+q − (Ỹr)1+q
)
dr

+ 2
∫ s

t
Ŷ +

r

[
g(r, Y n

r , Z
n
r )− g(r, Ỹr, Z̃r)

]←−−
dBr − 2

∫ s

t
Ŷ +

r ẐrdWr

+
∫ s

t
1Ŷr>0|g(r, Y

n
r , Z

n
r )− g(r, Ỹr, Z̃r)|2dr −

∫ s

t
1Ŷr>0|Ẑr|2dr

and we deduce that
E(Ŷ +

t )2 ≤ eKg(s−t)E(Ŷ +
s )2.

Since 0 ≤ Ŷ +
t ≤ Y n

t ≤ n, by dominated convergence theorem, we can take the limit as s goes to
T and we obtain that E(Ŷ +

t )2 = 0.

2.4 Limit at time T by localization technic

From now, the process Y is continuous on [0, T [ and we define YT = ξ. The main difficulty will
be to prove the continuity at time T . We have already proved that

lim inf
t→T

Yt = lim
t→T

Yt

and remarked that Y is lower semi-continuous on [0, T ]:

ξ ≤ lim inf
t→T

Yt.

In this paragraph we prove that the inequality in (2.3.26) is in fact an equality, i.e.

ξ = lim inf
t→T

Yt.

Note that the only remaining problem is on the set R = {ξ < +∞}.
From now on, the conditions of Theorem 15 hold. In particular the terminal condition ξ is equal
to h(XT ), where h is a function defined on Rd with values in R+. We denote by S = {h = +∞}
the closed set of singularity and R its complement. In order to prove continuity at time T , we
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will show that for any function θ of class C2(Rd; R+) with a compact support strictly included
in R = {h < +∞} and for any t ∈ [0, T ], we have

E(ξθ(XT )) = E(Ytθ(Xt)) + E
∫ T

t
θ(Xr)(Yr)1+qdr + E

∫ T

t
YrLθ(Xr)dr (2.4.31)

+ E
∫ T

t
Zr.∇θ(Xr)σ(r,Xr)dr

with suitable integrability conditions on the last three terms in the right-hand side. Here L is
the operator:

L =
1
2

∑
i,j

(σσ∗)ij(t, x)
∂2

∂xi∂xj
+
∑

i

bi(t, x)
∂

∂xi
=

1
2
Trace

(
σσ∗(t, x)D2

)
+ b(t, x).∇; (2.4.32)

where in the rest of the chapter, ∇ and D2 will always denote respectively the gradient and the
Hessian matrix w.r.t. the space variable. If we let t go to T in Equality (2.4.31) and if we apply
Fatou’s lemma, we have:

E [ξθ(XT )] = lim
t→T

E [Ytθ(Xt)] ≥ E
[(

lim inf
t→T

Yt

)
θ(XT )

]
. (2.4.33)

Note that we need the suitable estimates on the last three terms in (2.4.31). Now recall that we
already know (2.3.26). Hence, the inequality in (2.4.33) is in fact a equality, i.e.

E [h(XT )θ(XT )] = E
[
θ(XT )

(
lim inf

t→T
Yt

)]
.

And with (2.3.26) once again, we conclude that:

lim
t→T

Yt = lim inf
t→T

Yt = h(XT ), P− a.s. on {h(XT ) <∞} .

In the next subsections we prove that (2.4.31) holds. As in [83] the proof depends on the value
of q and we distinguish q > 2 where no other assumption is needed (the non linearity is “strong
enough”) and q ≤ 2 where we have to add additional conditions. Moreover the arguments are
almost the same as in [83], thus technical details will be skip here.
Let ϕ be a function in the class C2

(
Rd
)

with a compact support. Let (Y, Z) be the solution of
the BDSDE (2.0.4) with the final condition ζ ∈ L2(Ω). For any t ∈ [0, T ]:

Ytϕ(Xt) = Y0ϕ(X0) +
∫ t

0
ϕ(Xr)

[
Yr|Yr|qdr − g(r, Yr, Zr)

←−−
dBr + Zr.dWr

]
+
∫ t

0
Yrd(ϕ(Xr)) +

∫ t

0
Zr.∇ϕ(Xr)σ(r,Xr)dr

= Y0ϕ(X0) +
∫ t

0
ϕ(Xr)Yr|Yr|qdr +

∫ t

0
Zr.∇ϕ(Xr)σ(r,Xr)dr

+
∫ t

0
YrLϕ(Xr)dr +

∫ t

0
(Yr∇ϕ(Xr)σ(r,Xr) + ϕ(Xr)Zr) .dWr

−
∫ t

0
ϕ(Xr)g(r, Yr, Zr)

←−−
dBr
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where L is the operator defined by (2.4.32). Taking the expectation:

E(Ytϕ(Xt)) = E(Y0ϕ(X0)) + E
∫ t

0
ϕ(Xr)Yr|Yr|qdr (2.4.34)

+E
∫ t

0
Zr.∇ϕ(Xr)σ(r,Xr)dr + E

∫ t

0
YrLϕ(Xr)dr.

Note that the generator g does not appear in this expression. Hence no extra assumption will
be added in the case q > 2.
Let U be a bounded open set with a regular boundary and such that the compact set U is
included in R. We denote by Φ = ΦU a function which is supposed to belong to C2(Rd; R+) and
such that Φ is equal to zero on Rd \ U , is positive on U . Let α be a real number such that

α > 2(1 + 1/q).

For n ∈ N, let (Y n, Zn) be the solution of the BSDE (2.0.4) with the final condition (h∧n)(XT ).
The equality (2.4.34) with t = T becomes:

E(Y n
T Φα(XT )) = E(Y n

0 Φα(X0)) + E
∫ T

0
Zn

r .∇(Φα)(Xr)σ(r,Xr)dr

+ E
∫ T

0
Φα(Xr)(Y n

r )1+qdr + E
∫ T

0
Y n

r L(Φα)(Xr)dr. (2.4.35)

Lemma 3. Let p be such that
1
p

+
1

1 + q
= 1.

Then
Φ−α(p−1) |L(Φα)|p ∈ L∞([0, T ]× Rd).

Lemma 3 and Hölder inequality show that there exists a constant C such that

∀n ∈ N, E
∫ T

0
|Y n

r L(Φα)(Xr)| dr ≤ C
[
E
∫ T

0
Φα(Xr)(Y n

r )1+qdr

]1/(1+q)

. (2.4.36)

We distinguish the case q > 2 and q ≤ 2 in order to control the term containing Z in (2.4.35).

2.4.1 Proof of (2.4.31) if q > 2

Proposition 5 and the Cauchy-Schwarz inequality prove immediatly the following result.

Lemma 4 (Case q > 2). If q > 2, then there exists a constant C = C(q,Φ, α, σ) such that for
all n ∈ N:

E
∫ T

0
|Zn

r .∇(Φα)(Xr)σ(r,Xr)| dr ≤ C. (2.4.37)

Lemmata 3 and 4 and Equality (2.4.35) imply the next result.

Lemma 5. The sequence Φα(X)(Y n)1+q is a bounded sequence in L1(Ω × [0, T ]) and with the
Fatou lemma, Y 1+qΦα(X) belongs to L1(Ω× [0, T ]):

E
∫ T

0
Y 1+q

r Φα(Xr)dr < +∞.
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Proof. In (2.4.35), since the support of Φ is in F c
∞ and from the previous lemma, the first three

terms are bounded w.r.t. n by some constant C. If the sequence is not bounded, from inequality
(2.4.36), there is a contradiction. �
Now we prove Equality (2.4.31). Let θ be a function of class C2(Rd; R+) with a compact support
strictly included in R = {h < +∞}. There exists a open set U s.t. the support of θ is included
in U and U ⊂ R. Let Φ = ΦU be the previously used function. Let us recall that α is strictly
greater than 2(1+1/q) > 2. Thanks to a result in the proof of the lemma 2.2 of [64], there exists
a constant C = C(θ, α) such that:

|θ| ≤ CΦα , |∇θ| ≤ CΦα−1 and
∥∥D2θ

∥∥ ≤ CΦα−2.

Using Lemma 5 and the monotone convergence theorem, we have

lim
n→+∞

E
∫ T

t
(Y n

r )1+qθ(Xr)dr = E
∫ T

t
(Yr)1+qθ(Xr)dr,

with

E
∫ T

0
Y 1+q

r θ(Xr)dr ≤ C. (2.4.38)

We can do the same calculations using the previously given estimations on θ, ∇θ and D2θ in
terms of power of Φα and Hölder’s inequality:

Φ−α(p−1) |Lθ|p ∈ L∞([0, T ]× Rd).

Now we can write:

Y n
r Lθ(Xr) =

(
Y n

r Φα/(1+q)
)(

Φ−α/(1+q)Lθ(Xr)
)

=
(
Y n

r Φα/(1+q)
)(

Φ−α(p−1)/pLθ(Xr)
)
.

The sequence Y nΦα/(1+q) = Y nΦα(1−1/p) is a bounded sequence in L1+q(Ω× [0, T ]) (see Lemma
5). Therefore using a weak convergence result and extracting a subsequence if necessary, we can
pass to the limit in the term:

E
∫ T

t
Y n

r Lθ(Xr)dr,

with

E
∫ T

0
|YrLθ(Xr)| dr ≤ C. (2.4.39)

Recall the estimation (2.3.23): there exists a constant C such that for all n ∈ N:

E
∫ T

0
‖Zn

r ‖2(T − r)
2
q dr ≤ C.

Hence, there exists a subsequence, which we still denote Zn(T − r)1/q, and which converges
weakly in the space L2

(
Ω× (0, T ), dP× dt; Rd

)
to a limit, and the limit is Z(T−r)1/q, because we

already know that Zn converges to Z in L2 (Ω× (0, T − δ)) for all δ > 0. ∇θ(X)σ(., X)(T− .)−1/q

is L2 (Ω× (0, T )), because θ is compactly supported and q > 2. Therefore,

lim
n→+∞

E
∫ T

t
Zn

r .∇θ(Xr)σ(r,Xr)dr = E
∫ T

t
Zr.∇θ(Xr)σ(r,Xr)dr.

And Lemma 4 shows that

E
∫ T

0
|Zr.∇θ(Xr)σ(r,Xr)| dr ≤ C. (2.4.40)

To conclude we write Equality (2.4.34) for (Y n, Zn) and θ and we pass to the limit. This gives
Equality (2.4.31) with the three estimates (2.4.38), (2.4.39) and (2.4.40).
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2.4.2 Proof of (2.4.31) if q ≤ 2

If we just assume q > 0, Lemma 4 does not hold anymore. In other words our previous control
on the term containing Z in (2.4.31) fails. But if we are able to prove that there exists a function
ψ such that for 0 < t ≤ T :

E
∫ T

t
Zn

r .∇θ(Xr)σ(r,Xr)dr = E
∫ T

t
Y n

r ψ(r,Xr)dr, (2.4.41)

then we apply again the Hölder inequality in order to control

E
∫ T

t
Y n

r ψ(r,Xr)dr by E
∫ T

t
(Y n

r )1+qΦα(Xr)dr.

Note that we will add the following condition on g. From now on g is a measurable func-
tion defined on [0, T ] × Rd × R × Rk such that the Lipschitz property (A4) holds and for any
(t, x, x′, y, z) ∈ [0, T ]× (Rd)2 × R× Rm

|g(t, x, y, z)− g(t, x′, y, z)| ≤ Kg|x− x′|. (A6)

First we will prove the next result. In fact it is a quite straightforward modification of Proposition
2.3 in [74] or Proposition 4.2 in [5]. Let us denote by B2(0, T ; D1,2) the set of processes (Y, Z)
such that Y ∈ S2([0, T ]), Z ∈ H2(0, T ) and Yt and Zt belong to D1,2 with

E
[∫ T

0
(|Yt|2 + ‖Zt‖2)dt+

∫ T

0

∫ T

0
(|DsYt|2 + ‖DsZt‖2)dtds

]
< +∞.

Lemma 6. Assume that (Y, Z) is solution of the BSDE (2.0.4) with terminal condition ξ =
h(XT ):

Yt = h(XT )−
∫ T

t
Ys|Ys|qds+

∫ T

t
g(s,Xs, Ys, Zs)

←−−
dBs −

∫ T

t
ZsdWs

where h is a bounded Lipschitz function on Rd, g satisfies the previous Lipschitz condition and
Xs ∈ D1,2 for every s ∈ [0, T ].

1. Then (Y, Z) ∈ B2(0, T ; D1,2) and for all 1 ≤ i ≤ d,
{
Di

sYs, 0 ≤ s ≤ T
}

is a version of
{(Zs)i, 0 ≤ s ≤ T}. (Zs)i denotes the i-th component of Zs. Here, Di

sYs has the following
sense:

Di
sYs = lim

r→s
r<s

Di
rYs.

2. There exist two random fields u and v such that:

Yt = u(t,Xt) and Zt = v(t,Xt)

and for any (t, x) ∈ [0, T ]× Rm, u(t, x) and v(t, x) are FB
t,T -measurable.

Proof. We just sketch the proof. The technical arguments can be found in [5] or [36]. It is
known (see e.g. proof of Theorem 1.1 in [74]) that the solution (Y, Z) of the previous BSDE is
obtained by passing to the limit in the following iteration scheme:

(Y 0, Z0) = (0, 0)
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Y m+1
t = h(XT )−

∫ T

t
Y m

s |Y m
s |qds+

∫ T

t
g(s,Xs, Y

m
s , Zm

s )
←−−
dBs −

∫ T

t
Zm+1

s dWs.

Our goal here is to show by induction that for all m ∈ N (Y m, Zm) ∈ B2(0, T ; D1,2) and that
(Y m, Zm) converges in L2([0, T ],D1,2 × D1,2) to (Y, Z).
It is clear that this is true at step 0 since constants are Malliavin differentiable. Let us suppose
now that (Y m, Zm) ∈ B2(0, T ; D1,2). By Proposition 1.2.4 in [67] we know that h(XT ) ∈ D1,2

and g(s,Xs, Y
m
s , Zm

s ) ∈ D1,2, since h and g are supposed Lipschitz continuous and XT , Y m
s

and Zm
s are in D1,2. With Lemma 4.2 in [5] we obtain that

∫ T
t g(s,Xs, Y

m
s , Zm

s )d
←−
B s ∈ D1,2.

Moreover, since h is bounded, Y m is also bounded (see (2.3.18)) and x 7→ x|x|q ∈ C1(R).
Therefore Y m

t |Y m
t |q ∈ D1,2. Then following the arguments of section 7.1 in [5], we obtain that

(Y m+1, Zm+1) ∈ B2(0, T ; D1,2) with DsY
m+1
t = DsZ

m+1
t = 0 for 0 ≤ t ≤ s ≤ T and for

0 ≤ s ≤ t ≤ T

DsY
m+1
t = Hx

T (DsXT )− (q + 1)
∫ T

t
|Y m

u |qDsY
m
u du

+
∫ T

t
[Gx,m

u DsXu +Gy,m
u DsY

m
u +Gz,m

u DsZ
m
u ] d
←−
B u −

∫ T

t
DsZ

m+1
u dWu

where Hx
T , resp. Gx,m

u , Gy,m
u and Gz,m

u are four bounded random variables with Hx (resp. Gx
u,

Gy
u and Gz

u) is FW
T (resp. Fu) measurable. The bound depends only on the Lipschitz constant of

h and g. Using the same arguments as in [5] we can prove that Gx,m, Gy,m and Gz,m converge to
bounded processes and (Y m, Zm) converges in L2([0, T ],D1,2×D1,2) to (Y, Z). Now for 0 < s < t

DsYt = Zs + (q + 1)
∫ t

s
|Yu|qDsYudu

−
∫ t

s
[Gx

uDsXu +Gy
uDsYu +Gz

uDsZu] d
←−
B u +

∫ t

s
DsZudWu.

We then pass to the limit as s goes to t to obtain the desired result.
For the second part, we will show that there exists two random fields um and vm, such that for
any (t, x) ∈ [0, T ]× Rm, um(t, x) and vm(t, x) are FB

t,T -measurable and

Y m
t = um(t,Xt) and Zm

t = vm(t,Xt).

It is clear that this is true at step 0 by taking u0 = v0 = 0. Let us suppose now that there exists
two functions satisfying the measurability as stated in the proposition such that at step m our
processes verify:

Y m
t = um(t,Xt) and Zm

t = vm(t,Xt).

We can write then:

Y m+1
t = h(XT )−

∫ T

t
um(s,Xs)|um(s,Xs)|qds

+
∫ T

t
g(s,Xs, u

m(s,Xs), vm(s,Xs))d
←−
B s −

∫ T

t
Zm+1

s dWs

We take the expectation with respect to Gt, which leads to:

Y m+1
t = EGt

[
h(XT )−

∫ T

t
um(s,Xs)|um(s,Xs)|qds

+
∫ T

t
g(s,Xs, u

m(s,Xs), vm(s,Xs))d
←−
B s

]
.
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By Markov property, there exists a function um+1 with um+1(t, x) is FB
T -measurable and

Y m+1
t = um+1(t,Xt).

We know that Y m+1
t is Ft-measurable and we deduce that um+1(t, x) is in fact FB

t,T -measurable.
The convergence of um and vm can be obtained by the same arguments as in [36], section 4. �

The last assumption implies that x 7→ h(x)∧n is a bounded Lipschitz function on Rd. Moreover
these conditions imply that Xs ∈ D1,2. Therefore we can apply the previous proposition to
(Y n, Zn) to establish:

Proposition 6. There exists a function ψ such that for every s ∈ [0, T ]

E [Zn
s∇θ(Xs)σ(s,Xs)] = E [Y n

s ψ(s,Xs)] ,

where ψ is given by:

ψ(t, x) = −
d∑

i=1

(∇θ(x)σ(t, x))i
div(pσi)(t, x)

p(t, x)

− Trace(D2θ(x)σσ∗(t, x))−
d∑

i=1

∇θ(x).∇σi(t, x)σi(t, x). (2.4.42)

Proof. We would like to apply here the integration by parts formula (Lemma 1.2.2 in [67])
which states:

E[G〈DF, h〉H ] = E[−F 〈DG,h〉H + FGW (h)],

where H := L2([0, T ],Rd) and F and G are two random variables in D1,2. But in order to use
this we need to rewrite our expectation to make appear the scalar product in H. Actually we
have:

E [Zn
t .∇θ(Xt)σ(t,Xt)] = E [DtY

n
t .∇θ(Xt)σ(t,Xt)] =

d∑
i=1

E
[
Di

tY
n
t (∇θσ)i(Xt)

]
where (∇θσ)(Xt) = ∇θ(Xt)σ(t,Xt) and (∇θσ)i(Xt) denotes the i-th component of (∇θσ)(Xt).
As in the proof of Proposition 17 in [83] we can use the following approximation:

P− a.s. Di
tY

n
t = lim

j→∞
〈DY n

t , ν
i
j〉H = lim

j→∞

∫ T

0
j1[t− 1

j
,t[(s)(DsY

n
t ).eids

(ei)i=1,...,d being the canonical basis of Rd.
Let t ∈ [0, T ], by integrations by parts formula we get:

E[〈DY n
t , ν

i
j〉H(∇θσ)i(Xt)] = E

[
Y n

t (∇θσ)i(Xt)
∫ T

0
νi

j(s)dWs

]
− E

[
Y n

t

∫ T

0
νi

j(s)Ds((∇θσ)i(Xt))ds
]
.



58 Chapter 2. SPDE with singular terminal condition

Let us consider the first term:

E
[
Y n

t (∇θσ)i(Xt)
∫ T

0
νi

j(s)dWs

]
= jE

[
Y n

t (∇θσ)i(Xt)
(
W i

t −W i
t− 1

j

)]
= jE

[
un(t,Xt)(∇θσ)i(Xt)

(
W i

t −W i
t− 1

j

)]
= jE

[
E
[
un(t,Xt)

∣∣∣∣FW
t

]
(∇θσ)i(Xt)

(
W i

t −W i
t− 1

j

)]
= jE

[
vn(t,Xt)(∇θσ)i(Xt)

(
W i

t −W i
t− 1

j

)]
since un(t, x) is FB

t,T -measurable and B and W are independent. Now

E
[
vn(t,Xt)(∇θσ)i(Xt)

(
W i

t −W i
t− 1

j

)]
= −E

[
vn(t,Xt)(∇θσ)i(Xt)

∫ t

t− 1
j

div(σip)(u,Xu)
p(u,Xu)

du

]
where p is the density of X and σi is the i-th column of the matrix σ. As in [83], we use
Lemmas 3.1 and 4.1 in [71] with the same arguments. For convenience let us just recall that
from Theorems 7 and 10 in [4], Theorem II.3.8 of [92] and Theorem III.12.1 in [58], the density
p(x; ., .) exists and satisfies:

• p(x; ., .) ∈ L2(δ, T ;H2) for all δ > 0;

• p is Hölder continuous in x and satisfies the following inequality for s ∈]0, T ]:

exp
(
−C |y−x|2

s

)
Csm/2

≤ p(x; s, y) ≤
C exp

(
− |y−x|2

Cs

)
sm/2

; (2.4.43)

• y 7→ ∂p/∂yi(x; ., .) is Hölder continuous in y.

In this proof we omit the variable x in p(x; ., .). The previous properties of p ensure that
div(pσi)/p is well-defined and regular. Let j go to +∞, we have:

E
[
Di

tY
n
t (∇θσ)i(Xt)

]
= −E

[
Y n

t (∇θσ)i(Xt)
div(σip)(t,Xt)

p(t,Xt)

]
− E [Y n

t Dt(∇θ(Xt)σ(t,Xt))] .

From the regularity assumptions on θ and σ we can compute directly the last term to obtain:

E [Zn
t .∇θ(Xt)σ(t,Xt)] = E [Y n

t ψ(t,Xt)]

with ψ given by (2.4.42). �
As in the case q > 2, we have to prove that Equality (2.4.31) holds with suitable integrability
conditions. Now Equation (2.4.35) becomes:

E(Y n
T Φα(XT )) = E(Y n

0 Φα(X0)) + E
∫ T

0
Zn

r .∇(Φα)(Xr)σ(r,Xr)dr

+E
∫ T

0
Φα(Xr)(Y n

r )1+qdr + E
∫ T

0
Y n

r L(Φα)(Xr)dr

= E(Y n
0 Φα(X0)) + E

∫ T

0
Φα(Xr)(Y n

r )1+qdr + E
∫ T

0
Y n

r Ψα(r,Xr)dr (2.4.44)
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with Ψα the following function: for t ∈]0, T ] and x ∈ Rd

Ψα(t, x) = ∇(Φα)(x).b(t, x)− 1
2
Trace(D2(Φα)(x)σσ∗(t, x))

−
d∑

i=1

(
(∇(Φα)(x)σ(t, x))i

div(p(t, x)σi(t, x))
p(t, x)

)

−
d∑

i=1

(
∇(Φα)(x).[∇σi(t, x)σi(t, x)]

)
.

In [83] it is proved that for a fixed ε > 0 and p = 1 + 1/q:

Φ−α(p−1) |Ψα|p ∈ L∞([ε, T ]× Rd).

If it is true, then the last term in (2.4.45) satisfies:

E
∫ T

t
|Y n

r Ψα(r,Xr)| dr ≤ C
(

E
∫ T

t
Φα(Xr)(Y n

r )1+qdr

) 1
1+q

and the end of the proof will be the same as in the case q > 2.

2.5 Link with SPDE’s

In the introduction, we have said that there is a connection between doubly stochastic backward
SDE whose terminal data is a function of the value at time T of a solution of a SDE (or forward-
backward system), and solutions of a large class of semilinear parabolic stochastic PDE. Let us
precise this connection in our case.
To begin with, we modify the equation (2.1.8). For all (t, x) ∈ [0, T ]×Rd, we denote by Xt,x the
solution of the following SDE:

Xt,x
s = x+

∫ s

t
b(r,Xt,x

r )dr +
∫ s

t
σ(r,Xt,x

r )dWr, for s ∈ [t, T ], (2.5.45)

and Xt,x
s = x for s ∈ [0, t]. We enforce the assumptions on b and σ: we assume that b (resp. σ)

is a C2 (resp. C3) function whose partial derivatives of order less than 2 (resp. 3) are bounded.
Therefore b and σ satisfy the assumptions (L)-(G). We consider the following doubly stochastic
BSDE for t ≤ s ≤ T :

Y t,x
s = h(Xt,x

T )−
∫ T

s
Y t,x

r |Y t,x
r |qdr +

∫ T

s
g(r,Xt,x

r , Y t,x
r , Zt,x

r )
←−−
dBr −

∫ T

s
Zt,x

r dWr, (2.5.46)

where h is a function defined on Rd with values in R. The two equations (2.5.45) and (2.5.46)
are called a forward-backward system. This system is connected with the stochastic PDE (2.0.5)
with terminal condition h.
More precisely for any n ∈ N∗, let (Y n,t,x, Zn,t,x) be the solution of the BDSDE (2.5.46) with
terminal condition h(Xt,x

T ) ∧ n. We know that

0 ≤ Y n,t,x
s ≤

(
1

q(T − s) + 1
nq

) 1
q

≤ n.
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And the generator y 7→ −y|y|q is Lipschitz continuous on the interval [−n, n]. Moreover if we
assume Assumption (H3), then h ∧ n is a Lipschitz and bounded function on Rd. Hence h ∧ n
belongs to L2(Rd, ρ(x)dx) = L2

ρ(Rd). Recall that ρ is defined by (2.1.9) and here we just need
that κ > d. Since we have imposed that g(t, x, y, 0) = 0, now the all conditions in [6] are satisfied.

Proposition 7 (Theorem 3.1 in [6]). There exists a unique weak solution un ∈ H(0, T ) of the
SPDE (2.0.5) with terminal function h ∧ n. Moreover un(t, x) = Y n,t,x

t and

Y n,t,x
s = un(s,Xt,x

s ), Zn,t,x
s = (σ∗∇un)(s,Xt,x

s ).

The space H(0, T ) is defined in Section 2.1. The random field un is a weak solution of (2.0.5) ,
which means:

1. For some δ > 0
sup
s≤T

E
[
||un(s, .)||1+δ

L2
ρ(Rd)

]
<∞. (WS1)

Since un is bounded by n a.s. it is true for any δ > 0.

2. For every test-function φ ∈ C∞(Rd), dt⊗ dP a.e.

lim
s↑t

∫
Rd

un(s, x)φ(x)dx =
∫

Rd

un(t, x)φ(x)dx. (WS2)

3. Finally un satisfies for every function Ψ ∈ C1,∞
c ([0, T ]× Rd)∫ T

t

∫
Rd

un(s, x)∂sΨ(s, x)dxds+
∫

Rd

un(t, x)Ψ(t, x)dx−
∫

Rd

(h(x) ∧ n)Ψ(T, x)dx(2.5.47)

−1
2

∫ T

t

∫
Rd

(σ∗∇un)(s, x)(σ∗∇Ψ)(s, x)dxds

−
∫ T

t

∫
Rd

un(s, x)div
((
b− Ã

)
Ψ
)

(s, x)dxds

= −
∫ T

t

∫
Rd

Ψ(s, x)un(s, x)|un(s, x)|qdxds

+
∫ T

t

∫
Rd

Ψ(s, x)g(s, x, un(s, x), σ∗∇un(s, x))dx
←−−
dBs.

