"It doesn't matter what you do, he said, so long as you change something from the way it was before you touched it into something that's like you after you take your hands away. The difference between the man who just cuts lawns and a real gardener is in the touching, he said. The lawn-cutter might just as well not have been there at all; the gardener will be there a lifetime."

-Ray Bradbury, Fahrenheit 451

English abstract

Optomechanical systems, in which the vibrations of a mechanical resonator are coupled to an electromagnetic radiation, have permitted the investigation of a wealth of novel physical effects. To fully exploit these phenomena in realistic circuits and to achieve different functionalities on a single chip, the integration of optomechanical resonators is mandatory. Here, we propose a novel approach to heterogeneously integrated arrays of two-dimensional photonic crystal defect cavities on top of silicon-on-insulator waveguides. The optomechanical response of these devices is investigated and evidences an optomechanical coupling involving both dispersive and dissipative mechanisms. By controlling optical coupling between the waveguide and the photonic crystal, we were able to vary and understand the relative strength of these couplings. This scalable platform allows for unprecedented control on the optomechanical coupling mechanisms, with a potential benefit in cooling experiments, and for the development of multi-element optomechanical circuits in the frame of optomechanically-driven signal-processing applications.

Résumé en français

Les systèmes optomécaniques, dans lesquels les vibrations d'un résonateur mécanique sont couplées à un rayonnement électromagnétique, ont permis l'examen de multiples nouveaux effets physiques. Afin d'exploiter pleinement ces phénomènes dans des circuits réalistes et d'obtenir différentes fonctionnalités sur une seule puce, l'intégration des résonateurs optomécaniques est obligatoire. Ici nous proposons une nouvelle approche pour la réalisation de systèmes intégrés et hétérogènes comportant des cavités à cristaux photoniques bidimensionnels au-dessus de guides d'ondes en silicium-sur-isolant. La réponse optomécanique de ces dispositifs est étudiée et atteste d'un couplage optomécanique impliquant à la fois les mécanismes dispersifs et dissipatifs. En contrôlant le couplage optique entre le guide d'onde intégré et le cristal photonique, nous avons pu varier et comprendre la contribution relative de ces couplages. Cette plateforme évolutive permet un contrôle sans précédent sur les mécanismes de couplage optomécanique, avec un avantage potentiel dans des expériences de refroidissement et pour le développement de circuits optomécaniques multi-éléments pour des applications tels que le traitement du signal par effets optomécaniques.

Je remercie chaleureusement Antoine HEIDMANN et Vincent LAUDE d'avoir accepté de remplir le rôle de mes rapporteurs et de faire partie de mon jury de thèse.

I would also like to express my gratitude to Jean-Jacques GREFFET, Dries VAN THOURHOUT and Khaled KARRA Ï to kindly accept to be a part of the jury of my thesis defence and to make a long trip to LPN.

Je tiens à remercier Isabelle ROBERT-PHILIP de m'avoir offert l'opportunité d'effectuer cette thèse sous sa direction, dans une ambiance à la fois si conviviale et si riche scientifiquement ; ainsi j'ai pu profiter des connaissances, des savoir-faire, de la bonne humeur et du sens de l'humour de mon nouvel entourage pendant ces trois excellentes années. Isabelle, merci également pour nos batailles bureaucratiques et ta capacité extraordinaire à résoudre toutes sortes des problèmes en quelques mots et quelques minutes ; pour ton argot (un jour j'arriverai à le comprendre du premier coup), pour les calissons d'Aix et autres goodies, pour tes anecdotes, ta disponibilité et ta façon de voir les choses.

Je remercie Rémy BRAIVE d'avoir investi énormément de son temps sur moi et sur ce projet, de m'avoir transmis son envie de travailler en salle blanche, de m'avoir appris encore plus de choses autour de la manip et même un peu sur les relations humaines, et encore de supporter mon caractère jour après jour. Merci d'être quasiment le seul à ne pas hésiter à corriger mes erreurs de français parlé. Je te remercie pour toutes nous discussions autour de notre système 'à mille paramètres' et pour ta passion contagieuse pour la science et l'optomécanique en particulier (peut-être j'aurais pu apprendre encore plus de toi si on avait discuté d'autres sujets). En tout cas, tout cela a été particulièrement enrichissant pour moi.

Je remercie mes collaborateurs au laboratoire sans lesquels cette thèse n'aurait pas été possible. Merci à Isabelle SAGNES et Grégoire BEAUDOIN pour tous les substrats épitaxiés, pour tous les renseignements sur l'épitaxie et les gravures des substrats ; encore à Grégoire pour ton aide sur la spectroscopie FTIR et pour la découverte de 'Of Monsters and Men'. Merci à Rama RAJ et Fabrice RAINERI pour votre aide avec les reports III-V sur Si, merci d'avoir partagé un énorme savoir-faire en salle blanche, tous vos conseils, recettes et explications (et de m'avoir bien dépanné plusieurs fois en filtres et en substrats Si). Merci à Alessandro SURRENTE d'avoir partagé cette dernière année (la plus heureuse, car tout finalement fonctionnait) avec moi, de s'être beaucoup investi dans le traitement des données et dans la rédaction de l'article, mais aussi pour ta vision différente des choses, 7 qui m'a donné de nouvelles idées.

Je remercie Dominique MAILLY de m'avoir accueilli au sein de son laboratoire ; un grand merci à Agnès ROUX-PERRIN, Marina FERREIRA et Sandrine BOUVY pour leur aide précieuse avec des taches administratives. Mes remerciements vont aussi aux membres du service informatique : Lorenzo BERNARDI, Alain PEAN et Mehdi IDOUHAMD, pour toute votre aide avec les côtés 'soft' et 'hard' de la partie numérique de ce travail.

Merci à tout le personnel de la salle blanche d'avoir partagé leur passion et leur savoirfaire avec chaque nouvel entrant (y compris moi). Merci à Stéphane GUILET de m'avoir appris (presque) tout ce que je sais sur les gravures sèches, pour une belle initiation au nettoyage du bâti et pour ton aide précieuse pendant le développement de mes recettes. De plus, nos sorties running ensemble avec lpn-trail ont été des belles expériences pour moi. Merci à Lina GATILOVA pour tes conseils sur la gravure de GaAs et pour les métallisations urgentes ; merci d'avoir résisté à toutes les blagues de Stéphane et Christian et d'avoir organisé nos quelques pauses thé russophones avec Iryna ; merci en particulier de faire partie des russes ayant une vision sobre sur la vie. Merci à Christophe ROBLIN de m'avoir formé et aidé avec la lithographie optique et le bondeur. Merci à Laurent COURAUD pour les métallisations toujours bien réussies. Merci à Christian ULYSSE pour un beau sens de l'humour, ton attitude amicale et encore pour ton aide avec les échantillons pendant mon stage à l'ENS Cachan. Merci à Ahmad ITAWI pour son énergie fabuleuse, son caractère plus qu'ouvert et ses nombreux conseils.

Mes plus sincères remerciements à tous les membres du groupe NanoPhotonIQ et de ses prédécesseurs PEQ et PHOTONIQ. Merci à Avishek CHOWDHURY d'avoir brisé le climat francophone, ce qui m'as permis aussi peu à peu d'améliorer mon anglais parlé ; bon courage à toi sur notre voie de l'optomécanique intégrée. Merci à Robert KUSZELEWICZ pour les pauses déjeuners magnifiques pendant lesquelles je profitais des discussions sur la culture, la littérature, le cinéma, l'histoire etc. Merci à Sylvain BARBAY pour toutes nos discussions et ses suggestions à propos de l'optomécanique et les manips. Merci à Paul MONNIER pour toute ton aide et tes conseils sur LabVIEW, Python et mes autres jouets et en particulier d'avoir passé quelques jours ensemble pour 'craquer' le protocole de New Focus (ah oui, et pour quelques 'découvertes' dans la grande culture française). Merci à Vincenzo ARDIZZONE pour toutes les expériences PL que j'ai pu faire sur ta manip. Merci à Guillaume CROSNIER pour ton état d'esprit, pour nos pauses thé régulières et pour ton aide avec le design des nanobeams. Merci à toi et Philippe HAMEL de m'avoir fait redécouvrir le badminton. Merci à Aude MARTIN de m'avoir expliqué les particularités de la vie marseillaise et pour tes ambitions bien plus que motivantes. Merci à Alexandre BAZIN pour tes explications sur les guides intégrés et les nanobeams et pour ta thèse bien cool. Merci également à Iso ABRAM, Alexios BEVERATOS, Nadia BELABAS, Jean-Marie MOISON, Razvan NEGRU, Alejandro GIACOMOTTI, Samir HADDADI, Sébastien ALVO et Dorian SANCHEZ. Merci à Jordann GOVINDY et Carla SANNA pour leurs contributions pendant leurs stages.

Merci à tous les habitants du bureau D2-101 qui m'ont croisé pendant ces trois années, pour une ambiance joyeuse et parfois complètement folle. Foued SELMI, Armand LEBRETON, Avishek CHOWDHURY, Iryna GOZHYK, Inah YEO et même Michel DECHENAUD -tout cela a été exclusivement possible grâce à vous. Mes remerciements particuliers à Foued d'avoir été un élément incontournable de cette atmosphère, d'avoir partagé les moments durs de la rédaction, pour nos sorties tennis et même pour tes blagues presque innocentes. Thanks to Inah for your indestructible honesty, frankness and open mind, and of course for the great Korean tea and the discovery of mouthwatering Korean food; I only regret we did it that late.

Merci à Gilgueng HWANG pour son aide avec le séchage supercritique, la micromanipulation sous MEB et l'impression 3D et d'avoir été intarissable en histoires entre temps. Merci également à Hugo SALMON pour les consultations sur l'imprimante 3D et les matériaux à y utiliser.

Merci à Mehdi ALOUINI, Goulc'hen LOAS et toute l'équipe du Département Optique et Photonique à l'Institut de Physique de Rennes de m'avoir accueilli dans les meilleures conditions, merci pour toute votre aide avec l'ampli NATIF.

Merci à Iryna GOZHYK et Nicolas CHARLES de m'avoir beaucoup aidé dès mes premiers jours en France, de m'avoir fait découvrir et initier à la cuisine française (et un peu à la culture), merci pour tous les salons du vin ensemble, des déjeuners et dîners extrêmement délicieux, pour tous vos conseils, votre convivialité et cordialité. Merci en particulier à Iryna pour ton soutien pendant ma rédaction et mon stage à Cachan, de m'avoir poussé à découvrir beaucoup plus de choses et d'endroits que je ne pouvais imaginer, merci pour ton incroyable gentillesse. Merci à Iuliia STUPACHENKO pour ton soutien pendant mes premiers pas en français, merci d'avoir partagé ta superbe passion, pour tous mes 'devoirs', nos lectures, introduction à l'argot et verlan ; et pour tous les moments vraiment agréables de cette époque-là. Merci encore à Ivan, Maksym, Iuliia, Inna, Oleksandr, Vasylyna, Dmytro, Kévin, Leonhard, Sheon, Clément, Nina . . . pour les moments de ma vie en dehors de la thèse, bien que souvent on en discutait avec certains parmi vous.

I believe my life journey would not bring me to the start of this work without the support of my supervisors in National University of Kyiv -Eugene Smirnov, Yuri Pilgun, Sergiy Kolenov. I would like to express my gratitude to Oleksiy Nechyporuk for his precious help while preparing my papers for both French trips, for his attitudes and philosophy, but also for the great times with a bunch of (radio)physicists somewhere in the Crimean mountains.

I would like to thank my family and all my friends in Ukraine, France and those dispersed elsewhere around the world for their encouragements during this work and not least during its last phase. Thanks to my loveliest architect Oksana Chebina for supplying a dose of my everyday inspiration, for suggestions concerning the design part and for being around always when I need it.

Finally and foremost, I am infinitely grateful to my mother for complete freedom of choice I always had and for being such an extraordinary example of kindness. General motivation of this PhD thesis is the development and experimentation on heterogeneously integrated optomechanical system. This system consists of an optomechanical suspended membrane, bonded over a silicon access waveguide. This hybrid threedimensional approach can be extended to a wide variety of materials for the active device part (here III-V semiconductor), combined with compact, efficient, fully controlled and flexible optical access channel on chip. Embedding photonic crystal lattice in the optomechanical membrane brings even more versatility to our system, both from the optical and mechanical points of view. The designed system will have great scaling capabilities and can be itself easily integrated within larger circuits, paving the way towards multi-cavity and multi-resonator coupling, synchronization and further multimode optomechanical experiments. In this Introduction, we briefly describe the significance of this work and its position in the field of cavity optomechanics with micro-and nano-objects.

Optomechanics 1.Foundations

The field of optomechanics explores the interaction between light, or electromagnetic waves, with the mechanical motion. Such an interaction becomes considerable at microand nanoscale, where the effective mass of the mechanical oscillator can be significantly reduced. Cavity optomechanics [Kippenberg 2007;Aspelmeyer 2013] encapsulates light interactions with a mechanical resonator within a cavity (e.g., optical) in order to resonantly enhance the interaction strength. laser drive optical cavity mobile object Figure 1.1: Schematic illustration of a generic optomechanical resonator in the optical domain consisting of a laser-driven Fabry-Pérot cavity, where one of the mirrors is fixed (left) and other is spring-mounted (right) and free to move.

To illustrate the simplest case of optomechanical interaction based on electromagnetic field enhancement by an optical cavity, one typically uses a model based on a Fabry-Pérot resonator where one of the mirrors is attached to a spring and free to move, as shown in Figure 1.1. Laser drive, coupled inside the cavity, may feed a confined optical mode, exerting a force on the mirrors through the radiation pressure [START_REF] Lauter | Pattern phase diagram for two-dimensional arrays of coupled limit-cycle oscillators[END_REF]Nichols 1901]. As a result, the displacement dx of the moveable mirror (along the axis of the cavity with a frequency f m ) modifies the length L of the resonator (the spacing between the mirrors), and thus changes the resonance frequency (ν 0 = c/2L for the fundamental mode) of the optical cavity. This in turn changes the intracavity circulating power and the radiation pressure force becomes weaker, therefore resulting in backward movement of the free mirror. The described effects are commonly referred to as dynamical backaction. The backaction cycle repeats as long as there is light inside the cavity, and can last during some period of time after the laser drive shut-off, depending on the photon lifetime τ inside the resonator.

From this simplest picture of optomechanical interaction in the Fabry-Pérot cavity involving the radiation pressure force, the field of optomechanics extends to a wide variety of systems including another types of light -matter couplings inside a monolithic cavities (e.g., via gradient force, electrostriction, photoelastic effect etc.).

Relevant parameters of optomechanical systems

In our example of generic optomechanical resonator (Fig. 1.1), for a given displacement dx the frequency of the optical mode will shift by ν 0 • dx/L = dν 0 . In this case, in order to maximize the effect, one should use the largest possible frequency ν 0 (while taking into account the limitations related to technical issues such as detection efficiency) and the smallest possible cavity length L. From another side, the frequency shift dν 0 of the optical cavity due to optomechanical coupling will result in a phase shift for the cavity photons, proportional to the their lifetime τ . The technique to measure the displacement involves a mixing of such phase-shifted photons from the cavity with reference photons and measuring their interference; as such, it is beneficial to maximize the accumulated phase shift as well via the increase of the photon lifetime. The quality factor Q of the optical cavity, is directly proportional to the photon lifetime Q = 2πν 0 τ and, as can be seen from the formula, the Fabry-Pérot cavity lengthening increases Q (assuming no losses occur in the space between the mirrors) and cancels the induced reduction of optomechanical coupling, which makes the displacement sensitivity independent of cavity dimensions. This fact allowed the successful implementation of kilometre-(L, cavity length in free space) and kilogram-scale (m) optomechanical systems in gravitational wave interferometers (Fig.

1.2a).

Either in fundamental or applied field, general trend for the mechanical device part is for increasing its operation frequency f m , leading to the decrease in size and switching from free space to monolithic cavities. In the case of monolithic optical resonators, which now represent the majority of optomechanical devices, another set of parameters becomes crucial. The following list summarizes the relevant optomechanical quantities for the monolithic devices in some typical experimental implementations, described in Section 1.1. These are the mechanical resonator mass m (in some cases the effective mode mass m eff ) and frequency Ω m = 2πf m ; the dissipation rates of optical (γ = ν 0 /Q ∝ 1/τ ) and mechanical (Γ m = Ω m /Q m ) resonances; the "Q m • f m " product for the mechanical resonance; the sideband suppression parameter γ/Ω m ; and the vacuum optomechanical coupling rate g 0 , corresponding to the single-photon frequency shift due to the optomechanical interaction.

The reduction of the resonator mass m and increase of its vibration frequency f m are generally achieved by shrinking its dimensions, i.e., its length L, as introduced before. Maximizing the "Q m • f m " product, describing the device decoupling from its thermal environment, the mechanical quality factor, directly proportional to the phonon lifetime, can be increased by working on main loss channels, e.g., by designing a system with the lowest possible clamping losses or reducing the intrinsic losses by cooling the resonator down to the cryogenic temperatures. The optical (photon) dissipation rate γ = ν 0 /Q is minimized by enhancing the quality factor of the optical resonator. Contrary to the Q independence on resonator length L in the free-space cavity, described above, the losses in monolithic cavities are usually dominated by scattering and absorption in the material where the light propagates, thus shrinking the cavity dimensions (L) can reduce the impact of these phenomena.

Fields of applications

The essential effect of the optomechanical coupling hence is the fact that a mechanical displacement of the cavity induces a change in the state of light. Potential fields of applications cover on one hand fundamental physics studies, eventually going beyond the regime of classical physics or combining otherwise incompatible degrees of freedom of different physical systems in a hybrid quantum device. Optomechanical systems propose a basis for the applications in quantum information processing, serving as a coherent interface between light and matter qubits. Optomechanics is also exploited in metrology for implementing high precision measurements for the optical detection of displacement, mass, force, acceleration, etc. and the use in radio frequency devices as integrated clock sources.

From the point of view of fundamental physics, several aspects of cavity quantum optomechanics were explored both theoretically and experimentally, e.g., optomechanical squeezing of light [Fabre 1994;Mancini 1994], quantum non-demolition measurements [START_REF] Jacobs | [END_REF]Pinard 1995], non-classical (i.e., with the statistics other than Gaussian) and entangled states of light and mechanical motion [Bose 1997;Mancini 1997] etc. Optical cooling of mechanical oscillators using optomechanical interaction, proposed first to cool atomic and molecular motion [START_REF] Hechenblaikner | [END_REF]], was experimentally demonstrated by cavity-assisted radiation pressure cooling of a macroscopic mirror [START_REF] Cohadon | [END_REF]]. Alongside with the demonstration of optomechanical couplings in numerous system from macroto nanoscale, laser cooling of nano-optomechanical resonator has allowed to experimentally reach its quantum ground state [Chan 2011]. Such experiments in optomechanics have inspired the research on analogous effects in electromechanical systems, where the control of mechanical oscillator is achieved by capacitively coupling the mechanical motion to a microwave cavity [Regal 2008]. Almost simultaneously with optics, ground state cooling in an electromechanical system was experimentally demonstrated [Teufel 2011], for a mechanical resonator operating in MHz frequency range1 unlike the similar optomechanical experiment [Chan 2011] for a mode at the frequency of GHz.

Another application of optomechanical interaction, exploring the radiation pressure force, is related to high-precision measurements of displacements allowing for the exquisite sensitivity, e.g., in gravitational wave detectors such as LIGO [Barish 1999] and VIRGO [START_REF] Acernese | [END_REF]], with the standard quantum limit for the continuous position detection, established in [Braginskii 1977;[START_REF] Braginsky | [END_REF] works.

Development of high-quality optomechanical resonators allowed as well for their implementation as on-chip integrated radio frequency (RF) oscillators with high spectral purity. Such optomechanical oscillators, featuring direct coupling to continuous-wave light field input from one side and attainable high operation frequency Ω m and high quality factor Q m , are good candidates for frequency reference in radio-frequency-photonic architectures.

Two different implementations exist: phase-locking to an external frequency reference and self-referenced optomechanical microwave oscillators. Already existing experimental realizations [HosseinZadeh 2008;[START_REF] Zheng | [END_REF]] demonstrate that the frequency and phase of an optomechanical oscillator within certain lock range can be locked to those of an external electronic oscillator, or any other signal that can modulate the power of input optical field (similar to what is done in the optical domain with lasers). Injection locking of an optomechanical to an electronic RF oscillator enables combination of the former with electronic devices and may have interesting applications in certain RF photonics and micro-opto-electro-mechanical systems. In addition, the non-electronic nature of optomechanical devices makes them insensitive to any electromagnetic interferences and good candidates for all-optical systems, also in view of experimental demonstration of such devices, compatible with CMOS platform [Luan 2014].

Optomechanical devices with coherent switching can be as well used as a non-volatile memory [Cole 2011;Bagheri 2011;Dong 2014] with the dimensions down to nanoscale, allowing for large scale integration, high speed operation and low power consumption. The potential applications of such devices cover controlled optical switches, logic gates and actuators.

Motivation behind micro-and nanoscale devices

From applicative point of view, the experimental realizations, listed above, show good performances in the MHz working range; most of them, however, would benefit from an extension to the GHz frequency range, where several optomechanical systems [Chan 2011;Ding 2011;Gavartin 2011;Sun 2012] have already been shown.

As an example we can state the sensing domain, where the acquisition times are limited by the device operation frequency not exceeding the MHz range. Moving to the GHz platform would open a new frontiers for such applications, e.g., in the field of bio-sensing. The same discussion holds for the on-chip signal processing and RF photonics, where the increase of the operation frequency is highly desired. Another example are the clock references, used in metrology and navigation. Current solutions with an electronic oscillator that is regulated by a quartz crystal are limited to the MHz range, and a creation of novel sources operating at GHz frequencies will lead to the considerable performance increase for the mentioned applications. In terms of more fundamental applications, increase of the frequency relaxes the requirement on the temperatures for reaching the quantum regime. This provides the motivation behind the micro-and nanoscale devices, where the higher mechanical frequency f m is attained when shrinking the resonator sizes and therefore its motional mass m. Moreover, in such devices a high optical quality factors can be attained in very small (down to diffraction limit) optical resonators. The drawback of the system size reduction is that a concomitant effect, usually observed, is the reduction of the mechanical quality factor Q m , while most of the aforementioned applications require low mechanical losses. Therefore, most of the work in this context is concentrated on the design and fabrication of high-frequency and high mechanical Q m resonators; some of them are described in the following Sections.

Some optomechanical systems

All aforesaid shows a big impact of device mass, whose decrease generally may lead to the enhancement of several stated optimization parameters (f m , Q, Q m • f m ). This Section provides a non-exhaustive large overview of the kinds of systems used in the field of optomechanics (see Figure 1.2), classified with respect to the mass m of mechanical oscillator, or to the effective motional mass m eff of the mechanical mode of interest, which is one of the relevant parameters to the optomechanics experiment and can be one of the classification criteria.

From macro-to microscale

The largest scale -both in weight and in size -among the existing optomechanical systems is represented by the end-mirrors in the set-ups employed for the detection of gravitational waves (Fig. 1.2a). For a given example from GEO 600, the test mass silica mirror of 5.6 kg [Adams 2014] weight is suspended at the end of one arm of the Michelson interferometer. The smaller and more lightweight versions of such devices were experimented as well, going down to grams (Fig. 1.2b) and milligram (Fig. 1.2c) suspended mirrors. Shrinking dimensions of the reflective surfaces further down require micro-structuration techniques and deposition of a reflective layer or a stack of layers, creating a Bragg mirror, which allowed to achieve a few hundreds of micrograms (Fig. 1.2d) and few tens of nanograms (Fig. 1.2e) objects. This tendency ultimately resulted in significant decrease in area to be addressed by a light beam and resulted to the development of systems, that can itself confine lightoptomechanical systems with monolithic optical cavities, reaching eventually the diffraction limit. One of the pioneer works was related to the use of toroidal microcavities (Fig. 1.2f), which support both high-Q optical resonances and high-Q m radial breathing modes when held by a thin 'needle' pillar.

Down to nanoscale

One of the first works on nanoscale devices featuring an optomechanical interaction [Roels 2009] exploited the optical gradient forces between two partially suspended nanophotonic waveguides. Here, the light confinement was achieved only along the two directions for the propagating optical mode. In order to benefit further from light confinement, diffractionlimited optical cavities, allowing for an enhancement of the electromagnetic field, were further developed in the frame of optomechanical experiments.

Still considering a flexural vibration of frequency f m and a fixed mechanical properties of materials (mass density ρ and bulk modulus B), the smallest system size, that still support mechanical resonance of wavelength Λ m , is approximately (Λ m /2) 3 , where Λ m = [Neben 2012] and (c) milligram-scale [Matsumoto 2013] suspended mirrors, analogous to the (a) device. (d) Double-clamped beam with mirror coating [Arcizet 2006a;Arcizet 2006b]. (e) Bragg mirror, coated on top of a doubly-clamped beam [Gröblacher 2009]. (f) Microtoroidal resonator on a thin pillar [Schliesser 2008b]. (g) 'Zipper' cavity optomechanical system, consisting of two doubly-clamped photonic crystal beams [Eichenfield 2009a]. (h) Two doubly-clamped nanobeam resonators, embedded inside a defect cavity within two-dimensional photonic crystal lattice [Sun 2012]. (i) Schematic of an optomechanical experiment with ultracold atoms [Purdy 2010;Camerer 2011]. All figures are adapted from the corresponding references.

c * /2πf m , and c * = B/ρ is the speed of sound in material. As for the optical part, the equivalent criterion applies: the smallest monolithic cavity volume, where an optical mode of wavelength λ 0 can exist, is approximately (λ 0 /2n) 3 , where n is the refractive index of material and λ 0 = c/2πν 0 with c as the speed of light in vacuum. Several diffractionlimited optomechanical systems were designed, among which photonic crystals, that allow to efficiently control the light propagation and confinement at micro-and nanoscale. An example of picogram weight scale is a pair of one-dimensional photonic crystal nanobeams (Fig. 1.2g), or so-called 'zipper' cavity, whose high optomechanical coupling was achieved through a design insuring a high overlap between the optical mode of a defect cavity in the beam centre and its flexural mechanical modes. The same technique was used to decrease even more the size of mechanical oscillator down to few tens of femtograms weight and increase its frequency up to GHz range. Such a mechanical oscillator would no more support an optical mode in the usual working range of wavelengths (visible of near infrared), but its motion still introduces a perturbation within an optical cavity, opening a way for a new category of "NEMS2 -in-cavity" devices, based on optomechanical interaction at the nanoscale.

The last example (Fig. 1.2i) represents mechanical object weight of the order of zeptogram (10 -24 kg), referring to optomechanical experiments with ultracold atoms, trapped within a standing optical wave [Purdy 2010]. A cloud of such ultracold atoms can be as well coupled to the motion of a free-standing micromechanical membrane [Camerer 2011] (as shown in illustration), where both the effects of backaction of the atomic cloud on membrane motion and vice versa are observed. Such set-up can be used for sympathetic cooling of the membrane motion to quantum ground state.

In this work we choose to work with an optomechanical system, able to confine light within the material, in a diffraction-limited optical cavity, created inside a two-dimensional photonic crystal. In the following Section we provide a brief overview of existing photonic crystal systems for optomechanical purposes.

Photonic crystals for optomechanics

Photonic crystal (PhC) describes a natural or artificially created system being able to control locally the propagation of light [Joannopoulos 2011]. In general, they are materials which have a periodicity in dielectric constant ε in one or more dimensions. Such a variation, introduced at the optical wavelength scale, can allow to control the light propagation in such a periodic structure along chosen direction(s). In analogy to band gaps for electrons in semiconductor crystal lattice, PhC lattices can as well be designed to prohibit the propagation of photons with certain energies. These forbidden photon energies, or the corresponding wavelength range, represent a photonic band gap (PhBG) [START_REF] Yablonovitch | Inhibited Spontaneous Emission in Solid-State Physics and Electronics[END_REF]John 1987]. If a defect cavity with an optical mode, which frequency ν 0 is situated inside the photonic band gap (PhBG), is created within a PhC lattice, such mode will be highly confined and will show high lifetimes for photons, since no mode can accommodate them within the surrounding lattice. Such system has been intensively employed in various fields and applications from single photon sources [Laurent 2005] to nonlinear optics [START_REF] Bazin | [END_REF]]. Only recently, in 2009, it has been used in the frame of optomechanics [Eichenfield 2009a;Eichenfield 2009b]. This concept is used in all of the systems, presented in this Section, in view of creating an optical cavity, embedded into an optomechanical device.

One-dimensional photonic crystal beam cavities

Several designs of one-dimensional photonic crystal optomechanical beams exist (Fig. 1.3ad,g,i), allowing essentially to achieve a very high-Q optical resonances by introducing an adiabatic tapering for the localized defect mode. Light confinement is achieved by the refractive index periodicity along the beam direction and total internal reflection along two remaining axes. At the same time, such structures exhibit some mechanical modes, localized within the beam middle (so that phonon tunnelling losses to the supporting structure are minimized) and thus often efficiently coupled to the optical mode, resulting in strong optomechanical coupling. Original ideas for further enhancement of the optomechanical coupling strength aimed at a reduction of mechanical clamping losses, strongly impacting even the vibrational modes, localized within the central part of a beam. The 'zipper' cavity [Eichenfield 2009a] as a combination of two 1D photonic crystal nanobeams [Eichenfield 2009b], allowed to create an phononic band gap (PhBG) alongside with the existing photonic one. Consequently achieved reduction of mechanical losses for a particular vibration with frequency f m inside the PnBG and reduced effective motional mass of this mode (from ∼ 10 pg to ∼ 50 fg) have resulted in a dramatically increased force sensitivity of the final optomechanical system. In addition, this made the photonic crystal systems to possess the lowest effective motional mass among the existing monolithic optomechanical devices, overcoming the performances of microtoroid realizations [Kippenberg 2007;Schliesser 2008b] (Fig. 1.2f). Following this achievement, a system combining two of such 'zipper' cavities, coupled to a tapered waveguide with PhC mirror termination [SafaviNaeini 2013], was demonstrated; such device can operate as a squeezed light source, created by the optomechanical coupling. Later, a single-beam design of 1D structure, named phoXonic crystal [START_REF] Maldovan | Sound and heat revolutions in phononics[END_REF]], was proposed and implemented experimentally [GomisBresco 2014], featuring two full PnBG in the GHz range and a PhBG for TE optical polarized optical modes. Splitting a suspended beam, as in case of the 'zipper' cavity, was re-used in a transverse direction to create a split-beam nanocavity [Wu 2014]. Resulting device demonstrated a strong modification of the optical mode, confined in its middle, by the movement of each ends of the splitted beam.
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Another approach for the enhancement of mechanical Q m factor consists in attaching a resonant structure to the phononic shield (Fig. 1.3d) -a lattice, exhibiting a full acoustic band gap around the mechanical frequency of interest [Chan 2011]. This technique allows to perform a separate optimization of mechanical losses, while not compromising the optical properties of the defect cavity mode. In addition, such a phononic shield can be conceived for the enhancement of an arbitrary mechanical mode(s) of a nanobeam by adjusting the frequency of PnBG.

Photonic crystal slabs

One refers to photonic crystal slabs [Joannopoulos 2011] when considering a structure that is able to confine light in all three dimensions by a combination of two-dimensional periodicity (hence band gap) and a finite thickness in vertical direction for index guiding (via total internal reflection). Defects in such structures can be used to create optical waveguides and cavities. In optomechanics applications the hole slabs are used (contrary to rod slabs), providing the ability to suspend the resonator and optimize its clamping losses.

Both types of defects in photonic crystal slabs -cavity and waveguide -were employed in optomechanical devices. A defect L3 cavity formed inside a PhC slab membrane (three missing holes in a line) was supplemented by a nanobeam within the cavity core (Fig. 1.3e), which allowed to obtain a high-frequency mechanical resonator inside a strongly confined electromagnetic field. Such inclusion resulted in an important decrease of the cavity optical Q factor, therefore one line of holes (see Fig. 1.3e, middle line) was modified in order to restore the good optical properties (final device Q ∼ 56 • 10 4 ). A defect cavity inside a W1 waveguide (one line of holes missing) inside a PhC slab membrane was split in two parts along the waveguiding axis, crossing the middle of the optical mode (Fig. 1.3f), so that the mechanical motion strongly impacts its spatial distribution and therefore results in an important optomechanical coupling.

Simultaneous localization of photons and phonons in two-dimensional periodic structures with square arrangement was only demonstrated theoretically by now for L1 (one missing hole) [Maldovan 2006;Rolland 2012], for L3 (three missing holes in a line) and cross defect cavities [Jallal 2013]. Hole slabs of hexagonal arrangement with parameters suitable to obtain a PhBG in visible or infra-red ranges do not show any PnBG. The last of our examples is also based on the model of defect cavity inside a W1 waveguide, but extends to the field of phononic crystals, being designed to possess both acoustic and photonic band gaps (Fig. 1.3h). A hexagonal lattice, used in examples in Figs. 1.3e,f, origins in light confinement within the defect cavity, whereas a special type of unit cell -a snowflake -allowed to create a phononic band gap in the GHz range -first experimentally demonstrated phoxonic crystal slab device [SafaviNaeini 2013].

Integration in optomechanics: state of the art

The devices, described in the previous Section, all have an optical cavity, whose mode takes part in the optomechanical interaction. Traditionally this cavity is fed with a light coming from a probe laser, coupled to a taper fibre, which brought into the cavity evanescent field (all examples shown here, except the one in Fig. 1.3i). Such fibre requires custom preparation (central part is required to be much thinner than an ordinary fibre in order to couple to the cavity mode) and precise alignment with respect to the probed sample in three dimensions (in-plane to spatially match the cavity and vertically to achieve a proper coupling) with precision down to tens of nanometres. This complicates the experimentation of the device and adds several important restrictions: e.g., two optical cavities are hardly addressed at a time, the coupling conditions between the fibre and the cavity is unlikely to be reproduced, further integration of such devices is virtually impossible etc.

To overcome these restrictions, the existing systems use an integrated access channel, represented by an optical waveguide, which allows to efficiently address an optomechanical resonator at nanoscale. From the fabrication point of view, the easiest solution to implement was a rectangular profile waveguide with input and output grating couplers to couple to the experimental set-up scheme (Figs. 1.4a,b). All of the realizations found As a consequence of in-plane arrangement both waveguide and optomechanical resonator have to be made within the same layer, i.e., of the same material. This may induce additional optical losses due to low confinement of guided mode when using materials with low refractive index, therefore restricting the material choice for the resonator. The mode confinement in the waveguide is achieved by the index guiding principle; the simplest case is a high-index rectangle on top of a low-index substrate, e.g., silicon on SiO 2 (also known as SOI). The majority of present integrated devices are made of silicon (Figs. 1.4a,d,e), allowing to take advantage from the CMOS processing expertise. However, silicon is limited to wavelengths above 1.1 µm and does not allow device operation in the visible spectrum range where low-noise lasers are conveniently available. Moreover, its relative narrow electronic band gap also makes silicon optomechanical devices susceptible to strong twophoton absorption and free carrier absorption, which often lead to strong thermal effects that limit the device stability and cooling performance [Pernice 2011;SafaviNaeini 2011a].

Few of another materials appeared recently in the integrated optomechanical experi-ments: these are diamond [START_REF] Rath | [END_REF]] for its exceptional mechanical properties (Young's modulus of about 1 GPa) and aluminium nitride (AlN) [Xiong 2012;Bochmann 2013] (Fig. 1.4b) for low mechanical loss and high electromagnetic coupling strength, desired for electrically tunable optomechanical systems. To perform active photonic functionalities, impossible with silicon, gallium arsenide (GaAs) has in recent years found new applications in integrated optomechanical systems (Fig. 1.4c) exploiting a combination of high optical and mechanical quality factors [Ding 2011;Baker 2011]. Another III-V semiconductors like indium phosphide (InP) or gallium nitride (GaN) exist, allowing to achieve a light generation and wavelength conversion on chip, however, no integrated optomechanical devices were realized.

For the in-plane arrangement using one of the mentioned materials (diamond, AlN, GaN, etc.) important optical waveguide losses, in the material and due to fabrication imperfections (increased sidewalls roughness compared to silicon devices), make one reduce the dimensions of the waveguide, resulting in the designs like in (Fig. 1.4b).

Splitting the integrated access waveguide and the optomechanical resonator into two different levels may allow for complete flexibility when choosing the materials for each of the components. In addition it makes one more flexible when designing an optomechanical device, since the optical cavity from any resonator location can be addressed; in the same vein multiple cavities within one or several resonator can be addresses at a time using such access waveguide level, which is desirable for the development of multi-element optomechanical circuits in the frame of optomechanically-driven signal-processing applications. Designing a strongly coupled optical system using the waveguide and cavity modes, one can achieve an important optomechanical coupling of both dispersive and dissipative natures due to the modification of waveguide -cavity distance by the mechanical motion of the resonator. Having the full control over the waveguide geometry, it is then possible to control and tailor the different types of such optomechanical couplings on a single chip.

Concept of our device

Following the above-mentioned reviews in order to answer the raised questions we propose a system (Fig. 1.5) which will consist of a two-dimensional photonic crystal membrane made of InP, a III-V semiconductor material with direct band gap, allowing to embed a defect optical cavity to confine the light. Such material choice allows to have an active medium inside our device, such as quantum dots or quantum wells, for the integrated broadband light source, whose emission properties such as wavelength and linewidth can be widely tuned by the means of the optical cavity design. Mechanical motion of both the membrane and the cavity core will impact the optical properties of the defect cavity via different optomechanical effects. In order to efficiently feed the light into and from the cavity we design an integrated access waveguide in silicon-on-insulator, having all advantages of silicon photonics and much lower losses compared to the membrane material. The membrane will be vertically stacked over the waveguiding circuit, which has two principal advantages compared to the in-plane access: first, the 'active' device part (i.e., where the optomechanical interaction occurs, in our case represented by the PhC membrane with cavity) and the access waveguide can be made of two different materials, allowing to choose the one with the optimized properties for each of these components; second, the in-plane access allows to efficiently couple to the optical modes situated in the close proximity of the waveguide, i.e., at or close to the edge of the optomechanical resonator, whereas our addressing configuration allows to address an arbitrary cavity location (or multiple locations) and gives full control over the mutual optical coupling and allows for flexible design of the 'active' device part. A sacrificial layer between the InP and SOI levels will be employed for the membrane suspension; a precise control over its thickness using the standard fabrication techniques will allow to have a full control over light coupling between the waveguide and the cavity and over the strength of the external optomechanical interactions, occurring while the latter coupling is modulated by the membrane motion.

We will rely on the hybrid integration approach, developed in the laboratory in collaboration with Ghent University [Roelkens 2008;Karle 2010], allowing for interfacing photonic crystal cavities via an integrated access channel. Such approach enabled for multiple novel applications in the field of nanophotonics. This work aims to extend its implementation to optomechanics experiments.

Organisation of the manuscript

Chapter 2 focuses on the theoretical description and simulation of optical and mechanical properties of our device alongside with the different optomechanical interaction mechanisms involved, which allows to understand and to explain the latter. It includes the designs of the photonic crystal membrane in the case of operation as a deformable endmirror and in the integrated configuration, embedding a defect cavity. We describe the different regimes of optical coupling in the configurations with the integrated waveguide 1.6. Organisation of the manuscript and their optimizations in view of achieving an efficient energy routing within the device. Next, the two families of mechanical modes are considered with the design proposals in order to control the mechanical dissipation in both cases. Analytical model describing the cavity response mediated by each of the optomechanical coupling mechanisms is depicted, including the intra-cavity couplings and the external ones, governed by the presence of the access waveguide, coupled to the cavity. The strengths of such couplings are simulated with the respective models with the description of tailoring mechanism for the external case. Finally, we review the obtained design characteristics in view of the possibility of optimizing the optomechanical cooling of our mechanical resonator.

Chapter 3 reviews the fabrication challenges and provides the details of device fabrication concerning its integrated configuration. It includes the heterogeneous integration of two principal layers, silicon and III-V semiconductor, for their further deterministic coupling; design of the waveguiding circuits for the efficient operation within our working wavelength range and for the efficient coupling to the experimental set-up scheme; the principal processing stages of optical and mechanical device components with the resolution of the principal encountered complexities and obstacles.

Chapter 4 describes the experimental characterization of the optical and mechanical properties of the fabricated device and of the optomechanical couplings and related effects. Two configurations are explored: suspended deformable photonic crystal mirror and integrated PhC slab cavity, coupled to the access waveguide. First allows to identify the mechanical modes, study the different mechanisms of mechanical losses for the flexural vibrations and verify the design optimizations, proposed in Chapter 2 for the reduction of the clamping losses. In the integrated configuration we perform the measurements of the dispersive and dissipative contributions to the intrinsic and external optomechanical couplings and review the limitations of such experimental identification compared to the numerical approaches. The calibration of the measured spectra of the Brownian motion is performed in order to experimentally determine the vacuum optomechanical coupling strength. Finally, we include the studies on system operation in non-linear optical regime in the presence of the optomechanical transduction mechanism, allowing for the system preparation to the bi-stable mechanical regime.

Chapter 5 gives general conclusions on the performed work and describes the potential system evolution and targeted future experiments.

In Appendix A we propose a development of another optomechanical membrane device, combining the tailored mechanical properties (an additional tensile strain, induced by a lattice mismatch between the membrane and host substrate materials) with light mass of the few hundred nm thick suspended layer. We investigate the alternative materials for such a system, combining the advantages of planar dielectric membrane resonators (i.e., low optical losses in near infrared range, ability to tune the resonator stress state [Sankey 2010]) and the electro-optic properties of compound semiconductors [Liu 2011] (allowing the use of embedded light emitters, photothermal, photoelastic effect) in order to be exploited for quantum optical control of massive mechanical systems. This chapter presents the main concepts and the theoretical studies that were carried out on the optical and optomechanical couplings within the heterogeneously integrated PhC defect cavity -SOI waveguide system. The system optical and mechanical designs are discussed together with the corresponding approaches for their numerical simulation. Then we study the optomechanical coupling occurring in the chosen architecture and the nature of the various involved interaction mechanisms. This system enhances both the dispersive and dissipative couplings; their respective contributions are evaluated in view of reaching an optimal ground state cooling implementation.

Optical properties of photonic crystals for optomechanics

2.1.1 External and embedded cavities using photonic crystal

Let's consider a photonic crystal lattice, which represents a 2D periodic medium with a high-contrast variation of the refractive index between a dielectric material and the surrounding air. This variation can be described by a spatial distribution of the dielectric constant ε( r). If we trace the solutions for the wave vector values along all directions within the crystal (following the Γ-M-K-Γ trace in the reciprocal space, see Fig. 2.1), we obtain a so-called photonic band structure, describing the dispersion of eigenmodes for the structure under study. The shaded band structure area in Fig. 2.1, called the light cone, is the projection of all states that can radiate in the air [Joannopoulos 2011]. With the analogy to an electronic band gap, our crystal has a photonic band gap (highlighted in dark grey), where at certain frequencies light is not allowed to propagate. By making use of photonic band structure and some of the crystal Bloch modes, we can design it for a specific application in optomechanics, where it can become a highly reflective end-mirror for an external cavity or hold a defect cavity, which confines the optical mode within a small volume inside the PhC slab. The example band structure given in Figure 2.1 represents a particular 2D PhC lattice with equilateral triangular (hereinafter triangular) arrangement, but the concepts we describe below can be applied generally to any type of lattice and any crystal dimensionality.

Using the two superposed modes with flat dispersion at Γ point (Fig. 2.1a), we can make a PhC mirror, operating at normal incidence, with very high reflectivity at the corresponding mode wavelength (e.g., R > 99.8% for 50 nm band around 1064 nm for a rectangular lattice 2D PhC slab membrane from [Makles 2015]). From another hand, we can use the photonic band gap and design inside it a mode of an embedded cavity (Fig. 2.1b), created by introducing a defect in our perfect lattice (e.g., by removing or changing the size of one or several holes). In this latter case, the interference effects on the surrounding media with a periodic refractive index for the cavity eigenmode will allow to get an important electromagnetic field enhancement inside the defect optical resonator, leading to high optical Q factor.

If this cavity is integrated inside a suspended PhC membrane, one gets in addition a high refractive index contrast along the direction perpendicular to the membrane plane and thus a high mode confinement in the vertical direction. This mode confinement due to the total internal reflection on the interfaces between membrane dielectric and air not only allows for the engineering of high-Q cavities with ultimate volume (V ∼ (λ/n) 3 with λ for wavelength and n for the refractive index of dielectric material), but also for highreflectivity of a PhC mirror for a plane wave at normal incidence. According to the chosen optical cavity type, the PhC device will be probed in a different ways. If a suspended PhC mirror is considered, its mechanical motion can be read out in the interferometric (e.g., Michelson interferometer) set-up, or with an external Fabry-Pérot resonator [Makles 2015], where a highly-reflective PhC membranes serves as one of the mirrors. When optically addressing a defect PhC cavity, one can employ an access waveguide brought in its evanescent field [Aspelmeyer 2014], in either a taper fibre or integrated configuration.

