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Abstract

The objective of this thesis is to study the probabilistic representation (Feynman-Kac for-
mula) of different classes of Stochastic Nonlinear PDEs (semilinear, fully nonlinear, reflected
in a domain) by means of backward doubly stochastic differential equations (BDSDEs). This
thesis contains four different parts. We deal in the first part with the second order BDS-
DEs (2BDSDEs). We show the existence and uniqueness of solutions of 2BDSDEs using
quasi sure stochastic control technics. The main motivation of this study is the probabilistic
representation for solution of Fully nonlinear SPDEs. First, under regularity assumptions
on the coefficients, we give a Feynman-Kac formula for classical solution of fully nonlinear
SPDEs and we generalize the work of Soner, Touzi and Zhang (2010-2012) for determinis-
tic fully nonlinear PDE. Then, under weaker assumptions on the coefficients, we prove the
probabilistic representation for stochastic viscosity solution of fully nonlinear SPDEs. In the
second part, we study the Sobolev solution of obstacle problem for partial integro-differential
equations (PIDEs). Specifically, we show the Feynman-Kac formula for PIDEs via reflected
backward stochastic differential equations with jumps (BSDEs). Specifically, we establish the
existence and uniqueness of the solution of the obstacle problem, which is regarded as a pair
consisting of the solution and the measure of reflection. The approach is based on stochastic
flow technics developed in Bally and Matoussi (2001) but the proofs are more technical. In
the third part, we discuss the existence and uniqueness for RBDSDEs in a convex domain D
without any regularity condition on the boundary. In addition, using the approach based on
the technics of stochastic flow we provide the probabilistic interpretation of Sobolev solution
of a class of reflected SPDEs in a convex domain via RBDSDEs. Finally, we are interested
in the numerical solution of BDSDEs with random terminal time. The main motivation is to
give a probabilistic representation of Sobolev solution of semilinear SPDEs with Dirichlet null
condition. In this part, we study the strong approximation of this class of BDSDEs when the
random terminal time is the first exit time of an SDE from a cylindrical domain. Thus, we
give bounds for the discrete-time approximation error. We conclude this part with numerical
tests showing that this approach is effective.

Keywords: Backward Doubly Stochastic Differential Equations, Second order Backward
Doubly Stochastic Differential Equations, quasi-sure stochastic analysis, Semilinear Stochas-
tic PDEs, Fully Nonlinear Stochastic PDEs, Reflected backward stochastic differential equa-
tion, partial parabolic integro-differential equations, jump diffusion process, obstacle problem,
Stochastic flow, Skorohod problem, convex domains, regular measure, Forward-Backward Sys-
tem, Euler scheme, Monte Carlo method.



Résumé

L’objectif de cette thèse est l’étude de la représentation probabiliste (formule de Feynman-
Kac) des différentes classes d’EDP Stochastiques non-linéaires (semi-linéaires, complètement
non-linéaires, réfléchies dans un domaine) en utilisant les équationns différentielles double-
ment stochastiques rétrogrades (EDDSRs). Cette thèse contient quatre parties différentes.
Nous traitons dans la premiére partie les EDDSRs du second ordre (2EDDSRs). Nous mon-
trons l’existence et l’unicité des solutions des 2EDDSRs en utilisant des techniques de contrôle
stochastique quasi- sure. La motivation principale de cette étude est la représentation proba-
biliste des EDP stochastiques complètement non-linéaires (ou Fully nonlinear). Tout d’abord,
sous des hypothèses de régularité sur les coefficients, nous donnons une formule de Feynman-
Kac pour les solutions classiques des EDP Stochastiques totalement non linéaires généralisant
ainsi les travaux de Soner, Touzi et Zhang (2010-2012) pour les EDP totalement non-linéaire
déterministes. Puis, sous des hypothèses plus faibles de type Lipschitz sur les coefficients,
nous prouvons la représentation probabiliste des solutions de viscosité stochastique de EDPS
totalement non linéaires. Dans la deuxième partie, nous étudions les solutions faibles de type
Sobolev du problème d’obstacle pour les équations à dérivées partielles inteégro-différentielles
(EDPIDs). Plus précisément, nous montrons la formule de Feynman-Kac pour l’EDPIDs
par l’intermédiaire des équations différentielles stochastiques rétrogrades réfléchies avec sauts
(EDSRRs). Plus précisément, nous établissons l’existence et l’unicité de la solution du prob-
lème d’obstacle, qui est considérée comme un couple constitué de la solution et de la mesure
de réflexion. L’approche utilisée est basée sur les techniques de flots stochastiques dévelop-
pées dans Bally et Matoussi (2001) mais les preuves sont beaucoup plus techniques. Dans la
troisième partie, nous traitons l’existence et l’unicité pour les EDDSRRs dans un domaine
convexe D sans aucune condition de régularité sur la frontière. De plus, en utilisant l’approche
basée sur les techniques du flot stochastiques nous démontrons l’interprétation probabiliste
de la solution faible de type Sobolev d’une classe d’EDP Stochastiques réfléchies dans un do-
maine convexe via les EDDSRRs. Enfin, nous nous intéressons à la résolution numérique des
EDDSRs à temps terminal aléatoire. La motivation principale est de donner une représenta-
tion probabiliste des solutionsde Sobolev d’EDP Stochastiques semi-linéaires avec condition
de Dirichlet nul au bord. Dans cette partie, nous étudions l’approximation forte de cette
classe d’EDDSRs quand le temps terminal aléatoire est le premier temps de sortie d’une EDS
d’un domaine cylindrique. Ainsi, nous donnons les bornes pour l’erreur d’approximation en
temps discret. Cette partie se conclut par des tests numériques qui démontrent que cette
approche est effective.

Mots-clés: Équationns Différentielles Doublement Stochastiques Rétrogrades, Équationns
Différentielles Doublement Stochastiques Rétrogrades du second order, Analyse stochas-
tique quasi- sure, EDP Stochastiques semi-linéaires, EDP Stochastiques complètement non-
linéaires, Flot stochastique, Problème de Skorohod, Schéma d’Euler, Méthode Monte Carlo.
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Chapter 1

Introduction

The aim of this thesis is to study by a probabilistic approach different classes of nonlinear
stochastic partial differential equations (SPDEs in short). More precisely, we provide the
probabilistic representation of solution for SPDEs (classical, Sobolev and Viscosity solutions)
by means of solution of some class of backward doubly stochastic differential equations (BDS-
DEs in short).
This thesis contains four chapter. In Chapter 2, we propose a wellposedness theory for a
class of second order backward doubly stochastic differential equation (2BDSDE). We prove
existence and uniqueness of the solution under a Lipschitz type assumption on the generator,
and we investigate the links between our 2BDSDEs and a class of parabolic Fully non-linear
Stochastic PDEs. Precisely, we show that the Markovian solution of 2BDSDEs provide a
probabilistic interpretation of the classical and stochastic viscosity solution of Fully nonlinear
SPDEs. Then, we present in Chapter 3 a probabilistic interpretation for the weak Sobolev
solution of the obstacle problem for semilinear parabolic partial integro-differential equations
(PIDEs). The results of Léandre [82] concerning the homeomorphic property for the solution
of SDEs with jumps are used to construct random test functions for the variational equa-
tion for such PIDEs. These results are the natural connection with the associated Reflected
Backward Stochastic Differential Equations with jumps (RBSDEs), namely Feynman Kac’s
formula for the solution of the PIDEs. In Chapter 4, we prove existence and uniqueness
results for reflected backward doubly stochastic differential equations (in short RBDSDEs)
in a convex domain D without any regularity conditions on the boundary. Moreover, using
a stochastic flow approach a probabilistic interpretation for a class of reflected SPDEs in
a domain is given via such RBDSDEs. The last Chapter (5) is about solving numerically
backward doubly stochastic differential equations (BDSDEs) with random terminal time τ .
The main motivations are giving a probabilistic representation of the Sobolev’s solution of
Dirichlet problem for semi-linear SPDEs and providing the numerical scheme for such SPDEs.
Thus, we study the strong approximation of this class of BDSDEs when τ is the first exit
time of a forward SDE from a cylindrical domain. We use the Euler scheme and we provide
bounds for the discrete-time approximation error.
We begin by recalling the theory of BSDEs and BDSDEs.

1.1 2BDSDEs and Fully nonlinear SPDEs

1.1.1 Backward Doubly SDEs and semilinear SPDEs

Backward Stochastic Differential Equations (BSDEs) have been studied extensively in the last
two decades as they naturally arise in the context of stochastic control problems [44, 62], and
they provide a probabilistic representation for solutions to semilinear parabolic Partial Dif-
ferential Equations (PDEs), via a nonlinear Feynman-Kac’s formula. This class of equations
were introduced by Bismut [16] as equation for the adjoint process in the stochastic version of
Pontryagin maximum principle. Then Pardoux and Peng [110] generalized this notion in 1990



2 Chapter 1. Introduction

for a nonlinear general class of BSDEs. According to these authors, a solution to a BSDE
consists of a pair of adapted processes (y, z) taking values in Rn and Rd⇥n, respectively, such
that

yt = ξ +

Z T

t

f(s, ys, zs)ds−
Z T

t

zsdBs , t 2 [0, T ] (1.1.1)

where T is a finite time horizon, (Bt)t2[0,T ] a d-dimensional Brownian motion on a filtred
probability space (Ω,F , (Ft)t2[0,T ],P), F is the P- augmented natural filtration generated
by B, f a progressively measurable function from Ω ⇥ [0, T ] ⇥ Rn ⇥ Rd⇥n, and ξ an Rn-
valued FT - measurable random variable. They showed the existence and uniqueness of the
adapted solution under the condition that f is uniformly lipschitz in y and z and that ξ and
f(s, 0, 0) are square integrable. Since then, BSDEs have been studied with great interest.
In particular, many efforts have been made to relax the assumptions on the generator.
For example, Lepeltier and San Martin [85] have considered the case where the generator
is continuous with linear growth. Then, Kobylanski [74] have showed the existence of a
maximal solution in the case where the generator f has linear growth in y and quadratic
growth in z with a bounded terminal condition.This latter BSDE is very useful in finance
because it allows to solve problems in portfolio management constraints through a backward
approach, where the utility function is exponential, (see e.g. El Karoui and Rouge [123], Hu,
Imkeller and Muller [66]). El Karoui et al. [46] introduced the notion of one barrier reflected
BSDE, which is actually a backward equation but the solution is forced to stay above a
given barrier. This type of BSDEs is motivated by pricing American options and studying
the mixed game problems (see e.g. Cvitanic̀ and Karatzas [35], Hamadène, Lepeltier and
Matoussi [63]).
The main motivation to introduce the nonlinear BSDEs was to give a probabilistic inter-
pretation (Feynman-Kac’s formula) for the solutions of semilinear parabolic PDEs. For
smooth coefficients the PDE has a classical solution but if the coefficients are just Lipschitz
continuous functions one has to consider weak solutions. This result was first obtained
by Peng [115], see also Pardoux and Peng [108] by considering the viscosity and classical
solutions of such PDEs. Later, Barles and Lesigne [13] proved that the same probabilistic
interpretation holds for the variationnal formulation of the PDEs.

Since we deal with solutions of a class of Stochastic PDEs (SPDEs in short), we consider
Backward Doubly Stochastic Differential Equations (BDSDEs, in short). Indeed, by intro-
ducing in standard BSDEs a second nonlinear term driven by an external noise, Pardoux
and Peng introduced in [109] the so-called backward doubly stochastic differential equations
(BDSDEs, in short),

yt = ξ +

Z T

t

f(s, ys, zs)ds+

Z T

t

g(s, ys, zs)d
 −
W s −

Z T

t

zsdBs , t 2 [0, T ] (1.1.2)

where (Wt)t > 0 and (Bt)t > 0 are two finite-dimensional independent Brownian motions. We
note that the integral with respect to W is a "backward Itô integral". In order to establish

the connection between BDSDEs and SPDEs (1.1.4), Pardoux and Peng [109] considered the

following Markovian BDSDE, for all 0 6 t 6 s 6 T

yt,xs = Φ(X t,x
T ) +

Z T

s

f(r,X t,x
r , yt,xr , zt,xr )dr +

Z T

s

g(r,X t,x
r , yt,xr , zt,xr )d

 −
W r −

Z T

s

zt,xr dBr.

(1.1.3)
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These equations provide Feynman-Kac’s representation for the solution of the following sys-

tem of semilinear parabolic Stochastic PDEs

8
>><
>>:

du(t, x) + Lu(t, x) + f(t, x, u(t, x), (ruσ)(t, x))dt
+ g(t, x, u(t, x), (ruσ)(t, x))d −W t = 0, 0 6 t < T

u(T, x) = φ(x)

(1.1.4)

where a = (σσ⇤), Lu = (Lui)1 6 i 6 n,

L =
dX

i=1

bi(x)
∂

∂xi

+
1

2

dX

i,j=1

aij(x)
∂2

∂xi∂xj

. (1.1.5)

L is the second order differential operator associated with a diffusion process

{X t,x
s ; t 6 s 6 T}, which is the stong solution of a standard Itô (forward) stochastic difrfer-

ential equation (SDE):

X t,x
s = x+

Z s

t

b(X t,x
r )dr +

Z s

t

σ(X t,x
r )dBr, t 6 s 6 T.

These SPDEs (1.1.4) appear in various applications as, for instance, Zakai equations in fil-

tering, pathwise stochastic control theory and stochastic control with partial observations.

Several generalizations to investigate more general nonlinear SPDEs have been developed

following different approaches of the notion of weak solutions, namely, Sobolev’s solutions

[43, 61, 75, 125, 137], and stochastic viscosity solutions [88, 89, 90, 24, 25].

Under smoothness assumptions on the coefficients, Pardoux and Peng [109] proved the

existence and uniqueness of classical solution for SPDEs (1.1.4) and they related it to solutions

of BDSDEs (1.1.3) given by

yt,xs = u(s,X t,x
s ) and zt,xs = (ruσ)(s,X t,x

s ). (1.1.6)

But, if the coefficients are just Lipschitz continuous one has to consider solutions in a weak

sense. More precisely, u becomes a weak solution of equation (1.1.4) if the following relation

holds almost surely, for each test function ϕ 2 C1([0, T ])⌦ C1c
(
Rd
)
,

Z T

t

(u(s, .), ∂sϕ(s, .))ds+

Z T

t

e(u(s, .), ϕ(s, .))ds+ (u(t, .), ϕ(t, .))− (Φ(.), ϕ(T, .))

=

Z T

t

(f(s, ., u(s, .), (ruσ)(s, .)), ϕ(s, .))ds+
nX

i=1

Z T

t

(g(s, ., u(s, .), (ruσ)(s, .)), ϕ(s, .))d −W i
s,

(1.1.7)

where (ϕ, φ) =

Z

Rd

ϕ(x)φ(x)dx denotes the scalar product in L2(Rd, dx) and

e(u, ϕ) = (Lu, ϕ) =

Z

Rd

((ruσ)(rϕσ) + ϕr((1
2
rσσ + b)u))(x)dx

is the energy associated to the diffusion operator. This is a variational formulation for SPDE

(1.1.4).

In [10], Bally and Matoussi proved that the probabilistic interpretation (1.1.6) holds for

the variational formulation (1.1.7) and that the SPDE (1.1.4) has a unique solution u in a
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Sobolev space. The key element in their approach is the theory of stochastic flows which has

already been used by Kunita in [80] and [79] when the coefficients are linear and don’t depend

on the gradient of the solution. Next, Matoussi and Scheutzow [97] introduced another

kind of external noise term given by the Itô-Kunita stochastic integral. This allows to give

a probabilistic interpretation of classical and Sobolev’s solutions of semilinear parabolic

stochastic partial differential equations driven by a nonlinear coreled space-time noise.

An other approach of the notion of weak solution for PDEs and SPDEs is the viscosity

solution. The notion of viscosity solution for PDEs was introduced by Crandall, Ishii and

Lions [31] for certain first order Hamilton-Jacobi equations. Today this theory becomes an

important tool in many applied fields, especially in optimal control theory and numerous sub-

jects related to it, in particular mathematical finance. The stochastic viscosity solution for

semilinear SPDEs was introduced firstly by Lions and Souganidis in some notes [88, 89, 90].

They used the so-called "stochastic characteristic" to remove the stochastic integrals from

SPDEs and obtain PDEs with random coefficients . A few years later, Buckdahn and Ma

[24, 25] have introduced the rigorous notion of stochastic viscosity solution for semilinear

SPDEs and then they gave the probabilistic interpretation of such equation via BDSDEs

where the intensity of the noise g in the SPDEs (1.1.4) does not depend on the gradient of

the solution. They used the so-called Doss-Sussmann transformation and stochastic diffeo-

morphism flow technics to convert the semilinear SPDEs to PDEs with random coefficients.

This transformation permits to remove the martingale term from the SPDEs.

The definition of the stochastic viscosity solution will depend on the following stochastic

flow η 2 C(FW
t,T , [0, T ]⇥ Rd ⇥ R) defined as the unique solution of the stochastic differential

equation (SDE):

η(t, x, y) = y +

Z T

t

g(s, x, η(s, x, y)) ◦ d −W s, 0 6 t 6 T. (1.1.8)

Under the smooth assumption on g, for fixed x the random field η(., x, .) is continuously

differentiable in the variable y; and the mapping y 7−! η(t, x, y, ω) defines a diffeomorphism

for all (t, x), P-a.s. We denote by E(t, x, y) the y-inverse of η(t, x, y), so E(t, x, y) is the

solution of the following first-order SPDE:

E(t, x, y) = y −
Z T

t

DyE(s, x, y)g(s, x, y) ◦ d
 −
W s, 8(t, x, y) , P− a.s. (1.1.9)

We note that E(t, x, η(t, x, y)) = E(T, x, η(T, x, y)) = y, 8(t, x, y). Afterthat, we need to

define the following spaces:

For p > 1, Lp(FW
τ,T ;R

d) denotes the space of all Rd- valued FW
τ,T measurable r.v. ξ such that

E[|ξ|p] < +1.

C l,k([0, T ]⇥Rd), for k, l > 0, denotes the space of all R- valued functions defined on [0, T ]⇥Rd

which are k-times continuously differentiable in t and l-times continuously differentiable in x.

C l,k(FW
t,T , [0, T ] ⇥ Rd), for k, l > 0, denotes the space of all C l,k([0, T ] ⇥ Rd)-valued random

variables ϕ that are FW
t,T ⌦ B([0, T ]⇥ Rd) measurable.

C l,k(FW , [0, T ]⇥Rd), for k, l > 0, denotes the space of random variables ϕ 2 C l,k(FW
t,T , [0, T ]⇥

Rd) such that for fixed x 2 Rd the mapping (t, ω) 7! ϕ(t, x, ω) is FW - progressively measur-

able.

We now define the notion of stochastic viscosity solution for SPDEs introduced first by Buck-

dahn and Ma [25, 24].
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Definition 1.1.1. (i) A random field u 2 C(FW , [0, T ] ⇥ Rd) is called a stochastic viscosity

subsolution (resp. supersolution) of SPDE (f, g), if u(T, x) 6 (resp. > )φ(x), 8x 2 Rd; and

if for any {FW
t,T}t > 0- stopping time τ such that 0 6 τ 6 t, ζ 2 L0(FW

τ ;Rd), and any random

field ϕ 2 C1,2(FW
t,T , [0, T ]⇥ Rd) satisfying

u(t, x)− η(t, x, ϕ(t, x)) 6 (resp. > ) 0 = u(τ, ζ)− η(τ, ζ, ϕ(τ, ζ)),

for all (t, x) in a neighborhood of (τ, ζ),P− a.e. on the set {0 < τ < T}, it holds that

−Lψ(τ, ζ)− f(τ, ζ, ψ(τ, ζ), (rψσ)(τ, ζ)) 6 (resp. > )Dyη(τ, ζ, ϕ(τ, ζ))Dtϕ(τ, ζ),

P− a.e. on {0 < τ < T}, where ψ(t, x) , η(t, x, ϕ(t, x)).

(ii) A random field u 2 C(FW , [0, T ]⇥Rd) is called a stochastic viscosity solution of SPDE

(f, g), if it is both a stochastic viscosity subsolution and a supersolution.

Definition 1.1.2. A random field u 2 C(FW , [0, T ]⇥ Rd) is called a ω- wise viscosity (sub-,

super-) solution if for P − a.e. ω 2 Ω, u(ω, ., .) is a (deterministic) viscosity (sub-, super-)

solution of the SPDE (f, 0).

Remark 1.1.1. If we assume that ϕ 2 C1,2(FW , [0, T ] ⇥ Rd), and that g 2 C0,0,3([0, T ] ⇥
Rd⇥R;Rl), then a straightforward computation using the Itô-Ventzell formula shows that the

random field ψ(t, x) = η(t, x, ϕ(t, x)) satisfies

dψ(t, x) = Dyη(t, x, ϕ(t, x))Dtϕ(t, x)dt− hg(t, x, ψ(t, x)), ◦d
 −
W ti, t 2 [0, T ]. (1.1.10)

Since g(τ, ζ, ψ(τ, ζ) = g(τ, ζ, u(τ, ζ)) by defintion, it seems natural to compare −Lψ(τ, ζ) −
f(τ, ζ, ψ(τ, ζ), (rψσ)(τ, ζ)) with Dyη(τ, ζ, ϕ(τ, ζ))Dtϕ(τ, ζ) to characterize a viscosity solu-

tion of SPDE (f, g).

If the function g ⌘ 0 in SPDE (f, g) , the flow η becomes η(t, x, y) = y, 8(t, x, y) and

ψ(t, x) = ϕ(t, x). Thus the definition of a stocahstic viscosity solution becomes the same as

that of a deterministic viscosity solution (see, e.g. Crandall, Ishii and Lions [31]).

After extending the notion of viscosity solution to nonlinear SPDEs, Buckdahn and Ma [24]

showed that a stochastic PDE can be converted to a PDE with random coefficients via a

Doss-Sussmann transformation. Then, they proved the existence of the stochastic viscosity

solution and obtained the nonlinear Feynmann-Kac formula. Here, we will recall briefly their

main results in [24].

Proposition 1.1.1. Under Lipschitz continuous condition on f and smooth assumption on g

and the coefficients σ and b, we have that a random field u is a stochastic viscosity sub- (resp.

super-) solution to SPDE (f, g) (1.1.4) if and only if v(., .) = E(., ., u(., .)) is a stochastic

viscosity sub- (resp. super-) solution to SPDE (f̃ , 0). Consequently, u is a stochastic viscosity

solution to SPDE (f, g) (1.1.4) if and only if v(., .) = E(., ., u(., .)) is a stochastic viscosity

solution to SPDE (f̃ , 0), with

f̃(t, x, y, z) =
1

Dyη(t, x, y)
{f(t, x, η(t, x, y), Dxη(t, x, y)σ(x) +Dyη(t, x, y)z)

+ Lxη(t, x, y) +Dxyη(t, x, y)σ(x)z +
1

2
Dyyη(t, x, y)|z|2}, (1.1.11)

for all (t, x, y, z) 2 [0, T ]⇥Rd⇥R⇥Rd, P-a.s. Here Lx is the same as the operator in (1.1.5),

with the emphasis that all the partial derivatives are with respect to x.
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We will now apply Doss transformation to the BDSDE (1.1.3) in order that the backward

integral vanishes. Thus, the BDSDE will become a BSDE with a new generator f̃ which is

of quadratic growth with respect to the gradient of the solution. Let us define the following

two processes:

U t,x
s = E(t,X t,x

s , yt,xs )

V t,x
s = DyE(s,X t,x

s , y
t,x
t )zt,xs +DxE(s,X t,x

s , yt,xs )σ(x).
(1.1.12)

It is easy to check the inverse transformation:

yt,xs = η(s,X t,x
s , U t,x

s )

zt,xs = Dyη(t,X
t,x
s , U t,x

s )Vt +Dxη(t,X
t,x
s , U t,x

s )σ(x).
(1.1.13)

Theorem 1.1.1. Under Lipshitz continuous condition on f and smooth assumption of g we

have (U t,x, V t,x) is the unique solution of the following BSDE,

U t,x
s = φ(X t,x

T )−
Z T

s

f̃(r,X t,x
r , yt,xr , zt,xr )dr −

Z T

s

V t,x
r dBr t 6 s 6 T, (1.1.14)

where f̃ : [0, T ]⇥ Rd ⇥ R⇥ Rd 7! R is defined by (1.1.11).

Next, Buckdahn and Ma proved the existence of the stochastic viscosity solution of the

SPDE (f, g) (1.1.4). First, they introduced for each (t, x) 2 [0, T ]⇥ Rd two random fields

u(t, x) = y
t,x
t v(t, x) = U

t,x
t ,

where y and U are the solutions of the BDSDE (1.1.3) and BSDE (1.1.14). Then by (1.1.12)

and (1.1.13) we know that, for (ω, t, x) 2 Ω⇥ [0, T ]⇥ Rd

u(ω, t, x) = η(ω, t, x, v(ω, t, x)) ; v(ω, t, x) = E(ω, t, x, u(ω, t, x)). (1.1.15)

Finally, thanks to Proposition 1.1.1, Buckdahn and Ma [24] need only to prove that the

random field v defined in (1.1.15) is a stochastic viscosity solution to the SPDE (f̃ , 0).

Theorem 1.1.2. Under the Assumptions of Proposition 1.1.1, the random field v is a stochas-

tic viscosity solution of SPDE (f̃ , 0); and u is a stochastic viscosity solution to SPDE (f, g),

respectively.

1.1.2 Second Order BSDEs and Fully Nonlinear PDEs

Motivated by applications in financial mathematics and probabilistic numerical methods for

PDEs, Cheridito, Soner, Touzi and Victoir [30] introduced the first formulation of second

order BSDEs (in short 2BSDEs), which are connected to the larger class of fully nonlinear

PDEs. Then, Soner, Touzi and Zhang [128] provided a different formulation of 2BSDEs based

on the quasi sure analysis. Their key idea was to consider a family of BSDEs defined quasi-

surely (q.s for short) under a non-dominated class of mutually singular probability measures,

which means P-a.s. for every probability measure P in this class. This new point of view is

inspired from the quasi-sure analysis of Denis and Martini [39] who established the connection

between the so-called hedging problem in uncertain volatility models and the so-called Black-

Scholes-Barremblatt PDE. The latter is fully nonlinear and has a simple piecewise linear

dependance on the second order term.
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These observations leads Soner,Touzi and Zhang [128] to consider the following formulation

for solution to a 2BSDE, which consists of a triplet of processes (Y, Z,K) such that

Yt = ξ +

Z T

t

F̂s(Ys, Zs)ds−
Z T

t

ZsdBs +KT −Kt, 0 6 t 6 T, P− a.s. for all P. (1.1.16)

The process K has a heuristic interpretation. Indeed, if there is a solution Y to the 2BSDE

(1.1.16), it will be represented as a supremum of solutions yP to standard BSDEs. The role

of the process K is then to push the process Y to ensure that this property holds for every

probability measure P.

Soner, Touzi and Zhang established a complete theory of existence and uniqueness for the

solution to the equation (1.1.16), when the generator F̂ is uniformly Lipschitz in (Y, Z),

uniformly continuous with respect to the trajectory ω and under conditions of integrability

of ξ and F̂ . We note here that the uniform continuity condition is crucial in the proof of

existence since the solution is constructe pathwise. Let us briefly recall the main ideas of

their proof. First, the uniqueness is achieved through a representation of the solution Y as a

supremum of solutions yP of classical BSDEs defined under differents probability measures.

This representation then provides a natural candidate for the solution. Nevertheless, since the

probability measures are mutually singular, it is extremely difficult to tread over the problems

related to negligible sets. Thus, Soner,Touzi and Zhang proposed a pathwise construction of

the solution to a 2BSDE when the terminal condition is regular (ξ is bounded and uniformly

continuous in ω), then they extended their results to the closure of this space.

The theory being very recent, the literature remains rather limited. However, we refer the

interested reader to Possamai [118] and Possamai and Zhou [120] who respectively extended

these wellposedness results to generators with linear and quadratic growth.

In the following, we will concentrate ourselves on this new formulation.

1.1.3 Second Order BDSDEs and Fully Nonlinear SPDEs

Our main motivation in this first part of the thesis is to provide a probabilistic interpreta-
tion for classical and stochastic viscosity solution of the following parabolic Fully nonlinear
stochastic partial differential equation (in short FSPDE)

dut(x) + ĥ(t, x, ut(x), Dut(, x), D
2ut(x)) dt+ g(t, x, ut(x), Dut(x)) ◦ d

 −
W t = 0 (1.1.17)

over the time interval [0, T ], with a given final condition uT = Φ and g =
(
g1, · · · , gd

)
and h are

nonlinear functions. While second order BSDEs are naturally connected to fully nonlinear PDEs,
the solution of our SPDEs (1.2.15) will be represented via the solution of second order backward
doubly SDEs (2BDSDEs in short). So, an extension of the theory of 2BSDEs, introduced by Soner,
Touzi and Zhang [128], is needed in our context. We will briefly present our contributions in this
framework (see e.g. [93]).

1.1.3.1 Existence and uniquenes of 2BDSDEs

In our framework [93], we provide a complete theory of existence and uniqueness of Second order
BDSDEs (2BDSDEs) under the Lipschitz-type hypotheses on the driver.
First of all, we shall work on the product space Ω := ΩB ⇥ ΩW where

• ΩB := {ω 2 C([0, T ],Rd), ω0 = 0} equipped with the uniform norm kωk1 := sup
0 6 t 6 T

|ωt|, B

the canonical process (Bt(ω) = ωt), P0
B the Wiener measure.
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• (Wt)0 6 t 6 T is a standard Brownian motion independent of B and defined on (ΩW ,FW ,PW
0 ).

We then define FW = {FW
t,T }t > 0 a retrograde filtration generated by W , such that FW

s,t := σ{Wr −
Ws, s 6 r 6 t} and let FW

T = FW
0,T . We also consider the following family of σ- fields FB

t :=

σ{Br, 0 6 r 6 t}. For each t 2 [0, T ], we define

Ft := FB
t _ FW

t,T and Gt := FB
t _ FW

T .

Finally, we consider F = FB ⌦ FW let P denotes the set of the non-dominated class of mutually
singular probability measures P := Pα ⌦ PW

0 such that

Pα := P0
B ◦ (Xα)−1 where Xα

t :=

Z t

0
α1/2
s dBs, t 2 [0, T ],PB

0 − a.s. (1.1.18)

for some F- progressively measurable process α taking values in S>0
d with

Z T

0
|αt|dt <1 P0

B − a.s.

Let Ht(w, y, z, γ) : [0, T ]⇥Ω⇥R⇥Rd⇥DH ! R be F- progressively measurable, where DH ⇢ Rd⇥d

is a given subset containing 0 and we define F as the corresponding conjugate of H w.r.t γ by

Ft(w, y, z, a) := sup
γ2DH

{1
2
Tr(aγ)−Ht(w, y, z, γ)

 
for a 2 S>0

d ,

where S>0
d denotes the space of all d⇥ d real valued positive definite matrices and

F̂t(y, z) := Ft(y, z, ât).

with ât := lim
ε#0

1

ε
(hBit− hBit−ε), where hBit := BtB

>
t − 2

Z t

0
BsdB

>
s is defined pathwise and the lim

is taken compentwise.
We consider also a function gt(ω, y, z) : [0, T ] ⇥ Ω ⇥ R ⇥ Rd ! Rl which represents the intensity of
the nonlinear external noise driven by (Wt)t > 0.
We shall consider the following 2BDSDE .

Yt = ξ +

Z T

t
F̂s(Ys, Zs)ds+

Z T

t
gs(Ys, Zs)d

 −
W s −

Z T

t
ZsdBs +KT −Kt, 0 6 t 6 T, P − q.s.

(1.1.19)

Definition 1.1.3. We say (Y, Z) is a solution to the 2BDSDE (1.1.19) if

• YT = ξ P − q.s.

• For each P 2 P, the process KP defined below has nondecreasing paths, P− a.s.:

KP
t := Y0 − Yt −

Z t

0
F̂s(Ys, Zs)ds−

Z t

0
gs(Ys, Zs)d

 −
W s +

Z t

0
ZsdBs, 0 6 t 6 T, P− a.s.

(1.1.20)

• The family {KP,P 2 P} defined in (1.1.20) satisfies the following minimum condition:

KP
t = ess infP

P
02P(t+,P)

EP
0

t [KP
0

T ] P− a.s. for all P 2 P, t 2 [0, T ]
(1.1.21)

where P(t+,P) := {P0 := P0
B ⌦ PW

0 2 P ; P0
B = PB on FB,+

t }.

Moreover, if the family {KP,P 2 P} can be aggregated into a universal process K, we call (Y, Z,K)

a solution of 2BDSDE (1.1.19)



1.1. 2BDSDEs and Fully nonlinear SPDEs 9

The process K plays an important role, it forces Y to stay above every yP. To understood this
formulation, we can consider the case where the set P is reduced to a singleton {P}. From the
minimum condition (1.1.21), we know that KP is a non-decreasing martingale. Since P satisfies the
martingale representation property, this martingale is also continuous, and is therefore a constant.
Thus, we have KP = 0 , P− a.s. and the 2BDSDE (1.1.19) is equivalent to standard BDSDE (1.1.2).
For 2BDSDEs, our main assumption on the functions F and g is as follows

Assumption 1.1.1. (i) P is not empty, the domain DFt(y,z) = DFt is independent of (w, y, z).

(ii) For fixed (y, z, a), F is Ft measurable in DFt , and g is Ft measurable.

(iii) We have the following uniform Lipschitz-type property in y and z: There exist constants C > 0

and 0 < α < 1 such that

8(y, y0
, z, z

0
, t, w), |F̂t(w, y, z)− F̂t(w, y

0
, z

0
)| 6 C

(
|y − y

0 |+ kâ1/2(z − z
0
)k
)

8(y, y0
, z, z

0
, t, w), kgt(w, y, z)− gt(w, y

0
, z

0
)k2 6 C|y − y

0 |2 + αk(z − z
0
)k2

(iv) There exists a consatnt λ 2 [0, 1[ such that

(1− λ)â > αId.

(v) F is uniformly continuous in w for the k.k1 norm.

(vi) g is uniformly continuous in w for the k.k1 norm.

We can now show as in [129] that the solution to 2BDSDE (1.1.19) can be represented as a
supremum of solutions to BDSDE (1.1.2), which in turn implies the uniqueness of the solution.

Theorem 1.1.3. Let assumption 1.1.1 holds. Assume ξ 2 L2 and that (Y, Z,K) 2 D2⇥H2⇥ Ip (see
Chapter 2 for precise definition of the solution space) is a solution to 2BDSDE (1.1.19). Then, for
any P 2 P and 0 6 t1 < t2 6 T,

Yt1 = ess supP

P
0
2P(t+

1
,P)

yP
0

t1 (t2, Yt2), P − a.s. (1.1.22)

Consequently, the 2BDSDE (1.1.2) has at most one solution in D2 ⇥H2.

As one can see from Theorem 1.1.3 above, if there is a solution to the 2BDSDE (1.1.19), it will
be represented as a supremum of solutions to standard BDSDEs. However, since we are working
under a family of non-dominated probability measures, we are not able to use the classical technics
of BSDEs. So, we overcame this problem by constructing the solution pathwise using the so-called
regular conditional probability distribution of Stroock and Varadhan [134]. This allows to construct
a solution to the 2BDSDE when the terminal condition belongs to the space UCb(Ω). Then, by
passing to limit, we prove existence of solution when the terminal condition is in L2 , the closure of
UCb(Ω) under a certain norm defined in Chapter 2.
We are now in position to state the main result of this part.

Theorem 1.1.4. Let ξ 2 L2 and assume that Assumption 1.1.1 holds. Then:
1) There exists a unique solution (Y, Z) 2 D2 ⇥H2 of the 2BDSDE (1.1.19).
2) Moreover, if in addition we choose to work under either of the following model of the theory

(i) Zermelo-Fraenkel set theory with axiom of choice (ZFC) plus the Continuum Hypothesis (CH).

(ii) ZFC plus the negation of CH plus Martin’s axiom.
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Then there exists a unique solution (Y, Z,K) 2 D2 ⇥H2 ⇥ I2 of the 2BDSDE (1.1.19).

We point out that the 2BDSDE (1.1.19) is in fact a 2BSDE (1.1.16) perturbed by a nonlinear term
driven by an extra Brownian motion. To prove the exisence of the solution, we need to handle with
the difficulties coming from this external noise. That’s why we put some efforts to prove a control
trajectoriel for our candidate in order to show the dynamic programming principle. Let also mention
that this proof requires us to extend the existing results on the theory of g-martingales of Peng [114]
and the results of Karandikar [72] to our case (see Appendix of Chapter 2).

1.1.3.2 Probabilistic interpretation of solution of SPDEs

After establishing the result of uniqueness and existence of solution to 2BDSDEs, we are ready
now to present the relation with a class of SPDEs. We consider the Markovian 2BDSDEs, whose
solution can be represented by a deterministic function of t and Bt, and show the connection of these
2BDSDEs with fully nonlinear SPDEs.
Our main objective is to establish the connection Y

t,x
s = v(s,Bt,x

s ), s 2 [t, T ], P − q.s, where v

solves, in some sense, the following fully nonlinear SPDE:
8
>><
>>:

du(t, x) + ĥ(t, x, u(t, x), Du(t, x), D2u(t, x))dt+ g(t, x, u(t, x), Du(t, x)) ◦ d −W t = 0, 0 6 t < T

u(T, x) = φ(x).

(1.1.23)

We can write the SPDE (1.1.23) in the integral form

u(t, x) = φ(x) +

Z T

t
ĥ(t, x, u(t, x), Du(t, x), D2u(t, x))dt+

Z T

t
g(t, x, u(t, x), Du(t, x)) ◦ d −W t

(1.1.24)

where u is a mapping from [0, T ]⇥ Ω⇥ Rd to R.
We consider the case

Ht(ω, y, z, γ) = h(t, Bt(ω), y, z, γ),

where h : [0, T ]⇥R⇥Rd⇥Dh ! R is a deterministic map. Then the corresponding conjuguate and
bi-conjuguate functions become

f(t, x, y, z, a) := sup
γ2Dh

{1
2
Tr(aγ)− h(t, x, y, z, γ)

 
for a 2 S>0

d , (1.1.25)

ĥ(t, x, y, z, γ) := sup
a2S>0

d

{1
2
Tr(aγ)− f(t, x, y, z, a)

 
for γ 2 Rd⇥d. (1.1.26)

Notice that −1 < ĥ 6 h and ĥ is nondecreasing convex in γ. Also, ĥ = h if and only if h is convex
and nondecreasing in γ.
The following is a slight strengthening of Assumption 1.1.1

Assumption 1.1.2.

(i) P is not empty, the domain Dft(y,z) = Dft is independent of (w, y, z).

(ii) There exist constants C > 0, 0 6 α < 1 and modulus of continuity ρ with polynomial growth such
that for all t 2 [0, T ], a 2 Dft , x, x

0
, z, z

0 2 Rd, y, y
0 2 R.

|ft(x, y, z, a)− ft(x, y
0
, z

0
, a)| 6 ρ(|x− x

0 |) + C
(
|y − y

0 |+ ka1/2(z − z
0
)k
)

kgt(x, y, z)− gt(x, y
0
, z

0
)k2 6 ρ(|x− x

0 |) + C|y − y
0 |2 + αk(z − z

0
)k2

(iii) The function g 2 C
0,2,3
b ([0, T ]⇥ Rd ⇥ R;Rl)
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Next, let φ : Rd ! R be a lebesgue measurable function. We denote, for any (t, x) 2 [0, T ]⇥ Rd

Bt,x
s := x+Bt

s for all s 2 [t, T ].

and we consider the 2BDSDE (1.1.19) in this Markovian setting with terminal condition ξ = φ(Bt,x
T ):

Y t,x
s = φ(Bt,x

T )−
Z T

s
f(s,Bt,x

r , Y t,x
r , Zt,x

r , âr)dr +

Z T

t
g(r,Bt,x

r , Y t,x
r , Zt,x

r ) ◦ d −W r

−
Z T

s
Zt,x
r dBr +K

t,x
T −Kt,x

s , t 6 s 6 T, P − q.s (1.1.27)

We remark that the stochastic integral with respect to dW is the Stratonovich backward integral (see
Kunita [78] page 194). Since g 2 C

0,2,3
b ([0, T ]⇥Rd ⇥R;Rl), using the definition of the Stratonovich

backward integral, we show easily that (1.1.27) is equivalent to the following 2BDSDE:

Y t,x
s = φ(Bt,x

T )−
Z T

s
f̂(s,Bt,x

r , Y t,x
r , Zt,x

r , âr)dr +

Z T

t
g(r,Bt,x

r , Y t,x
r , Zt,x

r )d
 −
W r

−
Z T

s
Zt,x
r dBr +K

t,x
T −Kt,x

s , t 6 s 6 T, P − q.s (1.1.28)

where f̂(s, x, y, z, âs) = f(s, x, y, z, âs) +
1

2
Tr(g(s, x, y, z)Dyg(s, x, y, z)).

As we have explained above, our main motivation is to represent the classical and the stochastic
viscosity solution for fully nonlinear SPDE (1.1.23) by means of solution of the Markovian 2BDSDE
(1.1.27). We begin first by the classical solution for SPDEs.

Classical solution for SPDEs

Definition 1.1.4. We define the classical solution of the SPDE (1.1.23)as a R-valued random field
{u(t, x), 0 6 t 6 T, x 2 Rd} such that u(t, x) is FW

t,T -measurable for each (t, x), and whose trajectories
belong to C0,2([0, T ]⇥ Rd;R).

Theorem 1.1.5. Let Assumption 1.1.2 hold true. Suppose further that ĥ is continuous in its domain,
Df is independent of t and is bounded both from above and away from 0. Let {u(t, x); t 2 [0, T ]⇥Rd}
be a classical solution of (1.1.23) with {(u,Du)(s,Bt,x

s ), s 2 [t, T ]} 2 D2 ⇥H2. Then:

Y t,x
s := u(s,Bt,x

s ), Zt,x
s := Du(s,Bt,x

s ), Kt,x
s :=

Z s

0
krdr

with ks := ĥ(s,Bs, Ys, Zs,Γs)−
1

2
Tr(âsΓs) + f(s,Bs, Ys, Zs, âs) and Γs := D2u(s,Bt,x

s )

is the unique solution of the 2BDSDE (1.1.27). Moreover, u(t, x) = Y
t,x
t for all t 2 [0, T ].

Stochastic viscosity solution for SPDE

Following the classical terminology in the BSDE literature, we say that the solution of the 2BDSDE
is Markovian if it can be represented by means of a deterministic function of (t, Bt). In this part, we
construct a deterministic function u, by using a probabilistic representation in the spirit of (1.1.22),
and show its connection with 2BDSDE (1.1.27). The connction between u and the SPDE (1.1.23)
will be established in the next subsection.
We now introduce the random function u : [0, T ]⇥ ΩW ⇥ Rd ! R given by

u(t, x) := sup
P2Pt

y
P,t,x
t (T, φ(Bt,x

T )), for (t, x) 2 [0, T ]⇥ Rd. (1.1.29)

By the Blumenthal zero-one law, it follows that u(t, x) is deterministic w.r.t B but still an FW
t,T -

adapted process.
For the remainder of this part we will assume that the random field u is in C(FW

t,T , [0, T ]⇥ Rd).
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Proposition 1.1.2. Let Assumption 1.1.2 holds true. A random field u is a stochastic viscosity sub-
(resp. super-) solution to SPDE (ĥ, g) (1.1.23) if and only if v(., .) = E(., ., u(., .)) is a stochastic
viscosity solution to SPDE (h̃, 0), with

h̃(t, x, y, z, γ) =
1

Dyη(t, x, y)
{ĥ(t, x, η(t, x, y), Dxη(t, x, y) +Dyη(t, x, y)z,Dxxη(t, x, y)

+ 2Dxyη(t, x, y)z +Dyyη(t, x, y)|z|2 +Dyη(t, x, y)γ)} (1.1.30)

We will now apply Doss transformation to the 2BDSDE (1.1.27) in order that the Stratonovich
backward integral vanishes. Thus, the 2BDSDE will become a 2BSDE with a new generator f̃ . Let
us define the following three processes:

U t,x
s = E(s,Bt,x

s , Y t,x
s )

V t,x
s = DyE(s,Bt,x

s , Y t,x
s )Zt,x

s +DxE(s,Bt,x
s , Y t,x

s )

K̃t,x
s =

Z s

0
DyE(r,Bt,x

r , Y t,x
r )dKt,x

r (1.1.31)

It is easy to check the inverse transformation

Y t,x
s = η(s,Bt,x

s , U t,x
s )

Zt,x
s = Dyη(s,B

t,x
s , U t,x

s )Vt +Dxη(s,B
t,x
s , U t,x

s )

Kt,x
s =

Z t

0
Dyη(s,B

t,x
s , U t,x

s )dK̃t,x
s (1.1.32)

Theorem 1.1.6. Let Assumption 1.1.2 holds true. Then (U t,x, V t,x, K̃t,x) is the unique solution of
the following 2BSDE,

U t,x
s = φ(Bt,x

T )−
Z T

s
f̃(r,Bt,x

r , Y t,x
r , Zt,x

r , âr)dr −
Z T

s
V t,x
r dBr + K̃

t,x
T − K̃t,x

s t 6 s 6 T (1.1.33)

where f̃ : [0, T ]⇥ Rd ⇥ R⇥ Rd ⇥Df 7! R is defined by:

f̃(t, x, y, z, a) ,
1

Dyη(t, x, y)
{f(t, x, y,Dyη(t, x, y)z +Dxη(t, x, y))−

1

2
Tr(aDxxη(t, x, y))

− (aDxyη(t, x, y)z)−
1

2
Tr(aDyyη(t, x, y)|z|2)} (1.1.34)

We are now ready to prove that u defined by (1.1.29) is the stochastic viscosity solution of our
SPDE (ĥ, g) (1.1.23). First, we introduce the random field v(t, x) = U

t,x
t , where U is the solution of

2BSDE (1.1.33). Then by (1.1.31) and (1.1.32) we know that, for (t, x) 2 [0, T ]⇥ Rd

u(t, x) = η(t, x, v(t, x)) ; v(t, x) = E(t, x, u(t, x)). (1.1.35)

Finally, thanks to Proposition 1.1.2, we need only to prove that the random field v defined in (1.1.35)
is a stochastic viscosity solution to the SPDE (h̃, 0).

Theorem 1.1.7. Under our Assumptions, the random field v is a stochastic viscosity solution of
SPDE (h̃, 0); and u is a stochastic viscosity solution to SPDE (ĥ, g), respectively.

1.2 Reflection problem for PIDEs and SPDEs

1.2.1 Obstacle problem for PIDEs

We present in this part a probabilistic interpretation for the weak Sobolev solution of the obstacle
problem for semilinear parabolic partial integro-differential equations (in short PIDEs), namely Feyn-
man Kac’s formula for the solution of the PIDEs, via the associated Reflected Backward Stochastic
Differential Equations with jumps (in shirt RBSDEs). This representation gives an application to
the pricing and hedging of contingent claims with constraints in the wealth or portfolio processes in
financial markets including jumps. We start first by giving the literature related to these equations.
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1.2.1.1 Motivations and formulation

In the classical literature, the obstacle problem for semilinear PDEs and their connection with optimal
stopping and control problems have been first studied by Mignot-Puel [103] (see also Bensoussan-
Lions [15]), and then by Michel Pierre [116, 117]. They model such problems by means of variational
inequalities.
Our main interest is to study the following partial integro-differential equations (in short PIDEs) of
parabolic type:

(∂t + L)u(t, x) + f(t, x, u(t, x),ru(t, x)σ(x), u(t, x+ β(x, ·))− u(t, x)) = 0 (1.2.1)

over the time interval [0, T ], with a given final condition uT = g, f is a nonlinear function and
L = K1+K2 is the second order integro-differential operator associated with a jump diffusion which
is defined component by component with

K1ϕ(x) =
dX

i=1

bi(x)
∂

∂xi
ϕ(x) +

1

2

dX

i,j=1

aij(x)
∂2

∂xi∂xj
ϕ(x) and

K2ϕ(x) =

Z

E

⇣
ϕ(x+ β(x, e))− ϕ(x)−

dX

i=1

βi(x, e)
∂

∂xi
ϕ(x)

⌘
λ(de), ϕ 2 C2(Rd).

(1.2.2)

This class of PIDEs appears in the pricing and hedging contigent claims in financial markets
including jumps (see [32] and [14]). Matache, von Petersdorff and Schwab [92] have studied a
particular case where f is linear in (y, z) and not depends on v (the jump size variable). They
have shown the existence and uniqueness of the Sobolev solution of the variational form of some
types of PIDEs, stemming from pricing problems in Lévy markets. They used an analytic method
in order to derive a numerical schema based on the wavelet Galerkin method. Our nonlinear PIDEs
(1.2.1) include the case of pricing of contingent claims with constraints in the wealth or portfolio
processes. As an example, hedging claims with higher interest rate for borrowing may be considered
in a financial market with jumps. El Karoui, Peng and Quenez [49] have studied this example
in a continuous financial market where the non linear source function f is given by f(t, x, y, z̃) =

rty + θtσtz̃ − (Rt − rt)(y −
Pn

i=1 z̃
i). More recently, the pricing and hedging of American options in

the Markovian case and the related obstacle problem for PDEs, was studied by El Karoui et al [46]
and Bally et al [9].
If h : [0, T ] ⇥ Rd −! R is a given function such that h(T, x) 6 g(x), we may roughly say that
the solution of the obstacle problem for (1.2.1) is a function u 2 L

2
(
[0, T ];H1(Rd)

)
such that the

following conditions are satisfied in (0, T )⇥ Rd :

(i) u > h, dt⌦ dx− a.e.,

(ii) ∂tu+ Lu+ f 6 0

(iii)
(
u− h

)(
∂tu+ Lu+ f

)
= 0.

(iv) uT = g, dx− a.e.

(1.2.3)

The relation (ii) means that the distribution appearing in the LHS of the inequality is a non-
positive measure. The relation (iii) is not rigourously stated. We may roughly say that one has
∂tu+ Lu+ f = 0 on the set {u > h}.

In the case of the obstacle problem for PDEs (when the non local term operator K2 =0), if one
expresses the obstacle problem in terms of variational inequalities it should also be required hat the
solution has a minimality property (see Mignot-Puel [103] or Bensoussan-Lions [15] p.250). The
work of El Karoui et al [46] treats the obstacle problem for (1.2.1) within the framework of backward
stochastic differential equations (BSDEs in short). Namely the equation (1.2.1) is considered with



14 Chapter 1. Introduction

f depending on u and ru , λ = 0 and β = 0 and the obstacle h is continuous. The solution
is represented stochastically as a process and the main new object of this BSDE framework is a
continuous increasing process that controls the set {u = h}. This increasing process determines in
fact the measure from the relation (ii). Bally et al [9] (see also Matoussi and Xu [99]) point out that
the continuity of this process allows the classical notion of strong variational solution to be extended
(see Theorem 2.2 of [15] p.238) and express the solution to the obstacle as a pair (u, ν) where ν

equals the LHS of (ii) and is supported by the set {u = h}.
Barles, Buckdahn and Pardoux [12] (see also [136], [124] and [111]) have provided a probabilistic
interpretation for the viscosity solution of (1.2.1) by using a forward BSDE with jumps. Situ [126]
has studied the Sobolev solution of (1.2.1) via an appropriate BSDE with jumps, whose method
is mainly based on Sobolev’s embedding theorem. More recently, Matoussi and Stoica [98] studied
the obstacle problem for parabolic quasilinear SPDEs and gave a probabilistic interpretation of the
reflected measure ν in terms of the associated increasing process which is a component of solution
of reflected BSDEs. Such measures are called regular measures or Revuz measures. Their method is
based on probabilistic quasi-sure analysis. On the other hand, Michel Pierre [116, 117] has studied
parabolic PDEs with obstacles using the parabolic potential as a tool. He proved that the solution
uniquely exists and is quasi-continuous with respect to socalled analytical capacity. Moreover he
gave a representation of the reflected measure ν in terms of the associated regular potential and
the approach used is based on analytical quasi-sure analysis. Finally, Denis, Matoussi and Zhang
[38] have extended the approach of Michel Pierre [116, 117] for the obstacle problem of quasilinear
SPDEs.

1.2.1.2 New results

The main objective of this part is to prove existence and uniqueness results of the solution of the
obstacle problem for the PIDEs and to give the associated probabilistic interpretation via the RB-
SDEs with jumps. In the following, we present the main results obtained in the already published
paper [96].
We consider the final condition to be a fixed function g 2 L

2
ρ

(
Rd
)

(where L
2
ρ

(
Rd
)

is a weighted
Hilbert space which is separable thanks to the assumptions verified by the weight function ρ) and
the obstacle h be a continuous function h : [0, T ] ⇥ Rd −! R. Then the obstacle problem for the
equation (1.2.1) is defined as a pair (u, ν), where ν is a regular measure concentrated on {u = h}
and u 2 L

2
ρ

(
[0, T ]⇥ Rd;R)

)
satisfies the following relations:

(i0) u > h, dP⌦ dt⌦ dx− a.e.,

(ii0) ∂tu(t, x) + Lu(t, x) + f(t, x, u(t, x),ru(t, x)σ(x), u(t, x+ β(x, ·))− u(t, x)) = −ν(dt, dx),
(iii0) ν

(
u > h

)
= 0, a.s.,

(iv0) uT = g, dx− a.e..

(1.2.4)

ν represents the quantity which makes it possible to pass from inequality (ii) to equality (ii0) and
to get the uniqueness result for the obstacle problem. The rigorous sense of the relation (iii0) which
is based on the probabilistic representation of the measure ν and plays the role of quasi-continuity
of u in this context will be explained in Chapter 3.

The concern is to solve our problem (1.2.4) by developing in the jump setting a stochastic flow
method which was first introduced by Bally and Matoussi [10] for parabolic SPDEs. The key element
in [10] is to use the inversion of stochastic flow which transforms the variational formulation of the
PDEs to the associated BSDEs. Thus it plays the same role as Itô’s formula in the case of the
classical solution of PDEs. More precisely, our approach will be based on the results of Léandre [82]
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about the homeomorphic property for the solution of SDEs with jumps. We need to provide useful
results on stochastic flow associated with the following forward SDEs with jumps

Xt,s(x) = x+

Z s

t
b(Xt,r(x))dr +

Z s

t
σ(Xt,r(x))dWr +

Z s

t

Z

E
β(Xt,r−(x), e)eµ(dr, de). (1.2.5)

where E = Rl \ {0} and the coefficients of the diffusion satisfy the following assumption

Assumption 1.2.1. b 2 C3
l,b(R

d;Rd), σ 2 C3
l,b(R

d;Rd⇥d), β : Rd ⇥ E ! Rd be measurable and for
all e 2 E, β(·, e) 2 C3

l,b(R
d;Rd), and for some K > 0 and for all x 2 Rd, e 2 E,

|β(x, e)| 6 K(1 ^ |e|), |Dαβ(x, e)| 6 K(1 ^ |e|) for 1 6 |α| 6 3,

where α = (α1,α2, · · · ,αd) is a multi-index and |α| = α1 + α2 + · · · + αd. D
α is the differential

operator Dα =
∂|α|

(∂α1x1)(∂α2x2) · · · (∂αdxd)
.

The existence and uniqueness of this solution was proved in Fujiwara and Kunita [52]. It is well
known that the stochastic flow associated to a continuous SDE with regular coefficients satisfies the
homeomorphic property (see Bismut [16], Kunita [76, 80]). But this property fails for the solution
of SDE with jumps in general. Léandre [82] gave a necessary and sufficient condition under which
the homeomorphic property is preserved at the jump time, namely, for each e 2 E, the maps
He : x 7! x + β(x, e) should be one to one and onto. One can read also Fujiwara and Kunita [52]
and Kunita [77] for more details on the subject. Therefore, we assume additionally that

Assumption 1.2.2. For each e 2 E, the linkage operator:

He : x 7! x+ β(x, e) is a C2-diffeomorphism.

We denote by H−1
e the inverse map of He, and set h(x, e) := x−H−1

e (x). Under Assumptions 1.2.1
and 1.2.2, we have that {Xt,s(x);x 2 Rd} is a C2-diffeomorphism a.s. stochastic flow. Moreover the
inverse of the flow satisfies the following backward SDE (see Kunita [76]

X−1
t,s (y) = y −

Z s

t

bb(X−1
r,s (y))dr −

Z s

t
σ(X−1

r,s (y))
 −−
dW r −

Z s

t

Z

E

β(X−1
r,s (y), e)eµ(

 −
dr, de)

+

Z s

t

Z

E

bβ(X−1
r,s (y), e)µ(

 −
dr, de).

(1.2.6)

for any t < s, where

bb(x) = b(x)−
X

i,j

∂σj(x)

∂xi
σij(x) and bβ(x, e) = β(x, e)− h(x, e). (1.2.7)

Remark 1.2.1. Note that stochastic flow approach was used recently in other context. In [71]
based on stochastic flow arguments, the author shows that the probabilistic equivalent formulation of
Dupire’s PDE is the Put-Call duality equality in local volatility models including exponential Lévy
jumps. Also in [104], [48] and [47], the inversion of stochastic flow technics are used for building a
family of forward utilities for a given optimal portfolio.

We also need equivalence of norms result which plays an important role in the proof of the existence
of the solution for PIDE as a connection between the functional norms and "random process norms".

For continuous SDEs, this result was first proved by Barles and Lesigne [13] by using an analytic

method. Bally and Matoussi have proved in [10] the result with a probabilistic method. Note

that Klimisiak [73] have extended this estimes for Markov process associated to a non-homogeneous

divergence operator. The following result generalize Proposition 5.1 in [10] (see also [13]) in the case

of a diffusion process with jumps, and the proof will be given in Appendix 3.5.1.
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Proposition 1.2.1. There exists two constants c > 0 and C > 0 such that for every t 6 s 6 T and
ϕ 2 L1(Rd, dx),

c

Z

Rd

|ϕ(x)|ρ(x)dx 6

Z

Rd

E(|ϕ(Xt,s(x))|)ρ(x)dx 6 C

Z

Rd

|ϕ(x)|ρ(x)dx. (1.2.8)

Moreover, for every Ψ 2 L1([0, T ]⇥ Rd, dt⌦ dx),

c

Z

Rd

Z T

t
|Ψ(s, x)|dsρ(x)dx 6

Z

Rd

Z T

t
E(|Ψ(s,Xt,s(x))|)dsρ(x)dx 6 C

Z

Rd

Z T

t
|Ψ(s, x)|dsρ(x)dx.

(1.2.9)

As we have mentioned above our main interest in the work [96] is to establish the probabilistic
representation of the Sobolev’s solution of the obstacle problem for our PIDEs (1.2.4) via the following
reflected BSDE with jumps (RBSDE with jumps for short) :

8
>>>>>>><
>>>>>>>:

Y t,x
s = g(Xt,T (x)) +

Z T

s
f(r,Xt,r(x), Y

t,x
r , Zt,x

r , V t,x
r )dr +K

t,x
T −Kt,x

s

−
Z T

s
Zt,x
r dBr −

Z T

s

Z

E
V t,x
r (e)eµ(dr, de), P-a.s., 8 s 2 [t, T ]

Y t,x
s > Lt,x

s ,

Z T

t
(Y t,x

s − Lt,x
s )dKt,x

s = 0, P-a.s.

(1.2.10)

The obstacle process Lt,x
s = h(s,Xt,s(x)) is a càdlàg process which has only inaccessible jumps since

h verifies the following hypothesis:

Assumption 1.2.3. h 2 C([0, T ] ⇥ Rd;R) and there exit ι, κ > 0 such that |h(t, x)| 6 ι(1 + |x|κ),
for all x 2 Rd.

According to Hamadène and Ouknine [65], there exists a unique quadruple (Y t,x, Zt,x, V t,x,Kt,x) 2
S2(t, T )⇥H2

d(t, T )⇥ L2(t, T )⇥A2(t, T ) (see Chapter 3 for precise definition of the solution space)
solution of the RBSDE with jumps (1.2.10).

We denote the space of solutions by

HT := {u 2 L
2
ρ([0, T ]⇥ Rd)

∣∣ ruσ 2 L
2
ρ([0, T ]⇥ Rd)}

endowed with the norm

kukHT
=
⇣Z

Rd

Z T

0
[|u(s, x)|2 + |ru(s, x)σ(x)|2]dsρ(x)dx

⌘1/2
,

where we denote the gradient by ru(t, x) =
(
∂1u(t, x), · · ·, ∂du(t, x)

)
.