C1,∞
c ([0, T ]×Rd) is the set of functions ψ : [0, T ]×Rd → R such that ψ has a compact support

w.r.t. x ∈ Rd and

Ãi =
1
2

d∑
k=1

∂(σσ∗)k,i

∂xk
.

Remember that we have defined a process (Y t,x, Zt,x) solution in the sense of the Definition 8 of
the backward doubly stochastic differential equation (2.5.46) with singular terminal condition h
(see Theorem 14 and the beginning of the section 2.4 on continuity at time T ). The process Y
is obtained as the increasing limit of the processes Y n:

Y t,x
s = lim

n→+∞
Y n,t,x

s a.s..
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Therefore we can define the following random field u as follows:

u(t, x) = Y t,x
t = lim

n→+∞
Y n,t,x

t = lim
n→+∞

un(t, x).

Our aim is to prove Theorem 16, that is, u is also a weak solution of (2.0.5) with the singular
terminal condition h. For any n we have a.s.

0 ≤ Y n,t,x
s ≤

(
1

q(T − s) + 1
nq

) 1
q

≤
(

1
q(T − s)

) 1
q

.

In particular for any (t, x)

0 ≤ un(t, x) ≤
(

1
q(T − t)

) 1
q

and hence u satisfies the same estimate. Thus u is bounded on [0, t] × Rd and in L2
ρ(Rd). By

dominated convergence theorem, for any δ > 0, u satisfies (WS1) and (WS2) for any 0 ≤ s ≤
t ≤ T − δ.
Moreover we have Zn,t,x

s = (σ∗∇un)(s,Xt,x
s ) and from the proof on Theorem 14 we know that the

sequence of processes (Zn,t,x
s , s ≥ t) converges in L2((0, T − δ)×Ω) for any δ > 0 to Zt,x. Hence

the sequence un converges in H(0, t) to u. From Proposition 5 we have the a priori estimate
(2.3.23):

E
∫ T

0
(T − s)2/q‖Zn,t,x

s ‖2ds ≤ 8 +KT

1− ε

(
1
q

)2/q

(as usual Zn,t,x
s = 0 if s < t). Therefore we deduce

E
∫ T

0
(T − s)2/q‖(σ∗∇un)(s,Xt,x

s )‖2ds ≤ 8 +KT

1− ε

(
1
q

)2/q

.

We multiply each side by ρ(x), we integrate w.r.t. x and we use Proposition 5.1 in [6] to have:

E
∫

Rd

∫ T

0
(T − s)2/q‖(σ∗∇un)(s, x)‖2ρ(x)dxds ≤ C

where the constant C does not depend on n. With the Fatou lemma we have the same inequality
for u.

E
∫

Rd

∫ t

0
(T − s)2/q‖(σ∗∇u)(s, x)‖2ρ(x)dxds <∞.

Now for every function Ψ ∈ C1,∞
c ([0, T ] × Rd), un satisfies (2.5.47), therefore for every 0 ≤ r ≤

t < T , un satisfies also:∫ t

r

∫
Rd

un(s, x)∂sΨ(s, x)dxds+
∫

Rd

un(r, x)Ψ(r, x)dx−
∫

Rd

un(t, x)Ψ(t, x)dx(2.5.48)

−1
2

∫ t

r

∫
Rd

(σ∗∇un)(s, x)(σ∗∇Ψ)(s, x)dxds

−
∫ t

r

∫
Rd

un(s, x)div
((
b− Ã

)
Ψ
)

(s, x)dxds

= −
∫ t

r

∫
Rd

Ψ(s, x)un(s, x)|un(s, x)|qdxds

+
∫ t

r

∫
Rd

Ψ(s, x)g(s, x, un(s, x), σ∗∇un(s, x))dx
←−−
dBs.
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But using monotone convergence theorem or the convergence of un to u in H(0, t), we can pass
to the limit as n goes to +∞ in (2.5.48) and we obtain that u is a weak solution of (2.0.5) on
[0, T − δ]× Rd for any δ > 0.
The only trouble concerns the behavior of u near T . Since un satisfies (2.5.47) for any n, and by
the integrability or regularity assumptions on un, b and σ, we have

lim
t→T

∫
Rd

un(t, x)ψ(x)dx =
∫

Rd

(h(x) ∧ n)ψ(x)dx

for any function ψ ∈ C∞c (Rd). Therefore by monotonicity

lim inf
t↑T

∫
Rd

u(t, x)ψ(x)dx ≥ lim inf
t↑T

∫
Rd

un(t, x)ψ(x)dx =
∫

Rd

(h(x) ∧ n)ψ(x)dx

for any n. Hence a.s.

lim inf
t↑T

∫
Rd

u(t, x)ψ(x)dx ≥
∫

Rd

h(x)ψ(x)dx.

Our aim is to prove the converse inequality with the lim sup. In the second section we have
proved Equation (2.4.31) with suitable integrability condition on all terms:

E(h(Xt,x
T )θ(Xt,x

T )) = E(u(t, x)θ(x)) + E
∫ T

t
θ(Xt,x

r )(Y t,x
r )1+qdr

+ E
∫ T

t
Y t,x

r Lθ(Xt,x
r )dr + E

∫ T

t
Zt,x

r .∇θ(Xt,x
r )σ(r,Xt,x

r )dr

for any smooth functions θ such that its compact support is strictly included in R = {h < +∞}.
If we integrate this w.r.t. dx (no weight function ρ is needed here since θ is of compact support)
and we let t go to T we obtain:

lim
t→T

∫
Rd

E(h(Xt,x
T )θ(Xt,x

T ))dx = lim
t→T

∫
Rd

E(u(t, x)θ(x))dx.

By dominated convergence theorem this gives:

lim
t→T

E
(∫

Rd

u(t, x)θ(x)dx
)

=
∫

Rd

h(x)θ(x)dx

for any function θ ∈ C2
c (Rd) with supp(θ) ∩ S = ∅.

Note that Fatou’s lemma implies that

E
(

lim inf
t→T

∫
Rd

u(t, x)θ(x)dx
)
≤
∫

Rd

h(x)θ(x)dx

and thus we obtain that a.e. on Ω× Rd

lim inf
t→T

u(t, x) = h(x).

Remark 2. If g does not depend of Z (or on ∇u), and if g ∈ C0,2,3
b ([0, T ] × Rd × R; Rd), then

from [21], un is a stochastically bounded viscosity solution of the SPDE (2.0.5) on [0, T ] × Rd

and u is also a stochastically bounded viscosity solution of the SPDE (2.0.5) on [0, T − δ] × Rd

for any δ > 0.



2.5. Link with SPDE’s 63

Now let ũ be a non negative weak solution of (2.0.5) on [0, T − δ]× Rd for any δ > 0. It means
that for any δ > 0, ũ ∈ H(0, T − δ) and ũ satisfies (WS1) and (WS2) and (2.5.48) on [0, T − δ].
Moreover we assume that lim inft→T ũ(t, x) ≥ h(x) a.e. on Ω × Rd. We follow the proof of
uniqueness for Theorem 3.1 in [6]. We define

Ỹ t,.
s = ũ(s,Xt,.

s ), Z̃t,.
s = (̃σ∗∇u)(s,Xt,.

s ).

Then by the same arguments as in [6], (Ỹ t,x
s , Z̃t,x

s ) solves the BDSDE (2.0.4) on any interval
[0, T − δ]. Moreover a.s.

lim inf
s→T

Ỹ t,x
s ≥ h(Xt,x

T ) = ξ.

By Lemma 2 and the proof of minimality of the solution of the BDSDE (Theorem 14), we deduce
that for every n, a.s.

Y t,x,n
s ≤ Ỹ t,x

s ≤
(

1
q(T − s)

)1/q

.

Thus u(t, x) ≤ ũ(t, x) a.e. on Ω× [0, T ]×Rd. And u is the minimal weak solution of the SPDE
(2.0.5) with singular terminal condition.
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3.1 Introduction

In this chapter we would like to provide existence results for the following BSDE:

Yt = ξ −
∫ T

t
Ys|Ys|qds−

∫ T

t
ZsdWs −

∫ T

t

∫
E
Us(e)µ̃(ds, de) (3.1.1)

where the terminal condition ξ satisfies

P(ξ = +∞) > 0. (3.1.2)

The first aim is the following. We want to find sufficient conditions to have a.s.

lim
t→T

Yt = ξ. (3.1.3)

This problem was studied in [83] when there is no jump. In the Markovian framework and for
q > 2, Equality (3.1.3) was proved. Here we will follow the same idea. But we need other technical
assumptions on the jumps of the solution X of the forward SDE and the set S = {ξ = +∞}.
The second part is devoted to the study of the related partial integro differential equation (PIDE
in short): for any x ∈ Rd, u(T, x) = g(x) and for any (t, x) ∈ [0, T [×Rd

∂

∂t
u(t, x) + Lu(t, x) + I(t, x, u)− u(t, x)|u(t, x)|q = 0 (3.1.4)
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where L is given above and I is a integro-differential operator:

I(t, x, φ) =
∫

E
[φ(x+ h(t, x, e))− φ(x)− (∇φ)(x)h(t, x, e)]λ(de).

The chapter is organized as follows. In the first part we give the mathematical framework and
we recall the construction of the minimal solution of the BSDE (3.1.1). We complete the results
of Kruse and Popier [53] with an a priori estimate of the coefficients Z and U . In the second
section, we prove Equality (3.1.3). More precisely we prove that the limit always exists and in
the Markovian framework and for q > 2, this limit is a.s. equal to ξ. Some technical assumptions
(C) are assumed: they concern the jumps of the forward process X and the set of singularity
S. Note that we cannot extend the result to the case q ≤ 2. In [83] for q ≤ 2, Malliavin calculus
is used to obtain the right estimate. Even if the solution of the BSDE with jumps has Malliavin
derivatives (see [28]), we are not able to do the suitable integration by parts and this case is left
for further developments.
In the last section we consider the PIDE (3.1.4) and we show that the minimal solution Y of
the BSDE provides the minimal viscosity solution u for the PIDE. We show that Y t,x

t = u(t, x)
is a (discontinuous) viscosity solution of (3.1.4) on any interval [0, T − ε] for ε > 0 and under
assumptions (C), u(t, x) converges to g(x) as t goes to T . Then we prove minimality of this
solution, which requires a comparison result for viscosity solution for PIDE adapted for our
setting.

3.2 Setting, construction of the minimal solution

Our setting is the same as in [9]. In the following we will consider W = (Wt)t∈R+ the standard
Brownian Motion on Rk, µ a Poisson random measure on R+ × E with compensator dtλ(de).
Here E := R`\{0}, E its Borel field and we assume that we have a stochastic basis (Ω,F ,P) and
the filtration (Ft, t ≥ 0) is generated by the two independent processes W and µ and we assume
that F0 contains all P-null elements of F . We will denote µ̃ is the compensated measure: for
any A ∈ E such that λ(A) < +∞, then µ̃([0, t]×A) = µ([0, t]×A)− tλ(A) is a martingale. λ is
assumed to be a σ-finite measure on (E, E) satisfying∫

E
(1 ∧ |e|2)λ(de) < +∞.

In this chapter for a given T ≥ 0, we denote:

• P: the predictable σ-field on Ω× [0, T ] and

P̃ = P ⊗ E

• On Ω̃ = Ω × [0, T ] × E, a function that is P̃-measurable, is called predictable. Gloc(µ) is
the set of P̃-measurable functions ψ on Ω̃ such that for any t ≥ 0 a.s.∫ t

0

∫
E
(|ψs(e)|2 ∧ |ψs(e)|)λ(de) < +∞.

• D (resp. D(0, T )): the set of all progressively measurable càdlàg processes on R+ (resp.
on [0, T ]).
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We refer to [49] (see also [12]) for details on random measures and stochastic integrals. Now to
define the solution of our BSDE, let us introduce the following spaces for p ≥ 1.

• Sp(0, T ) is the space of all processes X ∈ D(0, T ) such that

E

(
sup

t∈[0,T ]
|Xt|p

)
< +∞.

For simplicity, X∗ = supt∈[0,T ] |Xt|.

• Hp(0, T ) is the subspace of all processes X ∈ D(0, T ) such that

E

[(∫ T

0
|Xt|2dt

)p/2
]
< +∞.

• Lp
µ(0, T ) = Lp

µ(Ω× (0, T )× E): the set of processes ψ ∈ Gloc(µ) such that

E

[(∫ T

0

∫
E
|ψs(e)|2λ(de)ds

)p/2
]
< +∞.

• Lp
λ = Lp(E, λ; Rd): the set of measurable functions ψ : E → Rd such that

‖ψ‖p
Lp

λ
=
∫

E
|ψ(e)|pλ(de) < +∞.

• Bp
µ(0, T ) = Sp(0, T )×Hp(0, T )× Lp

µ(0, T ).

In [53], the following result is proved.

Theorem 17 (and Definition). Let q > 0 and ξ a Ft-measurable non negative random variable
such that P(ξ =∞) > 0. There exists a process (Y, Z, U) such that

• (Y, Z, U) belongs to S2(0, t) for any t < T .

• for all 0 ≤ s ≤ t < T :

Ys = Yt −
∫ t

s
Yr|Yr|qdr −

∫ t

s
ZrdWr −

∫ t

s

∫
E
Us(e)µ̃(ds, de).

• (Y, Z, U) is a super-solution in the sense that: a.s.

lim inf
t→T

Yt ≥ ξ.

Any process (Ỹ , Z̃, Ũ) satisfying the previous three items is called super-solution of the BSDE
(3.1.1) with singular terminal condition ξ.
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By construction, Yt ≥ 0 a.s. and it is the minimal one: if (Ỹ , Z̃, Ũ) is another non negative
super-solution, then a.s. Ỹt ≥ Yt.
In this section we sketch the construction of the minimal solution and we give an a priori estimate
of the martingale part (Z,U) of the solution. Indeed we have already seen that if ξ belongs to
L2(Ω,FT ,P) we have existence and uniqueness results for such BSDE’s according to [28] or [52].
The approach in [53] is then to approximate our BSDE by considering a terminal condition of
the form ξn := ξ ∧ n and observe asymptotic behaviour.
Let us consider the following process:

Y n
t = ξ ∧ n−

∫ T

t
Y n

s |Y n
s |qds−

∫ T

t
Zn

s dWs −
∫ T

t

∫
E
Un

s (e)µ̃(ds, de)

where (Y n, Zn, Un) is solution of the BSDE. Moreover using comparison argument (see [85] or
[52]) we can obtain for n ≤ m:

0 ≤ Y n
t ≤ Y m

t ≤

(
1

q(T − t) + 1
mq

)1/q

≤
(

1
q(T − t)

)1/q

This allows us to define Y as the increasing limit of the sequence (Y n
t )n≥1:

∀ t ∈ [0, T ], Yt := lim
n→∞

Y n
t .

The next lemma shows that the sequences of processes Zn and Un also converge.

Lemma 7. There exists a constant C such that for any m, n and 0 ≤ t ≤ s < T :

E
[

sup
0≤t≤s

|Y n
t − Y m

t |2 +
∫ s

0
‖Zn

r − Zm
r ‖2dr +

∫ s

0

∫
E
|Un

r (e)− Um
r (e)|2λ(de)dr

]
(3.2.5)

≤ CE
[
|Y n

s − Y m
s |2

]
.

Proof. From the Itô formula with φ(y) = y2 we deduce for t ≤ s < T :

|Y n
t − Y m

t |2 +
∫ s

t
‖Zn

r − Zm
r ‖2dr +

∫ s

t

∫
E
|Un

r (e)− Um
r (e)|2λ(de)dr =

|Y n
s − Y m

s |2 + 2
∫ s

t
|Y n

r − Y m
r |[(Y n

r )q+1 − (Y m
r )q+1]dr

−2
∫ s

t
(Y n

r − Y m
r )(Zn

r − Zm
r )dWr −

∫ s

t

∫
E
|Y n

r − Y m
r |2 − |Y n

r− − Y
m
r− |

2µ̃(dr, de).

Then from the monotonicity of y 7→ yq+1,

|Y n
t − Y m

t |2 +
∫ s

t
‖Zn

r − Zm
r ‖2dr +

∫ s

t

∫
E
|Un

r (e)− Um
r (e)|2λ(de)dr (3.2.6)

≤ |Y n
s − Y m

s |2 − 2
∫ s

t
(Y n

r − Y m
r )(Zn

r − Zm
r )dWr

−
∫ s

t

∫
E

(
|Y n

r − Y m
r |2 − |Y n

r− − Y
m
r− |

2
)
µ̃(dr, de)

From (3.2.6) we get directly:

E
[∫ s

0
‖Zn

r − Zm
r ‖2dr +

∫ s

0

∫
E
|Un

r (e)− Um
r (e)|2λ(de)dr

]
≤ E

[
|Y n

s − Y m
s |2

]
(3.2.7)
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because (Y n
r − Y m

r ) ∈ L∞, (Zn
r − Zm

r ) ∈ L2 and (Un
r − Um

r ) ∈ L2. Thus all stochastic integrals
in (3.2.6) are true martingales. Note that (3.2.6) can be also written as follows:

|Y n
t − Y m

t |2 +
∫ s

t
‖Zn

r − Zm
r ‖2dr +

∫ s

t

∫
E
|Un

r (e)− Um
r (e)|2µ(de, dr)

≤ |Y n
s − Y m

s |2 − 2
∫ s

t
(Y n

r − Y m
r )(Zn

r − Zm
r )dWr

−2
∫ s

t

∫
E
(Un

r (e)− Um
r (e))(Y n

r− − Y
m
r−)µ̃(dr, de)

Taking the supremum on [0, s] and using Burkholder-Davis-Gundy inequality we obtain:

E sup
t∈[0,s]

|Y n
t − Y m

t |2 ≤ E|Y n
s − Y m

s |2 + 2E sup
t∈[0,s]

∣∣∣∣∫ s

t
(Y n

r − Y m
r )(Zn

r − Zm
r )dWr

∣∣∣∣
+2E sup

t∈[0,s]

∣∣∣∣∫ s

t

∫
E
(Un

r (e)− Um
r (e))(Y n

r− − Y
m
r−)µ̃(dr, de)

∣∣∣∣
≤ E|Y n

s − Y m
s |2 + 8E

(∫ s

0
(Y n

r − Y m
r )2(Zn

r − Zm
r )2dr

)1/2

+8E
(∫ s

0

∫
E
(Y n

r− − Y
m
r−)2(Un

r (e)− Um
r (e))2λ(de)dr

)1/2

.

By Young’s inequality we have:

E sup
t∈[0,s]

|Y n
t − Y m

t |2 ≤ E|Y n
s − Y m

s |2 +
1
4

E sup
t∈[0,s]

|Y n
t − Y m

t |2 + 32E
∫ s

0
(Zn

r − Zm
r )2dr

+
1
4

E sup
t∈[0,s]

|Y n
t − Y m

t |2 + 32E
∫ s

0

∫
E
(Un

r (e)− Um
r (e))2λ(de)dr.

Thus we deduce that

E sup
t∈[0,s]

|Y n
t − Y m

t |2 ≤ 2E|Y n
s − Y m

s |2 + 64E
∫ s

0
(Zn

r − Zm
r )2dr

+64E
∫ s

0

∫
E
(Un

r (e)− Um
r (e))2λ(de)dr.

Using (3.2.7) we obtain the desired inequality. �
Now we know that for any s ∈ [0, T − ε], Ys ∈ L∞, and since Y n

s converges to Ys almost surely,
we can deduce from the dominated convergence theorem combined with inequality (3.2.5):

1. For every ε > 0, (Zn)n≥1 is a Cauchy sequence in H2(0, T − ε), and converges to Z ∈
H2(0, T − ε).

2. For every ε > 0, (Un)n≥1 is a Cauchy sequence in L2
µ(0, T − ε), and converges to U ∈

L2
µ(0, T − ε).

3. (Y n)n≥1 converges to Y in D2(0, T − ε).

4. (Y, Z, U) satisfies for every 0 ≤ s < T , for all 0 ≤ t ≤ s

Yt = Ys −
∫ s

t
(Yr)1+qdr −

∫ s

t
ZrdBr −

∫ s

t

∫
E
Ur(e)µ̃(dr, de)
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Recall that on Y we have the following estimate:

0 ≤ Yt ≤
(

1
q(T − t)

)1/q

.

The previous proof shows that

E
[∫ t

0
‖Zs‖2ds+

∫ t

0

∫
E
|Us(e)|2λ(de)ds

]
≤
(

1
q(T − t)

)2/q

.

Now let us prove some sharper estimates on Z and U .

Proposition 8. The process (Z,U) satisfies:

E
[∫ T

0
(T − s)2/q

(
‖Zs‖2 +

∫
E
|Us(e)|2λ(de)

)
ds

]
≤ 16

(
1
q

)2/q

.

Proof. The proof is almost the same as in [83], Proposition 10. First suppose there exists a
constant α > 0 such that P-a.s. ξ ≥ α. In this case, by comparison, for all integer n and all
t ∈ [0, T ]:

Y n
t ≥

(
1

qT + 1/αq

)1/q

> 0.

Let δ > 0 and θ : R→ R, θq : R→ R defined by:{
θ(x) =

√
x on [δ,+∞[,

θ(x) = 0 on ]−∞, 0],
and

{
θq(x) = x

1
2q on [δ,+∞[,

θq(x) = 0 on ]−∞, 0],

and such that θ and θq are non-negative, non-decreasing and in respectively C2(R) and C1(R).
We apply the Itô formula on [0, T − δ] to the function θq(T − t)θ(Y n

t ), with δ < (qT +1/αq)−1/q:

θq(δ)θ(Y n
T−δ)− θq(T )θ(Y n

0 ) =
1
2q

∫ T−δ

0
(T − s)1/2q−1(Y n

s )1/2ds

+
1
2

∫ T−δ

0
(T − s)1/2q(Y n

s )−1/2dY n
s −

1
8

∫ T−δ

0
(T − s)1/2q(Y n

s )3/2(Zn
s )2ds

+
∫ T−δ

0
(T − s)1/2q

∫
E

[
(Y n

s )1/2 − (Y n
s−)1/2 − 1

2
(Y n

s−)−1/2Un
s (e)

]
µ(ds, de)

We deduce:

1
8

E
[∫ T−δ

0
(T − s)1/2q(Y n

s )−3/2(Zn
s )2ds

]
− E

[∫ T−δ

0

∫
E
(T − s)1/2q

(
(Y n

s )1/2 − (Y n
s−)1/2 − 1

2
(Y n

s−)−1/2Un
s (e)

)
µ(ds, de)

]
= E

[
θq(T )θ(Y n

0 )− θq(δ)θ(Y n
T−δ)

]
+

1
2

E
[∫ T−δ

0
(T − s)1/2q(Y n

s )1/2

(
(Y n

s )q − 1
q(T − s)

)
ds

]
≤ E [θq(T )θ(Y n

0 )] ≤
(

1
q

)1/2q
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Therefore

E
[∫ T−δ

0
(T − s)1/2q(Y n

s )−3/2(Zn
s )2ds

]
≤ 8

(
1
q

)1/2q

.

We have also

E
[∫ T−δ

0
(T − s)1/2q(Y n

s )−3/2(Zn
s )2ds

]
≥ q3/2qE

[∫ T−δ

0
(T − s)2/q(Zn

s )2ds
]
.

So if we combine those two inequalities we get:

E
[∫ T−δ

0
(T − s)2/q(Zn

s )2ds
]
≤ 8

(
1
q

)2/q

.

We can conclude to get the first part of our proposition by letting δ → 0 and using Fatou’s
Lemma.
We now want to prove the second part. We already know:

−E
[∫ T−δ

0

∫
E
(T − s)1/2q

(
(Y n

s )1/2 − (Y n
s−)1/2 − 1

2
(Y n

s−)−1/2Un
s (e)

)
µ(ds, de)

]
≤
(

1
q

)1/2q

.

Let Y n,α
s := Y n

s− + αUn
s (e). We have:

(Y n
s )1/2 − (Y n

s−)1/2 − 1
2
(Y n

s−)−1/2Un
s (e) =

∫ 1

0
|Un

s (e)|2(−1
4
)(Y n,α

s )−3/2(1− α)dα.

One can easily check that: Y n,α
s ≤ Y n

s− ∨ Y
n
s ≤ ( 1

q(T−s))
1/q. So we can deduce now:

1
4

E
[∫ T−δ

0

∫
E

∫ 1

0
q3/2q(T − s)2/q(1− α)|Un

s (e)|2dαµ(ds, de)
]
≤
(

1
q

)1/2q

and so:

E
[∫ T−δ

0

∫
E
(T − s)2/q|Un

s (e)|2µ(ds, de)
]
≤ 8

(
1
q

)2/q

.

Now we come back to the case ξ ≥ 0. We can not apply the Itô formula because we do not have
any positive lower bound for Y n. We will approach Y n in the following way. We define for n ≥ 1
and m ≥ 1, ξn,m by:

ξn,m = (ξ ∧ n) ∨ 1
m
.

This random variable is in L2 and is greater or equal to 1/m a.s. The BSDE (3.1.1), with ξn,m

as terminal condition, has a unique solution (Ỹ n,m, Z̃n,m, Ũn,m). It is immediate that if m ≤ m′

and n ≤ n′ then:

Ỹ n,m′ ≤ Ỹ n′,m.
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As for the sequence Y n, we can define Ỹ m as the limit when n grows to +∞ of Ỹ n,m. This limit
Ỹ m is greater than Y = limn→+∞ Y n. But for any m and n, for t ∈ [0, T ]:∣∣∣Ỹ n,m

t − Y n
t

∣∣∣2 = |ξn,m − ξn|2 − 2
∫ T

t

[
Ỹ n,m

r − Y n
r

] [(
Ỹ n,m

r

)q+1
− (Y n

r )q+1

]
dr

−2
∫ T

t

[
Ỹ n,m

r − Y n
r

] [
Z̃n,m

r − Zn
r

]
dWr −

∫ T

t

[
Z̃n,m

r − Zn
r

]2
dr

−
∫ T

t

∫
E
|Ũn,m

r (e)− Un
r (e)|2λ(de)dr

−
∫ T

t

∫
E

(
|Ỹ n,m

r − Y n
r |2 − |Ỹ

n,m
r− − Y n

r− |
2
)
µ̃(dr, de).

≤ |ξn,m − ξn|2 − 2
∫ T

t

[
Ỹ n,m

r − Y n
r

] [
Z̃n,m

r − Zn
r

]
dWr

−
∫ T

t

∫
E

(
|Ỹ n,m

r − Y n
r |2 − |Ỹ

n,m
r− − Y n

r− |
2
)
µ̃(dr, de).

and taking the expectation:

E
∣∣∣Ỹ n,m

t − Y n
t

∣∣∣2 ≤ E |ξn,m − ξn|2 ≤ 1
m2

. (3.2.8)

To conclude we fix δ > 0 and we apply the Itô formula to the process (T − .)2/q
∣∣∣Ỹ n,m − Y n

∣∣∣2.
This leads to the inequality:

E
∫ T−δ

0
(T − r)2/q

(∣∣∣Z̃n,m
r − Zn

r

∣∣∣2 +
∫

E

∣∣∣Ũn,m
r (e)− Un

r (e)
∣∣∣2) dr

≤ 2
q

E
∫ T−δ

0
(T − s)(2/q)−1

∣∣∣Ỹ n,m
s − Y n

s

∣∣∣2 ds+ (δ)2/qE
∣∣∣Ỹ n,m

T−δ − Y
n
T−δ

∣∣∣2 .
Let δ go to 0 in the previous inequality. We can do that because (T − .)(2/q)−1 is integrable on
the interval [0, T ] and because of (3.2.8). Finally we have

E
∫ T−δ

0
(T − r)2/q

(∣∣∣Z̃n,m
r − Zn

r

∣∣∣2 +
∫

E

∣∣∣Ũn,m
r (e)− Un

r (e)
∣∣∣2) dr

≤ 1
m2

[
2
q

∫ T

0
(T − s)(2/q)−1ds

]
=
T 2/q

m2
.

