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Abstract
This thesis is interested in the application of statistical physics methods and inference to signal

processing and coding theory, more precisely, to sparse linear estimation problems.

The main tools are essentially the graphical models and the approximate message-passing

algorithm together with the cavity method (referred as the state evolution analysis in the

signal processing context) for its theoretical analysis. We will also use the replica method of

statistical physics of disordered systems which allows to associate to the studied problems

a cost function referred as the potential of free entropy in physics. It allows to predict the

different phases of typical complexity of the problem as a function of external parameters

such as the noise level or the number of measurements one has about the signal: the inference

can be typically easy, hard or impossible. We will see that the hard phase corresponds to a

regime of coexistence of the actual solution together with another unwanted solution of the

message passing equations. In this phase, it represents a metastable state which is not the true

equilibrium solution. This phenomenon can be linked to supercooled water blocked in the

liquid state below its freezing critical temperature.

Thanks to this understanding of blocking phenomenon of the algorithm, we will use a method

that allows to overcome the metastability mimicing the strategy adopted by nature itself for

supercooled water: the nucleation and spatial coupling. In supercooled water, a weak localized

perturbation is enough to create a crystal nucleus that will propagate in all the medium thanks

to the physical couplings between closeby atoms. The same process will help the algorithm to

find the signal, thanks to the introduction of a nucleus containing local information about the

signal. It will then spread as a "reconstruction wave" similar to the crystal in the water.

After an introduction to statistical inference and sparse linear estimation, we will introduce

the necessary tools. Then we will move to applications of these notions. They will be divided

into two parts.

The signal processing part will focus essentially on the compressed sensing problem where

we seek to infer a sparse signal from a small number of linear projections of it that can be

noisy. We will study in details the influence of structured operators instead of purely random

ones used originally in compressed sensing. These allow a substantial gain in computational

complexity and necessary memory allocation, which are necessary conditions in order to

work with very large signals. We will see that the combined use of such operators with spatial

coupling allows the implementation of an highly optimized algorithm able to reach near

to optimal performances. We will also study the algorithm behavior for reconstruction of
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approximately sparse signals, a fundamental question for the application of compressed

sensing to real life problems. A direct application will be studied via the reconstruction of

images measured by fluorescence microscopy. The reconstruction of "natural" images will be

considered as well.

In coding theory, we will look at the message-passing decoding performances for two distincts

real noisy channel models. A first scheme where the signal to infer will be the noise itself

will be presented. The second one, the sparse superposition codes for the additive white

Gaussian noise channel is the first example of error correction scheme directly interpreted

as a structured compressed sensing problem. Here we will apply all the tools developed in

this thesis for finally obtaining a very promising decoder that allows to decode at very high

transmission rates, very close of the fundamental channel limit.

Keywords: Statistical physics, disordered systems, mean field theory, signal processing,

Bayesian inference, statistical learning, coding theory, linear estimation, sparsity, approx-

imate sparsity, compressed sensing, spatial coupling, Gaussian channel, error correcting

codes, sparse superposition codes, approximate message passing algorithm, cavity method,

state evolution analysis, replica method.
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Résumé
Cette thèse s’intéresse à l’application de méthodes de physique statistique des systèmes

désordonnés ainsi que de l’inférence à des problèmes issus du traitement du signal et de la

théorie du codage, plus précisément, aux problèmes parcimonieux d’estimation linéaire.

Les outils utilisés sont essentiellement les modèles graphiques et l’algorithme approximé de

passage de messages ainsi que la méthode de la cavité (appelée analyse de l’évolution d’état

dans le contexte du traitement de signal) pour son analyse théorique. Nous aurons également

recours à la méthode des répliques de la physique des systèmes désordonnées qui permet

d’associer aux problèmes rencontrés une fonction de coût appelé potentiel ou entropie libre

en physique. Celle-ci permettra de prédire les différentes phases de complexité typique du

problème, en fonction de paramètres externes tels que le niveau de bruit ou le nombre de

mesures liées au signal auquel l’on a accès : l’inférence pourra être ainsi typiquement simple,

possible mais difficile et enfin impossible. Nous verrons que la phase difficile correspond

à un régime où coexistent la solution recherchée ainsi qu’une autre solution des équations

de passage de messages. Dans cette phase, celle-ci est un état métastable et ne représente

donc pas l’équilibre thermodynamique. Ce phénomène peut-être rapproché de la surfusion

de l’eau, bloquée dans l’état liquide à une température où elle devrait être solide pour être à

l’équilibre.

Via cette compréhension du phénomène de blocage de l’algorithme, nous utiliserons une

méthode permettant de franchir l’état métastable en imitant la stratégie adoptée par la nature

pour la surfusion : la nucléation et le couplage spatial. Dans de l’eau en état métastable

liquide, il suffit d’une légère perturbation localisée pour que se créer un noyau de cristal qui

va rapidement se propager dans tout le système de proche en proche grâce aux couplages

physiques entre atomes. Le même procédé sera utilisé pour aider l’algorithme à retrouver le

signal, et ce grâce à l’introduction d’un noyau contenant de l’information locale sur le signal.

Celui-ci se propagera ensuite via une "onde de reconstruction" similaire à la propagation de

proche en proche du cristal dans l’eau.

Après une introduction à l’inférence statistique et aux problèmes d’estimation linéaires, on

introduira les outils nécessaires. Seront ensuite présentées des applications de ces notions.

Celles-ci seront divisées en deux parties.

La partie traitement du signal se concentre essentiellement sur le problème de l’acquisition

comprimée où l’on cherche à inférer un signal parcimonieux dont on connaît un nombre

restreint de projections linéaires qui peuvent être bruitées. Est étudiée en profondeur l’in-
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fluence de l’utilisation d’opérateurs structurés à la place des matrices aléatoires utilisées

originellement en acquisition comprimée. Ceux-ci permettent un gain substantiel en temps

de traitement et en allocation de mémoire, conditions nécessaires pour le traitement algo-

rithmique de très grands signaux. Nous verrons que l’utilisation combinée de tels opérateurs

avec la méthode du couplage spatial permet d’obtenir un algorithme de reconstruction extrê-

mement optimisé et s’approchant des performances optimales. Nous étudierons également

le comportement de l’algorithme confronté à des signaux seulement approximativement

parcimonieux, question fondamentale pour l’application concrète de l’acquisition compri-

mée sur des signaux physiques réels. Une application directe sera étudiée au travers de la

reconstruction d’images mesurées par microscopie à fluorescence. La reconstruction d’images

dites "naturelles" sera également étudiée.

En théorie du codage, seront étudiées les performances du décodeur basé sur le passage de

message pour deux modèles distincts de canaux continus. Nous étudierons un schéma où le

signal inféré sera en fait le bruit que l’on pourra ainsi soustraire au signal reçu. Le second, les

codes de superposition parcimonieuse pour le canal additif Gaussien est le premier exemple

de schéma de codes correcteurs d’erreurs pouvant être directement interprété comme un

problème d’acquisition comprimée structuré. Dans ce schéma, nous appliquerons une grande

partie des techniques étudiée dans cette thèse pour finalement obtenir un décodeur ayant

des résultats très prometteurs à des taux d’information transmise extrêmement proches de la

limite théorique de transmission du canal.

Mots clefs : Physique statistique, systèmes désordonnés, théorie du champ moyen, traitement

du signal, inférence Bayesienne, apprentissage statistique, théorie du codage, estimation

linéaire, parcimonie, parcimonie approximative, acquisition comprimée, couplage spatial,

canal Gaussien, codes correcteurs d’erreurs, codes de superposition parcimonieuse, algo-

rithme approximé de passage de messages, méthode de la cavité, analyse d’évolution des états,

méthode des répliques.
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Part IMain contributions and
structure of the thesis

1





1 Main contributions

My work has been concentrated around two main axis: i) signal processing through com-

pressed sensing and its application in image reconstructions and ii) coding theory over real

channels and its links to compressed sensing. I will present here my main contributions in

these fields, dividing my work into practical achievements through algorithms design and the

theoretical and asymptotic studies. In addition, I’ve worked on a combinatorial optimization

problem, namely the independent set problem, in order to get familiar with the cavity method

and the diverse phase transitions that occur in such problems. I will start by briefly present this

piece of work that I won’t detail in this thesis. This choice has been made for sake of coherence

of the thesis: all the problems I’ve worked on, except this one, belong to the class of sparse

linear estimation problems and a common methodology is used, based on the approximate

message-passing algorithm and the state evolution and replica analyzes for the asymptotic

studies.

1.1 Combinatorial optimization

1.1.1 Study of the independent set problem, or hard core model on random regu-
lar graphs by the one step replica symmetry breaking cavity method

In this work [1], we have studied the NP-hard independent set problem on random regular

graphs, the dual of the vertex cover problem better known as the hard-core model in the

physics literature. This model is of great interest as it can be seen as a lattice version of

the hard spheres, a fundamental model in physics. The aim of this theoretical work was to

reconciliate the two extreme regimes corresponding to the high and low connectivities of the

graph. Both were known for a long time but each with a totally different behavior. While in the

low connectivity regime, the problem displays a continuous full replica symmetry breaking

transition as the density of particles increases in the graph, it was proven in the mathematical

literature that in the high connectivity limit, the opposite phenomenon happens: the space

of solution breaks discontinuously into exponentially many well separated components, a

behavior typically found in glassy systems, at a density which is the half of the maximum one.
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Chapter 1. Main contributions

The main result obtained through the cavity method is the obtention of the full phase diagram

of the problem for all connectivities. The computation of the different phase transitions

in the problem by population dynamics in the 1RSB framework shows that the change in

behavior between a continuous full RSB regime and the appearance of the discontinuous

1RSB transition happens at connectivity K = 16. It appears that between 16 ≤ K < 20, despite

the existence of a stable 1RSB glassy phase, the continous transition remains if the density of

particles is too high until for K ≥ 20, the 1RSB phase becomes stable for all densities until the

maximum one. This shows that this model is the simplest mean field model of the glass and

jamming transitions, and can be used to get insights on more complex models such as the

hard spheres in high dimensions. In addition, the asymptotic analysis in the cavity framework

is in perfect agreement with the rigorous results at high connectivity, which supports further

the validity of the cavity method in such problems despite it is not yet rigorously established.

1.2 Signal processing and compressed sensing

1.2.1 Generic expectation maximization approximate message-passing solver for
compressed sensing

Practical achievements : I’ve implemented a modular AMP solver for compressed sensing

in MATLAB, that includes a lot of different possible priors for the signal model. In addition,

most of the free parameters in these priors and the noise variance can be learned efficiently

through expectation maximisation. All the algorithms can be found at https://github.com/
jeanbarbier/BPCS_common.

1.2.2 Approximate message-passing for approximate sparsity in compressed sens-
ing

Practical achievements : My first work [2] during this thesis was focused on the study of

the AMP performances and behavior when dealing with signals that are only approximately

sparse, sometimes referred as compressible. We implemented a specifically designed prior for

approximate sparsity, and the expectation maximisation learning of all the parameters of this

prior.

Theoretical results : We performed the static and dynamical asymptotic analyzes thanks to the

replica and state evolution techniques respectively. We extracted how the AMP performances

change as a function of the variance of the small components part of the signal, a kind of

effective noise, and what are the best possible results from the Bayesian point of view. A first

order phase transition blocking the AMP solver under some measurement ratio appears, but

we have shown how the spatial coupling strategy can restore the optimality of the AMP solver

and until which level of effective noise it makes sense to use this strategy.
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1.2. Signal processing and compressed sensing

1.2.3 Influence of structured operators with approximate message-passing for
the compressed sensing of real and complex signals

Practical achievements : A large amount of work has been put into the combination of this

AMP solver with structured operators, based of fast Hadamard and Fourier transforms [3].

Furthermore, I’ve developed a set of routines for applying the spatial coupling strategy in

combination with these structured operators. The result is a very fast AMP solver yet optimal

from the information theoretic point of view. It is able to deal with very large signals as the use

of such operators allows to side step the memory issues that quickly arise working with the

large matrices that one must store if not structured.

Theoretical results : Side to side with the developement of the AMP solver combined with

full or spatially-coupled structured operators, we have studied how the use of such operators

influence the performances of AMP in noiseless compressed sensing of real or complex signals.

The point is that AMP together with the state evolution analysis has originally been derived for

i.i.d matrices but we have numerically shown that despite the state evolution does not describe

properly the AMP dynamic with structured operators, it remains an accurate predictive tool

for its final performances as the reconstruction quality is the same than with i.i.d matrices.

Furthermore, it appeared that structured operators improves the rate of convergence of AMP.

In addition, the study of the spatial coupling strategy have shown that it performs very well

with such operators as well and allows to make optimal inference as long as the signal density

is not too large.

1.2.4 "Total variation" like reconstruction of natural images by approximate message-
passing

Practical achievements : In order to reconstruct "natural images" (i.e. that are sparse in the

discrete gradient space) in the compressive regime, I’ve worked on an AMP implementation

mimicing the total-variation optimization algorithms. The result is an algorithm able to

compete with the best optimization solvers in terms of reconstruction results, but with fewer

parameters to tune as most of them can be learned efficiently.

1.2.5 Compressive fluorescence microscopy images reconstruction with approxi-
mate message-passing

Practical achievements : Still in the field of compressive imaging, I’ve developed an AMP

implementation for reconstruction of images measured by compressive fluorescence mi-

croscopy, based on an approximate sparsity prior. The images here are highly sparse in the

direct pixel space. The AMP overcomes the `1 optimization solvers in terms of reconstruction

quality, speed and minimum undersampling ratio to get good results. Furthermore, all the

free parameters of the model can be learned efficiently.
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1.3 Coding theory for real channels

1.3.1 Error correction of real signals corrupted by an approximately sparse Gaus-
sian noise

Practical achievements : My first introduction to the field of coding theory is through a

work [4] that naturally followed the study of approximate sparsity in compressed sensing. In

this work, the aim is error correction over a channel that adds to a real transmitted message an

approximately sparse Gaussian noise with some large components, the others being a smaller

amplitude background noise. The aim is the reconstruction of the noise in order to cancel it at

the end. We naturally used our previously developed AMP solver for approximately sparse

signals to design an efficient decoder. In addition, the use of spatial coupling in this context

allowed the decoder to perform at high rate, well above the results obtained with previously

developed convex optimization based solvers.

Theoretical results : Based on the state evolution analysis for compressed sensing of approxi-

mately sparse signals, we predicted the asymptotic performances of our AMP based decoder,

which shows that it is robust to the background noise, in the sense that the reconstruction

error grows continuously with the variance of the small components of the noise.

1.3.2 Study of the approximate message-passing decoder for sparse superposi-
tion codes over the additive white Gaussian noise channel

Practical achievements : We presented the first decoder based on AMP for the sparse su-

perposition codes, a capacity achieving error correction scheme over the AWGN channel.

We exposed the first close connection between the compressed sensing theory and error

correcting codes, as the sparse superposition codes decoding can directly be interpreted as a

compressed sensing problem for signals with structured sparsity, or equivalently of signals

with vectorial components instead of scalar ones, for which compressed sensing has originally

been developed.

Our first paper [5] on this topic studied the decoder when the coding matrix is i.i.d Gaussian

and the power allocation of the transmitted message is constant. Despite the presence of a

first order phase transition blocking the AMP decoder well before the capacity, the numerical

results have shown that the perfomances are overcoming a previous decoder based on soft

thresholding methods, the adaptative successive decoder. This decoder exhibits very poor

results with respect to AMP with full coding matrices for any reasonnable codeword sizes,

despite being asymptotically capacity achieving.

In a second more in-depth study of our decoder [6], we included both non constant power

allocation of the signal and the spatial coupling strategy to our scheme. Numerical studies

suggested that despite improvements thanks to the power allocation, a well designed spatially-

coupled coding matrix allows for better results both in terms of the rate of transmission and in
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robustness to noise. Numerical tests also show that the combined use of power allocation and

spatial coupling lower the efficiency of the scheme with respect to power allocation or spatial

coupling used alone. In addition, we tested our structured Hadamard-based spatially-coupled

operators that allow to perform Bayesian optimal decoding. The finite size effects in this

setting have been quantified and show that this strategy is very efficient and allows to decode

perfectly at very high rates, even for small sizes of the codeword.

Theoretical results : Relying on this connection with compressed sensing, we derived the

state evolution analysis of the decoder in the most general setting. It allows the prediction

of the asymptotic dynamical behavior of the decoder for power allocated signals, encoded

with or without spatially-coupled i.i.d operators. Based on our work on structured operators,

we conjectured that the final perfomances of the decoder can be accurately predicted by this

analysis, despite small descrepancies during the dynamic. Again, it appeared that structured

operators allows for faster convergence.

In addition, we performed the heuristic replica analysis of the coding scheme in order to

compute the performances of the minimum mean square error estimator. This analysis is

coherent with the previous rigorous results on the scheme as it shows that this Bayesian

optimal estimator reaches asymptotically the capacity of the channel. The results suggest that

the Bayes optimal estimator converge to the capacity with a rate following a power law as a

function of the section size B, a fundamental parameter of the scheme. Both the derived state

evolution recursions and replica potential are actually quite general, and can be applied for

the prediction of the AMP behavior on any problem dealing with group sparsity, where the

groups of variables are not overlaping each other.
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2 Structure of the thesis
and important remarks

This thesis is decomposed into three main parts. I wrote the first one, "Fundamental concepts

and tools" keeping constantly the following question in mind:

What would have been really useful for me to know in order to gain a lot of time starting my

PhD three years ago ?

I have thus tried to make a (very subjective) introduction to what I consider as fundamental

methods and ideas useful to a starting PhD student with a statistical physics background as

me and who wants to work in the fascinating field of statistical inference and graphical models.

I assume very few (if not at all) knowledge about the general theory of statistical inference but

also that the reader have some notions in statistical physics of disordered systems and spin

glasses, as I will make efforts to establish links with this fundamental field of research. My goal

is not to explain the physics of disordered systems, as many great books already exist and can

be found in the references, but more to see how it can be of great interest in the apparently

unrelated field of sparse linear estimation, the main subject of this thesis.

I want to emphasize an important point, not only true for this first part but for all this

manuscript:

This work does not aim at mathematical rigor.

It is worth to mention it as the kind of problems treated in this thesis are classicaly studied by

people of the computer science and signal processing, information and coding theory or ap-

plied mathematics communities who are used to more, or even perfectly rigorous treatments.

But I am (hopefully at this time...) a statistical physicist, and the tools developed in this field,

at least part of them, are not yet proven rigorously. This remark leads to another important

one:

Despite the use of not (yet) rigorous methods, the theoretical results presented in this manuscript

are conjectured to be exact.

It must be understood that the rigor in the treatment is not a necessary condition for the results
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to be exact. The statistical physics methods used in this thesis, mainly the replica method used

for asymptotic studies, are not rigorous but there exist an incredibly large amount of work

and models where it has been proven to be exact, even sometimes rigorous, especially in the

field of combinatorial optimization problems. Furthemore, even when not proven rigorously,

numerical studies are always supporting the results of these methods. In opposite the cavity

method, referred as the state evolution in the signal processing literature (and in this thesis as

well) is rigorous for the prediction of the AMP behavior for sparse linear estimation problems

(except for the vectorial components cases, but yet conjectured exact in this case).

The next two parts expose most of the original results and applications of my thesis, in addition

to the asymptotic results of this first part. All the tools presented in the first part will be applied

here.

The second part "Signal processing" is mostly related to compressed sensing. Chapter six

presents a study of the influence of approximate sparsity in compressed sensing solved thanks

to AMP. The seventh chapter studies how the use of structured operators such as Hadamard

and Fourier ones change the AMP behavior in compressed sensing of real and complex signals.

Furthermore, we will see that these can be combined with the spatial coupling strategy to

perform optimal inference both from the theoretical and algorithmic point of views. Chapter

eight is devoted to my work on compressive imaging, where the AMP algorithm is applied to

the reconstruction of two different kind of images: i) the so called "natural" images, that have

a compressible discrete gradient and ii) sparse images in the pixel basis, which have been

obtained by fluorescence microscopy technic.

The last part "Coding theory" contains all my results on how the AMP algorithm can be used

as a very efficient decoder for real noisy channels. In the chapter nine, the superposition codes

for the additive white Gaussian noise channel are studied in depth. These represent the first

direct link between error correction and compressed sensing. In this chapter, all the presented

analytical tools are used to perform the asymptotic study of the decoder and the algorithmic

tools as well: the spatial coupling and Hadamard-based structured operators are combined

with AMP to get a capacity achieving decoder with very good finite size performances as shown

by numerical studies. The last chapter introduce a different real channel model which adds

gross Gaussian distributed errors to the signal in addition to a small Gaussian background

noise. The algorithm developed in the chapter about approximate sparsity will be combined

to spatial coupling to perform error correction at high rates.
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3 Statistical inference and
linear estimation problems
for the physicist layman

This first chapter which is voluntarily not technical at all is a general introduction to the main

questions and techniques related to statistical inference and which are relevant to the present

thesis. It can be skept by the reader familiar with statistical inference and compressed sensing

as it does not include any original results. It is oriented towards a statistical physics student

interested in working on inference related problems. Effort will be made in order to draw

connections with physics, especially the statistical physics of disordered systems. It is thus

assumed that the reader posseses a basic knowledge of this field.

First, I will define the general problem of statistical inference (or statistical estimation) and give

the main distinctions among inference problems. I will also explain the difference between

a direct and an inverse problem and show why in the context of statistical inference, only

inverse problems really matter as opposed to statistical physics which has been created to

deal with direct problems and later on extended to inverse ones. Canonical examples, yet

very important both from the applicative and theoretical point of views will be presented. I

will also discuss the notion of bias-variance tradeoff, which will help us to understand the

fundamental limitations of statistical inference.

I will then focus on the model which is at the core of the present thesis, namely linear sparse

estimation problems and compressed sensing, with a particular emphasis on the applications

of compressed sensing in modern technologies.

I will introduce some basic notions of complexity theory, discussing the important tradeoff

between statistical and computationnal efficiency of an algorithm. This question is essential

in the modern context of "Big data" generating technologies where the sets of data produced

become so large that solving the desired problem is not enough anymore: it must be done in a

fast way as well.

I will then present two distinct methodologies to deal with sparse linear estimation. First I will

very briefly present the convex optimization approach to compressed sensing which has been
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Chapter 3. Statistical inference and linear estimation problems for the physicist layman

used and studied since the appearance of the field in 2006, and which remains an important

tool for nowadays applications. I will try to give some insights behind the principle of `1 norm

optimization for inducing sparsity in the solution.

After a short introduction to some useful concepts of information theory, especially the notion

of entropy and mutual information between random variables, I will move on to the main

methodology underlying the techniques used in this thesis, namely the theory of Bayesian

inference. The main principles will be exposed and then the modelisation of the sparse linear

estimation problem thanks to these tools is discussed. I will underline the flexibility and the

advantages of the method compared to an optimization approach. I will discuss the notion

of estimator and give insights about why the minimum mean square error estimator is the

appropriate choice in the continuous framework.

Finally I discuss the coding theory for the additive white Gaussian noise channel in the

probabilistic Bayesian setting. The problem of communication through a noisy channel and

the notion of capacity will be presented. Then we end up discussing the linear coding strategy

and give a geometrical interpretation of the decoding problem.

3.1 What is statistical inference ?

Before to enter the details of the problems studied in the present thesis, we present very briefly

what are statistical inference problems, also referred as inverse problems, estimation problems

or learning depending on the community. Great introductions can be found such as [7–10].

3.1.1 General formulation of a statistical inference problem

Inference refers to the process of drawings conclusions about some system or phenomenon

in a rational way from observations related to it, and a possible a priori knowledge about it.

We are here interested in statistical inference, that will be mainly applied to signal processing

problems. Assume you have access to some data y , that have been generated through some

process f related to some system properties of interest represented by the so-called signal s.

The general relation linking these objects is given by:

y(θs ,θ f ,θout ) = Pout
(

f
(
s(θs)|θ f

) |θout
)

(3.1)

y is also referred as the observations, responses of the system or measurements in the present

thesis, s as the input, the predictors or signal in the present signal processing context. These

two quantities can be a scalar, vectors, matrices, sets of labels, etc. f models the deterministic

part of the data generating process and can be any function, whereas Pout is a stochastic

function linking the processed signal to the actual observations, used to model some kind of

noise. We will refer to it as the channel, this terminology coming from the communication

theory, where the noise models how the non ideal transmitting channel alters what is travelling
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through it. In full generality, noise just means an incontrolable and undesired source of

randomness that alters the observations of the system. In some cases, the noise can be

correlated in some way to the signal s or process f such as in blind calibration [11], but in

all the remaining, we will always consider the noise to be additive and uncorrelated with

them. θs are parameters of the signal such as some of its statistical properties like mean,

variance, etc that can be known a priori or not. θ f are those of the process f , for example the

number of Fourier coefficients taken in a partial discrete Fourier transform and finally θout

are parameters of the channel, usually the statistical properties of the noise.

The problem is to estimate the signal s from the knowledge of the observations y , the process

f and the channel model Pout . The signal can be thought as a fixed realization of a random

process, for example a message some emitter has sent you or some image. The channel θout ,

signal θs and processing function θ f parameters can be unknown too and it is a part of the task

to learn them as well. This can be done efficiently by statistical procedures such as expectation

maximization based methods that will be detailed in sec. 4.3.8.

For sake of readibility, we drop these parameters dependencies and re-write the general

statistical inference model as:

y = Pout
(

f (s)
)

(3.2)

and the dependency on all the parameters of the problem θ := [θs ,θ f ,θout ] is now always

implicit.

An important remark is that in the present thesis, we mostly consider the signal s to be the

unknown and f to be known as this interpretation is more relevant in the problems studied

here. But actually, it would be perfectly equivalent to change their respective roles and let the

process f becoming the unknown and s to be some known inputs. Depending on the problem

it can be more natural to think of f as the unknow process that gave rise to the observations

from controled inputs. It is really a matter of tastes. For example, in the classical reference [8],

f is most of the time the object of interest that we want to infer, but in [9], the authors adopted

the same convention as in the present thesis of always considering the signal s as the unknown.

In examples where the unknown will be way more easily interpreted as f , it will be explicited,

but in the rest s is always the infered quantity. Let us now define more precisely the different

kind of statistical inference problems and give some vocabulary.

3.1.2 Inverse versus direct problems

The statistical inference problem (3.2) is by nature an inverse problem, in the sense that it

consists in estimating properties of the system from some noisy observations about it, as

opposed to the direct problem which is to obtain these observations. Getting observations

about a complex system is usually quite easy compared to the associated inverse problem.

Let us give some examples to emphasize this disymmetry in complexity between direct and
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inverse problems. It is easy to gather data about the past stock prices which are observations

correlated to many parameters of the market and to the behavior of plenty of buyers and sellers

with their own strategies, but it is highly difficult to infer from these the future prices, that

must be in some way correlated to previous ones. It is nowadays quite easy to measure time

series of the activity of many neurons in parallel, but the inverse problem consisting in infering

the network of connections between the neurons from which result these activities is very

hard [12]. In an epidemic spreading of some disease, we can partially know at some time t who

are contaminated or not and have some idea of the network of connections between people,

from which we would like to infer back the source of the disease: the patient(s) zero [13]. The

same question can be asked for the identifications of the source of an internet virus, where it

is even more easy to get the network of connections between computers. These are highly non

trivial inverse dynamical problems.

Statistical physics arised at the beginning of the 19th to deal with direct problems. The aim was

to link the microscopic properties of the system to its macroscopic ones, impossible to derive

directly from the quantum mechanics, so the knowledge about the fundamental interactions

between the atoms to the physical observables and order parameters like temperature, pres-

sure, average magnetization, etc. But as we will see, the methodology of statistical physics and

especially its tools to compute thermodynamical averages over some disorder is really useful

in the signal processing and inverse problems context, where the atoms are replaced by the

signal components, the interactions by the constraints extracted from the observations that

must verify these variables and the order parameter or observable that we would like to predict

is the typical error we will make in the inference of the signal. Fig. 3.1 is a table summarizing

the connections between quantitities and notions of statistical physics and those of inference

and signal processing (defined in this chapter).

3.1.3 Estimation versus prediction

Inference can be important for two main reasons. In one hand, one could aim at accurately

estimating the signal that gave rise to the observations. If the signal models some system,

inference really is about understanding it. For example in seismology, the signal s of interest

could be the 3-d density field of the floor in some area. Perturbations by located explosions

could be performed and the vertical displacement y of the floor in some places could be

measured. The relation between the signal and the measures f , even non trivial is a priori

obtainable (at least approximately) from the physics of waves propagations in complex media

and the locations of the explosions. The noise here comes from the approximations in the

modelisation of f and the partial measurements.

In another hand, one aim could be to perform predictions. In this setting, it is easier to think as

the signal s to be known and it is the process f which becomes the unknown object of interest.

The goal is to get an estimate of it f̂ which is able to accurately output responses to new, yet

unobserved signals. This is for example the case for economical purposes. A trader is not
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Statistical physics Inference
Hamiltonian Cost function
Particules, atoms, spins Signal components
Microstates All the possible measured signals
Macrostate The final signal estimate x̂, or estimator
Physical phases: liquid, solid, gas, glass, etc Computational phases: Easy, hard,

impossible inference
Boltzmann distribution Posterior distribution
Partition function Z (y,F,θ) Absolute probability of the measure P (y|θ,F)
External field Prior distribution
External parameters: temperature, volume, Noise variance ∆,
chemical potential, etc signal to noise ratio snr,

measurement rate α, signal densisty ρ, etc
Order parameter: average magnetization, Mean square error MSE ,
correlation functions, Edwards-Anderson bit error rate, etc
order parameter for spin glasses, etc
Quenched disorder: spin interactions, Observations, sensing or coding matrix
impurities in the medium, etc and noise realizations
Free energy/entropy Potential function

Figure 3.1 – Relations between the statistical physics quantities and vocabulary with the
inference and signal processing one, focused on the quantites useful in the present thesis,
mainly related to compressed sensing and error correcting codes.

really interested in understanding the complex relations defining the market, so to estimate

accurately f but more to be able to predict future prices y from the knowledge of previous

ones s thanks to an estimator of the market process f̂ that have a good predictive potential,

despite it can have few common features with the true market behavior f , that can be way too

complex to infer anyway from few partial observations.

All the problems that will be studied in depth in this thesis are estimation ones: we will

always infer a signal that will be processed through some known transform f (s) = Fs, a matrix

product.

3.1.4 Supervised versus unsupervised inference

All the previously discused examples and the model (3.2) belong to the class of supervised

learning: problems where both observations y and the process f are known. It is thus a fitting

problem and we can interpret the observations y associated with f as a training data set, that

allows to "teach" the inference algorithm to perform its task in a supervised way. Again, the s

and f roles can be switched without loss of generality. An example of a supervised problem

is classification where one seeks for an algorithm able to class data in groups. For example if

one want to design an algorithm able to distinguish between pictures of boys and girls, the
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algorithm would be fed with a large amount of pictures, each with its corresponding label: boy

or girl. Then, the algorithm f̂ is expected to perfom the task well if fed with new unlabeled

data, so to perform predictions.

In constrast, in an unsupervised inference task, one has only access to pure data y without any

associated training signal s (as in the classification task) or process f (as in the seismology

example). So fitting loses its sense. The aim is more to find patterns in the data that can be

interpreted a posteriori. The paradigmatic problem in this class is clustering where you have

access to data you wish to class into a relatively small number of groups compared to the

number of data points [8, 14, 15]. For example, this is fundamental in recommander systems

and collaborative filtering techniques that aim at clustering a set of buyers into groups, each

representing a quite different consumer profile with different buying habits. Then, with some

data about a new buyer (what he bought, when, the fequency, etc) he can be labeled with

one of these typical profiles extracted from the clustering analysis, and thus the large amount

of information gathered from the other consumers associated to this group can be used to

predict products that will match this particular buyer need with high probability. Another

classical problem falling in this class it the community detection where the data is a set of

relations (a graph of connections) between unlabeled variables and one aims at labeling these

points [14, 16–18]. This is performed everyday by Facebook which want to infer your potential

friends (so labeled as Friend of Mr. You, in contrast with not friend of Mr. You) from the

knowledge of the friendship connections among all their users.

The assumption behind this kind of techniques is that despite each data points are different,

in reality a small number of parameters (the labels) is enough to describe the entire data set

accurately: this is called a dimensionality reduction assumption and stands at the roots of

many modern techniques dealing with very large data sets.

3.1.5 Parametric versus non parametric inference

Another important distinction is between parametric and non parametric problems. In the

non parametric setting [8, 19], no or very few prior knowledge is assumed about the object to

infer, so no prior model is assumed to perform the inference. For example in prediction, the

estimate f̂ of f is chosen among all possible functions that are "smooth" enough, with only

parameter being the level of smoothness λ. This is a very large space, denoted by S (λ). Non

parametric fitting is generally performed by applying a regularizing kernel to the observations.

The obtained processing function f̂ is thus "just" a smoother version of the observations and

it thus does not require any particular a priori structure or shape for f .

On the opposite, parametric inference [8, 10] makes strong assumptions about the structure

of the infered object. For example, in the linear regression problem, ones assumes that

y = f (X) = fᵀX, where f is a vector of coefficients linking the vector of observations to the

matrix X, where each column is an input. The inference task is thus here to estimate these

coefficients. Thus f is now chosen among a way more restricted space which is here RN ,
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instead of S (λ). One could even more constrain the functionnal space of the model, requiring

for example that only a small fraction of the coefficients of f are different from zero, i.e. that f

is sparse. In this example, it is clear that calling f the process or the signal is irrelevant.

A natural question that arise from this discussion is: Why would anyone constrain the func-

tionnal space in which the processing function is chosen ? that can be rephrased as: Why

would anyone prefere parametric to non parametric inference ? Of course more degrees of

freedom in the choice of f or s allows a priori for a better fit of the data but a more flexible

model lower its interpretability i.e. it makes difficult the task of interpreting the relations

between the data and observations. In contrast, a quite constrained sparse linear model

is directly interpretable: the observations depend (approximately at least) only on a small

subset of the inputs components, identified by the non-zero coefficients of the estimate of f.

This can be very useful in a medical application. For example, we could gather observations

[yi ]N
1 ∈ {1,0}N telling if yes or not the patient i has some given cancer. The lines of the input

matrix X could correspond to conditions possibly correlated to this particular cancer such as

health features or habits: is the person smoking, obese, doing sport regularly, a man, an O

blood type, etc : xki ∈ {1,0} tells if yes or not the i th patient verifies the condition k. Then, if

the inference outputs a sparse vector of coefficients f̂ such that y = f̂
ᵀ

X, one gets deep insights

about which features participate or not to this cancer (the features corresponding to the non

zero coefficients of f̂), and with which weight (the amplitudes of the non zero coefficients of f̂):

here model interpretability is absolutely essential to identify the true causes of the cancer. But

going back to the trader example that want to make accurate predictions about future stock

prices, he does not not really care about the interpretability, only good predictions matter. In

this case, non parametric inference can be more appropriate.

Another disadvantage of non-parametric inference is its high potential of overfitting the

noise. It means that it is a difficult task to estimate the proper smoothing parameter λ of the

observations: a too smooth model will have a very poor predictive potential whereas a too

rough model will fit the noise in the data instead of the data itself which again will generate a

bad model. This is probably one of the most fundamental problem in any statistical learning

problem, reffered as the bias-variance tradeoff [8].

3.1.6 The bias-variance tradeoff: what a good estimator is ?

A fundamental question in any statistical estimation problem is: Can we quantify the error

we will make using a given estimator for the quantity we wish to infer ? This is in general very

difficult to answer in a practical setting, actually most of the theoretical part of this thesis will

be dedicated to this specific question. In spite of that, it appears that in such problems, we

can always differentiate three distincts sources of error, namely the bias, the variance and the

irreducible error. The problem is of course to quantify them. Let us demonstrate what they

are and how they can be interpreted, so that we can assert what are the best results we can

hope to obtain. We first restrict the fully general model (3.2) to additive noise channels which
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is of interest in the present thesis and quite a general model in the continuous framework:

Pout (ỹ) = ỹ+ξ. We assume first that we want to infer the processing function. The appropriate

object to quantify this estimation error is called the prediction risk :

Rp := Ey
(||y− ŷ ||22

)
(3.3)

=< Eyµ

(
(yµ− ŷµ)2)> (3.4)

where we used that all the measurements are independent. It is the average mean square error

between the observation y(s,ξ| f ) given by (3.2) and the prediction ŷ := f̂ (s|y). The average is

performed over the problem realization y, i.e. over the noise ξ and the input data s. We could

consider also the case where s is fixed, it would not change the analysis, just at the end the

averages with respect to s in the various sources of error that we will identify would disappear.

f is of course independent of s and ξ. Let us derive the equations for only one component, the

final result being the average over all the components µ ∈ {1, . . . , M }. We denote f := (
f (s)

)
µ

and f̂ := (
f̂ (s|y)

)
µ and skeep the µ index for sake of readibility:

Ey
(
(y − ŷ)2)= Eξ,s

(
( f +ξ− f̂ )2) (3.5)

= Eξ,s
(
ξ2 + f 2 + f̂ 2 −2 f f̂ +2ξ( f − f̂ )

)
(3.6)

=∆+Es
(

f 2 −2 f Eξ( f̂ )+Eξ( f̂ 2)
)

(3.7)

=∆+Es
(
Eξ( f̂ 2)−Eξ( f̂ )2 + f 2 −2 f Eξ( f̂ )+Eξ( f̂ )2) (3.8)

=∆+Var( f̂ )+Es
(
( f −Eξ( f̂ ))2) (3.9)

=: Rp,µ (3.10)

⇒ Rp = 1

M

M∑
µ

Rp,µ (3.11)

where we have used the fact that the noise has zero mean and variance ∆ and that the input s

is independent of the noise ξ so Eξ( f ) = f . Three quantities with transparent interpretation

appeared:

• The variance < Var( f̂ ) >=< Es
(
Eξ( f̂ 2)−Eξ( f̂ )2

)> which quantifies the average (over the

signal realization) sensitivity of the estimator to fluctuations in the observations due

to the noise. An high variance estimator would change a lot as a function of small

perturbations in the observations and is thus not robust.