More precisely, we consider the following definition of weak solutions for the obstacle problem
(1.2.4):

Definition 1.2.1. We say that (u, ν) is the weak solution of the PIDE with obstacle associated to
(g, f, h), if
(i) kuk2HT

<1, u > h, and u(T, x) = g(x),
(ii) ν is a positive Radon regular measure in the following sense, i.e. for every measurable bounded
and positive functions φ and ψ,

Z

Rd

Z T

t
φ(s,X−1

t,s (x))J(X
−1
t,s (x))ψ(s, x)1{u=h}(s, x)ν(ds, dx)

=

Z

Rd

Z T

t
φ(s, x)ψ(s,Xt,s(x))dK

t,x
s dx, a.s.. (1.2.11)
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where (Y t,x
s , Z

t,x
s , V

t,x
s ,K

t,x
s )t 6 s 6 T is the solution of RBSDE with jumps (1.2.10) and such thatZ T

0

Z

Rd

ρ(x)ν(dt, dx) <1,

(iii) for every test function φ 2 DT = C1([0, T ])⌦ C1c
(
Rd
)

Z T

t

Z

Rd

u(s, x)∂sφ(s, x)dxds+

Z

Rd

(u(t, x)φ(t, x)− g(x)φ(T, x))dx+

Z T

t

Z

Rd

u(s, x),L⇤φ(s, x)dxds

=

Z T

t

Z

Rd

f(s, x, u,ruσ, u(s, x+ β(x, ·))− u(s, x))φ(s, x)dxds+

Z T

t

Z

Rd

φ(s, x)1{u=h}(s, x)ν(ds, dx),

(1.2.12)

where L⇤ is the adjoint operator of L.

We give now the following result which allows us to link by a natural way the Sobolev solution
to the obstacle problem with the associated reflected BSDE with jumps. Roughly speaking, if we
choose in the variational formulation (1.2.12) the random functions φt(·, ·) defined by φt(s, x) :=

φ(X−1
t,s (x))J(X

−1
t,s (x)), as a test functions, then we obtain the associated BSDE. In fact, this result

plays the same role as Itô’s formula used in [108] and [115] (see [108], Theorem 3.1, p. 20) to relate
the solution of some semilinear PDEs with the associated BSDE.

Proposition 1.2.2. Let ρ(x) = (1 + |x|)−p with p > γ where γ = κ + d + 1 and u 2 HT be a
weak solution of PIDE with obstacle associated to (g, f, h). Then, under lipschitz condition on f and
Assumptions 1.2.1, 1.2.2 and 1.2.3, we have for s 2 [t, T ] and φ 2 C1

c (Rd),

Z

Rd

Z T

s
u(r, x)dφt(r, x)dx+ (u(s, ·),φt(s, ·))− (g(·),φt(T, ·))−

Z T

s
(u(r, ·),L⇤φt(r, ·))dr

=

Z

Rd

Z T

s
f(r, x, u(r, x),σ⇤ru(r, x), u(r, x+ β(x, ·))− u(r, x))φt(r, x)drdx

+

Z

Rd

Z T

s
φt(r, x)1{u=h}(r, x)ν(dr, dx). a.s.

(1.2.13)

where
Z

Rd

Z T

s
u(r, x)dφt(r, x)dx is well defined thanks to the semimartingale decomposition result

(Lemma 3.2.1).

The main result of this part is the following theorem, where we prove the existence and uniqueness
results of the solution of our PIDEs (1.2.4) and we give the associated probabilistic interpretation
via the reflected BSDEs with jumps.

Theorem 1.2.1. Let ρ(x) = (1 + |x|)−p with p > γ where γ = κ + d + 1. Then, under lipschitz
condition on f and Assumptions 1.2.1, 1.2.2 and 1.2.3, there exists a weak solution (u, ν) of the
PIDE with obstacle (1.2.4) associated to (g, f, h) such that, ds⌦ dP⌦ ρ(x)dx− a.e.,

Y t,x
s = u(s,Xt,s(x)), Z

t,x
s = (ruσ)(s,Xt,s(x)),

V t,x
s (·) = u(s,Xt,s−(x) + β(Xt,s−(x), ·))− u(s,Xt,s−(x)) (1.2.14)

Moreover, the reflected measure ν is a regular measure in the sense of the definition (ii) and satisfying
the probabilistic interpretation (1.2.11).

If (u, ν) is another solution of the PIDE with obstacle(1.2.4) such that ν satisfies (1.2.11) with
some K instead of K, where K is a continuous process in A2(t, T ), then u = u and ν = ν.

In other words, there is a unique Randon regular measure with support {u = h} which satisfies
(1.2.11).
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We show the existence and uniqueness of the solution (u, ν) of the obstacle problem for (1.2.1)
using a probabilistic method based on reflected BSDEs with jumps. The proof of this result differs
from that of Bally et al [9] since we have to consider the stochastic flow associated with the forward
jump diffusion process. In particular, the jump part appearing of the tightness result for the ap-
proximation measure has to be taken into account. The existence of the solution is established by
an approximation penalization procedure, a priori estimates and the equivalence norm results. The
uniqueness is a consequence of the variational formulation of the PIDEs written with random test
functions and the uniqueness of the solution of the FBSDE.

1.2.2 BDSDEs and semilinear SPDEs in a convex domain

1.2.2.1 Motivations and literature

Our main interest is the following system of semilinear stochastic PDE with value in Rk,

dut(x) + [Lut(x) + ft(x, ut(x),rutσ(x))]dt+ ht(x, ut(x),rutσ(x)) · d
 −
W t = 0, (1.2.15)

over the time interval [0, T ], with a given final condition uT = Φ, f, h are non-linear random functions
and L is the second order differential operator associated with a diffusion which is defined component
by component with

Lϕ(x) =
dX

i=1

bi(x)
∂

∂xi
ϕ(x) +

1

2

dX

i,j=1

aij(x)
∂2

∂xi∂xj
ϕ(x). (1.2.16)

The differential term with d
 −
W t refers to the backward stochastic integral with respect to a

d-dimensional Brownian motion on
(
Ω,F ,P, (Wt)t > 0

)
. We use the backward notation because

in the proof we will employ the doubly stochastic framework introduced by Pardoux and Peng
[109]. Such SPDEs appear in various applications like pathwise stochastic control problems, Zakai
equations in filtering and stochastic control with partial observations. It is well known now that
BSDEs provide a natural tools to give a probabilistic interpretation for the solution of a class of
semi-linear PDEs. By introducing in standard BSDEs a second nonlinear term driven by an external
noise, we obtain Backward Doubly SDEs (BDSDEs) [109] (see also [10], [97]), which can be seen as
Feynman-Kac representation of SPDEs and form a powerful tool for probabilistic numerical schemes
[6] for such SPDEs. Several generalizations to investigate more general nonlinear SPDEs have been
developed following different approaches of the notion of weak solutions, namely, Sobolev’s solutions
[43, 61, 75, 125, 137], and stochastic viscosity solutions [88, 89, 90, 24, 25]. Given a convex domain
D in Rk, this part is concerned to study the reflection problem for SPDE (1.2.16) in such domain
D. This problem is well known as a Skorohod problem for SPDEs.

In the case of diffusion processes, the refection problem has been investigated in the literature by
severals authors. The case of a half-space domain was studied by Skorokod [127], McKean [100],
Watanabe [139], El Karoui, Chaleyat-Maurel and Marchal [28]. In the case of a convex domain this
reflection problem was treated by Tanaka [135] and Menaldi [101] by using the variational inequality
and the convexity properties of the domain. Finally, Lions and Sznitman [91] have solved SDEs
with reflecting boundary conditions in general domains by a direct pathwise approach based on the
Skorohod problem.

1.2.2.2 New results

In this part of the thesis we study existence and uniqueness results for reflected backward doubly
stochastic differential equations (in short RBDSDEs) in a convex domain D without any regularity
conditions on the boundary. Moreover, using a stochastic flow approach a probabilistic interpretation
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for the weak solution of a class of reflected SPDEs in a domain is given via such RBDSDEs. Inspired
by the variational formulation of the obstacle problem for SPDEs and Menaldi’s work [101] on
reflected diffusion in a domain, we consider the solution of the refection problem for the SPDEs
(1.2.15) as a pair (u, ν), where ν is a random regular measure and u 2 L

2
(
Ω⇥ [0, T ];H1

ρ (R
d)
)

(where
H1

ρ is the weighted Dirichlet space and ρ a weight function) satisfies the following relations:

(i) ut(x) 2 D̄, dP⌦ dt⌦ dx− a.e.,

(ii0) dut(x) +
⇥
Lut(x) + ft(x, ut(x),rutσ(x))

⇤
dt+ ht(x, ut(x),rutσ(x)) · d

 −
W t = −ν(dt, dx), a.s.,

(iii) ν(u /2 ∂D) = 0, a.s.,

(iv) uT = Φ, dx− a.e..

(1.2.17)

ν is a random measure which acts only when the process u reaches the boundary of the domain
D. The rigorous sense of the relation (iii) will be based on the probabilistic representation of the
measure ν in term of the bounded variation processes K component of the associated solution of the
reflected BDSDE in the domain D.
Our first contribution in this work (see [94]) is to define the solution of Reflected BDSDE in a given
convex domain D and to prove the existence and uniqueness of solution for such equations in order
to relate it to the the solution of the refection problem for our SPDEs (1.2.15).
Let us start with the following defintion:

Definition 1.2.2. The triplet of processes (Yt, Zt,Kt){0 6 t 6 T} is solution of the backward doubly
stochastic differential equation in a convex domain D, with terminal condition ξ and coefficients f

and h, if the following hold:

(i) Y 2 S2k([0, T ]) , Z 2 H2
k⇥d([0, T ]) and K 2 A2

k([0, T ]) (see Chapter 4 for precise definition of
the solution space),

(ii)

Yt = ξ+

Z T

t
fs(Ys, Zs)ds+

Z T

t
hs(Ys, Zs)d

 −
W s−

Z T

t
ZsdBs+KT−Kt , 0 6 t 6 T, a.s. (1.2.18)

(iii) Yt 2 D̄ , 0 6 t 6 T, a.s.

(iv) for any continuous progressively measurable process (zt)0 6 t 6 T valued in D̄,

Z T

0
(Yt − zt)

⇤dKt 6 0, a.s. (1.2.19)

The triplet (Yt, Zt,Kt){0 6 t 6 T} 2 S2k([0, T ]) ⇥ H2
k⇥d([0, T ]) ⇥ A2

k([0, T ]) is called a solution of
RBDSDE with data (ξ, f, h).

Remark 1.2.2. From Lemma 2.1 in [53], the condition (1.2.19) implies that the bounded variation
process K acts only when Y reaches the boundary of the convex domain D and the so-called Skorohod
condition is satisfied: Z T

0
1{Yt2D}dKt = 0. (1.2.20)

Moreover there exits a Ft-measurable process (αt)0 6 t 6 T valued in Rk such that

Kt =

Z t

0
αsdkKskV T and − αs 2 ν(Ys).

Next, results of existence and uniqueness of such RBDSDEs are established.
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Theorem 1.2.2. Let ξ 2 L
2
k(FT ), ξ 2 D̄ a.s.. Then, under Lipschitz continuous condition, the

RBDSDE (1.2.18) has a unique solution (Y, Z,K) 2 S2k([0, T ])⇥H2
k⇥d([0, T ])⇥A2

k([0, T ]).

We note that existence and uniqueness of the solution of RBDSDE is given under only convexity
assumption for the domain without any regularity on the boundary. This result is proved by using
penalization approximation. Thanks to the convexity properties we prove several technical lemmas,
in particular the fundamental Lemma 4.2.2 of Chapter 4.
After establishing the exixtence and uniqueness results for the reflected BDSDE (1.2.18), we are able
now to give a Feynman-Kac’s formula for the weak solution of a semilinear reflected SPDEs (1.2.17)
in a given convex domain D via Markovian class of RBDSDEs studied. As explained above, the
solution of such SPDE is expressed as a pair (u, ν) where u is a predictable continuous process which
takes values in a Sobolev space and ν is a random vector regular signed measure. The bounded
variation processes K component of the solution of the reflected BDSDE controls the set when u

reaches the boundary of D. In fact, this bounded variation process determines the measure ν from
a particular relation by using the inverse of the flow associated to the diffusion operator. In order
to provide the probabilistic representation to the solution of the RSPDEs (1.2.17), we introduce the
following Markovian RBDSDE:

8
>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(i) Y t,x
s = Φ(Xt,T (x)) +

Z T

s
fr(Xt,r(x), Y

t,x
r , Zt,x

r )dr +

Z T

s
hr(Xt,r(x), Y

t,x
r , Zt,x

r )d
 −
W r +K

t,x
T −Kt,x

s

−
Z T

s
Zt,x
r dBr, P-a.s., 8 s 2 [t, T ]

(ii) Y t,x
s 2 D̄ P-a.s.

(iii)

Z T

0
(Y t,x

s − vs(Xt,S(x)))
⇤dKt,x

s 6 0., P-a.s.,

for any continuous Ft − random function v : [0, T ]⇥ Ω⇥ Rd −! D̄.

(1.2.21)

where {Xt,s(x), t 6 s 6 T} is the diffusion process starting from x at time t and is the strong
solution of the equation:

Xt,s(x) = x+

Z s

t
b(Xt,r(x))dr +

Z s

t
σ(Xt,r(x))dBr. (1.2.22)

Therefore under our assumptions and according to Theorem 1.2.2, there exists a unique triplet
(Y t,x, Zt,x,Kt,x) solution of the RBDSDE (1.2.21) associated to (Φ, f, h).

We denote by HT the space of FW
t,T -progressively measurable processes (ut) with valued in the

weighted Dirichlet space H1
ρ (R

d) where

H1
ρ (R

d) := {v 2 L
2
ρ(R

d)
∣∣ rvσ 2 L

2
ρ(R

d))}

endowed with the norm

kuk2HT
= E

⇥
sup

0 6 t 6 T

Z

Rd

|us(x)|2ρ(x)dx+

Z

Rd

Z T

0
|rus(x)σ(x)|2dsρ(x)dx

⇤
,

where we denote the gradient by ru(t, x) =
(
∂1u(t, x), · · ·, ∂du(t, x)

)
.

We now consider the following definition of weak solutions for the reflected SPDE (1.2.17):

Definition 1.2.3. We say that (u, ν) := (ui, νi)1 6 i 6 k is the weak solution of the reflected SPDE
(1.2.17) associated to (Φ, f, h), if for each 1 6 i 6 k

(i) kukHT
<1, ut(x) 2 D̄, dx⌦ dt⌦ dP a.e., and u(T, x) = Φ(x),
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(ii) νi is a signed Radon regular measure in the following sense, i.e. for every measurable bounded
and positive functions ϕ and ψ,

Z

Rd

Z T

t
ϕ(s,X−1

t,s (x))J(X
−1
t,s (x))ψ(s, x)1{u2∂D}(s, x)ν

i(ds, dx)

=

Z

Rd

Z T

t
ϕ(s, x)ψ(s,Xt,s(x))dK

t,x,i
s dx, a.s.. (1.2.23)

where (Y t,x
s , Z

t,x
s ,K

t,x
s )t 6 s 6 T is the solution of RBDSDE (1.2.21) and such thatZ T

0

Z

Rd

ρ(x)|ν|(dt, dx) <1,

(iii) for every test function ϕ 2 DT = C1([0, T ])⌦ C1c
(
Rd
)

Z T

t

Z

Rd

ui(s, x)∂sϕ(s, x)dxds+

Z

Rd

(ui(t, x)ϕ(t, x)− Φi(x)ϕ(T, x))dx−
Z T

t

Z

Rd

ui(s, x)L⇤ϕ(s, x)dxds

=

Z T

t

Z

Rd

fs(x, u(s, x),ru(s, x)σ(x))ϕ(s, x)dxds+
Z T

t

Z

Rd

hs(x, u(s, x),ru(s, x)σ(x))ϕ(s, x)dxd
 −
W s

+

Z T

t

Z

Rd

ϕ(s, x)1{u2∂D}(s, x)ν
i(ds, dx).

(1.2.24)

where L⇤ is the adjoint operator of L. For the sake of simplicity we will omit in the sequel the
subscript i.

We give now the following result which allows us to link by a natural way the solution of SPDE
with the associated BDSDE. In fact, this result plays the same role as Itô’s formula used in [109] to
relate the solution of some semilinear SPDEs with the associated BDSDEs:

Proposition 1.2.3. Let Φ : Rd ! Rk such that belongs to L
2
ρ(R

d), Φ(x) 2 D̄ a.e. 8x 2 Rd and
u 2 HT be a weak solution of the reflected SPDE (1.2.17) associated to (Φ, f, h). Then, under
lipschitz continuous condition on f and h, regularity condition on the coefficients of the diffusion, we
have for s 2 [t, T ] and φ 2 C1

c (Rd),

Z

Rd

Z T

s
u(r, x)dϕt(r, x)dx+ (u(s, ·), ϕt(s, ·))− (Φ(·), ϕt(T, ·))−

Z

Rd

Z T

s
u(r, x)L⇤ϕt(r, x))drdx

=

Z

Rd

Z T

s
fr(x, u(r, x),ru(r, x)σ(x))ϕt(r, x)drdx+

Z

Rd

Z T

s
hr(x, u(r, x),ru(r, x)σ(x))ϕt(r, x)d

 −
W rdx

+

Z

Rd

Z T

s
ϕt(r, x)1{u2∂D}(r, x)ν(dr, dx). a.s.

(1.2.25)

where
Z

Rd

Z T

s
u(r, x)dϕt(r, x)dx is well defined thanks to the semimartingale decomposition result

(Lemma 4.3.1).

Then, the main result of this part is the following theorem where we prove existence and uniqueness
of the solution (u, ν) of the reflection problem for (1.2.15) in a convex domain and we provide the
probabilistic interpretation via the Reflected Forward-BDSDEs :

Theorem 1.2.3. Let Φ : Rd ! Rk such that belongs to L
2
ρ(R

d), Φ(x) 2 D̄ a.e. 8x 2 Rd and
ρ(x) = (1 + |x|)−p with p > d + 1. Then, under lipschitz continuous condition on f and h, and
regularity condition on the coefficients of the diffusion there exists a weak solution (u, ν) of the
reflected SPDE (1.2.17) associated to (Φ, f, h) such that, u(t, x) := Y

t,x
t , dt⌦dP⌦ρ(x)dx−a.e., and

Y t,x
s = u(s,Xt,s(x)), Zt,x

s = (ruσ)(s,Xt,s(x)), ds⌦ dP⌦ ρ(x)dx− a.e.. (1.2.26)
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Moreover, the reflected measure ν is a signed regular measure in the sense of the Definition 1.2.3 (ii)
and satisfying the probabilistic interpretation (1.2.23).
If (u, ν) is another solution of the reflected SPDE (1.2.17) such that ν satisfies (1.2.23) with some
K instead of K, where K is a continuous process, then u = u and ν = ν.
In other words, there is a unique Randon regular measure with support {u 2 ∂D} which satisfies
(1.2.23).

The proof of this result is based on the probabilistic interpretation via the Reflected Forward-
BDSDEs. The uniqueness is a consequence of the variational formulation of the SPDEs written with
random test functions and the uniqueness of the solution of the Reflected FBSDE. The existence of
the solution is established by an approximation penalization procedure, a priori estimates and the
equivalence norm results. In the Appendix, technical lemmas for the existence of the solution of the
Reflected BDSDEs and SPDEs in a convex domain are given.

1.3 Numerical scheme for BDSDEs in domain

1.3.1 Literature

As explained in Section 1.1.1 backward stochastic differential equations (BSDEs in short) are natural
tools to give a probabilistic interpretation for the solution of a class of semi-linear PDEs (see [115],
[108], [107], [36]). By introducing in standard BSDEs a second nonlinear term driven by an external
noise, we obtain Backward Doubly SDEs (BDSDEs) [109] introduced in Section 1.1.1. In the Marko-
vian setting, these equations can be seen as Feynman-Kac’s representation of Stochastic PDEs and
form a powerful tool for numerical schemes [6, 7]. Several generalizations to investigate more general
nonlinear SPDEs have been developed following different approaches of the notion of weak solutions:
the technique of stochastic flow (Bally and Matoussi [10], Matoussi et al. [97, 99], Kunita [80]); the
approach based on Dirichlet forms and their associated Markov processes (Denis and Stoica [43],
Bally, Pardoux and Stoica [11], Stoica [131], Denis, Matoussi and Stoica [40, 41, 42], Matoussi and
Stoica[98]); stochastic viscosity solution for SPDEs (Buckdahn and Ma [24, 25], Lions and Souganidis
[89, 90, 88]). Above approaches have allowed the study of numerical schemes for the Sobolev solution
of semi-linear SPDEs via Monte-Carlo methods (time discretization and regression schemes [6, 5, 7]).

In the case when we consider the whole space Rd, the numerical approximation of the BSDE has
already been studied in the literature by Bally [8], Zhang [140], Bouchard and Touzi [22], Gobet,
Lemor and Warin[57] and Bouchard and Elie [17]. Bouchard and Touzi [22] and Zhang [140] proposed
a discrete-time numerical approximation, by step processes, for a class of decoupled FBSDEs with
possible path-dependent terminal values. Zhang [140] proved a regularity result on Z, which allows the
use of a regular deterministic time mesh. In Bouchard and Touzi [22], the conditional expectations
involved in their discretization scheme were computed by using the kernel regression estimation.
Therefore, they used the Malliavin approach and the Monte carlo method for its computation. Crisan,
Manolarakis and Touzi [34] proposed an improvement on the Malliavin weights. Gobet, Lemor and
Warin in [57] proposed an explicit numerical scheme base based on Monte Carlo regression on a
finite basis of functions. Their approach is more efficient, because it requires only one set of paths to
approximate all regression operators. These Monte Carlo type numerical schemes are investigated
to solve numerically the solution of semilinear PDEs. These latter methods are tractable especially
when the dimension of the state process is very large unlike the finite difference method.
For BDSDEs where the coefficient g does not depend in the control variable z, Aman [1] proposed
a numerical scheme following the idea used by Bouchard and Touzi [22] and obtained a convergence
of order h of the square of the L2- error (h is the discretization step in time). Aboura [1] studied
the same numerical scheme under the same kind of hypothesis, but following Gobet et al. [58]. He
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obtained a convergence of order h in time and he attempt for a Monte Carlo solver. Bachouch et al
[6] have studied the rate of convergence of the time discretization error for BDSDEs in the case when
the coefficient g depending in (y, z). They presented an implementation and numerical tests for such
Euler scheme. Bachouch, Gobet and Matoussi [5] have recently analyzed the regression error arising
from an algorithm approximating the solution of a discrete- time BDSDEs. They have studied the
rate of converge of such error in the case when the coefficients of the BDSDEs are only depend in
the variable y.
For BSDEs with finite random time horizon, namely, the first exit time of a forward SDEs from a
domain O, Bouchard and Menozzi [21] studied the Euler scheme of these equations and provided the
upper bounds for the discrete time approximations error which is at most of order h1/2−ε where ε is
any positive parameter. This rate of convergence is due to the approximation error of the exit time.
These results are obtained when the domain O is piecewise smooth and under a non-charateristic
boundary condition (without uniform ellipticity condition). Bouchard, Gobet and Geiss [20] have
improved this error which is now at most of order h1/2 even if the time horizon is unbounded.

1.3.2 New results

We are interested in this part of the thesis in solving numerically backward doubly stochastic dif-
ferential equations (BDSDEs) with random terminal time τ . The main motivations are giving a
probabilistic representation of the Sobolev’s solution of Dirichlet problem for semi-linear SPDEs and
providing the numerical scheme for such SPDEs. Thus, we study the strong approximation of this
class of BDSDEs when τ is the first exit time of a forward SDE from a cylindrical domain. We use
the Euler scheme and we provide bounds for the discrete-time approximation error.
First, we define the solution of BDSDEs with random terminal time and associated to (ξ, f, g) as a
couple {(Ys, Zs); 0 6 s 6 T} 2 S2k([0, T ])⇥H2

k⇥d([0, T ]) such that Yt = ξ on the set {t > τ}, Zt = 0

on the set {t > τ} and

Yt = ξ +

Z τ^T

t
f(s, Ys, Zs) ds +

Z τ^T

t
g(s, Ys, Zs) d

 −
W s −

Z τ^T

t
Zs dBs, 0 6 t 6 τ . (1.3.1)

where we need the following assumptions on the final condition and on the coefficients:

Assumption (HT) The final random time τ is an FB
t -stopping time and the final condition ξ is an

FB
τ -measurable and k-dimensional random variable such that E[eλτ |ξ|2] <1.

Assumption (HL) The two coefficients f : Ω ⇥ [0, T ] ⇥ Rk ⇥ Rk⇥d ! Rk and g : Ω ⇥ [0, T ] ⇥
Rk ⇥ Rk⇥d ! Rk⇥l, which for some real numbers α, µ, λ, K > 0, C > 0, λ >

2K

1− α
− 2µ + C and

0 < α < 1 satisfy: for all t 2 [0, T ] and (y, z), (y0, z0) 2 Rk ⇥ Rk⇥d,

(i) f(., y, z) and g(., y, z) are Ft measurable,

(ii) |f(t, y, z) − f(t, y0, z0)| 6 K
(
|y − y0|+ kz − z0k

)
,

(iii) hy − y0 , f(t, y, z) − f(t, y0, z) i 6 − µ |y − y0|2,

(iv) kg(t, y, z) − g(t, y0, z0)k2 6 C |y − y0|2 + α kz − z0k2,

(v) E

Z τ

0
eλ s|f(t, 0, 0)|2 ds < 1 and E

Z τ

0
eλ skg(t, 0, 0)k2 ds < 1.

This later equation (1.3.1) gives the probabilistic interpretation for the weak-Sobolev’s solutions
of a class of semilinear stochastic partial differential equations (SPDEs in short) with Dirichlet
null condition on the boundary of some open smooth domain O ⇢ Rd. Let also mention that an
alternative method to solve numerically nonlinear SPDEs is an analytic one, based on time- space
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discretization of the SPDEs. The discretization in space can be achieved either by finite differences,
or finite elements [138] and spectral Galerkin methods [70]. But most numerical works on SPDEs
have concentrated on the Euler finite-difference scheme. Very interesting results have been obtained
by Gyongy and Krylov [60]. The authors consider a symmetric finite difference scheme for a class of
linear SPDE driven by an infinite dimensional Brownian motion.
To our best knowledge, there is no result concerning the existence and uniqueness of the solution for
BDSDE (1.3.1) in the literature. So we need to prove existence and uniqueness of the solution for
BDSDE (1.3.1) which is an extension of Peng’s results [115] in the standard BSDE case:

Theorem 1.3.1. Under the Assumptions (HT) and (HL), there exists a unique solution
{(Ys, Zs ); 0 6 s 6 T } 2 S2k([0, T ])⇥H2

k⇥d([0, T ]) of the BDSDE (1.3.1).

The uniqueness of the solution is obtained directly by applying generalized Ito formula to the
difference of two solutions and under the Lipschitz continuous assumption on the coefficients. For
the existence, it is proved in two steps. The first one, we suppose that the intensity of the external
noise g does not depend on the variables y and z in order to transform our BDSDE into a BSDE
and we apply the result of Peng [115]. Then the nonlinear case is deduced by using the fixed point
Banach theorem. Afterthat, we are interested in developing a discrete-time approximation of a
Forward-Backward Doubly SDE with finite stopping time horizon, namely the first exit time of a
forward SDE from a cylindrical domain D = [0, T )⇥O. For all (t, x) 2 [0, T ]⇥Rd, let (Xt,x

s )0 6 s 6 t

be the unique strong solution of the following stochastic differential equation:

dXt,x
s = b(Xt,x

s )ds+ σ(Xt,x
s )dBs, s 2 [t, T ], Xt,x

s = x, 0 6 s 6 t, (1.3.2)

where b and σ are two functions on Rd with values respectively in Rd and Rd⇥d. We will omit the
dependance of the forward process X in the initial condition if it starts at time t = 0.
Let τ t,x is the first exit time of (s,Xt,x

s ) from a cylindrical domain D = [0, T ) ⇥ O for some open
bounded set O ⇢ Rd. We now consider the following Markovian BDSDE with terminal random time
τ associated to the data (Φ, f, g): For all t 6 s 6 T ,
(
−dY t,x

s = 1{s<τ}f(s,X
t,x
s , Y

t,x
s , Z

t,x
s )ds+ 1{s<τ}g(s,X

t,x
s , Y

t,x
s , Z

t,x
s )d
 −
W s − Z

t,x
s dBs,

Y
t,x
s = Φ(τ,Xt,x

τ ), τ 6 s 6 T,
(1.3.3)

where f and Φ are now two functions respectively on [0, T ]⇥Rd ⇥Rk ⇥Rk⇥d and Rd with values in
Rk and g is a function on [0, T ]⇥ Rd ⇥ Rk ⇥ Rk⇥d with values in Rk⇥l.

Now, we specify some conditions on the domain and the diffusion process:

Assumption (D) O is an open bounded set of Rd with a C2-boundary.

Assumption (MHD)

(i) The matrix a := σσ⇤ is elliptic, i.e. there exist Λ > 0 such that for all x, ζ 2 Ō ,

Λkζk2 6 ζa(x)ζ⇤. (1.3.4)

(ii) There exist a positive constant L such that

|b(x)− b(x0)|+ kσ(x)− σ(x0)k 6 L|x− x0|, 8x, x0 2 Rd.

Besides, we assume that the terminal condition Φ is sufficiently smooth:

Assumption (MHT)

Φ 2 C1,2([0, T ]⇥ Rd) and k∂tΦk+ kDΦk+ kD2Φk 6 L on [0, T ]⇥ Rd.
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We next state a strengthening of Assumption (HL) in the present Markov framework:

Assumption (MHL) There exist constants α, µ, λ, K > 0, C > 0, C 0 > 0, λ >
2K

1− α
− 2µ + C

and 0 < α < 1 such that for any (t1, x1, y1, z1), (t2, x2, y2, z2) 2 [0, T ]⇥ Rd ⇥ Rk ⇥ Rk⇥d,

(i) |f(t1, x1, y1, z1)− f(t2, x2, y2, z2)| 6 K
(p
|t1 − t2|+ |x1 − x2|+ |y1 − y2|+ kz1 − z2k

)
,

(ii) kg(t1, x1, y1, z1)− g(t2, x2, y2, z2)k2 6 C
(
|t1 − t2|+ |x1 − x2|2 + |y1 − y2|2

)
+ αkz1 − z2k2,

(iii) hy1 − y2 , f(t1, x1, y1, z1) − f(t1, x1, y2, z1) i 6 − µ |y1 − y2|2,

(iv) sup
0 6 t 6 T

(|f(t, 0, 0, 0)|+ kg(t, 0, 0, 0)k) 6 C 0.

We note that the integrability condition given by Assumption (HT) is satisfied in this Markovian
setting thanks to the smoothness of Φ (Assumption (MHT)) and the fact that the exit time τ , under
the ellipticity condition (1.3.4) verified by the matrix a (see Stroock and Varadhan [133]), satisfy

sup
(t,x)2[0,T )⇥Ō

E[exp(λτ t,x)] <1.

In order to approximate the forward diffusion process (1.3.2), we use a standard Euler scheme with
time step h, associated to a grid

π := {ti = ih ; i 6 N}, h := T/N , N 2 N,

This approximation is defined by

XN
t = x+

Z t

0
b(Xϕ(s))ds+

Z t

0
σ(Xϕ(s))dBs, t > 0 (1.3.5)

where ϕ(s) := sup{t 2 π : t 6 s}. Notice that ϕ(t) = ti, for t 2 [ti, ti+1) and the continuous
approximation (1.3.5) is equivalent to the following discrete approximation

(
XN

0 = x,

XN
ti+1

= XN
ti + b(XN

ti )(ti+1 − ti) + σ(XN
ti )(Bti+1

−Bti), i 6 N.
(1.3.6)

Then, we approximate the exit time τ by the first time of the Euler scheme (t,XN
t )t2π from D on

the grid π:

τ̄ := inf{t 2 π : XN
t /2 O} ^ T. (1.3.7)

The upper bound estimates for the error due to the approximation of τ by τ̄ was proved by Bouchard
and Menozzi [21] for the weak version of such estimate and Gobet [54, 55] for the strong one. Recently,
Bouchard, Geiss and Gobet [20] have improved the following L1-strong error:

Theorem 1.3.2. Assume that (MHD) and (D) hold. Then, there exists CL > 0 such that

E[|τ − τ̄ |] 6 CLh
1/2. (1.3.8)

Let us mention that the upper bound estimates for the error due to the approximation of τ by τ̄

proved by Bouchard and Menozzi [21] for the weak version of such estimate is as following: for any
ε 2 (0, 1) and each positive random variable ξ satisfying E[(ξL)

p] 6 Cp
L for all p > 1, there exists

Cε
L > 0 such that

E
⇥
E[ξL|τ − τ̄ ||FB

τ+^τ̄ ]
2
⇤
6 Cε

Lh
1−ε. (1.3.9)
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For the strong estimate error, Gobet [54, 55] have proved that, for each ε 2 (0, 1/2), there exists
Cε
L > 0 such that

E[|τ − τ̄ |] 6 Cε
Lh

1/2−ε. (1.3.10)

Regarding the approximation of (1.3.3), we adapt the approach of [6]. We define recursively (in a
backward manner) the discrete-time process (Y N , ZN ) on the time grid π by

Y N
T = Φ(τ̄ , XN

τ̄ ), (1.3.11)

and for i = N − 1, . . . , 0, we set

ZN
ti = h−1Eti

"
(Y N

ti+1
+ g(ti+1,Θ

N
i+1)∆Wi)∆B>

i

#
, (1.3.12)

Y N
ti = Eti [Y

N
ti+1

] + 1{ti<τ̄}hEti [f(ti,Θ
N
i )] + 1{ti<τ̄}Eti [g(ti+1,Θ

N
i+1)∆Wi], (1.3.13)

where

ΘN
i := (XN

ti , Y
N
ti , Z

N
ti ) , ∆Wi = Wti+1

−Wti , ∆Bi = Bti+1
−Bti .

> denotes the transposition operator and Eti denotes the conditional expectation over the σ-algebra
F0
ti . The above conditional expectation are well defined at each step of the algorithm.

Then we consider a continuous-time extension of Y N in S2 defined on [0, T ] by

Y N
t = Φ(τ̄ , XN

τ̄ ) +

Z T

t
1{s<τ̄}f(ϕ(s),Θ

N
ϕ(s))ds+

Z T

t
1{s<τ̄}g(ψ(s),Θ

N
ψ(s))d

 −
W s −

Z T

t
ZN
s dBs,

(1.3.14)

where ψ(s) := inf{t 2 π : t > s}.
Afterthat, we provide bounds for the (square of the) discrete-time approximation error up to a
stopping time θ 6 T P-a.s. defined as

Err(h)2θ := max
i<N

E
⇥

sup
t2[ti,ti+1]

1{t<θ}|Yt − Y N
t |2

⇤
+ E

⇥ Z θ

0
kZt − ZN

ϕ(t)k2dt
⇤
, (1.3.15)

where we recall ϕ(s) := sup{t 2 π : t 6 s}. We are interested in two important cases: θ = T and
θ = τ^τ̄ . This approximation error is naturally related to the error comming from the approximation
of τ by τ̄ (1.3.8), the error due to the approximation of X by Xϕ and the regualrity of the solution
(Y, Z) of (1.3.3) through the quantities

R(Y )πS2 := max
i<N

E
⇥

sup
t2[ti,ti+1]

|Yt − Yti |2
⇤

, R(Z)πH2 := E
⇥ Z T

0
kZt − Z̄ϕ(t)k2dt

⇤

where Z̄ti be the best approximation of (Zt)ti 6 t 6 ti+1
by Fti-measurable random variable in the

following sense

Z̄ti := h−1Eti [

Z ti+1

ti

Zsds] , i < N.

We finally obtain our main result, which provides an upper bound for the convergence rate of
Err(h)2τ+^τ̄ (and thus for Err(h)2τ^τ̄ and Err(h)2T ) which is of order h1/2.

Theorem 1.3.3. Let the Assumptions (D), (MHT), (MHL) and (MHD) hold. Then, for each
ε 2 (0, 1/2), there exists Cε

L > 0 such that

Err(h)2τ+^τ̄ 6 CLh
1/2 and Err(h)2T 6 CLh

1/2 (1.3.16)
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Then, we end this part by giving a Feynman-Kac’s formula for the weak solution of a class of
semilinear SPDEs with Dirichlet null condition on the boundary via the associated Markovian class
of BDSDEs with random terminal time studied above. This representation enables us to solve
numerically by Monte Carlo method the solution of SPDEs in a domain. Indeed, for a given open
bounded domain O of Rd, we are interested in the following semilinear SPDEs :

8
>><
>>:

dut + Lut dt+ f(t, x, ut, Dσut) dt+ g(t, x, ut, Dσut ) d
 −
W t = 0 , 8 0 6 t 6 T, 8x 2 O,

u(T, x) = Φ(x) , 8x 2 O
u(t, x) = 0 , 8 0 6 t 6 T, 8x 2 ∂O.

(1.3.17)

where Dσ := ruσ and L is the second order differential operator associated with a diffusion
which is defined component by component with

Lϕ(x) =
dX

i=1

bi(x)
∂

∂xi
ϕ(x) +

1

2

dX

i,j=1

aij(x)
∂2

∂xi∂xj
ϕ(x) (1.3.18)

and a := σσ⇤.
We assume the following hypotheses on the coefficients of the diffusion and the final condition:

Assumption (MHD’) The coefficients of the second order differential operator L satisfy:

• b is a bounded function and belongs to C2
l,b(R

d,Rd).

• σ 2 C3
l,b(R

d,Rk⇥d) and satisfy the ellipticity condition (1.3.4).

Assumption (MHT’) Φ 2 L
2(O;Rk) with polynomial growth, namely there exists C > 0 and

p 2 N such that |Φ(x)| 6 C(1 + |x|p).

We denote byH the space of FW
t,T -progressively measurable processes (ut) with valued in the Dirichlet

space H1
0 (O) where

H1
0 (O) := {v 2 L

2(O)
∣∣ rvσ 2 L

2(O))}

endowed with the norm

kuk2H = E
⇥

sup
0 6 s 6 T

kusk22 +
Z

O

Z T

0
|rus(x)σ(x)|2dsρ(x)dx

⇤
,

where we denote the gradient by ru(t, x) =
(
∂1u(t, x), · · ·, ∂du(t, x)

)
.

Definition 1.3.1. We say that u 2 H is a weak solution of the SPDE (1.3.17) if the following
relation holds for each Ψ 2 D,

Z T

t

Z

O
u(s, x) ∂sΨ(s, x) dx ds−

Z

O
Φ(x)Ψ(T, x)dx+

Z

O
u(t, x)Ψ(t, x) dx−

Z T

t

Z

O
u(s, x)L⇤u(s, x) dxds

=

Z T

t

Z

O
Ψ(s, x) f(s, x, u(s, x), Dσu(s, x)) dx ds+

Z T

t

Z

O
Ψ(s, x) g(s, x, u(s, x), Dσu(s, x)) dx d

 −
W s.

(1.3.19)

where Ãi =:
1

2

dX

k=1

∂ak,i

∂xk
and

(
u(s, ·),L⇤Ψ(s, ·)

)
:=

Z

O
Dσu(s, x)DσΨ(s, x) dx+

Z

O
u(s, x) div( (b− Ã)Ψ(s, x)) dx.
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We consider now the Markovian BDSDE with random terminal time τ t,x which is the first exist
time of the forward diffusion Xt,x from the domain O

Y t,x
s = Φ(Xt,x

T^τ t,x) +

Z T

s
1(τ t,x>r)f(r,X

t,x
r , Y t,x

r , Zt,x
r ) dr −

Z T

s
Zt,x,
r dBr

+

Z T

s
1(τ t,x>r)g(r,X

t,x
r , Y t,x

r , Zt,x
r ) d

 −
W r .

(1.3.20)

Then probabilistic representation for the weak solution of semilinear SPDEs with Dirichlet null
condition on the boundary of the domain O (1.3.17) is given by means of solution of BDSDEs with
random terminal time (1.3.20). This is done by using localization procedure and stochastic flow
technics (see e.g. [10], [97], [80, 79] for these flow technics).

Theorem 1.3.4. Assume (MHT’), (D), (MHL) and (MHD’) hold and let
{(Y t,x

s , Z
t,x
s ), t 6 s 6 T} be the solution of BDSDE (1.3.20) . Then, u(t, x) := Y

t,x
t , dt⌦ dx, a.e. is

the unique solution of the SPDE (1.3.19) and

Y t,x
s = u(s ^ τ t,x, X

t,x
s^τ t,x), Zt,x

s = Dσu(s ^ τ t,x, X
t,x
s^τ t,x). (1.3.21)

Thanks to representation (1.3.21), numerical resolution of BDSDEs can be applied to solve nu-
merically the solution of semilinear SPDEs (1.3.17). Finally, we implement our numerical scheme
(1.3.6)-(1.3.11)-(1.3.13)-(1.3.12) and we only test statically its convergence. Further analysis of the
convergence of the used method and of the error bounds will be accomplished in a future work.

1.4 Work in progress and Perspectives

We end the introduction by presenting some work in progress and future prespectives.

1. In the first work, we are interested in the solution of the reflection problem for quasilinear
Stochastic PDEs in a convex domain D. More precisely, we give probabilistic interpretation
for these solutions via Reflected generalized BDSDEs in a convex domain. We prove in this
work existence and uniqueness results of such RBDSDEs in a convex in order to relate it to
the the solution of the refection problem for our quasilinear SPDEs.

2. In the second one, we prove existence result and representation of the robust problem associated
to BSDE with weak terminal condition which was first introduced by Bouchard, Elie and
Reiveillac [18]. This class of robust equations shall permit to get results on quantile hedging
and hedging under loss constraints obtained by Folmer and Leukert [50] and in Bouchard, Elie
and Touzi [19] under models uncertainty. We are able to get these robust results for a class
of models in the dominated case, but the non dominated case (as the UVM = Uncertainty
volatilty models) seems to be a difficult question.

3. An other work in progress which is related to the obstacle problem for PIDEs (studied in
Chapter 3) is to study the problem by using an analytical point of view (see Michel Pierre
[116, 117], Denis, Matoussi and Zhang [38]). The question is how to define the anlytical
potential associated to the non local operator K2 (1.2.16) in the jump case. Therefore, we are
thinking of how to define the associated analytical capacity and extend the analytical quasi-
sure approaches for the PIDEs and generally for the Stochastic PIDEs. Moreover, we also
study this problem by probabilistic quasi-sure approach as in Matoussi and Stoica [98] for the
obstacle problem of quasilinear parabolic stochastic PDEs.

4. For future research, an another topic is about quasilinear and fully nonlinear Stochastic PDEs
driven by a general noise with less regularity condition that the Brownian motion. Thus we
shall study Stochastic PDEs from a rough point view combining with BSDEs and 2BSDEs
theory.
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2.1 Introduction

Our aim in this chapter is to provide a complete theory of existence and uniqueness of Second order
BDSDEs (2BDSDEs) under the Lipschitz-type hypotheses on the driver. We will show that in this
context, the definition of a 2BDSDE is very similar to that of a 2BSDE. The main motivation is to
give the probabilistic interpretation of classical and stochastic viscosity of fully nonlinear Stochastic
PDEs. Similarly to Buckdahn and Ma [24, 25], we use the Doss-Sussnmann transformation to convert
fully nonlinear SPDEs to fully nonlinear PDEs with random coefficients, then we use the solution of
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2BDSDE to provide the Feynman-Kac’s formula.
The outline is as follows. After recalling briefly some notations, we provide in Section 2.2 the precise
definition of 2BDSDEs and show how they are connected to classical BDSDEs. Then, in Section
2.3, we show a representation formula for the solution of 2BDSDEs which in turn implies uniqueness
and existence result is given in section 2.4 . In Section 2.5, we present first the link between the
the markovian 2BDDSE with the associated fully nonlinear SPDEs. Then, we prove that stochastic
viscosity solution of such SPDE’s is given via the solution of 2BDSDEs. Finally, we give some
technicals results needed for the existence of the solution of the 2BDDSEs . The starting point of
this work is the following parabolic Fully nonlinear stochastic partial differential equation (in short
FSPDE). This Chapter is based in [93].

2.2 Preliminaries and Hypothesis

The inner scalar product of the space Rd(d > 2) will be denoted by h., .i and the associated Euclidean
norm by k.k.
In what follows let us fix a positive real number T > 0. First of all, we shall work on the product
space Ω := ΩB ⇥ ΩW where

• ΩB := {ω 2 C([0, T ],Rd), ω0 = 0} equipped with the uniform norm kωk1 := sup
0 6 t 6 T

|ωt|, B

the canonical process (Bt(ω) = ωt), P0
B the Wiener measure.

• (Wt)0 6 t 6 T is a standard Brownian motion independent of B and defined on
(ΩW ,FW ,PW

0 ).

Let FW = {FW
t,T }t > 0 be a retrograde filtration generated by W , defined by FW

s,t := σ{Wr −
Ws, s 6 r 6 t} and let FW

T = FW
0,T . We also consider FB = {FB

t }t > 0 a forward filtration gen-
erated by B, such tha FB

t := σ{Br, 0 6 r 6 t}. For each t 2 [0, T ], we define

Ft := FB
t _ FW

t,T and Gt := FB
t _ FW

T .

Finally, we consider F = FB ⌦FW and the probability measure P := P0
B ⌦ PW

0 .

The collection F = (Ft)0 6 t 6 T is neither increasing nor decreasing and it does not constitute a
filtration. However, G = (Gt)0 6 t 6 T is a filtration.

2.2.1 The set of probability measures and the generator

We will say that a probability measure PB is a local martingale measure if the canonical process B

is a local martingale under PB. By Karandikar [72], we know that we can give pathwise definition
of the quadratic variation hBit and its density ât.

hBit := BtB
>
t − 2

Z t

0
BsdB

>
s and ât := lim

ε#0

1

ε
(hBit − hBit−ε).

where > denotes the transposition, and the lim is componentwise.
Let P denote the set of all measure P := PB ⌦ PW

0 such that

hBit is absolutely continuous in t and â takes values in S>0
d .

W is a PW
0 − Brownian motion.

where S>0
d denotes the space of all d⇥ d real valued positive definite matrices.

This chapter concentrates on the subclass PS ⇢ P consisting of all probability measures P := Pα⌦PW
0

such that

Pα := P0
B ◦ (Xα)−1 where Xα

t :=

Z t

0
α1/2
s dBs, t 2 [0, T ],P0

B − a.s. (2.2.1)
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for some FB- progressively measurable process α taking values in S>0
d with

Z T

0
|αt|dt <1 , P0

B−a.s.
For any P 2 PS , it follows from the Lévy characterization that Itô’s stochastic integral under P,

X â
t :=

Z t

0
â1/2s dBs, t 2 [0, T ] , P0

B − a.s. (2.2.2)

defines a P-Brownian motion.

Remark 2.2.1. We denote by F
P
(resp. FX â

P
) the P-augmentation of the right-limit filtration

generated by B (resp. by X â). We recall from [130] that

PS =
n
P 2 P : FX â

P
= F

P
o
, (2.2.3)

and every P 2 PS satisfies the Blumenthal zero-one law and the martingale representation property.

Remark 2.2.2. We recall from [129] that for a fixed P 2 PS, we have from the Blumenthal zero-one
law that EP[ξ|Gt] = EP[ξ|G+t ]P− a.s. for any t 2 [0, T ] and P-integrable ξ. In particular, this shows
that any G+t -measurable random variable has an Gt-measurable P-modification.

Let Ht(w, y, z, γ) : [0, T ]⇥Ω⇥R⇥Rd⇥DH ! R be F- progressively measurable ,where DH ⇢ Rd⇥d

is a given subset containing 0.
Define the corresponding conjugate of H with respect to γ by

Ft(w, y, z, a) := sup
γ2DH

{1
2
Tr(aγ)−Ht(w, y, z, γ)

 
for a 2 S>0

d ,

F̂t(y, z) := Ft(y, z, ât) and F̂ 0
t := F̂t(0, 0).

We denote by DFt(y,z) := {a, Ft(w, y, z, a) < +1} the domain of F in a for a fixed (t, w, y, z).
We consider also a function gt(ω, y, z) : [0, T ]⇥Ω⇥R⇥Rd ! Rl which is F- progressively measurable
and denote g0t = gt(0, 0).

Definition 2.2.1. We restrict the set of probability measures in P which is the collection of all
P 2 PS such that

aP 6 â 6 aP , dt⇥ dP− a.s. for some aP, aP 2 S>0
d ,

EP
h⇣ Z T

0
|F̂ 0

t |2dt
⌘i

< +1 , EP
h⇣ Z T

0
kg0t k2dt

⌘i
< +1.

Definition 2.2.2. We say that a property holds P-quasi-surely (P-q.s. for short) if it holds P-a.s.
for all P 2 P.

We now state our main assumptions on the functions F and g

Assumption 2.2.1. (i) P is not empty, the domain DFt(y,z) = DFt is independent of (ω, y, z).

(ii) For fixed (y, z, a), F is Ft measurable in DFt , and g is Ft measurable.

(iii) We have the following uniform Lipschitz-type property in y and z: There exist constants C > 0

and 0 6 α < 1 such that 8(y, y0, z, z0, t, ω) 2 R⇥ R⇥⇥Rd ⇥ Rd ⇥ Ω,

|F̂t(ω, y, z)− F̂t(ω, y
0, z0)| 6 C

(
|y − y0|+ kâ1/2(z − z0)k

)

kgt(ω, y, z)− gt(ω, y
0, z0)k2 6 C|y − y0|2 + αk(z − z0)k2

(iv) There exists a constant λ 2 [0, 1[ such that

(1− λ)â > αId.

(v) F is uniformly continuous in ω for the k.k1 norm.

(vi) H is uniformly continuous in ω for the k.k1 norm.
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2.2.2 The Spaces and Norms

For the formulation of the second order BDSDEs, we will use the same spaces and norms introduced
in the second order BSDEs [128].

For p > 1, Lp denotes the space of all FT -measurable scalar r.v. ξ with

kξkpLp := sup
P2P

EP[|ξ|p] < +1.

Hp denotes the space of all Ft - measurable Rd-valued processes Z with

kZkpHp := sup
P2P

EP
h⇣ Z T

0
|â1/2t Zt|2dt

⌘ p

2
i
< +1.

Dp denotes the space of all Ft- measurable R-valued processes Y with

P -q.s. càdlàg paths, and kY kpDp := sup
P2P

EP
h

sup
0 6 t 6 T

|Yt|p
i
< +1.

Ip denotes the space of all Ft- measurable R-valued processes K null at 0 with

P -q.s. càdlàg paths, and nondecreasing paths, and kKkpIp := sup
P2P

EP
h
(KT )

p
i
< +1.

For each ξ 2 L1,P 2 P and t 2 [0, T ] denote E
H,P
t [ξ] := ess supP

P
0
2P(t+,P)

EP
0

t [ξ] where

P(t+,P) := {P0 := P0
B ⌦ PW

0 2 P ; P0
B = PB on FB,+

t }.

Here EP
t [ξ] := EP[ξ|Gt] = EP[ξ|FB

t _ FW
T ], P− a.s.

Then we define for each p > 2,
Lp := {ξ 2 Lp : kξkLp < +1} where kξkpLp := sup

P2P
EP
h
ess supP
0 6 t 6 T

(
E
H,P
t [|ξ|2]

) p

2

i
.

Finally, we denote by UCb(Ω) the collection of all bounded and uniformly continuous maps ξ : Ω! R

with respect to the k.k1 -norm, and we let Lp be the closure of UCb(Ω) under the norm k.kLp , for
every 2 6 p.

2.2.3 Formulation

We shall consider the following second order backward doubly stochastic differential equation
(2BDSDE for short)

Yt = ξ +

Z T

t
F̂s(Ys, Zs)ds+

Z T

t
gs(Ys, Zs)d

 −
W s −

Z T

t
ZsdBs+KT −Kt,

0 6 t 6 T, P − q.s.

(2.2.4)

We note that the integral with respect to {Wt} is a "backward Itô integral" (see [78], Page 111-112)

and the integral with respect to {Bt} is a standard forward Itô integral.

For any P 2 P, G-stopping time τ , and Gτ -measurable random variable ξ 2 L2(P), let (yP, zP) :=

(yP(τ, ξ), zP(τ, ξ)) denote the unique solution to the following BDSDE (existence and uniqueness

have been proved under our assumptions by Pardoux and Peng [109])

yPt = ξ +

Z τ

t
F̂s(y

P
s , z

P
s )ds+

Z τ

t
gs(y

P
s , z

P
s )d
 −
W s −

Z τ

t
zPs dBs 0 6 t 6 T, P− a.s. (2.2.5)

Definition 2.2.3. For ξ 2 L2, we say (Y, Z) 2 D2 ⇥H2 is a solution to the 2BDSDE (2.2.4) if
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• YT = ξ P − q.s.

• For each P 2 P, the process KP defined below has nondecreasing paths, P− a.s.:

KP
t := Y0 − Yt −

Z t

0
F̂s(Ys, Zs)ds−

Z t

0
gs(Ys, Zs)d

 −
W s +

Z t

0
ZsdBs,

0 6 t 6 T, P− a.s.

(2.2.6)

• The family {KP,P 2 P} defined in (2.2.6) satisfies the following minimum condition:

KP
t = ess infP

P
02P(t+,P)

EP
0

t [KP
0

T ] P− a.s. for all P 2 P, t 2 [0, T ]. (2.2.7)

Moreover, if the family {KP,P 2 P} can be aggregated into a universal process K, we call (Y, Z,K)

a solution of 2BDSDE (2.2.4).

2.2.4 Connection with standard BDSDEs

Let H be the following linear function of γ:

Ht(y, z, γ) =
1

2
Id : γ − ft(y, z),

where Id is the identity matrix in Rd .
Then, DFt(w) = {Id}, F̂t(y, z) = ft(y, z) and P = {P0 := P0

B ⌦ PW
0 }. In this case, the minimum

condition (2.2.7) implies

0 = K0 = EP0 [KT ] and thus K = 0, P0 − a.s.

since Kt is nondecreasing. Hence, the 2BDSDE (2.2.4) is equivalent to the following BDSDE:

Yt = ξ +

Z T

t
fs(Ys, Zs)ds+

Z T

t
gs(Ys, Zs)d

 −
W s −

Z T

t
ZsdBs, 0 6 t 6 T, P0 − a.s. (2.2.8)

2.2.5 Connection with G-expectation

We consider H the following function:

Ht(y, z, γ) := G(γ) =
1

2
sup

a 6 a 6 a
(a : γ) a, a 2 S>0

d ,

and suppose that g does not depend on Y and Z, then

• DFt = [a, a] and Ft(y, z, a) = 0 for all a 2 [a, a] ;

• P = {P 2 PS ; a 6 â 6 a , dt⇥ dP− a.s. EP
h⇣ Z T

0
|g(t)|2dt

⌘i
< +1},

and the 2BDSDE (2.2.4) becomes

Yt = ξ +

Z T

t
g(s)d

 −
W s −

Z T

t
ZsdBs +KT −Kt, 0 6 t 6 T, P − q.s.

Denoting

Ȳt = Yt +

Z t

0
g(s)d

 −
W s, ξ̄ = ξ +

Z T

0
g(s)d

 −
W s,



34

Chapter 2. Probabilistic Interpretation for Fully Nonlinear

SPDEs

we have the following 2BSDE

Ȳt = ξ̄ −
Z T

t
ZsdBs +KT −Kt, 0 6 t 6 T, P − q.s.

As in [128], we may decompose K into dKt = ktdt+dK0
t , where k > 0 and dK0

t is a measue singular

to the Lebesgue measure dt. Then, there exists a process Γ such that G(Γt) −
1

2
ât : Γ = kt and we

get

Ȳt = ξ̄ +

Z T

t

(1
2
âs : Γ−G(Γs)

)
ds−

Z T

t
ZsdBs +K0

T −K0
t , 0 6 t 6 T, P − q.s.

and it follows that

Yt = ξ ++

Z T

t

(1
2
âs : Γ−G(Γs)

)
ds+

Z T

t
g(s)d

 −
W s −

Z T

t
ZsdBs +K0

T −K0
t ,

0 6 t 6 T, P − q.s.

In addition to Assumption 2.2.1, we will assume

Assumption 2.2.2. The processes F̂ 0 and g0 satisfy the following integrability conditions

φ2 := sup
P2P

EP
⇥
ess supP

0 6 t 6 T

(
E
H,P
t [

Z T

0
|F̂ 0

s |2ds]
)⇤

< +1, (2.2.9)

ψ2 := sup
P2P

(
EP
h Z T

0
|g0s |2ds

i⌘
< +1. (2.2.10)

2.3 Uniqueness of the solution and other properties

2.3.1 Representation and uniqueness of the solution

The aim of this section is to prove the uniquness of solution for 2BDSDEs (2.2.4), which is a direct
consequence from representation theorem. But, since in our 2BDSDEs (2.2.4) we have the extra
backward integral we shall handle with the difficulties coming from this term. That’s why, the
followig lemma is needed.

Lemma 2.3.1. The minimum condition (2.2.7) implies that

inf
P02P(t+,P)

EP0
h
KP0

T −KP0

t

i
= 0.

Proof. Indeed, fix some P 2 P and some P0 2 P(t+,P) and observe first that (2.2.7) implies that

KP
t = KP

0

t , P− a.s. Hence, taking expectation under P in (2.2.7), we obtain readily

EP


ess infP

P02P(t+,P)
EP0

t [KP
0

T −KP
0

t ]

]
= 0. (2.3.1)

Then, we know (see [129]) that the family P(t+,P) is upward directed. Therefore, by classical
results, there is a sequence (Pn)n > 0 ⇢ P(t+,P) such that

ess infP
P02P(t+,P)

EP0

t [KP0

T −KP0

t ] = lim
n!+1

# EPn

t [KPn

T −KPn

t ].
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Using this in 2.3.1 and then the monotone convergence theorem under the fixed measure P, we
obtain

0 = EP


ess infP

P02P(t+,P)
EP0

t [KP0

T −KP0

t ]

]

= EP


lim

n!+1
# EPn

t [KPn

T −KPn

t ]

]

= lim
n!+1

# EP
h
EPn

t [KPn

T −KPn

t ]
i

= lim
n!+1

# EPn
h
EPn

t [KPn

T −KPn

t ]
i

= lim
n!+1

# EPn
h
KPn

T −KPn

t

i

> inf
P
02P(t+,P)

EP
0 h
KP

0

T −KP
0

t

i
.

Since KP
0

is a non-decreasing process, the result follows. tu
We can now show as in Theorem 4.4 of [129] that the solution to 2BDSDE (2.2.4) can be represented

as a supremum of solutions to BDSDE (5.3.2).

Theorem 2.3.1. Let assumptions 2.2.1 and 2.2.2 hold. Assume ξ 2 L2 and that (Y, Z,K) is a
solution to 2BDSDE (2.2.4). Then, for any P 2 P and 0 6 t1 < t2 6 T,

Yt1 = ess supP

P
02P(t+

1
,P)

yP
0

t1 (t2, Yt2), P − a.s. (2.3.2)

Consequently, the 2BDSDE (2.2.4) has at most one solution in D2 ⇥H2

Proof. Let first assume that (Y, Z,K) is a solution to 2BDSDE (2.2.4) and (2.3.2) is true then

Yt = ess supP

P
02P(t+,P)

yP
0

t (T, ξ) , t 2 [0, T ], P − a.s., for all P 2 P (2.3.3)

and thus Y is unique. Since we have that dhY,Bit = ZtdhBit, P − q.s., Z is unique.
Finally, the process KP is uniquely determined. We will now prove the representation (2.3.2).
(i) Fix 0 6 t1 < t2 6 T, and P 2 P. For any P

0 2 P(t+1 ,P), note that from (2.2.4)

Yt = Yt2 +

Z t2

t
F̂s(Ys, Zs)ds+

Z t2

t
gs(Ys, Zs)d

 −
W s −

Z t2

t
ZsdBs +KP

0

t2 −KP
0

t , t1 6 t 6 t2,P
0 − a.s.

and that KP
0

is nondecreasing, P
0 − a.s.. Applying the comparison principle for BDSDE under P ,

we have Yt1 > yP
0

t1 (t2, Yt2),P
0 − a.s.