Therefore, for all η > 0 :

E
∫ T−δ

0
(T − r)2/q

(
|Zn

r |
2 +

∫
E
|Un

r (e)|2
)
dr

≤ (1 + η)E
∫ T

0
(T − r)2/q

(∣∣∣Z̃n,m
r

∣∣∣2 +
∫

E

∣∣∣Ũn,m
r (e)

∣∣∣2) dr
+ (1 +

1
η
)E
∫ T

0
(T − r)2/q

(∣∣∣Z̃n,m
r − Zn

r

∣∣∣2 +
∫

E

∣∣∣Ũn,m
r (e)− Un

r (e)
∣∣∣2) dr

≤ (1 + η)16(1/q)2/q + (1 +
1
η
)
T 2/q

m2
.
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We have applied the previous result to Z̃n,m and Ũn,m. Now we let first m go to +∞ and then
η go to 0, we have:

E
∫ T

0
(T − r)2/q

(
|Zn

r |
2 +

∫
E
|Un

r (e)|2
)
dr ≤ 16(1/q)2/q.

The result follows by letting finally n go to ∞ and this achieves the proof of the proposition.
�

Let use recall the minimality of this solution.

Proposition 9 (Minimal solution). The solution (Y, Z, U) obtained by approximation is minimal.
If (Ỹ , Z̃, Ũ) is another non negative super-solution, then for all t ∈ [0, T ], P-a.s. Ỹt ≥ Yt.
Moreover

Ỹt ≤
(

1
q(T − t)

)1/q

.

Proof. See [53] (or Section 3 in [83]). �

3.3 Behaviour of Y at time T

Let us remark that a.s.
ξ ∧ n = lim inf

t→T
Y n

t ≤ lim inf
t→T

Yt,

and thus we immediately have
ξ ≤ lim inf

t→T
Yt.

Our main problem is to prove that ξ = lim
t→T

Yt. In this section we will prove that the limit always
exists and then we will prove that the limit is ξ under some sufficient conditions.

3.3.1 Existence of the limit

We proceed as in [83] (see here for more details). To begin with we suppose that ξ ≥ α > 0. Let
(Y n, Zn, Un) be the solution of the BSDE (3.1.1) with terminal condition ξ ∧ n, and (Y, Z, U) is
the limit of (Y n, Zn, Un). By comparison we have a.s.

Yt ≥ Y n
t ≥

(
1

q(T − t) + 1
αq

)1/q

≥

(
1

qT + 1
αq

)1/q

> 0.

Proposition 10. The process Y can be written as follows:

Yt =
(
q(T − t) + EFt

[
1
ξq

]
− φt

)−1/q

where φ is a non negative supermartingale.

Proof. First, by Itô’s formula we obtain:

(Y n
t )−q = (ξ ∧ n)−q + q(T − t) + q

∫ T

t

Zn
s

(Y n
s−)q+1

dWs + q

∫ T

t

∫
E

Un
s (e)

(Y n
s−)q+1

µ̃(de, ds)

− q(q + 1)
2

∫ T

t

‖Zn
s ‖2

(Y n
s−)q+2

ds−
∫ T

t

∫
E

[
(Y n

s )−q − (Y n
s−)−q + q(Y n

s−)−q−1Un
s (e)

]
µ(ds, de).
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Since Y n
t is bounded from below by some positive constant we can apply Itô’s formula. Then

taking condition expectation with respect to Ft we get:

(Y n
t )−q = EFt [(ξ ∧ n)−q] + q(T − t)− q(q + 1)

2
EFt

[∫ T

t

‖Zn
s ‖2

(Y n
s−)q+2

ds

]

− EFt

[∫ T

t

∫
E

[
(Y n

s )−q − (Y n
s−)−q + q(Y n

s−)−q−1Un
s (e)

]
µ(ds, de)

]
.

We will denote from now on:

φn
t =

q(q + 1)
2

EFt

[∫ T

t

‖Zn
s ‖2

(Y n
s−)q+2

ds

]

+EFt

[∫ T

t

∫
E

[
(Y n

s )−q − (Y n
s−)−q + q(Y n

s−)−q−1Un
s (e)

]
µ(ds, de)

]
.

We estimate now the following difference for m ≥ n:

0 ≤ (Y n
t )−q − (Y m

t )−q = EFt
[
(ξ ∧ n)−q − (ξ ∧m)−q

]
− (φn

t − φm
t ).

And so we obtain:

|φn
t − φm

t | ≤ EFt
[
(ξ ∧ n)−q − (ξ ∧m)−q

]
∨
[
(Y n

t )−q − (Y m
t )−q

]
.

Since the sequences: (EFt [(ξ ∧ n)−q])n≥1 and ((Y n
t )−q)n≥1 converge a.s. and in L1, we deduce

(φn
t )n≥1 converge a.s. and in L1 to some φt. So by passing to the limit, one can write:

Y −q
t = EFt [ξ−q] + q(T − t)− φt

On the other hand it is easy to verify that φ is a non negative càdlàg bounded supermartingale:

0 ≤ φt ≤ EFt [ξ−q].

This achieves the proof. �
So we can deduce the existence of the following limit:

φT− := lim
t↗T

φt

And so YT− exists and is equal to:

YT− := lim
t↗T

Yt =
(

1
ξq
− φT−

)−1/q

Now we handle the case were ξ is only supposed to be bounded away from zero. We will consider
in that situation the following terminal condition:

ξn,m := (ξ ∧ n) ∨ 1
m
.

As before we will denote the associated solution of our BSDE by (Ỹ n,m, Z̃n,m, Ũn,m). We easily
obtain that a.s.

0 ≤ Ỹ n,m
t − Y n

t ≤
1
m
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and thus a.s.
sup

t∈[0,T ]

∣∣∣Ỹ n,m
t − Y n

t

∣∣∣ ≤ 1
m
.

Let n go to +∞ to deduce:

sup
t∈[0,T ]

∣∣∣Ỹ m
t − Yt

∣∣∣ ≤ 1
m
.

Since Ỹ m has a limit on the left at T , so does Y .
Now let us precise the behaviour of Y in a neighbourhood of T .

Lemma 8. For 0 ≤ t < T , P-a.s.

Yt ≥ EFt

( 1
q(T − t) + 1

ξq

)1/q
 .

The right hand side is obtained through the following operation: first, we solve the ordinary
differential equation y′ = y1+q with ξ as terminal condition, then we project this solution on the
σ-algebra Ft.
Proof. See proof of Lemma 11 in [83]. �

Proposition 11. On the set {ξ =∞}, a.s.

lim
t↗T

(T − t)1/qYt =
(

1
q

)1/q

Proof. See proof of Proposition 13 in [83]. �
Note that if ξ = +∞ a.s. we have proved that there is a unique solution (Y, Z, U) to the BSDE
(3.1.1) given by Yt = (q(T − t))−1/q, Zt = Ut = 0.

3.3.2 Continuity at time T for q > 2

In order to prove that the limit at time T of Yt is equal to ξ, i.e.

lim
t→T

Yt = ξ,

we follow the same procedure as in [83] and we work in the Markovian setting. We suppose now
our terminal condition is of the form: ξ = g(XT ). The function g is defined on Rd with values
in R+ ∪ {+∞} and we denote

S := {x ∈ Rd s.t. g(x) =∞}

the set of singularity points for the terminal condition induced by g. This set S is supposed to
be closed. We also denoted by Γ the boundary of S. The process X is the solution of a SDE
with jumps:

Xt = X0 +
∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs +

∫ t

0

∫
E
h(s,Xs− , e)µ̃(de, ds). (3.3.9)

The coefficients b : Ω×[0, T ]×Rd → Rd, σ : Ω×[0, T ]×Rd → Rd×k and h : Ω×[0, T ]×Rd×E → Rd

satisfy

Assumptions (B):
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1. b, σ and h are jointly continuous w.r.t. (t, x) and Lipschitz continuous w.r.t. x uniformly
in t, e or ω, i.e. there exists a constant C such that for any (ω, t, e) ∈ Ω × [0, T ] × E, for
any x and y in Rd: a.s.

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ C|x− y| (B1)

and ∫
E
|h(t, x, e)− h(t, y, e)|2λ(de) ≤ C|x− y|. (B2)

2. b, σ and h growth at most linearly:

|b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|). (B3)

3. h is bounded w.r.t. t and x and there exists a constant Ch such that a.s.

|h(t, x, e)| ≤ Ch(1 ∧ |e|). (B4)

Under these Assumptions (B), the forward SDE (3.3.9) has a unique strong solution X (see [70]
or [84]). Now the second hypothesis on ξ is: for all compact set K ⊂ Rd \ S

g(XT )1K(XT ) ∈ L1 (Ω,FT ,P) . (3.3.10)

We consider (Y n, Zn, Un) the solution of the BSDE (3.1.1) with terminal condition ξ ∧ n:

Y n
t = (ξ ∧ n)−

∫ T

t
(Y n

s )q+1ds−
∫ T

t
Zn

s dWs −
∫ T

t

∫
E
Un

s (e)µ̃(de, ds).

Let φ be now a C2(R) bounded function with bounded derivatives. We compute Itô’s formula
to the process Y nφ(X) between 0 and t.

Y n
t φ(Xt) = Y n

0 φ(X0) +
∫ t

0
Y n

s−dφ(Xs) +
∫ t

0
φ(Xs−)dY n

s + 〈Y n, φ(X)〉t

= Y0φ(X0) +
∫ t

0
φ(Xs−)(Ys)q+1ds

+
∫ t

0
Y n

s−

(
∇φ(Xs)b(s,Xs) +

1
2
Trace(D2φ(Xs)(σσ∗)(s,Xs))

)
ds

+
∫ t

0

∫
E
Y n

s−

(
φ(Xs)− φ(Xs−)−∇φ(Xs−)h(s,Xs− , e)

)
µ(ds, de)

+
∫ t

0
Y n

s−∇φ(Xs)σ(s,Xs)dWs +
∫ t

0
φ(Xs−)Zn

s dWs

+
∫ t

0

∫
E
φ(Xs−)Un

s (e)µ̃(de, ds) +
∫ t

0

∫
E
Y n

s−∇φ(Xs)h(s,Xs− , e)µ̃(de, ds)

+
∫ t

0
∇φ(Xs)σ(s,Xs)Zn

s ds+
∫ t

0

∫
E
(φ(Xs)− φ(Xs−))Un

s (e)µ(ds, de).
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Since (Zn, Un) and X are in H2(0, T ), and since φ and the derivatives of φ are supposed to be
bounded, we can take the expectation of these terms:

E[Y n
t φ(Xt)] = E[Y n

0 φ(X0)] + E
[∫ t

0
φ(Xs−)(Y n

s )q+1ds

]
(3.3.11)

+E
[∫ t

0
Y n

s−

(
∇φ(Xs)b(s,Xs) +

1
2
Trace(D2φ(Xs)σ2(s,Xs))

)
ds

]
+E

[∫ t

0

∫
E
Y n

s−

(
φ(Xs)− φ(Xs−)−∇φ(Xs−)h(s,Xs− , e)

)
λ(de)ds

]
+E

[∫ t

0
∇φ(Xs)σ(s,Xs)Zn

s ds

]
+ E

[∫ t

0

∫
E
(φ(Xs)− φ(Xs−))Un

s (e)λ(de)ds
]
.

Recall the main idea of [83]. First we prove that we can pass to the limit on n in (3.3.11) and
that the limits have suitable integrability conditions on [0, T ] × Ω. Secondly we write (3.3.11)
between t and T and we pass to the limit when t goes to T .
Now we choose φ such that the support of φ is included in R = Sc. From the assumptions on g,
we have for any n:

E(Y n
T φ(XT )) ≤ E(g(XT )φ(XT )) < +∞.

Moreover

E(Y n
0 φ(X0)) ≤

1
(qT )1/q

E(φ(X0)) < +∞.

We use Proposition 8 and Hölder inequality to obtain:

E
[∫ T

0
|∇φ(Xs)σ(s,Xs)Zn

s |ds
]
≤
[
E
∫ T

0
(T − s)2/q|Zn

s |2ds
]1/2

[
E
∫ T

0

|∇φ(Xs)σ(s,Xs)|2

(T − s)2/q
ds

]1/2

≤ 16
(

1
q

)2/q [
E
∫ T

0

|∇φ(Xs)σ(s,Xs)|2

(T − s)2/q
ds

]1/2

< +∞ (3.3.12)

since q > 2, since ∇φ is supposed to be bounded, σ grows linearly and X ∈ H2(0, T ). The same
estimate holds for Un:

E
[∫ T

0

∫
E
|(φ(Xs)− φ(Xs−))Un

s (e)|λ(de)ds
]

≤ 16
(

1
q

)2/q [
E
∫ T

0

∫
E

|(φ(Xs− + h(s,Xs− , e))− φ(Xs−))|2

(T − s)2/q
λ(de)ds

]1/2

< +∞(3.3.13)

Now we deal with the term:

E
[∫ T

0
Y n

s−L(φ)(s,Xs)ds
]

= E
[∫ T

0
Y n

s−

(
∇φ(Xs)b(s,Xs) +

1
2
Trace(D2φ(Xs)σ2(s,Xs))

)
ds

]
.
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As in [83] we consider test functions φ of the form ψα. Thus with Hölder inequality we obtain:

E
[∫ T

0
|Y n

s−L(ψα)(s,Xs)|ds
]
≤
[
E
∫ T

0
ψα(Xs)(Y n

s )q+1ds

]1/(q+1)

×
[
E
∫ T

0
ψ−α/q(Xs)|L(ψα)(s,Xs)|(q+1)/qds

]q/(q+1)

,

and there exists a constant C depending only on ψ, α, σ and b such that

|L(ψα)| ≤ Cψα−2.

Thus for α > 2(q + 1)/q

E
∫ T

0
ψ−α/q(Xs)|L(ψα)(s,Xs)|(q+1)/qds ≤ CE

∫ T

0
ψ−α/q+(α−2)(q+1)/q(Xs)ds < +∞.

Then

E
[∫ T

0
|Y n

s−L(ψα)(s,Xs)|ds
]
≤ C

[
E
∫ T

0
ψα(Xs)(Y n

s )q+1ds

]1/(q+1)

. (3.3.14)

Therefore the main difference with [83] comes from the term

E
[∫ t

0

∫
E
Y n

s−

(
φ(Xs)− φ(Xs−)−∇φ(Xs−)h(s,Xs− , e)

)
λ(de)ds

]
. (3.3.15)

In order to control this term, we have to add some extra assumptions on the jumps of X and S.

Assumption (C):

• The boundary ∂S = Γ is compact and of class C2.

• For any x ∈ S, any s ∈ [0, T ] and λ-a.s.

x+ h(s, x, e) ∈ S.

Furthermore there exists a constant κ > 0 such that if x ∈ Γ, then for any s ∈ [0, T ],
d(x+ h(s, x, e),Γ) ≥ κ, λ-a.s.

These assumptions mean in particular that if Xs− ∈ S, then Xs ∈ S a.s. Moreover if Xs− belongs
to the boundary of S, and if there is a jump at time s, then Xs is in the interior of S.
Since Γ is compact and of class C2, then there exists a constant µ0 > 0 such that if Γ(µ0) :=
{x ∈ Rd : d(x,Γ) < µ0}, then for every y ∈ Γ(µ0), there exists a unique z ∈ Γ such that
d(y,Γ) = ‖y − z‖. Moreover we can define the exterior unit normal −→n (y) for any y ∈ Γ. In
the following we will consider the following choice of test functions. For any 0 < µ ≤ µ0, let
θ ∈ C∞(Rd) such that θ(x) ∈ [0, 1], θ(x) > 0 if x 6∈ Γ(µ/2), and

θ(x) =
{

0 on Γ(µ/2)
1 on Γ(µ)c.

Now let consider φ defined as follow:

φ(x) =
{

0 on S
θ(x) on Sc = R. (3.3.16)

Therefore φ ∈ C∞b (Rd) (all derivatives exist and are bounded) and the support of φ is included
in R = Sc.
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Lemma 9. Under the above assumptions, let us choose µ1 < µ0 such that (1 +Kh)µ1 < κ (Kh

is the Lipschitz constant of h w.r.t. x). We have for any 0 < µ < µ1:

φ(Xs−) = 0⇒ φ(Xs) = 0.

Moreover
φ(Xs)
φ(Xs−)

= φ(Xs)1Γ(µ)c(Xs−).

Proof. We consider the case where Xs− /∈ supp(φ), that is φ(Xs−) = 0. Thus Xs− is in
S ∪ Γ(µ/2).

1. If Xs− ∈ S, then Xs ∈ S, hence φ(Xs) = 0.

2. Let z ∈ Sc∩Γ(µ/2) and x ∈ Γ such that d(z,S) = ‖z−x‖. Let us prove that z+h(s, z, e) ∈
S by contradiction. Assume that z + h(s, z, e) /∈ S and consider the following convex
combination:

zt := (1− t)(z + h(s, z, e)) + t(x+ h(s, x, e)).

Now since h is Lipschitz continuous w.r.t. x:

‖zt − (x+ h(s, x, e))‖ = (1− t)‖z + h(s, z, e)− x− h(s, x, e)‖

≤ (1− t)(1 +Kh)‖z − x‖ ≤ (1− t)(1 +Kh)µ
2

≤ (1 +Kh)µ
2

< κ.

Since x ∈ Γ, x + h(s, x, e) ∈ S. But z + h(s, z, e) /∈ S. Thus by continuity there exists
t0 ∈ (0, 1) such that

zt0 := (1− t0)(z + h(s, z, e)) + t0(x+ h(s, x, e)) ∈ Γ.

Thus we have obtained x ∈ Γ and zt0 ∈ Γ such that

‖zt0 − (x+ h(s, x, e))‖ < κ⇒ d(x+ h(x, s, e),Γ) < κ.

This leads to a contradiction. So we deduce z + h(s, z, e) ∈ S.

Hence if Xs− ∈ Sc ∩ Γ(µ/2), Xs ∈ S and φ(Xs) = 0.

Now consider the quotient

φ(Xs)
φ(Xs−)

=
φ(Xs)
φ(Xs−)

1supp(φ)(Xs−).

The first part of the proof shows that for any µ < µ1, we have:

φ(Xs)
φ(Xs−)

= φ(Xs)1Γ(µ)c(Xs−).

Indeed if Xs− is in supp(φ) ∩ Γ(µ), then Xs ∈ S, and thus the quotient is null. �
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Now we can deal with the term given by (3.3.15). Let us take α > 2(q + 1)/q and by Hölder
inequality we obtain:

E
[∫ t

0

∫
E
Y n

s−

∣∣φα(Xs)− φα(Xs−)−∇(φα)(Xs−)h(s,Xs− , e)
∣∣λ(de)ds

]
≤
[
E
∫ t

0
φα(Xs−)(Y n

s )q+1ds

] 1
q+1

×

E
∫ t

0

∫
E

∣∣φα(Xs)− φα(Xs−)−∇(φα)(Xs−)h(s,Xs− , e)
∣∣ q+1

q

φ(Xs−)α/q
λ(de)ds.


q

q+1

The last integral is controlled by:

∣∣φα(Xs)− φα(Xs−)−∇(φα)(Xs−)h(s,Xs− , e)
∣∣ q+1

q

φ(Xs−)α/q

≤ Cqφ
α(Xs)

(
φ(Xs)
φ(Xs−)

)α/q

+ Cqφ
α(Xs−)

+Cqφ
α−(q+1)/q(Xs−)|∇φ(Xs−)h(s,Xs− , e)|.

But with Lemma 9 we obtain:

∣∣φα(Xs)− φα(Xs−)−∇(φα)(Xs−)h(s,Xs− , e)
∣∣ q+1

q

φ(Xs−)α/q

≤ Cq

[
φ

αq+1
q (Xs)1Γ(µ)c(Xs−) + φα(Xs−) + φ

α− q+1
q (Xs−)|∇φ(Xs−)h(s,Xs− , e)|

]
.

From the assumption on φ and since α > 2 q+1
q , there exists a constant C independent on n such

that:

E
[∫ T

0

∫
E
Y n

s−

∣∣φα(Xs)− φα(Xs−)−∇(φα)(Xs−)h(s,Xs− , e)
∣∣λ(de)ds

]
(3.3.17)

≤ C
[
E
∫ T

0
φα(Xs−)(Y n

s )q+1ds

] 1
q+1

.

Let us summarize what we obtained. For any µ small enough, any function φ defined by (3.3.16),
and any α > 2(q + 1)/q, from (3.3.11) and using (3.3.12), (3.3.13), (3.3.14), (3.3.17) we deduce
that there exists a constant C independent of n such that

E
∫ T

0
φα(Xs−)(Y n

s )q+1ds ≤ C < +∞. (3.3.18)

Moreover all these estimates show that we can pass to the limit in (3.3.11) (using monotone
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convergence theorem or dominated convergence theorem) and we have:

E[ξφα(XT )] = E[Ytφ
α(Xt)] + E

[∫ T

t
φα(Xs−)(Ys)q+1ds

]
(3.3.19)

+E
[∫ T

t
Ys−L(φα)(s,Xs)ds

]
+E

[∫ T

t

∫
E
Ys−

(
φα(Xs)− φα(Xs−)−∇(φα)(Xs−)h(s,Xs− , e)

)
λ(de)ds

]
+E

[∫ T

t
∇(φα)(Xs)σ(s,Xs)Zsds

]
+ E

[∫ T

t

∫
E
(φα(Xs)− φα(Xs−))Us(e)λ(de)ds

]
.

Estimate (3.3.18) also holds with Y , and once again from (3.3.12), (3.3.13), (3.3.14) and(3.3.17),
we can let t go to T in (3.3.19) in order to have:

E
[
(lim inf

t→T
Yt)φα(XT )

]
≤ lim

t→T
E[Ytφ

α(Xt)] = E[ξφα(XT )].

Recall that the function φα is equal to one on R ∩ Γ(µ)c, that lim inft→T Yt ≥ ξ a.s. and that
the limit of Yt exists. This last inequality shows that in fact a.s.

lim
t→T

Yt = ξ.

This achieves the proof of the continuity of Y at time T .

3.4 Link with PIDE

Let us now consider the partial integro-differential equation (3.1.4). The functions b, σ and h

satisfy Assumptions (B) and (C). Moreover Πg will denoted the space of functions φ : [0, T ] ×
Rd → Rd of polynomial growth, i.e. for some non negative constants p and C

∀(t, x) ∈ [0, T ]× Rd, |φ(t, x)| ≤ C(1 + |x|p).

To simplify the notation, we will denote F the following function on [0, T ]×Rd×R×Rd×Sd×R:

F (t, x, u, p,X, c) = pb(t, x) +
1
2
Trace(X(σσ∗)(t, x)) + c− u|u|q.

Sd is the set of symmetric matrices of size d× d.
For a locally bounded function u in [0, T ]×Rd, we define its upper (resp. lower) semicontinuous
envelope u∗ (resp. u∗) by:

u∗(t, x) = lim sup
(s,y)→(t,x)

u(s, y) (resp. u∗(t, x) = lim inf
(s,y)→(t,x)

u(s, y)).

For such equation (3.1.4) we introduce the notion of viscosity solution as in [1] (see also Definition
3.1 in [9] or Definitions 1 and 2 in [10]). Since we do not assume the continuity of the involved
function u, we adapt the definition of discontinuous viscosity solution (see Definition 4.1 and 5.1
in [48]).

Definition 9. A locally bounded function u is
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1. a viscosity subsolution of (3.1.4) if it is upper semicontinuous on [0, T )× Rd and if

u(T, x) ≤ g(x), x ∈ Rd,

and if for any φ ∈ C2([0, T ] × Rd) wherever (t, x) ∈ [0, T [×Rd is a global maximum point
of u− φ,

− ∂

∂t
φ(t, x)− Lφ(t, x)− Iφ(t, x) + u(t, x)|u(t, x)|q ≤ 0.

2. a viscosity supersolution of (3.1.4) if it is lower semicontinuous on [0, T )× Rd and if

u(T, x) ≥ g(x), x ∈ Rd,

and if for any φ ∈ C2([0, T ] × Rd) wherever (t, x) ∈ [0, T [×Rd is a global minimum point
of u− φ,

− ∂

∂t
φ(t, x)− Lφ(t, x)− Iφ(t, x) + u(t, x)|u(t, x)|q ≥ 0.

3. a viscosity solution of (3.1.4) if its upper envelope u∗ is a subsolution and if its lower
envelope u∗ is a supersolution of (3.1.4).

This definition is equivalent to Definition 4.1 in [48]. Note that if a comparison principle holds
for (3.1.4), then u∗ = u∗ and thus a viscosity solution is a continuous function. We can also give
another definition like Definition 5.1 in [48]. For any δ > 0, the operator I will be split in two
parts:

I1,δ(t, x, φ) =
∫
|e|≤δ

[φ(x+ h(t, x, e))− φ(x)− (∇φ)(x)h(t, x, e)]λ(de)

I2,δ(t, x, p, φ) =
∫
|e|>δ

[φ(x+ h(t, x, e))− φ(x)− ph(t, x, e)]λ(de).

Definition 10. A locally bounded and upper (resp. lower) semicontinuous function u is a vis-
cosity sub (resp. super) solution of (3.1.4) if

u(T, x) ≤ g(x) (resp. u(T, x) ≤ g(x)), x ∈ Rd,

and if for any δ > 0, for any φ ∈ C2([0, T ]×Rd) wherever (t, x) ∈ [0, T [×Rd is a global maximum
(resp. minimum) point of u− φ on [0, T ]×B(x,Rδ),

− ∂

∂t
φ(t, x)− Lφ(t, x)− I1,δ(t, x, φ)− I2,δ(t, x,∇φ, u) + u(t, x)|u(t, x)|q ≤ 0 (resp. ≥ 0).

We refer to Remark 3.2 and Lemma 3.3 in [9], to condition (NLT), Proposition 1 and Section
2.2 in [10] and to Appendix in [48] for the discussion (and the proof) on the equivalence between
definitions 9 and 10. The value of Rδ will depend on the function h. If h is bounded by Ch, as
in [48], Rδ = Chδ.
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3.4.1 Existence of a viscosity solution with singular data

Now we introduce a function g : Rd → R+ = R+ ∪ {+∞} such that for any n ∈ N, x 7→ gn(x) =
g(x) ∧ n is on Rd. We define for t ≤ s ≤ T and x ∈ Rd

Xt,x = x+
∫ s

t
b(u,Xt,x

u−)du+
∫ s

t
σ(u,Xt,x

u )dWu +
∫ s

t

∫
E
h(u,Xt,x

u− , e)µ̃(ds, de),

and (Y n,t,x, Zn,t,x, Un,t,x) the solution of BSDE (3.1.1) with terminal condition ξ∧n = g(Xt,x
T )∧n:

for t ≤ s ≤ T

Y n,t,x
s = (ξ ∧ n)−

∫ T

s
Y n,t,x

u |Y n,t,x
u |qdu−

∫ T

s
Zn,t,x

u dWu −
∫ T

s

∫
E
Un,t,x

u (e)µ̃(du, de).