• The squared bias < Es
(
( f −Eξ( f̂ ))2

)> which represents the systematic error induced by

the estimator if its average with respect to the noise differs from the true processing

function f , thus a constant shift between the estimator and the observations.

• The irreducible error∆which is the error induced by the precense of the noise (the noise

is i.i.d thus ∆µ =∆). It is called irreducible as it is purely random and inherently present

in the observations, and thus cannot be canceled in any manner and should not be

fitted.
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Figure 3.2 – Graphical representation of the bias-variance tradeoff. The horizontal axis is
the model complexity, the black dashed curve is the irreducible error ∆ and the grey curve,
the prediction risk which is the sum of ∆, the red variance curve and the blue squared bias
curve. The sum of the squared bias and variance terms is the reducible error, that can be
asymptotically canceled if we have access to a very large number of data points or if one has
directly access to the data generating model. The optimal estimator is given by the model with
complexity corresponding to the minimum of Rp , represented by the green dashed line.

The sum of the variance and squared bias terms is the reducible error as it is the term that can

be lowered by adjusting the estimator. This quantity is a function of the model complexity, i.e.

of the number of degrees of freedom of f̂ or its "roughness" in the non parametric case. As

the model complexity increases, the bias decreases monotically as the observations are fitted

more accurately but the pay-off is that the variance monotically increases until a point where

it actually overcomes the gain in error due to the bias decrease. The optimal complexity of

the estimator is the one that enables the estimator to fit enough the observations such that

the bias is low but not too much such that the variance is not too high. This is summarized by

the Fig. 3.2. The green line which represents the optimal complexity (i.e. which minimizes

the prediction risk) separates an underfitting regime on its left from the overfitting regime.

The associated optimal estimator is denoted as f̂opt . The prediction risk cannot fall under the

irreducible error due to the noise, the black dashed line on the plot. The reducible error is the

gap between ∆ and the prediction risk at the optimal complexity on the plot Fig. 3.2.

What about the case of interest in the present thesis, the inference of the signal? The error

estimate of interest in this case is the risk associated to the mean square error. Here one

must be very careful: depending on the authors and especially on the adopted point of view

(frequentist or Bayesian statistics), the risk can be defined in different ways. Here we place

ourselves in the Bayesian framework and assume that we have access to data y but not to

the true signal s. We represent the signal by an auxilliary variable x to which we associate a

posterior distribution P (x|y), see sec. 3.6.1 for details. In this framework, the definition of the

risk R(x̂|y) of an estimator x̂ is the average of its mean square error MSE with respect to x
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weighted by its posterior:

MSE(x̂,s) := ||x̂−s||22 =
1

N

N∑
i

(x̂i − si )2 =< (x̂−s)2 > (3.12)

R(x̂|y) := Ex|y{MSE(x̂,x)} = 1

N

N∑
i

∫
d xi P (xi |y)(x̂i −xi )2 (3.13)

The true MSE (3.12) cannot be computed as s in unknown but R(x̂|y) can be if we are able to

estimate P (x|y). P (xi |y) is the marginal posterior of xi . This risk, which is the one we refer to

in this thesis, is linked to the so-called Bayesian risk RB (x̂) as:

RB (x̂) =
∫

dyP (y)R(x̂|y) (3.14)

where we average over the data for which it is supposed that we have a prior distribution P (y).

But in this thesis we always consider the data to be fixed. See [9, 10] for frequentist definitions

of the risk.

In the special case of a linear orthogonal f and defining the inverse of f as g := inv( f ) one can

write:

si = g (yi −ξi ) = g (yi )+ ξ̄i (3.15)

which as the same form as (3.2) and where ξ̄i is a new effective noise. In properly rescaled

problems, ξ̄i has also a variance ∈O(∆). Thus all the previous discussion and demontration

remains valid (considering only the average over the noise) and we obtain that the prediction

risk and the risk are equal up to a multiplicative factor Rp = cR [9], and thus the three sources

of error remain the same with identical interpretations. This is a priori not justified when f

is not invertible as in the present thesis, where highly underdetermined linear systems will

be studied but nevertheless, the three sources of errors actually remain the same. See [8]

for a very nice introduction about statistical learning and the different sources of error in

inference. [20] recently studied the influence of the reducible error in the prior mismatch case

in the Bayesian framework, see sec. 3.6.

3.1.7 Another source of error: the finite size effects

There are two ways to cancel the reducible error: to have access to an infinite number of

observations generated from the same system or having directly access to the data generating

model. For example if one wants to infer the signal s, Pout , f , and all the parameters of the

problem θ including those of the signal θs in (3.2) must be known. But as the data is finite

N <∞, even when the model is perfectly known and thus the reducible error is inexistant,

there can remain another source of error related to the algorithm that performs inference: the

finite size effects that induce a finite size error ε(N ), where limN→∞ ε(N ) = 0. In the present

thesis, the inference algorithm that we will use is the approximate message-passing algorithm

22



3.1. What is statistical inference ?

derived and discussed in sec. 4.3. It is based on "law of large numbers-like" arguments and

is only rigorous in the limit N →∞. Thus when using it on finite size systems, the algorithm

becomes an approximation and this can induce finite size errors.

The optimal estimator (i.e. which has no reducible error) thus verifies:

x̂i ,opt = si +ε(N )+ ξ̄i (3.16)

where ξ̄i is an effective error with variance ∈O(∆) as well when the system is properly scaled.

This discussion shows that to get a good estimator, one must reduce as much as possible

the reducible error and also study carefully the finite size effects associated to the inference

algorithm used to get the estimate.

3.1.8 Some important parametric supervised inference problems

All the problems treated in the present thesis belong to the class of parametric supervised

problems of the form (3.2). A non exhaustive list of such problems could include:

Denoising : f (s) = s, Pout ( |θout )

This is the simplest (in terms of definition) parametric statistical inference problem where one

aims at reconstructing a corrupted signal by a noisy channel Pout ( |θout ), such as an AWGN

channel of particular interest in this thesis: Pout (ỹ|∆) = ỹ+ξ where ∆ is the variance of the

AWGN ξ with i.i.d components of zero mean.

AWGN corrupted linear estimation problems : f (s|F) = Fs, Pout (ỹ|∆) = ỹ+ξ
This model, amongst which belongs AWGN compressed sensing and linear error correcting

codes over the AWGN channel, is at the core of this thesis. This is also a parametric problem

as there are few (possibly unknown) free parameters, here the noise variance and some others,

parametrizing the prior knowledge about s, see the section on Bayesian inference sec. 3.6 for

more details about the notion of prior. Denoising over an AWGN channel can be seen as a

particular instance of this problem where F is the identity matrix.

Binary symmetric or erasure channel models : f (s|H) = mod(Hs,2), Pout (ỹ|ε) = z

where mod( ,2) is the modulo 2 component-wise operation and zi = ỹi with probability (1−ε),

zi =? or − ỹi with probability ε for the binary erasure channel or the binary symmetric channel

respectively. Here ?means lack of information. These are classical models in communication

theory.

Matrix completion : f (S) = S, Pout (Ỹ|ε) = Z

where Zi j = Ỹi j with probability (1−ε), Zi j =?with probability ε, usually close to one. This

problem is fundamental in the field of recommander systems and collaborative filtering,

where prior knowledge about the matrix S can be that it is low rank and one seeks for the

missing entries. Despite its usefulness in common fields, this problem is different from the

unsupervised tasks of clustering or community detection.
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Classification : f (z|s,C ) = [
czi |czi ∈C

]N
i , Pout (ỹ) = ỹ

The classification problem is a canonical problem of parametric supervised learning. The

classifier f (zi |s,C ) ouputs the class czi ∈C to which belongs the item zi . Here the vector to

infer s is actually a set of parameters allowing the classifier to perform its task properly. To

do so, one must have a set on inputs objects ztr ai n and their associated classes {cz tr ai n
i

}N
i to

teach the classifier how to distinguish between the classes, i.e. learn s which basically draws

plans between the different classes of C in the items space. This problem stands at the roots

of modern image recognition and deep neural networks theory.

The inverse Ising problem : f (s|h,J) = {mi , {ci j } j 6=i }N
i , Pout (ỹ|ε,∆) = z̃

where z̃i = ỹi + ξ with probability 1− ε, z̃i = ? with probability ε and ξ ∼ N (ξ|0,∆). Here,

one has access to partial noisy observations of the means {mi }N
i and two point correlations

{{ci j } j 6=i }N
i of the variables {si }N

i (for example measured experimentally). The aim is recon-

structing the pairwise network of interactions {{Ji j } j 6=i }N
i between these and the external fields

{hi }N
i , such that the averages and correlations of the variables computed with respect to the

Ising measure P (s|h,J) ∝ exp
(
−∑N ,N

i , j 6=i Ji j si s j −∑N
i hi si

)
matche the observed ones. This is a

problem of great interest especially in phylogenetics and neurosciences. It is useful in any

network reconstruction problems where one does not have access to higher than second order

statistics about the variables that form the networks which is generally the case due to the

restricted size of the samples in biology. This Ising form of the measure is derived by maximum

entropy criterion as we shown in sec. 4.1.3.

Let us now focus on the specific problem of interest in this thesis, namely sparse linear esti-

mation with i.i.d AWGN corruption, but it must be understood that the general methodology

discussed hereafter (particularly Bayesian inference and message-passing algorithms) could

be applied in most of these problems as they are special instances of the general model

(3.2). For example, some references sharing the same methodology as the one developed in

this work could include [21] for classification, [22] for clustering (interesting links between

message-passing and spectral methods can be found [14,15]) or [23,24] for all the details about

inference in communications over binary channels. See [12, 25] and the references therein for

applications of the inverse Ising problem, including in biology and [26] for a review of efficient

algorithms to deal with this problem.

3.2 Linear estimation problems and compressed sensing

In this thesis, the studied problems belong to the class of noisy linear estimation problems

under AWGN corruption which general form can be written as:

y = Fs+ξ (3.17)

⇔ yµ =
N∑
i

Fµi si +ξµ = (Fs)µ+ξµ ∀µ ∈ {1, . . . , M } (3.18)
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where ξµ ∼N (ξµ|0,∆) ∀µ ∈ {1, . . . , M } and we place ourselves in the general continuous frame-

work F ∈ RM N , s ∈ RN . Let us start by underlying some fundamental differences between

interpreting (3.18) as a linear fitting model, i.e. we fit some data as a linear combination of

some basis F vectors, the approximate coefficients being the signal we want to infer or as the

true generating model of the data, i.e. we know that the data has been generated through (3.18)

and we look for the unknown signal s. Despite some common features in terms of algorithmic

techniques that can be used for estimation in both cases, there is a deep difference in the

behavior of the problem as in the latter case, there exist a particular state, the true solution s,

which can have a larger statistical weight than any other approximate solutions. In statistical

physics, the construction of a problem from a given solution such as in inference defines the

so called planted ensemble, see [24, 27] for the statistical physics of this ensemble.

3.2.1 Approximate fitting versus inference

For this discussion, we place ourselves in the noiseless setting ∆= 0. Algebra tells us that the

system (3.18) can be solved exactly if the number of measurements is at least equal to the

number of variables M ≥ N and are linearly independent one of the other. This can be done by

simple matrix inversion, selecting a subset of N lines of the original matrix and the associated

measures and to inverse the resulting system. But this is true only if the observations were

really generated through a linear model such as (3.18), which implies that there indeed exists

a solution to the system. But one could just have access to data without really knowing its

generating process and want to approximately fit these data as a linear combination of some

basis functions or atoms (the columns of F), that form the so-called dictionnary in this context.

Let us consider (3.18) as an approximation model. If the number of observations is M < N ,

the system is said underdetermined: there are too many possible solutions, usually an infinite

number. If in contrast, M > N the system is overdetermined and there could be no solution

verifying all the observations exactly. To deal with these situations, one can use the least square

estimate x̂LS . It consists in finding the linear combination of the basis functions that minimize

the empirical prediction risk (3.3):

x̂LS = argmin
x

||y−Fx||22 (3.19)

= inv
(
FᵀF

)
Fᵀy (3.20)

:= F∗y (3.21)

F∗ := inv(FᵀF)Fᵀ is the so-called pseuso-inverse of F. This solution has some caveats such as

the fact that it won’t produce any sparsity in the solution which can make the interpretation of

the solution quite complicated as previously discussed in sec. 3.1.5. More advanced methods

such as the sparsity inducing LASSO which will be presented in sec. 3.4, solved by linear

programming techniques, can be used to improve the interpretability by sparsifying the

solution. If an approximately sparse solution is found, it means that the data can be thought

essentially as linearly depending on a small subset of features, the basis vectors associated
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to the estimated non zero components of the fit x̂, selected among an original larger set of

possibilities: this is called model selection. An ensemble of advanced techniques exist to deal

with fitting linear models, details can be found in [8, 10].

But what happens if we know that the data has actually been generated by the linear model

(3.18)? The notion of overdetermined system loses its senses. For any M ≥ N , finding the

solution is trivial because it exists. Inference for sparse linear models thus deals with situations

where M < N , or even M ¿ N but we know that the linear system have a solution for sure as

the data was produced in this way, which makes all the difference. One could think of the

least square estimate as a strategy, but in an inference problem, the aim is not to minimize the

prediction risk but the mean square error (3.12) and a minimum prediction risk solution can

(and will in most of the cases) have a very high MSE .

So how to do? Still, albebra requires as many constraints as variables to infer over. Hopefully,

additional input information about the solution can counterbalance the missing constraints:

sparsity is our savior.

3.2.2 Sparsity and compressed sensing

A new paradigm in signal processing is the notion of sparsity and compressibility : a signal

is said to be K -sparse if there exist a basis Ψ in which the representation of the signal in it

has only K components that are non zero, that we call its support. A K -compressible signal

is a signal that is "well" approximated by a K -sparse one. More precisely, if the signal is

approximated by keeping only its K components with largest amplitude in an appropriate

basis, then the `p norm of the difference between this approximation and the signal in this

basis decays as a power law:

||sK −s||p <C K −u (3.22)

for some constants C and u > 0 where sK denotes the best K -sparse approximation of the

compressible signal s. It basically means that the amplitude of the sorted components of s

decays at least as a power law, see [28] for more details on this notion. In this thesis, I will

sometimes use the terminology of sparse signals even for compressible ones.

Compressed sensing, introduced 10 years ago in a series of papers by Donoho, Candès, Tao

and Romberg [29–32] is the theory and ensemble of techniques behind the measurement

protocol and reconstruction process of sparse and compressible signals from few (noisy or

not) linear observations. Mathematically speaking, it is the field of research focused on solving

a priori undetermined systems of linear equations, using sparsity assumptions about the

solution. A very nice and simple introduction to compressed sensing (seen from the convex

optimization point of view) can be found in [33], see [34, 35] for the probabilistic point of view

as adopted in this thesis.

Another fundamental aspect of compressed sensing, complementary to sparsity, is the notion
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of coherence. In order to be able to infer back the sparse signal s from a model like (3.18), the

measurement (or "sensing") matrix F must be as incoherent as possible with the sparsifying

basisΨ of s. It means that each basis vector of F must be as orthogonal as possible to all the

basis vectors ofΨ at the same time or equivalently any basis vector of F cannot be expressed

nor well approximated by a sparse linear combination of the basis vectors ofΨ. In this way, all

measurements yµ will contain an approximately equal amount of information about all the

components of s expressed inΨ. Intuitively, the O(K ) measurements select a set of possible

solutions to the linear system (3.18) and the sparsity assumption select among these the

sparsest one which can be unique in the noiseless setting. As this solution has only K non zero

values, the O(K ) measurements are enough to fix their amplitudes. The coherence between

two matrices A and B is formally defined as:

µ(A,B) =
p

N max
1≤k,l≤N

|(A•,k )ᵀB•,l | (3.23)

which is thus a direct measure of the correlation between the matrices.

Constructing a maximally incoherent sensing matrix for a given sparsifying basis Ψ is a

computationally very hard problem and cannot be solved in general. But here the intuition

suggesting that a purely random sensing matrix (that we will always take i.i.d Gaussian) must

be highly incoherent with anyΨwith high probability (i.e. tends to one as the matrices size

diverge) is valid. Indeed, drawing a random i.i.d Gaussian matrix will give rise to basis vectors

uncorrelated with theΨ ones, exactly as a white noise has a flat spectrum in any basies. This

is one among many others advantages of working in high dimensions. It is quite instinctive to

see that in a very high dimensional space parametrized by some basis, if you draw a random

vector, it has very low probability to be close to aligned to one of the vector basis as there

are so many available directions. Working with random Gaussian i.i.d matrices has another

great advantage: it allows to perform analytical predictions in the large size limit N →∞ using

techniques mainly based on "law of large numbers like" arguments, standing at the roots of

the state evolution analysis, see sec. 5.3.

Reconstructing s from the knowledge of the measurement matrix F and few AWGN corrupted

observations y given by (3.18) is thus a compressed sensing problem as long as s is sparse

and F is "random enough" (this notion will be studied in great details in the chapter about

structured operators in compressed sensing, chap. 7). The knowledge of the sparse nature of

the signal allows one to solve the reconstruction problem in an efficient manner.

What does an efficient manner actually means? First, compressed sensing theory shows

that for a K -sparse signal of size N , its reconstruction can be performed from a number of

linear observations that grows with K instead of N . So for very sparse signals with a density

ρ := K /N ¿ 1, the theoretically required number of measurements can be very low. This is

litterally a revolution in signal processing as it overcomes the Shannon-Nyquist theorem that

states that if some physical signal’s highest represented frequency is f (the so-called Nyquist

rate), i.e. its Fourier coefficients are all zeros for any frequency higher than f , then at least
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2 f discrete samples of this signal are required for perfect reconstruction. Basically, it means

that without any prior knowledge about a signal of size N in its discrete representation, O(N )

measurements are required to estimate it, and this independently of its true informational

content, usually carried by a small support of size K ¿ N .

Assume that you want to measure a pure sinusoidal signal with very high frequency oscillations.

The Shannon-Nyquist theorem a priori constrain you to perform many measurements of this

signal. But if in addition you have now the prior knowledge that this signal is a pure sinusoide,

you can use this supplementary information on the sparsity of this signal in the Fourier

space to infer it from far fewer measurements. This is what compressed sensing is all about:

performing the very least number of operations for estimating a signal.

The terminology compressed sensing comes from this paradigmatic change. In usual sens-

ing/compression strategies, one performs many measurements, where again "many" is fixed

by the Shannon-Nyquist theorem. Once the signal has been estimated, one can try a posteriori

to find a sparsifying basis for it and thus locate its zero or small components: this is performed

thanks to compression algorithms such as JPEG2000 for images or Fourier analysis for sounds.

At the end one stores only the informative support of the signal. This two-steps procedure

is quite inefficient: most of the O(N ) performed measures contain highly redundant infor-

mation as the zeros of the signal do not contribute to them, and thus they correlate only the

K informative components. This is why afterwards compression can be done, thanks to this

inherent redundancy contained in the observations obtained by usual sampling techniques

applied to sparse signals.

Compressed sensing is an "all in one" procedure that optimally uses all the knowledge one

have about the measured signal, at least in the Bayesian framework (convex optimization

procedures discussed in sec. 3.4 usually only assume sparsity as opposed to Bayesian inference

sec. 3.6 that allows to integrate more information in the model). By carefully designing the

measurement protocol, one can maximally reduce the redundancy inside each sample which

drastically lower the required number of them. This allows to directly reconstruct the most

compressed form of the signal in a fixed sparsifying basis, chosen thanks to the a priori

knowledge about the signal: The signal I want to measure is a natural image, so I know that

it is a priori sparse in the wavelet basis. I will thus try to directly estimate the few important

coefficients of the signal in this basis. My signal is a sound, so it should be sparse in the Fourier

basis, etc..

3.2.3 Why is compressed sensing so useful?

In many applications, measurements can be costly in energy, time and money and reducing

the required number of such samples can have a great impact. But one could ask that despite

compressed sensing is a beautiful mathematical theory that should allow for great improve-

ments in signal processing, is it actually relevant for real life applications? The anwser is yes.

The notion of sparsity or compressibility of a signal is not only a great theoretical property but
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also an actual feature of virtually all signals in the nature. The following hypothesis appears to

be almost always validated: if a signal carries some information, it must have some kind of

structure in an appropriate representation, i.e. it is not pure noise, the only signal for which it

exists no sparsifying basis. We will focus in this manuscript on some important applications

such as image reconstructions (see chap. 8) and error correcting codes for communications

(see part. IV) but we can name many others. A non hexaustive list of relevant examples could

include:

• Medical imagery such as in magnetic resonance imagery [36] where the measurements

are very long and costly. Sparsity of the image in the wavelet or discrete cosine basis

can be exploited to lower the number of required measured Fourier coefficients to

reconstruct good quality images.

• Deep space imagery and radio interferometry [37]. Probing the deep space is highly

costly as massive telescopes are required, preferably all over the world to perform inde-

pendent measurements. But many features of interest are highly sparse in appropriate

basies such as intensity fields of compact astrophysical objects or the imprint of cosmic

strings in the temperature field of the cosmic microwave background radiation.

• New optical devices such as one pixel cameras [38]. Imagine that some highly accurate

new sensor is really costly. Thanks to compressed sensing, a unique sensor can be used

to measure images.

• Still in the field of optics, people are nowadays trying to use the randomness of physical

media such as layers of white paint as the compressive imaging device [39]. Scattering

media are thus promising candidates for designing efficient and compact compressive

imager. In parallel, algorithms for the estimation of the sensing matrix generated by

natural scattering media are developed [40].

• Compressed sensing is also applied in acoustics, for example in problems of vibrating

source localization [41] or sampling of the 3-d acoustic field and the room impulse

responses [42], that characterize the reverberation properties of the room. In both

applications, the number of microphones required can be greatly reduced using com-

pressed sensing techniques because, for example, the room impulse responses can be

considered sparse in the time domain. This could be applied in virtual reality, video

games and electronic music, where the use of a space-varying reverberation extracted

from real environments improve the impression of immersion.

• Compressed sensing has a great potential in group testing with applications in genetic

screening, compressed genotyping or optimal blood testing [43]. Imagine you have

many samples of blood and you know that few of them are infected. How to opti-

mally mix samples to reduce the number of required tests to find the infected samples?

Compressed sensing theory answers this question.
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• The applicability of compressed sensing theory is nowadays also extended to problems

with high computational cost. It can help to greatly lower the complexity of some matrix

reconstruction problems such as the computation of sparse Hessian matrices, useful in

density functional theory [44].

The list could go on for a while: radar detection, efficient measurements and reconstructions

of complex wave functions, data compression, efficient analog-to-information conversion,

etc. A massive list of applications can be found online: http://dsp.rice.edu/cs, http:
//nuit-blanche.blogspot.fr.

Summing up, compressed sensing theory answers the questions: how one should design

an optimal measurement process for a signal for which we have some information, such as

sparsity. And how to reconstruct it efficiently from this few optimal measures. Compressed

sensing will ouput the sparsest solution to a problem, and is in this sense a kind of modern

Occam’s razor: it finds the "minimal solution" to the problem and this from the minimal

amount (or close to) of information theoretically required to solve the problem.

Let us now focus on the second fundamental efficiency aspect of compressed sensing. Now

it is well defined, one could argue: All that is really nice, at least on the paper, but can the

estimation problem be actually solved in an amount of time which is not of the order of the age of

the Universe? In other words, are there efficient algorithms that can solve a given compressed

sensing problem in a fast way? Fortunatly yes. An extensive subfield of research in compressed

sensing focuses on developing such computationally efficient and yet accurate solvers, like in

the present thesis. We will expose the two actual main ways of solving a compressed sensing

problem, but before that we present some basic notions of complexity theory.

3.3 The tradeoff between statistical and computationnal efficiency

With the explosion of the size of the data sets generated in modern scientific, medical, social

and economical applications, a major point to consider in todays inference techniques is the

tradeoff between statistical and computationnal efficiency. A statistically efficient algorithm is

able to infer the desired quantity accurately while remaining robust in spite of the precense of

noise. This can be quantified by error estimators such as the MSE (3.12). A computationnally

efficient algorithm has a low complexity, i.e. it requires a number of fundamental operations

to perform its task that scales "nicely" with the size of the input and output data. Lets precise

this point by introducing the very basics of complexity theory, without the goal to be complete

nor rigorous.

3.3.1 A quick detour in complexity theory and worst case analysis : P 6= NP ?

Complexity theory aims at grouping into complexity classes the set of all problems that can

be solved by computers. It exists a full zoology of such complexity classes. Let us formalize a
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bit this idea. Let us denote a generic problem by Ψ. For example, considering the core of this

thesis, the AWGN corrupted linear estimation problem, Ψ would be given by Ψ= "find s from

the generic model (3.18)". ψ denotes a given realization or instance ofΨwhich would be in

the present case a particular realization of the random noise vector ξ, of the sensing matrix F

and of the measured signal s in (3.18).

Complexity theory is based on the notion of worst case analysis : a problem Ψ belongs to a

given complexity class if its "most difficult instance" ψ̃ belongs to this class. The most difficult

instance is basically the one that requires the largest number of operations to be solved among

all the instances {ψ} of Ψ. The main complexity classes of interest for us are the so-called

polynomial time P and non-deterministic polynomial time N P classes. In order to define

them properly, we would need to introduce concepts such as Turing machines which are out

of the scope of the present thesis and can be found in any text book on complexity theory or

computer science such as the very nice books [18, 45]. Let us define them in a more handwavy

way.

We define a problem Ψ to belong to the P class if there exist an algorithm able to solve

any of its instances {ψ} performing a number of fundamental operations (such as additions,

multiplications, etc) that scales as a polynomial in the size of the problem O(N k ) where N is

the number of variables of the solution we are looking for. We would say that a problem in P is

"easy" i.e. can be solved efficiently. This idea of simplicity of problems in P is referred as the

Cobham’s thesis. Such problems include testing whether a number is prime, calculating the

greatest common divisor or finding a maximum matching in a graph. In contrast, problems in

N P are usually referred as "hard" problems. A problem is said to belong to the N P class if no

algorithm is known yet to solve all of its instances (inluding the hardest one) in a number of

operations bounded by a polynomial in the size of the solution, but if one is given an a priori

solution to any instance, it can be checked efficiently if this is actually a solution as declared

or not. The complexity of N P problems usually scale as an exponential in the problem size

O(eN ) which becomes very quickly intractable by brute force combinatorial methods.

From the moment an algorithm can provably solve efficiently a problem, it is known to be in

P but it is really difficult to assert that a problem is not in P , or is in N P as it would require

to prove that no efficient algorithm exist for the hardest instances of this problem. This

emphasize the most fundamental question of complexity theory and computer science: Is

P 6= N P? No one knows a proof or disproof of this assertion despite that most scientists think

nowadays that there actually exists a fundamental difference between these two classes, i.e.

there are problems that are really difficult, and will remain difficult in the future.

3.3.2 Complexity of sparse linear estimation and notion of typical complexity

All these are very general considerations, but what about the core problem of this thesis (3.18)?

Unfortunately, this problem is thought to be N P which makes it a priori intractable. This is

also what makes this problem interesting from a theoretical point of view, in addition of its
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great applicability as we have seen in sec. 3.2.3. Fortunatly there exist efficient ways to solve

such problems, and it is the subject of this thesis. As we said, complexity classes are based on

the notion of worst cases, but what about typical cases? A typical case is an instance ψ̄ that you

would pick by selecting one at random in the set of all possible instances {ψ} of the problemΨ

when N is large. It represents a kind of "average case". In many inference or combinatorial

optimization problems, hard instances can be quite paradoxally very difficult to generate,

most of the instances being easy: the hardest instances define the problemΨ to be formally

in N P but the typical instances place Ψ inside P in an effective way. And hopefully, many

problems have lower typical complexity in proper regimes than what their worst case analyzes

tell us. Further details about the typical complexity of the problem will be presented when

discussing the phase diagram of the problem in sec. 5.1.

3.4 The convex optimization approach

How to solve a compressed sensing problem efficiently? The first methods were based on

convex optimization methods. Let us review the very basics of this appoach that is not the kind

of methods used and studied in this thesis but quickly presented here for sake of completeness.

Very nice and complete reviews can be found such as [8, 46–48].

3.4.1 The LASSO regression for sparse linear estimation

The goal is thus to find the sparsest solution among a huge set of admissible solutions to (3.18).

Mathematically one must be able to find the (hopefully) unique solution x̂0 to (3.18) that has

the smallest `0 norm which is defined as the number on non zero components of a vector.

Unfortunately, this problem is N P and non convex: there exist no convex function such that

its minimum is provably given by x̂0 for any measurement rate α := M/N > ρ := K /N , the

information theoretical bound. To face this, the problem is relaxed by replacing the constraint

of `0 minimization to an `1 minimization, which makes the problem convex. This problem is

referred as the LASSO (Least Absolute Shrinkage and Selection Operator) regression:

x̂1 = argmin
x

||x||1 such that y = Fx (3.24)

which becomes in the noisy setting

x̂1 = argmin
x

||x||1 such that ||y−Fx||22 < ε (3.25)

⇔x̂1 = argmin
x

||y−Fx||22 +λ||x||1 (3.26)

where the second form is totally equivalent to the first one for a properly selected slack

parameter λ, which is here to balance the relative weight of the sparsity constraint with the

observations. ε is some small threshold relaxing the hard contraint of perfectly verifying

the linear constraints, which takes into account the precense of noise. It appears that for a
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measurement rate α>αDT (ρ) > ρ, the solution to the LASSO problem is provably equal to

the one of the intractable `0 optimization problem: x̂1 = x̂0. αDT (ρ) is called the Donoho-

Tanner transition [49] and defines the best performances one can reach asymptotically with

convex optimization based methods, see sec. 5.1.1: polynomial-time optimization solvers

or greedy algorithms can solve the problem from O(K log(N /K )) measurements, not O(K ).

Unfortunately this transition is far from the optimality α= ρ and this is why we need different

methods to improve the results such as Bayesian inference (sec. 3.6) combined with spatial

coupling (sec. 5.5) which is asymptotically optimal. If one knows some more information

about the solution than the simple sparsity, more advanced models such as group sparsity, tree

structures, etc can be constructed and solved by convex optimization [28]. This can reduce the

number of required measurements but in the general setting of purely sparse signals, convex

optimization based approaches are not optimal from an information theoretical point of view.

3.4.2 Why is the `1 norm a good norm ?

Why is the `1 norm the appropriate sparsity inducing one? Smaller p-norm are non convex

but nothing prevents from taking a higher order norm such as the `2 one. In this case the

convex problem to solve is:

x̂2 = argmin
x

||y−Fx||22 +λ||x||22 (3.27)

Solving (3.27) is refered as the ridge regression problem [8]. Let us try to understand why is

the `1 norm minimization the proper choice, i.e. why LASSO overcomes ridge regression in

solving sparse linear estimation problems. Let us define s = [1,ε].We assume ε> 0 without

lose of generality. Its `1 and `2 norms are:

||s||1 = 1+ε (3.28)

||s||22 = 1+ε2 (3.29)

What happens to these if we reduce one of its component by a small positive quantitiy δ such

that δ< ε¿ 1.

||s− [0,δ]||1 = 1+ε−δ= ||s||1 −δ (3.30)

||s− [δ,0]||1 = 1+ε−δ= ||s||1 −δ (3.31)

||s− [0,δ]||22 = 1+ε2 −2δε+δ2 = ||s||22 −2δε+δ2 (3.32)

||s− [δ,0]||22 = 1+ε2 −2δ+δ2 = ||s||22 −2δ+δ2 (3.33)

So we now understand that reducing small components almost does not affect the `2 norm

that tries in opposite to reduce larger ones and spread the power and thus would prevent

sparsity whereas the `1 norm is affected in the same manner as small or large components are

reduced, allowing to cancel easier components that should be. So it is more that higher order

norms prevent sparsity, `1 optimization does not.
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Figure 3.3 – Geometrical interpretation of why the `1 norm is the appropriate sparsity inducing
one. The ellipses are iso-MSE lines. The green parts represents subspace with bounded `1 and
`2 norm on the left and right plots respectively. The red point is the intersection between the
further allowed iso-MSE line and the region bounding the norm of the vectors inside. We see
that the intersection point which is the final estimate of the procedure cancels a components
in the `1 optimization case whereas it would not choosing the `2 norm.

It can be understood in a more geometrical way as well. The optimization problem (3.25) has

two parts. The first one enforces the linear observations to be fulfilled up to some error ε. This

selects a subspace with smooth bounds (due to the `2 norm) such as the ellipses represented

on Fig. 3.3 which extent is fixed by the relaxation parameter ε. Then one has to find the vector

with smallest norm intersecting this region (the red point on the figure): it is the estimate x̂.

Vectors with a bounded `2 norm belong to a ball (the disk on the figure), whereas with an

`1 norm they belong to a polytop with sharp corners on the axis of the frame. So with high

probability, the intersection point between the two regions will be on a axis in the `1 norm

case and thus some components will be put to zero, whereas no components will be canceled

in the `2 norm case due to its smooth nature. This phenomenon is even more pronounced in

higher dimensions.

3.4.3 Advantages and disadvantages of convex optimization

In the present thesis, the methods that we will use are based on the Bayesian inference

(sec. 3.6) due to its improved performances and phase transitions, see sec. 5.1.1. Nevertheless

convex optimization methods are still used by many people and the field of research still

very active. This is because despite not being optimal, convex optimization approaches have

many advantages. The first one is the fact that optimization of the form (3.25) can be easily

converted into linear programs and there exist a massive set of very efficient techniques and

solvers combined with a well known theory of linear programming [46, 50]. Furthermore, by
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the very definition of what a convex problem is, the problem to solve (3.25) always have a

unique well defined solution. Modern solvers such as `1 magic [51] or NESTA [52] can solve

compressed sensing instances in a quite fast way with convergence guarantees.

Another strong advantage of these methods are their robustness. Robust in the sense that a

given solver can be used for a very large class of convex problems. "Details" of the instance

such as the sensing matrix realization or the structure of the signal that can be more com-

plicated than just sparse are mostly irrelevant: any convex optimization solver will do the

job and output a solution, despite being usually not the best one in the sense that more ad-

vanced solvers, such as based on Bayesian inference, could have found a lower MSE solution

for the same problem if properly used. The pay-off is that Bayesian inference requires the

computation of problem dependent quantities, but it is what makes it more powerful as well:

a Bayesian solver is specifically designed for a problem and thus performs generally better

than a more general convex optimization solver.

3.5 The basics of information theory

Before to present the methodology of Bayesian inference, which is a statistical method, we

present some fundamental concepts of information theory. The aim here is not completeness

but really focus on the notions relevant for the present thesis and that are deeply connected to

the statistical physics concepts. Very nice and complete books can be found as [7, 23] for a

computer science and communications point of view and [24, 53] for an emphasize on the

links with statistical physics. In this section, we use capital letters for the random variables,

small letters for their realizations, or events.

3.5.1 Incertitude and information: the entropy

The fundamental object to quantify the information carried by some random variable X ∼
PX (x|θ), interpreted as a message sent to a receiver in the field of communication theory, is its

Shannon entropy [54] or just entropy defined as:

H(X |θ) := EX
(
log2 (1/PX (x|θ))

)=−
∫

d xPX (x|θ) log2 (PX (x|θ)) (3.34)

The object log2 (1/P (x|θ)) can be interpreted as the suprise of the event x: the less probable x

is, the larger the surprise of observing it is. The informative content of X is its average surprise,

the entropy. It can be interpreted the other way around: the entropy measures how much

incertitude (i.e. lack of information) we have about X before its realization x is observed, thus

how much information we gain once observed. We thus speak of information, uncertainty

or incertitude in the same manner, defined as the entropy. Information is more appropriate

when X has actually been observed, and incertitude when it has not yet. We could say that

there is a fundamental conservation law linking information to incertitude: the information

gained in observing some random variable realization compensates exactly the incertitude we

35



Chapter 3. Statistical inference and linear estimation problems for the physicist layman

had about it before the observation, measured by the entropy. We can make a parallel with

an isolated mechanical system. Its total energy is conserved, and its dynamic is the result of

the conversion of potential energy into kinetic one. The incertitude can be interpreted as the

potential energy and the information as the kinetic one.

A deterministic event has no entropy: we know everything about it, and thus gain nothing

when observed. The other extreme case is the equidistributed random variable: we dont have

any clue about what we will observe so our uncertainty about it reaches its maximum and thus

we gain a maximum information observing its occurence. This is formalized by the second

equality that verifies entropy in the next properties.