Since P
0
= P on F+

t1
, we get Yt1 > yP

0

t1 (t2, Yt2),P− a.s and thus

Yt1 > ess supP

P02P(t+
1
,P)

yP
0

t1 (t2, Yt2), P − a.s. (2.3.4)

(ii) To prove the reverse inequality of representation (2.3.2), we use standard linearization techniques.
Fix P 2 P, for every P0 2 P(t+1 ,P), denote:

δY := Y − yP
0

(t2, Yt2) and δZ := Z − zP
0

(t2, Yt2)

By the Lipschitz Assumption 2.2.1(iii), there exist (Ft)-measurable bounded processes λ, η, α,β such
that

δYt =

Z t2

t
(λsδYs + ηsâ

1/2
s δZs)ds+

Z t2

t
(αsδYs + βsδZs) d

 −
W s −

Z t2

t
δZsdBs +KP

0

t2 −KP
0

t

t 6 t2,P
0 − a.s. (2.3.5)
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Define:

Mt := exp
⇣Z t

0
ηsâ

−1/2
s dBs +

Z t

0
λsds−

1

2

Z t

0
|ηs|2ds

⌘
,

t1 6 t 6 t2,P
0 − a.s (2.3.6)

By Integration by parts we have

d(MtδYt) = Mt(δZt + δYtηtâ
−1/2
t )dBt −MtβtδZtd

 −
W t −MtdK

P
0

t (2.3.7)

so, we compute that:

EP[δYt1 ] = EP
0

M−1

t1

Z t2

t1

MtdK
P
0

t

]
6 EP

0


sup
t1 6 t 6 t2

(M−1
t1

Mt)(K
P
0

t2 −KP
0

t1 )

]

by the nondecrease of KP
0

and where we used the fact that since δYt1 is Ft+
1

-measurable, its expec-

tation is the same under P and P
0
. By the boundedness of λ, η,α,β, for every p > 1 we have,

EP
0

[ sup
t1 6 t 6 t2

(M−1
t1

Mt)
p + sup

t1 6 t 6 t2

(Mt1M
−1
t )p] 6 Cp, t1 6 t 6 t2,P

0 − a.s (2.3.8)

Then it follows from the Hölder inequality that:

EP[Yt1 − yP
0

t1 (t2, Yt2)] 6
⇣
EP

0

[ sup
t1 6 t 6 t2

(M−1
t1

Mt)
3]
⌘1/3⇣

EP
0

[(KP
0

t2 −KP
0

t1 )
3/2]
⌘2/3

6 C
⇣
EP

0

[KP
0

t2 −KP
0

t1 ]E
P
0

[(KP
0

t2 −KP
0

t1 )
2]
⌘1/3

From the definition of KP
0

, we have

sup
P02P(t+

1
,P)

EP0
[(KP0

t2 −KP
0

t1 )
2] 6 C(kY kp

D2 + kZkpH2 + φ2 + ψ2) <1. (2.3.9)

Then, by taking the infimum in P(t+1 ,P) in the last inequality and using (2.3.9) and the result of
Lemma 2.3.1, we obtain

inf
P
02P(t+

1
,P)
EP
h
Yt1 − yP

0

t1 (t2, Yt2)
i
6 0.

But we clearly have

inf
P
02P(t+

1
,P)
EP
h
Yt1 − yP

0

t1 (t2, Yt2)
i
> EP

"
Yt1 − ess supP

P
02P(t+

1
,P)

yP
0

t1 (t2, Yt2)

#
.

Hence

EP

"
Yt1 − ess supP

P
0
2P(t+

1
,P)

yP
0

t1 (t2, Yt2)

#
6 0.

Since the quantity under the expectation is positive P-a.s. by Step 1, we deduce that it is actually
equal to 0, P− a.s., which is the desired result. tu

As an immediate consequence of the representation formula (2.3.2) together with the comparison
principle for BDSDEs, we have the following comparison principle for 2BDSDEs.

Theorem 2.3.2. Let (Y, Z) and (Y 0, Z 0) be the solutions of 2BDSDEs with terminal conditions ξ and
ξ0 and generators F̂ and F̂ 0 respectively (with the corresponding functions H and H

0
), and let (yP, zP)

and (y0P, z0P) the solutions of the associated BDSDEs. Assume that they both verify Assumptions 2.2.1
and 2.2.2, and that we have P − q.s.

ξ 6 ξ0 , F̂ (y0Pt , z0Pt ) 6 F̂
0
(y0Pt , z0tP)

Then Y 6 Y 0,P − q.s.
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2.3.2 A priori estimates

In this section, we show some a priori estimates which will be useful in the sequel.

Theorem 2.3.3. Let Assumptions 2.2.1 and 2.2.2 hold.

(i) Assume ξ 2 L2 and that (Y, Z) 2 D2 ⇥ H2 is a solution to the 2BDSDE (2.2.4). Then, there
exist a constant C such that

kY k2D2 + kZk2H2 + sup
P2P

EP[|KP
T |2] 6 C(kξk2L2 + φ2 + ψ2). (2.3.10)

(ii) Assume ξi 2 L2 and that (Y i, Zi) 2 D2⇥H2 is a corresponding solution to the 2BDSDE (2.2.4),
i = 1, 2. Denote δξ := ξ1 − ξ2, δY := Y 1 − Y 2, δZ := Z1 − Z2, and δKP := K1,P − K2,P.
Then, there exist a constant C such that

kδY kD2 6 CkδξkL2

kδZk2H2 + sup
P2P

EP[ sup
0 6 t 6 T

|δKP
t |2] 6 CkδξkL2

(
kξ1kL2 + kξ2kL2

+ (φ2)1/2 + (ψ2)1/2
)
.

(2.3.11)

Proof. (i) Fix P 2 P, for every P0 2 P(t+,P), we apply Itô’s formula to |yP
0

t |2 to obtain

|yP
0

t |2 = |ξ|2 + 2

Z T

t
F̂s(y

P
0

s , zP
0

s )yPs ds+ 2

Z T

t
gs(y

P
0

s , zP
0

s )yP
0

s d
 −
W s

− 2

Z T

t
yP

0

s zP
0

s dBs −
Z T

t
|â1/2s zP

0

s |2ds+
Z T

t
|gs(yP

0

s , zP
0

s )|2ds.

Then, by taking expectation and from the Lipschitz Assumption 2.2.1(iii) we have

EP
0

[|yP
0

t |2] 6 CEP
0 ⇥
|ξ|2 +

Z T

t
|yP

0

s |(|F̂ 0
s |+ |yP

0

s |+ |â1/2s zP
0

s |)ds
⇤
− EP

0 ⇥
|â1/2s zP

0

s |2ds
⇤

+ CEP
0 ⇥ Z T

t
(|g0s |2 + |yP

0

s |2)ds
⇤
+ αEP

0 ⇥ Z T

t
|zP

0

s |2ds
⇤

6 Cε−1EP
0 ⇥
|ξ|2 +

Z T

t
(|yP

0

s |2 + |F̂ 0
s |2 + |g0s |2)ds

⇤

+ (ε− 1)EP
0 ⇥ Z T

t
|â1/2s zP

0

s |2ds
⇤
+ αEP

0 ⇥ Z T

t
|zP

0

s |2ds
⇤
,

and, by setting ε =
λ

2
and the Assumption 2.2.1(iv), we get

EP
0

[|yP
0

t |2] +
λ

2
EP

0 ⇥ Z T

t
|â1/2s zP

0

s |2ds
⇤
6 CEP

0 ⇥
|ξ|2 +

Z T

t
(|F̂ 0

s |2 + |g0s |2)ds+
Z T

t
|yP

0

s |2ds
⇤
.

It then follows, using Gronwall’s lemma, that

EP
0

[|yP
0

t |2] 6 C
⇣
EP

0 ⇥
|ξ|2
⇤
+
(
EP

0 ⇥ Z T

t
(|F̂ 0

s |2ds
⇤)

+
(
EP

0 ⇥ Z T

t
(|g0s |2ds

⇤)⌘

P
0 − a.s. for all P

0 2 P(t+,P), t 2 [0, T ].
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Now, for every P 2 P, we have

EP[ sup
0 6 t 6 T

|Yt|2] = EP[ sup
0 6 t 6 T

(
ess supP

P
02P(t+,P)

|yP
0

t |
)2
]

6 EP
⇥
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0 6 t 6 T
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E
H,P
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0
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0
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0
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0
αsy

P
0

s d
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0
βsz

P
0

s d
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W s|+ |
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0
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0

s dBs|]
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⇣
EP
⇥
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0 6 t 6 T

(
E
H,P
t [|ξ|2]

)⇤
+ EP

⇥
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0 6 t 6 T

(
E
H,P
t [

Z T

0
|F̂ 0

s |2ds]
)⇤⌘

+ C
⇣
EP
⇥
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0 6 t 6 T

(
E
H,P
t [

Z T

0
|yP

0

s |ds]
)2⇤

+ EP
⇥

sup
0 6 t 6 T

(
E
H,P
t [

Z T

0
|â1/2s zP

0

s |ds]
)2⇤⌘

+ C
⇣
EP
⇥
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0 6 t 6 T

(
E
H,P
t [|

Z T

0
g0sd
 −
W s|]

)2⇤
+ EP

⇥
sup

0 6 t 6 T

(
E
H,P
t [|

Z T

0
zP

0

s dBs|]
)2⇤⌘

,

and, by the definition of the norms, we get

kY k2
D2
H

6 C
⇣
kξk2

L2
H
+ φ2 + ψ2 + sup

P2P
EP
⇥

sup
0 6 t 6 T

|yPt |2+ε
⇤
+ sup

P2P
EP
⇥
(

Z T

0
|â1/2s zP

0

s |2ds)
2+ε
2

⇤⌘
,

where we used that

sup
P2P

EP
⇥

sup
0 6 t 6 T

( ess supP

P
02P(t+,P)

EP
0

t [|A|]2
⇤
6 Csup

P2P

(
EP
⇥
|A|2+ε

⇤) 2

2+ε 8ε > 0.

Finally, we obtain

kY k2
D2
H
6 C(kξk2L2 + φ2 + ψ2). (2.3.12)

For the estimate for Z, we apply Itô’s formula to |Y |2 under each P 2 P and from the Lipschitz
Assumption 2.2.1(iii) we have:

EP
h Z T

0
|â1/2s Zs|2ds

i
6 EP

h
|Y0|2 +

Z T

0
|â1/2s Zs|2ds

i

6 CEP
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|ξ|2 +

Z T

0
|Ys|(|F̂ 0

s |+ |Ys|+ |â1/2s Zs|)ds+
Z T

0
|Ys|dKP

s

i

+ EP
h Z T

0
|gs(Ys, Zs)|2ds

i

6 CEP
h
|ξ|2 +

Z T

0
|Ys|(|F̂ 0

s |+ |Ys|+ |â1/2s Zs|)ds+
Z T

0
|Ys|dKP

s

i

+ CEP
h Z T

0
(|g0s |2 + |Ys|2)ds

i
+ αEP

h Z T

0
|Zs|2ds

i

6 Cε−1EP
h
|ξ|2 + sup

0 6 s 6 T
|Ys|2 +

Z T

0
|F̂ 0

s |2ds+
Z T

0
|g0s |2ds

i

+ εEP
h Z T

0
|â1/2s Zs|2ds+ |KP

T |2
i
+ αEP

h Z T

0
|Zs|2ds

i
,

for any ε 2 (0, 1]. But by the definition of KP
T , it is clear that

EP
h
|KP

T |2
i
6 C0E

P
h
|ξ|2 + sup

0 6 s 6 T
|Ys|2 +

Z T

0
|â1/2s Zs|2ds+

Z T

0
|F̂ 0

s |2ds+
Z T

0
|g0s |2ds

i
, (2.3.13)
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for some constant C0 independent of ε. Then,

EP
h Z T

0
|â1/2s Zs|2ds

i
6 Cε−1EP

h
|ξ|2 + sup

0 6 s 6 T
|Ys|2 + (

Z T

0
|F̂ 0

s |ds)2 +
Z T

0
|g0s |2ds

i

+ (ε+ C0ε+ 1− λ)EP
h Z T

0
|â1/2s Zs|2ds

i
.

Choosing ε :=
λ

2(1 + C0)
, this provides

EP
h Z T

0
|â1/2s Zs|2ds

i
6 CEP

h
|ξ|2 + sup

0 6 s 6 T
|Ys|2 +

Z T

0
|F̂ 0

s |2ds+
Z T

0
|g0s |2ds

i
.

By (2.3.12), we have

kZk2H2 6 C(kξk2L2 + φ2 + ψ2). (2.3.14)

(ii) First, we can follow the same proof of (i) to obtain that there exist a constant C depending only

on T and the Lipschitz constant of F̂ and Ĥ such that for all P

EP[|yP,1t − y
P,2
t |2] 6 Ckδξk2L2 . (2.3.15)

Then by definition of our norms, we get from (2.3.15) and (2.3.2) that

kδY kD2 6 CkδξkL2 . (2.3.16)

Applying Itô formula to |δY |2, under each P 2 P, leads to

EP
h Z T

0
|â1/2s δZs|2ds

i
6 CEP

h
|δξ|2 +

Z T

0
|δYs|(|δYs|+ |â1/2s δZs|)ds+

Z T

0
|δYs|dδKP

s

i

+ CEP
h Z T

0
|δYs|2ds
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6 CEP
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|δξ|2 + sup

0 6 s 6 T
|δYs|2 + sup

0 6 s 6 T
|δYs|2[K1,P

T −K
2,P
T ]
i

+
1

2
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h Z T

0
|â1/2s δZs|2ds

i
.

The estimate for δZ is now obvious from the above inequality and the estimates of (i). Finally the
estimate for the difference of the increasing processes is obvious by definition. tu

2.4 A direct existence argument

As we have shown in Theorem 2.3.1, if there is a solution to the 2BDSDE (2.2.4), it will be represented
as a supremum of solutions to standard BDSDEs. However, since we are working under a family
of non-dominated probability measures, we are not able to use the classical technics of BSDEs. So,
Soner, Touzi and Zhang [129] overcame this problem by constructing the solution pathwise using the
so-called regular conditional probability distribution (in short r.c.p.d).

2.4.1 Notations

For the convenience of the reader, we recall below some of the notations introduced in [129].
• For 0 6 t 6 T , we denote Ωt

B := {ω 2 C([t, T ],Rd);ω(t) = 0} the shifted canonical space; Bt the
shifted canonical process; P

B,t
0 the shifted Wiener measure; F t

B the shifted filtration generated by
Bt.
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• For 0 6 t 6 T , we denote Ωt := {ω := (ωB, ωW ) s.t. ωB 2 Ωt
B, ωW 2 ΩW }.

Exactly as in Section 2, we can define the set P̄t
S , by restricting to the shifted space Ωt

• For 0 6 s 6 t 6 T and ω 2 Ωs, define the shifted path ωt := (ωB,t, ωW ) 2 Ωt such that

ωB,t
r := ωB

r − ωB
t , 8r 2 [t, T ]

• For 0 6 s 6 t 6 T and ω 2 Ωs, ω̃ 2 Ωt define the concatenation path ω⌦tω̃ := (ωB⌦tω̃
B, ωW⌦tω̃

W )

by

(ωB ⌦t ω̃
B)(r) := ωB

r 1[s,t)(r) + (ωB
t + ω̃B

r )1[t,T ](r), 8r 2 [s, T ]

(ωW ⌦t ω̃
W )(r) := ωW

r 1[s,t)(r) + (ωW
t + ω̃W

r )1[t,T ](r), 8r 2 [s, T ].

• For 0 6 s 6 t 6 T and Fs
T -measurable random variable ξ on Ωs, for each ω 2 Ωs, define the shifted

F t
T -measurable random variable ξt,ω on Ωt by

ξt,ω(ω̃) := ξ(ω ⌦t ω̃), 8ω̃ 2 Ωt.

Similarly, for an Fs-progressively measurable process X on [s, T ] and (t, ω) 2 [s, T ]⇥Ωs, the shifted
process {Xt,ω

r , r 2 [t, T ]} is Ft- progressively measurable.
• For a G-stopping time τ , we use the following simplification

ω ⌦τ ω̃ := ω ⌦τ(ω) ω̃ , ξτ,ω := ξτ(ω),ω , Xτ,ω := Xτ(ω),ω.

• We define our ”shifted ” functions:

F̂ t,ω
s (ω̃, y, z) := Fs(ω ⌦t ω̃, y, z, â

t
s(ω̃)) 8(s, ω̃) 2 [t, T ]⇥ Ωt

gt,ωs (ω̃, y) := gs(ω ⌦t ω̃, y, z) 8(s, ω̃) 2 [t, T ]⇥ Ωt.

Then note that since F and g are assumed to be uniformly continuous in ω under the L1 norm,
then so are F̂

t,ω
s and g

t,ω
s . Notice that this implies that for any P 2 P̄t

S

EP
h⇣ Z T

t
|F̂ t,ω

s (0, 0)|2ds
⌘i

< +1 ,

EP
h⇣ Z T

t
|gt,ωs (0, 0)|2ds

⌘i
< +1

for some ω if and only if it holds for all ω 2 Ω.
• Finally, we extend Definition 2.2.1 in the shifted spaces

Definition 2.4.1. Pt consists of all P := Pt 2 Pt
S such that

aP 6 ât 6 aP, ds⇥ dP− a.e on [t, T ]⇥ Ωt. for some aP, aP 2 S>0
d

EP
h⇣ Z T

t
|F̂ t,ω

s (0, 0)|2ds
⌘i

< +1 , EP
h⇣ Z T

t
|gt,ωs (0, 0)|2ds

⌘i
< +1 for all ω 2 Ω

• By Stroock and Varadhan [134], there exist an r.c.p.d. Pω
τ on GT such that for a given ω 2 Ω,

G-stopping time τ , P 2 Pt and every bounded GT -measurable random variable ξ

EP
τ [ξ](ω) = EPω

τ [ξ], for P− a.e. ω.

Furthermore, Pω
τ naturally induces a probability measure Pτ,ω on Gτ(ω)T .
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2.4.2 Existence when ξ is in UCb(Ω)

When ξ is in UCb(Ω), we know that there exists a modulus of continuity function ρ for ξ, F and g

in ω. Then, for any 0 6 t 6 s 6 T, (y, z) 2 R⇥ Rd and ω, ω
0 2 Ω, ω̃ 2 Ωt,

|ξt,ω(ω̃)− ξt,ω
0

(ω̃)| 6 ρ(kωB − ω
0,Bkt), |F̂ t,ω

s (ω̃, y, z)− F̂ t,ω
0

s (ω̃, y, z)| 6 ρ(kωB − ω
0,Bkt)

|gt,ωs (ω̃, y, z)− gt,ω
0

s (ω̃, y, z)| 6 ρ(kωB − ω
0,Bkt).

We add the following assumption

Assumption 2.4.1.

Λt(ω) := sup
P2Pt

⇣
EP
⇥
|ξt,ω|2 +

Z T

t
|F̂ t,ω

s (0, 0)|2ds+
Z T

t
|gt,ωs (0, 0)|2ds

⇤⌘1/2
<1,

for all (t, ω) 2 [0, T ]⇥ Ω.

To prove existence, we define the following value process Vt pathwise

Vt(ω
B, ·) := ess sup

P2Pt

PW
0 YP,t,ωB

t (T, ξ)(·) , PW
0 − a.s. with P := PB ⌦ PW

0 , (2.4.1)

where, for any (t1, w) 2 [0, T ] ⇥ Ω, P 2 Pt1 , t2 2 [t1, T ], and any Ft2-measurable η 2 L2(P), we

denote YP,t1,ωB

t1
(t2, η) := y

P,t1,ωB

t1
, where (yP,t1,ω

B

, zP,t1,ω
B

) is the solution of the following BDSDE on
the shifted space Ωt1 under P,

yP,t1,ω
B

s (ωW ) = ηt1,ω
B

+

Z t2

s
F̂ t1,ωB

r (yP,t1,ω
B

r , zP,t1,ω
B

r )(ωW )dr −
Z t2

s
zP,t1,ω

B

r (ωW )dBt1
r

+

Z t2

s
gt1,ω

B

r (yP,t1,ω
B

r , zP,t1,ω
B

r )(ωW )d
 −
W r, for PW

0 − a.e. ωW 2 ΩW . (2.4.2)

The following Lemma allows to give a link between BDSDEs on the shifted spaces.

Lemma 2.4.1. Fix some PB 2 PS. For PB-a.e. ωB 2 ΩB, the following inequality holds

y
P
t,ωB

B
⌦PW

0

t (ωW ) = y
PB⌦PW

0

t (ωB, ωW ), t 2 [0, T ], for PW
0 − a.e. ωW 2 ΩW ,

Proof. We divide the proof in two steps.
Step 1: We start by showing the result in the case where F and g do not depend on (y, z). In this
case, we can solve directly the BDSDEs to find that for PB ⌦ PW

0 − a.e. (ωB, ωW ) 2 Ω

y
PB⌦PW

0

t (ωB, ωW ) = EPB⌦PW
0


ξ +

Z T

t

bFsds+

Z T

t
gsd
 −
W s

∣∣∣∣Gt
]
(ωB, ωW ). (2.4.3)

Then, since ξ is actually FB
T -measurable, we deduce immediately, using the definition of the r.c.p.d.

that

EPB⌦PW
0 [ξ| Gt] (ωB, ωW ) = EPB

⇥
ξ| FB

t

⇤
(ωB) = EP

t,ωB

B

h
ξt,ω

B
i
.

Next, we know from the results of Stricker and Yor [132] that there we can define a measurable map
from (ΩW ⇥ [0, T ],FT ⌦ B([0, T ])) to (R,B(R)) which coincides PW

0 ⌦ dt-a.e. with the conditional
expectation of gs, under PB, with respect to the σ-algebra FB

t . For notational simplicity, we still
denote this map as

(ωW , s) 7−! EPB
⇥
gs(·, ωW )

∣∣FB
t

⇤
.
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In other words, the above map does indeed define a stochastic process. That being said, we claim
that for PB-a.e. ωB 2 ΩB

EPB⌦PW
0

Z T

t
gsd
 −
W s

∣∣∣∣Gt
]
(ωB, ωW ) =

✓Z T

t
EPB

⇥
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⇤
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(·)d −W s

◆
(ωW ), for PW

0 − a.e. ωW 2 ΩW .

(2.4.4)

To prove the claim, let us first show it in the case where g is a simple process on (ΩW ,FW
T ) with the

following decomposition

gt(ω
B, ωW ) =

n−1X

i=0

gti1(ti,ti+1].

Then, we have by definition of backward stochastic integrals, for PB ⌦ PW
0 -a.e. (ωB, ωW ) 2 Ω
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Notice next that for PB ⌦ PW
0 -a.e. (ωB, ωW ) 2 Ω
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(
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)
.

Indeed, for any X which is Gt-measurable, we have
Z

Ω
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(
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)
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)
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(
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d
(
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0
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where we have used the fact that since for every ωW 2 ΩW , ωB 7−! X(ωB, ωW ) is FB
t -measurable,

we have by definition of the conditional expectation that
Z

ΩB

EPB
⇥
gti+1

(
·, ωW

)∣∣FB
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⇤ (
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)
X(ωB, ωW )dPB(ω

W ) =
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(
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)
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Hence, we deduce finally that
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(ωB, ·)d −W s

◆
(ωW ).

By a simple density argument, we deduce that the same holds for general processes g. Next, notice
that by definition of r.p.c.d., we have for any ωW 2 ΩW

EPB
⇥
gs| FB

t

⇤
(ωB, ωW ) = EP

t,ωB

B

h
gt,ω

B

s

i
(ωW ), for PB − a.e. ωB 2 ΩB.
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Therefore, the PB-negligible set outside of which the above does hold true depends, 1Ia priori, on
ωW . However, since g is uniformly continuous in ω, it is easily checked that the map ωW 7−!
EP

t,ωB

B

h
g
t,ωB

s

i
(ωW ) is actually uniformly continuous. Hence, it is possible to choose the same PB-

negligible set for all ωW 2 ΩW . This finally proves (2.4.4).

Using similar argument, we show that we also have for PB-a.e. ωB 2 ΩB
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]
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(ωW )ds, for PW

0 − a.e. ωW 2 ΩW .

To sum up, we have obtained that for PB-a.e. ωB 2 ΩB

y
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0
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h
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(ωW )ds, for PW

0 − a.e. ωW 2 ΩW .

But, we also have (remember that by the Blumenthal 0− 1 law y
P
t,ωB

B
⌦PW

0
,t,ωB

t only depends on ωW )
for any ωB 2 ΩB
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s d
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Using the same arguments as above, we obtain

y
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d
 −
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(ωW ),

which proves the desired result.

Step 2: Since we are in a Lipschitz setting, solutions to BDSDEs can be constructed via Picard
iterations. Hence, using Step 1, the results holds at each step of the iteration and therefore also
when passing to the limit. tu

We point out that for classical 2BSDEs, Soner, Touzi and Zhang have proved in Lemma 4.6 [129] a
regularity result for the value process, precisely the uniform continuity with respect to the trajectory
ωB and this is crucial to prove their dynamic programming principle (Proposition 4.7 in [129]).

Since in our context, the value process V defined in (2.4.1) is a random field depending on two
source of randomness, we prove the following regularity result which is weaker than Lemma 4.6 [129].

Lemma 2.4.2.

EPW
0

h(
Vt(ω

B,1·)− Vt(ω
B,2·)

)2i
6 ρ2

(
kωB,1 − ωB,2kt

)
.

In particular, this implies that the map ωB 7−! Vt(ω
B, ·) is uniformly continuous in probability (with

respect to PW
0 ), which implies that there is a PW

0 -version, which we still denote V for simplicity such
that Vt is Ft-measurable.

Proof. The estimate is an easy consequence of classical a priori estimates for BDSDEs, using in
particular the uniform continuity in ω of both F and g. As for the existence of measurable version,
this is a classical result (see for instance Dellacherie and Meyer [37]). tu
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Now, we present the main result concerning the dynamic programming principle in our context. We
follow the new approach (work in progress) of Possamai, Xiaolu and Zhou [119] where they proved
existence result for 2BSDEs with only measurable parameters. Their proof is based on dynamic
programming principle without regularity on the terminal condition and the generator.

We are now in position to show the following dynamic programming principle in our context as in
[119].

Theorem 2.4.1. Under the Assumptions 2.2.1, 2.2.2 and for ξ 2 UCb(Ω), we have for all
0 6 t 6 t1 6 t2 6 T and for all ω = (ωB, ωW ) 2 Ω

Vt1(ω
B, ·) = ess sup

P2Pt1

YP,t1,ωB

t1
(t2, V

t1,ωB

t2
(·)), PW

0 − a.e. ωW 2 ΩW (2.4.5)

Proof. For simplicity we will omit the dependence of Y with respect to (t, ωB) thanks to Lemma
2.4.1. Then, the dynamic programming principle (DPP in short) is a direct consequence of the
comparison principle, once we have the measurability result given in Lemma 2.4.2. First, for every
P 2 Pt, we have

YP
t1(T, ξ) = YP

t1(t2,YP
t2), PW

0 − a.s.

It follows by the comparison principle that

Vt1(ω) := ess sup
P2Pt1

YP
t1(T, ξ) = ess sup

P2Pt1

YP
t1(t2,YP

t2) 6 ess sup
P2Pt1

YP
t1(t2, V

P
t2).

Next, for every ε > 0, by the measurable selection theorem together with concatenation technique,
we can construct, for every P 2 Pt1 , a new probability Qε 2 Pt1 , such that

YQε

t1
(t2,YQε

t2
) > YP

t1(t2, Vt2)− ε.

It follows that

Vt1(ω) = ess sup
P2Pt1

YQ
t1
(t2,YQ

t2
) > ess sup

P2Pt1

YP
t1(t2, V

P
t2)− ε.

And hence the other inequality of the DPP holds true by the arbitrariness of ε > 0. tu
Next, we introduce the right limit of the V which is clearly Ft-measurable:

V +
t := lim

r2Q\(t,T ],r#t
Vr. (2.4.6)

Lemma 2.4.3. Under the Assumptions 2.2.1, 2.2.2 , we have

V +
t = lim

r2Q\(t,T ],r#t
Vr, Pt − q.s.

and thus V + is càdlàg Pt − q.s.

Proof. For each P 2 Pt, let (YP
(T, ξ),ZP

(T, ξ)) be the solution of the BDSDE with generators F̂

and g, and terminal condition ξ at time T . We define eV P := V − YP
(T, ξ). Then, eV P > 0,P − a.s.

For any 0 6 t1 6 t2 6 T , let (yP,t2 , zP,t2) := (YP(t2, Vt2),ZP(t2, Vt2)).
Note that

YP
t1(t2, Vt2)(ω) = YP,t1,ω

t1
(t2, V

t1,ω
t2

), P− a.s.

Then by the dynamic programming principle (Theorem 2.4.1) we get

Vt1 > y
P,t2
t1

,P− a.s.
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Denote eyP,t2t := y
P,t2
t −YP

t , ezP,t2t := â
−1/2
t (zP,t2t −ZP

t ). Then (eyP,t2 , ezP,t2) is solution of the following
BDSDE on [0, t2]

eyP,t2t = eV P
t +

Z t2

t
fP
s (eyP,t2s , ezP,t2s )ds+

Z t2

t
ĝPs (eyP,t2s , ezP,t2s )d

 −
W s −

Z t2

t
ezP,t2s dX â

s ,

where

fP
t (ω, y, z) := F̂t(ω, y + YP

t (ω), â
1/2(ω)z + ZP

t (ω))− F̂t(ω,YP

t (ω),Z
P

t (ω))

ĝPt (ω, y, z) := gt(ω, y + YP

t (ω), â
1/2(ω)z + ZP

t (ω))− gt(ω,YP

t (ω),Z
P

t (ω)).

Then eV P
t1 > eyP,t2t1

. Therefore, eV P is a positive weak doubly fP- supermartingale under P by Definition
2.6.3 (given in the Appendix). Now applying the downcrossing inequality Theorem 2.6.1, one can
easily see that P- a.e. ω, the limit lim

r2Q\(t,T ],r#t

eV P
r exists for all t 2 [0, T ]. Note that yP is continuous,

P-a.s. We get that the lim in the definition of V + is in fact the lim P-a.s. Then,

V +
t = lim

r2Q\(t,T ],r#t
Vr, Pt − q.s.

and therefore V + is càdlàg Pt − q.s. tu
Thanks to the dynamic programming principle for V and regularity results for the value process

V +, we have the following decomposition for V +.

Proposition 2.4.1. Under the Assumptions 2.2.1, 2.2.2, the process V + defined by (2.4.6) verify
for all 0 6 t 6 s 6 T , the following decomposition

V +
s = ξ +

Z T

s
F̂r(V

+
r , eZP

r )ds+

Z T

s
gr(V

+
r , eZP

r )d
 −
W r −

Z T

s

eZP
r dBr + eKP

T − eKP
s , P− a.s.

Proof. We introduce first the following RBDSDE with lower obstacle V + under each P 2 Pt,
8
>>>>>><
>>>>>>:

eY P
t = ξ +

Z T

t
F̂s(eY P

s ,
eZP
s )ds+

Z T

t
gs(eY P

s ,
eZP
s )d
 −
W s −

Z T

t

eZP
s dBs + eKP

T − eKP
t

eY P
t > V +

t , 0 6 t 6 T, P− a.s
Z T

0
(eY P

s− − V +
s−
)d eKP

s− = 0, P− a.s.

At the best of knowledge, there are no results in the literature for the existence and uniqueness of
such RBDSDE with càdlàg obstacle. The proofs of these results are postponed to section 2.6.3 in
the Appendix for completeness.
As mentioned in Remark 4.9 in [129], and for a fixed P 2 Pt, we shall use the solution of the above
RBDSDEs and the notion of F̂ -weak doubly supermartingale whis is introduced in the Appendix.
This notion is a natural extension of nonlinear f -supermartingale introduced first by Peng [113] in
the context of standard BSDEs.
For this end, we argue by contradiction and suppose that eY P is not equal P− a.s. to V +. Then we
can assume without loss of generality that eY P

0 > V +
0 ,P − a.s. For each ε > 0, define the following

G-stopping time :

τ ε := inf{t > 0, eY P
t 6 V +

t + ε}.

Then eY P is strictly above the obstacle before τ ε, and therefore eKP is identically equal to 0 in [0, τ ε].
Hence, we have for all 0 6 t 6 s 6 T

eY P
s = eY P

τε +

Z τε

s
F̂r(eY P

r ,
eZP
r )dr +

Z τε

s
gr(eY P

r ,
eZP
r )d
 −
W r −

Z τε

s

eZP
r dBr, P− a.s.



46

Chapter 2. Probabilistic Interpretation for Fully Nonlinear

SPDEs

Let us now define the following BDSDE on [0, τ ε]

y+,P
s = V +

τε +

Z τε

s
F̂r(y

+,P
r , z+,P

r )dr +

Z τε

s
gr(y

+,P
r , z+,P

r )d
 −
W r −

Z τε

s
z+,P
r dBr, P− a.s.

By comparison theorem and the standard a priori estimates, we obtain that

E[eY P
0 ] 6 E[y+,P

0 ] + CE
⇥
|V +

τε − eY P
τε |
⇤
6 E[y+,P

0 ] + Cε,

by definition of τ ε.
Moreover, we can show similarly to the proof of Lemma 2.4.3 (see also the arguments in Step 1 of
the proof of Theorem 4.5 in [129] page 328-329) that V + is a strong F̂ doubly supermatingale under
each P 2 Pt. Thus, we obtain particularly that y

+,P
0 6 V +

0 which in turn implies

E[eY P
0 ] 6 E[V +

0 ] + Cε,

hence a contradiction by arbitrariness of ε. Therefore, we have obtained the following decomposition

V +
s = ξ +

Z T

s
F̂r(V

+
r , eZP

r )dr +

Z T

s
gr(V

+
r , eZP

r )d
 −
W r −

Z T

s

eZP
r dBr + eKP

T − eKP
s , P− a.s., 8P 2 Pt

tu
We next prove a representation for V + similar to (2.3.2) .

Proposition 2.4.2. Assume that Assumptions 2.2.1, 2.2.2 hold. Then we have

V +
t = ess supP

P
0
2P(t+,P)

YP
0

t (T, ξ), P− a.s., 8P 2 Pt (2.4.7)

Proof. Fix P 2 Pt. Denote

V
P,+
t = ess supP

P
02P(t+,P)

YP
0

t (T, ξ)

We want to prove the equality V
P,+
t = V +

t ,P−a.s.. First, for each P
0 2 P(t,P) ⇢ Pt and r 2 Q\(t, T ],

we have yP
0

r 6 Vr, P
0 − a.s.. Sending r # t, we obtain yP

0

t 6 V +
t , P

0 − a.s. Since both yP
0

t and V +
t are

G+t -measurable and P
0
= P on G+t , then yP

0

t 6 V +
t , P− a.s. and, thus , V P,+

t 6 V +
t , P− a.s.

On the other hand, for each r 2 Q\ (t, T ], since Vr = V P
r ,P− a.s. and following the same arguments

in [128] Theorem 4.3, Step (iii), we have

there exist Pn 2 P(r,P) such that YPn
r (T, ξ) " Vr, P− a.s.

Then, it follows from the stability of BDSDE that

YP
t (r, Vr) = YP

t (r, lim
n!1

YPn
r (T, ξ)) = lim

n!1
YP
t (r,YPn

r (T, ξ)).

Since Pn 2 P(r,P) ⇢ P(t+,P), we have

YP
t (r, Vr) = lim

n!1
YP
t (r,YPn

r (T, ξ)) = lim
n!1

YPn
t (T, ξ) 6 V

P,+
t , P− a.s.

Sending r # t, by the stability of BDSDEs again we obtain V +
t 6 V

P,+
t ,P− a.s. tu
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2.4.3 Existence result in the general case

We are now in position to state the main result of this section.

Theorem 2.4.2. Let ξ 2 L2 and assume that Assumptions 2.2.1, 2.2.2 hold. Then:

1. There exists a unique solution (Y, Z) 2 D2 ⇥H2 of the 2BDSDE (2.2.4).

2. Moreover, if in addition we choose to work under either of the following model of the theory

(i) Zermelo-Fraenkel set theory with axiom of choice (ZFC) plus the Continuum Hypothesis
(CH).

(ii) ZFC plus the negation of CH plus Martin’s axiom.

Then there exists a unique solution (Y, Z,K) 2 D2 ⇥H2 ⇥ I2 of the 2BDSDE (2.2.4).

Proof. The proof is divided in three steps. In the first one we prove that the value process V +

defined by (2.4.6) is the solution of our 2BDSDE in the case when ξ belongs in UCb(Ω) and show
the aggregation result for the solution. Then, in the second step we verify the minimality condition
for the increasing process. Finally, we deal with the general case.

Step 1: Existence and aggregation results for ξ belongs in UCb(Ω)

As we have mentioned above, the natural candidate for the Y solution for our 2BDSDE is given by
Yt = V +

t := lim
r2Q\(t,T ],r#t

Vr, where V is the value process defined by (2.4.1). First, we know that V +

is a càdlàg process defined pathwise and using the same notations in Proposition 2.4.1 our solution
Y verifies

V +
t = V +

0 −
Z t

0

bFs(V
+
s , eZP

s )ds−
Z t

0
gs(V

+
s , eZP

s )d
 −
W s +

Z t

0

eZP
s dBs − eKP

t , P− a.s., 8P 2 Pt.

We note that V + is a càdlàg generalized semimartingale (studied by Pardoux and Protter in [112]
and Pardoux and Peng [109]). Therefore, we can adapt Karandikar’s results obtained for càdlàg
semimartingale in our context to define a universal process eZ which aggregates the family { eZP, P 2
Pt} .

Concerning the fact that we can aggregate the family
⇣
eKP
⌘
P2Pt

, it can be deduced as follows. We

have from (2.4.6) that V + is defined pathwise, and so is the Lebesgue integral
R t
0
bFs(V

+
s , eZs)ds. In

order to give a pathwise definition of the two stochastic integrals, we would like to use the recent
results of Nutz [105]. However, the proof in this paper relies on the notion of medial limits, which
may or may not exist depending on the model of set theory chosen. They exists in the model (i)
above, which is the one considered by Nutz, but we know from [51] (see statement 22O(l) page 55)
that they also do in the model (ii). Therefore, provided we work under either one of these models,

the stochastic integrals
Z t

0

eZsdBs and
Z t

0
gs(V

+
s , eZP

s )d
 −
W s can also be defined pathwise. We can

therefore define pathwise

eKt := V +
0 − V +

t −
Z t

0

bFs(V
+
s , eZs)ds−

Z t

0
gs(V

+
s , eZP

s )d
 −
W s +

Z t

0

eZsdBs,

and eK is an aggregator for the family
⇣
eKP
⌘
P2Pt

, that is to say that it coincides P− a.s. with eKP,

for every P 2 Pt. Thus, the triplet (Y, eZ, eK) satisfy the equation (2.2.4) and from the a priori
estimates in Theorem 2.3.1 we get that (Y, eZ, eK) belongs to D2 ⇥ H2 ⇥ I2. It remains to prove the
minimality condition (2.5.7) for the increasing process eK.
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Step 2: The minimality condition of eKP

Now, we have to check that the minimum condition (2.2.7) holds. We follow the arguments in the

proof of Theorem 2.3.1. For t 2 [0, T ],P 2 Pt and P0 2 P(t+,P), we denote δY := V + − yP
0

(T, ξ)

and δZ := eZ − zP
0

(T, ξ) and we introduce the process M of (2.3.6). We first observe that the non

decrease of eKP
0

implies that

ess infP
P02P(t+,P)

EP
0

t [ eKP
0

T − eKP
0

t ] > 0.

Then, it suffices to prove that EP
h
ess infP

P02P(t+,P)
EP

0

t [ eKP
0

T − eKP
0

t ]
i
6 0.

We know that the family P(t+,P) is upward directed. Therefore, by classical results, there is a
sequence (Pn)n > 0 ⇢ P(t+,P) such that

EP


ess infP

P02P(t+,P)
EP

0

t [ eKP0

T − eKP0

t ]

]
= lim

n!+1
# EPn

h
eKPn

T − eKPn

t

i
. (2.4.8)

On the other hand, by (2.3.8), we estimate by the Hölder inequality that

EPn
h
eKPn

T − eKPn

t

i

= EPn
h(

inf
t 6 s 6 T

(M−1
t Ms)

)1/3( eKPn

T − eKPn

t

)1/3(
inf

t 6 s 6 T
(M−1

t Ms)
)−1/3( eKPn

T − eKPn

t

)2/3i

6
⇣
EPn⇥(

inf
t 6 s 6 T

(M−1
t Ms)

)( eKPn

T − eKPn

t

)⇤
EPn⇥

sup
t 6 s 6 T

(M−1
t Ms)

⇤
EPn⇥( eKPn

T − eKPn

t

)2⇤⌘1/3

6 C
⇣
EPn⇥( eKPn

T

)2⇤
EPn⇥(

inf
t 6 s 6 T

(M−1
t Ms)

)( eKPn

T − eKPn

t

)⇤⌘1/3

6 C
⇣
EPn⇥( eKPn

T

)2⇤
EPn

h
M−1

t

Z T

t
Msd eKPn

s

i⌘1/3

6 C
⇣
EPn⇥( eKPn

T

)2⇤⌘1/3(
EPn

[δYt]
)1/3

. (2.4.9)

where we have used in the last inequality the non decrease of eKPn

and argument of the proof of
Theorem 2.3.1 (ii).Plugging (2.4.9) in (2.4.8), we obtain

EP


ess infP

P02P(t+,P)
EP

0

t [ eKP
0

T − eKP
0

t ]

]
6 C lim

n!+1
#
(
EPn

[δYt]
)1/3

6 C
(
ess infP

Pn2P(t+,P)
EPn

[δYt]
)1/3

= 0.

which is the desired result.

Step 3: Existence and aggregation results for ξ in L2

For ξ 2 L2, there exists by definition a sequence (ξn)n > 0 ⇢ UCb(Ω) such that

lim
n!+1

kξn − ξmkL2 = 0 and sup
n > 0

kξnkL2 < +1.

Let (Y n, Zn) 2 D2 ⇥H2 be the solution to 2BDSDE (2.2.4) with terminal condition ξn, and

K
n,P
t := Y n

0 − Y n
t −

Z t

0
F̂ (Y n

s , Zn
s )ds−

Z t

0
g(Y n

s , Zn
s )d
 −
W s +

Z t

0
Zn
s dBs, 0 6 t 6 T, P− a.s.

By the estimates of Theorem 2.3.3, we have

kY n − Y mk2D2 + kZn − Zmk2H2 + sup
P2P

EP[ sup
0 6 t 6 T

0 6 t 6 T |Kn,P
t −K

m,P
t |2]

6 Ckξn − ξmk2L2 + Ckξn − ξmkL2

(
kξnkL2 + kξmkL2 + (φ2)1/2 + (ψ2)1/2

)
−!

n,m!+1
0.
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Extracting a subsequence if necessary, we may assume that

kY n − Y mk2D2 + kZn − Zmk2H2 + sup
P2P

EP[ sup
0 6 t 6 T

|Kn,P
t −K

m,P
t |2] 6 2−n (2.4.10)

for all m > n > 0. This implies by Markov inequality that for all P and all m > n > 0

P

h
sup

0 6 t 6 T

⇥
|Y n

t − Y m
t |2 + |Kn,P

t −K
m,P
t |2

⇤
+

Z T

0
|Zn

t − Zm
t |2dt >

1

n

i
6 Cn2−n. (2.4.11)

Define

Y := lim
n!1

Y n, Z := lim
n!1

Zn, KP := lim
n!1

Kn,P, (2.4.12)

where the lim for Z is taken componentwise. It is clear that Y, Z,KP are all F+-progressively
measurable. By (2.4.11), it follows from Borel Cantelli Lemma that for all P we have P− a.s.

lim
n!1

h
sup

0 6 t 6 T

⇥
|Y n

t − Y m
t |2 + |Kn,P

t −K
m,P
t |2

⇤
+

Z T

0
|Zn

t − Zm
t |2dt

i
= 0.

It follows that Y is càdlàg, P-q.s., and that KP is càdlàg nondecreasing process, P − a.s. Further-
more, for all P, sending m to infinity in (2.4.10) and applying Fatou’s lemma under P gives us that
(Y, Z,K) 2 D2 ⇥H2 ⇥ I2. tu

2.5 Probabilistic interpretation for Fully nonlinear

SPDEs

Let φ : Rd ! R be a lebesgue measurable function. In this section we denote, for any (t, x) 2
[0, T ]⇥ Rd

Bt,x
s := x+Bt

s for all s 2 [t, T ],

where (Bt
s)s2[t,T ] is the shifted canonical process on Ωt

B.
Let us first define the following functional spaces:

• MW
0,T denotes all the FW -stopping times τ such that 0 6 τ 6 T .

• Lp(FW
τ,T ;R

d), for p > 1, denotes the space of all Rd- valued FW
τ,T measurable r.v. ξ such that

E[|ξ|p] < +1.

• C l,k([0, T ]⇥Rd), for k, l > 0, denotes the space of all R- valued functions defined on [0, T ]⇥Rd)

which are k-times continuously differentiable in t and l-times continuously differentiable in x.

• C l,k(FW
t,T , [0, T ] ⇥ Rd), for k, l > 0, denotes the space of all C l,k([0, T ] ⇥ Rd)-valued random

variables ϕ that are FW
t,T ⌦ B([0, T ]⇥ Rd) measurable.

• C l,k(FW , [0, T ]⇥Rd), for k, l > 0, denotes the space of random variables ϕ 2 C l,k(FW
t,T , [0, T ]⇥

Rd) such that for fixed x 2 Rd the mapping (t, ω) 7! ϕ(t, x, ω) is FW - progressively measurable.

Furthermore, for (t, x, y) 2 [0, T ] ⇥ Rd ⇥ R, we denote ∂/∂y = Dy, ∂/∂t = Dt, D = Dx =

(∂/∂x1, · · · , ∂/∂xd), and D2 = Dxx = (∂2
xixj

)di,j=1. The meaning of Dxy, Dyy, etc should be clear.
The following is a slight strengthening of Assumption 2.2.1

Assumption 2.5.1.

(i) Pt is not empty, the domain Dft(y,z) = Dft is independent of (w, y, z).
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(ii) There exist constants C > 0, 0 6 α < 1 and modulus of continuity ρ with polynomial growth such
that for all t 2 [0, T ], a 2 Dft , x, x

0
, z, z

0 2 Rd, y, y
0 2 R.

|ft(x, y, z, a)− ft(x, y
0
, z

0
, a)| 6 ρ(|x− x

0 |) + C
(
|y − y

0 |+ ka1/2(z − z
0
)k
)
,

kgt(x, y, z)− gt(x, y
0
, z

0
)k2 6 ρ(|x− x

0 |) + C|y − y
0 |2 + αk(z − z

0
)k2.

(iii) The function g 2 C
0,2,3
b ([0, T ]⇥ Rd ⇥ R;Rl).

We consider the 2BDSDE (2.2.4) in this Markovian setting with terminal condition ξ = φ(Bt,x
T ):

Y t,x
s = φ(Bt,x

T )−
Z T

s
f(s,Bt,x

r , Y t,x
r , Zt,x

r , âr)dr +

Z T

t
g(r,Bt,x

r , Y t,x
r , Zt,x

r ) ◦ d −W r

−
Z T

s
Zt,x
r dBr +K

t,x
T −Kt,x

s , t 6 s 6 T, Pt − q.s (2.5.1)

We remark that the stochastic integral with respect to dW is the Stratonovich backward integral (see
Kunita [78] page 194). Since g 2 C

0,2,3
b ([0, T ]⇥Rd ⇥R;Rl), using the definition of the Stratonovich

backward integral, we show easily that (2.5.1) is equivalent to the following 2BDSDE:

Y t,x
s = φ(Bt,x

T )−
Z T

s
f̂(s,Bt,x

r , Y t,x
r , Zt,x

r , âr)dr +

Z T

t
g(r,Bt,x

r , Y t,x
r , Zt,x

r )d
 −
W r

−
Z T

s
Zt,x
r dBr +K

t,x
T −Kt,x

s , t 6 s 6 T, Pt − q.s (2.5.2)

where f̂(s, x, y, z, âs) = f(s, x, y, z, âs) +
1

2
Tr(g(s, x, y, z)Dyg(s, x, y, z)).

Our main objective is to establish the connection Y
t,x
s = v(s,Bt,x

s ), s 2 [t, T ], Pt − q.s, where v

solves, in some sense (classical or viscosity solutions), the following fully nonlinear SPDE: for all
0 6 t < T

8
>><
>>:

du(t, x) + ĥ(t, x, u(t, x), Du(t, x), D2u(t, x))dt+ g(t, x, u(t, x), Du(t, x)) ◦ d −W t = 0,

u(T, x) = φ(x).

(2.5.3)

We can write the SPDE (2.5.3) in the integral form in the case when {u(t, x), 0 6 t 6 T, x 2 Rd} 2
C0,2(FW

t,T , [0, T ]⇥ Rd) is a classical solution, namely

u(t, x) = φ(x) +

Z T

t
ĥ(t, x, u(t, x), Du(t, x), D2u(t, x))dt+

Z T

t
g(t, x, u(t, x), Du(t, x)) ◦ d −W t.

(2.5.4)

We consider the case
Ht(ω, y, z, γ) = h(t, Bt(ω), y, z, γ),

where h : [0, T ]⇥R⇥Rd⇥Dh ! R is a deterministic map. Then the corresponding conjuguate and
bi-conjuguate functions become

f(t, x, y, z, a) := sup
γ2Dh

{1
2
Tr(aγ)− h(t, x, y, z, γ)

 
for a 2 S>0

d , (2.5.5)

ĥ(t, x, y, z, γ) := sup
a2S>0

d

{1
2
Tr(aγ)− f(t, x, y, z, a)

 
for γ 2 Rd⇥d. (2.5.6)

Notice that −1 < ĥ 6 h and ĥ is nondecreasing convex in γ. Also, ĥ = h if and only if h is convex
and nondecreasing in γ.
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2.5.1 A nonlinear Feynman-Kac representation formula

We define a similar notation to (5.3.2). Let τ be an Gt - stoppinfg time, P 2 Pt, and η a P-square
integrable Gtτ - measurable random variable. We denote by (yP, zP) := (yP,t,x(τ, η), zP,t,x(τ, η)) the
solution of the following BDSDE:

yPs = η −
Z τ

s
f(r,Bt,x

r , yPr , z
P
r , âr)dr −

Z τ

s
g(r,Bt,x

r , yPr , z
P
r )d
 −
W r −

Z τ

s
zPr dBr, t 6 r 6 τ, P− a.s.

Under our assumptions the above BDSDE has a unique solution.

Definition 2.5.1. We define the classical solution of the SPDE (2.5.3)as a R-valued random field
{u(t, x), 0 6 t 6 T, x 2 Rd} such that u(t, x) is FW

t,T -measurable for each (t, x), and whose trajectories
belong to C0,2([0, T ]⇥ Rd;R).

Theorem 2.5.1. Let Assumption 2.5.1 hold true. Suppose further that ĥ is continuous in its domain,
Df is independent of t and is bounded both from above and away from 0. Let {u(t, x); t 2 [0, T ]⇥Rd}
be a classical solution of (2.5.3) with {(u,Du)(s,Bt,x

s ), s 2 [t, T ]} 2 D2 ⇥H2. Then:

Y t,x
s := u(s,Bt,x

s ), Zt,x
s := Du(s,Bt,x

s ), Kt,x
s :=

Z s

0
krdr

with ks := ĥ(s,Bs, Ys, Zs,Γs)−
1

2
Tr(âsΓs) + f(s,Bs, Ys, Zs, âs) and Γs := D2u(s,Bt,x

s )

is the unique solution of the 2BDSDE (2.5.1). Moreover, u(t, x) = Y
t,x
t for all t 2 [0, T ].

Proof. It sufficies to show that (Y, Z,K) solves the 2BDSDE (2.5.1). For notational simplicity, we
shall write B instead of Bt,x and let s = t0 < t1 < t2 < ... < tn = T ,

n−1X

i=0

[u(ti, Bti)− u(ti+1, Bti+1
)] =

n−1X

i=0

[u(ti, Bti)− u(ti, Bti+1
)] +

n−1X

i=0

[u(ti, Bti+1
)− u(ti+1, Bti+1

)]

= −
n−1X

i=0

Z ti+1

ti

Du(ti, Br)dBr −
n−1X

i=0

Z ti+1

ti

1

2
Tr(ârD

2u(ti, Br))dr

+

n−1X

i=0

Z ti+1

ti

ĥ(r,Bti+1
, u(r,Bt,x

ti+1
), Du(r,Bti+1

), D2u(r,Bti+1
))dr

+
n−1X

i=0

Z ti+1

ti

g(r,Bti+1
, u(r,Bti+1

), Du(r,Bti+1
)) ◦ d −W s,

where we have used the Itô formula and the equation satisfied by u (2.5.4). Now, the transformation
from Stratonovich to Itô integral yields to
n−1X

i=0

[u(ti, Bti)− u(ti+1, Bti+1
)] = −

n−1X

i=0

Z ti+1

ti

Du(ti, Br)dBr −
n−1X

i=0

Z ti+1

ti

1

2
Tr(ârD

2u(ti, Br))dr

+

n−1X

i=0

Z ti+1

ti

ĥ(r,Bti+1
, u(r,Bti+1

), Du(r,Bti+1
), D2u(r,Bti+1

))dr

+
n−1X

i=0

Z ti+1

ti

g(r,Bti+1
), u(r,Bti+1

), Du(r,Bti+1
))d
 −
W r

+
n−1X

i=0

Z ti+1

ti

f(r,Bti+1
, u(r,Bti+1

), Du(r,Bti+1
), âr)dr

−
n−1X

i=0

Z ti+1

ti

f(r,Bti+1
, u(r,Bti+1

), Du(r,Bti+1
), âr)dr

− 1

2

n−1X

i=0

Z ti+1

ti

Tr(g(r,Bti+1
, u(r,Bti+1

), Du(r,Bti+1
))Dg(r,Bti+1

, u(r,Bti+1
)), Du(r,Bti+1

))dr.
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It sufficies to let the mesh size go to zero. It remains to prove the minimum condition:

ess infP
P
02P(t+,P)

EP
0

t [

Z T

t
ksds] = 0 for all t 2 [0, T ] P 2 Pt (2.5.7)

by which we can conclude that (Y, Z,K) is a solution of the 2BDSDE (2.5.1). Since φ(BT ) 2 L2,
the uniqueness follows from Theorems 3.1 and 3.3 (i).
To prove (2.5.7), we follow the same argument as in the proof of Lemma 3.1 in [49]. For every ε > 0,
notice that the set

Aε := {a 2 Df : ĥ(t, Bt, Yt, Zt,Γt) 6
1

2
Tr(atΓt)− f(t, Bt, Yt, Zt, at) + ε}

is not empty. Then it follows from a measurable selection argument that there exists a FB
t - pre-

dictable process aε taking values in Df such that

ĥ(t, Bt, Yt, Zt,Γt) 6
1

2
Tr(aεtΓt)− f(t, Bt, Yt, Zt, a

ε
t ) + ε

We note that this in particular implies that Γt 2 Dĥ.
In the remainder of this proof, we show the existence of an F - progressively measurable process αε

with values in S>0
d ,

Z T

0
|αε

t |dt <1, such that, Pαε

-a.s., â 2 Aε.

Let P = Pα := Pα ⌦ PW 2 Pt and t0 2 [0, T ] be fixed. Let

τ ε0 := T ^ inf{t > t0|Kt > Kt0 + ε},

and define:

τ εn+1 := T ^ inf{t > τ εn |ĥ(t, Bt, Yt, Zt,Γt) >
1

2
Tr(aετεnΓt)− f(t, Bt, Yt, Zt, a

ε
τεn
) + 2ε}

for n > 0. Since K is continuous, notice that τ ε0 > 0,Pt-q.s. Also, since B, Y, Z,Γ are all continuous
in t, τ εn are G- stopping times and, for any fixed ω, are uniformly continuous in t.
Next, for any fixed a 2 Df , the function f(., a) is continuous. Also ĥ is continuous. Then for Pt-q.s.
ω 2 Ω,

ĥ(t, Bt(ω), Yt(ω), Zt(ω),Γt(ω))−
1

2
Tr(aετεn(ω)Γ(ω)t) + f(t, Bt(ω), Yt(ω), Z(ω)t, a

ε
τεn
(ω))

is uniformly continuous in t for t 2 [τ εn, T ]. Then τ εn+1 − τ εn > δ(ε, ω) > 0 whenever τ εn+1 < 1, where
the constant δ(ε, ω) does not depend on n. This is implies that τ εn = 1 for n large enough. Applying
the arguments in Example 4.5 of [130] on [τ ε0 , T ], it is easy to see that there exists an (FB

t )0 6 t 6 T

-progressively measurable process αε taking values in Df such that

αε
t = αt for t 2 [0, τ ε0 ] and ât =

1X

n=0

aετεn1[τεn,τ
ε
n+1

)(t),

dt⇥ dPαε

B − a.s. on [τ ε0 , T ]⇥ Ω.

This implies that

ĥ(t, Bt, Yt, Zt,Γt) 6
1

2
Tr(âtΓt)− f(t, Bt, Yt, Zt, ât) + 2ε dt⇥ dPαε − a.s. on [τ ε0 , T ]⇥ Ω.

It is obvious that Pαε 2 Pt, then Pαε 2 P(t0+,P) since τ ε0 > t0. Therefore,

ess infP

P
02P(t+

0
,P)
EP

0

t0

h Z T

t0

ktdt
i
6 ε+ EPαε

t0

h Z T

τε
0

ktdt
i
6 ε+ 2ε(1− t0), P− a.s.

By the arbitrariness of ε > 0, and the nonegativity of k, this provides (2.5.7). tu
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2.5.2 Stochastic viscosity solution for SPDE

Buckdahn and Ma [24, 25] have introduced the rigorous notion of stochastic viscosity solution for
semilinear SPDEs and then they gave the probabilistic interpretation of such equation via BDSDEs
where the intensity of the noise g in the SPDEs (2.5.3) does not depend on the gradient of the
solution. Following the classical terminology in the BSDE literature, we say that the solution of the
2BDSDE is Markovian if it can be represented by means of a deterministic function of (t, Bt). In
this subsection, we construct a deterministic function u, by using a probabilistic representation in
the spirit of (2.3.1), and show its connection with 2BDSDE (2.5.1). The connection between u and
the SPDE (2.5.3) will be also established.
We will use the shifted probability spaces defined in Section 2.4. We now introduce the random
function u : [0, T ]⇥ ΩW ⇥ Rd ! R given by

u(t, x) := sup
P2Pt

y
P,t,x
t (T, φ(Bt,x

T )), for (t, x) 2 [0, T ]⇥ Rd. (2.5.8)

By the Blumenthal zero-one law, it follows that u(t, x) is deterministic w.r.t B but still an FW
t,T -

adapted process.
As we have explained in the existence of the solution for 2BDSDE in the abstract setting, we suppose
that our candidate u defined by (2.5.8) belongs to C(FW

t,T , [0, T ]⇥ Rd).
We next state a strengthening of Assumption 2.2.2 in the present Markov framework.

Assumption 2.5.2. (i) The function φ is uniformly continuous and bounded function on Rd.

(ii) There is a continuous positive function Λ(t, x) such that, for any (t, x):

sup
P2Pt

EP
h
|φ(Bt,x

T )|2 +
Z T

t
|f(s,Bt,x

s , 0, 0, âts)|2ds+
Z T

t
|g(s,Bt,x

s , 0, 0)|2ds
i
6 Λ2(t, x),

sup
P2Pt

EP
h

sup
t 6 s 6 T

Λ2(s,Bt,x
s )
i
<1.

(2.5.9)

2.5.2.1 Definitions

We follow Buckdahn and Ma [24]. The definition of our stochastic viscosity solution will depend
on the following stochastic flow η 2 C(FW , [0, T ] ⇥ Rd ⇥ R) defined as the unique solution of the
stochastic differential equation (SDE):

η(t, x, y) = y +

Z T

t
g(s, x, η(s, x, y)) ◦ d −W s, 0 6 t 6 T (2.5.10)

Under the Assumption 2.5.1, for fixed x the random field η(., x, .) is continuously differentiable in
the variable y; and the mapping y 7−! η(t, x, y, ω) defines a diffeomorphism for all (t, x), P-a.s. We
denote by E(t, x, y) the y-inverse of η(t, x, y), so E(t, x, y) is the solution of the following first-order
SPDE:

E(t, x, y) = y −
Z T

t
DyE(s, x, y)g(s, x, y) ◦ d

 −
W s, 8(t, x, y),P− a.s. (2.5.11)

We note that E(t, x, η(t, x, y)) = E(T, x, η(T, x, y)) = y, 8(t, x, y)
We now define the notion of stochastic viscosity solution for SPDE (ĥ, g) (2.5.3).