Photonic crystal slab mirror

As it was introduced above, the two-dimensional photonic crystal lattice of a finite thickness (i.e., PhC slab) can be addressed in two distinct ways in order to probe the device mechanical motion. In the first case, the probe light is being reflected from PhC lattice at normal incidence.

This section is focused on the optical design and simulation of such a device -a photonic crystal slab membrane employed as a high-reflectivity mirror (R > 99%) for the wavelengths around 1064 nm and at normal wave incidence.

In our study the PhC hole slab membrane is made of InP, with the main geometrical parameters described in Fig. 2.2. The square lattice is defined by a hole radius r, a slab thickness t (along z direction) and a lattice period a, which corresponds to the distance between the centres of two adjacent holes. Main optical property of the structure -its refractive index (RI) n = √ ε, is taken to be n InP = 3.3 at 1064 nm [Fox 2001], whereas the RI of air for the etched holes as well as for the space above and below the membrane is n air = 1. Discontinuities in the spatial distribution ε( r) of the dielectric constant make impossible to solve analytically the Maxwell's equations for electromagnetic wave propagation in such kind of system. The numerical methods, that have been developed to find the solutions, can be classified into frequency-domain (FD) and time-domain (TD) categories. One of the pioneers in FD simulations was the Plane Wave Expansion (PWE) method, which comes from the studies of crystals in solid state physics. One of the popular implementations of the PWE method is realized in free MIT Photonic Bands (MPB)1 software, which is used for calculations of photonic band structure for PhC systems. The solutions in this method realization are obtained using preconditioned block-iterative eigensolvers in a planewave basis [Johnson 2001], in this way the eigenmode frequencies and states of the wave vector can be found.

Another FD method, called Scattering-Matrix Method (SMM) [Yasumoto 2005] or S-Matrix method, is one of the most efficient for solving the problem of scattering in a periodic systems. In this work, we make use of its realization through a freely available S 4 package (Stanford Stratified Structure Solver) [Liu 2012], for simulations of electromagnetic propagation through given 3D structures with 2D periodicity. In brief, the implementation is the frequency domain code to solve the linear Maxwell's equations. It considers the unit cell with the Bloch boundary conditions (BC), which corresponds to the simulation of an infinite structure along the directions where the corresponding BC were applied (axes x and y on Fig. 2.2). For the direction of wave propagation (z in the same Figure ), a multi-layer structure is described via a spatial distribution of a relative permittivity ε = n 2 . The structure transmittance and reflectivity (Fig. 2.3) are then evaluated as the Poynting vector flux through the last and the first layer in the simulation stack (air above and below the membrane in our case), normalized to the incident one, correspondingly.

Our structure is operating in the regime of a near-wavelength diffraction grating (NWDG) [Karagodsky 2012], or a thin slab of material with refractive index with periodicity a slightly smaller than the incident optical wavelength λ. The diffraction properties of an NDWG element are strongly different when comparing to usual diffraction gratings. Such properties result from a combination of special conditions: a < λ would imply that all diffracted beams of non-zero order are evanescent in the surrounding air. Besides this, when λ/n eff < a (where n eff is an effective refractive index of the PhC slab membrane), several propagating modes will exist inside the dielectric slab. Then, for some particular values of membrane thickness t, the boundary conditions at the dielectric/air interfaces will result in a destructive interference for the transmitted zero-order of the incident plane wave. Consequently, by conservation of the optical flux, such a phenomenon is associated with a reflectivity close to unity for the incoming beam. With the above-mentioned conditions and for the design wavelength λ = 1064 nm, the crystal lattice period was chosen as a = 725 nm. Next, for a hole radius of r = 200 nm a study of the reflectivity of our NWDG was performed while varying the membrane thickness t, which revealed a large high-R plateau around 1064 nm wavelength for the value of t = 260 nm. In the technological realization of our devices the lattice parameter a fidelity is controlled better than the hole radius r, therefore we are looking next for the range of r, where the reflectivity of our PhC mirror will exhibit a plateau of high values. In this purpose, for the given layer thickness t = 260 nm and a constant lattice parameter a = 725 nm we analyse the reflectivity R dependence on the hole radius (see Fig. 2.3a), which shows a relatively large high-R plateau for the radii between 180 and 210 nm. We further explored the given parameter span to simulate the spectral reflectivity dependence (see Fig. 2.3b), which for r = 202 nm gives about 50 nm large region with R ≥ 0.99 centred at 1064 nm. Analysis of the structure design tolerance to the fabrication imperfections (the designed and fabricated holes r mismatches) shows that up to 6 nm mismatch the reflectivity at 1064 nm will remain as high as for the optimal parameters set.

Presented results are valid in assumption of a perfect plane wave, incident on an infinite PhC lattice. The realistic scenario of a laser beam requires taking into account the angular spread in the wave vector associated with the beam waist on the membrane plane. In the same time this allows to examine the angular dependence of the PhC mirror reflectivity for the angles close to normal incidence. The corresponding simulations, performed in [Makles 2015], show that it is still possible to obtain reflectivities R > 99% for a beam waist of 4.2 µm, however, over a reduced wavelength span > 20 nm. Concerning the angular dispersion of an incident wave at 1064 nm wavelength, the PhC membrane reflectivity does not degrade for the angles span up to 5 • , and reaches R = 99% value at incidence angle close to 9 • .

Photonic crystal L3 defect cavity strongly coupled to external waveguide

In a second configuration, allowing for full integration of the optomechanical platform, the optical cavity is embedded in the photonic crystal slab membrane. In that case the probe light is coupled to the cavity mode via an external waveguide. As it was introduced before, a tapered fibre or an integrated waveguide with the input-output couplers can be used for this scheme. Our solution includes a SOI access waveguide, positioned nearby the cavity in a way to couple light between the waveguide and the cavity via the evanescent field tail.

SOI waveguide optical mode

The single waveguide on the SOI circuit used in this work (Fig. 2.4) is a silicon ridge of width W wg (along y axis), height h wg (along z axis) and few hundreds microns long (along x axis, which is the direction of wave propagation). Hereinafter the height h wg is set constant to 220 nm (unless otherwise stated), corresponding to the real ridge height in our fabricated devices. The insulator layer below the waveguide comprises h SiO 2 = 2 µm of silicon dioxide, which corresponds to the height shown in Figure 2.4. The refractive indices used in electromagnetic simulation at 1.55 µm, are n Si = 3.4777 for silicon [Salzberg 1957] and n SiO 2 = 1.4442 for silicon dioxide [START_REF] Malitson | Interspecimen Comparison of the Refractive Index of Fused Silica[END_REF]]. We simulated the fundamental quasi-TE waveguide mode, where the main electric field component is perpendicular to the propagation direction and lies in the plane of the Si core. Mode wavelength was chosen to be λ = 1550 nm. The obtained E y distribution (Fig. 2.4) at 1.55 µm shows a good mode confinement within the waveguide core due to high refractive index contrast and perfect ridge isolation from the host Si substrate. The mode effective index is n eff = 2.39. As can be seen, the field decays to -70 dB at 1 µm depth in SiO 2 , whereas the total waveguide -substrate separation is 2 µm.

Simulation of the fundamental waveguide quasi-TM mode (the main magnetic field component is perpendicular to the propagation direction and lying in the plane of the core layer) at 1.55 µm gives a similar field distribution to the quasi-TE one (Fig. 2.4), but with a much lower effective index n eff = 1.60. The phase constant β wg = 2πn eff /λ is thus smaller as well, corresponding to a lower field confinement within the waveguide core and consequently more losses for the propagating mode. For the latter reason it was chosen to work in the TE-like configuration.

Photonic crystal slab with TE-like band gap around 1.55 µm

As introduced in Section 2.1.1, light confinement inside a photonic crystal can be achieved by creation of a defect cavity: lattice periodicity is locally broken by introducing a point defect (a hole removed or replaced with one whose size, shape or dielectric constant is different than the original). The resonant cavity mode would only exist if its frequency lies inside a photonic band gap of the host lattice. At these forbidden frequencies the interference effects on the surrounding periodic medium result in a high electromagnetic field confinement within a defect. Considering the wave propagation directions in the plane of the PhC slab, the TM-like (transverse magnetic, no magnetic field in the wave propagation direction) and TE-like (transverse electric, no electric field in the wave propagation direction) gaps can be achieved with rectangular rod slab and triangular hole slab (Fig. 2.5a), respectively [Joannopoulos 2011]. Full band gaps (any wave polarization is prohibited) cannot be achieved within the photonic crystal slab lattices. Although the successful realizations of defect cavities in a rectangular PhC slab (as one that we studied in Section 2.1.2) were demonstrated [Hennessy 2003;Sar 2011], the electric field maximum in such devices is localized in the air holes surrounding the cavity. Among different existing defect cavity realizations in triangular lattice, we chose a line defect (i.e., one or few missing holes in a line), which was extensively studied over last decade [START_REF] Akahane | [END_REF]Sauvan 2005;Akahane 2005]. They allow to confine optical modes within the dielectric medium, which is the preferred configuration for our optomechanical device, as it promotes light-matter interaction.

According to the chosen access waveguide mode properties (see Section 2.1.3.1), we designed the PhC slab in view of opening a band gap for TE-polarized mode (Fig. 2.5b) around 1550 nm wavelength. For the given InP refractive index (n = 3.16 at 1550 nm at room temperature [Pettit 1965]) and membrane thickness t = 260 nm, we obtain about 100 nm large TE-like band gap, centred at 1.54 µm with the lattice parameters a = 420 nm and r = 90 nm. The small changes (within ±10 nm from the designed one) in hole radius would shift the band gap of approximately 5 nm per 1 nm of ∆r (with respect to its sign).

Optical mode of defect PhC cavity

Optical microcavities, created in a PhC lattice slab with triangular hole arrangement, by a point defect (one missing hole) or few of them in a line, are commonly designated in literature as Lx cavities (where x equals the defect length in number of missing holes). Standard L3 cavity, compared to L1 and L2, has better optical quality factor [Sauvan 2005] (up to one order of magnitude higher) and possesses very low mode volume (V 0.7 cubic wavelengths), limited by diffraction. These cavities have already been implemented in various applications (PhC lasers [Painter 1999;Ellis 2011], cavity quantum electrodynamics (cQED) experiments [START_REF] Yoshie | Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity[END_REF]], drop filter [Takano 2004]). We extended here their use to cavity optomechanics. For higher x value (x > 3) the PhC cavity becomes multimode and the optical Q factor of its resonances degrades [Okano 2010].

Fine-tuning of such L3 cavity optical losses was demonstrated [START_REF] Akahane | [END_REF]] by displacing two air holes at both edges by an optimal value dx A (cf. Fig. 2.6). Such displacement allows for high Q factor while the mode volume remains virtually unchanged. Such procedure, applied to silicon structures, demonstrated an experimental Q factor enhancement from 10 3 to 4.5 × 10 4 . This value can be even increased by shifting the neighbouring external holes, located in the same line with the ones displaced by dx A , as described in [Akahane 2005], leading to the cavity Q factor increase up to 10 5 (experimentally measured value; the simulated one is 2.6 × 10 5 ). This kind of optimization procedure, though, requires more computational effort in order to inspect the additional shifting distances, moreover, an obtained cavity geometry would be more complex in terms of understanding it mechanical and optomechanical operation. The simulations of the optical properties of our devices were performed using two types of methods. Widely employed numerical method from time-domain category is the Finite-Difference Time-Domain (FDTD) technique [START_REF] Courant | Über die partiellen Differenzengleichungen der mathematischen Physik[END_REF]Yee 1966]. FDTD is a versatile modelling technique and calculates the electric and magnetic fields everywhere in the computational domain as they evolve in time. A broadband pulse (such as a Gaus-sian pulse) is used as the source, then the response of the system over a wide range of frequencies is obtained with a single simulation. Therefore it is useful for the cases where resonant frequencies are not exactly known, or any time when a broadband result is desired. Together with these advantages, FDTD method requires the entire computational domain to be gridded with spatial discretization sufficiently fine to resolve both the smallest electromagnetic wavelength and the smallest geometrical feature in the model. For complex models, very large computational domains can be easily developed, which results in very long computational times. The FDTD software, used in this work, is the commercially available package FDTD Solutions by Lumerical2 . We used this software for the calculations of PhC defect cavity modes, with and without the evanescently coupled waveguide (optical Q factors, modal volumes, spatial electromagnetic field distributions and their temporal evolution). Some part of numerical modelling of the optomechanical interaction in our devices was accomplished with a Finite Element Analysis (FEA) software and its particular realization in COMSOL Multiphysics3 software platform. It implements advanced numerical methods for modelling and simulating various physics-based problems through particular modules, which can interact between them, providing standalone solution for multiphysics simulations. The RF (radio frequency) Module4 was used for computing the electromagnetic field distribution of the cavity optical mode. In COMSOL implementation of this module, Maxwell's equations are solved using the finite element method with numerically stable edge elements. Cluster computing is also supported, as the large computational domains with high resolution for electromagnetic field studies are required in order to correctly model the studied characteristics.

Both 3D FDTD and FEA methods were employed and gave consistent solutions for cavity optical eigenmodes. The fundamental optical cavity mode at 1.54 µm (Fig. 2.7b, 2.8) was simulated by placing one or more electric dipole sources (TE-polarized) in the cavity medium and examining the time evolution of the field (in the case of FDTD simulation, cf. Fig. 2.7a) or the stationary solutions (in FEA simulation). A short pulse duration, i.e., its broad spectrum, allows to examine the broadband cavity response with a single simulation run. The time decay monitor for the electromagnetic field is also placed inside the cavity, allowing to examine its temporal evolution. An example of such a trace is shown on Figure 2.7b, where the electric field decays very slowly (compared to the launched dipole pulse of few tens of fs), attesting the presence of one or more high-Q cavity resonances.

The Fourier transform of the E y time domain trace allows to reveal and identify the existing optical cavity modes (Fig. 2.7b), if the simulation time is long enough to achieve a frequency resolution better than the spectral linewidth of the cavity resonance. Corresponding field distributions inside the cavity can be seen in Fig. 2.8 for the resonance at 1.54 µm and will be used later for the simulation of optomechanical coupling. The study was performed on a lattice having 31 period along x axis and 21 along y axis (directions shown in Fig. 2.6). InP slab has refractive index n = 3.16 at 1550 nm5 at room temperature [Pettit 1965], thickness t = 260 nm and surrounded by 5t thick air layers from both sides along z direction. Symmetric Bloch boundary conditions (BC) are applied at y = 0 and z = 0 planes; asymmetric BC -at x = 0 plane, considering the symmetry properties of fundamental optical mode, that has been first simulated without any BC except the absorbing PML (perfectly matched layers) [Berenger 1994] at the outer boundaries of the entire computational cell. The symmetry conditions reduce the simulation time eightfold, corresponding to the reduction of the computational domain.

The technique used to identify the optical resonance, however, does not allow to properly retrieve the quality factor of the revealed modes, as in general the spectral resolution is not high enough. For its correct estimation in the current version6 of Lumerical FDTD Solutions, the time domain trace of electric field evolution inside the cavity (Fig. 2.7, left) is decomposed in Fourier space as a sine function and a decaying exponential, therefore allowing for both the identification of the eigenmode frequencies and their respective decay times. Optical Q factor optimization according to the technique used in [START_REF] Akahane | [END_REF]], gave dx A = 0.2 result, corresponding to simulated optimal Q of about 10 5 for the mode shown in Fig. 2.7b.

Mutual optical coupling

In our platform, light is coupled into the cavity via the integrated SOI waveguide. The optical coupling between two layers (SOI and PhC) has been examined in order to optimize the energy transfer efficiency within the final device. The coupling of a III-V PhC cavity to a SOI waveguide at short distances is based on the side-evanescent coupling mechanism. In this mechanism, the mode of each optical component is weakly perturbed by the presence of the other one, positioned nearby. The waveguide is centred in x -y plane with respect to the defect cavity, whereas the cavity is suspended few hundreds of nanometres above (see Fig. 2.9).

For the defect L3 PhC cavity (cf. Section 2.1.3.3), the electric field envelope decays exponentially (Fig. 2.9) in the direction towards the Si waveguide (z axis). The same behaviour is also observed for the designed SOI waveguide (Fig. 2.4). The overlap of the evanescent tail, or the exponentially decaying part of electromagnetic field, with the field inside the core of the coupled optical device will determine the mutual coupling strength [Haus 1984]. Such coupling mechanism can be highly efficient; it is widely employed in directional waveguide couplers [Marcatili 1969] as passive devices for optical power splitting and modulation [Taylor 1973].

In the following part, we exploit a similar approach than the one developed in [Bazin 2013] to explain and estimate the coupling efficiency within cavity-waveguide system.

Coupling efficiency between the integrated waveguide and the PhC cavity is one of the principal figures of merit considering the energy routing within the hybrid system. A stationary geometric state of the system, when all the components are fixed at pre-defined distances, can be designed in the way to precisely control the amount of light, coupled from the cavity to the interfacing circuit. We consider two main loss channels in the hybrid ). Red and blue lines correspond to the normalized amplitudes of E y field along the middle line (y = 0) of the respective optical component, simulated separately and superimposed at h air = 500 nm (the SOI waveguide (WG) parameters are the same as in Fig. 2.4. For reference, the inner cavity border along x axis (left pane) is represented with a dotted line. Right pane illustrates the two main loss channels in the coupled system: radiative (γ i ) and coupling to the backward-and forward-propagating waveguide modes (γ e ).

system (Fig. 2.9) -PhC cavity emission due to the coupling to the radiative modes (which defines the intrinsic losses γ i ) and the evanescent coupling to the guided SOI waveguide mode (represented be the external losses 2γ e ). By proper design, the cavity field coupled to radiative modes can be considerably reduced, concomitantly with a preferential tunnelling of the cavity mode energy into the integrated circuit. In turn, the signal propagating in the waveguide can be coupled with a desired ratio inside the connected cavity. The coupling efficiency value η, is thus defined as follows:

η = Rate of optical losses from the cavity into the waveguide Total amount of cavity optical losses (2.1)

If each of the loss mechanisms is characterised by a corresponding electromagnetic field decay time τ , we can as well attribute a respective quality factor Q, expressed as Q = 2πν 0 τ , where ν 0 is the cavity resonance frequency. Then, it can also be written that

η = 1 τ c 1 τ c + 1 τ 0 = Q 0 Q 0 + Q c = Q 0 Q c 1 + Q 0 Q c , (2.2) 
where τ 0 (τ c ) and Q 0 (Q c ) are the field decay times and quality factors related to the radiative losses (respectively to the evanescent coupling into the propagating waveguide mode). The corresponding relations with the cavity loss rates, or linewidths, are Q 0 = ω 0 /γ i and Q c = ω 0 /2γ e . Equation 2.2 holds if assuming that the perturbation of the PhC cavity mode by the waveguide is small enough that Q 0 and resonance frequency ν 0 can be considered constant. This holds the designs in which the distance between the waveguide and the cavity h air (Fig. 2.9) remains large enough, i.e., for the evanescent coupling. The unloaded cavity quality factor Q 0 , is considered constant (Q 0 = 10 5 ) in the following discussion.

The coupling efficiency dependency from Eq. 2.2 is plotted in the Figure 2.10 (blue trace) for Q 0 /Q c ratios, that cover the range of theoretically achievable ones with different designs of our device (via the variation of coupling losses from cavity to waveguide mode). In general, when distance h air increases, the overlap between cavity and waveguide evanescent field tails will be superimposed, leading to the increase of the coupled field decay time factor τ c (and the associated quality factor Q c ). With the constant Q 0 , as assumed above, the Q 0 /Q c ratio thus decreases. In another words, Q 0 /Q c ∝ 1/h air .

For the cases where the Q 0 /Q c ratio exceeds 9, the coupling efficiency η is higher than 90%, thus an efficient energy exchange can establish. From another side, a considerable decrease of the coupled quality factor Q c leads to an important decrease in the total cavity

Q total = 1/(Q -1 0 + Q -1 c ).
For example, the yellow trace in Figure 2.10 (the case of the constant Q 0 = 10 3 ) shows a total cavity Q decrease when its coupling efficiency to the waveguide η rises.

High Q total factors would lead to more efficient optomechanical interactions within the resonator because of the longer photon lifetimes, whereas high coupling efficiency η guarantees an important photon flow from the cavity to the access waveguide. As these two conditions can not be simultaneously maximized, a trade-off between sufficient optical coupling within the integrated circuit and sufficient photon lifetime inside the PhC cavity has to be found. The latter could be enhanced without additional impact on coupling efficiency by the optimization of intrinsic and radiative optical cavity losses Q 0 , leading to higher Q total values (orange and red traces in Fig. 2.10) and thus achieving stronger optomechanical interaction. Maximization of the coupling efficiency η requires the accurate design of the field overlap in real space as well as the wave vector overlap in the reciprocal space. In the real space, this overlap would depend on the relative positioning of two corresponding optical components -cavity and the waveguide, in the reciprocal space -on the phase matching between their modes, impacted by the waveguide dimension W wg .

By performing a 3D FDTD simulation of the coupled system (and not of the two levels separately, as it was done for the studies represented in Fig. 2.8, 2.4 and 2.9) it is possible to retrieve a Q total factor and a resonance wavelength of a defect PhC cavity in its coupled regime of operation. The simulated dependences of η and Q total follow the corresponding trends given in Fig. 2.10, with the inverse proportionality on x-coordinate, confirming the Q 0 /Q c ∝ 1/h air relation derived above.

Obviously, these numerical studies would require much longer running times due to two factors: larger simulation volume with the same fine meshing and the lower number of symmetry planes; it is not straightforward to predict the order of magnitude of Q factor of a coupled system, therefore, the simulation time can not be strongly reduced and should still ensure good resolution in frequency domain in order to correctly evaluate the extracted Q and wavelength values.

2.1.3.4a Coupling efficiency in real space: fields overlap

Let us first consider the impact on the coupling efficiency of the thickness of intermediate air layer, h air , measured from the top of the SOI waveguide to the bottom of the defect cavity. As seen above in this section, cavity and waveguide modes exhibit similar transverse field profiles (cf. Fig. 2.9), then, assuming their relative alignment to be per-fect, the vertical separation change (along z direction) will directly modulate the overlap between the two fields.

Figure 2.11 shows the Q factor and coupling efficiency η evolution as the air band thickness h air changes, for the fixed waveguide dimensions W wg = 400 nm and h wg = 220 nm. When the cavity is placed far from the waveguide, its total Q factor value reaches the one calculated in Section 2.1.3.3 for the uncoupled cavity, namely about 10 5 . As can be seen in Fig. 2.11, the total Q decreases as h air decreases, which can be simply explained by the enhancement of the penetration of the cavity mode evanescent tail inside the waveguide. In good agreement with the previous calculations (cf. Fig. 2.10) it shows (Fig. 2.12) that near 90% coupling efficiency is achieved with reduction by a factor of 10 in Q factor compared to the intrinsic one (Q 0 ) for W wg = 400 nm. Loaded cavity Q factor can drop by about three orders of magnitude from its initial value, corresponding to uncoupled operation (equivalent to a cavity -waveguide pair with the vertical separation starting from ∼1 µm thickness). Of course, the Q factor of the real device will generally be much lower than the one predicted by simulations (due to the fabrication imperfections), however, its relative dependency on the separation distance change will remain the same. It should be taken into account that for h air < 300 nm the mutual coupling starts to affect the PhC cavity resonance wavelength. This effect becomes more important as the layer separation decreases and will be discussed later. Another geometric property in the hybrid system is the SOI waveguide width W wg . Figure 2.12 shows how the Q total factor (a) and corresponding coupling efficiency η (b) vary with the waveguide width for several air gaps h air between the two levels. It can be clearly seen that these two quantities are also strongly dependent on W wg , as expected due to the modification of the coupling conditions. The tendencies for their evolution as a function of h air can be also found and in general apply for all the W wg values examined. The optical mode of the waveguide is centred at the wavelength of the L3 cavity resonance; for the invariant cavity field distribution a different field confinement may be achieved within a waveguide when its geometry (width) changes (cf. Fig. 2.12). In the same way the wave vector of the waveguide mode will change while changing W wg . In consequence, the overlap of the fields in real space and the wave vectors in reciprocal space will change accordingly to the chosen waveguide geometry, modulating the coupling efficiency. For certain waveguide dimensions (e.g., W wg = 350 nm) a drop in total Q factor of more than 2 orders of magnitude can be observed together with a coupling η decrease from 99% down to 82% for h air values varying from 500 nm to 200 nm. Such high coupling efficiency values spring from the fulfilment of the two above-mentioned conditions: a high spatial mode profile overlap and a good phase-matching (high wave vectors overlap in k-space) are achieved.

2.1.3.4b Coupling efficiency in reciprocal space: phase matching

In order to give a good description of the Q factor and thus the coupling efficiency trends when the waveguide width W wg vary, we examined the overlap between the wave vectors of two optical modes in the reciprocal space. To quantify this phenomenon, we extract the wave vector magnitude along PhC in-plane (x-y) directions for the simulated E y electric field component (cf. Fig. 2.8) of an uncoupled L3 PhC cavity. To do so, a Chirp Z-transform (CZT), a generalization of the discrete Fourier transform [Bluestein 1970;Rabiner 1975], which provides more realistic results comparing to a standard FFT, is employed in order to calculate the k x and k y vectors for the cavity optical mode, represented in Figure 2.13a. Then, according to the waveguide -cavity mode matching conditions, we consider the k x wave vector distribution along the k y = 0 axis (grey dotted line in Fig. 2.13a), which takes into account the fact of cavity alignment along the x axis. In Figure 2.13b, the positive values of k x amplitude along k y = 0 line (in blue) are superimposed with the waveguide wave vectors β wg (in red), calculated for different widths W wg from 225 to 550 nm (the ones in our device cover the range from 250 to 550 nm with a step of 50 nm). The k x values for different waveguide geometries are calculated with Lumerical Mode Solver giving the effective index n eff at the cavity resonance wavelength (see Section 2.1.3.1) using the relation β wg = 2πn eff /λ. The best phase-matching conditions are achieved for the width of W wg = 350 nm (limited by a W wg stepping). It can be noticed that the value of β wg decreases more rapidly as W wg does below 350 nm value; for this reason the phase is increasing faster for W wg < 350 nm, leading in turn to faster Q factor growth and η worsening (see Fig. 2.12). For the waveguides larger than 350 nm, β wg is increasing smoothly with W wg , giving the shallow growth to the Q total (and Q c ) and explaining the asymmetric shapes of the corresponding parameters in the Fig. 2.12. Using this data, we calculated the integral of the wave vector overlap in the k x direction. Considering that the guided modes are described by a Dirac functions in the corresponding space, the integral would be equal to the FFT of the cavity mode, evaluated at each of β wg . Figure 2.14 shows a comparison of the above-mentioned integral (denoted as k x overlap) with the inverse coupling factor 1/Q c , or the cavity losses due to the presence of a waveguide in its vicinity, evaluated for different waveguide -cavity separation distances h air (corresponding to the data in Fig. 2.12). Both quantities are normalized to their maximum values. As it can be seen, the coupling loss and the wave vector overlap exhibit a very similar trends while the W wg is varied. The overlap is calculated exclusively along the k y = 0 line, not taking into account the transverse spatial overlap (cf. Fig. 2.13a for the area of k y = 0). This could be an origin of the remaining discrepancies between two parameters investigated on Fig. 2.14.

In summary, we studied the optical properties of two main parts of the hybrid system -SOI waveguide and L3 PhC cavity, taken either apart or coupled together via overlapping evanescent tails of their fundamental optical modes. The dependence of the cavity coupled quality factor Q c and coupling efficiency η to the waveguide were examined as a function of two main opto-geometric parameters: the air gap h air between the waveguide and membrane layers and the waveguide width W wg , considering the mode overlap in the real and reciprocal spaces. Optimized high coupling efficiency η 98% between the optical modes of the waveguide and the cavity across the whole range of waveguide geometries in our samples (W wg from 250 nm to 550 nm) is achieved for the membrane suspension heights h air 200 nm, leading to the total cavity Q factors of the order of 10 2 -10 3 .

Mechanical properties of photonic crystal slab membranes

The suspended PhC slab not only sustain optical modes but also mechanical vibrations.

The mechanical eigenmodes in our PhC slab system can be separated into two distinct families: low-frequency modes of the entire suspended membrane block and localized modes, which appear in the case where a defect PhC cavity is embedded inside the membrane. Along with the conventional eigenfrequency studies a numerical spectroscopy of these modes (both flexural motion of the suspended PhC slab ensemble and the vibrations localized within the cavity volume) has been performed taking into account the constraints of some real-world experimental configurations.

The mechanical dissipation is also reviewed for some modes of interest. It can be optimized while taking into account the main loss channels for each of the two mode families -flexural motion of the suspended PhC membrane ensemble or the confined vibrations inside the defect cavity body. We propose the corresponding solutions, that will be further implemented in the design of our mechanical resonators, potentially allowing for an enhancement of the optomechanical interaction via the high-Q mechanical resonances and/or the longer phonon lifetimes.

Flexural membrane modes

Suspended membrane resonator in the investigated device (cf. Fig. 2.15) consists of a rectangular plate of m x by m y lateral dimensions, patterned with either a triangular photonic crystal lattice including a defect cavity in its middle or with a square lattice, presented in the previous Sections. The same mechanical geometry will be used in both cases associated to the two different lattice arrangements. In each configuration the membrane is suspended over a layer of air using two pairs of bridges from two opposite sides. These bridges are identical and have lateral dimensions denoted b x and b y and leave the membrane anchored to the suspension pads. The thickness of all these elements is denoted t, corresponding to the one of InP layer. As can be seen in Fig. 2.15, the membrane and all the connected bridges are suspended, whereas the support pads are assumed fixed. Simulations of the flexural modes of such a suspended membrane were carried out using the Structural Mechanics module7 of COMSOL Multiphysics software package. Material properties of InP for the simulation of mechanical eigenmodes are set as follows: bulk density is ρ = 4810 kg/m 3 , Poisson's ratio ν = 0.36, Young's modulus E = 40 GPa, considered to remain equal along all the crystalline directions. The above-mentioned parameters were obtained by taking the ones from [Gavartin 2011] and further adapting to best fit our experimentally obtained eigenfrequencies. In [Gavartin 2011], the good agreement between the experimentally measured and the simulated mechanical frequencies of a doubly-clamped PhC membrane resonator made of InP were found for the Young's modulus of InP equal to 20 GPa. We found that this value, however, would fit well the experimental data obtained from doubly-clamped membranes, whereas the four-bridge type clamped membranes are simulated more accurately by taking E = 40 GPa.

The simplified geometry, corresponding to the one shown in Fig. 2.15 but excluding the holes, is set up for the simulation. To take this modification into account, a corresponding approximation introduced in this work, the effective material density ρ eff for a bulk membrane is a substitute to a PhC slab one, pierced by holes. This quantity takes into account the filling factor ζ of the real membrane by computing the volumes of a bulk and patterned plates, so that ρ eff = ρ ζ, where ζ = a 2 √ 3 -2πr 2 / a 2 √ 3 for the cylindrical holes. The membrane is thus simulated as a plate of bulk InP with the effective density ρ eff , while the remaining structure is set to have the density ρ. The fixed constraints in the simulation are imposed on the bottom planes of the two suspension pads. This allows to mimic a piezo actuation from the bottom of the sample, which is one of the possible techniques employed during the readout of the membrane motion.

The middle of each of the four bridges is displaced by a distance ±b d from the membrane middle line (along x axis), as visualized in Fig. 2.15. This choice of this distance was made according to the optimized mechanical dissipation for one of the membrane flexural modes and is discussed in detail in Section 2.2.1.2. Following this optimization, this distance in our structure is equal to b d = ±0.295 m x .

Numerical mode spectroscopy in MHz range

The example shown in Figure 2.16 considers a membrane with a following set of parameters (see Fig. 2.15): m x = 20 µm, m y = 10 µm, t = 260 nm, b x = 1 µm, b y = 2 µm, b d = ±5.9 µm, E = 40 GPa; ρ eff for the PhC slab part is calculated taking into account the lattice parameters a = 430 nm and r = 100 nm (for L3 PhC defect cavity). In the case of square lattice used to create a PhC mirror from the membrane, the effective density ρ eff will change and this will consequently shift the frequencies Ω m /2π of the eigenmodes, however, the discussion remains the same. We estimate the strength of mechanical response for different eigenfrequencies of a suspended membrane. The dark blue curve in Figure 2.16 represents the total displacement of a point taken on the top membrane boundary in the middle of the membrane block, while a displacement of 1 fm in vertical (z) direction is applied to both of support pads. We also performed the simulation of the eigenfrequencies for the same system excluding the displacement condition, and the corresponding values are represented by violet dashed lines.

As can be seen, only few among the present eigenmodes can be resonantly excited by an out-of-plane displacement excitation. Since only the membrane displacement along z axis can be probed efficiently with either a PhC mirror configuration or a PhC cavity one (due to the geometrical considerations), the present simulation gives only a qualitative estimation of possible resonant modes of the membrane, probed within one of the abovementioned configurations. Moreover, the total displacement is probed with a discrete step in frequency domain (equal to 5 kHz for the data presented in Figure 2.16, aiming to provide enough resolution on resonance linewidths). It gives only qualitative estimation of amplitude modulation in z direction.

For each coincidence between the eigenfrequency and probed membrane displacement the displacement field Q( r) distributions are shown in Figure 2.16 (bottom) for the most prominent modes. It should be noticed that total displacement has only non-zero component, corresponding to the one along z direction w ≡ Q z , which follows the excitation vector. Corresponding mode profiles in most have important Q( r) field value in the membrane middle (see Fig. 2.16), confirming the observed strong impact on the modulation of membrane position compared to its stationary state.

Control of mechanical dissipation: geometry tuning

One of the geometrical parameters we first mentioned in Section 2.2 is the parameter b d , describing the position of attachment for the suspension bridges (cf. Fig. 2.15). In fact, this parameter can have an important impact both on the mechanical mode spatial profile and on the associated clamping losses [Cole 2011]. The evolution of three first eigenmodes of the suspended PhC slab membrane has been studied numerically.

Membrane geometry is chosen to be consistent with the one studied in Section 2. The present study considers mainly modes M1* and M3*: these modes show important displacement around membrane centre (Fig. 2.17c), which is essential for their optical addressing both in PhC mirror and defect cavity configuration. In optimization of bridge position we will focus on the reduction of mechanical losses for these two modes, mainly examining the simulated mechanical quality factor (Fig. 2.17b), defined as Q m = Re(Ω m /2π)/2 Im(Ω m /2π), and the displacement field Q( r) distribution through some characteristic b d values (Fig. 2.17c). In order to obtain both real and imaginary part of the simulated eigenfrequencies, we introduced the perfectly matching layers (PMLs), absorbing the acoustic energy. They are represented by two blocks of InP bulk material, attached from below to the suspension pads, which allows to mimic the phonon losses and also to take into account the undercut depth influence on the membrane mechanical eigenfrequencies, present in real devices. Absolute values of mechanical quality factor, obtained with such numerical estimation, will depend on the configuration of used PMLs (position, geometry) and therefore do not pretend to give a precise characterization of clamping losses in the simulated system. We use this approach to obtain rather a qualitative description for the evolution of the clamping losses of different modes throughout the investigated changes in clamping geometry.

From the current study we found that at the point D, where b d = 5.9 µm or b d = 0.295 m x , the mode M3* shows the maximum of simulated quality factor Q m (Fig. 2.17b) and a corresponding optimized spatial profile allowing for maximum reduction of clamping losses. Mode M3* displays a node of the displacement field at exactly the clamping point of each bridge (Fig. 2.17c), thus minimizing phonon tunnelling towards the suspension pads. Fundamental M1* mode at b d = 5.9 µm acquires the Q( r) field distribution, demonstrating maximally possible uniformity for the given bridge dimensions. That is, the whole membrane would oscillate along z direction with the minimized bending when compared to other possible clamping positions. However, the simulated quality factor Q m shows local minimum for this mode. For this type of displacement field distribution the clamping losses through the suspension bridges can be then further reduced by their elongation, that is, by increasing b y distance.

The clamping losses for the fundamental flexural mode M1* (cf. Fig. 2.16, 2.17) can also be further reduced by designing longer suspension bridges while b d = 0.295 m x . Theoretical study of this phenomenon is presented in Figure 2.18. The same first three flexural modes of a suspended PhC membrane are considered both in frequency domain, in terms of mechanical quality factor Q m and regarding their spatial profile distribution. It can be observed (Fig. 2.18a), that the eigenfrequencies of the first two modes -M1* and M2*are strongly dependent on the clamping geometry and decrease rapidly as the suspension bridge length b y increases. Mode M3*, in turn, was designed so that it presents antinodes at the points of bridge connections, which results in a smaller dependence on the b y parameter. To get a better insight into the change of mechanical quality factor of different modes, we normalize its value Q m , as introduces in the previous study, by the reference value at b y = 2 µm (denoted as Q m,0 in the following) and plot for the first three modes in Figure 2.18b. Although the real part of eigenfrequency for all three modes decreases with b y increase (Fig. 2.18a), our estimate for the quality factor Re(Ω m /2π)/2 Im(Ω m /2π) shows stable enhancement for each mode (Fig. 2.18b). While for mode M3* the normalized Q m trend shows a saturation around b y = 11 µm value and reaches about a factor of 12, the trend for the fundamental M1* (as well as for the M2*) mode displays a monotonic increase, reaching Q m /Q m,0 ratio of about 4 for the maximum considered b y parameter value. Considering the evolution of the spatial profiles (Fig. 2.18c), which can also be used for the estimation of mode energy leaking towards the substrate, the M3* mode with full correspondence to the quality factor simulations shows virtually no change when compared to the reference clamping geometry with b y = 2 µm. Fundamental mode M1*, essentially targeted by this study, demonstrates a significant Q( r) field profile evolution towards a uniform distribution across the membrane block together with zero-displacement regions close to the attachment points bridge -suspension pad, which also corresponds to low phonon tunnelling probability and higher mechanical quality factors when the b y value increases (by analogy with [Cole 2011]). This technique of clamping loss optimization is experimentally confirmed in Section 4.1.2.

Another interesting observation concerning the mechanical band diagram in Figure 2.17a, is that close to the point C the modes M1* and M2* are degenerate. Mode M1*, when decreasing b d from the optimum point D, corresponds to an in-plane motion of the membrane edges in x direction, while M2* corresponds to an anti-phase motion. This explains the degeneracy point close to C and can be eventually used to experimentally implement the phenomenon of mode crossing or anti-crossing by exploiting these two modes with small eigenfrequency difference close to the C point and further fine-tuning one of the mechanical modes frequencies towards another by making use of optical spring effect [Kippenberg 2007;Shkarin 2014].

Localized modes within the L3 defect cavity

Numerical mode spectroscopy in GHz range

The second family of mechanical modes sustained by the membrane are the high-frequency vibrations, exclusively observable in PhC defect configuration and localized inside the core of the defect, which were experimentally demonstrated in [Gavartin 2011]. 2.19a presents the same type of study, as for the membrane flexural modes, but this time considers the mechanical resonances, confined within the defect PhC cavity. For this study the PhC slab structure was explicitly simulated, thus excluding the needs for introduction of an effective density. The Young's modulus was taken E = 20 GPa, according to the fitting results from [Gavartin 2011] for the same type of mechanical resonances. According to the same article, special boundary conditions were introduced in order to obtain the eigenfrequencies that would correspond to the experimentally measured ones (see Fig. 2.19b). The inner half-circles of the holes (Fig. 2.19b, in red) that form the outer limits of the defect L3 cavity were left as free, i.e., these boundaries are allowed to move. All the remaining holes boundaries as well as the two outer simulation volume limits were set as fixed constraints (Fig. 2.19b, in grey), which allowed to introduce the sufficiently high meshing precision. The two opposite lateral sides of the simulation volume (Fig. 2.19b, in blue) were used as the excitation planes by introducing a prescribed displacement condition of 1 fm along z axis (the same as for the flexural membrane modes). The fact of choosing either two planes parallel to x axis or to y would only change the absolute value of the probed mechanical response (total displacement) in the cavity middle, whereas the frequency domain trend remains unchanged. Moreover, it allowed us to reduce the simulation volume down to only few holes surrounding the defect cavity, while still giving the converging results. The discretization step in frequency domain, discussed above, for the given high-frequency study was 500 kHz.

From Figure 2.19a it can be seen that the most prominent modes are the localized modes of the {n,1} type, where n is odd, meaning that there will be always a mode antinode in the cavity middle. High spatial overlap of such mechanical mode displacement field with the electromagnetic field of the optical mode could lead to the enhancement of their mutual interaction. These modes are potential candidates for the high intrinsic optomechanical coupling to the localized cavity optical mode: for example, E y electromagnetic field component (cf. Fig. 2.8) and {5,1} mechanical mode (L 3 M 51 in Figure 2.19a).

Control of mechanical dissipation: phoNonic crystal

In recent years a new trend in cavity optomechanics emerged, studying the interaction of localized defect optical and mechanical modes, created inside a so-called phoXonic lattices. This structure, if considered without defects, provides band gaps for both electromagnetic and elastic waves. Simultaneous existence of these two types of gaps, leading to an enhanced interaction between elastic and optical modes with strong spatial overlap, were demonstrated theoretically and experimentally for a phoxonic nanobeam cavity [Oudich 2014] and for a two-dimensional phoxonic crystal cavity, conceived inside a square lattice slab [Rolland 2012;Jallal 2013].

The particularity of our hybrid device is the use of triangular lattice for the creation of defect optical cavity. As it can be seen from Figure 2.20a, it gives no complete phononic band gap even at high filling factors (r = 0.45 a) The study of the phononic band structure (cf. Fig. 2.20a) was carried out for a wide range of filling factors, or the corresponding r/a ratios, in order to reveal possible complete band gaps for acoustic waves. However, it showed that only a pseudogap may exist within such structures, covering the wave vectors between special points M and K of the first Brillouin zone (see Fig. 2.20a,b). The evolution of these pseudo-gaps along M K is monitored with respect to r/a ratio. For r/a values required for the phoTonic structure (dashed lines in Fig. 2.20b) the pseudogap reduces and goes to the higher frequencies. This study indicates that it will not be possible to rely on the opening of a phononic band gap to reduce the mechanical losses for the localized modes described in previous Section. The localized defect cavity modes (cf. Section 2.2) can be generally described as standing waves along x and y axes, as visualized in Figure 2.19. These directions in real space correspond to ΓM path in reciprocal space, where no band gap exist at any frequency, according to this study.

One solution in order to reduce the mechanical losses combines two types of arrangements: a triangular one with a defect L3 cavity in the middle of the slab, surrounded by a crystal with a full phononic band gap around a mechanical frequency of interest. In this way a loss reduction for one or more of the cavity localized mechanical modes could be achieved. Several phoNonic crystal lattices exist; the two commonly used are honeycomb and square types. The preference is given to the honeycomb lattice over the square one, as in case of PhC slab membranes [Mohammadi 2010] the first provides a broader phononic band gap which can spread along a wider range of normalized radii r/a. Such tunability permits to match more easily the phoNonic band gap with the eigenfrequency of our localized mechanical modes. It should be taken into account, however, that high r/a lattice designs are more demanding concerning fabrication precision of the real device. Figure 2.21a shows a simulation of a honeycomb lattice that can fit our current hybrid structure, still preserving the same thickness to lattice parameter ratio t = 0.62a. Slab thickness and mechanical properties are the same as used in the first part of this Section for the simulation of phononic band structures of a triangular PhC lattice. At high filling factors, e.g., when r = 0.47 a (see Fig. 2.21a), the band gap covers an important range of frequencies, eventually allowing to decrease losses even for several modes at a time. In Figure 2.21b we trace the evolution of band gap opening versus normalized hole radius r/a with the significant gap increase towards the higher radii. Considering that the honeycomb lattice will be used as a surrounding pattern around the central membrane part with a PhC cavity, we are free to choose the r value to best fit our expected phononic mirror properties. Several localized modes of interest (Fig. 2.19a) are given as dashed lines in Fig. 2.21b for the direct comparison with band gap frequencies.
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As suggested in [Mohammadi 2010], increasing the t/a ratio to unity may lead to further band gap widening. Given that all the previous studies for the phoNonic part of our device were conducted for a fixed slab thickness t = 260 nm, we decreased the lattice constant without changing t in order to reach t = 1a condition. The obtained results (Fig. 2.21b) confirm the band gap widening, although its frequency range shifts towards higher values.

The drawback when choosing a lattice with high r/a ratio in order to increase the band gap range, is that the physical gap between two adjacent holes becomes thin and thus puts higher requirements on the device fabrication. The devices that we were able to successfully fabricate for the studied thickness to lattice period ratio t = 0.62 a cover r/a range up to 0.43 (up to 0.41 for t = 1.00 a design).