Why is this logarithm? It can be justified by rational arguments. Actually, the entropy is the

only function verifying a number of necessary conditions for a coherent definition of what

information is, including the previous remarks. We assume that X have n possible outcomes

(we skeep the possible dependence on parameters):

H(X ) ≥ 0 with equality only if X is deterministic. (3.35)

H(X ) ≤ log2(n) = H(U ), U ∼ 1/n, the constant distribution over n events. (3.36)

H(X ,Y ) = H(Y , X ) (3.37)

H(X ,Y ) = H(X )+H(Y |X ) = H(Y )+H(X |Y ) (3.38)

H(X ,Y ) ≤ H(X )+H(Y ) with equality only if PX Y (x, y) = PX (x)PY (y) (3.39)

H(Z |X ,Y ) ≤ H(Z |X ) with equality only if PZ Y (z, y) = PZ (z)PY (y) (3.40)

The logarithm is in base 2 because the natural unit of information in communication is the bit

as messages are usually coded in binary form. Thus an equiprobable binary random variable

carries 1 bit of information by definition. This convention can also be justified interpreting

the entropy as the number of dichotomic operations to perform (or minimum number of

necessary yes/no questions to ask) to find the answer to a problem where all the answers are

equiprobable, so in the worst case in a sense.

The first equality tells that there is no such thing as negative information: we cannot lose

information from any new observation of a random variable realization, at worst we gain

nothing in the case of a deterministic event. Let us demonstrate the fourth one for the example:

H(X ,Y ) =−
∫

d xd yPX Y (x, y) log2

(
PX Y (x, y)

)
(3.41)

=−
∫

d xd yPX Y (x, y) log2

(
PX |Y (x|y))

)−∫
d xd yPX Y (x, y) log2

(
PY (y)

)
(3.42)

=−
∫

d yPY (y)
∫

d xPX |Y (x|y) log2

(
PX |Y (x|y))

)
︸ ︷︷ ︸

:=H(X |Y )

−
∫

d yPY (y) log2

(
PY (y)

)
(3.43)

= H(X |Y )+H(Y ) (3.44)
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where we skept the possible dependency in parameters. This equality tells that the total

information or incertitude carried by a couple of random variables (X ,Y ) can be decomposed

as the entropy of Y plus the conditional entropy H(X |Y ): the remaining incertitude about X

once Y has been observed, or equivalently the additional information that the X observation

would bring that has not already been obtained through the Y observation alone. The role of

X and Y can be switched from the third equality. The fifth equality tells that the incertitude

about a couple of random variable is maximum when they are totally independent, so knowing

one’s realization does not help to infer anything about the other one. Finally the last equality,

that seems natural now we understand what information and incertitude means, tells that

knowledge about more random variables realizations can only lower the incertitude about

another one, and at worst does not bring any new information when they are independent.

Equivalently it means that the information brought by observing a random variable realization

having already observed two other ones cannot be larger than the information brought by

observing it having already observed just one other random variable realization.

Links with the Boltzmann entropy S = kB log(W ) of statistical physics can be established (W

is here the number of microstates of the system). From the information theoretical point of

view, it can be interpreted as the number of bits (up to a multiplicative constant as the natural

logarithm is used in physics) required to encode all the accessible microstates of the physical

system with constant energy, i.e. in the microcanonical ensemble. The Boltzman constant

is just here to fulfill the dimensionality requirement that the Boltzmann entropy times the

temperature has the dimension of an energy. The entropy of a physical system can also be

seen as its associated incertitude as it quantifies the information one would gain by measuring

precisely its microstate, which is impossible in practice.

3.5.2 The mutual information

Now we have formalized the measure of information or incertitude carried by random vari-

ables, a natural question is the definition of a measure I (X ,Y ) of the degree of correlation

between random variables, i.e. how much information observing one of them brings about

the other one: the mutual information. One could think that the previous definition of

conditionnal entropy would do the job, but it is not symmetric with respect to X and Y .

Assume you first observe Y (the output of a noisy channel for example), then what is the

remaining incertitude H(X |Y ) on X (the sent codeword)? It is the total incertitude about X ,

H (X ) minus the information gained about X (or equivalently minus the incertitude lost about

X ) from the observation of Y ’s realization, I (X ,Y ). Thus:

H(X |Y ) = H(X )− I (X ,Y ) (3.45)

⇒ I (X ,Y ) = H(X )−H(X |Y ) (3.46)

= H(X )+H(Y )−H(X ,Y ) (3.47)

= H(Y )−H(Y |X ) (3.48)
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where the two last equalities were obtained using the property (3.38) of the entropy. We obtain

a symmetric measure of the information contained in each variable about the other one, or

equivalently how much the observation of one of the two variable reduce the incertitude

on the other one. The equality (3.47) can be interpreted rewriting it as H(X ,Y ) = H(X )+
H(Y )− I (X ,Y ): the total information carried by the couple (X ,Y ) is the sum of the individual

informations minus the information counted twice, the mutual information, due to the

correlations between the two variables. The mutual information is null when the two variables

are independent, so observing one does not bring any information about the second one. Thus

mutual information can be seen as a measure of how much the correlated couple of variables

with probability measure PX Y (x, y) deviates from independent ones with measure PX (x)PY (y).

Is there a way to formalize this notion? The answer is given by the Kullback-Leibler divergence.

3.5.3 The Kullback-Leibler divergence

The appropriate object for estimating "distances" between distributions P (x) and Q(x) is the

Kullback-Leibler divergence. It measures how well the distribution Q describes the probabilis-

tic structure of P . It is defined as:

K L(P ||Q) := EP

(
log2

(
P (x)

Q(x)

))
=

∫
dxP (x) log2

(
P (x)

Q(x)

)
(3.49)

This is not really a distance as it is not symmetric nor verify the triangular inequality but still

verifies the properties we are interested in: K L(P ||Q) ≥ 0 with equality only if P = Q. Now

we can estimate how much PX Y differs from a factorizable measure PX PY like if (X ,Y ) were

independent:

K L(PX Y ||PX PY ) =
∫

d xd yPX Y (x, y) log2

(
PX Y (x, y)

PX (x)PY (y)

)
(3.50)

=
∫

d xd yPX Y (x, y) log2

(
PX |Y (x|y)

PX (x)

)
(3.51)

=
∫

d xd yPX |Y (x|y)PY (y) log2

(
PX |Y (x|y)

)−∫
d xd yPX Y (x, y) log2 (PX (x)) (3.52)

=
∫

d yPY (y)
∫

d xPX |Y (x|y) log2

(
PX |Y (x|y)

)−∫
d xPX (x) log2 (PX (x)) (3.53)

=−H(X |Y )+H(X ) (3.54)

= I (X ,Y ) (3.55)

where we have used the marginalization property
∫

d yP (x, y) = P (x). We find back the mutual

information, the measure of how much random variables are correlated, i.e. how much their

joint distribution is "far" from the factorized form: the greater the Kullback-Leibler divergence

is between PX Y and PX PY , the more correlated are X and Y and thus their mutual information

is larger.
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3.6 The Bayesian inference approach

Bayesian inference stands at the roots of today’s most sophisticated inference algorithms and

signal processing techniques for matrix reconstruction problems such as compressed sensing

and dictionary learning, error correcting codes, artificial intelligence, statistical arbitrage and

classification, large scale analysis of economical market or astrophysical data, bio-infomatics

and phylogenetics algorithms, decision making in automated systems such as planes, pattern

recognition, optimal control theory, decision helping for judges in courtroom or physicians

with automated diagnostics. It is even used in philosophy and social sciences. The list could

go on.

The strength of Bayesian inference resides in its very definition of being a general method

for combining in a mathematical model all the observed data and the a priori information

one have about the studied phenomenon or system. Let us formalize the basic principles of

Bayesian inference, that are useful in the present context. We thus focus on the sparse linear

estimation problem (3.18) but the method presented here is quite general. Many very nice

references can be found for more details [7, 24]. In particular, [10] discusses the advantages

and weaknesses of Bayesian inference with respect to the frequentist statistical methods.

3.6.1 The method applied to compressed sensing

Again, the problem is estimating s as accurately as possible from the knowledge of the fi-

nite data y generated from the linear relation (3.18) where the sensing matrix F is known

too. Estimating the matrix as well can be of interest such as in matrix factorization or blind

calibration problems [11, 55–60] but is out of the scope of the present thesis. This is done by

optimizing some deterministic cost function (3.25) in the convex optimization approach, but

in the Bayesian setting, we use a probabilistic point of view. To do so we define an intermediate

vector x to represent the signal, with its associated probability distribution P (x|y,θ) given the

observed data and some parameters linked to the prior knowledge about s (the dependence

on F is implicit). From the simple yet very powerful Bayes formula which form the core of

the Bayesian methodology, this posterior distribution is obtained as the product of the prior

distribution P0(x|θ) and the so called likelihood P (y|x,θ):

P (x|y,θ) = P0(x|θ)P (y|x,θ)∫
dxP0(x|θ)P (y|x,θ)

= P0(x|θ)P (y|x,θ)

P (y|θ)
(3.56)

The likelihood is the probability of the observed data given that the input would have been x

and the model parameters θ. It is obtained from the generating model knowledge: it enforces

the signal estimate to verify the system (3.18), i.e. to give back the actual observations. In

the AWGN case, the proper form is naturally given by a product of Gaussian densities: the

measures are independent of each other from the random design of the sensing matrix and

the authorized fluctuations of the estimated observations ỹ := Fx around the actual ones y are
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Gaussian distributed due to the Gaussian nature of the noise:

P (y|x,∆) =
M∏
µ

N (yµ|(Fx)µ,∆) (3.57)

= 1

(2π∆)M/2
exp

(
− M

2∆
||y−Fx||22

)
(3.58)

where we remind that ||y||p := 1/M

(∑M
i |yi |p

)1/p

is the rescaled `p norm. The prior allows

to include assumed knowledge about the solution s. From now on, the parameters θ are

considered fixed but we will see in sec. 4.3.8 how these can be learned efficiently in the

Bayesian framework if unknown. So if one assumes sparsity about the signal and the fact that

each of its entries have been generated independently from the same distribution, a proper

factorizable prior would be of the form:

P0(x|θ) =
N∏
i

[
(1−ρ)δ(xi )+ρφ(xi |θ̃)

]
(3.59)

where the parameters θ = [ρ, θ̃] are the probability ρ for a component to be part of the support

(sometimes referred as the density of the signal) and the parameters θ̃ that parametrize the

distribution φ( |θ̃) associated to the support components. This distribution can be shaped as

desired. This is in part thanks to the flexibility of the prior that Bayesian inference overcomes

convex optimization procedures, if used properly. This distribution is defined independently

of the observations: using the data to estimate the prior would be a mistake as the information

contained in the likelihood and the prior would be redundant.

Finally P (y|θ) = Z (y,θ) is the unknown probability of the data independently of the signal (at

fixed parameters θ), which can be interpreted as a partition function. P (x|y,θ) is called the

posterior because it is defined afterwards the data y has been obtained.

Convex `1 optimization procedures generally just "know" about sparsity of the solution,

whereas way more information about the solution structure can be included in the Bayesian

setting through the prior, such as how sparse the signal is (thanks to ρ) or what is the pre-

cise distribution of the support components. We could even design a prior enforcing hard

constraints, i.e. that strongly correlates the components of x, such as in the superposition

codes studied later in this thesis sec. 9 or component-wise priors, assuming that all the signal

components could have been generated from different distributions. This is for example

studied in [21] but is out of the scope of this thesis, where we always consider the signal

components to be i.i.d. This additionnal information (if matching well the true features of

the signal) allows inference from less data than convex optimization requires. As we will see,

Bayesian inference actually allows asymptotically to reach optimality in two distinct senses: i )

It allows to solve the inference problem (3.18) from the lowest possible sampling rate α= ρ

corresponding to as many samples as support components. This will be possible thanks to

message-passing sec. 4.3 combined with spatial coupling sec. 5.5, a technique intensively
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used in this thesis. i i ) It can find the solution that has the lowest MSE among all approximate

solutions, i.e. the minimum mean square error M MSE estimator. This is possible only if the

prior is the true distribution that has generated the random signal s: we call this the prior

matching or Nishimori condition where the second denomination comes from the statistical

physics vocabulary. In this case, the estimator is said to be Bayes optimal: the reducible error

is canceled and it remains only the irreducible and finite size errors, see sec. 3.1.6.

3.6.2 Different estimators for minimizing different risks: Bayesian decision the-
ory

Let us assume that we are able in some way to obtain the true posterior distribution (3.56),

which is actually a N P problem (see sec. 3.3). Actually this thesis is mainly about the ap-

proximate message-passing algorithm derived in sec. 4.3 which is able to efficiently solve

it.

The question now is how can we actually use the posterior to perform inference and estimate

s? The answer resides in the Bayesian decision theory. Very nice courses on the subject

are [7, 61, 62]. From this posterior, three different decisions seem naturals, each minimizing a

different risk definition. We already defined the risk (3.13) in sec. 3.1.6 but its definition can

be actually extended. We remain in the Bayesian framework considering the data y fixed as

in sec. 3.1.6. In full generality, the risk associated to a loss E(x̂,x) (i.e. an error estimate) is its

average with respect to the posterior distribution of the signal at fixed data:

R(x̂|y) :=
∫

dxP (x|y)E(x̂,x) (3.60)

It depends on the estimator x̂ and the data. The auxilliary vector x for which we have the

posterior P (x|y) (3.56) represents the signal s that we don’t know. The posterior can depend on

parameters θ, but we drop this dependency for simplicity. (3.13) is thus (3.60) where the loss

E(x̂,x) is taken to be the MSE(x̂,x) (3.12). The associated Bayes risk is (3.14).

A Bayesian decision is just an estimator that minimizes some risk. An important remark is that

from (3.14), it is easy to see that if x̂∗ is an estimator minimizing the Bayes risk (3.14) then:

∂x̂R(x̂)
∣∣

x̂∗ = 0 (3.61)

=
(
∂x̂

∫
dyP (y)R(x̂|y)

)∣∣
x̂∗ (3.62)

=
∫

dyP (y)∂x̂R(x̂|y)
∣∣

x̂∗ (3.63)

⇒ ∂x̂R(x̂|y)
∣∣

x̂∗ = 0 (3.64)

⇒ x̂∗ = argmin
x̂

R(x̂) = argmin
x̂

R(x̂|y) (3.65)

Thus minimizing the risk or the Bayes risk to take a decision by defining an estimator x̂∗ is
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actually perfectly equivalent.

The MAP estimator

One could think about taking the mode of the posterior, i.e. the signal that maximizes it. This

is referred as the maximum-a-posteriori M AP estimator:

x̂M AP = argmax
x

P (x|y) (3.66)

The M AP estimator is appropriate in cases where the information resides in the overall state

of the full vector, i.e. each individual or subset of components does not bring any information,

only the full vector has a meaning. The risk minimized by the M AP estimator is associated to

the following loss:

EM AP (x̂,x) = 1−δx̂,x (3.67)

Indeed:

argmin
x̂

∫
dxP (x|y)(1−δx̂,x) (3.68)

=argmin
x̂

(
1−

∫
dxP (x|y)δx̂,x

)
(3.69)

=argmin
x̂

(
1−P (x̂|y)

)
(3.70)

=argmax
x̂

P (x̂|y) (3.71)

we find back the M AP estimator (3.66).

The MARG estimator

A related estimator is the minimal error assignments M ARG estimator:

x̂M ARG = [
argmax

xi

P (xi |y)
]N

i (3.72)

which is the component-wise M AP estimator, i.e. it the concatenation of the M AP estimates

of the marginals P (xi |y) defined as:

P (xi |y) :=
∫

dx\i P (x|y) (3.73)

We have that x̂M AP = x̂M ARG if the posterior is factorizable over the estimate components, i.e.

P (x|y) = ∏N
i P (xi |y). The M ARG estimator minimizes the risk associated to the number of
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incorrectly infered components:

EM ARG (x̂,x) =
N∑
i

(1−δxi ,x̂i ) (3.74)

This is well suited when the components are i.i.d discrete like in the binary channel models,

that are classical noise models [23, 63] in communications.

The MMSE estimator

In the general model (3.18), we are interested in continuous signal and sensing matrix elements

and thus the notion of "exactness" of the solution is not really meaningful nor essential.

Anyway, as the precision of a computer is finite, we cannot hope to infer exactly a real value as

opposed to discrete ones. A better suited loss in this case is the MSE (3.12). The associated

estimate is denoted as the minimum mean square error M MSE estimator. The MSE(x̂,s) of

the M MSE estimate x̂ can be interpreted as the empirical variance of a Gaussian distribution

centered around the solution s that would have been sampled to generate the i.i.d components

of x̂. It is a quite natural loss to use in the continuous framework and even more when

the observations were corrupted by an AWGN such as in our case (3.18) because if we are

performing inference under the prior matching condition, the MSE(x̂,s) becomes a measure

correlated to the variance of the AWGN ξ.

What is the expression of the i th component of the M MSE estimator when we observed y? As

before, we minimize the risk (3.13) that can be estimated from the knowledge of the posterior

distribution. Differentiating it we obtain the estimator x̂i (y):

∂x̂iEx|y < (x̂−x)2 >= 2/N Ex|y(x̂i −xi ) = 0 (3.75)

⇒x̂i = Ex|y(xi ) = Exi |y(xi ) (3.76)

where Exi |y denotes the average with respect to the posterior marginal distribution of xi given

y (3.73). Thus in order to perfom M MSE estimation, we need the true posterior marginals. If

the estimated marginals are equal to the true ones, we say that the estimation is Bayes optimal,

i.e. it is the true M MSE and no solution can statistically make a better estimate given the data.

3.6.3 Why is the minimum mean square error estimator the more appropriate ?
A physics point of view

Now we can give a more fundamental justification for preferring the M MSE estimator to the

M AP or M ARG ones. The problems we are trying to solve are noisy, thus there exist an all set

of possible solutions to (3.18), each weighted by its posterior probability. In such problems,

the posterior can have a very complex shape which details depend on the observations y.

For example on Fig. 3.4, we show two different posterior distributions computed from two
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0(1/
p

N) 0(1/
p

N)

P (x̂|y1) P (x̂|y2)

x̂
x̂MMSE x̂MAP x̂MAP x̂MMSE

x̂

Figure 3.4 – These plots present two complex posterior distributions corresponding to two
different observation vectors y1 and y2 both related to the same signal s, the difference coming
from the noise ξ and measurement matrix F realizations. Are also represented the minimum
mean square error M MSE and maximum-a-posteriori M AP estimators in both cases. The
M AP estimator corresponds to the mode of the distribution, meanwhile the M MSE is the
typical value, i.e. averaged with respect to the posterior. We observe that due to the fluctu-
ations in the problem realization, small changes in the shape of the posterior can induce
large changes in the M AP estimator meanwhile the fluctuations of the M MSE one between
different observation realizations are small ∈O(1/

p
N ).

different measurement vectors y1 and y2 obtained from the same signal: the differences in the

observations come from the noise and measurement matrix realizations. The point is that

despite that these two measurements correspond to the same signal, their fluctuations modify

the estimated posterior which mode can fluctuate a lot. It can be that there are many local

maxima in the posterior with small differences but corresponding to totally different signal

estimates and depending on the observations, the mode changes radically. In constrast, the

M MSE is robust to such fluctuations of the observations as it an averaged quantity, which

thus cancels out the fluctuations in the thermodynamic limit. In statistical physics, we would

say that the M MSE estimate is self-averaging, like most of the thermodynamical quantities

(average energy, average number of particules, total magnetization, etc). It means that its

value in finite size problems converges to its asymptotic value as N increases (which is the

same as its average value with respect to the disorder, here the noise and matrix realizations)

and its relative fluctuations around this mean are ∈O
(
1/
p

N
)
. Another way of seeing it is that

the M AP estimator is a zero temperature quantity: it does not take into account the entropic

contribution, i.e. there is no notion of average over the thermal fluctuations interpreted here

as the various weighted solution estimates. Fig. 3.5 is a strange posterior distribution with the

mode being a rare event: sampling this distribution, we would obtain the M AP estimate very

rarely as opposed to many realizations that would be close to the M MSE estimate as there are

so many of them, despite being a bit less probable.

After this dicussion, we understand better why the physics community became interested in
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x̂MMSE x̂MAP

x̂

P (x̂|y1)P (x̂|y1)

Figure 3.5 – This strange posterior illustrates that without taking the entropic constribution
into account by selecting the M AP estimator, we would miss the essential contribution of
the solutions weighted by the big bump of the distribution. Instead, the M MSE estimator
properly weights each solution and gives the typical estimate.

these topics: through the link with spin glass physics where the distributions are also very

rough, like in constraint satisfaction problems as well [1, 24, 64]. Actually, compressed sensing

itself can also be seen as a finite temperature constraint satisfaction problem or a densely

connected (i.e. with infinite range interactions) spin glass model of continuous spins in an

external field, where the interactions defined by the measurement matrix and observations

enforce the state of the spins to verify the linear system (3.18) (up to noise, interpreted as the

temperature) and the external field would be the prior in the Bayesian setting. The problem of

inferring the signal that generated the measurements (or "planted" solution in the physics

language) by estimating the M MSE solution is equivalent to sampling from the Boltzmann

measure of the appropriate spin glass model given by the Hamiltonian (4.26), whereas the

maximum-a-posteriori estimate is given by its ground state (see [34, 35] for a more detailed

discussion of the links between compressed sensing and spin glass physics).

Similar mappings can be established for many other computer science, inference and machine

learning problems [1, 14, 57, 65, 66] where the typical phenomenology of spin glasses is ob-

served: phase transitions and dynamical slowing down of the reconstruction algorithms near

the critical "temperature" (the critical measurement rate in compressed sensing), see sec. 5.1.1.

Furthermore, message-passing algorithms such as belief propagation presented in sec. 4.2.1

can be interpreted in terms of the cavity method used on single instances (see sec. 4.2.2),

although the cavity method has been originally developed for computing thermodynamical

quantities (i.e. averaged over the source of disorder) in spin glasses [24, 67].

So one needs to compute the marginal posterior distributions (3.73) in an efficient manner

to perform M MSE estimation. This is in general a very difficult problem, as it is equivalent

to compute the normalization P (y|θ) of the posterior which plays the role of the partition
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function (5.2). Hopefully, a sub-field of research in inference is interested in the developement

of efficient algorithms specifically designed for this task. Classical methods are based on monte

carlo algorithms that directly sample the posterior for estimating it. But this distribution can

have a very rough shape with many local minima like in Fig. 3.4 which can block this kind of

dynamical algorithms (it must be understood that Fig. 3.4 is just a projection, in reality the

distribution is defined over a very high dimensional space). Fortunatly it exists methods that

are way more efficient such as the so-called message-passing algorithms that will be explained

in great details and fully derived in this thesis.

3.6.4 Solving convex optimization problems with Bayesian inference

It is important to notice that the canonical convex optimization problems can be solved in

the Bayesian framework as well. Looking at the LASSO regression (3.26) problem, we see that

it is perfectly equivalent to find the mode, i.e. the M AP estimate associated to the posterior

distribution P (x|y,∆,λ) ∝ P (y|x,∆)P0(x|λ):

x̂1 = argmax
x

P (x|y,∆,λ) = argmax
x

exp

(
− M

2∆
||y−Fx||22 −λ′N ||x||1

)
(3.77)

if we put ∆= M/2 and λ′ =λ/N , where we have used the likelihood (3.58) and the factorizable

prior is P0(x) ∝ exp
(−λ′N ||x||1

)
. This prior is refered as the double exponential or Laplace

prior. The same is true for the ridge regression (3.27) using an i.i.d Gaussian prior P0(x) =∏N
i N (xi |0,1/(2λ)). In the case of this Gaussian prior, the posterior mode is also the posterior

mean of P (x|y,∆,λ), but it is not the case with the Laplace prior. In this case the posterior

mode solves the LASSO regression and leads to a sparse solution whereas the posterior mean

of P (x|y,∆,λ) is not sparse [8].

3.7 Error correction over the additive white Gaussian noise channel

We now present very briefly coding theory and error correcting codes. A very complete and

comprehensive book on the subject is [23]. Error correcting codes are of interest in the

statistical physics community for a long time as the decoding problem can be interpreted as

computing magnetizations of disordered spins systems [65, 68–73]. Very nice and modern

references emphasizing the numerous links between coding theory and diluted spin-glass

models can be found in [63, 66].

The aim of coding theory is to find the "best way" to encode a message such that once sent to

some receiver through a noisy channel, it can be decoded, i.e. recovered despite of the errors

induced by the channel. What does the best way means? Three main considerations must

be taken into account for a coding/decoding scheme: i ) its robustness to the noise, i i ) its

symbolic cost and i i i ) the existence of an efficient decoder. A good scheme thus requires to be

robust, in the sense that in regimes where the scheme should work (this notion of "favorable

regime" will be discussed in details in sec. 5.1), its performances should decrease smoothly
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Figure 3.6 – Graphical representation of a generic noisy channel in the probabilistic framework:
the codeword or input x is designed through its prior PX , the channel by the likelihood PY |X
of the output y and the aim is to estimate the posterior distribution PX |Y of the input knowing
the output in order to perform decoding through estimators.

as the noise influence increases: a scheme which performances are highly dependent on the

precise noise level or which correction does not improve as the noise lowers is not reliable.

Then must be considered its symbolic cost, i.e. what is the true quantity of information that

one can send reliably thanks to this scheme each time a symbol is sent through the noisy

channel. This is important in practical situations as each sent symbol has a cost in energy and

time. If one could send symbols without any cost, the error correction would be easy: just

send many times the same message (this is called a repetition code), then the receiver just

makes a majority choice by selecting for each symbol of the message the one that has been

received the most or by averaging over all the received noisy realizations of the symbols in

the continuous setting. Finally, even these two conditions are optimized, it is useless if the

receiver has no way to decode the message, i.e. it must exist a decoder which performs quickly,

is itself robust to noise and has good finite size properties, see sec. 3.1.6.

3.7.1 The power constrained additive white Gaussian noise channel and its capac-
ity

The communication channel model we are interested in is the i.i.d AWGN channel with

zero mean and variance ∆, a classical model in communication also extensively studied by

the physics community, as in [74, 75]. A generic noisy channel model in the probabilistic

framework is represented on Fig. 3.6. It is modeled in the Bayesian framework through the

likelihood of an output y given the input ỹ of the channel, which is in the i.i.d AWGN case:

P (y|ỹ,∆) =
M∏
µ

N (yµ|ỹµ,∆) (3.78)

A channel which likelihood is factorizable due to the independence assumption like here is

referred as a memoryless channel [23]: all output symbols (the components of y) are corrupted

independently one of the other. The input is called the codeword, and is the encoded version of

the original message s we want to send (the codeword can be the message itself, as in chap. 10).

A natural question is wether there exist a maximum rate of information one can send reliably

47



Chapter 3. Statistical inference and linear estimation problems for the physicist layman

through this commmunication channel, and this independently of the coding/decoding

scheme. This notion called the capacity C has been formalized by Shannon in his celebrated

paper [54] which started the field of communication and information theory. The noisy-

channel coding theorem states that for any ε> 0 and for any transmission rate R <C , there

exist an encoding/decoding scheme transmitting data at rate R which error probability is less

than ε, for a sufficiently large block length, the size of the codeword. Also, for any rate R >C ,

the probability of error at the receiver goes to one as the block length goes to infinity, for any

coding/decoding scheme.

As discussed in sec. 3.5.2, the mutual information between the noisy ouput y and the message

s represents the information gained about s when we observed y. As long as it is positive,

it means that some information about the message is accesible through the observation

of the channel output: a good coding/decoding scheme increases this mutual information

maintaining the existence of an associated efficient decoder, able to maximally exploit it. A

capacity achieving scheme allows to communicate asymptotically until the capacity of the

channel.

Of course, we always consider that the coding scheme ỹ = f (s) is a bijection and thus finding

back the codeword ỹ is equivalent to decode s and vice-versa. The capacity is thus naturally

defined as the maximum mutual information of the couple (s,y) or equivalently of the couple

(ỹ,y) as ỹ is a deterministic function of s. Maximum over what? As the likelihood is an inherent

characteristic of the channel, the only degree of freedom is the codeword design P0(ỹ) that

directly follows from the message design P0(s) and coding scheme f . Thus the capacity of a

communication channel is:

C := max
Pỹ

I (ỹ,y) = max
{Ps, f }

I (ỹ(s, f ),y) (3.79)

The second equality underlines that it is perfectly equivalent to consider directly the design

of the codeword or the design of the message and the coding scheme, which is the usual

way. But in chapter chap. 10 the codeword is directly the signal, so the first equality is more

appropriate. An important remark is that if one could send codewords with components of

arbitrary amplitude through the channel, error correction would be useless as the relative

noise (relative to the codeword amplitude) could be set to arbitrary small values. We thus

always consider the codeword to be power constrained, i.e. we fix its power:

||ỹ||22 =
∫

d ỹP (ỹ)ỹ2 = P (3.80)

In this way it can be compared to the noise variance to know its relative importance. The

first equality in the power definition comes from the fact that the ỹ are i.i.d. from the i.i.d

assumption of the matrix elements in (3.18). A larger power requires more energy to input in

the channel. The only relative parameter of interest is thus the so-called signal to noise ratio

defined as snr := P/∆.
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Computation of the capacity of the i.i.d additive white Gaussian noise power constrained

channel

Let us compute the capacity of the power constrained AWGN channel. To do so, starting from

the mutual information, we define a Lagragian to enforce the distribution of the codeword to

be normalized and to have fixed power. We place ourselves in the scalar case, the codeword

having i.i.d components, we just need to obtain the distribution of one component:

L = I (ỹ , y)+λ
(∫

d ỹP (ỹ)ỹ2 −P

)
+γ

(∫
d ỹP (ỹ)−1

)
(3.81)

=
∫

d ỹd yP (ỹ)P (y |ỹ) log2

(
P (y |ỹ)

P (y)

)
+λ

(∫
d ỹP (ỹ)ỹ2 −P

)
+γ

(∫
d ỹP (ỹ)−1

)
(3.82)

where we used the form (3.51) for the mutual information. Now we perform the function-

nal derivative of the Lagrangian to find its optimum with respect to the codeword/input

distribution, that we are looking for:

δL

δP (ỹ∗)
=

∫
d ỹδ(ỹ − ỹ∗)

(∫
d yP (y |ỹ) log2

(
P (y |ỹ)

P (y)

)
+λỹ2 +γ

)
−

∫
d ỹd yP (ỹ)P (y |ỹ)

P (y |ỹ∗)

P (y)
= 0 ∀ ỹ∗ (3.83)

where the last term has been obtained using:

δP (y)

δP (ỹ∗)
= δ

δP (ỹ∗)

∫
d ỹP (ỹ)P (y |ỹ) =

∫
d ỹδ(ỹ − ỹ∗)P (y |ỹ) = P (y |ỹ∗) (3.84)

Now we notice that this last term of (3.83) is equal to −1. Plugging the fact that the likelihood

of the channel ouput is Gaussian in it and after integrating over ỹ , (3.83) simplifies to:∫
d yN (y |ỹ∗,∆) log2

(
P (y)

)=λ(ỹ∗)2 + γ̃ (3.85)

where we used
∫

d yN (y |ỹ∗,∆) log2

(
N (y |ỹ∗,∆)

) =−1/2(1+ log2(2π∆)) and we have put all

the constants in γ̃. Using a Taylor expansion for log2(P (y)) = a0 +a1 y +a2 y2 +a3 y3 + ..., this

last equality can be obtained only if the expansion is such that ai = 0 ∀ i 6= {0,2}, thus the

ouput distribution P (y) is Gaussian with 0 mean and a unknown variance σ2 to find. We

re-write it using the likelihod:

P (y) =N (y |0,σ2) =
∫

d ỹP (y |ỹ)P (ỹ) =
∫

d ỹN (y |ỹ ,∆)P (ỹ) (3.86)

The last equality can only be fulfilled if the codeword distribution P (ỹ) = N (ỹ |0,P ) is a

centered Gaussian, its variance being fixed by the power contraint (3.80). It implies that the

channel ouput variance is the sum of the power and noise variance σ2 = P +∆ as the noise

and inputs are independent. Now we know the best codeword distribution, we can compute
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the capacity from (3.79) and and (3.48):

C =−H(Y |Ỹ )+H(Y ) (3.87)

=
∫

d ỹd yP (ỹ)P (y |ỹ) log2

(
P (y |ỹ)

)−∫
d yP (y) log2

(
P (y)

)
(3.88)

=
∫

d ỹd yN (ỹ |0,P )N (y |ỹ ,∆) log2

(
N (y |ỹ ,∆)

)
−

∫
d yN (y |0,P +∆) log2

(
N (y |0,P +∆)

)
(3.89)

=−1

2

(
1+ log2(2π∆)

)+ 1

2

(
1+ log2(2π(P +∆))

)
(3.90)

= 1

2
log2 (1+ snr) (3.91)

This is the maximum quantity of information in bits one can hope to transmit reliably per

symbol sent through the i.i.d AWGN channel, and it increases with the snr as it should. One

goal in communication theory over the AWGN channel is thus to find an encoder f for the

message s such that the codeword is Gaussian distributed in order to get as close as possible

to the capacity. Also one must derive an associated decoder to find back the message s

from the observation of the noisy observation y of the codeword. Such a strategy, the sparse

superposition codes and the associated message-passing decoder will be studied in this thesis

in great details, see sec. 9.

3.7.2 Linear coding and the decoding problem

Now we have presented the AWGN channel and quantified the maximum rate for reliable

communication on this channel, the question is how to reach it? Many coding strategies are

possible, but of particular interest in this thesis is linear coding, ỹ = f (s) = Fs. The codeword is

thus a linear combination of the basis F elements, which vector of coefficients is the message.

This scheme is of interest for diverse reasons. First, the encoding procedure is trivial, it requires

only a matrix multiplication which is of complexity O(N 2) in the general case, but using

structured operators, it can be reduced to O(L log(N )). Second, this coding strategy has good

minimal distance d . This notion is fundamental and allows for a geometrical interpretation of

the error correction problem. First we define a code C (also referred as a codebook) as the

ensemble of allowed codewords by the coding scheme. The minimal distance of a code is the

minimal distance between two codewords of the code. The distance is expressed in Hamming

distance in the discrete case, i.e. the number of different components between codewords but

in the present continuous case, an appropriate distance is the `2 squared norm between two

codewords:

d := min
ỹ,ỹ′∈C

||ỹ− ỹ′||22 (3.92)
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Figure 3.7 – Two different codes are represented, the codewords being the black dots. The code
on the left is reliable as the minimal distance d between two codewords is larger than (two
times) the noise variance which is the typical distance between the vector that outputs the
AWGN channel (the red dot) and the actual sent codeword, the blue one. Here, the decoder
that will output the closest neighboring codeword of the channel output selects the encircled
codeword which is the transmitted one. On the opposite, the right code is not reliable, as there
are many codewords closest to the channel output than the transmitted codeword as d <∆.
The decoder will output the encircled codeword which is a mistake.

Basically, a decoder will output the closest neighboring codeword of the noisy channel output

y in the codebook:

ŷ = argmin
ỹ∈C

||ỹ−y||22 (3.93)

Thus an error in decoding is highly probable if d is small compared to the noise variance as the

noisy channel will typically ouput a vector at a distance ∈O(∆) of the transmitted codeword

and thus if d is of the same order or smaller, there is no chance to distinguish between the good

codeword and its closest neighbors, as represented on the right part of Fig. 3.7. In opposite, if

d >∆ as on the left part of the figure, the code is reliable because the closest neighbor of the

channel output is the transmitted codeword with high probability. The distance can be related

to the snr noticing that:

d ≤ ||ỹ||22 +||ỹ′||22 ≤ 2P (3.94)

⇒d ′ := d

∆
≤ 2 snr (3.95)

where d ′ is a rescaled distance by the noise variance. Thus if the snr is too small, there is

no way to have a minimal distance large enough to avoid wrong decoding. The quality of

the error correction thus depends also strongly on the performances of the decoder and its

ability to distinguish between codewords with small distance between them (but larger than

∆). Hopefully there exist very efficient algorithms such as the approximate message-passing
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algorithm (see sec. 4.3) which relies on the linearity of the constraints, another reason for

choosing linear coding.

A last remark follows from the geometrical understanding given by the Fig. 3.7 and answers the

question: Why not to directly send the message? Why is encoding necessary? The coding strategy

is here to project the messages in a higher dimensional space, such that the distances between

the codewords bijectively associated to the messages are larger than the initial distances

between messages, and in this way, the decoding of the codewords is more robust to the noise

influence.
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4 Mean field theory, graphical models
and message-passing algorithms

This chapter is devoted to the mean field theory and message-passing algorithms for graphical

models, the central algorithmic tools used in this thesis.

We start by introducing the mean field theory and the variationnal method used to compute

approximations of the free energy. We will see that the free energy allows to recast inference

problems as optimization ones. In addition, algorithms can be derived as fixed point equations

associated with these approximated free energies. We will see how this kind of approximation

is naturally justified when finite statistics is known about a system thanks to the maximum

entropy criterion. We will apply the methodology to compressed sensing after having defined

the Hamiltonian of the problem, and we will derive the mean field algorithm for compressed

sensing. We then introduce the notion of factor graphs, a nice tool to represent complex

statistical dependencies among variables and very useful to understand how message-passing

works.

Then we will push further the variational method using a more advanced approximation that

takes into account dependencies among variables, namely the tree graph or Bethe approxima-

tion. We will start by presenting the belief propagation algorithm, a very powerful inference

tool for solving the marginalization problem, among others. We will see how the belief propa-

gation equations can be derived when the probability measure to sample is assumed to be of

the Bethe form that will be presented. We will then show that the Bethe free energy and belief

propagation fixed points are the same. The Bethe free energy will be written in terms of the

quantities computed iteratively by belief propagation.

We will realize that this algorithm cannot be straightforwardly applied to problems defined

over continuous variables on dense graphs, and we will thus derive an appropriate algorithm

for this case, the main tool of this thesis: the approximate message-passing algorithm. The

derivation will be performed in two different ways, both starting from the belief propagation

equations. We will present in a simple fashion how this algorithm works and give the building

blocks necessary to construct an approximate message-passing algorithm for a given problem.