From Theorem 3.4 and Theorem 3.5 in [9], the function un(t, x) = Y n,t,x
t , (t, x) ∈ [0, T ]× Rd, is

the unique bounded viscosity solution of (3.1.4) with terminal condition gn. Indeed the generator
just depends on y. Even if it is not Lipschitz continuous w.r.t. y, since Y n,t,x is bounded by n,
we can replace in the BSDE (3.1.1) our generator by f with f(y) = −y|y|q if |y| ≤ n + 1, and
f(y) = −(n+ 1)qy if |y| > n+ 1.
Now in the previous sections, we have proved that for any t ≤ s ≤ T

lim
n→+∞

Y n,t,x
s = Y t,x

s

with

Y t,x
s ≤

(
1

q(T − s)

)1/q

.

Therefore the sequence un(t, x) converges to u(t, x) with

0 ≤ u(t, x) ≤
(

1
q(T − t)

)1/q

. (3.4.20)

Since un is a continuous function, the function u is lower semi-continuous on [0, T ] × Rd and
satisfies for all x0 ∈ Rd:

lim inf
(t,x)→(T,x0)

u(t, x) ≥ g(x0).

Definition 11 (Viscosity solution with singular data). A function u is a viscosity solution of
(3.1.4) with terminal data g if v is a viscosity solution on [0, T [×Rd and satisfies:

lim
(t,x)→(T,x0)

u(t, x) = g(x0). (3.4.21)

Theorem 18. The function u is a viscosity solution of (3.1.4) with terminal data g.

The main tool is the half-relaxed upper- and lower-limit of the sequence of functions {un}, i.e.

u(t, x) = lim sup
n→+∞

(t′,x′)→(t,x)

un(t′, x′) and u(t, x) = lim inf
n→+∞

(t′,x′)→(t,x)

un(t′, x′).

In our case, u = u ≤ u = u∗ because the sequence {un} is non decreasing and un is continuous
for all n ∈ N∗. Note that u∗ also satisfies estimate (3.4.20).
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Lemma 10. The function u is a viscosity solution of (3.1.4) on [0, T [×Rd.

Proof. First u = u∗ = u is lower semi-continuous on [0, T [×Rd. From the estimate (3.4.20), for
all δ > 0, n ∈ N∗ and all (t, x) ∈ [0, T − δ]× Rd,

un(t, x) ≤ u(t, x) ≤
(

1
qδ

)1/q

.

Since un is a supersolution of the PIDE (3.1.4), passing to the limit with a stability result (see
the proof of Theorem 4.1 in [48] or the results in [1], [10] or [13]), we can obtain that u is a
supersolution of (3.1.4) on [0, T [×Rd.
For convenience of the reader, let us give the main ideas (for details see the proof of Theorem 4.1
in [48]). Let (t, x) ∈ [0, T [×Rd and let φ be a function which belongs to C1,2([0, T ] × Rd) ∩ Πg

such that u− φ has a strict global minimum in (t, x) on [0, T ]×Rd and we assume w.l.o.g. that
u(t, x) = φ(t, x). Now let δ > 0 and (tn, xn) be the global minimum of un−φ on [0, T ]×B(x,Rδ).
Rδ is a positive number such that Rδ tends to zero when δ → 0. As in [48], one can prove that

lim
n

(tn, xn) = (t, x), lim
n
un(tn, xn) = u(t, x).

The bound (3.4.20) is crucial here. Now since un is a viscosity supersolution, by Definition 10,

− ∂

∂t
φ(tn, xn)− Lφ(tn, xn)− I1,δ(tn, xn, φ)− I2,δ(tn, xn,∇φ, un) (3.4.22)

+un(tn, xn)|un(tn, xn)|q ≥ 0.

By continuity of φ and h, we can pass to the limit as n goes to ∞:

lim
n→+∞

[
− ∂

∂t
φ(tn, xn)− Lφ(tn, xn)

]
= − ∂

∂t
φ(t, x)− Lφ(t, x)

and
lim

n→+∞
I1,δ(tn, xn, φ) = I1,δ(t, x, φ).

Moreover
lim

n→+∞
un(tn, xn)|un(tn, xn)|q = u(t, x)|u(t, x)|q.

Finally since u− φ ≥ 0

I2,δ(tn, xn,∇φ, un)

=
∫
|e|>δ

[un(tn, xn + h(tn, xn, e))− un(tn, xn)−∇φ(tn, xn)h(tn, xn, e)]λ(de)

≥
∫
|e|>δ

[φ(tn, xn + h(tn, xn, e))− un(tn, xn)−∇φ(tn, xn)h(tn, xn, e)]λ(de)

and by Fatou’s lemma

lim inf
n→+∞

I2,δ(tn, xn,∇φ, un) ≥ I2,δ(t, x,∇φ, φ).

Passing to the limit in (3.4.22) we obtain:

− ∂

∂t
φ(t, x)− Lφ(t, x)− I1,δ(t, x, φ) ≥ I2,δ(t, x,∇φ, φ)− u(t, x)|u(t, x)|q.
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Thus u is a supersolution of (3.1.4) on [0, T [×Rd.
By the same argument we can show that u∗ is a subsolution on [0, T [×Rd. Let (t, x) ∈ [0, T )×Rd

and φ ∈ C1,2([0, T ]×Rd)∩Πg such that u∗−φ has a strict global maximum at (t, x) on [0, T ]×Rd

with u∗(t, x) = φ(t, x). As in [48] there exists a subsequence nk such that

• (tnk
, xnk

) is the global maximum of unk − φ on [0, T ]×B(x,Rδ);

• as k goes to ∞, (tnk
, xnk

) −→ (t, x) and unk(tnk
, xnk

) −→ u∗(t, x).

Now for k large, since unk is a subsolution, we have again by Definition 10,

− ∂

∂t
φ(tnk

, xnk
)− Lφ(tnk

, xnk
)− I1,δ(tnk

, xnk
, φ)− I2,δ(tnk

, xnk
,∇φ, unk) (3.4.23)

+unk(tnk
, xnk

)|unk(tnk
, xnk

)|q ≤ 0.

Again since u ≤ φ, we have

I2,δ(tn, xn,∇φ, un)

=
∫
|e|>δ

[un(tn, xn + h(tn, xn, e))− un(tn, xn)−∇φ(tn, xn)h(tn, xn, e)]λ(de)

≤
∫
|e|>δ

[φ(tn, xn + h(tn, xn, e))− un(tn, xn)−∇φ(tn, xn)h(tn, xn, e)]λ(de)

and by continuity, Lebesgue’s theorem and since u(t, x) = φ(t, x)

− ∂

∂t
φ(t, x)− Lφ(t, x)− I1,δ(t, x, φ) ≤ I2,δ(t, x,∇φ, φ)− u∗(t, x)|u∗(t, x)|q.

Thus u∗ is a subsolution on [0, T [×Rd. �
As in the case of the BSDE (3.1.1), the main difficulty is to show that

lim sup
(t,x)→(T,x0)

u(t, x) ≤ g(x0) = u(T, x0).

We will prove that u∗ is locally bounded on a neighbourhood of T on the set {g < +∞}. Then,
we deduce u∗ is a subsolution with relaxed terminal condition and we apply this to demonstrate
that u∗(T, x) ≤ g(x) if x ∈ {g < +∞}, which shows the wanted inequality on u.

Lemma 11. Assumptions (B) and (C) hold. For any U ⊂ R = {g < +∞} with a compact
support, u∗ is a subsolution with relaxed terminal condition:

−∂u
∗

∂t
− Lu∗ − Iu∗ + u∗|u∗|q = 0, in [0, T [×U ;

min
[
−∂u

∗

∂t
− Lu∗ − Iu∗ + u∗|u∗|q; u∗ − g

]
≤ 0, in {T} × U.

Proof.
We make the same calculation as in the proof of the continuity of Y at T . Let φ be defined by
(3.3.16). We will prove that unφ is uniformly bounded on [0, T ] × Rd. On [0, T − δ] × Rd the
bound (3.4.20) gives immediately the result. It remains to treat the problem on a neighbourhood
of T .
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We write the equality (3.3.11) between t and T , for x ∈ Rd;

un(t, x)φ(x) = E[Y n,t,x
T φ(Xt,x

T )]− E
[∫ T

t
φ(Xt,x

s− )(Y n,t,x
s )q+1ds

]
−E

∫ T

t
Y n,t,x

s−

[
Lφ(s,Xt,x

s ) + Iφ(s,Xt,x
s− )
]
ds

−E
[∫ T

t
∇φ(Xt,x

s )σ(s,Xt,x
s )Zn,t,x

s ds

]
− E

[∫ T

t

∫
E
(φ(Xt,x

s )− φ(Xt,x
s− ))Un,t,x

s (e)λ(de)ds
]
.

The last term is controlled by:

E
[∫ T

0

∫
E
|(φ(Xt,x

s )− φ(Xt,x
s− ))Un,t,x

s (e)|λ(de)ds
]

≤ 16
(

1
q

)2/q [
E
∫ T

0

∫
E

|(φ(Xs− + h(s,Xs− , e))− φ(Xs−))|2

(T − s)2/q
λ(de)ds

]1/2

≤ C = C(q, φ).

Moreover ∣∣∣∣E∫ T

t
Zn,t,x

r .∇φ(Xt,x
r )σ(r,Xt,x

r )dr
∣∣∣∣

≤ 16
(

1
q

)2/q
(

E
∫ T

t

‖∇φ(Xt,x
r )σ(r,Xt,x

r )‖2

(T − r)2/q
dr

)1/2

≤ C = C(q, φ).

Here, we use the fact that q > 2, θ is bounded, and the condition (B1).
Thus, we have:

E
∫ T

t
φ(Xt,x

r )(Y n,t,x
r )1+qdr + E

∫ T

t
Y t,x,n

r

[
Lφ(Xt,x

r ) + Iφ(s,Xt,x
r− )
]
dr

≤ E(Y n,t,x
T φ(Xt,x

T ))− E
∫ T

t
Zn,t,x

r .∇φ(Xt,x
r )σ(r,Xt,x

r )dr

−E
∫ T

t

∫
E
(φ(Xt,x

s )− φ(Xt,x
s− ))Un,t,x

s (e)λ(de)ds

The right hand side is bounded by the supremum of gφ and 2C. In the left hand side, the
second term is controlled by the first one raised to a power strictly smaller than 1 using Hölder’s
inequality (see (3.3.14) and (3.3.17)). Therefore, there exists a constant C independent of n, t
and x:

E
∫ T

t
φ(Xt,x

r )(Y t,x,n
r )1+qdr ≤ C.

We deduce that:
un(t, x)φ(x) ≤ C = C(T, g, φ, q).

Hence for any 0 < µ < µ1, if U = R∩ Γ(µ)c, un is uniformly bounded on [0, T ]× U w.r.t. to n.
Therefore, u∗ is bounded on [0, T ] × U . We know that un is a subsolution of the PIDE (3.1.4)
restricted to [0, T ]× U , i.e.

−∂un

∂t
(t, x)− Lun(t, x) + un(t, x)|un(t, x)|q = 0, (t, x) ∈ [0, T [×U ;

un(T, x) = (g ∧ n)(x), x ∈ U.
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From Lemma 10, u∗ is a subsolution of the PIDE (3.1.4) on [0, T [×U .
The behaviour at time T is a adaptation of Theorem 4.1 in [8] (see also section 4.4.5 in [8]).
Since g is continuous,

g(x) = g(x) = lim sup
n→+∞
x′→x

(g ∧ n)(x′).

Now assume that for φ ∈ C1,2([0, T ] × Rd) ∩ Πg such that u∗ − φ has a strict global maximum
on [0, T ] × U at (T, x) and suppose that u∗(T, x) > g(x). There exists a subsequence nk such
that (tnk

, xnk
) is the global maximum of unk − φ on [0, T ] × B(x,Rδ) and as k goes to ∞,

(tnk
, xnk

) −→ (T, x) and unk(tnk
, xnk

) −→ u∗(T, x). This implies in particular that tnk
< T for

any k large enough. If not, then up to a subsequence (still denoted nk),

u∗(t, x) = lim sup
k

unk(tnk
, xnk

) = lim sup
k

unk(T, xnk
) = lim sup

k
(g ∧ nk)(xnk

) ≤ g(x).

Since unk is a subsolution, we still have (3.4.23) and passing though the limit we obtain

− ∂

∂t
φ(T, x)− Lφ(T, x)− I1,δ(T, x, φ) ≤ I2,δ(T, x,∇φ, φ)− u∗(T, x)|u∗(T, x)|q.

Thus u∗ is a subsolution on [0, T ]× U . �
Now Theorem 4.7 in [8] (with straightforward modifications) shows that u∗ ≤ g in {T} × U . In
other words for any x0 ∈ R,

lim sup
(t,x)→(T,x0)

u(t, x) ≤ g(x0).

With Inequality (3.4.21), we obtain the desired behaviour of u near terminal time T . This
achieves the proof of Theorem 18. The next proposition precises the behaviour of the solution u
on a neighbourhood of T .

Proposition 12. The previously defined solution u satisfies for all x in the interior of {g = +∞}:

lim
t→T

[q(T − t)]1/q u(t, x) = 1.

Proof. See the proof of Proposition 22 in [83]. �

3.4.2 Minimal solution

The aim here is to prove minimality of the viscosity solution obtained by approximation among
all non negative viscosity solutions (Theorem 18). We compare a viscosity solution v (in the
sense of Definition 11) with un, for all integer n: for all (t, x) ∈ [0, T ] × Rd, un(t, x) ≤ v∗(t, x).
We deduce that u ≤ v∗ ≤ v. Recall that g : Rd → R+ is continuous, which implies that
g ∧ n : Rd → R+ is continuous.

Proposition 13. un ≤ v∗, where v is a non negative viscosity solution of the PDE (3.1.4).

Proof. This result seems to be a direct consequence of a well-known maximum principle for
viscosity solutions (see [8] or [25] when I = 0, [9], [10] or [48] in general). But to the best of
our knowledge, this principle was not proved for solutions which can take the value +∞. Thus,
following the proof of Proposition 4.1 in [48] or Theorem 3 in [10], we just give here the main
points.
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The beginning of the proof is exactly the same as the proof of Proposition 23 in [83]. We fix
ε > 0 and n ≥ 1 and we define un,ε(t, x) = un(t, x) − ε

t . We will prove that un,ε ≤ v∗ for every
ε, hence we deduce un ≤ v∗.
We suppose that there exists (s, z) ∈ [0, T ]×Rm such that un,ε(s, z)−v∗(s, z) ≥ ν > 0 and we will
find a contradiction. First of all, it is clear that s is not equal to 0 or T , because un,ε(0, z) = −∞
and v∗(T, z) ≥ g(z) (by definition of a supersolution).
un,ε and −v∗ are bounded from above on [0, T ]×Rm respectively by n and 0. Thus, for (α, β) ∈
(R∗)2, if we define:

m(t, x, y) = un,ε(t, x)− v∗(t, y)−
α

2
|x− y|2 − β

(
|x|2 + |y|2

)
,

m has a supremum µα,β on [0, T ]×Rm×Rm and the penalization terms assure that the supremum
is attained at a point (t̂, x̂, ŷ) = (tα,β, xα,β, yα,β). By classical arguments we prove that if β is
sufficiently small

ν/2 ≤ µα,β, |x̂|2 + |ŷ|2 ≤ n

β
and |x̂− ŷ|2 ≤ 2n

α
. (3.4.24)

Moreover for α large enough, the time t̂ satisfies 0 < t̂ < T (see [83] for the details).
For α large enough, we can apply Jensen-Ishii’s Lemma for non local operator established by
Barles and Imbert (Lemma 1 and Corollary 2 in [10]) with un,ε subsolution, v∗ supersolution and
φ(x, y) = α

2 |x− y|
2 + β

(
|x|2 + |y|2

)
at the point (t̂, x̂, ŷ). For any δ > 0 there exists γ > 0 and

(a, p,X), (b, q, Y ) such that

• a = b, p = ∇xφ(x̂, ŷ) = α(x̂− ŷ) + 2βx̂, q = −∇yφ(x̂, ŷ) = −α(ŷ − x̂)− 2βŷ

• X and Y are symmetric matrices of size d× d such that(
X 0
0 −Y

)
≤ α

(
I −I
−I I

)
+ 2β

(
I 0
0 I

)
+ oγ(1)

•

−a− F (t̂, x̂, un,ε(t, x̂), p,X, I1,δ(t̂, x̂, φγ(., ŷ)) + I2,δ(t̂, x̂, p, un,ε(t̂, x̂))) ≤ − ε

T 2

−b− F (t̂, ŷ, v∗(t, ŷ), q, Y, I1,δ(t̂, ŷ,−φγ(x̂, .)) + I2,δ(t̂, ŷ, q, v∗(t̂, ŷ))) ≥ 0.

The result holds for any 0 < γ < γ̄ and the value γ̄ > 0 depends on the coefficients of the PIDE.
The function φγ is defined in the same way as in [10]. Proposition 3 in [10] shows that we can
replace φγ in I1,δ by φ up to some oγ(1). We substract the two previous inequalities:

ε

T 2
+ oγ(1) ≤ F (t̂, x̂, un,ε(t, x̂), p,X, I1,δ(t̂, x̂, φ(., ŷ)) + I2,δ(t̂, x̂, p, un,ε(t̂, x̂))) (3.4.25)

−F (t̂, ŷ, v∗(t, ŷ), q, Y, I1,δ(t̂, ŷ,−φ(x̂, .)) + I2,δ(t̂, ŷ, q, v∗(t̂, ŷ))).

Let us separate the local terms with the non local ones. For the first ones we have:

1
2
Trace

(
σσ∗(t̂, x̂)X

)
− 1

2
Trace

(
σσ∗(t̂, ŷ)Y

)
+
(
b(t̂, x̂)− b(t̂, ŷ)

)
.α(x̂− ŷ) + 2β

(
b(t̂, x̂).x̂+ b(t̂, ŷ).ŷ

)
−un,ε(t̂, x̂)1+q + v∗(t̂, ŷ)1+q.
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As in [83] we prove that there exists a constant K independent of α and β such that:(
b(t̂, x̂)− b(t̂, ŷ)

)
.α(x̂− ŷ) + 2β

(
b(t̂, x̂).x̂+ b(t̂, ŷ).ŷ

)
(3.4.26)

≤ αK|x̂− ŷ|2 + 2βK(1 + |x̂|2 + |ŷ|2),

and

Trace
(
σσ∗(t̂, x̂)X

)
− Trace

(
σσ∗(t̂, ŷ)Y

)
≤ Kα|x̂− ŷ|2 +Kβ(1 + |x̂|2 + |ŷ|2). (3.4.27)

Moreover
v∗(t̂, ŷ) ≤ un,ε(t̂, x̂). (3.4.28)

Now we deal with the non local terms. First we control

I2,δ(t̂, x̂, p, un,ε(t̂, x̂))− I2,δ(t̂, ŷ, q, v∗(t̂, ŷ))

=
∫
|e|>δ

[un,ε(x̂+ h(t̂, x̂, e))− un,ε(t̂, x̂)− ph(t̂, x̂, e)]λ(de)

−
∫
|e|>δ

[v∗(ŷ + h(t̂, ŷ, e))− v∗(t̂, ŷ)− qh(t̂, ŷ, e)]λ(de)

We use the following inequality:

un,ε(x̂+ h(t̂, x̂, e))− v∗(ŷ + h(t̂, ŷ, e)) ≤ m(t̂, x̂, ŷ)

+
α

2
|x̂+ h(t̂, x̂, e)− ŷ − h(t̂, ŷ, e)|2 + β

(
|x̂+ h(t̂, x̂, e)|2 + |ŷ + h(t̂, ŷ, e)|2

)
≤ m(t̂, x̂, ŷ) +

α

2
|x̂− ŷ|2 + β

(
|x̂|2 + |ŷ|2

)
+
α

2
|h(t̂, x̂, e)− h(t̂, ŷ, e)|2 + β

(
|h(t̂, x̂, e)|2 + |h(t̂, ŷ, e)|2

)
+α(x̂− ŷ)(h(t̂, x̂, e)− h(t̂, ŷ, e)) + 2β

(
x̂h(t̂, x̂, e) + ŷh(t̂, ŷ, e)

)
= un,ε(t̂, x̂)− v∗(t̂, ŷ) + ph(t̂, x̂, e)− qh(t̂, ŷ, e)

+
α

2
|h(t̂, x̂, e)− h(t̂, ŷ, e)|2 + β

(
|h(t̂, x̂, e)|2 + |h(t̂, ŷ, e)|2

)
.

Therefore by Assumption (C) on h, there exists K independent of α and β such that:

I2,δ(t̂, x̂, p, un,ε(t̂, x̂))− I2,δ(t̂, ŷ, q, v∗(t̂, ŷ)) ≤ K
(α

2
|x̂− ŷ|2 + β

)
. (3.4.29)

Now

I1,δ(t̂, x̂, φ(., ŷ))− I1,δ(t̂, x̂,−φ(x̂, .)) (3.4.30)

=
∫
|e|≤δ

[φ(x̂+ h(t̂, x̂, e), ŷ)− φ(x̂, ŷ)− (∇xφ)(x̂, ŷ)h(t̂, x̂, e)]λ(de)

−
∫
|e|≤δ

[−φ(x̂, ŷ + h(t̂, ŷ, e)) + φ(x̂, ŷ) + (∇yφ)(x̂, ŷ)h(t̂, ŷ, e)]λ(de)

=
(α

2
+ β

)∫
|e|≤δ

(
|h(t̂, x̂, e)|2 + |h(t̂, ŷ, e)|2

)
λ(de)

≤ 2K2
(α

2
+ β

)∫
|e|≤δ

(1 ∧ |e|2)λ(de),
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by Assumption (B4).
Finally plugging (3.4.26), (3.4.27), (3.4.28), (3.4.29) and (3.4.30) in (3.4.25) we obtain:

ε

T 2
+ oγ(1) ≤ K

(
α|x̂− ŷ|2 + β(1 + |x̂|2 + |ŷ|2)

)
+
(α

2
+ β

)
oδ(1), (3.4.31)

where C is a constant independent of α and β. We let γ and δ go to zero and since

lim
α→+∞

lim
β→0

α

2
|x̂− ŷ|2 + β

(
|x̂|2 + |ŷ|2

)
= 0,

the inequality (3.4.31) leads to a contradiction taking β sufficiently small and α sufficiently large.
Hence un,ε ≤ v∗ and it is true for every ε > 0, so the result is proved.

�
Note that if in Definition 11 we add the condition that u is bounded on [0, T − δ]× Rd for any
δ > 0, then we can prove that

• u(t) ≤ (q(T − t))−1/q.

• If g ≡ +∞, then there is a unique viscosity solution u.

3.4.3 Regularity of the minimal solution

The function u is the minimal non negative viscosity solution of the PDE (3.1.4). We know
that u is finite on [0, T [×Rd (see (3.4.20)). For δ > 0, u is bounded on [0, T − δ] × Rd by a
constant which depends only on δ. To have more regularity on u we add some conditions on the
coefficients.

1. σ and b are bounded: there exists a constant C s.t.

∀(t, x) ∈ [0, T ]× Rd, |b(t, x)|+ ‖σ(t, x)‖ ≤ C; (A5)

2. σσ∗ is uniformly elliptic, i.e. there exists λ > 0 s.t. for all (t, x) ∈ [0, T ]× Rd:

∀y ∈ Rd, σσ∗(t, x)y.y ≥ λ|y|2. (A6)

Proposition 14. If λ is finite and if the coefficients of the operator L satisfy Conditions (A)
and (A5) and (A6), and are Hölder-continuous in time, then u is continuous on [0, T ]×Rd, and
for all δ > 0:

u ∈ C1,2([0, T − δ]× Rd; R+). (3.4.32)

Proof. The proof of Proposition 13 shows that there is a unique bounded and continuous
viscosity solution of the Cauchy problem:{

∂tv + Lv + I(v)− v|v|q = 0, on [0, T − δ]× Rd,

v(T − δ, x) = φ(x) on Rd (3.4.33)

where φ is supposed bounded and continuous on Rd.
Moreover, the Cauchy problem (3.4.33) has a classical solution for every bounded and continuous
function φ (see Lemma 12 below).
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Recall that un is jointly continuous in (t, x) and on [0, T − δ]× Rd, un is bounded by:

0 ≤ un(t, x) ≤
(

1
qδ

)1/q

.

Thus, the problem (3.4.33) with condition φ = un(T−δ, .) has a bounded classical solution. Since
every classical solution is a viscosity solution and since un is the unique bounded and continuous
viscosity solution of (3.4.33), we deduce that:

∀δ > 0, un ∈ C1,2([0, T − δ[×Rd; R+).

From the construction of the classical solution un, we also know that the sequence {un} is locally
bounded in Cα,1+α([0, T −δ/2]×Rd). The bound is given by the L∞ norm of un which is smaller
than (T − δ/4)−1/q. Therefore u is continuous on [T − δ/2]×Rd and if we consider the problem
(3.4.33) with continuous terminal data u(T − δ, .), with the same argument as for un, we obtain
that u is a classical solution, i.e. u ∈ C1,2([0, T − δ]× Rd; R+).
In particular, u is continuous on [0, T [×Rd. And the terminal condition on u in Theorem 18
shows that u is continuous at time T . �

Lemma 12. For every bounded and continuous function φ, the Cauchy problem (3.4.33) has a
classical bounded solution v.

Proof. We will use the scheme done in [83] (Proposition 24) and in Pham [80] (Proposition 5.3).
For a given continuous and bounded function φ, the problem (3.4.33) has a unique bounded and
continuous viscosity solution v (just apply Theorem 3.4 and Theorem 3.5 in [9]). We consider
the following Cauchy problem: on [0, T − δ]× Rd

∂tu+ L̃u = fv, (3.4.34)

with

• L̃ a differential operator:

L̃φ =
1
2
Trace(D2φσσ∗(t, x)) + b̃(t, x)∇φ,

and
b̃(t, x) = b(t, x)−

∫
E
h(t, x, e)λ(de).

• fv is the following function:

fv(t, x) = v(t, x)|v(t, x)|q −
∫

E
[v(x+ h(t, x, e))− v(x)]λ(de).

First note that v is also the unique bounded viscosity solution of (3.4.34). Moreover the as-
sumptions (B4) and (A5) imply that since λ is finite and v is bounded, the drift term b̃ and the
function fv are also bounded.
Using the result of Veretennikov [94], Theorem 3.1, the problem (3.4.34) has a unique solution
u in the class C([0, T − δ]× Rd; R+) ∩

⋂
p>1

W 1,2
p,loc([0, T − δ[×Rd). Now we define three processes

for all s ≥ t:
X

t,x
s = x+

∫ s

t
b̃(u,Xt,x

u )du+
∫ s

t
σ(u,Xt,x

u )dBu,
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and
Y

t,x
s = u(s,Xt,x

s ), and Zt,x
s = ∇u(s,Xt,x

s )σ(s,Xt,x
s ).

We can apply the Itô formula to the function u (see [54], section 2.10). We have for all s ≥ t:

Y
t,x
s = Y

t,x
T−δ −

∫ T−δ

s
fv(r,X

t,x
r )dr −

∫ T−δ

s
Z

t,x
r dBr.