Dispersive and dissipative optomechanical couplings

Up to now, the optical and mechanical properties of our devices were simulated and studied separately. Current section reviews different optomechanical interaction mechanisms, that occur in our hybrid coupled system between optical and different mechanical resonances. Very recently the experimentation of few optomechanical systems was demonstrated, exhibiting the simultaneous presence of two types of optomechanical couplings -dispersive (modulation of refractive index) and dissipative (losses modulation) [Wu 2014;Sawadsky 2015]. These effects will be introduced in the frame of our integrated devices and then investigated in details.

Optomechanical coupling strengths

Optomechanical coupling in our hybrid system shows a mutual existence of both types of effects -dispersive and dissipative. More interestingly, these effects can be produced by two distinct mechanisms. External effects, governed by the presence of an evanescently coupled SOI waveguide in the vicinity of a PhC cavity, as well as intrinsic couplings, that rely exclusively on the processes occuring within the PhC membrane body, will be studied. Changes in external coupling strength and intra-cavity effects generally have different impacts. Mechanical motion of the flexural membrane modes modifies the cavity -waveguide gap h air , that would effectively change the mutual optical mode overlap (when the gap is small enough to introduce a sufficient mode perturbation by a presence of waveguide). As it was seen previously (cf. Fig. 2.11), a change in h air modifies cavity optical loss due to external coupling (corresponding quality factor Q c and decay rate γ e ), resulting in external dissipative optomechanical coupling [START_REF] Elste | Quantum Noise Interference and Backaction Cooling in Cavity Nanomechanics[END_REF]Xuereb 2011] (Fig.

2.22b

). This effect originates in the modulation of the overlap of the evanescent field tails -between cavity and waveguide optical modes (Fig. 2.9); this modulation arises when the membrane moves and displaces the embedded cavity with respect to the fixed waveguide. A second important coupling component for the PhC cavity is the modulation of its resonance frequency ω 0 (Fig. 2.22a) due to the changing surrounding dielectric environment, resulting in external dispersive optomechanical coupling [Kippenberg 2008]. Resonance frequency ω 0 of the cavity mode depends on the dielectric tensor ε distribution inside the membrane, but also in its vicinity. Therefore the modulation of the membrane -waveguide separation h air will affect ω 0 by changing the ε distribution in the mode evanescent field.

Additional two coupling mechanisms arise when the deformation of the membrane during its mechanical motion impacts the cavity optical parameters, such as its intrinsic photon decay rate γ i (corresponding to the quality factor Q 0 ) (Fig. 2.22d) and its resonance frequency ω 0 (Fig. 2.22c). These two effects are referred to as intrinsic dissipative and dispersive optomechanical couplings, respectively. As it can be concluded from Figure 2.22a,c, the impact of external and intrinsic coupling mechanisms on cavity transmission is the same, therefore it can not be experimentally detected separately, contrary to the simulations given later in this chapter. By putting a laser probe as shown in Figure 2.22 for each of the coupling types, its intensity will be modulated with the corresponding amplitude shown on graphs. We next introduce a model, which allows to describe the cavity transmission spectrum while taking into account all the previously described mechanisms.

Wavelength dependence of hybrid optomechanical response

This Section presents the equations describing the wavelength dependence of the optomechanical response of a PhC cavity evanescently coupled to a SOI waveguide. This model takes into account dissipative and dispersive optomechanical coupling and considers both external and intrinsic interaction mechanisms. The total optical cavity loss rate is given by

γ t (h air , W wg ) = γ i (h air , W wg ) + 2γ e (h air , W wg ) , (2.3) 
where γ i describes the intrinsic cavity loss including absorption or emission into modes other than the fundamental waveguide mode, e.g., scattering into radiation modes (this parameter may also include the light coupling to the waveguide modes other than the fundamental one, however, here we consider a monomode operation); γ e denotes the external coupling rate into the forward (or backward) propagating mode of the waveguide, dependent on the opto-geometric parameters h air and W wg . For the optomechanical system consisting of a waveguide coupled to a defect cavity, designed as described in previous Sections, the transmission will show a Lorentzian-like deep at the cavity resonance ω 0 . From coupled mode theory, it can be shown [Wu 2014] that the transmission spectrum T (∆) of a microcavity evanescently coupled to an access waveguide has the form: (2.4) where ∆ = ω -ω 0 is the detuning with respect to the cavity resonance frequency ω 0 . Equation 2.4 holds for the particular case of the hybrid system studied in this work, where no coupling to any optical waveguide modes other than the fundamental one is considered.

T (∆) = ∆ 2 + (γ i /2) 2 ∆ 2 + (γ t /2) 2 ,
The figure of merit, describing the efficiency of the coupling mechanisms introduced above, is commonly referred to as an optomechanical coupling strength g. It equals the frequency shift of the involved optical parameter (cavity resonance frequency ω 0 or linewidth γ) with respect to the mechanical displacement d r (in three spatial directions), induced by a particular mechanical resonator mode. The external optomechanical couplings, governed by the flexural modes in MHz range (see Section 2.2.1.2, Fig. 2.16), rely mainly on the mechanical resonator displacement along out-of-plane membrane direction (z axis in Fig. 2.22). Consequently, two coupling strengths can be assigned: g ω,e = dω 0 /dz for the external dispersive, and g γ,e = dγ e /dz for the external dissipative component. The intrinsic couplings may generally occur for any of above-mentioned mechanical mode type (Figs. 2.16 and 2.19) and along all the three axes, therefore the corresponding coupling strengths are given as g ω,i = dω 0 /d r and g γ,i = dγ i /d r for dispersive and dissipative intrinsic components, respectively.

The optomechanical response of our coupled PhC cavity can be modelled by considering the dependence of the parameters from Eq. 2.4 on the mechanical state of the mechanical resonance of interest, given essentially by its coordinates r. In the unresolved-sideband regime, i.e., when the mechanical resonance frequency Ω m is small compared to the optical linewidth Ω m γ t the waveguide transmission T would adiabatically follow the mechanical oscillations [Aspelmeyer 2013]. Then, the amplitude of the optical oscillations with respect to the detuning ∆ for a given complex mechanical displacement amplitude d r can be written as

dT (∆) = g ω,e ∂T ∂∆ + g γ,e ∂T ∂γ e dz + g ω,i ∂T ∂∆ + g γ,i ∂T ∂γ i d r, (2.5) 
when taking into account the preferential axis for the external coupling. The respective derivatives for the terms in Eq. 2.5, found from the Eq. 2.4, are

∂T ∂∆ = 2∆ (1 -T ) ∆ 2 + (γ t /2) 2 , (2.6) ∂T ∂γ i = γ i -T (γ i + 2γ e ) ∆ 2 + (γ t /2) 2 , (2.7) ∂T ∂γ e = -2γ t T ∆ 2 + (γ t /2) 2 .
(2.8)

Three principal optical coupling regimes between the PhC cavity and the waveguide are examined, as illustrated in Fig. 2.23. The influence of each of the partial derivatives from Eqs. 2.6 -2.8 is then depicted in Figure 2.24.

η under- coupled Q 0 overcoupled balanced Figure 2
.23: FDTD simulation of coupling efficiency η (dark blue) and optical quality factor Q total (dark red) as a function of the cavity -waveguide distance h air for the particular waveguide width W wg = 400 nm; with the corresponding optical coupling regimes. η = 0.5 and the bold grey dotted line correspond to the balanced regime. Q 0 line corresponds to the cavity quality factor in the absence of the waveguide (10 5 ).

The undercoupled regime corresponds to the γ i γ e condition, and in particular case of Fig. 2.24a represents a slight cavity Q factor change from intrinsic Q i = 10 5 to the total coupled Q total = 9 × 10 4 . Such coupling regime can be reached by suspending the PhC membrane in our device at a height of h air 600 nm (Fig. 2.23). As it can be concluded, the external dissipative coupling has a dominant influence on the line shape due to the fact that the decay rate (γ e /2π ≈ 0.1 GHz) to the waveguide is much smaller compared to the cavity linewidth (γ i /2π ≈ 2 GHz). In this configuration it is possible to exploit optomechanics at resonance, given that the other coupling strengths (g ω and g γ i ) remain relatively small or comparable to the external dissipative, according to Eq. 2.5. As can be derived from coupled mode theory, at cavity resonance T (ω 0 ) → 1 when γ i γ e , hence the coupling efficiency from the waveguide into the cavity is weak, which complexifies the implementation of high photon fluxes through the device active part.

In balanced coupling regime T (ω 0 ) = 0.25 when γ i = 2γ e , giving the coupling efficiency of η = 0.5, marked by a bold grey dotted line in Fig. 2.23. For the particular choice of waveguide width for this Figure (W wg = 400 nm), the balanced coupling region corresponds to the air gap distances h air ≈ 500 -600 nm. For a set of different W wg widths, present in our sample, it is thus possible to shift the position of this boundary due to the variation of phase matching conditions with W wg . Consequently, within one sample with a fixed membrane suspension height h air a certain degree of tunability between different coupling regimes may be achieved. In this operating regime for γ i ≈ 2γ e the three contributions show comparable contributions to the cavity transmission and now depend almost equally on all the g coupling strengths, as shown in Fig. 2.24b.

γ γ ∆ γ γ γ ∆ γ ∆ γ γ γ (a) (b) (c) g ω g γ,i g γ,e g ω g γ,i g γ,e g ω g γ,i g γ,e
Undercoupling Balanced coupling Overcoupling Finally, for the case when γ i γ e , the waveguide transmission at cavity resonance T (ω 0 ) → 0, corresponding to coupling efficiencies η close to unity, allowing to ensure high phonon fluxes through the cavity for the resonant injection (ω = ω 0 ). In this regime the three optomechanical couplings show comparable strengths (Fig. 2.24c), much like for the balanced configuration. The important difference, however, is that for the high mutual optical coupling strengths η 1 it will be not possible any more to exploit optomechanical response at resonance (∆ = 0), as all the three contributions tend to zero amplitude at this point even with a strong g ω coupling coefficient (like in the case of a purely dispersive coupling with g γ = 0, g ω → ∞).

The last two regimes (balanced and overcoupling) can be employed as a starting point for the optomechanical system where, by carefully mixing the coupling rates, as suggested in [Weiss 2013], one can efficiently implement an optomechanical cooling of the mechanical modes down to their ground state even in the sideband-unresolved regime (Ω m γ t ). Experimental realization for current device design is ensured with the PhC membrane suspension heights of h air 500 nm with finer optical coupling strength η control within one sample via the waveguide width W wg (cf. Fig. 2.12b).

In the following sections different numerical simulations are performed in order to predict the dispersive g ω and dissipative g γ coupling strength coefficients for both external and intrinsic interaction mechanisms.

Numerical simulation of external optomechanical couplings

Simulations of the external optomechanical couplings were performed using both the perturbative theory approximation and the FDTD method. As it was introduced above, the two external coupling strengths are written as g ω,e = dω 0 /dz and g γ,e = dγ e /dz, as we assume that the in-plane membrane motion can be neglected. Perturbative theory provides a fast way of estimation of these parameters, considering the local perturbation of the cavity field and dielectric tensor by the presence of the waveguide in close proximity. For this approximation, fields E( r) and dielectric tensors ε( r) are calculated (once) separately using FDTD or FEA, and then used in the overlap integrals. Complete FDTD approach involves the simulation of the entire coupled system, as described in Section 2.1.3.4, with different z values with subsequent numerical derivation of g ω,e and g γ,e . This requires considerably greater computing times, but allows to account for phase-matching between two coupled optical parts, which can not be done by perturbative theory. We restricted the studied air gaps h air region to 100 -300 nm, where coupling efficiency is very high η 1.

Perturbative theory approximations

As proposed in [Hryciw 2014], the perturbative theory approximation for Maxwell's equations with shifting material boundaries [Johnson 2002] may allow to gain insight into the physical mechanisms that govern the impact of the waveguide on both dispersive and dissipative external coupling values inside an optomechanical system.

The estimation of the dispersive coupling strength g ω,e requires the knowledge of the electric field E c ( r) distribution for the PhC cavity fundamental optical mode, which was already calculated using 3D FDTD simulation in Section 2.1. 3.3 (cf. Fig. 2.8). The dielectric mode profile of the PhC structure ε c ( r) is also extracted from this simulation, assuming the mirror symmetry with respect to the x = 0, y = 0, z = 0 planes. Using this data, the first-order correction to the resonance frequency ω 0 of an electromagnetic cavity due to a change in permittivity of its surrounding medium may be calculated using [Johnson 2002]

∆ω 0 = - ω 0 2 E c ∆ε wg E c E c ε c E c , (2.9) 
where ω 0 corresponds to the resonance frequency of an unperturbed cavity, ∆ε wg is the perturbation of the local dielectric environment due to the waveguide. For the waveguide geometry studied in this work, ∆ε wg = ε wg -1, with the integral restricted to the region inside the waveguide. The used notation a|b| c represents integration over all space

a |b| c = a ( r) • b ( r) • c ( r) d r, with d r =
dx dy dz. The obtained g ω,e values are traced in Figure 2.25a (violet solid line with diamonds at the evaluated points). From this trace as well as from the expression for ∆ε wg , we see that the change in the cavity resonant frequency with W wg scales with the intensity of the evanescent cavity field overlapping with the waveguide. Basically, the more material with ε > 1 is introduced within the cavity evanescent field, the larger is the perturbation, thus g ω,e decays with the decreasing waveguide width W wg .

One should consider the additional correction to the Eq. 2.9, if the permittivity contrast at the perturbation boundary is high. This is the case for silicon waveguide block, surrounded by air, thus we used the corresponding perturbative theory derivation from a limit of system with smoothed boundaries [Johnson 2002], resulting in the derivative of the dispersion with respect to a small displacement being equal to

dω 0 dα = ω 0 2 dA dh dα ∆ε wg E c, 2 - ε -1 wg D c,⊥ 2 dV ε c E c 2 , (2.10) 
where h (α; r) is the parametrization of a surface deformation, including the boundary initial position with a small displacement α perpendicular to the surface of the structure; dA represents a small area where surface is locally flat, dV refers to a volume integral; ∆ ε -1 wg = ε -1 wg -1; E c, is the in-plane electric field, and D c,⊥ is the out-of-plane component of the cavity mode electric displacement field.

Using now the Eq. 2.10, the obtained corrected g ω,e values are traced in Figure 2.25a (blue line with diamonds at the evaluated points). As can be seen from this Figure, the ε tensor correction effectively reduces the dispersive coupling coefficient (by about a factor of 5), since only the part of cavity field is now being considered, additionally substracting the out-of plane D field contribution. We obtain values of g ω,e of about 1 GHz/nm, varying monotonically with the increase of ∆ε wg , corresponding to the amount of waveguide material in the cavity evanescent field (in the same way as for non-corrected approximation). We next estimate the dissipative optomechanical coefficient g γ,e using the perturbative theory. It states that an approximation for the cavity loss rate into the external waveguide, γ e , can be obtained from coupling-mode analysis for a generalized waveguide -resonator system [Manolatou 1999]. Neglecting dispersion, the loss rate into either the forward-or backward-propagating waveguide mode is

γ e = ωε 0 4 z 2 z 1 dz dx dy (ε c -1) E * c • E wg e -iβz 2 , (2.11)
where ε c is the relative permittivity of the cavity media, E c (x, y, z) is the unperturbed cavity electric field distribution, normalized to unit energy; E wg (x, y) is the unperturbed waveguide electric field mode profile, normalized to unit power; β is the propagation constant of the propagating waveguide mode (cf. Section 2.1.3.3). The integrals in x and y are restricted to the region inside the cavity dielectric.

The unperturbed cavity E c and waveguide E wg fields were simulated independently using FDTD method, as described in Section 2.1.3.3. Obtained dependence of the external dissipative coupling strength on the waveguide geometry is shown in Figure 2.25b (solid blue line with diamonds at the evaluation points). This g γ,e trend shows a monotonic dependence, and in the same way as for the external dispersive contribution g ω,e , we can state that the change in the coupled cavity linewidth γ e versus the increase of the waveguide dimension W wg scales with the intensity of the evanescent cavity field overlapping with the waveguide.

In conclusion, this theory allows for the estimation of the corresponding coefficients g ω,e and g γ,e over a large span of opto-geometric parameter variation using considerably lesser computational powers and times when compared to a 3D FDTD simulation, which requires re-running a complete study of a coupled structure at each point of parameters grid. Nevertheless, for the evaluation of the dispersive coupling strength in our system the perturbative approximation does not take into account the difference in phase-matching conditions for different waveguide geometries. This phenomenon, however, shows a major influence on the coupling strength in the system (cf. Section 2.1. 3.4) and thus has to be considered when evaluating the optomechanical coupling, which is accomplished in the following Section.

Complete FDTD simulation

FDTD simulation of the entire coupled structure gives us access to the total PhC cavity quality factor Q total and to its respective resonance wavelength λ 0 . By converting this data into the frequency domain and making use of Eq. 2.3, where γ i is taken from the cavity mode simulation in the absence of the waveguide, we return to the dependencies of ω 0 and γ e on the parameters of interest, namely h air and W wg .

The displacement field pattern of a specific mechanical mode is hardly introduced into the FDTD simulation using the software packages that were available during this work. We thus implement this simplified model by investigating the above-mentioned parameters (λ 0 -Fig. 2.26a and Q total -Fig. 2.26b) of the optical system while varying the separation h air between the flat membrane and the access waveguide (Fig. 2.22) for different waveguide widths W wg . These trends are subsequently fitted by a suitable function (we choose exponential dependence for γ e both for ω 0 , which in the case of strong coupling regime between waveguide and cavity optical modes is well explained by the exponential character of decay of the evanescent field tail) around the z value (which appears in this case for the h air distance), corresponding to the equilibrium position of the membrane, where the g will be estimated (shaded areas in Fig. 2.26a,b). Finally the two derivatives for g ω,e and g γ,e are calculated and used in Figs. 2.27a and b, respectively. In this way the external coupling coefficients were obtained for a set of different access waveguide widths W wg and two air gaps h air (150 nm and 230 nm). As can be seen, the small h air difference of 80 nm in membrane position results is considerable change of both external coupling coefficients.

The cavity resonance frequency displays a more important shift as the waveguide approaches (see Fig. 2.26a); consequently gap h air modulation induces an important ∆ω 0 shift and the dispersive optomechanical coupling strengthens considerably. For a given waveguide width, g ω,e increases at least by a factor of 3 (Fig. 2.26a). Furthermore, the evolution of the external dispersive coupling strength g ω,e shows the similar trends across the waveguide width W wg variation for the two considered h air distances.

External dissipative coupling strength g γ,e values (see Fig. 2.27b) shows an overall increase when the separation distance h air shortens, while this effect is more pronounced around W wg values close to 350-400 nm. It can be explained by the better phase-matching conditions (see Fig. 2.14) between the waveguide and the defect cavity modes.

Imprecision of the simulated g ω,e coefficients (Fig. 2.27a) comes from the numerical simulation error, which can be observed in Fig. 2.26a, where the cavity resonance wavelength curve appears more noisy that the linewidth curve in Fig. 2.26b. This is explained by the use of different methods for the evaluation of these two quantities, as described in details in Section 2.1. 3.4, where the Q factors and thus the linewidths γ are extracted with the higher precision. The resonance wavelength λ 0 evaluation, in contrary, shows strong dependence on the meshing quality. Although the used simulation package (Lumerical FDTD Solutions) employs an adaptive mesh refinement within the zones where the dielectric tensor undergoes an abrupt change (i.e., on every boundary between the membrane dielectric and air), with the finest mesh achievable by the means of our computing resources (20 × 20 × 20 nm 3 unit cell) it was not possible to completely suppress the evaluated λ 0 fluctuations for the simulated z discretization step of 10 nm, which resulted in the imprecision for g ω,e values given in Fig. 2.27a. An important quantity, characterizing the coupling in optomechanical system with both non-zero dispersive and dissipative components, is the ratio Γ = g ω,e /g γ,e between the corresponding coupling strengths. Figure 2.27c shows the evolution of |Γ| parameter, obtained from simulations performed for Figs. 2.26a,b. While for shorter suspension height of h air = 150 nm the overall optomechanical coupling strength for the two components increases, the dispersive interaction becomes more pronounced compared to the dissipative one. This leads to a system where the dispersive coupling regime is dominant. The tuning of the ratio Γ at this fixed value of h air , on the other hand, can be realized over more than one order of magnitude by switching between different access waveguide geometries (Fig. 2.27c), introducing an additional degree of freedom for the optomechanical experimentation of our system.

To sum up, when comparing the two results from the first-order perturbative theory (Fig. 2.25a,b) with the corresponding numerical derivatives, obtained from 3D FDTD simulations (Fig. Fig. 2.27a,b for h air = 230 nm), the theoretical trends fall approximately within the error bars of the simulated ones. However, the FDTD simulation, contrary to both perturbative theory results, does not show a monotonic behaviour, featuring local maxima and minima along W wg variation axis. The perturbative theory can be still employed as a quick way to estimate a coupling strength variation for the same cavity -waveguide pair, while changing the separation distance. Such study showed some consistent results with the FDTD simulation for the coupled cavity -external fibre system presented in [Hryciw 2014], when the change in coupling was examined versus the spatial separation of these two elements.

Numerical simulation of intrinsic optomechanical couplings

Simulation of the intrinsic optomechanical couplings is a subject of multi-physics study, involving the knowledge of different perturbations caused by each of the mechanical resonator modes to some of optical system parameters, therefore, the correct estimation of these effects requires a FEM simulation. Commercially available COMSOL Multiphysics software package was used for this purpose, providing a direct way to perform a coupled simulations between different physics types (e.g., structural mechanics and electromagnetic waves). The two types of interactions, dissipative and dispersive, are described using the perturbative theory approximations (Section 2.3.3.1), adapted to the specific optomechanical effects occurring inside a moving PhC slab membrane. In this case, 3D FDTD simulation cannot be used since it is not possible to model displacement field distribution for mechanical model with this technique. Simulation of the dissipative intrinsic interaction was not performed in the framework of these studies, as it requires finer meshing of the computational domains while introducing the displacement field Q( r) patterns for each of the modes of interest. This procedure, however, was not achievable using our available computational means. Therefore the following Sections review two principal contributions to the dispersive intrinsic coupling, given by moving boundaries and photoelastic effects.

Moving interfaces contribution

A deformation of the optical resonator boundaries, related to a displacement field profile of a particular mechanical mode, affects the dielectric tensor at the frontier between different materials. This effect is explained by the shift of the high-contrast step profile of ε( r) across a boundary because of the deformations of the structure. By relating such deformation to a change in the dielectric constant ε, we can use Equation 2.10 to calculate the optomechanical coupling for the intrinsic case. In [Johnson 2002] paper a robust expression for this shift in frequency was derived, which, when adapted to an optomechanical interaction [Eichenfield 2009c], gives an optical frequency shift per displacement unit length, or, the dispersive coupling strength due to the effect of moving interfaces, as follows:

g ω,MI = - ω 0 2 dA Q ( r) • ˆ n ∆ε c E c, 2 - ε -1 c D c,⊥ 2 max Q dV ε c E c 2 , (2.12) 
where ∆ ε -1 c = ε -1 c -1 is a difference permittivity tensor between the cavity dielectric and surrounding medium (including the holes in the PhC lattice), ˆ n is the outward facing unit normal vector on the surface of the unperturbed cavity and dA represents the integration over all the available cavity boundaries while taking into account the proper normal vectors.

Considering the permittivity tensors from Eq. 2.12 and their relation to the refractive index, one generally writes ε = ε 1 + iε 2 = (n + ik) 2 , where ε 1 and n refer to real parts of dielectric constant and refractive index, whereas ε 2 and k -to the corresponding imaginary parts. In our simulation we assume ε 2 , k = 0, therefore ε = ε r ε 0 , where ε r is the relative material permittivity and ε 0 is the vacuum permittivity ε 0 = 8.75 × 10 -12 F/m. For our case of the isotropic permittivity tensor, one thus gets for Eq. 2.12:

ε c = n 2 ε 0 , ∆ε c = n 2 -1 ε 0 and ∆ ε -1 c = (1/n) 2 -1 /ε 0 .

Photoelastic contribution

The photoelastic contribution to the intrinsic optomechanical coupling arises from local changes in the refractive index due to strain in the structure, created by the displacement field distribution for a given mechanical mode. For a particular vector displacement field Q( r), the induced dielectric perturbation is given by

δε ( r) = ε • p • S ε 0 • ε, (2.13)
where ε is the permittivity tensor of the unperturbed structure and double overline notation is employed to distinguish between tensor and scalar variables; S is the strain tensor, corresponding to the chosen mechanical mode via its Q( r) distribution:

S ij = 1 2 dq i dx i + dq j dx j (2.14)
with q( r) = Q( r)/α being a mode profile (displacement), as introduced in Eq. 2.25. Equation 2.13 in our case of isotropic medium [Chan 2012] reduces to

dε ij dα = -ε 0 n 4 p ijkl S kl , (2.15) 
The fourth-rank p tensor with components p ijkl is called the photoelastic tensor. For a material of cubic lattice symmetry (e.g., Si, InP, GaAs), a reduced tensor with elements p ij can be used:

p =              
p 11 p 12 p 12 0 0 0 p 12 p 11 p 12 0 0 0

p 12 p 11 p 11 0 0 0 0 0 0 p 44 0 0 0 0 0 0 p 44 0 0 0 0 0 0 p 44               (2.16)
In Cartesian coordinate system the strain tensor is written as

S =      S xx S xy S xz S yx S yy S yz S zx S zy S zz     
(2.17)

Next, using the fact that S ij = S ji for i = j, we can introduce a contracted index notation (xx → 1; yy → 2; zz → 3; yz, zy → 4; xz, zx → 5; xy, yx → 6) and write

S =      S 1 1 2 S 6 1 2 S 5 1 2 S 6 S 2 1 2 S 4 1 2 S 5 1 2 S 4 S 3      =               S xx S yy S zz 2S yz 2S xz 2S xy               =               S 1 S 2 S 3 S 4 S 5 S 6               (2.18)
This notation allows now to calculate a matrix product p • S for Equation 2.13, with the notations from Eqs. 2.16, 2.18:

p • S =               p 11 S 1 + p 12 S 2 + p 12 S 3 p 12 S 1 + p 11 S 2 + p 12 S 3 p 12 S 1 + p 12 S 2 + p 11 S 3 p 44 S 4 p 44 S 5 p 44 S 6               (2.19)
By reversing our contracted notation with Eq. 2.18, we come back to Cartesian coordinate system indices: At this point a simple volume integral from perturbative theory approximation, such as the one shown in Eq. 2.9, can be used to find the intrinsic dispersive optomechanical coupling strength, coming from to the photoelastic effect:

p • S =    
g ω,PE = - ω 0 2 dV E c • δε • E c max Q dV ε c E c 2 , (2.21)
where the E c • δε • E c product in numerator with Equations 2.15 and 2.20 is given by:

E c • δε • E c = -ε 0 n 4 2 Re {E * x E y } p 44 S xy + 2 Re {E * x E z } p 44 S xz + 2 Re E * y E z p 44 S yz + + E 2 x (p 11 S xx + p 12 (S yy + S zz )) + E 2 y (p 11 S yy + p 12 (S xx + S zz )) + + E 2 z (p 11 S zz + p 12 (S xx + S yy )) . (2.22)
Refractive index of InP at 1550 nm wavelength and at room temperature is taken n = 3.16 [Pettit 1965]. The components of the reduced photoelastic tensor, used in Eq. 2.22, were taken as (p 11 , p 12 , p 44 ) = (-0.05, -0.02, 0.0546). None of these values are explicitly given in the literature for 1.55 µm wavelength, thus the used ones are the results of extrapolations of data found in [Canal 1979;Rönnow 1998] using the relations from [Adachi 1992].

Total intrinsic coupling

The optomechanical coupling ratio g, introduced before, is a parameter which depends on the displacement of the resonator. It is even difficult to estimate for three-dimensional displacement as for more complicated mechanical normal modes (see the discussion in [Aspelmeyer 2013]). Another figure of merit, the vacuum optomechanical coupling strength

g 0 = g x ZPF ,
(2.23) expressed in frequency, is used instead for the description of the optomechanical interaction and evaluating its strength. Such figure of merit also allows for comparison between various resonators of unequal geometries and even more different displacement patterns. It quantifies the interaction strength between a single photon and a single phonon and corresponds to the frequency shift; induced by the zero-point fluctuation of the mechanical motion. The multiplier for g in Eq. 2.23, x ZPF , is indeed the zero-point fluctuation amplitude9 of the mechanical oscillator, or, its maximum single-phonon displacement:

x ZPF = 2m eff Ω m , (2.24)
where m eff is the effective mass of the mechanical mode (see below) and is the reduced Planck constant. Definition of the effective mass of a mechanical mode comes from the introduction of the effective mode volume, m eff ≡ ρV m with ρ being the resonator's material density. From the analogy to the modal volume of an optical mode,

m eff = d r Q * ( r) • ρ ( r) • Q ( r) max Q( r) 2 = ρ dV   Q max Q   2 , (2.25)
where ρ is the material density, which is considered isotropic; Q( r) is the vector displacement field, describing perpendicular displacements of the boundaries of volume elements.

It can be decomposed as Q( r) = α q( r), where α is the mechanical vibration amplitude and q( r) is a mode profile (displacement), so that max Values of simulated intrinsic dispersive coupling components, using Eqs. 2.12 and 2.21, for the two families of mechanical modes (cf. Section 2.2) -the flexural ones of the whole membrane and the ones localized inside the L3 PhC cavity, are illustrated in Figs. 2.28, 2.29, while the data including characteristic optomechanical parameters are given in Tables 2.1 and 2.2. Top plots in Figs. 2.28, 2.29 include the simulated (cf. Section 2.2) mechanical response of the suspended membrane and the L3 defect cavity to an external excitation, read out in their middle, allowing to compare the relative amplitude of different modes. Using this criterion, several eigenmodes from the two families were selected for the estimation of coupling coefficients g ω,i and total intrinsic vacuum coupling rate g 0,i , as given in Tables 2.1,2 For the flexural membrane modes (Fig. 2.28) the major contribution to the intrinsic coupling comes from the effect of moving interfaces, whereas the photoelastic effect is about 2-3 orders of magnitude weaker. The two mechanisms, however, become comparable for the family of localized cavity mechanical modes, where the displacement and electromagnetic fields show a very high spatial overlap. In general conclusion, the strength of intrinsic optomechanical coupling is much lower compared to the external dispersive component g ω,i

(| q|) = 1. Ω m /2π m eff x ZPF g ω,MI g ω,PE g 0,i Mode (MHz) (pg) (fm) (MHz/nm) (
g ω,e . Moreover, as discussed in Section 2.3, the two dispersive-type interactions in their external and intrinsic realization can not be experimentally distinguished, therefore, the total g ω value will be either a sum or a difference of these two terms, depending on the phase of the mechanical mode taken into account for the simulations of g ω,i and g ω,e parts. For the MHz range modes it can be assumed that g ω ∼ g ω,e . For the localized modes family (GHz range), even if g ω,i is weak, the displacement in z direction will be very small, thus the prominent coupling will be still governed by the intrinsic effects. It should be noted that the simulation of photoelastic coupling strength depends directly on the values of the photoelastic tensor components (p 11 , p 12 , p 44 ) = (-0.05, -0.02, 0.05), which were not yet precisely measured for InP at our working wavelength, thus the extrapolated data taken into account in our calculations can be a considerable source of error for the overall g ω,i value.

Towards optimized optomechanical cooling

Optomechanical cooling of a mechanical resonator and eventually reaching its ground state, was first introduced and achieved [Chan 2011] for the optomechanical system with dominant dispersive coupling, operating in the sideband-resolved regime (Ω m γ t ). Removing thermal phonons from the mechanical element can be implemented by exploiting the intracavity radiation pressure, the force due to momentum transfer associated with photon scattering [START_REF] Aspelmeyer | Quantum optomechanics[END_REF]]. In the sideband-resolved limit, a pump laser of frequency ω, coupled to the cavity resonance ω = ω 0 , will be modulated by the mechanical frequency Ω m and form sidebands at frequencies ω ± Ω m . From a quantum mechanical point of view, this process is analogous to the generation of Stokes and anti-Stokes sidebands in Raman scattering. The upper sideband ω + Ω m is a result of pump-laser photons acquiring energy by annihilating thermal phonons in the mechanical element; the lower sideband ω -Ω m results from photons creating phonons and reducing its own energy.

By carefully detuning the frequency of the pump field relative to a specific cavity resonance, one can resonantly enhance one of the processes. In particular, red-detuning from the cavity resonance to ω = ω 0 -Ω m enhances the upper sideband and promotes extraction of energy from the mechanical mode at Ω m . As long as the up-converted photons leave the cavity sufficiently fast, carrying with them their newly acquired energy, the process can cool the motion of the mechanical element to well below the temperature of its surroundings.

Using this technique, the authors in [Chan 2011] cooled the resonator from the surrounding bath temperature of T b ≈ 20 K to its mechanical ground state with a mean phonon occupancy of n < 1. For a given mode at Ω m /2π of a mechanical oscillator in a thermal bath of temperature T b , the phonon occupancy is

n b = k B T b / Ω m 1.
For a quantum-limited drive laser, it can be reduced to n = n b / (1 + C) + ñ, where k B is Boltzmann's constant and C ≡ γ m,OM /γ m,i is the cooperativity, the ratio of the optically induced γ m,OM and intrinsic γ m,i mechanical damping rates. In the weak-coupling regime (γ m,OM γ t ), this damping is given by γ m,OM = 4g 2 0 n c /γ t , where n c is the average number of drive-laser photons stored in the cavity and g 0 is the vacuum optomechanical coupling rate, as given by Eq. 2.23. The residual scattering of drive photons into the lower-frequency sideband limits the cooled phonon occupancy to ñ = (γ t /4Ω m ) 2 , which is determined by the level of sideband resolution.

From the discussion above, assuming the drive laser is placed at optimal detuning ω 0 -Ω m , the minimum reached phonon occupancy of the mechanical mode nmin will depend on the vacuum optomechanical coupling rate g 0 and the laser drive power, coupled into the cavity (∝ n c ). The bath temperature T b , cavity optical linewidth γ t and intrinsic mechanical mode damping rate γ m,i are assumed constant. This means that the device optimization in order to reach lower nmin would essentially require increasing the optomechanical coupling g 0 .

Optomechanical systems in the sideband-unresolved regime (Ω m γ t ) are not suitable for the implementation of such cooling scheme when dispersive coupling is dominant (g ω → ∞, g γ → 0). However, it was demonstrated recently [Weiss 2013], that the cooling can be realized by putting such a system into purely dissipative coupling regime (g ω → 0, g γ → ∞). The optimal cooling condition is, nevertheless, not simply g ω → 0 and g γ → ∞, but is related to the ratio Γ between these two, as introduced before in in Section 2.3.3.2.

We studied the theoretically predicted optimal ratios for dispersive and dissipative optomechanical coupling strengths with the currently achievable values for our system (see Fig. 2.27c). When an optomechanical system in the sideband-unresolved regime features both dispersive and dissipative interactions, the minimum reachable phonon number nmin (in another words, the maximum possible cooling of the mechanical mode) can be achieved for a given optimal Γ † ratio

Γ † = g † ω /g † γt = - 3 2 Ω m γ (2.26)
The optimal detuning ∆ of the cooling laser in this case coincides with the one for the dispersive cooling: ∆ † = -Ω m . The optimal Γ † mixing ratio for both types of couplings is plotted from the Eq. 2.26 in Figure 2.30 as a function of the mechanical resonator frequency Ω m /2π and the optical cavity linewidth γ t /2π in the range including the currently achieved and theoretically achievable values of both parameters with our system under study. To put some characteristic numbers, for the fundamental flexural mode at few MHz with the coupled cavity linewidth γ t /2π = 1 nm, the optimal coupling ratio equals Γ † ≈ -10 -5 , whereas for a localized cavity mode at Ω m /2π ≈ 1 GHz it increases to Γ † ≈ -10 -2 . When comparing to Fig. 2.27c, the further optimization of our actual device design in order to reach the optimal cooling conditions would require an improvement of the loaded linewidth γ t towards smaller values, meaning a reduction of the intrinsic cavity losses γ i from one side, and/or the passage to higher frequency Ω m of the mechanical modes being cooled from another side, where the localized cavity modes in the GHz range appear to be a good candidates for reaching an optimum Γ † cooling condition.

It should be taken into account, that in the case where the two parameters mentioned above (Ω m and γ t ) start to approach the passage to the good cavity, or sideband-resolved limit (Ω m γ t ), which corresponds to the upper left graph corner in Fig. 2.26, the minimum phonon number n min will become independent of the sideband parameter Ω m /γ t . However, in the current system design even the condition Ω m ≈ γ t is yet hardly achievable and thus not considered in view of implementation of optomechanical cooling.

Summary

This chapter introduced the optical and mechanical designs together with the complete simulation, including optical, mechanical and optomechanical characteristics of our hybrid system, either formed by a PhC slab membrane acting as a deformable mirror or containing a defect L3 photonic crystal cavity embedded inside it and heterogeneously integrated with a SOI waveguide. In the latter case, two types of simultaneously existing optomechanical couplings -dispersive and dissipative -were studied both in case of intra-cavity interaction mechanisms ('moving interfaces' and photoelastic effects) and in case of interaction with the external waveguide, coupled optically by an evanescent tail of a propagating mode. Overall dispersive intrinsic interaction strength showed to be less pronounced comparing to the external coupling effects at small membrane suspension heights ( 300 nm).

Dependence of the external couplings on different opto-geometric parameters of the integrated system, such as the membrane -waveguide vertical separation and the waveguide width were studied, and the possibility to achieve a tailoring of both effect strength and relative weight via these parameters was demonstrated. The implementation of an optimized ground state cooling of our mechanical resonator was examined by bringing the system into the regime of dominance of dissipative coupling while introducing different relative strengths of the dispersive optomechanical interaction.

Chapter 3

Fabrication of III-V photonic crystal membranes on SOI circuit The previous Chapter detailed the design and realization of the photonic crystal membrane resonators, integrated in our experiments on a network of Silicon-On-Insulator (SOI) waveguides. Current chapter provides a detailed description of the fabrication process of such hybrid structures, which principally consist of a III-V photonic crystal membrane on top of SOI waveguide for an integrated and controlled optical access. From an optomechanical point of view, this integration creates a strong interaction loop with the in-plane 81 optical cavity, embedded in the membrane. This loop induces two pronounced types of optomechanical couplings, which can be tailored via a control over a waveguide geometry.

Main fabrication challenges during this work are twofold. First challenge consists in the obtention of high optical quality (Q) factor defect PhC cavities made of III-V material, which must be aligned to a SOI waveguide circuit with a precision (within a few nanometres); secondly, each of these cavities is a part of large (50 to 200 µm 2 in-plane dimensions) and thin (260 nm) membrane, whose proper suspension over a thin air gap (few hundreds of nm) must be achieved systematically on a chip scale. The strategies we used to tackle the aforesaid challenges are explained in the following.

Except the SOI circuit wafers, realized through the ePIXfab European network in IMEC facility (Leuven, Belgium), all the fabrication steps were implemented at LPN.

Fabrication challenges

The overall process flow in regard of its main constituents involve four main steps (Fig. 3.1). In a first step, a Si wafer holding a SOI waveguide circuit, as presented previously, is bonded with a III-V wafer containing the InP membrane (260 nm thick) with a monolayer of quantum dots. Once adhesive bonding is done, chemical substrate removal of the III-V wafer leaves solely the membrane on the SOI substrate (Fig. 3.1a). The membrane can then be further processed. In a second step, alignment marks used in the electron beam lithography runs are prepared. An enhanced contrast is obtained by additional metal covering (Fig. 3.1b). These markers allow to align the PhC cavities etched in the InP layer with respect to the access SOI circuit; we routinely achieve a mutual positioning precision of < 40 nm. In a third step, the InP layer is patterned by electron beam lithography and subsequent dry etching processing (Fig. 3.1c). This step imprints on the InP membrane the photonic crystal, defect cavity and their surrounding mesa structures (used to anchor the suspended membrane to the substrate). Last, the PhC membranes are underetched and dried via a critical point drying technique (Fig. 3.1d), creating an air gap between the waveguide an PhC membrane of a few hundreds nanometres with a controlled membrane -waveguide distance. This control is crucial for tailoring the strengths of both optical and optomechanical effects.

These four steps will be discussed in details is in the following sections.

Heterogeneous bonding of the III-V and SOI substrates

This heterogeneous bonding technique is aimed at taking advantage of both silicon (implementing low loss waveguides) and III-V material (with optical and mechanical properties, crucial for our optomechanical resonator, but also allowing to implement an integrated light source). Such heterogeneous integration was first developed for other purposes than optomechanics, in particular for advanced nanophotonics circuitry combining active and passive functionalities. In our case, we additionally use a quantum dots as active medium (Section 3.2.1), these dots are embedded within the InP membrane (Fig. 3.3a,b and Fig. 3.6a,right). This membrane will form our optical and mechanical element. The main goal of this part is to ensure an integrated coupling to the optical cavity, via a low-loss optical waveguide made of silicon (cf. Section 3.2.2). It comprises three steps: growth of the III-V membrane (Section 3.2.1), patterning of the SOI substrate (Section 3.2.2) and adhesive bonding (Section 3.2.3).

Active material layer

Unlike silicon, III-V materials have a direct band gap, which is usually employed for a fabrication of efficient semiconductor light sources. Suitable alloys and heterostructures permit to obtain radiative transitions at desired wavelengths ranging from 200 nm to 20 µm. Furthermore, with the vast growth experience of these materials a variety of heterostructures from bulk to quantum confined structures, such as quantum dots [Yoshie 2002;[START_REF] Braive | [END_REF], dashes [Gosset 2006] and wells [Merghem 2008] can be grown (given references cover the devices operating at wavelengths around 1.55 µm).

InP InAs(P) We took advantage of these developments and incorporated a single layer of selfassembled InAs(P) quantum dots (QDs) in the middle of a 260 nm thick InP membrane layer (Fig. 3.3). Starting from a 350 µm thick host InP(100) substrate (Fig. 3.6a, right), an intermediate layer of InGaAs (1 µm) is grown by metalorganic chemical vapour deposition (MOCVD), followed by the InP membrane with embedded QDs. The InGaAs layer will be used as etch-stop during the III-V substrate removal right after its bonding on the silicon wafer holding the passive part of our device.

The photoluminescence spectrum of the InAsP QDs at 300 K covers our wavelength of interest (1550 nm) with a very large spectral width of several hundreds of nanometres (cf. Fig. 3.3c; cut-off around 1600 nm is due to the limitations of spectrograph operation range).

SOI waveguide circuitry

As it was introduced before (cf. Sections 1.5, 2.1.3.4), the integration of SOI waveguides within our sample allows for efficient and fully controlled light input and extraction to and from the devices under study.

We start the fabrication with a standard SOI sample which consists of 1000 µm thick silicon (Si) substrate and a network of parallel Si waveguides, separated by a 2 µm thick cladding layer of Buried Oxide (BOx) made of SiO 2 . For the optical mode propagating in Each waveguide is tapered from 10 µm (side dimension of the grating coupler, cf. Fig. 3.5) to few hundreds of nm width (w wg ) in the middle (500 µm long section of constant w wg ). A single waveguide has a length of 6 mm and is terminated on both sides with shallowly etched grating couplers [Emmons 1992] for light coupling and extraction to and out of the chip (Fig. 3.5). Our standard waveguide array consists of series of h wg = 220 nm thick waveguides with w wg (ridge width in the coupling region, see Fig. 3.4b) varying from 250 to 550 nm with a step of 50 nm, which makes them single-mode for transverse electric (TE) polarization1 and additionally allows for different strengths of optical coupling with the optical cavity in the waveguide evanescent field (cf. Fig. 2.12b). Waveguide optical losses are typically around 2.4 dB/cm mainly due to light scattering on imperfections brought by fabrication. Both grating couplers and waveguides are designed to have a transmission band centred at 1550 nm with a 1 dB bandwidth of around 40 nm large. The grating couplers are conceived to work with a standard cleaved single-mode optical fibre (SMF), brought into the coupler's vicinity, and show [START_REF] Taillaert | Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides[END_REF]] best coupling efficiency of -5.1 dB (input to output fibre) within the designed bandwidth and a fibre to substrate's normal angle2 of (10±3)°. SOI photonic circuit contains also two lines of alignment markers (see Section 3.3 for more details), which are necessary to perform successive electron beam lithography runs and achieve correct alignment of a PhC membrane with respect to the corresponding access waveguide. This procedure and its limitations is one of the key point of this fabrication process and will be described below.

SOI wafers are fabricated in a CMOS line at IMEC facility with a SmartCut technique (developed originally in CEA-LETI [Bruel 1997]) and deep UV lithography [Selvaraja 2009]; the complete procedure is discussed in detail in [Bazin 2013]. Main steps are presented in the next Section.