Finally we will derive the asymptotic limit of the Bethe free energy on dense graphs with linear
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constraints, which fixed points are the ones of the approximate message-passing and which

can be expressed in terms of the quantities computed by the algorithm. This will be useful

in order to derive learning equations for unknow parameters in the problem through the

expectation maximization procedure. In this method, the paramaters to learn are updated in

the direction that optimize this free energy, on in general, the cost function of the problem.

4.1 Bayesian inference as an optimization problem and graphical

models

We have presented in sec. 3.5 the notion allowing for quantification of the infomation carried

by a probability distribution or equivalently its uncertainty, the entropy, and defined the

equivalent of a distance between distributions. Let us see how we can use these tools to

perform inference by approximating the true posterior distribution (3.56) which is most of the

time very hard to compute exactly but yet required to perform minimum mean square error

estimation, see sec. 3.6.2: it selects among all the possible θ values the most probable one.

4.1.1 The variational method and Gibbs free energy

When the posterior P (x|θ) (or any other distribution) is too complex to compute exactly,

one need to approximate it in some way. To do so, we define an approximated distribution

as Q(x|θQ ) that can depend on some parameters θQ . Now the question is, how to choose

them? We can use the natural idea of minimizing the "distance" between our approximated

distribution and the true posterior: we will thus optimize the Kullback-Leibler divergence

(3.49) between the two. We want to compute K L(Q||P ). Why not K L(P ||Q) instead, as the

Kullback-Leibler divergence is not symmetric? Despite we know the formal expression of the

posterior, we could not compute the required averages with respect to it (or the variationnal

method would be useless) as it is equivalent to compute the partition function. In opposite,

we can compute averages with respect to Q if it is simple enough. It is actually chosen in

this purpose. Without loss of generality, we assume a Boltzmann form for the posterior

P (x|θ) = exp(−E(x|θ))/Z (θ). Forgetting about the log(2) basis in (3.49) as it does not change

the fixed points of the free energy, we obtain:

K L(Q||P ) =
∫

dxQ(x|θQ ) log

(
Q(x|θQ )

P (x|θ)

)
(4.1)

=
∫

dxQ(x|θQ )E(x|θ)+
∫

dxQ(x|θQ ) log
(
Q(x|θQ )

)+ log(Z (θ)) (4.2)

= EQ|θQ (E(x|θ))−H(Q|θQ )−F (θ) (4.3)
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where we recognized the entropy H(Q|θQ ) (3.34) and the Helmotz free energy (or just free

energy) at fixed parameters θ, the true potential function of the problem:

F (θ) :=− log(Z (θ)) (4.4)

= EP |θ (E(x|θ))−H(P |θ) (4.5)

The second equality is obtained by writing the entropy (3.34) of the posterior P in its Boltzmann

form. This free energy is not computable as its knowledge is equivalent to the computation

of the true partition function Z (θ), or equivalently of the posterior. But this form suggests

the definition of a variational free energy or Gibbs free energy associated to the approximate

distribution Q:

FQ (θQ ) := EQ|θQ (E(x|θ))−H(Q|θQ ) (4.6)

From this and (4.3) we obtain the following important equality that stands at the roots of the

variational method:

FQ (θQ ) = F (θ)+K L(Q||P ) (4.7)

and as K L(Q||P ) ≥ 0 with equality only if Q = P , we have that FQ (θQ ) ≥ F (θ). This validates

a posteriori that the best parameters for Q are given by those minimizing K L(Q||P ) as it

correponds to the ones that minimize the variational free energy, lower bounded by the true

one. The advantage with the variational formalism is that the Gibbs free energy (4.6) can be

quite easy to compute for an appropriate Q and the free parameters θQ optimal values are

computed by optimizing it with respect to them.

4.1.2 The mean field approximation

The most natural approximation for Q in the variational method is the so-called mean field

approximation, where one assumes that Q is factorizable over subsets of variables {xa :=
[xa

1 , . . . , xa
na

]}G
a that can overlap, where na is the number of variables in the subset a:

Q(x|θQ ) = 1

Z (θQ )

G∏
a
ψa(xa |θQ ) (4.8)

= 1

Z (θQ )
exp

(
−

G∑
a

Ea(xa |θQ )

)
(4.9)

= 1

Z (θQ )
exp

(−E(x|θQ )
)

(4.10)

where ψa(xa |θQ ) is some function of the subset xa . We call it the compatibility function,

constraint or factor a. The second form is the associated Boltzmann form, where we define
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the "energy" assocated to the compatibility function a:

Ea
(
xa |θQ )

)
:=− log

(
ψa(xa |θQ )

)
(4.11)

⇒E
(
x|θQ )

)= G∑
a

Ea
(
xa |θQ )

)
(4.12)

E
(
x|θQ )

)
is the total energy of the system i.e. the Hamiltonian, referred as the cost function

in statistical inference and computer science. The easiest mean field approximation to deal

with, sometimes referred as the naive mean field approximation, corresponds to consider the

subsets as being the individual variables, so to write Q as a fully factorizable distribution over

the signal components, considered as independent:

Q(x|h) =
N∏
i

Qi (xi |hi ) (4.13)

where Qi is the approximate marginal distribution of xi (Qi can be trivially computed by

normalizing any factor ψi , in this way Q is already normalized). The denomination of mean

field approximation comes from the interpretation of the parameters {hi }N
i as local fields felt

by the variables that summarize the interactions with the other ones.

4.1.3 Justification of mean field approximations by maximum entropy criterion

Assume that you have some partial knowledge about some complex system made of the

interacting variables x, such as the first and second order statistics of x. What is the best mean

field approximation Q you can do of the true unknown distribution P (here even its formal

expression can be unknown)? A possible answer resides in the maximum entropy criterion. It

is a kind of formalization of the Occam’s razor: if one have some knowledge about a system, he

should use a model that is in agreement with it, but does not assume anything additional. So in

a sense, one should use the minimal model that fits the assumptions or the knowledge about

the system. As we speak about statistical models represented by distributions, the natural

object to quantify how much we constrain a distribution is through its entropy (3.34).

As we will derive, the Ising model is the mean field approximation of maximum entropy

when only the first and second order statistics of the variables {xi }N
i are known, at least

empirically. To see that, we use the method of Lagrange multipliers and define the La-

grangian of a distribution Q starting from its entropy and defining Lagrange multipliers

{hi }N
i that fix its marginals {mi := ∫

d xi xi Qi (xi )}N
i and {Ji j }N ,N

i j for the second moments
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{Σi j := ∫
d xi d x j xi x j Qi j (xi , x j )}N ,N

i , j in addition of Γ for its normalization:

L (Q,h,J,Γ) = H(Q)+
N∑
i

hi

(∫
d xi xi Qi (xi )−mi

)

+
N ,N∑
i , j

Ji j

(∫
d xi d x j xi x j Qi j (xi , x j )−Σi j

)
+Γ

(∫
dxQ(x)−1

)
(4.14)

Now to find the extremum of this object, we weakly perturbe the distribution Q →Q +δQ and

compute the new Lagrangian which is:

L (Q +δQ,h,J,Γ) =L (Q,h,J,Γ) (4.15)

+
∫

dxδQ(x)

[
− log(Q(x))−1+

N∑
i

hi xi +
N ,N∑
i , j

Ji j xi x j +Γ
]
+O(δQ2) (4.16)

At the maximum, the first order must cancel out for any x, thus the integrand must always be

zero, giving the shape of the distribution Q:

0 =− log(Q(x))−1+
N∑
i

hi xi +
N ,N∑
i , j

Ji j xi x j +Γ (4.17)

⇒Q(x|h,J) = 1

ZQ (h,J)
exp

(
N∑
i

hi xi +
N ,N∑
i , j

Ji j xi x j

)
(4.18)

= 1

ZQ (h,J)

N∏
i
ψi (xi |hi )

N ,N∏
i , j

ψi j (xi , x j |Ji j ) (4.19)

where we have put all the x independent terms into the normalization constant ZQ (h,J). We

find back a mean field approximation of the form (4.8), and thus understand now that it

corresponds to the minimal model with fixed finite statistics. From this we interpret the

lagrange multipliers {hi }N
i as external fields and {Ji j }N ,N

i , j as two points interactions between

the variables. Taking into account higher order statistics would lead to more complex models,

but in most of the practical situations, higher than second order statistics are difficult to extract

from finite data because the number of samples required increases quickly with the order of

the moment we want to compute. This follows from the fact that the larger the moment, the

larger the amplitude of the fluctuations of its empirical estimate around its true value.

A remark is that interpreting the constraints we want to enforce for the distribution Q through

(4.14) as the average energy part in the variational free energy (4.6), the Lagrangian could

be interpreted as a negative variational free energy. But the method is different in the sense

that when we associate a Gibbs free energy FQ to a distribution, we assume its form that can

depend on parameters and the optimization of FQ gives the best parameters that one should

use in conjunction with this particular form of distribution. In the method of the maximum

entropy, one assumes constraints that must verify the distribution, but not its form, and the

optimization of the Lagrangian gives the form of the distribution one should use. Then, in
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order to find the best parameters introduced during the derivation to enforce the contraints,

the Lagrange multipliers, one can a posteriori use the variational method. The two methods

are thus complementary in a sense.

4.1.4 The maximum entropy criterion finds the most probable model

Let us give a more precise sense to the maximum entropy principle when used to find the

value of a parameter of some variational distribution depending on it. Assume you have access

to some data y that you assume generated by P (y|θ) parametrized by a parameter θ. The

maximum entropy criterion states that its "best" value θ∗ is the one maximizing the entropy

of its posterior P (θ|y) ∝ P0(θ)P (y|θ):

θ∗ = argmax
θ

[
−

∫
dyP (θ|y) log2

(
P (θ|y)

)]
(4.20)

⇒ 0 =−
∫

dy
∂P (θ|y)

∂θ

(
log2

(
P (θ|y)

)+1
)

(4.21)

⇒ 0 = ∂P (θ|y)

∂θ
(4.22)

The last equality shows that the maximum entropy criterion for choosing θ is thus equivalent

to take the maximum of the posterior of θ, or just its likelihood P (y|θ) if no prior is assumed.

The maximum entropy criterion is thus perfectly equivalent to the maximum-a-posteriori

M AP principle, discussed in sec. 3.6.2.

4.1.5 Factor graphs

Let us see now how we can define graphical representations of complex functions such as

posterior distributions in the Bayesian framework. The appropriate tool are the so called factor

graphs. In full generality, they are used to represent the dependency structure among variables

encoded through a factorizable function Q(x), that can depends on many parameters, so of

the form (4.8) (the partition function Z can be forgotten for a generic function, but must be

present if we want Q to be a probability distribution).

A factor graph is a bipartite graph G = {V ,F ,E } where en edge e ∈ E is present between a

variable node v ∈ V and a factor node f ∈ F only if the factor ψ f (x f \v , xv ) present in the

factorized form of Q depends on xv . The circle nodes are associated to the variables while

squares represent the factors. For example, if we want to associate a factor graph to the

posterior distribution of the compressed sensing problem, we write it in its factorized form.

Using (3.56) combined with (3.58) and (3.59), we see that the posterior decomposes as a

product of functions over the single components due to the prior part and over the ensemble

of components due to the likelihood. The associated factor graph is given by Fig. 4.1, and the

factorizable structure of the posterior becomes clear. On the graph are representd objects that

will be defined in sec. 4.2.1, namely the cavity messages.
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prior

m
iµ(xi)

m̂µi(xi)

P i
0(xi)

N (yµ|(Fa)µ,�)
likelihood

Figure 4.1 – Factor graph associated with a linear estimation problem under i.i.d AWGN
corruption. The squares are the factors or constraints. Here they are associated to the prior
and likelihood terms. The factors are connected to the variables (circle nodes) they depend on
in their functionnal representation. The node-to-factor miµ(xi ) and factor-to-node m̂µi (xi )
cavity messages are represented. They should stand on the same edge as they share same
indices but we put them on different ones for sake of readibility.

4.1.6 The Hamiltonian of linear estimation problems and compressed sensing

In the Bayesian framework, we can associate an Hamiltonian to the linear estimation problem

(and thus to compressed sensing). We start by rewriting the posterior distribution in the

Boltzmann form:

P (x|y,θ) = 1

Z (θ)
exp

(−E(x|y,θ)
)

(4.23)

⇒E(x|y,θ) =− log(P0(x|θ))− log
(
P (y|x,θ)

)
(4.24)

From (3.56) combined with (3.58) and (3.59) we get the Hamiltonian, denoted by E not to

confuse it with the entropy H (the notation generally used in physics for the Hamiltonian, the
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entropy symbol being S):

E(x|y,θ) =−
N∑
i

log
(
P i

0(xi )
)
+ 1

2∆

M∑
µ

(
yµ− (Fx)µ

)2 + M

2
log(2π∆) (4.25)

=−
N∑
i

log[(1−ρ)δ(xi )+ρφ(xi )]+ 1

2∆

M∑
µ

(
yµ− (Fx)µ

)2 + M

2
log(2π∆) (4.26)

4.1.7 Naive mean field estimation for compressed sensing

Let us now derive the naive mean field solution, approximating the true posterior as fully fac-

torizable (4.13). In order to find what are the best parameters of the approximate distribution,

we first need to write the variational free energy for the present problem. Using the variational

free energy definition (4.7) we obtain:

FQ (θQ ) =−
N∑
i
EQi

(
log(P i

0(xi ))− log(Qi (xi ))
)

+ 1

2∆

M∑
µ
EQ

((
yµ− (Fx)µ

)2
)
+ M

2
log(2π∆) (4.27)

=
N∑
i

K L(Qi ||P i
0)+ M

2
log(2π∆) (4.28)

+ 1

2∆

M∑
µ

(
y2
µ−2yµ(Fa)µ+

N ,N∑
i , j 6=i

Fµi Fµ j ai a j +
N∑
i

F 2
µi (vi +a2

i )

)
(4.29)

=
N∑
i

K L(Qi ||P i
0)+ M

2
log(2π∆)+ 1

2∆

M∑
µ

(
[yµ− (Fa)µ]2 + (F2v)µ

)
(4.30)

where we have used the Kullback-Leibler divergence definition (4.1), the additivity property

of the entropy for independent variables (3.39) together with the definition of the marginal

means and variances of Q:

ai :=
∫

d xi xi Qi (xi ) (4.31)

vi :=
∫

d xi x2
i Qi (xi )−a2

i (4.32)

Now that we have the naive mean field Gibbs free energy, we can figure out the expression

of the marginals {Qi (xi )}N
i . We perturbe one of the marginals Qi →Qi +δQi , the associated

perturbed distribution is denoted as Q̃. The perturbation term of the Gibbs free energy must
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cancel at the minimum for any x:

FQ (θQ )−FQ̃ (θQ ) = 0

⇒
∫

d xiδQi (xi )

[
1

2∆

M∑
µ

{
xi 2Fµi

(
N∑

j 6=i
Fµ j a j − yµ

)
+x2

i F 2
µi

}
+1+ log

(
Qi (xi )

P i
0(xi )

)]
= 0

⇒Qi (xi |F,a) = 1

Zi (F,a)
P i

0(xi )exp

(
xi

∆

M∑
µ

Fµi

(
yµ−

N∑
j

Fµ j a j +Fµi ai

)
− x2

i

2∆

M∑
µ

F 2
µi

)
(4.33)

Defining the following quantities:

Σ2
i := ∆∑M

µ F 2
µi

(4.34)

Ri := ai +
Σ2

i

∆

M∑
µ

Fµi
(
yµ− (Fa)µ

)
(4.35)

we obtain after simplification of (4.33) the following form of the marginal distributions for

compressed sensing under the naive mean field approximation: a product of the prior and a

Gaussian mean field that summarize the influence of all the other variables on the i th one:

Qi (xi |Ri ,Σ2
i ) = 1

Zi (Ri ,Σ2
i )

P i
0(xi )exp

(
− (xi −Ri )2

2Σ2
i

)
(4.36)

From this we can compute the Kullback-Leibler divergence (3.49) appearing in the previous

mean field free energy (4.30):

N∑
i

K L(Qi ||P i
0) =

N∑
i

∫
d xi Qi (xi ) log

exp
(
− (xi−Ri )2

2Σ2
i

)
Zi

 (4.37)

=
N∑
i

∫
d xi Qi (xi )

[
− (xi −Ri )2

2Σ2
i

− log(Zi )

]
(4.38)

=−
N∑
i

(
log(Zi )+ vi + (ai −Ri )2

2Σ2
i

)
(4.39)

Adding a time index to these equations gives us the mean field algorithm for compressed

sensing Fig. 4.2, where we use the non linear thresholding functions:

fa(Σ2
i ,Ri ) := 1

Z (Ri ,Σ2
i )

∫
d xi xi P i

0(xi )exp

(
− (xi −Ri )2

2Σ2
i

)
(4.40)

fc (Σ2
i ,Ri ) := 1

Z (Ri ,Σ2
i )

∫
d xi x2

i P i
0(xi )exp

(
− (xi −Ri )2

2Σ2
i

)
− fa(Σ2

i ,Ri )2 (4.41)
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1: t ← 0
2: δ← ε+1
3: Σ2

i ← ∆∑M
µ F 2

µi

∀ i

4: while t < tmax and δmax > ε do

5: R t+1
i ← at

i +
Σ2

i
∆

∑M
µ Fµi

(
yµ− (Fat )µ

)
6: at+1

i ← fa
(
(Σi )2,R t+1

i

)
7: t ← t +1
8: δ←||at −at−1||22
9: end while

10: return at

Figure 4.2 – The mean field (or iterative thresholding) algorithm for compressed sensing. ε
is the accuracy for convergence and tmax the maximum number of iterations. A suitable
initialization for the quantities is (at=0

i = EP0 (xi )). Once the algorithm has converged, i.e.

the quantities do not change anymore from iteration to iteration, the estimate of the i th

signal component is at
i . The nonlinear thresholding function fa take into account the prior

distribution P0(x).

with normalization

Z (Ri ,Σ2
i ) :=

∫
d xi P i

0(xi )exp

(
− (xi −Ri )2

2Σ2
i

)
(4.42)

This algorithm directly computes the estimates a of the signal components. The only non

linear part in the mean field algorithm is the component-wise computations of a and v through

these thresholding functions, the rest is linear and can be written in a efficient way with matrix

operations which implies a parallel updating scheme of the estimates. It is possible to think

about a randomized updating scheme as well which can sometimes help the convergence

in message-passing algorithms as discussed in [76, 77] but the payoff is a slowing down of

the algorithm as matrix operations are greatly optimized. In all this thesis, we will always

consider a parallel updates scheme, but it must be kept in mind that other strategies are

possible with their own paybacks and advantages. The study of the perfomances of this

algorithm written in the present form and the comparisons with the approximate message-

passing algorithm can be found in [78] and it appears that despite good results in compressed

sensing, the approximate message-passing algorithm that will be derived in sec. 4.3 has a

greater potential. The mean field approximation though can be asymptotically exact in models

where the variance of the mean field felt by the variables goes to zero in the thermodynamic

limit, for example in spin models such as the Ising fully connected ferromagnet [79]. It also

worth noticing that this mean field algorithm Fig. 4.2 is exactly equivalent to the iterative

thresholding algorithm [78, 80] if F is properly rescaled such that
∑
µF 2

µi = 1 ∀ i because

defining the residual zt = y−Fat , the iterations become:

zt = y−Fat (4.43)

at+1 = η∆(Fᵀzt +at ) (4.44)
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where η∆(x) = fa(∆, x), which is the classical form of the iterative thresholding algorithm.

4.2 Belief propagation and cavities

Let us now present a more advanced mean field algorithm, the so called belief propagation

algorithm BP, which allows to reach way better performances than the naive mean field

approximation in many problems. The assumption behind it is that the factor graph associated

to the distribution we want to sample has a tree structure: a tree is a graph such that there exist

a unique path between two variables in the graph. In this case BP is exact [24], as we will show

in sec. 4.2.5. But more generally, BP is justified (but not strictly exact) when the distribution to

sample is a Bethe measure as we will see in sec. 4.2.2. From now on, we use mi (xi ) for the BP

estimates of the true marginals Pi (xi ).

4.2.1 The canonical belief propagation equations

The canonical BP equations, that allow to estimate the marginals {Pi (xi )}N
i of a factorized

distribution of the form (4.8) with an associated tree-like factor graph, i.e. a graph such that

locally its structure is a tree despite the existence of "long" (of extensive size) loops in the

graph, are given by:

m̂t
ai (xi ) = 1

ẑ t
ai

∫
dxa\i ψa(xa\i , xi )

∏
j∈∂a\i

mt
j a(x j ) (4.45)

mt+1
i a (xi ) = 1

z t+1
i a

∏
b∈∂i \a

m̂t
bi (xi ) (4.46)

These quantities allow for the estimation of the marginals at time step t through:

mt
i (xi ) = 1

z t
i

∏
a∈∂i

m̂t
ai (xi ) (4.47)

= 1

z ′t
i a

m̂t
ai (xi )mt+1

i a (xi ) for any a ∈ ∂i (4.48)

mt
a(xa) = ψa(xa)

z t
a

∏
i∈∂a

mt
i a (4.49)

A graphical representation of the BP equations is depicted on Fig. 4.3. The distributions

(4.45) and (4.46) that are iteratively computed are the so called cavity messages (or simply

messages), this vocabulary coming from the cavity method of statistical physics [24, 67]. This

is because BP can be thought as the replica symmetric cavity equations on a single graph,

or equivalently the replica symmetric cavity equations are the BP equations on an infinitely

large graph or averaged over an infinite number of finite random graphs, each representing

a random instance of the problem of interest. This last remark is true only if the problem is

replica symmetric, i.e. the number of fixed points of the BP equations on an instance of the

problem is sub-exponential in N . In the present thesis, the BP fixed point is unique when
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Figure 4.3 – Graphical representation of the belief propagation equations, with the associated
equations below. The dashed lines are edges present in the original factor graph which are
considered not present in the cavity graph in which the cavity message is computed. On the
left is the node-to-factor cavity message, the probability distribution of the xi variable in a
cavity graph where the edge (i , a) has been removed, i.e. a graph where xi is connected to all
its neighbor factors except the factor a. On the right is the factor-to-node cavity message, the
probability distribution of the xi variable in a cavity graph where all the edges connected to
xi are removed except (a, i ), i.e. a graph where xi is only connected the factor a, not its other
neighbors in the original factor graph.

starting from a random initial condition of the messages. This does not imply the uniqueness

of the BP fixed point, there can be another one but that require the messages to be initialized

"close" to it in order to see the messages converge to this other fixed point as we will see in

sec. 5.1.1: there is a regime where the message-passing always converges to a wrong solution

despite the existence of another fixed point corresponding to the true solution of the problem.

Another replica symmetric example with multiple fixed points is the Ising ferromagnet case

where there exist two fixed points below the critical temperature corresponding to positive and

negative average magnetizations. In the replica symmetric case, the messages (or any other

thermodynamical quantity) are self-averaging: their fixed points values do not depend on the

graph details (the measurement matrix F realization in linear estimation) if large enough, the

fluctuations being ∈O(1
p

N ). This is why the M MSE estimator discussed in sec. 3.6.2 is self

averaging as well: the approximate message-passing algorithm (see sec. 4.3) used to compute

it is directly derived from BP and applied to inference problems, which are replica symmetric

under proper conditions (at least under the prior matching condition [57], see sec. 3.6).

4.2.2 Understanding belief propagation in terms of cavity graphs

The factor-to-node cavity message (4.45) is interpreted as the (approximate) probability

distribution of xi in a modified graphical model, refered as a cavity graph, where xi is only

connected to a, not anymore to its other factor neighbors in the original graph, see right part

on Fig. 4.3. This distribution carries the information on how strongly the factor a depends
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on the variable xi , so its influence on xi . The node-to-factor cavity message (4.46) is the

probability of xi in another cavity graph where xi is connected to all its neighbors except a,

the edge between them being removed, see left part on Fig. 4.3. This message carries the

information on the influence of all the neighbors factors on xi except a.

With this interpretation, the BP equations can be understood easily. As the graph is assumed

to be a tree, the set of factor-to-node messages coming on xi are conditionally independent,

thus they just multiply. The node-to-factor message mi a(xi ) of xi with the edge (i , a) removed

is thus naturally given as the product of all the factor-to-node messages {m̂bi (xi )}b∈∂i \a except

the one coming from a (4.46). Now the factor-to-node message m̂ai (xi ): we consider the cavity

graph where xi is only connected to the factor a, which is equivalent to assume mi a(xi ) =C in

this cavity graph, i.e. the distribution of xi in this cavity graph where we additionally removed

the edge (i , a) is uniform (xi does not feel any constraint). Now, the joint distribution of all the

neighbors of the factor a is (up to a normalization) the product of their cavity distributions∏
j∈∂a m j a(x j ) ∝∏

j∈∂a\i m j a(x j ), i.e. their joint distribution in a graph where the factor a is

not here, that we multiply by the compatibility function ψa(xa) to include back its influence.

Thus the cavity message m̂ai (xi ) is the marginalization of this joint distribution with respect

to the neighbors other than xi that we must normalize, from which we get the equation (4.45).

Finally the marginal (4.47) is given as the product of all the individual influences of the factors

neighbors to xi .

4.2.3 Derivation of belief propagation from cavities and the assumption of Bethe
measure

We gave here arguments justifying a posteriori the BP equations thanks to cavity graphs, but

is there a way to directly derive the BP equations starting from cavity graphs? The answer is

given by a very insightful exercise (exercise 19.1) extracted from [24]. Let us assume we have

a distribution P (x) associated to a factor graph G = (V ,F ,E ) (see sec. 4.1.5 for the definition

of factor graphs). A cavity C = (VC ,FC ,EC ) of the graph G is a sub-graph of G such that if any

factor a is included in C , then all its neigboring variable nodes ∂a are in C as well:

a ∈FC ⇒ ∂a ∈ VC (4.50)

The boundary ∂C of the cavity is the set of edges {(a, i )}a 6∈FC ,i∈VC connecting variable nodes

inside the cavity to factors outside of it, see Fig. 4.4. The probability distribution P (x) is a Bethe

measure if there exist a set of cavity messages {m̂ai (xi )} such that if P (x) is restricted to any

non extensive cavity C , P (xC ) can be expressed (up to a small error that goes to zero in the

thermodynamic limit) as a local bulk term and a boundary contribution obtained from the

messages:

P (xC ) ≈ 1

zC

∏
a∈FC

ψa(xa)
∏

(a,i )∈∂C
m̂ai (xi ) (4.51)
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Figure 4.4 – Figure taken from [24]. Two examples of cavity graphs. A cavity graph must include
all the variable nodes neighbors to any factor in it. The cavity on the left is extended to include
one more factor, and thus the two additional variable nodes i and j as well for it to remain
a cavity. The consistency constraints of the Bethe measure for these two cavities imply the
belief propagation equations for the messages sent from the boundary of the first cavity.

Now let us assume that we have defined some cavity C , for example the left one on Fig. 4.4

and decide to extend it including the factor a in it, and thus its two other neighboring variable

nodes that were not in C as well in order to maintain the cavity definition. We obtain the new

cavity C̃ = (VC̃ = VC ∪∂a,FC̃ =FC ∪a,EC̃ = EC ∪ {(a, i )}i∈∂a), the right one on Fig. 4.4. As P (x)

is assumed to be a Bethe measure, the distribution of this new cavity can be expressed as

the previous cavity distribution (4.51) times the new factor included and the new boundary

contribution. But one must be careful to divide the result by the boundary contribution

m̂ai (xi ) in P (xC ) that is now included in the bulk and thus overcounted:

P̃ (xC̃ ) = P̃ (xC ,xa\i ) ≈ 1

zC̃
P (xC )

ψa(xa\i , xi )

m̂ai (xi )

∏
j∈∂a\i

∏
b∈∂ j \a

m̂b j (x j ) (4.52)

For these distributions to be coherent, the marginalization constraint must be verified:

P (xC ) =
∫

P̃ (xC ,xa\i )dxa\i (4.53)

= 1

zC̃
P (xC )

1

m̂ai (xi )

∫
dxa\iψa(xa\i , xi )

∏
j∈∂a\i

∏
b∈∂ j \a

m̂b j (x j ) (4.54)

⇒ m̂ai (xi ) = 1

zC̃

∫
dxa\iψa(xa\i , xi )

∏
j∈∂a\i

∏
b∈∂ j \a

m̂b j (x j ) (4.55)

= 1

ẑai

∫
dxa\iψa(xa\i , xi )

∏
j∈∂a\i

m j a(x j ) (4.56)

m j a(x j ) = 1

z j a

∏
b∈∂ j \a

m̂b j (x j ) (4.57)

where we have been careful to always normalize distributions. We find back the belief propa-

gation equations (4.45), (4.46) at their fixed point, which are thus implied by the assumption
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that the distribution is a Bethe measure.

4.2.4 When does belief propagation work

Despite that BP is exact only on trees, it can be a very good approximation for any tree-like

graph or more generaly as long as the distribution to sample is a Bethe measure as shown in

the previous section. When used on such graph, the algorithm is referred as loopy-BP and if

the algorithm converges, the BP marginals (4.47) are estimates of the true ones under the tree

approximation. These loops can a priori induce correlations not taken into account by the BP

equations but if they are "long enough", the induced correlations decrease so fast to zero that

BP becomes quickly almost exact [24, 81, 81]. When does this situation occur? Hopefully, such

locally tree-like graphs appear naturally in many applications: combinatorial optimization

problems, modern coding theory, neural networks, artificial intelligence, etc. The tree-like

property of the factor graphs in all these fields is a consequence of a common feature: these

are all sparse random graphs, i.e. these are randomly generated graphs with a fixed average

connectivity which does not scale with N , the number of random variables in the problem.

It can be shown [24, 82] that sparse random graphs have loops which size typically grows as

O(log(N )), thus the correlations in such graphs decay fast enough for BP to converge and

accuractly approximate the marginal distributions.

Of course, these generic considerations are not always true. In many graphical models,

typically in combinatorial optimization problems, this assumption of small correlations can

break down in certain parameters regimes despite the sparsity of the graph and BP cannot

sample anymore the marginals as the space of solution splits into an exponential (in N )

number of disconnected clusters of solutions. This scenario is referred as replica symmetry

breaking [1, 24, 67, 81, 82] but is out of the scope of this thesis: inference problems always have

a solution by definition, and this prevents the replica symmetry breaking phenomenon to

occur, at least in the case of the prior matching condition when the true generating model of

the signal is know [57]. All the theoretical analisies in this thesis will assume this condition,

see sec. 4.3 and sec. 9.6.

There exist different alternatives to include part of the correlations induced by the loops in

the graph, not taken into accout by BP in its canonical form. A very general and popular

one is refered as generalized belief propagation algorithms [83], another technique is the

loop corrected belief propagation [84]. But in problems with a glassy phenomenology where

anyway the system is deep in its replica symmetry broken phase where its measure really

splits into exponentially many ones, this phenomenon must be taken into account and more

advanced algorithms such as survey propagation should be considered [1, 64, 82, 85–87].
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4.2.5 Belief propagation and the Bethe free energy

We previously assumed that the BP algorithm, that can be thought as a dynamical process on a

graph was exact on trees, i.e. its fixed point marginals were the exact ones mi (xi ) = ∫
dx\i P (x).

Let us prove that it is actually the case. In the case of a tree factor graph, the probability

distribution of the variables can be written exactly as a factorized distribution over the single

variable marginals {Pi (xi )}N
i and the "factor marginals" {Pa(xa)}G

a :

P (x) = 1

Z

G∏
a
ψa(xa) =

G∏
a

Pa(xa)
N∏
i

Pi (xi )1−ci (4.58)

where ci denotes the connectivity of the node i , the number of factors to which the variable

xi is connected to. The inductive proof can be found in [24]. From this we can compute the

associated Gibbs free energy using (4.6). We skeep the possible dependencies in parameters.

The average energy part is found using (4.11), (4.12):

EP

(
G∑
a

Ea(xa)

)
=−

G∑
a
EPa

(
log

(
ψ(xa)

))
(4.59)

Then the entropy part using (3.34) with (4.58):

H(P ) =−
G∑
a
EPa

(
log(Pa(xa))

)− N∑
i

(1− ci )EPi

(
log(Pi (xi ))

)
(4.60)

Thus the Gibbs free energy for a tree (which is also its true Helmotz free energy as (4.58) is

exact for a tree) is given by:

FBethe ({Pa ,ψa}G
a , {Pi }N

i ) =−
G∑
a

∫
dxaPa(xa) log

(
ψa(xa)

Pa(xa)

)
−

N∑
i

(ci −1)
∫

d xi Pi (xi ) log(Pi (xi )) (4.61)

This free energy is also referred as the Bethe free energy. Let us compute the marginals, used in

the parametrization (4.58). As discussed in sec. 4.1.1, we thus minimize the Bethe free energy

to find their expressions, but we also need to be careful to enforce their normalization and the

marginalization conditions to get coherent definitions of probability distributions. These two

conditions together imply the normalization of the full distribution, we dont need a additional

Lagrange multiplier to enforce it. We thus create a Lagrangian from the Bethe free energy:

LBethe ({Pa ,ψa}G
a , {Pi }N

i ) = FBethe ({Pa ,ψa}G
a , {Pi }N

i )+
N∑
i
γi

(∫
d xi Pi (xi )−1

)

+
G∑
a

∑
i∈∂a

∫
d xiλai (xi )

(∫
dxa\i Pa(xa)−Pi (xi )

)
(4.62)
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Now we optimize it with respect to the one point marginal by functionnal derivation:

δLBethe

δPi (x∗
i )

=−(ci −1)
[
log

(
Pi (x∗

i )
)+1

]+γi −
∑

a∈∂i
λai (x∗

i ) = 0 (4.63)

⇒ Pi (x∗
i ) = 1

zi
exp

(
− 1

ci −1

∑
a∈∂i

λai (x∗
i )

)
(4.64)

where we put all the constants in the normalization. And now the factor marginals:

δLBethe

δPa(x∗a)
= log

(
Pa(x∗a)

ψa(x∗a)

)
+1+ ∑

i∈∂a
λai (x∗

i ) = 0 (4.65)

⇒ Pa(x∗a) = ψa(x∗a)

z ′
a

exp

(
− ∑

i∈∂a
λai (x∗

i )

)
(4.66)

Now using the following reparametrization in (4.64) we get:

λai (x∗
i ) =− ∑

b∈∂i \a
log

(
m̂bi (x∗

i )
)

(4.67)

⇒ ∑
a∈∂i

λai (x∗
i ) =−(ci −1)

∑
a∈∂i

log
(
m̂ai (x∗

i )
)

(4.68)

⇒Pi (xi ) = 1

zi

∏
a∈∂i

m̂ai (xi ) (4.69)

= mi (xi ) (4.70)

where we recognized the BP marginal expression (4.47). And now applying the same for the

factor marginals (4.66):

⇒Pa(xa) = ψa(xa)

z ′
a

∏
i∈∂a

∏
b∈∂i \a

m̂bi (xi ) (4.71)

= ψa(xa)

za

∏
i∈∂a

mi a(xi ) (4.72)

= ma(xa) (4.73)

where we have used (4.46) and (4.49) at the fixed point of BP, i.e. droping the time index. We

thus realize that the fixed point marginals {Pi }N
i and {Pa}G

a of the Bethe free energy (4.64) gives

back the BP marginals {mi }N
i and {ma}G

a . A very nice review on graphical models and the links

between belief propagation and the Bethe free energy is [88].