Since fv is bounded, it is well known (see [72]) that the function (t, x) 7→ Y
t,x
t is a continuous

and bounded viscosity solution of (3.4.34). Therefore u = v and thus the viscosity solution v

belongs to
⋂

p>1W
1,2
p,loc([0, T − δ[×Rd).

Hence for all α < 1, v belongs to the space Hβ,1+β (the set of functions which are β-Hölder-
continuous in time and 1 + β-Hölder-continuous in space), and the Hölder norm of v depends
just on the L∞ bound of v. Thus fv is also Hölder continuous, and from the existence result of
[58] (see section IV, theorems 5.1 and 10.1), v is a classical solution of (3.4.34) and of (3.4.33).

�
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4.1 Introduction

The first aim of this chapter is to extend the results of [66] to the case of doubly reflected
second-order BSDEs when we assume enough regularity on one of the barriers (as in [26]) and
that the two barriers are completely separated (as in [42] and [43]). In that case, we show that
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the right way to define a solution is to consider a 2BSDE where we add a process V which has
only bounded variations (see Definition 4.2.8). Our next step towards a theory of existence and
uniqueness is then to understand as much as possible how and when this bounded variation
process acts. Our key result is obtained in Proposition 4.3.5, and allows us to obtain a special
Jordan decomposition for V , in the sense that we can decompose it into the difference of two
non-decreasing processes which never act at the same time. Thanks to this result, we are then
able to obtain a priori estimates and a uniqueness result. Next, we reuse the methodology of [66]
to construct a solution.

We also show that these objects are related to non-standard optimal stopping games, thus gen-
eralizing the connection between DRBSDEs and Dynkin games first proved by Cvitanić and
Karatzas [27]. Finally, we show that the second order DRBSDEs allow to obtain super and sub-
hedging prices for American game options (also called Israeli options) in financial markets with
volatility uncertainty and that, under a technical assumption, they provide solutions of what we
call uncertain Dynkin games.

The chapter is organized as follows. After recalling some notations and definitions, in Section 4.2,
we treat the problem of uniqueness in Section 4.3. Section 4.4 is then devoted to the pathwise
construction of a solution, thus solving the existence problem. Finally, we investigate in Section
4.5 the aforementioned game theoretical and financial applications. The Appendix is devoted to
some technical results used throughout the chapter.

4.2 Definitions and Notations

4.2.1 The stochastic framework

Let Ω :=
{
ω ∈ C([0, T ],Rd) : ω0 = 0

}
be the canonical space equipped with the uniform norm

‖ω‖∞ := sup0≤t≤T |ωt|, B the canonical process, P0 the Wiener measure, F := {Ft}0≤t≤T the
filtration generated by B, and F+ :=

{
F+

t

}
0≤t≤T

the right limit of F. A probability measure P
will be called a local martingale measure if the canonical process B is a local martingale under
P. Then, using results of Bichteler [14] (see also Karandikar [50] for a modern account), the
quadratic variation 〈B〉 and its density â can be defined pathwise, and such that they coincide
with the usual definitions under any local martingale measure.

With the intuition of modeling, volatility uncertainty, we let PW denote the set of all local
martingale measures P such that

〈B〉 is absolutely continuous in t and â takes values in S>0
d , P− a.s., (4.2.1)

where S>0
d denotes the space of all d× d real valued positive definite matrices.

However, since this set is too large for our purpose (in particular there are examples of measures
in PW which do not satisfy the martingale representation property, see [88] for more details), we
will concentrate on the following subclass PS consisting of

Pα := P0 ◦ (Xα)−1 where Xα
t :=

∫ t

0
α1/2

s dBs, t ∈ [0, T ], P0 − a.s., (4.2.2)

for some F-progressively measurable process α taking values in S>0
d with

∫ T
0 |αt|dt < +∞, P0−a.s.
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This subset has the convenient property that all its elements do satisfy the martingale represen-
tation property and the Blumenthal 0−1 law (see [88] for details) which are crucial tools for the
BSDE theory.

4.2.2 Generator and measures

We consider a map Ht(ω, y, z, γ) : [0, T ]× Ω× R× Rd ×DH → R, where DH ⊂ Rd×d is a given
subset containing 0, whose Fenchel transform w.r.t. γ is denoted by

Ft(ω, y, z, a) := sup
γ∈DH

{
1
2
Tr(aγ)−Ht(ω, y, z, γ)

}
for a ∈ S>0

d ,

F̂t(y, z) := Ft(y, z, ât) and F̂ 0
t := F̂t(0, 0).

We denote by DFt(y,z) := {a, Ft(ω, y, z, a) < +∞} the domain of F in a for a fixed (t, ω, y, z).
As in [89] we fix a constant κ ∈ (1, 2] and restrict the probability measures in Pκ

H ⊂ PS

Definition 4.2.1. Pκ
H consists of all P ∈ PS such that

aP ≤ â ≤ āP, dt× dP− a.s. for some aP, āP ∈ S>0
d , and φ2,κ

H < +∞,

where

φ2,κ
H := sup

P∈Pκ
H

EP

ess sup
0≤t≤T

P
(

EH,P
t

[∫ T

0
|F̂ 0

s |κds
]) 2

κ

 .
Definition 4.2.2. We say that a property holds Pκ

H-quasi-surely (Pκ
H-q.s. for short) if it holds

P-a.s. for all P ∈ Pκ
H .

We now state the main assumptions on the function F which will be our main interest in the
sequel

Assumptions (D):

(i) The domain DFt(y,z) = DFt is independent of (ω, y, z).

(ii) For fixed (y, z, a), F is F-progressively measurable in DFt .

(iii) We have the following uniform Lipschitz-type property in y and z

∀(y, y′, z, z′, t, a, ω),
∣∣Ft(ω, y, z, a)− Ft(ω, y′, z′, a)

∣∣ ≤ C (∣∣y − y′∣∣+ ∣∣∣a1/2
(
z − z′

)∣∣∣) .
(iv) F is uniformly continuous in ω for the || · ||∞ norm.

(v) Pκ
H is not empty.

Remark 4.2.3. Assumptions (ii), (iii) are completely standard in the BSDE literature since
the paper [73]. Similarly, (i) was already present in the first paper on 2BSDEs in a quasi-sure
formulation [89] and is linked to the fact that one does not know how to treat coupled second-order
FBSDEs. The last hypothesis (iv) is also proper to the second order framework, and allows us
to not only give a pathwise construction for the solution to the 2RBSDE, but to recover the very
important dynamic programming property. We refer the reader to Section 4.4 for more details.
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4.2.3 Quasi-sure norms and spaces

The following spaces and the corresponding norms will be used throughout the paper. With
the exception of the space Lp,κ

H , they all are immediate extensions of the usual spaces to the
quasi-sure setting.

For p ≥ 1, Lp,κ
H denotes the space of all FT -measurable scalar r.v. ξ with

‖ξ‖p
Lp,κ

H
:= sup

P∈Pκ
H

EP [|ξ|p] < +∞.

Hp,κ
H denotes the space of all F+-progressively measurable Rd-valued processes Z with

‖Z‖pHp,κ
H

:= sup
P∈Pκ

H

EP

[(∫ T

0
|â1/2

t Zt|2dt
) p

2

]
< +∞.

Dp,κ
H denotes the space of all F+-progressively measurable R-valued processes Y with

Pκ
H − q.s. càdlàg paths, and ‖Y ‖pDp,κ

H
:= sup

P∈Pκ
H

EP

[
sup

0≤t≤T
|Yt|p

]
< +∞,

where càdlàg is the French acronym for "right-continuous with left-limits".

Ip,κ
H denotes the space of all F+-progressively measurable R-valued processes K null at 0 with

Pκ
H − q.s., càdlàg and non-decreasing paths, and ‖K‖pIp,κ

H
:= sup

P∈Pκ
H

EP [(KT )p] < +∞.

Vp,κ
H denotes the space of all F+-progressively measurable R-valued processes V null at 0 with

paths which are Pκ
H − q.s. càdlàg and of bounded variation, and such that

‖V ‖pVp,κ
H

:= sup
P∈Pκ

H

EP [(Var0,T(V))p] < +∞.

For each ξ ∈ L1,κ
H , P ∈ Pκ

H and t ∈ [0, T ] denote

EH,P
t [ξ] := ess supP

P′∈Pκ
H(t+,P)

EP′
t [ξ] where Pκ

H(t+,P) :=
{

P
′ ∈ Pκ

H : P
′
= P on F+

t

}
.

Here EP
t [ξ] := EP[ξ|Ft]. Then we define for each p ≥ κ,

Lp,κ
H :=

{
ξ ∈ Lp,κ

H : ‖ξ‖Lp,κ
H

< +∞
}

where ‖ξ‖pLp,κ
H

:= sup
P∈Pκ

H

EP

[
ess sup
0≤t≤T

P
(
EH,P

t [|ξ|κ]
) p

κ

]
.

We denote by UCb(Ω) the collection of all bounded and uniformly continuous maps ξ : Ω → R
with respect to the ‖·‖∞-norm, and we let

Lp,κ
H := the closure of UCb(Ω) under the norm ‖·‖Lp,κ

H
, for every 1 ≤ κ ≤ p.

Finally, for every P ∈ Pκ
H , and for any p ≥ 1, Lp(P), Hp(P), Dp(P), Ip(P) and Vp(P) will denote

the corresponding usual spaces when there is only one measure P.
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4.2.4 Obstacles and definition

First, we consider a process S which will play the role of the upper obstacle. We will always
assume that S verifies the following properties

Assumptions (E):

(i) S is F-progressively measurable and càdlàg.

(ii) S is uniformly continuous in ω in the sense that for all t

|St(ω)− St(ω̃)| ≤ ρ (‖ω − ω̃‖t) , ∀ (ω, ω̃) ∈ Ω2,

for some modulus of continuity ρ and where we define ‖ω‖t := sup
0≤s≤t

|ω(s)|.

(iii) S is a semimartingale for every P ∈ Pκ
H , with the decomposition

St = S0 +
∫ t

0
PsdBs +AP

t , P− a.s., for all P ∈ Pκ
H , (4.2.3)

where the AP are bounded variation processes with Jordan decomposition AP,+ −AP,− and

ζ2,κ
H := sup

P∈Pκ
H

(
EP

[
ess supP

0≤t≤T
EH,P

t

[(∫ T

t

∣∣∣â1/2
s Ps

∣∣∣2 ds)κ/2

+
(
AP,+

T

)κ
]])2

< +∞.

(iv) S satisfies the following integrability condition

ψ2,κ
H := sup

P∈Pκ
H

EP

ess sup
0≤t≤T

P

(
EH,P

t

[
sup

0≤s≤T
|Ss|κ

]) 2
κ

 < +∞.

Remark 4.2.4. We assumed here that S was a semimartingale. This is directly linked to the fact
that this is one of the conditions under which existence and uniqueness of solutions to standard
doubly reflected BSDEs with upper obstacle S are guaranteed. More precisely, this assumption is
needed for us in the proof of Lemma (4.6.11), and it will be also crucial in order to obtain a priori
estimates for 2BSDEs with two obstacles. This assumption is at the heart of our approach, and
our proofs no longer work without it. Notice however that such an assumption was not needed
for the lower obstacles considered in [66]. This is the first manifestation of an effect that we will
highlight throughout the paper, namely that there is absolutely no symmetry between lower and
upper obstacles in the second-order framework.

Remark 4.2.5. The decomposition (4.2.3) is not restrictive. Indeed, with the integrability as-
sumption (iv), we know that for each P ∈ Pκ

H , there exists a P-martingale MP and a bounded
variation process AP such that

St = S0 +MP
t +AP

t , P− a.s.

Then, using the martingale representation theorem, there exists some P P
t ∈ H2(P) such that

MP
t =

∫ t

0
P P

s dBs.
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Then, since S is càdlàg, by Karandikar [50], we can aggregate the family (P P)P∈Pκ
H

into a uni-
versal process P , which gives us the decomposition (4.2.3).

Next, we also consider a lower obstacle L which will be assumed to verify

Assumptions (F):

(i) L is a F-progressively measurable càdlàg process.

(ii) L is uniformly continuous in ω in the sense that for all t and for some modulus of continuity
ρ

|Lt(ω)− Lt(ω̃)| ≤ ρ (‖ω − ω̃‖t) , ∀ (ω, ω̃) ∈ Ω2.

(iii) For all t ∈ [0, T ], we have

Lt < St and Lt− < St− , Pκ
H − q.s.

(iv) We have the following integrability condition

ϕ2,κ
H := sup

P∈Pκ
H

EP

ess sup
0≤t≤T

P

(
EH,P

t

[(
sup

0≤s≤T
(Ls)

+

)κ]) 2
κ

 < +∞. (4.2.4)

Remark 4.2.6. Unlike for S, we did not assume here that L was a semimartingale, and we
cannot interchange the roles of S and L, that is to say that the wellposedness results do not hold
if we assume that L is a semimartingale instead of S.

We shall consider the following second order doubly reflected BSDE (2DRBSDE for short) with
upper obstacle S and lower obstacle L

Yt = ξ +
∫ T

t
F̂s(Ys, Zs)ds−

∫ T

t
ZsdBs + VT − Vt, 0 ≤ t ≤ T, Pκ

H − q.s. (4.2.5)

In order to give the definition of the 2DRBSDE, we first need to introduce the corresponding
standard doubly reflected BSDEs. Hence, for any P ∈ Pκ

H , F-stopping time τ , and Fτ -measurable
random variable ξ ∈ L2(P), let

(yP, zP, kP,+, kP,−) := (yP(τ, ξ), zP(τ, ξ), kP,+(τ, ξ), kP,−(τ, ξ)),

denote the unique solution to the following standard DRBSDE with upper obstacle S and lower
obstacle L (existence and uniqueness have been proved under these assumptions in [26] among
others)

yP
t = ξ +

∫ τ
t F̂s(yP

s , z
P
s )ds−

∫ τ
t z

P
s dBs + kP,−

τ − kP,−
t − kP,+

τ + kP,+
t , 0 ≤ t ≤ τ, P− a.s.

Lt ≤ yP
t ≤ St, P− a.s.∫ t

0

(
yP

s− − Ls−
)
dkP,−

s =
∫ t
0

(
Ss− − yP

s−

)
dkP,+

s = 0, P− a.s., ∀t ∈ [0, T ].
(4.2.6)
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Remark 4.2.7. Notice that the assumption that Lt < St and Lt− < St− implies that the non-
decreasing processes kP,+ and kP,− never act at the same time. This will be important later. This
hypothesis is already present in [42] and [43].

Everything is now ready for the

Definition 4.2.8. We say (Y, Z) ∈ D2,κ
H ×H2,κ

H is a solution to the 2DRBSDE (4.2.5) if

• YT = ξ, Pκ
H − q.s.

• ∀P ∈ Pκ
H , the process V P defined below has paths of bounded variation P− a.s.

V P
t := Y0 − Yt −

∫ t

0
F̂s(Ys, Zs)ds+

∫ t

0
ZsdBs, 0 ≤ t ≤ T, P− a.s. (4.2.7)

• We have the following minimum condition for 0 ≤ t ≤ T

V P
t + kP,+

t − kP,−
t = ess infP

P′∈PH(t+,P)
EP′

t

[
V P′

T + kP′ ,+
T − kP′ ,−

T

]
, P− a.s., ∀P ∈ Pκ

H . (4.2.8)

• Lt ≤ Yt ≤ St, Pκ
H − q.s.

Moreover, if there exists an aggregator for the family (V P)P∈Pκ
H
, that is to say a progressively

measurable process V such that for all P ∈ Pκ
H ,

Vt = V P
t , t ∈ [0, T ], P− a.s.,

then we say that (Y, Z, V ) is a solution to the 2DRBSDE (4.2.5).

Remark 4.2.9. The Definition 4.2.8 differs from the rest of the 2BSDE literature. Indeed,
unlike in [89] for instance, the process V P that we add in the definition of the 2BSDE is no
longer non-decreasing, but is only assumed to have finite variation. This is mainly due to two
competing effects. On the one hand, exactly as with standard RBSDEs with an upper obstacle,
a non-increasing process has to be added to the solution in order to maintain it below the upper
obstacle. But in the 2BSDE framework, another non-decreasing process also has to be added in
order to push the process Y to stay above all the yP (as is shown by the representation formula
proved below in Theorem 4.3.1). This emphasizes once more that in the second-order framework,
which is fundamentally non-linear, there is no longer any symmetry between a reflected 2BSDE
with an upper or a lower obstacle. Notice that this was to be expected, since 2BSDEs are a natural
generalization of the G-expectation introduced by Peng [78], which is an example of sublinear (and
thus non-linear) expectation. We also would like to refer the reader to the recent paper by Pham
and Zhang [81], whose problematics are strongly connected to ours. They study some norm
estimates for semimartingales in the context of linear and sublinear expectations, and point out
that there is a fundamental difference between non-linear submartingales and supermartingales
(see their section 4.3). Translated in our framework, and using the intuition from the classical
RBSDE theory, when the generator is equal to 0, a 2RBSDE with a lower obstacle should be
a non-linear supermartingale, while a 2RBSDE with an upper obstacle should be a non-linear
submartingale. In this sense, our results are a first step in the direction of the conjecture in
section 4.3 of [81].
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4.2.5 DRBSDEs as a special case of 2DRBSDEs

In this subsection, we show how we can recover the usual theory. If H is linear in γ, that is to
say

Ht(y, z, γ) :=
1
2
Tr
[
a0

tγ
]
− ft(y, z),

where a0 : [0, T ] × Ω → S>0
d is F-progressively measurable and has uniform upper and lower

bounds, then as in [89], we no longer need to assume any uniform continuity in ω in this case.
Besides, the domain of F is restricted to a0 and we have

F̂t(y, z) = ft(y, z).

If we further assume that there exists some P ∈ PS such that â and a0 coincide P − a.s. and
EP
[∫ T

0 |ft(0, 0)|2 dt
]
< +∞, then Pκ

H = {P}.

Then, we know that V P + kP,+
t − kP,−

t is a P-martingale with finite variation. Since P satisfy the
martingale representation property, this martingale is also continuous, and therefore it is null.
Thus we have

0 = kP,+
t − kP,−

t + V P, P− a.s.,

and the 2DRBSDE is equivalent to a standard DRBSDE. In particular, we see that V P now
becomes a finite variation process which decreases only when Yt− = St− and increases only when
Yt− = Lt− . This implies that V P satisfies the usual Skorohod conditions. We would like to
emphasize this fact here, since it will be useful later on to have a deeper understanding of the
structure of the processes

{
V P}

P∈Pκ
H

.

4.3 Uniqueness, estimates and representations

4.3.1 A representation inspired by stochastic control

We have similarly as in Theorem 4.4 of [89]

Theorem 4.3.1. Let Assumption (D) hold. Assume ξ ∈ L2,κ
H and that (Y, Z) is a solution to

the 2DRBSDE (4.2.5). Then, for any P ∈ Pκ
H and 0 ≤ t1 < t2 ≤ T ,

Yt1 = ess supP

P′∈Pκ
H(t+1 ,P)

yP′
t1 (t2, Yt2), P− a.s. (4.3.9)

Consequently, the 2DRBSDE (4.2.5) has at most one solution in D2,κ
H ×H2,κ

H .

Proof. The proof is exactly the same as the proof of Theorem 3.1 in [66], so we will only
sketch it. First, from the minimal condition (4.2.8), we deduce that for any P ∈ Pκ

H , the process
V P + kP,+ − kP,− is a P-submartingale. By the Doob-Meyer decomposition and the martingale
representation property, its martingale part is continuous with finite variation and therefore null.
Hence V P + kP,+ − kP,− is a non-decreasing process. Then, the inequality

Yt1 ≥ ess supP

P′∈Pκ
H(t+1 ,P)

yP′
t1 (t2, Yt2), P− a.s.,

is a simple consequence of a classical comparison Theorem. The reverse inequality is then ob-
tained by standard linearization techniques using the Lipschitz properties of F , see [66] for the
details. �
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Remark 4.3.2. Let us now justify the minimum condition (4.2.8). Assume for the sake of clarity
that the generator F̂ is equal to 0. By the above Theorem, we know that if there exists a solution
to the 2DRBSDE (4.2.5), then the process Y has to satisfy the representation (4.3.9). Therefore,
we have a natural candidate for a possible solution of the 2DRBSDE. Now, assume that we could
construct such a process Y satisfying the representation (4.3.9) and which has the decomposition
(4.2.5). Then, taking conditional expectations in Y − yP, we end up with exactly the minimum
condition (4.2.8).

Finally, the following comparison Theorem follows easily from the classical one for DRBSDEs
(see for instance [61]) and the representation (4.3.9).

Theorem 4.3.3. Let (Y, Z) and (Y ′, Z ′) (resp. (yP, zP, k+,P, k−,P) and (y′P, z′P, k′+,P, k′−,P))
be the solutions of the 2DRBSDEs (resp. DRBSDEs) with terminal conditions ξ and ξ

′ , upper
obstacles S and S′, lower obstacles L and L′ and generators F̂ and F̂ ′ respectively. Assume that
they both verify Assumptions (D), that Pκ

H ⊂ Pκ
H′

and that we have Pκ
H − q.s.

ξ ≤ ξ′ , F̂t(y′Pt , z
′P
t ) ≤ F̂ ′t (y′Pt , z′Pt ), Lt ≤ L

′
t and St ≥ S

′
t.

Then Y ≤ Y ′, Pκ
H − q.s.

Remark 4.3.4. Unlike in the classical framework, even if the upper obstacles S and S′ and the
lower obstacles L and L′ are identical, we cannot compare the processes V P and V ′P. This is due
to the fact that these processes are not assumed to satisfy a Skorohod-type condition. This point
was already mentioned in [66].

4.3.2 A priori estimates

We will now try to obtain a priori estimates for the 2DRBSDEs. We emphasize immediately
that the fact that the process V P are only of finite variation makes the task a lot more difficult
than in [66]. Indeed, we are now in a case which shares some similarities with standard doubly
reflected BSDEs for which it is known that a priori estimates cannot be obtained without some
regularity assumptions on the obstacles (for instance if one of them is a semimartingale). We
assumed here that S was a semimartingale, a property which will be at the heart of our proofs.
Nonetheless, even before this, we need to understand the fine structure of the processes V P. This
is the object of the following proposition.

Proposition 4.3.5. Let Assumption (D) hold. Assume ξ ∈ L2,κ
H and (Y, Z) ∈ D2,κ

H × H2,κ
H

is a solution to the 2DRBSDE (4.2.5). Let
{
(yP, zP, k+,P, k−,P)

}
P∈Pκ

H
be the solutions of the

corresponding DRBSDEs (4.2.6). Then we have the following results for all t ∈ [0, T ] and for all
P ∈ Pκ

H

(i) V P,+
t :=

∫ t
0 1yP

s−
<Ss−

dV P
s is a non-decreasing process, P− a.s.

(ii) V P,−
t :=

∫ t
0 1yP

s−
=Ss−

dV P
s = −kP,+

t , P− a.s., and is therefore a non-increasing process.

Proof.

Let us fix a given P ∈ Pκ
H .

(i) Let τ1 and τ2 be two F-stopping times such that for all t ∈ [τ1, τ2), yP
t− < St− , P− a.s.
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Then, we know from the usual Skorohod condition that the process kP,+ does not increase
between τ1 and τ2. Now, we remind the reader that we showed in the proof of Theorem 4.3.1,
that the process V P + k+,P − k−,P is always non-decreasing. This necessarily implies that V P

must be non-decreasing between τ1 and τ2. Hence the first result.

(ii) Let now τ1 and τ2 be two F-stopping times such that for all t ∈ [τ1, τ2), yP
t− = St− , P− a.s.

First, since the two obstacles are separated, we necessarily have yP
t− > Lt− , P − a.s. for every

t ∈ [τ1, τ2), which in turn implies that kP,− does not increase. Next, by the representation
formula (4.3.9), we necessarily have Yt− ≥ yP

t− , P − a.s. for all t. Moreover, since we also have
Yt ≤ St by definition, this implies, since all the processes here are càdlàg, that we must have

Yt− = yP
t− = St− , t ∈ [τ1, τ2), P− a.s.

Using the fact that Y and yP solve respectively a 2BSDE and a BSDE, we also have P− a.s.

St− + ∆Yt = Yt = Yu +
∫ u

t
F̂s(Ys, Zs)ds−

∫ u

t
ZsdBs + V P

u − V P
t , τ1 ≤ t ≤ u < τ2

St− + ∆yP
t = yP

t = yP
u +

∫ u

t
F̂s(yP

s , z
P
s )ds−

∫ u

t
zP
s dBs − kP,+

u + kP,+
t , τ1 ≤ t ≤ u < τ2.

Identifying the martingale parts above, we obtain that Zs = zP
s , ds× P− a.e. Then, identifying

the finite variation parts, we have

Yu −∆Yt +
∫ u

t
F̂s(Ys, Zs)ds+ V P

u − V P
t = yP

u −∆yP
t +

∫ u

t
F̂s(yP

s , z
P
s )ds− kP,+

u + kP,+
t .

(4.3.10)

Now, we clearly have ∫ u

t
F̂s(Ys, Zs)ds =

∫ u

t
F̂s(yP

s , z
P
s )ds,

since Zs = zP
s , dt×P−a.e. and Ys− = yP

s− = Ss− for all s ∈ [t, u]. Moreover, since Ys− = yP
s− = Ss−

for all s ∈ [t, u] and since all the processes are càdlàg, the jumps of Y and yP are equal to the
jumps of S. Therefore, (4.3.10) can be rewritten

V P
u − V P

t = −kP,+
u + kP,+

t ,

which is the desired result. �

The above Proposition is crucial for us. Indeed, we have actually shown that

V P
t = V P,+

t − kP,+
t , P− a.s.,

where V P,+ and kP,+ are two non-decreasing processes which never act at the same time. Hence,
we have obtained a Jordan decomposition for V P. Moreover, we can easily obtain a priori
estimates for kP,+ by using the fact that it is part of the solution of the DRBSDE (4.2.6). Notice
that these estimates hold only because we assumed that the corresponding upper obstacle S was
a semimartingale. This is this decomposition which will allow us to obtain the estimates.

Remark 4.3.6. The above result is enough for us to obtain the desired a priori estimates.
However, we can go further into the structure of the bounded variation processes V P. Indeed,
arguing as in Proposition 3.2 in [66], we could also show that

1Yt−=Lt−
dV P

t = 1Yt−=Lt−
dkP,−

t .
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Notice however that we, a priori, cannot say anything about V P when Lt− = yP
t− < Yt− , even

though we showed that it could be known explicitly when St− = yP
t− . This emphasizes once more

the fact that the upper and the lower obstacle in our context do not play a symmetric role.

We can now prove the following theorem.

Theorem 4.3.7. Let Assumptions (D), (E) and (F) hold. Assume ξ ∈ L2,κ
H and (Y, Z) ∈

D2,κ
H ×H2,κ

H is a solution to the 2DRBSDE (4.2.5). Let
{
(yP, zP, kP,+, kP,−)

}
P∈Pκ

H
be the solutions

of the corresponding DRBSDEs (4.2.6). Then, there exists a constant Cκ depending only on κ,
T and the Lipschitz constant of F̂ such that

‖Y ‖2D2,κ
H

+ ‖Z‖2H2,κ
H

+ sup
P∈Pκ

H

{∥∥∥yP
∥∥∥2

D2(P)
+
∥∥∥zP
∥∥∥2

H2(P)
+ EP

[
Var0,T

(
V P
)2

+
(
kP,+

T

)2
+
(
kP,−

T

)2
]}

≤ Cκ

(
‖ξ‖2L2,κ

H
+ φ2,κ

H + ψ2,κ
H + ϕ2,κ

H + ζ2,κ
H

)
Proof. First of all, since we assumed that S was a semimartingale, we can argue as in [26] to
obtain that

dkP,+
t ≤ F̂+

t (St, Pt)dt+ dAP,+
t ≤ C

(∣∣∣F̂ 0
t

∣∣∣+ |St|+
∣∣∣â1/2

t Pt

∣∣∣) dt+ dAP,+
t .