Bonding of III-V on SOI

Heterogeneous integration of a III-V membrane resonator with a SOI waveguide requires an adhesive bonding of the two respective wafers via an intermediate layer. Our scientific application imposes two main requirements on this step. First, the bonding layer should ensure the planarization of the Si waveguide circuit while preserving control over the overlaying thickness, as we want to obtain a pre-defined gap between the waveguide and the III-V membrane as small as possible. Second, it should be transparent in our operating wavelength band (1.5 -1.6 µm) and the refractive index contrast for the propagating optical mode in the encapsulated waveguide should be kept high for tight mode confinement. Recently an adhesive bonding technique was developed for the fabrication of InP / InGaAsP dies integrated on the patterned silicon-on-insulator wafers [Roelkens 2006]. The employed polymer, divinylsiloxane-benzocyclobutene (DVS-BCB), fulfils both of our requirements. Its thickness during fabrication (Fig. 3.6b, left) can be as low as few tens of nanometres [Keyvaninia 2013] when working with its dilution in mesitylene (C 9 H 12 , derivative of benzene).

InGaAs

To obtain the maximum success rate during the bonding process, we employ a layer of amorphous SiO 2 as an interface between the InP membrane and the DVS-BCB layer. In general, only few nanometres of silica are sufficient for successful bonding; in our case the thickness of this sacrificial layer is of the order of few hundreds nanometres to adjust the distance between the Si waveguide circuit and the InP membrane (Fig. 3.6b, right). This thickness has been chosen as a compromise solution between two aspects: if the silica layer is too thin, underetching and correct release of the membrane become difficult, whereas thicker sacrificial layers reduces strongly the optical coupling efficiency between the PhC cavity and the addressing waveguide. The optimal working range for our objectives (cf. Section 2.1.3.4) lies between 100 and 400 nm approximately.

Before the bonding, a cleaning procedure of the surface of SOI wafer is performed in order to optimize the bonding quality and efficiency. The protecting resist (coated prior to the shipping of processed SOI wafers) is removed from the sample surface in an acetone ultrasonic bath (5 min, 80 Hz, 100 % nominal power), followed by isopropyl alcohol (IPA, C 3 H 7 OH) rinse and N 2 flow drying. It is followed by 2' O 2 plasma cleaning3 for removal of the remaining resist; thus leads to the creation of the native oxide layer on silicon, which improves adhesion during bonding.

Then a DVS-BCB4 solution, mixed with mesytilene (2:1.5 by volume), is spin-coated (5000 rpm speed, 2000 rpm/s acceleration, 30 sec) on the SOI wafer. This coating is followed by a 15' post-bake on a hotplate at 80 °C in order to outgas the remaining solvent (Fig. 3.6b, left). These parameters result in 250 nm thick DVS-BCB layer, leaving a 30 nm thick (cf. Section 3.5.2) film over the Si waveguide top surface. The exact distance between the InP and Si levels is then adjusted during the SiO 2 coating on the InP membrane, which is controlled in more precise manner.

At the same time the InP wafer is cleaned with 2' O 2 plasma prior to the deposition of the sacrificial SiO 2 layer. The latter procedure is accomplished in two steps. The first 25 nm of SiO 2 are deposited by plasma-enhanced CVD (PECVD), which does not involve target wafer bombardment by ions. Thus the surface quality of the underlying InP layer is not degraded. The remaining SiO 2 thickness, typically 175 nm, is deposited by sputtering to improve adhesion compared to PECVD-deposited silica.

Once both dies are prepared, they are put in contact and the bonding is performed in a high precision wafer bonder (S ÜSS MicroTech SB6): the ensemble is heated up The etching stops at InGaAs layer interface, which is removed after in a H 2 SO 4 :H 2 O 2 :H 2 O solution (same ratio as above; etching time is approximately 1 min for 1 µm thick layer) (Fig. 3.6e).

2 cm SOI substrate III-V membrane

Processing of high-contrast alignment markers for electron beam lithography

After the bonding of the two wafers and InP substrate removal, the top InP membrane is ready to be patterned with successive electron beam lithography and dry etching steps. However, we need a relative positioning of the PhC patterns with respect to the underlying waveguides smaller than 40 nm. This strong requirement can be fulfilled with the help of alignment markers already present on the SOI waveguide level.

First issue is the presence in the bonded structure of a high number of layers (see Fig. 3.8a) that cover the SOI circuit. Thus the markers are not detectable by an electron beam. The problem can be solved by selectively etching openings through these top layers in order to restore access to the markers arrays.

Each sample contains two lines of markers, that is, 100 × 100 µm Si pillars with 10 × 10 µm openings in the middle (Fig. 3.9a). These markers are processed during the SOI substrate patterning (Section 3.2.2).

The process flow of the markers openings is shown in Figure 3.8. Two trenches are etched above each of markers lines. To do so, a layer of AZ 9260 photoresist6 is spin-coated on top of the InP layer (4000 rpm speed, 4000 rpm/s acceleration, 30 sec, 7-8 µm thick after the bakeout) and then baked for 7' on a hot plate at 120 °C (Fig. 3.8a). Ultraviolet (UV) photolithography is performed through a metallic slit mask with a broadband UV source (310-450 nm, mercury vapour lamp, 2' exposure) (Fig. 3.8b). Next, the photoresist is developed in AZ 400K developer7 (diluted in H 2 O as 1:4 by volume) until the resist is completely cleared from the exposed areas (8' approximately). In such manner the 500 µm wide trenches are defined in the AZ 9260 layer (Fig. 3.8c).

The InP membrane layer is removed (Fig. 3.8d) inside these trenches by wet etching in a HCl (40 %) solution (10 sec for 260 nm thickness); then the SiO 2 sacrificial layer is wet etched (Fig. 3.8e) in an ammonium fluoride (NH 4 F, 40 % in H 2 O) solution (3' for 200 nm thickness). Finally, the Si level is revealed by RIE etching the cured BCB in a SF 6 /O 2 plasma (Fig. 3.8f). In Figure 3.9a, the InP membrane (still recovered by protective AZ 9260 photoresist layer) and marks in Si can be seen (cf. colour-coded legend) together with the few neighbouring waveguides. Second issue is related to the particularity of electron beam lithography operation exploiting the marker detection. The backscattered signal of an electron beam is directly related to the atomic number of the material in which the marker is defined. Our markers consist of Si pillars on SiO 2 areas, -two materials with little contrast seen by electrons. To overcome this problem and considerably enhance the contrast between an internal marker square (silicon dioxide) and its surroundings (silicon), we employ a metal coating on top of outer silicon pillar.

Metal patterns are generally fabricated with a lift-off technique. First, a negative pattern is created in a sacrificial resist layer, deposited on the surface of the substrate (or the layer of interest). The target metal is then deposited over the whole area of the wafer, so that it reaches the surface of the substrate in the etched regions. When the resist layer is removed, the metal on its top is lifted-off and washed away as well. As a result, the target metal remains only in the regions where it had a direct contact with the substrate.

For this purpose, we use a new layer of BCB as a sacrificial layer, since the already present cured BCB layer cannot be lifted-off any more because of its complete polymerization. The underlying silica layer is partially wet-etched (Fig. 3.8g) in ammonium fluoride (AF) solution for 10', which results in about 800 nm gap. The new layer of BCB is then spin-coated (3000 rpm speed, 2000 rpm/s acceleration, 30 sec) and post-baken for 3' at 120 °C. BCB is a planarizing resist, thus the hollows around and within the silicon pillars are filed up, while the top surfaces of markers are covered with a much thinner resist layer (cf. Fig. 3.8h). We remove it with 5' in SF 6 /O 2 plasma, additionally etching around 500-700 nm of sacrificial layer outside of the markers, which assures correct lift-off behaviour (the etching liquid thus will be able to penetrate within the interior marker opening and interact with the BCB resist, Fig. 3.8i). A metal double-layer of Ti/Au (100/1000 Å) is deposited by EBPVD (electron beam physical vapour deposition) and finally lifted-off (Fig. 3.8j,k) by stripping the BCB sacrificial layer in EBR (Edge Bead Remover) PG solution8 at ultra-sound bath (25% nominal power, 2' or until complete metal removal from the markers interior). Metal layer from the remaining part of the sample (outside trenches) is lifted-off by stripping the AZ 9260 photoresist with acetone and IPA rinse.

As a result we obtain high-contrast negative markers (see Fig. 3.9b), which will serve for the alignment during subsequent electron beam lithography runs.

III-V membrane layer patterning

SOI waveguide and InP membrane are bonded with a controlled separation distance of about 200 nm. Alignment markers are now visible by an electron beam and allow for standard processing of the InP membrane. The basics of techniques used for patterning the III-V membrane are first briefly introduced and then used in the frame of the work.

Basic techniques for membrane patterning

Electron beam lithography

Electron beam lithography is a common tool for patterning structures with minimum dimensions down to nanometre scale. The InP layer patterning is realized through two main stages: first, the etching mask is written in an electron-sensitive resist layer by a focused scanning electron beam; second, the mask pattern is transferred by dry etching techniques into the underlying layer.

During this work, two types of electron-sensitive layers were employed -positive tone photoresist [START_REF] Reichmanis | Polymer materials for microlithography[END_REF]], PMMA (polymethyl methacrylate9 ) and negative tone one, HSQ (hydrogen silsesquioxane10 ). Difference between these two types of resists (Fig. 3.10) lies in the effect produced by the electron beam on their chemical structure. Depending on tone, either the exposed area (positive tone) or everything but this area (negative tone) is removed during resist development. We take advantage of these two types of resists to simplify the process of mask transfer into the InP membrane layer. Subsequent etching and stripping then reproduce the obtained pattern into the thin semiconductor layer.

This lithography technique requires relatively long exposure times in order to get nanometric resolution. The particularity of the structures being studied in this work is that from one side, they contain photonic crystal lattices requiring high mask writing resolution, and from another side, each PhC lattice has in its surrounding mesa structures, composed of µm-scale blocks, which can be processed with a lower resolution since this doesn't influence the device characteristics required for our application. These particularities are taken into account and the lithography is thus split into two runs.

The PhC lattice -optical component of our device -is exposed and further etched with the PMMA positive tone resist. The processing of the surrounding mesa structures is more advantageous with another kind of resist -a negative tone one, HSQ [Namatsu 1998;Olynick 2010], which can be used directly as a hard mask for dry etching. Fabrication of these two parts (PhC lattice and mesa) is described in more detail in two following Sections (3.4.2 and 3.4.3).

Dry etching with CCP-RIE and ICP-RIE plasma

Another technique required for patterning the InP membrane, is the dry plasma etching. The transfer of layout patterns into a membrane layer has to fulfil some requirements, such as low roughness of etched material, high verticaliy of sidewalls, high fidelity of pattern dimensions etc.

The plasma used in this process consists of a partly ionized gas, in which the ionization rate is maintained through a constant supply of energy. The plasma is being created by a radio frequency (RF) field and contains the ionic species together with some radicals that chemically react with the material one wishes to etch.

RF field is created between two electrodes, in consequence, it exists a continuous difference of potential between them. This difference of potential will constantly accelerate reactive ion species towards the surface of the sample. The etching process consists thus in a chemical reaction between active species and the material to etch, while ion bombardment enhances or promotes this reaction (Fig. 3.11, middle). By adjusting the chamber pressure, densities and ratios of species, the bias voltage, coil power etc., these two actions can lead to an optimal combination of two distinct mechanisms -purely physical and purely chemical one. These two mechanisms could also be employed independently for the etching purposes, however, they present alone considerable disadvantages.

From one hand, for a purely physical etching (Fig. 3.11, left) the ion energy mechanically ejects substrate material. This process is highly directional along the axis of ion acceleration and is thus anisotropic, nevertheless, it is little selective between different materials and typically has low etching rates. Low selectivity corresponds to comparable etching rates for mask and membrane layers. The mask layer is quickly removed and thus the major process drawback is that it does not allow to obtain high aspect etching ratios. From another hand, a purely chemical etching is, in contrast, highly selective and has high etching rates. Its drawback is the highly isotropic etched profiles, thus making impossible the fabrication of high-quality periodic structures with vertical sidewalls. The combined use of these two basic mechanisms, known as physico-chemical (Fig. 3.11, middle), or ion induced etching, conversely benefit from the high anisotropy of physical etching and good material selectivity of chemical etching. We will also make use of an optional mechanism to ensure anisotropic etch profiles: the sidewalls can be passivated (Fig. 3.11, right) by a deposition of thin protective layer during the etching process. This permits to limit the chemical reaction with the etched material only at the bottom of the openings, while the flanks being protected by the passivation layer.

Dry plasma etching systems can be divided into two process types -corresponding to low and high (> 10 11 cm 3 ) densities of ion species. In a basic low density set-up, the plasma is created between two electrodes and the sample is placed on the bottom one. In such system, named capacitively coupled plasma reactive ion etching (CCP-RIE), the density and the energy of ions both depend on the RF power. As a consequence, they can not be controlled independently. The advantage of this kind of reactor is the possibility to etch a wide range of materials, such as dielectric, silicon-based, III-V, sputtered metals and more. For this reason we employ it for all the dry etching processes during the fabrication of our samples, excluding the patterning of III-V layer. However, in order to obtain relatively high ion flow and gas concentrations, an important bias value is required. This high voltage accelerates efficiently the charged particles towards the surface, leading to a rapid mask degradation (as the contribution of physical etch is high).

In order to operate within a high ion density, another technique is used, namely inductively coupled plasma RIE (ICP-RIE). In such technique the density and the energy of ion species can be tuned independently via ICP and RF power setting, respectively. The ion acceleration is achieved, as in the CCP-RIE system, via the capacitive coupling between two separated electrodes. Ion density is controlled by an inductive coupling mechanism, which offers an additional degree of freedom.

Photonic crystal lattice fabrication: optical component

Pattern transfer by e-beam lithography

Fabrication of the optical component of our device demands high quality transfer of an array of circular shapes (with diameter of about 200 nm and period about 400 nm) into the active layer. It should satisfy the main requirements for achieving the expected optical characteristics (resonant wavelength and optical losses): high positioning resolution is needed for keeping constant the lattice period, hole radius and shape over the whole device. These requirements apply both to the electron beam lithography and to the dry etching stages; moreover, they should be fulfilled at the level of all involved intermediate layers (electrosensitive layer, hard masks and semiconductor membrane).

First main stage in the pattern transfer to a sensitive resist through an electron beam insolation (Fig. 3.13a-c). To achieve a high quality transfer, particular attention is given to several aspects of electron beam insolation.

First crucial point in this path is the resolution of a written pattern. The mask layouts, created by use of a specialized software (Tanner EDA L-Edit11 ) and suited for the e-beam lithography, are essentially composed of arrays of vector shapes with the infinitely high resolution of the latter. The electron beam, in turn, can only move along the defined rectangular grid during the pattern insolation, hence the vector mask is rasterized on a given mesh. An example of such a discretization is given on Fig. 3.12. The circle of 100 nm radius, which is typical for our optical components, is translated onto a square mesh of different sizes. As can be seen, with the resolution of about 100 pm -1 nm the mask layout rasterization does not limit the quality of the fabricated device in case of equal or higher internal resolution of electron beam system. Second important point concerns the electron beam displacement procedure during the insolation process. Usual field-emission systems [Stepanova 2011] employ a magnetic deflection coil to position the electron beam spot on a defined stationary location; this is done within a field area depending on the particular system design. The e-beam system used during this work (Leica/Vistec EBPG 5000+) has a working field with dimensions of 160 × 160 µm 2 at its highest accessible writing resolution (1.25 nm). As it holds for every Gaussian beam, its in-plane cross-section (spot) will change from circular in the centre of the working field to elliptical in its corners. This, in turn, will lead to distorted pattern writing closer to the exposure field borders, which is strongly undesirable as it decreases the homogeneity of holes dimensions and shapes in the PhC lattice. With these considerations we reduce the exposure field to the dimensions of a single PhC lattice within our sample (typically 10 × 20 µm 2 maximum). Thus, the stage sample holder would move to match the exposure field centre with the one of each of the PhC lattice, ensuring a high reproducibility of the resulting patterns within the sample. Last issue is related to the alignment precision between the patterns insolated during two or more different electron beam lithography runs. During each run, the positioning system aligns the set-up to the same relative reference points using the special markers (discussed in Section 3.3). These markers permit us to correct for the rotation, shift, and scaling between the SOI and InP layers; however, positioning errors still exist due to the imperfections of the employed system (e.g., the finite precision on the detection of a marker dimension and absolute position). It was demonstrated [Karle 2010], that for the markers size of 10 × 10 µm 2 (as the ones used in this work) in our lithography system, the mean statistical alignment offset between a pattern in InP and a Si waveguide is (26±19) nm. The work also shows that tight mutual lateral positioning control between the Si waveguide and the PhC cavity is required on a scale of about 100 nm for ensuring the designed optical coupling performances between these two elements. In consequence, this issue is not a limiting factor with the alignment and positioning system employed in this work.

The whole process flow schematic is represented in Figure 3.13. Once every aspect of electron beam lithography presented above is mastered, we insolate the photonic crystal structure of the future device (Fig. 3.13b). A PMMA A7 resist is spin-coated (4000 rpm speed, 4000 rpm/s acceleration, 30 sec time, resulting thickness 450 nm) and soft-baked for 15' in the oven at 160 °C (Fig. 3.13a). With the use of positive resist only the holes area is exposed to the electon beam and will be further removed. The PMMA layer is developed in 1:4 solution of MIBK (methyl isobutyl ketone) in IPA by full immersion for 30 sec and followed by 15 sec IPA rinse, which efficiently cleans the obtained openings. Such a low concentration of MIBK solvent allows to preserve maximal resolution with the PMMA resist12 (Fig. 3.13c).

Pattern transfer by dry etching

The pattern transfer between the PMMA layer and the InP thin film is accomplished through an intermediate 300 nm thick Si 3 N 4 layer, deposited by PECVD (Fig. 3.13a). This Si 3 N 4 layer is necessary because the PMMA layer is not hard enough to be used as etching mask in the ICP-RIE process. The photonic crystal lattice pattern is transferred (Fig. 3.13d) into the underlying Si 3 N 4 layer by CCP-RIE dry etching in SF 6 gas atmosphere at low gas flow rate and at low RF power, which ensures proper etched profile (Fig. 3.14a) within the 300 nm thickness of silicon nitride. After this step, the PMMA layer is removed with an O 2 plasma (CCP-RIE etching); its remaining thickness is being constantly monitored with the built-in interferometry system, hence the etching process is stopped exactly when we reach the Si 3 N 4 layer (Fig. 3.13e). The process allowing for etching high-quality photonic crystal structures in the InP membrane (Fig. 3.13f, 3.14b) was developed for the ICP-RIE reactor. The mixture of three gases -HBr, O 2 and He -is used at low pressure, which results in a long mean free path of the volatile by-products and thus speeds up their evacuation away from the etched surface. The III-V semiconductors family is generally effectively etched with halogen gases (F, Cl and Br). Bromine that displays the highest atomic mass, was chosen as it simply provides more energy for the physical component during etching. Oxygen is added in order achieve the sidewall passivation (Fig. 3.11, right) during the etching process; the lightweight He gas allows for the dilution of the gas mixture to the chosen ratios. The used ICP-RIE parameters are the following: ICP power 600 W, RF power 60 W, working pressure 0.5 mTorr, the gases ratio HBr/O 2 /He : 10/0.6/30. The mask used during the etching of InP is a Si 3 N 4 mask, which is subsequently removed by dry etching in SF 6 plasma (CCP-RIE) with the interferometric monitoring, as mentioned above (Fig. 3.13g).

Fabrication of mesa structures: mechanical component

Fabrication of the mesa structures upholding the membrane is less challenging, as it requires lower resolution. Nevertheless, it still needs the same high precision on its relative positioning with respect to the waveguide and photonic crystal.

The use of negative electron sensitive resist is here more suitable, thus the HSQ flowable oxide is employed (see Fig. 3.16). It allows for considerable reduction of electron beam exposure time comparing to the positive tone resists and moreover does not require any intermediate layer (as Si 3 N 4 for the PMMA process, mentioned above). Furthermore, the HSQ resist is fully compatible with our process for III-V dry etching and hence there is no more need in the intermediate Si 3 N 4 layer. The process flow (Fig. 3.15) is thus considerably simplified comparing to the one used for photonic crystal (Fig. 3.13). the HSQ layer with a pattern of corresponding to the mesa structures. After exposure the resist is developed in an AZ 400K : H 2 O solution (1:4 by volume) for 1 min (Fig. 3.15c). Subsequent InP layer dry etching with HSQ mask follows the same ICP-RIE process as described in previous section for silicon nitride mask (Fig. 3.15d). Finally, the resist is stripped by wet etching in diluted AF (1:9 with H 2 O). This solution etches also the silica sacrificial layer below InP (Fig. 3.15e) and thus the structures get suspended, assuming 10' of etching time per 200 nm of SiO 2 layer thickness.

In addition to simple mask fabrication and transfer to InP layer, the HSQ resist also allows to obtain the low sidewall roughness and good verticality, which in turn ensures high sidewalls quality in the InP layer and can as well be employed for the fabrication of photonic components with high optical qualities [START_REF] Bazin | [END_REF]].

Control of membrane -waveguide distance

Critical point drying

The following step, after etching of the membrane, consists in the sample drying after the InP layer underetching step. This final step is used to suspend membranes by removing the sacrificial layer of silicon dioxide. However, the effect of capillary adhesion, occurring during natural water drying after wet etching, made it impossible to ensure correct suspension of the membranes.

When a fluid passes through the transition from liquid to gaseous state, this happens at a finite speed, while the amount of fluid decreases. When this happens in a heterogeneous environment, the surface tension in the liquid induces traction on any solid structure with which the fluid is in contact, that is to say with the membrane one wants to suspend. During the removal of the gas-liquid mixture, the membrane tends to deteriorate and bend, even to collapse onto the SOI wafer under the surface tension (see Fig. 3.17a).

To avoid this phenomenon, the sample can be dried via an alternative way without crossing the liquid-gas transition. We used the critical point drying 13 (CPD) technique [Cleland 2002]. Right after the structured InP layer gets suspended with the removal of silica sacrificial layer, the sample is soaked in water to remove the eventual residuals of etching solution (and thus completely stop it) and is immediately transferred into a IPA bath, so that the fluid in between the membrane and the substrate is always conserved. The critical point drying is performed next in an automated environment.

The critical point (see Fig. 3.18) of a liquid/gas system (e.g. water/steam, liquid CO 2 /gaseous CO 2 ) is associated with a critical temperature and pressure, where the liquid and vapour phases coexist (in the same way, all three phases do at the triple point). Above the critical temperature, the system is always gaseous and cannot be liquefied by the application of pressure. The transition from liquid to gas at the critical point takes place without an interface because the densities of liquid and gas are equal at this point. If the sample is totally immersed in a liquid below its critical point and if the liquid is then taken to a temperature and pressure above the critical point, the sample ends up [Cleland 2002]. The CPD procedure follows the A-B curve for pressure-temperature conditions to avoid direct passage from liquid to gas state. immersed in gas (i.e., dried) without being exposed to damaging surface tension forces.

The temperature and/or pressure of critical point for water and the solvents like acetone or IPA are much higher than the ones for carbon dioxide, which explains its common use in the CPD systems. Isopropyl alcohol can still be used as an exchange fluid (to bring a sample after the wet etching step inside a CPD machine), while the liquid carbon dioxide is used as a working fluid. A sample is thus dried by submerging it into pressurized CO 2 liquid at room temperature (point A in Fig. 3.18), heating and pressurizing the transitional liquid so that it passes around the critical point (dotted blue line), and then cooling and releasing the pressure to return the sample to room temperature and atmospheric pressure in the vapour phase of CO 2 (point B). In such manner we could make the InP membranes suspended at a height of about 200 nm above the SOI waveguide circuit (Fig. 3.17b).

Experimental determination of cured BCB layer thickness

As seen in Chapter 2 (see Section 2.1.3.4), a precise control of distance between waveguide and membrane is required for obtaining the desired optomechanical coupling. In our experiments, the uncertainty on this distance mainly comes from the thickness of BCB layer on top of waveguide. The measurement of the added thickness of cured BCB layer after the wafer bonding is carried out in the following manner (Fig. 3.19). After the complete processing procedure, the sample contains an array of InP membranes, each of them being anchored to two suspension pads. The InP layer has been removed on most of the sample surface, uncovering the Si waveguides outside the mechanical InP pads. Moreover, the BCB glue layer is not removed during the SiO 2 wet etching, leaving the thin film on top of each waveguide.

Hence, the total height of the suspension pad (Fig. 3.19a) is the sum of InP and sacrificial silica layer thicknesses (260 and 200 nm, respectively). By measuring with a profilometer (Dektak 8) the difference between two areas (t 1 on (Fig. 3.19a)), we can estimate the pad height. Next, the cured BCB is dry etched for 1 min in RIE SF 6 /O 2 plasma in order to partly uncover the Si waveguide circuit (this gas mixture does not etch the InP membrane). Another profile measurement (t 2 on (Fig. 3.19b,c)) is performed in order to determine the wanted quantity t BCB = t 2 -t 1 , typically giving a value of about 30 nm for the BCB dilution ratio and bonding process parameters described in Section 3.2.3.

Summary

In summary, this chapter provides the description of the fabrication of our InP optomechanical platform heterogeneously integrated on SOI circuit. Principal steps include adhesive bonding of the SOI and III-V semiconductor substrates, preparation of high-contrast alignment markers for electron beam lithography, patterning of optical (photonic crystal lattice) and mechanical (mesa structures) device components and removal of the sacrificial layer in order to suspend the PhC membrane. Many features have been implemented into the process flow in order to solve the major issues, including the obtention of high-Q optical cavities, aligned to the circuit of access waveguides, and the proper suspension of the PhC membranes over an air gap of few hundreds of nanometres. The achieved precision of alignment of the InP suspended PhC cavities with respect to SOI circuit is 40 nm. Standard deviation of the resonant wavelength between PhC cavities with the same geometrical parameters is about 2 -3 nm on the whole sample (typically several hundreds of devices). The InP layer patterning was optimized by making use of positive tone PMMA and negative tone HSQ resists, allowing to satisfy different requirements for the optical and mechanical device parts, correspondingly. The critical point drying technology has allowed us to achieve the suspension yield 100 % for the air gaps about 200 nm high and for the PhC slab membranes of 10Ö20 µm 2 lateral dimensions.

Embedded active layer allows next to experimentally verify the operating wavelength of the fabricated cavities, whose luminescence will be used to align the dedicated set-up for evidencing optomechanical coupling effects. This set-up will be described in details in the following chapter. In this Chapter we describe the experimental characterisation of the optical and mechanical properties of our device, as well as the optomechanical couplings and related effects. Two geometries have been experimentally explored: suspended photonic crystal mirrors and integrated PhC slab cavities over a SOI waveguide. In the first, non-integrated -photonic crystal mirror -configuration and without an external cavity, mode mapping is accomplished through the measurements of the low-frequency mechanical spectra, further 103 compared to the simulations detailed in Chapter 2. The impact of the suspension bridges geometry on the clamping losses is also investigated alongside with the low-temperature studies of intrinsic losses. Next, we present the experimental investigation of the hybrid integrated platform, which includes a defect cavity, embedded into a suspended PhC slab membrane and evanescently coupled to an access SOI waveguide. In particular, the measurements of intrinsic and external contributions to the dispersive and dissipative optomechanical coupling mechanisms are performed, revealing the experimental limitations for their differentiation compared to the numerical approaches. We perform a calibration of mechanical displacement spectra using an external reference, which is used as well to experimentally determine the total optomechanical coupling strength. Finally we show some preliminary results on the operation of such integrated platform in the non-linear optical and mechanical regimes, and on the transduction from optical to mechanical bi-stable behaviour.

Identification of mechanical modes

Current Section reviews the experimental methods for assigning the mechanical modes to the corresponding simulated mode profiles in the system with multiple eigenmodes whose relative frequency splitting changes with minor changes in clamping geometry. In this study, first three modes in order of their apparition in the mechanical spectrum are considered; the method can be then extended to an arbitrary number of resonances in the similar system. For this purpose we fabricate a device, consisting of a suspended PhC membrane, designed as a high-reflectivity mirror at normal incidence around 1064 nm wavelength, as described in Section 2.1.2. The mode identification and mapping is based on the simulated eigenfrequency evolution when changing one parameter of the clamping structure at a time, given in Section 2.2.1.2.

Mode assignment to its corresponding displacement field Q spatial distribution is performed by experimentally measuring the frequencies of the mechanical modes. Quality factor Q m , relative to the phonon lifetime inside our mechanical oscillator, is also measured in order to estimate the clamping and intrinsic losses for each particular vibrational mode.

Mechanical eigenmodes of the highly reflective membranes were probed in a conventional Michelson-like interferometric set-up, as illustrated in Fig. 4.1. The sample containing a set of suspended PhC mirrors with varying dimensions of clamping bridges is mounted onto the piezoelectric actuator stack (PI Ceramic, operation frequencies up to 0 -3 MHz). The ensemble is then put inside a cryostat chamber with an optical access, able to work with Helium-4 ( 4 He) filling, which gives us access to a working temperatures range from about 4 to 300 K and working pressures down to 10 -5 mbar. PhC membrane is used as a moving end-mirror in one of the optical arms of Michelson interferometer, the another arm being terminated with a high-reflectivity fixed mirror, acting as a local oscillator. A light beam of neodymium-doped YAG laser operating at 1064 nm wavelength is sent in the interferometer. It is split into two orthogonal linear polarizations by a half-wave plate and a polarizing beamsplitter (PBS)1 .

Ring-down measurement

Therefore, the light reflected by the PBS is directed to the local oscillator, whereas the transmitted part is focused with the help of a microscope objective on the surface of chosen PhC mirror within the sample. In each of the arms the light is reflected from the respective end-mirror and acquires a phase shift of π/2 while propagating in each arm due to the presence of a quarter-wave plate. Yet, their interference can not be achieved while emerging from the interferometer since their polarizations are still orthogonal. An additional quarter-wave plate and a second PBS are employed to overcome this mismatch, and the interference pattern is finally recorded on a photodiode (Thorlabs PDA36A-EC, DC to 10 MHz bandwidth). The choice of the membrane to address and the corresponding beam alignment are verified by means of infra-red (IR) imaging. An IR camera (Allied Vision Goldeye P-008 SWIR) is placed in front of the microscope objective. A point broadband (partially covers visible and near infra-red ranges) light source is placed in the close proximity of the sample (not shown in Fig. 4.1), covering a sufficiently large working area with diffused light, subsequently imaged with an IR camera. A small part of the laser beam intensity passes through the dichroic mirror after being reflected from the substrate surface, allowing to control the laser alignment on the sample surface with respect to the studied membranes array.

Readout of the membrane mechanical spectrum is performed with a network analyzer (Agilent E5061B), which drives the piezoelectric stack and reads out the response from the PD. The need for external actuation of the membrane motion is imposed by the sensitivity of the employed interferometric technique, which showed the ability to measure the mirror displacements starting from about few tens of nanometres. Additional drawback of a freespace interferometer set-up consists in its high sensitivity to any mechanical vibrations, which may induce spurious variations of the optical path of the same order of magnitude as the displacement of the actuated membrane. In order to exclude this noise contribution from our measurements a feedback loop is introduced. The local oscillator mirror (Fig. 4.1) was mounted on another piezoelectric stack, driven by the feedback electronics. An error signal from the photodiode output is fed to the mirror actuator to compensate the optical path discrepancy caused by the spurious mechanical vibrations. The local oscillator is thus locked to record the interferences on the photodiode at their maximum contrast and reach the ultimate set-up sensitivity, allowing to detect the displacements of about nanometre. Figure 4.2a illustrates a typical example of the membrane low-frequency mechanical spectrum under external actuation, captured by the depicted interferometric set-up. Variation of the background level along the scanning frequency range is explained by a variable response of the used piezoelectric stack. The membrane under study has dimensions of 20 × 10 µm 2 and is suspended by four lateral 1 × 4 µm bridges (displaced from the mem-brane middle by b d = 5.9 µm, see Fig. 2.15). The experiment is carried out at low pressure (P < 10 -3 mbar) to avoid air damping of membrane motion. The working temperature for the data, provided in Figs. 4.2a,b, is T b = 4.4 K. A close-up of the fundamental mode spectrum (inset in Fig. 4.2a), recorded at lower driving power (-30 dB compared to the full spectrum, taken with 0 dB output power from network analyzer, cf. Fig. 4.1), shows a Lorentzian-like shape, as it can be expected for the mechanical response of a harmonic oscillator.

As introduced before, the mechanical quality factor Q m quantifies the dissipation of vibrational resonance and is directly related to the decay time of free membrane oscillations. Alongside with the conventional fitting of the recorded Lorentzian shape at the mechanical resonance frequency, another method for Q m estimation exploits the forced oscillations regime. This method, so-called ring-down technique [Nawrodt 2008], is particularly suited for the high-Q resonances, giving more precise values of the measured quantities. The membrane is excited resonantly via the piezoelectric stack inducing an inhomogeneous sinusoidal electrical field oscillating at the resonant frequency of the mechanical mode of interest Ω m . These measurements imply to work in the linear regime of excited mechanical oscillations, which corresponds to a low driving power of the used piezoelectric stack (approximately at 0 dB or below).

During a ring-down measurement the network analyzer is removed and the piezo stage driving is performed with a high-frequency function generator (Agilent 81150A), providing a sine modulation at the resonance frequency Ω m /2π. Readout of the membrane response is now performed by a spectrum analyzer, set to zero span at Ω m /2π frequency (Fig. 4.1). A low-frequency square signal is used as an envelope for the sine modulation in order to switch between free running and forced oscillation regimes; the duration of free run is chosen so that the oscillations have enough time to fade out before the excitation is switched on again. At the same time this square signal is fed to the spectrum analyzer, allowing to start the acquisition at the beginning of free oscillation period by a negative edge triggering (corresponds to a grey dashed line in Fig. 4.2b). After reaching a sufficiently high amplitude α 0 , the excitation is switched off and the subsequent ring-down is recorded for the free-running amplitude α at the resonance frequency, recorded in the interferometry set-up. The free-decaying amplitude α(t) follows an exponential law

α(t) = α 0 × e -t/τ , (4.1)
where τ is the characteristic ring-down time, so that Q m = πτ • Ω m /2π. For linearly scaled recorded power spectral density (PSD) of the mechanical mode amplitude α an exponential fit of the experimental ring-down data is performed as shown in Fig. 4.2b for the fundamental mode from Fig. 4.2a, measured at cryogenic temperature T b = 4.4 K, that gives Q m = 22450. The two described procedures for measuring the mechanical mode eigenfrequency Ω m and the corresponding quality factor Q m will be next used through the mode identification procedures, described in the following Sections.

Impact of suspension bridge position

The positions of the suspension bridges b d , relative to the membrane middle along x axis (see Fig. 2.15), as discussed in Section 2.2.1.2, impacts the spatial displacement field distribution of the flexural modes and eventually may reduce the clamping losses for the specific mode. Eigenfrequencies of first three membrane modes in the MHz range follow different trends according to b d parameter change, as predicted by simulations and traced in Fig. 4.3a (solid lines). The device, considered here, consists of membranes with the dimensions that correspond to ones used in experiments throughout previous Section (4.1), i.e., 20 × 10 µm 2 × 260 nm, however, with changing parameters for the position of suspension bridges.

Using the experimental set-up described above, we can trace this evolution and assign the corresponding mode profile to the different detected peaks in frequency domain. The interferometric detection technique relies on the PhC membrane operation as an end-mirror, therefore the best displacement sensitivity is achieved for the fundamental membrane mode M1* -as its displacement profile Q( r) is almost homogeneous across the membrane surface (cf. inset in Fig. 4.3a), which in turn introduces the same phase difference across the cross-section of the reflected probe beam. Flexural modes at higher frequencies, considered in the above-mentioned simulation, which possess stronger Q( r) inhomogeneity (cf. Fig. 2.17), are less likely to be detected. As a result, we were able to collect trustworthy data for the eigenfrequency evolution of M1* (blue diamonds in Fig. 4.3a) for all of the clamping bridge positions b d from the studied sample (from 4 to 9 µm), whereas the unambiguous identification of the modes M2* and M3* (yellow and red diamonds, correspondingly) was possible for only few of the investigated devices.

Simulations of the mechanical eigenfrequency in Section 2.2.1 considered both of the suspension pads (cf. Fig. 2.15) as fixed constraints, whereas in the real samples they are partially under-etched, so that few microns of the pad from each side are suspended. This impacts the resonance frequency of the flexural membrane modes, which depend on the clamping configuration, hence the above-mentioned undercut has to be and was taken into account for mechanical simulations in the present Sections. Comparison of the simulations, taking into account the mechanical properties of InP, as detailed in Section 2.2.1, the parameters a, r of PhC lattice and the undercut of suspension pads of real devices, with the measured data confirms that the fundamental flexural mode as well as the higher order ones follow the predicted trends and therefore can be distinguished by their frequencies. The discrepancies with the simulations can be explained by fabrication imperfections as well as by the deviation of undercut depth and shape (the suspended pad part in our simulations is considered as a rectangular block of length m x (the one of membrane) and given depth, whereas in reality it may take arbitrary distorted shapes due to underetching anisotropy of the sacrificial layer from one device to another). Nevertheless, for the optimum bridge attachment position b d = 5.9 µm (cf. Section 2.2.1.2) the modes in the displacement spectrum can be unambiguously assigned to their corresponding profiles. We suppose that in the region where M1* and M2* frequencies are close (b d values from 4 to 6 µm in Fig. 4.3a) the experimentally determined counterparts would obey the same spectral order. The attribution of experimentally measured frequencies in Fig. 4.3a was implemented using this assumption.

Optimization of the clamping losses for M3* mode, carried out in Section 2.2.1.2, could not be verified using this detection scheme due to the actuation bandwidth limitation of piezoelectric stack in current experimental set-up. To take advantage of good signal-tonoise ratio of the fundamental mode across all b d variations, we studied instead the impact of b d parameter and the sample environment temperature T b on the intrinsic mechanical losses. The obtained tendency should generally apply for any of present mechanical modes of the device. Experimentally measured quality factors via ring-down technique for the fundamental M1* mode are represented in Fig. 4.3b for the bridge dimensions b x = 1 µm (width) and b y = 2 µm (length). Two characteristic regimes of operation were examined: room temperature T b = 300 K (violet diamonds) and base temperature of a 4 He cryostat T b = 4.4 K (blue diamonds). At lower temperature the intrinsic frictional mechanical losses decrease, following the phonon energy, which increases the measured total quality factors. This trend can be well observed in Figure 4.3b. If for fixed temperature we consider Q m independent from the bridge position and perform the experimental data fitting, the deduced mean quality factor at room temperature is about 5000, whereas at 4.4 K it raises up to 14000, confirming the decrease of intrinsic losses. This value could be further increased, since in analogy with similar experiments [Schliesser 2009] we did not observe the saturation of Q m curve when approaching the lowest temperature attainable with current set-up (∼ 4 K), but requires making use of a dilution cryostat, allowing to reach lower bath T b temperatures (few tens of mK).

Impact of suspension bridge length

Length b y of the suspension bridges was also one of the optimization factors, identified in order to decrease mechanical clamping losses for the fundamental mode M1*, as described in Section 2.2.1.2. As seen in previous Section, the fundamental mechanical mode is the easiest one to detect using current interferometric set-up. Hence experiments on the Q m dependence on bridge length b y have been carried out on this mode M1*. Fabricated sample includes membranes with suspension bridges covering b y length range from 2 to 12 µm, for which membrane suspension was technologically achieved. Standard InP membrane could not be suspended using bridges of more than 4 µm length.

To complete this study, an InGaAs layer (of 10/20 nm thickness) was inserted in the middle of the membrane to increase its mechanical stiffness. This samples generation was not processed with critical point drying technique (cf. Section 3.17), but instead dried conventionally under atmospheric pressure. Measurements were carried out using the previously described ring-down technique at an environment temperature T b = 4.4 K on devices with the identical membrane and bridges dimensions, but featuring two different PhC filling factors ζ = 0.97 and 0.90 ([1] and [2] series in Fig. 4.4, respectively); these filling factors were as well taken into account for the mechanical simulations of the corresponding devices by representing a PhC slab membrane as a solid rectangular block with effective material density ρ eff = ρζ, where ζ = a 2 -πr 2 for the rectangular lattice arrangement (as it was also introduced in Section 2.2.1). Experimentally measured eigenfrequency Ω m comparison with the corresponding simulated trends (Fig. 4.4a) reveals for both device series a good qualitative agreement, yet a quantitative underestimation of simulated Ω m while increasing the bridge length b y . Additional error can come from the approximation of the suspension pads undercut geometry, implemented for the mechanical eigenfrequency simulation. Such a tendency can indicate that a more rigorous model should be used in the simulations, including an intermediate InGaAs layer with the corresponding mechanical properties and eventually suppressing the effective density while introducing the PhC fine structure. Implementation of this model, consequently, would increase the computational means required for simulation.

Characterization of the mechanical Q factor was performed via the ring-down technique on both device series. Obtained data (Fig. 4.4b) demonstrates an increase from about Q m = 5 × 10 3 for b y = 2 µm long suspension bridge to more than Q m = 6 × 10 4 for b y = 12 µm, i.e., more than an order of magnitude improvement. Eigenfrequency decreases by about a factor of 2, therefore the Q m × f m product, a figure of merit for a mechanical resonator in optomechanics2 , improves in the devices with longer bridges. As indicated by the measured trends (Fig. 4.4b), a further bridge b y elongation could potentially enhance the membrane decoupling from the substrate, but is limited for the moment by fabrication constraints. Use of other materials with better mechanical properties could be also a possibility, since higher Young's modulus [Burek 2014] or additional induced tensile stress [Verbridge 2008] would allow for suspension of larger structures (up to few hundreds of microns experimentally demonstrated in both cases for the doubly-clamped resonators).

The identification of the mechanical modes alongside with the study of associated clamping and intrinsic losses allowed for a full understanding of the mechanical behaviour of our mechanical structures. In a second stage, such study has been extended to hybrid integrated devices. Consequently, the working bridge length of b y = 2 µm was chosen. Another constraint comes from the design of SOI circuit: the distance between two adjacent waveguides is 25 µm, that is, from the middle of one membrane to the one of another. Assuming the membrane width m y = 10 µm, the remaining length for suspension structure is 7.5 µm, which should include the bridges of length b y and a suspension pad. For the above-mentioned reasons, we use 2 µm long bridges in the integrated configuration.

Optical and mechanical spectroscopy on the integrated platform

Current Section describes the experimentation of optomechanical devices comprising a suspended PhC membrane with an embedded defect cavity, coupled to an integrated SOI waveguide. Optical and mechanical spectroscopy of the corresponding types of resonances is first introduced and subsequently used for more complex optomechanical measurements.

In such latter devices, the suspension bridge was fixed to 2 µm length for the main reason: the membrane did not include the InGaAs thin layer in view of increasing its stiffness. Two series of experiments have been implemented: first, the cavity resonance wavelength λ 0 is measured by photoluminescence (PL) spectroscopy and confirmed by measure-ment of the SOI waveguide transmission around λ 0 . Having established an optical access to the defect cavity via the waveguide link, we exploit the resonance deep for probing the Brownian motion modes of the membrane and the defect cavity itself by examining the transmitted laser probe signal.

Micro-photoluminiscence spectroscopy of defect cavity

As it was introduced in Section 3.2.1, a single layer of self-assembled InAs(P) quantum dots is incorporated into our InP membrane. Their emission wavelength range largely covers our working bandwidth around 1.5 -1.6 µm (dark blue curve in Fig. 4.5c). Quantum dots photoluminescence spectrum will be filtered by the PhC cavity embedded within the membrane at a cavity resonance ω 0 (corresponding wavelength λ 0 ) and with its linewidth γ t = γ i +2γ e , including the intrinsic losses and the coupling to the forward-and backwardpropagating waveguide optical mode (see Section 2.3.2 for more details). This approach adds few advantages to our system. By performing a micro-photoluminescence (µPL) spectroscopy on the cavities fabricated in such a way, we check the correspondence of the designed optical properties of our resonators (resonance wavelength, which can vary due to technological imperfections) with the obtained samples.

Experiment schematic is given in Figure 4.5a. A pump laser (Lumix LU808M100 diode with ILX Lightwave LDC-3724C controller and LDM-4980 module) is used for the nonresonant pumping of the quantum dots layer at 800 nm, which is below the InP band gap. Their emission, filtered by the cavity, is radiated back and subsequently read out by the spectrometer with 0.09 nm spectral resolution (Princeton Instruments Acton SP-2500 with PyLoN-IR cooled CCD camera, operating at -90 • C). In such a way the cavity mode together with the band-edge modes of the PhC lattice can be characterized (light blue curve in Fig. 4.5c; dark blue trace represents a reference for the QDs emission in the absence of PhC lattice, recorded from a suspension pad). The present scheme (Fig. 4.5a) includes a CCD camera (Thorlabs DCU223C) for sample imaging in visible range and pump laser alignment to a chosen device. Typical CCD camera image of the central part of the sample, containing an array of membrane devices, is shown in Fig. 4.5b.