Belief propagation can be generalized to optimize more complex variational free energies,

that take into acount more complex probabilistic models. Some classical mean field models

include the Kikuchi and junction tree approximations. These message-passing algorithms are

refered as generalized belief propagation algorithms [83]. In this framework, the Bethe free

energy is a particular choice of parametrization (4.58) for the distribution of the model. But in

the present thesis, dense graphical models with linear constraints are studied, and in this case

the Bethe free energy is asymptotically exact as we will see in sec. 4.3.
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4.2.6 The Bethe free energy in terms of cavity messages

The Bethe free energy (4.61) is a formal expression useful to show the equivalence with the BP

fixed points as done in the previous section, but is not very practical from the computational

point of view. We now derive another equivalent expression of it, expressed in terms of the

cavity messages at their fixed point. This will be useful when deriving expectation maximiza-

tion learning equations for example. We start from the expression (4.61). Using the expression

of the marginals as a function of the cavity messages (4.69), (4.72) the free energy becomes:

FBethe =−
G∑
a

∫
dxaPa(xa) log

(
za∏

i∈∂a mi a(xi )

)
−

N∑
i

(ci −1)
∫

d xi Pi (xi ) log

(∏
a∈∂i m̂ai (xi )

zi

)
(4.74)

=−
G∑
a

log(za)−
N∑
i

log(zi )︸ ︷︷ ︸
:=F̃

+
N∑
i

ci log(zi )

+
G∑
a

∑
i∈∂a

∫
dxaPa(xa) log(mi a(xi ))−

N∑
i

(ci −1)
∫

d xi Pi (xi ) log

( ∏
a∈∂i

m̂ai (xi )

)
(4.75)

Now we use the following identity that is a direct consequence of the definition of the cavity

messages:∏
b∈∂i

m̂bi (xi ) = mi a(xi )m̂ai (xi )zi a for any a ∈ ∂i (4.76)

where zi a is the normalization of mi a(xi ). Now using the fact that
∑N

i ci fi =∑N
i

∑
a∈∂i fi for a

generic objecf fi that depends on the variable index (the connectivity can be replaced by an

additional sum over the neighbors factor indices) and using the marginalization property of

Pa(xa), we deduce:

FBethe = F̃ +
G∑
a

∑
i∈∂a

∫
Pi (xi ) log(mi a(xi ))+

N∑
i

∑
a∈∂i

log(zi )

−
N∑
i

∑
a∈∂i

[∫
d xi Pi (xi )

(
log(mi a(xi ))+ log(m̂ai (xi ))

)+ log(zi a)

]

+
N∑
i

[∫
d xi Pi (xi )

(
log(mi a(xi ))+ log(m̂ai (xi ))

)+ log(zi a)

]
(4.77)

Now we use that the sums
∑G

a
∑

i∈∂a fi a =∑N
i

∑
a∈∂i fi a are equal ( fi a is any function depending

on the variables and factors indices) and the identity:

Pi (xi ) = zi a

zi
mi a(xi )m̂ai (xi ) (4.78)

⇒ zi = zi a

∫
d xi mi a(xi )m̂ai (xi ) (4.79)
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We thus obtain:

FBethe = F̃ +
N∑
i

∑
a∈∂i

[
log(zi a)+ log

(∫
d xi mi a(xi )m̂ai (xi )

)]

−
N∑
i

∑
a∈∂i

[∫
d xi Pi (xi ) log(m̂ai (xi ))+ log(zi a)

]

+
N∑
i

[∫
d xi Pi (xi )

(
log(mi a(xi ))+ log(m̂ai (xi ))

)+ log(zi a)

]
(4.80)

= F̃ +
N∑
i

∑
a∈∂i

log

(∫
d xi mi a(xi )m̂ai (xi )

)
−

N∑
i

∑
a∈∂i

∫
d xi Pi (xi ) log(m̂ai (xi ))

+
N∑
i

[∫
d xi Pi (xi )

(
log

(
1

zi a

∏
b∈∂i \a

m̂bi (xi )

)
+ log(m̂ai (xi ))

)
+ log(zi a)

]
(4.81)

= F̃ +
N∑
i

∑
a∈∂i

log

(∫
d xi mi a(xi )m̂ai (xi )

)
(4.82)

So the final expression of the Bethe free energy in terms of the cavity messages fixed point is:

FBethe =−
G∑
a

log(za)−
N∑
i

log(zi )+
N∑
i

∑
a∈∂i

log(z̃i a) (4.83)

za =
∫

dxaψa(xa)
∏

i∈∂a
mi a(xi ) (4.84)

zi =
∫

d xi
∏

a∈∂i
m̂ai (xi ) (4.85)

z̃i a :=
∫

d xi mi a(xi )m̂ai (xi ) (4.86)

This expression is only true at the fixed points of the messages, but at any time step t of

the algorithm, an approximated free energy can be computed plugging the messages at this

time in this expression. This formula can be understood in the following way: the total

free energy on a tree graphical model is the sum of the contributions of each factors and

their associated neighborhood (edges and variables), of the individual variable and their

adjacent edges contributions but as each edges has been overcounted, we remove each edge

contribution once.

4.2.7 Derivation of belief propagation from the Bethe free energy

This form of the Bethe free energy is more practical than the (4.61) because the belief propaga-

tion equations can be trivially derived as fixed point equations for this potential. Let us show

it for sake of completeness. Starting from (4.83) and performing the functional derivative with
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respect to the cavity messages, we obtain at the fixed point:

δFBethe

δm̂ai (x∗
i )

=− 1

zi

∫
d xiδ(xi −x∗

i )
∏

b∈∂i \a
m̂bi (xi )

+ 1

z̃i a

∫
d xiδ(xi −x∗

i )mi a(xi ) = 0 (4.87)

⇒ mi a(x∗
i ) = 1

zi a

∏
b∈∂i \a

m̂bi (x∗
i ) (4.88)

zi a = zi

z̃i a
(4.89)

In the similar way:

δFBethe

δmi a(x∗
i )

=− 1

za

∫
d xi dxa\iψa(xi ,xa\i )δ(xi −x∗

i )
∏

j∈∂a\i
m j a(x j )

+ 1

z̃i a

∫
d xiδ(xi −x∗

i )m̂ai (xi ) = 0 (4.90)

⇒ m̂ai (x∗
i ) = 1

ẑai

∫
dxa\iψa(x∗

i ,xa\i )
∏

j∈∂a\i
m j a(x j ) (4.91)

ẑai = za

z̃i a
(4.92)

which are exactly the BP equations (4.45), (4.46) at their fixed point.

4.3 The approximate message-passing algorithm

If the only available information about the signal is the matrix F and the vector of measure-

ments y in (3.18), then the information-theoretically best possible estimate of each signal

component is computed as a weighted average over all solutions of the linear system, where

the weight of each solution is given by the prior. Of course, the undetermined linear sys-

tem (3.18) has exponentially many (in N ) solutions and hence computing exactly the above

weighted average is in general intractable. The corresponding expectation to perform infer-

ence can be, however, approximated efficiently via the approximate message-passing algo-

rithm [34, 35, 89, 90] that we will present now. But before, let us expose why belief propagation

is not the right tool to use in the present context.

In order to be as general as possible, we now consider that the components of the signal we

want to infer are B-dimensional vectors xl = [xi ]i∈l where l denotes both the vector variable

index and the set of indices {i ∈ l } of the scalar components of x concatenated to form the new

vector variable xl . These new variables are called sections. We define Fµl := [Fµi ]i∈l as a vector

of elements of the matrix F that act on the section xl (see Fig. 4.5). Working with vectors is

useful as we will work in this setting for the sparse superposition codes sec. 9 and the scalar

equations can be recovered taking B = 1 in the final equations. All the previous derivations

(the BP algorithm, the Bethe free energy, etc.) would have been the same with vector variables
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so the obtained results remain valid. We will denote by L the number of sections {xl }L
l , in order

to keep the notation N = LB for the number of 1-d components of the signal. We take a generic

factorizable prior over the sections. Fig. 4.5 shows how a linear estimation problem with a

scalar components signal which prior constrain groups of B non overlaping components can

be interpreted as an equivalent problem where now the components are B-d sections. The

scalar matrix elements are concatenated in B-d vectors as well, and are applied to the vectorial

signal components using the usual scalar product between vectors. This construction changes

nothing to the scalar measurements, nor to the fact that the noise is i.i.d applied on the 1-d

components of the signal.

4.3.1 Why is the canonical belief propagation not an option for dense linear sys-
tems over reals?

Belief propagation is a very powerful inference algorithm but it has caveats. We will write

the BP equations for the linear estimation problem and understand why the equations are

intractable.

The Hamiltonian we consider is thus a direct extension of (4.26) to the vectorial case and we

consider that the measurement matrix is full:

E(x) =−
L∑
l

log
(
P l

0(xl )
)
+ 1

2∆

M∑
µ

(
yµ− (Fx)µ

)2 (4.93)

A remark is that when there are factors {φ(xi )} depending on single variables, the node-to-

factor BP message (4.46) and the marginal (4.47) can be rewritten as:

mt+1
i a (xi ) = 1

z t+1
i a

φ(xi )
∏

b∈∂i \a
m̂t

bi (xi ) (4.94)

mt
i (xi ) = 1

z t
i

φ(xi )
∏

a∈∂i
m̂t

ai (xi ) (4.95)

= 1

z ′t
i a

φ(xi )m̂t
ai (xi )mt+1

i a (xi ) for any a ∈ ∂i (4.96)

which is a perfectly equivalent form as these single variable factors can be integrated in the

set of previous factors {ψa} considering that they do not receive any node-to-factor messages

(i.e. the product of messages in (4.45) is 1 and there is no marginalization to perform as they

are only connected to one variable). This form will be more practical to use. Now using that

the constraints are given by the likelihood of the observations (3.58) and that the prior is
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Sparse signal X 
N=LB scalars 

L sections

Noisy output Y 
M scalars

+

Noise 
M scalars

Coding/Measurement operator F 
random or structured 

 M × N matrix of scalars 

= 

 

 

L sections

B components

Fµi

xi

yµ

 

 

=
1

 

 

 

xl

Fµl
yµ

Signal X 
L B-d sections

Noisy output Y 
M scalars

Noise 
M scalars

Coding/Measurement operator F 
random or structured 

 M × L matrix of B-d vectors 

L sections

B-d vectors, 
the sections

+

Figure 4.5 – Up : Representation of the linear estimation problem over the i.i.d AWGN channel
in terms of a signal and matrix with scalar components. The prior on this signal is factorizable
over non overlaping groups of B components, denoted as the sections. Down : Reinterpreting
the same problem in terms of B-d variables. Now, the matrix elements are concatenated to
form B-d vectors that are applied (using the usual scalar product for vectors) on the associated
B-d vectors representing the new components of the signal, the sections. In this new setting,
all the signal sections are uncorrelated by the prior.

factorizable over the signal sections, we get the BP equations for vectorial linear estimation:

m̂t
µl (xl ) = 1

ẑ t
µl

∫ [L−1∏
k 6=l

dxk mt
kµ(xk )

]
e
− snr

2

(∑L−1
k 6=l Fᵀ

µk xk+Fᵀ
µl xl−yµ

)2

(4.97)

mt+1
lµ (xl ) = 1

z t+1
lµ

P l
0(xl )

M−1∏
γ6=µ

m̂t
γl (xl ) (4.98)

mt
l (xl ) = 1

z t
l

P l
0(xl )

M∏
γ

m̂t
γl (xl ) (4.99)

Working with the noise variance or the snr = 1/∆ is the same as we fix the power to be 1. What
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are the problems with these equations? There are essentially three:

• The factor graph associated to the linear estimation problem problem Fig. 4.1 (where the 1-d

xi variables are replace by the B-d xl ones) is densely connected. The likelihood constraints

enforce all the variable nodes to be connected to all the likelihood factor nodes when the

measurement matrix is full. This implies that the number of messages to store in the memory

and exchange at each time step is 2ML ∈O(L2) (2 per edges) which is way too many and scales

badly with the problem size.

• Furthermore, these messages are probability distributions over real variables. Such objects

are really difficult to store on a computer as in general they have no analytical form that could

be decomposed as simple functions. It would require to store a discretized version of each

message, a histogram which discretization step is small enough to have an high numerical

accuracy. This is impossible as the number of message is large and anyway, it would lower

greatly the efficiency of the algorithm.

• As we are working in the continuous framework x ∈RBL , F ∈RM ,BL the computations of the

factor-to-node cavity messages (4.97) require very high dimensional integrals to be performed

((L−1)B integrals in the full matrix case) which are non analytic and thus would have to be

computed numerically.

We understand that BP in this form is not an option. BP is useful when the factor graph is

sparse and when the variables have few discrete states. In this case the integrals become

sums over the states of few neighbors which is tractable. Furthermore, there are not too many

messages to store due to the graph sparsity (this number scales as the number of variables)

and each message can be easily stored as a small vector giving the probability of each discrete

state.

Belief propagation based reconstruction algorithms were introduced in compressed sensing

by [91]. The authors used sparse measurement matrices to reduce the number of messages

and make the graph locally tree-like and then treated the BP messages as probabilities over

real numbers, that were represented by a histogram, one of the three major problems of BP

discussed before, and that will face the approximate message-passing algorithm.

4.3.2 Why message-passing works on dense graphs?

Let us assume that we have an infinitely powerful computer with infinite memory, such that

all the previous problems are not of concern anymore. Is the BP algorithm a good inference

algorithm anyway for such linear estimation problems, where the factor graph is dense? We

explained in sec. 4.2.5 that BP finds the fixed point marginals of the Bethe free energy which is

exact for trees, and suggests that BP is an accurate approximation in the case of sparse graphs

because of their locally tree-like structure, see sec. 4.2.4. But here it is not the case at all. It

is even the opposite extreme case: the graph is full of loops. But actually, such very dense

graphs share with tree-like ones the important common feature that makes BP the algorithm

75



Chapter 4. Mean field theory, graphical models and message-passing algorithms

of choice for inference: the correlations between variables are very weak. Let us detail a bit

more this notion.

These systems (tree-like and dense graphical models) are equivalent to infinite dimensional

systems. This can be seen from the following fact: starting from any node in the system and

moving with no coming back (without passing two times by the same edge), it is impossible

to return at the starting point. It is trivial for a tree as it is the very definition of what a tree

graph is and thus it becomes true with high probability for infinitely large tree-like graphs.

On densely connected graphs, it becomes true with high probability as well as the graph size

increases, because the number of paths becomes so large that taking one that luckily comes

back to the initial point becomes infinitesimaly probable, which is not the case on a 2-d graph

like a grid for example.

This is why message-passing works on such graphs: the independence between neighboring

variables assumed for computing the cavity messages is asymptotically valid, as the only

possible paths that could correlate these variables in the cavity graphs have lenghts that

diverge in the random sparse graphs case, and the variables are anyway almost independent

in the densely connected case as each variable is connected to all other ones making the

influence of each single one asymptotically null.

4.3.3 Derivation of the approximate message-passing algorithm from belief prop-
agation

In order to get an algorithm capable of dealing with continuous variables and dense graphs

with linear constraints, the approximate message-passing algorithm, we will start from BP

and then perform two principal steps: i ) In order to face the problem of storing distributions

over real variables, we will parametrize the cavity messages thanks to their first and second

moments, i.e. project them on Gaussians. This step is exact in the large signal limit L →∞
as we will see, and is validated by "law of large numbers like" arguments as the number of

incoming message on each factor is very large. i i ) We will expand the cavity quantities that

depend on factors and variables indices around marginal quantities that depend only on

the variables indices. The correction around these, the so called Onsager reaction term in

statistical physics will be essential for the algorithm performance, and makes all the difference

with the naive mean field approximation, see sec. 4.1.7. The resulting algorithm, referred as

the Thouless-Palmer-Anderson TAP equations in statistical physics, derived to deal with spin

glasses [79, 92], will be obtained for linear estimation: it is the approximate message-passing

algorithm. Before the apparition of AMP, message-passing algorithms for dense graphs were

already studied [93] but the strategy adopted here is different.
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Gaussian parametrization

The cavity messages in BP (4.97), (4.98) can be represented only by their mean and variance as

done by [94, 95]. Let us see how to derive iterative equations on these moments. For the rest of

this derivation, we skeep the time index for sake of readibility, these will be added back at the

end and justified in sec. 4.3.4.

In order to fix the power to 1 in (3.18), we use the following scaling for the matrix elements:

Fµi ∈ O(1/
p

L) ¿ 1, as we assume in the derivation that L À 1. Using this scaling, we will

Taylor expand in the matrix elements the exponential appearing in the factor-to-node cavity

message (4.97). But before that, after developing the square in this exponential, we need to

apply the Hubbard-Stratanovitch transform to w(x\l ) :=∑L−1
k 6=l Fᵀ

µk xk to simplify the resulting

expression, the aim being to linearize all the xl independent terms in the exponential so that

the integrals become independent:

e−
w2snr

2 =
√

snr

2π

∫
dλe−

λ2snr
2 +i snrλw (4.100)

⇒ m̂µl (xl ) =
p

snrp
2πẑµl

e
− snr

2

(
Fᵀ
µl xl−yµ

)2

∫
dλe−

λ2snr
2

L−1∏
k 6=l

[∫
dxk mkµ(xk )e

snrFᵀ
µk xk

(
yµ−Fᵀ

µl xl+iλ
)]

︸ ︷︷ ︸
:=uk

(4.101)

To define the approximate messages Gaussian parametrization, we need the following vectorial

objects:

a� :=
∫

x m�(x) dx (4.102)

v� :=
∫

x2m�(x) dx−a2
� (4.103)

where the square •2 is an elementwise operation as the inverse operation •−1 used later on.

Expanding in Fµk the uk appearing in (4.101) and using the two previous definitions, the

integral uk can be written as:

uk ≈
∫

dxk mkµ(xk )

(
1+ snrFᵀ

µk xk

(
yµ−Fᵀ

µl xl + iλ
)
+ 1

2

[
snrFᵀ

µk xk

(
yµ−Fᵀ

µl xl + iλ
)]2

)
=

(
1+ snrFᵀ

µk akµ

(
yµ−Fᵀ

µl xl + iλ
)
+ 1

2
(vkµ+a2

kµ)
[

snrFᵀ
µk

(
yµ−Fᵀ

µl xl + iλ
)]2

)

≈
(

1+ snrFᵀ
µk akµ

(
yµ−Fᵀ

µl xl + iλ
)
+

a2
kµ

2

[
snrFᵀ

µk

(
yµ−Fᵀ

µl xl + iλ
)]2

)
(
1+ vkµ

2

[
snrFᵀ

µk

(
yµ−Fᵀ

µl xl + iλ
)]2

)
≈ e

aᵀkµFµk snr
(

yµ−Fᵀ
µl xl+iλ

)
+ snr2

2 vᵀkµF2
µk

(
yµ−Fᵀ

µl xl+iλ
)2

(4.104)
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where we kept only the terms up to O(1/L). This allows us to write the cavity factor-to-node

message as:

⇒m̂µl (xl ) =
p

snrp
2πẑµl

e
− snr

2

(
Fᵀ
µl xl−yµ

)2

∫
dλe−

snrλ2

2

L−1∏
k 6=l

[
e

aᵀkµFµk snr
(

yµ−Fᵀ
µl xl+iλ

)
+ snr2

2 vᵀkµF2
µk

(
yµ−Fᵀ

µl xl+iλ
)2]

(4.105)

The Gaussian integral over λ can now be performed easily, and putting all the xl independent

terms in the normalization constant ẑµl we obtain:

m̂µl (xl ) = 1

ẑµl
e−

1
2 Aᵀ

µl x2
l +Bᵀ

µl xl (4.106)

ẑµl =
B∏

i∈l

√
2π

Aµi
e

B2
µi

2Aµi (4.107)

Aµl :=
F2
µl

1/snr+∑L−1
k 6=l vᵀkµF2

µk

(4.108)

Bµl :=
Fµl

(
yµ−∑L−1

k 6=l Fᵀ
µk akµ

)
1/snr+∑L−1

k 6=l vᵀkµF2
µk

(4.109)

We deduce the node-to-factor cavity message expression from (4.94):

mlµ(xl ) = 1

zlµ
P l

0(xl )e−
1
2 (x2

l )ᵀ
∑M−1
γ6=µ Aγl+xᵀl

∑M−1
γ6=µ Bγl (4.110)

zlµ =
∫

dxl P l
0(xl )e−

1
2 (x2

l )ᵀ
∑M−1
γ6=µ Aγl+xᵀl

∑M−1
γ6=µ Bγl (4.111)

where sums of the form
∑
γΓγl := [∑

γΓγi
]

i∈l
are vectors of size B . We now have projected the

set of cavity messages onto Gaussian distributions, fully parametrized by their first and second

moments.

We define li as the B-d section index (or the set of indices, depending on the context) to which

the i th 1-d signal component belongs to. We can now define a probability measure over the

section l : mB ((Σl )2,Rl ,xl ) and the corresponding 1-d components marginals, the marginals

of the 1-d variables in the section: {mi ((Σli )2,Rli , xi )}i∈l . We also define the associated vector
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of averages fal and variances fcl over these marginals:

mB ((Σl )2,Rl ,xl ) := 1

z((Σl )2,Rl )
P l

0(xl )e−([xl−Rl ]2)ᵀ(2Σ2
l )−1

(4.112)

mi ((Σli )2,Rli , xi ) :=
∫

dxli \i mB ((Σli )2,Rli ,xli ) (4.113)

z((Σl )2,Rl ) = z((Σli )2,Rli ) =
∫

dxl P l
0(xl )e−([xl−Rl ]2)ᵀ(2Σ2

l )−1
(4.114)

fai ((Σli )2,Rli ) :=
∫

d xi mi ((Σli )2,Rli , xi )xi (4.115)

fci ((Σli )2,Rli ) :=
∫

d xi mi ((Σli )2,Rli , xi )x2
i − fai ((Σli )2,Rli )2 (4.116)

fal ((Σl )2,Rl ) := [
fai ((Σli )2,Rli )

]
i∈l (4.117)

fcl ((Σl )2,Rl ) := [
fci ((Σli )2,Rli )

]
i∈l (4.118)

Using (4.110) together with these definitions and (4.102), (4.103) we get the second order BP

iterations:

alµ = fal

(
1∑M−1

γ6=µ Aγl
,

∑M−1
γ6=µ Bγl∑M−1
γ6=µ Aγl

)
(4.119)

vlµ = fcl

(
1∑M−1

γ6=µ Aγl
,

∑M−1
γ6=µ Bγl∑M−1
γ6=µ Aγl

)
(4.120)

al = fal

(
1∑M

µ Aµl
,

∑M
µ Bµl∑M
µ Aµl

)
(4.121)

vl = fcl

(
1∑M

µ Aµl
,

∑M
µ Bµl∑M
µ Aµl

)
(4.122)

where the two last equations are the marginal mean (4.47) and associated variance, that takes

into account all factors. At this stage, after indexing with the time, the algorithm defined by the

set of equations (4.108), (4.109) and (4.119), (4.120) together with the definitions (4.113), (4.117)

and (4.118) is usually referred as relaxed-BP [34, 35, 94, 96], which is exact for linear estimation

as the number of sections L →∞. After convergence, the final estimates are obtained through

(4.121). This first step thus solves the problem of storing the messages, as now each message

is parametrized by just two numbers, its mean alµ and variance vlµ.

Reduction of the number of messages: the TAP equations

We can simplify further the equations, going from an algorithm where 2ML messages are

exchanged at each time step to one with only M +L messages per time step [97]. The following

expansion, the Thouless-Anderson-Palmer approximation in statistical physics of spin glasses

[92] is exact in the large signal size limit, as the previous Gaussian parametrization. It starts by

noticing that in the L →∞ limit (and thus the number M of factors diverges as well such that

79



Chapter 4. Mean field theory, graphical models and message-passing algorithms

the measurement rate is constant), the cavity quantities (4.119), (4.120), (4.108) and (4.109)

become almost independent of the µ index (which is equivalent to say that each factor’s

influence becomes infinitely weak as there are so many). We can thus re-write these objects

as marginal quantities (that depend on single variable indices) keeping the proper first order

correction in Fµi , the Onsager reaction term, essential for the efficiency of the AMP algorithm.

We first define new useful quantities (again, all the operations such as 1/• or the dot product

uv applied to vectors are elementwise, as opposed to uᵀv which is the usual scalar product

between vectors):

wµ :=
L∑
k

Fᵀ
µk akµ (4.123)

Θµ :=
L∑
k

(F2
µk )ᵀvkµ (4.124)

(Σk )2 := 1∑M
µ Aµk

(4.125)

Rk :=
∑M
µ Bµk∑M
µ Aµk

(4.126)

(Σkµ)2 := 1∑M−1
γ6=µ Aγk

(4.127)

Rkµ :=
∑M−1
γ6=µ Bγk∑M−1
γ6=µ Aγk

(4.128)

We always remain in the limit B ∈O(1) for the derivation, so if B terms ∈O(1/
p

L) are summed,

the result is still ∈O(1/
p

L). We now expand the cavity quantities (4.119), (4.120) of the relaxed-

BP algorithm considering the µ’s factor influence weak. Let us start by the cavity averages:

alµ = fal ((Σlµ)2,Rlµ) (4.129)

≈ fal ((Σl )2,Rl )+ ((Σlµ)2 − (Σl )2)∇(Σl )2 fal ((Σl )2,Rl )

+ (Rlµ−Rl )∇Rl fal ((Σl )2,Rl ) (4.130)

= al +
[

Aµl

(
∑M
γ Aγl )(

∑M
γ Aγl −Aµl )

]
∇(Σl )2 fal ((Σl )2,Rl )

+
[

Bµl (
∑M
γ Aγl )−Aµl (

∑M
γ Bγl )

(
∑M
γ Aγl )(

∑M
γ Aγl −Aµl )

]
∇Rl fal ((Σl )2,Rl )+o(1/

p
L) (4.131)

where we have used (4.121), (4.125), (4.126), (4.127) and (4.128). The gradient operator outputs

a vector, for example: ∇Rl fal ((Σl )2,Rl ) := [
∂Ri fal ((Σl )2,Rl )

]
i∈l . Now we use the fact that the

Aγl ∈O(1/L) is a strictly positive term and Bγl ∈O(1/
p

L) can be of both signs thus
∑
γAγl and∑

γBγl are both ∈O(1). Furthermore, using (Σlµ)2 = (Σl )2 +O(1/L) we obtain the first order
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corrections to al and vl (following the same computation):

alµ = al − (Σl )2Bµl∇Rl fal ((Σl )2,Rl )︸ ︷︷ ︸
:=εalµ

∈O(1/
p

L)

+o(1/
p

L) (4.132)

vlµ = vl − (Σl )2Bµl∇Rl fcl ((Σl )2,Rl )︸ ︷︷ ︸
:=εvlµ

∈O(1/
p

L)

+o(1/
p

L) (4.133)

εalµ/vlµ
:= [

εaiµ/viµ

]
i∈l

is the (positive or negative) vector of corrections ∈ O(1/
p

L) linking

alµ/vlµ to al /vl . We need to express all the cavity quantities appearing in these corrections in

terms of marginal quantities. In order to do so, we start by expanding (4.125) and (4.126) in

the F elements and keeping only the O(1) terms, we get:

(Σl )2 =
[

M∑
µ

F2
µl

1/snr+Θµ−vᵀlµF2
µl

]−1

≈
[

M∑
µ

F2
µl

1/snr+Θµ

]−1

(4.134)

Rl = (Σl )2

[
M∑
µ

Fµl (yµ−wµ+Fµl aᵀlµ)

1/snr+Θµ−vᵀlµF2
µl

]

≈ (Σl )2


M∑
µ

Fµl
(
yµ−wµ

)
1/snr+Θµ

+
M∑
µ

Fµl
(Fµl )ᵀal

1/snr+Θµ︸ ︷︷ ︸
Σ−2

l al+O(1/
p

L)

−
M∑
µ

Fµl

(Fµl )ᵀεalµ

1/snr+Θµ︸ ︷︷ ︸
∈O(1/L)


≈ al + (Σl )2

M∑
µ

Fµl (yµ−wµ)

1/snr+Θµ
(4.135)

These depend on the previously defined quantities (4.123) and (4.124) that we thus need to
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expand keeping only the terms in O(1) as well to get marginal quantities:

Θµ =
L∑
k

(F2
µk )ᵀvk −

L∑
k

(F2
µk )ᵀεvkµ︸ ︷︷ ︸

∈O(1/L)

≈
L∑
k

(F2
µk )ᵀvk (4.136)

wµ =
L∑
k

Fᵀ
µk ak −

L∑
k

Fᵀ
µkεakµ

≈
L∑
k

Fᵀ
µk ak −

L∑
k

Fᵀ
µk

Fµk

(
yµ−∑L

k ′ Fᵀ
µk ′ak ′µ+Fᵀ

µk akµ

)
1/snr+∑L

k ′ vᵀk ′µF2
µk ′ −vᵀkµF2

µk

(Σk )2∇Rk fak ((Σk )2,Rk )︸ ︷︷ ︸
=vk


≈

L∑
k

Fᵀ
µk ak −

yµ−wµ

1/snr+Θµ
L∑
k

(F2
µk )ᵀvk (4.137)

The last equality is obtained using (4.132), (4.109), neglecting o(1) terms and noticing that:

∂Ri fai ((Σli )2,Rli ) = ∂Ri

(∫
dxP0(x)xi exp

(
(x−Rli )ᵀ(2(Σli )2)−1

)∫
dxP0(x)exp

(
(x−Rli )ᵀ(2(Σli )2)−1

) )
(4.138)

= 1

(Σi )2

(
Ex|y(x2

i )−R Ex|y(xi )−Ex|y(xi )(Ex|y(xi )−R)
)

(4.139)

= 1

(Σi )2

(
Ex|y(x2

i )−Ex|y(xi )2) (4.140)

= 1

(Σi )2 fci ((Σli )2,Rli ) (4.141)

⇒ fci ((Σli )2,Rli ) = vi = (Σi )2∂Ri fai ((Σli )2,Rli ) (4.142)

⇒ fcl ((Σl )2,Rl ) = vl = (Σl )2∇Rl fal ((Σl )2,Rl ) (4.143)

Adding back the time indices and rewriting the previous set of equations in terms of their

single components, we get the AMP algorithm, see Fig. 4.6. Here Ex|y is the posterior average

estimation by the AMP algorithm. The only problem-dependent objects in the AMP are

the denoising functions { fai , fci } that depend on the assumed prior, see the next section.

The updating schedule of Fig. 4.6 is what we would have obtained keeping the time index

when starting the derivation from the usual parallel BP updates (4.97), (4.98) as we did. On

Fig. 4.6, we added a damping scheme controled by the parameter α: at α= 0, we recover the

derived AMP algorithm but for finite values 0 <α< 1, the algorithm can converge easier in

situations where it experiences some troubles such as numerical oscillations. This scheme is

validated empirically, but other ones could be tried. It must be understood that when α 6= 0,

the algorithm does not follow anymore the state evolution asymptotic predictions that we will

derive in sec. 5.3. In all the theoretical analyzes of this thesis, we thus always consider α= 0

but in practical situations, a small α≈ 0.1 can help.

The AMP algorithm has been generalized to any noise model in [89, 90] and called GAMP
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1: t ← 0
2: δ← ε+1
3: while t < tmax and δ> ε do
4: Θ̃t+1

µ ←∑N
i F 2

µi v t
i

5: w t+1
µ ←αw t

µ+ (1−α)

(∑N
i Fµi at

i − Θ̃t+1
µ

yµ−w t
µ

1/snr+Θt
µ

)
6: Θt+1

µ ←αΘt
µ+ (1−α)Θ̃t+1

µ

7: Σt+1
i ←

[∑M
µ

F 2
µi

1/snr+Θt+1
µ

]−1/2

8: R t+1
i ← at

i + (Σt+1
i )2 ∑M

µ Fµi
yµ−w t+1

µ

1/snr+Θt+1
µ

9: v t+1
i ← fci

(
(Σt+1

li
)2,Rt+1

li

)
10: at+1

i ← fai

(
(Σt+1

li
)2,Rt+1

li

)
11: t ← t +1
12: δ←||at+1 −at ||22
13: end while
14: return at

Figure 4.6 – The approximate message-passing algorithm with damping controled by 0 ≤α< 1.
li is the index of the section to which the i th 1-d variable belongs to. In the scalar components
case B = 1, the sections are just the components. ε is the accuracy for convergence and tmax

the maximum number of iterations. A suitable initialization for the quantities is (at=0
i = EP0 (xi ),

v t=0
i = VarP0 (xi ), w t=0

µ = yµ). Once the algorithm has converged, i.e. the quantities do not

change anymore from iteration to iteration, the estimate of the l th signal section is at
l . Atα= 0,

the usual approximate message-passing algorithm is recovered. {Θ̃µ}M
µ are auxilliary variables

for the damping scheme.

for "generalized AMP". The algorithm presented here is equivalent to GAMP for the i.i.d

AWGN channel. It is important to note that the name "approximate" message-passing is

a little misleading since as we have shown through the derivation, for dense i.i.d random

measurement matrices the AMP is asymptotically equivalent to BP, i.e. all the leading terms in

N are included in AMP.

4.3.4 Alternative "simpler" derivation of the approximate message-passing algo-
rithm

The previous derivation did not assume anything and proves the asymptotic equivalence

between AMP and BP but is a bit long. We present here an alternative derivation of the AMP

algorithm, which will use directly the assumption that the node-to-factor messages can be

represented as Gaussians. This derivation is very close to the one of the non-parametric BP al-

gorithm [98] in the special case where only one Gaussian in used in the messages parametriza-

tion. Like the previous derivation, it starts from the factor-to-node cavity message (4.97). We

first define Γµl :=∑L−1
k 6=l Fᵀ

µk xk , the variable that appears in the exponential in (4.97). Now we

assume that the cavity node-to-factor messages are Gaussians. In a sense we place ourselves
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directly at the step (4.110) of the previous derivation:

mt
kµ(xk ) =N

(
xk

∣∣at
kµ,vt

kµ

)
(4.144)

As discussed in sec. 4.2.2, when computing the factor-to-node messages we assume that the

node-to-factor messages arriving on the factor of interest are conditionally independent (due

to the tree approximation behind BP). This implies that Γt
µl ∼N

(
Γt
µl

∣∣Γ̄t
µl ,vt

Γµl

)
in (4.97) is also

Gaussian distributed with moments given by:

Γ̄
t
µl =

∑
k 6=l

Fᵀ
µk at

kµ (4.145)

vt
Γµl

= ∑
k 6=l

(F2
µk )ᵀvt

kµ (4.146)

We thus obtain the factor-to-node message m̂t+1
µl (xl ) expression from (4.97):

m̂t
µl (xl ) = 1

ẑµl t

∫
N

(
Γµl

∣∣yµ−Fᵀ
µl xl ,1/snr

)
N

(
Γµl

∣∣Γ̄t
µl ,vt

Γµl

)
dΓµl (4.147)

=N
(
xl

∣∣at
µl ,vt

µl

)
(4.148)

where the first Gaussian is the likelihood part. The moments are given by:

at
µl =

yµ−∑
k 6=l Fᵀ

µk at
kµ

Fµl
=

Bt
µl

At
µl

(4.149)

vt
µl =

1/snr+∑
k 6=l (F2

µk )ᵀvt
kµ

F2
µl

= 1

At
µl

(4.150)

where we recognized the expressions (4.108), (4.109) obtained in the previous derivation, thus

it is coherent. Now in order to compute the node-to-factor message from (4.98), we need the

fact that a product of K Gaussians distributions over the same variable with respective means

and variances {rk , vk }K
k gives a new Gaussian distribution with moments {r, v} given by:

v =
(

K∑
k

v−1
k

)−1

(4.151)

r = v
K∑
k

rk v−1
k (4.152)
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Ri,⌃i

vi, ai

wµ,⇥µ

Measure estimate 
and variance

Posterior signal estimate 
and variance: 

gather all available knowledge 
about the signal

AMP Gaussian field: 
Max likelihood 

estimate of signal 
and associated variance

Denoisers: combine  
prior knowledge 

with max likelihood 
estimation

âi, v̂i ! 0

Output: final posterior 
estimate of the signal, 
the posterior variance 

should be small

t > tmax [ ||at+1 � at|| < ✏

||at+1 � at||22 < ✏

fai
, fci

Figure 4.7 – Graphical representation of the approximate message-passing algorithm. It
iteratively repeats three main steps until convergence: i ) computation of an estimate of
the measurement ans its variance, i i ) computation of the maximum likelihood estimate of
the signal and its variance, the AMP fields and then i i i ) combine the previous maximum
likelihood estimate with the prior through the denoisers to get the posterior estimate and
variance.

From this combined with (4.98), we close the equations on the cavity node-to-factor means

and variances:

mt+1
lµ (xl ) = 1

z t+1
lµ

P l
0(xl )

∏
ν6=µ

m̂t
νl (xl ) (4.153)

= 1

z t+1
lµ

P l
0(xl )N (xl |ãt+1

lµ , ṽt+1
lµ ) (4.154)

ṽt+1
lµ =

[ ∑
ν6=µ

(
F2
νl

1/snr+∑
k 6=l (F2

νk )ᵀvt
kν

)]−1

= 1∑
ν6=µAt

νl

(4.155)

ãt+1
lµ = vt+1

lµ

∑
ν6=µ

Fνl
(
yµ−∑

k 6=l Fᵀ
νk at

kν

)
1/snr+∑

k 6=l (F2
νk )ᵀvt

kν

=
∑
ν6=µBt

νl∑
ν6=µAt

νl

(4.156)

using again (4.108), (4.109). The last step is to compute the mean at+1
lµ and variance vt+1

lµ of the

cavity message (4.154): it gives exactly the relaxed-BP equations (4.119), (4.120) and thus the

AMP algorithm after the TAP step like in the previous section.

85



Chapter 4. Mean field theory, graphical models and message-passing algorithms

4.3.5 Understanding the approximate message-passing algorithm

Let us explain what AMP is doing. It is an iterative algorithm that iteratively repeat three basic

steps, each time computing an estimate of some quantity and its associated variance. This is

represented on Fig. 4.7:

First step : From the actual knowledge of the posterior signal estimate and variance, AMP

computes the estimate of the measurement vector and its variance. This estimate wt+1 (see

Fig. 4.6) is a sum of two terms: the first one is the measure one would get if the true signal

was given by the actual posterior estimate at , the second one is a "gradient like" term that

tends to increase the difference between the measure and its new estimate. This increase is

proportional to the measurement variance and the difference. It can seem a priori strange to

amplify this difference, but it is actually understandable from the use of this estimate in the

second step.

Second step : AMP computes what we call the AMP fields: Rt+1 and associated variances

(Σt+1)2, the means and variances of a Gaussian mean field on each variable that summarizes

the influence of all the likelihood factors, i.e. this Gaussian field tends to maximize the

likelihood of the signal by enforcing its estimate to match the measurements. Rt+1 (see

Fig. 4.6) is the sum of the previous posterior estimate, the best estimate at the previous time

step plus another "gradient like" term which is proportional to the AMP field variance and the

most recent difference between the measure estimate and the true measurement vector: now

we understand that the amplification of this difference in the previous step actually leads to a

stronger shift of the AMP fields Rt+1 in the proper direction to reduce the difference with the

measurement vector, thus to increase the likelihood.

Third step : The last step takes as input the new AMP fields and combine them with the

prior distribution of the signal to get the new posterior estimate that gather all the actual

information about the signal. This is performed thanks to the denoiser fa : this function

averages over all the possible signal estimates properly weighted by their actual posterior

distribution, given by the product of the AMP Gaussian field and the prior. fc computes the

associated posterior variance that should converge to 0 as the algorithm converges to its

fixed point, hopefully given by the true posterior M MSE estimate (under the prior matching

condition, and above the BP transition if no spatial coupling is used, see sec. 5.1.1 and sec. 5.5).