Definition 2.5.2. (i) A random field u 2 C(FW , [0, T ]⇥Rd) is called a stochastic viscosity subsolution
(resp. supersolution) of SPDE (ĥ, g), if u(T, x) 6 (resp. > )φ(x), 8x 2 Rd; and if for any τ 2
MW

0,T , ζ 2 L0(FW
τ ;Rd), and any random field ϕ 2 C1,2(FW

t,T , [0, T ]⇥ Rd) satisfying

u(t, x)− η(t, x, ϕ(t, x)) 6 (resp. > ) 0 = u(τ, ζ)− η(τ, ζ, ϕ(τ, ζ),
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for all (t, x) in a neighborhood of (τ, ζ),P− a.e. on the set {0 < τ < T}, it holds that

−ĥ(τ, ζ, ψ(τ, ζ), Dψ(τ, ζ), D2ψ(τ, ζ)) 6 (resp. > )Dyη(τ, ζ, ϕ(τ, ζ))Dtϕ(τ, ζ),

P− a.e. on {0 < τ < T}, where ψ(t, x) , η(t, x, ϕ(t, x)).

(ii) A random field u 2 C(FW , [0, T ]⇥Rd) is called a stochastic viscosity solution of SPDE (ĥ, g), if
it is both a stochastic viscosity subsolution and a supersolution.

Definition 2.5.3. A random field u 2 C(FW , [0, T ]⇥Rd) is called a ω- wsise viscosity (sub-, super-)
solution if for P − a.e.ω 2 Ω, u(ω, ., .) is a (deterministic) viscosity (sub-, super-) solution of the
SPDE (ĥ, 0).

Remark 2.5.1. If we assume that ϕ 2 C1,2(FW , [0, T ] ⇥ Rd), and that g 2 C0,0,3([0, T ] ⇥ Rd ⇥
R;Rl), then a straightforward computation using the Itô-Ventzell formula shows that the random
field ψ(t, x) = η(t, x, ϕ(t, x)) satisfies

dψ(t, x) = Dyη(t, x, ϕ(t, x))Dtϕ(t, x)dt+ hg(t, x, ψ(t, x)), ◦d
 −
W ti, t 2 [0, T ]. (2.5.12)

Since g(τ, ζ, ψ(τ, ζ) = g(τ, ζ, u(τ, ζ)) by defintion, it seems natural to compare
ĥ(τ, ζ, ψ(τ, ζ), Dψ(τ, ζ), D2ψ(τ, ζ)) with Dyη(τ, ζ, ϕ(τ, ζ))Dtϕ(τ, ζ) to characterize a viscosity solu-
tion of SPDE (ĥ, g).
If the function g ⌘ 0 in SPDE (f, g) , the flow η becomes η(t, x, y) = y, 8(t, x, y) and ψ(t, x) = ϕ(t, x).
Thus the definition of a stochastic viscosity solution becomes the same as that of a deterministic vis-
cosity solution (see, e.g. Crandall, Ishii and Lions [31]).

Next, we give a generalized version of Itô-Ventzell formula that combines the generalized Itô formula
of Paroux and Peng (1994) and the Itô-Ventzell formula of Ocone and Pardoux (1989).

Lemma 2.5.1. (Generalized Itô-Ventzell formula)
Suppose that F 2 C0,2(F, [0, T ]⇥ Rk) is a semimartingale with spatial parameter x 2 Rk:

F (t, x) = F (0, t) +

Z t

0
G(s, x)ds+

Z t

0
H(s, x)dBs +

Z t

0
K(s, x)d

 −
W s, t 2 [0, T ],

where G 2 C0,2(FB, [0, T ] ⇥ Rk), H 2 C0,2(FB, [0, T ] ⇥ Rk;Rd) and K 2 C0,2(FW , [0, T ] ⇥ Rk;Rl).
Let φ 2 C(F, [0, T ];Rk) be a process of the form

φt = φ0 +At +

Z t

0
γsdBs +

Z t

0
δsd
 −
W s, t 2 [0, T ],

where γ 2 H2
k⇥d, δ 2 H2

k⇥l and A is a continuous F-adapted process with paths of locally bounded
variation. Then, P-almost surely, it holds for all 0 6 t 6 T that

F (t, φt) =F (0, x) +

Z t

0
G(s, φs)ds+

Z t

0
H(s, φs)dBs +

Z t

0
K(s, φs)d

 −
W s

+

Z t

0
DxF (s, φs)dAs +

Z t

0
DxF (s, φs)γsdBs +

Z t

0
DxF (s, φs)δsd

 −
W s

+
1

2

Z t

0
Tr(DxxF (s, φs)γsγ

⇤
s )ds−

1

2

Z t

0
Tr
(
DxxF (s, φs)δsδ

⇤
s

)
ds

+

Z t

0
Tr(DxH(s, φs)γ

⇤
s )ds−

Z t

0
Tr
(
DxF (s, φs)δ

⇤
s

)
ds.

(2.5.13)
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2.5.2.2 Doss transformation

In this subsection we use the so-called Doss-Sussmann transformation to convert the fully nonlinear
SPDEs (2.5.3) to PDEs with random coefficients. This transformation permits to remove the mar-
tingale term from the SPDEs.
To begin with, let us note that, under Assumption 2.5.1 (iii), the random field η 2 C0,2,2(FW , [0, T ]⇥
Rd⇥R), thus so is E . Now for any random field ψ : [0, T ]⇥Rd⇥Ω 7! R, consider the transformation
introduced in Definition 2.5.2:

ϕ(t, x) = E(t, x, ψ(t, x)), (t, x) 2 [0, T ]⇥ Rd,

or equivalently, ψ(t, x) = η(t, x, ϕ(t, x)), (t, x),P − a.s. One can easily check that ψ 2
C0,p(FW , [0, T ] ⇥ Rd) if and only if ϕ 2 C0,p(FW , [0, T ] ⇥ Rd), for p = 0, 1, 2. Moreover, if
ϕ 2 C0,2(FW , [0, T ]⇥ Rd), then Dxψ = Dxη +DyηDxϕ; and

Dxxψ = Dxxη + 2(Dxyη)(Dxϕ)
⇤ + (Dyyη)(Dxϕ)(Dxϕ)

⇤ + (Dyη)(Dxxϕ). (2.5.14)

Furthermore, since E(t, x, η(t, x, y)) ⌘ y, 8(t, x, y), P − a.s., differentiating the equation up to the
second order we have (suppressing variables), for all (t, x, y) and P-almost surely,

DxE +DyEDxη = 0, DyEDyη = 1,

DxxE + 2(DxyE)(Dxη)
⇤ + (DyyE)(Dxη)(Dxη)

⇤ + (DyE)(Dxxη) = 0,

(DxyE)(Dyη) + (DyyE)(Dxη)(Dyη) + (DyE)(Dxyη) = 0,

(DyyE)(Dyη)
2 + (DyE)(Dyyη) = 0.

(2.5.15)

Now, we will use the Doss transformation to obtain the following proposition where the proof is
exalty the same as Proposition 3.1. in [24].

Proposition 2.5.1. Let Assumptions 2.5.1 and 2.5.2 hold true. A random field u is a stochastic
viscosity sub- (resp. super-) solution to SPDE (ĥ, g) (2.5.3) if and only if v(., .) = E(., ., u(., .)) is a
stochastic viscosity solution to SPDE (h̃, 0), with

h̃(t, x, y, z, γ) =
1

Dyη(t, x, y)
{ĥ(t, x, η(t, x, y), Dxη(t, x, y) +Dyη(t, x, y)z,Dxxη(t, x, y)

+ 2Dxyη(t, x, y)z +Dyyη(t, x, y)|z|2 +Dyη(t, x, y)γ)}. (2.5.16)

We will now apply Doss transformation to the 2BDSDE (2.5.1) in order that the Stratonovich
backward integral vanishes. Thus, the 2BDSDE will become a 2BSDE with a new generator f̃ which
is quadratic in z (studied by Possamaï and Zhou [121] and Lin [87] in the case of a bounded final
condition φ(Bt,x

T )). Let us define the following three processes:

U t,x
s = E(t, Bt,x

s , Y t,x
s )

V t,x
s = DyE(s,Bt,x

s , Y
t,x
t )Zt,x

s +DxE(s,Bt,x
s , Y t,x

s )

K̃t,x
s =

Z s

0
DyE(r,Bt,x

r , Y t,x
r )dKt,x

r . (2.5.17)

Theorem 2.5.2. Let Assumptions 2.5.1 and 2.5.2 hold true. Then (U t,x, V t,x, K̃t,x) is the unique
solution of the following 2BSDE, for all t 6 s 6 T ,

U t,x
s = φ(Bt,x

T )−
Z T

s
f̃(r,Bt,x

r , Y t,x
r , Zt,x

r , âr)dr −
Z T

s
V t,x
r dBr + K̃

t,x
T − K̃t,x

s , (2.5.18)

where f̃ : [0, T ]⇥ Rd ⇥ R⇥ Rd ⇥Df 7! R is defined by:

f̃(t, x, y, z, a) ,
1

Dyη(t, x, y)
{f(t, x, y,Dyη(t, x, y)z +Dxη(t, x, y))−

1

2
Tr(aDxxη(t, x, y))

− (aDxyη(t, x, y)z)−
1

2
Tr(aDyyη(t, x, y)|z|2)}. (2.5.19)
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Proof. It is easily checked that the mapping (B, Y, Z,K) 7! (B,U, V, K̃) is 1− 1, with the inverse
transformation:

Yt = η(t, Bt, Ut)

Zt = Dyη(t, Bt, Ut)Vt +Dxη(t, Bt, Ut)

Kt =

Z t

0
Dyη(s,Bs, Us)dK̃s. (2.5.20)

Consequently, the uniqueness of (2.5.18) follows from that of 2BDSDE (2.5.1), thanks to (2.5.17)
and (2.5.20). Thus we need only show that (U, V, K̃) is a solution of the 2BSDE (2.5.18).
Applying the generalized Itô-Ventzell formula (Lemma 2.5.1) to E(t, Bt, Yt), one derives that for
(t, x) 2 [0, T ]⇥ Rd

Ut = E(t, Bt, Yt) = φ(BT )−
Z T

t
DxE(s,Bs, Ys)dBs −

Z T

t
DyE(s,Bs, Ys)f(s,Bs, Ys, Zs, âs)ds

−
Z T

t
DyE(s,Bs, Ys)ZsdBs +

Z T

t
DyE(s,Bs, Ys)dKs −

1

2

Z T

t
Tr(DxxE(s,Bs, Ys)âs)ds

− 1

2

Z T

t
Tr(DyyE(s,Bs, Ys)âs|Zs|2)ds−

Z T

t
Tr(DxyE(s,Bs, Ys)âsZs)ds

= φ(BT )−
Z T

t
H(s,Bs, Ys, Zs, âs)ds−

Z T

t
VsdBs + K̃T − K̃t,

(2.5.21)

where

H(s, x, y, z, âs) , (DyE)f(s, x, y, z, âs) +
1

2
Tr((DxxE)âs) +

1

2
Tr((DyyE)âs|z|2)

+ Tr((DxyE)âsz).
(2.5.22)

Next, we can show that

H(s,Bs, Ys, Zs, âs) = f̃(s,Bs, Us, Vs, âs) 8s 2 [0, T ], P− a.s. (2.5.23)

similarly as done in Buckdahn and Ma [24] (proof of Theorem 5.1. page 198-199).
The process K̃ is an increasing process which satisfies the minimum condition (2.5.7) thanks to
(2.5.17), the fact that y 7! η(t, x, y) is strictly increasing and that K satisfies the minimum condition
(2.5.7). tu

We are now ready to prove that u defined by (2.5.8) is the stochastic viscosity solution of our SPDE
(ĥ, g) (2.5.3). First, we introduce the random field v(t, x) = U

t,x
t , where U is the solution of 2BSDE

(2.5.18). Then by (2.5.17) and (2.5.20) we know that, for (t, x) 2 [0, T ]⇥ Rd

u(t, x) = η(t, x, v(t, x)) ; v(t, x) = E(t, x, u(t, x)). (2.5.24)

Finally, thanks to Proposition 5.1, we need only prove that the random field v defined in (2.5.24) is
a stochastic viscosity solution to the SPDE (h̃, 0).

Theorem 2.5.3. Under our Assumptions, the random field v is a stochastic viscosity solution of
SPDE (h̃, 0); and u is a stochastic viscosity solution to SPDE (ĥ, g), respectively.

Remark 2.5.2. As mentioned in the begining of Section 2.5.2, we suppose that our candidate u

defined by (2.5.8) belongs to C(FW
t,T , [0, T ] ⇥ Rd). Thanks to the ralation (2.5.24), this condition is

equivalent to v(·, ·, ω) belongs to C([0, T ] ⇥ Rd), P-a.s. for all ω 2 Ω. This latter can be proved by
using regularity results for deterministic fully nonlinear PDEs ([27],[86]), but it is still a work in
progress to make it rigoursly.
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2.6 Appendix

2.6.1 Doubly f- supersolution and martingales

In this section, we extend some of the results of Peng [114] concerning f - supersolution of BSDEs
to the case of BDSDEs. In the following, we fix a probability measure P. Let us given the following
objects:

(i) a terminal condition ξ which is FT -measurable and in L2(P)

(ii) f : Ω⇥ R⇥ Rd ! R , g : Ω⇥ R⇥ Rd ! Rl are two functions verifying:

• E
⇥ Z T

0
|f(t, 0, 0)|2dt

⇤
< +1 , E

⇥ Z T

0
kg(t, 0, 0)k2dt

⇤
< +1

• There exist constants c > 0 and 0 < α < 1 such that for any(ω, t) 2 Ω ⇥
[0, T ] ; (y1, z1), (y2, z2) 2 R⇥ Rd

|f(t, y1, z1)− f(t, y2, z2)|2 6 c
(
|y1 − y2|2 + kz1 − z2k2

)

kg(t, y1, z1)− g(t, y2, z2)k2 6 c|y1 − y2|2 + αkz1 − z2k2.

(iii) a real-valued r.c.l.l. progressively measurable process {Vt, 0 6 t 6 T} with

E
(

sup
0 6 t 6 T

|Vt|2
)
< +1.

We want to study the following problem: to find a pair of processes (y, z) 2 D2(P)⇥H2(P) satisfying

yt = ξT +

Z T

t
fs(ys, zs)ds+

Z T

t
gs(ys, zs)d

 −
W s + VT − Vt −

Z T

t
zsdBs , P− a.s. (2.6.1)

We have the following exixtence and uniqueness theorem

Proposition 2.6.1. Under the above hypothesis there exists a unique pair of processes (y, z) 2
D2(P)⇥H2(P) of solution BDSDE (2.6.1).

Proof. In the case where V ⌘ 0, the proof can be found in [109]. Otherwise, we can make the
change of variable yt := yt + Vt and treat the equivalent BDSDE

yt = ξT + VT +

Z T

t
fs(ys − Vs, zs)ds+

Z T

t
gs(ys − Vs, zs)d

 −
W s −

Z T

t
zsdBs. (2.6.2)

tu
We also have a comparison theorem in this context

Proposition 2.6.2. Let ξ1 and ξ2 2 L2(P), V i, i = 1, 2 be two adapted càdlàg processes and
f i
s(y, z), g

i
s(y, z) four functions verifying the above assumption. Let (yi, zi) 2 D2(P)⇥H2(P), i = 1, 2

be the solution of the following BDSDEs:

yit = ξiT +

Z T

t
f i
s(y

i
s, z

i
s)ds+

Z T

t
gs(y

i
s, z

i
s)d
 −
W s + V i

T − V i
t −

Z T

t
zisdBs , P− a.s , i = 1, 2

respectively. If we have P− a.s. that ξ1 > ξ2, V
1 − V 2 is non decreasing, and f1

s (y
1
s , z

1
s ) > f2

s (y
1
s , z

1
s )

then it holds that for all t 2 [0, T ]

y1t > y2t P− a.s.

Remark 2.6.1. If we replace the determonistic time T by a bounded stopping time τ , then all the
above is still valid.
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For a given stopping time, we now consider the following BDSDE

yt = ξT +

Z τ

t^τ
fs(ys, zs)ds+

Z τ

t^τ
gs(ys, zs)d

 −
W s + Vτ − Vt^τ −

Z τ

t^τ
zsdBs , P− a.s. (2.6.3)

where ξ 2 L2(P) and V 2 I2(P).

Definition 2.6.1. If y is a solution of BDSDE of form (2.6.3), the we call y a doubly f - supersolution
on [0, τ ]. If V ⌘ 0 in [0, τ ], then we call y a doubly f - solution.

Proposition 2.6.3. Given y a doubly f - supersolution on [0, τ ], there is a unique z 2 H2(P) and a
unique V 2 I2(P) such that (y, z) satisfies (2.6.3).

Proof. If both (y, z, V ) and (y, z1, V 1) satisfy (2.6.3), then we apply Itô’s formula to (y − y)2 on
[0, τ ] and take expectation:

E[

Z τ

0
|zs − z1s |2ds] + E[

X

t2(0,τ ]

(4(Vt − V 1
t ))

2] = 0

Thus z ⌘ z1. From this it follows that V ⌘ V 1. tu
Thus we can define

Definition 2.6.2. Let y be a supersolution on [0, τ ] and let (y, z, V ) be the related unique triple in
the sense of BDSDE (2.6.3). Then we call (z, V ) the decomposition of y.

We now introduce the notion of doubly f - (super) martingales.

Definition 2.6.3.

(i) A doubly f - martingale on [0, T ] is a doubly f - solution on [0, T ].

(ii) A process (Yt) is a doubly f - supermartingale in the strong (resp. weak) sense if for all stopping
time τ 6 t (resp. all t 6 T ), we have EP[|Yτ |2] < +1 (resp. EP[|Yt|2] < +1 and if the doubly f -
solution (ys) on [0, τ ] (resp. [0, t]) with terminal condition Yτ (resp. Yt) verifies yσ 6 Yσ for every
stopping time σ 6 τ (resp. ys 6 Ys for every s 6 t).

Certainly, a doubly f - supermartingale in the strong sense is also a doubly f - supermartingale in
the weak sense. Under mild conditions, a doubly f - supermartingale in the weak sense corresponds
to a doubly f - supermartingale in the strong sense.

2.6.2 Downcrossing inequality

In this section, we prove a downcrossing inequality for doubly f -supermatingales.

Theorem 2.6.1. Assume that f(0, 0) = 0. Let (Yt) be a positive doubly f -supermartingale in the
weak sense and let 0 = t0 < t1 < ... < ti = T be a subdivision of [0, T ]. Let 0 < a < b, then there
exists C > 0 such that Db

a[Y, n], the number of downcrossings of [a, b] by {Yti}, verifies

E−µ[Db
a[Y, n]] 6

C

b− a
Eµ[Y0 ^ b]

Proof. Consider

yit = Yti +

Z ti

t
(µ|yis|+ µ|zis|)ds+

Z ti

t
gs(y

i
s, z

i
s)d
 −
W s −

Z ti

t
zisdBs , 0 6 t 6 ti

Since Yti > 0, using comparison theorem, we have yit > 0 , t 6 ti

yit = Yti +

Z ti

t
(µyis + asz

i
s)ds+

Z ti

t
gs(y

i
s, z

i
s)d
 −
W s −

Z ti

t
zisdBs , 0 6 t 6 ti
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where ais := µsgn(zis)1ti−1<s 6 ti and as :=
Pn

i=0 a
i
s.

Define ỹis = e−λ(ti−s)yis, we obtain for all 0 6 t 6 ti

ỹit = +

Z ti

t
e−λ(ti−s)asz

i
sds+

Z ti

t
e−λ(ti−s)gs(y

i
s, z

i
s)d
 −
W s −

Z ti

t
e−λ(ti−s)zisdBs

Let Q be the probability measure defined by

dQ

dP
= E

( Z T

0
e−λ(ti−s)asdBs

)
.

and define ŷis := ỹis +

Z t

0
e−λ(ti−s)gs(y

i
s, z

i
s)d
 −
W s, we then have easily that

ŷit = EQ[ŷiti |Gt] 0 6 t 6 ti

Since Y is a doubly f -supermartingale (and thus also a f−µ-supermartingale where f
−µ
s (y, z) :=

−µ(|y|+ |z|)), we therefore obtain

EQ[Yti +

Z ti

0
e−λ(ti−s)gs(y

i
s, z

i
s)d
 −
W s|Gti−1

] = ŷiti−1

= ỹiti−1
+

Z ti−1

0
e−λ(ti−s)gs(y

i
s, z

i
s)d
 −
W s

6 e−λ(ti−ti−1)Yti−1
+

Z ti−1

0
e−λ(ti−s)gs(y

i
s, z

i
s)d
 −
W s

It means that the process X := (Xti)
n
i=0 where Xti = eλtiYti +

Z ti

0
eλsgs(y

i
s, z

i
s)d
 −
W s, is a Q- super-

martingale with respect to (Gti)ni=0. Then we can finish the proof exactly as in [29].

2.6.3 Reflected backward doubly stochastic differential equations

In this section, we want to study the problem of a reflected backward doubly stochastic differential
equation (RBDSDE in short) with one càdlàg barrier. This is an extension of the work of Hamadene
and Ouknine [64] for the standard reflected BDSDEs to our case. So we need the following objects:

(i) a terminal condition ξ which is FT -measurable and in L2(P)

(ii) f : Ω⇥ R⇥ Rd ! R , g : Ω⇥ R⇥ Rd ! Rl are two functions verifying:

• E
⇥ Z T

0
|f(t, 0, 0)|2dt

⇤
< +1 , E

⇥ Z T

0
kg(t, 0, 0)k2dt

⇤
< +1

• There exist constants c > 0 and 0 < α < 1 such that for any(ω, t) 2 Ω ⇥
[0, T ] ; (y1, z1), (y2, z2) 2 R⇥ Rd

|f(t, y1, z1)− f(t, y2, z2)|2 6 c
(
|y1 − y2|2 + kz1 − z2k2

)

kg(t, y1, z1)− g(t, y2, z2)k2 6 c|y1 − y2|2 + αkz1 − z2k2.

(iii) The barrier {St, 0 6 t 6 T} is a real-valued r.c.l.l. progressively measurable process satisfying
ST 6 ξ and

E
(

sup
0 6 t 6 T

(S+
t )

2
)
< +1.

Now we present the definition of the solution of RBDSDEs with one lower r.c.l.l. barrier.
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Definition 2.6.4. We call (Y, Z,K) a solution of the backward doubly stochastic differential equation
with one r.c.l.l. reflecting lower barrier S(.), terminal condition ξ and coefficients f and g, which
satisfy (i)-(iii) if the following hold:

(iv) Y 2 D2(P) , Z 2 H2(P).

(v) Yt = ξ +

Z T

t
f(s, Ys, Zs)ds+

Z T

t
g(s, Ys, Zs)d

 −
W s −

Z T

t
ZsdBs +KT −Kt , 0 6 t 6 T .

(vi) Yt > St , 0 6 t 6 T, a.s.

(vii) If Kc (resp. Kd) is the continuous (resp. purely discontinuous) part of K, thenZ T

0
(Ys − Ss)dK

c
s = 0, a.s. and 8t 6 T,∆Kd

t = (St− − Yt)
+1[Y

t−=S
t− ].

The state-process Y (.) is forced to remain above the barrier S(.), thanks to the cumulation action
of the reflection process K(.), which acts only when necessary to prevent Y (.) from crossing the
barrier, and in this sense, its action can be considered minimal.

Remark 2.6.2. The condition (vii) implies in particular that

Z T

0
(Ys− − Ss−)dKs = 0

Actually

Z T

0
(Ys− − Ss−)dKs =

Z T

0
(Ys− − Ss−)dK

c
s +

Z T

0
(Ys− − Ss−)dK

d
s

=

Z T

0
(Ys− − Ss)dK

c
s +

X

s 6 T

(Ys− − Ss−)∆Kd
s

= 0.

The last term of the second equality is null since Kd jumps only when Ys− = Ss− . tu

The main objective of this section is to prove the:

Theorem 2.6.2. Under the above hypotheses, the RBDSDE (v) has a unique solution (Y, Z,K).

Before we start proving this theorem, let us establish the same result in case f and g do not depend
on Y and Z. More precisely, given f and g such that

E

⇣Z T

0
|f(s)|2ds

⌘
< +1,

E

⇣Z T

0
kg(s)k2ds

⌘
< +1

and ξ as above, consider the reflected BDSDE

Yt = ξ +

Z T

t
f(s)ds+

Z T

t
g(s)d

 −
W s −

Z T

t
ZsdBs +KT −Kt. (2.6.4)

Proposition 2.6.4. There exists a unique triplet (Y, Z,K) verifies conditions of Definition 4.2.5
and satisfies (2.6.4).
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Proof. a) Existence: The method combines penalization and the Snell envelope method.
For each n 2 N⇤, we set

fn(s, y) = f(s) + n(ys − Ss)
−

and consider the BDSDE

Y n
t = ξn +

Z T

t
fn(s, Y

n
s )ds+

Z T

t
g(s)d

 −
W s −

Z T

t
Zn
s dBs. (2.6.5)

It is well known (see Pardoux and Peng [109]) that BDSDE (2.6.5) has a unique solution (Y n, Zn) 2
D2(P)⇥H2(P) such that for each n 2 N,

E

⇣
sup

0 6 t 6 T
|Y n

t |2 +
Z T

0
kZn

s k2ds
⌘
<1.

From now on the proof will be divided into four steps.
Step 1 : For all n > 0 and (s, y) 2 [0, T ]⇥ R,

fn(s, y, z) 6 fn+1(s, y, z),

which provide by Comparison Theorem, Y n
t 6 Y n+1

t , t 2 [0, T ] a.s..
Step 2 : For each n 2 N, denoting

Ȳ n
t := Y n

t +

Z t

0
g(s)d

 −
W s,

ξ̄ := ξ +

Z T

0
g(s)d

 −
W s , S̄t := St +

Z t

0
g(s)d

 −
W s,

we have

Ȳ n
t = ξ̄ +

Z T

t
f(s)ds+ n

Z T

t
(Ȳ n

s − S̄s)
−ds−

Z T

t
Zn
s dBs. (2.6.6)

The process Ȳ n
t satisfies

8t 6 T , Ȳ n
t = ess sup

τ > t
E
⇥ Z τ

t
f(s)ds+ (Ȳ n

τ ^ S̄τ )1{τ<T} + ξ̄1{τ=T}|Gt
⇤
. (2.6.7)

In fact, for any n 2 N and t 6 T we have

Ȳ n
t = ξ̄ +

Z T

t
f(s)ds+ n

Z T

t
(Ȳ n

s − S̄s)
−ds−

Z T

t
Z̄n
s dBs. (2.6.8)

Therefore for any stopping time τ > t we have

Ȳ n
t = E[Ȳ n

τ +

Z τ

t
f(s)ds+ n

Z τ

t
(Ȳ n

s − S̄s)
−ds|Gt]

> E[(S̄τ ^ Ȳ n
τ )1[τ<T ] + ξ̄1{τ=T} +

Z τ

t
f(s)ds|Gt], (2.6.9)

since Ȳ n
τ > (S̄τ ^ Ȳ n

τ )1[τ<T ] + ξ̄1{τ=T}. On the other hand, let τ⇤t be the stopping time defined as
follows:

τ⇤t = inf{s > t, K̄n
s − K̄n

t > 0} ^ T,

where K̄n
t = n

Z t

0
(Ȳ n

s − S̄s)
−ds. Let us show that 1[τ⇤t <T ]Ȳ

n
τ⇤t
) = (S̄τ⇤t

^ Ȳ n
τ⇤t
)1[τ⇤t <T ].

Let ω be fixed such that τ⇤t (ω) < T . Then there exists a sequence (tk)k > 0 of real numbers which
decreases to τ⇤t (ω) such that Ȳ n

tk
(ω) 6 S̄tk(ω). As Ȳ n and S̄ are RCLL processes then taking the
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limit as k !1 we obtain Ȳ n
τ⇤t

6 S̄τ⇤t
which implies 1[τ⇤t <T ]Ȳ

n
τ⇤t
) = (S̄τ⇤t

^ Ȳ n
τ⇤t
)1[τ⇤t <T ].

Now from (2.6.8), we deduce that:

Ȳ n
t = Ȳ n

τ⇤t
+

Z τ⇤t

t
f(s)ds−

Z τ⇤t

t
Z̄n
s dBs

= (S̄τ⇤t
^ Ȳ n

τ⇤t
)1[τ⇤t <T ] + ξ̄1{τ⇤t =T} +

Z τ⇤t

t
f(s)ds−

Z τ⇤t

t
Z̄n
s dBs.

Taking the conditional expectation and using inequality (2.6.9) we obtain: 8n > 0, and t > T

Ȳ n
t = ess sup

τ > t
E
⇥ Z τ

t
f(s)ds+ (Ȳ n

τ ^ S̄τ )1{τ<T} + ξ̄1{τ=T}|Gt
⇤
. (2.6.10)

Step 3 : There exists a RCLL (Yt)t 6 T of D2(P) such that P-a.s.

(i) Y = lim
n!1

Y n in H2(P), S 6 Y .

(ii) for any t 6 T,

Yt = ess sup
τ > t

E
⇥ Z τ

t
f(s)ds+ S̄τ1{τ<T} + ξ̄1{τ=T}|Gt

⇤
−
Z t

0
g(s)d

 −
W s. (2.6.11)

Actually for t 6 T let us set Ỹt = ess sup
τ > t

E
⇥ Z τ

t
f(s)ds+ S̄τ1{τ<T} + ξ̄1{τ=T}|Gt

⇤
.

The process Ỹ belongs to D2(P) since S̄ is so, f 2 H2(P) and ξ̄ is square integrable. On the other
hand for any n > 0 and t 6 T we have Ȳ n

t 6 Ỹt. Thus there exist a Gt-measurable process Ȳ

such that P-a.s. for any t 6 T, Ȳ n
t % Ȳt 6 Ỹt and we have Y n

t % Yt = Ȳt −
Z t

0
g(s)d

 −
W s, then

Y = lim
n!1

Y n in H2(P).

Besides the process (Ȳ n
t +

Z t

0
f(s)ds)t 6 T is a RCLL supermartingale as a snell envelope of

(

Z t

0
f(s)ds+ (S̄t ^ Ȳ n

t )1[t<T ] + ξ̄1{t=T})t 6 T and it converges increasingly to (Ȳt +

Z t

0
f(s)ds)t 6 T .

It follows that this latter process is an RCLL supermartingale. Henceforth the process Y is also a
(Gt)- RCLL with E[ sup

t 6 T
|Yt|2] < +1.

The process (Yt)t > 0 is (Ft)- measurable as the limit of a (Ft)- measurable process (Y n
t )t > 0.

Next let us prove that Y > S. We have

E[Y n
0 ) = E[ξ +

Z T

0
f(s)ds] + E[

Z T

0
n(Y n

s − Ss)
−ds].

Dividing the two hand-sides by n and taking the limit as n!1 to obtain E[

Z T

0
(Y n

s −Ss)
−ds] = 0.

As the processes Y and S are RCLL then P-a.s. Yt > St, for t < T . But YT = ξ > ST , therefore
Y > S.
Finally let us show that Y satisfies (2.6.11). But this is a direct consequence of the continuity of
the Snell envelope through sequences of increasing RCLL processes. In fact on the one hand, the
sequence of increasing RCLL processes ((S̄t ^ Ȳ n

t )1[t<T ] + ξ̄1{t=T})t 6 T )t 6 T converges increasingly
to the RCLL (S̄t1[t<T ] + ξ̄1{t=T})t 6 T )[t 6 T since Ȳt > S̄t.

Therefore, the sequence (

Z t

0
f(s)ds + Ȳ n

t )t 6 T converges to ess sup
τ > t

E
⇥ Z τ

0
f(s)ds + S̄τ1{τ<T} +

ξ̄1{τ=T}|Gt
⇤

which then is equal to (

Z t

0
f(s)ds+ Ȳt)t 6 T and which implies that

Yt = Ȳt −
Z t

0
g(s)d

 −
W s

= ess sup
τ > t

E
⇥ Z τ

t
f(s)ds+ S̄τ1{τ<T} + ξ̄1{τ=T}|Gt

⇤
−
Z t

0
g(s)d

 −
W s.
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Step 4 : There exist two processes Z 2 H2(P), K 2 I2(P) such that (Y, Z,K) is the solution of the
RBDSDE (2.6.4).

We know from (2.6.11) that the process (
Z t

0
f(s)ds+ Ȳ n

t )t 6 T is a Snell envelope. Then, there exist

a process K 2 I2(P) and a (Gt)-martingale such that

Z t

0
f(s)ds+ Yt +

Z t

0
g(s)d

 −
W s = Mt −Kt , 0 6 t 6 T.

Additionally K = Kc + Kd where Kc is continuous non-decreasing and Kd non-decreasing purely
discontinuous predictable such that for any t 6 T,∆tK

d = (St− − Yt)1{Y
t−=S

t−}.
Now the martingale M belongs to S2(P) then the Itô’s martingale representation theorem implies

the existence of (Gt) -measurable process Z such that E[

Z T

0
|Zs|2ds] <1 and

Mt = M0 +

Z t

0
ZsdBs, 0 6 t 6 T, P− a.s.

Hence

Yt = Y0 −
Z t

0
f(s)ds−

Z t

0
g(s)d

 −
W s +

Z t

0
ZsdBs −Kt, 0 6 t 6 T.

Let us now prove that
Z T

0
(Ys − Ss)dK

c
s = 0.

It remains to show that Zt and Kt are in fact Ft-adapted. For Kt, it is obvious since it is the limit

of Kn
t =

Z t

0
n(Y n

s − Ss)
−ds which is Ft - measurable for each t 6 T .

Now Z T

t
ZsdBs = ξ +

Z T

t
f(s, Ys, Zs)ds+

Z T

t
g(s, Ys, Zs)d

 −
W s − Yt +KT −Kt,

and the right side is FB
T _FW

t,T -measurable. Hence from the Itô’s martingale representation theorem
Zs, t < s < T is FB

s _ FW
t,T adapted. Consequently Zs is FB

s _ FW
s,T -measurable for any t < s, so it

is FB
s _ FW

s,T -measurable.
b) Uniqueness: under Lipschitz continuous condition, the proof of uniqueness is a standard in
BSDE theory (see e.g. proof of Proposition 2.1. in [2]). tu

The existence of solution of RBDSDE (v) in Theorem 2.6.2 is obtained via a standard fixed Banach
point theorem for reflected BSDEs (see for instance El Karoui, Hamadene and Matoussi [45]).
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3.1 Introduction

Our main interest in this chapter is to study the following partial integro-differential equations (in
short PIDEs) of parabolic type:

(∂t + L)u(t, x) + f(t, x, u(t, x),ru(t, x)σ(x), u(t, x+ β(x, ·))− u(t, x)) = 0 (3.1.1)

over the time interval [0, T ], with a given final condition uT = g, f is a nonlinear function and
L = K1+K2 is the second order integro-differential operator associated with a jump diffusion which
is defined component by component with

K1ϕ(x) =
dX

i=1

bi(x)
∂

∂xi
ϕ(x) +

1

2

dX

i,j=1

aij(x)
∂2

∂xi∂xj
ϕ(x) and

K2ϕ(x) =

Z

E

⇣
ϕ(x+ β(x, e))− ϕ(x)−

dX

i=1

βi(x, e)
∂

∂xi
ϕ(x)

⌘
λ(de), ϕ 2 C2(Rd).

(3.1.2)

More precisely, our main interest is to consider the final condition to be a fixed function g 2 L
2
(
Rd
)

and the obstacle h be a continuous function h : [0, T ]⇥Rd −! R. Then the obstacle problem for the
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equation (3.1.1) is defined as a pair (u, ν), where ν is a regular measure concentrated on {u = h}
and u 2 L

2
(
[0, T ]⇥Rd;R)

)
satisfies the following relations:

(i0) u > h, dP⌦ dt⌦ dx− a.e.,

(ii0) ∂tu(t, x) + Lu(t, x) + f(t, x, u(t, x),ru(t, x)σ(x), u(t, x+ β(x, ·))− u(t, x)) = −ν(dt, dx),
(iii0) ν

(
u > h

)
= 0, a.s.,

(iv0) uT = g, dx− a.e..

(3.1.3)

ν represents the quantity which forces u to stay above the obstacle h and we get the uniqueness
result for the obstacle problem. In Section 3.4, the rigorous sense of the relation (iii0) which is based
on the probabilistic representation of the measure ν and plays the role of quasi-continuity of u in
this context will be explained. The main result of the chapter is Theorem 3.4.1 which ensures the
existence and uniqueness of the solution (u, ν) of the obstacle problem for (3.1.1) using a probabilistic
method based on reflected BSDEs with jumps. The proof is based on the penalization procedure. It
can be noted that the quasi-sure approaches for the PIDEs (probabilistic [98] or analytical one [38])
are unsuccessful. It remains unclear, until now, how to define the anlytical potential associated to
the operator L specially for the non local operator K2. Thus, the stochastic flow method developed
by Bally and Matoussi in [10] (see also [97]) for a class of parabolic semilinear SPDEs is used in this
context.
As a preliminary work, first we present the existence and uniqueness of Sobolev’s solution of PIDE
(3.1.1) (without obstacle) and provide a probabilistic interpretation by using solution of BSDEs
driven by a Brownian motion and an independent random measure. The concern is to solve our
problem by developing a stochastic flow method based on the results of Léandre [82] about the
homeomorphic property for the solution of SDEs with jumps. The key element in [10] is to use
the inversion of stochastic flow which transforms the variational formulation of the PDEs to the
associated BSDEs. Thus it plays the same role as Itô’s formula in the case of the classical solution
of PDEs.

This chapter is organized as following: in section 4.2.1, first the basic assumptions and the defini-
tions of the solutions for PIDEs are presented. We provide useful results on stochastic flow associated
with the forward SDEs with jumps, then in this setting a class of random test functions and their
semimartingale decomposition are introduced. Finally, an equivalence norm result is given in the
jump diffusion case. In section 3.3, we prove the existence and uniqueness results of the solution of
our PIDEs and give the associated probabilistic interpretation via the FBSDEs with jumps. The
uniqueness is a consequence of the variational formulation of the PIDEs written with random test
functions and the uniqueness of the solution of the FBSDE. The existence of the solution is es-
tablished by an approximation penalization procedure, a priori estimates and the equivalence norm
results. In section 3.4, we prove existence and uniqueness of the solution of the obstacle problem
for the PIDEs. The proof of this result differs from that of Bally et al [9] since we have to consider
the stochastic flow associated with the forward jump diffusion process. In particular, the jump part
appearing of the tightness result for the approximation measure has to be taken into account. In the
Appendix, we first give the proof of the equivalence norm results, then prove a regularity result for
the BSDEs solution with respect to the time-state variable (t, x), in order to relate the solution of
BSDEs to the classical solution of our PIDEs. Finally, we give a proof of a technical lemma which
is crucial for the existence of the regular measure part of the solution of our obstacle problem for
PIDEs. This chapter is based on [96].
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3.2 Hypotheses and preliminaries

Let T > 0 be a finite time horizon and (Ω,F ,P) be a complete probability space on which is defined
two independent processes:

- a d-dimensional Brownian motion Wt = (W 1
t , · · · ,W d

t );
- a Poisson random measure µ = µ(dt, de) on ([0, T ] ⇥ E,B([0, T ]) ⌦ BE), where E = Rl \ {0} is

equipped with its Borel field BE , with compensator υ(dt, de) = λ(de)dt, such that {µ̃([0, T ]⇥ A) =

(µ − υ)([0, T ] ⇥ A)}t > 0 is a martingale for all A 2 BE satisfying λ(A) < 1. λ is assumed to be a
σ− finite measure on (E,BE) satisfying

Z

E

(1 ^ |e|2)λ(de) < +1

Denote eP = P ⌦ BE where P is the predictable σ-field on Ω⇥ [0, T ].
Let (Ft)t > 0 be the filtration generated by the above two processes and augmented by the P -null

sets of F . Besides let us define:

- |X| the Euclidean norm of a vector X;

- L2(E,BE , λ;Rn) (noted as L
2
λ for convenience) the set of measurable functions from (E,BE , λ)

to Rn endowed with the topology of convergence in measure and for v 2 L
2(E,BE , λ;Rn)

kvk2 =
Z

E
|v(e)|2λ(de) 2 R+ [ {+1};

-Lp
n(FT ) the space of n-dimensional FT -measurable random variables ξ such that

kξkpLp := E(|ξ|p) < +1;

-Hp
n⇥d([0, T ]) the space of Rn⇥d-valued P-measurable process Z = (Zt)t 6 T such that

kZkpHp := E[(

Z T

0
|Zt|2dt)p/2] < +1;

- Spn([0, T ]) the space of n-dimensional Ft-adapted càdlàg processes Y = (Yt)t 6 T such that

kY kpSp := E[ sup
t 6 T
|Yt|p] < +1;

- Ap
n(t, T ) the space of n-dimensional Ft-adapted non-decreasing càdlàg processes K = (Kt)t 6 T

such that
kKkpAp := E[|KT |p] < +1;

-Lpn([0, T ]) the space of Rn-valued eP-measurable mappings V (ω, t, e) such that

kV kpLp := E[(

Z T

0
kVtk2dt)p/2] = E[(

Z T

0

Z

E
|Vt(e)|2λ(de)dt)p/2] < +1.

- Ck
l,b(R

p,Rq) the set of Ck-functions which grow at most linearly at infinity and whose partial
derivatives of order less than or equal to k are bounded.

- L2
ρ

(
Rd
)

will be the basic Hilbert space of our framework. We employ the usual notation for its
scalar product and its norm,

(u, v)ρ =

Z

Rd

u (x) v (x) ρ(x)dx, kuk2 =
✓Z

Rd

u2 (x) ρ(x)dx

◆ 1

2

.

where ρ is a continuous positive and integrable weight function. We assume additionally that 1
ρ is

locally integrable
In general, we shall use the notation

(u, v) =

Z

Rd

u(x)v(x) dx,
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where u, v are measurable functions defined in Rd and uv 2 L
1(Rd).

Our evolution problem will be considered over a fixed time interval [0, T ] and the norm for an
element of L2

ρ

(
[0, T ]⇥ Rd

)
will be denoted by

kuk2,2 =
✓Z T

0

Z

Rd

|u(t, x)|2ρ(x)dxdt
◆ 1

2

.

We usually omit the subscript when n = 1. We assume the following hypotheses :

(A1) g belongs to L
2
ρ(R

d);

(A2) f : [0, T ] ⇥ Rd ⇥ Rm ⇥ Rm⇥d ⇥ L
2(E,BE , λ;Rm) ! Rm is measurable in (t, x, y, z, v) and

satisfies f0 2 L
2
ρ

(
[0, T ]⇥ Rd

)
where f0 := f(·, ·, 0, 0, 0).

(A3) f satisfies Lipschitz condition in (y, z, v), i.e., there exists a constant C such that for any
(t, x) 2 [0, T ]⇥ Rd and (y, z, v), (y0, z0, v0) 2 Rm ⇥ Rm⇥d ⇥ L

2(E,BE , λ;Rm):

|f(t, x, y, z, v)− f(t, x, y0, z0, v0)| 6 C(|y − y0|+ |z − z0|+ kv − v0k);

(A4) b 2 C3
l,b(R

d;Rd), σ 2 C3
l,b(R

d;Rd⇥d), β : Rd ⇥ E ! Rd be measurable and for all e 2 E,
β(·, e) 2 C3

l,b(R
d;Rd), and for some K > 0 and for all x 2 Rd, e 2 E,

|β(x, e)| 6 K(1 ^ |e|), |Dαβ(x, e)| 6 K(1 ^ |e|) for 1 6 |α| 6 3,

where α = (α1,α2, · · · ,αd) is a multi-index and |α| = α1 + α2 + · · · + αd. D
α is the differential

operator Dα =
∂|α|

(∂α1x1)(∂α2x2) · · · (∂αdxd)
.

3.2.1 Weak formulation for the partial differential-integral equations

The space of test functions which we employ in the definition of weak solutions of the evolution
equations (3.1.1) is DT = C1([0, T ])⌦C1c

(
Rd
)
, where C1 ([0, T ]) denotes the space of real functions

which can be extended as infinite differentiable functions in the neighborhood of [0, T ] and C1c
(
Rd
)

is the space of infinite differentiable functions with compact support in Rd. We denote the space of
solutions by

HT := {u 2 L
2
ρ([0, T ]⇥ Rd)

∣∣ ruσ 2 L
2
ρ([0, T ]⇥ Rd)}

endowed with the norm

kukHT
=
⇣Z

Rd

Z T

0
[|u(s, x)|2 + |ru(s, x)σ(x)|2]dsρ(x)dx

⌘1/2
,

where we denote the gradient by ru(t, x) =
(
∂1u(t, x), · · ·, ∂du(t, x)

)
.

Definition 3.2.1. We say that u 2 HT is a Sobolev solution of PIDE (3.1.1) if the following relation
holds, for each φ 2 DT ,

Z T

t
(u(s, x), ∂sφ(s, x))ds+ (u(t, x),φ(t, x))− (g(x),φ(T, x))−

Z T

t
(u(s, x),L⇤φ(s, x))ds

=

Z T

t
(f(s, x, u(s, x),ru(s, x)σ(x), u(s, x+ β(x, ·))− u(s, x)),φ(s, x))ds.

(3.2.1)

where L⇤ is the adjoint operator of L. We denote by u := U(g, f) such a solution.
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3.2.2 Stochastic flow of diffeomorphisms and random test functions

In this section, we shall study the stochastic flow associated to the forward jump diffusion component.
The main motivation is to generalize in the jump setting the flow technics which was first introduced
in [10] for the study of semilinear PDE’s. Let (Xt,s(x))t 6 s 6 T be the strong solution of the equation:

Xt,s(x) = x+

Z s

t
b(Xt,r(x))dr +

Z s

t
σ(Xt,r(x))dWr +

Z s

t

Z

E
β(Xt,r−(x), e)eµ(dr, de). (3.2.2)

The existence and uniqueness of this solution was proved in Fujiwara and Kunita [52]. Moreover, we
have the following properties (see Theorem 2.2 and Theorem 2.3 in [52]):

Proposition 3.2.1. For each t > 0, there exists a version of {Xt,s(x); x 2 Rd, s > t} such that
Xt,s(·) is a C2(Rd)-valued càdlàg process. Moreover:

(i) Xt,s(·) and X0,s−t(·) have the same distribution, 0 6 t 6 s;
(ii) Xt0,t1 , Xt1,t2 , . . . , Xtn−1,tn are independent, for all n 2 N, 0 6 t0 < t1 < · · · < tn;
(iii) Xt,r(x) = Xs,r ◦Xt,s(x), 0 6 t < s < r.
Furthermore, for all p > 2, there exists Mp such that for all 0 6 t < s, x, x0 2 Rd, h, h0 2 R\{0},

where ∆i
hg(x) =

1
h(g(x+ hei)− g(x)), and (e1, · · · , ed) is an orthonormal basis of Rd.

It is also known that the stochastic flow solution of a continuous SDE satisfies the homeomorphic
property (see Bismut [16], Kunita [76], [80]). But this property fails for the solution of SDE with
jumps in general. P.-A. Meyer in [102] (Remark p.111), gave a counterexample with the following
exponential equation:

X0,t(x) = x+

Z t

0
X0,s−dZs

where Z is semimartingale, Z0 = 0, such that Z has a jump of size −1 at some stopping time τ ,
τ > 0 a.s. Then all trajectories of X, starting at any initial value x, become zero at τ and stay there
after τ . This may be seen trivially by the explicit form of the solution given by the Doléans-Dade
exponential:

X0,t(x) = xexp
(
Zt −

1

2
[Z,Z]ct

) Y

0<s 6 t

(
1 + ∆Zs

)
e−∆Zs .

In the general setting of non-linear SDE, at the jump time τ , the solution jumps from X0,τ−(x)

to X0,τ−(x) + β(X0,τ−(x)). Léandre [82] gave a necessary and sufficient condition under which the
homeomorphic property is preserved at the jump time, namely, for each e 2 E, the maps He : x 7!
x+β(x, e) should be one to one and onto. One can read also Fujiwara and Kunita [52], Protter [122]
and Kunita [77] for more details on the subject. Therefore, we assume additionally that, for each
e 2 E, the linkage operator :

(A5) He : x 7! x+ β(x, e) is a C2-diffeomorphism.

We denote by H−1
e the inverse map of He, and set h(x, e) := x − H−1

e (x). We have the following
result where the proof can be found in [81] (Theorem 3.13, p.359):

Proposition 3.2.2. Assume the assumptions (A4) and (A5) hold. Then {Xt,s(x);x 2 Rd} is
a C2-diffeomorphism a.s. stochastic flow. Moreover the inverse of the flow satisfies the following
backward SDE

X−1
t,s (y) = y −

Z s

t

bb(X−1
r,s (y))dr −

Z s

t
σ(X−1

r,s (y))
 −−
dW r −

Z s

t

Z

E

β(X−1
r,s (y), e)eµ(

 −
dr, de)

+

Z s

t

Z

E

bβ(X−1
r,s (y), e)µ(

 −
dr, de),

(3.2.3)

for any t < s, where

bb(x) = b(x)−
X

i,j

∂σj(x)

∂xi
σij(x) and bβ(x, e) = β(x, e)− h(x, e). (3.2.4)



70 Chapter 3. The obstacle problem for PIDEs

The explicit form (3.2.3) will be used in the proof of the equivalence of norms (Proposition 3.2.3).

Remark 3.2.1. In (3.2.3), the three terms
Z s

t
σ(X−1

r,s (y))d
 −
W r,

Z s

t

Z

E
β(X−1

r,s (y), e)eµ(
 −
dr, de) and

Z s

t

Z

E

bβ(X−1
r,s (y), e)µ(

 −
dr, de) are backward Itô integrals. We refer the readers to literature [81] for

the definition ([81] p. 358). For convenience, we give the definition of the backward Itô integral with
respect to a Brownian motion. Let f(r) be a right continuous backward adapted process, then the
backward Itô integral is defined by

Z s

t
f(r)
 −−
dW r := lim

|Π|!0

X

k

f(tk+1)(Wtk+1
−Wtk),

where Π = {t = t0 < t1 < · · · < tn = s} are partitions of the interval [t, s]. The other two terms
can be defined similarly. Note that the inverse flow X−1

r,s is backward adapted, so we may define the

backward integrals such as
R s
t σ(X−1

r,s (y))d
 −
W r etc..

Remark 3.2.2. In the paper of Ouknine and Turpin [106], the authors have weakened the regularity
of the coefficients b and σ of the diffusion, but added additional boundedness on them. Since this
improvement is not essential and the same discussion is also valid for our case, we omit it.

We denote by J(X−1
t,s (x)) the determinant of the Jacobian matrix of X−1

t,s (x), which is positive and
J(X−1

t,t (x)) = 1. For φ 2 C1
c (Rd), we define a process φt : Ω⇥ [t, T ]⇥ Rd ! R by

φt(s, x) := φ(X−1
t,s (x))J(X

−1
t,s (x)). (3.2.5)

We know that for v 2 L
2(Rd), the composition of v with the stochastic flow is

(v ◦Xt,s(·),φ) := (v,φt(s, ·)).

In fact, by a change of variable, we have

(v ◦Xt,s(·),φ) =
Z

Rd

v(Xt,s(x))φ(x)dx =

Z

Rd

v(y)φ(X−1
t,s (y))J(X

−1
t,s (y))dy = (v,φt(s, ·)).

Since (φt(s, x))t 6 s is a process, we may not use it directly as a test function becauseR T
t (u(s, ·), ∂sφt(s, ·)) has no sense. However φt(s, x) is a semimartingale and we have the following

decomposition of φt(s, x):

Lemma 3.2.1. For every function φ 2 C1
c (Rd),

φt(s, x) = φ(x) +

Z s

t
L⇤φt(r, x)dr −

dX

j=1

Z s

t

 
dX

i=1

∂

∂xi
(σij(x)φt(r, x))

!
dW j

r

+

Z s

t

Z

E
A⇤

eφt(r−, x)eµ(dr, de),
(3.2.6)

where Aeu(t, x) = u(t,He(x)) − u(t, x), A⇤
eu(t, x) = u(t,H−1

e (x))J(H−1
e (x)) − u(t, x) and L⇤ is the

adjoint operator of L.

Proof. Assume that v 2 C1
c (Rd). Applying the change of variable y = X−1

t,s (x), we can getZ

Rd

v(x)(φt(s, x)− φ(x))dx =

Z

Rd

v(x)(φ(X−1
t,s (x))J(X

−1
t,s (x))− φ(X−1

t,t (x))J(X
−1
t,t (x))dx

=

Z

Rd

(v(Xt,s(y))φ(y)− v(y)φ(y))dy

=

Z

Rd

φ(y)(v(Xt,s(y))− v(y))dy.

As v is smooth enough, using Itô’s formula for v(Xt,s(y)), we have
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v(Xt,s(y))− v(y) =

Z s

t
Lv(Xt,r−(y))dr +

Z s

t

dX

i=1

∂v

∂xi
(Xt,r(y))

dX

j=1

σij(Xt,r(y))dW
j
r

+

Z s

t

Z

E
Aev(Xt,r−(y))eµ(dr, de).

Therefore,
Z

Rd

v(x)(φt(s, x)− φ(x))dx

=

Z

Rd

φ(y)
nZ s

t
Lv(Xt,r(y))dr +

Z s

t

dX

i=1

∂v

∂xi
(Xt,r(y))

dX

j=1

σij(Xt,r(y))dW
j
r

o
dy

+

Z

Rd

φ(y)

Z s

t

Z

E
Aev(Xt,r−(y))eµ(dr, de)dy.

Since the first term has been dealt in [10], and the adjoint operator of L exists thanks to [92], we
focus only on the second term. Using the stochastic Fubini theorem and the change of variable
x = Xt,r(y) we obtain

Z

Rd

φ(y)

Z s

t

Z

E
Aev(Xt,r−(y))eµ(dr, de)dy =

Z s

t

Z

E

Z

Rd

φ(y)Aev(Xt,r−(y))dyeµ(dr, de)

=

Z s

t

Z

E

Z

Rd

φt(r−, x)Aev(x)dxeµ(dr, de).

Finally, we use the change of variable y = H−1
e (x) in the right hand side of the previous expression

Z s

t

Z

E

Z

Rd

φt(r−, x)Aev(x)dxeµ(dr, de)

=

Z s

t

Z

E

Z

Rd

φt(r−, x)
(
v(He(x))− v(x)

)
dxeµ(dr, de)

=

Z s

t

Z

E

Z

Rd

v(x)A⇤
eφt(r−, x)dxeµ(dr, de).

Since v is an arbitrary function, the lemma is proved.

We also need equivalence of norms result which plays an important role in the proof of the existence
of the solution for PIDE as a connection between the functional norms and random norms. For
continuous SDEs, this result was first proved by Barles and Lesigne [13] by using an analytic method.
In [10], the authors have proved the result with a probabilistic method. Note that Klimisiak [73]
have extended this estimes for Markov process associated to a non-homogeneous divergence operator.
The following result generalize Proposition 5.1 in [10] (see also [13]) in the case of a diffusion process
with jumps, and the proof will be given in Appendix 3.5.1.

Proposition 3.2.3. There exists two constants c > 0 and C > 0 such that for every t 6 s 6 T and
ϕ 2 L1(Rd, dx),

c

Z

Rd

|ϕ(x)|ρ(x)dx 6

Z

Rd

E(|ϕ(Xt,s(x))|)ρ(x)dx 6 C

Z

Rd

|ϕ(x)|ρ(x)dx. (3.2.7)

Moreover, for every Ψ 2 L1([0, T ]⇥ Rd, dt⌦ dx),

c

Z

Rd

Z T

t
|Ψ(s, x)|dsρ(x)dx 6

Z

Rd

Z T

t
E(|Ψ(s,Xt,s(x))|)dsρ(x)dx 6 C

Z

Rd

Z T

t
|Ψ(s, x)|dsρ(x)dx.

(3.2.8)

We give now the following result which allows us to link by a natural way the solution of PIDE
with the associated BSDE. Roughly speaking, if we choose in the variational formulation (3.2.1) the
random functions φt(·, ·) defined by (3.2.5), as a test functions, then we obtain the associated BSDE.
In fact, this result plays the same role as Itô’s formula used in [108] and [115] (see [108], Theorem
3.1, p. 20) to relate the solution of some semilinear PDE’s with the associated BSDE:
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Proposition 3.2.4. Assume that all the previous assumptions hold. Let u 2 HT be a weak solution
of PIDE(3.1.1), then for s 2 [t, T ] and φ 2 C1

c (Rd),

Z

Rd

Z T

s
u(r, x)dφt(r, x)dx+ (u(s, x), φt(s, x))− (g(x), φt(T, x))−

Z T

s
(u(r, ·),L⇤φt(r, ·))dr

=

Z

Rd

Z T

s
f(r, x, u(r, x),ru(r, x)σ(x), u(r, x+ β(x, ·))− u(r, x))φt(r, x)drdx. a.s.

(3.2.9)

where
Z

Rd

Z T

s
u(r, x)dφt(r, x)dx is well defined thanks to the semimartingale decomposition result

(Lemma 3.2.1).

Remark 3.2.3. Note that φt(r, x) is R-valued. We consider that in (3.2.9), the equality holds for
each component of u.

Remark 3.2.4. Under Brownian framework, this proposition is first proved by Bally and Matoussi
in [10] for linear case via the polygonal approximation for Brownian motion (see Appendix A in [10]
for more details). In fact, thanks especially to the fact that λ is finite, we can make the similar
approximation for Itô-Lévy processes only by approximating polygonally the Brownian motion, the
proof of this proposition follows step by step the proof of Proposition 2.3 in [10] (pp. 156), so we
omit it.

3.3 Sobolev solutions for parabolic semilinear PIDEs

In this section, we consider the PIDE (3.1.1) under assumptions (A1)-(A5). Moreover, we consider
the following decoupled forward backward stochastic differential equation (FBSDE in short) :

8
>>>>>><
>>>>>>:

Xt,s(x) = x+

Z s

t
b(Xt,r(x))dr +

Z s

t
σ(Xt,r(x))dWr +

Z s

t

Z

E
β(Xt,r−(x), e)eµ(dr, de);

Y
t,x
s = g(Xt,T (x)) +

Z T

s
f(r,Xt,r(x), Y

t,x
r , Zt,x

r , V t,x
r )dr

−
Z T

s
Zt,x
r dWr −

Z T

s

Z

E
V t,x
r (e)eµ(dr, de).

(3.3.1)

According to Proposition 5.4 in [33] which deals with of reflected BSDE, we know that (3.3.1) has a
unique solution. Moreover, we have the following estimate of the solution.

Proposition 3.3.1. There exists a constant c > 0 such that, for any s 2 [t, T ]:

sup
s2[t,T ]

E
⇥
kY t,·

s k22
⇤
+ E

h Z T

t
kZt,·

s k22ds+
Z T

t

Z

E
|V t,·

s (e)|22λ(de)ds
i
6 c
⇥
kgk22 +

Z T

t
kf0

s k22ds
⇤
. (3.3.2)

Our main result in this section is the following where the proof will be given in Appendix 3.5.3:

Theorem 3.3.1. Assume that (A1)-(A5) hold. There exists a unique solution u 2 HT of the
PIDE (3.1.1). Moreover, we have the probabilistic representation of the solution: u(t, x) = Y

t,x
t ,

where (Y t,x
s , Z

t,x
s , V

t,x
s ) is the solution of BSDE (3.3.1) and, we have, ds⌦ dP⌦ ρ(x)dx− a.e.,

Y t,x
s = u(s,Xt,s(x)), Zt,x

s = (σ⇤ru)(s,Xt,s(x)),

V t,x
s (·) = u(s,Xt,s−(x) + β(Xt,s−(x), ·))− u(s,Xt,s−(x)).

(3.3.3)

Remark 3.3.1. Since u 2 HT , u and v = (ruσ) are elements in L2
ρ([0, T ] ⇥ Rd) and they are

determined ρ(x)dx a.e., but because of the equivalence of norms, there is no ambiguity in the definition
of u(s,Xt,s(x)) and the others terms of (3.3.3).
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Remark 3.3.2. This stochastic flow method can be generalized to the study of Sobolev solution
of stochastic partial integro-differential equations (SPIDEs for short) without essential difficulties
(see e.g. [10] for Brownian framewrok). More precisely, as the authors have done in [10, 109], by
introducing an appropriate backward doubly stochastic differential equation (BDSDE for short) with
jump, we can provide a probabilistic interpretation for Sobolev solution of an SPIDE by the solution
of the BDSDE with jump.