Waveguide transmission measurement

On the other hand, the PhC cavity emission, coupled to the underlying SOI waveguide and to free space via the grating couplers, allows for simple alignment procedure between the sample and the input/output optical channels in the set-up scheme. If the active medium inside the cavity is non-resonantly pumped (orange arrow in Fig. 4.5a and Fig. 4.6a) in the presence of access waveguide the cavity emission will not only be radiated from cavity in the direction, normal to the membrane (B in Fig. 4.6a), but will also be coupled to the waveguide and radiated to free space from its ends via the grating couplers (in A and C directions). Our InP resonator is suspended over a host substrate made of silicon, which possesses low optical absorption around 1.55 µm wavelength, and thus the emitted cavity mode is also transmitted through the substrate and can be seen from the sample backside. Therefore, the three additional emission directions (A, B and C in Fig. 4.6a) are accessible in our set-up. These emission directions are observed with an infra-red (IR) camera (VDS Vosskühler NIR-300PGE) placed in the backside of the vacuum chamber, through an aperture allowing for light transmission from sample. As shown in schematic in Fig. 4.6a, the IR camera with the suitable objectives set is adjusted for imaging of all three emission directions (A, B, C). This IR imaging is first used to identify the position of the two grating couplers, as shown in Fig. 4.6b. QDs in the membrane are pumped from the frontside of the sample (B in Fig. 4.6a) with a 800 nm laser, and cavity emission, seen from the backside, shows a bright spot at B and two spots at A, C directions, indicating the positions of the waveguide gratings. Next, a probe laser at λ ≈ 1.55 µm is sent from the frontside C direction on the grating coupler so that it matches the corresponding emission point at C (it is possible to match these two spots by aligning them with the IR camera imaging, as the 1.55 µm laser is also partly transmitted through the Si substrate). The subsequent alignment between the laser and the grating coupler is performed with the 800 nm pump from B , turned off. When the laser is non-resonant with the cavity (λ = λ 0 ), it will only be spotted by IR camera at A and C directions. By changing the input spot position and focalization we maximize the light output from A spot, which corresponds to a better laser-to-waveguide coupling. Once this alignment is completed, the same procedure is repeated for another grating coupler by shining 1.55 µm laser from A direction and optimizing the waveguide throughput. Eventually the two couplers are used as input and output ports for addressing the device in the set-up scheme, as described in the following.

Figure 4.7 shows the schematic of the experimental set-up which is used for waveguide transmission measurement and further for the spectroscopy of the Brownian motion of our optomechanical device. As a result of alignment procedure, described above in the Section, we use two microscope objectives aligned with respect to the input and output grating couplers of the chosen waveguide. It should be noticed that the used grating couplers are designed for efficient operation at light incidence angle θ = 10 • (with the angular acceptance of 3 • within 3 dBm bandwidth), with respect to the normal line to substrate plane [START_REF] Taillaert | Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides[END_REF]]. Taking this particularity into account, each of the objectives was equipped by 6 degrees of freedom (6DoF) positioning system, including rotation (θ change) and two tilt controls alongside with the conventional 3-coordinate translation stage. In such manner the two optical access paths to and from the waveguide can be aligned independently from each other and from the sample positioning stage. Once their alignment is done, the vacuum chamber with the sample can be simply translated in order to switch between different access waveguides, which considerably simplifies the alignment routine, e.g., compared to the taper fibre coupling technique.

In our experimental scheme the detected optical signal consists of the output field in the fundamental mode of an optical SOI waveguide positioned in the near field of the PhC cavity, as described above. The polarization of this mode and therefore of the probe laser coupled to it is chosen to maximize the coupling to the cavity (cf. Section 2.1.3.4). The probe laser is a continuous wave (CW) tunable infra-red source (New Focus Velocity TLB-6728-P-D fibre coupled external cavity diode with TLB-6700 controller), covering λ = 1520 -1570 nm wavelength range, which approximately correspond to the transmission band of the SOI waveguide and grating couplers system. Its polarization is adjusted with a fibre polarization controller (Thorlabs FPC561) prior to injecting into the access waveguide (Fig. 4.7).

In order to avoid air damping effects, the sample is placed inside a vacuum chamber (pressure of < 10 -4 mbar). Our vacuum chamber has two optical access windows at its frontside and backside, and a sample chamber can host a few mm thick 1-inch wafer. However, out-of-plane grating couplers in our devices are designed to work with a fibre whose end is brought in the proximity of grating (so fibre and sample are almost touching). With the vacuum chamber the minimal distance from a grating coupler to a fibre end would be not less than 3 -4 mm, taking into account the thickness of optical access window glass and the separation between it and the sample. All of these makes impossible to implement the fibre access unless designing a bigger vacuum chamber, which is foreseen for the next generation of the set-up. Consequently, we employed two microscope objectives with sufficient numerical apertures (NA) to cover the acceptance angles of the gratings and with the longest possible working distance in order to have three focused spots (Fig. 4.7) in the middle of the sample and at each of the grating couplers while resolving the issue of objectives congestion.

Two cameras are used in this set-up: a visible range one (frontside) for the visual control allowing to identify the device to address and an infra-red one (backside) for the alignment of the two objectives to the grating couplers, as discussed above. The probe laser light with optimal polarization (matching the one of waveguide fundamental TE mode) is injected into the waveguide and collected from its opposite side for the further analysis (Fig. 4.7).

Tunable laser wavelength range L3 (r 1 ) L3 (r 2 <r 1 ) Cut-off wavelength of the used spectrometer is about 1.6 µm.

Spectrometer upper range limit

Part of the transmitted light can be directed to the spectrometer in order to check the waveguide and cavity mutual coupling and the alignment of the objectives with respect to grating couplers (as the change in light incidence angle θ from optimum on a grating coupler shifts the transmission band). Conventional approach for recording a transmission curve over a large wavelength span consists in sweeping the probe laser across its working range and measuring the output intensity at different wavelengths. In our set-up we established a more rapid way of this procedure, allowing to monitor the transmitted signal spectrum over a large span with a typical frame rate of the order of 10 3 full spectra per second. To do so, the probe laser is set to operate in the amplified spontaneous emission (ASE) regime, which for the used laser diode is achieved by setting the output power just below the threshold (0.3 mW) at the minimum possible wavelength (λ = 1520 nm). In such a way the laser output contains a spectrally wide signal with sufficient power to be detected by the spectrometer at high acquisition rates (milliseconds). Moreover, this technique allows to characterize the transmission of waveguide -cavity systems over a large span, limited in our case by the cut-off wavelength of the spectrometer. Figure 4.8 shows two characteristic spectra captured by this technique. Blue curve corresponds to the transmission spectrum of a single waveguide without any coupled cavity, thus characterizing the intensity distribution across the bandwidth with respect to the chosen laser polarization and angle of incidence θ±∆θ within the light cone at the objective output. Using this real-time feedback, it is possible to adjust the position and central angle θ of the input and output objectives in order to shift the transmission maximum to a desired wavelength (i.e., the one of the coupled cavity λ 0 ) and maximize the overall transmission by optimizing the objective stage position relative to the sample holder. As characterized in [START_REF] Taillaert | Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides[END_REF]], a 1 • change in central angle θ would shift the maximum of waveguide transmission region by approximately 20 nm to the blue side of the spectrum.

Red curve corresponds to a transmission spectrum of a waveguide, coupled at a time to two PhC L3 cavities with different hole radii r. The alignment of the coupling objectives was performed in a way to include two resonances of these cavities inside the non-zero transmission range. It shows that, for instance, multiple cavities embedded inside one or several mechanical resonators can be addressed using one integrated waveguide, maintaining comparable coupling strengths (defined by the resonance deep depth and cavity linewidth γ t , both of which can be compared using the discussed spectrum in Fig. 4.8). These two cavities, coupled to the same waveguide, were designed within the lattices of different radii r 1 and r 2 < r 1 , which generally separates their resonance wavelengths by about ∆λ = 2|r 1 -r 2 |. In the case shown in Figure 4.8, the working range of our probe laser is highlighted in light red, indicating that solely one of these cavities can be addressed in the laser regime. In the following Section we will use this resonance deep in transmission in order to perform a mechanical spectroscopy of the cavity host membrane. This allows, for example, to selectively address each of multiple mechanical resonators, coupled to a common access waveguide, by designing the respective embedded cavity resonances to spread across a range of wavelengths, covered by the probe laser source.

Optical readout of Brownian motion

This Section describes the experimental implementation of the mechanical spectroscopy of the optomechanical device under study. In these experiments we launch a probe laser signal into the SOI waveguide, the laser beam is coupled to the optical resonance of an embedded PhC cavity, transmitted through the access SOI waveguide and collected in the same manner as for the transmission measurement (see Section 4.2.2).

However, instead of using full spectrum of the tunable laser, we employ a sharp probe (∼ 200 kHz linewidth) at fixed wavelength, as depicted in Fig. 4.9. The collected light first gets selectively amplified by a two-stage erbium doped fibre amplifier (EDFA3 ). First stage of the EDFA is followed by one of two (100 MHz and 20 GHz bandwidths) spectral filters, which, once locked on the probe laser resonance, can automatically follow it over all the working wavelength range. The locking is controlled visually and in real-time mode on the optical signal analyser (OSA; Anritsu MS9740A), to where a part of the amplified signal is directed (Fig. 4.9). This functionality allows us to perform experiments with the sweeping probe laser while still ensuring stable signal amplification with high signalto-noise ratios (SNR) and noise figure at the level of state of the art EDFAs. Following the second path (Fig. 4.9), after amplification, the probe signal power gets adjusted by a variable optical attenuator (VOA; Thorlabs VOA50) in order to match the working range of the detector input power. This probe signal is additionally filtered by the tunable (spectrally with variable linewidth) bandpass filter (BPF; Yenista WSM-160), which allows to reduce the noise in the detection scheme, related to the modulation of the laser carrier at the wavelength other than the one of the sharp probe (e.g., background of amplified spontaneous emission). Electrical signal from the fast photodiode (New Focus 1592, DC to 3.5 GHz) is read out by the electric spectrum analyzer (ESA; Rohde&Schwarz FSV7, 9 kHz -7 GHz). This experimental set-up allows to perform the so-called "side of the fringe" technique for the detection of mechanical motion, as illustrated in Figure 4.9. If we first look at the cavity transmission close to its resonance λ 0 , we typically found a Lorentzian shape, e.g., as the one in Fig. 4.8. The mechanical resonator, oscillating at its eigenfrequency Ω m /2π, modulates the cavity resonance wavelength via dispersive or dissipative coupling mechanisms (see Section 2.3.1). Therefore, such modulation of the cavity Lorentzian optical response gets imprinted onto the probe laser (in the case when its linewidth is much sharper comparing to the cavity linewidth γ l γ t ), slightly detuned from the resonance wavelength to one of the sides, as shown in Figure 4.9. In this configuration, the probe intensity is modulated at the frequency of the resonator mechanical oscillation, which holds also for any mechanical mode impacting the optical resonance. By looking at the noise of the transmitted probe with an ESA, one retrieves the mechanical mode(s) of host membrane in the recorded PSD spectrum (Fig. 4.9). This technique of amplitude modulation detection of a probe laser, coupled to the detected cavity resonance (e.g., like the one in Figure 4.8), would typically give a mechanical spectrum, as shown in Figure 4.10a (red trace). Experiment is performed in the vacuum chamber at low pressure P < 10 -4 mbar in order to avoid air damping, which is considerable for the flexural membrane modes. In this study, we used the L3 defect cavity with a resonance around λ 0 ∼ 1560 nm, embedded inside a 20 × 10 µm 2 membrane, suspended with four 1 × 2 µm bridges.

Power spectral density of a transmitted signal in MHz range reveals few resonance peaks, corresponding to the mechanical modes of the suspended membrane, as simulated in Section 2.16. The modes present in the low-frequency spectrum correspond to the ones which exhibit the most prominent amplitudes in the numerical spectroscopy (Section 2.16). An additional measurement is performed with a probe laser tuned completely out of cavity resonance (i.e., ∆ = 3 -5 nm). This allows to detect any spurious modes, present in the current set-up due to the electrical noise sources not related to the mechanical motion of the device under study (grey curve in Fig. 4.10a).

Contrary to the forced oscillation experiment, described in Section 4.1, here we measure the Brownian motion, whose amplitude, in particular, is much weaker compared to the actuated membrane movement. As the mode energy is directly proportional to the oscillator temperature, the measurements were carried out at room temperature T b = 300 K. Close-up PSD spectra of the four detected modes are given in Figure 4.10b with their Lorentzian fits and the corresponding simulated displacement field profiles. Each of the four measured modes have similar mechanical quality factors Q m between 2000 and 3000, showing no significant dependency on the mode index or displacement field distribution. This compares well with the quality factors, measured for the modes M 1 and M 2 in Section 4.1. Low power of probe laser is used in order to not impact the mechanical properties and thus the mode shapes and frequencies via the thermomechanical or other thermally induced effects. The latter will be studied in the Section 4.3.6.

Determination of the optomechanical vacuum coupling rate

The vacuum optomechanical coupling rate g 0 , as introduced in Section 2.3.4.3, is a common figure of merit describing an optomechanical interaction between two specific modes (optical and mechanical). We experimentally determine its value by using the frequency modulation technique [Schliesser 2009;Gorodetsky 2010]. Previously shown set-up scheme was modified (Fig. 4.11) to include the following phase modulation. The probe laser light is phase-modulated via a fibred LiNbO 3 electro-optical modulator (EOM; Thorlabs LN65SFC) in order to calibrate the detected mechanical motion, as it will be described in more details below. A harmonic signal from the function generator (Agilent 81150A) is fed to the electro-optical modulator at a frequency close to the one of the mechanical resonance to be calibrated. Since the electro-optical modulator has a polarization dependent operation, the linear polarization of the output laser light is adjusted with a fibre polarization controller (FPC). Another FPC is used after the EOM in order to match the polarization of the defect cavity mode. To calibrate the detected power spectrum in frequency units using the phase modulation technique, a known phase modulation at a given frequency Ω mod is applied through the electro-optical modulator to the laser carrier before its coupling into the cavity. The time evolution of the modulated carrier phase can be written as

Φ(t) = ωt + β cos(Ω mod t) (4.2)
where t is the time, ω/2π -the laser frequency, β -the phase shift factor, induced by EOM in the probe signal. The transmitted laser signal after amplification and spectral filtering is detected with a fast photodiode and its spectrum is recorded with the ESA (Fig. 4.11). Alongside with a Lorentzian profile of mechanical mode (Fig. 4.10b) the spectrum exhibits a Gaussian-shaped calibration peak (Fig. 4.12), resulting from the carrier phase modulation [Schliesser 2008a;Schliesser 2008b]. From [Gorodetsky 2010], for a modulation frequency Ω mod close (a couple of mechanical linewidths Γ) to the resonance frequency Ω m of the mechanical mode, g 0 can be expressed as

g 0 ≈ 1 2n β2 Ω 2 mod 2 Γ 4 RBW S ωω (Ω m ) S ωω (Ω mod ) , (4.3)
where n ≈ k B T b / Ω m (cf. Section 2.4) is the average phonon occupancy of the mechanical mode to be calibrated, RBW is the resolution bandwidth of the ESA, S ωω (Ω m ) is the double-sided frequency spectral noise density evaluated at the mechanical resonance frequency and S ωω (Ω mod ) is the double-sided frequency noise spectral density evaluated at the frequency of modulation. We can directly obtain the ratio S ωω (Ω m ) /S ωω (Ω mod ) from the power spectral density values, measured by ESA at the corresponding frequencies.

For the powers P m and P mod , measured at the peak of the mechanical Lorentzian and of the modulation Gaussian, respectively, and expressed in dBm (usual logarithmic units for PSD used through this work), the following relationship holds S ωω (Ω m ) /S ωω (Ω mod ) = 10 (Pm-P mod )/10 . (4.4) Figure 4.12 illustrates an example of such calibration measurement for a particular mechanical mode at Ω m /2π = 94.92 MHz with the phase-modulated carrier at Ω mod /2π = 95.05 MHz, from where the peak powers P m and P mod can be extracted. Spectrum calibration, performed in such a manner, is valid for the frequency range to be calibrated, which is close enough (of the order of few mechanical resonance linewidths) to the resonance frequency of the modulation peak.

When working with the spectra of signals from various sources -random and coherentspecific corrections should be made when comparing their measured PSD values [Agilent 2012]. By averaging the spectral response of the ESA, expressed in logarithmic dBm units, one gets an average of the logarithmic power, which is not equal to the logarithmic expression of the averaged power -the value that is of significance in the measurements. Discrepancy would be different for random signals, such as background noise and the mechanical oscillations (which is a result of thermal motion), and for coherent signals, such as the one used for the calibration peak with a large enough signal-to-noise ratio.

It is known [Agilent 2012], that for random signals the measured value is about 2.5 dB below the actual one, whereas for truly coherent sources the measured signal corresponds to the real one. Some of existing equipment are able to compensate this discrepancy internally, however, as this function was not applied during our experiments, we need to use the above-mentioned value for the correction of the measured signal. A thorough explanation and derivation of this correction factor can be found in supplementary material of [Gavartin 2011].

The phase shift factor β from Eq. 4.3 is experimentally determined for a particular EOM as

β = π • V /V π = π 2P rf Z/V π , (4.5)
where V is the voltage, applied to the EOM, V π is the characteristic voltage needed to induce a phase shift of π of the modulated signal, P rf is the input power of the function generator (see Fig. 4.11), Z is the impedance between the EOM and the function generator.

Actual voltage V , applied to the EOM, depends on the transmittance characteristics of the cable, linking the EOM with the function generator, and on the reflectance of the EOM itself, while the last two parameters are in addition frequency-dependent. Details on the calibration of these characteristics for the equipment used during these experiments and the corresponding Eq. 4.5 modification are described in Appendix B. An important role in the calibration procedure is played by the optical bandpass filter, included in our experimental set-up scheme (Fig. 4.11). If we look at the output optical spectrum of the probe laser (blue trace in Fig. 4.13), it contains a linearly increasing background level, mainly related to the gain spectral properties of the used active medium. Passing through an EOM, all of the wavelengths get modulated, however, only the one at the desired probe wavelength will be used to calibrate the strength of optomechanical Linear polarization of the laser mode was adjusted to match the one of the EOM with an intermediate FPC.

coupling g 0 . The wavelengths out of the cavity resonance will not be affected by the optomechanical interaction within the resonator. Therefore, their transmission factors through the access waveguide, will be higher. This can bring a part of the modulated light to the detection system and thus alter the values of the modulation peak power P mod . To overcome this issue, we employ an optical BPF, set to the narrow band filtering around the probe wavelength. As it can be seen from Fig. 4.13 (red trace), it gives a low uniform background with signal-to-noise ratio of about 60 dBm. The calibrations of the mechanical responses of our devices were thus performed in such configuration with narrow-band filtering. 

Mode index M

1 M 2 M 3 M 4 M 95M Ω m /2π ( 
b x = 1 µm, b y = 2 µm, b d = 5.9 µm, t = 260 nm).
The values of the vacuum optomechanical coupling rate g 0 /2π, determined using the frequency modulation technique, are specified in Table 4.1. Together we provide the frequency of the mechanical modes Ω m /2π and the corresponding quality Q m factors, measured at the same optical probe power and detuning. Comparing with the experiment on a non-integrated system [Gavartin 2011], the present values show good agreement, including the higher frequency mode (M 95M ). Mechanical quality factors in our experiment, however, show higher values: in [Gavartin 2011] the highest measured quality factor was Q m = 890 for the fundamental mode, rapidly decreasing at higher frequencies (e.g., a mode at 56 MHz had Q m = 40), which can be explained by the unoptimized suspension geometry of the device in that work4 . In our case, using the four suspension bridges, we measure that all the modes have resembling quality factors ranging between 2000 and 3000, including the one for mode at 95 MHz. Current optomechanical set-up, nevertheless, employs simple detection of laser probe modulation and for the moment permitted us to detect considerably lesser mechanical resonances compared to tapered fibre technique used in the non-integrated configuration. This can be related as well to the amount of probe light, coupled inside the PhC defect cavity, which in our set-up and probing configuration is about P c 300 µW due to the relatively low coupling efficiency between microscope objectives and grating couplers of the access waveguide. Increasing the coupled powers in order to enhance sensitivity and resolve more mechanical resonances would lead to thermally induced effects, as described in Section 4. 3.6, which in turn may affect the optical and mechanical properties of device and result in false determination of optomechanical coupling strengths.

Comparing with the state of the art optomechanical systems [Oudich 2014;[START_REF] Balram | [END_REF]], the highest g 0 /2π values attain up to ∼ 4 MHz, however, reached within devices with mechanical frequencies of the order of few GHz. In the MHz range [Wilson 2014] the g 0 /2π values are of order of few tens of kHz.

Optomechanical effects within integrated platform

Heterogeneous integration as a way to precisely control the optical access to our device, introduces two additional mechanisms (referred to as external couplings) alongside with the conventional optomechanical interactions within the membrane body. Chapter 2 described the theoretical estimations of strengths of above-mentioned effects; current Section aims to experimentally measure them and infer each of the components separately, if possible. In order to experimentally extract such data, we employ the wavelength dependencies of optomechanical responses of different types, derived in Section 2.3.2, as a fitting model for the performed experiment and extract the quantities of interest. Experimental verification of four different optomechanical coupling mechanisms will be demonstrated. Finally, the particularities of optically probing a semiconductor cavity will be addressed together with their impact on the mechanical operation of the system.

Dynamical backaction: optical spring effect measurement

In optomechanics, a dynamical backaction -mechanical oscillator response to an external optical force within a device -in the presence of optomechanical coupling leads to the optical spring effect [Aspelmeyer 2013]. It consists in the change of principal mechani-cal properties of the oscillator (frequency and damping rate), strongly dependent on the detuning ∆ = ω -ω 0 of the driving laser carrier with respect to the cavity resonance ω 0 .

Measurement of this effect consists in examination of the mechanical response, as introduced in Fig. 4.10, while the pump laser is swept across the optical cavity resonance.

In the experiments with optical readout of the Brownian motion, described in Sections 4. 2.3 and 4.2.4, the motion is being transduced to an electronic signal of time-varying voltage V (t) from a photodiode, detecting the optical field transmitted through the access waveguide. The voltage V (t) consists of the contribution V OM (t), generated by the optomechanical interaction with the existing mechanical modes, and of the contribution V n (t), arising from various optical end electronic noises present in the measurement scheme:

V (t) = V OM (t) + V n (t)
. Temporal evolution of the power spectral density of the optomechanical contribution V OM (t), sampled by the ESA (cf. Fig. 4.14), for the given laser probe nominal power P 0 and its detuning ∆ with respect to the cavity mode frequency ω 0 , can be described as

V OM (t) = P 0 ξβ 2 η † g ti • T [∆, x(t)] ,
(4.6)

where the corresponding coefficients, related to the specific set-up components, are illustrated in Figure 4.14; T [∆, x(t)] is the waveguide transmission spectrum and x(t) is the general displacement of the membrane mechanical resonator.

The frequency calibration part, including the polarization controllers and the EOM, is characterized by an attenuation ξ, which by default includes the optical losses at their interconnections, so that the total laser power, incident on the input grating coupler, is P 0 ξ. Coupling efficiency of a single coupler is β, assumed to be equal for both input and output gratings. Intracavity optical power is thus P c ∝ P 0 β, additionally relying on the coupling efficiency η between waveguide and cavity optical modes, as studied in detail in Section 2.1.3.4, and the laser -cavity detuning, denoted ∆. Optical amplification and filtering block modify the signal power by a factor η † . Finally, g ti is the photodetector transimpedance gain (g ti = 1400 V/W, as calibrated for our example of New Focus 1592 photodiode). Generally speaking, the transmission T (t) of the access waveguide changes depending on the general displacement x(t) and the impact of x on the optical response of the PhC defect cavity, coupled to the waveguide. In the case of device operation in the sidebandunresolved regime (Ω m γ t ) the electromagnetic field of cavity mode can adiabatically follow the membrane oscillations. Hence Equation 4.6 can be written as

V OM (t) = P 0 ξβ 2 η † g ti • T 0 + dT (∆) dx x(t) . (4.7)
The two-sided PSD of the optomechanical contribution V OM (t), obtained from the demodulation by ESA of the V (t) and further Fourier transform of the resulting timeseries data, writes as

S OM VV (Ω) = |V OM (Ω)| 2 /δt, (4.8) 
with δt representing the acquisition time of ESA time series, so that V (ω) = δt 0 V (t) e -iΩt dt. The DC component of V is ignored in the following discussion for clarity. Substituting Equation 4.7 in the frequency domain into Equation 4.8, we relate the two-sided PSD S OM VV to the stochastically varying displacement x(t) of the membrane resonator:

S OM VV (Ω) = P 0 ξβ 2 η † g ti dT (∆) dx 2 1 δt δt 0 x(t) e -iΩt dt 2 = = G 2 δt δt 0 dt δt-t -t x * (t + t ) x(t ) e -iΩt dt, (4.9) 
where G(∆) = P 0 ξβ 2 η † g ti • dT (∆)/dx describes the optomechanical and detection scheme response. For the acquisition times of the ESA δt 2π/Γ, used in current experiment, and assuming the stationary nature of x(t) displacement, meaning that x * (t + t ) x(t) = x * (t ) x(0) , we therefore can rewrite the Equation 4.9 as

S OM VV (Ω) = G 2 δt 0 x * (t + t ) x(t ) e -iΩt dt = G 2 (∆) S xx (Ω), (4.10) 
where S xx (Ω) is the displacement-noise spectral density of the mechanical resonator. The ESA measures and displays single-sided power spectral densities, hence the total singlesided PSD will write

SVV (∆, Ω) = SOM VV (∆, Ω) + Sn VV (∆, Ω) = G 2 (∆) Sxx (Ω) + Sn VV (∆, Ω), (4.11)
where the technical noise contribution, coming from V n (t) photodetector output component, is denoted Sn VV (∆, Ω). The displacement noise Sxx (Ω) of a thermally driven mechanical mode from Equation 4.11, can be derived from the fluctuation-dissipation theorem [Cleland 2002] and is written as

Sxx (Ω) = 4k B T b Ω m m eff Q m Ω 2 -Ω 2 m 2 + ΩΩ m Q m 2 -1 (4.12)
where k B is Boltzmann's constant; T b is the temperature, at which experiment is being conducted (T b = 294 K for all measurements, related to the optical spring effect, carried out in this Chapter); Ω m /2π and Q m are the resonance frequency and quality factor of the studied mechanical mode and m eff -its effective mass, as introduced before.

If we now evaluate Equation 4.11 on mechanical resonance (Ω = Ω m ), the dependence of peak PSD value on the laser -cavity detuning writes

SVV (∆) Ω=Ωm = G 2 (∆) 4x 2 rms Q m (∆) Ω m (∆) + Sn VV (∆), (4.13) 
where

x rms = x 2 1/2 = k B T b /m eff Ω 2 m
is the mean thermal displacement of the membrane resonator. As mentioned in Equation 4.13, the backaction effects should be taken into account, namely the dependencies of the mechanical mode frequency Ω m and quality factor Q m on the relative probe laser detuning ∆. We express the single-sided PSD as true power over a load resistance Z (equal to 50 Ohms for the above-described set-up), such that SP = SVV /Z in units of dBm/Hz or W/Hz -the ones used by default through the measurements performed in this work. Finally, from Equations 4.13 and 2.5 we obtain

SP (∆) Ω=Ωm = 2x rms P 0 ξβ 2 η † g ti 2 Z Q m (∆) Ω m (∆) × × g ω,e ∂T ∂∆ + g γ,e ∂T ∂γ e + g ω,i ∂T ∂∆ + g γ,i ∂T ∂γ i + Sn P (∆), (4.14) 
where the corresponding partial derivatives of T are given by Equations 2.6-2.8. The dispersive g ω and dissipative g γ optomechanical coupling strengths and for both external and intrinsic couplings are extracted from the experimental ESA data by fitting the SP (∆, Ω = Ω m ) dependence to Equation 4.14. The noise floor Sn P (∆) can also be found from the corresponding fitting, which allows to calibrate the spectrum and express it as displacement noise spectral density (in units of m 2 /Hz) even without using the frequency calibration procedure, described in Section 4.2.4. In the following Sections we study the optomechanical couplings within our devices by measuring the optical spring effect and fitting the experimental data with the model, introduced above.

Optomechanical coupling with constant phase-matching conditions

In this Section we present the measurements and comparison of the optomechanical coupling components, performed for two different mechanical modes, introduced previously as M 1 and M 2 . These modes belong to the same membrane oscillator, therefore the comparison can be made without accounting for the changing geometry of the device or the varying phase-matching conditions between the cavity and the waveguide optical modes.

To do so, we measure the spectral density SP (Ω, ∆) evolution around the chosen mechanical resonance frequency Ω m with a certain span. In Figures 4.15a,b the SP (Ω, ∆) values are colour-coded and plotted versus the probe laser detuning and within the same frequency span for the two modes. Laser -cavity detuning ∆ is normalized to the total cavity linewidth γ t in order to be able to compare the detuning range for different mechanical modes within one or several devices (as the cavity linewidth varies depending on the fabrication imperfections and the phase-matching conditions with the waveguide mode). As an additional reference for ∆/γ t , Figures 4.15a,b include the Lorentzian fit of the cavity mode resonance (black dashed line). An optical spring measurement, represented as the one in Figs. 4.15a, gives us a quick overview on the three main mechanical parameters change while the laser probe is swept across the cavity resonance: mode frequency Ω m , intensity of the resonance peak α and the mechanical linewidth Γ.

It should be noted that the oscillations, that can be seen on the experimental de-pendence, are in fact the optical interference pattern due to mixing of the propagating waveguide mode with its small fraction, reflected from the cavity and/or the waveguide termination. The period of these oscillations out of cavity resonance corresponds to an equivalent Fabry-Pérot cavity of the length equal to the one of the SOI waveguide, with the refractive index of silicon. The oscillations become twice faster when the probe laser is close to cavity resonance, which corresponds to the length shortening of Fabry-Pérot by a factor of 2; this can be explained by the partial light reflection from the PhC cavity, thus forming a shorter Fabry-Pérot resonator between it and one of the waveguide terminations.

Therefore, comparing the fundamental membrane mode M 1 and the higher-order one M 2 from Figs. 4.15a,b, we can state the following. First, the frequency Ω m evolution of both modes clearly follows the Lorentzian shape of the cavity optical resonance, pointing out the thermomechanical tuning via the change in temperature-dependent Young's modulus of the membrane material (see the discussion in Section 4. 3.6). The optically induced frequency shift of the mechanical mode attains the maximum at zero detuning ∆ = 0 and is more pronounced for the fundamental M 1 mode, which can be explained by their respective spatial distributions. The effective mode mass m eff is 117.2 pg for M 1 and 61.8 pg for M 2 , which means that twice less "amount" of membrane material is put in motion in the latter case and therefore the thermomechanical impact should be less pronounced.

Second, the mechanical linewidth Γ, which can be roughly estimated from Figs. 4.15a,b, increases when the laser probe approaches the cavity resonance ∆ = 0, whereas far from resonance its value converges to a certain constant value for both of modes. In addition, Γ broadening is more pronounced at the red-detuned side of cavity resonance.

Last, the amplitudes of both M 1 and M 2 modes show similar trends with clear asymmetry -the PSD spectra taken with the red-detuned probe laser demonstrate higher intensity α compared to ones taken with the blue-detuned probe. Mechanical amplitude dependence α versus detuning ∆ is next fitted using Equation 4.14 in order to extract the different optomechanical coupling strengths. Figures 4.15c,d show the experimental data (blue circles) for the two mechanical modes, extracted from Figs. 4.15a,b with the corresponding fits (red lines) to our theoretical model. Zero detuning reference is marked with a dashed grey line. As can be seen, the intensity α = SP (Ω = Ω m , ∆) demonstrates striking asymmetry with respect to this line, and only the absolute values of the maxima differ between two modes. Theoretical model gives a reasonably fitted curve with the maxima of amplitude at ∆ ≈ +γ t /4 detuning.

The theoretical fit allows to extract independently the cavity transmission dependencies on different optomechanical coupling mechanisms (see Figs. 4.15e,f). As mentioned before, external and intrinsic dispersive interactions can not be distinguished experimentally, therefore we present only the total dispersive contribution with the corresponding g ω . Figures 4.15e,f thus represent for each mode the optomechanical transduction dT (∆)/dz (or dT (∆)/d r) terms from Eq. 2.5, which correspond to the terms between the absolute value vertical bars in Equation 4.14. Each of the partial derivatives has a weight coefficient g, or the corresponding optomechanical coupling strength, which is indicated for each of contributions. Two modes, M 1 and M 2 , were studied within the same device; the external optomechanical coupling components are thus expected to display equal strengths for these two modes. Although g ω refers to a total dispersive coupling, we also expect the external part to be dominant. Measured values of 0.95 GHz/nm for M 1 mode and 0.77 GHz/nm for M 2 within the imprecision of fits show thus a good agreement. External dissipative strengths g γ,e show a greater difference, which can be explained regarding the amplitude α(∆) dependencies from Figs. 4.15c,d. In the case of M 1 , the mechanical amplitude at the optical resonance is non-zero, suggesting a strong contribution of the dissipative coupling mechanism (Fig. 4.15e). For M 2 , though, the amplitude signal is negligible at ∆ = 0, suggesting a relatively larger dispersive contribution to the overall optomechanical response compared to M 1 , as the opposite signs of the two dissipative contributions shown in Fig. 4.15f. A similar dependence of the mechanical amplitude SP (Ω = Ω m , ∆) as a function of the probe laser detuning is exhibited for modes M 3 and M 4 (not shown here), slightly differing from one another for the laser detuning at which the mechanical amplitude peak is observed.

In addition, we observe in general a decreasing maximum mechanical peak amplitude as the mode index increases, which in consequence provides lesser range for the mode detection across the span of laser -cavity detuning. This can be observed by comparing the PSD amplitudes of modes M 1 and M 2 in Figures 4.15a-d -the maximum intensity of M 1 is about 3 dBm higher compared to the one of M 2 for the same probe laser power. Such tendency is also extended to the case of detection range for different mechanical modes: higher order (frequency) modes are detected within the lesser range of probe detuning (compare ∆ = -6γ t .. + 6γ t for M 1 and ∆ = -4γ t .. + 2γ t for M 2 in Figs. 4.15a,b).

Optomechanical coupling with varying phase-matching conditions

The flexibility of the sample design, permitted by the employed integrated approach, enables us to perform a detailed examination of the optomechanical coupling mechanisms as a function of phase-matching conditions between the propagating waveguide mode and the localized one of the PhC cavity. The variation of the latter conditions, as introduced in Section 2.1.3.4b, is achieved through the change in access waveguide width w wg , while the separation h air between the suspended PhC membrane and the waveguide circuit layer is kept constant.

Figure 4.16 illustrates three characteristic waveguide widths w wg within the fabricated sample, which provide qualitatively different dependencies of optomechanical transduction as a function of the probe laser detuning ∆. From the mechanical spectra SP (Ω, ∆) of M 1 mode we extract the mode amplitude in the way it was introduced in Section 4.3.2 with subsequent fitting using Equation 4.14. In all cases, the strong non-zero optomechanical signal at optical resonance (∆ = 0) confirms the important contribution of the dissipative coupling mechanism for our optomechanical devices. For the narrower waveguide of w wg = 350 nm (see Fig. 4.16a) the maximum value of mode M 1 amplitude is reached when the probe laser is red-detuned ∆ ∼ +γ t /4 with respect to the PhC cavity resonance, resembling the previously discussed case of w wg = 400 nm waveguide (cf. Fig. 4.15). Such a strong mechanical amplitude asymmetry alongside with the weak α values, measured for a blue-detuned probe laser, suggest a relatively high contribution of the dispersive coupling mechanism. Respective fitting (Fig. 4.16b) confirms this analysis, giving g ω = 1.52 GHz/nm for dispersive and g κ,i = -0.39 GHz/nm with g κ,e = 0.19 GHz/nm for dissipative coupling coefficients. As can be clearly seen from Figure 4.16b, the detected red-shifted mechanical amplitude maximum is a result of relative signs of the two main contributions, as measured SP (Ω, ∆) is proportional to the squared sum of their values.
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In the second case, featuring an access waveguide of w wg = 450 nm width, the optomechanical response (Fig. 4.16c) is more symmetric with respect to the PhC cavity resonance wavelength, reaching the maximum about ∆ ∼ 0 detuning. This is a signa-ture of the predominant coupling mechanism in the device being of dissipative nature, which is as well confirmed by the fitted coupling coefficients (g κ,i = 5.64 GHz/nm with g κ,e = -1.33 GHz/nm versus g ω = 1.03 GHz/nm) and extracted respective optomechanical transduction components (Fig. 4.16d), where both dissipative terms are maximized.

In the third device, illustrated in Figures 4.16e,f, with the w wg = 500 nm, we measured the largest optomechanical response with a blue-detuned laser probe. Despite its asymmetry with respect to zero detuning, the optomechanical amplitude shows a significant shoulder on the red-detuned side of the optical resonance. This results (see Fig. 4.16f) from a larger contribution of the external dissipative coupling mechanism, as compared to the first case of w wg = 350 nm wide waveguide (Fig. 4.16b), yielding a predominantly external dissipative coupling operation for this device (g κ,e = -330 MHz/nm, g κ,i = -10 MHz/nm and g ω = 620 MHz/nm). Contrary to the first (w wg = 350 nm) case, the two major contributions -dispersive and external dissipative -have the opposite signs, which explains the mechanical amplitude maximum switch to the blue-detuned side of the optical resonance.

The variability of the intrinsic cavity Q factor, or the loss rate κ i , which have an impact on the transduction spectral dependencies, can be attributed to the defects introduced within the material during its epitaxial growth or during the fabrication process of the optomechanical devices. Therefore the PhC cavities of identical initial design can demonstrate a slightly different additional intrinsic loss rate due to the scattering on the mentioned local defects.

Comparison with simulations

From the measurements, carried out in two previous Sections, we extract the values of total dispersive g ω and external dissipative g γ,e coupling strengths as a function of waveguide width w wg for the subsequent comparison with the previously computed values (cf. Section 2.3.3.2). Completed experiments, covering both M 1 and M 2 modes on devices with w wg from 350 to 550 nm, are summarized in Figures 4.17a,b.

The higher values of the dispersive coupling coefficient for both M 1 and M 2 modes, observed for w wg = 450 nm access waveguide width, arise from the large optical γ t , exhibited by this device. As a result, a significant non-zero mechanical amplitude α over a wide span of probe laser detunings ∆ around the cavity mode wavelength was detected. The largest dispersive coupling for M 1 coefficient (g ω = 1.52 GHz/nm) was observed for w wg = 350 nm waveguide, owing to the strong asymmetry of the optomechanical response for this mode (see Fig. 4.16a). The largest external dissipative coupling for the same mode (g κ,e = -1.32 GHz/nm) was observed in the configuration of w wg = 450 nm, as a consequence of relatively large cavity linewidth γ t , combined with better phase-matching between the cavity and waveguide modes. Consequently, these effects result in the broad detuning interval, over which the mechanical amplitude is observed, centred with respect to zero ∆ detuning, in connection with the symmetry of the optomechanical response for this mode, highlighted in Fig. 4.16c. .17: (a) Dispersive coupling coefficient g ω (total) and (b) external dissipative coupling coefficient g γ,e , plotted versus waveguide width w wg . Blue up-pointing triangles correspond to the coefficients extracted from theoretical fit of M 1 mode data. Blue downpointing triangles correspond to the coefficients extracted from theoretical fit of M 2 mode data. Red squares: values, computed with static 3D FDTD approach for the air gap thickness of h air = 230 nm. Orange diamonds: computed coupling strengths for h air = 150 nm. Insets: computed g ω and g γ,e versus w wg .

Figure 4.17 compares the coupling strengths, obtained via optical spring effect measurements (blue triangles), with the ones predicted by a complete 3D FDTD simulations (red squares), which was chosen to be the best way of numerical estimation of these quantities, as described in detail in Section 2.3.3.2. As mentioned before, the real devices could exhibit some defects created during the fabrication process, affecting the intrinsic losses γ i of the cavity optical mode and thus its total linewidth γ t in the way that differs from the respective computed values. To correct the simulated dissipative coupling coefficient, accounting for this discrepancy, the computed static γ t versus h air dependencies (as the ones in Fig. 2.26b) were renormalized. Keeping the same field decay length of the PhC cavity mode in the out-of-plane (z) direction, we adapt the above-mentioned dependencies such that they pass through the experimentally determined γ t values at h air = 230 nm for each of the measured cavities. The external dispersive coupling coefficients g κ,e are next found by evaluating the numerical derivatives in the same manner, as introduced previously. As can be observed from Figure 4.17b, the g κ,e trend, computed in this way, is very similar to the experimentally determined dependency for M 1 mode. The largest computed g κ,e value, renormalized to the real device linewidth, corresponds to w wg = 450 nm geometry, resulting from the interplay between the experimental γ t , as detailed above, and the increasing evanescent tail of the guided mode for a decreasing w wg , which should lead to a higher computed g κ,e for smaller waveguide widths. The latter effect is related to an increased length of the evanescent tail of the guided move (hence its overlap with the PhC cavity mode) for a decreasing w wg dimension, owing to the spatial squeezing of the guided optical mode in the lateral direction (y).

Concerning the dispersive coupling, values of experimentally determined g ω coefficients for M 1 resonance fall within the error bars of the computed trend (cf. Fig. 4.17a), except for w wg = 350 nm. A good agreement between the simulated g ω and the experimental g ω trends for M 2 is also observed, although M 1 is the mechanical mode, whose displacement pattern mainly resembles the simulated translation of the InP membrane in along the out-of-plane direction.

Another degree of freedom, brought by our heterogeneous integration approach, is the possibility to vary the separation distance h air between the SOI circuit and the membrane layers. We do so by properly adjusting the thickness of the sacrificial SiO 2 layer (see Section 3.2.3 for more details), allowing to achieve a predefined optomechanical coupling. All of the experimental studies of coupling strength were carried out on the sample with h air = 230 nm, as indicated in Fig. 4.17. As predicted by the simulations (cf. Fig. 2.27), further reduction of this distance may lead to the enhancement of both external dispersive and dissipative interaction strengths. Insets in Figs. 4.17a,b provide a comparison between the actual h air = 230 nm membrane suspension height (red squares) and the one, reduced by 80 nm: h air = 150 nm (orange diamonds). The estimation of dissipative coupling coefficients in this case accounts for the optical linewidths γ t , measured for the real devices. Significantly stronger dispersive and dissipative optomechanical interactions may be therefore expected in such resonators, however, at the expenses of a broader PhC cavity mode.

As mentioned in Chapter 2, the two degrees of freedom, brought by the heterogeneous integration of our devices, allow to tailor the strengths of the different optomechanical coupling mechanisms, as well as their ratio Γ = g ω /g κ . This relaxes somewhat stringent requirements (the operation in sideband-resolved regime with Ω m γ t ), imposed for the applications such as optical ground state cooling in the case of a purely dispersive coupling [Marquardt 2007]. In our case of non-zero dissipative coupling, cooling in the unresolvedsideband regime (Ω m γ t ) is permitted [Weiss 2013]. Further, the varying asymmetry of the optomechanical response of our devices SP (Ω m , ∆/γ t ) as a function of w wg stems from a change in the relative signs of the optomechanical coupling coefficients. This tailored coupling makes our optomechanical system potentially capable of reaching the optimal mixed coupling Γ ratio, including their correct relative sign, which ultimately yields the minimal phonon number nmin (cf. Section 2.4), paving the way to an optimal mechanical mode cooling to its ground state.

Spectral dependence of mechanical damping

Figures 4.15a,b present a clear manifestation of mechanical linewidth Γ m dependence on the probe laser detuning ∆ with respect to the cavity resonance. In this Section we quantify this effect and study on the example of the fundamental mechanical mode how such dependence varies with the changing phase-matching conditions between the cavity and waveguide modes.
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Figure 4.18: Mechanical quality factor Q m of the fundamental flexural membrane mode (M 1 ) on laser-cavity detuning for identical devices with only one varying parameter -the access waveguide width w wg : (a) 350 nm, (b) 400 nm, (c) 450 nm and (d) 500 nm. The measurements were performed using the same input optical power P 0 .

Experimentally measured Q m trends are illustrated in Figure 4.18 for the devices, studied in Sections 4. 3.2 and 4.3.3. Detuning range of the probe laser covers a larger range in the current study to include the relevant data. For all the four devices we can observe the fundamental mode within the region, covering about ±2 nm detunings from the cavity resonance λ 0 , which is shown in Fig. 4.18. For the same constant nominal power P 0 of the probe laser, corresponding to about 200 µW of intra-cavity power P c (at resonance ∆ = 0) and allowing to work in the linear regime of its operation, we observe peculiar trends of laser cooling between different mechanical devices.