Hence,

EP
t

[(
kP,+

T

)κ]
≤ CκEP

t

[∫ T

t

∣∣∣F̂ 0
s

∣∣∣κ ds+
(∫ T

t
|â

1
2
s Ps|2ds

)κ/2

+ sup
t≤s≤T

|Ss|κ +
(
AP,+

T

)κ
]

≤ Cκ

((
ζ2,κ
H

)1/2
+ EP

t

[∫ T

t

∣∣∣F̂ 0
s

∣∣∣κ ds+ sup
t≤s≤T

|Ss|κ
])

.

Let us now define

ξ̃ := ξ − kP,+
T , ỹP = yP − kP,+, F̃t(y, z) := F̂t

(
y + kP,+

t , z
)
.

Then, it is easy to see that (ỹP, zP, kP,+) is the solution of the lower reflected BSDE with terminal
condition ξ̃, generator F̃ and obstacle L− kP,+. We can then once again apply Lemma 2 in [47]
to obtain that there exists a constant Cκ depending only on κ, T and the Lipschitz constant of
F̂ , such that for all P∣∣∣yP

t

∣∣∣ ≤ CκEP
t

[∣∣∣ξ̃∣∣∣κ +
∫ T

t

∣∣∣F̃ 0
s

∣∣∣κ ds+ sup
t≤s≤T

((
Ls − kP,+

s

)+
)κ
]

≤ CκEP
t

[
|ξ|κ +

∫ T

t

∣∣∣F̂ 0
s

∣∣∣κ ds+ sup
t≤s≤T

(
L+

s

)κ +
(
kP,+

T

)κ
]

≤ Cκ

((
ζ2,κ
H

)1/2
+ EP

t

[
|ξ|κ +

∫ T

t

∣∣∣F̂ 0
s

∣∣∣κ ds+ sup
t≤s≤T

|Ss|κ + sup
t≤s≤T

(
L+

s

)κ])
. (4.3.11)

This immediately provides the estimate for yP. Now by definition of the norms, we obtain from
(4.3.11) and the representation formula (4.3.9) that

‖Y ‖2D2,κ
H
≤ Cκ

(
‖ξ‖2L2,κ

H
+ φ2,κ

H + ψ2,κ
H + ϕ2,κ

H + ζ2,κ
H

)
. (4.3.12)
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Now apply Itô’s formula to
∣∣yP∣∣2 under P. We get as usual for every ε > 0

EP
[∫ T

0

∣∣∣â1/2
t zP

t

∣∣∣2 dt] ≤ CEP
[
|ξ|2 +

∫ T

0

∣∣∣yP
t

∣∣∣ (∣∣∣F̂ 0
t

∣∣∣+ ∣∣∣yP
t

∣∣∣+ ∣∣∣â1/2
t zP

t

∣∣∣) dt]
+ EP

[∫ T

0

∣∣∣yP
t

∣∣∣ d(kP,+
t + kP,−

t

)]
≤ C

(
‖ξ‖L2,κ

H
+ EP

[
sup

0≤t≤T

∣∣∣yP
t

∣∣∣2 +
(
kP,−

T

)2
+
(∫ T

0

∣∣∣F̂ 0
t

∣∣∣ dt)2
])

+ εEP
[∫ T

0

∣∣∣â1/2
t zP

t

∣∣∣2 dt+
∣∣∣kP,+

T

∣∣∣2]+
C2

ε
EP

[
sup

0≤t≤T

∣∣∣yP
t

∣∣∣2] . (4.3.13)

Then by definition of the DRBSDE (4.2.6), we easily have

EP
[∣∣∣kP,+

T

∣∣∣2] ≤ C0EP

[
|ξ|2 + sup

0≤t≤T

∣∣∣yP
t

∣∣∣2 +
(
kP,−

T

)2
+
∫ T

0

∣∣∣∣â 1
2
t z

P
t

∣∣∣∣2 dt+
(∫ T

0

∣∣∣F̂ 0
t

∣∣∣ dt)2
]
,

(4.3.14)
for some constant C0, independent of ε. Now set ε := (2(1+C0))−1 and plug (4.3.14) in (4.3.13).
We obtain from the estimates for yP and kP,−

sup
P∈Pκ

H

∥∥∥zP
∥∥∥

H2(P)
≤ C

(
‖ξ‖2L2,κ

H
+ φ2,κ

H + ψ2,κ
H + ϕ2,κ

H + ζ2,κ
H

)
.

Then the estimate for kP,+ comes from (4.3.14). Now that we have obtained the desired estimates
for yP ,zP, kP,+, kP,− and Y , we can proceed further.

Exactly as above, we apply Itô’s formula to |Y |2 under each P ∈ Pκ
H . We have once more for

every ε > 0 and using Proposition 4.3.5

EP
[∫ T

0
|â

1
2
t Zt|2dt

]
≤ CEP

[
|ξ|2 +

∫ T

0
|Yt|

(∣∣∣F̂ 0
t

∣∣∣+ |Yt|+ |â
1
2
t Zt|

)
dt

]
+ EP

[∫ T

0
YtdV

P,+
t −

∫ T

0
Ytdk

P,+
t

]
≤ C

(
‖ξ‖L2,κ

H
+ EP

[
sup

0≤t≤T
|Yt|2 +

(∫ T

0

∣∣∣F̂ 0
t

∣∣∣ dt)2
])

+ εEP

[∫ T

0
|â

1
2
t Zt|2dt+

∣∣∣kP,+
T

∣∣∣2 +
∣∣∣V P,+

T

∣∣∣2 +
C2

ε
sup

0≤t≤T
|Yt|2

]
. (4.3.15)

Then by definition of our 2DRBSDE, we easily have

EP
[∣∣∣V P,+

T

∣∣∣2] ≤ C0EP

[
|ξ|2 + sup

0≤t≤T
|Yt|2 +

∫ T

0
|â

1
2
t Zt|2dt+

∣∣∣kP,+
T

∣∣∣2 +
(∫ T

0
|F̂ 0

t |dt
)2
]
, (4.3.16)

for some constant C0, independent of ε.

Now set ε := (2(1 + C0))−1 and plug (4.3.16) in (4.3.15). One then gets

EP
[∫ T

0

∣∣∣â1/2
t Zt

∣∣∣2 dt] ≤ CEP

[
|ξ|2 + sup

0≤t≤T
|Yt|2 +

∣∣∣kP,+
T

∣∣∣2 +
(∫ T

0

∣∣∣F̂ 0
t

∣∣∣ dt)2
]
.
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From this and the estimates for Y and kP,+, we immediately obtain

‖Z‖H2,κ
H
≤ C

(
‖ξ‖2L2,κ

H
+ φ2,κ

H + ψ2,κ
H + ϕ2,κ

H + ζ2,κ
H

)
.

Moreover, we deduce from (4.3.16) that

sup
P∈Pκ

H

EP
[(
V P,+

T

)2
]
≤ C

(
‖ξ‖2L2,κ

H
+ φ2,κ

H + ψ2,κ
H + ϕ2,κ

H + ζ2,κ
H

)
. (4.3.17)

Finally, we have by definition of the total variation and the fact that the processes V P,+ and
kP,+ are non-decreasing

EP
[
Var
0,T

(
V P
)2
]
≤ CEP

[
Var
0,T

(
V P,+

)2
+ Var

0,T

(
kP,+

)2
]

= CEP
[(
V P,+

T

)2
+
(
kP,+

T

)2
]

≤ C
(
‖ξ‖2L2,κ

H
+ φ2,κ

H + ψ2,κ
H + ϕ2,κ

H + ζ2,κ
H

)
,

where we used the estimate for kP,+ and (4.3.17) for the last inequality. �

Theorem 4.3.8. Let Assumptions (D), (E) and (F) hold. For i = 1, 2, let (Y i, Zi) be the
solutions to the 2DRBSDE (4.2.5) with terminal condition ξi, upper obstacle S and lower obstacle
L. Then, there exists a constant Cκ depending only on κ, T and the Lipschitz constant of F such
that ∥∥Y 1 − Y 2

∥∥
D2,κ

H
≤ C

∥∥ξ1 − ξ2∥∥L2,κ
H∥∥Z1 − Z2

∥∥2

H2,κ
H

+ sup
P∈Pκ

H

EP

[
sup

0≤t≤T

∣∣∣V P,+,1
t − V P,+,2

t

∣∣∣2 + sup
0≤t≤T

∣∣∣V P,−,1
t − V P,−,2

t

∣∣∣2]
≤ C

∥∥ξ1 − ξ2∥∥L2,κ
H

(∥∥ξ1∥∥L2,κ
H

+
∥∥ξ1∥∥L2,κ

H
+ (φ2,κ

H )1/2 + (ψ2,κ
H )1/2 + (ϕ2,κ

H )1/2 + (ζ2,κ
H )1/2

)
.

Remark 4.3.9. We emphasize that in Theorem 4.3.8, we control the norm of both V P,+,1
t −V P,+,2

t

and V P,−,1
t − V P,−,2

t . This is crucial in our main existence Theorem 4.4.5.

Proof. As in the previous Proposition, we can follow the proof of Lemma 3 in [47], to obtain
that there exists a constant Cκ depending only on κ, T and the Lipschitz constant of F , such
that for all P ∣∣∣yP,1

t − yP,2
t

∣∣∣ ≤ CκEP
t

[∣∣ξ1 − ξ2∣∣κ] . (4.3.18)

Now by definition of the norms, we get from (4.3.18) and the representation formula (4.3.9) that∥∥Y 1 − Y 2
∥∥2

D2,κ
H
≤ Cκ

∥∥ξ1 − ξ2∥∥2

L2,κ
H
. (4.3.19)

Next, the estimate for V P,−,1
t − V P,−,2

t is immediate from the usual estimates for DRBSDEs (see
for instance Theorem 3.2 in [26]), since we actually have from Proposition 4.3.5

V P,−,1
t − V P,−,2

t = kP,+,2 − kP,+,1
t .
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Applying Itô’s formula to
∣∣Y 1 − Y 2

∣∣2, under each P ∈ Pκ
H , leads to

EP

[∫ T

0

∣∣∣∣â 1
2
t (Z1

t − Z2
t )
∣∣∣∣2 dt

]
≤ CEP

[∣∣ξ1 − ξ2∣∣2]+ EP
[∫ T

0
(Y 1

t − Y 2
t )d(V P,1

t − V P,2
t )

]
+ CEP

[∫ T

0

∣∣Y 1
t − Y 2

t

∣∣ (∣∣Y 1
t − Y 2

t

∣∣+ |â 1
2
t (Z1

t − Z2
t )|
)
dt

]

≤ C
(∥∥ξ1 − ξ2∥∥2

L2,κ
H

+
∥∥Y 1 − Y 2

∥∥2

D2,κ
H

)
+

1
2

EP
[∫ T

0

∣∣∣â1/2
t (Z1

t − Z2
t )
∣∣∣2 dt]

+ C
∥∥Y 1 − Y 2

∥∥
D2,κ

H

(
EP

[
2∑

i=1

Var0,T

(
VP,i

)2
]) 1

2

.

The estimate for (Z1 − Z2) is now obvious from the above inequality and the estimates of
Proposition 4.3.7. Finally, we have by definition for any t ∈ [0, T ]

EP

[
sup

0≤t≤T

∣∣∣V P,+,1
t − V P,+,2

t

∣∣∣2] ≤ EP

[∣∣ξ1 − ξ2∣∣2 + sup
0≤t≤T

{∣∣Y 1
t − Y 2

t

∣∣2 +
∣∣∣∣∫ T

t
(Z1

s − Z2
s )dBs

∣∣∣∣2
}]

+ EP

[∫ T

0

∣∣∣F̂s(Y 1
s , Z

1
s )− F̂s(Y 2

s , Z
2
s )
∣∣∣2 ds+ sup

0≤t≤T

∣∣∣V P,−,1
t − V P,−,2

t

∣∣∣2]
≤ C

(∥∥ξ1 − ξ2∥∥2

L2,κ
H

+
∥∥Y 1 − Y 2

∥∥2

D2,κ
H

+
∥∥Z1 − Z2

∥∥2

H2,κ
H

)
,

where we used the BDG inequality for the last step.

By all the previous estimates, this finishes the proof. �

4.3.3 Some properties of the solution

Now that we have proved the representation (4.3.9) and the a priori estimates of Theorems 4.3.7
and 4.3.8, we can show, as in the classical framework, that the solution Y of the 2DRBSDE is
linked to some kind of Dynkin game. We emphasize that such a connection with games was
already conjectured in [66]. After that, Bayraktar and Yao [11] showed in a purely Markovian
context, that the value function of stochastic zero-sum differential game could be linked to the
notion of 2DRBSDEs, even though these objects were not precisely defined in the paper (see
their section 5.2). For any t ∈ [0, T ], denote Tt,T the set of F-stopping times taking values in
[t, T ].

Proposition 4.3.10. Let (Y, Z) be the solution to the above 2DRBSDE (4.2.5). For any (τ, σ) ∈
T0,T , define

Rσ
τ := Sτ1τ<σ + Lσ1σ≤τ,σ<T + ξ1τ∧σ=T .

Then for each t ∈ [0, T ], for all P ∈ Pκ
H , we have P− a.s.

Yt = ess supP

P′∈Pκ
H(t+,P)

ess inf
τ∈Tt,T

ess sup
σ∈Tt,T

EP′
t

[∫ τ∧σ

t
F̂s(yP′

s , z
P′
s )ds+Rσ

τ

]
= ess supP

P′∈Pκ
H(t+,P)

ess sup
σ∈Tt,T

ess inf
τ∈Tt,T

EP′
t

[∫ τ∧σ

t
F̂s(yP′

s , z
P′
s )ds+Rσ

τ

]
.
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Moreover, for any γ ∈ [0, 1], we have P− a.s.

Yt = ess inf
τ∈Tt,T

ess sup
σ∈Tt,T

EP
t

[∫ τ∧σ

t
F̂s(Ys, Zs)ds+KP,γ

τ∧σ −K
P,γ
t +Rσ

τ

]
= ess sup

σ∈Tt,T

ess inf
τ∈Tt,T

EP
t

[∫ τ∧σ

t
F̂s(Ys, Zs)ds+KP,γ

τ∧σ −K
P,γ
t +Rσ

τ

]
,

where

KP,γ
t := γ

∫ t

0
1yP

s−
<Ss−

dV P
s + (1− γ)

∫ t

0
1Ys−>Ls−

dV P
s .

Furthermore, for any P ∈ Pκ
H , the following stopping times are ε-optimal

τ ε,P
t := inf

{
s ≥ t, yP

s ≥ Ss − ε, P− a.s.
}

and σε
t := inf {s ≥ t, Ys ≤ Ls + ε, Pκ

H − q.s.} .

Remark 4.3.11. Notice that the optimal stopping rules above are different in nature. Indeed,
τ ε,P
t depends explicitly on the probability measures P, because it depends on the process yP, while
σε

t only depends on Y . This situation shed once more light on the complete absence of symmetry
between lower and upper obstacles in the second-order framework

Remark 4.3.12. The second result in the Proposition above may seem peculiar at first sight
because of the degree of freedom introduced by the parameter γ. However, as shown in the proof
below, we can find stopping times which are ε-optimizer for the corresponding stochastic game,
and which roughly correspond (as expected) to the first hitting times of the obstacles. Since the
latter are completely separated, we know from Proposition 4.3.5 that before hitting S,

dV P
t = 1yP

t−
<St−

,

and that before hitting L,
dV P

t = 1Yt−>Lt−
.

Thanks to this result, it is easy to see that we can change the value of γ as we want. In particular,
if there is no upper obstacle, that is to say if S = +∞, then taking γ = 0, we recover the result
of Proposition 3.1 in [66].

Proof. By Proposition 3.1 in [61], we know that for all P ∈ Pκ
H , P− a.s.

yP
t = ess inf

τ∈Tt,T

ess sup
σ∈Tt,T

EP
t

[∫ τ∧σ

t
F̂s(yP

s , z
P
s )ds+Rσ

τ

]
= ess sup

σ∈Tt,T

ess inf
τ∈Tt,T

EP
t

[∫ τ∧σ

t
F̂s(yP

s , z
P
s )ds+Rσ

τ

]
.

Then the first equality is a simple consequence of the representation formula (4.3.9). For the
second one, we proceed exactly as in the proof of Proposition 3.1 in [61]. Fix some P ∈ Pκ

H

and some t ∈ [0, T ] and some ε > 0. It is then easy to show that for any s ∈ [t, τ ε,P
t ], we have

yP
s− < Ss− . In particular this implies that

dV P
s = 1yP

s−
<Ss−

dV P
s , s ∈ [t, τ ε,P

t ].

Let now σ ∈ Tt,T . On the set {τ ε,P
t < σ}, we have∫ σ∧τε,P

t

t
F̂s(Ys, Zs)ds+Rσ

τε,P
t

=
∫ τε,P

t

t
F̂s(Ys, Zs)ds+ S

τε,P
t
≤
∫ τε,P

t

t
F̂s(Ys, Zs)ds+ yP

τε,P
t

+ ε

≤
∫ τε,P

t

t
F̂s(Ys, Zs)ds+ Y

τε,P
t

+ ε = Yt +
∫ τε,P

t

t
ZsdBs −

∫ τε,P
t

t
1yP

s−
<Ss−

dV P
s + ε.
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Then, notice that the process (1yP
s−

<Ss−
−1Ys−>Ls−

)dV P
s is non-decreasing. Therefore, we deduce

∫ σ∧τε,P
t

t
F̂s(Ys, Zs)ds+Rσ

τε,P
t

≤ Yt +
∫ τε,P

t

t
ZsdBs −

∫ τε,P
t

t
1yP

s−
<Ss−

dV P
s

+ (1− γ)
∫ τε,P

t

t

(
1yP

s−
<Ss−

− 1Ys−>Ls−

)
dV P

s + ε

= Yt +
∫ τε,P

t

t
ZsdBs − (Kγ

τP,ε
t

−Kγ
t ) + ε.

Similarly on the set {τ ε,P
t ≥ σ}, we have

∫ σ∧τε,P
t

t
F̂s(Ys, Zs)ds+Rσ

τε,P
t

≤
∫ σ

t
F̂s(Ys, Zs)ds+ ξ1σ=T + Yσ1σ<T

= Yt +
∫ σ

t
ZsdBs −

∫ σ

t
1yP

s−
<Ss−

dV P
s ≤ Yt +

∫ σ

t
ZsdBs − (Kγ

σ −K
γ
t ).

With these two inequalities, we therefore have

EP
t

[∫ σ∧τε,P
t

t
F̂s(Ys, Zs)ds+Rσ

τε,P
t

+Kγ

σ∧τP,ε
t

−Kγ
t

]
− ε ≤ Yt, P− a.s. (4.3.20)

We can prove similarly that for any τ ∈ Tt,T

EP
t

[∫ σε,P
t ∧τ

t
F̂s(Ys, Zs)ds+R

σε,P
t

τ +Kγ

σP,ε
t ∧τ

−Kγ
t

]
+ ε ≥ Yt, P− a.s. (4.3.21)

Then, we can use Lemma 5.3 of [61] to finish the proof. �

Then, if we have more information on the obstacle S and its decomposition (4.2.3), we can give
a more explicit representation for the processes V P, just as in the classical case (see Proposition
4.2 in [35]).

Assumptions (G):
S is a semi-martingale of the form

St = S0 +
∫ t

0
Usds+

∫ t

0
PsdBs + Ct, Pκ

H − q.s.

where C is càdlàg process of integrable variation such that the measure dCt is singular with
respect to the Lebesgue measure dt and which admits the following decomposition Ct = C+

t −C
−
t ,

where C+ and C− are non-decreasing processes. Besides, U and V are respectively R and Rd-
valued Ft progressively measurable processes such that∫ T

0
(|Ut|+ |Pt|2)dt+ C+

T + C−T ≤ +∞, Pκ
H − q.s.
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Proposition 4.3.13. Let Assumptions (D), (E), (G) and (F) hold. Let (Y, Z) be the solution
to the 2DRBSDE (4.2.5), then for all P ∈ Pκ

H

Zt = Pt, dt× P− a.s. on the set {Yt− = St−} , (4.3.22)

and there exists a progressively measurable process (αP
t )0≤t≤T such that 0 ≤ α ≤ 1 and

−1yP
t−

=St−
dV P

t = αP
t 1yP

t−
=St−

([
F̂t(St, Pt) + Ut

]+
dt+ dC+

t

)
.

Proof. First, for all P ∈ Pκ
H , the following holds P− a.s.

St − Yt = S0 − Y0 +
∫ t

0

(
F̂s(Ys, Zs) + Us

)
ds−

∫ t

0
(Zs − Ps)dBs + V P

t + C+
t − C

−
t .

Now if we denote Lt the local time at 0 of St − Yt, then by Itô-Tanaka formula under P

(St − Yt)+ = (S0 − Y0)+ +
∫ t

0
1Ys−<Ss−

(
F̂s(Ys, Zs) + Us

)
ds−

∫ t

0
1Ys−<Ss−

(Zs − Ps)dBs

+
∫ t

0
1Ys−<Ss−

d(V P
t + C+

t − C
−
t ) +

1
2
Lt

+
∑

0≤s≤t

(Ss − Ys)+ − (Ss− − Ys−)+ − 1Ys−<Ss−
∆(Ss − Ys).

However, we have (St − Yt)+ = St − Yt, hence by identification of the martingale part

1Yt−=St−
(Zt − Pt)dBt = 0, Pκ

H − q.s.,

from which the first statement is clear. Identifying the finite variation part, we obtain

1Ys−=Ss−

(
F̂s(Ys, Zs) + Us

)
ds+ 1Ys−=Ss−

d(V P
s + C+

s − C−s )

=
1
2
Ls +

(
(Ss − Ys)+ − (Ss− − Ys−)+ − 1Ys−<Ss−

∆(Ss − Ys)
)
.

By Proposition 4.3.5, we know that 1yP
s−

=Ss−
dV P

s is a non-increasing process, while 1yP
s−

<Ss−
dV P

s

is a non-decreasing process. Furthermore, we have

1Ys−=Ss−
dV P

s = 1yP
s−

=Ss−
dV P

s + 1yP
s−

<Ys−=Ss−
dV P

s .

Since we also know that the jump part, L and C− are non-decreasing processes, we obtain

−1yP
s−

=Ss−
dV P

s ≤ 1yP
s−

=Ss−

((
F̂s(Ys, Zs) + Us

)
ds+ dC+

s

)
+ 1yP

s−
<Ys−=Ss−

((
F̂s(Ys, Zs) + Us

)
ds+ dC+

s + dV P
s

)
.

Since, 1yP
s−

=Ss−
dV P

s and 1yP
s−

<Ys−=Ss−

((
F̂s(Ys, Zs) + Us

)
ds+ dC+

s + dV P
s

)
never act at the

same time by definition, the second statement follows easily. �

Remark 4.3.14. If we assume also that L is a semimartingale, then we can obtain exactly the
same type of results as in Corollary 3.1 in [66], using the exact same arguments.
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4.4 A constructive proof of existence

We have shown in Theorem 4.3.1 that if a solution exists, it will necessarily verify the represen-
tation (4.2.8). This gives us a natural candidate for the solution as a supremum of solutions to
standard DRBSDEs. However, since those DRBSDEs are all defined on the support of mutually
singular probability measures, it seems difficult to define such a supremum, because of the prob-
lems raised by the negligible sets. In order to overcome this, Soner, Touzi and Zhang proposed
in [89] a pathwise construction of the solution to a 2BSDE. Let us describe briefly their strategy.

The first step is to define pathwise the solution to a standard BSDE. For simplicity, let us
consider first a BSDE with a generator equal to 0. Then, we know that the solution is given by
the conditional expectation of the terminal condition. In order to define this solution pathwise,
we can use the so-called regular conditional probability distribution (r.p.c.d. for short) of Stroock
and Varadhan [91]. In the general case, the idea is similar and consists on defining BSDEs on a
shifted canonical space.

Finally, we have to prove measurability and regularity of the candidate solution thus obtained,
and the decomposition (4.2.5) is obtained through a non-linear Doob-Meyer decomposition. Our
aim in this section is to extend this approach in the presence of obstacles. We emphasize that
most of the proofs are now standard, and we will therefore only sketch them, insisting particularly
on the new difficulties appearing in the present setting.

4.4.1 Shifted spaces

For the convenience of the reader, we recall below some of the notations introduced in [89].

• For 0 ≤ t ≤ T , denote by Ωt :=
{
ω ∈ C

(
[t, T ],Rd

)
, w(t) = 0

}
the shifted canonical space, Bt

the shifted canonical process, Pt
0 the shifted Wiener measure and Ft the filtration generated by

Bt.

• For 0 ≤ s ≤ t ≤ T and ω ∈ Ωs, define the shifted path ωt ∈ Ωt

ωt
r := ωr − ωt, ∀r ∈ [t, T ].

• For 0 ≤ s ≤ t ≤ T and ω ∈ Ωs, ω̃ ∈ Ωt define the concatenation path ω ⊗t ω̃ ∈ Ωs by

(ω ⊗t ω̃)(r) := ωr1[s,t)(r) + (ωt + ω̃r)1[t,T ](r), ∀r ∈ [s, T ].

• For 0 ≤ s ≤ t ≤ T and a Fs
T -measurable random variable ξ on Ωs, for each ω ∈ Ωs, define the

shifted F t
T -measurable random variable ξt,ω on Ωt by

ξt,ω(ω̃) := ξ(ω ⊗t ω̃), ∀ω̃ ∈ Ωt.

Similarly, for an Fs-progressively measurable process X on [s, T ] and (t, ω) ∈ [s, T ] × Ωs, the
shifted process

{
Xt,ω

r , r ∈ [t, T ]
}

is Ft-progressively measurable.

• For a F-stopping time τ , the r.c.p.d of P (denoted Pω
τ ) is a probability measure on FT such

that
EP

τ [ξ](ω) = EPω
τ [ξ], for P− a.e. ω.
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It also induces naturally a probability measure Pτ,ω (that we also call the r.c.p.d. of P) on Fτ(ω)
T

which in particular satisfies that for every bounded and FT -measurable random variable ξ

EPω
τ [ξ] = EPτ,ω

[ξτ,ω] .

• We define similarly as in Section 4.2 the set P̄t
S , by restricting to the shifted canonical space

Ωt, and its subset Pt
H .

• Finally, we define the "shifted" generator

F̂ t,ω
s (ω̃, y, z) := Fs(ω ⊗t ω̃, y, z, â

t
s(ω̃)), ∀(s, ω̃) ∈ [t, T ]× Ωt.

Notice that thanks to Lemma 4.1 in [90], this generator coincides for P-a.e. ω with the shifted
generator as defined above, that is to say Fs(ω⊗t ω̃, y, z, âs(ω⊗t ω̃)). The advantage of the chosen
"shifted" generator is that it inherits the uniform continuity in ω under the L∞ norm of F .