3.4 Obstacle problem for PIDEs

In this part, we will study the obstacle problem (3.1.3) with obstacle function h, where we restrict
our study in the one dimensional case (n = 1). We shall assume the following hypothesis on the
obstacle:

(A6) h 2 C([0, T ]⇥ Rd;R) and there exit ι, κ > 0 such that |h(t, x)| 6 ι(1 + |x|κ), for all x 2 Rd.

We first introduce the reflected BSDE with jumps (RBSDE with jumps for short) associated with
(g, f, h) which has been studied by Hamadène and Ouknine [65]:

8
>>>>>>><
>>>>>>>:

Y t,x
s = g(Xt,T (x)) +

Z T

s
f(r,Xt,r(x), Y

t,x
r , Zt,x

r , V t,x
r )dr +K

t,x
T −Kt,x

s

−
Z T

s
Zt,x
r dWr −

Z T

s

Z

E
V t,x
r (e)eµ(dr, de), P-a.s., 8 s 2 [t, T ]

Y t,x
s > Lt,x

s ,

Z T

t
(Y t,x

s − Lt,x
s )dKt,x

s = 0, P-a.s.

(3.4.1)

The obstacle process Lt,x
s = h(s,Xt,s(x)) is a càdlàg process which has only inaccessible jumps since

h is continuous and (Xt,s(x))t 6 s 6 T admits inaccessible jumps. Moreover, using assumption (A1)

and (A2) and equivalence of norm results (3.2.7) and (3.2.8), we get

g(Xt,T (x)) 2 L
2(FT ), and f(s,Xt,s(x), 0, 0, 0) 2 H2

d(t, T ).

Therefore according to [65], there exists a unique quadruple (Y t,x, Zt,x, V t,x,Kt,x) 2 S2(t, T ) ⇥
H2

d(t, T )⇥ L2(t, T )⇥A2(t, T ) solution of the RBSDE with jumps (3.4.1).

More precisely, we consider the following definition of weak solutions for the obstacle problem (3.1.3):

Definition 3.4.1. We say that (u, ν) is the weak solution of the PIDE with obstacle associated to
(g, f, h), if
(i) kuk2HT

<1, u > h, and u(T, x) = g(x),
(ii) ν is a positive Radon regular measure in the following sense, i.e. for every measurable bounded
and positive functions φ and ψ,

Z

Rd

Z T

t
φ(s,X−1

t,s (x))J(X
−1
t,s (x))ψ(s, x)1{u=h}(s, x)ν(ds, dx)

=

Z

Rd

Z T

t
φ(s, x)ψ(s,Xt,s(x))dK

t,x
s dx, a.s.. (3.4.2)

where (Y t,x
s , Z

t,x
s , V

t,x
s ,K

t,x
s )t 6 s 6 T is the solution of RBSDE with jumps (3.4.1) and such thatZ T

0

Z

Rd

ρ(x)ν(dt, dx) <1,
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(iii) for every φ 2 DT

Z T

t

Z

Rd

u(s, x)∂sφ(s, x)dxds+

Z

Rd

(u(t, x)φ(t, x)− g(x)φ(T, x))dx+

Z T

t

Z

Rd

u(s, x),L⇤φ(s, x)dxds

=

Z T

t

Z

Rd

f(s, x, u,ruσ, u(s, x+ β(x, ·))− u(s, x))φ(s, x)dxds+

Z T

t

Z

Rd

φ(s, x)1{u=h}(s, x)ν(ds, dx).

(3.4.3)

First, we give a weak Itô’s formula similar to the one given in Proposition 3.2.4. This result is
essential to show the link between a Sobolev solution to the obstacle problem and the associated
reflected BSDE with jumps, which in turn insures the uniqueness of the solution. The proof of this
proposition is the same as Proposition 3.2.4.

Proposition 3.4.1. Assume that conditions (A1)-(A6) hold and ρ(x) = (1 + |x|)−p with p > γ

where γ = κ + d + 1. Let u 2 HT be a weak solution of PIDE with obstacle associated to (g, f, h),
then for s 2 [t, T ] and φ 2 C1

c (Rd),

Z

Rd

Z T

s
u(r, x)dφt(r, x)dx+ (u(s, ·),φt(s, ·))− (g(·),φt(T, ·))−

Z T

s
(u(r, ·),L⇤φt(r, ·))dr

=

Z

Rd

Z T

s
f(r, x, u(r, x),σ⇤ru(r, x), u(r, x+ β(x, ·))− u(r, x))φt(r, x)drdx

+

Z

Rd

Z T

s
φt(r, x)1{u=h}(r, x)ν(dr, dx). a.s.

(3.4.4)

where
Z

Rd

Z T

s
u(r, x)dφt(r, x)dx is well defined thanks to the semimartingale decomposition result

(Lemma 3.2.1).

The main result of this section is the following

Theorem 3.4.1. Assume that conditions (A1)-(A6) hold and ρ(x) = (1+ |x|)−p with p > γ where
γ = κ + d + 1. There exists a weak solution (u, ν) of the PIDE with obstacle (3.1.3) associated to
(g, f, h) such that, ds⌦ dP⌦ ρ(x)dx− a.e.,

Y t,x
s = u(s,Xt,s(x)), Z

t,x
s = (σ⇤ru)(s,Xt,s(x)),

V t,x
s (·) = u(s,Xt,s−(x) + β(Xt,s−(x), ·))− u(s,Xt,s−(x)), a.s.. (3.4.5)

Moreover, the reflected measure ν is a regular measure in the sense of the definition (ii) and satisfying
the probabilistic interpretation (3.4.2).

If (u, ν) is another solution of the PIDE with obstacle(3.1.3) such that ν satisfies (3.4.2) with some
K instead of K, where K is a continuous process in A2(t, T ), then u = u and ν = ν.

In other words, there is a unique Randon regular measure with support {u = h} which satisfies
(3.4.2).

Remark 3.4.1. The expression (3.4.2) gives us the probabilistic interpretation (Feymamn-Kac’s
formula) for the measure ν via the nondecreasing process Kt,x of the RBSDE with jumps. This
formula was first introduced in Bally et al. [9] (see also [99]). Here we generalize their results to the
case of PIDE’s.

From Lemma 3.1 in [33], we know that if we have more information on the obstacle L, we can give
a more explicit representation for the processes K. Then as a result of the above theorem, we have
when h is smooth enough, the reflected measure ν is Lebesgue absolute continuous, moreover there
exist a unique eν and a measurable function (αs)s > 0 such that ν(ds, dx) = αseνs(dx)ds .
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Proof. a) Existence: The existence of a solution will be proved in two steps. For the first step,
we suppose that f does not depend on y, z, w, then we are able to apply the usual penalization
method. In the second step, we study the case when f depends on y, z, w with the result obtained
in the first step.

Step 1 : We will use the penalization method. For n 2 N, we consider for all s 2 [t, T ],

Y n,t,x
s = g(Xt,T (x)) +

Z T

s
f(r,Xt,r(x))dr + n

Z T

s
(Y n,t,x

r − h(r,Xt,r(x)))
−dr

−
Z T

s
Zn,t,x
r dWr −

Z T

s

Z

E
V n,t,x
r (e)eµ(dr, de).

From Theorem (3.3.1) in section 3, we know that un(t, x) := Y
n,t,x
t , is solution of the PIDE (g, fn),

where fn(t, x, y) = f(t, x) + n(y − h(t, x))−, i.e. for every φ 2 DT

Z T

t
(un(s, ·), ∂sφ(s, ·))ds+ (un(t, ·), φ(t, ·))− (g(·), φ(T, ·)) +

Z T

t
(un(s, ·),L⇤φ(s, ·))ds

=

Z T

t
(f(s, ·), φ(s, ·))ds+ n

Z T

t
((un − h)−(s, ·), φ(s, ·))ds. (3.4.6)

Moreover

Y n,t,x
s = un(s,Xt,s(x)), Z

n,t,x
s = run(s,Xt,s(x))σ(Xt,s(x)),

V n,t,x
s (·) = un(s,Xt,s−(x) + β(Xt,s−(x), ·))− un(s,Xt,s−(x)) (3.4.7)

Set K
n,t,x
s = n

Z s

t
(Y n,t,x

r − h(r,Xt,r(x)))
−dr. Then by (3.4.7), we have that K

n,t,x
s = n

Z s

t
(un −

h)−(r,Xt,r(x))dr.
Following the estimates and convergence results for (Y n,t,x, Zn,t,x, V n,t,x,Kn,t,x) in the step 3 and

step 5 of the proof of Theorem 1.2. in [65], we get as m, n tend to infinity :

E[ sup
t 6 s 6 T

∣∣Y n,t,x
s − Y m,t,x

s

∣∣2] + E[

Z T

t

∣∣Zn,t,x
s − Zm,t,x

s

∣∣2 ds]

+ E[

Z T

t

Z

E

∣∣V n,t,x
s (e)− V m,t,x

s (e)
∣∣2 λ(de)ds] + E[ sup

t 6 s 6 T

∣∣Kn,t,x
s −Km,t,x

s

∣∣2] −! 0,

and

sup
n
E


sup

t 6 s 6 T

∣∣Y n,t,x
s

∣∣2 +
Z T

t
(
∣∣Zn,t,x

s

∣∣2 ds) +
Z T

t

Z

E

∣∣V n,t,x
s (e)

∣∣2 λ(de)ds+ (Kn,t,x
T )2

]

6 C
(
1 + |x|2κ

)
. (3.4.8)

By the equivalence of norms (3.2.8), we get
Z

Rd

Z T

t
ρ(x)(|un(s, x)− um(s, x)|2 + |σ⇤run(s, x)− σ⇤rum(s, x)|2)dsdx

6
1

k2

Z

Rd

ρ(x)E

Z T

t
(
∣∣Y n,t,x

s − Y m,t,x
s

∣∣2 +
∣∣Zn,t,x

s − Zm,t,x
s

∣∣2)dsdx! 0.

Thus (un)n2N is a Cauchy sequence in HT , and the limit u = limn!1 un belongs to HT . Denote
νn(dt, dx) = n(un − h)−(t, x)dtdx and πn(dt, dx) = ρ(x)νn(dt, dx), then by (3.2.8)

πn([0, T ]⇥ Rd) =

Z

Rd

Z T

0
ρ(x)νn(dt, dx) =

Z

Rd

Z T

0
ρ(x)n(un − h)−(t, x)dtdx

6
1

k2

Z

Rd

ρ(x)E
∣∣∣Kn,0,x

T

∣∣∣ dx 6 C

Z

Rd

ρ(x) (1 + |x|κ) dx <1.
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It follows that
sup
n
πn([0, T ]⇥ Rd) <1. (3.4.9)

Moreover by Lemma 3.5.1 (see Appendix 3.5.4), the sequence of measures (πn)n2N is tight. Therefore,
there exits a subsequence such that (πn)n2N converges weakly to a positive measure π. Define

ν = ρ−1π; ν is a positive measure such that
Z T

0

Z

Rd

ρ(x)ν(dt, dx) < 1, and so we have for φ 2 DT

with compact support in x,

Z

Rd

Z T

t
φdνn =

Z

Rd

Z T

t

φ

ρ
dπn !

Z

Rd

Z T

t

φ

ρ
dπ =

Z

Rd

Z T

t
φdν.

Now passing to the limit in the PIDE (g, fn) (3.4.6), we get that that (u, ν) satisfies the PIDE with
obstacle associated to (g, f, h), i.e. for every φ 2 DT , we have

Z T

t
(u(s, ·), ∂sφ(s, ·))ds+ (u(t, ·), φ(t, ·))− (g(·), φ(T, ·)) +

Z T

t
(u(s, ·),L⇤φ(s, ·))ds

=

Z T

t
(f(s, ·), φ(s, ·))ds+

Z T

t

Z

Rd

φ(s, x)ν(ds, dx). (3.4.10)

The last point is to prove that ν satisfies the probabilistic interpretation (3.4.2). Since Kn,t,x

converges to Kt,x uniformly in t, the measure dKn,t,x ! dKt,x weakly in probability.
Fix two continuous functions φ, ψ : [0, T ] ⇥ Rd ! R+ which have compact support in x and a

continuous function with compact support θ : Rd ! R+, we have

Z

Rd

Z T

t
φ(s,X−1

t,s (x))J(X
−1
t,s (x))ψ(s, x)θ(x)ν(ds, dx)

= lim
n!1

Z

Rd

Z T

t
φ(s,X−1

t,s (x))J(X
−1
t,s (x))ψ(s, x)θ(x)n(un − h)−(s, x)dsdx

= lim
n!1

Z

Rd

Z T

t
φ(s, x)ψ(s,Xt,s(x))θ(Xt,s(x))n(un − h)−(t,Xt,s(x))dtdx

= lim
n!1

Z

Rd

Z T

t
φ(s, x)ψ(s,Xt,s(x))θ(Xt,s(x))dK

n,t,x
s dx

=

Z

Rd

Z T

t
φ(s, x)ψ(s,Xt,s(x))θ(Xt,s(x))dK

t,x
s dx.

We take θ = θR to be the regularization of the indicator function of the ball of radius R and pass
to the limit with R!1, it follows that

Z

Rd

Z T

t
φ(s,X−1

t,s (x))J(X
−1
t,s (x))ψ(s, x)ν(ds, dx) =

Z

Rd

Z T

t
φ(s, x)ψ(s,Xt,s(x))dK

t,x
s dx. (3.4.11)

Since (Y n,t,x
s , Z

n,t,x
s , V

n,t,x
s ,K

n,t,x
s ) converges to (Y t,x

s , Z
t,x
s , V

t,x
s ,K

t,x
s ) as n ! 1 in S2(t, T )

⇥H2
d(t, T ) ⇥ L2(t, T ) ⇥ A2(t, T ), and (Y t,x

s , Z
t,x
s , V

t,x
s ,K

t,x
s ) is the solution of RBSDE with jumps

(g(Xt,T (x)), f , h), then we have

Z T

t
(Y t,x

s − Lt,x
s )dKt,x

s =

Z T

t
(u− h)(s,Xt,s(x))dK

t,x
s = 0, a.s.

it follows that dK
t,x
s = 1{u=h}(s,Xt,s(x))dK

t,x
s . In (3.4.11), setting ψ = 1{u=h} yields

Z

Rd

Z T

t
φ(s,X−1

t,s (x))J(X
−1
t,s (x))1{u=h}(s, x)ν(ds, dx)

=

Z

Rd

Z T

t
φ(s,X−1

t,s (x))J(X
−1
t,s (x))ν(ds, dx), a.s.
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Note that the family of functions A(ω) = {(s, x) ! φ(s,X−1
t,s (x)) : φ 2 C1

c } is an algebra which
separates the points (because x ! X−1

t,s (x) is a bijection). Given a compact set G, A(ω) is dense
in C([0, T ] ⇥ G). It follows that J(X−1

t,s (x))1{u=h}(s, x)ν(ds, dx) = J(X−1
t,s (x))ν(ds, dx) for almost

every ω. While J(X−1
t,s (x)) > 0 for almost every ω, we get ν(ds, dx) = 1{u=h}(s, x)ν(ds, dx), and

(3.4.2) follows.

Then we get easily that Y
t,x
s = u(s,Xt,s(x)), Z

t,x
s = ru(s,Xt,s(x))σ(Xt,s(x)) and

V
t,x
s (·) = u(s,Xt,s−(x) + β(Xt,s−(x), ·)) − u(s,Xt,s−(x)), in view of the convergence results for

(Y n,t,x
s , Z

n,t,x
s , V

n,t,x
s ) and the equivalence of norms. So u(s,Xt,s(x)) = Y

t,x
s > h(s,Xt,s(x)). Specially

for s = t, we have u(t, x) > h(t, x).

Step 2 : The nonlinear case where f depends on y, z and w.
Let define F (s, x) , f(s, x, Y s,x

s , Z
s,x
s , V

s,x
s ). By plugging into the facts that f0 2 L

2
ρ([0, T ] ⇥ Rd)

and f is Lipschitz with respect to (y, z, v), then thanks to Proposition 3.3.1 we have F (s, x) 2
L
2
ρ([0, T ]⇥ Rd). Since F is independent of y, z, w, by applying the result of Step 1 yields that there

exists (u, ν) satisfying the PIDE with obstacle (g, F, h), i.e. for every φ 2 DT , we have

Z T

t
(u(s, ·), ∂sφ(s, ·))ds+ (u(t, ·),φ(t, ·))− (g(·),φ(T, ·)) +

Z T

t
(u(s, ·),L⇤φ(s, ·))ds

=

Z T

t
(F (s, ·),φ(s, ·))ds+

Z T

t

Z

Rd

φ(s, x)1{u=h}(s, x)ν(ds, dx). (3.4.12)

Then by the uniqueness of the solution to the RBSDE with jumps (g(Xt,T (x)),
f , h(Xt,s(x))), we get easily that Y

t,x
s = u(s,Xt,s(x)), Z

t,x
s = (ruσ)(s,Xt,s(x)),

V
t,x
s (·) = u(s,Xt,s−(x) + β(Xt,s−(x), ·)) − u(s,Xt,s−(x)), and ν satisfies the probabilistic in-

terpretation (3.4.2). So u(s,Xt,s(x)) = Y
t,x
s > h(s,Xt,s(x)). Specially for s = t, we have

u(t, x) > h(t, x), which is the desired result.

b) Uniqueness : Set (u, ν) to be another weak solution of the PIDE with obstacle (3.4.3)
associated to (g, f, h); with ν verifies (3.4.2) for a nondecreasing process K. We fix φ : Rd ! R,
a smooth function in C2

c (R
d) with compact support and denote φt(s, x) = φ(X−1

t,s (x))J(X
−1
t,s (x)).

From Proposition 3.4.1, one may use φt(s, x) as a test function in the PIDE(g, f, h) with ∂sφ(s, x)ds

replaced by a stochastic integral with respect to the semimartingale φt(s, x). Then we get, for
t 6 s 6 T

Z T

s

Z

Rd

u(r, x)dφt(r, x)drdx+ (u(s, ·),φt(s, ·))− (g(·),φt(T, ·))−
Z T

s

Z

Rd

u(r, x)L⇤φt(r, x)drdx

=

Z T

s

Z

Rd

f(r, x, u(r, x), (ruσ)(r, x), u(r, x+ β(x, ·))− u(r, x))φt(r, x)drdx

+

Z T

s

Z

Rd

φt(r, x)1{u=h}(r, x)ν(dr, dx). (3.4.13)

By (3.2.6) in Lemma 3.2.1, we have

Z T

s

Z

Rd

u(r, x)dφt(r, x)drdx =

Z T

s
(

Z

Rd

(ruσ)(r, x)φt(r, x)dx)dWr

+

Z T

s

Z

E

Z

Rd

u(r, x)A⇤
eφt(r−, x)dxeµ(dr, de) +

Z T

s

Z

Rd

u(r, x)L⇤φt(r, x)drdx.
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Substitute this equality in (3.4.13), we get
Z

Rd

u(s, x)φt(s, x)dx = (g(·), φt(T, ·))−
Z T

s
(

Z

Rd

(ruσ)(r, x)φt(r, x)dx)dWr

+

Z T

s

Z

E

Z

Rd

Aeu(r−, x)φt(r, x)dxeµ(dr, de)

+

Z T

s

Z

Rd

f(r, x, u(r, x), (ruσ)(r, x), u(r, x+ β(x, ·))− u(r, x))φt(r, x)drdx

+

Z T

s

Z

Rd

φt(r, x)1{u=h}(r, x)ν(dr, dx).

Then by changing of variable y = X−1
t,r (x) and applying (3.4.2) for ν, we obtain

Z

Rd

u(s,Xt,s(y))φ(y)dy =

Z

Rd

g(Xt,T (y))φ(y)dy

+

Z T

s

Z

Rd

φ(y)f(r,Xt,r(y), u(r,Xt,r(y)), (ruσ)(r,Xt,r(y)),Aeu(r,Xt,r−(y)))drdy

+

Z T

s

Z

Rd

φ(y)1{u=h}(r,Xt,s(y))dK
t,y
r dy −

Z T

s
(

Z

Rd

(ruσ)(r,Xt,r(y))φ(y)dy)dWr

+

Z T

s

Z

E

✓Z

Rd

Aeu(r,Xt,r−(y))φ(y)dy

◆
µ̃(dr, de).

Since φ is arbitrary, we can prove that for ρ(y)dy almost every y, (u(s,Xt,s(y)),
(ruσ)(s,Xt,s(y)), u(s,Xt,s−(y)+β(Xt,s−(y), ·))−u(s,Xt,s−(y)), bKt,y

s ) solves the RBSDE with jumps
(g(Xt,T (y)), f, h). Here bKt,y

s =
R s
t 1{u=h}(r,Xt,r(y))dK

t,y
r . Then by the uniqueness of the solution

of the RBSDE with jumps, we know u(s,Xt,s(y)) = Y
t,y
s = u(s,Xt,s(y)), (σ⇤ru)(s,Xt,s(y)) =

Z
t,y
s = (ruσ)(s,Xt,s(y)), u(s,Xt,s−(y) + β(Xt,s−(y), ·))− u(s,Xt,s−(y)) = V

t,y
s (·) = u(s,Xt,s−(y) +

β(Xt,s−(y), ·)) − u(s,Xt,s−(y)) and bKt,y
s = K

t,y
s . Taking s = t we deduce that u(t, y) = u(t, y),

ρ(y)dy-a.s. and by the probabilistic interpretation (3.4.2), we obtain
Z T

s

Z

Rd

φt(r, x)1{u=h}(r, x)ν(dr, dx) =

Z T

s

Z

Rd

φt(r, x)1{u=h}(r, x)ν(dr, dx).

So 1{u=h}(r, x)ν(dr, dx) = 1{u=h}(r, x)ν(dr, dx).

3.5 Appendix

3.5.1 Proof of Proposition 3.2.3

In order to prove (5.4.10), it is sufficient to prove that

c 6 E[
J(X−1

t,s (x))ρ(X
−1
t,s (x))

ρ(x)
] 6 C.

In fact, making the change of variable y = Xt,s(x), we can get the following relation:
Z

Rd

E(|ϕ(Xt,s(x))|)ρ(x)dx =

Z

Rd

|ϕ(y)|E[
J(X−1

t,s (y))ρ(X
−1
t,s (y))

ρ(y)
]ρ(y)dy.

We differentiate with respect to y in (5.4.6) in order to get:

rX−1
t,s (y) = I −

Z s

t
rbb(X−1

r,s (y)rX−1
t,r (y)dr −

Z s

t
rσ(X−1

r,s (y))rX−1
t,r (y)

 −−
dW r

−
Z s

t

Z

E
rβ(X−1

r,s (y), e)rX−1
t,r (y)eµ(

 −
dr, de)

+

Z s

t

Z

E
rbβ(X−1

r,s (y), e)rX−1
t,r (y)µ(

 −
dr, de)

:= I + Γt,s(y)

(3.5.1)
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where rb, rσ, rβ and rbβ are the gradient of b, σ,β and bβ, respectively and I is the identity matrix.
Since J(X−1

t,s (y)) := detrX−1
t,s (y) = inf

kξk=1
< rX−1

t,s (y)ξ, ξ >, we obtain

1− kΓt,s(y)k 6 J(X−1
t,s (y)) 6 1 + kΓt,s(y)k.

Writing Γt,s(y) := Ct,s(y)+Dt,s(y), where Dt,s(y) denotes the integration with respect to the random
measure and Ct,s(y) denotes the others.
According to Bally and Matoussi [10], we know that for any y, E[|Ct,s(y)|2] 6 K(s− t). Now we are
going to prove the similar relation for Dt,s(y). We only deal with the first term of Dt,s(y) because
another one can be treated similarly without any difficulty. In fact, by Burkholder-David-Gundy
inequality (of course in the backward sense), we have

E[|
Z s

t

Z

E
rβ(X−1

r,s (y), e)rX−1
t,r (y)eµ(

 −
dr, de)|2]

6 C]E[

Z s

t

Z

E
|rβ(X−1

r,s (y), e)rX−1
r,s (y)|2λ(de)dr]

6 C1E[

Z s

t

Z

E
(1 ^ |e|)2|rX−1

r,s (y)|2λ(de)dr]

= C1E[

Z s

t
|rX−1

r,s (y)|2
Z

E
(1 ^ |e|2)λ(de)dr]

6 K(s− t),

since E[|rX−1
r,s (y)|2] <1. Therefore, E[|Γt,y

s |2] 6 4K(s− t). Hence,

1− 2
p
K(s− t) 6 E[J(X−1

t,s (y))] 6 1 + 2
p
K(s− t),

and the desired result follows.

3.5.2 Regularity of the solution of BSDE with jumps

In this section, we are going to prove regularity results for the solution of BSDE’s with jumps with
respect to the parameter (t, x) in order to relate the solution of BSDE to the classic solution of
PIDE. We note that some part of the results given in this section were established in a preprint of
Buckdahn and Pardoux (1994) [26]. However, for convenience of the reader and for completeness of
the chapter, we give the whole proofs. We first start by giving the Lp-estimates for the solution of
the following BSDE’s with jumps:

Yt = ξ +

Z T

t
f(s, Ys, Zs, Vs)ds−

Z T

t
ZsdWs −

Z T

t

Z

E
Vs(e)eµ(ds, de). (3.5.2)

Theorem 3.5.1. Assume that f is uniformly Lipschitz with respect to (y, z, v) and additionally that
for some p > 2, ξ 2 L

p
m(FT ) and

E

Z T

0
|f(t, 0, 0, 0)|pdt <1. (3.5.3)

Then

E


sup
t
|Yt|p +

✓Z T

0
|Zt|2dt

◆p/2

+

✓Z T

0

⇣Z

E
|Vt(e)|2λ(de)

⌘
dt

◆p/2]
<1.

Proof. We follow the idea of Buckdahn and Pardoux [26]. The proof is divided into 3 steps.
Step 1: From (3.5.2),

Yt = Y0 −
Z t

0
f(s, Ys, Zs, Vs)ds+

Z t

0
ZsdWs +

Z t

0

Z

E
Vs(e)eµ(ds, de).
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then by Itô’s formula,

|Yt|2 = |Y0|2 − 2

Z t

0
(f(s, Ys, Zs, Vs), Ys)ds+

Z t

0
(|Zs|2 + kVsk2)ds

+ 2

Z t

0
(Ys, ZsdWs) +

Z t

0

Z

E
(|Ys− + Vs(e)|2 − |Ys−|2)eµ(ds, de).

Let φn,p(x) = (x ^ n)p + pnp−1(x− n)+ for all p > 1. Then φn,p 2 C1(R+), φ0
n,p(x) = p(x ^ n)p−1

bounded and absolutely continuous with

φ00
n,p(x) = p(p− 1)(x ^ n)p−21[0,n](x).

Again by applying Itô’s formula to φn,p(|Yt|2),

φn,p(|YT |2) = φn,p(|Yt|2)− 2

Z T

t
φ0
n,p(|Ys|2)(f(s, Ys, Zs, Vs), Ys)ds

+2

Z T

t
φ0
n,p(|Ys|2)(Ys, ZsdWs) +

Z T

t
φ00
n,p(|Ys|2)(ZsZ

⇤
sYs, Ys)ds

+

Z T

t
φ0
n,p(|Ys|2)|Zs|2ds+

Z T

t
φ0
n,p(|Ys|2)kVsk2ds

+

Z T

t

Z

E
[φn,p(|Ys− + Vs(e)|2)− φn,p(|Ys−|2)]eµ(ds, de)

+

Z T

t

Z

E
[φn,p(|Ys− + Vs(e)|2)− φn,p(|Ys−|2)]− (|Ys− + Vs(e)|2 − |Ys−|2)φ0

n,p(|Ys−|2)λ(de)ds.

Since (Y, Z, V ) 2 B2, it follows from Burkholder-Davis-Gundy’s inequality,

E


sup

0 6 t 6 T

∣∣∣∣
Z t

0
φ0
n,p(|Ys|2)(Ys, ZsdWs)

∣∣∣∣
]
6 Cpnp−1 kY kS2 kZkH2 ,

that the dW integral above is uniformly integrable, hence it is a martingale with zero expectation.
From the boundedness of φ0

n,p, the integrand in the eµ-integral can be written as follows

φn,p(|Ys− + Vs(e)|2)− φn,p(|Ys−|2) = ψs(e)(2(Ys−, Vs(e)) + |Vs(e)|2),

where ψs(e) is a bounded and predictable process. By BDG’s inequality

E


sup

0 6 t 6 T

∣∣∣∣
Z t

0

Z

E
ψs(e)(Ys−, Vs(e))eµ(ds, de)

∣∣∣∣
]

6 cE

"✓Z T

0

Z

E
|ψs(e)(Ys−, Vs(e))|2µ(ds, de)

◆1/2
#

6 cpnp−1 kY kS2 kV kL2 ,

and by the decomposition eµ(ds, de) = µ(ds, de)− dsλ(de),

E


sup

0 6 t 6 T

∣∣∣∣
Z t

0

Z

E
ψs(e)|Vs(e)|2eµ(ds, de)

∣∣∣∣
]

6 2pnp−1E

Z T

0

Z

E
|Vs(e)|2λ(de)ds

]

= 2pnp−1 kV k2L2 .

We have also

E

Z t

0

Z

E
(φn,p(|Ys− + Vs(e)|2)− φn,p(|Ys−|2))eµ(ds, de)

]
= 0.

From Taylor’s expansion of φn,p and the positivity of φ00
n,p, we conclude

Z T

t

Z

E

[φn,p(|Ys− + Vs(e)|2)− φn,p(|Ys−|2)− (|Ys− + Vs(e)|2 − |Ys−|2)φ0
n,p(|Ys−|2)]λ(de)ds > 0.
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Using again φ00
n,p > 0 we conclude that:

Eφn,p(|Yt|2) + E

Z T

t
φ0
n,p(|Ys|2)(|Zs|2 + kVsk2)ds

6 Eφn,p(|ξ|2) + 2E

Z T

t
φ0
n,p(|Ys|2)(f(s, Ys, Zs, Vs), Ys)ds

6 Eφn,p(|ξ|2) + CE

Z T

t
φ0
n,p(|Ys|2)|Ys|(|f(s, 0, 0, 0)|+ |Ys|+ |Zs|+ kVsk)ds.

Hence we deduce that

Eφn,p(|Yt|2) +
1

2
E

Z T

t
φ0
n,p(|Ys|2)(|Zs|2 + kVsk2)ds

6 Eφn,p(|ξ|2) + CE

Z T

t
φ0
n,p(|Ys|2)(|f(s, 0, 0, 0)|2 + |Ys|2)ds

6 Eφn,p(|ξ|2) + C 0E

Z T

t
(|f(s, 0, 0, 0)|2p + φ0

n,p(|Ys|2)
p

p−1 + φ0
n,p(|Ys|2)|Ys|2)ds

6 Eφn,p(|ξ|2) + CE

Z T

t
(|f(s, 0, 0, 0)|2p + φn,p(|Ys|2))ds.

Then it follows from Gronwall’s lemma that there exists a constant C(p, T ) independent of n such
that

sup
0 6 t 6 T

Eφn,p(|Yt|2) 6 C(p, T )E[|ξ|2p +
Z T

0
|f(t, 0, 0, 0)|2pdt],

hence from Fatou’s lemma

sup
0 6 t 6 T

E[|Yt|2p] <1, (3.5.4)

and also

E

Z T

0
|Ys|2(p−1)(|Zs|2 + kVsk2)ds <1, (3.5.5)

E

Z T

0

Z

E
[|Ys− + Vs(e)|2p − |Ys−|2p − p(|Ys− + Vs(e)|2 − |Ys−|2)|Ys−|2(p−1)]λ(de)ds <1, (3.5.6)

and this holds for any p > 1.

Step 2: Now, again from Itô’s formula,

|YT |2p > |Yt|2p − 2p

Z T

t
|Ys|2(p−1)(f(s, Ys, Zs, Vs), Ys)ds

+ p

Z T

t
|Ys|2(p−1)(|Zs|2 + kVsk2)ds+ 2

Z T

t
|Ys|2(p−1)(Ys, ZsdWs)

+

Z T

t

Z

E

(|Ys− + Vs(e)|2p − |Ys−|2p)eµ(ds, de).

It follows from (3.5.4) and (3.5.5) that the above dW -integral is a uniformly integral martingale,
and from (3.5.5) and (3.5.6) that the eµ-integral is a uniformly integrable martingale. It is then easy
to conclude that

E[ sup
0 6 t 6 T

|Yt|2p] <1, p > 1.
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Step 3: Finally,

Z t

s
ZrdWr +

Z t

s

Z

E
Vr(e)eµ(dr, de) = Yt − Ys +

Z t

s
f(r, Yr, Zr, Vr)dr,

and from BDG inequality, (3.5.4) and (3.5.3), for any p > 2, there exists Cp such that for all
0 6 s 6 t 6 T , n > 1 if τn = inf{u > s,

R u
s (|Zr|2 + kVrk2)dr > n} ^ t,

E


(

Z τn

s
(|Zr|2 + kVrk2)dr)p/2

]
6 CpE


1 + (

Z τn

s
(|Zr|+ kVrk)dr)p

]

6 Cp(1 + (t− s)p/2E


(

Z τn

s
(|Zr|2 + kVrk2)dr)p/2

]
.

Hence if Cp(t − s)p/2 < 1, n > 1, E


(

Z τn

s
(|Zr|2 + kVrk2)dr)p/2

]
6

Cp

1− Cp(t− s)p/2
. It clearly

follows that

E

"✓Z T

0
|Zt|2dt

◆p/2

+

✓Z T

0
kVtk2dt

◆p/2◆#
<1, p > 2.

tu
From now on, we denote by Σ = (Y, Z, V ) and Bp the space of solutions, i.e.,

kΣkpBp , E


sup lim

t
|Yt|p +

✓Z T

0
|Zt|2dt

◆p/2

+

✓Z T

0
kVtk2dt

◆p/2]
.

In the sequel, we will consider a specific class of BSDE where

ξ = g(Xt,T (x)) and f(s, y, z, v) = f(s,Xt,s(x), y, z, v)

and we assume

(H)

8
><
>:

g 2 C3
p(R

d;Rm),

8s 2 [0, T ], (x, y, z, v) 7! f(s, x, y, z, v) 2 C3

and all their derivatives are bounded.

Note that f is differentiable w.r.t. v in the sens of Fréchet and its Fréchet differential is bounded
with the norm in L2(E, λ;Rk).

Let (Y t,x
s , Z

t,x
s , V

t,x
s )t 6 s 6 T denote the unique solution of the following BSDE:

Y t,x
s = g(Xt,T (x)) +

Z T

s
f(r,Xt,r(x), Y

t,x
r , Zt,x

r , V t,x
r )dr −

Z T

s
Zt,x
r dWr −

Z T

s

Z

E
V t,x
r (e)eµ(dr, de).

(3.5.7)
It follows easily from the existence result in [12]:

Corollary 3.5.1. For each t 2 [0, T ], x 2 Rd, the BSDE(3.5.7) has a unique solution

Σt,x = (Y t,x, Zt,x, V t,x) 2 B2,

and Y
t,x
t defines a deterministic mapping from [0, T ]⇥ Rd into Rm.

Now we are going to deal with the regularity of the solution with respect to the parameter x. Let
us establish the following proposition:

Proposition 3.5.1. Under the assumption in the previous theorem and assume moreover that (H)

holds. Then, for any p > 2, there exists Cp, q such that for any 0 6 t 6 T , x, x0 2 Rd, h, h0 2 R\{0},
1 6 i 6 d,

(i) kΣt,x − Σt,x0kpBp 6 Cp(1 + |x|+ |x0|)q|x− x0|p;
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(ii) k∆i
hΣ

t,x −∆i
h0Σt,x0kpBp 6 Cp(1 + |x|+ |x0|+ |h|+ |h0|)q(|x− x0|p + |h− h0|p)

where ∆i
hΣ

t,x
s = 1

h(Y
t,x+hei
s −Y

t,x
s , Z

t,x+hei
s −Z

t,x
s , V

t,x+hei
s −V

t,x
s ), and (e1, · · · , ed) is an orthonor-

mal basis of Rd.

Proof. Note that after applying Lp-estimation of the solution to the present situation, we can
deduce that 8p > 2, there exist Cp, q such that

E


sup lim

s
|Y t,x

s |p +
✓Z T

t
|Zt,x

s |2ds
◆p/2

+

✓Z T

t
kV t,x

s k2ds
◆p/2]

6 Cp(1 + |x|q).

For t 6 s 6 T ,

Y t,x
s − Y t,x0

s

= g(Xt,T (x))− g(Xt,T (x
0)) +

Z T

s
(f(r,Xt,r(x), Y

t,x
r , Zt,x

r , V t,x
r )− f(r,Xt,r(x

0), Y t,x0

r , Zt,x0

r , V t,x0

r ))dr

−
Z T

s
(Zt,x

r − Zt,x0

r )dWr −
Z T

s

Z

E

(V t,x
r (e)− V t,x0

r (e))eµ(dr, de)

=

Z 1

0
g0(θXt,T (x) + (1− θ)Xt,T (x

0))(Xt,T (x)−Xt,T (x
0))dθ +

Z T

s


ϕr(t, x, x

0)(Xt,r(x)−Xt,r(x
0))

+ψr(t, x, x
0)(Y t,x

r − Y t,x0

r ) + ξr(t, x, x
0)(Zt,x

r − Zt,x0

r ) + hηr(t, x, x0), (V t,x
r − V t,x0

r )i
]
dr

−
Z T

s
(Zt,x

r − Zt,x0

r )dWr −
Z T

s

Z

E

(V t,x
r (e)− V t,x0

r (e))eµ(dr, de),

where

ϕr(t, x, x
0) =

Z 1

0

∂f

∂x
(Ξt,x,x0

r,θ )dθ, ψr(t, x, x
0) =

Z 1

0

∂f

∂y
(Ξt,x,x0

r,θ )dθ

ξr(t, x, x
0) =

Z 1

0

∂f

∂z
(Ξt,x,x0

r,θ )dθ, ηr(t, x, x
0) =

Z 1

0

∂f

∂v
(Ξt,x,x0

r,θ )dθ,

Ξt,x,x0

r,θ = θΣt,x
r + (1− θ)Σt,x0

r ,

and h·, ·i stands for the scalar product in L2(E,λ;Rm).

Then given the boundedness of the derivatives, the previous proposition and

|ϕr(t, x, x
0)| 6 C(1 + |Xt,r(x)|+ |Xt,r(x

0)|)q,

we know that (i) holds true after applying the Lp-estimates of the solution.

Now we turn to (ii). In fact, we have

∆i
hY

t,x
s =

1

h
(Y t,x+hei

s − Y t,x
s )

=

Z 1

0
g0(θXt,T (x+ hei) + (1− θ)Xt,T (x))∆

i
hXt,T (x)dθ

+

Z T

s


ϕr(t, x+ hei, x)∆

i
hXt,r(x) + ψr(t, x+ hei, x)∆

i
hY

t,x
r

+ ξr(t, x+ hei, x)∆
i
hZ

t,x
r + hηr(t, x+ hei, x),∆

i
hV

t,x
r i

]
dr

−
Z T

s
∆i

hZ
t,x
r dWr −

Z T

s

Z

E

∆i
hV

t,x
r (e)eµ(dr, de).

Note that for each p > 2, there exists Cp such that E[sup lims |∆i
hXt,s(x)|p] 6 Cp. Then same

calculation as in (i) implies that

k∆i
hΣ

t,xkpBp 6 Cp(1 + |x|q + |h|q).
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Finally, we consider

∆i
hY

t,x
s − ∆i

h0Y t,x0

s = Γi,t,s(h, x;h0, x0)

+

Z T

s


ϕr(t, x+ hei, x)(∆

i
hXt,r(x)−∆i

h0Xt,r(x
0)) + ψr(t, x+ hei, x)(∆

i
hY

t,x
r −∆i

h0Y t,x0

r )

+ ξr(t, x+ hei, x)(∆
i
hZ

t,x
r −∆i

h0Zt,x0

r ) + hηr(t, x+ hei, x),∆
i
hV

t,x
r −∆i

h0V t,x0

r i
]
dr

−
Z T

s
(∆i

hZ
t,x
r −∆i

h0Zt,x0

r )dWr −
Z T

s

Z

E

(∆i
hV

t,x
r (e)−∆i

h0V t,x0

r (e))eµ(dr, de),

where

Γi,t,s(h, x;h0, x0) =

Z 1

0

(
g0(θXt,T (x+ hei) + (1− θ)Xt,T (x))∆

i
hXt,T (x)

− g0(θXt,T (x
0 + h0ei) + (1− θ)Xt,T (x

0))∆i
h0Xt,T (x

0)
)
dθ

+

Z T

s


(ϕr(t, x+ hei, x)− ϕr(t, x

0 + h0ei, x
0))∆i

h0Xt,r(x
0)

+ (ψr(t, x+ hei, x)− ψr(t, x
0 + h0ei, x

0))∆i
h0Y t,x0

r

+ (ξr(t, x+ hei, x)− ξr(t, x
0 + h0ei, x

0))∆i
h0Zt,x0

r

+ hηr(t, x+ hei, x)− ηr(t, x
0 + h0ei, x

0),∆i
h0V t,x0

r i
]
dr.

Since f has bounded derivatives, we have

|ψr(t, x+ hei, x)− ψr(t, x
0 + h0ei, x

0)|+ |ξr(t, x+ hei, x)− ξr(t, x
0 + h0ei, x

0)|
+|ηr(t, x+ hei, x)− ηr(t, x

0 + h0ei, x
0)| 6 C(|Σt,x+hei

r − Σt,x0+h0ei
r |+ |Σt,x

r − Σt,x0

r |)
and

|ϕr(t, x+ hei, x)− ϕr(t, x
0 + h0ei, x

0)|

6 C

✓
1 + |Σt,x+hei

r |+ |Σt,x0+h0ei
r |+ |Σt,x

r |+ |Σt,x0

r |
◆q✓
|Σt,x+hei

r − Σt,x0+h0ei
r |+ |Σt,x

r − Σt,x0

r |
◆
,

it follows from the previous proposition that there exist a constant Cp and some αp such that

E[supt 6 s 6 T |Γi,t,s(h, x;h0, x0)|p] 6 Cp(1 + |x|+ |x0|+ |h|+ |h0|)αp(|x− x0|p + |h− h0|p).
Then, statement (ii) follows from the same estimate, which ends the proof. tu
Therefore, using Kolmogorov’s criterion, we can get that Y , Z, V are a.s. differentiable w.r.t. x.

Iterating the same argument, we get in fact:

Theorem 3.5.2. For all 0 6 t 6 T , there exists a version of Σt,x = (Y t,x, Zt,x, V t,x) such that
x 7! Σt,x is a.e. of class C2 from Rd into D([t, T ];Rm)⇥L2([t, T ];Rm⇥d)⇥L2([t, T ]⇥E, dsλ(de);Rm),
where D([t, T ];Rm) denotes the set of Rm-valued càdlàg functions on [t, T ]. Moreover, for any p > 2,
there exist Cp and q such that

k ∂
|α|

∂xα
Σt,xkpBp 6 Cp(1 + |x|q), 0 6 |α| 6 2,

k ∂2

∂xi∂xj
Σt,x − ∂2

∂xi∂xj
Σt,x0kpBp 6 Cp(1 + |x|+ |x0|)q|x− x0|p, 0 6 t 6 T.

Additionally, we have the following regularity in t:

Proposition 3.5.2. For all p > 2 and s > t _ t0, there exist Cp and q such that

kΣt,x
s − Σt0,x0

s kpBp 6 Cp(1 + |x|+ |x0|)q(|t− t0|p/2 + |x− x0|p),

k ∂
|α|

∂xα
Σt,x
s −

∂|α|

∂xα
Σt0,x0

s kpBp 6 Cp(1 + |x|+ |x0|)q(|t− t0|p/2 + |x− x0|p), 0 6 |α| 6 2.

Hence, we have

Corollary 3.5.2. The function (t, x) 7! Y
t,x
t 2 C

1,2
p ([0, T ]⇥ Rd;Rm).
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3.5.3 Proof of Theorem 3.3.1: existence and uniqueness of solution

of PIDE (3.1.1)

(i) Uniqueness : Let u1, u2 2 HT be two weak solutions of (3.1.1), then Prop. 3.2.4 implies that for
i = 1, 2

Z

Rd

Z T

s
ui(r, x)dφt(r, x)dx+ (ui(s, x), φt(s, x))− (g(x), φt(T, x))−

Z T

s
(ui(r, ·),L⇤φt(r, ·))dr

=

Z

Rd

Z T

s
f(r, x, ui(r, x), σ⇤rui(r, x), ui(r, x+ β(x, ·))− ui(r, x))φt(r, x)drdx.

By the decomposition of the semimartingale φt(s, x), we have

Z

Rd

Z T

s
ui(r, x)dφt(r, x)dx

=

Z

Rd

Z T

s
ui(r, x)L⇤φt(r, x)dr −

dX

j=1

Z

Rd

Z T

s

 
dX

i=1

∂

∂xi
(σij(x)ui(r, x)φt(r, x))

!
dW j

r

+

Z

Rd

Z T

s

Z

E

ui(r, x)A⇤
eφt(r−, x)eµ(dr, de).

(3.5.8)

We substitute this in the above equation and get

Z

Rd

ui(s, x)φt(s, x)dx =

Z

Rd

g(x)φt(T, x)dx−
Z T

s

Z

Rd

(ruiσ)(r, x)φt(r, x)dxdWr

−
Z T

s

Z

E

Z

Rd

ui(r, x)A⇤
eφt(r−, x)dxeµ(dr, de)

+

Z T

s

Z

Rd

f(r, x, ui(r, x), (ruiσ)(r, x), ui(r, x+ β(x, ·))− ui(r, x))φt(r, x)drdx.

Then by the change of variable, we obtain

Z

Rd

ui(s,Xt,s(x))φ(x)dx

=

Z

Rd

g(Xt,T (x))φ(x)dx−
Z

Rd

Z T

s
φ(x)(ruiσ)(r,Xt,r(x))dxdWr

−
Z

Rd

Z T

s

Z

E

φ(x)(ui(s,Xt,r−(x) + β(Xt,r−(x), e))− u(s,Xt,r−(x)))eµ(dr, de)dx

+

Z

Rd

Z T

s
φ(x)f(r,Xt,r(x), u

i(r,Xt,r(x)), (ruiσ)(r,Xt,r(x)),Aeu
i(r,Xt,r−(x)))drdx.

Since φ is arbitrary, we deduce that (Y i,t,x
s , Z

i,t,x
s , V

i,t,x
s ) solve the BSDE associated with

(g(Xt,T (x)), f), ρ(x)dx-a.e., where

Y
i,t,x
s = ui(s,Xt,s(x)), Z

i,t,x
s = (ruiσ)(s,Xt,s(x)) and

V
i,t,x
s = ui(s,Xt,s−(x) + β(Xt,s−(x), ·))− ui(s,Xt,s−(x)).

This means ρ(x)dx-a.e., we have

Y i,t,x
s = g(Xt,T (x))+

Z T

s
f(r,Xt,r(x), Y

i,t,x
r , Zi,t,x

r , V i,t,x
r )dr−

Z T

s
Zi,t,x
r dWr−

Z T

s

Z

E
V i,t,x
r (e)eµ(dr, de).

Then the uniqueness follows from the uniqueness of the BSDE.

(ii) Existence : Let us set

F (s, x) , f(s, x, Y s,x
s , Zs,x

s , V s,x
s ).
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Plugging into the facts that f0 2 L
2
ρ([0, T ] ⇥ Rd) and f is Lipschitz with respect to (y, z, v), then

thanks to Prop. 3.3.1 we have F (s, x) 2 L
2
ρ([0, T ] ⇥ Rd). Since g 2 L

2
ρ(R

d), we can approximate
them by a sequence of smooth functions with compact support (gn, Fn) such that

(
gn ! g in L

2
ρ(R

d),

Fn(s, x)! F (s, x) in L
2
ρ([0, T ]⇥ Rd).

(3.5.9)

Denote (Y n,t,x
s , Z

n,t,x
s , V

n,t,x
s ) 2 S2 ⇥ H2 ⇥ L2 the solution of the BSDE associated with (ξn, Fn),

where ξn = gn(Xt,T (x)), i.e.

Y
n,t,x
s = gn(Xt,T (x)) +

Z T

s
Fn(r,Xt,r(x))dr −

Z T

s
Zn,t,x
r dWr −

Z T

s

Z

E
V n,t,x
r (e)eµ(dr, de).

(3.5.10)
Since Fn and gn are smooth enough, from the regularity result of the solution with respect to (t, x)

(see the proof in Appendix), we know that un(t, x) := Y
n,t,x
t 2 C1,2([0, T ]⇥Rd) is the classic solution

for the following PIDE: (
(∂t + L)u(t, x) + Fn(t, x) = 0

u(T, x) = gn(x).
(3.5.11)

Moreover, we know that vn(t, x) := Z
n,t,x
t = (runσ)(t, x). Besides, from the flow property, we can

deduce that Y
n,t,x
s = un(s,Xt,s(x)) and Z

n,t,x
s = (runσ)(s,Xt,s(x)), as well as the representation of

the jump part

V n,t,x
s := wn(s,Xt,s(x)) := un(s,Xt,s−(x) + β(Xt,s−(x), ·))− un(s,Xt,s−(x)), a.s..

Applying the equivalence of norms result and the Proposition 3.3.1, we have

Z

Rd

Z T

t
(|un(s, x)|2 + |σ⇤run(s, x)|2)dsρ(x)dx

6 c

Z

Rd

Z T

t
E(|un(s,Xt,s(x))|2 + |σ⇤run(s,Xt,s(x))|2)dsρ(x)dx

= c

Z

Rd

Z T

t
E(|Y n,t,x

s |2 + |Zn,t,x
s |2)dsρ(x)dx

6 c
⇣Z

Rd

E|gn(Xt,T (x))|2ρ(x)dx+

Z

Rd

Z T

t
E|Fn(s,Xt,s(x))|2dsρ(x)dx

⌘

6 c
⇣Z

Rd

|gn(x)|2ρ(x)dx+

Z

Rd

Z T

t
|Fn(s, x)|2dsρ(x)dx

⌘
< +1,

where c is a constant which changes from line to line . Therefore, we have shown that 8n, un 2 HT

solves the PIDE associated with (gn, fn), and for every φ 2 C
1,1
c ([0, T ]⇥ Rd),

Z T

t
(un(s, ·), ∂sφ(s, ·))ds+ (un(t, ·),φ(t, ·))− (gn(·),φ(T, ·))−

Z T

t
(Lun(s, ·),φ(s, ·))ds

=

Z T

t
(Fn(s, ·),φ(s, ·))ds.

(3.5.12)

Now for m,n 2 N , applying Itô’s formula to |Y m,t,x
s − Y

n,t,x
s |2, we get for any s 2 [t, T ],

E|Y m,t,x
s − Y n,t,x

s |2 + E

Z T

s
|Zm,t,x

r − Zn,t,x
r |2dr + E

Z T

s

Z

E
|V m,t,x

r (e)− V n,t,x
r (e)|2λ(de)dr

= E|gm(Xt,T (x))− gn(Xt,T (x))|2

+2E

Z T

s
(Y m,t,x

r − Y n,t,x
r )(Fm(r,Xt,r(x))− Fn(r,Xt,r(x)))dr.
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Combining the properties of fm and fn with the basic inequality 2ab 6 εa2 + ε−1b2, we have:

E|Y m,t,x
s − Y n,t,x

s |2 + E

Z T

s
|Zm,t,x

r − Zn,t,x
r |2dr

6 E |gm(Xt,T (x))− gn(Xt,T (x))|2 + εE

Z T

s
|Y m,t,x

r − Y n,t,x
r |2dr

+
1

ε
E

Z T

s
|Fm(r,Xt,r(x))− Fn(r,Xt,r(x))|2dr.

It follows again from the equivalence of norms that
Z

Rd

E|Y m,t,x
s − Y n,t,x

s |2ρ(x)dx

6

Z

Rd

E|gm(Xt,T (x))− gn(Xt,T (x))|2ρ(x)dx+ ε

Z

Rd

E

Z T

s
|Y m,t,x

r − Y n,t,x
r |2drρ(x)dx

+
1

ε

Z

Rd

E

Z T

s
|Fm(r,Xt,r(x))− Fn(r,Xt,r(x))|2drρ(x)dx

6 εC

Z

Rd

E

Z T

s
|Y m,t,x

r − Y n,t,x
r |2drρ(x)dx+ C

Z

Rd

|gm(x)− gn(x)|2ρ(x)dx

+
C

ε

Z

Rd

Z T

s
|Fm(r, x)− Fn(r, x)|2drρ(x)dx.

Choosing ε appropriately, by Gronwall’s inequality and the convergence of Fn and gn, we get as
m,n!1,

sup lim
t 6 s 6 T

Z

Rd

E|Y m,t,x
s − Y n,t,x

s |2ρ(x)dx! 0,

which implies immediately as m,n!1,
Z

Rd

E

Z T

s
|Y m,t,x

r − Y n,t,x
r |2drρ(x)dx+

Z

Rd

E

Z T

s
|Zm,t,x

r − Zn,t,x
r |2drρ(x)dx! 0.

Thanks again to the equivalence of norms (5.4.11), we get as m,n!1:
Z T

t

Z

Rd

(|um(s, x)− un(s, x)|2 + |σ⇤rum(s, x)− σ⇤run(s, x)|2)ρ(x)dxds

6
1

C

Z T

t

Z

Rd

E(|(um − un)(s,Xt,s(x))|2 + |(σ⇤rum − σ⇤run)(s,Xt,s(x))|2)ρ(x)dxds

=
1

C

Z T

t

Z

Rd

E(|Y m,t,x
s − Y n,t,x

s |2 + |Zm,t,x
s − Zn,t,x

s |2)ρ(x)dxds! 0,

which means that un is Cauchy sequence in HT . Denote its limit as u, then u 2 HT . Moreover, since
Xt,s(x) has at most countable jumps, using again the equivalence of norms, we can deduce that

Z T

t

Z

Rd

|wm(s, x)− wn(s, x)|2ρ(x)dxds! 0,

henceforth there exists at least a subsequence {unk
}, such that dt⌦ dP ⌦ ρ(x)dx-a.e.,

8
><
>:

Y
nk,t,x
s = unk

(s,Xt,s(x))! u(s,Xt,s(x)) =: Y t,x
s ,

Z
nk,t,x
s = σ⇤runk

(s,Xt,s(x))! σ⇤ru(s,Xt,s(x)) =: Zt,x
s ,

V
nk,t,x
s = wnk

(s,Xt,s(x))! u(s,Xt,s−(x) + β(Xt,s−(x), ·))− u(s,Xt,s−(x)) := V
t,x
s .

Then we get the desired probabilistic representations (5.4.14). Passing limit in (3.5.12), we have for
every φ,

Z T

t
(u(s, ·), ∂sφ(s, ·))ds+ (u(t, ·),φ(t, ·))− (g(·),φ(T, ·))−

Z T

t
(u(s, ·),L⇤φ(s, ·))ds

=

Z T

t
(f(s, ·, u(s, ·),σ⇤ru(s, ·), u(s, x+ β(x, ·))− u(s, x)),φ(s, ·))ds,

(3.5.13)

which means that u 2 HT is the weak solution of (3.1.1). 2
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3.5.4 Proof of the tightness of the sequence (πn)n2N

Recall first that νn(dt, dx) = n(un − h)−(t, x)dtdx and πn(dt, dx) = ρ(x)νn(dt, dx) where un is the
solution of the PIDE’s (3.4.6).

Lemma 3.5.1. The sequence of measure (πn)n2N is tight.

Proof. Since here we need to deal with the additional jump part, we adapt the proof of Theorem
4 in [9]. We shall prove that for every ε > 0 , there exists some constant K such that

Z T

0

Z

Rd

1{|x| > 2K}πn(ds, dx) 6 ε, 8n 2 N. (3.5.14)

We first write
Z T

0

Z

Rd

1{|x| > 2K}πn(ds, dx)

=

Z T

0

Z

Rd

1{|x| > 2K}

⇣
1{|X−1

0,s (x)−x| 6 K} + 1{|X−1

0,s (x)−x| > K}
⌘
πn(ds, dx)

:= InK + Ln
K , P − a.s.

Taking expectation yields

Z T

0

Z

Rd

1{|x| > 2K}πn(ds, dx) = EInK + ELn
K .

By (4.3.17) and for K > 2kbk1T , we get thanks to large deviation results (see [67], [68] and [69])

ELn
K 6

Z T

0

Z

Rd

P

✓
sup

0 6 r 6 T

∣∣∣X−1
0,r (x)− x

∣∣∣ > K

◆
πn(ds, dx)

6
(
C1 exp(−C2K

2) + C3 exp(−C4K)
)
πn

⇣
[0, T ]⇥ Rd

⌘

6 C 0
1 exp(−C2K

2) + C 0
3 exp(−C4K),

so ELn
K 6 ε for K sufficiently large.

On the other hand, if |x| > 2K and
∣∣∣X−1

0,s (x)− x
∣∣∣ 6 K then

∣∣∣X−1
0,s (x)

∣∣∣ > K. Therefore

EInK 6 E

Z T

0

Z

Rd

1{|X−1

0,s (x)| > K}ρ(x)νn(ds, dx)

= E

Z T

0

Z

Rd

1{|X−1

0,s (x)| > K}ρ(x)n(un − h)−(s, x)dsdx

which, by the change of variable y = X−1
0,s (x), becomes

E

Z T

0

Z

Rd

1{|y| > K}ρ(X0,s(y))J(X0,s(y))n(un − h)−(s,X0,s(y))dsdy

6 E

Z

Rd

ρ(x)

✓
ρ(x)−11{|x| > K} sup

0 6 r 6 T
ρ(X0,r(x))J(X0,r(x))

◆
K

n,0,x
T dx

6

✓
E

Z

Rd

⇣
K

n,0,x
T

⌘2
ρ(x)dx

◆1/2

 
E

Z

Rd

✓
ρ(x)−11{|x| > K} sup

0 6 r 6 T
ρ(X0,r(x))J(X0,r(x))

◆2

ρ(x)dx

!1/2

6 C

 
E

Z

Rd

✓
ρ(x)−11{|x| > K} sup

0 6 r 6 T
ρ(X0,r(x))J(X0,r(x))

◆2

ρ(x)dx

!1/2
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where the last inequality is a consequence of (3.4.8). It is now sufficient to prove that

Z

Rd

ρ(x)−1E

"✓
sup

0 6 r 6 T
ρ(X0,r(x))J(X0,r(x))

◆2
#
dx <1. (3.5.15)

Note that

E

"✓
sup

0 6 r 6 T
ρ(X0,r(x))J(X0,r(x))

◆2
#

6

"
E

✓
sup

0 6 r 6 T
|ρ(X0,r(x))|

◆4
#1/2 "

E

✓
sup

0 6 r 6 T
|J(X0,r(x))|

◆4
#1/2

6 C

"
E

✓
sup

0 6 r 6 T
|ρ(X0,r(x))|

◆4
#1/2

.

Therefore it is sufficient to prove that:

Z

Rd

1

ρ(x)

✓
E


sup

t 6 r 6 T
|ρ(Xt,r(x))|4

]◆1/2

dx <1.

Since ρ(x) 6 1, we have

E


sup

t 6 r 6 T
|ρ(Xt,r(x))|4

]
6 E

2
64 sup
t 6 r 6 T

|ρ(Xt,r(x))|4 1(

sup
t 6 r 6 T

|Xt,r(x)−x| 6
|x|
2

)

3
75

+P

✓
sup

t 6 r 6 T
|Xt,r(x)− x| > |x|

2

◆

= : A(x) +B(x).