As a general rule we observe a Q m factor value saturation approximately between 2000 and 2500 when the probe laser is tuned far away from the cavity resonance linewidth (Fig. 4.18), which allows to determine the value of the intrinsic 5 quality factor without influence from dynamical backaction effects. Looking independently at each of dependencies for different widths w wg of access waveguide, one can identify the trends that reflect the inverted mode PSD, as studied in Section 4.3.3. Therefore, the optomechanical cooling of mechanical modes of our device can be as well performed and tailored according to the respective strength of dispersive and dissipative couplings. The cooling dependencies on probe detuning for different geometries of the access waveguide reflect the corresponding mechanical device responses (peak amplitude α m = f (∆)), as shown in Figures 4.15c and 4.16a,c,e. In the case of dominant dispersive coupling (w wg = 350 and 400 nm) the most efficient cooling is observed for ∆ = ±γ t /4 detunings, corresponding to the maximum strength of the total optomechanical coupling (see Section 2.3.2 for details). In the case of cooling in dominant dissipative regime, as suggested in Section 2.4, the most effective cooling is expected at ∆ = -Ω m detuning, which in the present measurement could not be resolved (Ω m γ t ), requiring a precise locking to the optical cavity resonance and much finer control of the probe laser detuning. When the mechanical resonance is probed at high optical input power, the induced thermal effects will reflect the cooling efficiency dependence, shown here for a low input power. This is discussed in more details in the following Section.

Thermally induced effects at high coupled probe powers

Optical absorption of the probe laser in the semiconductor cavity may lead to material heating at high input powers of the laser probe. Generally speaking, the electrostatic forces holding atoms together in bonds would decrease as the bond length increases, which happens during the thermal expansion of material. These forces are at the origin of the macro-scale elastic moduli, including the Young's modulus E. The change in E, resulting in the modification of the mode frequencies of the mechanical resonator, is thus considered as a thermomechanical effect.

Experiment in [Wachtman 1961], performed on several single crystal and polycrystalline oxides, proposes a following E dependence from temperature T :

E = E 0 -BT exp(-T 0 /T ), (4.15) 
where E 0 is the Young's modulus at T = 0 K, T 0 is an empirical parameter, so that at high temperatures E follows a constant slope B, which decreases as the temperature lowers and becomes zero when T → 0 K as required by third law of thermodynamics.

As mechanical eigenfrequency is proportional to the Young's modulus of material, we can directly verify the dependency suggested by Eq. 4.15 by recording the eigenmode frequency Ω m /2π versus input optical power P in using the experimental set-up (Fig. 4.9) for the readout of Brownian motion.

Taking into account the weak amplitude of M 3 mode (cf. Fig. 4.10), the study of the thermomechanical effects was carried out on the M 1 , M 2 and M 4 resonances in order to have enough dynamics over a large span of input optical powers. The tunable laser from our experimental set-up (Fig. 4.9) has a limited range of output powers in stable working regime (1 -14 mW), therefore an additional EDFA (Keopsys CEFA-C-PB-HP-SM-30, 30 dBm maximum output) was included for its amplification (placed before FPC in the scheme) in order to enlarge the span of accessible probe powers towards higher values. From another side, a 10 dBm optical attenuator was used to achieve the probe range extension towards lower powers (instead of setting the laser source to the output powers close or less than its threshold, that would degrade its output spectrum purity by adding an ASE component). These modifications allowed us to work within the range from 0.1 mW to 1 W of probe power P 0 , whereas the intracavity power P c typically equals 1 -10 % of P 0 amount, depending on the coupling objective alignment, used grating couplers and coupling strength η between cavity and SOI waveguide.

Figure 4.19 shows the evolution of main characteristic mechanical parameters versus intracavity optical power P c . Each type of measurement is shown for both linear and logarithmic power scales, which helps to reveal the characteristic regions and the corresponding trends in the evolution of the parameters of interest. Measurements were performed in the system thermal equilibrium state, i.e., on the time scale much bigger compared to the thermal diffusion time in our structures of the order of microseconds [Brunstein 2009]. Due to the changes of laser probe relative position with respect to the cavity resonance, we can only consider a linear dependence P c ∝ P 0 for the power range not highlighted in yellow in Fig. 4.19, i.e., for P c > 1 mW. The mechanical frequency Ω m /2π (Fig. 4.19a,b) shift is negative for all three modes, which corresponds to material softening, or decrease of its Young's modulus. Ω m /2π in Fig. 4.19a shows a similar monotonic trends with two characteristic regions: P c < 1 mW and P c > 1 mW.

As was demonstrated in [Bazin 2013], material temperature is directly proportional to the coupled optical power T ∝ P c . From the numerical simulations of the mechanical eigenfrequency Ω m dependence on material Young's modulus, we found that Ω m,1 /Ω m,2 = E 1 /E 2 , or, Ω m ∝ √ E. Figure 4.19b shows the experimental evolution of the mechanical frequencies for three different modes, linearly scaled with coupled power. Fitting with the function, derived from Eq. 4.15, didn't give any satisfying results. However, for P c > 1 mW region, the given trends were fitted quite well using a simple decaying exponential dependency

Ω m = Ω m,0 + A exp(-T /T 0 ), (4.16) 
where Ω m,0 /2π is the mechanical mode frequency in the absence of laser probe, A and T 0 are the parameters of exponential fit. With the above-stated considerations for the frequency evolution versus intracavity power, we can now write the thermomechanical relation, describing the Young's modulus dependence on material temperature in our system ∆E = B exp(-T /2T 0 ), (4.17)

where B = √ A and T 0 are the parameters found from the corresponding fit of frequency trend in Fig. 4.19b. (e,f) Amplitude α of the mode in PSD spectrum. Yellow-highlighted range (P c 1 mW) corresponds to the part of experimental data, where linear dependence between incident laser power P 0 and the intracavity power P c is distorted due to thermooptical effects. Due to the latter effects (with increasing intracavity power cavity resonance shifts to the greater wavelengths and acquires a triangular profile instead of Lorentzian) and the fact that the laser probe fixed to a certain initial wavelength and not locked to the cavity resonance, the yellow-highlighted region approximately corresponds to the reddetuned pump configuration (∆ > 0) and the P c > 1 mW region -to the blue-detuned one (∆ < 0). Impact of intracavity power on damping of the mechanical modes is represented in Figures 4.19c,d. We point out, however, that the observed dependencies are the result of mainly combined thermo-optical and optical spring effect for each particular waveguide -cavity coupling conditions. This study is carried out by fixing the laser probe on the rising edge of the cavity Lorentzian in waveguide transmission, i.e., laser is red-detuned (∆ = +0.05 nm) with respect to the cavity wavelength λ 0 . The system studied in Figure 4.19 includes a waveguide with w wg = 500 nm, therefore, the coupled P c dependence should be combined with the cooling efficiency of the mechanical resonance, as measured for linear optical spring effect (Fig. 4.18d). Considering that initial Q m (i.e., estimated for the lowest probe power) is not affected by the thermomechanical effects, we observe about a factor of 4 damping for first two flexural modes and a similar trend for M 4 , but with less effective cooling. Local minima, present on all three trends, can originate from the change in coupling conditions to the cavity. As a matter of fact, when feeding an increasing optical power inside a semiconductor cavity, one can expect a red-shift of its resonance together with an apparition of bi-stable spectral response [Shankar 2011] while the symmetry of the Lorentzian shape gets broken, allowing the laser probe locking exclusively to the blue-detuned side. Taking into account such behaviour, our initially (at the lowest P c power) red-shifted (compared to the cavity resonance) laser probe will become blue-shifted as the input power increases and shifts the λ 0 (while probe laser remains at its initial wavelength), and at some moment match the resonance wavelength λ 0 of the heated cavity (this zero detuning corresponds also to the best coupling efficiency from waveguide to cavity, compared to any other detuning). We expect this particular point to correspond to the mentioned local minima of Q m trends. When the coupled power is further increased, the cavity resonance will experience even bigger red-shift, leading to the constant laser probe withdrawal from the best coupling position and therefore a lower fraction of the incident power coupled into the cavity. The passage from reddetuned to blue-detuned pump configuration in this way explains the decreasing efficiency of mechanical mode cooling, as can be seen in Fig. 4.19c. The two characteristic regions can be easily spotted from the linear trends of the Q m factor in Fig. 4.19d. Different values of local minima can be explained by corresponding optomechanical coupling strengths between the optical and different mechanical modes.
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The last parameter we investigated in this experiment is the amplitude α of mechanical mode in recorded PSD spectrum (Figs. 4.19e,f). This study confirms the hypothesis about rising thermo-optical effects at high coupled P c powers, superimposed with the optomechanical coupling efficiency versus laser-cavity detuning (cf. Fig. 4.18), which have to be simultaneously taken into account. Value of α in a general way is related to the modulation of the probe signal by the mechanical oscillations within the probed device, that is, which amount of laser power circulating in the set-up scheme is reaching the active part of our device and gets coupled to its movement. The suggestions considering the cavity resonance red-shift due to thermo-optical effects and related changes in the efficiency of probe laser coupling into the cavity, expressed above, are fully confirmed by the trends in Figs. 4.19e,f. First, for the rising P c powers up to 1 -2 mW, the probed amplitude α increases monotonically due to both increase in the total optical power in the circuit and increase of the coupling efficiency from access waveguide into the cavity, since the probe approaches its shifted wavelength λ 0 . In the second regime (P c powers within 1-10 mW) amplitude α slowly decreases as a result of interplay between increasing incident laser power and coupling efficiency decrease while the laser -cavity blue detuning increases. Finally, a the highest powers investigated in this study, the probe laser is shifted considerably far from the cavity resonance, which decreases the coupling efficiency, leading to a considerably smaller fraction of incident power taking part in the optomechanical interaction (i.e., being modulated).

All the experiments described in the previous Sections were performed at low coupled P c powers, so that to have sufficient dynamics over a measured parameters range and to avoid interference with the thermally induced optical and mechanical effects, described above.

Non-linearities in optical and mechanical device responses

In this Section we present the ongoing part of experimental studies on the integrated platform, aimed at a better understanding of the role of the active medium, embedded in our device, and of the thermo-optical properties of used semiconductor materials, on the optomechanical or mixed response of our devices.

Thermo-optical behaviour of semiconductor cavity

Coupling high amounts of optical power inside a semiconductor even above its band gap may lead to its partial absorption by the material via different mechanisms and consequently leading to its heating. The refractive index of bulk semiconductors, including InP, is dependent on temperature, therefore the effective mode index n eff of a PhC cavity mode shows a temperature dependence as well. Because of such n eff dependence, when slowly scanning a laser probe over a cavity resonance at high laser power with the laser wavelength coming from the blue-detuned side (∆ < 0), this resonance is progressively red-shifted as the power increase induces rising temperature in the PhC slab membrane. It was shown [Almeida 2004] that such thermo-optical shift is the origin of the optical bi-stability in the semiconductor devices, usually manifested by a triangular optical resonance profile instead of the traditional Lorentzian shape, recorded at low probe laser power.

The semiconductor cavities in our devices demonstrate such triangular resonance shape, as shown in Figure 4.20a. Probe laser powers, coupled inside the cavity (P c ), as indicated in the legends of Fig. 4.20, are calculated with the same coupling conditions assumptions as the ones for data set in Figure 4.19. Figure 4.20a demonstrates slow probe laser scans over the resonance of the same cavity, performed from lower towards higher wavelengths (hereinafter designated as "sweep up") with a constant scanning speed of 2 nm/sec. The cavity response shows clear non-linearity, progressively changing the symmetric Lorentzian shape of resonance (Fig. 4.20a, 10 µW) to asymmetric triangular (Fig. 4.20a,1.4 mW) as the intracavity power P c increases. For high powers, such triangular resonance profiles can be extended to the red-detuned spectrum region by amount of several initial cavity linewidths (Fig. 4.20a,4.9 mW). The cavity response modulation, as observed on all ) For a constant P c power, laser is scanned from lower to higher wavelengths ("sweep up") and in the opposite direction ("sweep down"). The wavelength scan speed in all the experiments shown was 2 nm/sec with the laser operating in CW regime.

traces, is due to the interference of incident probe wave with the one, reflected from the cavity or the waveguide terminations, as described in more details in Section 4.3.2.

We characterized the optical bi-stability in these cavities by performing forward ("sweep up") and backward ("sweep down") probe laser scans over their resonances, as shown in Figures 4.20b,c. For two intracavity power values, for which in Figure 4.20a an asymmetric cavity response was observed (1.4 mW and 4.9 mW), we observe a strong increase of the bi-stable region with increasing intracavity power P c , mainly due to the greater thermo-optical shift in the red-detuned direction. Backward laser scan ("sweep down"), in turn, would generally result in a similar responses of the cavity with for different input powers. As the sweep direction is opposite to the non-linearity pulling one, the laser probe can not encounter the right-side hop far from the initial (probed at low power) cavity resonance, where it occurs during the forward scanning. Both scanning directions were examined at different speeds of laser sweep from 0.01 nm/sec to 10 nm/sec, accessible within the current set-up. It was observed that non-linear cavity response is perfectly reproduced at low speeds (up to 4 -5 nm/sec), whereas for higher speeds the features in transmission spectrum, coming from the above-described interference effects, start to flatten. For a continuous wave operation of the laser probe it is known that such non-linearly responding optical system allows to memorize the history of laser scanning direction and consequently follow the forward or backward curve in the hysteresis loop, which describes the above-mentioned fidelity property for low scanning speeds.

Frequency (MHz) Having characterized the optical response cavity to high-power scans of the probe laser, we next look at the mechanical response, recorded while device is working in the non-linear optical regime. As a reference for the linear regime of optical cavity we take one of the previous measurements (with intra-cavity power P c = 240 µW) of the optical spring response of the fundamental mechanical mode (M 1 ), represented in Fig. 4.15a and rescaled in Fig. 4.21a. Figure 4.21 compares the optical spring measurement in the linear regime of the optical cavity with two characteristic measurements carried out with the probe powers which result in its bistable optical response. Taking into account the performed characterization of the bi-stable region spectral width change for different intra-cavity powers (Fig. 4.20), we choose a P c for the current experiment to have this region comparable (about 1.5 -2 nm wide) to the linewidth of the cavity mode in linear regime (P c = 2.2 mW). For the mechanical responses, recorded versus laser -cavity detuning at this power following two scanning directions (Fig. 4.21b,c), we clearly observe that the mechanical system state follows the optical cavity response, which can be explained by thermomechanical effects (cf. Section 4.3.6), eventually combined with the optical spring effect, modified in view of cavity resonance shape distortion. For qualitative comparison between three different mechanical tuning curves, in Figures 4.21a-c we indicate the respective wavelengths for mechanical frequency jumps during forward (b) and backward (c) laser scanning directions, which gives us about 2 nm large region where two mechanical states exist for the same incident laser power. As demonstrated in Figures 4.21b,c, the mechanical mode shifts by amount of tens of its linewidths from its initial state (Γ m ∼ 1 kHz for Ω m = 2.22 MHz), which allows the two mechanical states in the bi-stable region to be well identified and spectrally distinguishable. Further exploring of this feature of our optomechanical system is schematically illustrated in Figure 4.22. We trace the approximate mechanical state evolution from the last two experiments (Figs. 4.21b,c) versus probe laser wavelength, indicated as λ ↑ and λ ↓, respectively. Therefore, for a certain range of probe wavelengths we are able to put the system into one of the stable states, depending on the probe scanning history. However, since the mechanical state directly follows the optical response of the cavity in its bi-stable regime, in order to achieve a switching between two existing mechanical states it is necessary to do so for the optical switching. The latter is ensured upon condition to exceed a certain threshold (as characterized in Fig. 4.20a) and providing that the detuning between the injection beam and the cold resonance is larger than ∼ √ 3γ t /2 (in absolute value) [Brunstein 2009], where γ t is the total linewidth of the optical cavity.

Optical modulation transduction by active medium

The InAs(P) quantum dots layer in the middle of our PhC slab membranes was until now only used for the alignment of the sample with respect to the set-up for transmission measurements (cf. Section 4.2.2). For this purpose, the QDs are suited for efficient non-resonant pumping at 600-800 nm (1.5-2 eV) below the InP gap (∼ 900 nm) with subsequent broadband emission in the near IR range, filtered by the defect PhC cavity.

From another side, these QDs show some optical absorption at 1550 nm (0.8 eV), e.g., by two-photon absorption mechanism, which increases the optical cavity losses and thus broadens its resonance linewidth while its probed by a ∼ 1.55 µm laser in the optomechanics experiments. By saturating the active medium it is possible to cancel such absorption; this mechanism is investigated in the current Section. Figure 4.23a describes the optical set-up, where the continuous wave (CW) pump laser (λ pump ∼ 800 nm) is focused on the membrane surface with the microscope objective. The QDs luminescence, filtered by the cavity and partially guided thorough the SOI waveguide, is read out by the spectrometer after being collected from one of the waveguide grating couplers by another microscope objective. The equipment used is described in Section 4.2.1.

Although the lasing from similar structures was demonstrated at room temperature [Hostein 2010], we did not observe any kink in the light-in-light-out (L-L) curve under CW excitation (top graph in Fig. 4.23b), suggesting that no laser threshold exists in the current configuration, and the measured signal consists exclusively of the spontaneous emission of the active medium. This can be explained by strong losses of the optical cavity mode, induced by the presence of the access waveguide in its evanescent field, therefore the system gain is not sufficient to compensate it. The linewidth of the cavity resonance shows a non-negligible decrease (bottom graph in Fig. 4.23b) as the pump power becomes more important, demonstrating the progressive saturation of the QDs and consequently the decrease of the optical losses, associated with the two-photon absorption. At high pump powers (middle graph in Fig. 4.23b) the emission wavelengths shift toward the longer wavelength, owing to important thermal effects. Finally, a thermal degradation of the QDs emission is observed at a pump powers higher than 1 mW with a simultaneous increase of the emission linewidth (bottom graph in Fig. 4.23b), which is most probably due to important thermal fluctuations.

These measurements indicate that within a certain range of laser pump powers P pump the derivatives g ω,QD = dω 0 /dP pump and g γ,QD = dγ t /dP pump are non-zero (e.g., see the inset in Fig. 4.23b), therefore we can establish an analogy with dispersive and dissipative coupling coefficients, where modulation of the membrane coordinate is replaced by the modulation of P pump power. To put some numbers, we estimate the modulation coefficients around P pump = 100 µW value, where the thermal effects do not degrade the QD emission, which results in g ω,QD ≈ 275 MHz/µW and g γ,QD ≈ 33.5 MHz/µW. Using the device in this region of ω 0 and γ t trends as a function of P pump ) we should be able to detect the dispersive and dissipative impacts of pump laser modulation on the cavity optical parameters. To detect such effects, we employ the side of the fringe technique (intracavity power P c ∼ 100 µW), used previously for the detection of Brownian motion (cf. Section 4.2.3). The experimental set-up, sketched in Figure 4.24a, is identical with the one depicted in Fig. 4.9; in addition the cavity is pumped with λ pump ∼ 800 nm CW laser whose output power is P pump = 34 µW. A small P pump modulation with a sine function is performed via the current modulation input in pump laser diode controller (ILX Lightwave LDC-3724C) by a function generator. Taking into account the modulation depth and respective transduction parameters (amplitude of 20 V pp from function generator; controller transduction 20 mA/V ; calibrated laser diode responsivity ∼ 4.67 mW/A within the range of used P pump powers), the approximative power output of the 800 nm pump laser is P pump ≈ 34.00 ± 0.93 µW.

Examining the noise spectra of the transmitted probe light, coupled to the defect PhC cavity resonance, at different laser -cavity detunings ∆ and close to the fundamental mode frequency of the membrane Brownian motion we observe (see Fig. 4.24b) two resonance peaks: the one corresponding to the mechanical mode at Ω m /2π and the other to the modulation frequency Ω mod /2π of non-resonant pump laser. As can be seen, both resonances disappear when the probe laser is not coupled to the cavity resonance (grey curve in Fig. 4.24b), confirming that the optomechanical interaction and the one due to the present active medium are impacting the cavity mode (i.e., its resonance frequency and linewidth) and therefore this modulation is imprinted into the resonant probe laser. For the mechanical mode at Ω m /2π we observe the optical spring effect in the same way it was described in Section 4.3.2: the mechanical mode amplitude α m , linewidth Γ m and frequency Ω m are changing when the laser probe is swept across the cavity optical resonance. Concerning the modulation peak, the fact that the detected resonance doe not come from direct modulation of the probe laser carrier, but in a certain way is transferred to it through an intermediate, which in our case is the active medium inside the PhC membrane, does not allow to affirm that the modulation peak frequency, linewidth and amplitude should not change since defined via the settings of the used equipment (pump laser and function generator). From Figure 4.24b, neither the detected modulation frequency of the pump laser Ω mod /2π nor its linewidth6 change during such sweep of the probe laser (at least such changes are not detectable with the used resolution); only its amplitude α mod changes -this effect is investigated in the following.

We compare such amplitude change for the pump modulation peak, read out by the probe laser, with the evolution of the mechanical amplitude of the fundamental membrane mode by performing the optical spring effect measurement as introduced in Sections 4. 3.1 -4.3.3. To confirm that the cavity resonance is not influenced by the resonance pumping effects, described in Section 4.4.1, we compare the mechanical response of the M 1 resonance for two scanning direction of the probe laser (Fig. 4.25a) for the P probe power, used for the present experiments (corresponding to P c ∼ 100 µW). Two responses are almost identical with no abrupt jumps (the discrepancies are related to slight fluctuations of the sample position with respect to the incident probe beam during the measurement series: acquisition time of a single curve from Fig. 4.25 is about few hours), which confirms that no optical bi-stability is induced for a used probe laser. The recorded mechanical responses α m = f (λ probe ) are similar to those measured previously for the same geometry of the access waveguide (see Fig. the modulation peak intensity α mod = f (λ probe ), which exhibits a mirror-like symmetry compared to α m trend, however, with a broader response (at the probe laser detuning scale) (Fig. 4.25b). This symmetry was measured and exists for another access waveguide geometries as well. The response broadening in the case of modulation peak is not yet explained and has to be further investigated.

According to the experiment in Fig. 4.23b, an increasing pump power results in a red-shift of the cavity resonance (although its shape is still a symmetric Lorentzian). We study the impact of such red-shift on the responses of the mechanical mode (Fig. 4.23c) and modulation peak (Fig. 4.23d) for several P pump values (the amplitude of pump laser modulation is kept constant). As can be seen from the corresponding graphs, both quantities, α m and α mod , shift their trends towards the bigger wavelengths from the reference cold resonance (grey circles with Lorentzian fits in Figs. 4.25a,c,refer to the measurement of the cavity resonance wavelength in ASE regime of the probe laser, as detailed in Section 4.2.2, showing the cavity response not affected by either resonant or non-resonant pumping).

To get a better insight into the physical phenomenon in the origin of the modulation transduction from non-resonant pump to resonant probe carrier, the evolution of the modulation amplitude α mod can be studied as a function of the modulation frequency Ω mod . Two possible mechanisms can be the thermal effects with the characteristic times of the order of microseconds (∼ MHz modulation frequencies) [Usami 2012] or the absorption and re-emission from quantum dots with the characteristic times in the nanosecond range (∼ GHz modulation frequencies). Radiation pressure is not considered as this effect is too weak for low-reflecting structure at the pump wavelength and in the absence of the external cavity.

Summary

We presented the experimental mode mapping to the simulated displacement profiles by examining the eigenfrequency and mechanical Q factor evolution on different geometrical parameters of the suspension structure geometry compared with the respective simulations. Intrinsic material losses decrease with the environment temperature, providing a mechanical quality factor enhancement by approximately a factor of 3 for the passage from T b = 300 K to 4.4 K. Additional reduction of the clamping losses and the enhancement of Q m by about a factor of 5 for the fundamental mechanical mode was demonstrated by elongating the suspension bridges, experimentally realized up to the length of b y = 12 µm while incorporating a 10/20 nm thin layer of InGaAs into the InP membrane, allowing to enhance its stiffness and therefore achieve a correct device suspension without collapsing to substrate.

These results were further used in the implementation of the integrated platform (Section 4.2), confirming the expected control over the mutual coupling conditions and efficiency between the access waveguide and an embedded optical cavity. Optical and mechanical spectroscopy on such devices, using conventional side-of-the-fringe technique, showed good performances in the detection of Brownian motion of the photonic crystal slab membrane. Vacuum optomechanical coupling rates were determined for the detected mechanical modes in the frequency range up to 100 MHz via the frequency modulation techniques, giving the values of g 0 /2π from 0.1 to 45 kHz. Comparing with the state of the art optomechanical systems [Oudich 2014;[START_REF] Balram | [END_REF]], the highest g 0 /2π values attain up to ∼ 4 MHz, however, reached within the devices with mechanical frequencies of the order of few GHz. In MHz range [Wilson 2014] the g 0 /2π values are of order of few tens of kHz. In this vein, by enhancing the experimental set-up in order to achieve a stable detection of GHz range localized modes, we can expect to measure higher corresponding g 0 /2π coupling rates as well.

The experimental technique to separately measure the strengths of different optome-chanical coupling mechanisms was implemented (Section 4.3) by examining the mechanical mode amplitude variation from the measurements of optical spring effect. Obtained values showed a good agreement with the corresponding theoretically estimated ones and confirmed the predicted possibility to tailor the absolute and relative external optomechanical coupling strengths by tuning the geometry of the integrated optical access channel and the separation between this channel and the suspended membrane. Optical spring effect, combined with such tailored couplings within devices on waveguides of different widths was characterized and showed several characteristic dependencies of optomechanically induced damping of mechanical mode on laser -cavity detuning. Finally, the thermally induced effects resulting the modification of optical and mechanical properties of the modes of our devices were studies, eventually proposing a mechanism of implementation of bi-stable mechanical switching by exploiting the thermo-optical bi-stability.

Chapter 5 

Conclusions and outlook

General summary

In this work we proposed and studied a new realization of a hybrid optomechanical platform comprising an InP PhC optomechanical resonator and an integrated siliconon-insulator waveguide with low optical losses, which allowed for the flexibility in the material choice for the optomechanical resonator. This technology was developed during this thesis in the frame of optomechanical application and provides a full control over the mutual optical coupling strength, demonstrated a tailored optomechanical coupling and interesting perspectives such as non-linear optomechanics and coupling a two-level system (quantum dots) to an optomechanical system.

Contrary to the traditional in-plane designs of the access channels, the optomechanical resonator is vertically stacked over the waveguiding circuit and coupled via an evanescent tail to a propagating mode. This hybrid geometry has two principal advantages: first, the 'active' part of the device (i.e., where the optomechanical interaction occurs) and the access waveguide can be made of two different materials. This allows to choose the material with the optimized properties for each of these components. In order to efficiently feed light into and from the cavity we designed an integrated access waveguide in silicon-on-insulator, having all advantages of silicon photonics and among them lower optical losses compared to the membrane material. Second, in the in-plane access design high efficiency coupling is possible when the optical mode is situated in the close proximity of the waveguide, i.e., at or close to the edge of the optomechanical resonator, whereas our addressing configuration allows to address an arbitrary cavity location (or multiple locations) and gives full control over the mutual optical coupling and allows for flexible design of the 'active' device part.

In the developed device, the resonator is represented by a photonic crystal slab membrane made of InP, a III-V semiconductor material, allowing to embed a defect optical cavity to confine light. This material choice, featuring a direct band gap allowed in addition to have an active medium inside our device, such as quantum dots or quantum wells, for the integrated broadband light source, whose emission properties such as wavelength and linewidth can be widely tuned by the means of the optical cavity design. Mechanical motion of both the membrane and the cavity core impact the optical properties of the defect cavity via different optomechanical effects. A sacrificial layer between the InP and SOI levels was employed for the membrane suspension; a precise control over its thickness using the standard fabrication techniques allowed to master both light coupling between the waveguide and the cavity and the strength of the external optomechanical interactions, occurring while the latter coupling is modulated by the membrane motion.

In Chapter 2, we introduced the particularities of optical and mechanical designs and their complete simulation, first considering optics and mechanics separately and next tackling the optomechanical characterization of the hybrid system. For the optical part, two configurations have been investigated: either formed by a perfect PhC slab membrane acting as a deformable mirror or containing a line defect photonic crystal cavity embedded inside it and heterogeneously integrated with a SOI waveguide. In both optical geometries, the mechanical design of the resonator has been studied allowing to clearly investigate the optomechanical coupling. Two distinct families of mechanical modes were considered, corresponding to flexural membrane motion (with eigenfrequencies in the MHz range) and to the vibrations localized in the core of the defect PhC cavity (Ω m in GHz range). In the integrated configuration two types of simultaneously existing optomechanical couplingsdispersive and dissipative -were studied both in case of intra-cavity interaction mechanisms ('moving interfaces' and photoelastic effects) and in case of interaction with the external waveguide. Further we focused on the first mode family for a thorough study of optomechanical effects, involving in particular the strong external couplings. Overall dispersive intrinsic interaction strength showed to be less pronounced compared to the external coupling effects at small membrane suspension heights ( 300 nm). Dependence of the external couplings on different opto-geometric parameters of the integrated system, such as the membrane -waveguide vertical separation and the waveguide width were examined, and the possibility to achieve a tailoring of both effect strength and relative weight via these parameters was demonstrated. The implementation of an optimized ground state cooling of our mechanical resonator was examined by bringing the system into the regime of dominance of dissipative coupling while introducing different relative strengths of the dispersive optomechanical interaction.

Chapter 3 is focused on the fabrication of the designed heterogeneously integrated optomechanical platform. Crucial steps were discussed, including adhesive bonding of the SOI and III-V semiconductor substrates, preparation of high-contrast alignment markers for electron beam lithography, patterning of optical (photonic crystal lattice) and mechanical (mesa structures) device components and removal of the sacrificial layer in order to suspend the PhC membrane. Many features have been implemented into the process flow in order to solve the major issues. Employed adhesive bonding technique with precise control of the sacrificial layer thickness allowed for the respective precision of the SOI and III-V levels separation of 10 nm (in the out-of-plane direction). Through the introduction of alignment markers, the alignment of the InP suspended photonic crystal cavities with respect to SOI circuit was achieved with precision 40 nm in the in-plane directions. The InP layer patterning was optimized by making use of positive tone PMMA and negative tone HSQ resists, allowing to satisfy different requirements for the optical and mechanical device parts, correspondingly, resulting in particular in obtention of high-Q optical cavities. Standard deviation of the resonant wavelength between PhC cavities with the same geometrical parameters is about 2 -3 nm on the whole sample (typically several hundreds of devices). Last, the critical point drying technology has permitted us to achieve the suspension yield of 100 % for the air gaps about 200 nm high and for the PhC slab membranes of 10Ö20 µm 2 lateral dimensions.

In Chapter 4, we described first the experimental characterisation of the mechanical properties of our devices, where the experimental mode mapping to the simulated displacement profiles was performed by examining the eigenfrequency and mechanical Q m factor evolution on different geometrical parameters of the suspension structure geometry compared with the respective simulations. Measured intrinsic material losses showed to decrease with the environment temperature, providing a mechanical quality factor enhancement by approximately a factor of 3 for the passage from room (T b = 300 K) to liquid helium (4.4 K) environment temperature. Additional reduction of the clamping losses and the enhancement of Q m by about a factor of 5 for the fundamental mechanical mode was demonstrated by elongating the suspension bridges, experimentally realized up to a length of 12 µm while incorporating a 10/20 nm thin layer of InGaAs into the InP membrane, allowing to enhance its stiffness and therefore achieve a correct device suspension without collapsing to substrate.

These results were further used in the implementation of the integrated platform, confirming the expected control over the mutual coupling conditions and efficiency between the access waveguide and an embedded optical cavity. Optical and mechanical spectroscopy on such devices, using conventional side-of-the-fringe technique, showed good performances in the detection of Brownian motion of the photonic crystal slab membrane. Vacuum optomechanical coupling rates were determined for the detected mechanical modes in the frequency range up to 100 MHz via the frequency modulation techniques, giving the values of g 0 /2π from 0.1 to 45 kHz, comparable with the state of the art optomechanical systems in this frequency range [Wilson 2014].

The experimental technique to separately measure the strengths of different optomechanical coupling mechanisms was implemented by examining the mechanical mode am-plitude variation from the measurements of the optical spring effect. Obtained values showed a good agreement with the corresponding theoretically estimated ones. This confirmed the predicted possibility to tailor the absolute and relative external optomechanical coupling strengths by tuning the geometry of the integrated optical access channel and the separation between this channel and the suspended membrane. Several characteristic dependencies of optomechanically induced damping of mechanical mode on the geometry of access waveguide were also observed. Finally, the thermally induced effects resulting in the modification of optical and mechanical properties of the modes of our devices were studied, eventually proposing a mechanism for implementing bi-stable mechanical switching by exploiting the thermo-optical bi-stability. We discovered and performed preliminary studies of the transduction mechanism between the modulation of non-resonant pump and resonant probe laser carriers using the active medium as an intermediate.

In Appendix A, we presented the design and fabrication of two-side accessible tensile strained membranes for "membrane-in-the-middle" optomechanical experiment, featuring mechanical properties controllable via the used alloy composition and allowing potentially for the strong enhancement of mechanical quality factors of such devices. Added tensile strain values achieved are 350 MPa for In 0.45 Ga 0.55 P alloy and 240 MPa for GaAs 0.95 P 0.05 with the room for further improvement. Such semiconductor membranes are good candidates for the implementation of photothermal cooling, unavailable for the widely used dielectric silicon nitride membranes, allowing to overcome the fundamental limit of the optomechanical cooling mechanisms based on the radiation pressure interaction.

Main prospects

Described optomechanical system can be subsequently used for the implementation of various functionalities for fundamental and applied physics; in the following we present two mainstreams for each domain.

Towards hybrid cooling of an optomechanical system coupled to a single quantum object

Our semiconductor membrane allowed for the implementation of embedded active medium, represented by a monolayer of quantum dots, which to a certain extent can be seen as a two-level system. Such active medium, embedded in a semiconductor cavity, has been extensively studied in the frame of light-matter interaction, e.g., for single photon emission [Laurent 2005]. Coupling to such kind of two-level systems within an optomechanical devices has been barely explored experimentally [Arcizet 2011], however, it provides a promising direction for implementing hybrid cooling schemes [WilsonRae 2004]. Following the preliminary studies described in Chapter 4, to get a better insight into the physical phenomenon in the origin of the modulation transduction from non-resonant pump to resonant probe carrier by active medium, modulation behaviours in different frequency ranges will be investigated. On another side, the optomechanics of the mechanical modes localized inside the cavity, will be studied. These modes lie in the GHz frequency range and for this reason are more attractive for the cooling purposes, as described in Chapter 2. For the same reason, another optomechanical mechanism, resulting in the generation of the high-frequency (GHz) phonons inside the defect cavity via the photostriction effect, could be an interesting possibility to explore. Next, in the mid-term perspective, the investigation of optomechanical cooling of such GHz modes will be carried out; further enhancement of photon-phonon interaction can be achieved with the implementation of phononic/phoxonic crystal lattices to reduce the clamping mechanical losses, following the studies in Chapter 2. Last, in the long-term perspective, the results of both studies might be combined to investigate the hybrid coupling between a high-frequency mechanical mode in its fundamental state and a two-level quantum system and to explore the influence of a mechanical degree of freedom on a non-classical photon emitter.

Towards integrated high-frequency microwave optomechanical oscillator

Exploration and use of the localized modes of our optomechanical oscillator in GHz frequency range can be pursued towards the implementation of applied domain functionalities, such as on-chip high-frequency microwave source or logic elements [Chang 2011;SafaviNaeini 2011b], interconnect-free circuits [Mahboob 2011] and memory [Mahboob 2014]. Frequency and phase of such sources have to be referenced, which is achieved through different synchronization protocols. In addition, the non-electronic nature of optomechanical devices makes them unsusceptible to any electromagnetic interferences and good candidates for all-optical systems, also in view of experimental demonstration of such devices, compatible with CMOS platform [Luan 2014]. Already existing experimental realizations [HosseinZadeh 2008;[START_REF] Zheng | [END_REF]] demonstrate that the frequency and phase of an optomechanical oscillator (OMO) within certain lock range can be locked to those of an external electronic oscillator, or any other signal that can modulate the power of input optical field. Injection locking of an optomechanical to an electronic RF oscillator enables combination of OMO with electronic devices and may have interesting applications in certain RF photonics and micro-optoelectromechanical systems. We propose to increase the number of functionalities, provided by our hybrid device, including the self-referencing and synchronization to an external source, by implementing different excitation and tuning mechanisms; the main of them are described in the following.

Future work on the current system in a short-term perspective will aim to pursue the preliminary studies described in Chapter 4 concerning the exploration of the non-linearities in optical and mechanical responses. As proposed, the optical bi-stability, transduced by the optomechanical interaction and creating two well-distinguished stable mechanical states for one probe laser wavelength within a certain range, can be used to explore the possibility to operate our device in a bi-stable mechanical regime, allowing for further implementation as logic or memory component.

Mechanical parametric instabilities can as well be used in such applications [Mahboob 2014], but require an electromechanical resonator with an external drive. For this purpose we propose to combine the efficient optical readout of the mechanical motion, demonstrated in this work, together with the electrostatic actuation of the membrane resonator by the means of metal electrodes, fabricated at a given distance below the InP membrane. To adapt this method to the particular geometry of our device and achieve a more homogeneously distributed actuation force while not introducing an additional mechanical losses compared to the existing solutions [Unterreithmeier 2009; Bagci 2014], already used in an optomechanical system, a proposition would be to introduce a comb drive actuators [Legtenberg 1996]. Three-dimensional integration, demonstrated in this work, will allow for the easier further integration while, for instance, not impacting the membrane mechanical losses since it does not have to be deposited directly on top of the resonator. The device conceptual view is depicted in Figure 5.1a. Such actuation scheme will allow to study various mechanical non-linear effects, such as the mechanical bi-stability for strongly driven resonator and to evidence the sub-and super-harmonic excitation with injection locking. In both ways the mechanical oscillator can be locked to the phase of the external reference, used for resonant or non-resonant pumping, resulting in an on-chip integrated phase-reference device.

The demonstrated super-harmonics can be further used to achieve a parametric amplification of mechanical signals [Shim 2007] from our device. It allows to achieve a gain in the mechanical response of resonance (at eigenfrequency Ω m ) while an electrostatic field is used for the parametric modulation (pumping) at one of the super-harmonic frequencies ). In such way one of the mechanical oscillator parameters, for instance, its spring constant, can be modulated and depending on pumping phase and strength one can achieve a desired degree of amplification or attenuation of a chosen mechanical mode of the membrane, allowing for a creation of a logic gate [Mahboob 2014]. In addition, thermomechanical noise squeezing of the involved mechanical state can be obtained [Rugar 1991], thus increasing the displacement sensitivity of the optomechanical device [Mahboob 2014].

(Ω m × N , N ∈ N, N 2 
Second path of mid-range perspective experiments includes the synchronization of two or more optomechanical resonators, including frequency and phase synchronization protocols. This can be implemented either by optical [Shah 2015] (including the possibility to get more than two synchronized oscillators [Holmes 2012;Zhang 2015]), mechanical [Shim 2007] or electrical [Matheny 2014] connection channels. Moreover, similar to the system theoretically studied in [Heinrich 2011], our hybrid device allows to simultaneously access several spatially separated optical modes, coupled to the same or different mechanical modes, which by design can be coincident or separated spatially. In such way of coupling several OMOs, fundamental aspects of array synchronization and pattern formation [Lauter 2015] can be also studied. Device design, relative to such application, is shown in Figure 5.2a, with the fabricated sample in Figure 5.2b. The main fabrication challenge still remains the high fidelity of the etched photonic crystal lattices, which defines how well the three (in the shown example) resonant wavelengths will match (currently obtained precision is of the order of 2 -3 nm.). An considerable margin is given by the designed linewidth of the coupled cavity, relaxing the precision condition to 1 -2 nm in the case of samples, studied in this work; this margin can be extended via changing the coupling strength between the waveguide and the cavity to eventually find an optimum solution where all the cavities, coupled via a common waveguide, can be addressed using the same probe laser wavelength, allowing for further mechanical synchronization of the membranes' modes.

In a long-term perspective, having studied the above-mentioned effects exploiting the mechanical non-linearities within the system, one can envisage to further extend the investigation of these effects to the second family of mechanical modes in the current device configurations -localized within the core of the defect cavity (in GHz range). Contrary to the excitation and driving of the flexural membrane modes using electrostatic field from the comb drives (Fig. 5.1a), the localized modes require another solution, for example, employing a surface acoustic waves (SAW) transducer. Still using a pair of interdigitated combs, it is possible to excite an acoustic wave propagating on the surface of the layer below the electrodes. Such devices consisting of chirped interdigital transducers demonstrate a broad excitation band (covering our frequency range of interest) and a possibility to directly measure the acoustic transmission when using a two-port SAW resonator [Benchabane 2015]. The electrodes have to be fabricated on top of a piezoelectric material, therefore the semiconductor material we used through this work, InP, would require an intermediate layer of piezoelectric. Simpler option consists in using a suitable semiconductor material with good piezoelectric properties, such as GaAs or, even better, GaN/AlN, for the resonator part. An example of fabricated device where the suspended PhC with a defect cavity made of GaN and aluminum (Al) electrodes deposited directly on top of this layer, is shown in Figure 5.3b.

Optomechanical oscillators, featuring direct coupling to continuous-wave light field input from one side and attainable high operation frequency and high quality factor, are a good candidates for frequency reference in radio-frequency-photonic architectures. Such developments of high-quality optomechanical resonators will finally allow for their implementation as on-chip integrated RF oscillators with high spectral purity, covering both MHz and more interestingly GHz frequency ranges.

Two different implementations of on-chip integrated RF oscillators can be used: phaselocking to an external frequency reference and self-referenced optomechanical microwave oscillators. In the first case, the frequency of an OMO is read optically by examining either the phase or the amplitude of a probe laser, coupled to its optical mode. The measured frequency is then stabilized through a feedback scheme, in which the feedback error signal is obtained by comparing the phase of the optomechanical oscillator with the one of the external reference signal. The feedback scheme then relies on a control of the mechanical frequency via a tuning of the pump laser power or its frequency. An alternative scheme for the localized modes exploits direct acoustic or optical carrier injection via the SAW transducers (Fig. 5.3a,b) [Weigel 2002] or an optical waveguide. In the second case, a self-stabilization of the oscillator is achieved through a use of a system enabling to selfsustain mechanical motion [Gavartin 2011;Villanueva 2013]. It consists in applying a force proportional to the displacement of the oscillator driven by high actuation power. This scheme could also be combined with an injection of the RF signal via the modulation of the laser and optical injection, while the acoustic and optical delays may be introduced to reduce the phase noise of the oscillator. Pursuing such system further in this context, an injection locking can be used to lock two and more optomechanical resonators and improve the frequency stability and noise performance of the driven oscillator(s) similar to what is done in the optical domain with lasers.

Appendix A

Tensile-strained membranes on GaAs substrate

One of the commonly employed configurations in experimental cavity optomechanics is a high-finesse Fabry-Pérot optical cavity embedding a mechanical oscillator. This oscillator can either be one of the end-mirrors of the cavity or a thin membrane inserted inside the optical resonator. The later configuration benefits from a separate tailoring of the mechanical resonator and the optical cavity. These membranes usually consist of extremely thin (few tens to few hundreds of nm) and large (hundreds of microns to few millimeters lateral dimensions) semi-transparent membranes, coupled dispersively to the optical mode of the Fabry-Pérot high-finesse resonator (also referred to as "membrane-in-the-middle" experiment).

Pioneer experiment realizations [Thompson 2007;Sankey 2010] employed dielectric Si 3 N 4 (silicon nitride) membranes. Commercially available (e.g., from Norcada1 ) dielectric Si 3 N 4 devices made from tensile-strained amorphous films have demonstrated a mechanical quality factors greater than 10 7 [Thompson 2007;Purdy 2012] and made possible number of developments in the field of cavity optomechanics, such as the demonstration of radiation-pressure quantum backaction [Purdy 2013a] and ponderomotive squeezing [Purdy 2013b].

More recent developments consider semiconductor (gallium arsenide (GaAs) [Liu 2011] and indium gallium phosphide (InGaP) [Cole 2014]) membranes, allowing to implement hybrid cooling schemes [WilsonRae 2004] in such optomechanical systems. Free-standing semiconductor films have demonstrated excellent optomechanical properties [Liu 2011], allowing further for exciton-mediated2 photothermal cooling [Usami 2012;Xuereb 2012] (in those experiments, by making use of photothermal effect, one can overcome the fundamental limit encountered by any optomechanical cooling mechanism based on the radiation-pressure interaction; see, for ex. [Pinard 2008]). The implementation of such photonexciton coupling for cooling requires both low operating temperatures [Fox 2001] together with embedded quantum dot/well structure, in order to successfully create and maintain exciton bonds.