4.4.2 A first existence result when ξ is in UCb(Ω)

Let us define for all ω ∈ Ω, Λ∗ (ω) := sup
0≤s≤t

Λs (ω) , where

Λ2
t (ω) := sup

P∈Pt
H

EP

[∣∣ξt,ω
∣∣2 +

∫ T

t
|F̂ t,ω

s (0, 0)|2ds+ sup
t≤s≤T

∣∣St,ω
s

∣∣2 + sup
t≤s≤T

(
(Lt,ω

s )+
)2]

.

By Assumption (F), we can check directly that

Λt (ω) <∞ for all (t, ω) ∈ [0, T ]× Ω. (4.4.23)

To prove existence, we define the following value process Xt pathwise

Xt(ω) := sup
P∈Pt

H

YP,t,ω
t (T, ξ) , for all (t, ω) ∈ [0, T ]× Ω, (4.4.24)

where, for any (t1, ω) ∈ [0, T ] × Ω, P ∈ Pt1
H , t2 ∈ [t1, T ], and any Ft2-measurable η ∈ L2 (P),

we denote YP,t1,ω
t1

(t2, η) := yP,t1,ω
t1

, where
(
yP,t1,ω, zP,t1,ω, kP,+,t1,ω, kP,−,t1,ω

)
is the solution of the

following DRBSDE with upper obstacle St1,ω and lower obstacle Lt1,ω on the shifted space Ωt1

under P

yP,t1,ω
s = ηt1,ω +

∫ t2

s
F̂ t1,ω

r

(
yP,t1,ω

r , zP,t1,ω
r

)
dr −

∫ t2

s
zP,t1,ω
r dBt1

r − k
P,+,t1,ω
t2

+ kP,+,t1,ω
s

+ kP,−,t1,ω
t2

− kP,−,t1,ω
s , P− a.s. (4.4.25)

Lt1,ω
t ≤ yP,t1,ω

t ≤ St1,ω
t , P− a.s.∫ t2

t1

(
St1,ω

s− − y
P,t1,ω
s−

)
dkP,+,t1,ω

s =
∫ t2

t1

(
yP,t1,ω

s− − Lt1,ω
s−

)
dkP,−,t1,ω

s = 0, P− a.s. (4.4.26)

Notice that since we assumed that S was a P-semimartingale for all P ∈ Pκ
H , then for all

(t, ω) ∈ [0, T ] × Ω, St,ω is also a P-semimartingale for all P ∈ Pt,κ
H . Furthermore, we have the

decomposition

St,ω
s = St,ω

t +
∫ s

t
P t,ω

u dBt
u +AP,t,ω

s , P− a.s., for all P ∈ Pt,κ
H , (4.4.27)
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where AP,t,ω is a bounded variation process under P. Besides, we have by Assumption (F)

ζt,ω
H := sup

P∈Pt,κ
H

(
EP

[
ess supP

t≤s≤T
EH,P

t

[∫ T

t

∣∣∣(ât
s)

1/2P t,ω
s

∣∣∣2 ds+
(
AP,t,ω,+

T

)2
]])1/2

< +∞.

In view of the Blumenthal zero-one law, YP,t,ω
t (T, ξ) is constant for any given (t, ω) and P ∈ Pt

H .
Let us now answer the question of measurability of the process X

Lemma 4.4.1. Let Assumptions (D) and (F) hold and consider some ξ in UCb(Ω). Then for all
(t, ω) ∈ [0, T ]×Ω we have |Xt (ω)| ≤ C(1+ζt,ω

H +Λt (ω)). Moreover, for all (t, ω, ω′) ∈ [0, T ]×Ω2,
|Xt (ω)−Xt (ω′)| ≤ Cρ (‖ω − ω′‖t). Consequently, Vt is Ft-measurable for every t ∈ [0, T ].

Proof. (i) For each (t, ω) ∈ [0, T ]×Ω, since St,ω is a semimartingale with decomposition (4.4.27),
we know that we have

dkP,+,t,ω
s ≤

(
F̂ t,ω

s (St,ω
s , P t,ω

s )
)+

ds+ dAP,t,ω,+
s

≤ C
(∣∣∣F̂ t,ω

s (0)
∣∣∣+ ∣∣St,ω

s

∣∣+ ∣∣∣(ât
s)

1/2P t,ω
s

∣∣∣) ds+ dAP,t,ω,+
s .

Hence,

EP
[(
kP,+,t,ω

T

)2
]
≤ C

(
ζt,ω
H + EP

[∫ T

t

∣∣∣F̂ t,ω
s (0)

∣∣∣2 ds+ sup
t≤s≤T

∣∣St,ω
s

∣∣2]) .
Let now α be some positive constant which will be fixed later and let η ∈ (0, 1). By Itô’s formula
we have using (4.4.26)

eαt
∣∣∣yP,t,ω

t

∣∣∣2 +
∫ T

t
eαs
∣∣∣(ât

s)
1/2zP,t,ω

s

∣∣∣2 ds ≤ eαT
∣∣ξt,ω

∣∣2 + 2C
∫ T

t
eαs
∣∣∣yP,t,ω

s

∣∣∣ ∣∣∣F̂ t,ω
s (0)

∣∣∣ ds
+ 2C

∫ T

t

∣∣∣yP,t,ω
s

∣∣∣ (∣∣∣yP,t,ω
s

∣∣∣+ ∣∣∣(ât
s)

1/2zP,t,ω
s

∣∣∣) ds− 2
∫ T

t
eαsyP,t,ω

s− zP,t,ω
s dBt

s

+ 2
∫ T

t
eαsSt,ω

s− dk
P,+,t,ω
s − 2

∫ T

t
eαsLt,ω

s− dk
P,−,t,ω
s − α

∫ T

t
eαs
∣∣∣yP,t,ω

s

∣∣∣2 ds
≤ eαT

∣∣ξt,ω
∣∣2 +

∫ T

t
eαs
∣∣∣F̂ t,ω

s (0)
∣∣∣2 ds− 2

∫ T

t
eαsyP,t,ω

s− zP,t,ω
s dBt

s + η

∫ T

t
eαs
∣∣∣(ât

s)
1/2zP,n

s

∣∣∣2 ds
+
(

2C + C2 +
C2

η
− α

)∫ T

t
eαs
∣∣∣yP,t,ω

s

∣∣∣2 ds+ 2 sup
t≤s≤T

eαs
∣∣St,ω

s

∣∣ (kP,+,t,ω
T − kP,+,t,ω

t )

+ 2 sup
t≤s≤T

eαs(Lt,ω
s )+(kP,−,t,ω

T − kP,−,t,ω
t ).

Now choose α such that ν := α− 2C − C2 − C2

η ≥ 0. We obtain for all ε > 0

eαt
∣∣∣yP,t,ω

t

∣∣∣2 + (1− η)
∫ T

t
eαs
∣∣∣(ât

s)
1/2zP,t,ω

s

∣∣∣2 ds ≤ eαT
∣∣ξt,ω

∣∣2
+
∫ T

t
eαs
∣∣∣F̂ t,ω

s (0, 0)
∣∣∣2ds+

1
ε

(
sup

t≤s≤T
eαs(Lt,ω

s )+
)2

+ ε(kP,−,t,ω
T − kP,−,t,ω

t )2

+

(
sup

t≤s≤T
eαs
∣∣St,ω

s

∣∣)2

+ (kP,+,t,ω
T − kP,+,t,ω

t )2 − 2
∫ T

t
eαsyP,t,ω

s− zP,t,ω
s dBt

s. (4.4.28)
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Taking expectation and using (4.4.28) yields with η small enough

∣∣∣yP,t,ω
t

∣∣∣2 + EP
[∫ T

t
|(ât

s)
1
2 zP,t,ω

s |2ds
]
≤ C

(
Λ2

t (ω) +
(
ζt,ω
H

)2
)

+ εEP
[
(kP,−,t,ω

T − kP,−,t,ω
t )2

]
.

Now by definition, we also have for some constant C0 independent of ε

EP
[
(kP,−,t,ω

T − kP,−,t,ω
t )2

]
≤ C0

(
Λ2

t (ω) +
(
ζt,ω
H

)2
+ EP

[∫ T

t

∣∣∣yP,t,ω
s

∣∣∣2 ds])
+ C0EP

[∫ T

t

∣∣∣(ât
s)

1/2zP,t,ω
s

∣∣∣2 ds] .
Choosing ε = 1

2C0
, Gronwall inequality then implies |yP,t,ω

t |2 ≤ C(1 + Λt(ω)). The result then
follows by arbitrariness of P.

(ii) The proof is exactly the same as above, except that one has to use uniform continuity in
ω of ξt,ω, F̂ t,ω, St,ω and Lt,ω. Indeed, for each (t, ω) ∈ [0, T ] × Ω and P ∈ Pt,κ

H , let α be some
positive constant which will be fixed later and let η ∈ (0, 1). By Itô’s formula we have, since F̂
is uniformly Lipschitz

eαt
∣∣∣yP,t,ω

t − yP,t,ω′

t

∣∣∣2 +
∫ T

t
eαs
∣∣∣(ât

s)
1/2(zP,t,ω

s − zP,t,ω′
s )

∣∣∣2 ds ≤ eαT
∣∣∣ξt,ω − ξt,ω′

∣∣∣2
+ 2C

∫ T

t
eαs
∣∣∣yP,t,ω

s − yP,t,ω′
s

∣∣∣ (∣∣∣yP,t,ω
s − yP,t,ω′

s

∣∣∣+ ∣∣∣(ât
s)

1
2 (zP,t,ω

s − zP,t,ω′
s )

∣∣∣) ds
+ 2C

∫ T

t
eαs
∣∣∣yP,t,ω

s − yP,t,ω′
s

∣∣∣ ∣∣∣F̂ t,ω
s (yP,t,ω

s , zP,t,ω
s )− F̂ t,ω′

s (yP,t,ω
s , zP,t,ω

s )
∣∣∣ ds

+ 2
∫ T

t
eαs(yP,t,ω

s− − yP,t,ω′

s− )d
(
kP,−,t,ω

s − kP,−,t,ω′
s − kP,+,t,ω

s + kP,+,t,ω′
s

)
− α

∫ T

t
eαs
∣∣∣yP,t,ω

s − yP,t,ω′
s

∣∣∣2 ds− 2
∫ T

t
eαs(yP,t,ω

s− − yP,t,ω′

s− )(zP,t,ω
s − zP,t,ω′

s )dBt
s

≤ eαT
∣∣∣ξt,ω − ξt,ω′

∣∣∣2 +
∫ T

t
eαs
∣∣∣F̂ t,ω

s (yP,t,ω
s , zP,t,ω

s )− F̂ t,ω′
s (yP,t,ω

s , zP,t,ω
s )

∣∣∣2 ds
+
(
2C+C2+C2

η
−α
) ∫ T

t
eαs
∣∣∣yP,t,ω

s − yP,t,ω′
s

∣∣∣2 ds+ η

∫ T

t
eαs
∣∣∣(ât

s)
1
2 (zP,t,ω

s − zP,t,ω′
s )

∣∣∣2 ds
− 2

∫ T

t
eαs(yP,t,ω

s− − yP,t,ω′

s− )(zP,t,ω
s − zP,t,ω′

s )dBt
s

+ 2
∫ T

t
eαs(yP,t,ω

s− − yP,t,ω′

s− )d
(
kP,−,t,ω

s − kP,−,t,ω′
s − kP,+,t,ω

s + kP,+,t,ω′
s

)
.

By the Skorohod condition (4.4.26), we also have∫ T

t
eαs(yP,t,ω

s− − yP,t,ω′

s− )d
(
kP,−,t,ω

s − kP,−,t,ω′
s − kP,+,t,ω

s + kP,+,t,ω′
s

)
≤
∫ T

t
eαs(Lt,ω

s− − L
t,ω′

s− )d(kP,−,t,ω
s − kP,−,t,ω′

s )−
∫ T

t
eαs(St,ω

s− − S
t,ω′

s− )d(kP,+,t,ω
s − kP,+,t,ω′

s ).
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Now choose α such that ν := α− 2C − C2 − C2

η ≥ 0. We obtain for all ε > 0

eαt
∣∣∣yP,t,ω

t − yP,t,ω′

t

∣∣∣2 + (1− η)
∫ T

t
eαs
∣∣∣(ât

s)
1/2(zP,t,ω

s − zP,t,ω′
s )

∣∣∣2 ds
≤ eαT

∣∣∣ξt,ω − ξt,ω′
∣∣∣2 +

∫ T

t
eαs
∣∣∣F̂ t,ω

s (yP,t,ω
s , zP,t,ω

s )− F̂ t,ω′
s (yP,t,ω

s , zP,t,ω
s )

∣∣∣2 ds
+

1
ε

(
sup

t≤s≤T
eαs(Lt,ω

s − Lt,ω′
s )+

)2

+ ε(kP,−,t,ω
T − kP,−,t,ω′

T − kP,−,tω
t + kP,−,t,ω′

t )2

+
1
ε

(
sup

t≤s≤T
eαs
∣∣∣St,ω

s − St,ω′
s

∣∣∣)2

+ ε(kP,+,t,ω
T − kP,+,t,ω′

T − kP,+,tω
t + kP,+,t,ω′

t )2

− 2
∫ T

t
eαs(yP,t,ω

s− − yP,t,ω′

s− )(zP,t,ω
s − zP,t,ω′

s )dBt
s. (4.4.29)

The end of the proof is then similar to the previous step, using the uniform continuity in ω of ξ,
F and S. �

Then, we show the same dynamic programming principle as Proposition 4.7 in [90] and Propo-
sition 4.1 in [66]. The proof being exactly the same, we omit it.

Proposition 4.4.2. Under Assumptions (D), (F) and for ξ ∈ UCb(Ω), we have for all 0 ≤
t1 < t2 ≤ T and for all ω ∈ Ω

Xt1(ω) = sup
P∈Pt1,κ

H

YP,t1,ω
t1

(t2, X
t1,ω
t2

).

Define now for all (t, ω), the F+-progressively measurable process

X+
t := lim

r∈Q∩(t,T ],r↓t
Xr. (4.4.30)

We have the following result whose proof is the same as the one of Lemma 4.2 in [66].

Lemma 4.4.3. Under the conditions of the previous Proposition, we have

X+
t = lim

r∈Q∩(t,T ],r↓t
Xr, Pκ

H − q.s.

and thus X+ is càdlàg Pκ
H − q.s.

Proceeding exactly as in Steps 1 et 2 of the proof of Theorem 4.5 in [90], we can then prove
that X+ is a strong doubly reflected F̂ -supermartingale (in the sense of Definition 4.6.6 in the
Appendix). Then, using the Doob-Meyer decomposition proved in the Appendix in Theorem
4.6.8 for all P, we know that there exists a unique (P − a.s.) process ZP ∈ H2(P) and unique
non-decreasing càdlàg square integrable processes AP, BP and CP such that

• X+
t = X+

0 −
∫ t
0 F̂s(X+

s , Z
P
s )ds+

∫ t
0 Z

P
sdBs +BP

t −AP
t + CP

t , P− a.s., ∀P ∈ Pκ
H .

• Lt ≤ X+
t ≤ St, P− a.s., ∀P ∈ Pκ

H .

•
∫ T
0

(
St− −X+

t−

)
dAP

t =
∫ T
0

(
X+

t− − Lt−
)
dBP

t = 0, P− a.s., ∀P ∈ Pκ
H .
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We then define V P := AP −BP −CP. By Karandikar [50], since X+ is a càdlàg semimartingale,
we can define a universal process Z which aggregates the family

{
Z

P
,P ∈ Pκ

H

}
.

We next prove the representation (4.3.9) for X and X+.

Proposition 4.4.4. Assume that ξ ∈ UCb(Ω) and that Assumptions (D) and (F) hold. Then
we have

Xt = ess supP

P′∈Pκ
H(t,P)

YP′
t (T, ξ) and X+

t = ess supP

P′∈Pκ
H(t+,P)

YP′
t (T, ξ), P− a.s., ∀P ∈ Pκ

H .

Proof. The proof for the representations is the same as the proof of proposition 4.10 in [90],
since we also have a stability result for RBSDEs under our assumptions. �

Finally, we have to check that the minimum condition (4.2.8) holds. However, this can be done
exactly as in [66], so we refer the reader to that proof.

4.4.3 Main result

We are now in position to state the main result of this section

Theorem 4.4.5. Let ξ ∈ L2,κ
H and let Assumptions (D), (E) and (F) hold. Then

1) There exists a unique solution (Y, Z) ∈ D2,κ
H ×H2,κ

H of the 2DRBSDE (4.2.5).
2) Moreover, if in addition we choose to work under either of the following model of set theory
(we refer the reader to [39] for more details)

(i) Zermelo-Fraenkel set theory with axiom of choice (ZFC) plus the Continuum Hypothesis
(CH).

(ii) ZFC plus the negation of CH plus Martin’s axiom.

Then there exists a unique solution (Y, Z, V ) ∈ D2,κ
H ×H2,κ

H × V2,κ
H of the 2DRBSDE (4.2.5).

Proof. The proof of the existence part follows the lines of the proof of Theorem 4.7 in [89], using
the estimates of Theorem 4.3.8, so we only insist on the points which do not come directly from
the proofs mentioned above. The idea is to approximate the terminal condition ξ by a sequence
(ξn)n≥0 ⊂ UCb(Ω). Then, we use the estimates of Theorem 4.3.8 to pass to the limit as in the
proof of Theorem 4.6 in [89]. The main point in this context is that for each n, if we consider
the Jordan decomposition of V P,n into the non-decreasing process V P,+,n and the non-increasing
process V P,−,n, then the estimates of Theorem 4.3.8 ensure that these processes converge to some
V P,+ and V P,−, which are respectively non-decreasing and non-increasing. Hence we are sure
that the limit V P has indeed bounded variation.

Concerning the fact that we can aggregate the family
(
V P)

P∈Pκ
H

, it can be deduced as follows.
First, if ξ ∈ UCb(Ω), we know, using the same notations as above that the solution verifies

X+
t = X+

0 −
∫ t

0
F̂s(X+

s , Zs)ds+
∫ t

0
ZsdBs −KP

t , P− a.s., ∀P ∈ Pκ
H .

Now, we know from (4.4.30) that X+ is defined pathwise, and so is the Lebesgue integral∫ t

0
F̂s(X+

s , Zs)ds.
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In order to give a pathwise definition of the stochastic integral, we would like to use the recent
results of Nutz [68]. However, the proof in this paper relies on the notion of medial limits, which
may or may not exist depending on the model of set theory chosen. They exists in the model (i)
above, which is the one considered by Nutz, but we know from [39] (see statement 22O(l) page
55) that they also do in the model (ii). Therefore, provided we work under either one of these
models, the stochastic integral

∫ t
0 ZsdBs can also be defined pathwise. We can therefore define

pathwise

Vt := X+
0 −X

+
t −

∫ t

0
F̂s(X+

s , Zs)ds+
∫ t

0
ZsdBs,

and V is an aggregator for the family
(
V P)

P∈Pκ
H

, that is to say that it coincides P − a.s. with

V P, for every P ∈ Pκ
H .

In the general case when ξ ∈ L2,κ
H , the family is still aggregated when we pass to the limit. �

Remark 4.4.6. For more discussions on the axioms of the set theory considered here, we refer
the reader to the Remark 4.2 in [66].

4.5 Applications: Israeli options and Dynkin games

4.5.1 Game options

We first recall the definition of an Israeli (or game) option, and we refer the reader to [51], [41] and
the references therein for more details. An Israeli option is a contract between a broker (seller)
and a trader (buyer). The specificity is that both can decide to exercise before the maturity date
T . If the trader exercises first at a time t then the broker pays him the (random) amount Lt. If
the broker exercises before the trader at time t, the trader will be given from him the quantity
St ≥ Lt, and the difference St − Lt is as to be understood as a penalty imposed on the seller
for canceling the contract. In the case where they exercise simultaneously at t, the trader payoff
is Lt and if they both wait till the maturity of the contract T , the trader receives the amount
ξ. In other words, this is an American option which has the specificity that the seller can also
"exercise" early. This therefore is a typical Dynkin game. We assume throughout this section
that the processes L and S satisfy Assumptions (F) and (G).

To sum everything up, if we consider that the broker exercises at a stopping time τ ≤ T and the
trader at another time σ ≤ T then the trader receive from the broker the following payoff:

H(σ, τ) := Sτ1τ<σ + Lσ1σ≤τ + ξ1σ∧τ=T

Before introducing volatility uncertainty, let us first briefly recall how the fair price and the
hedging of such an option is related to DRBSDEs in a classical financial market. We fix a
probability measure P, and we assume that the market contains one riskless asset, whose price
is assumed w.l.o.g. to be equal to 1, and one risky asset. We furthermore assume that if the
broker adopts a strategy π (which is an adapted process in H2(P) representing the percentage of
his total wealth invested in the risky asset), then his wealth process has the following expression

XP
t = ξ +

∫ T

t
b(s,XP

s , π
P
s )ds−

∫ T

t
πP

sσsdWs ,P− a.s.

where W is a Brownian motion under P, b is convex and Lipschitz with respect to (x, π). We
also suppose that the process (b(t, 0, 0))t≤T is square-integrable and (σt)t≤T is invertible and its
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inverse is bounded. It was then proved in [51] and [41] that the fair price and an hedging strategy
for the Israeli option described above can be obtained through the solution of a DRBSDE. More
precisely, we have

Theorem 4.5.1. The fair price of the game option and the corresponding hedging strategy are
given by the pair (yP, πP) ∈ D2(P)×H2(P) solving the following DRBSDE

yP
t = ξ +

∫ T
t b(s, yP

s , π
P
s )ds−

∫ T
t πP

sσsdWs + kP
t − kP

t , P− a.s.
Lt ≤ yP

t ≤ St, P− a.s.∫ T
0 (yP

t− − Lt−)dkP,−
t =

∫ T
0 (St− − yP

t−)dkP,+
t = 0.

Moreover, for any ε > 0, the following stopping times are ε-optimal after t for the seller and the
buyer respectively

D1,ε,P
t := inf

{
s ≥ t, yP

s ≥ Ss − ε
}
, D2,ε,P

t := inf
{
s ≥ t, yP

s ≤ Ls + ε
}
.

Let us now extend this result to the uncertain volatility framework. We still consider a financial
market with two assets and assume now that the wealth process has the following dynamic when
the chosen strategy is π

Xt = ξ +
∫ T

t
b(s,Xs, πs)ds−

∫ T

t
πsdBs, Pκ

H − q.s.,

where B is the canonical process and b is assumed to satisfy Assumptions (D), and where ξ
belongs to L2,κ

H . Then, following the ideas of [66], it is natural to consider as a superhedging
price for the option the quantity

Yt = ess supP

P′∈Pκ
H(t+,P)

yP′
t .

Indeed, this amount is greater than the price at time t of the the same Israeli option under any
probability measure. Hence, if the seller receives this amount, he should always be able to hedge
his position. We emphasize however that we are not able to guarantee that this price is optimal
in the sense that it is the lowest value for which we can find a super-replicating strategy. This
interesting question is left for future research.

Symmetrically, if the seller charges less than the following quantity for the option at time t,

Ỹt := ess inf
P′∈Pκ

H(t+,P)

PyP′
t ,

then it will be clearly impossible for him to find a hedge. Ỹ appears then as a subhedging price.

Hence, we have obtained a whole interval of prices, given by [Ỹt, Yt], which we can formally
think as arbitrage free, even though a precise definition of this notion in an uncertain market is
outside the scope of this paper. These two quantities can be linked to the notion of second-order
2DRBSDEs. Indeed, this is immediate for Y , and for Ỹ , we need to introduce a "symmetric"
definition for the 2DRBSDEs.

Definition 4.5.2. For ξ ∈ L2,κ
H , we consider the following type of equations satisfied by a pair

of progressively-measurable processes (Y, Z)

• YT = ξ, Pκ
H − q.s.



118
Chapter 4. Second-order BSDEs with general reflection and game options

under uncertainty

• ∀P ∈ Pκ
H , the process V P defined below has paths of bounded variation P− a.s.

V P
t := Y0 − Yt −

∫ t

0
F̂s(Ys, Zs)ds+

∫ t

0
ZsdBs, 0 ≤ t ≤ T, P− a.s. (4.5.31)

• We have the following maximum condition for 0 ≤ t ≤ T

V P
t + kP,+

t − kP,−
t = ess supP

P′∈PH(t+,P)

EP′
t

[
V P′

T + kP′ ,+
T − kP′ ,−

T

]
, P− a.s., ∀P ∈ Pκ

H . (4.5.32)

• Lt ≤ Yt ≤ St, Pκ
H − q.s.

This Definition is symmetric to Definition 4.2.8 in the sense that if (Y, Z) solves an equation
as in Definition 4.5.2, then (−Y,−Z) solves a 2DRBSDE (in the sense of Definition 4.2.8) with
terminal condition −ξ, generator g̃(y, z) := −g(−y,−z), lower obstacle −S and upper obstacle
−L. With this remark, it is clear that we can deduce a wellposedness theory for the above
equations. In particular, we have the following representation

Yt = ess inf
P′∈Pκ

H(t+,P)
yP′

t , P− a.s., for any P ∈ Pκ
H . (4.5.33)

We then have the following result.

Theorem 4.5.3. The superhedging and subhedging prices Y and Ỹ are respectively the unique
solution of the 2DRBSDE with terminal condition ξ, generator b, lower obstacle L, upper obstacle
S in the sense of Definitions 4.2.8 and 4.5.2 respectively. The corresponding hedging strategies
are then given by Z and Z̃.

Moreover, for any ε > 0 and for any P, the following stopping times are ε-optimal after t for the
seller and the buyer respectively

D1,ε,P
t := inf

{
s ≥ t, yP

s ≥ Ss − ε, P− a.s.
}
, D2,ε

t := inf {s ≥ t, Ys ≤ Ls + ε, Pκ
H − q.s.} .

4.5.2 A first step towards Dynkin games under uncertainty

It is already known that doubly reflected BSDE are intimately connected to Dynkin games
(see [27] for instance). More generally, since the seminal paper by Fleming and Souganidis
[38], two person zero-sum stochastic differential games have been typically studied through two
approaches. One uses the viscosity theory and aims at showing that the value function of the
game is the unique viscosity solution of the associated Hamilton-Jacobi-Bellman-Isaacs equation
(HJBI in short), while the other relates the value function to the solution of a BSDE. We are
of course more interested in the second one. To name but a few of the contributions in the
literature, Buckdahn and Li [20] defined precisely the value function of the game via BSDEs,
while more recently Bayraktar and Yao used doubly reflected BSDEs. Before specializing the
discussion to Dynkin games, we would like to refer the reader to the very recent work of Pham
and Zhang [82], which studies a weak formulation of two person zero-sum game and points out
several formal connections with the 2BSDE theory.

We naturally want to obtain the same kind of result with 2DRBSDEs, with an additional un-
certainty component in the game, which will be induced by the fact that we are working simul-
taneously under a family of mutually singular probability measures. We will focus here on the
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construction of a game whose upper and lower values can be expressed as a solution of 2DRB-
SDE. We insist that we prove only that a given solution to a 2DRBSDE provides a solution to the
corresponding Dynkin game described below. However, we are not able, as in [27], to construct
the solution of the 2DRBSDE directly from the solution of the Dynkin game. Moreover, we also
face a difficult technical problem related to Assumption (H), which prevents our result to be
comprehensive.