If sup
t 6 r 6 T

|Xt,r(x)− x| 6 |x|
2 then |Xt,r(x)| > |x|

2 and so |ρ(Xt,r(x))| 6
⇣
1 + |x|

2

⌘−p
. Thus we have

that A(x) 6
⇣
1 + |x|

2

⌘−4p
and so

R
Rd (1 + |x|)pA(x)1/2dx <1. On the other hand, if |x| > 4kbk1T ,

then (the same argument as in the existence proof step 2 of Theorem 4 in [9] for the Itô integral
with respect to the Brownian motion; and see e.g. Theorem 5.2.9 in [3] for the integral with respect
to the compensated Poisson random measure)

B(x) 6 P

✓
sup

t 6 s 6 T

∣∣∣∣
Z s

0
σ(X0,r(x))dWr

∣∣∣∣ >
|x|
8

◆

+ P

✓
sup

t 6 s 6 T

∣∣∣∣
Z s

0

Z

E

β(X0,r−(x), e)µ̃(dr, de)

∣∣∣∣ >
|x|
8

◆

6 C1 exp(−C2|x|2) + C3 exp(−C4|x|)

and so
R
Rd (1 + |x|)pB(x)1/2dx <1.
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4.1 Introduction

We are interested in this chapter in the following system of semilinear stochastic PDE with value in
Rk,

dut(x) + [Lut(x) + ft(x, ut(x),rutσ(x))]dt+ ht(x, ut(x),rutσ(x)) · d
 −
W t = 0, (4.1.1)

over the time interval [0, T ], with a given final condition uT = Φ, f, h are non-linear random functions
and L is the second order differential operator associated with a diffusion which is defined component
by component with

Lϕ(x) =
dX

i=1

bi(x)
∂

∂xi
ϕ(x) +

1

2

dX

i,j=1

aij(x)
∂2

∂xi∂xj
ϕ(x). (4.1.2)

The differential term with d
 −
W t refers to the backward stochastic integral with respect to a

d-dimensional Brownian motion on
(
Ω,F ,P, (Wt)t > 0

)
. We use the backward notation because in

the proof we will employ the doubly stochastic framework introduced by Pardoux and Peng [109].
It is well known now that BSDEs provide a natural tools to give a probabilistic interpretation for
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the solution of a class of semi-linear PDEs. By introducing in standard BSDEs a second nonlinear
term driven by an external noise, we obtain Backward Doubly SDEs (BDSDEs) [109] (see also [10],
[97]), which can be seen as Feynman-Kac representation of SPDEs and form a powerful tool for
probabilistic numerical schemes [6] for such SPDEs. Given a convex domain D in Rk, the concern
is to study the reflection problem for SPDE (4.1.1) in such domain D. This problem is well known
as a Skorohod problem for SPDEs.

In this chapter we shall study the weak solution of SPDE (4.1.1) in a given convex domain D by
introducing the associated BDSDE. Inspired by the variational formulation of the obstacle problem
for SPDEs and Menaldi’s work [101] on reflected diffusion, we consider the solution of the refection
problem for the SPDEs (4.1.1) as a pair (u, ν), where ν is a random regular measure and u 2
L
2
(
Ω⇥ [0, T ];H1(Rd)

)
satisfies the following relations:

(i) ut(x) 2 D̄, dP⌦ dt⌦ dx− a.e.,

(ii0) dut(x) +
⇥
Lut(x) + ft(x, ut(x),rutσ(x))

⇤
dt+ ht(x, ut(x),rutσ(x)) · d

 −
W t = −ν(dt, dx), a.s.,

(iii) ν(u /2 ∂D) = 0, a.s.,

(iv) uT = Φ, dx− a.e..

(4.1.3)

ν is a random measure which acts only when the process u reaches the boundary of the domain
D. The rigorous sense of the relation (iii) will be based on the probabilistic representation of the
measure ν in term of the bounded variation processes K component of the associated solution of the
reflected BDSDE in the domain D.

Our contributions are as following: first of all, reflected BDSDEs in the convex domain D are
introduced and results of existence and uniqueness of such RBDSDEs are established. Next, the
existence and uniqueness results of the solution (u, ν) of the reflection problem for (4.1.1) are given
in Theorem 4.3.1. Indeed, a probabilistic method based on reflected BDSDEs and stochastic flow
technics are investigated in our context (see e.g. [10], [97], [80, 79] for these flow technics). The key
element in [10] is to use the inversion of stochastic flow which transforms the variational formulation
of the SPDEs to the associated BDSDEs. Thus it plays the same role as Itô’s formula in the case of
the classical solution of SPDEs.

The outline is as following: in section 4.2.1, first the basic assumptions and the definitions of the
solutions for Reflected BDSDE in a convex domain are presented. Then, existence and uniqueness
of solution of RBDSDE (Theorem 4.2.1) is given under only convexity assumption for the domain
without any regularity on the boundary. This result is proved by using penalization approximation.
Thanks to the convexity properties we prove several technical lemmas, in particular the fundamental
Lemma 4.2.2. In section 4.3, we study semilinear SPDEs in a convex domain. We first provide
useful results on stochastic flow associated with the forward SDEs, then in this setting as in Bally
and Matoussi [10], an equivalence norm result associated to the diffusion process is given. The main
result of this section Theorem 4.3.1 is the existence and uniqueness results of the solution of reflected
SPDEs in a convex domain. The proof of this result is based on the probabilistic interpretation via
the Reflected Forward-BDSDEs. The uniqueness is a consequence of the variational formulation of
the SPDEs written with random test functions and the uniqueness of the solution of the Reflected
FBSDE. The existence of the solution is established by an approximation penalization procedure,
a priori estimates and the equivalence norm results. In the Appendix, technical lemmas for the
existence of the solution of the Reflected BDSDEs and SPDEs in a convex domain are given.
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4.2 Backward Doubly Stochastic Differential Equations

in a domain

4.2.1 Hypotheses and preliminaries

The euclidean norm of a vector x 2 Rk will be denoted by |x|, and for a k ⇥ k matrix A, we define
kAk =

p
TrAA⇤. In what folllows let us fix a positive number T > 0.

Let (Ω,F ,P) be a probability product space, and let {Ws, 0 6 s 6 T} and {Bs, 0 6 s 6 T} be two
mutually independent standard Brownian motion processes, with values respectively in Rd and in
Rl. For each t 2 [0, T ], we define

Ft := FB
t _ FW

t,T _N
where FB

t = σ{Br, 0 6 r 6 T}, FW
t,T = σ{Wr − Wt, t 6 r 6 T} and N the class of P null sets

of F . Note that the collection {Ft, t 2 [0, T ]} is neither increasing nor decreasing, and it does not
constitute a filtration.

4.2.1.1 Convexity results

Besides, we need to recall properties related to the convexity of a nonempty domain D in Rk. Let
∂D denotes the boundary of D and π(x) the projection of x 2 Rk on D. We have the following
properties:

(x0 − x)⇤(x− π(x)) 6 0, 8x 2 Rd, 8x0 2 D̄ (4.2.1)

(x0 − x)⇤(x− π(x)) 6 (x0 − π(x0))⇤(x− π(x)), 8x, x0 2 Rk (4.2.2)

9a 2 D, γ > 0, such that(x− a)⇤((x− π(x)) > γ|x− π(x)|, 8x 2 Rk. (4.2.3)

For x 2 ∂D, we denote by ν(x) the set of normal unit vectors at the point x. Since D is not regular,
we define a sequence of regular convex which approximate uniformly D. Indeed, the function h(x) =

d(x,D) is convex and uniformly continuous in Rk. If we denote (gδ)0 6 δ 6 δ0 the approximation
identity with compact support, then hδ = gδ ⇤ h is a sequence of regular convex functions which
tends uniformly to h as δ ! 0. For a fixed η > 0, {x, hδ(x) < η} are regular convex domains that
converge uniformly to {x, d(x,D) < η} when δ tends to 0. Letting η ! 0, we conclude that for all
ε > 0 there exists a regular convex Dε such that

sup
x2D

d(x,Dε) < ε and sup
x2Dε

d(x,D) < ε (4.2.4)

One can find all these results in Menaldi [101].

4.2.1.2 Functional spaces and assumptions

Hereafter, let us define the spaces and the norms which will be needed for the formulation of the
BDSDE in a domain.

- L
p
k(FT ) the space of k-dimensional FT -measurable random variables ξ such that

kξkpLp := E(|ξ|p) < +1;

- H2
k⇥d([0, T ]) the space of Rk⇥d-valued Ft-measurable process Z = (Zt)t 6 T such that

kZk2H2 := E[

Z T

0
|Zt|2dt] < +1;
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- S2k([0, T ]) the space of Rk-valued Ft-adapted processes Y = (Yt)t 6 T , with continuous paths such
that

kY k2S2 := E[ sup
t 6 T
|Yt|2] < +1;

- A2
k([0, T ]) the space of Rk-valued Ft-adapted processes K = (Kt)t 6 T , with continuous and

bounded variation paths such that K0 = 0 and

kKk2A2 := E[ sup
t 6 T
|Kt|2] < +1.

We next state our main assumptions on the terminal condition ξ and the functions f and h:

Assumption 4.2.1. ξ 2 L
2
k(FT ) and ξ 2 D̄ a.s..

Assumption 4.2.2. f : Ω⇥ [0, T ]⇥ Rk ⇥ Rk⇥d ! Rk , h : Ω⇥ [0, T ]⇥ Rk ⇥ Rk⇥d ! Rk⇥l are two
random functions verifying:

(i) For all (y, z) 2 Rk ⇥ Rk⇥d, ft(ω, y, z) and ht(ω, y, z) are Ft - progressively measurable.

(ii) E
⇥ Z T

0
|ft(0, 0)|2dt

⇤
< +1 , E

⇥ Z T

0
kht(0, 0)k2dt

⇤
< +1.

(iii) There exist constants c > 0 and 0 < α < 1 such that for any (ω, t) 2 Ω ⇥
[0, T ] ; (y1, z1), (y2, z2) 2 Rk ⇥ Rk⇥d

|ft(y1, z1)− ft(y2, z2)|2 6 c
(
|y1 − y2|2 + kz1 − z2k2

)

kht(y1, z1)− ht(y2, z2)k2 6 c|y1 − y2|2 + αkz1 − z2k2.

We denote by f0
t := ft(ω, 0, 0) and h0t := ht(ω, 0, 0).

Now we introduce the definition of the solution of BDSDEs in a domain.

Definition 4.2.1. The triplet of processes (Yt, Zt,Kt){0 6 t 6 T} is solution of the backward doubly
stochastic differential equation in a convex domain D, with terminal condition ξ and coefficients f

and h, if the following hold:

(i) Y 2 S2k([0, T ]) , Z 2 H2
k⇥d([0, T ]) and K 2 A2

k([0, T ]),

(ii)

Yt = ξ+

Z T

t
fs(Ys, Zs)ds+

Z T

t
hs(Ys, Zs)d

 −
W s−

Z T

t
ZsdBs+KT −Kt , 0 6 t 6 T a.s. (4.2.5)

(iii) Yt 2 D̄ , 0 6 t 6 T, a.s.

(iv) for any continuous Ft- measurable process (zt)0 6 t 6 T valued in D̄,

Z T

0
(Yt − zt)

⇤dKt 6 0, a.s. (4.2.6)

The triplet (Yt, Zt,Kt){0 6 t 6 T} is called a solution of RBDSDE with data (ξ, f, h).

Remark 4.2.1. One may ask the question if there exists a solution Y 2 D̄ to the following classical
BDSDE introduced first in [109] :

Yt = ξ +

Z T

t
fs(Ys, Zs)ds+

Z T

t
hs(Ys, Zs)d

 −
W s −

Z T

t
ZsdBs. (4.2.7)
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In the particular case when f ⌘ 0 and h does not depend on (y, z), the solution Y of the BDDSE is
given by

Yt = E
⇥
ξ +

Z T

0
hsd
 −
W s

∣∣Gt
⇤
. (4.2.8)

By the generalized Ito-martingale representation theorem, there exists a unique Gt-adapted process
(Zt)0 6 t 6 T such that (Y, Z)0 6 t 6 T is solution of the equation (4.2.7). Moreover, by the same ar-
guments developed in [109] we can prove that (Yt)0 6 t 6 T and (Zt)0 6 t 6 T are precisely Ft-adapted

processes. But, since ξ 2 D̄ and if we assume that
Z t

0
hsd
 −
W s 2 D̄, P-a.s., Jensen’s inequality applied

to the convex function ϕ(x) := d2(x,D) gives that Y 2 D̄. When f is not identically equal to zero,

the bounded variation term
Z T

t
fs(Ys, Zs)ds will push Y out of the domain D, therefore one need to

reflect the process Y when it reaches the boundary of D, this yields to the Definition 4.2.5.

Remark 4.2.2. From Lemma 2.1 in [53], the condition (4.2.6) implies that the bounded variation
process K acts only when Y reaches the boundary of the convex domain D and the so-called Skorohod
condition is satisfied: Z T

0
1{Yt2D}dKt = 0. (4.2.9)

Moreover there exits a Ft-measurable process (αt)0 6 t 6 T valued in Rk such that

Kt =

Z t

0
αsdkKskV T and − αs 2 ν(Ys).

In the following, C will denote a positif constant which doesn’t depend on ε nor on n and can vary
from line to line.

4.2.2 Existence and uniqueness of the solution

In this section we establish existence and uniqueness results for RBDSDE (4.2.5).

Theorem 4.2.1. Let Asumptions 4.2.1 and 4.2.2 hold. Then, the RBDSDE (4.2.5) has a unique
solution (Y, Z,K) 2 S2k([0, T ])⇥H2

k⇥d([0, T ])⇥A2
k([0, T ]).

Proof.

a) Uniqueness: Let (Y 1, Z1,K1) and (Y 2, Z2,K2) be two solutions of the RBDSDE (4.2.5). Ap-
plying Lemma 1.3 in [109] yields

|Y 1
t − Y 2

t |2 +

Z T

t
kZ1

s − Z2
sk2ds = 2

Z T

t
(Y 1

s − Y 2
s )

⇤(fs(Y
1
s , Z

1
s )− fs(Y

2
s , Z

2
s ))ds

+ 2

Z T

t
(Y 1

s − Y 2
s )

⇤(hs(Y
1
s , Z

1
s )− hs(Y

2
s , Z

2
s ))d
 −
W s − 2

Z T

t
(Y 1

s − Y 2
s )(Z

1
s − Z2

s )dBs

+ 2

Z T

t
(Y 1

s − Y 2
s )

⇤(dK1
s − dK2

s ) +

Z T

t
khs(Y 1

s , Z
1
s )− hs(Y

2
s , Z

2
s )k2ds. (4.2.10)

Therefore, since (Y 1
s − Y 2

s ) belongs to D̄, under the minimality condition (iv) we have
Z T

t
(Y 1

s − Y 2
s )

⇤(dK1
s − dK2

s ) 6 0, for all t 2 [0, T ]. (4.2.11)

Then, plugging (4.2.11) in (4.2.10) and taking expectation we obtain

E[|Y 1
t − Y 2

t |2] + E[

Z T

t
kZ1

s − Z2
sk2ds] 6 2E[

Z T

t
(Y 1

s − Y 2
s )

⇤(fs(Y
1
s , Z

1
s )− fs(Y

2
s , Z

2
s ))ds]

+ E[

Z T

t
khs(Y 1

s , Z
1
s )− hs(Y

2
s , Z

2
s )k2ds].
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Hence from the Lipschitz property

E[|Y 1
t − Y 2

t |2] + E[

Z T

t
kZ1

s − Z2
sk2ds] 6 c(α)E[

Z T

t
|Y 1

s − Y 2
s |2ds] +

1− α

2
E[

Z T

t
kZ1

s − Z2
sk2ds]

+ αE[

Z T

t
kZ1

s − Z2
sk2ds],

where 0 < α < 1. Consequently

E[|Y 1
t − Y 2

t |2] + (
1− α

2
)E[

Z T

t
kZ1

s − Z2
sk2ds] 6 c(α)E[

Z T

t
|Y 1

s − Y 2
s |2ds].

From Gronwall’s lemma, E[|Y 1
t − Y 2

t |2] = 0, 0 6 t 6 T , and E[

Z T

0
kZ1

s − Z2
sk2ds] = 0.

b) Existence: The existence of a solution will be proved by penalisation method. For n 2 N, we
consider for all t 2 [0, T ],

Y n
t = ξ +

Z T

t
fs(Y

n
s , Zn

s )ds+

Z T

t
hs(Y

n
s , Zn

s )d
 −
W s − n

Z T

t
(Y n

s − π(Y n
s ))ds−

Z T

t
Zn
s dBs. (4.2.12)

Denote by Kn
t := −n

Z s

t
(Y n

s − π(Y n
s ))ds. In order to prove the convergence of the sequence

(Y n, Zn,Kn) to the solution of our RBDSDE (4.2.1), we need several lemmas. For this end, we
add the following further assumption:

Assumption 4.2.3. (i) 0 2 D and ξ 2 L
4
k(FT ).

(ii) There exit c > 0 and 0 6 β < 1 such that for all (t, y, z) 2 [0, T ]⇥ Rk ⇥ Rk⇥d

ht h
⇤
t (y, z) 6 c(IdRk + yy⇤) + β zz⇤.

(iii) f and h are uniformly bounded in (y, z).

The Assumption 4.2.3 (i) and (ii) are needed to prove the uniform L4-estimate for (Y n, Zn) solution
of BDSDE (4.2.12) (see estimate (4.4.7) in the Appendix 4.4.3). This is crucial for our proof of the
fundamental lemma 4.2.2. The Assumption 4.2.3 (iii) is only added for simplicity and it can be
removed by standard technics of BSDEs. The natural condition instead of (iii) is f0 and h0 in
L
4(Ω,F ,P).

We assume also for the sake of simplicity that D is a convex set with class C2 boundary. If not we
can approximate our convex domain D by regular convex domains as mentioned in section 4.2.1.1.
We start with the following lemma:

Lemma 4.2.1. There exists a constant C > 0 such that

8n 2 N nE[

Z T

0
d2(Y n

s , D)ds] 6 C. (4.2.13)

Proof. We apply generalized Itô’s formula [109] to ρ(Y n
t ) = d2(Y n

t , D) to obtain

ρ(Y n
t ) +

1

2

Z T

t
trace[Zn

s Z
n⇤
s Hessρ(Y n

s )]ds = ρ(ξ) +

Z T

t
(rρ(Y n

s ))⇤fs(Y
n
s , Zn

s )ds

−
Z T

t
(rρ(Y n

s ))⇤Zn
s dBs +

Z T

t
(rρ(Y n

s ))⇤hs(Y
n
s , Zn

s )d
 −
W s

+
1

2

Z T

t
trace[(hsh

⇤
s)(Y

n
s , Zn

s )Hessρ(Y n
s )]ds− 2n

Z T

t
(Y n

s − π(Y n
s ))⇤(Y n

s − π(Y n
s ))ds.

(4.2.14)
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Since ξ 2 D̄ a.s., it is obvious that ρ(ξ) = 0. We get from the boundedness of h and the Hessienne
of ρ

ρ(Y n
t ) +

1

2

Z T

t
trace[Zn

s Z
n⇤
s Hessρ(Y n

s )]ds+ 2n

Z T

t
d2(Y n

s , D)ds

6 2

Z T

t
(ρ(Y n

s ))1/2|fs(Y n
s , Zn

s )|ds− 2

Z T

t
(Y n

s − π(Y n
s ))⇤Zn

s dBs

+ 2

Z T

t
(Y n

s − π(Y n
s ))⇤hs(Y

n
s , Zn

s )d
 −
W s + C.

(4.2.15)

Now the algebric inequality 2ab 6 a2 + b2 with a =

r
n

2
ρ(Y n

s ) yields

(ρ(Y n
s ))1/2|fs(Y n

s , Zn
s )| 6

n

4
ρ(Y n

s ) +
1

n
|fs(Y n

s , Zn
s )|2.

Then it follows that,

ρ(Y n
t ) +

1

2

Z T

t
trace[Zn

s Z
n⇤
s Hessρ(Y n

s )]ds+
3n

2

Z T

t
d2(Y n

s , D)ds

6 2

Z T

t

1

n
|fs(Y n

s , Zn
s )|2ds− 2

Z T

t
(Y n

s − π(Y n
s ))⇤Zn

s dBs

+ 2

Z T

t
(Y n

s − π(Y n
s ))⇤hs(Y

n
s , Zn

s )d
 −
W s + C.

(4.2.16)

By taking expectation and using the boundedness of f , we have

E[ρ(Y n
t )] +

1

2
E[

Z T

t
trace[Zn

s Z
n⇤
s Hessρ(Y n

s )]ds] +
n

2
E[

Z T

t
d2(Y n

s , D)ds] 6 C. (4.2.17)

Hence, the required result is obtained. tu
The next lemma plays a crucial role to prove the strong convergence of (Y n, Zn,Kn).

Lemma 4.2.2.

E

h
sup

0 6 t 6 T
(d(Y n

t , D))4
i
−!

n!+1
0. (4.2.18)

Proof. We denote by ρ(x) = d2(x,D) and ϕ(x) = ρ2(x). By applying Itô’s formula to ϕ(Y n
t ) =

d4(Y n
t , D), we obtain that

ϕ(Y n
t ) +

1

2

Z T

t
trace[Zn

s Z
n⇤
s Hessϕ(Y n

s )]ds = ϕ(ξ) +

Z T

t
(rϕ(Y n

s ))⇤fs(Y
n
s , Zn

s )ds

−
Z T

t
(rϕ(Y n

s ))⇤Zn
s dBs +

Z T

t
(rϕ(Y n

s ))⇤hs(Y
n
s , Zn

s )d
 −
W s

+
1

2

Z T

t
trace[(hsh

⇤
s)(Y

n
s , Zn

s )Hessϕ(Y
n
s )]ds− n

Z T

t
rϕ(Y n

s ))⇤(Y n
s − π(Y n

s ))ds.

(4.2.19)

Since ξ 2 D̄ a.s., we have that ϕ(ξ) = 0 and it is easy to see that

rϕ(x) = 2ρ(x)rρ(x) = 4ρ(x)(x− π(x)) (4.2.20)

Hessϕ(x) = 2rρ(x)⌦rρ(x) + 2ρ(x)Hessρ(x). (4.2.21)

Then it follows that

ϕ(Y n
t ) +

1

2

Z T

t
trace[Zn

s Z
n⇤
s Hessϕ(Y n

s )]ds = 4

Z T

t
(ρ(Y n

s )(Y n
s − π(Y n

s ))⇤fs(Y
n
s , Zn

s )ds

− 4

Z T

t
(ρ(Y n

s )(Y n
s − π(Y n

s ))⇤Zn
s dBs + 4

Z T

t
(ρ(Y n

s )(Y n
s − π(Y n

s ))⇤hs(Y
n
s , Zn

s )d
 −
W s

+
1

2

Z T

t
tr[(hsh

⇤
s)(Y

n
s , Zn

s )Hessϕ(Y n
s )]ds− 4n

Z T

t
ρ2(Y n

s )ds.

(4.2.22)
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By taking expectation we have

E[ϕ(Y n
t )] +

1

2
E
⇥ Z T

t
trace[Zn

s Z
n⇤
s Hessϕ(Y n

s )]ds
⇤
+ 4nE

⇥ Z T

t
ϕ(Y n

s )ds
⇤

= 4E
⇥ Z T

t
(ρ(Y n

s )(Y n
s − π(Y n

s ))⇤fs(Y
n
s , Zn

s )ds]

+
1

2
E

h Z T

t
trace[(hsh

⇤
s)(Y

n
s , Zn

s )Hessϕ(Y n
s )]ds].

(4.2.23)

For the last term, we get from the boundedness of h and Hessρ

E

h Z T

t
trace[(hsh

⇤
s)(Y

n
s , Zn

s )Hessϕ(Y n
s )]ds] 6 2E

h Z T

t
hhs(Y n

s , Zn
s ),rρ(Y n

s )i2ds
i

+ E

h Z T

t
2ρ(Y n

s )trace[(hsh
⇤
s)(Y

n
s , Zn

s )Hessρ(Y n
s )]ds

i

6 CE

h Z T

t
|rρ(Y n

s )|2ds
i
+ CE

h Z T

t
2ρ(Y n

s )ds
i

6 CE

h Z T

0
(d(Y n

s , D))2ds
i
.

(4.2.24)

Now the algebric inequality 2ab 6 a2 + b2 with a = (d(Y n
s , D))2 and the boundedness of f yield

4(d(Y n
s , D))3|fs(Y n

s , Zn
s )| 6 2(d(Y n

s , D))4 + 2(d(Y n
s , D))2|fs(Y n

s , Zn
s )|

6 2ϕ(Y n
s ) + 2C(d(Y n

s , D))2.
(4.2.25)

By plugging the estimate (4.2.25) and (4.2.24) in (4.2.23), we obtain thanks to lemma 4.2.1

E[ϕ(Y n
t )] +

1

2
E
⇥ Z T

t
trace[Zn

s Z
n⇤
s Hessϕ(Y n

s )]ds
⇤
+ (4n− 2)E

⇥ Z T

t
ϕ(Y n

s )ds
⇤

6 CE
⇥ Z T

0
(d(Y n

s , D))2
⇤
6

C

n
.

(4.2.26)

Notice also that Hessienne of ϕ(Y n
s ) is a positive definite matrix since ϕ is a convex function, so we

get that

sup
0 6 t 6 T

E[ϕ(Y n
t )] 6

C

n
. (4.2.27)

Moreover, we can deduce from (4.2.26) that, for every t 2 [0, T ]

E
⇥ Z T

t
trace[Zn

s Z
n⇤
s Hessϕ(Y n

s )]ds
⇤
−! 0, asn!1. (4.2.28)

In the other hand, we take the supremum over t in the equation (4.2.22) and by Burkholder-Davis-
Gundy’s inequlity and the previous calculations it follows that

E[ sup
0 6 t 6 T

ϕ(Y n
t )] 6 CE[

Z T

0
ϕ(Y n

s )ds] + CE

h Z T

0
(d(Y n

s , D))2ds
i

+ CE

h
sup

0 6 t 6 T

Z T

t
(ρ(Y n

s )rρ(Y n
s ))⇤Zn

s dBs

i

+ CE

h
sup

0 6 t 6 T

Z T

t
(ρ(Y n

s )rρ(Y n
s ))⇤hs(Y

n
s , Zn

s )d
 −
W s

i

6 CE[

Z T

0
ϕ(Y n

s )ds] + CE

h Z T

0
(d(Y n

s , D))2ds
i

+ CE

h⇣ Z T

0
(ρ(Y n

s ))2hrρ(Y n
s ), Zn

s i2ds
)1/2i

+ CE

h⇣ Z T

0
(ρ(Y n

s ))2hrρ(Y n
s )), hs(Y

n
s , Zn

s )i2ds
)1/2i

.

(4.2.29)
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From the boundedness of h and the fact that rρ2(x) = 4ρ(x), we have

E

h⇣ Z T

0
(ρ(Y n

s ))2hrρ(Y n
s )), hs(Y

n
s , Zn

s )i2ds
)1/2i

6 CE
⇥⇣ Z T

0
(ρ(Y n

s ))2ρ(Y n
s )ds

)1/2i

6 CE

h
sup

0 6 s 6 T
(ϕ(Y n

s ))1/2
⇣Z T

0
ρ(Y n

s )ds
⌘1/2i

6
1

4
E

h
sup

0 6 s 6 T
ϕ(Y n

s )
i
+ C2E

h Z T

0
(d(Y n

s , D))2ds
i
.

(4.2.30)

By the Holder’s inequality, we obtain

E

h⇣ Z T

0
(ρ(Y n

s ))2hrρ(Y n
s )), Zn

s i2ds
)1/2i

6 CE

h
sup

0 6 s 6 T
(ϕ(Y n

s ))1/2
⇣Z T

0
hrρ(Y n

s )), Zn
s i2ds

⌘1/2i

6
1

4
E

h
sup

0 6 s 6 T
ϕ(Y n

s )
i
+ C2E

h Z T

0
hrρ(Y n

s )), Zn
s i2ds

i
.

(4.2.31)

Reporting (4.2.30) and (4.2.31) in (4.2.29) leads to

E[ sup
0 6 t 6 T

ϕ(Y n
t )] 6 CE[

Z T

0
ϕ(Y n

s )ds] + CE

h Z T

0
(d(Y n

s , D))2ds
i

+ C2E

h Z T

0
hrρ(Y n

s )), Zn
s i2ds

i
.

(4.2.32)

Since each term of (4.2.21) is positive definite and from (4.2.28), we get

E

h Z T

0
hrρ(Y n

s )), Zn
s i2ds

i
−! 0 asn!1.

Finally, by using (4.2.27) and Lemma 4.2.1, we get the desired result. tu
Therefore, we deduce the strong convergence of (Y n, Zn):

Lemma 4.2.3. The sequence (Y n, Zn) is a Cauchy sequence in S2k([0, T ])⇥H2
k⇥d([0, T ]), i.e.

E[ sup
0 6 t 6 T

|Y n
t − Y m

t |2 +
Z T

0
kZn

t − Zm
t k2dt] −! 0 as n,m! +1.

Proof. For all n,m > 0, we apply Itô formula to |Y n
t − Y m

t |2

|Y n
t − Y m

t |2 +
Z T

t
kZn

s − Zm
s k2ds = 2

Z T

t
(Y n

s − Y m
s )⇤(fs(Y

n
s , Zn

s )− fs(Y
m
s , Zm

s ))ds

+ 2

Z T

t
(Y n

s − Y m
s )⇤(hs(Y

n
s , Zn

s )− hs(Y
m
s , Zm

s ))d
 −
W s − 2

Z T

t
(Y n

s − Y m
s )(Zn

s − Zm
s )dBs

+

Z T

t
khs(Y n

s , Zn
s )− hs(Y

m
s , Zm

s )k2ds− 2n

Z T

t
(Y n

s − Y m
s )⇤(Y n

s − π(Y n
s ))ds

+ 2m

Z T

t
(Y n

s − Y m
s )⇤(Y m

s − π(Y m
s ))ds.

(4.2.33)

By the property (4.2.2), we have

−2n
Z T

t
(Y n

s − Y m
s )⇤(Y n

s − π(Y n
s ))ds+ 2m

Z T

t
(Y n

s − Y m
s )⇤(Y m

s − π(Y m
s ))ds

6 2(n+m)

Z T

t
(Y n

s − π(Y n
s ))⇤(Y m

s − π(Y m
s ))ds.

(4.2.34)
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Hence, from the Lipschitz continuous assumption on f and h, and taking expectation yields to

E[|Y n
t − Y m

t |2] + E[

Z T

t
kZn

s − Zm
s k2ds] 6 2E[

Z T

t
C(|Y n

s − Y m
s |2 + |Y n

s − Y m
s |kZn

s − Zm
s k)ds]

+ E[

Z T

t
C(|Y n

s − Y m
s |2 + αkZn

s − Zm
s k)ds]

+ 2(n+m)E[

Z T

t
(Y n

s − π(Y n
s ))⇤(Y m

s − π(Y m
s ))ds].

(4.2.35)

For the last term, we need to claim the following lemma whose proof is postponed in the Appendix.

Lemma 4.2.4. There exists a constant C > 0 such that, for each n > 0,

E
⇥⇣

n

Z T

0
d(Y n

s , D)ds
⌘2⇤

6 C (4.2.36)

Now we can deduce from the Holder inequality and Lemma 4.2.4 that

nE[

Z T

t
(Y n

s − π(Y n
s ))⇤(Y m

s − π(Y m
s ))ds] 6 nE[

Z T

t
d(Y n

s , D)d(Y m
s , D))ds]

6 nE[ sup
0 6 s 6 T

d(Y m
s , D)

Z T

t
d(Y n

s , D)ds)]

6
⇣
E
⇥⇣

n

Z T

0
d(Y n

s , D)ds
⌘2⇤⌘1/2⇣

E[ sup
0 6 s 6 T

d2(Y m
s , D)]

⌘1/2

6 C
⇣
E[ sup

0 6 s 6 T
d2(Y m

s , D)]
⌘1/2

.

(4.2.37)

Reporting (4.2.37) in the previous inequality, we have

E[|Y n
t − Y m

t |2] + (1− α− Cγ)E[

Z T

t
kZn

s − Zm
s k2ds] 6 C(1 +

1

γ
)E[

Z T

t
|Y n

s − Y m
s |2ds]

+ C
⇣
E[ sup

0 6 s 6 T
d2(Y m

s , D)]
⌘1/2

.

Choosing 1− α− Cγ > 0, by Gronwall’s lemma, we obtain

sup
0 6 t 6 T

E[|Y n
t − Y m

t |2] 6 C
⇣
E[ sup

0 6 s 6 T
d2(Y m

s , D)]
⌘1/2

. (4.2.38)

We deduce similarly

E[

Z T

0
kZn

s − Zm
s k2ds] 6 C

⇣
E[ sup

0 6 s 6 T
d2(Y m

s , D)]
⌘1/2

. (4.2.39)

Next, we apply again Itô’s formula to |Y n
t − Y m

t |2, and we have by the Burkholder-Davis-Gundy
inequality and the previous calculations

E[ sup
0 6 t 6 T

|Y n
t − Y m

t |2] 6 CE[

Z T

0
|Y n

s − Y m
s ||f(s, Y n

s , Zn
s )− f(s, Y m

s , Zm
s )|ds]

+ CE
( Z T

0
|Y n

s − Y m
s |2khs(Y n

s , Zn
s )− hs(Y

m
s , Zm

s )k2ds
)1/2

+ CE
( Z T

0
|Y n

s − Y m
s |2kZn

s − Zm
s k2ds

)1/2

+ E[

Z T

t
C(|Y n

s − Y m
s |2 + αkZn

s − Zm
s k2)ds] + 2(n+m)E[

Z T

t
(Y n

s − π(Y n
s ))⇤(Y m

s − π(Y m
s ))ds].

Then, it follows by the Lipschitz Assumption 4.2.2 on f and h and (4.2.37) that for any n,m > 0

E[ sup
0 6 t 6 T

|Y n
t − Y m

t |2] 6 C
⇣
E[ sup

0 6 s 6 T
d2(Y m

s , D)]
⌘1/2

+ CE( sup
0 6 t 6 T

|Y n
t − Y m

t |2
Z T

0
kZn

s − Zm
s k2ds)1/2

6 C
⇣
E[ sup

0 6 s 6 T
d2(Y m

s , D)]
⌘1/2

+ CεE( sup
0 6 t 6 T

|Y n
t − Y m

t |2) + Cε−1E(

Z T

0
kZn

s − Zm
s k2ds).
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Choosing 1− Cε > 0 and from the inequality (4.2.39) we conclude that

E[ sup
0 6 t 6 T

|Y n
t − Y m

t |2] 6 C
⇣
E[ sup

0 6 s 6 T
d2(Y m

s , D)]
⌘1/2

6 C
⇣
E[ sup

0 6 s 6 T
d4(Y m

s , D)]
⌘1/2

−! 0,

as n,m!1, where Lemma 4.2.2 has been used. tu

Finally, we conclude that (Y n, Zn) is a Cauchy sequence in S2k([0, T ])⇥H2
k⇥d([0, T ]) and therefore

there exists a unique pair (Yt, Zt) of Ft- measurable processes which valued in Rk ⇥Rk⇥d, satisfying

E( sup
0 6 t 6 T

|Y n
t − Yt|2 +

Z T

0
|Zn

t − Zt|2dt)! 0 as n!1. (4.2.40)

Consequently, since for any n > 0 and 0 6 t 6 T ,

Kn
t −Km

t = Y n
0 − Y m

0 − Y n
t − Y m

t −
Z t

0
(fs(Y

n
s , Zn

s )− fs(Y
m
s , Zm

s ))ds

−
Z t

0
(hs(Y

n
s , Zn

s )− hs(Y
m
s , Zm

s ))d
 −
W s +

Z t

0
(Zn

s − Zm
s )dBs.

(4.2.41)

we obtain from (4.2.40) and Burkholder-Davis-Gundy inequality,

E( sup
0 6 t 6 T

|Kn
t −Km

t |2)! 0 as n,m!1. (4.2.42)

Hence, there exists a Ft- adapted continuous process (Kt)0 6 t 6 T ( with K0 = 0) such that

E( sup
0 6 t 6 T

|Kt −Kn
t |2)! 0 as n!1.

Passing to the limit in (4.2.12), the processes (Yt, Zt,Kt)0 6 t 6 T satisfy

Yt = ξ +

Z T

t
fs(Ys, Zs)ds+

Z T

t
hs(Ys, Zs)d

 −
W s −

Z T

t
ZsdBs +KT −Kt , 0 6 t 6 T.

Since we have from Lemma 4.2.2 that Yt is in D̄, it remains to check the minimality property for
(Kt), namely i.e., for any continuous progressively measurable process (zt) valued in D̄,

Z T

0
(Yt − zt)

⇤dKt 6 0.

We note that (4.2.1) gives us

Z T

0
(Y n

t − zt)
⇤dKn

t = −n
Z T

0
(Y n

t − zt)
⇤(Y n

t − π(Y n
t ))dt 6 0.

Therefore, we will show that we can extract a subsequence such that
Z T

0
(Y n

t − zt)
⇤dKn

t converge

a.s. to
Z T

0
(Yt − zt)

⇤dKt. Following the proof of Lemma 4.4.3 in Appendix, we have

2γkKnkV T 6 |ξ − a|2 + 2

Z T

0
(Y n

s − a)fs(Y
n
s , Zn

s )ds+ 2

Z T

0
(Y n

s − a)hs(Y
n
s , Zn

s )d
 −
W s

+

Z T

0
khs(Y n

s , Zn
s )k2ds− 2

Z T

0
(Y n

s − a)Zn
s dBs. (4.2.43)

Notice that the right hand side tends in probability as n goes to infnity to

|ξ−a|2+2

Z T

0
(Ys−a)fs(Ys, Zs)ds+2

Z T

0
(Ys−a)hs(Ys, Zs)d

 −
W s+

Z T

0
khs(Ys, Zs)k2ds−2

Z T

0
(Ys−a)ZsdBs.
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Thus, there exists a subsequence (φ(n))n > 0 such that the convergence is almost surely and
kKφ(n)kV T is bounded. Moreover, due to the convergence in L2 of sup

0 6 t 6 T
|Y n

t − Yt|2 to 0, we

can extract a subsequence from (φ(n))n > 0 such that Y φ(ψ(n)) converges uniformly to Y . Hence, we
apply Lemma 5.8 in [53] and we obtain

Z T

0
(Y

φ(ψ(n))
t − zt)

⇤dK
φ(ψ(n)))
t −!

Z T

0
(Yt − zt)

⇤dKt a.s. as n!1

which is the required result. tu

4.3 Weak solution of semilinear SPDE in a convex domain

The aim of this section is to give a Feynman-Kac’s formula for the weak solution of a semilinear
reflected SPDEs (4.1.3) in a given convex domain D via Markovian class of RBDSDEs studied in the
last section. As explained in the introduction, the solution of such SPDE is expressed as a pair (u, ν)
where u is a predictable continuous process which takes values in a Sobolev space and ν is a random
vector regular signed measure. The bounded variation processes K component of the solution of
the reflected BDSDE controls the set when u reaches the boundary of D. In fact, this bounded
variation process determines the measure ν from a particular relation by using the inverse of the flow
associated to the diffusion operator.

4.3.1 Notations and Hypothesis

Let us first introduce some notations:
- Cn

l,b(R
p,Rq) the set of Cn-functions which grow at most linearly at infinity and whose partial

derivatives of order less than or equal to n are bounded.
- L2

ρ

(
Rd
)

will be a Hilbert weighted L2-space of our framework. We employ the following notation
for its scalar product and its norm,

(u, v)ρ =

Z

Rd

u (x) v (x) ρ(x)dx, kuk2 =
✓Z

Rd

u2 (x) ρ(x)dx

◆ 1

2

.

Assumption 4.3.1. We assume that ρ is the weight function that satisfy the following conditions:

• ρ is a continuous positive function.

• ρ is integrable and
1

ρ
is locally integrable.

In general, we shall use for the usual L2-scalar product

(u, v) =

Z

Rd

u(x)v(x) dx,

where u, v are measurable functions defined in Rd and uv 2 L
1(Rd).

Our evolution problem will be considered over a fixed time interval [0, T ] and the norm for an element
of L2

ρ

(
[0, T ]⇥ Rd

)
will be denoted by

kuk2,2 =
✓Z T

0

Z

Rd

|u(t, x)|2ρ(x)dxdt
◆ 1

2

.

We assume the following hypotheses :

Assumption 4.3.2. Φ : Rd ! Rk is such that belongs to L
2
ρ(R

d) and Φ(x) 2 D̄ a.e. 8x 2 Rd;
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Assumption 4.3.3. (i) f : [0, T ]⇥Rd⇥Rk⇥Rk⇥d ! Rn and h : [0, T ]⇥Rd⇥Rk⇥Rk⇥d ! Rk⇥l

are measurable in (t, x, y, z) and satisfy f0, h0 2 L
2
ρ

(
[0, T ]⇥ Rd

)
where f0

t (x) := f(t, x, 0, 0),
h0t := h(t, , x, 0, 0).

(ii) There exist constants c > 0 and 0 < α < 1 such that for any (ω, t) 2 Ω ⇥
[0, T ] ; (y1, z1), (y2, z2) 2 Rk ⇥ Rk⇥d

|ft(x, y1, z1)− ft(x, y2, z2)|2 6 c
(
|y1 − y2|2 + kz1 − z2k2

)

kht(x, y1, z1)− ht(x, y2, z2)k2 6 c|y1 − y2|2 + αkz1 − z2k2.

Assumption 4.3.4. The coefficients b and σ of the second order differential operator L (4.1.2)
satisfy b 2 C2

l,b(R
d;Rd), σ 2 C3

l,b(R
d;Rd⇥d).

Assumption 4.3.5. (i) 0 2 D and Φ 2 L
4
ρ(R

d).

(ii) There exits 0 6 β < 1 such that for all (t, x, y, z) 2 [0, T ]⇥ Rk ⇥ Rk⇥d

ht h
⇤
t (x, y, z) 6 c(IdRk + yy⇤) + β zz⇤.

(iii) f and h are uniformly bounded in (x, y, z).

4.3.2 Weak formulation for a solution of Stochastic PDEs

The space of test functions which we employ in the definition of weak solutions of the evolution
equations (4.1.1) is DT = C1([0, T ])⌦C1c

(
Rd
)
, where C1 ([0, T ]) denotes the space of real functions

which can be extended as infinite differentiable functions in the neighborhood of [0, T ] and C1c
(
Rd
)

is the space of infinite differentiable functions with compact support in Rd. We denote by HT the
space of FW

t,T -progressively measurable processes (ut) with valued in the weighted Dirichlet space
H1

ρ (R
d) where

H1
ρ (R

d) := {v 2 L
2
ρ(R

d)
∣∣ rvσ 2 L

2
ρ(R

d))}

endowed with the norm

kuk2HT
= E

⇥
sup

0 6 t 6 T
kusk22 +

R
Rd

R T
0 |rus(x)σ(x)|2dsρ(x)dx

⇤
,

where we denote the gradient by ru(t, x) =
(
∂1u(t, x), · · ·, ∂du(t, x)

)
.

Definition 4.3.1. We say that u 2 HT is a Sobolev solution of SPDE (4.1.1) if the following relation
holds, for each ϕ 2 DT ,

Z T

t
(u(s, x), ∂sϕ(s, x))ds+ (u(t, x),ϕ(t, x))− (Φ(x),ϕ(T, x))−

Z T

t
(u(s, x),L⇤ϕ(s, x))ds

=

Z T

t
(fs(x, u(s, x),ru(s, x)σ(x)),ϕ(s, x))ds+

Z T

t
(hs(x, u(s, x),ru(s, x)σ(x)),ϕ(s, x))d

 −
W s,

(4.3.1)
where L⇤ is the adjoint operator of L. We denote by u := U(Φ, f, h) solution of SPDEs with data
(Φ, f, h).

The existence and uniqueness of weak solution for SPDEs (4.3.1) is ensured by Theorem 3.1 in
Bally and Matoussi [10] or Denis and Stoica [43].
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4.3.3 Stochastic flow of diffeomorphisms and random test functions

We are concerned in this part with solving our problem by developing a stochastic flow method which
was first introduced in Kunita [76], [78] and Bally, Matoussi [10]. We recall that {Xt,s(x), t 6 s 6 T}
is the diffusion process starting from x at time t and is the strong solution of the equation:

Xt,s(x) = x+

Z s

t
b(Xt,r(x))dr +

Z s

t
σ(Xt,r(x))dBr. (4.3.2)

The existence and uniqueness of this solution was proved in Kunita [76]. Moreover, we have the
following properties:

Proposition 4.3.1. For each t > 0, there exists a version of {Xt,s(x); x 2 Rd, s > t} such that
Xt,s(·) is a C2(Rd)-valued continuous process which satisfy the flot property: Xt,r(x) = Xs,r ◦Xt,s(x),
0 6 t < s < r. Furthermore, for all p > 2, there exists Mp such that for all 0 6 t < s, x, x0 2 Rd,
h, h0 2 R\{0},

E( sup
t 6 r 6 s

|Xt,r(x)− x|p) 6 Mp(s− t)(1 + |x|p),

E( sup
t 6 r 6 s

|Xt,r(x)−Xt,r(x
0)− (x− x0)|p) 6 Mp(s− t)(|x− x0|p),

E( sup
t 6 r 6 s

|∆i
h[Xt,r(x)− x]|p) 6 Mp(s− t),

E( sup
t 6 r 6 s

|∆i
hXt,r(x)−∆i

h0Xt,r(x
0)|p) 6 Mp(s− t)(|x− x0|p + |h− h0|p),

where ∆i
hg(x) =

1
h(g(x+ hei)− g(x)), and (e1, · · · , ed) is an orthonormal basis of Rd.

Under regular conditions (Assumption 4.3.4) on the diffusion, it is known that the stochastic flow
solution of a continuous SDE satisfies the homeomorphic property (see Bismut [16], Kunita [76],
[78]). We have the following result where the proof can be found in [76].

Proposition 4.3.2. Let Assumption 4.3.4 holds. Then {Xt,s(x);x 2 Rd} is a C2-diffeomorphism
a.s. stochastic flow. Moreover the inverse of the flow satisfies the following backward SDE

X−1
t,s (y) = y −

Z s

t

bb(X−1
r,s (y))dr −

Z s

t
σ(X−1

r,s (y))d
 −
W r. (4.3.3)

for any t < s, where

bb(x) = b(x)−
X

i,j

∂σj(x)

∂xi
σij(x). (4.3.4)

We denote by J(X−1
t,s (x)) the determinant of the Jacobian matrix of X−1

t,s (x), which is positive and
J(X−1

t,t (x)) = 1. For ϕ 2 C1
c (Rd), we define a process ϕt : Ω⇥ [t, T ]⇥ Rd ! Rk by

ϕt(s, x) := ϕ(X−1
t,s (x))J(X

−1
t,s (x)). (4.3.5)

We know that for v 2 L
2(Rd), the composition of v with the stochastic flow is

(v ◦Xt,s(·), ϕ) := (v, ϕt(s, ·)).

In fact, by a change of variable, we have (see Kunita [80], [79], Bally and Matoussi [10])

(v ◦Xt,s(·), ϕ) =
Z

Rd

v(Xt,s(x))ϕ(x)dx =

Z

Rd

v(y)ϕ(X−1
t,s (y))J(X

−1
t,s (y))dy = (v, ϕt(s, ·)).

Since (ϕt(s, x))t 6 s is a process, we may not use it directly as a test function becauseZ T

t
(u(s, ·), ∂sϕt(s, ·)) has no sense. However ϕt(s, x) is a semimartingale and we have the following

decomposition of ϕt(s, x)
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Lemma 4.3.1. For every function ϕ 2 C1
c (Rd),

ϕt(s, x) = ϕ(x) +

Z s

t
L⇤ϕt(r, x)dr −

dX

j=1

Z s

t

 
dX

i=1

∂

∂xi
(σij(x)ϕt(r, x))

!
dBj

r , (4.3.6)

where L⇤ is the adjoint operator of L.

We also need equivalence of norms result which plays an important role in the proof of the existence
of the solution for SPDE as a connection between the functional norms and random norms. For
continuous SDEs, this result was first proved by Barles and Lesigne [13] by using an analytic method
and Bally, Matoussi [10] by a probabilistic method.

Proposition 4.3.3. There exists two constants c > 0 and C > 0 such that for every t 6 s 6 T and
ϕ 2 L1(Rd, dx),

c

Z

Rd

|ϕ(x)|ρ(x)dx 6

Z

Rd

E(|ϕ(Xt,s(x))|)ρ(x)dx 6 C

Z

Rd

|ϕ(x)|ρ(x)dx. (4.3.7)

Moreover, for every Ψ 2 L1([0, T ]⇥ Rd, dt⌦ dx),

c

Z

Rd

Z T

t
|Ψ(s, x)|dsρ(x)dx 6

Z

Rd

Z T

t
E(|Ψ(s,Xt,s(x))|)dsρ(x)dx 6 C

Z

Rd

Z T

t
|Ψ(s, x)|dsρ(x)dx.

(4.3.8)

4.3.4 Existence and uniqueness of solutions for the reflected SPDE

In order to provide a probabilistic representation to the solution of the RSPDEs (4.1.3), we introduce
the following Markovian RBDSDE:

8
>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(i) Y t,x
s = Φ(Xt,T (x)) +

Z T

s
fr(Xt,r(x), Y

t,x
r , Zt,x

r )dr +

Z T

s
hr(Xt,r(x), Y

t,x
r , Zt,x

r )d
 −
W r +K

t,x
T −Kt,x

s

−
Z T

s
Zt,x
r dBr, P-a.s., 8 s 2 [t, T ]

(ii) Y t,x
s 2 D̄ P-a.s.

(iii)

Z T

0
(Y t,x

s − vs(Xt,S(x)))
⇤dKt,x

s 6 0., P-a.s.,

for any continuous Ft − random function v : [0, T ]⇥ Ω⇥ Rd −! D̄.

(4.3.9)

Moreover, using Assumptions 4.3.2 and 4.3.3 and the equivalence of norm results (4.3.7) and (4.3.8),
we get

Φ(Xt,T (x)) 2 L
2(FT ) and Φ(Xt,T (x)) 2 D̄,

f0
s (Xt,s(x)) 2 H2

k(t, T ) and h0s(Xt,s(x)) 2 H2
k⇥d(t, T ).

Therefore under Assumption 4.3.2-4.3.5 and according to Theorem 4.2.1, there exists a unique triplet
(Y t,x, Zt,x,Kt,x) solution of the RBDSDE (4.3.9) associated to (Φ, f, h).

We now consider the following definition of weak solutions for the reflected SPDE (4.1.3):

Definition 4.3.2. We say that (u, ν) := (ui, νi)1 6 i 6 k is the weak solution of the reflected SPDE
(4.1.3) associated to (Φ, f, h), if for each 1 6 i 6 k

(i) kukHT
<1, ut(x) 2 D̄, dx⌦ dt⌦ dP a.e., and u(T, x) = Φ(x),
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(ii) νi is a signed Radon regular measure in the following sense, i.e. for every measurable bounded
and positive functions ϕ and ψ,

Z

Rd

Z T

t
ϕ(s,X−1

t,s (x))J(X
−1
t,s (x))ψ(s, x)1{u2∂D}(s, x)ν

i(ds, dx)

=

Z

Rd

Z T

t
ϕ(s, x)ψ(s,Xt,s(x))dK

t,x,i
s dx, a.s.. (4.3.10)

where (Y t,x
s , Z

t,x
s ,K

t,x
s )t 6 s 6 T is the solution of RBDSDE (4.3.9) and such thatZ T

0

Z

Rd

ρ(x)|ν|(dt, dx) <1,

(iii) for every ϕ 2 DT

Z T

t

Z

Rd

ui(s, x)∂sϕ(s, x)dxds+

Z

Rd

(ui(t, x)ϕ(t, x)− Φi(x)ϕ(T, x))dx−
Z T

t

Z

Rd

ui(s, x)L⇤ϕ(s, x)dxds

=

Z T

t

Z

Rd

fs(x, u(s, x),ru(s, x)σ(x))ϕ(s, x)dxds+
Z T

t

Z

Rd

hs(x, u(s, x),ru(s, x)σ(x))ϕ(s, x)dxd
 −
W s

+

Z T

t

Z

Rd

ϕ(s, x)1{u2∂D}(s, x)ν
i(ds, dx). (4.3.11)

For the sake of simplicity we will omit in the sequel the subscript i.

We give now the following result which allows us to link by a natural way the solution of SPDE
with the associated BDSDE. Roughly speaking, if we choose in the variational formulation (4.3.11)
the random functions ϕt(·, ·) defined by (4.3.5), as a test functions, then we obtain the associated
BDSDE. In fact, this result plays the same role as Itô’s formula used in [109] to relate the solution
of some semilinear SPDEs with the associated BDSDEs:

Proposition 4.3.4. Let Assumptions 4.3.2-4.3.5 hold and u 2 HT be a weak solution of the reflected
SPDE (4.1.3) associated to (Φ, f, h), then for s 2 [t, T ] and φ 2 C1

c (Rd),

Z

Rd

Z T

s
u(r, x)dϕt(r, x)dx+ (u(s, ·), ϕt(s, ·))− (Φ(·), ϕt(T, ·))−

Z

Rd

Z T

s
u(r, x)L⇤ϕt(r, x))drdx

=

Z

Rd

Z T

s
fr(x, u(r, x),ru(r, x)σ(x))ϕt(r, x)drdx+

Z

Rd

Z T

s
hr(x, u(r, x),ru(r, x)σ(x))ϕt(r, x)d

 −
W rdx

+

Z

Rd

Z T

s
ϕt(r, x)1{u2∂D}(r, x)ν(dr, dx). a.s.

(4.3.12)

where
Z

Rd

Z T

s
u(r, x)dϕt(r, x)dx is well defined thanks to the semimartingale decomposition result

(Lemma 4.3.1).

The main result of this section is the following:

Theorem 4.3.1. Let Assumptions 4.3.2-4.3.5 hold and ρ(x) = (1 + |x|)−p with p > d + 1. Then
there exists a weak solution (u, ν) of the reflected SPDE (4.1.3) associated to (Φ, f, h) such that,
u(t, x) := Y

t,x
t , dt⌦ dP⌦ ρ(x)dx− a.e., and

Y t,x
s = u(s,Xt,s(x)), Zt,x

s = (ruσ)(s,Xt,s(x)), ds⌦ dP⌦ ρ(x)dx− a.e.. (4.3.13)

Moreover, the reflected measure ν is a signed regular measure in the sense of the definition (ii) and
satisfying the probabilistic interpretation (4.3.10).
If (u, ν) is another solution of the reflected SPDE (4.1.3) such that ν satisfies (4.3.10) with some K

instead of K, where K is a continuous process, then u = u and ν = ν.
In other words, there is a unique Randon regular measure with support {u 2 ∂D} which satisfies
(4.3.10).
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Remark 4.3.1. The expression (4.3.10) gives us the probabilistic interpretation (Feymamn-Kac’s
formula) for the measure ν via the nondecreasing process Kt,x of the RBDSDE. This formula was
first introduced in Bally et al. [9] (see also [99]) in the context of obstacle problem for PDEs. Here
we adapt this notion to the case of SPDEs in a convex domain.

Proof. a) Uniqueness : Set (u, ν) to be another weak solution of the reflected SPDE (4.1.3)
associated to (Φ, f, h); with ν verifies (4.3.10) for a continuous process K. We fix ϕ : Rd ! Rk,
a smooth function in C2

c (R
d) with compact support and denote ϕt(s, x) = ϕ(X−1

t,s (x))J(X
−1
t,s (x)).

From Proposition 4.3.4, one may use ϕt(s, x) as a test function in the SPDE (Φ, f, h) with ∂sϕ(s, x)ds

replaced by a stochastic integral with respect to the semimartingale ϕt(s, x). Then we get, for
t 6 s 6 T

Z

Rd

Z T

s
u(r, x)dϕt(r, x)dx+

Z

Rd

u(s, x)ϕt(s, x)dx−
Z

Rd

Φ(x)ϕt(T, x)dx−
Z T

s

Z

Rd

u(r, x)L⇤ϕt(r, x)drdx

=

Z T

s

Z

Rd

fr(x, u(r, x), (ruσ)(r, x))ϕt(r, x)drdx+

Z T

s

Z

Rd

hr(x, u(r, x), (ruσ)(r, x))ϕt(r, x)dxd
 −
W r

+

Z T

s

Z

Rd

ϕt(r, x)1{u2∂D}(r, x)ν(dr, dx). (4.3.14)

By (4.3.6) in Lemma 4.3.1, we have

Z

Rd

Z T

s
u(r, x)dϕt(r, x)dxdr =

Z T

s
(

Z

Rd

(ruσ)(r, x)ϕt(r, x)dx)dBr +

Z T

s

Z

Rd

u(r, x)L⇤ϕt(r, x)drdx.

Substitute this equality in (4.3.14), we get
Z

Rd

u(s, x)φt(s, x)dx =

Z

Rd

Φ(x), ϕt(T, x)dx−
Z T

s
(

Z

Rd

(ruσ)(r, x)ϕt(r, x)dx)dBr

+

Z T

s

Z

Rd

fr(x, u(r, x), (ruσ)(r, x))ϕt(r, x)drdx+

Z T

s

Z

Rd

hr(x, u(r, x), (ruσ)(r, x))ϕt(r, x)dxd
 −
W r

+

Z T

s

Z

Rd

ϕt(r, x)1{u2∂D}(r, x)ν(dr, dx).

Then by changing of variable y = X−1
t,r (x) and applying (4.3.10) for ν, we obtain

Z

Rd

u(s,Xt,s(y))ϕ(y)dy =

Z

Rd

Φ(Xt,T (y))ϕ(y)dy

+

Z

Rd

Z T

s
ϕ(y)fr(Xt,r(y), u(r,Xt,r(y)), (ruσ)(r,Xt,r(y)))drdy

+

Z

Rd

Z T

s
ϕ(y)hr(Xt,r(y), u(r,Xt,r(y)), (ruσ)(r,Xt,r(y)))dyd

 −
W r

+

Z T

s

Z

Rd

φ(y)1{u2∂D}(r,Xt,s(y))dK
t,y
r dy −

Z T

s

Z

Rd

ϕ(y)(ruσ)(r,Xt,r(y))dydBr

Since ϕ is arbitrary, we can prove that for ρ(y)dy almost every y, (u(s,Xt,s(y)), (ruσ)(s,Xt,s(y)),

bKt,y
s ) solves the RBDSDE (Φ(Xt,T (y)), f, h). Here bKt,y

s =
Z s

t
1{u2∂D}(r,Xt,r(y))dK

t,y
r . Then by

the uniqueness of the solution of the RBDSDE, we know u(s,Xt,s(y)) = Y
t,y
s = u(s,Xt,s(y)),

(ruσ)(s,Xt,s(y)) = Z
t,y
s = (ruσ)(s,Xt,s(y)), and bKt,y

s = K
t,y
s . Taking s = t we deduce that

u(t, y) = u(t, y), ρ(y)dy-a.s. and by the probabilistic interpretation ( 4.3.10), we obtain
Z T

s

Z

Rd

ϕt(r, x)1{u2∂D}(r, x)ν(dr, dx) =

Z T

s

Z

Rd

ϕt(r, x)1{u2∂D}(r, x)ν(dr, dx).
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So 1{u2∂D}(r, x)ν(dr, dx) = 1{u2∂D}(r, x)ν(dr, dx).

b) Existence: The existence of a solution will be proved in two steps. For the first step, we
suppose that h doesn’t depend on y, z, then we are able to apply the classical penalization method.
In the second step, we study the case when h depends on y, z with the result obtained in the first step.

Step 1 : We will use the penalization method. For n 2 N, we consider for all s 2 [t, T ],

Y n,t,x
s = Φ(Xt,T (x)) +

Z T

s
fr(Xt,r(x), Y

n,t,x
r , Zn,t,x

r )dr +

Z T

s
hr(Xt,r(x))d

 −
W r

− n

Z T

s
(Y n,t,x

r − π(Y n,t,x
r ))dr −

Z T

s
Zn,t,x
r dBr.

From Theorem 3.1 in Bally and Matoussi [10], we know that un(t, x) := Y
n,t,x
t , is solution of the

SPDE (Φ, fn, h) (4.1.1), with fn(t, x, y) = f(t, x, y, z)− n(y − π(y)), i.e. for every ϕ 2 DT

Z T

t
(un(s, ·), ∂sϕ(s, ·))ds+ (un(t, ·), ϕ(t, ·))− (Φ(·), ϕ(T, ·))−

Z T

t
(un(s, ·),L⇤ϕ(s, ·))ds

=

Z T

t
(fs(·, un(s, ·), σ⇤run(s, ·)), ϕ(s, ·))ds+

Z T

t
(hs(·), ϕ(s, ·))d

 −
W s

− n

Z T

t
((un − π(un))(s, ·), ϕ(s, ·))ds. (4.3.15)

Moreover from Theorem 3.1 in Bally and Matoussi [10], we also have

Y n,t,x
s = un(s,Xt,s(x)) , Zn,t,x

s = (runσ)(s,Xt,s(x)), ds⌦ dP⌦ ρ(x) dx− a.e.

(4.3.16)

Set K
n,t,x
s = −n

Z s

t
(Y n,t,x

r − π(Y n,t,x
r ))dr. Then by (4.3.16), we have that

Kn,t,x
s = n

Z s

t
(un − π(un))(r,Xt,r(x))dr.