A.1 Device concept

Basic design here with respect to technological feasibility is represented in The main fabrication stages include metalorganic chemical vapour deposition (MOCVD) of the membrane and etch-stop layer stack, preparation of the two sides of the sample and patterning of the etching mask on the backside, wet etching of the host substrate and final removal of all the complementary layers.

Backside etching techniques, which provide two-side access to the membrane, require usually to insert an etch-stop layer in order to protect the top layer (here InGaP/GaAsP) during etching process. For this purpose we employ a few hundred nm thick Al x Ga 1-x As (hereinafter AlGaAs) layer with high aluminium concentration (x = 85 %), for better resistance against chosen wet etching solution [START_REF] Hays | [END_REF]Baca 2005]. It should be noticed that at the same time the use of too high aluminium ratios, while exposed to atmospheric gases, would lead to oxide creation in vicinity of membrane's bottom edges, which impacts in turn mechanical properties. The few nm thick intermediate layer of GaAs between the etch-stop and a top layer (also shown in Fig. A.1c) is introduced due to epitaxy requirements. It allows for a better control over membrane's lattice mismatch one wants to introduce and better quality interface with the InGaP/GaAsP layer.

Whole structure is grown by MOCVD method on top of 125 µm-thick GaAs wafer. In contrast with traditional 350 µm wafers the thinner option both reduces the etching time and preserves better the initial mask shape.

A.2 Strained membrane design

Moving further to InGaP or GaAsP alloys brings essentially two advantages compared to GaAs. First, considering the optical properties, the higher bandgap (around 1.9 eV3 for both alloys comparing to 1.42 eV for GaAs) lowers the wavelength limit for transparent optical operation to about 650 nm (870 nm for GaAs) at room temperature. Non-linear absorption effects at high optical intensities, including two-photon absorption, become negligible as well. Second, by varying the alloy composition, one introduces a lattice mismatch with the substrate (GaAs is usually used), which in turn brings tensile stress into membrane's layer. The latter fact, while considering free-standing membranes, via the impact on material strain tensor, increases the frequencies of mechanical modes as well as their quality factors, hence favouring the obtention of ground-state cooling by improving the Q m × f m product -a common figure of merit in view of reaching this limit [Liu 2015], as introduced in Chapter 1.

A.2.1 Control of strain via alloy composition

Some of III-V compounds, and in particular GaAs, InGaP and GaAsP, form crystals with the zinc blende arrangement. Such compounds are the simplest crystals lacking a center of symmetry and, hence, capable of exhibiting piezoelectric and relating effects [Adachi 1992]. The crystal lattice parameter, or lattice constant a 0 is known to obey empirical Vegard's law [Denton 1991], that is, varies linearly with the concentration(s) of alloy constituent element(s). Such is the case for the ternary alloys considered here. Using this law, the lattice a 0 dependence from the composition fractions x and y of In x Ga 1-x P and GaAs y P 1-y respectively, can be written as: We assume that the thin film membrane has an interface, perfectly matched with the host substrate (Fig. A.3), i.e., the crystal lattices in film and substrates line up perfectly. Then, for the residual stresses being epitaxial stresses the misfit strain in membrane (assuming two-dimensional misfit in cubic symmetry lattice and relatively small ( 3%) lattice mismatch) is given by [Vlassak 2004]:

ε xx = ε yy = a 0 -a m a m = ε mf , (A.3)
where a m and a 0 are the lattice constants of the membrane and substrate correspondingly. Given equation holds in case when the membrane lattice would adjust to the substrate one.

Then, the nonzero components on the misfit stress tensor are:

σ xx = σ yy = E ε mf 1 -ν , σ zz = ν σ xx , (A.4)
where E is the substrate Young's modulus, ν -Poisson's ratio, x and y -in-plane membrane's axes, z -direction of membrane epitaxial growth. By applying equations A. 

A.2.2 Critical layer thickness

A critical layer thickness for the lattice-mismatched membrane layer refers to a thickness which can be epitaxially grown without any defects and dislocations. As larger misfits Standard single-side polished GaAs wafer has an average (RMS) backside surface roughness R q of around 600-800 nm. This measurements were performed with Dektak 8 profilometer, assuming

R q = 1 L L 0 h 2 (x)dx, (A.6)
where L is the length of scan, h is the absolute height, measured at x coordinate of scanning tip. Mechanical polishing with colloid solution of aluminium particles of 3 µm diameter and water (1:10 by weight) gave us in best case a reduction of RMS roughness A 500 nm thick Si 3 N 4 layer is deposited by PECVD (plasma-enhanced chemical vapour deposition) 3 and will serve as a part of mask for substrate etching. Substrate's backside is relatively rough (RMS roughness R q vary between 600 and 900 nm) and the silicon nitride layer reproduces well its pattern, eventually resulting in small (few µm) openings though which the wet etching solution can penetrate outside of designed mask opening.

To prevent this we employ a second mask layer consisting of thick planarizing photoresist AZ nLOF 2070 5 4 (spin-coating at 2000 rpm speed, 1000 rpm acceleration for 30 sec; postbake on a hotplate during 5 min at 80 °C; resulting thickness about 7 µm). Resulting double-layer mask is then etched in two stages. First 5 , with an UV lithography through the Ni-Cr negative mask (as we work with the negative photoresist) we transfer the mask pattern into the photoresist layer. Then a dry R.I.E. etching (SF 6 plasma) using the AZ nLOF 2070 patterned layer as a mask replicates the pattern into the Si 3 N 4 layer 6 .

Our developments and trials on wet etching of large openings in GaAs substrate showed that the best results in terms of resulting shape, speed and reproducibility were obtained in the following configuration. The front side of the sample is glued on a glass plate (wax glue, hotplate, 80 -90 °C), which allows to maintain the horizontal position while immersed into the etching solution. Moreover, as the ultrasound (US) bath is employed, this protects the membrane during strong mechanical agitation. Substrate wet etching 7 is carried out in an US bath (frequency 80 Hz, 50 % of nominal power) in H 2 O 2 : NH 4 OH (20:1 by volume) solution. It requires around 25-30 min to etch through 125 µm substrate with a 500 × 500 µm 2 opening. Thicker substrate (usually a standard 350 µm one) results in longer etching times and less accurate mask shape transfer and can only appear advantageous in terms of handling ease. The end of this etching step is identified by the change of colour within the mask opening: GaAs is grey, while AlGaAs with high aluminium content, exposed to oxygen from hydrogen peroxide dissociation, shows rainbow oxidation (see Fig. Incident electrical power at port 1 of the network analyzer is set to 0 dB.

the RF signal at the test frequency of 1 MHz from the function generator with known voltage and the resulting response at the interferometer output was analysed. We work in the linear regime of the interferometer and analyse the amplitude of the transduced signal with varying input voltage. In this manner the value of V π = 3.5 V was obtained, corresponding to the device specifications at DC. Le système canonique en optomécanique en cavité est celui d'une cavité Fabry-Pérot avec un miroir mobile (Fig. C.1), mettant en jeu des effets de couplage par pression de radiation. Le domaine de l'optomécanique en cavité s'étend cependant à une grande variété de systèmes, de géométries diverses et réalisant d'autres types de couplage lumièrematière à l'intérieur des cavités monolithiques (par exemple, par la force de gradient, l'effet photo-élastique, la photostriction etc.). Une telle interaction devient considérable à l'échelle micro-et nanométrique, où la masse effective de l'oscillateur mécanique m eff peut être considérablement réduite.

L'effet essentiel du couplage optomécanique est le fait qu'un déplacement mécanique de la cavité induit un changement dans l'état de la lumière. En retour, le changement d'état de la lumière modifie le mouvement de l'oscillateur. Les champs potentiels d'applications de ce domaine couvrent d'une part les études fondamentales de la physique ; on peut ainsi citer le régime quantique d'un oscillateur macroscopique ou bien l'interaction hybride entre un oscillateur mécanique et des systèmes à deux niveaux (atomes, centres NV, boîtes quantiques. . .). Ainsi, les systèmes optomécaniques sont aujourd'hui envisagés pour les applications dans le traitement quantique de l'information, servant comme une interface cohérente entre les qubits de la lumière et de la matière. D'autre part, l'étude expérimentale des systèmes optomécaniques est étroitement liée aux enjeux métrologiques, en particulier la mesure de très faible déplacements et plus largement de la masse, de la force, de l'accélération, etc. ; ils sont aussi envisagés dans des dispositifs radiofréquences en tant qu'horloges intégrées.

Quel que soit le domaine (fondamental ou appliqué) envisagé, la tendance générale vise à augmenter la fréquence mécanique de fonctionnement f m , ce qui passe par la diminution de la taille de l'oscillateur et au passage la réalisation de cavités monolithiques optiques atteignant la limite de diffraction ; cet enjeu est de fait naturellement associé à celui plus général du couplage de telles cavités monolithiques à l'espace libre. Plusieurs systèmes optomécaniques fonctionnant à la limite de diffraction ont été conçus, parmi lesquels les membranes à cristaux photoniques, qui permettent de contrôler efficacement la propagation de la lumière et son confinement à l'échelle micro-et nanométrique ; ces membranes ont été ainsi choisies dans le cadre de ce travail.

C.2 Cristaux photoniques pour l'optomécanique

Les cristaux photoniques (CP) forment un système naturel ou créé artificiellement, capable de contrôler localement la propagation de la lumière [Joannopoulos 2011]. En général, ce sont des matériaux qui présentent une périodicité dans la constante diélectrique ε dans une ou plusieurs dimensions. Une telle variation, introduite à l'échelle de longueur d'onde optique, peut permettre de contrôler la propagation de la lumière dans une telle structure périodique selon la(les) direction(s) choisie(s). Par analogie avec la bande interdite pour les électrons dans un réseau cristallin de semi-conducteur, les bandes interdites photoniques des CP peuvent également être conçues pour interdire la propagation des photons avec certaines énergies. Ces bandes d'énergie ou plage des longueurs d'onde correspondantes, représentent une bande interdite photonique [START_REF] Yablonovitch | Inhibited Spontaneous Emission in Solid-State Physics and Electronics[END_REF]John 1987]. Si on crée un défaut au sein d'un tel milieu périodique, on peut créer une cavité présentant un mode optique dont la fréquence ν 0 est située à l'intérieur de bande interdite photonique. Ce mode ne pourra se propager dans le cristal alentour. Il sera ainsi très confiné avec une durée de vie des photons élevée. Ce système a été intensivement utilisé dans divers domaines et applications en nanophotonique, s'étendant des sources de photons uniques [Laurent 2005] jusqu'à l'optique non-linéaire [START_REF] Bazin | [END_REF]]. Ce n'est que récemment, en 2009, qu'il a été utilisé dans le cadre de l'optomécanique [Eichenfield 2009a ;Eichenfield 2009b]. Ce concept de CP est généralement utilisé dans les systèmes optomécaniques pour créer une cavité optique incorporée dans un dispositif optomécanique. Plusieurs designs des cavités à cristaux photoniques existent ; ils se distinguent par le nombre de dimensions présentant une périodicité de l'indice de réfraction. Pour les applications optomécaniques des systèmes périodiques uni-dimensionnel (1D) et bi-dimensionnel (2D) sont utilisés, le confinement du mode optique dans les directions restantes étant obtenu par réflexion totale interne (la structure est généralement suspendue dans l'air). Dans le cadre de ce travail de thèse, la membrane suspendue est percée par un cristal photonique 2D intégrant une cavité optique à défaut L3 (trois trous manquants en ligne). Notons que le cristal photonique peut être aussi utilisé dans différentes configurations, créant un miroir à incidence normale ou une cavité à défaut dans un cristal parfait.

C.3 Vers l'intégration des résonateurs optomécaniques

La plupart des dispositifs dans les expériences d'optomécanique englobent une cavité optique dont le mode participe dans l'interaction optomécanique. Traditionnellement, cette cavité (dans sa réalisation monolithique) est alimentée avec de la lumière provenant d'un laser de sonde, couplé à une fibre étirée introduite dans le champ évanescent de la cavité. Une telle fibre nécessite une préparation délicate et spécifique (sa partie centrale doit être beaucoup plus mince que celle d'une fibre ordinaire de manière à se coupler au mode de la cavité) ainsi qu'un alignement précis par rapport à l'échantillon sondé dans tous les trois dimensions (dans le plan pour s'accorder avec la cavité et hors plan pour obtenir un couplage optique) avec une précision jusqu'à quelques dizaines de nanomètres. Cela complique l'expérimentation systématique et avancée sur le dispositif et ajoute plusieurs restrictions importantes : par exemple, il est presque impossible d'adresser deux cavités optiques à la fois ; les conditions de couplage entre la fibre et la cavité sont difficilement reproductibles d'une expérience à l'autre ; l'intégration de tels dispositifs s'avère délicate, etc.

Afin de surmonter ces limitations, certains systèmes existants utilisent un canal d'accès optique intégré, formé par un guide d'onde optique permettant d'adresser de manière efficace le résonateur optomécanique à l'échelle nanométrique. Du point de vue de la fabrication, la solution la plus simple à mettre en oeuvre est un guide d'onde ayant un profil rectangulaire fermé par des coupleurs à réseau d'entrée et de sortie pour assurer un couplage à l'espace libre. Toutes les réalisations décrites dans la littérature s'appuient sur un guide d'ondes placé dans le plan d'un résonateur optomécanique (Fig. C.2). Les principales géométries d'accès comprennent des profils de guide d'ondes droits et courbés au point de couplage au mode optique ; éventuellement le résonateur optomécanique peut être conçu comme une partie du guide d'onde d'accès. Tirant parti de périodicité d'un cristal photonique, on peut également intégrer un guide d'onde d'accès à défaut dans une membrane à CP. L'une ou l'autre géométrie ainsi que les dimensions de guides d'ondes sont alors adaptées pour assurer les conditions d'accord de modes optiques et l'efficacité de couplage qu'on souhaite d'atteindre. Une des conséquences de cette intégration planaire du guide d'ondes et du résonateur optomécanique, est que les deux éléments (guide et résonateur) doivent être faits dans la même couche, soit du même matériau. Afin d'assurer un fort confinement de la lumière dans le guide et résonateur, il est nécessaire de recourir à des matériaux de fort indice de réfraction. De fait, la majorité des dispositifs intégrés sont aujourd'hui en silicium (Figures C.2a,d,e), permettant de profiter de l'expertise de fabrication CMOS. Ceci limite la plage de longueur d'onde optique possible (supérieures à 1.1 µm pour limiter les pertes par absorption). Cependant, les dispositifs optiques silicium se heurtent à la forte absorption à deux photons et à l'absorption des porteurs libres dans la gamme des longueurs d'onde télécom, conduisant souvent à des effets thermiques forts limitant la stabilité du dispositif et les performances de son refroidissement par voie optique [Pernice 2011 ;SafaviNaeini 2011a].

Quelques autres matériaux sont apparus récemment dans les expériences d'optomécanique intégrée : on peut citer le diamant [START_REF] Rath | [END_REF]] pour ses propriétés mécaniques exceptionnelles (le module d'Young est d'environ 1 GPa) et le nitrure d'aluminium (AlN) [Xiong 2012 ;Bochmann 2013] pour le couplage électromécanique fort, recherché pour des systèmes optomécaniques accordables électriquement. Afin d'adjoindre des fonctionnalités photoniques actives impossibles avec le silicium, l'arséniure de gallium (GaAs) a aussi trouvé ces dernières années de nouvelles applications dans les systèmes optomécaniques intégrés [Ding 2011 ;Baker 2011]. Tout comme le GaAs, d'autres semi-conducteurs III-V comme le phosphure d'indium (InP) [Gavartin 2011] ou le nitrure de gallium (GaN) peuvent également être utilisés dans des dispositifs optomécaniques. Cependant, pour la plupart des matériaux précédemment mentionnés (diamant, AIN, GaN, etc.) d'importantes pertes optiques le long des guides d'ondes dans le matériau sont introduites du fait des imperfections de fabrication (la rugosité des parois latérales est plus importante par rapport aux dispositifs en silicium), nécessitant une réduction des dimensions du guide.

La solution retenue dans ce travail de thèse propose d'exploiter l'intégration hétérogène tri-dimensionnelle (3D). Elle permet de séparer la fonctionnalité de guidage et celle de l'oscillateur optomécanique, en les réalisant respectivement sur deux niveaux différents. Cette voie permet une flexibilité totale dans le choix des matériaux pour chacun de ces composants mis en jeu. En outre, elle permet une flexibilité dans la géométrie du dispositif, les cavités optiques pouvant être adressées sur puce quelle que soit leur position. Ceci ouvre la voie à la réalisation de réseaux d'oscillateurs optomécaniques, couplés à la lumière via un unique guide d'onde optique par exemple. Enfin, cette géométrie tridimensionnelle, tout en assurant un couplage optomécanique important, permet de contrôler l'amplitude et la nature de l'interaction, en jouant sur la distance entre le guide d'ondes et la cavité elle-même modifiée par le mouvement mécanique du résonateur. En ayant un contrôle total sur la géométrie du guide d'onde, il est ensuite possible de et mettre en oeuvre différents types de couplage optomécanique sur une seule puce. permettant dans ce travail de sonder les propriétés optiques de la cavité telles que la longueur d'onde et largeur de raie d'émission qui peuvent être largement accordées lors de conception du résonateur optique. Le mouvement mécanique à la fois de la membrane et du coeur de la cavité impacte les propriétés optiques de la cavité à défaut par différents effets optomécaniques. Une couche sacrificielle entre les niveaux d'InP et silicium sur substrat SOI (silicium-sur-isolant -silicon-on-insulator en anglais) a été utilisée pour la suspension de la membrane. Un contrôle précis de la distance guide-cavité à l'aide des techniques de fabrication classiques a permis de maîtriser à la fois le couplage de la lumière entre le guide d'ondes et la cavité, et la force des interactions optomécaniques induites par la modulation du couplage optique due au mouvement de la membrane.

C.5 Simulations optiques, mécaniques et optomécaniques de la structure

La simulation complète des structures a été menée, tout d'abord en considérant les caractéristiques optiques et mécaniques séparément et ensuite abordant la caractérisation optomécanique du système hybride. L'objectif ici est d'optimiser les paramètres géométriques de la plateforme et extraire les processus d'interaction mis en jeu. Pour la partie optique, deux configurations de membrane à CP bidimensionnel ont été étudiées, soit pour former un miroir déformable parfait soit pour réaliser une cavité à défaut à l'intérieur du cristal photonique et intégrée de manière hétérogène avec un guide d'onde SOI. Dans les deux géométries optiques, le design mécanique du résonateur a été étudié permettant ensuite d'identifier clairement les processus de couplage optomécanique. Deux familles distinctes des modes mécaniques ont été considérées, correspondant (1) au mouvement de flexion de la membrane de type tambour (avec des fréquences propres dans la gamme de MHz) et (2) aux vibrations localisées dans le coeur de la cavité à défaut dans le CP (f m dans la gamme de GHz) .

Le couplage optomécanique dans notre système hybride intégré implique deux types d'effets -dispersif et dissipatif. Ces effets peuvent être produits par deux mécanismes distincts. Ces deux effets sont (i) les effets dits externes, gouvernés par la présence d'un guide d'onde SOI couplé de manière évanescente au voisinage d'une cavité à CP, et (ii) les couplages intrinsèques, qui dépendent exclusivement des processus se produisant dans le coeur de la membrane à CP. Leur impact respectif peut aussi être différent. Le mouvement mécanique des modes de flexion de la membrane modifie l'écart entre la cavité et le guide d'onde h air , ce qui a pour effet de changer le recouvrement mutuel des modes optiques lorsque la distance guide-cavité est suffisamment faible (ce qui est le cas dans nos expériences). Les conséquences sont double. Tout d'abord, tout changement ou modulation de h air modifie les pertes optiques de la cavité, résultant dans un couplage optomécanique dit dissipatif externe [START_REF] Elste | Quantum Noise Interference and Backaction Cooling in Cavity Nanomechanics[END_REF]Xuereb 2011] 

C.6 Procédé de fabrication

La fabrication de la plateforme hétérogène optomécanique intégrée repose sur plusieurs étapes, dont en particulier le collage de substrats SOI et en semi-conducteur III-V, la préparation des marques d'alignement à contraste élevé pour la lithographie électronique, la gravure des composants optiques (réseau du cristal photonique) et mécaniques (structures mesa) ainsi que le retrait de la couche sacrificielle afin de suspendre la membrane à CP. Ces étapes ont nécessité un travail de développement et optimisation. La technique de collage employée avec un contrôle précis de l'épaisseur de la couche sacrificielle a permis d'atteindre une précision sur la séparation entre les niveaux SOI et semi-conducteur III-V de 10 nm (dans la direction hors plan). Grâce à l'introduction de marques d'alignement, l'alignement des cavités à cristaux photoniques en InP suspendues par rapport au circuit SOI a été réalisé avec une précision de 40 nm dans les directions dans le plan. La structuration de la couche InP a été optimisée en faisant usage des résines positive (PMMA) et négative (HSQ), ce qui a permis de satisfaire les différentes exigences pour les parties optique et mécanique du dispositif ; ce travail d'optimisation se traduit notamment par l'obtention des cavités optiques à haut facteur de qualité Q. L'écart-type de la longueur d'onde de résonance entre les cavités à CP avec les mêmes paramètres géométriques est d'environ 2 -3 nm sur l'ensemble de l'échantillon (typiquement comprenant plusieurs centaines de dispositifs). Enfin, la technologie de séchage supercritique nous a permis d'atteindre un rendement de 100 % pendant la suspension des membranes, pour des distances entre la membrane et le substrat d'environ 200 nm et pour les membranes à CP ayant des dimensions latérales de 10Ö20 µm 2 . les différents paramètres géométriques de la structure suspendue. Ces mesures montrent, comme attendu, une diminution des pertes intrinsèques induite par le matériau avec la température de l'environnement ; ainsi le facteur de qualité mécanique augmente d'un facteur 3 environ, en passant de la température ambiante (T b = 300 K) à celle de l'hélium liquide (4.4 K). Une réduction supplémentaire des pertes dues à l'ancrage sur les mesa permettant de suspendre la membrane a aussi été obtenue en allongeant les ponts entre la membrane et les points d'ancrage. On constate ainsi une amélioration de Q m par un facteur d'environ 5 pour le mode mécanique fondamental, en allongeant les ponts 1 µm à 12 µm. Cette observation a été rendue possible, grâce à l'intégration d'une couche mince d'InGaAs de 10/20 nm d'épaisseur à l'intérieur de la membrane InP, permettant d'améliorer sa rigidité et par conséquent obtenir une suspension correcte du dispositif sans son effondrement au substrat. propre Ω m /2π, module la longueur d'onde de résonance et la largeur spectrale de la cavité par l'intermédiaire de mécanismes de couplage dispersif ou dissipatif (voir la Section 2.3.1 pour plus de détails). Par conséquent, une telle modulation de la réponse Lorentzienne de la cavité optique s'imprime sur le laser de sonde (dans le cas où sa largeur de raie est beaucoup plus étroite par rapport à celle de la cavité γ l γ t )). La réponse mécanique peut donc être sondée, en désaccordant légèrement le faisceau laser par rapport à la longueur d'onde de résonance et en mesurant le spectre de son bruit d'intensité, comme le montre la Figure C.9. Dans cette configuration, l'intensité de la sonde est modulée à la fréquence de l'oscillation mécanique du résonateur, et ce pour tous les modes mécaniques qui ont un impact sur le mode optique. En examinant le bruit de la sonde transmise par un ASE (analyseur du spectre électrique ; ESA en anglais), on récupère le spectre de(s) mode(s) mécanique(s) de la membrane dans le spectre de densité spectrale de la puissance (PSD, pour power spectral density en anglais) (Fig. C.9).

Cette technique de détection donne ainsi le spectre mécanique, dont un exemple est montré sur la Figure C.10a (courbe rouge). L'expérience est réalisée dans une chambre à vide à basse pression P < 10 -4 mbar afin d'éviter l'amortissement de l'air, qui a un impact considérable pour les modes de flexion d'une membrane. Dans cette étude, nous avons utilisé une cavité à défaut L3 ayant une résonance optique autour de λ 0 ∼ 1560 nm, incorporée dans une membrane des dimensions de 20 × 10 µm 2 , suspendue à l'aide des La densité spectrale de puissance (PSD) du signal transmis, mesurée dans la gamme de 1 à 100 MHz révèle quelques pics de résonance, correspondant aux modes mécaniques de la membrane suspendue, en accord avec nos simulations. Les modes présents dans le spectre de basse fréquence correspondent à ceux qui manifestent dans la spectroscopie numérique les amplitudes simulées les plus importantes. Une mesure supplémentaire a été effectuée avec un laser de sonde hors de résonance de la cavité (à savoir, avec ∆ = 3 -5 nm), pour détecter tout signal parasite présent dans le montage expérimental, signal dû aux sources de bruit électrique qui ne sont pas liées au mouvement mécanique du dispositif étudié (courbe grise dans la Les taux de couplage optomécanique sous vide ont été déterminés pour les modes mécaniques détectés dans la gamme des fréquences jusqu'à 100 MHz par l'intermédiaire des techniques de modulation de fréquence, ce qui a donné les valeurs de g 0 /2π de 0.1 à 45 kHz, comparables à l'état de l'art des systèmes optomécaniques dans cette gamme de fréquences [Wilson 2014]. Cette mesure de ressort optique nous donne un aperçu rapide sur le changement des trois principaux paramètres mécaniques lorsque la longueur d'onde de la sonde laser varie autour de la résonance de la cavité : la fréquence du mode Ω m , l'intensité du pic de résonance α et la largeur de raie mécanique Γ sont modifiées. Enfin, les effets induits thermiquement ont été étudiés, proposant par la suite un mécanisme de mise en oeuvre d'une commutation (switching en anglais) mécanique bistable, en exploitant la bi-stabilité thermo-optique. Nous avons aussi réalisé des études préliminaires sur le mécanisme de transduction entre la modulation du laser de pompe non-résonant et du laser de sonde résonant en utilisant le milieu actif (boîtes quantiques à l'intérieur de la membrane à CP) en tant qu'intermédiaire.

C.8 Annexe A. Développement des membranes semi-conductrices accessibles par les deux faces pour l'optomécanique

Des membranes contraintes, accessibles optiquement par les deux faces pour des expériences optomécaniques de type "membrane-au-milieu" ("membrane-in-the-middle" en anglais), ont d'autre part été conçues et fabriquées. Ces membranes présentent des propriétés mécaniques contrôlables via la composition d'alliage ternaire de semi-conducteur utilisé ; d'autre part, la contrainte induite permet partiellement une forte amélioration des facteurs de qualité mécaniques. Les valeurs de la contrainte ajoutée obtenues sont de 350 MPa pour l'alliage In 0.45 Ga 0.55 P et 240 MPa pour GaAs 0.95 P 0.05 avec une marge de progression. Les deux alliages sont fabriqués par l'épitaxie en phase vapeur aux organométalliques sur des substrats d'arséniure de gallium (GaAs).

C.9 Perspectives principales

Le système optomécanique étudié dans ces travaux ouvre la voie à la mise en oeuvre de diverses fonctionnalités pour la physique fondamentale et appliqué ; dans ce qui suit, nous présentons deux voies possible. À titre d'exemple, les modes qui occupent la gamme GHz, sont attractifs pour les applications de refroidissement, la température permettant d'atteindre le régime quantique étant plus élevée que pour les modes dans la gamme MHz. Cependant, il reste néanmoins nécessaire d'adjoindre des techniques de refroidissement optique, jusqu'à présent mises en oeuvre dans le régime de couplage dispersif. Ce régime est très exigent sur les pertes optiques de la cavité. Or, il a été récemment démontré que le refroidissement peut être mis en oeuvre en régime dissipatif, qui relaxe les contraints sur les pertes optiques. Ces plateformes, à couplage optomécanique contrôlé, constituent au fait des dispositifs prometteurs.

D'autre part, la membrane en semi-conducteur III-V permet ici l'incorporation de milieu actif formé par une monocouche des boîtes quantiques, qui peuvent être considérées comme des systèmes à deux niveaux sous faible excitation et basse température. Ce milieu actif, intégré dans une cavité semi-conductrice, a été largement étudié dans le cadre d'interaction lumière-matière, par exemple, pour l'émission des photons uniques [Laurent 2005]. Le couplage à ce genre de systèmes à deux niveaux dans des dispositifs optomécaniques a été peu exploré expérimentalement [Arcizet 2011], cependant, il offre une direction prometteuse pour la mise en oeuvre des mécanismes de refroidissement hybrides [WilsonRae 2004]. À plus long terme, il permet d'envisager l'étude du couplage hybride entre un mode mécanique à haute fréquence dans son état quantique fondamental et un système quantique à deux niveaux.

La plupart des enjeux du domaine (fondamentaux et appliqués) requièrent un couplage optomécanique important, qui pourrait être exalté par la réalisation des réseaux à cristal phononique/photonique (dit phoxonique) afin de réduire les pertes mécaniques par ancrage. Soulignons qu'un autre mécanisme optomécanique, la photostriction, est susceptible d'entraîner la génération des phonons de haute fréquence (GHz) à l'intérieur de la cavité à défaut. L'existence d'un tel mécanisme reste encore à démontrer.

Ces modes de haute fréquence présentent un intérêt pour les applications métrologiques ou photonique RF. Cependant, celles-ci requirent une stabilisation en fréquence de l'oscillateur. Les réalisations expérimentales déjà existantes [HosseinZadeh 2008 ;[START_REF] Zheng | [END_REF] La deuxième voie d'expériences en perspective à long terme inclut la synchronisation de deux ou plusieurs résonateurs mécaniques. Ceci peut être réalisé par les canaux de connexion optiques [Shah 2015] (voir Figure C.13c), permettant d'obtenir plus de deux oscillateurs synchronisés [Holmes 2012 ;Zhang 2015]), mécaniques [Shim 2007] ou électriques [Matheny 2014]. Ce dispositif hybride intégré permettra ainsi d'accéder simultanément à plusieurs modes optiques spatialement séparés, couplés à un ou plusieurs (différents) modes mécaniques, qui par conception peuvent être coïncidents ou séparés spatialement. Ce couplage de plusieurs oscillateurs optomécaniques, ouvre la voie à l'exploration d'effets optomécaniques multimodes, comme la synchronisation en réseau et la formation de motifs (pattern formation en anglais) [Lauter 2015].

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.2 Relevant parameters of optomechanical systems . . . . . . . . . . . . 1.1.3 Fields of applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.4 Motivation behind micro-and nanoscale devices . . . . . . . . . . . 1.2 Some optomechanical systems . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.1 From macro-to microscale . . . . . . . . . . . . . . . . . . . . . . . 1.2.2 Down to nanoscale . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Photonic crystals for optomechanics . . . . . . . . . . . . . . . . . . . . . . 1.3.1 One-dimensional photonic crystal beam cavities . . . . . . . . . . . . 1.3.2 Photonic crystal slabs . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4 Integration in optomechanics: state of the art . . . . . . . . . . . . . . . . . 1.5 Concept of our device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6 Organisation of the manuscript . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 1 . 2 :

 12 Figure 1.2: Example realizations of optomechanical devices at different weight scales, covering over 20 orders of magnitude. Indicated mass m refers to the effective motional mass (m eff ) of the resonator mechanical mode, used in the experiment (in the absence of such data, we provide the bulk mass of the moving device part). (a) Suspended end-mirror from GEO 600 gravitational wave detector interferometric set-up [Schnabel 2010]. (b) Gramscale [Neben 2012] and (c) milligram-scale [Matsumoto 2013] suspended mirrors, analogous to the (a) device. (d) Double-clamped beam with mirror coating [Arcizet 2006a; Arcizet 2006b]. (e) Bragg mirror, coated on top of a doubly-clamped beam [Gröblacher 2009]. (f) Microtoroidal resonator on a thin pillar [Schliesser 2008b]. (g) 'Zipper' cavity optomechanical system, consisting of two doubly-clamped photonic crystal beams [Eichenfield 2009a]. (h) Two doubly-clamped nanobeam resonators, embedded inside a defect cavity within two-dimensional photonic crystal lattice [Sun 2012]. (i) Schematic of an optomechanical experiment with ultracold atoms [Purdy 2010; Camerer 2011]. All figures are adapted from the corresponding references.

Figure 1 . 3 :

 13 Figure 1.3: Example experimental realizations of optomechanical devices with photonic and phoxonic (combining optical and acoustic band gaps) crystals (given arrangement follows no particular order). (a) Photonic crystal beam [Eichenfield 2009b]. (b) 'Zipper' cavity, created by two adjacent doubly-clamped PhC beams [Eichenfield 2009a]. (c) Onedimensional phoxonic crystal [GomisBresco 2014]. (d) PhC beam, coupled to a photonic shield (phononic crystal lattice with complete acoustic band gap) [Chan 2011]. (e) PhC L3nanobeam cavity [Zheng 2012]. (f) Slot-type cavity in 2D PhC lattice [Li 2010]. (g) Splitbeam nanocavity, created from 1D PhC beam [Wu 2014]. (h) 'Snowflake' 2D phoxonic crystal with defect cavity in the middle [SafaviNaeini 2014]. (i) Two PhC 'zipper' cavities, coupled to a waveguide with 1D PhC mirror [SafaviNaeini 2013]. All figures are adapted from the corresponding references.

Figure 1

 1 Figure 1.4: Example experimental realizations of optomechanical systems featuring integrated optical access channel. (a) Two suspended waveguides [Li 2009a]. (b) Suspended optomechanical crystal beam (blue) with photonic circuit (red, rib waveguide and grating couplers) [Bochmann 2013]. Microdisk with its suspended coupling waveguide (c) [Baker 2013]; (d) [Li 2009b]. (e) L3 -nanobeam cavity coupled to defect PhC waveguide [Sun 2012]. All figures are adapted from the corresponding references.
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 1 Figure 1.5: Conceptual view of proposed device architecture.
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 21 Photonic band gap

Figure 2 . 2 :

 22 Figure 2.2: Schematic view of a photonic crystal slab with a rectangular lattice.

Figure 2 . 3 :

 23 Figure 2.3: Reflectivity spectra of an InP photonic crystal slab structure with the parameters t = 260 nm and a = 725 nm for varying hole radius r.

Figure 2

 2 Figure 2.4: Simulated E y field component (absolute value) distribution for the fundamental optical quasi-TE mode of a ridge Si waveguide at 1.55 µm with W wg = 500 nm, h wg = 220 nm, h SiO 2 = 2000 nm. (Left) colour plot with adapted mapping; (right) isolines showing mode decay in y -z plane, with 10 dB difference between two adjacent curves (distance between two ticks on both axes is 500 nm).

Figure 2

 2 Figure 2.5: (a) Schematic view of a photonic crystal slab with a triangular lattice. (b) Band diagram for photonic crystal slab from (a) with following parameters: r = 0.3a and t = 0.6a (adapted from [Joannopoulos 2011]). Red and blue lines represent TE and TM-polarized in-plane guided modes, respectively. The corresponding Brillouin zone with its special points is given in inset.

Figure 2 . 6 :

 26 Figure 2.6: Schematic top view of investigated L3 defect cavity (incomplete plot, lattice of real device continues in both x and y directions). Two first holes (dotted circles) are displaced for dx A outwards from the cavity along x axis.

Figure 2

 2 Figure 2.7: (a) 3D FDTD simulation of the E y electric field decay (absolute value in logarithmic scale) inside a defect L3 PhC cavity over the simulation time. The flat aspect of such trace over 10 ps generally indicates the presence of a high-Q cavity mode(s). (b) Fourier transform of the E y field component, showing the cavity mode at 1.54 µm.

Figure 2

 2 Figure 2.8: Simulated electric and magnetic field distributions for the fundamental optical TE mode of L3 PhC cavity at 1.55 µm with t = 260 nm, a = 420 nm, r = 90 nm, dx A = 0.2. The maximum/minimum values of E i scale are about 10 times bigger than the ones of H i .
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 29 Figure2.9: Transverse schematic of the hybrid structure (two cutting plane pass through the PhC cavity middle, cf. Fig.2.6). Red and blue lines correspond to the normalized amplitudes of E y field along the middle line (y = 0) of the respective optical component, simulated separately and superimposed at h air = 500 nm (the SOI waveguide (WG) parameters are the same as in Fig.2.4. For reference, the inner cavity border along x axis (left pane) is represented with a dotted line. Right pane illustrates the two main loss channels in the coupled system: radiative (γ i ) and coupling to the backward-and forward-propagating waveguide modes (γ e ).
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 2 Figure 2.10: Coupling efficiency η as a function of the ratio Q 0 /Q c and total optical quality factor Q total for several values of Q 0 , as computed with the coupled mode theory.

Figure 2 .

 2 Figure 2.11: FDTD simulation of optical quality factor Q total (dark red) and coupling efficiency η (dark blue) as a function of the cavity -waveguide distance h air .

Figure 2 .

 2 Figure 2.12: 3D FDTD simulation of optical quality factor Q total (a) and coupling efficiency η (b) as a function of the SOI waveguide width W wg for several cavity -waveguide distances h air . Uncoupled cavity quality factor Q 0 (in the absence of the waveguide) is about 10 5 .

Figure 2 .

 2 Figure 2.13: (a) Fourier transform of the simulated (FDTD) E y electric field component of L3 PhC cavity (normalized to its maximum value, logarithmic scale). (b) Its extracted profile (blue) along k y = 0 line (grey dashed on the left figure) with the wave vectors of SOI waveguides of different W wg (red).

Figure 2 .

 2 Figure 2.14: A comparison of k x mode overlap (diamonds) and coupled cavity Q c quality factor (for different air gaps h air , circled), normalized to their maximum values.

Figure 2 .

 2 Figure 2.15: Schematic view of a suspended photonic crystal slab membrane with an embedded defect PhC L3 cavity. The white part of structure is free to move, the grey one is assumed fixed.

Figure 2 .

 2 Figure 2.16: (Solid dark blue) Simulated low-frequency mechanical response in the middle of a suspended membrane with a displacement of 10 -15 m in z direction (refers to yellow dashed line) of the suspension pads. (Dashed violet) Simulated eigenfrequencies Ω m /2π of the same system without excitation. Mechanical mode profiles with the colour-coded normalized displacement field for the corresponding coincidences are given at bottom.

  2.1.1 8 with only b d parameter that may vary. First three modes in the default device configuration b d = ±5.9 µm are mapped in frequency domain as M1*, M2* and M3*. Given that bridge width is b x = 1 µm and the membrane one is m x = 20 µm, b d is swept from 0.5 to 9.5 µm (hereinafter we omit the ± notation since the structure is assumed symmetric with equal length for all four bridges); displacement field distributions for studied modes and for different b d values are shown in Figure 2.17c. The change in clamping geometry via b d parameter at first impacts the frequency of mechanical modes, making it vary in different ways (Fig. 2.17a).

Figure 2 .

 2 Figure 2.17: Simulated mechanical eigenmodes of the PhC membrane of dimensions 10×20 µm versus suspension bridge attachment position b d (for a constant bridge dimensions b x = 1 µm and b y = 2 µm). (a) Evolution of the eigenfrequency Ω m /2π of the first three modes is considered and illustrated at different b d values. (b) Mechanical quality factor, estimated as Q m = Re(Ω m /2π)/2 Im(Ω m /2π) (logarithmic scale). Corresponding mode profiles (normalized displacement field Q( r)) are shown (c). Chosen optimal b d distance of 5.9 µm for the mode M3* is highlighted in green (point D).

Figure 2 .

 2 Figure 2.18: Simulated mechanical eigenmodes of the PhC membrane of dimensions 10×20 µm versus suspension bridge length b y (for a constant bridge position b d = 5.9 µm and width b x = 1 µm). Evolution of the first three modes is considered and illustrated at different b y values by the corresponding eigenfrequencies (a), normalized mechanical quality factor (b) and (c) mode profiles (normalized displacement field Q( r)).
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 2 Figure 2.19: (a) [Solid dark blue] Simulated high-frequency mechanical response in the middle of a suspended L3 defect cavity with a prescribed displacement of 10 -15 m in z direction of the lateral sides (see below). [Dashed violet] Simulated eigenfrequencies of the same system without excitation. Mechanical mode profiles with the colour-coded normalized displacement field for the same eigenfrequencies are shown. (b) Boundary conditions used in the given simulations.

Figure

  Figure 2.19a presents the same type of study, as for the membrane flexural modes, but

Figure 2 .

 2 Figure 2.20: (a) Simulated mechanical band structure for an infinite triangular PhC slab made of InP (thickness t = 0.62 a, hole radius r = 0.45 a, E = 20 GPa). Phononic pseudogaps along M-K wave vector direction are highlighted in light blue. (b) Pseudogap dependence on normalized hole radius r/a, the filled areas represent the corresponding gap frequencies. Dashed lines indicate lattice geometries for three defect L3 variations included within a real device: L3 A corresponds to the lattice parameters t = 260 nm, a = 430 nm, r = 80 nm; L3 B and L3 C -to the lattices of same t and a with r = 90 nm (B) and r = 100 nm (C).

Figure 2 .

 2 Figure 2.21: (a) Simulated mechanical band structure for an infinite honeycomb PhC slab made of InP (thickness t = 0.62 a, hole radius r = 0.47 a, E = 20 GPa). Full phononic band gap is highlighted in light violet. (b) Band gap dependence on normalized hole radius r/a for two different lattice parameters a; the filled area represents the corresponding gap frequencies. Dashed lines indicate the eigenfrequencies of several prominent mechanical modes within a defect L3 cavity (from triangular lattice), as described in Figure 2.19a.

Figure 2 .

 2 Figure 2.22: Illustration of the effect of mechanical displacement on the optical response of a PhC cavity (highlighted in blue) coupled to a SOI waveguide (highlighted in red), after a half-period of mechanical oscillation. Change in the resonance line shape, as detected via waveguide transmission, for external (a) dispersive and dissipative (b), and equivalent intrinsic (c,d) optomechanical couplings.

Figure 2 .

 2 Figure 2.24: Relative strengths of the three optomechanical coupling contributions: g ωdispersive, g γ,i -dissipative intrinsic and g γ,e -external dissipative, plotted versus normalized detuning. Different regimes of cavity -waveguide optical coupling are considered: (a) undercoupling, where γ i γ e , (b) balanced coupling, where γ i ≈ 2γ e and (c) overcoupling, where γ i γ e .

Figure 2 .

 2 Figure 2.25: External dispersive g ω,e (a) and dissipative g γ,e (b) optomechanical coupling strengths, obtained with the perturbative theory (PT) for h air = 230 nm membrane suspension height.

Figure 2 .

 2 Figure 2.26: Numerical 3D FDTD simulation of resonance wavelength λ 0 (a) and total cavity linewidth γ t (b) as a function of the cavity -waveguide separation h air for several waveguide widths W wg . Wavelength trends are fitted with simple exponential, given as solid lines in (a). The shaded areas correspond to the two air gaps h air (150 and 230 nm), where the coupling strengths (g ω,e and g γ,e ) are next evaluated.

Figure 2 .

 2 Figure 2.27: External dispersive g ω,e (a) and dissipative g γ,e (b) optomechanical coupling strengths, obtained with the numerical simulations, as a function of access waveguide width W wg and for two different membrane -waveguide gaps h air . (c) Extracted from (a,b) ratio Γ between the dispersive to dissipative contributions for the same set of two geometry parameters W wg and h air .
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 2 Figure 2.28: Simulated intrinsic dispersive optomechanical coupling g ω,i components (moving interfaces and photoelastic effects) and characteristic parameters for several flexural modes of a suspended InP membrane with dimensions m x = 20 µm, m y = 10 µm, b x = 1 µm, b y = 2 µm. Dotted grey curve (top plot) represents a mechanical response to the external membrane actuation, measured in the cavity middle, as given in Fig. 2.16; the modes of interest are mapped with the corresponding Q profiles (bottom).

Figure 2

 2 Figure 2.29: Simulated intrinsic dispersive optomechanical coupling g ω,i components (moving interfaces and photoelastic effects) and characteristic parameters for some of localized mechanical modes of the L3 PhC cavity. Dotted grey curve (top plot) represents a mechanical response on the external actuation, measured in the cavity middle, as given in Fig. 2.19; the modes of interest are mapped with the corresponding Q profiles (bottom).

Figure 2 .

 2 Figure2.30: Optimal ratio Γ † (absolute value) between dispersive and dissipative optomechanical coupling strengths versus mechanical mode frequency Ω m /2π and total cavity linewidth γ t /2π in view of achieving the minimal mean phonon number via the laser cooling for an optomechanical system in sideband-unresolved regime.
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Figure 3

 3 Figure 3.1: Main fabrication steps for the processing of the suspended III-V photonic crystal slab membrane integrated on a SOI waveguide circuit.
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 32 Figure 3.2: Fabricated devices at their final stage. (a) Top view of the sample revealing part of the SOI waveguide network in the middle of tapered section allowing to address the suspended membranes. (b) Scanning electron microscope (SEM) image of a single suspended PhC membrane.
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 33 Figure 3.3: (a) Schematic of the embedded InAs(P) quantum dots monolayer (not to scale), (b) scanning transmission electron microscope (STEM) image of the {110} surface section of InAsP and (c) corresponding photoluminescence spectrum (taken at room temperature under continuous wave laser pumping: λ pump = 532 nm, P pump = 400 µW).
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 34 Figure 3.4: Schematic representation of a single waveguide within the SOI circuit: (a) y-z projection (cutting plane passes through the waveguide middle), (b) x-y projection.