Let us now describe what we mean precisely by a Dynkin game with uncertainty. Two players
P1 and P2 are facing each other in a game. A strategy of a player consists in picking a stopping
time. Let us say that P1 chooses τ ∈ T0,T and P2 chooses σ ∈ T0,T . Then the game stipulates
that P1 will pay to P2 the following random payoff

Rt(τ, σ) :=
∫ τ∧σ

t
gsds+ Sτ1τ<σ + Lσ1σ≤τ,σ<T + ξ1τ∧σ=T ,

where g, S and L are F-progressively measurable processes satisfying Assumptions (D), (G) and
(F). In particular, the upper obstacle S is a semimartingale.

Then naturally, P1 will try to minimize the expected amount that he will have to pay, but taking
into account the fact that both P2 and the "Nature" (which we interpret as a third player,
represented by the uncertainty that the player has with respect to the underlying probability
measure) can play against him. Symmetrically, P2 will try to maximize his expected returns,
considering that both P1 and the Nature are antagonist players. This leads us to introduce the
following upper and lower values of the robust Dynkin game

V t := ess inf
τ∈Tt,T

ess sup
σ∈Tt,T

ess supP

P′∈Pκ
H(t+,P)

EP′
t [Rt(τ, σ)], P− a.s.

V t := ess sup
σ∈Tt,T

ess inf
τ∈Tt,T

ess infP
P′∈Pκ

H(t+,P)
EP′

t [Rt(τ, σ)], P− a.s.

Remark 4.5.4. In order to be completely rigorous, we should have made the dependence in
P of the two functions above explicit, because it is not clear that an aggregator exists a priori.
Nonetheless, we will prove in this section, that they both correspond to the solution of 2DRBSDE,
and therefore that the aggregator indeed exists. Therefore, for the sake of clarity, we will always
omit this dependence.

V is the maximal amount that P1 will agree to pay in order to take part in the game. Sym-
metrically, V is the minimal amount that P2 must receive in order to accept to take part to the
game. Unlike in the classical setting without uncertainty, for which there is only one value on
which the 2 players can agree, in our context there is generally a whole interval of admissible
values for the game. Indeed, we have the following easy result

Lemma 4.5.5. We have for t ∈ [0, T ]

V t ≥ V t, Pκ
H − q.s.

Therefore the admissible values for the game are the interval [V t, V t].

Proof. Let t ∈ [0, T ], P ∈ Pκ
H and P′ ∈ Pκ

H(t+,P). For any (τ, σ) ∈ Tt,T × Tt,T , we have clearly

ess supP

P′∈Pκ
H(t+,P)

EP′
t [Rt(τ, σ)] ≥ ess inf

τ∈Tt,T

ess infP
P′∈Pκ

H(t+,P)
EP′

t [Rt(τ, σ)], P− a.s.
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Then we can take the essential supremum with respect to σ on both sides of the inequality, and
the result follows. �

Now, in order to link the solution of the above robust Dynkin game to 2DRBSDEs, we will
need to assume a min-max property which is closely related to the usual Isaacs condition for the
classical Dynkin games. Given the length of the paper, we will not try to verify this assumption.
Nonetheless, we emphasize that a related result was indeed proved in [65] in the context of a
robust utility maximization problem. Even more in the spirit of our paper, Nutz and Zhang [69]
also showed such a result (at least at time t = 0 and under sufficient regularity assumptions, see
their Theorem 3.4) when there is only one player. We are convinced that their results could be
generalized to our framework and leave this interesting problem to future research.

Assumption (H):

We suppose that the following "min-max" property are satisfied. For any P ∈ Pκ
H

ess inf
τ∈Tt,T

ess sup
σ∈Tt,T

ess supP

P′∈Pκ
H(t+,P)

EP′
t [Rt(τ, σ)] = ess supP

P′∈Pκ
H(t+,P)

ess inf
τ∈Tt,T

ess sup
σ∈Tt,T

EP′
t [Rt(τ, σ)], P− a.s.

(4.5.34)

ess sup
σ∈Tt,T

ess inf
τ∈Tt,T

ess infP
P′∈Pκ

H(t+,P)
EP′

t [Rt(τ, σ)] = ess infP
P′∈Pκ

H(t+,P)
ess sup
σ∈Tt,T

ess inf
τ∈Tt,T

EP′
t [Rt(τ, σ)], P− a.s.

(4.5.35)

It is clear from Proposition 4.3.10 that the right-hand side of (4.5.34) can be expressed as the
solution of 2DRBSDE with terminal condition ξ, generator g, lower obstacle L and upper obstacle
S. We deduce immediately the following result.

Theorem 4.5.6. Let Assumption (H) hold. Let (Y, Z) (resp. (Ỹ , Z̃)) be a solution to the
2DRBSDE in the sense of Definition 4.2.8 (resp. in the sense of Definition 4.5.2) with terminal
condition ξ, generator g, lower obstacle L and upper obstacle S. Then we have for any t ∈ [0, T ]

V t = Yt, Pκ
H − q.s.

V t = Ỹt, Pκ
H − q.s.

Moreover, unless Pκ
H is reduced to a singleton, we have V > V , Pκ

H − q.s.

Proof. The two equalities are obvious. Moreover, if for each P ∈ Pκ
H , we let yP be the solution

of the DRBSDE with terminal condition ξ, generator g, lower obstacle L and upper obstacle S,
we have by (4.5.33)

V t = ess sup
P′∈Pκ

H(t+,P)

yP′
t , P− a.s., and V t = ess inf

P′∈Pκ
H(t+,P)

yP′
t , P− a.s.,

which implies the last result. �

4.6 Appendix: Doubly reflected g-supersolution and martingales

In this section, we extend some of the results of [77] and [66] concerning g-supersolution of BSDEs
and RBSDEs to the case of DRBSDEs. Let us note that many of the results below are obtained
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using similar ideas as in [77] and [66], but we still provide most of them since, to the best of our
knowledge, they do not appear anywhere else in the literature. Moreover, we emphasize that we
only provide the results and definitions for the doubly reflected case, because the corresponding
ones for the upper reflected case can be deduced easily. In the following, we fix a probability
measure P

4.6.1 Definitions and first properties

Let us be given the following objects

• A function gs(ω, y, z), F-progressively measurable for fixed y and z, uniformly Lipschitz in
(y, z) and such that EP

[∫ T
0 |gs(0, 0)|2 ds

]
< +∞.

• A terminal condition ξ which is FT -measurable and in L2(P).

• Càdlàg processes V , S, L in I2(P) such that S and L satisfy Assumptions (E) and (F) (in

particular S is a semimartingale with the decomposition (4.2.3)), and with EP

[
sup

0≤t≤T
|Vt|2

]
<

+∞.

We study the problem of finding (y, z, k+, k−) ∈ D2(P)×H2(P)× I2(P)× I2(P) such that

yt = ξ +
∫ T

t
gs(ys, zs)ds−

∫ T

t
zsdWs + k−T − k

−
t − k

+
T + k+

t + VT − Vt, P− a.s.

Lt ≤ yt ≤ St, P− a.s.∫ T

0
(Ss− − ys−) dk+

s =
∫ T

0
(ys− − Ls−) dk−s = 0, P− a.s. (4.6.36)

We first have a result of existence and uniqueness.

Proposition 4.6.1. Under the above hypotheses, there is a unique solution (y, z, k+, k−) ∈
D2(P)×H2(P)× I2(P)× I2(P) to the doubly reflected BSDE (4.6.36).

Proof. Consider the following penalized RBSDE with lower obstacle L, whose existence and
uniqueness are ensured by the results of Lepeltier and Xu [60]

yn
t = ξ +

∫ T

t
gs(yn

s , z
n
s )ds−

∫ T

t
zn
s dWs + kn,−

T − kn,−
t − kn,+

T + kn,+
t + VT − Vt,

where kn,+
t := n

∫ t
0 (Ss−yn

s )−ds. Then, define ỹn
t := yn

t +Vt, ξ̃ := ξ+VT , z̃n
t := zn

t , k̃n,±
t := kn,±

t ,
g̃t(y, z) := gt(y − V, z) and L̃t := Lt + Vt. Then

ỹn
t = ξ̃ +

∫ T

t
g̃s(ỹn

s , z̃
n
s )ds−

∫ T

t
z̃n
s dWs + k̃n,−

T − k̃n,−
t − k̃n,+

T + k̃n,+
t .

Since we know by Lepeltier and Xu [61], that the above penalization procedure converges to a
solution of the corresponding RBSDE, existence and uniqueness are then simple generalization.

�

We also have a comparison theorem in this context
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Proposition 4.6.2. Let ξ1 and ξ2 ∈ L2(P), V i, i = 1, 2 be two adapted, càdlàg processes and
gi
s(ω, y, z) two functions, which verify the above assumptions. Let (yi, zi, ki,+, ki,−) ∈ D2(P) ×

H2(P)× I2(P)× I2(P), i = 1, 2 be the solutions of the following DRBSDEs with upper obstacle Si

and lower obstacle Li

yi
t = ξi +

∫ T

t
gi
s(y

i
s, z

i
s)ds−

∫ T

t
zi
sdWs + ki,−

T − ki,−
t − ki,+

T + ki,+
t + V i

T − V i
t , P− a.s., i = 1, 2,

respectively. If it holds P− a.s. that ξ1 ≥ ξ2, V 1 − V 2 is non-decreasing, S1 ≤ S2, L1 ≥ L2 and
g1
s(y

1
s , z

1
s ) ≥ g2

s(y
1
s , z

1
s ), then we have for all t ∈ [0, T ]

Y 1
t ≥ Y 2

t , P− a.s.

Besides, if S1 = S2 (resp. L1 = L2), then we also have dk1,+ ≥ dk2,+ (resp. dk1,− ≤ dk2,−).

Proof. The first part is classical, whereas the second one comes from the fact that the penal-
ization procedure converges in this framework, as seen previously. Indeed, with the notations of
the proof of Proposition 4.6.1, we have in the sense of weak limits

ki,+
t = lim

n→+∞
n

∫ t

0

(
Ss − yn,i

s

)−
ds.

Moreover, using the classical comparison Theorem for RBSDEs with the same lower obstacle,
we know that yn,1 ≥ yn,2 and dkn,1,−

t ≤ dkn,2,−
t . This implies that dkn,1,+

t ≥ dkn,2,+
t . Passing to

the limit yields the result. �

Of course, all the above still holds if τ is replaced by some bounded stopping time τ. Following
Peng’s original ideas, we now define a notion of doubly reflected g-(super)solutions.

Definition 4.6.3. If y is a solution of a DRBSDE of the form (4.6.36), then we call y a doubly
reflected g-supersolution on [0, τ ]. If V = 0 on [0, τ ], then we call y a doubly reflected g-solution.

We have the following proposition concerning the uniqueness of a decomposition of the form
(4.6.36). Notice that unlike in the lower reflected case considered in [66], the processes V , k+

and k− are not necessarily unique.

Proposition 4.6.4. Given y a g-supersolution on [0, τ ], there is a unique z ∈ H2(P) and a unique
couple (k+, k−, V ) ∈ (I2(P))3 (in the sense that V −k++k− is unique), such that (y, z, k+, k−, V )
satisfy (4.6.36).

Proof. If both (y, z, k+, k−, V ) and (y, z1, k+,1, k−,1, V 1) satisfy (4.6.36), then applying Itô’s
formula to (yt − yt)2 gives immediately that z = z1 and thus V − k+ + k− = V 1 − k+,1 + k−,1,
P− a.s. �

Remark 4.6.5. We emphasize once more that the situation here is fundamentally different from
[66], where reflected g-supersolution were defined for lower reflected BSDEs. In our case, instead
of having to deal with the sum of two non-decreasing processes, we actually have to add another
non-increasing process. This will raise some difficulties later on, notably when we will prove a
non-linear Doob-Meyer decomposition.
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4.6.2 Doob-Meyer decomposition

We now introduce the notion of doubly reflected g-(super)martingales.

Definition 4.6.6. (i) A doubly reflected g-martingale on [0, T ] is a doubly reflected g-solution
on [0, T ].

(ii) A process (Yt) such that Yt ≤ St is a doubly reflected g-supermartingale in the strong (resp.
weak) sense if for all stopping time τ ≤ T (resp. all t ≤ T ), we have EP[|Yτ |2] < +∞
(resp. EP[|Yt|2] < +∞) and if the doubly reflected g-solution (ys) on [0, τ ] (resp. [0, t])
with terminal condition Yτ (resp. Yt) verifies yσ ≤ Yσ for every stopping time σ ≤ τ (resp.
ys ≤ Ys for every s ≤ t).

Remark 4.6.7. The above Definition differs once more from the one given in [66]. Indeed,
when defining reflected g-supermartingale with a lower obstacle, there is no need to precise that
Y is above the barrier L, since it is implied by definition (since y is already above the barrier).
However, with an upper obstacle, this is not the case and this needs to be a part of the definition.

As usual, under mild conditions, a doubly reflected g-supermartingale in the weak sense cor-
responds to a doubly reflected g-supermartingale in the strong sense. Besides, thanks to the
comparison Theorem, it is clear that a doubly reflected g-supersolution on [0, T ] is also a dou-
bly reflected g-supermartingale in the weak and strong sense on [0, T ]. The following Theorem
addresses the converse property, which gives us a non-linear Doob-Meyer decomposition.

Theorem 4.6.8. Let (Yt) be a right-continuous doubly reflected g-supermartingale on [0, T ] in
the strong sense with

EP

[
sup

0≤t≤T
|Yt|2

]
< +∞.

Then (Yt) is a doubly reflected g-supersolution on [0, T ], that is to say that there exists a quadruple
(z, k+, k−, V ) ∈ H2(P)× I2(P)× I2(P)× I2(P) such that

Yt = YT +
∫ T

t
gs(Ys, zs)ds+ VT − Vt + k−T − k

−
t − k

+
T + k+

t −
∫ T

t
zsdWs

Lt ≤ Yt ≤ St, P− a.s.∫ T

0
(Ss− − Ys−) dk+

s =
∫ T

0
(Ys− − Ls−) dk−s = 0.

(4.6.37)

We then have the following easy generalization of Theorem 3.1 of [79] which will be crucial for
our proof.

Theorem 4.6.9. Consider a sequence of doubly reflected g-supersolutions

ỹn
t = ξ +

∫ T

t
gs(ỹn

s , z̃
n
s )ds+ Ṽ n

T − Ṽ n
t + k̃n,−

T − k̃n,−
t − k̃n,+

T + k̃n,+
t −

∫ T

t
z̃n
s dWs

Lt ≤ ỹn
t ≤ St∫ T

0
(Ss− − ỹn

s−) dk̃n,+
s =

∫ T

0
(ỹn

s− − Ls−) dk̃n,−
s = 0,

(4.6.38)

where the Ṽ n are in addition supposed to be continuous. Assume furthermore that
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• (ỹn)n≥0 increasingly converges to ỹ with EP

[
sup

0≤t≤T
|ỹt|2

]
< +∞.

• dk̃n,+
t ≤ dk̃p,+

t for n ≤ p and k̃n,+ converges to k̃+ with EP
[(
k̃+

T

)2
]
< +∞.

• dk̃n,−
t ≥ dk̃p,−

t for n ≤ p and k̃n,− converges to some k̃−.

• (z̃n)n≥0 weakly converges in H2(P) (along a subsequence if necessary) to z̃.

Then ỹ is a doubly reflected g-supersolution, that is to say that there exists Ṽ ∈ I2(P) such that
ỹt = ξ +

∫ T
t gs(ỹs, z̃s)ds+ ṼT − Ṽt + k−T − k

−
t − k̃

+
T + k̃+

t −
∫ T
t z̃sdWs, P− a.s.

ỹt ≤ St, P− a.s.∫ T
0 (Ss− − ỹs−) dk̃s = 0, P− a.s., ∀t ∈ [0, T ],

Besides, z̃ is strong limit of z̃n in Hp(P) for p < 2 and Ṽt is the weak limit of Ṽ n
t in L2(P).

Proof. All the convergences are proved exactly as in Theorem 3.1 of [79], using the fact that
the sequence of added increasing process k̃n,− is decreasing. Moreover, since the sequence yn is
increasing it is clear that we have

Lt ≤ ỹt ≤ St, t ∈ [0, T ], P− a.s.

We now want to show that we also recover the Skorohod conditions. The proofs being similar,
we will only show one of them. We have

0 ≤
∫ T

0
(Ss− − ỹs−) dk̃s =

∫ T

0
(Ss− − ỹn

s−) dk̃s +
∫ T

0
(ỹn

s− − ỹs−) dk̃s

=
∫ T

0
(Ss− − ỹn

s−) d
(
k̃s − k̃n

s

)
+
∫ T

0
(ỹn

s− − ỹs−) dk̃s

≤
∫ T

0

(
Ss− − ỹ0

s−
)
d
(
k̃s − k̃n

s

)
+
∫ T

0
(ỹn

s− − ỹs−) dk̃s.

By the convergences assumed on ỹn and k̃n, the right-hand side above clearly goes to 0 as n goes
to +∞, which gives us the desired result. �

Let now Y be a given doubly reflected g-supermartingale. We follow again [77] and we will apply
the above Theorem to the following sequence of DRBSDEs

yn
t = YT +

∫ T

t

(
gs(yn

s , z
n
s ) + n(yn

s − Ys)−
)
ds+ kn,−

T − kn,−
t − kn,+

T + kn,+
t −

∫ T

t
zn
s dWs,

Lt ≤ yn
t ≤ St,∫ T

0
(Ss− − yn

s−) dkn,+
s =

∫ T

0
(yn

s− − Ls−) dkn,−
s = 0.

(4.6.39)

Our first result is that

Lemma 4.6.10. For all n, we have Yt ≥ yn
t .
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Proof. The proof is exactly the same as the proof of Lemma 3.4 in [77], so we omit it. �

We will now prove some estimates which will allow us to apply Theorem 4.6.9.

Lemma 4.6.11. There exists a constant C > 0 independent of n such that the processes defined
in (4.6.39) verify

EP

[
sup

0≤t≤T
|yn

t |
2 +

∫ T

0
|zn

s |
2 ds+ (V n

T )2 + (kn,+
T )2 + (kn,−

T )2
]
≤ C.

Proof. First of all, let us define (ȳ, z̄, k̄+, k̄−) the unique solution of the DRBSDE with terminal
condition YT , generator g, upper obstacle S and lower obstacle L (once again, existence and
uniqueness are ensured by the results of [26] or [61]). By the comparison Theorem 4.6.2, it is
clear that we have for all n ≥ 0

yn
t ≥ ȳt, t ∈ [0, T ], P− a.s.

Consider now (ỹ, z̃, k̃+, k̃−) the unique solution of the doubly reflected BSDE with terminal
condition YT , generator g, upper obstacle S and lower obstacle Y , that is to say

ỹt = YT +
∫ T

t
gs(ỹs, z̃s)ds+ k̃−T − k̃

−
t − k̃

+
T + k̃+

t −
∫ T

t
z̃sdWs,

Yt ≤ ỹt ≤ St,∫ T

0
(Ss− − ỹs−) dk̃+

s =
∫ T

0
(ỹs− − Ys−) dk̃−s = 0.

(4.6.40)

Notice that since the upper obstacle S is a semimartingale satisfying

EP

[
sup

0≤t≤T

(
(St)

−)2] < +∞,

we know from the results of Crépey and Matoussi [26] (see Theorem 3.2 and Proposition 5.2)
that the above doubly reflected BSDE has indeed a unique solution and that we have for some
constant C > 0

EP
[(
k̃+

T

)2
]
≤ C.

Moreover, it is clear that since ỹs ≥ Ys, we also have

ỹt = YT +
∫ T

t
gs(ỹs, z̃s)ds+ n

∫ T

t
(ỹs − Ys)−ds+ k̃−T − k̃

−
t − k̃

+
T + k̃+

t −
∫ T

t
z̃sdWs. (4.6.41)

Notice also that since Y is a doubly reflected g-supermartingale, we have y ≥ L. Thus we can
use now the comparison Theorem of Proposition 4.6.2 for doubly reflected BSDEs with the same
upper obstacles. We deduce that

yn
t ≤ ỹt, and dkn,+

t ≤ dk̃+
t .

Hence, this implies immediately that for some constant C independent of n

EP

[
sup

0≤t≤T
|yn

t |
2 +

(
kn,+

T

)2
]
≤ EP

[
sup

0≤t≤T
|ȳt|2 + sup

0≤t≤T
|ỹt|2 +

(
k̃+

T

)2
]
≤ C. (4.6.42)
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Define then V n
t := n

∫ t
0 (yn

s − Ys)
− ds. We have

V n
T + kn,−

T = yn
0 − yn

T −
∫ T

0
gs(yn

s , z
n
s )ds+ kn,+

T +
∫ T

0
zn
s dWs

≤ C

(
sup

0≤t≤T
|yn

t |+
∫ T

0
|zn

s | ds+
∫ T

0
|gs(0, 0)| ds+ kn

T +
∣∣∣∣∫ T

0
zn
s dWs

∣∣∣∣
)
. (4.6.43)

Using (4.6.42) and BDG inequality, we obtain from (4.6.43)

EP
[
(V n

T )2 + (kn,−
T )2

]
≤ C0

(
1 + EP

[∫ T

0
|gs(0, 0)|2 ds+

∫ T

0
|zn

s |
2 ds

])
. (4.6.44)

Then, using Itô’s formula, we obtain classically for all ε > 0

EP
[∫ T

0
|zn

s |
2 ds

]
≤ EP

[
(yn

T )2 + 2
∫ T

0
yn

s gs(yn
s , z

n
s )ds+ 2

∫ T

0
yn

s−d(V
n
s − kn,+

s + kn,−
s )

]
≤ EP

[
C(1 + sup

0≤t≤T
|yn

t |
2) +

∫ T

0

|zn
s |

2

2
ds+ ε(|V n

T |2 + |kn,+
T |2 + |kn,−

T |2)

]
.

Then, from (4.6.44), we obtain by choosing ε = 1
4C0

that

EP
[∫ T

0
|zn

s |
2 ds

]
≤ C.

Reporting this in (4.6.44) ends the proof. �

Finally, we can now prove Theorem 4.6.8

Proof. [Proof of Theorem 4.6.8] We first notice that since Yt ≥ yn
t for all n, by the comparison

Theorem for DRBSDEs, we have

yn
t ≤ yn+1

t , dkn,−
t ≥ dkn+1,−

t and dkn,+
t ≤ dkn+1,+

t .

By the a priori estimates of Lemma 4.6.11, they therefore converge to some processes y, k+ and
k−. Moreover, since zn is bounded uniformly in n in the Banach H2(P), there exists a weakly
convergent subsequence, and the same holds for gt(yn

t , z
n
t ). Hence, all the conditions of Theorem

4.6.9 are satisfied and y is a doubly reflected g-supersolution on [0, T ] of the form

yt = YT +
∫ T

t
gs(ys, zs)ds+ VT − Vt − k+

T + k+
t + k−T − k

−
t −

∫ T

t
zsdWs,

where Vt is the weak limit of V n
t := n

∫ t
0 (yn

s − Ys)−ds. From Lemma 4.6.11, we have

EP[(V n
T )2] = n2EP

[∫ T

0

∣∣(yn
s − Ys)−

∣∣2 ds] ≤ C.
It then follows that Yt = yt (since we already had Yt ≥ yn

t for all n), which ends the proof. �
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4.6.3 Time regularity of doubly reflected g-supermartingales

In this section we prove a downcrossing inequality for doubly reflected g-supermartingales in
the spirit of the one proved in [23]. We use the same notations as in the classical theory of
g-martingales (see [23] and [77] for instance).

Theorem 4.6.12. Assume that g(0, 0) = 0. Let (Yt) be a positive reflected g-supermartingale in
the weak sense and let 0 = t0 < t1 < ... < ti = T be a subdivision of [0, T ]. Let 0 ≤ a < b, then
there exists C > 0 such that Db

a[Y, n], the number of downcrossings of [a, b] by
{
Ytj

}
, verifies

E−µ[Db
a[Y, n]] ≤ C

b− a
Eµ[Y0 ∧ b],

where µ is the Lipschitz constant of g.

Proof. Consider for all i = 0..n the following DRBSDEs with upper obstacle S and lower
obstacle L on [0, ti]

yi
t = Yti −

∫ T

t
(µ
∣∣yi

s

∣∣+ µ
∣∣zi

s

∣∣)ds+ ki,−
ti
− ki,−

t − ki,+
ti

+ ki,+
t −

∫ ti

t
zi
sdWs P− a.s.

Lt ≤ yi
t ≤ St, P− a.s.∫ ti

0

(
yi

s− − Ls−
)
dki,−

s =
∫ ti

0

(
Ss− − yi

s−
)
dki,+

s = 0, P− a.s.

By the comparison theorem of Proposition 4.6.2, we know that we have for all i, yi
t ≥ ỹi

t for
t ∈ [0, ti], where (ỹi, z̃i, k̃i) is the unique solution of the RBSDE on [0, ti] with the same generator
and terminal condition as above and upper obstacle S, that is to say

ỹi
t = Yti −

∫ T
t (µ

∣∣ỹi
s

∣∣+ µ
∣∣z̃i

s

∣∣)ds− k̃i
ti + k̃i

t −
∫ ti
t z̃i

sdWs P− a.s.

ỹi
t ≤ St, P− a.s.∫ ti
0

(
Ss− − ỹi

s−

)
dk̃i

s = 0, P− a.s.

We define ai
s := −µ sgn(zi

s)1tj−1<s≤tj and as :=
∑n

i=0 a
i
s. Let Qa be the probability measure

defined by
dQa

dP
= E

(∫ T

0
asdWs

)
.

We then have easily that yi
t ≥ 0 since Yti ≥ 0. We next define ŷi := ỹi− ki, Ŷ i := Y − ki. Then,

(ŷi, zi) solves the following BSDE on [0, ti]

ŷi
t = Ŷ i

ti −
∫ ti

t
µ
(
ŷi

s + ki
s

)
+ µ

∣∣zi
s

∣∣ ds− ∫ ti

t
zi
sdWs.

It is then easy to solve this BSDE to obtain

ŷi
t = EQa

t

[
e−µ(ti−t)Ŷ i

ti − µ
∫ ti

t
e−µ(s−t)ki

sds

]
.
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Define now the following càdlàg process kt :=
∑n

i=i k
i
t1ti−1≤t<ti and Ŷ := Y −k. We clearly have

for t = ti−1

ŷi
ti−1

= EQa

ti−1

[
e−µ(ti−ti−1)Ŷti − µ

∫ ti

ti−1

e−µ(s−ti−1)ksds

]
.

Now, since Y is a doubly reflected g-supermartingale (and thus also a doubly reflected g−µ-
supermartingale where g−µ

s (y, z) := −µ(|y| + |z|) by a simple application of the comparison
theorem), we have

ŷi ≤ yi − ki ≤ Ŷ .

Hence, we have obtained

EQa

ti−1

[
e−µ(ti−ti−1)Ŷti − µ

∫ ti

ti−1

e−µ(s−ti−1)ksds

]
≤ Ŷti−1 .

This actually implies that the process X := (Xti)0≤i≤n where

Xti := e−µti Ŷti − µ
∫ ti

0
e−µsksds,

is a Qa-supermartingale. Then we can finish the proof exactly as in the proof of Theorem 6 in
[23]. �
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