Following the estimates and convergence results for (Y n,t,x, Zn,t,x,Kn,t,x) in Section 2 and estimate
(4.4.3), we get :

sup
n
E


supt 6 s 6 T

∣∣Y n,t,x
s

∣∣2 +
Z T

t

∥∥Zn,t,x
s

∥∥2 ds+ kKn,t,xkV T

]
6 C (T, x) ,

where

C(T, x) := E

h
|Φ(Xt,T (x))|2 +

Z T

t

( ∣∣f0
s (Xt,s(x))

∣∣2 +
∣∣h0s(Xt,s(x))

∣∣2 ) ds
i
,

and

E[ sup
t 6 s 6 T

∣∣Y n,t,x
s − Y m,t,x

s

∣∣2] + E[

Z T

t

∥∥Zn,t,x
s − Zm,t,x

s

∥∥2 ds]

+ E[ sup
t 6 s 6 T

∣∣Kn,t,x
s −Km,t,x

s

∣∣2] −! 0, as n,m −! +1.

Moreover, the equivalence of norms results (4.3.8) yield:

Z

Rd

Z T

t
ρ(x)(|un(s, x)− um(s, x)|2 + |(runσ)(s, x)− (rumσ)(s, x)|2)dsdx

6
1

k2

Z

Rd

ρ(x)E

Z T

t
(
∣∣Y n,t,x

s − Y m,t,x
s

∣∣2 +
∥∥Zn,t,x

s − Zm,t,x
s

∥∥2)dsdx −! 0.



4.3. Weak solution of semilinear SPDE in a convex domain 109

Thus (un)n2N is a Cauchy sequence in HT , and the limit u = lim
n!1

un belongs to HT . Denote

νn(dt, dx) = −n(un − π(un))(t, x)dtdx and πn(dt, dx) = ρ(x)νn(dt, dx), then by (4.3.8)

|πn|([0, T ]⇥ Rd) =

Z

Rd

Z T

0
ρ(x)|νn|(dt, dx) =

Z

Rd

Z T

0
ρ(x)n|(un − π(un))(t, x)|dtdx

6
1

k2

Z

Rd

ρ(x)E
∥∥Kn,0,x

∥∥
V T

dx 6 C

Z

Rd

ρ(x)dx <1.

It follows that
sup
n
|πn|([0, T ]⇥ Rd) <1. (4.3.17)

Moreover by Lemma 4.4.4 (see Appendix 4.4.4), the sequence of measures (πn)n2N is tight. Therefore,
there exits a subsequence such that (πn)n2N converges weakly to a measure π. Define ν = ρ−1π; ν is

a measure such that
Z T

0

Z

Rd

ρ(x)|ν|(dt, dx) <1, and so we have for ϕ 2 DT with compact support

in x, Z

Rd

Z T

t
ϕdνn =

Z

Rd

Z T

t

φ

ρ
dπn !

Z

Rd

Z T

t

φ

ρ
dπ =

Z

Rd

Z T

t
ϕdν.

Now passing to the limit in the SPDE (Φ, fn, h) (4.3.15), we get that that (u, ν) satisfies the reflected
SPDE associated to (Φ, f, h), i.e. for every ϕ 2 DT , we have

Z T

t
(u(s, ·), ∂sϕ(s, ·))ds+ (u(t, ·), ϕ(t, ·))− (Φ(·), ϕ(T, ·))−

Z T

t
(u(s, ·),L⇤ϕ(s, ·))ds

=

Z T

t
(fs(·, u(s, ·), σ⇤ru(s, ·)), ϕ(s, ·))ds+

Z T

t
(hs(·), ϕ(s, ·))d

 −
W s +

Z T

t

Z

Rd

ϕ(s, x)ν(ds, dx).

(4.3.18)

The last point is to prove that ν satisfies the probabilistic interpretation (4.3.10). Since Kn,t,x

converges to Kt,x uniformly in t, the measure dKn,t,x ! dKt,x weakly in probability. Fix two
continuous functions ϕ, ψ : [0, T ] ⇥ Rd ! R+ which have compact support in x and a continuous
function with compact support θ : Rd ! R+, from Bally et al [9] (The proof of Theorem 4), we have
(see also Matoussi and Xu [99])

Z

Rd

Z T

t
ϕ(s,X−1

t,s (x))J(X
−1
t,s (x))ψ(s, x)θ(x)ν(ds, dx)

= lim
n!1

−
Z

Rd

Z T

t
φ(s,X−1

t,s (x))J(X
−1
t,s (x))ψ(s, x)θ(x)n(un − π(un))(s, x)dsdx

= lim
n!1

−
Z

Rd

Z T

t
ϕ(s, x)ψ(s,Xt,s(x))θ(Xt,s(x))n(un − π(un))(t,Xt,s(x))dtdx

= lim
n!1

Z

Rd

Z T

t
ϕ(s, x)ψ(s,Xt,s(x))θ(Xt,s(x))dK

n,t,x
s dx

=

Z

Rd

Z T

t
ϕ(s, x)ψ(s,Xt,s(x))θ(Xt,s(x))dK

t,x
s dx.

We take θ = θR to be the regularization of the indicator function of the ball of radius R and pass to
the limit with R!1, it follows that
Z

Rd

Z T

t
ϕ(s,X−1

t,s (x))J(X
−1
t,s (x))ψ(s, x)ν(ds, dx) =

Z

Rd

Z T

t
ϕ(s, x)ψ(s,Xt,s(x))dK

t,x
s dx. (4.3.19)

From Section 2, it follows that dK
t,x
s = 1{u2∂D}(s,Xt,s(x))dK

t,x
s . In (4.3.19), setting ψ = 1{u2∂D}

yields
Z

Rd

Z T

t
ϕ(s,X−1

t,s (x))J(X
−1
t,s (x))1{u2∂D}(s, x)ν(ds, dx)

=

Z

Rd

Z T

t
ϕ(s,X−1

t,s (x))J(X
−1
t,s (x))ν(ds, dx), a.s.
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Note that the family of functions A(ω) = {(s, x) ! φ(s,X−1
t,s (x)) : ϕ 2 C1

c } is an algebra which
separates the points (because x ! X−1

t,s (x) is a bijection). Given a compact set G, A(ω) is dense
in C([0, T ] ⇥G). It follows that J(X−1

t,s (x))1{u2∂D}(s, x)ν(ds, dx) = J(X−1
t,s (x))ν(ds, dx) for almost

every ω. While J(X−1
t,s (x)) > 0 for almost every ω, we get ν(ds, dx) = 1{u2∂D}(s, x)ν(ds, dx), and

(4.3.10) follows. Then we get easily that Y t,x
s = u(s,Xt,s(x)) and Z

t,x
s = (ruσ)(s,Xt,s(x)), in view of

the convergence results for (Y n,t,x
s , Z

n,t,x
s ) and the equivalence of norms. So u(s,Xt,s(x)) = Y

t,x
s 2 D̄.

Specially for s = t, we have u(t, x) 2 D̄.

Step 2 : The nonlinear case where h depends on y and z.
Let define H(s, x) , h(x, Y

s,x
s , Z

s,x
s ). By plugging into the facts that h0 2 L

2
ρ([0, T ] ⇥ Rd) and h is

Lipschitz with respect to (y, z), then we have Hs(x) 2 L
2
ρ([0, T ] ⇥ Rd). Since H is independent of

y, z, by applying the result of Step 1 yields that there exists (u, ν) satisfying the PIDE with obstacle
(Φ, f,H), i.e. for every ϕ 2 DT , we have

Z T

t
(u(s, ·), ∂sϕ(s, ·))ds+ (u(t, ·), ϕ(t, ·))− (Φ(·), ϕ(T, ·))−

Z T

t
(u(s, ·),L⇤ϕ(s, ·))ds

=

Z T

t
(fs(·, u(s, ·), σ⇤ru(s, ·)), ϕ(s, ·))ds+

Z T

t
(Hs(·), ϕ(s, ·))d

 −
W s

+

Z T

t

Z

Rd

φ(s, x)1{u2∂D}(s, x)ν(ds, dx). (4.3.20)

Then by the uniqueness of the solution to the RBDSDE (Φ(Xt,T (x)), f , h), we get easily that
Y

t,x
s = u(s,Xt,s(x)), Z

t,x
s = (ruσ)(s,Xt,s(x)), and ν satisfies the probabilistic interpretation (4.3.10).

So u(s,Xt,s(x)) = Y
t,x
s 2 D̄. Specially for s = t, we have u(t, x) 2 D̄, which is the desired result. tu

4.4 Appendix

4.4.1 Some properties of convexity

Denote ϕ(x) , (d(x,D))2 = |x − π(x)|2, the square of the distance to the domain D and π the
orthogonal projection on the closure D̄. If D is a convex domain, then the function ϕ is convex.
Moreover, if D is a regular domain, ϕ is two time differentiable on the complement of D and we
obtain:

8x /2 D, rϕ(x) = 2(x− π(x)).

From this expression of gradientrϕ, we remark that the hessienne matrix Hessϕ(x) has the following
form:

Hessϕ(x) =

0
BBBB@

2 0 · · · 0

0
... (M)

0

1
CCCCA

where M is a positive semi definite matrix. We deduce also that:

8z 2 Rk⇥d trace[zz⇤Hessϕ(x)] > 0 (4.4.1)

Since Hess is a positive matrix we have for every unit outward normal ν(x)

|zν⇤(x)|2 6 C
1

2
trace

h
zz⇤

0
BBBB@

2 0 · · · 0

0
... (M)

0

1
CCCCA

i

6 C trace[zz⇤Hessϕ(x)] (4.4.2)
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Lemma 4.4.1. If Dε is a convex which satisfy (4.2.4), then 9c > 0 such that 8ε < 1, 8x 2 Rk

|π(x)− πε(x)| < c
p
ε2 + εd(x,Dε) and |π(x)− πε(x)| < c

p
ε2 + εd(x,D)

where πε(x) is the orthogonal projection of x 2 Rk on the closure D̄ε

Lemma 4.4.2.

9c > 0 such that 8ε < 1, 8x 2 Rk |π(x)− πε(x)| < c
p
ε(1 + d(x,Dε))

9c > 0 such that 8ε < 1, 8x 2 Rk |π(x)− πε(x)|1{d(x,Dε)>ε} < c
p
ε
p

d(x,Dε)1{d(x,Dε)>ε}

4.4.2 A priori estimates

In this section, we provide a priori estimates which are uniform in n on the solutions of (4.2.12).

Lemma 4.4.3. There exists a constant C > 0, independent of n, such that for all n large enough

E[ sup
0 6 t 6 T

|Y n
t |2 +

Z T

0
kZn

s k2ds+ kKnkV T ] 6 C. (4.4.3)

Proof. For a given point a 2 D, that satisy condition (4.2.3), we apply Itô’s formula to get

|Y n
t − a|2 +

Z T

t
kZn

s k2ds = |ξ − a|2 + 2

Z T

t
(Y n

s − a)⇤fs(Y
n
s , Zn

s )ds+ 2

Z T

t
(Y n

s − a)⇤hs(Y
n
s , Zn

s )d
 −
W s

− 2

Z T

t
(Y n

s − a)⇤Zn
s dBs +

Z T

t
khs(Y n

s , Zn
s )k2ds− 2n

Z T

t
(Y n

s − a)⇤(Y n
s − π(Y n

s ))ds.

(4.4.4)

The stocastic integrals have both zero expectations since (Y n, Zn) belongs to S2k([0, T ])⇥H2
k⇥d([0, T ]).

We take expectation in (4.4.4) and we use the condition (4.2.3) and the Lipschitz Assumption 4.2.2
in order to obtain

E[|Y n
t − a|2] + E[

Z T

t
kZn

s k2ds] 6 E[|ξ − a|2] + 2CE[

Z T

t
(Y n

s − a)⇤(|fs(a, 0)|+ |Y n
s − a|+ |Zn

s |)ds]

+ E[

Z T

t
|hs(a, 0)|2ds] + CE[

Z T

t
|Y n

s − a|2ds] + αE[

Z T

t
|Zn

s |2ds]

6 C(1 + E[

Z T

t
(|fs(a, 0)|2 + |hs(a, 0)|2)ds] + C(1 + ε−1)E[

Z T

t
|Y n

s − a|2ds]

+ (α+ ε)E[

Z T

t
|Zn

s |2ds].

(4.4.5)

Thus, if we choose ε =
1− α

2
, we have

E[|Y n
t − a|2] + (

1− α

2
)E[

Z T

t
kZn

s k2ds] 6 C(1 + E[

Z T

t
|Y n

s − a|2ds]).

Then, it follows from Gronwall’s lemma that

sup
0 6 t 6 T

E[|Y n
t − a|2] 6 CeCT .

Therefore we can deduce

sup
0 6 t 6 T

E[|Y n
t |2] 6 C and E[

Z T

0
kZn

s k2ds] 6 C (4.4.6)
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In the other hand, the uniform estimate on Y is obtained by taking the supremum over t in the
equation (4.4.4), using the previous calculations and Burkholder-Davis-Gundy inequality. Thus, we
get for all n > 0

E[ sup
0 6 t 6 T

|Y n
t − a|2] 6 C and E[ sup

0 6 t 6 T
|Y n

t |2] 6 C.

Finally, the total variation of the process Kn is defined by

E[kKnkV T ] = E[n

Z T

0
|Y n

s − π(Y n
s )|ds].

But from the property (4.2.3) and the equation (4.4.4) we have

2n

Z T

t
γ|Y n

s − π(Y n
s )|ds 6 2n

Z T

t
|(Y n

s − a)⇤(Y n
s − π(Y n

s ))|ds

6 |ξ − a|2 + 2

Z T

t
(Y n

s − a)⇤fs(Y
n
s , Zn

s )ds+ 2

Z T

t
(Y n

s − a)⇤hs(Y
n
s , Zn

s )d
 −
W s

− 2

Z T

t
(Y n

s − a)⇤Zn
s dBs +

Z T

t
khs(Y n

s , Zn
s )k2ds.

Hence it follows from previous estimates that

E[kKnkV T ] 6 C,

and the proof of Lemma 4.4.3 is complete. tu

4.4.3 Proof of Lemma 4.2.4

Let first recall that (Y n, Zn) is solution of the BDSDE (4.2.12) associated to (ξ, fn, h) where
fn
t (y, z) = fs(y, z) − n(y − π(y)), for each (y, z) 2 Rk ⇥ Rk⇥d. Note that , since we have assumed

that 0 2 D, fn
t (0, 0) = fs(0, 0) := f0

s . Therefore, thanks to Lp-estimate for BDSDE (Theorem 4.1 in
[109] applied for p = 4), we have the following estimate

sup
n

E[ sup
0 6 t 6 t

|Y n
t |4 +

⇣Z T

0
kZn

s k2ds
⌘2

] 6 CE

h
|ξ|4 +

Z T

0
(|f0

s |4 + |h0s|4)ds
i
<1. (4.4.7)

Now, we apply generalized Itô’s formula to get

|Y n
t |2 +

Z T

t
kZn

s k2ds+ 2n

Z T

t
(Y n

s )⇤(Y n
s − π(Y n

s ))ds = |ξ|2 + 2

Z T

t
(Y n

s )⇤fs(Y
n
s , Zn

s )ds

+ 2

Z T

t
(Y n

s )⇤hs(Y
n
s , Zn

s )d
 −
W s − 2

Z T

t
(Y n

s )⇤Zn
s dBs +

Z T

t
khs(Y n

s , Zn
s )k2ds. (4.4.8)

From the property (4.2.3) and since 0 2 D we have

2n

Z T

0
γ|Y n

s − π(Y n
s )|ds 6 2n

Z T

0
|(Y n

s )⇤(Y n
s − π(Y n

s ))|ds

6 |ξ|2 + 2

Z T

0
(Y n

s )⇤fs(Y
n
s , Zn

s )ds+ 2

Z T

0
(Y n

s )⇤hs(Y
n
s , Zn

s )d
 −
W s

− 2

Z T

0
(Y n

s )⇤Zn
s dBs +

Z T

0
khs(Y n

s , Zn
s )k2ds.

Then, taking the square and the expectation yiels to

E

h⇣
n

Z T

0
|Y n

s − π(Y n
s )|ds

⌘2i
6 CE

h
|ξ|4
i
+ CE

h⇣ Z T

0
(Y n

s )⇤fs(Y
n
s , Zn

s )ds
⌘2i

+ CE

h⇣ Z T

0
(Y n

s )⇤hs(Y
n
s , Zn

s )d
 −
W s

⌘2i
+ CE

h⇣ Z T

0
(Y n

s )⇤Zn
s dBs

⌘2i

+ CE

h⇣ Z T

0
khs(Y n

s , Zn
s )k2ds

⌘2i
.
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By using the isometry property and the boundedness of f and h, we obtain

E

h⇣
n

Z T

0
|Y n

s − π(Y n
s )|ds

⌘2i
6 CE

h
|ξ|4
i
+ CE

h⇣ Z T

0
Y n
s ds

⌘2i

+ CE

h Z T

0
|Y n

s hs(Y
n
s , Zn

s )|2ds
i
+ CE

h Z T

0
|Y n

s Zn
s |2ds

i
+ C.

Finally, we deduce from Holder inequality and boundedness of h that

E

h⇣
n

Z T

0
|Y n

s − π(Y n
s )|ds

⌘2i
6 CE

h
|ξ|4 +

Z T

0
|Y n

s |2ds+ sup
0 6 t 6 t

|Y n
t |4 +

⇣Z T

0
kZn

s k2ds
⌘2i

.

Thus, from the estimate (4.4.7) we get the desired result. tu

4.4.4 Proof of the tightness of the sequence (πn)n2N

Recall first that νn(dt, dx) = −n(un − π(un))(t, x)dtdx and πn(dt, dx) = ρ(x)νn(dt, dx) where un is
the solution of the SPDEs (4.3.15).

Lemma 4.4.4. The sequence of measure (πn)n2N is tight.

Proof. We shall prove that for every ε > 0 , there exists some constant K such that

Z T

0

Z

Rd

1{|x| > 2K}|πn|(ds, dx) 6 ε, 8n 2 N. (4.4.9)

We first write
Z T

0

Z

Rd

1{|x| > 2K}|πn|(ds, dx)

=

Z T

0

Z

Rd

1{|x| > 2K}

⇣
1{|X−1

0,s (x)−x| 6 K} + 1{|X−1

0,s (x)−x| > K}
⌘
|πn|(ds, dx)

:= InK + Ln
K , P− a.s.

Taking expectation yields

Z T

0

Z

Rd

1{|x| > 2K}πn(ds, dx) = E[InK ] + E(Ln
K ]. (4.4.10)

By (4.3.17) and for K > 2kbk1T , we get

E[Ln
K ] 6

Z T

0

Z

Rd

P

✓
sup

0 6 r 6 T

∣∣∣X−1
0,r (x)− x

∣∣∣ > K

◆
|πn|(ds, dx)

6
(
C1 exp(−C2K

2) + C3 exp(−C4K)
)
|πn|

⇣
[0, T ]⇥ Rd

⌘

6 C 0
1 exp(−C2K

2) + C 0
3 exp(−C4K),

so E[Ln
K ] 6 ε for K sufficiently large. On the other hand, if |x| > 2K and

∣∣∣X−1
0,s (x)− x

∣∣∣ 6 K then∣∣∣X−1
0,s (x)

∣∣∣ > K. Therefore

E[InK ] 6 E[

Z T

0

Z

Rd

1{|X−1

0,s (x)| > K}ρ(x)|νn|(ds, dx)]

= E[

Z T

0

Z

Rd

1{|X−1

0,s (x)| > K}ρ(x)n|un − π(un)|(s, x)dsdx]

which, by the change of variable y = X−1
0,s (x), becomes
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E[

Z T

0

Z

Rd

1{|y| > K}ρ(X0,s(y))J(X0,s(y))n|un − π(un)|(s,X0,s(y))dsdy]

6 E[

Z

Rd

ρ(x)

✓
ρ(x)−11{|x| > K} sup

0 6 r 6 T
ρ(X0,r(x))J(X0,r(x))

◆
kKn,0,xkV Tdx]

6

✓
E

Z

Rd

kKn,0,xk2V Tρ(x)dx

◆1/2

 
E

Z

Rd

✓
ρ(x)−11{|x| > K} sup

0 6 r 6 T
ρ(X0,r(x))J(X0,r(x))

◆2

ρ(x)dx

!1/2

6 C

 
E

Z

Rd

✓
ρ(x)−11{|x| > K} sup

0 6 r 6 T
ρ(X0,r(x))J(X0,r(x))

◆2

ρ(x)dx

!1/2

.

where the last inequality is a consequence of (4.4.3). It is now sufficient to prove that

Z

Rd

ρ(x)−1E

"✓
sup

0 6 r 6 T
ρ(X0,r(x))J(X0,r(x))

◆2
#
dx <1. (4.4.11)

Note that

E

"✓
sup

0 6 r 6 T
ρ(X0,r(x))J(X0,r(x))

◆2
#

6

"
E

✓
sup

0 6 r 6 T
|ρ(X0,r(x))|

◆4
#1/2 "

E

✓
sup

0 6 r 6 T
|J(X0,r(x))|

◆4
#1/2

6 C

"
E

✓
sup

0 6 r 6 T
|ρ(X0,r(x))|

◆4
#1/2

.

Therefore it is sufficient to prove that:

Z

Rd

1

ρ(x)

✓
E


sup

t 6 r 6 T
|ρ(Xt,r(x))|4

]◆1/2

dx <1.

Since ρ(x) 6 1, we have

E


sup

t 6 r 6 T
|ρ(Xt,r(x))|4

]
6 E

2
64 sup
t 6 r 6 T

|ρ(Xt,r(x))|4 1(

sup
t 6 r 6 T

|Xt,r(x)−x| 6
|x|
2

)

3
75

+P

✓
sup

t 6 r 6 T
|Xt,r(x)− x| > |x|

2

◆

= : A(x) +B(x).

If sup
t 6 r 6 T

|Xt,r(x)− x| 6 |x|
2 then |Xt,r(x)| > |x|

2 and so |ρ(Xt,r(x))| 6
⇣
1 + |x|

2

⌘−p
. Thus we have

that A(x) 6
⇣
1 + |x|

2

⌘−4p
and so

R
Rd (1 + |x|)pA(x)1/2dx <1. On the other hand, if |x| > 4kbk1T ,

then (the same argument as in the existence proof step 2 of Theorem 4 in [9] for the Itô integral with
respect to the Brownian motion)

B(x) 6 P

✓
sup

t 6 s 6 T

∣∣∣∣
Z s

0
σ(X0,r(x))dWr

∣∣∣∣ >
|x|
8

◆

6 C1 exp(−C2|x|2)

and so
R
Rd (1 + |x|)pB(x)1/2dx <1.
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5.1 Introduction

Backward stochastic differential equations (BSDEs in short) are natural tools to give a probabilistic
interpretation for the solution of a class of semi-linear PDEs (see [115], [108], [107], [36]). By
introducing in standard BSDEs a second nonlinear term driven by an external noise, we obtain
Backward Doubly SDEs (BDSDEs) [109], namely,

Yt = ξ +

Z T

t
f(s, Ys, Zs) ds +

Z T

t
g(s, Ys, Zs) d

 −
W s −

Z T

t
Zs dBs, 0 6 t 6 T , (5.1.1)

where (Wt)t > 0 and (Bt)t > 0 are two finite-dimensional independent Brownian motions. We note
that the integral with respect to W is a "backward Itô integral". In the Markovian setting, these

equations can be seen as Feynman-Kac’s representation of Stochastic PDEs and form a powerful tool

for numerical schemes [6, 7]. These SPDEs appear in various applications as, for instance, Zakai

equations in filtering, pathwise stochastic control theory and stochastic control with partial observa-

tions.

Several generalizations to investigate more general nonlinear SPDEs have been developed following

different approaches of the notion of weak solutions: the technique of stochastic flow (Bally and

Matoussi [10], Matoussi et al. [97, 99], Kunita [80]); the approach based on Dirichlet forms and their

associated Markov processes (Denis and Stoica [43], Bally, Pardoux and Stoica [11], Stoica [131],
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Denis, Matoussi and Stoica [40, 41, 42], Matoussi and Stoica[98]); stochastic viscosity solution for
SPDEs (Buckdahn and Ma [24, 25], Lions and Souganidis [89, 90, 88]). Above approaches have al-
lowed the study of numerical schemes for the Sobolev solution of semi-inear SPDEs via Monte-Carlo
methods (time discretization and regression schemes [6, 5, 7].
In this chapter, we are concerned with numerical scheme for backward doubly SDEs with random
terminal time. These later equations give the probabilistic interpretation for the weak-Sobolev’s solu-
tions of a class of semilinear stochastic partial differential equations (SPDEs in short) with Dirichlet
null condition on the boundary of some open smooth domain O ⇢ Rd . Let also mention that an
alternative method to solve numerically nonlinear SPDEs is an analytic one, based on time- space
discretization of the SPDEs. The discretization in space can be achieved either by finite differences,
or finite elements [138] and spectral Galerkin methods [70]. But most numerical works on SPDEs
have concentrated on the Euler finite-difference scheme. Very interesting results have been obtained
by Gyongy and Krylov [60]. The authors consider a symmetric finite difference scheme for a class of
linear SPDE driven by an infinite dimensional Brownian motion.
Our contributions are as following: first of all, BDSDEs with random terminal time are introduced
and results of existence and uniqueness of such BDSDEs are established by means of some trans-
formation to classical BSDEs studied by Peng [115], Darling and Pardoux [36], Pardoux [107] and
Briand et al [23]. Next, Euler numerical scheme for a Forward-BDSDEs is developed where we pro-
vide upper bounds for the discrete time approximations error which is at most of order h1/2. Then
probabilistic representation for the weak solution of semilinear SPDEs with Dirichlet null condition
on the boundary of the domain O is given by means of solution of BDSDEs with random terminal
time. This is done by using localization procedure and stochastic flow technics (see e.g. [10], [97],
[80, 79] for these flow technics).
This chapter is organized as following: in section 5.2, first the basic assumptions and the definitions
of the solutions for BDSDEs with random terminal time are presented. Then, existence and unique-
ness results of such equations are given by using fixed point theorem. In section 5.3, we develop a
discrete-time approximation of a Forward-Backward Doubly SDE with finite stopping time horizon,
namely the first exit time of a forward SDE from a domain O. The main result of this section is
providing a rate of convergence of order h1/2 for the square of Euler time discretization error for
Forward-Backward Doubly SDE scheme (5.3.7)-(5.3.13). Moreover, we relate the BDSDE in the
Markovian setting to Sobolev semilinear SPDEs with Dirichlet null condition by proving Feynman-
Kac’s formula in Section 5.4. Finally, the last section is devoted to numerical implementations and
tests. This cahpter is based on [95].

5.2 Backward doubly stochastic differential equations

with random terminal time

Any element x 2 Rd, d > 1, will be identified with a line vector with ith component xi and its
Euclidean norm defined by |x| = (

P
i |xi|2)1/2. For each real matrix A, we denote by kAk its

Frobenius norm defined by kAk = (
P

i,j a
2
i,j)

1/2.
Let (Ω,F ,P) be a probability space, and let {Wt, 0 6 t 6 T} and {Bt, 0 6 t 6 T} be two mutually
independent standard Brownian motions with values in Rl and Rd. For each 0 6 s 6 T , we define

Fs := FB
s _ FW

s,T ,

with FB
s := σ(Br; 0 6 r 6 s ) and FW

s,t := σ(Wr − Ws; s 6 r 6 t) _ N where N is the class of
P-null sets of F . Note that (Ft)t 6 T is not an increasing family of σ-fields, so it is not a filtration.
Hereafter, let us define the spaces and the norms which will be needed for the formulation of the
BDSDE with random terminal time.
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- L
p(FW

τ ) the space of Rk valued FW
τ -measurable random variables ξ such that

kξkpLp := E(eλτ |ξ|p) < +1;

- H2
k⇥d([0, T ]) the space of Rk⇥d-valued Ft-measurable process Z = (Zt)t 6 T such that

kZk2H2 := E[

Z τ

0
eλt|Zt|2dt] < +1;

- S2k([0, T ]) the space of Rk valued Ft-adapted processes Y = (Yt)t 6 T , with continuous paths such
that

kY k2S2 := E[ sup
t 6 τ

eλt|Yt|2] < +1;

We need the following assumptions:

Assumption (HT) The final random time τ is an FB
t -stopping time and the final condition ξ is an

FB
τ -measurable and k-dimensional random variable such that E[eλτ |ξ|2] <1.

Assumption (HL) The two coefficients f : Ω ⇥ [0, T ] ⇥ Rk ⇥ Rk⇥d ! Rk and g : Ω ⇥ [0, T ] ⇥
Rk ⇥ Rk⇥d ! Rk⇥l, which for some real numbers α, µ, λ, K > 0, C > 0, λ >

2K

1− α
− 2µ + C and

0 < α < 1 satisfy: for all t 2 [0, T ] and (y, z), (y0, z0) 2 Rk ⇥ Rk⇥d,

(i) f(., y, z) and g(., y, z) are Ft measurable,

(ii) |f(t, y, z) − f(t, y0, z0)| 6 K
(
|y − y0|+ kz − z0k

)
,

(iii) hy − y0 , f(t, y, z) − f(t, y0, z) i 6 − µ |y − y0|2,

(iv) kg(t, y, z) − g(t, y0, z0)k2 6 C |y − y0|2 + α kz − z0k2,

(v) E

Z τ

0
eλ s|f(t, 0, 0)|2 ds < 1 and E

Z τ

0
eλ skg(t, 0, 0)k2 ds < 1.

Now we introduce the definition of BDSDEs with random terminal time τ and associated to (ξ, f, g).

Definition 5.2.1. A solution of BDSDE (τ, ξ, f, g) is a couple {(Ys, Zs); 0 6 s 6 T} 2 S2k([0, T ])⇥
H2

k⇥d([0, T ]) such that Yt = ξ on the set {t > τ}, Zt = 0 on the set {t > τ} and

Yt = ξ +

Z τ^T

t
f(s, Ys, Zs) ds +

Z τ^T

t
g(s, Ys, Zs) d

 −
W s −

Z τ^T

t
Zs dBs, 0 6 t 6 τ . (5.2.1)

We note that the integral with respect to W is a "backward Itô integral" (see Kunita [76] for

the definition) and the integral with respect to B is a standard forward Itô integral. We establish

existence and uniqueness of the solution for BDSDE (5.2.1) which is an extension of Peng’s results

[115] in the standard BSDE case:

Theorem 5.2.1. Under the Assumptions (HT) and (HL), there exists a unique solution
{(Ys, Zs ); 0 6 s 6 T } 2 S2k([0, T ])⇥H2

k⇥d([0, T ]) of the BDSDE (5.2.1).

Proof.

a) Uniqueness: Let (Y 1, Z1) and (Y 2, Z2) be two solutions of the BDSDE (5.2.1) and denote by

(Ȳ , Z̄) := (Y 1−Y 2, Z1−Z2). Applying generalized Ito formula (see Lemma 1.3 in [109]) to eλs|Ȳs|2
yields

eλt|Ȳt|2 +

Z τ^T

t
eλs
(
λ|Ȳs|2 + kZ̄sk2

)
ds = 2

Z τ^T

t
eλs
⌦
Ȳs, f(s, Y

1
s , Z

1
s )− f(s, Y 2

s , Z
2
s )
↵
ds

+ 2

Z τ^T

t
eλs
⌦
Ȳs, g(s, Y

1
s , Z

1
s )− g(s, Y 2

s , Z
2
s )
↵
d
 −
W s − 2

Z τ^T

t
eλs
⌦
Ȳs, Z̄s

↵
dBs

+

Z τ^T

t
eλskg(s, Y 1

s , Z
1
s )− g(s, Y 2

s , Z
2
s )k2ds. (5.2.2)



118 Chapter 5. Numerical Computation for BDSDEs in a domain

Then, taking expectation we obtain

E[eλt|Ȳt|2] + E[

Z τ^T

t
eλs
(
λ|Ȳs|2 + kZ̄sk2

)
ds] = 2E[

Z τ^T

t
eλs
⌦
Ȳs, f(s, Y

1
s , Z

1
s )− f(s, Y 2

s , Z
2
s )
↵
ds]

+ E[

Z τ^T

t
eλskg(s, Y 1

s , Z
1
s )− g(s, Y 2

s , Z
2
s )k2ds].

From Assumption (HL) there exists 0 < ε < 1 such that

2
⌦
Ȳs, f(s, Y

1
s , Z

1
s )− f(s, Y 2

s , Z
2
s )
↵
6 (−2µ+

K

1− ε
)|Ȳs|2 + (1− ε)kZ̄sk2,

which together with the Lipschitz continuous assumption on g provide

E
⇥
eλt|Ȳt|2

⇤
+ E

⇥ Z τ^T

t
eλs
(
λ|Ȳs|2 + kZ̄sk2

)
ds
⇤

6 E
⇥ Z τ^T

t
eλs(−2µ+

K

1− ε
+ C)|Ȳs|2ds

⇤

+ E
⇥ Z τ^T

t
eλs(α+ 1− ε)kZ̄sk2ds

⇤
,

where 0 < α < 1. Consequently

E
⇥
eλt|Ȳt|2

⇤
+ E

⇥ Z τ^T

t
eλs
(
(λ+ 2µ− K

1− ε
− C)|Ȳs|2 + (ε− α)kZ̄sk2

)
ds
⇤

6 0.

Next, choosing ε =
1 + α

2
such that λ+ 2µ− 2K

1− α
− C > 0, we conclude that

Y 1 = Y 2
t and Z1

t = Z2
t , P− a.s. , 8t 2 [0, T ].

b) Existence: The existence of a solution will be proved in two steps. In the first step, we suppose
that g does not depend on y, z, then we are able to transform our BDSDE with data (τ, ξ, f, g) into
a BSDE (τ, ξ̄, f̄), where ξ̄ and f̄ are explicited below. Thus, the existence is proved by appealing to
the existence result for BSDEs with random terminal time estblished by Peng 1991. In the second
step, we study the case when g depends on y, z using Picard iteration.

Step 1 : Suppose that g := g0 does not depend on y, z, and the BDSDE (5.2.1) becomes

Yt = ξ +

Z τ^T

t
f(s, Ys, Zs)ds+

Z τ^T

t
g(s)d

 −
W s −

Z τ^T

t
ZsdBs, 0 6 t 6 T. (5.2.3)

Denoting

Ȳt := Yt +

Z t

0
g(s)d

 −
W s, ξ̄ := ξ +

Z τ

0
g(s)d

 −
W s,

we have the following BSDE

Ȳt = ξ̄ +

Z τ^T

t
f̄(s, Ȳs, Zs)ds−

Z τ^T

t
ZsdBs, 0 6 t 6 T. (5.2.4)

where f̄(s, y, z) := f(s, y −
Z t

0
g(s)d

 −
W s, z). We can easily check that ξ̄ and f̄ satisfy the same

assumptions that Peng [115] (Theorem 2.2) have proved for the existence and uniqueness of the
solution for the standard BSDE (5.2.4). Thus, we get the existence of the solution for the BDSDEs
(5.2.3).

Step 2 : The nonlinear case when g depends on y, z. The solution is obtained by using the fixed
point Banach theorem. For any given (Ȳ , Z̄) 2 H2

k([0, T ]) ⇥ H2
k⇥d([0, T ]), let consider the BDSDE

with random terminal time:

Yt = ξ +

Z τ^T

t
f(s, Ys, Zs)ds+

Z τ^T

t
g(s, Ȳs, Z̄s)d

 −
W s −

Z τ^T

t
ZsdBs, 0 6 t 6 T. (5.2.5)
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It follows from Step 1 that the BDSDE (5.2.5) has a unique solution (Y, Z) 2 H2
k([0, T ])⇥H2

k⇥d([0, T ]).
Therefore, the mapping:

Ψ : H2
k([0, T ])⇥H2

k⇥d([0, T ]) −! H2
k([0, T ])⇥H2

k⇥d([0, T ])

(Ȳ , Z̄) 7−! Ψ(Ȳ , Z̄) = (Y, Z)

is well defined.
Next, let (Y, Z), (Y

0
, Z

0
), (Ȳ , Z̄) and (Ȳ 0

, Z̄
0) 2 H2

k([0, T ])⇥H2
k⇥d([0, T ]) such that (Y, Z) = Ψ(Ȳ , Z̄)

and (Y
0
, Z

0
) = Ψ(Ȳ 0

, Z̄
0) and set ∆η = η−η

0
for η = Y, Ȳ , Z, Z̄,K. Applying Ito formula and taking

expectation yield to

E[eλt|∆Yt|2] + E
⇥ Z τ^T

t
eλs
(
λ|δYs|2 + kδZsk2

)
ds
⇤
= 2E[

Z τ^T

t
eλsh∆Ys, f(s, Ys, Zs)− f(s, Y

0

s , Z
0

s)ids]

+ E[

Z τ^T

t
eλskg(s, Ȳs, Z̄s)− g(s, Ȳ 0

s, Z̄
0
s)k2ds].

From Assumption (HL) there exists α < ε < 1 such that

h∆Ys, f(s, Ys, Zs)− f(s, Y
0

s , Z
0

s)i 6 (−2µ+
K

1− ε
)|∆Ys|2 + (1− ε)k∆Zsk2,

which together with the Lipschitz continuous assumption on g provide

E[eλt|∆Yt|2] + (λ+ 2µ− K

1− ε
)E[

Z τ^T

t
eλs|δYs|2ds] + εE[

Z τ^T

t
eµsk∆Zsk2ds]

6 CE[

Z τ^T

t
eµs|∆Ȳs|2ds] + αE[

Z τ^T

t
eµsk∆Z̄sk2ds].

Next, choosing ε such that λ+ 2µ− K

1− ε
=

εC

α
, we obtain

ε
⇥C
α
E[

Z τ^T

t
eλs|∆Ys|2ds] + E[

Z τ^T

t
eλsk∆Zsk2ds]

⇤

6 α
hC
α
E[

Z τ^T

t
eλs|∆Ȳs|2ds] + E[

Z τ^T

t
eλsk∆Z̄sk2ds]

⇤
.

Since
α

ε
< 1, then Ψ is a strict contraction on H2

k([0, T ]⇥H2
k⇥d([0, T ]) equipped with the norm

k(Y, Z)k2 = C

α
E[

Z τ^T

t
eλs|∆Ys|2ds] + E[

Z τ^T

t
eλsk∆Zsk2ds].

Thus from Banach fixed point theorem there exists a unique pair (Y, Z) 2 H2
k([0, T ])⇥H2

k⇥d([0, T ])

solution of BDSDE associated to (τ, ξ, f, g). Moreover, thanks to Assumption (HL) and standard
calculations and estimates we show that Y belongs to S2k([0, T ]). tu

5.3 Numerical scheme for Forward-Backward Doubly

SDEs

In this section, we are interested in developing a discrete-time approximation of a Forward-Backward
Doubly SDE with finite stopping time horizon, namely the first exit time of a forward SDE from a
cylindrical domain D = [0, T ) ⇥ O. As usual, since we will state in the Markovian framework, we
need a slight modification of the filtration. So, we fix t 2 [0, T ] and for each s 2 [t, T ], we define

F t
s := FB

t,s _ FW
s,T _N and Gts := FB

t,s _ FW
t,T _N ,

where FB
t,s = σ{Br − Bt, t 6 r 6 s}, FW

s,T = σ{Wr −Ws, s 6 r 6 T} and N the class of P null sets
of F . Note that the collection {F t

s, s 2 [t, T ]} is neither increasing nor decreasing and it does not
constitute a filtration. However, {Gts, s 2 [t, T ]} is a filtration. We will omit the dependance of the
filtration with respect to the time t if t = 0.
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5.3.1 Formulation

For all (t, x) 2 [0, T ]⇥Rd, let (Xt,x
s )0 6 s 6 t be the unique strong solution of the following stochastic

differential equation:

dXt,x
s = b(Xt,x

s )ds+ σ(Xt,x
s )dBs, s 2 [t, T ], Xt,x

s = x, 0 6 s 6 t, (5.3.1)

where b and σ are two functions on Rd with values respectively in Rd and Rd⇥d. We will omit the
dependance of the forward process X in the initial condition if it starts at time t = 0.
Let τ t,x is the first exit time of (s,Xt,x

s ) from a cylindrical domain D = [0, T ) ⇥ O for some open
bounded set O ⇢ Rd.
We now consider the following Markovian BDSDE with terminal random time τ associated to the
data (Φ, f, g): For all t 6 s 6 T ,

(
−dY t,x

s = 1{s<τ}f(s,X
t,x
s , Y

t,x
s , Z

t,x
s )ds+ 1{s<τ}g(s,X

t,x
s , Y

t,x
s , Z

t,x
s )d
 −
W s − Z

t,x
s dBs,

Y
t,x
s = Φ(τ,Xt,x

τ ), τ 6 s 6 T,
(5.3.2)

where f and Φ are now two functions respectively on [0, T ]⇥Rd ⇥Rk ⇥Rk⇥d and Rd with values in
Rk and g is a function on [0, T ]⇥ Rd ⇥ Rk ⇥ Rk⇥d with values in Rk⇥l.

Now, we specify some conditions on the domain and the diffusion process:

Assumption (D) O is an open bounded set of Rd with a C2-boundary.

Assumption (MHD)

(i) The matrix a := σσ⇤ is elliptic, i.e. there exists Λ > 0 such that for all x, ζ 2 Ō ,

Λkζk2 6 ζa(x)ζ⇤. (5.3.3)

(ii) There exists a positive constant L such that

|b(x)− b(x0)|+ kσ(x)− σ(x0)k 6 L|x− x0|, 8x, x0 2 Rd.

Remark 5.3.1. We mention that this smoothness assumption (D) on the domain could be weakened
by considering the domain O as a finite intesection of smooth domains with compact boundaries and
further conditions on the set of corners (see conditions (D1) and (D2) in [21]). Under this weak-
ened hypotheses, one may just assume the the matrix a satisfies a non-characteristeristic boundary
condition outside the set of corners C and a uniform ellipticity condition on a neighborhood of C.

Besides, we assume that the terminal condition Φ is sufficiently smooth:

Assumption (MHT)

Φ 2 C1,2([0, T ]⇥ Rd) and k∂tΦk+ kDΦk+ kD2Φk 6 L on [0, T ]⇥ Rd.

We next state a strengthening of Assumption (HL) in the present Markov framework:

Assumption (MHL) There exist constants α, µ, λ, K > 0, C > 0, C 0 > 0, λ >
2K

1− α
− 2µ + C

and 0 < α < 1 such that for any (t1, x1, y1, z1), (t2, x2, y2, z2) 2 [0, T ]⇥ Rd ⇥ Rk ⇥ Rk⇥d,

(i) |f(t1, x1, y1, z1)− f(t2, x2, y2, z2)| 6 K
(p
|t1 − t2|+ |x1 − x2|+ |y1 − y2|+ kz1 − z2k

)
,

(ii) kg(t1, x1, y1, z1)− g(t2, x2, y2, z2)k2 6 C
(
|t1 − t2|+ |x1 − x2|2 + |y1 − y2|2

)
+ αkz1 − z2k2,

(iii) hy1 − y2 , f(t1, x1, y1, z1) − f(t1, x1, y2, z1) i 6 − µ |y1 − y2|2,
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(iv) sup
0 6 t 6 T

(|f(t, 0, 0, 0)|+ kg(t, 0, 0, 0)k) 6 C 0.

Remark 5.3.2. We note that the integrability condition given by Assumption (HT) in section 5.2
is satisfied in this Markovian setting thanks to the smoothness of Φ (Assumption (MHT)) and the
fact that the exit time τ , under the ellipticity condition (5.3.3) verified by the matrix a (see Stroock
and Varadhan [133]), satisfy

sup
(t,x)2[0,T )⇥Ō

E[exp(λτ t,x)] <1.

From [109] and [76], the standard estimates for the solution of the Forward-Backward Doubly SDE
(5.3.1)-(5.3.2) hold and we remind the following theorem:

Theorem 5.3.1. Under Assumptions (MHT) and (MHL), there exist, for any p > 2, two positive
constants C and Cp and an integer q such that :

E[ sup
t 6 s 6 τ

|Xt,x
s |2] 6 C(1 + |x|2), (5.3.4)

E

h
sup

t 6 s 6 τ
|Y t,x

s |p +
⇣Z τ

t
kZt,x

s k2ds
⌘p/2i

6 Cp(1 + |x|q). (5.3.5)

From now on, Cη
L denotes a generic constant whose value may change from line to line, but which

depends only on X0, L and some extra parameter η (we simply write CL if it depends only on X0

and L). Similarly, ξηL denotes a generic non-negative random variable such that E[|ξηL|p] 6 C
η,p
L for

all p > 1 (we simply write ξL if it does not depend on the parameter η).

5.3.2 Euler scheme approximation of Forward-BDSDEs

5.3.2.1 Forward Euler scheme

In order to approximate the forward diffusion process (5.3.1), we use a standard Euler scheme with
time step h, associated to a grid

π := {ti = ih ; i 6 N}, h := T/N , N 2 N,

This approximation is defined by

XN
t = x+

Z t

0
b(Xϕ(s))ds+

Z t

0
σ(Xϕ(s))dBs, t > 0 (5.3.6)

where ϕ(s) := sup{t 2 π : t 6 s}. Notice that ϕ(t) = ti, for t 2 [ti, ti+1) and the continuous
approximation (5.3.6) is equivalent to the following discrete approximation

(
XN

0 = x,

XN
ti+1

= XN
ti + b(XN

ti )(ti+1 − ti) + σ(XN
ti )(Bti+1

−Bti), i 6 N.
(5.3.7)

Then, we approximate the exit time τ by the first time of the Euler scheme (t,XN
t )t2π from D on

the grid π:

τ̄ := inf{t 2 π : XN
t /2 O} ^ T.

Remark 5.3.3. One may approximate the exit time τ by its continuous version τ̃ which is defined
as the first exit time of the Euler scheme (t,XN

t ), namely

τ̃ := inf{t 2 [0, T ] : XN
t /2 O} ^ T.

However, this approximation requires more regularity on the boundary of O (see e.g. [54, 55]).
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The upper bound estimates for the error due to the approximation of τ by τ̄ was proved by
Bouchard and Menozzi [21] for the weak version of such estimate and Gobet [54, 55] for the strong
one. Recently, Bouchard, Geiss and Gobet [20] have improved the following L1-strong error:

Theorem 5.3.2. Assume that (MHD) and (D) hold. Then, there exists CL > 0 such that

E[|τ − τ̄ |] 6 CLh
1/2. (5.3.8)

Remark 5.3.4. Let us mention that the upper bound estimates for the error due to the approximation
of τ by τ̄ proved by Bouchard and Menozzi [21] for the weak version of such estimate is as following:
for any ε 2 (0, 1) and each positive random variable ξ satisfying E[(ξL)

p] 6 C
p
L for all p > 1, there

exists Cε
L > 0 such that

E
⇥
E[ξL|τ − τ̄ ||FB

τ+^τ̄ ]
2
⇤
6 Cε

Lh
1−ε. (5.3.9)

For the strong estimate error, Gobet [54, 55] have proved that, for each ε 2 (0, 1/2), there exists
Cε
L > 0 such that

E[|τ − τ̄ |] 6 Cε
Lh

1/2−ε. (5.3.10)

5.3.2.2 Euler scheme for BDSDEs

Regarding the approximation of (5.3.2), we adapt the approach of [6]. We define recursively (in a
backward manner) the discrete-time process (Y N , ZN ) on the time grid π by

Y N
T = Φ(τ̄ , XN

τ̄ ), (5.3.11)

and for i = N − 1, . . . , 0, we set

ZN
ti = h−1Eti

"
(Y N

ti+1
+ g(ti+1,Θ

N
i+1)∆Wi)∆B>

i

#
, (5.3.12)

Y N
ti = Eti [Y

N
ti+1

] + 1{ti<τ̄}hEti [f(ti,Θ
N
i )] + 1{ti<τ̄}Eti [g(ti+1,Θ

N
i+1)∆Wi], (5.3.13)

where

ΘN
i := (XN

ti , Y
N
ti , Z

N
ti ) , ∆Wi = Wti+1

−Wti , ∆Bi = Bti+1
−Bti .

> denotes the transposition operator and Eti denotes the conditional expectation over the σ-algebra
F0
ti . The above conditional expectation are well defined at each step of the algorithm.

Observe that Y N
ti 1{ti > τ̄} = Φ(τ̄ , XN

τ̄ )1{ti > τ̄} and ZN
ti 1{ti > τ̄} = 0. One can easily check that

Y N
ti+1

+ g(ti+1,Θ
N
i+1)∆Wi 2 L2(Fti+1

)

for all 0 6 i < N under the Lipschitz continuous assumption. Then an obvious extension of Itô
martingale representation theorem yields the existence of the Gt-progressively measurable and square
integrable process ZN satisfying, for all i < N

Y N
ti+1

+ g(ti+1,Θ
N
i+1)∆Wi = Eti [Y

N
ti+1

+ g(ti+1,Θ
N
i+1)∆Wi] +

Z ti+1

ti

ZN
s dBs.

Following the arguments of Pardoux and Peng [109] (see page 213), we can prove that in fact ZN is
Ft-progressively measurable thanks to the independance of the increments of B and the two Brownian
motions B and W .
This allows us to consider a continuous-time extension of Y N in S2 defined on [0, T ] by

Y N
t = Φ(τ̄ , XN

τ̄ ) +

Z T

t
1{s<τ̄}f(ϕ(s),Θ

N
ϕ(s))ds+

Z T

t
1{s<τ̄}g(ψ(s),Θ

N
ψ(s))d

 −
W s −

Z T

t
ZN
s dBs,

(5.3.14)

where ψ(s) := inf{t 2 π : t > s}.
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Remark 5.3.5. Observe that Zs = 0 on ]τ, T ] and ZN
s = 0 on ]τ̄ , T ]. For later use, note also that

ZN
ti = h−1Eti [

Z ti+1

ti

ZN
s ds] , i < N. (5.3.15)

In order to prove (5.3.25) of Proposition 5.3.2, we need the following lemma.

Lemma 5.3.1. Let Assumptions (MHL) and (MHT) hold. Then,

max
i<N

(|Y N
ti |+

p
hkZN

ti k) 6 ξL and kY NkS2 + kZN
ϕ kH2 + kZN

ψ kH2 6 CL. (5.3.16)

5.3.2.3 Upper bounds for the discrete-time approximation error

In this section, we provide bounds for the (square of the) discrete-time approximation error up to a
stopping time θ 6 T P-a.s. defined as

Err(h)2θ := max
i<N

E
⇥

sup
t2[ti,ti+1]

1{t<θ}|Yt − Y N
t |2

⇤
+ E

⇥ Z θ

0
kZt − ZN

ϕ(t)k2dt
⇤
, (5.3.17)

where we recall ϕ(s) := sup{t 2 π : t 6 s}.

We first recall some standard controls on X, (Y, Z) and XN .

Proposition 5.3.1. Let Assumptions (MHL), (MHT) and (MHD) hold. Fix p > 2. Let ϑ be a
stopping time with values in [0, T ]. Then,

E

h
sup

t2[ϑ,T ]
|Yt|p +

( Z T

ϑ

kZtk2dt
)p/2i

6 C
p
L(1 + |Xϑ|p),

and
E

h
sup

t2[ϑ,T ]
(|Xt|p + |XN

t |p)|FB
0,ϑ

i
6 ξ

p
L.

Moreover,

max
i<N

E
⇥

sup
t2[ti,ti+1]

(|Xt −Xti |p + |XN
t −XN

ti |p)
⇤
+ E

⇥
sup

t2[0,T ]
(|Xt −XN

t |p
⇤
6 C

p
Lh

p/2,

P
⇥
sup

t2[0,T ]
(|XN

t −XN
ϕ(t)| > r

⇤
6 CLr

−4h, r > 0,

and, if θ is a stopping time with values in [0, T ] such that ϑ 6 θ 6 ϑ+ h P-a.s., then

E
⇥
|XN

θ −XN
ϑ |p + |Xθ −Xϑ|p|FB

0,ϑ

⇤
6 ξ

p
Lh

p/2.

Remark 5.3.6. Let ϑ 6 θ P-a.s. be two stopping times with values in π and Z̄ti be the best
approximation of (Zt)ti 6 t 6 ti+1

by Fti-measurable random variable in the following sense

Z̄ti := h−1Eti [

Z ti+1

ti

Zsds] , i < N. (5.3.18)

Then, recalling that ti+1 − ti = h, it follows from (5.3.18),(5.3.15) and Jensen’s inequality that

E

h Z θ

ϑ

kZ̄ϕ(s) − ZN
ϕ(s)k2ds

i
=
X

i<N

E

h Z ti+1

ti

1{ϑ 6 ti 6 θ}

∥∥Eti

⇥
h−1

Z ti+1

ti

(Zu − ZN
u )du

⇤∥∥2ds
i

6
X

i<N

E

h Z ti+1

ti

1{ϑ 6 ti 6 θ}h
−1

Z ti+1

ti

kZu − ZN
u k2du ds

i

6 E

h Z θ

ϑ

kZs − ZN
s k2ds

i

(5.3.19)

Observe that the above inequality does not apply if ϑ and θ do not take values in π. This explains why
it is easier to work with τ+, the next time after τ in the grid π such that τ+ := inf{t 2 π : τ 6 t},
instead of τ , that is, work on Err(h)2τ+^τ̄ instead of Err(h)2τ^τ̄ .
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Now we state an upper bound result for some stopping time θ with values in π.

Theorem 5.3.3. Assume that Assumptions (MHL), (MHD) and (MHT) hold, and define

R(Y )πS2 := max
i<N

E
⇥

sup
t2[ti,ti+1]

|Yt − Yti |2
⇤

, R(Z)πH2 := E
⇥ Z T

0
kZt − Z̄ϕ(t)k2dt

⇤

Then for all stopping times θ with values in π, we have

Err(h)2θ 6 CL

✓
h+ E[|Yθ − Y N

θ |2] +R(Y )πS2 +R(Z)πH2

+ E
⇥ Z T

0
kZt − Z̄ψ(t)k2dt

⇤
+ E

⇥ Z (τ̄_τ)^θ

τ̄^τ^θ
(ξL + 1{τ̄<τ}kZsk2)ds

⇤◆
. (5.3.20)

Proof. The equations (5.3.2) and (5.3.14), the generalized Ito’s lemma (see Lemma 1.3 in [109])
to (Y − Y N )2 on [t ^ θ, ti+1 ^ θ] for t 2 [ti, ti+1] and i < N , and taking expectation yield to

∆θ
t,ti+1

:= E
⇥
|Yt^θ − Y N

t^θ|2 +
Z ti+1^θ

t^θ
kZs − ZN

s k2ds
⇤

= E
⇥
|Yti+1^θ − Y N

ti+1^θ
|2
⇤
+ E

⇥
2

Z ti+1^θ

t^θ
(Ys − Y N

s )(1{s<τ}f(Θs)− 1{s<τ̄}f(Θ
N
ϕ(s)))ds

⇤

+ E
⇥ Z ti+1^θ

t^θ
k1{s<τ}g(Θs)− 1{s<τ̄}g(Θ

N
ψ(s))k2ds

⇤
,

where Θs := (Xs, Ys, Zs). Using the fact that 1{s<τ} 6 1{s<τ̄} + 1{τ 6 s<τ̄} + 1{τ̄ 6 s<τ} and the
inequality 2ab 6 εa2 + ε−1b2, we then deduce that for ε > 0 to be chosen later,

∆θ
t,ti+1

6 E
⇥
|Yti+1^θ − Y N

ti+1^θ
|2
⇤
+ εE

⇥ Z ti+1^θ

t^θ
|Ys − Y N

s |2ds
⇤

+ ε−1E
⇥ Z ti+1^θ

t^θ
1{s<τ̄}(f(Θs)− f(ΘN

ϕ(s)))
2ds+

Z ti+1^θ

t^θ
1{τ̄ 6 s<τ}(f(Θs))

2ds
⇤

+ ε−1E
⇥ Z ti+1^θ

t^θ
1{τ 6 s<τ̄}(f(Θs))

2ds
⇤
+ E

⇥ Z ti+1^θ

t^θ
1{s<τ̄}kg(Θs)− g(ΘN

ψ(s))k2ds
⇤

+ E
⇥ Z ti+1^θ

t^θ
1{τ̄ 6 s<τ}kg(Θs)k2ds

⇤
+ E

⇥ Z ti+1^θ

t^θ
1{τ 6 s<τ̄}kg(Θs)k2ds

⇤
.

Recall from Remark 5.3.5 that Z = 0 on ]τ, T ]. Since Yt = Φ(τ, Xτ ) on {t > τ}, we then deduce
from the Lipschitz continuous assumption (MHL) that

∆θ
t,ti+1

6 E
⇥
|Yti+1^θ − Y N

ti+1^θ
|2
⇤
+ εE

⇥ Z ti+1^θ

t^θ
|Ys − Y N

s |2ds
⇤

+CLε
−1E

⇥ Z ti+1^θ

t^θ
1{s<τ̄}(|Xs −XN

ϕ(s)|2 + |Ys − Y N
ϕ(s)|2 + kZs − ZN

ϕ(s)k2)ds
⇤

+CL(ε
−1 + 1)E

⇥ Z ti+1^θ

t^θ
1{τ̄ 6 s<τ}(|Xs|2 + |Ys|2)ds

⇤

+CL(ε
−1 + 1)E

⇥ Z ti+1^θ

t^θ
1{τ 6 s<τ̄}(|Xτ |2 + |Φ(τ, Xτ )|2)ds

⇤

+(CLε
−1 + α)E

⇥ Z ti+1^θ

t^θ
1{τ̄ 6 s<τ}kZsk2ds

⇤

+E
⇥ Z ti+1^θ

t^θ
1{s<τ̄}(CL|Xs −XN

ψ(s)|2 + CL|Ys − Y N
ψ(s)|2 + αkZs − ZN

ψ(s)k2)ds
⇤
.
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Now, appealing to Proposition 5.3.1 yields to

∆θ
t,ti+1

6 E
⇥
|Yti+1^θ − Y N

ti+1^θ
|2
⇤
+ εE

⇥ Z ti+1^θ

t^θ
|Ys − Y N

s |2ds
⇤

+ CLε
−1E

⇥ Z ti+1^θ

t^θ
(h+ |Ys − Yϕ(s)|2 + |Yϕ(s) − Y N

ϕ(s)|2 + kZs − Z̄ϕ(s)k2 + kZ̄ϕ(s) − ZN
ϕ(s)k2)ds

⇤

+ CL(ε
−1 + 1)E

⇥ Z ti+1^θ

t^θ
1{τ̄^τ 6 s<τ_τ̄}ξLds

⇤
+ (CLε

−1 + α)E
⇥ Z ti+1^θ

t^θ
1{τ̄ 6 s<τ}kZsk2ds

⇤

+ E
⇥ Z ti+1^θ

t^θ
(CLh+ CL|Ys − Yψ(s)|2 + CL|Yψ(s) − Y N

ψ(s)|2 + αkZs − Z̄ψ(s)k2 + αkZ̄ψ(s) − ZN
ψ(s)k2)ds

⇤
.

Next, we obtain from the definition of ϕ

∆θ
t,ti+1

6 E
⇥
|Yti+1^θ − Y N

ti+1^θ
|2
⇤
+ εE

⇥ Z ti+1^θ

t^θ
|Ys − Y N

s |2ds
⇤

+ CL(ε
−1 + 1)E

⇥
h|Yti^θ − Y N

ti^θ
|2 + h|Yti+1^θ − Y N

ti+1^θ
|2 +

Z ti+1^θ

t^θ
(|Ys − Yϕ(s)|2 + |Ys − Yψ(s)|2ds)

⇤

+ CL(ε
−1 + 1)E

⇥ Z ti+1^θ

t^θ
hds
⇤
+ CLε

−1E
⇥ Z ti+1^θ

t^θ
(kZs − Z̄ϕ(s)k2 + kZ̄ϕ(s) − ZN

ϕ(s)k2)ds
⇤

+ αE
⇥ Z ti+1^θ

t^θ
(kZs − Z̄ψ(s)k2 + kZ̄ψ(s) − ZN

ψ(s)k2)ds
⇤

+ CL(ε
−1 + 1)E

⇥ Z ti+1^θ

t^θ
1{τ̄^τ 6 s<τ_τ̄}ξLds

⇤
+ (CLε

−1 + α)E
⇥ Z ti+1^θ

t^θ
1{τ̄ 6 s<τ}kZsk2ds

⇤
.