These steps are repeated until convergence or the maximum number of iterations is reached,

and the estimator is the last posterior estimate of the signal.

4.3.6 How to quickly cook an approximate message-passing algorithm for your
linear estimation problem

In the generic AMP algorithm, the only problem dependent part are the denoising functions

{ fai , fci }, but once adapted the algorithm Fig. 4.6 can be applied to a large class of linear

estimation problems. We give here "blocks" for constructing such denoising functions. For a
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factorizable prior P0(x) =∏N
i P i

0(xi ), we need the posterior partition function z(Σ2,R), the first

u(Σ2,R) and second v(Σ2,R) non normalized moments. We consider that the prior P i
0(x) is a

linear combination of different distributions pu(x):

P i
0(x) ∝∑

u
wu pu(x) (4.157)

where wu is the weight of the distribution pu in the prior. These weights dont need to be nor-

malized in the present construction. From this we can construct the posterior normalization:

z(Σ2,R) :=
∫

d x P i
0(x) N (x|R,Σ2)

=∑
u

wu

∫
d x pu(x) N (x|R,Σ2)

=∑
u

wu zu(Σ2,R) (4.158)

In the same way we construct the first and second non normalized moments:

γ(Σ2,R) :=
∫

d x P i
0(x) N (x|R,Σ2)x

=∑
u

wu

∫
d x pu(x) N (x|R,Σ2)x

=∑
u

wuγu(Σ2,R) (4.159)

τ(Σ2,R) :=
∫

d x P i
0(x) N (x|R,Σ2)x2

=∑
u

wu

∫
d x pu(x) N (x|R,Σ2)x2

=∑
u

wuτu(Σ2,R) (4.160)

From this contruction, we define the denoisers as:

fai (Σ2,R) := γ(Σ2,R)

z(Σ2,R)
(4.161)

fci (Σ2,R) := τ(Σ2,R)

z(Σ2,R)
− fa(Σ2,R)2 (4.162)

see the Tab. 4.1 for possible triplets (zu ,γu ,τu) to construct denoisers. Numerically, it is careful

to take for the variance denoiser fci (Σ2,R) = max
(

fci (Σ2,R),ε
)

where ε is a very small constant,

like 10−20. This avoids possible negative variances that can appear at the very beginning of the

convergence.
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prior term pu(xi ) zu(Σ2,R)
Dirac

δ(xi −m) N
(
m|R,Σ2

)
Gauss

N (xi |m, v) N
(
m|R,Σ2 + v

)
Exponential

λe−λxi I(xi > 0) λ
2 exp

(
λ
2 (λΣ2 −2R)

)
erfc

[
λΣ2−Rp

2Σ2

]
Laplace
β
2 e−β|xi | βeβ

2Σ2/2

4

(
e−βR erfc

(
βΣ2−Rp

2Σ2

)
+eβR erfc

(
βΣ2+Rp

2Σ2

))
prior term pu(xi ) γu(Σ2,R)

Dirac
δ(xi −m) mN

(
m|R,Σ2

)
Gauss

N (xi |m, v) N
(
m|R,Σ2 + v

) mΣ2+Rv
Σ2+v

Exponential

λe−λxi I(xi > 0) λe−R2/(2Σ2)

2
p
π

(p
2Σ2 +p

π(R −λΣ2)e(R−λΣ2)2/(2Σ2)erfc
[
λΣ2−Rp

2Σ2

])
Laplace βeβ

2Σ2/2

4

(
e−βR (R −βΣ2)erfc

(
βΣ2−Rp

2Σ2

)
β
2 e−β|xi | +eβR (R +βΣ2)erfc

(
βΣ2+Rp

2Σ2

))
prior term pu(xi ) τu(Σ2,R)

Dirac
δ(xi −m) m2N

(
m|R,Σ2

)
Gauss

N (xi |m, v) N
(
m|R,Σ2 + v

) m2Σ4+Σ2(2mR+Σ2)v+(R2+Σ2)v2

(Σ2+v)2

Exponential λe−R2/(2Σ2)

2
p

2π

{
2Σ(R −λΣ2)

λe−λxi I(xi > 0) +p2π
(
(R −λΣ2)2 +Σ2

)
e(R−λΣ2)2/(2Σ2)erfc

[
λΣ2−Rp

2Σ2

]}
Laplace βeβ

2Σ2/2

4

(
−4βΣ3e−R2/(2Σ2) +e−βR (Σ2 + (βΣ2 −R)2)erfc

(
βΣ2−Rp

2Σ2

)
β
2 e−β|xi | +eβR (Σ2 + (βΣ2 +R)2)erfc

(
βΣ2+Rp

2Σ2

))

Table 4.1 – Examples of functions for the prior construction

4.3.7 The Bethe free energy for large dense graphs with i.i.d additive white Gaus-
sian noise

For completeness, we now show how to derive an expression of the Bethe free energy that

depends on the quantities appearing in the AMP algorithm. The resulting expression is only

valid at the fixed point of the algorithm and is true asymptotically on dense graphs as the

derivation uses the same assumptions that for AMP, see sec. 4.3.3. We consider that the

measurement matrix is homogeneous.
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The factors contributions

We start from the free energy expression (4.83). Let us start by computing the term (4.84).

Using the likelihood of the compressed sensing with AWGN (3.58), we get:

zµ =
∫

dx
N∏
i

miµ(xi )
1p

2π∆
exp

(
− (yµ−∑N

i Fµi xi )2

2∆

)
(4.163)

which is almost (up to one additional variable) the (scalar) normalization of (4.97) at the fixed

point. Thus the "clean" derivation is exactly the same as in sec. 4.3.3: i ) apply the Stratanovitch

transformation to linearize the squared sum that appears in the exponent. In this way there

are no crossed terms between variables and the integrals can be perfomed independently.

i i ) Expand the exponential up to second order using the fact the the F elements are small,

i i i ) integrate the independent integrals and use the same trick as (4.104) to get a similar

expression, except that the signal dependent term inside the parenthesis are not present

anymore as all variables have been integrated and finally i v) perform the Gaussian integral

over λ, the auxiliary parameter introduced for the Stratanovitch transform and simplify the

result.

Now the fastest way is to remind ourselves that the Bethe approximation is equivalent to

assume the tree property of the graph and thus as discussed in sec. 4.2.2, when a cavity

is dug in the graph by removing a factor, the neighboring variables (i.e. all of them in the

present dense case) are considered independent. Thus the central limit theorem implies that

γ :=∑N
i Fµi xi appearing in the exponent in (4.163) is a Gaussian random variable with mean

wµ :=∑N
i Fµi aiµ and varianceΘµ :=∑N

i F 2
µi viµ, the same as (4.123), (4.124) in the scalar case

where aiµ and viµ are the cavity mean and variance associated to miµ(xi ) and computed

respectively through (4.119) and (4.120) in the AMP framework. Finally the result is:

zµ =
∫

dγN (γ|yµ,∆)N (γ|wµ,Θµ) (4.164)

=N
(
wµ|yµ,∆+Θµ

)
(4.165)

The nodes and edges contributions

We now compute (4.85). From (4.106) that we got in the AMP derivation and as each variable

is connected to each likelihood factor in the homogeneous measurement matrix case that we

consider here, we have:

zi =
[

M∏
µ

ẑµi

]−1 ∫
d xi P0(xi )exp

(
−x2

i

2

M∑
µ

Aµi +xi

M∑
µ

Bµi

)
(4.166)

=
[

M∏
µ

ẑµi

]−1

z̃i (4.167)
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where the prior factor must not be forgotten in (4.85) and we define:

z̃i :=
∫

d xi P0(xi )exp

(
− x2

i

2Σ2
i

+xi
Ri

Σ2
i

)
(4.168)

where we have used the definition of the AMP fields (4.126), (4.125). Now we notice that using

(4.86) with (4.46), we get at the fixed point that:

z̃iµ = z̃i

ziµ ẑµi
(4.169)

It allows with (4.167) to re-write the nodes and edges contributions to the free energy (4.83) as:

−
N∑
i

log(zi )+
N∑
i

M∑
µ

log
(
z̃iµ

)
(4.170)

=−
N∑
i

(
log(z̃i )−

M∑
µ

log
(
ẑµi

)− M∑
µ

(
log

(
z̃i

ziµ

)
− log

(
ẑµi

)))
(4.171)

=−
N∑
i

(
log(z̃i )+

M∑
µ

log

(
ziµ

z̃i

))
(4.172)

It is easy to verify from (4.126), (4.125), (4.128), (4.127) that at first order:

1

Σ2
iµ

:=
M∑
γ6=µ

Aγi (4.173)

≈ 1

Σ2
i

(
1−Σ2

i Aµi
)

(4.174)

⇒ Riµ :=
∑M
γ6=µBγi∑M
γ6=µ Aγi

(4.175)

= Ri
(
1+Σ2

i Aµi
)−Σ2

i Bµi (4.176)

which implies also at first order:

Riµ

Σ2
iµ

≈ Ri

Σ2
i

−Bµi (4.177)

90



4.3. The approximate message-passing algorithm

reminding that Aµi ∈ O(1/N ) and Bµi ∈ O(1/
p

N ). From these results, we can simplify the

node-to-factor partition function (4.111):

ziµ =
∫

d xi P0(xi )exp

(
− x2

i

2Σ2
iµ

+xi
Riµ

Σ2
iµ

)
(4.178)

≈
∫

d xi P0(xi )exp

(
− x2

i

2Σ2
i

+xi
Ri

Σ2
i

)(
1−xi Bµi +

x2
i

2

(
B 2
µi + Aµi

))
(4.179)

= z̃i +
∫

d xi P0(xi )exp

(
− x2

i

2Σ2
i

+xi
Ri

Σ2
i

)(
−xi Bµi +

x2
i

2

(
B 2
µi + Aµi

))
(4.180)

The last equality allows to simplify the second sum appearing in (4.172):

M∑
µ

log

(
ziµ

z̃i

)
=

M∑
µ

log

1+ 1

z̃i

∫
d xi P0(xi )e

− x2
i

2Σ2
i
+xi

Ri
Σ2

i

(
−xi Bµi +

x2
i

2

(
B 2
µi + Aµi

)) (4.181)

≈ 1

z̃i

∫
d xi P0(xi )e

− x2
i

2Σ2
i
+xi

Ri
Σ2

i

M∑
µ

(
−xi Bµi +

x2
i

2

(
B 2
µi + Aµi

))

− 1

2

M∑
µ

B 2
µi

(
1

z̃i

∫
d xi P0(xi )e

− x2
i

2Σ2
i
+xi

Ri
Σ2

i xi︸ ︷︷ ︸
=ai

)2

(4.182)

≈ 1

z̃i

∫
d xi P0(xi )e

− x2
i

2Σ2
i
+xi

Ri
Σ2

i

(
−xi

Ri

Σ2
i

+ x2
i

2

(
M∑
µ

F 2
µi (yµ−wµ)2

(∆+Θµ)2 + 1

Σ2
i

))

− a2
i

2

M∑
µ

F 2
µi (yµ−wµ)2

(∆+Θµ)2 (4.183)

=−ai
Ri

Σ2
i

+ vi +a2
i

2

(
M∑
µ

F 2
µi (yµ−wµ)2

(∆+Θµ)2 + 1

Σ2
i

)
− a2

i

2

M∑
µ

F 2
µi (yµ−wµ)2

(∆+Θµ)2 (4.184)

=−ai
Ri

Σ2
i

+ vi +a2
i

2Σ2
i

+ vi

2

(
M∑
µ

F 2
µi (yµ−wµ)2

(∆+Θµ)2

)
(4.185)

where we have used (4.124), (4.123) inside (4.109) which gives at first order:

M∑
µ

B 2
µi ≈

M∑
µ

F 2
µi (yµ−wµ)2

(∆+Θµ)2 (4.186)

and where we have recognized the expressions of the marginal posterior mean ai and variance

vi ((4.102), (4.103), (4.112)). Finally, as we want to express everything in terms of quantities

computed by the AMP algorithm, we notice that we can re-write z̃i in terms of the AMP

variable partition function (4.114) that we call here z AMP
i = z̃i exp

(−R2
i /(2Σ2

i )
)
. Finally the free
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energy reads:

F ≈−
M∑
µ

log
(
zµ

)− N∑
i

[
log

(
z AMP

i

)+ (Ri −ai )2 + vi

2Σ2
i

+ vi

2

M∑
µ

F 2
µi (yµ−wµ)2

(∆+Θµ)2

]
(4.187)

≈−
M∑
µ

log
(
zµ

)− N∑
i

[
log

(
z AMP

i

)+ (Ri −ai )2 + vi

2Σ2
i

]
−

M∑
µ
Θµ

(yµ−wµ)2

2(∆+Θµ)2 (4.188)

using (4.136) for the second equality. All the approximations are again exact in the large dense

graph limit. Now we notice from Fig. 4.6 that the fixed point conditions are:

Θµ
yµ−wµ

∆+Θµ
=

N∑
i

Fµi ai −wµ (4.189)

Θµ =
N∑
i

F 2
µi vi (4.190)

ai = fai (Σ2
i ,Ri ) (4.191)

vi = fci (Σ2
i ,Ri ) (4.192)

Using (4.189), we get the final expression of the Bethe free energy in terms of the AMP quantities

at their fixed point:

F ≈−
M∑
µ

[
log

(
zµ

)+ (∑N
i Fµi ai −wµ

)2

2Θµ

]
−

N∑
i

[
log

(
z AMP

i

)+ (Ri −ai )2 + vi

2Σ2
i

]
︸ ︷︷ ︸

=−K L(Pi ||P0)

(4.193)

= M

2
log(2π∆)+

M∑
µ

[(
yµ−wµ

)2

2
(
∆+Θµ

) + 1

2
log

(
1+ Θµ

∆

)
−

(∑N
i Fµi ai −wµ

)2

2Θµ

]

+
N∑
i

K L (Pi ||P0) (4.194)

where we have replaced (4.165) in the last equality and:

Pi (xi |Σ2
i ,Ri ) := 1

z̃i
P0(xi )exp

(−(Ri −xi )2/(2Σ2
i )

)
(4.195)

is as usual the AMP posterior measure (4.112) of the variable xi and we use the Kullback-Leibler

divergence (3.49). Now let us simplify even further this expression by re-writing (4.189) which

is true at the fixed point as:

wµ = 1

∆

(
ãµ(∆+Θµ)−Θµyµ

)
(4.196)
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where we define ãµ :=∑N
i Fµi ai . We want to simplify (4.194) by working out the term:

(
yµ−wµ

)2

2
(
∆+Θµ

) −
(
ãµ−wµ

)2

2Θµ
(4.197)

=
y2
µ

2(∆+Θµ)
−

ã2
µ

2Θµ
+wµ

(
ãµ
Θµ

− yµ
∆+Θµ

)
−

w2
µ∆

2Θµ(∆+Θµ)
(4.198)

Now replacing wµ by (4.196), we get after careful simplifications:

wµ

(
ãµ
Θµ

− yµ
∆+Θµ

)
= 1

∆

(
ã2
µ

∆+Θµ
Θµ

−2yµãµ+
y2
µΘµ

∆+Θµ

)
(4.199)

−
w2
µ∆

2Θµ(∆+Θµ)
=− 1

2∆

(
ã2
µ

∆+Θµ
Θµ

−2yµãµ+
y2
µΘµ

∆+Θµ

)
(4.200)

Combining everything in (4.198), we get after simplification:(
yµ−wµ

)2

2
(
∆+Θµ

) −
(
ãµ−wµ

)2

2Θµ
= 1

2∆

(
yµ− ãµ

)2 (4.201)

which allows to simplify the Bethe free energy (4.194) using the fixed point condition (4.190):

F ({Σ2
i ,Ri }N

i ) =1

2

M∑
µ

[
(yµ−∑N

i Fµi ai )2

∆
+ log

(
1+

∑N
i F 2

µi vi

∆

)]

+ M

2
log(2π∆)+

N∑
i

K L(Pi ||P0) (4.202)

which is only true at the fixed point of the algorithm, i.e. when all the constraints (4.189),

(4.190), (4.191), (4.192) are verified.

This expression of the free energy is only valid in the thermodynamic limit as we used the AMP

approximations (and thus becomes exact in the infinite dense graph limit). Its expression

remains the same in the vector variables case. It is the same as (24) in [78] where it has

been first derived and is formally valid only at a fixed point of the algorithm, which is a

minimum of this expression. It is important to understand that during the dynamic of the

algorithm, if we plug at each step the AMP quantities Fig. 4.6 in this free energy, it does not

necessarily decrease monotonously in time but at a fixed point, it is guaranteed that the

algorithm reached a minimum of (4.202): it is a variational expression. The reasons behind

why the Bethe free energy is variational when imposing the constraints (4.189), (4.190), (4.191),

(4.192) are discussed in [78]. This form or any of the two previous ones (4.193), (4.194) can

thus be optimized to derive learning equations, see next section. This free energy is also at the

core of the methods used in [99] to solve convergence issues by using an adaptative damping

in AMP.
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Chapter 4. Mean field theory, graphical models and message-passing algorithms

4.3.8 Learning of the model parameters by expectation maximization

In the estimation task, the prior model parameters θ in (3.59) or the noise variance can be

unknown as well. In this case one needs to learn them in some way. This can be done in the

Bayesian framework similarly to the classical expectation maximisation method. We consider

that θ is the scalar parameter that we want to learn. It starts from the Bayes formula:

P (θ|y) = P (y|θ)P (θ)

P (y)
∝ Z (θ)P (θ) (4.203)

where we used that the partition function Z (θ) ∝ P (y|θ) from (3.56). Thus if no prior is

assumed about θ, then maximizing Z (5.2) or equivalently minimizing the Bethe free energy,

considering the other parameters fixed, gives the most probable value of θ. So the method is

simple: i ) take your favorite form of the Bethe free energy F , i i ) solve ∂θF (θ|Γ) = 0 from which

you extract a fixed point equation verified by θ that has been isolated: θ = f (θ|Γt ) where Γ is

the set of all the other quantities on which depend F and f is a given function, i i i ) finally add

the time: θt+1 = f (θt |Γt ) to get an iterative learning equation.

As the Bethe free energy expressions given previously are variational when imposing all the

fixed point conditions (4.196), (4.190), (4.191) and (4.192), we can use them in the expectation

maximization procedure to fix the new values of the learned parameters. It must be understood

that depending on the used form of the Bethe free energy (that are all equivalent), and even

for a given fixed form, there exist usually many different ways to write fixed point equations

verified by θ. Thus a learning equation must be tried empirically to assess its efficiency even if

all fixed point equations are a priori equivalent.

Let us apply the method to the Gaussian noise variance to obtain its generic learning equation,

that does not depend on the prior model but only on the AMP fields. As we will see, different

learnings can be derived. For example starting from the Bethe free energy (4.193), the noise

variance will appear only in the factor term given by (4.165). A possible fixed point equation

[35] that arise naturally is in this case:

∆t+1 =

 M∑
µ

(yµ−w t
µ)2(

1+ Θt
µ

∆t

)2

[
M∑
µ

(
1+

Θt
µ

∆t

)−1]−1

(4.204)

where the AMP quantities iterations are given on Fig. 4.6. But if instead we were starting from

the perfectly equivalent expression (4.194), the most straightforward learning would be:

∆t+1 =
[

1

M

M∑
µ

(
(yµ−w t

µ)2(
∆t +Θt

µ

)2 +
Θt
µ

∆t (∆t +Θt
µ)

)]−1

(4.205)

Many other forms could be derived as for any learned parameter. The first learning equation

will be essentially used in this thesis despite the second is valid as well. It can be easily checked

that both expressions are the same at the fixed point as they should: any of the two equations
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4.3. The approximate message-passing algorithm

can be derived from (4.193), (4.194) or (4.202) after simplifications.

4.3.9 Dealing with non zero mean measurement matrices

Despite the AMP derivation (see sec. 4.3.3) does not rely on the fact that the measurement

matrix has zero mean (as opposed to the state evolution, see sec. 5.3), it appears that AMP

experiences strong convergence issues when the matrix has a finite mean. Recent works have

shed light on solving this issue [76, 99, 100], but these advanced methods are not used in the

present thesis. In this work, we used a more classical trick to deal with this problem which

starts from (3.18) and noticing that:

1

M

M∑
µ

yµ = 1

M

M∑
µ

(
N∑
i

Fµi si +ξµ
)

(4.206)

⇒< y >=
N∑
i

1

M

(
M∑
µ

Fµi

)
si+< ξ> (4.207)

=
N∑
i
< F•,i > si (4.208)

where we have used that the noise has zero mean (if it not the case, its mean can be included

in the next rescaling as well). Finally if we call ỹ := y−< y > and F̃•,i := F•,i−< F•,i >, we obtain

the rescaled system where now the measurement matrix has zero mean:

ỹ = F̃s+ξ (4.209)

that can now be solved without convergence issues. So now we always consider the measure-

ment matrix to have zero mean, as anyway this trick can be used if it is not the case.
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5 Phase transitions, asymptotic ana-
lyzes and spatial coupling

In this chapter we preset the tools allowing for the asymptotic analyzes of the linear estimation

problems and of the approximate message-passing algorithm. We start by discussing how the

statistical physics notion of disorder is related to noisy linear estimation problems and give a

first example of phase diagram in compressed sensing. Furthermore we introduce the notion

of typical complexity phase transitions in sparse linear estimation problems, which connects

even more this discipline to statistical physics. It appears that three different complexity

regimes are present in linear estimation. Their definitions and implications will be discussed.

Then we will present the replica method of statistical physics of disordered system and use

it to compute the potential of the linear estimation problem (3.18) in the general case of a

signal with vector components. This potential which is the Bethe free entropy contains the

information about the typical complexity of the inference problem as a function of the external

parameters, the measurement rate and the noise variance and thus allows to obtain the phase

diagram of the problem.

We will derive the state evolution recursions that allow to predict the asymptotic dynamical

reconstruction perfomances of the approximate message-passing algorithm, still in the vecto-

rial case. This will be done starting directly from the approximate message-passing algorithm

and then starting from the cavity equations as it is usually done. After a discussion on the

Bayesian optimality under the prior matching condition, the link between the state evolution

and replica analyzes will be underlined: we will show that the fixed points of the state evolution

equations give back the optima of the replica potential, i.e. that the two analyzes despite being

totally different in their derivations contain the same information on the static properties of

the problem.

Finally, we introduce a central notion in this thesis that allows to perfom optimal inference

from the information theoretical point of view: the spatial coupling technique. We will discuss

its relation to physical concepts such as the nucleation theory and the notion of metastability.

Then the approximate message-passing in a form more adapted to use in combination with

spatial coupling and the state evolution will be derived. We end up showing how to go from
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Chapter 5. Phase transitions, asymptotic analyzes and spatial coupling

the form of the algorithm presented here to the well known Montanari’s notations.

5.1 Disorder and typical complexity phase transitions in linear esti-

mation

Statistical physics of disordered systems has been specifically created to deal with complex

systems that are drawn from some stochastic process. For example, in a disordered spin model

such as the fully connected Sherrington-Kirckpatrick spin glass, the interactions amplitudes

between spins are random (in this case we speak about interaction disorder), or in a combi-

natorial optimization problem such as the independent set problem [1], the disorder is the

graph instance itself (we speak about structural disorder). The specifically designed replica

method [24, 67] allows to perform the necessary thermodynamic averages over these new

sources of randomness that are distincts from the pure thermal agitation, i.e. the entropic

contribution. It allows to compute the free entropy (i.e. minus the free energy) of the sys-

tem, its potential function which should not depend on the specific disorder instance in the

thermodynamic limit due to the self-averageness of the thermodynamic quantities.

The sources of randomness in the linear estimation problem (3.18) are coming from the

measurement noise (that plays the role of a temperature), the random measurement matrix

and signal realizations (which induce an interaction disorder). So the replica method is the

method of choice and can be "straightforwardly" used in the present context to compute the

potential and extract from it the phase diagram of the problem. This potential is minus the

Bethe free energy (4.61), (4.194) averaged over these disorder sources as in (4.61),(4.194) all

the quantities are dependent on the specific problem instance. Equivalently it is its thermody-

namic limit by the self-averageness property. The Bethe free energy in its form (4.61), (4.83)

or especially (4.194) is adapted for single instances of the problem, such as when deriving

learning equations, see sec. 4.3.8.

Before to present in details the replica computation of the potential in linear estimation

problems, we present now the typical phase diagram for sparse linear estimation and discuss

the nature of the different phase transitions and typical complexity phases that exist.

5.1.1 Typical phase diagram in sparse linear estimation and the nature of the
phase transitions

The replica computation of the next section allows to compute the Bethe free entropy Φ(E)

of the problem, where E is the MSE (3.12) of the reconstruction. This function contains the

information on the different phase transitions that happen in the problem as the control

parameters, the signal density of non zero (or "large" ones in the approximates sparsity setting,

see chap. 6) components ρ and the Gaussian noise variance ∆ are tuned. These transitions

separate three distinct phases of typical complexity: Fig. 5.1 is the typical phase diagram in

the (α,ρ) plane that we will encounter in this thesis. The details of the problem to which it
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5.1. Disorder and typical complexity phase transitions in linear estimation

corresponds will be exposed later on but it it not the point here, it is more to understand the

general scenario that happens in linear estimation.

Glassy systems share common features with the present problem (3.18), such as the fact

that in the out of equilibrium glass phase, local algorithms are inefficient for sampling the

solution space exactly like in the hard phase of the present problem defined hereafter. But it

is important to underline that the physics behind these two phases is different. The present

inference problem is replica symmetric under the prior matching condition [57] and thus does

not formally present the typical glass phenomenology like the splitting of the solution space

into exponentially many disconnected clusters, i.e. the replica symmetry breaking. Let us now

present in details the different phases of the problem.

The "very" easy and easy phases

The first "very" easy phase corresponds to the region above the Donoho-Tanner transition, the

grey dashed line on Fig. 5.1. In this region `1 optimization solvers (see sec. 3.4) are efficient

for reconstructing the signal, but if sparsity only is known about the signal, they are not

anymore in the easy phase which corresponds to the region between the Donoho-Tanner and

BP transitions. In this region, the potential has a unique maximum corresponding to the

M MSE estimate at a "low" MSE , see the blue line on Fig. 5.2. By low, we mean compared to

the second maximum of the potential appearing below the BP transition explained after.

In a pure compressed sensing problem where the only knowledge about the signal is that it

is sparse, the gap between the Donoho-Tanner and BP transitions is due to the fact that the

minimum `1 solution of the LASSO regression (3.25) does not match the minimizer of the `0

equivalent of (3.25), i.e. the sparsest solution of the linear system, which is the true solution

of the problem. If more knowledge is known about the signal, `1 optimization solvers are

anyway not Bayes optimal as they do not take it into account, it only seeks for the solution

with minimum `1 norm, as opposed to AMP.

In the easy phase, local algorithms such as message-passing or monte-carlo based methods

are able to efficiently sample the posterior distribution which is Bayes optimal under the prior

matching condition. The "easyness" of this region can be understood thanks to the Bethe free

entropy. As we have shown in sec. 4.2.7 the message-passing algorithm fixed points correspond

to the optima of this potential (on a single instance). In sec. 5.4 we will show that it remains

the case in the thermodynamic limit. Thus we can interpret the algorithm dynamics as a sort

of gradient ascent of this potential starting from a high MSE random initialization, until a

fixed point is reached and the algorithm converges. Thus when the maximum is unique, AMP

will find it and is thus Bayes optimal as it gives the true M MSE estimate. This interpretation

of gradient ascent is not rigorously correct in the sense that nothing proves that the Bethe free

energy (4.194) is strictly decreased (or the Bethe free entropy strictly increased) at each time

step by the message-passing but as BP (and thus AMP which is just its limit on dense graphs) is

derived as fixed point equations of the potential (see sec. 4.2.7), if the AMP converges then the
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Figure 5.1 – Typical phase diagram of linear estimation problems under sparsity assumption
in the plane (density of the signal ρ, measurement rate α). Are plotted the different phase
transitions that appear in the problem and the typical complexity phases. The Donoho-Tanner
line αDT (ρ) separates the "very" easy phase where `1 optimization solvers are efficient from
the easy phase, where the potential has a unique "low" MSE maximum and thus message-
passing is Bayes optimal (under the prior matching condition) with good reconstruction
results whereas convex optimization is not. The first order BP phase transition αBP (ρ) is the
largest α for which the potential function Φ(E) has two coexisting maxima. Below this line
in the hard phase, message-passing is blocked in a metastable state which is not the M MSE
estimate and reconstruction fails, at least without spatial coupling. This hard phase is the
gap we want to close thanks to spatial coupling, see sec. 5.5. The optimal transition αopt (ρ)
is the α for which the two coexisting maxima of the potential have the same height, i.e. the
smallest α at fixed ρ (or highest ρ at fixed α) for which it is theoretically possible to find the
signal. In the impossible phase, no algorithm can solve the estimation problem. Finally the
static transition αs(ρ) is defined as the smallest α for which the potential functionΦ(E) has
two local maxima. Below this line, all information about the signal is lost. The solid black
curve correponds to the α = ρ line and is the fundamental limit of reconstruction (i.e. the
optimal transition) in the noiseless limit.

free entropy must have been increased until a maxima (local or global) during the dynamics of

the message-passing. Further details about the Bethe free energy and its optimization during

the message-passing dynamics can be found in [78].
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Figure 5.2 – The Bethe free entropy function Φ(E) for a noisy compressed sensing problem
in the different typical complexity phases. In the easy phase, the M MSE solution is unique,
and the gradient ascent starting from high MSE performed by the message-passing will find
it. In the hard phase, the M MSE solution is still the global maximum but it coexists with a
local high MSE fixed point blocking the message-passing (without spatial coupling sec. 5.5).
In the impossible phase the equilibrium becomes the wrong solution and then the M MSE
metastable fixed point totally disappears below the static transition: no information about the
solution is present anymore in the posterior distribution (3.56).

The hard phase and the BP transition

The second phase, right below the blue line and above the red one on the phase diagram

Fig. 5.1 is called the hard phase. In this region of parameters, the problem is theoretically

solvable but local algorithms cannot anymore sample the posterior. It correponds to the

regime where the potential has now two distincts maxima, see the red line in Fig. 5.2: the

one at low MSE corresponding to the Bayes optimal M MSE estimate is present and still

corresponds to the global maximum but it coexists with another spurious local maximum

corresponding to a high MSE solution of the message-passing equations. This solution is

refered as the metastable state as it not the true equilibrium given by the free entropy global

maximum. So the message-passing climbing the potential starting from high MSE will reach

this fixed point before being able to see the M MSE one, and thus reconstruction will fail. With

a monte carlo or any other local algorithm (which is of course initialized randomly, thus in the

basin of attraction of the metastable wrong solution), only an exponentially long sampling of
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Figure 5.3 – The Bethe free entropyΦ(E) for signals of density ρ = 0.2, with an effective noise
of variance ∆ ∈O(10−6). The three lines depict the potential for three different measurement
rates corresponding to the critical values: αBP = 0.3559, αopt = 0.2817, αs = 0.2305. The two
local maxima exists for α ∈ (αs ,αBP ), at αopt the low MSE maxima becomes the global one.
This scenario is typical in linear estimation problems.

the solution space, passing through exponentially rare configurations with a low free entropy

would allow the algorithm to ultimately reach the true equilibrium, at least without spatial

coupling (sec. 5.5). This blocking of local algorithms is observed also in glassy phases of

combinatorial optimization problems, but in this case the free entropy is way more rough

than Fig. 5.2 due to the spontaneous replica symmetry breaking.

The transition between the easy and hard phases is called the BP transition or spinodal

transition as it corresponds to the separation between a region where message-passing based

algorithms are Bayes optimal from one where it fails. Exactly at the transition point, the Bethe

free entropy has typically the shape given by the blue line on Fig. 5.3 with a plateau appearing

at high MSE : αBP (ρ) is defined as the largest α(ρ) for which the potential has two local

maxima. This transition does not affect the Bayes optimal estimator, it is an algorithmic phase

transition of the first order type: the order parameter which is the asymptotic reconstruction

MSE we would get by message-passing (without spatial coupling) jumps discontinuously from

a low (in the noisy setting) or zero (in the noiseless setting) value when situated in the easy

phase to a high value in the hard phase, the jump happening exactly on the transition line. But

we will see in the next that when the noise is very large, this transition can become continuous

(there is no more sharp transition), and only one maximum will exist at any measurement rate
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5.1. Disorder and typical complexity phase transitions in linear estimation

that smoothly moves to a lower MSE solution as the measurement rate increases.

This plateau of the free entropy explains the phenomenon of critical slowing down close to

the BP transition, a phenomenon typical from first order transitions: interpreting again the

message-passing as a gradient ascent of the potential, as the paramaters of the problem get

closer to the BP transition this plateau with very low gradient reduces greatly the convergence

rate of the algorithm until it becomes infinitely long in the large limit exactly at the transition

and then it fails. The same behavior happens in many other problems such as random K-SAT

[85] and is inherent to local algorithms facing first order transitions. The same phenomenon

of appearance of a metastable state preventing the equilibrium to be reached occurs in the

supercooled state, where a liquid is blocked in the liquid state despite the temperature is below

its critical temperature of solidification.

The impossible phase and the optimal transition

The third phase is all the region below the red line on Fig. 5.1. Is it the impossible phase. Here,

no algorithm is able to find the solution as the potential is dominated by a high MSE solution

and thus even the Bayes optimal inference would fail, see the green and black curves on

Fig. 5.2.

The first order transition between the hard and impossible phases, called the optimal transition

αopt (ρ) happens when the two coexisting free entropy maxima have exactly the same height,

i.e. at the exact parameters values where the M MSE solution (the global maximum) jumps

from a low MSE to an high one, see the red curve on Fig. 5.3.

From an algorithmic point of view and running purely local algorithms (i.e. without consider-

ing spatial coupling), this transition will not be detected as the algorithm was failing before it

in the hard phase, and continues to do so after in the impossible phase.

The static transition

Despite the fact that in all this impossible phase the algorithm behaves the same, from the

potential (and thus thermodynamical) point of view, another transition occurs denoted as

the static transition: αs(ρ) is defined as the smallest α for which the potential functionΦ(E)

has two local maxima. It separates the impossible phase into two distinct phases, "one

more impossible than the other". In the impossible phase before that the static transition

happens, the potential is dominated by the high MSE solution (by definition of the impossible

phase) but it remains a local maximum of the potential corresponding to the M MSE estimate,

which is now the metastable state. This maximum could be reached initializing the message-

passing equations close enough to the solution, inside the basin of attraction of this state.

But anyway, the true equilibrium correponds to a failure of the reconstruction. The static

transition happens when this low error metastable state disappears, see the green curve on

Fig. 5.3, and only remains the high MSE state, see the black curve on Fig. 5.2. Below the static
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transition, even if we would initialize the reconstruction algorithm on the solution itself, it

would converge to the high MSE state: it does not remain any information about the signal in

the posterior distribution (3.56) because there are too few measurements for the signal density,

there are too noisy or both at the same time.

Sum up of the different transitions and algorithmic implications

To summarize, the AMP algorithm exhibits a double phase transition. It is asymptotically

equivalent to the optimal Bayes inference at large αBP <α< 1, where it matches the optimal

reconstruction with a small value of the MSE . At low values ofα<αopt the AMP is also asymp-

totically equivalent to the optimal Bayes inference as the potential has only one maximum, but

in this low-sampling-rate region the optimal result leads to a large MSE . In the intermediate

region αopt <α<αBP , AMP leads to large MSE , but the optimal Bayes inference leads to low

MSE . This is the region where one needs to improve on AMP, using for example the spatial

coupling technique discussed in sec. 5.5.

It must be understood that all these considerations and phase transitions except the Donoho-

Tanner one are properties of the problem itself, not of the algorithm used to reconstruct the

signal. This potential, the Bethe free entropy, is conjectured exact in the thermodynamic limit

for such dense graphs. But it does not mean that the easy phase is easy for all reconstruction

algorithms, it means that mean field methods are appropriate and are able to sample properly

the posterior until the BP transition under the prior matching condition. But as we have seen,

convex `1 optimization based solvers cannot reconstruct averywhere in the easy phase: they

experience another phase transition preventing the solver to reconstruct well before the BP

transition.

5.2 The replica method for linear estimation over the additive white

Gaussian noise channel

The replica method leads to asymptotically exact evaluation of the logarithm of the partition

function Z (5.2), which is here the Bethe free entropy. In general, if the partition function can

be evaluated precisely then the marginal means with respect to the true posterior and the

associated MSE of the optimal inference can be computed. More generally, it is a method

for averaging logarithms of complex functions depending on some disorder. It does not

always lead to a Bethe form of the potential but it appears that in cases where the factor graph

corresponding to the model of interest is not a tree nor dense, the replica method is far too

complex to be applied. It is thus usual to confound the potential extracted from the replica

analysis and the Bethe free entropy as it can be applied only in cases where the Bethe free

entropy is the true potential. This is the case in our problem (3.18), the Bethe free entropy

(4.61), (4.194) is actually exact because the problem is dense and thus its average matches the

potential extracted from the replica analysis.
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channel

The optimal reconstruction in compressed sensing, information that we will extract from the

replica potential, was studied extensively in [101]. The replica method was used in compressed

sensing similarly as in the present thesis in [102, 103] for example. Let us now derive the

potential of the problem (3.18). All the computations are made considering that the signal is

made of B-d sections (see Fig. 4.5) and that the prior is factorizable over them, with the same

prior P0 independently of the section. Furthermore we assume the prior matching condition

which as already explained implies the replica symmetry in inference problems.