Figure 3 . 5 :

 35 Figure 3.5: Optical microscope (a) and SEM (b) pictures of the SOI waveguide terminations with the grating couplers.

Figure 3 . 6 :

 36 Figure 3.6: Process flow of InP membrane preparation and bonding on a SOI waveguide wafer.

Figure 3 . 7 :

 37 Figure 3.7: InP membrane (highlighted with a dashed line) bonded on a silicon substrate with the SOI circuit. The picture is taken after the III-V substrate removal -the InP is still covered with the InGaAs etch-stop layer.

Figure 3 . 8 :

 38 Figure 3.8: Process flow of high contrast markers preparation for electron beam alignment.

Figure 3

 3 Figure 3.9: Line of alignment markers at the SOI level after InP wafer bonding and selective removal of the InP substrate and InGaAs etch-stop layer (a); after the metallisation and lift-off (b).

Figure 3 .

 3 Figure 3.10: Schematic of the lithographic process with the resists of two tones.

Figure 3 .

 3 Figure 3.11: Mechanisms involved in the dry plasma etching.

Figure 3 .

 3 Figure 3.12: Discretization of a 100 nm radius circle with different rectangular grids.

Figure 3 .

 3 Figure 3.13: Process flow for patterning of the InP layer with a 2D photonic crystal lattice using positive PMMA resist.

Figure 3 .

 3 Figure 3.14: SEM picture of a photonic crystal lattice cross-section after its transfer into a Si 3 N 4 mask (a) and into a InP layer (b).

Figure 3 .Figure 3 .

 33 Figure 3.15: Process flow for one-step patterning of the III-V layer with mesa structure using HSQ resist.

Figure 3 .

 3 Figure 3.17: An example of membranes underetched with a wet etching and dried normally (a) and with the critical point drying technique (b).

Figure 3 .

 3 Figure 3.18: Phase diagram for CO 2 showing the triple and critical points. Adapted from [Pandithage 2012] and[Cleland 2002]. The CPD procedure follows the A-B curve for pressure-temperature conditions to avoid direct passage from liquid to gas state.

Figure 3 .

 3 Figure 3.19: Experimental determination of the BCB layer thickness after wafer bonding.

  Figure 4.1: Schematic view of the experimental Michelson-like interferometric set-up for optical readout of mechanical motion. Light path is represented in red, electrical wiring is represented in black. (PBS -polarizing beamsplitter, PD -photodiode, DM -dichroic mirror, IR -infra-red, L -lens, NA -numerical aperture.)

Figure 4 . 2 :

 42 Figure 4.2: (a) Example of a low-frequency mechanical spectrum, recorded on a 20 × 10 µm 2 membrane, suspended with four 1 × 4 µm bridges, read out in the Michelson interferometer set-up within the actuation range of the piezoelectric stack. Inset: close-up on the fundamental mechanical mode, recorded at lower driving power (0 dB at the exit of the network analyser). (b) Example of a ring-down measurement of the mechanical quality factor Q m for a fundamental membrane mode from (a) at T b = 4.4 K with the exponential fit using Eq. 4.1. The external membrane excitation has been switched off at t = 5 ms on the shown time scale.

Figure 4 . 3 :

 43 Figure 4.3: (a) Experimentally measured (diamonds) versus simulated (solid lines) eigenfrequencies Ω m /2π of the first three flexural modes of the suspended PhC membrane (parameters: m x = 20 µm, m y = 10 µm, b x = 1 µm, b y = 2 µm). Insets -simulated displacement field profiles of the corresponding modes for bridge position b d = 5.9 µm. (b) Mechanical quality factors Q m of M1* mode, measured at T b of 300 K (violet diamonds) and 4.4 K (blue diamonds) with the corresponding linear fits (solid lines).

Figure 4

 4 Figure 4.4: (a) Experimentally measured (points) versus simulated (solid lines) eigenfrequencies Ω m /2π of the fundamental flexural mode M1* of the suspended PhC membrane (parameters: m x = 20 µm, m y = 10 µm, b x = 1 µm, b d = 5.9 µm; PhC lattice filling factors: ζ = 0.97 [1] and 0.90 [2]). (b) Corresponding mechanical quality factors Q m of M1* mode, measured at T b = 4.4 K.

Figure 4

 4 Figure 4.5: (a) Schematic view of the experimental set-up part dedicated to photoluminescence (PL) measurements. (BS -beamsplitter, DM -dichroic mirror [wavelengths lower 1000 nm are reflected, higher -transmitted], VR -visible range, LD -laser diode, NA -numerical aperture.) (b) Example picture of the central sample part with PhC membranes, taken by VR camera. (c) PL spectra: emission of quantum dots (QD) monolayer from unpatterned InP membrane (dark blue); same emission, filtered by a L3 defect cavity (light blue).

Figure 4

 4 Figure 4.6: (a) Schematic view of the QDs/cavity emission (red arrows), outcoupled from the waveguide gratings (A, A and C, C directions) and the cavity itself (B, B ). (b) IR camera capture of the sample backside, showing a cavity emission, radiated directly (B) and from the waveguide gratings (A, C), while the QDs are non-resonantly pumped (from frontside, B direction). (c) An external laser, non-resonant to the cavity (λ ≈ 1.55 µm, λ = λ 0 ), aligned by emission spot at C from (b) procedure, and thus coupled to a waveguide. Transmitted laser is outcoupled from grating at A direction (QDs pump is off).

  Figure 4.7: Schematic of the set-up for experimentation of integrated optomechanical device. Corresponding free space and fibred light paths are indicated. (IR -infra-red, FPC -fibre polarization controller, VR -visible range, NA -numerical aperture)

Figure 4 . 8 :

 48 Figure4.8: Normalized transmission spectra of two SOI waveguides: (blue) without coupled cavity and (red) with two coupled cavities from the PhC lattices with different radii (r 1 and r 2 < r 1 ). Highlighted region corresponds to the tuning range of the probe laser. Cut-off wavelength of the used spectrometer is about 1.6 µm.

  Figure 4.9: Schematic of the set-up for measuring the mechanical spectrum of the integrated optomechanical device. Corresponding free space, fibred and wired signal paths are indicated. Transduction scheme of the mechanical motion via the fixed laser probe is illustrated on two spectra, showing waveguide transmission with the coupled cavity [T(λ)] and the power spectral density of the transmitted probe laser [PSD(Ω m )], as measured by the ESA. (IR -infra-red, FPC -fibre polarization controller, VR -visible range, NAnumerical aperture, EDFA -erbium doped fibre amplifier, VOA -variable optical attenuator, OSA -optical spectrum analyzer, BPF -bandpass filter, PD -photodiode, ESAelectric spectrum analyzer.)

Figure 4

 4 Figure 4.10: (a) Power spectral density (PSD) of the transmitted optical signal for the probe laser tuned in (red curve) and out of (grey curve) the optical resonance of the cavity, embedded into a suspended PhC membrane (dimensions: m x = 20 µm, m y = 10 µm, t = 260 nm, b x = 1 µm, b y = 2 µm, b d = 5.9 µm). (b) PSD of detected mechanical resonances, taken with a better resolution around each of the four eigenfrequencies (bluedata, red -Lorentzian fit). Corresponding simulated displacement field Q( r) distributions are given in insets.
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 4 Figure 4.11: Schematic of the set-up for measuring of the optomechanical vacuum coupling rate. Corresponding free space, fibred and wired signal paths are indicated. (IR -infrared, ϕEOM -phase electro-optical modulator, FPC -fibre polarization controller, VRvisible range, NA -numerical aperture, EDFA -erbium doped fibre amplifier, VOAvariable optical attenuator, OSA -optical spectrum analyzer, BPF -bandpass filter, PD -photodiode, ESA -electric spectrum analyzer.)
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 4 Figure4.12: ESA power spectrum of a mechanical mode with a calibration peak (blue) including the respective Lorentzian (red) and Gaussian (green) fits.

Figure 4

 4 Figure4.13: OSA power spectrum of the optical mode of the probe laser at nominal power of P 0 = 1 mW, after passing through the EOM only (blue) and EOM with BPF (red). Linear polarization of the laser mode was adjusted to match the one of the EOM with an intermediate FPC.
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 4 Figure 4.14: Schematic of used transmission and transduction coefficients in the experimental set-up for the thermomechanical calibration, as introduced in Figure 4.11 (cf. caption of Fig. 4.11 for acronyms). Arrows indicate the quantities, measured at specific place of the signal pathway; variables within rounded rectangles refer to the signal multiplier, which corresponds to the elements within a specified group.
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 4 Figure 4.15: Power spectral density S P (Ω, ∆/γ t ) for the mechanical modes (a) M 1 and (b) M 2 , measured for the device with access waveguide of w wg = 400 nm. The Lorentzian fit of the cavity mode resonance is displayed in black dashed line for reference. Probe laser detuning ∆ is normalized with respect to total linewidth γ t of the optical cavity. Power spectral density at mechanical resonance S P (Ω m , ∆/γ t ) (open circles) as a function of the normalized detuning ∆/γ t for modes (c) M 1 and (d) M 2 and for the same w wg . The solid lines represent the fits to the theoretical model. Contributions to the transmission spectrum noise (in arbitrary units; red: total dispersive coupling; green: intrinsic dissipative coupling; blue: external dissipative coupling) for (e) M 1 and (f) M 2 versus ∆/γ t . The inferred optomechanical coupling rates are indicated.

Figure 4 .

 4 Figure 4.16: Power spectral density S P (Ω m , ∆/γ t ) at the mechanical resonance (experimental data -open circles, fits to the theoretical model -solid line) for the fundamental mode M 1 , measured on the devices with different access waveguide widths of (a) w wg = 350 nm, (c) w wg = 450 nm and (e) w wg = 500 nm. Probe laser detuning ∆ is normalized with respect to total linewidth γ t of the optical cavity. Corresponding optomechanical transduction contributions (b,d,e) to transmission spectrum noise (in arbitrary units; red: total dispersive coupling; green: intrinsic dissipative coupling; blue: external dissipative coupling) versus ∆/γ t . The inferred optomechanical coupling rates are indicated.
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 4 Figure4.17: (a) Dispersive coupling coefficient g ω (total) and (b) external dissipative coupling coefficient g γ,e , plotted versus waveguide width w wg . Blue up-pointing triangles correspond to the coefficients extracted from theoretical fit of M 1 mode data. Blue downpointing triangles correspond to the coefficients extracted from theoretical fit of M 2 mode data. Red squares: values, computed with static 3D FDTD approach for the air gap thickness of h air = 230 nm. Orange diamonds: computed coupling strengths for h air = 150 nm. Insets: computed g ω and g γ,e versus w wg .
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 4 Figure 4.19: Study of thermally induced effects for mechanical modes M 1 , M 2 and M 4 (cf. Fig. 4.10) as a function of intracavity power P c . (a,b) Mechanical frequency Ω m /2π (scales for each of modes are given in the corresponding colour). (c,d) Mechanical quality factor Q m . (e,f) Amplitude α of the mode in PSD spectrum. Yellow-highlighted range(P c1 mW) corresponds to the part of experimental data, where linear dependence between incident laser power P 0 and the intracavity power P c is distorted due to thermooptical effects. Due to the latter effects (with increasing intracavity power cavity resonance shifts to the greater wavelengths and acquires a triangular profile instead of Lorentzian) and the fact that the laser probe fixed to a certain initial wavelength and not locked to the cavity resonance, the yellow-highlighted region approximately corresponds to the reddetuned pump configuration (∆ > 0) and the P c > 1 mW region -to the blue-detuned one (∆ < 0).

Figure 4

 4 Figure 4.20: Recorded response of the PhC cavity, probed through the integrated access waveguide at different intracavity powers P c (indicated in the legends). (a) Probe laser scanned from blue-detuned to red-detuned side. (b,c) For a constant P c power, laser is scanned from lower to higher wavelengths ("sweep up") and in the opposite direction ("sweep down"). The wavelength scan speed in all the experiments shown was 2 nm/sec with the laser operating in CW regime.
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 4 Figure 4.21: Power spectral density S P (Ω, λ) for the mechanical modes M 1 , measured for the device with access waveguide of w wg = 400 nm at two different probe laser powers and scanning directions with respect to the cavity resonance. Optical spring response, measured in (a) linear regime of optical cavity (P c = 240 µW; data from the experiment in Fig. 4.15a) and bi-stable regime (P c = 2.2 mW) for forward (b) and backward (c) laser scanning directions. Dashed red and blue lines indicate the mechanical frequency jumps for "sweep up" (b) and "sweep down" (c) responses of the system.

  Figure 4.22: Sketch illustrating a proposal for exploring the optically induced mechanical bi-stability. Schematically traced mechanical state dependencies on probe laser detuning with respect to the cavity resonance for forward (red trace) and backward (blue trace) scanning directions. Dotted grey curve indicates an example probe detuning, corresponding to two different mechanical states depending on the scanning history.

Figure 4 .

 4 Figure 4.23: Emission properties of the QDs, filtered by the L3 cavity (PhC parameters: a = 420 nm, r = 100 nm, membrane size 4.8 × 8.5 µm 2 ; w wg = 350 nm, h air = 230 nm) under non-resonant (∼ 800 nm) pumping (laser operates in CW regime). Experimental set-up is depicted in (a); fitted intensity I, wavelength λ 0 and linewidth γ t of the collected emission are plotted versus pump power in (b).

Figure 4

 4 Figure 4.24: (a) Schematic of the experimental set-up for the characterization of optical/optomechanical transduction of non-resonant pump (λ pump ∼ 800 nm) to resonant probe (λ probe ∼ 1.56 µm). (b) ESA spectra of the probe light, coupled to the defect cavity inside a PhC slab membrane with a layer of quantum dots in the middle, pumped non-resonantly at normal incidence. Pump laser power is modulated at Ω mod /2π through the modulation of diode current (AC component is < 3% of DC one). Shown curves are taken at different laser -cavity detunings ∆ = λ probe -λ 0 , where cavity resonance is λ 0 ∼ 1563 nm. Lorentzian-shaped peak at Ω m /2π corresponds to the fundamental mechanical mode of the membrane (dimensions: m x = 8.5 µm, m y = 4.8 µm, t = 260 nm, b x = 0.5 µm, b y = 2 µm, b d = 5.9 µm) Brownian motion. Inset: close-up of the modulation peak showing its resolution-limited detection (ESA resolution bandwidth is 10 Hz).

Figure 4

 4 Figure 4.25: Amplitude dependencies of mechanical resonance (at Ω m /2π; membrane parameters correspond to the ones indicated in Fig. 4.24) and transduced modulation peak (at Ω mod /2π), as demonstrated in Fig. 4.24b, versus probe laser detuning. Cold resonance response of the optical cavity with its Lorentz fit in (a,c) refers to the cavity probing at very low power (see details in text). Except this reference cavity measurement, all studies in this Figure were performed at the same probe laser power, corresponding to the intracavity power P c ∼ 100 µW; at room temperature T b = 294 K and at low pressure P < 10 -4 mbar. (a) Mechanical M 1 mode response, acquired for the probe laser forward (sweep up) and backward (sweep down) scanning direction. (b) Evolution of the mechanical mode and modulation peak amplitude for the forward scanning direction of the probe laser. Response of the mechanical mode (c) and modulation peak (d) for a set of different pump laser powers P pump (as indicated in legends).
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Figure 5

 5 Figure 5.1: (a) Conceptual view of proposed device architecture including the comb drive electrostatic actuators. (b) SEM image of the fabricated SOI wafer with metal electrodes integrated at the same level with Si waveguide.

Figure 5 . 2 :

 52 Figure 5.2: (a) Conceptual view of proposed device architecture including for studying mechanical synchronization between different optomechanical oscillators (OMO) coupled via common optical channel. (b) SEM image of the fabricated devices with three resonators coupled to the one access waveguide.

Figure 5

 5 Figure 5.3: (a) Schematic of integrated optomechanical device featuring an excitation of the surface acoustic waves transducer in the GHz range via interdigitated combs. Readout of the mechanical device response can be performed simultaneously using optical access channel and SAW transducers (via S 21 parameter in the shown two-port configuration). (b) SEM image of the fabricated defect PhC cavity (marked with white ellipse) with two-port SAW resonator; yellow arrows indicate the propagation direction of the excited surface acoustic wave.

  Fig. A.1.A tensile-strained single-crystal membrane is realized via lattice mismatch in epitaxial growth, through variations of the alloy composition of a ternary In x Ga 1-x P (hereinafter InGaP) or GaAs y P 1-y (hereinafter GaAsP) layer, which is detailed below.

  Figure A.1: Sketch of a designed device (not to scale): a concept view (a) and its cut (b) showing the undercut profile for supporting frame; (c) composition of the epitaxial structure.

Figure A. 2 :

 2 Figure A.2: Lattice constant a 0 dependence on indium concentration for In x Ga 1-x P alloy (yellow line). Lattice-matched case to GaAs occurs at the intersection between the black dashed and solid blue lines.

  Figure A.4: An example of calibration spectrum (X-ray diffraction), obtained for an InGaP membrane deposited directly on top of a GaAs wafer.

  3 and A.4 we trace the expected induced stress values versus In (respective As) fractions for two types of fabricated membranes (dark red curves in Fig. A.5a,b).

Figure

  Figure A.5: Analytical solutions for the critical thickness grown without defaults for both membrane compositions studied in this chapter. Straigth lines give correspondance between the induced tensile stress and the element concentration. Points refer to the devices that have been succesfully fabricated.

Figure B. 3 :

 3 Figure A.7: Optical microscope images of the device at fabrication stages of backsideetched InGaAs membrane. (a) After the GaAs substrate etching; etch-stop layer with high Al content is quickly oxidized with the O 2 from hydrogen peroxide. (b) Some AlOH/AlOx residuals appear after etch-stop layer removal. (c) Membrane surface after cleaning in KOH solution.

Figure C. 1 :

 1 Figure C.1 : Illustration schématique d'un résonateur optomécanique générique dans le domaine optique constitué d'une cavité Fabry-Pérot pompée par un laser, où l'un des miroirs est fixe (à gauche) et l'autre est monté sur un ressort (à droite) et libre de se mouvoir.

Figure C. 2 :

 2 Figure C.2 : Quelques réalisations expérimentales de systèmes optomécaniques intégrés comportant un canal d'accès optique. (a) Deux guides d'ondes suspendus mis à proximité [Li 2009a]. (b) Nanopoutre à cristal optomécanique suspendu (bleu) avec un circuit photonique (rouge, guide d'onde et de coupleurs à réseau) [Bochmann 2013]. Microdisque couplé à un guide d'onde suspendu (c) [Baker 2013] ; (d) [Li 2009b]. (e) Cavité L3 -nanopoutre couplée à un guide d'onde à défaut créé dans un cristal photonique [Sun 2012]. Toutes les figures sont adaptées à partir des références correspondantes.

C. 4

 4 Figure C.3 : Représentation schématique de l'architecture du dispositif proposé.

  (Fig. C.4b). Ce couplage dissipatif externe est induit par la modulation du recouvrement des queues du champ évanescent -entre modes optiques de la cavité et du guide d'onde, lorsque la membrane se déplace et change champ de déplacement associées aux différents modes étudiés, pour lesquels les valeurs des différents couplages sont données dans le Tableau C.1 avec les paramètres caractéristiques principaux. Les simulations pour la famille des modes mécaniques localisés (dans la gamme fréquentielle du GHz) ont également été effectués.

Figure

  Figure C.5 : Valeurs simulées des différentes composantes du couplage optomécanique intrinsèque dispersif g ω,i (dû aux interfaces mobiles [MI] et dû à l'effet photoélastique [PE]). Les paramètres caractéristiques sont extraits pour plusieurs modes de flexion d'une membrane en InP suspendue ayant les dimensions m x = 20 µm, m y = 10 µm, b x = 1 µm, b y = 2 µm. La courbe grise pointillée (en haut) représente la réponse mécanique suite à l'actionnement externe de la membrane, mesurée au milieu de la cavité ; les profils de Q correspondants sont présentés en bas pour les modes d'intérêt.

Figure

  Figure C.7 : Étapes principales de fabrication pour la structuration de la membrane suspendue à cristal photonique bidimensionnel en semi-conducteur III-V sur un circuit intégré des guides d'ondes SOI (silicium-sur-isolant).

Figure

  Figure C.8 : Dispositifs fabriqués à leur phase finale. (a) Vue de dessus de l'échantillon montrant la partie du réseau des guides d'onde SOI dans le milieu de section effilée ; ces guides permettent d'adresser les membranes suspendues. (b) Cliché du microscope électronique à balayage (MEB) d'une seule membrane suspendue à cristal photonique.

Figure

  Figure C.9 : Schéma du montage expérimental pour les mesures du spectre mécanique du dispositif optomécanique intégré. Les connexions en espace libre, fibrées et électriques sont indiquées. Le mécanisme de transduction du mouvement mécanique sur la sonde laser fixe est illustré sur deux spectres, montrant la transmission du guide d'ondes couplé à la cavité [T(λ)] et la densité spectrale de puissance de la sonde laser transmise [PSD(Ω m )], tel qu'il est mesuré par l'ASE (ESA sur le schéma). (IR -infra-rouge, FPC -contrôleur de polarisation fibré, Vis. -visible, NA -ouverture numérique, EDFA -amplificateur en fibre dopée erbium, VOA -atténuateur optique variable, OSA -analyseur de spectre optique, BPF -filtre passe-bande, PD -photodiode, ESA -analyseur de spectre électrique.)

Figure

  Figure C.10 : (a) Densité spectrale de puissance (PSD) du signal optique transmis pour le laser de sonde à résonance (courbe rouge) et hors résonance (courbe grise) optique avec la cavité intégrée dans une membrane suspendue à CP (dimensions : m x = 20 µm, m y = 10 µm, t = 260 nm, b x = 1 µm, b y = 2 µm, b d = 5.9 µm). (b) PSD des résonances mécaniques détectées, prise avec une meilleure résolution autour de chacune des quatre fréquences propres (bleu -les données, rouge -ajustement Lorentzien). Les distributions du champ de déplacement Q( r) correspondantes simulées sont données dans les encarts.

  Fig. C.10a).

Figure

  Figure C.11 : (a) Densité spectrale de puissance S P (Ω, ∆/γ t ) pour le mode mécanique fondamental M 1 , mesurée pour le dispositif avec le guide d'ondes d'accès dont la largeur est de w wg = 400 nm. L'ajustement Lorentzien du mode de résonance de la cavité est montré en pointillés noirs pour référence. Le désaccord du laser de sonde ∆ est normalisé par rapport à la largeur de raie totale γ t de la cavité optique. (b) Densité spectrale de puissance à résonance mécanique S P (Ω m , ∆/γ t ) (cercles vides) en fonction du désaccord normalisé du laser de sonde ∆/γ t pour le mode mécanique fondamental M 1 [données extraites à partir de (a)]. La ligne continue représente l'ajustement du modèle théorique. (c) Contributions au bruit du spectre de transmission (en unités arbitraires ; rouge : couplage dispersif total, vert : couplage dissipatif intrinsèque ; bleu : couplage dissipatif externe) obtenu par ajustement de la courbe expérimentale dans (b). Les taux de couplage optomécanique déduits sont indiqués.

  Figure C.12 : (a) Coefficient de couplage dispersif g ω (total) et (b) externe dissipatif g γ,e , tracés en fonction de la largeur du guide d'onde w wg . Les triangles bleus pointant vers le haut correspondent aux coefficients extraits de l'ajustement théorique des données mesurées pour le mode M 1 . Les triangles bleus pointant vers le bas correspondent aux coefficients extraits de l'ajustement théorique des données mesurées pour le mode M 2 . Les carrés rouges correspondent aux valeurs calculées avec l'approche 3D FDTD statique pour l'épaisseur d'espace d'air de h air = 230 nm. Les diamants oranges représentent les forces de couplage optomécanique calculées pour h air = 150 nm. Encadrés : valeurs calculées de g ω et g γ,e en fonction de w wg .

Figure

  Figure C.13 : (a) Vue conceptuelle de l'architecture du dispositif proposé comprenant les actuateurs. (b) Représentation schématique du dispositif optomécanique comportant une excitation intégrée des ondes acoustiques de surface dans la plage des GHz via des transducteurs à ondes de surface (SAW pour surface acoustic waves en anglais). La lecture de la réponse mécanique du dispositif peut être effectuée simultanément en utilisant un canal d'accès optique et les transducteurs SAW (via le paramètre S 21 dans la configuration à deux ports représentée). (c) Vue conceptuelle de l'architecture du dispositif proposé pour l'étude de la synchronisation mécanique entre les différents oscillateurs optomécaniques couplés via un canal optique commun.
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Table 2 .

 2 
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1: Simulated intrinsic dispersive optomechanical coupling sthengths and characteristic parameters for several flexural modes of a suspended 10 × 20 µm 2 InP membrane.

Table 2 .

 2 .2. The zero-point fluctuation amplitude x ZPF and effective mode mass m eff are also included, according to Eqs. 2.24 and 2.25. 2: Simulated intrinsic dispersive optomechanical coupling strengths and characteristic parameters for several localized L3 PhC cavity mechanical modes.

		Ω m /2π m eff x ZPF	g ω,MI	g ω,PE	g 0,i
	Mode	(MHz) (fg) (fm) (MHz/nm) (MHz/nm)	(Hz)
	L 3 M 00	462 439 6.43	4.31	-0.82	21.7
	L 3 M 10	574 483 5.50	51.25	-13.88	201.8
	L 3 M 20	756 437 5.04	-22.37	22.02	-1.7
	L 3 M 30	978 339 5.03	-85.82	27.91 -256.59
	L 3 M 40	1272 264 5.00	52.22	26.15 354.54
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Table 4 .

 4 1: Vacuum optomechanical coupling rate g 0 , determined experimentally with the frequency modulation technique for several flexural modes of a suspended 10 × 20 µm 2 InP membrane (other parameters:

	MHz) 2.17 2.96 12.03 13.88 94.75
	Q m	2120 2950 2650 2400	2690
	g 0 /2π (kHz)	0.20 0.18	0.81	2.10	45.5

  Table C.1 : Valeurs simulées des couplages optomécaniques intrinsèques dispersifs et des paramètres caractéristiques pour plusieurs modes de flexion d'une membrane 10 × 20 µm 2 en InP suspendue.Figure C.6 : Rapport entre les forces de couplage optomécanique externe dispersif g ω,e et dissipatif g γ,e , obtenues par simulations numériques, en fonction de la largeur du guide d'onde d'accès W wg et pour deux séparations différentes h air entre la membrane à CP et le guide d'onde.mécanique dans le régime dominé par le couplage dissipatif. Ce régime présente l'avantage de relaxer les contraintes sur les pertes optiques de la cavité, en comparaison au refroidissement en régime de couplage dispersif usuellement employé.

		Couplage dispersif dominant			
	γ					
	ω					
	Γ					
				Couplage dissipatif dominant		
		Ω m /2π	m eff x ZPF	g ω,MI	g ω,PE	g 0,i
	Mode (MHz)	(pg) (fm) (MHz/nm) (MHz/nm)	(Hz)
	M 1	2.34 117.2 5.54	134.4	-0.27 1858.5
	M 2	2.75	61.8 7.14	110.1	0.24 1967.8
	M 3	11.54	21.7 5.90	39.8	0.24	590.6
	M 4	14.45	32.9 4.28	169.5	0.49 1818.5

In view of measuring quantum effects one typically looks for a higher mechanical oscillation frequency, which lowers the thermal occupancy of the corresponding mode. Therefore, ground state cooling of a MHz frequency resonator becomes a more complicated procedure, when compared to a GHz frequency device.

Stands for Nano-Electro-Mechanical System.

http://ab-initio.mit.edu/wiki/index.php/MIT Photonic Bands

http://www.lumerical.com

http://www.comsol.com/comsol-multiphysics

http://www.comsol.com/rf-module

Lumerical FDTD Solutions software package provides an internal material database (including InP, Si and silicon dioxide present in the simulated devices) with the wavelength-dependent refractive index, which was used in our studies instead of constant n values.

The versions used during this work cover 8.5 through 8.11.

http://www.comsol.com/structural-mechanics-module

Membrane: mx = 20 µm, my = 10 µm, t = 260 nm; bridges: bx = 1 µm, by = 2 µm; material: E =

Zero-point fluctuation amplitude equals the spread of the coordinate in the ground-state of a mechanical oscillator, i.e., 0 x2 0 = x 2 ZPF , where |0 denotes the mechanical ground state and x = xZPF( b + b † ) with the respecting phonon creation ( b † ) and annihilation ( b) operators.

The electric field in such propagating wave would be parallel to the wafer surface and perpendicular to the waveguide sidewalls.

Grating couplers usually designed for slightly deviated from normal incidence input beam in order to avoid direct reflection. Optimal angle between the fibre and the normal incidence is 10°for our samples.

Reactive-ion etching, RIE.

Commercially available solution from Dow Chemicals, Cyclotene 3022-35, is the partially polymerized DVS-BCB oligomers mixed with mesitylene.

Some samples were successfully bonded at 250 mbar setting, which, however, will result in different BCB layer thickness.

http://www.microchemicals.com/products/photoresists/az 9260.html

http://www.microchemicals.com/products/developers/azr 400k developer.html

http://www.microchem.com/pdf/ebr.pdf

http://www.microchem.com/pdf/PMMA Data Sheet.pdf

http://www.dowcorning.com/content/publishedlit/XR-1541 E-Beam resist.pdf

http://www.tannereda.com/l-edit-pro

http://www.microchem.com/pdf/pmma.pdf

A PBS would only transmit light with linear vertical polarization while the linear horizontal one is being reflected.

The "Q × f " product is a direct measure for the degree of optomechanical system decoupling from its thermal environment. Specifically, Qm × fm = Qm × Ωm/2π > kBT b / is the condition for neglecting thermal decoherence over one mechanical period of mechanical oscillation[Aspelmeyer 2013].

This amplifier was custom-made at Département Optique et Photonique in Institut de Physique de Rennes in collaboration with the group of Mehdi Alouini. Such amplifier allows for low input powers (1 -10 nW) and low noise figure [Noise figure (NF) for an optical amplifier is calculated as a ratio between the output and input signal-to-noise ratios (SNR): NF = SNRout/SNRin]. In our experiment, NF <

dBm and the high amplification gain is ∼

dBm.

In these experiments, the membranes were fully clamped along two sides.

As the device temperature defines the intrinsic mechanical losses within the material, here by the intrinsic quality factor we intend its value at the current environment temperature T b ≈ 300 K.

Showed to be extremely narrow; current detection scheme with the ESA resolution bandwidth of 10 Hz was not sufficient to resolve the modulation peak -see inset in Figure4.24b.

http://www.norcada.com/products/silicon-membranes/

Quantum-electronic systems (such as quantum wells and quantum dots) embedded in GaAs enable strong coupling between a photon and a confined exciton (see[START_REF] Yoshie | Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity[END_REF]). The cooling of membrane's mechanical mode is possible as a result of electron-hole pair generation caused by the absorption of (external) cavity photons by an interband transition in the semiconductor[Fox 2001, p. 77].

Value may vary depending on alloy composition.

http://www.microchemicals.com/products/photoresists/az

5214e.html

Deux mécanismes supplémentaires de couplage apparaissent lorsque la déformation de la membrane durant son mouvement mécanique impacte les paramètres optiques intrinsèques de la cavité, tels que son taux de déclin intrinsèque γ i (correspondant au facteur de qualité Q 0 ) (Fig. C.4d) et sa fréquence de résonance ω 0 (Fig. C.4c). Ces deux effets sont respectivement dénommés couplages optomécaniques intrinsèques dissipatif et dispersif. La dépendance des couplages externes en fonction des différents paramètres optogéométriques du système intégré, tels que la séparation verticale membrane -guide d'onde et la largeur du guide d'onde ont été examinés. Les couplages optomécaniques intrinsèques ont été numériquement étudiés pour les deux familles de modes mécaniques, impliquant cette fois les effets photo-élastique et le déplacement des bords de la cavité optique. Ces couplages existeraient aussi dans un système sans un guide d'onde intégré, ainsi ils ont été dénommés intrinsèques. Les résultats pour les modes de flexion de la membrane à CP (dans la gamme fréquentielle de MHz) sont montrés sur la Figure C.5 ; cette figure présente aussi les distributions du

Ces travaux ont aussi révélé la possibilité de façonner à la fois l'amplitude et le poids relatif des effets de couplage dissipatif et dispersif(Figure C.6). Ceci ouvre la voie à la mise en oeuvre d'un refroidissement optimisé jusqu'à l'état fondamental de notre résonateur

Remerciements C.7 Mesures optomécaniques avancées

La réponse mécanique des membranes suspendues a été dans un premier étudiée dans un montage interférométrique. Les mesures ont alors été confrontées aux simulations, en examinant l'évolution de la fréquence propre et du facteur de qualité mécanique Q m pour

That is, one gets the In x Ga 1-x P lattice-matched to GaAs with x 0.4842 (as illustrated on Fig. A.2).

When lattice-mismatched, the ternary alloy layer can be either in compression or in tension (Fig. A.2), depending on relative lattice dimensions with the substrate. During the epitaxy stage, the a 0 value is fixed (in plane) and equal to the one of the host substrate. This will lead to the elongation or compression of the lattice cells exclusively in the out of plane direction, with respect to the material Poisson's ratio. Growing membrane layer with a lattice parameter smaller than the one of substrate a m < a 0 forces its in-plane lattice dimensions to fit the underlying layer (that is, to stretch along both axes in substrate plane, see Fig. A.3a). At the same time, due to volume conservation law, the cell is compressed along the growth direction where no constraints exist, i.e. along the vertical axis in the case shown. In such a way one can introduce tension (compression) within the film layer by choosing relative mismatch to be negative (positive) (as denoted on The local substrate removal will release the stress, induced during the membrane growth. In consequence, its lattice constant will tend to its natural value, creating a compressive or tensile strained membrane according to the chosen mismatch. The lattice mismatch introduced during MOCVD epitaxy of ternary film is controlled via the concentration of the corresponding gas. The calibration procedure consists of depositing a film of desired thickness directly on GaAs substrate (without AlGaAs layer), and than measuring precisely the resulting concentration via X-rays diffraction spectroscopy. The obtained value is further used to calculate induced stress values.

As an example we took a sample consisting of 200 nm thick In x Ga 1-x P membrane MOCVD-grown directly on a GaAs substrate. The calibration spectrum (see Fig. A.4) reveals two distinct peaks corresponding to the GaAs substrate (on the left) and to one of the tensiled membrane layer. The angular position of the latter allows to determine will result in larger induced strain values, this quantity is important to be known when designing the strained membranes. Few approaches exist for estimation of this quantity. Initially it was calculated on the basis of energy considerations [Van Der Merwe 1963] or considering the mechanical equilibrium theory [START_REF] Matthews | [END_REF]].

When applied to our case of small misfits (< 1%), both theories give critical thicknesses of the order of few nanometers for ε mf = 0.2%, while our current successfully grown layers are two orders of magnitude thicker for the same misfits (for two types of membranes we studied, ε mf 0.25% for In 0.45 Ga 0.55 P and ε mf 0.18% for GaAs 0.95 P 0.05 ). The theory that has the best correspondence to our experiments assumes that misfit dislocation generation is determined solely by the energy balance at the epitaxial interface [People 1985;[START_REF] People | Erratum: Calculation of critical layer thickness versus lattice mismatch for GexSi1-x/Si strained-layer heterostructures[END_REF]]. In this case, critical thickness is given by

where b is the slip distance (i.e., b = magnitude of the Burger's vector) and a(x) is the alloy's lattice constant dependence from corresponding element fraction, as given for our case by Eq. A.1 and A.2. Assuming a slip distance b = 4 Å [People 1985;[START_REF] People | Erratum: Calculation of critical layer thickness versus lattice mismatch for GexSi1-x/Si strained-layer heterostructures[END_REF]], the solutions of Eq. A.5 are plotted (blue lines) on Fig. A.5a,b for two studied alloys. It reveals that increasing the strain values would require smaller membrane thickness. The maximum grown thickness for the two kinds of membranes studied in this work (with x = 0.45 [respectively y = 0.95] for In x Ga 1-x P [respectively GaAs y P 1-y ]) is indicated by empty circles. It shows that the lattice mismatch allows to improve the tensile stress up to 460 MPa for GaAsP alloy (compared to 240 MPa), while for InGaP alloy the maximum possible stress (350 MPa) is already attained for current misfit parameter and thickness. The latter could be still improved in case of thinner membrane device (e.g., up to 450 MPa for 200 nm thick InGaP layer).

A.3 Fabrication

This section is devoted to the description of the sample preparation and processing for the fabrication of two types of tensile-strained membranes grown on GaAs substrate. Two available wafer types of 125 and 350 µm thickness have been considered in terms of etching time and quality of mask shape transfer. The process flow is illustrated in Figure A.6.

The processing starts with a polishing of the substrate backside, on which the etching mask will be deposited. The roughness of the mask layer employed for backside etching (in case of non-planarizing material) reflects directly the one of substrate. Such roughness will degrade the etching profile and transfer during the etching step. One may thus consider backside mechanical polishing in order to reduce this impact and hence improve the etching profile homogeneity across the opening surface. down to R q 300 nm. Such sample would still require the additional use of planarizing photoresist layer on top of mask for backside etching, moreover, the polishing procedure can degrade the mechanical durability of the sample. In order to minimize the impact of backside surface irregularities on the etching results, we therefore have decided to mainly work with 125 µm-thick GaAs substrates.

A.3.1 Process flow

The established fabrication sequence (Fig. A.6) for the tensile-strained suspended membranes goes as follows (it applies for both InGaP and GaAsP compositions). The membrane layer (standard thickness 200 nm) and an AlGaAs etch-stop layer (standard thickness 500 nm) are deposited via MOCVD epitaxy on top of a 125 µm 2-inch GaAs wafer. A few nm thick GaAs buffer layer is used as an interface between membrane and AlGaAs layer and allows for better (more sharp) interfaces 1 . The membrane is then protected with a AZ 5214 E 4 photoresist layer 2 (spin-coating at 2000 rpm speed, 1000 rpm acceleration for 30 s; postbake on a hotplate during 2 min at 80 °C; resulting thickness about 2 µm), as further we operate our sample in upside-down position for a number of processing stages hence some protection from mechanical damage is necessary. plate (trichloroethylene (C 2 HCl 3 ), heated up to 80 °C, dissolves the residues of wax) and photoresist layers are removed by gentle soaking in an acetone bath 8 . Ammonium fluoride (NH 4 F) solution is then used for AlGaAs etch-stop layer removal 9 , followed by a deep in C 6 H 8 O 7 : H 2 O 2 (4:1 by volume; citric acid is dissolved 1:1 by weight in water) solution to remove the thin GaAs buffer layer.

Optionally, an additional photoresist soft bake (the sample is put into a pre-heated oven without direct contact with a hotplate) at the end of stage 2 makes the protective layer resistant to acetone bath, which could be employed to keep this layer after the membrane's release from the backside at stage 8 . This prevents the membrane from mechanical damage during wet etching stages 9 -11 , and the protective layer is removed finally by dry etching (O 2 plasma).

Step 9 of AlGaAs removal could produce some residual AlOH or aluminium oxide, present in a form of flakes (sized tens of micrometers), which eventually introduces additional unwanted mechanical losses (see Fig. 

A.4 Summary

In this chapter we presented the design and fabrication of two-side accessible tensile strained membranes for "membrane-in-the-middle" optomechanical experiments, targeting the implementation of hybrid cooling schemes. Different fabrication stages were developed in order to answer the related requirements for mechanical device quality and optimize the transfer of the etching mask profile to membrane shape. Added tensile strain values achieved are 350 MPa for In 0.45 Ga 0.55 P alloy and 240 MPa for GaAs 0.95 P 0.05 . For the designed membrane thicknesses the latter can be improved up to 460 MPa in order to achieve higher mechanical quality factors. Analytical estimation of critical thickness versus lattice mismatch parameter showed a good agreement with the parameters of fabricated samples.

Appendix B S-parameters for equipment used in mechanical spectrum calibration

Experimental implementation of the mechanical spectrum calibration and measurements of the optomechanical vacuum coupling rate g 0 require the knowledge of the transmittance and reflectance properties of the equipment, used in this purpose. The phase shift factor β, which characterises the modulation of the laser carrier phase, induced by the electrooptical modulator (EOM), is calculated as β = π • V /V π , where V is the voltage being applied from an external signal generator to the EOM and V π is the voltage necessary to induce the carrier phase shift of π. The applied voltage is calculated as V = √ 2P rf Z with P rf denoting the input power of the function generator and Z is the impedance between the EOM and the function generator. In the real system two additional factors should be accounted for: (a) the reflectance of the system consisting of the EOM and the cable linking it to the signal generator and (b) the transmittance through the linking cable.

In order to include the above-mentioned factors into β, we directly measure the corresponding S-parameters using a network analyzer (Agilent E5071C). First, we characterize the BNC cable linking the two devices by measuring its S 21 and S 11 parameters with the network analyzer. Figure B.1 shows the fraction of power T BNC transmitted to the EOM by the BNC cable as a function of the output frequency of the signal generator. In the same way, Figure B.2 gives the fraction of power being reflected R BNC by the cable. These two parameters may considerably vary from one cable to another, therefore requiring their careful testing prior to implementation into the set-up scheme. As can be seen, the power loss becomes stronger at high frequencies, which is explained by the radiation losses in the BNC cable.

After choosing the linking cable with the lowest losses and the best transmittance (in particular in the MHz range), we characterize the reflectance of the EOM, linking cable and the necessary connector adapters set (BNC to SMA and SMA to GPO). ). Now, the corrected value of the phase shift factor β can be determined as

According to the device specifications, typical V π is 3.5 V at DC, which increases to 4 V at 10 GHz. In order to verify this parameter, we set up the Mach-Zender interferometer using the EOM in one arm while another is left free. The phase modulator is fed with Appendix C

Synthèse en français

La motivation générale de cette thèse repose sur le développement d'une plateforme optomécanique répondant aux enjeux des domaines tant fondamentaux (mécanique quantique, information quantique) qu'appliqués (photonique sur puce, photonique RF, métrologie). Ces enjeux requirent des dispositifs intégrés à couplage optomécanique contrôlé. De fait, l'objectif premier de cette thèse est le développement et la validation expérimentale d'un système optomécanique intégré de manière hétérogène permettant de façonner la nature du couplage lumière -mécanique. Ce système se compose d'une membrane optomécanique suspendue, reportée au-dessus d'un guide d'onde d'accès en silicium. Cette approche tri-dimensionnelle hybride peut être étendue à une grande variété de matériaux employés pour former la partie active de dispositif (ici en semi-conducteurs III-V) ; elle peut aussi tirer partie de la versatilité du circuit optique silicium intégré, réalisant ici un canal d'accès optique compact, efficace, entièrement contrôlé et flexible sur puce. L'intégration d'un cristal photonique dans la membrane optomécanique apporte encore plus de versatilité à notre système, conférant à la membrane à la fois des propriétés optiques et mécaniques. La compréhension fine du système est obtenue par simulations numériques, permettant de quantifier les caractéristiques mécaniques et optiques pertinentes et de les optimiser ; les designs obtenus sont ensuite validés par la caractérisation expérimentale des dispositifs réels. Le système conçu offre de grandes capacités de mise à l'échelle, tout en étant aisément intégrable au sein des circuits plus grands et plus complexes ; ceci ouvre la voie vers des effets de couplage multi-cavités et multi-résonateurs, la mise en oeuvre de mécanismes de synchronisation et des expériences optomécaniques multi-modes.

C.1 Optomécanique

Le domaine de l'optomécanique explore l'interaction entre la lumière, ou les ondes électromagnétiques, et le mouvement mécanique d'un objet macroscopique oscillant. L'optomécanique en cavité quant à elle [Kippenberg 2007 ;Aspelmeyer 2013] englobe l'étude et l'utilisation des interactions de lumière avec un résonateur mécanique placé à l'intérieur d'une cavité (par exemple, optique), la présence de la cavité permettant une exaltation de la position de la cavité intégrée par rapport au guide d'onde fixe. D'autre part, tout changement ou modulation de h air induit une modification de la fréquence de résonance ω 0 de la cavité optique (Fig. C.4a) en raison de la modification de l'environnement diélectrique autour de cette cavité ; cet effet introduit un couplage optomécanique dit externe dispersif [Kippenberg 2008]. La fréquence de résonance ω 0 du mode de la cavité dépend aussi de la distribution du tenseur diélectrique ε à l'intérieur de la membrane et dans son voisinage. Par conséquent, la modulation de la séparation membrane -guide d'onde h air affectera ω 0 en changeant la distribution de ε dans le champ évanescent du mode.