(5.3.21)

It then follows from Gronwall’s lemma that

E
⇥
|Yt^θ−Y N

t^θ|2
⇤
6 (1 + CL(ε

−1 + 1)h+ Cε
Lh)E

⇥
|Yti+1^θ − Y N

ti+1^θ
|2
⇤

+ (CL(ε
−1 + 1) + Cε

Lh)E
⇥
h|Yti^θ − Y N

ti^θ
|2 +

Z ti+1^θ

t^θ
(|Ys − Yϕ(s)|2 + |Ys − Yψ(s)|2)ds

⇤

+ (CL(ε
−1 + 1) + Cε

Lh)E
⇥ Z ti+1^θ

t^θ
hds
⇤

+ (CLε
−1 + Cε

Lh)E
⇥ Z ti+1^θ

t^θ
(kZs − Z̄ϕ(s)k2 + kZ̄ϕ(s) − ZN

ϕ(s)k2)ds
⇤

+ (α+ Cε
Lh)E

⇥ Z ti+1^θ

t^θ
(kZs − Z̄ψ(s)k2 + kZ̄ψ(s) − ZN

ψ(s)k2)ds
⇤

+ (CL(ε
−1 + 1) + Cε

Lh)E
⇥ Z ti+1^θ

t^θ
1{τ̄^τ 6 s<τ_τ̄}ξLds

⇤

+ (CLε
−1 + α+ Cε

Lh)E
⇥ Z ti+1^θ

t^θ
1{τ̄ 6 s<τ}kZsk2ds

⇤
.

(5.3.22)

Then, by taking t = ti in (5.3.21), using (5.3.22) to estimate the second term in the right-hand side of
(5.3.21) and recalling Remark 5.3.5 we have for ε > 0 sufficiently large, depending on the constants
CL, and h small

∆θ
ti,ti+1

6 (1 + CLh)E
⇥
|Yti+1^θ − Y N

ti+1^θ
|2
⇤

+ CLE
⇥ Z ti+1^θ

ti^θ
(h+ |Ys − Yϕ(s)|2 + |Ys − Yψ(s)|2ds)

⇤

+ CLE
⇥ Z ti+1^θ

ti^θ
kZs − Z̄ϕ(s)k2ds

⇤
+ CLE

⇥ Z ti+1^θ

ti^θ
kZs − Z̄ψ(s)k2ds

⇤

+ CLE
⇥ Z ti+1^θ

ti^θ
1{τ̄^τ 6 s<τ_τ̄}ξLds

⇤
+ CLE

⇥ Z ti+1^θ

ti^θ
1{τ̄ 6 s<τ}kZsk2ds

⇤
.
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Thus, from the following estimate

E[|Ys − Yψ(s)|2] 6 E[ sup
ti 6 s 6 ti+1

|Ys − Yψ(s)|2]

6 CL(1 + |x|)h.

We conclude that

∆θ := max
i<N

E
⇥
|Yti^θ − Y N

ti^θ
|2 +

Z θ

0
kZs − ZN

s k2ds
⇤

6 CL

(
E
⇥
|Yθ − Y N

θ |2
⇤
+ h+R(Y )πS2 +R(Z)πH2 + E

⇥ Z T

0
kZt − Z̄ψ(t)k2dt

⇤)

+ CLE
⇥
ξL|τ̄ ^ θ − τ ^ θ|+

Z θ

0
1{τ̄ 6 s<τ}kZsk2ds

⇤
.

We finish the proof by using again Remark 5.3.5 to obtain

E

 Z θ

0
kZs − ZN

ϕ(s)k2ds
]

6 CL

✓
E

 Z θ

0
kZ̄ϕ(s) − ZN

ϕ(s)k2ds
]
+ E

 Z T

0
kZs − Z̄ϕ(s)k2ds

]◆
(5.3.23)

6 CL

✓
E

 Z θ

0
kZs − ZN

s k2ds
]
+R(Z)πH2

◆
,

which implies the required result, by the definition of Err(h)2θ in (5.3.3). tu

Proposition 5.3.2. Let Assumptions (MHL), (MHD) and (MHT) hold. There then exist CL > 0

and a positive random variable ξL satisfying E[(ξL)
p) 6 C

p
L for all p > 2 such that

Err(h)2T 6 CL

⇣
h+R(Y )πS2 +R(Z)πH2 + E

⇥
ξL|τ − τ̄ |+ 1{τ̄<τ}

Z τ

τ̄

kZsk2)ds
⇤

+ E
⇥ Z T

0
kZt − Z̄ψ(t)k2dt

⇤⌘
.

(5.3.24)

and

Err(h)2τ^τ̄ 6 Err(h)2τ+^τ̄ 6 CL

⇣
h+R(Y )πS2 +R(Z)πH2 + E

⇥
ξL|τ − τ̄ |+ 1{τ̄<τ}

Z τ

τ̄

kZsk2)ds
⇤

+ E
⇥ Z T

0
kZt − Z̄ψ(t)k2dt

⇤⌘
,

(5.3.25)

where we recall τ+ is the next time after τ in the grid π such that τ+ := inf{t 2 π : τ 6 t}.

Remark 5.3.7. Note that we shall control Err(h)2τ^τ̄ through the slightly stronger term Err(h)2τ+^τ̄ .
This will allow us to work with stopping times with values in the grid π in order to be able to apply
(5.3.19), which will be technically easier.

Proof.

(i) First to prove (5.3.24), it suffices to apply Theorem 5.3.3 for θ = T and observe that the Lipschitz
continuity of Φ implies that

E[|Φ(τ, Xτ )− Φ(τ̄ , XN
τ̄ )|2]

6 CLE
⇥
|τ − τ̄ |2 + |Xτ̄ −XN

τ̄ |2 +
∣∣∣
Z τ_τ̄

τ^τ̄
b(Xs)ds+

Z τ_τ̄

τ^τ̄
σ(Xs)dBs

∣∣∣
2⇤
,
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where |τ − τ̄ |2 6 T |τ − τ̄ |, E[|Xτ̄ −XN
τ̄ |2] 6 CLh by Proposition 5.3.1 and

E

h∣∣∣
Z τ_τ̄

τ^τ̄
b(Xs)ds+

Z τ_τ̄

τ^τ̄
σ(Xs)dBs

∣∣∣
2i

6 E[ξL|τ − τ̄ |]

by Doob’s inequality, (MHD) and Proposition 5.3.1 again.
(ii) We now prove the upper bound (5.3.25). We have by applying Theorem 5.3.3 θ = τ+ ^ τ̄

Err(h)2τ+^τ̄ 6 CL

(
h+ E[|Yτ+^τ̄ − Y N

τ+^τ̄ |2] +R(Y )πS2 +R(Z)πH2

)
.

It remains to show that

E[|Yτ+^τ̄ − Y N
τ+^τ̄ |2] 6 CL

(
h+ E

⇥
ξL|τ − τ̄ |+ 1{τ̄<τ}

Z τ

τ̄
kZsk2ds

⇤)
. (5.3.26)

Observe that by (5.3.2) and (5.3.14)

Yτ+^τ̄ − Y N
τ+^τ̄ = Φ(τ, Xτ )− Φ(τ̄ , XN

τ̄ )

+ 1{τ+<τ̄}

✓Z τ̄

τ+

f(XN
ϕ(s), Y

N
ϕ(s), Z

N
ϕ(s))ds+

Z τ̄

τ+

g(XN
ψ(s), Y

N
ψ(s), Z

N
ψ(s))d

 −
W s −

Z τ̄

τ+

ZN
s dBs

◆

+ 1{τ̄<τ+}

✓Z τ

τ̄
f(Xs, Ys, Zs)ds+

Z τ

τ̄
g(Xs, Ys, Zs)d

 −
W s −

Z τ

τ̄
ZsdBs

◆
. (5.3.27)

Then

E[|Yτ+^τ̄ − Y N
τ+^τ̄ |2] 6 E[|Φ(τ, Xτ )− Φ(τ̄ , XN

τ̄ )|2]

+ E

h
1{τ+<τ̄}

∣∣
Z τ̄

τ+

f(XN
ϕ(s), Y

N
ϕ(s), Z

N
ϕ(s))ds

∣∣2
i
+ E

h
1{τ+<τ̄}

∣∣
Z τ̄

τ+

g(XN
ψ(s), Y

N
ψ(s), Z

N
ψ(s))d

 −
W s

∣∣2
i

+ E

h
1{τ̄<τ+}

∣∣
Z τ

τ̄
f(Xs, Ys, Zs)ds

∣∣2
i
+ E

h
1{τ̄<τ+}

∣∣
Z τ

τ̄
g(Xs, Ys, Zs)d

 −
W s

∣∣2
i
. (5.3.28)

We start with the first term in the right hand side of (5.3.27). By using (MHD), (MHL), (MHT)

and Proposition 5.3.1 and applying Itô’s lemma to (Φ(t,Xt))t > 0 between τ̄ and τ , we easily check
that

E[|Φ(τ, Xτ )− Φ(τ̄ , XN
τ̄ )|2] 6 CL

(
E[|Xτ̄ −XN

τ̄ |2] + E
⇥∣∣
Z τ

τ̄
LΦ(s,Xs)ds

∣∣2⇤)

6 CL

(
E[|Xτ̄ −XN

τ̄ |2] + E[ξL|τ − τ̄ |]
)
.

Then, by appealing to (MHD) and Proposition 5.3.1 we conclude that

E[|Φ(τ, Xτ )− Φ(τ̄ , XN
τ̄ )|2] 6 CL

(
h+ E[ξL|τ − τ̄ |]

)
. (5.3.29)

For the second term in (5.3.27), it follows from Jensen’s inequality, the isometry property, the
Lipschitz continuous assumption (MHL), Lemma 5.3.1 and Proposition 5.3.1 that

E

h
1{τ+<τ̄}|

Z τ̄

τ+

f(XN
ϕ(s), Y

N
ϕ(s), Z

N
ϕ(s))ds|2

i
+ E

h
1{τ+<τ̄}|

Z τ̄

τ+

g(XN
ψ(s), Y

N
ψ(s), Z

N
ψ(s))d

 −
W s|2

i

6 E

h
|τ̄ − τ+|

Z τ̄

τ+

|f(XN
ϕ(s), Y

N
ϕ(s), Z

N
ϕ(s))|2ds

i
+ E

h Z τ̄

τ+

|g(XN
ψ(s), Y

N
ψ(s), Z

N
ψ(s))|2ds

i

6 CLE

h Z τ̄

τ+

(
|XN

ϕ(s)|2 + |Y N
ϕ(s)|2 + kZN

ϕ(s)k2 + |XN
ψ(s)|2 + |Y N

ψ(s)|2 + kZN
ψ(s)k2

)
ds
i

6 CLE

h
ξL(|τ̄ − τ |+ |τ − τ+|)

i

6 CLE[h+ ξL|τ̄ − τ |]. (5.3.30)
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The last term is easily controlled by using the same previous calculations.

E

h
1{τ̄<τ+}

∣∣
Z τ

τ̄
f(Xs, Ys, Zs)ds

∣∣2
i
+ E

h
1{τ̄<τ+}|

Z τ

τ̄
g(Xs, Ys, Zs)d

 −
W s|2

i

6 CL

⇣
E

h
|τ − τ̄ |

Z τ

τ̄

∣∣f(Xs, Ys, Zs)
∣∣2ds

i
+ E

h
1{τ̄<τ+}

Z τ

τ̄
|g(Xs, Ys, Zs)|2ds

i⌘

6 CL

⇣
E

h
|τ − τ̄ |

Z τ

τ̄
CL(|Xs|2 + |Ys|2 + kZsk2)ds

i
+ E

h
1{τ̄<τ+}

Z τ

τ̄
(|Xs|2 + |Ys|2 + kZsk2)ds

i⌘

6 CLE
⇥
|τ − τ̄ |2ξL

⇤
+ E

⇥
|τ − τ̄ |

Z τ

τ̄
CLkZsk2ds

⇤
+ CLE

h
ξL|τ̄ − τ |+ 1{τ̄<τ}

Z τ

τ̄
kZsk2ds

i

6 CLE

h
ξL|τ̄ − τ |+ 1{τ̄<τ}

Z τ

τ̄
kZsk2ds

i
. (5.3.31)

Finally, we finish the proof of (5.3.27) by combining the three estimates. tu
Our next result concerns the regularity of (Y, Z) which was proved in [4]:

Theorem 5.3.4. Let the Assumptions (D), (MHT), (MHL) and (MHD) hold. Then

R(Y )πS2 +R(Z)πH2 6 CLh and E
⇥ Z T

0
kZt − Z̄ψ(t)k2dt

⇤
6 CLh. (5.3.32)

Combining the estimates (5.3.8) and (5.3.32), we finally obtain our main result, which provides an
upper bound for the convergence rate of Err(h)2τ+^τ̄ (and thus for Err(h)2τ^τ̄ and Err(h)2T ).

Theorem 5.3.5. Let the Assumptions (D), (MHT), (MHL) and (MHD) hold. Then, for each
ε 2 (0, 1/2), there exists Cε

L > 0 such that

Err(h)2τ+^τ̄ 6 CLh
1/2 and Err(h)2T 6 CLh

1/2 (5.3.33)

5.4 Semilinear Stochastic PDEs with Dirichlet null con-

dition

The aim of this section is to give a Feynman-Kac’s formula for the weak solution of a class of
semilinear SPDEs with Dirichlet null condition on the boundary via the associated Markovian class
of BDSDEs with random terminal time studied in the section 5.2. Indeed, for a given open connected
domain O of Rd, we are interested in the following semilinear SPDEs :

8
>><
>>:

dut + Lut dt+ f(t, x, ut, Dσut) dt+ g(t, x, ut, Dσut ) d
 −
W t = 0 , 8 0 6 t 6 T, 8x 2 O,

u(T, x) = Φ(x) , 8x 2 O
u(t, x) = 0 , 8 0 6 t 6 T, 8x 2 ∂O,

(5.4.1)

where Dσ := ruσ and L is the second order differential operator which is defined component by
component with

Lϕ(x) =
dX

i=1

bi(x)
∂

∂xi
ϕ(x) +

1

2

dX

i,j=1

aij(x)
∂2

∂xi∂xj
ϕ(x) (5.4.2)

and a := σσ⇤.

5.4.1 Definitions and formulation

Let us first introduce some notations:
- Cn

l,b(R
p,Rq) the set of Cn-functions which grow at most linearly at infinity and whose partial
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derivatives of order less than or equal to n are bounded.
- L2 (O) will be a Hilbert L2-space of our framework. We employ the following notation for its scalar
product and its norm,

(u, v) =

Z

O
u (x) v (x) dx, kuk2 =

✓Z

O
u2 (x) dx

◆ 1

2

.

Our evolution problem will be considered over a fixed time interval [0, T ] and the norm for an element
of L2 ([0, T ]⇥O) will be denoted by

kuk2,2 =
✓Z T

0

Z

O
|u(t, x)|2dxdt

◆ 1

2

.

We assume the following hypotheses :

Assumption (MHD’) The coefficients of the second order differential operator L satisfy:

• b is a bounded function and belongs to C2
l,b(R

d,Rd).

• σ 2 C3
l,b(R

d,Rk⇥d) and satisfy the ellipticity condition (5.3.3).

Assumption (MHT’) Φ 2 L
2(O;Rk) with polynomial growth, namely there exists C > 0 and

p 2 N such that |Φ(x)| 6 C(1 + |x|p).
The space of test functions which we employ in the definition of weak solutions of the evolution
equations (5.4.1) is D := C1([0, T ])⌦ C1c (O), where C1 ([0, T ]) denotes the space of real functions
which can be extended as infinite differentiable functions in the neighborhood of [0, T ] and C1c (O) is
the space of infinite differentiable functions with compact support in O. We denote by H the space
of FW

t,T -progressively measurable processes (ut) with valued in the Dirichlet space H1
0 (O) where

H1
0 (O) := {v 2 L

2(O)
∣∣ rvσ 2 L

2(O))}

endowed with the norm

kuk2H = E
⇥

sup
0 6 s 6 T

kusk22 +
Z

O

Z T

0
|rus(x)σ(x)|2dsdx

⇤
,

where we denote the gradient by ru(t, x) =
(
∂1u(t, x), · · ·, ∂du(t, x)

)
.

Definition 5.4.1. We say that u 2 H is a weak solution of the SPDE (5.4.1) if the following relation
holds for each Ψ 2 D,

Z T

t

Z

O
u(s, x) ∂sΨ(s, x) dx ds−

Z

O
Φ(x)Ψ(T, x)dx+

Z

O
u(t, x)Ψ(t, x) dx−

Z T

t

Z

O
u(s, x)L⇤u(s, x) dxds

=

Z T

t

Z

O
Ψ(s, x) f(s, x, u(s, x), Dσu(s, x)) dx ds+

Z T

t

Z

O
Ψ(s, x) g(s, x, u(s, x), Dσu(s, x)) dx d

 −
W s.

(5.4.3)

where

(
u(s, ·),L⇤Ψ(s, ·)

)
:=

Z

O
Dσu(s, x)DσΨ(s, x) dx+

Z

O
u(s, x) div( (b− Ã)Ψ(s, x)) dx,

and Ãi =:
1

2

dX

k=1

∂ak,i

∂xk
.
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The existence and uniqueness of weak solution for such SPDEs with null Dirichlet condition is
ensured by Denis and Stoica (Theorem 4 in [43]). Indeed, we can rewrite the second order differential
operator L as following:

L =
1

2

dX

i,j=1

∂i
(
aij(x)∂j

)
+

dX

i=1

(
bi(x)− 1

2
∂ia

ij(x)
)
∂i. (5.4.4)

Therefore, since b and ra are bounded, the second term in the right hand side of (5.4.4) may
be considered as an extra term in the nonlinear term coefficient f which still satisfy the uniform
Lipschitz continuous condition in u and Dσu.

Motivated by developing Euler numerical scheme for such solution, we are now interested in giving
the probabilistic interpretation for the solution of SPDEs (5.4.1) within the framework of BDSDE
with random terminal time. Thus, this connection between SPDEs and BDSDEs will be established
by means of stochastic flow technics.

5.4.2 Stochastic flow of diffeomorphism and random test functions

We are concerned in this paper with solving SPDEs by developing a stochastic flow method which
was first introduced in Kunita [76], and Bally, Matoussi [10]. We recall that {Xt,x

s , t 6 s 6 T} is the
diffusion process starting from x at time t and is the strong solution of the equation:

Xt,x
s = x+

Z s

t
b(Xt,x

r )dr +

Z s

t
σ(Xt,x

r )dBr. (5.4.5)

The existence and uniqueness of this solution was proved in Kunita [76]. Moreover, we have the
following properties:

Proposition 5.4.1. For each t > 0, there exists a version of {Xt,x
s ); x 2 Rd, s > t} such that Xt,·

s is
a C2(Rd)-valued continuous process which satisfy the flow property: X

t,x
r = X

s,x
r ◦Xt,x

s , 0 6 t < s < r.
Furthermore, for all p > 2, there exists Mp such that for all 0 6 t < s, x, x0 2 Rd, h, h0 2 R\{0},

E( sup
t 6 r 6 s

|Xt,x
r − x|p) 6 Mp(s− t)(1 + |x|p),

E( sup
t 6 r 6 s

|Xt,x
r −X

t,x0

r − (x− x0)|p) 6 Mp(s− t)(|x− x0|p),

E( sup
t 6 r 6 s

|∆i
h[X

t,x
r − x]|p) 6 Mp(s− t),

E( sup
t 6 r 6 s

|∆i
hX

t,x
r −∆i

h0X
t,x0

r |p) 6 Mp(s− t)(|x− x0|p + |h− h0|p),

where ∆i
hg(x) =

1
h(g(x+ hei)− g(x)), and (e1, · · · , ed) is an orthonormal basis of Rd.

Under regular conditions Assumption (MHD’) on the diffusion, it is known that the stochastic
flow associated to a continuous SDE satisfies the homeomorphic property (see Kunita [76]). We have
the following result where the proof can be found in [76].

Proposition 5.4.2. Let Assumption (MHD’) holds. Then {Xt,x
s ;x 2 Rd} is a C2-diffeomorphism

a.s. stochastic flow. Moreover the inverse of the flow which denoted by {X−1
t,s (y); y 2 Rd} satisfies

the following backward SDE

X−1
t,s (y) = y −

Z s

t

bb(X−1
r,s (y))dr −

Z s

t
σ(X−1

r,s (y))dBr (5.4.6)

for any t < s, where

bb(x) = b(x)−
X

i,j

∂σj(x)

∂xi
σij(x). (5.4.7)
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We denote by J(X−1
t,s (x)) the determinant of the Jacobian matrix of X−1

t,s (x), which is positive and
J(X−1

t,t (x)) = 1. For ϕ 2 C1
c (Rd), we define a process ϕt : Ω⇥ [t, T ]⇥ Rd ! Rk by

ϕt(s, x) := ϕ(X−1
t,s (x))J(X

−1
t,s (x)). (5.4.8)

We know that for v 2 L
2(Rd), the composition of v with the stochastic flow is

(v ◦Xt,·
s , ϕ) := (v, ϕt(s, ·)).

In fact, by a change of variable, we have (see Kunita [80], Bally and Matoussi [10])

(v ◦Xt,·
s , ϕ) =

Z

Rd

v(Xt,x
s )ϕ(x)dx =

Z

Rd

v(y)ϕ(X−1
t,s (y))J(X

−1
t,s (y))dy = (v, ϕt(s, ·)).

Since (ϕt(s, x))t 6 s is a process, we may not use it directly as a test function becauseZ T

t
(u(s, ·), ∂sϕt(s, ·))ds has no sense. However ϕt(s, x) is a semimartingale and we have the following

decomposition of ϕt(s, x)

Lemma 5.4.1. For every function ϕ 2 C1
c (Rd),

ϕt(s, x) = ϕ(x) +

Z s

t
L⇤ϕt(r, x)dr −

dX

j=1

Z s

t

 
dX

i=1

∂

∂xi
(σij(x)ϕt(r, x))

!
dW j

r , (5.4.9)

where L⇤ is the adjoint operator of L.

We also need equivalence of norms result which plays an important role in the proof of the existence
of the solution for SPDE as a connection between the functional norms and random norms. For
continuous SDEs, this result was first proved by Barles and Lesigne [13] by using an analytic method
and Bally and Matoussi [10] by a probabilistic method.

Proposition 5.4.3. There exists two constants c > 0 and C > 0 such that for every t 6 s 6 T and
ϕ 2 L1(Rd),

c

Z

Rd

|ϕ(x)|dx 6

Z

Rd

E(|ϕ(Xt,x
s |)dx 6 C

Z

Rd

|ϕ(x)|dx. (5.4.10)

Moreover, for every Ψ 2 L1([0, T ]⇥ Rd),

c

Z

Rd

Z T

t
|Ψ(s, x)|dsdx 6

Z

Rd

Z T

t
E(|Ψ(s,Xt,x

s |)dsdx 6 C

Z

Rd

Z T

t
|Ψ(s, x)|dsdx. (5.4.11)

We give now the following result which allows us to link by a natural way the solution of SPDE
with the associated BDSDE. Roughly speaking, if we choose in the variational formulation (5.4.3)
the random functions ϕt(·, ·) defined by (5.4.8), as a test functions, then we obtain the associated
BDSDE. In fact, this result plays the same role as Itô’s formula used in [109] to relate the solution
of some semilinear SPDEs with the associated BDSDEs:

Proposition 5.4.4. Let Assumptions (MHT’), (MHL) and (MHD’) hold and u 2 H be a weak
solution of the SPDE (5.4.3) associated to (Φ, f, g) on the hole domain Rd, then for s 2 [t, T ] and
ϕ 2 C1

c (Rd),
Z

Rd

Z T

s
u(r, x)dϕt(r, x)dx+ (u(s, ·), ϕt(s, ·))− (Φ(·), ϕt(T, ·))−

Z

Rd

Z T

s
u(r, x)L⇤ϕt(r, x)drdx

=

Z

Rd

Z T

s
fr(x, u(r, x), Dσu(r, x))ϕt(r, x)drdx+

Z

Rd

Z T

s
gr(x, u(r, x), Dσu(r, x)σ(x))ϕt(r, x)d

 −
W rdx,

(5.4.12)

where
Z

Rd

Z T

s
u(r, x)dϕt(r, x)dx is well defined thanks to the semimartingale decomposition result

(Lemma 5.4.1).
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5.4.3 Probabilistic representation of the solution of SPDE

As introduced in the section 5.3, we consider now the Markovian BDSDE with random terminal time
τ t,x which is the first exist time of the forward diffusion Xt,x from the domain O

Y t,x
s = Φ(Xt,x

T^τ t,x) +

Z T

s
1(τ t,x>r)f(r,X

t,x
r , Y t,x

r , Zt,x
r ) dr −

Z T

s
Zt,x,
r dBr

+

Z T

s
1(τ t,x>r)g(r,X

t,x
r , Y t,x

r , Zt,x
r ) d

 −
W r .

(5.4.13)

Remark 5.4.1. We have Y
t,x
s = Z

t,x
s = 0, 8 τ t,x 6 s 6 T . In fact, the process Zt,x is the density

which appears in the Ito’s representation theorem of the random variable

ξ = Φ(Xt,x
T^τ t,x) +

Z T

s
1(τ t,x >r ) f(r,X

t,x
r , Y t,x

r , Zt,x
r ) dr

But, the r.v ξ is FW
τ t,x-measurable, then Z

t,x
r = Z

t,x
r 1(τ t,x > r ). Now, we look at (5.4.13) for T > s >

τ t,x, all the terms in the right hand of (5.4.13) vanisch, then Y
t,x
s vanischs, for T > s > τ t,x.

The main result in this section is the following

Theorem 5.4.1. Assume (MHT’), (D), (MHL) and (MHD’) hold and let
{(Y t,x

s , Z
t,x
s ), t 6 s 6 T} be the solution of BDSDE (5.4.13) . Then, u(t, x) := Y

t,x
t , dt⌦ dx, a.e. is

the unique solution of the SPDE (5.4.3) and

Y t,x
s = u(s ^ τ t,x, X

t,x
s^τ t,x), Zt,x

s = Dσu(s ^ τ t,x, X
t,x
s^τ t,x). (5.4.14)

Proof. Step 1: local variational form of SPDE

Let u 2 H be weak solution of (5.4.1) and let θ 2 C1
c (O). Then, we apply the variational equation

(5.4.3) for the test function θΨ, with Ψ 2 C1([0, T ])⌦ C1c (O) to obtain

Z T

t

Z

O
u(s, x) θ(x) ∂sΨ(s, x) dx ds−

Z

O
Φ(x)θ(x)Ψ(T, x)dx+

Z

O
u(t, x) θ(x)Ψ(t, x) dx

−
Z T

t

Z

O
Dσu(s, x) θ(x)DσΨ(s, x) dx ds−

Z T

t

Z

O
u(s, x) div( (b− Ã) θ(x)Ψ(s, x)) dx ds

=

Z T

t

Z

O
Ψ(s, x)

⇥
θ(x) f(s, x, u(s, x), Dσu(s, x)) +Dσu(s, x)Dσθ(x)

⇤
dx ds

+

Z T

t

Z

O
θ(x)Ψ(s, x) g(s, x, u(s, x), Dσu(s, x)) dx d

 −
W s.

(5.4.15)

Since θ has a compact support on O, we can rewrite the variational formulation (5.4.15) in the whole
domain Rd

Z T

t

Z

Rd

u(s, x) θ(x) ∂sΨ(s, x) dx ds−
Z

Rd

Φ(x)θ(x)Ψ(T, x)dx+

Z

Rd

u(t, x) θ(x)Ψ(t, x) dx

−
Z T

t

Z

Rd

Dσu(s, x) θ(x)DσΨ(s, x) dx ds−
Z T

t

Z

Rd

u(s, x) div( (b− Ã) θ(x)Ψ(s, x)) dx ds

=

Z T

t

Z

Rd

Ψ(s, x)
⇥
θ(x) f(s, x, u(s, x), Dσu(s, x)) +Dσu(s, x)Dσθ(x)

⇤
dx ds

+

Z T

t

Z

Rd

θ(x)Ψ(s, x) g(s, x, u(s, x), Dσu(s, x)) dx d
 −
W s.

(5.4.16)

Then, from Proposition 5.4.4, which gives the weak variational formulation (5.4.16) applied to random
test function ϕt(·, ·) (5.4.8) yields to:
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Z T

s

Z

Rd

u(r, x) θ(x) drϕt(r, x) dx dr −
Z

Rd

Φ(x)θ(x)ϕt(T, x)dx+

Z

Rd

u(s, x) θ(x)ϕt(s, x) dx

−
Z T

s

Z

Rd

Dσu(r, x) θ(x)Dσϕt(r, x) dx dr −
Z T

s

Z

Rd

u(r, x) div( (b− Ã) θ(x)ϕt(r, x)) dx dr

=

Z T

s

Z

Rd

ϕt(r, x)
⇥
θ(x) f(r, x, u(r, x), Dσu(r, x)) +Dσu(r, x)Dσθ(x)

⇤
dx dr

+

Z T

s

Z

Rd

θ(x)ϕt(r, x) g(r, x, u(r, x), Dσu(r, x)) dx d
 −
W r.

(5.4.17)

Moreover, by Lemma 5.4.1, we have that

Z T

s

Z

Rd

u(r, x) θ(x) drϕt(r, x) dx dr =

Z

Rd

Z T

s
u(r, x) θ(x)L⇤ϕt(r, x) dr dx

−
Z

Rd

Z T

s
u(r, x) θ(x)r (σ⇤(x)ϕt(r, x)) (x) dBr dx.

Using Integration by parts, we obtain

Z T

s

Z

Rd

u(r, x)θ(x)drϕt(r, x)dx dr =

Z T

s

Z

Rd

Dσ (u(r, x)θ(x))ϕt(r, x)dxdBr

+

Z T

s

Z

Rd

Dσ (u(r, x)θ(x))Dσϕt(r, x)dxdr +

Z T

s

Z

Rd

u(r, x) div( (b− Ã) θ(x)ϕt(r, x)) dx dr

=

Z T

s

Z

Rd

θ(x) (Dσu(r, x))ϕt(r, x)dxdBr +

Z T

s

Z

Rd

u(r, x)Dσθ(x)ϕt(r, x)dxdBr

+

Z T

s

Z

Rd

θ(x)Dσu(r, x)Dσϕt(r, x)dxdr +

Z T

s

Z

Rd

u(r, x)Dσθ(x)Dσϕt(r, x)dxdr

+

Z T

s

Z

Rd

u(r, x) div( (b− Ã) θ(x)ϕt(r, x)) dx dr.

Using again integration by parts for the fourth term in the right hand of the above equation, we get

Z T

s

Z

Rd

u(r, x)θ(x)drϕt(r, x)dx dr =

Z T

s

Z

Rd

θ(x) (Dσu(r, x))ϕt(r, x)dxdBr

+

Z T

s

Z

Rd

u(r, x)Dσθ(x)ϕt(r, x)dxdBr +

Z T

s

Z

Rd

θ(x)Dσu(r, x)Dσϕt(r, x)dxdr

+

Z T

s

Z

Rd

u(r, x) div( (b− Ã) θ(x)ϕt(r, x)) dx dr

−
Z T

s

Z

Rd

(
Dσu(r, x)Dσθ(x) + u(r, x)D2

σθ(x)
)
ϕt(r, x)dxdr.

(5.4.18)

We substitute now the above equation in (5.4.17) to get

Z

Rd

u(s, x) θ(x)ϕt(s, x) dx−
Z

Rd

Φ(x)θ(x)ϕt(T, x)dx

+

Z T

s

Z

Rd

θ(x) (Dσu(r, x))ϕt(r, x)dxdBr +

Z T

s

Z

Rd

u(r, x)Dσθ(x)ϕt(r, x)dxdBr

=

Z T

s

Z

Rd

ϕt(r, x)
⇥
θ(x) f(r, x, u(r, x), Dσu(r, x))− u(r, x)D2

σθ(x)
⇤
dx dr

+

Z T

s

Z

Rd

θ(x)ϕt(r, x) g(r, x, u(r, x), Dσu(r, x)) dx d
 −
W r.



134 Chapter 5. Numerical Computation for BDSDEs in a domain

Now the change of variable y = X−1
t,s (x) in the above equation gives

Z

Rd

u(s,Xt,x
s ) θ(Xt,x

s )ϕ(x) dx−
Z

Rd

Φ(Xt,x
T )θ(Xt,x

T )ϕ(x)dx

+

Z T

s

Z

Rd

θ(Xt,x
r )

(
Dσu(r,X

t,x
r )
)
ϕ(x)dxdBr +

Z T

s

Z

Rd

u(r,Xt,x
r )Dσθ(X

t,x
r )ϕ(x)dxdBr

=

Z T

s

Z

Rd

ϕ(x)
⇥
θ(Xt,x

r ) f(r,Xt,x
r , u(r,Xt,x

r ), Dσu(r,X
t,x
r ))− u(r,Xt,x

r )D2
σθ(X

t,x
r )

⇤
dx dr

+

Z T

s

Z

Rd

θ(Xt,x
r )ϕ(Xt,x

r ) g(r,Xt,x
r , u(r,Xt,x

r ), Dσu(r,X
t,x
r )) dx d

 −
W r.

Define Y t,x
s := u(s,Xt,x

s ), a.e. and Z
t,x
s := Dσu(s,X

t,x
s ) a.e.. In particular we have u(t, x) = Y

t,x
t , a.e.

and Dσu(t, x) = Z
t,x
t , a.e.. Thus, it follows from the last equation

Z

Rd

⇥
Y t,x
s θ(Xt,x

s )− Y
t,x
T θ(Xt,x

T )
⇤
ϕ(x)dx

=

Z

Rd

Z T

s

⇥
θ(Xt,x

r ) f(r,Xt,x
r , Y t,x

r , Zt,x
r )− u(r,Xt,x

r )D2
σθ(X

t,x
r )

⇤
ϕ(x) dx dr

+

Z

Rd

Z T

s
θ(Xt,x

r ) g(r,Xt,x
r , Y t,x

r , Zt,x
r )ϕ(x) d

 −
W r dx

−
Z

Rd

Z T

s

⇥
θ(Xt,x

r )Zt,x
r − Y t,x

r Dσθ(X
t,x
r )

⇤
dBr ϕ(x)dx.

Since ϕ 2 C1
c (Rd) is arbitrary function, we get the following equation

Y t,x
s θ(Xt,x

s ) = Y
t,x
T θ(Xt,x

T ) +

Z T

s

⇥
θ(Xt,x

r ) f(r,Xt,x
r , Y t,x

r , Zt,x
r )− u(r,Xt,x

r )D2
σθ(X

t,x
r )

⇤
dr

Z T

s
θ(Xt,x

r ) g(r,Xt,x
r , Y t,x

r , Zt,x
r ) d

 −
W r −

Z T

s

⇥
θ(Xt,x

r )Zt,x
r − Y t,x

r Dσθ(X
t,x
r )

⇤
dBr.

(5.4.19)

Step 2: Approximation of the random terminal time and BDSDE

We denote by the set Oε := {x 2 O : d (x,Oc ) > ε } and the function

θε(x) :=

(
1 , x 2 Oε,

0 , x 2 Oc
ε
2

.

So, 0 6 θε(x) 6 1 and θε 2 C1
c (Oε). We define the exit stoping time from the set Oε by

τ t,xε := inf{ t < s 6 T : Xt,x
s /2 Oε } ^ (T − ε(T − t)) 2 [t, T ].

Then, for t 6 s 6 τ
t,x
ε , we have θε(X

t,x
s ) = 1 and Dσθε(X

t,x
s ) = D2

σθε(X
t,x
s ) = 0. Then, we use the

localization function θε in the equation (5.4.19) to get

Y t,x

s^τ t,xε

= Y t,x

τ t,xε

+

Z τ t,xε

s^τ t,xε

f(r,Xt,x
r , Y t,x

r , Zt,x
r ) dr

+

Z τ t,xε

s^τ t,xε

g(r,Xt,x
r , Y t,x

r , Zt,x
r ) d

 −
W r −

Z τ t,xε

s^τ t,xε

Zt,x
r dBr.

(5.4.20)

Since the domain O is smooth enough satisfying Assumption D, we have that the stoping time τ
t,x
ε

converge to the stoping time τ t,x a.s, where τ t,x := inf{ t < s : Xt,x
s /2 O } ^ T (see Chapter IV
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page 119-120 in Gobet [56]) .
So, passing to the limit in the BDSDE (5.4.20), we obtain

Y
t,x
s^τ t,x = Y

t,x
τ t,x +

Z τ t,x

s^τ t,x
f(r,Xt,x

r , Y t,x
r , Zt,x

r ) dr

+

Z τ t,x

s^τ t,x
g(r,Xt,x

r , Y t,x
r , Zt,x

r ) d
 −
W r −

Z τ t,x

s^τ t,x
Zt,x
r dBr.

(5.4.21)

In the other hand, Y t,x
T^τ t,x = Φ(Xt,x

T^τ t,x). Indeed, using the boundary condition of the solution u of

the SPDE, we get Y
t,x
T^τ t,x = u

⇣
τ t,x, X

t,x
τ t,x

⌘
= 0 which complete the proof of Theorem 5.4.1 and in

particular the representation (5.4.14). tu

Remark 5.4.2. We may get the uniqueness of the solution for the SPDE (5.4.1) from the probabilistic
representation. Indeed, let u and ū to be two solutions of The SPDE (5.4.1) and (Y, Z) and (Ȳ , Z̄)

are the two associated solutions of the BDSDEs (5.4.21). We denote by ∆u := u−ū, ∆Y := Y −Ȳ and
∆Z := Z−Z̄. By the usual calculus on the BSDEs, we obtain that ∆u(t, x) = ∆Y

t,x
t^τ t,x = 0, 8x 2 O.

So, the uniqueness of the solution of the SPDE is given by the uniqueness of the BDSDEs.

5.5 Implementation and numerical tests

In this part, we are interested in implementing our numerical scheme. Our aim is only to test
statically its convergence. Further analysis of the convergence of the used method and of the error
bounds will be accomplished in a future work.

5.5.1 Notations and algorithm

Not forgetting that π := {ti = ih ; i 6 N}, h := T/N , N 2 N, is the time grid of the interval
[0, T ]. We use a path-dependent algorithm, for every fixed path of the brownian motion W , we
approximate by a regression method the solution of the associated PDE. Then, we replace the
conditional expectations which appear in (5.5.3) and (5.5.4) by L2(Ω,P) projections on the function
basis approximating L2(Ω,Ftn). We compute ZN

tn in an explicit manner and we use Picard iterations
to compute Y N

tn in a implicit way. Actually, we proceed as in [57], except that in our case the
solutions Y N

tn and ZN
tn are measurable functions of (XN

tn , (∆Wi)n 6 i 6 N−1). So, each solution given
by our algorithm depends on the fixed path of W .

5.5.1.1 Forward Euler scheme

The discrete approximation of the forward diffusion process (5.3.1) is defined by

(
XN

0 = x,

XN
ti+1

= XN
ti + b(XN

ti )(ti+1 − ti) + σ(XN
ti )(Bti+1

−Bti), i 6 N.
(5.5.1)

Then, we approximate the exit time τ by the first time of the Euler scheme (t,XN
t )t2π from D on

the grid π:

τ̄ := inf{t 2 π : XN
t /2 O} ^ T.

The simulation of the diffusion stopped at the exit time is based on the approach of Gobet and
Menozzi [59]. In this approach, we simulate the diffusion with an Euler scheme with step size h

and stop it at discrete times (ti)i2N⇤ in a modified domain, whose boundary has been appropriately
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shifted. The shift is locally in the direction of the inward normal n(t, x) at any point (t, x) on the
parabolic boundary of O, and its amplitude is equal to c0|nTσ|(t, x)

p
h, with

c0 :=
E[s2τ+ ]

2E[sτ+ ]
= 0.5826 · · · , (5.5.2)

where s0 = 0, 8n > 1, sn :=
Pn

i=1G
i, the Gi being i.i.d standard centered normal variables, τ+ :=

inf{n > 0 : sn > 0}.

5.5.1.2 Numerical scheme for BDSDEs

For each fixed path of W , the solution of (5.3.1)-(5.3.2) is approximated by (Y N , ZN ) defined by the
following algorithm, given in the multidimensional case.
For 0 6 n 6 N − 1: 8j1 2 {1, . . . , k},

Y N
tn,j1 = Etn

h
Y N
tn+1,j1 + hfj1(X

N
tn , Y

N
tn , Z

N
tn) +

lX

j=1

gj1,j(X
N
tn+1

, Y N
tn+1

, ZN
tn+1

)∆Wn,j

i
, (5.5.3)

8j1 2 {1, . . . , k} and 8j2 2 {1, . . . , d}

hZN
tn,j1,j2 = Etn

h
Y N
tn+1,j1∆Bn,j2 +

lX

j=1

gj1,j(X
N
tn+1

, Y N
tn+1

, ZN
tn+1

)∆Wn,j∆Bn,j2

i
. (5.5.4)

We stress that at each discretization time, the solution of the algorithm depends on the fixed path
of the brownian motion B.

5.5.1.3 Vector spaces of functions

At every tn, we select k(d + 1) deterministic functions bases (pi,n(.))1 6 i 6 k(d+1) and we look for
approximations of Y N

tn and ZN
tn which will be denoted respectively by yNn and zNn , in the vector space

spanned by the basis (pj1,n(.))1 6 j1 6 k (respectively (pj1,j2,n(.))1 6 j1 6 k,1 6 j2 6 d). Each basis pi,n(.)

is considered as a vector of functions of dimension Li,n. In other words, Pi,n(.) = {α.pi,n(.), α 2 RLi,n}
where α is the coefficient of the projection on L2(Ω,Ftn).
As an example, we cite the hypercube basis (HC) used in [57]. In this case, pi,n(.) does not depend
nor on i neither on n and its dimension is simply denoted by L. A domain D ⇢ Rd centered on
X0=x, that is D =

Qd
i=1(xi − a, xi + a], can be partitionned on small hypercubes of edge δ. Then,

D=
S

i1,...,id
Di1,...,id

where Di1,...,id = (xi − a + i1δ, xi − a + i1δ] ⇥ . . . ⇥ (xi − a + idδ, xi − a + idδ].
Finally we define pi,n(.) as the indicator functions of this set of hypercubes.

5.5.1.4 Description of the algorithm

The main difference with the numerical scheme for FBDSDE in [6] is the simulation of the first
exit time of the forward diffusion process from the domain O. The computation of this exit time τ̄

follows a simple and very efficient improved procedure given in [59]. The purpose is to stop the Euler
scheme at its exit time of a smaller domain in order to compensate the underestimation of exits and
to achieve an error of order o(

p
h). The smaller domain is defined by

ON := {x 2 O : d(x, ∂O) > c0
p
h|nTσ(t, x)|},

where n(t, x) is the inward normal vector at the closest point of x on the boundary of O and c0 is
the constant given by (5.5.2). We shall interpret |nTσ(t, x)| as the noise amplitude along the normal
direction to the boundary. Thus the efficient exit time of the Euler scheme is given by

τ̂N := inf{ti > 0 : XN
ti

/2 ON} 6 τ̄ .
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For more details on this procedure see the book of Gobet [56] (page 142-144). We can also cite
the work of Antoine Lejay [83] where he presents a C-library for simulating quantities and random
variables related to where and when a Brownian motion hits the boundary of an interval, a square
or a rectangle.
Now the projection coefficients α are computed by using M independent Monte Carlo simulations
of Xtn

N and∆Bn which will be respectively denoted by X
N,m
tn and ∆Bm

n ,m=1, . . . ,M . The algorithm
is explicite as follows:

! Initialization: For n = N , take (yN,m,I
N ) = (Φ(XN,m

τ̂N
)) and (zN,m

N ) = 0 .
! Iteration: For n = N − 1, . . . , 0:
• We approximate (5.5.4) by computing for all j1 2 {1, . . . , k} and j2 2 {1, . . . , d}

αM
j1,j2,n = arginf

α

1

M

MX

m=1

∣∣∣yN,M,I
n+1,j1

(XN,m
tn+1

)
∆Bm

n,j2

h

+
lX

j=1

gj1,j

⇣
X

N,m
tn+1

,y
N,M,I
n+1 (XN,m

tn+1
), zN,M

n+1 (X
N,m
tn+1

)
⌘∆Wn,j∆B

m
n,j2

h
− α.pmj1,j2,n

∣∣∣
2
.

Then we set z
N,M
n,j1,j2

(.) = (αM
j1,j2,n

.pj1,j2,n(.)), j1 2 {1, . . . , k}, j2 2 {1, . . . , d}.
• We use I Picard iterations to obtain an approximation of Ytn in (5.5.3):
· For i = 0: 8j1 2 {1, . . . , k}, αM,0

j1,n
= 0.

· For i = 1, . . . , I: We approximate (5.5.3) by calculating α
M,i
j1,n

, 8j1 2 {1, . . . , k}, as the minimizer
of:

1

M

MX

m=1

∣∣∣yN,M,I
n+1,j1

(XN,m
tn+1

)+ hfj1

⇣
X

N,m
tn ,yN,M,i−1

n (XN,m
tn ),zN,M

n (XN,m
tn )

⌘

+

lX

j=1

gj1,j

⇣
X

N,m
tn+1

,y
N,M,I
n+1 (XN,m

tn+1
),zN,M

n+1 (X
N,m
tn+1

)
⌘
∆Wn,j −α.pmj1,k

∣∣∣
2
.

Finally, we define y
N,M,I
n (.) as:

y
N,M,I
n,j1

(.) = (αM,I
j1,n

.pj1,n(.)), 8j1 2 {1, . . . , k}.

5.5.2 One-dimensional case (Case when d = k = l = 1)

5.5.2.1 Function bases

We use the basis (HC) defined above. So we set:

d1 = min
n,m

Xm
tn , d2 = max

n,m
Xm

tn and L =
d2 − d1

δ

where δ is the edge of the hypercubes (Dj)1 6 j 6 L defined by Dj =
h
d+ (j − 1)δ, d+ jδ

⌘
, 8j.

We take at each time tn

1Dj
(XN,m

tn ) = 1[d+(j−1)δ,d+jδ)(X
N,m
tn ), j = 1, . . . , L

and

(pmi,n(.))=
ns M

card(Dj)
1Dj

(XN,m
tn ),16j6L

o
, i = 0, 1.
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Card(Dj) denotes the number of simulations of XN
tn which are in our cube Dj .

This system is orthonormal with respect to the empirical scalar product defined by

< ψ1, ψ2 >n,M :=
1

M

MX

m=1

ψ1(X
N,m
tn )ψ2(X

N,m
tn ).

In this case, the solutions of our least squares problems are given by:

αM
1,n =

1

M

MX

m=1

p1,n(X
N,m
tn )

n
y
N,M,I
n+1 (XN,m

tn+1
)
∆Bm

n

h

+ g
⇣
X

N,m
tn+1

, y
N,M,I
n+1 (XN,m

tn+1
), zN,M,

n+1 (XN,m
tn+1

)
⌘∆Wm

n ∆Bm
n

h

o
,

α
M,i
0,n =

1

M

MX

m=1

p0,n(X
N,m
tn )

n
y
N,M,I
n+1 (XN,m

tn+1
) + hf

⇣
X

N,m
tn , yN,M,i−1

n (XN,m
tn ), zN,M

n (XN,m
tn )

⌘

+ g
⇣
X

N,m
tn+1

, y
N,M,I
n+1 (XN,m

tn+1
), zN,M

n+1 (X
N,m
tn+1

)
⌘
∆Wm

n

o
.

Remark 5.5.1. We note that for each value of M , N and δ, we launch the algorithm 50 times and
we denote by (Y 0,x,N,M,I

0,m0 )1 6 m0 6 50 the set of collected values. Then we calculate the empirical mean

Y
0,x,N,M,I
0 and the empirical standard deviation σN,M,Idefined by:

Y
0,x,N,M,I
0 =

1

50

50X

m0=1

Y
0,x,N,M,I
0,m0 and σN,M,I=

vuut 1

49

50X

m0=1

|Y 0,x,N,M,I
0,m0 −Y 0,x,N,M,I

0 |2. (5.5.5)

We also note before starting the numerical examples that our algorithm converges after at most three
Picard iterations. Finally, we stress that (5.5.5) gives us an approximation of u(0, x) the solution of
the SPDE (5.4.1) at time t = 0.

5.5.2.2 Comparison of numerical approximations of the solutions of the

FBDSDE and the FBSDE: the general case

Now we take
8
>><
>>:

Φ(x) = −x+K,

f(t, x, y, z) = −θz − ry + (y − z
σ )

−(R− r),

g1(t, x, y, z) = 0.1z + 0.5y + log(x)

and we set θ = (µ − r)/σ, K = 115, X0 = 100, µ = 0.05, σ = 0.2, r = 0.01, R = 0.06, δ = 1,
N = 20, T = 0.25 and we fix d1 = 60 and d2 = 200 as in [58]. We fix our domain O =]60, 200[,
choosen large enough to compenstate the rate of convergence of the exit time approximation which
is slow (of order h1/2).
The functions g1,g2 and g3 tooken in the following are examples of the function g. They are
sufficiently regular and Lipschitz on [60, 200] ⇥ R ⇥ R and could be extended to regular Lipschitz
functions on R3. In this case, the continuous Lipschitz assumption is satisfied.
We compare the numerical solution of our BDSDE with terminal time τ̄ (noted again Y

t,x,N,M,I
t ),

the BDSDE’s one (noted here by Y
0,x,N,M
t,BDSDE ) and the BSDE’s one (noted here by Y

0,x,N,M
t,BSDE ),

without g and B.

When t is close to maturity t = t19
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M Y
0,x,N,M
t19,BSDE(σ

N,M ) Y
0,x,N,M
t19,BDSDE(σ

N,M ) Y
0,x,N,M,I
t19 (σN,M,I)

128 13.748(0.879) 15.453(0.948) 13.392(1.021)

512 13.827(0.384) 15.535(0.409) 12.210(0.3580)

2048 13.762(0.223) 15.465(0.240) 12.051(0.197)

8192 13.781(0.091) 15.485(0.097) 14.814 (0.107)

32768 13.796(0.054) 15.501(0.058) 14.729 (0.053)

when t = t15

M Y
0,x,N,M
t15,BSDE(σ

N,M ) Y
0,x,N,M
t15,BDSDE(σ

N,M ) Y
0,x,N,M,I
t15 (σN,M,I)

128 14.168(0.905) 17.894(1.096) 13.049(1.116)

512 14.113(0.388) 17.774(0.429) 16.469(0.441)

2048 13.988(0.226) 17.607(0.270) 9.817(0.178)

8192 13.985(0.093) 17.623(0.104) 12.951(0.115)

32768 13.994(0.055) 17.627(0.064) 13.232(0.053)

when t = 0

M Y
0,x,N,M
0,BSDE(σ

N,M ) Y
0,x,N,M,I
0,BDSDE(σ

N,M,I) Y
0,x,N,M
0 (σN,M )

128 15.431(1.005) 13.571(1.146) 19.719(1.558)

512 15.029(0.428) 13.173(0.500) 24.371(0.659)

2048 14.763(0.243) 12.885(0.280) 13.433(0.233)

8192 14.718(0.098) 12.825(0.106) 12.543(0.122)

32768 14.715(0.060) 12.804(0.064) 13.458(0.057)

In the previous tables, we test our algorithm for different times (when they are close to the maturity
and in initial time t = 0) and we variate the number of Monte Carlo simulation M for fixed number
of time discretization N . We note that the numerical value of the BDSDE with random terminal
time τ̄ converges to the value of classical BDSDE for M large and this can be explained by the fact
that the approximated value of the exit time is close to the maturity T .

For g2(y, z) = 0.1z + 0.5y when t = t19.

M Y
0,x,N,M
t19,BDSDE(σ

N,M ) Y
0,x,N,M,I
t19 (σN,M,I)

128 14.767(0.949) 13.545(1.020)

512 14.850(0.410) 12.862(0.358)

2048 14.781(0.240) 12.739(0.197)

8192 14.801(0.097) 14.401(0.107)

32768 14.818(0.058) 14.358(0.053)

when t = t15

M Y
0,x,N,M
t15,BDSDE(σ

N,M ) Y
0,x,N,,M,I
t15 (σN,M,I)

128 16.267(1.093) 13.607(1.111)

512 16.166(0.428) 15.191(0.443)

2048 16.007(0.270) 11.675(0.180)

8192 16.024(0.104) 13.551(0.114)

32768 16.029(0.064) 13.689(0.053)
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when t = 0

M Y
0,x,N,M
0,BDSDE(σ

N,M ) Y
0,x,N,M,I
0 (σN,M,I)

128 13.821(0.063) 17.811(1.529)

512 14.555(1.132) 19.766(0.645)

2048 14.176(0.495) 13.976(0.241)

8192 13.899(0.277) 13.635(0.122)

32768 13.842(0.105) 14.139(0.058)

For g3(x, y) = logx+ 0.5y: when t is close to maturity t = t19.

M Y
0,x,N,M
t19,BDSDE(σ

N,M ) Y
0,x,N,M,I
t19 (σN,M,I)

128 15.452(0.948) 13.392(1.021)

512 15.534(0.409) 12.210(0.358)

2048 15.464(0.240) 12.051(0.197)

8192 15.484(0.097) 14.814(0.107)

32768 15.501(0.058) 14.729(0.053)

when t = t15

M Y
0,x,N,M
t15,BDSDE(σ

N,M ) Y
0,x,N,M,I
t15 (σN,M,I)

128 18.253(1.068) 12.782(1.003)

512 18.166(0.453) 17.383(0.454)

2048 18.010(0.266) 9.325(0.174)

8192 18.006(0.109) 12.490(0.097)

32768 18.017(0.065) 12.858(0.049)

when t = 0

M Y
0,x,N,M
0,BDSDE(σ

N,M ) Y
0,x,N,M,I
0 (σN,M,I)

128 12.071(0.054) 20.496(1.421)

512 12.075(0.088) 27.093(0.654)

2048 12.122(0.218) 13.362(0.221)

8192 12.384(0.381) 11.878(0.101)

32768 12.791(0.903) 12.948(0.051)

In the previous tables, we test our algorithm for different examples of the function g (g1 and g2 are
dependent in z, g3 is independent of z).

We see on Figure 5.1 and 5.2 the impact of the function g on the solution; we variate N , M and δ

as in [84], by taking these quantities as follows: First we fix d1 = 40 and d2 = 180 (which means
that x 2 [d1, d2] = [40, 180] and in this case our continuous lipschitz assumptions are satisfied). Let
j 2 N, we take αM = 3, β = 1, N = 2(

p
2)(j−1), M = 2(

p
2)αM (j−1) and δ = 50/(

p
2)(j−1)(β+1)/2.

Then, we draw the map of each solution at t = 0 with respect to j. We remark from the figures
that numerical values of the BDSDE wit random terminal time coincide with that of the clasical
BDSDE after just few variation of the parameters. This allow us to think about performing the
rate of convergence of our algorithm by getting weaker estimates for the BDSDE (as Bouchard and
Menozzi for the classical BSDEs [21]).
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Figure 5.1: Comparisom of the BSDE’s solution, the BDSDE’s one and the solution of BDSDE

with random time for g1(x, y, z) = ln(x) + 0.5y + 0.1z. Confidence intervals are with dotted

lines.
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Figure 5.2: Comparisom of the BSDE’s solution, the BDSDE’s one and the solution of BDSDE

with random time for g2(x, y, z) = 0.5y + 0.1z. Confidence intervals are with dotted lines.
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       Résumé 

         L�objectif de cette thèse est l�étude de la representation 
probabiliste des différentes classes d�EDPSs non-linéaires 

(semi-linéaires, complètement non-linéaires, réfléchies dans un 
domaine) en utilisant les équationns différentielles doublement 
stochastiques rétrogrades (EDDSRs). Cette thèse contient 
quatre parties différentes. Nous traitons dans la premiére partie 
les EDDSRs du second ordre (2EDDSRs). Nous montrons 
l�existence et l�unicité des solutions des 2EDDSRs en utilisant 
des techniques de contrôle stochastique quasi- sure. La 
motivation principale de cette étude est la représentation 

probabiliste des EDPSs complètement non-linéaires. Dans la 
deuxième partie, nous étudions les solutions faibles de type 
Sobolev du problème d�obstacle pour les équations à dérivées 
partielles inteégro-différentielles (EDPIDs). Plus précisément, 
nous montrons la formule de Feynman-Kac pour l�EDPIDs par 
l�intermédiaire des équations différentielles stochastiques 
rétrogrades réfléchies avec sauts (EDSRRs). Plus précisément, 
nous établissons l�existence et l�unicité de la solution du 

problème d�obstacle, qui est considérée comme un couple 
constitué de la solution et de la mesure de réflexion. L�approche 
utilisée est basée sur les techniques de flots stochastiques 
développées dans Bally et Matoussi (2001) mais les preuves 
sont beaucoup plus techniques. Dans la troisième partie, nous 
traitons l�existence et l�unicité pour les EDDSRRs dans un 
domaine convexe D sans aucune condition de régularité sur la 
frontière. De plus, en utilisant l�approche basée sur les 
techniques du flot stochastiques nous démontrons  

l�interprétation probabiliste de la solution faible de type 
Sobolev d�une classe d�EDPSs réfléchies dans un domaine 
convexe via les EDDSRRs. Enfin, nous nous intéressons à la 
résolution numérique des EDDSRs à temps terminal aléatoire. 
La motivation principale est de donner une représentation 
probabiliste des solutions de Sobolev d�EDPSs semi-linéaires 
avec condition de Dirichlet nul au bord. Dans cette partie, nous 
étudions l�approximation forte de cette classe d�EDDSRs quand 

le temps terminal aléatoire est le premier temps de sortie d�une 
EDS d�un domaine cylindrique. Ainsi, nous donnons les bornes 
pour l�erreur d�approximation en temps discret. Cette partie se 
conclut par des tests numériques qui démontrent que cette 
approche est effective. 

 

          Mots clés: Equations différentielles doublement 

stochastiques rétrogrades, Equations aux dérivées partielles 

stochastiques non-linéaires, Problème d�obstacle, Domaine 

convexe, Simulations de Monte-Carlo. 

Abstract 

The objective of this thesis is to study the probabilistic 
representation (Feynman-Kac for- mula) of different classes of 
Stochastic Nonlinear PDEs (semilinear, fully nonlinear, reflected 
in a domain) by means of backward doubly stochastic differential 
equations (BDSDEs). This thesis contains four different parts. We 

deal in the first part with the second order BDS- DEs (2BDSDEs). 
We show the existence and uniqueness of solutions of 2BDSDEs 
using quasi sure stochastic control technics. The main motivation 
of this study is the probabilistic representation for solution of fully 
nonlinear SPDEs. First, under regularity assumptions on the 
coefficients, we give a Feynman-Kac formula for classical solution 
of fully nonlinear SPDEs and we generalize the work of Soner, 
Touzi and Zhang (2010-2012) for deterministic fully nonlinear 
PDE. Then, under weaker assumptions on the coefficients, we 

prove the probabilistic representation for stochastic viscosity 
solution of fully nonlinear SPDEs. In the second part, we study the 
Sobolev solution of obstacle problem for partial integro-differential 
equations (PIDEs). Specifically, we show the Feynman-Kac 
formula for PIDEs via reflected backward stochastic differential 
equations with jumps (BSDEs). Specifically, we establish the 
existence and uniqueness of the solution of the obstacle problem, 
which is regarded as a pair consisting of the solution and the 

measure of reflection. The approach is based on stochastic flow 
technics developed in Bally and Matoussi (2001) but the proofs are 
more technical. In the third part, we discuss the existence and 
uniqueness for RBDSDEs in a convex domain D without any 
regularity condition on the boundary. In addition, using the 
approach based on the technics of stochastic flow we provide the 
probabilistic interpretation of Sobolev solution of a class of 
reflected SPDEs in a convex domain via RBDSDEs. Finally, we 

are interested in the numerical solution of BDSDEs with random 
terminal time. The main motivation is to give a probabilistic 
representation of Sobolev solution of semilinear SPDEs with 
Dirichlet null condition. In this part, we study the strong 
approximation of this class of BDSDEs when the random terminal 
time is the first exit time of an SDE from a cylindrical domain. 
Thus, we give bounds for the discrete-time approximation error. 
We conclude this part with numerical tests showing that this 

approach is effective.  

Key Words: Backward Doubly Stochastic Differential 

Equations, Second order Backward Doubly Stochastic 

Differential Equations, quasi-sure stochastic analysis, 

Nonlinear SPDEs, Obstacle problem, Stochastic flow, 

Skorohod problem, convex domains, Monte Carlo method.  
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