5.2.1 Replica trick and replicated partition function

We start from the definition of the free entropy potential at fixed section size B :

ΦB := lim
L→∞

1

L
EF,ξ,s{log(Z (F,ξ,s))} (5.1)

Z (F,ξ,s) =
∫ [ L∏

l
dxl P0(xl )

] M∏
µ

√
snr

2π
e
− snr

2

(∑L
l Fᵀ

µl (sl−xl )+ξµ
)2

(5.2)

where we have used (3.18) to replace y and Z is the normalization constant of the full posterior

distribution (3.56), i.e. the partition function, a random variable of the disorder. It can be

transformed using the so called replica trick, a trivial mathematical identity:

ΦB = lim
L→∞

lim
n→0

1

L

EF,ξ,s{Z n}−1

n
(5.3)

where EF,ξ,s is the average over all the sources of disorder in (3.18). So the problem of comput-

ing the free energy is converted into computing the nth moment of the partition function. Z n

is the so-called replicated partition function as it can be interpreted as the partition function

of n independent systems drawn from the same distribution, refered as the replicas. The index

associated with the replicas is a ∈ {1, ..,n}:

Z n = (snr/2π)
Mn

2

∫ [L,n∏
l ,a

dxa
l P0(xa

l )

] M∏
µ

e
− snr

2

∑n
a

(∑L
l Fᵀ

µl (sl−xa
l )+ξµ

)2

(5.4)

The average replicated partition function can be rearranged as:

EF,ξ,s{Z n} = (snr/2π)
Mn

2 Es

{∫ [L,n∏
l ,a

dxa
l P0(xa

l )

] M∏
µ

Xµ

}
(5.5)
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where we have defined:

Xµ := EF,ξ

{
e
− snr

2

∑n
a

(∑L
l Fᵀ

µl (sl−xa
l )+ξµ

)2}
(5.6)

= EF,ξ

{
e−

snr
2

∑n
a (v a

µ)2
}

(5.7)

v a
µ :=

L∑
l

Fᵀ
µl (sl −xa

l )+ξµ (5.8)

In order to compute Xµ (5.7), we can apply the central limit theorem to the quantity v a
µ which

is a sum of independent terms as the measurement matrix is i.i.d. We thus need its first

two moments to define its associated Gaussian distribution. Using the fact that both the

measurement matrix and the i.i.d Gaussian noise have zero mean we get:

EF,ξ{v a
µ} = 0 (5.9)

EF,ξ{(v a
µ)2} = EF,ξ

{L,L∑
l ,k

[Fᵀ
µl (sl −xa

l )]ᵀFᵀ
µk (sk −xa

k )+2ξµ
L∑
l

Fᵀ
µl (sl −xa

l )+ξ2
µ

}

=
L,L∑
l ,k

[
(sl −xa

l )ᵀEF

{
Fµl Fᵀ

µk

}
(sk −xa

k )
]
+1/snr (5.10)

Using the fact that each element of the matrix is i.i.d with variance 1/L, we find that only the

diagonal elements of the matrix EF

{
Fµl Fᵀ

µk

}
are non zero:

EF

{
Fµl Fᵀ

µk

}
= δk,l

L
I B (5.11)

⇒EF,ξ{(v a
µ)2} = 1/L

L∑
l

(sl −xa
l )ᵀ(sl −xa

l )+1/snr (5.12)

where I B is the identity matrix of dimension B ×B . Now we define new macroscopic order

parameters which will be considered as the new degrees of freedom of the replicated system,

instead of the individual replica states {xa}. In this way, we average out the microscopic

properties of the system (the randomness instance, i.e. the replica individual states) to get

access to the macroscopic ones (the observables, such as the MSE), the goal of the replica

methodology. This is referred as coarse-graining in physics:

ma := 1/L
L∑
l

(xa
l )ᵀsl (5.13)

Qa := 1/L
L∑
l

(xa
l )ᵀxa

l (5.14)

qab := 1/L
L∑
l

(xa
l )ᵀxb

l (5.15)

ma is the overlap between the replica state x̂a and the signal s, Qa is the power (or self-overlap)

of the replica a and qab is the overlap between replicas a and b. Rewriting the previous
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moment (5.12) in terms of these new quantities, we get:

EF,ξ{(v a
µ)2} =< s2 >−2ma +Qa +1/snr (5.16)

Exactly in the same way, we get the cross terms ∀ a 6= b:

EF,ξ{v a
µvb

µ} =< s2 >−(ma +mb)+qab +1/snr (5.17)

The dependence on the measurement index µ of v a
µ (and thus Xµ as well (5.7)) is lost due to the

averaging. Thus we note v a
µ = v a , Xµ = X . We now apply the replica symmetric ansatz which

is valid for inference problems (and more generally planted problems) on locally tree-like or

highly dense graphs under the prior matching condition such as in the present case [24, 57].

In the replica method, it is expressed by removing the replica indices in the macroscopic order

parameters (thus the name of the ansatz):

qab = q ∀ (a,b : a 6= b) (5.18)

Qa =Q ∀ a (5.19)

ma = m ∀ a (5.20)

Now we have computed the necessary moments (5.16), (5.17) we can write the covariance

matrix G of {v a} under this ansatz which reads ∀ (a,b):

Gab := EF,ξ{v a vb} (5.21)

=< s2 >−2m +1/snr+q + (Q −q)δa,b (5.22)

⇒ G = (< s2 >−2m +1/snr+q
)

1n + (Q −q)I n (5.23)

where 1n is a matrix full of ones of dimension n ×n. We thus have:

X = Ev{e−
snr

2 vᵀv} (5.24)

P (v) = [(2π)ndet(G)]−1/2e−
1
2 vᵀG−1v (5.25)

The explicit computation of X by Gaussian integral gives:

X = [(2π)ndet(G)]−1/2
∫

dve−
1
2 vᵀ(G−1+snrI n )v (5.26)

= [det(I n + snrG)]−1/2 (5.27)

The eigenvectors of G are one eigenvector [1]n
a = [1,1, . . . ,1] with associated eigenvalue Q −q +

n
(
1−2m +1/snr+q

)
and n −1 eigenvectors of the type [0, ..,0,−1,1,0, ..,0] with the couples

[−1,1] shifting by one component from one eigenvector to the next. Their degenerated
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eigenvalue is Q −q . Therefore:

det(I n + snrG) = 1+ snr
[
Q −q +n

(< s2 >−2m +1/snr+q
)][

1+ snr(Q −q)
]1−n (5.28)

from which we get:

lim
n→0

X = e
− n

2

[
q−2m+<s2>+1/snr

Q−q+1/snr +log(1/snr+Q−q)−log(1/snr)
]

(5.29)

When computing (5.5), we need to enforce the constraints that the new order parameters

satisfy their definitions (5.15). This is done by the usual trick of rewriting 1 as the inverse

Fourier transform of its Fourier transform and plugging this expression in the definition of the

averaged replicated partition function that we are computing:

1 =
∫ [ n∏

a
dQadQ̂admadm̂a

][n,(n−1)/2∏
b,a<b

d qabd q̂ab

]

exp

[
−

n∑
a

m̂a(maL−
L∑
l

(xa
l )ᵀsl )+

n∑
a

Q̂a(QaL/2−1/2
L∑
l

(xa
l )ᵀxa

l )

−
n,(n−1)/2∑

b,a<b
q̂ab(qabL−

L∑
l

(xa
l )ᵀxb

l )

]
(5.30)

Plugging this into the average replicated partition function (5.5) expression we get:

EF,ξ,s{Z n} = (snr/2π)
Mn

2

∫ [ n∏
a

dQadQ̂admadm̂a

][n,(n−1)/2∏
b,a<b

d qabd q̂ab

]
(5.31)

exp

[
L

(
1

2

n∑
a

Q̂aQa − 1

2

n,(n−1)∑
b,a 6=b

q̂ab qab −
n∑
a

m̂ama

)][ M∏
µ

X

]
(∫

RB
dsP0(s)

∫
RBn

[ n∏
a

dxaP0(xa)

]
exp

[
−1

2

n∑
a

Q̂a(xa)ᵀxa + 1

2

n,(n−1)∑
b,b 6=a

q̂ab(xa)ᵀxb +
n∑
a

m̂a(xa)ᵀs

]
︸ ︷︷ ︸

:=Γ

)L

At this stage, it is worth noticing that thanks to the average over the disorder (F,ξ,s) and the

introduction of the replica macroscopic orders parameters (5.13), (5.15), (5.14) we converted a

sytem which partition function was (5.4) i.e. made of n i.i.d strongly disordered replicas each

with their own interacting variables into an asymptotically (we averaged over the disorder

and used the central limit theorem to get there) equivalent system made of n interacting

replicas but independent of the original sources of disorder. Furthermore, their variables

are effectively independent one of the other inside the same replica but interact with their

equivalent in the other replicas: for example the xa
l variable is effectively independent of

{xa
k }L

k 6=l but interacts with {xb
l }n

b 6=a ∀b with effective interaction q̂ab , the dual variable of (5.15),

it interacts with itself through the self field Q̂a (5.14) and with the signal through m̂a (5.13).

The interactions between variables belonging to the same replica are "hidden" in the replica
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order parameters that are now variables which control the new coupling interactions between

replicas ({m̂a , q̂ab ,Q̂a}).

These new effective interactions are way more easy to deal with as the dependence on the

disorder (noise and measurement matrix realizations) has been averaged out when applying

the central limit theorem to v a , which naturally gave rise to the replica order parameters.

Looking at Γ, we realize that there is a Gaussian coupling between the replicas. As usual in this

situation (like is the AMP derivation sec. 4.3), we use the Stratanovitch transform to decouple

them by linearizing the exponent, the payoff being an additional Gaussian integral to perform

at the end. In B dimensions the transform is given by:

e
q̂
2

∑n,(n−1)
b,a 6=b xᵀa xb =

B∏
i

e
q̂
2

∑n,(n−1)
b,a 6=b xa,i xb,i (5.32)

=
B∏
i

∫
Dzi e

p
q̂ zi

∑n
a xa,i− q̂

2

∑n
a xa,i

2
(5.33)

=
∫
RB

Dz e
p

q̂ zᵀ
∑n

a xa e−
q̂
2

∑n
a xᵀa xa (5.34)

where we remind that Dz := ∏B
i Dzi = ∏B

i N (zi |0,1)d zi is a unit centered B-d Gaussian

measure and sums of the form
∑n

a xa = [
∑n

a xa,i ]B
i are vectors. Using the replica symmetric

ansatz we obtain that:

Γ=
∫
RB

dsDz P0(s)

[∫
RB

dxP0(x)e−
1
2 (Q̂+q̂)xᵀx+m̂xᵀs+zᵀx

p
q̂
]

︸ ︷︷ ︸
:= f (z,s)

n

(5.35)

In addition we have:

Γ ≈
n→0

exp

(
n

∫
RB

dsDzP0(s) log
(

f (z,s)
))

(5.36)

Combining (5.36) and (5.31) under the replica symmetric ansatz, we get the expression of the

averaged replicated partition function as n → 0:

EF,ξ,x{Z n} ≈
n→0

∫
dQdQ̂dmdm̂d qd q̂enLΦ̃B (m,m̂,q,q̂ ,Q,Q̂) (5.37)

where the replica potential, up to irrelevant constants independent on the order parameters

is:

Φ̃B (m,m̂, q, q̂ ,Q,Q̂) = 1

2

(
Q̂Q + q̂q −2m̂m

)
− αB

2

(
q −2m+< s2 >+1/snr

Q −q +1/snr
+ log(1/snr+Q −q)

)
+

∫
RB

dsDzP0(s) log

(∫
RB

dxP0(x)em̂xᵀs+
p

q̂zᵀx− 1
2 (q̂+Q̂)xᵀx

)
(5.38)

109



Chapter 5. Phase transitions, asymptotic analyzes and spatial coupling

where it must be kept in mind that the vectors in the last integral are one B-d section, not the

overall vectors.

5.2.2 Saddle point estimation

For the replica trick (5.3) to be formally valid, the limit n → 0 should be taken before the

limit over L. But we need to estimate the integral (5.37) by its saddle point as it is intractable

otherwise. This can be justified only if the limit L →∞ is performed before the limit over n,

but in the same time the expression (5.37) has been obtained already considering n very small.

We thus assume that n is small enough for (5.37) to be accurate but yet fixed. Then we assume

that the limits commute and perform the saddle point estimation of the integral before to really

let n → 0. This is not rigorous, but heuristically verified in many different models, including

inference problems. The saddle point estimate is performed by taking the optimum of Φ̃B ,

given by its fixed point value with respect to the different order parameters. The resulting

potential actually corresponds to the desired Bethe free entropy as seen from (5.3):

ΦB := Φ̃B (m∗,m̂∗, q∗, q̂∗,Q∗,Q̂∗) (5.39)

The optimization gives these fixed point values, denoted with stars:

∂Φ̃B

∂m
= 0 ⇒ m̂∗ = αB

Q∗−q∗+1/snr
(5.40)

∂Φ̃B

∂q
= 0 ⇒ q̂∗ =αB

1/snr+B < s2 >−2m∗+q∗

(Q∗−q∗+1/snr)2 (5.41)

∂Φ̃B

∂Q
= 0 ⇒ Q̂∗ =αB

2m∗−B < s2 >−2q∗+Q∗

(Q∗−q∗+1/snr)2 (5.42)

to be plugged into the previous potential (9.9) to get its most general form. But as we assume

the prior matching condition, further simplifications are possible.

5.2.3 The prior matching condition

As shown after in sec. 5.3.3 together with sec. 5.4, the matching prior condition implies:

q∗ = m∗ (5.43)

Q∗ = B < s2 > (5.44)

E =< s2 >−m∗

B
(5.45)
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which implies for their conjugate parameters (5.40), (5.41), (5.42):

q̂∗ = m̂∗ = αB

BE +1/snr
(5.46)

Q̂∗ = 0 (5.47)

where E :=< (s−x)2 > is the MSE , i.e. the observable of the system. We get the final expression

of the Bethe free entropy:

ΦB (E) =− αB

2

(
log(1/snr+BE)+ B < s2 >−BE

1/snr+BE

)
+

∫
RB

dsP0(s)Dz log

(∫
RB

dxP0(x)exp

(
sᵀx

Σ(E)2 + zᵀx

Σ(E)
− xᵀx

2Σ(E)2

))
(5.48)

where:

Σ(E)2 := 1/m̂∗ = 1/(Bsnr)+E

α
(5.49)

This expression is general for linear estimation of fixed section size B signals. It will be used in

most of the theoretical studies in this thesis. The asymptotic variance (5.49) of the maximum

likelihood estimate increases linearly both with the noise variance and the MSE . Furthermore,

their common effect is enhanced as the measurement rate decreases.

5.3 The cavity method for linear estimation: state evolution analy-

sis

The state evolution analysis, referred as the cavity method in physics [24, 67] is a statistical

analysis that allows to monitor the approximate message-passing algorithm dynamics and per-

formance in the limit of reconstructing infinitely large signals, i.e. in the thermodynamic limit.

We consider the case of i.i.d Gaussian matrices F for which state evolution has been originally

derived [97] and then proved to be rigorous in large generality [104] (see also [35, 89, 105]). As

in the replica computation of the previous section, this assumption is essential in order to

decouple the signal components in the analysis. Extension to more general ensembles such as

row orthogonal matrices could be considered [106] but it is out of the scope of the present

thesis. In addition, as we will show in chap. 7 in great details, the state evolution analysis

derived in the i.i.d Gaussian matrices case is a good predictive tool of the reconstruction

performances of the AMP algorithm even with structured operators, despite not predicting

well the dynamics before convergence nor being rigorous.

As before, we consider the general case of signals with B-d sections and assume the proper scal-

ing to get a codeword with power P = 1: Fi j ∼N
(
Fi j |0,1/L

)∀ (i , j ) ⇒ Fi j ∈O(1/
p

L) ∀ (i , j ).

As in the replica analysis, we consider the case of a factorizable prior over the sections with

the same prior for every sections. This drastically simplifies the analysis due to the induced
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symmetry between all the sections. We will look at the section index dependent prior case

in the chapter about superposition codes in the sec. 9.5.1. Furthermore, we consider having

perfect knowledge of the channel noise statistical properties as the prior which generated the

signals as well so that we place ourselves under the prior matching case.

5.3.1 Derivation starting from the approximate message-passing algorithm

One can perform the analysis starting from the cavity quantities defined in the AMP derivation

starting from BP, see sec. 4.3.3 as it is more classicaly done [35]. This will be done in the next

section, but here we will follow another path starting from the AMP algorithm itself. We refer

to Fig. 4.6 for the definitions of all the quantities that we will use in the derivation.

The aim is to evaluate the asymptotic AMP posterior estimate of a section at each time in

order to compute the asymptotic mean square error E t+1(E t ) as a function of its value at

time t . The posterior estimate is given by applying the denoising function fal to the variables

((Σt+1
l )2,Rt+1

l ), see Fig. 4.6. We thus need to get an asymptotic estimate of Rt+1
l , the average

of variable xl at time t +1 with respect to the likelihood. (Σt+1
l )2 is its associated variance.

Injecting in Rt+1
l the expression of w t+1

µ as a function of the previous time quantities and

using (3.18) to replace the measurement by its expression in terms of the signal, measurement

matrix and noise (i.e. the disorder sources), we get the following expression for Rt+1
l :

Rt+1
l = at

l + (Σt+1
l )2

M∑
µ

Fµl

1/snr+Θt+1
µ

[ L∑
k

Fᵀ
µk (sk −at

k )+ξµ+Θt+1
µ

yµ−w t
µ

1/snr+Θt
µ︸ ︷︷ ︸

:=Λt
µ

]
(5.50)

= at
l + (Σt+1

l )2
M∑
µ

Fµl

1/snr+Θt+1
µ

[
Fᵀ
µl (sl −at

l )+
L∑

k 6=l
Fᵀ
µk (sk −at

k )+ξµ+Λt
µ

]
(5.51)

Now we use the fact that Θt
µ is asymptotically independent of µ as we can replace the F 2

µi

elements by the matrix variance 1/L:

Θt
µ ≈Θt := 1/L

N∑
i

v t
i (5.52)

⇒ (Σt+1
l )2 ≈ 1/snr+Θt+1

Bα
1B (5.53)

where we have used M = LBα and 1B is a vector of ones of size B . This simplifies the expression

to:

Rt+1
l = at

l +
1

Bα

M∑
µ

Fµl

[L−1∑
k 6=l

Fᵀ
µk (sk −at

k )+ξµ+Λt
µ

]
+ 1

Bα

M∑
µ

Fµl

[
Fᵀ
µl (sl −at

l )

]
(5.54)
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Now we notice that we can simplify the last term in the previous equality:

M∑
µ

Fµl

[
Fᵀ
µl (sl −at

l )

]
=

[ M∑
µ

F 2
µi (si −at

i )

]
i∈l︸ ︷︷ ︸

=Bα(sl−at
l )

+
[ M∑
µ

B−1∑
j∈l : j 6=i

Fµi Fµ j (s j −at
j )︸ ︷︷ ︸

∈O(1/
p

L)

]
i∈l

(5.55)

We can neglect the second term (B remains finite as L diverges) as we will keep only O(1) terms

in the computation of the moments of the Gaussian fluctations of Rt+1
l around sl . This leads

to the expression:

Rt+1
l ≈ sl +

1

Bα

M∑
µ

Fµl

[L−1∑
k 6=l

Fᵀ
µk (sk −at

k )+ξµ+Λt
µ

]
︸ ︷︷ ︸

:=rt+1
l

(5.56)

Now we notice from (4.137) and the definition ofΘµ in the AMP algorithm Fig. 4.6 that:

Λt
µ ≈

L∑
k

Fᵀ
µkεakµ (5.57)

where εakµ ∈O(1/
p

L) is given by (4.132), (4.137). Using the independence assumption of the

operator F elements, we can apply the central limit theorem to rt+1
l which is thus Gaussian

distributed with moments that we compute now. We remind the reader that the noise has zero

mean and we note that the MSE(a,s) (3.12) tends to its average over the disorder in the large

size signals limit:

E t+1 =< (
s−at+1)2 > →

L→∞
1

B
EF,ξ,s

{(
sl −at+1

l

)ᵀ (
sl −at+1

l

)}
(5.58)

where at+1 = Et+1
x|y {x} = [

fal

(
(Σt+1

l )2,Rt+1
l

)]L
l

is the AMP posterior estimate of the signal at time

t +1 and we put the index l to underline that we speak about a section, not the overall signal

(which is the same for the MSE in the thermodynamic limit). The matrix F elements having 0

mean, only the terms with even power of the matrix elements in the various sums that appear

remain because of the average over the disorder that we will use so that, using (5.57), (4.137)

we obtain for its first moment:

EF,ξ,s{rt+1
l } = EF,ξ,s

{
M∑
µ

Fµl

[
L−1∑
k 6=l

Fᵀ
µk (sk −at

k )+ξµ
]}

︸ ︷︷ ︸
=0B

+EF,ξ,s

{
M∑
µ

Fµl

L∑
k

Fᵀ
µkεakµ

}
(5.59)

≈ EF,ξ,s

{
M∑
µ

(F3
µl )ᵀvl

yµ−w t
µ

1/snr+Θt

}
︸ ︷︷ ︸

∈O(1/L)

(5.60)

= 0B (5.61)
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Now the cross terms, with l ′ 6= l :

EF,ξ,s{rt+1
l rt+1

l ′ } = EF,ξ,s

{
M ,M∑
µ,ν

Fµl Fνl ′

[
L−1∑
k 6=l

Fᵀ
µk (sk −at

k )+ξµ+Λt
µ

]
[

L−1∑
k ′ 6=l ′

Fᵀ
νk ′(sk ′ −at

k ′)+ξν+Λt
ν

]}
(5.62)

= EF,ξ,s

{ M∑
µ

Fµl Fµl ′
[

Fᵀ
µl ′(sl ′ −at

l ′)+ξµ+Λt
µ

]
(5.63)

[
Fᵀ
µl (sl −at

l )+ξµ+Λt
µ

]}
(5.64)

= EF,ξ,s

{
M∑
µ

F2
µl F2

µl ′(sl ′ −at
l ′)(sl −at

l )

}
︸ ︷︷ ︸

∈O(1/L)

≈ 0B (5.65)

Here if the matrix elements were not i.i.d we would obtain non trivial crossed terms that

would greatly complexify the analysis, as all the sections would become correlated. Finally its

diagonal second moment:

EF,ξ,s{(rt+1
l )2} = EF,ξ,s

{
M ,M∑
µ,ν

Fµl Fνl

[
L−1∑
k 6=l

Fᵀ
µk (sk −at

k )+ξµ+Λt
µ

]
[

L−1∑
k ′ 6=l

Fᵀ
νk ′(sk ′ −at

k ′)+ξν+Λt
ν

]}
(5.66)

= EF,ξ,s

{
M∑
µ

F2
µl

[
L−1∑
k 6=l

Fᵀ
µk (sk −at

k )+ξµ+Λt
µ

]
[

L−1∑
k ′ 6=l

Fᵀ
µk ′(sk ′ −at

k ′)+ξµ+Λt
µ

]}
(5.67)

= EF,ξ,s

{
M∑
µ

F2
µl

[
L−1∑
k 6=l

Fᵀ
µk (sk −at

k )

][
L−1∑
k ′ 6=l

Fᵀ
µk ′(sk ′ −at

k ′)

]}

+ αB

snr
+EF,ξ,s

{
M∑
µ

F2
µl (Λt

µ)2

}
︸ ︷︷ ︸

∈O(L−3/2)

+2EF,ξ,s

{
M∑
µ

F2
µlΛ

t
µ

[
L−1∑
k 6=l

Fᵀ
µk (sk −at

k )

]}
︸ ︷︷ ︸

=0B

(5.68)
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≈ EF,ξ,s

{
M∑
µ

F2
µl

[
L−1∑
k 6=l

(F2
µk )ᵀ(sk −at

k )2

]}
+ αB

snr
(5.69)

≈ M

L2

L∑
k
Es{(sk −at

k )ᵀ(sk −at
k )}+ αB

snr

= Bα
(
1/snr+BE t ) (5.70)

where 0B is a vector of zeros of size B and we have used (5.58) with the MSE definition (3.12)

and N = LB . Thanks to the independence assumptions and the performed averages, we

get a variance that is independent of the component and that depends only on the global

MSE . From all these computations, we can now write Rt
l using (5.56) as a Gaussian variable,

dependent on the other components only through E :

rt+1
l ∼N

(
rt+1

l

∣∣∣∣0B ,Bα
(
1/snr+BE t ) I B

)
(5.71)

⇒Rt+1
l ∼N

(
Rt+1

l

∣∣∣∣sl ,
1/(snrB)+E t

α
I B

)
(5.72)

where I B is the identity of size B . It remains to perform the average over the signal s distri-

bution. The equivalence between all the sections due to the prior which is the same for all

of them implies that we can consider only the MSE evolution in a single section instead of

the overall one. Thus the state evolution in the matching prior case, with knowledge of the

channel noise is:

E t+1 = 1

B

B∑
i∈l

∫
RB

dsl P0(sl )
∫
RB

Dz
[

fai

(
(Σt+1)2,Rt+1(z,sl )

)− si

]2

(5.73)

Σt+1(E t ) :=
√

1/(snrB)+E t

α
(5.74)

Rt+1(z,sl ) := sl +z Σt+1(E t ) (5.75)

where z is a i.i.d unit centered Gaussian B-d vector. In sec. 5.3.3 we will show that this recursion

can be written in other equivalent ways under the prior matching condition. The definition

(5.74) at its fixed point matches what we obtained in the replica computation of the Bethe free

entropy (5.49).

5.3.2 Alternative derivation starting from the cavity quantities

We now re-derive the state evolution using the cavity quantities used to derive AMP, instead of

starting from the final TAP equations, but the derivation sis very close. We start from the MSE

(again, focusing on a unique section as they are all equivalent), which is the observable we
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want to predict:

E t =< (fal ((Σt
l )2,Rt

l )−sl )ᵀ(fal ((Σt
l )2,Rt

l )−sl ) > (5.76)

= 1

B
ERt

l

{
(fal ((Σt

l )2,Rt
l )−sl )ᵀ(fal ((Σt

l )2,Rt
l )−sl )

}
(5.77)

We thus need to derive the distribution of Rt
l , defined by (4.126), (Σt

l )2 being its variance.

Plugging the definitions (4.108) and (4.109) into (4.126) and using the fact that:∑
k 6=l

vkµ =
∑
k 6=l

vk +O(1) (5.78)

⇒ ∑
k 6=l

(F2
µk )ᵀvkµ = 1/L

∑
k 6=l

vk +O(1/L) (5.79)

coming from (4.133) for the first equality, and the fact that the F2 elements can be safely

replaced by the matrix variance in the thermodynamic limit, we obtain after simple algebraic

simplifications similar to the ones at the beginning of the previous section:

Rt
l =

∑M
µ Bµl∑M
µ Aµl

(5.80)

= sl +
1

Bα

M∑
µ

Fµl

(
ξµ+

∑
j 6=l

Fᵀ
µ j (s j −at

jµ)

)
︸ ︷︷ ︸

:=pt
l

(5.81)

where we used the definition of the measurement rate α := M/BL and the relation between

the measurement and the signal (3.18) to replace yµ. From the central limit theorem and

the independence assumption of the F elements, pt
l is a Gaussian random variable. Actually

by identification with (5.56), we recognize that pt
l = rt

l which moments have already been

computed in the previous section and the final state evolution recursion (5.73) is thus found

back.

5.3.3 The prior matching condition and Bayesian optimality

Let us us now discuss some implications of the prior matching condition, i.e. of the knowledge

of the true generating model of the signal. We will demonstrate relations that are true when

this assumption is verified thanks to the state evolution analysis and then discuss what it

implies in terms of replicas.

The prior matching conditions from the state evolution

We will now show that the prior matching condition asymptotically implies that at each time

step during the reconstruction, the MSE of the posterior estimate by AMP equals the posterior

variance of this estimate. We start from the state evolution results for the asymptotic MSE
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through time (5.73), (5.74), (5.75). The aim is to show that it is equal to the average posterior

variance defined as:

V t+1 := 1

B

B∑
i∈l

∫
RB

dsl P0(sl )
∫
RB

Dz fci

(
(Σt+1)2,Rt+1(z,sl )

)
(5.82)

= 1

B

[
Ey{Ex|y{xᵀl xl }}−Ey{Ex|y{xl }ᵀEx|y{xl }}

]
(5.83)

together with the pevious definitions (5.74), (5.75), where Ex|y{} is the asymptotic average

with respect to the posterior estimate by AMP. Its dependence on the time dependent AMP

fields ((Σt+1)2,Rt+1) is implicit. Furthermore, we denote by Ey{} := EF,ξ,s{} the disorder average,

which is the integral over P0(s) and Dz in (5.82). Expanding the MSE (5.73) we get:

E t+1 = 1

B

B∑
i∈l

[∫
RB

dsl P0(sl )
∫
RB

Dz fai

(
(Σt+1)2,Rt+1(z,sl )

)2

−2
∫
RB

dsl P0(sl )si

∫
RB

Dz fai

(
(Σt+1)2,Rt+1(z,sl )

)+∫
RB

dsl P0(sl )s2
i

]
(5.84)

= 1

B

[
Ey{Ex|y{xl }ᵀEx|y{xl }}−2Ey{sᵀl Ex|y{xl }}+Es{sᵀl sl }

]
(5.85)

We start by proving the equality between the first and second term (up to the 2). From now on,

we skeep the time index for sake of readibility. Using the definition of the denoiser fai (4.115),

we get:∫
dsl P0(sl )

∫
Dz fai

(
(Σ)2,R(z,sl )

)2

=
∫

dsl P0(sl )
∫

Dz

[∫
dxl P0(xl )exp

(
−xᵀl xl

2Σ2 + xᵀl (sl+zΣ)
Σ2

)
xi

]2

[∫
dxl P0(xl )exp

(
−xᵀl xl

2Σ2 + xᵀl (sl+zΣ)
Σ2

)]2 (5.86)

where we have expanded the square in the exponent and simplified the xl independent term

with its normalization one in the denoiser expression. Now we use the following change of

variable: z′ := (sl +zΣ):

=
∫

Dz′
∫

dsl P0(sl )exp

(
sᵀl z′

Σ
−

sᵀl sl

2Σ2

) [∫
dxl P0(xl )exp

(
− xᵀl xl

2Σ2 + xᵀl z′

Σ

)
xi

]2

[∫
dxl P0(xl )exp

(
− xᵀl xl

2Σ2 + xᵀl z′

Σ

)]2 (5.87)

=
∫

Dz′

[∫
dxl P0(xl )exp

(
−xᵀl xl

2Σ2 + xᵀl z′

Σ

)
xi

]2

[∫
dxl P0(xl )exp

(
− xᵀl xl

2Σ2 + xᵀl z′

Σ

)] (5.88)
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Now the second term of (5.84) using the same change of variable:

∫
Dz′

∫
dsl P0(sl )si exp

(
sᵀl z′

Σ
−

sᵀl sl

2Σ2

) [∫
dxl P0(xl )exp

(
−xᵀl xl

2Σ2 + xᵀl z′

Σ

)
xi

]
[∫

dxl P0(xl )exp
(
−xᵀl xl

2Σ2 + xᵀl z′

Σ

)] (5.89)

=
∫

Dz′

[∫
dxl P0(xl )exp

(
− xᵀl xl

2Σ2 + xᵀl z′

Σ

)
xi

]2

[∫
dxl P0(xl )exp

(
− xᵀl xl

2Σ2 + xᵀl z′

Σ

)] (5.90)

So the two terms are equal:

Ey{Ex|y{xl }ᵀEx|y{xl }} = Ey{sᵀl Ex|y{xl }} (5.91)

This allows to re-write the MSE as:

E t+1 = 1

B

B∑
i∈l

[∫
RB

dsl P0(sl )s2
i −

∫
RB

dsl P0(sl )
∫
RB

Dz fai

(
(Σt+1)2,Rt+1(z,sl )

)2
]

(5.92)

= Es{sᵀl sl }−Ey{Ex|y{xl }ᵀEx|y{xl }} (5.93)

Let us now show that under the prior matching condition, Es{s2
i } = Ey{Ex|y{x2

i }} which will

complete the proof. We do so by using again the same change of variable:

Ey{Ex|y{x2
i }} =

∫
dsl P0(sl )

∫
Dz

[∫
dxl P0(xl )exp

(
−xᵀl xl

2Σ2 + xᵀl (sl+zΣ)
Σ2

)
x2

i

]
[∫

dxl P0(xl )exp
(
−xᵀl xl

2Σ2 + xᵀl (sl+zΣ)
Σ2

)] (5.94)

=
∫

Dz′
∫

dsl P0(sl )exp

(
sᵀl z′

Σ
−

sᵀl sl

2Σ2

) [∫
dxl P0(xl )exp

(
−xᵀl xl

2Σ2 + xᵀl z′

Σ

)
x2

i

]
[∫

dxl P0(xl )exp
(
−xᵀl xl

2Σ2 + xᵀl z′

Σ

)] (5.95)

=
∫

Dz′
∫

dxl P0(xl )exp

(
−

xᵀl xl

2Σ2 +
xᵀl z′

Σ

)
x2

i (5.96)

=
∫

dxl P0(xl )exp

(
−

xᵀl xl

2Σ2

)
x2

i

∫
dz′

1p
2π

exp

(
xᵀl z′

Σ
− (z′)ᵀz′

2

)
(5.97)

=
∫

dxl P0(xl )x2
i (5.98)

= Es{s2
i } (5.99)

where the last equality is true due to the matching prior condition. This with (5.83) and

(5.93) implies that E t =V t ∀ t . Of course this is true only if the two quantities are initialized

with same value, but as long as they are, they remain equal at any time step: we say the the

algorithm remains on the Nishimori line. We summarize the diverse relations that are true
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under the prior matching condition:

E t =V t ∀ t (5.100)

Ey{Ex|y{xl }ᵀEx|y{xl }} = Ey{sᵀl Ex|y{xl }} (5.101)

Ey{Ex|y{xᵀl xl }} = Es{sᵀl sl } (5.102)

To summarize, this implies that the three following forms of the state evolution are perfectly

equivalent under the prior matching condition:

E t+1 =V t+1 = 1

B

B∑
i∈l

∫
RB

dsl P0(sl )
∫
RB

Dz
[

fai

(
(Σt+1)2,Rt+1(z,sl )

)− si

]2

(5.103)

= 1

B

[
Es{sᵀl sl }−

B∑
i∈l

∫
RB

dsl P0(sl )si

∫
RB

Dz fai

(
(Σt+1)2,Rt+1(z,sl )

)]
(5.104)

= 1

B

B∑
i∈l

∫
RB

dsl P0(sl )
∫
RB

Dz fci

(
(Σt+1)2,Rt+1(z,sl )

)
(5.105)

together with (5.74) and (5.75). One form can be more practical to use depending on the

denoising functions. The second form (5.104) can be computationally easier and faster to deal

with but can be more dangerous to use than the two other forms of the state evolution because

it can become negative if the difference is really small due to finite numerical precision.

The prior matching conditions in terms of replicas

Let us discuss the physical meaning of the macroscopic order parameters introduced in the

replica computation and make the connection between these and the equalities obtained

thanks to the Nishimori condition (5.100), (5.101), (5.102).

The replicas are interpreted as different possible solutions (microstates) to the noisy problem

(3.18), the fluctuations coming from the disorder. Using the replica symmetric ansatz is

assuming that all the replicas belong to the same pure state, i.e. the space of solutions does

not split into many disconnected components and thus each replicas have same statistical

properties, given by the replica macroscopic order parameters.

• The meaning of m (5.13) in the replica symmetric ansatz is the overlap between the signal

and the signal estimate given by the average over all the replica states. We can thus identify m

with m = Ey{sᵀl Ex|y{xl }}.

• The order parameter Q (5.14) is the average selfoverlap of the replicas and is thus naturally

identified with Q = Ey{Ex|y{xᵀl xl }} = Es{sᵀl sl }.

• Finally, q (5.15) is the overlap between different replicas. In the phase where reconstruction

is possible as enough information about the signal is contained in the measurement, the

differences between the different replica states should be dominated by the noise, and the
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features present in all the replica states is the true information on the signal. So the overlap q

between infinitely large replicas cancels out the noise-induced fluctuations in average, and

remains only the average over the replicas to the square, i.e. the squared signal estimate. Thus

q = Ey{Ex|y{xl }ᵀEx|y{xl }} = Ey{sl ᵀEx|y{xl }} = m.

The second equalities have been obtained thanks to the Nishimori conditions (5.100), (5.101)

and (5.102).

5.4 The link between replica and state evolution analyzes: deriva-

tion of the state evolution from the average Bethe free entropy

We now show that the fixed point conditions of the Bethe free entropy computed by the replica

method are giving back the state evolution recursion of the MSE at its fixed point. We restrict

ourselves to the section independent prior case but the derivation for generic prior is done in

a similar manner.

As we place ourselves under the matching prior condition, the previous section sec. 5.3.3

have shown that the conditions assumed in sec. 5.2.3 are true. Thus starting from the replica

potential expression (5.38) at its fixed point with respect to all its parameters, we should be

able to derive the state evolution, for example the form (5.104). By identification of (5.104)

with (5.45), we should find that the fixed point of m gives the integral part of (5.104). Let us

prove it. The fixed point condition for m around the optimal values of all the parameters of

the Bethe free energy gives:

∂Φ̃B

∂m̂

∣∣∣∣
(m̂∗,q̂∗,Q̂∗,m∗,q∗,Q∗)

= 0 (5.106)

⇒ m∗(E) =
∫

dsl DzP0(sl )
∫

dxl P0(xl )
sᵀl xl

Z (sl ,z,E)
exp

{
xᵀl sl

Σ(E)2 + zᵀxl

Σ(E)
−

xᵀl xl

2Σ(E)2

}

=
B∑

i∈l

∫
dsl DzP0(sl )si

∫
dxl P0(xl )xi

1

Z (sl ,z,E)
exp

{
xᵀl sl

Σ(E)2 + zᵀxl

Σ(E)
−

xᵀl xl

2Σ(E)2

}
(5.107)

using (5.48), (5.49) and where Z (sl ,z,E) is a partition function:

Z (sl ,z,E) :=
∫

dxl P0(xl )exp

{
xᵀl sl

Σ(E)2 + zᵀxl

Σ(E)
−

xᵀl xl

2Σ(E)2

}
(5.108)

We recognize the expression of the denoiser fai (4.115) when we use the definitions (5.74) and
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(5.75):

fai (Σ2,R) = 1

Z̃ (Σ2,R)

∫
dxl xi P0(xl )exp

{
− (xl −R)ᵀ(xl −R)

2Σ2

}
(5.109)

= 1

Z̃ (sl ,z,E)

∫
dxl xi P0(xl )exp

{
− (xl −sl −zΣ)ᵀ(xl −sl −zΣ)

2Σ2

}
(5.110)

= 1

Z (sl ,z,E)

∫
dxl xi P0(xl )exp

{
xᵀl sl

Σ(E)2 + zᵀxl

Σ(E)
−

xᵀl xl

2Σ(E)2

}
(5.111)

From this together with (5.107) we get that at its fixed point, the replica order parameter m

verifies:

m∗ =
B∑

i∈l

∫
RB

dsl P0(sl )si

∫
RB

Dz fai (Σ(E)2,R(z,sl )) (5.112)

which is exactly the integral of (5.104). Thus using (5.45) we get:

E =< s2 >− 1

B

B∑
i∈l

∫
RB

dsl P0(sl )si

∫
RB

Dz fai (Σ(E)2,R(z,sl )) (5.113)

which is exactly the expression of the state evolution (5.104) as the empirical and true averages

are equal in the thermodynamic limit. Thus the fixed point conditions verified at the optimum

of the Bethe free entropy gives back the state evolution at its fixed point (when the time index

is droped).

From this analysis, we can now assert that using the state evolution analysis to find fixed points

of the algorithm or extracting this information from the potential (5.48) are totally equivalent.

In addition, this validates further the replica analysis as an exact procedure in the present

context. The state evolution thus finds the optima of the potential ΦB (E ) and thus when it has

two local maxima the fixed point of the state evolution depends on the initial condition of the

recursion.

5.4.1 Different forms of the Bethe free entropy for different fixed points algorithms

It is worth noticing that the previous derivation is the asymptotic equivalent of the derivation

in sec. 4.2.7 of the belief propagation algorithm as fixed point equations extracted from the

Bethe free energy on a single instance (4.83). Actually depending on the limit taken and the

graph topology, we get different expressions of the Bethe free energy, and thus different fixed

point equations and message-passings.

• When using the Bethe free entropy/energy parametrized by the cavity messages (4.83),

justified on locally tree-like graphs, the fixed points equations directly give the canonical belief

propagation for a single graph instance, see sec. 4.2.7.

• Now in the case of large densely connected graphs, the Bethe free entropy becomes (4.194)
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and deriving its fixed point equations would lead to the approximate message-passing algo-

rithm, that has been instead directly derived from belief propagation in sec. 4.3. This free

entropy and algorithm are dependent on the disorder instance.

• Finally, when the dense graph is really taken to be infinitely large (or equivalently averaged

over the disorder by the self averageness property), the Bethe free entropy is the one extracted

from the replica analysis (5.48) and the associated fixed point algorithm is the state evolution,

the asymptotic AMP.

One could think also about a Bethe free entropy for tree-like graphs, but averaged over the

disorder. In this case the fixed point equations predicting the BP algorithm behavior on infinite

graphs is referred as density evolution, the equivalent of the state evolution for AMP.

5.5 Spatial coupling for optimal inference in linear estimation

As already discussed, mean-field systems (systems for which mean-field techniques such as

message-passing algorithms are appropriate) are of two types: the problems defined on sparse

random graphs due to their tree-like property, such as the independent set [1] or many other

combinatorial optimization problems and problems defined on densely connected graphs

such as in the present case (3.18). As discussed in sec. 4.3.2 these systems are equivalent to infi-

nite dimensional homogeneous systems. Here nucleation (a local change of thermodynamical

phase) cannot occur: an infinite number of dimensions implies that there is no notion of

locality in these systems and thus no nucleus can spread as any apparition of a different phase

nucleus inside another one has an infinite energy cost, as the "surface" of the nucleus is itself

infinite.

As discussed in sec. 5.1.1, in inference the phases we are dealing with are computational:

easy/hard/impossible inference phases. In order to have nucleation of an easy phase inside

an hard one and to allow this nucleus to propagate inside the full system, one has to introduce

a dimensionality, or structure in the problem. This is done by spatial coupling using a properly

designed coding operator, see Fig. 5.4. It mimics the strategy employed by the nature. We

use again the example of supercooled water which is blocked in the metastable liquid state

by a first order transition despite it is below its critical temperature. If a nucleus of crystal

appears somewhere in the fluid, the surface between the two phases has an energetic cost

C12πR2 where R is the radius of the nucleus that we consider spheric. But as the system is

3-d, this cost remains always finite. Now if the nucleus is big enough, the reduction in energy

by C24/3πR3 due to the bulk of the small crystal nucleus (the true equilibrium state at this

temperature) counterbalances the surface energy term and the entropy loss ∆S < 0 due to

the crystal: ∆F = Fwi th nucl eus −Fno nucl eus =C12πR2 −C24/3πR3 −T∆S < 0 and the nucleus

spreads in the overall system which finally reaches its true equilibrium macrostate. C1,C2 > 0

are constants that depend on the microscopic physical interactions between atoms.

Spatial coupling thanks to which the theoretical optimal thresholds can be saturated was de-
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veloped in error-correcting codes [107–109] and has been extensively used in the compressed

sensing setting as well [34, 35, 90, 110]. It rigorously allows to reach the information theoretical

bound in LDPC codes [108] and in compressed sensing in the random i.i.d measurement

matrix case [108, 110] as we will see. Rigorous proofs of this was worked out in [110]. The

robustness to measurement noise was also discussed in [35, 110]. In addition, spatial coupling

is used as a proof technique for understanding properties of uncoupled ensembles [111].

Furthermore, it is applicable in a very wide range of graphical models and allows to asymp-

totically solve constraint satisfaction problems until their satisfability threshold [112, 113],

the last point in the phase diagram until which it is theoretically possible to find a solution

to the problem, see sec. 5.1.1. The spatial coupling strategy is conjectured efficient to solve a

problem only if a first order phase transition is present, which is the case in a very large class

of interesting problems.

5.5.1 The spatially-coupled operator and the reconstruction wave propagation

Let us now describe how the spatial coupling is implemented in the context of sparse linear

estimation through the measurement operator construction. The spatial structure decribed

above is induced in the signal by the block structure of the measurement (or coding) matrix,

see Fig. 5.4. Other designs are possible [35, 114] but in the present thesis, spatially-coupled

operators will always be of the form Fig. 5.4 as they are empirically very efficient. Looking

at Fig. 5.4, we clearly see that if we consider only the diagonal blocks on the matrix, from

the measurements point of view the signal becomes the concatenation of independent sub-

systems s = [sc ]Lc
c where Lc is the number of such blocks. But the matrix has also blocks

on the the upper and some lower diagonals as well: these couple the different sub-systems

{sc }Lc
c . The blocks on the lower diagonals couple the signal block sc with the w previous ones

{sc−i , }w
i , where w is called the coupling window. They have elements with statistically the

same amplitude as the diagonal blocks. The upper diagonal blocks weakly couple the block

sc with the next one sc+1. This forward coupling strength is tuned by the J parameter, the

variance of the elements of the random values inside the block. The matrix structure is thus

fully encoded through a Lr ×Lc matrix J with element Jr,c giving the (non rescaled by 1/L)

variance ∈O(1) of the block at the l th block-row, c th block-column of the matrix.

Let us assume that we want to solve a compressed sensing instance generated in the hard

phase, where the equilibrium is given by a low MSE estimate and reconstruction should

succeed from a thermodynamic point of view. Unfortunately, the algorithm is stuck in the

metastable high MSE state by the first order BP transition. The nucleus of "crystal", i.e.

of easy phase called the seed, is induced by the matrix first block-row: as seen on Fig. 5.4,

these blocks are closer to square than the next block-rows, i.e. they have a higher effective

measurement rate αseed > αr est , where αr est is the effective measurement rate of the next

block-rows which can be asymptotically as small as the Bayes optimal measurement rate

αopt . As the forward coupling is relatively weak, the first measurements represented by the

darker grey part of the measurement vector in Fig. 5.4 contain essentially information about
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Figure 5.4 – Representation of the spatially-coupled sensing matrix used in this thesis. The
operator is decomposed in Lr ×Lc blocks, each being made of N /Lc columns and αseed N /Lc

lines for the blocks of the first block-row, αr est N /Lc lines for the following block-rows (these
follow from the definition of α := M/N combined with (5.114) ), with αseed >αBP ≥αr est >
αopt . The figure shows that each block is itself a small random operator with i.i.d elements.
There is a number w (the coupling window) of lower diagonal blocks with elements of variance
1 as the diagonal blocks, the upper diagonal blocks have elements of variance J < 1 wherep

J is the coupling strength, all the other blocks contain only zeros. The matrix structure is
thus encoded through a Lr ×Lc matrix J with element Jr,c giving the variance ∈ O(1) of the
block at the l th block-row and c th block-column. The colored dotted lines help to visualize
the block decomposition of the signal s = [sc ]Lc

c induced by the operator structure. Each block
of the signal will be reconstructed at different times in the algorithm, as depicted by the right
part of the plot which shows how the wave of reconstruction propagates though time, see the
color code behind: at t = 0, the MSE is homogeneously high (black curve) and as time goes
on, blocks are reconstructed from the seed until the end of the signal. The parameters that
define the spatially-coupled operator ensemble are (Lc ,Lr , w,

p
J ,αseed ,αr est ). In the thesis,

the matrix elements are rescaled by 1/
p

L such that the variances are rescaled by 1/L to enforce
the measurements to be ∈O(1).

the components of the signal inside its first block s1. As we enforce αseed >αBP , the "signal

seed" s1 is easily reconstructed by message-passing and then this new information which is

coupled to the next signal block helps the reconstruction of this neighboring s2 by increasing

its effective measurement rate. This triggers a wave of reconstruction from the top of the

signal where the seed is until its end. This is represented on Fig. 5.4: initially the MSE is

homogeneously high in all the signal (black curve on the MSE plot on the right of the signal),

and as the time steps increase, more and more blocks are reconstructed until the signal is

fully reconstructed. [115, 116] present detailed studies of the spatial coupling in compressed

sensing and the dynamical properties of the reconstruction wave front.

One has to be careful to ensure that these sub-systems {sc }Lc
c remain large enough for the

assumptions behind the approximate message-passing to be valid inside each of them: each
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5.6. The spatially-coupled approximate message-passing algorithm

sc = [sl ]l∈c must itself be a mean-field system, which is true if L À Lc . Concurrently, however,

the larger Lc , the better it is to get closer to the optimal treshold αopt . This is due to the fact

that the overall measurement rate α is a weighted average of the effective measurement rate

of the seed block αseed and that of the remaining ones αr est :

αr est = αLc −αseed

Lr −1
:=α

(
Lc −βseed

Lr −1

)
(5.114)

In practice, α is fixed and αseed := αβseed as well as by fixing βseed . αr est is then deduced

from (5.114). In the remaining of this thesis, we will define the spatially-coupled ensemble

by (Lc ,Lr , w,
p

J ,α,βseed ) or (Lc ,Lr , w,
p

J ,αseed ,αr est ) equivalently. This relation (5.114) is

equivalent to:

α= (Lr −1)αr est +αseed

Lc
→

Lc ,Lr →∞
αr est >αopt (5.115)

where αr est can asymptotically be as small as αopt . Thus spatial coupling allows to asymptoti-

cally reach the optimal transition, the information theoretic limit of reconstruction. In this

way, the gap between αopt and αBP , the hard phase discussed in sec. 5.1.1 is filled and AMP

becomes asymptotically Bayes optimal for any α>αopt .

In the case of vectorial components, one may be careful to induce the blocks such that the

sections are not "cut" by the induced structure, but it appears empirically that it does not

change anything, so we forget about this detail in the algorithm implementation.

5.6 The spatially-coupled approximate message-passing algorithm

We define ec with c ∈ {1, . . . ,Lc }, a vector of size N /Lc , as the c th block of e (of size N ) and fr

with r ∈ {1, . . . ,Lr }, a vector of size αr N /Lc as the r th block of f (of size M). For example, in

Fig. 5.4, the signal s is decomposed as s = [sc ]Lc
c . The notation i ∈ c (resp. µ ∈ r ) means all the

components of e that are in ec (resp. all the components of f that are in fr ). The algorithm (for

scalar signals and matrices, see Fig. 7.2 for the complex case) requires four different operators

performing the following operations:

Õµ(ec ) :=
N /Lc∑
i∈c

F 2
µi ei (5.116)

Oµ(ec ) :=
N /Lc∑
i∈c

Fµi ei (5.117)

Õi (fr ) :=
αr N /Lc∑
µ∈r

F 2
µi fµ (5.118)

Oi (fr ) :=
αr N /Lc∑
µ∈r

Fµi fµ (5.119)
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1: t ← 0
2: δ← ε+1
3: while t < tmax and δ> ε do
4: Θt+1

µ ←∑Lc
c Õµ(vt

c )

5: w t+1
µ ←∑Lc

c Oµ(at
c )−Θt+1

µ

yµ−w t
µ

1/snr+Θt
µ

6: Σt+1
i ←

[∑Lr
r Õi

(
[1/snr+Θt+1

r ]−1
)]−1/2

7: R t+1
i ← at

i + (Σt+1
i )2 ∑Lr

r Oi

(
yr −wt+1

r

1/snr+Θt+1
r

)
8: v t+1

i ← fci

(
(Σt+1

li
)2,Rt+1

li

)
9: at+1

i ← fai

(
(Σt+1

li
)2,Rt+1

li

)
10: t ← t +1
11: δ←||at+1 −at ||22
12: end while
13: return at

Figure 5.5 – The AMP algorithm written with operators. Here for example wt+1
r := [w t+1

µ ]µ∈r

and at
c := [at

l ]l∈c . This form underlines how AMP is operating when spatially-coupled operators
are used instead of homogeneous matrices and takes advantage from this structure. li is the
index of the section to which the i th 1-d variable belongs to. ε is the accuracy for convergence
and tmax the maximum number of iterations. A suitable initialization for the quantities
is (at=0

i = EP0 (x), v t=0
i = VarP0 (x), w t=0

µ = yµ). Once the algorithm has converged, i.e. the

quantities do not change anymore from iteration to iteration, the estimate of the l th signal
section is at

l . If needed, the damping scheme of Fig. 4.6 can be used.

αr is the measurement rate of all the blocks at the r th block-row, for example on Fig. 5.4,

α1 =αseed and α j =αr est ∀ j > 1.

This version of AMP is perfectly equivalent to Fig. 4.6 but underlines the spatially-coupled

structure of the matrix. Furthermore, it will be useful when defining the structured operators

making use of fast transforms such as Hadamard and Fourier operators, see chap. 7. Actually,

even in the case where no fast transforms are used, this form of AMP can be advantageous as

the matrix is sparse, and thus it can avoid the useless time consuming products with the many

zeros in the matrix.

5.6.1 Further simplifications for random matrices with zero mean and equiva-
lence with Montanari’s notations

We can go further in the approximation of some quantities computed by the algorithm Fig. 5.5

by considering that the large signal limit allows to replace the elements F 2
µi by the matrix

variance F 2
µi ≈ Jrµ,ci /L. This allows to derive the so called full-TAP equations for AMP. This is

justified by the fact that the average with respect to the matrix realization of all the quantities

appearing in the algorithm depending on such squared elements (such asΘµ) are ∈O(1) whilst

their variance ∈O(1/N ), see [35]. Thus in the large signal limit, we can neglect their instance-
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5.6. The spatially-coupled approximate message-passing algorithm

1: t ← 0
2: δ← ε+1
3: while t < tmax and δ> ε do
4: Θt+1

r ←∑Lc
c Õr (vt

c )

5: w t+1
µ ←∑Lc

c Oµ(at
c )−Θt+1

rµ

yµ−w t
µ

1/snr+Θt
rµ

6: Σt+1
c ←

[∑Lr
r Õc

(
[1/snr+Θt+1

r ]−1
)]−1/2

7: R t+1
i ← at

i + (Σt+1
ci

)2 ∑Lr
r Oi

(
yr −wt+1

r

1/snr+Θt+1
r

)
8: v t+1

i ← fci

(
(Σt+1

ci
)2,Rt+1

li

)
9: at+1

i ← fai

(
(Σt+1

ci
)2,Rt+1

li

)
10: t ← t +1
11: δ←||at+1 −at ||22
12: end while
13: return at

Figure 5.6 – The simplified (with respect to Fig. 5.5) full-TAP AMP algorithm, where we have
approximated the squared elements of the matrix by the its variance. For example in Fig. 5.5,
Θt+1

r := [Θt+1
µ ]µ∈r was a vector of measure-index dependent components whereas now Θt+1

r is
a scalar with same value ∀µ ∈ r . Notations must not be confused: li is the index of the unique
section to which the 1-d component i belongs to, whereas ci is the index of the block to which
the section li belongs to, etc. If needed, the damping scheme of Fig. 4.6 can be used.

dependent fluctuations using this simplification. Considering the most general version of

AMP Fig. 5.5 where it is written in terms of the operators, the dependency in squared matrix

elements is just in the Õµ (5.116) and Õi (5.118) operators which can thus be approximated as:

Õµ(ec ) ≈ Õrµ(ec ) :=
Jrµ,c

L

N /Lc∑
i∈c

ei (5.120)

Õi (fr ) ≈ Õci (fr ) := Jr,ci

L

αr N /Lc∑
µ∈r

fµ (5.121)

They now depend only on the block indices and thus also Θr and Σc that are derived from

them. From this, we can write a simplified form for the AMP algorithm Fig. 5.6.

Equivalence with Montanari’s notations

Now we show how to go from this simplified algorithm to the equivalent notation of Montanari

[117] in the case of an homogeneous matrix. Starting from Fig. 5.6, we plug the AMP field R t+1
i
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expression into the denoiser:

at+1
i = fai

(
(Σt+1

ci
)2,

[
at

j + (Σt+1
ci

)2
Lr∑
r

Oi

(
τt

r

1/snr+Θt+1
r

)]
j∈li︸ ︷︷ ︸

:=Rt+1
li

)
(5.122)

where we define the residual τt
r := yr −wt+1

r =
[
τt
µ = yµ−w t+1

µ

]
µ∈r

and we have defined the

blocks such that all the 1-d components inside the same section are in the same block for the

derivation. Now using the iteration of wt+1
r in Fig. 5.5 we get:

τt
r = yr −

[
Lc∑
c

Oµ(at
c )

]
µ∈r

+Θt+1
r

yr −wt
r

1/snr+Θt
r

(5.123)

= yr −
[

Lc∑
c

Oµ(at
c )

]
µ∈r

+ Θt+1
r τt−1

r

1/snr+Θt
r

(5.124)

Using the definition ofΘt+1
r from the algorithm Fig. 5.6 together with (5.120) we obtain:

Θt+1
r = B

Lc

Lc∑
c

Jr,c < f t
c >c (5.125)

= B

Lc

Lc∑
c

Jr,c (Σt
c )2 < ( f t

a )′ >c (5.126)

where we have used the property (4.142) of the denoising function for the last equality and we

define the shorthand notations <>c of the empirical average restricted to one block c :

< f t
c >c := Lc

N

N /Lc∑
i∈c

fci

(
(Σt

c )2,Rt
li

)
(5.127)

< ( f t
a )′ >c := Lc

N

L/Lc∑
l∈c

B∑
j

∂ fal ( j )

(
x,y

)
∂y j

∣∣∣∣∣
(Σt

c )2,Rt
l

(5.128)

where l ( j ) ∈ {1, . . . , N } is the index of the j th 1-d variable belonging to the section l , where

j ∈ {1, . . . ,B}. From here we can show that this form gives back the Montanari’s one in the

homogeneous operator case (Lc = Lr = Jr,c = 1). In this case, the quantities in the algorithm

become:

Θt+1 = B(Σt )2 < ( f t
a )′ > (5.129)

(Σt+1)2 =
[

1

L

αLB∑
µ

1

1/snr+Θt+1

]−1

(5.130)

= Θt+1 +1/snr

Bα
(5.131)

= B(Σt )2 < ( f t
a )′ >+1/snr

Bα
(5.132)
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at+1
i = fai

(
(Σt+1)2,

[
at

j + (Σt+1)2
M∑
µ

Fµ jτ
t
µ

Θt+1 +1/snr

]
j∈li

)
(5.133)

= fai

(
(Σt+1)2,

[
at

j +
1

Bα

M∑
µ

Fµ jτ
t
µ

]
j∈li

)
(5.134)

τt
µ = yµ−

N∑
i

Fµi at
i +τt−1

µ

Θt+1

1/snr+Θt (5.135)

= yµ−
N∑
i

Fµi at
i +τt−1

µ

B(Σt )2 < ( f t
a )′ >

Bα(Σt )2 (5.136)

= yµ−
N∑
i

Fµi at
i +τt−1

µ

< ( f t
a )′ >
α

(5.137)

where we used the definition of Σt+1 from Fig. 5.6 and (5.129), (5.131) to simplify (5.133) and

obtain (5.136). The very last step is to rescale the coding matrix by dividing its elements

by Bα : F̃ := F/(Bα). The measure ỹ is thus rescaled in the same way. We finally obtain the

Montanari’s form of AMP for homogeneous matrices and B-d vectorial components signals:

τ̃t
µ = ỹµ−

N∑
i

F̃µi at
i +

τ̃t−1
µ < ( f t

a )′ >
α

(5.138)

(Σt+1)2 = (Σt )2 < ( f t
a )′ >+1/(Bsnr)

α
(5.139)

at+1
i = fai

(
(Σt+1)2,

[
at

j +
M∑
µ

F̃µ j τ̃
t
µ

]
j∈li

)
(5.140)

where τ̃t is the rescaled residual, and:

< ( f t
a )′ > := 1

N

L∑
l

B∑
j

∂ fal ( j )

(
x,y

)
∂y j

∣∣∣∣∣
(Σt )2,

[
at−1

j +∑M
µ F̃µ j τ̃

t−1
µ

]
j∈li

(5.141)

= 1

N (Σt )2

N∑
i

fci

(
(Σt )2,

[
at−1

j +
M∑
µ

F̃µ j τ̃
t−1
µ

]
j∈li

)
(5.142)

5.7 State evolution analysis in the spatially-coupled measurement

operator case

The derivation of the state evolution with spatial coupling is very similar to the full operator

case, see sec. 5.3. The difference is that now each block of the matrix Fig. 5.4 can have a

different variance, and thus one must be vigilant when performing the derivation. We give

here the main steps, the details being similar to the full case. All the computations are done

keeping in mind the limit L À Lc ,Lr for which AMP is valid with spatial coupling. We start

from the algorithm Fig. 5.5 and the operators definitions (5.116), (5.117), (5.118), (5.119). As in

sec. 5.3, we need to study the fluctuations of the AMP field, the random variable of the disorder
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that takes as input the denoisers:

Rt+1
l = at

l + (Σt+1
l )2

Lr∑
r

αr N /Lc∑
µ∈r

Fµl

1/snr+Θt+1
µ

[ Lc∑
c

L/Lc∑
k∈c

Fᵀ
µk (sk −at

k )+ξµ+Λt
µ

]
(5.143)

where Λt
µ is defined in terms of the AMP quantities in (5.50). The variance of the matrix

elements depend only on the block to which they belong, thus in the thermodynamic limit

when we replace the square matrix elements by their variance, it simplifies the variance of the

measure estimate which end up depending only on the block line index:

Θµ =
Lc∑
c

L/Lc∑
l∈c

(F2
µl )ᵀvl (5.144)

≈ 1

L

Lc∑
c

Jrµ,c

L/Lc∑
l∈c

B∑
i∈l

vi (5.145)

=:Θrµ (5.146)

⇒Λt
µ =Θt+1

rµ

yµ−w t
µ

1/snr+Θt
rµ

(5.147)

where Jr,c ∈ O(1) is the not yet rescaled by 1/L variance of the elements of the block of the

spatially-coupled operator that is at the r th block-line, c th block-column, see Fig. 5.4. The

notation rµ (cl ) means the block index r ∈ {1, . . . ,Lr } (c ∈ {1, . . . ,Lc }) to which the factor index µ

(section index l ) belongs to. The previous simplification implies from the definition of (Σt+1
l )2

in Fig. 5.5 that:

(Σt+1
l )2 = Lc

B

(
Lr∑
r

Jr,clαr

1/snr+Θt+1
r

)−1

1B (5.148)

= (Σt+1
cl

)21B (5.149)

which thus just depend on the block-column index cl to which the section l belongs to. We

deduce from (5.148) the simplified expression of Rt+1
l :

Rt+1
l ≈ at

l + (Σt+1
cl

)2
Lr∑
r

1

1/snr+Θt+1
r

αr N /Lc∑
µ∈r

Fµl

[ Lc∑
c

L/Lc∑
k∈c:k 6=l

Fᵀ
µk (sk −at

k )+ξµ+Λt
µ

]

+ (Σt+1
cl

)2
Lr∑
r

1

1/snr+Θt+1
r

αr N /Lc∑
µ∈r

Fµl

[
Fᵀ
µl (sl −at

l )

]
︸ ︷︷ ︸

:=U

(5.150)

≈ sl + (Σt+1
cl

)2
Lr∑
r

1

1/snr+Θt+1
r

αr N /Lc∑
µ∈r

Fµl

[ Lc∑
c

L/Lc∑
k∈c:k 6=l

Fᵀ
µk (sk −at

k )+ξµ+Λt
µ

]
︸ ︷︷ ︸

:=rt+1
r l

(5.151)
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where we have used the same approximation as in (5.55) which implies:

U = (Σt+1
cl

)−2(xl −at
l )+O(1/

p
L) (5.152)

Now we define:

rt+1
l := (Σt+1

cl
)2

Lr∑
r

rt+1
r l

1/snr+Θt+1
r

(5.153)

Using the independence assumption about the matrix elements we can now compute by

central limit theorem the moments of the Gaussian distributed variables rt+1
r l in order to

deduce the moments of rt+1
l . As in sec. 5.3, we only keep the O(1) terms. We can actually

identify rt+1
r l to rt+1 of (5.56) and thus, the computations are exactly the same as in the full

operator case up to the values of the variances that are different. Using again (4.137), (5.57)

remains valid, so that we get a similar result to (5.59) and (5.61):

EF,ξ,s{rt+1
r l } ≈ 0B (5.154)

⇒EF,ξ,s{rt+1
l } ≈ 0B (5.155)

Identifying in (5.62) rt+1
r l with rt+1

l which is defined by (5.56), the result (5.65) implies that if

l ′ 6= l then ∀ r ′:

EF,ξ,s{rt+1
r l rt+1

r ′l ′ } ≈ 0B (5.156)

Furthermore, in the case where r ′ 6= r , we have:

EF,ξ,s{rt+1
r l rt+1

r ′l } = EF,ξ,s

{ ∑
µ∈r

∑
ν∈r ′

Fµl Fνl

[ Lc∑
c

L/Lc∑
k∈c:k 6=l

Fᵀ
µk (sk −at

k )+ξµ+Λt
µ

]
[ Lc∑

c ′

L/Lc∑
k ′∈c ′:k ′ 6=l

Fᵀ
νk ′(sk ′ −at

k ′)+ξν+Λt
ν

]}
(5.157)

= 0B (5.158)

so EF,ξ,s{rt+1
r l rt+1

r ′l ′ } can be different of zero only if l = l ′ and r = r ′. It implies that the cross terms

cancel as well:

EF,ξ,s{rt+1
l rt+1

l ′ } ≈ 0B (5.159)
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The only moment that changes with respect to the full matrix case is the variance term.

Skipping some steps similar to (5.66), (5.67), we get:

EF,ξ,s{(rt+1
r l )2} = EF,ξ,s

{
αr N /Lc∑
µ∈r

F2
µl

[
Lc∑
c

L/Lc∑
k∈c:k 6=l

Fᵀ
µk (sk −at

k )

][
Lc∑
c ′

L/Lc∑
k ′∈c ′:k ′ 6=l

Fᵀ
µk ′(sk ′ −at

k ′)

]}

+EF,ξ,s

{
αr N /Lc∑
µ∈r

F2
µlξ

2
µ

}
+EF,ξ,s

{
αr N /Lc∑
µ∈r

F2
µl (Λt

µ)2

}
︸ ︷︷ ︸

∈O(L−3/2)

+2EF,ξ,s

{
αr N /Lc∑
µ∈r

F2
µlΛ

t
µ

[
Lc∑
c

L/Lc∑
k∈c:k 6=l

Fᵀ
µk (sk −at

k )

]}
︸ ︷︷ ︸

=0B

(5.160)

≈ EF,ξ,s

{
αr N /Lc∑
µ∈r

F2
µl

[
Lc∑
c

L/Lc∑
k∈c:k 6=l

(F2
µk )ᵀ(sk −at

k )2

]}
+ αr B Jr,cl

snrLc
(5.161)

≈ αr B Jr,cl

snrLc
+
αr N /Lc∑
µ∈r

Jr,cl

L

[
Lc∑
c

Jr,cc

L

L/Lc∑
k∈c:k 6=l

EF,ξ,s{(sk −at
k )ᵀ(sk −at

k )}︸ ︷︷ ︸
≈E t

c N /Lc

]
(5.162)

= αr B Jr,cl

Lc

(
1

snr
+ B

Lc

Lc∑
c

Jr,cc E t
c

)
(5.163)

where E t
c is the MSE at time t of the block c of the signal, see Fig. 5.4:

E t
c := Lc

N

L/Lc∑
k∈c

EF,ξ,s{(sk −at
k )ᵀ(sk −at

k )} (5.164)

The variance of rt+1
r is deduced from (5.153) using (5.158):

EF,ξ,s
{
(rt+1

l )2}= (Σt+1
cl

)4
Lr ,Lr∑
r,r ′

EF,ξ,s
{

rt+1
r l rt+1

r ′l

}
(1/snr+Θt+1

r )(1/snr+Θt+1
r ′ )

(5.165)

= (Σt+1
cl

)4
Lr∑
r

EF,ξ,s
{
(rt+1

r l )2
}

(1/snr+Θt+1
r )2

(5.166)

We define the average variance of the posterior estimates inside the block c as:

V t
c := Lc

N

L/Lc∑
l∈c

B∑
i∈l

v t
i (5.167)

The matching prior conditions (5.100), (5.101) and (5.102) remain true "per block" as the deriva-

tion performed in sec. 5.3.3 just assumed the definition of the denoisers and the prior matching

condition: we would obtain the same replacing
(
(Σt+1)2,Rt+1(z,sl )

)
by

(
(Σt+1

c )2,Rt+1
c (z,sl )

)
,

the only block index dependent quantities. These conditions allow to greatly simplify the

analysis. It implies an equality between the mean variance per block and the MSE per block.

It becomes V t
c = E t

c ∀ c ∈ {1, . . . ,Lc } at each time step if they are initialized with same value.
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From this and (5.146), we can re-writeΘr as:

Θt
r =

B

Lc

Lc∑
c

Jr,cV t
c (5.168)

= B

Lc

Lc∑
c

Jr,c E t
c (5.169)

We plug this expression into (5.163) and using (5.166), (5.148) we get:

EF,ξ,s
{
(rt+1

l )2}= (Σt+1
cl

)4 B

Lc

Lr∑
r

αr Jr,cl (1/snr+Θt+1
r )

(1/snr+Θt+1
r )2

(5.170)

= (Σt+1
cl

)21B (5.171)

So now we know the distribution of Rt+1
l from (5.151):

rt+1
l ∼N

(
rt+1

l

∣∣0B , (Σt+1
cl

)2I B
)

(5.172)

⇒Rt+1
l ∼N

(
Rt+1

l

∣∣sl , (Σt+1
cl

)2I B
)

(5.173)

From the same arguments as in the full case derivation sec. 5.3, we finally obtain the following

state evolution over the block mean square error E t+1
c inside the block c in the L →∞ limit:

E t+1
c = 1

B

B∑
i∈l

∫
RB

dsl P0(sl )
∫
RB

Dz
[

fai

(
(Σt+1

c )2,Rt+1
c (z,sl )

)− si

]2

(5.174)

Σt+1
c

(
{E t

c ′}
Lc

c ′

)
=

[
B

Lr∑
r

αr Jr c

Lc /snr+B
∑Lc

c ′ Jr c ′E t
c ′

]−1/2

(5.175)

Rt+1
c (z,sl ) := sl +zΣt+1

c (5.176)

where fai is the denoiser (4.115). As explained previously, the prior matching conditions of

sec. 5.3.3 imply the same equalities per block as in the full case, so that like in sec. 5.3 the two

following forms of state evolution for spatially-coupled matrices are equivalent to (5.174):

E t+1
c = 1

B

[
Esc {sᵀl sl }−

B∑
i∈l

∫
RB

dsl P0(sl )
∫
RB

Dz fai

(
(Σt+1

c )2,Rt+1
c (z,sl )

)
si

]
(5.177)

= 1

B

B∑
i∈l

∫
RB

dsl P0(sl )
∫
RB

Dz fci

(
(Σt+1

c )2,Rt+1
c (z,sl )

)
(5.178)

together with (5.175) and (5.176), where Esc {sᵀl sl }/B is the average of the squared signal’s

components of the block c , see Fig. 5.4 (in all this thesis, the statistical properties of the signal

are homogeneous). fci outputs the posterior variance and is given by (4.116).
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6 Compressed sensing of approximately
sparse signals

Compressed sensing is designed to measure sparse signals directly in a compressed form.

However, most signals of interest are only approximately sparse, i.e. even though the signal

contains only a small fraction of relevant large components, the other ones are not strictly

equal to zero but are only close to it. In this chapter we model the approximately sparse i.i.d

signal with a sum of two Gaussian distributions, one with large variance correponding to

the informative support of the signal, the second for the small components (which act as

an effective noise) with smaller variance, and we study its compressed sensing with dense

random matrices. We use replica calculations to determine the mean square error of the Bayes

optimal reconstruction for such signals as a function of the variance of the small components,

the density of large components and the measurement rate. We then study the approximate

message-passing algorithm for approximate sparsity and we quantify the region of parameters

for which it achieves optimality (for large systems). Finally, we show that in the region where

the AMP algorithm with the homogeneous measurement matrices is not optimal, the spatial

coupling allows to restore optimality. Even though we limit ourselves to this special class of

signals and assume the prior matching condition, many qualitative features of the results stay

true for other signal models and when the distribution of the signal-components is not known

as well [118].

The `1-minimization based algorithms [30, 32] are widely used for compressed sensing of

approximately sparse signals. They are very general as discussed in sec. 3.4 and provide good

performances in many situations. They, however, do not achieve optimal reconstruction even

when the statistical properties of the signal are known, see sec. 5.1.1.

As we shall see the AMP algorithm for homogeneous measurement matrices matches asymp-

totically the performance of the optimal reconstruction in a large part of the parameter space.

However in some region of parameters that define the hard phase, it is suboptimal as the BP

transition blocks the algorithm before the optimal one, see sec. 5.1.1. In compressed sensing

the spatial coupling was first tested in [119] who did not observe any improvement for the

present bi-Gaussian model for reasons that we will clarify later in this chapter. Basically, the

spatial coupling provides improvements only if a first order phase transition is present, but
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Chapter 6. Compressed sensing of approximately sparse signals

for the variance of small components that was tested in [119] there is no such transition: it

appears only for slightly smaller values.

6.1 The bi-Gaussian prior for approximate sparsity

We study compressed sensing for approximately sparse signals: the N -d scalar components

signals (i.e. L = N ,B = 1 in the general equations for vector components signals presented in

the previous theoretical chapters chap. 4 and chap. 5) that we consider have i.i.d components,

K of these being drawn from a distribution φ(s) and the density of such components is

ρ = K /N . The remaining N −K components are Gaussian with zero mean and small variance

ε :

P0(s) =
N∏

i=1
P0(si ) (6.1)

=
N∏

i=1
[ρφ(si )+ (1−ρ)N (si |0,ε)] (6.2)

Of course no real signal of interest is truly i.i.d. However, our analysis also applies to non i.i.d

signals which empirical distribution of components is converging to P0(si ), this condition

being sufficient [110]. We focus on the special case of a Gaussian φ(si ) = N (si |0,σ2 = 1) of

zero mean and unit variance. Although the numerical results depend on the form of φ(si ), the

overall picture is robust with respect to this choice. We further assume the prior matching

condition: the parameters of P (s) are known and used in the algorithm. The bi-Gaussian

model for approximately sparse signals (6.2) was previously used in compressed sensing, for

example in [91, 119].

For simplicity we assume the measurements to be noiseless, the case of noisy measurements

can be treated similarly by the AMP algorithm and learned by expectation maximization (see

sec. 4.3.8) if unknown. We consider the measurement matrix F having i.i.d components of zero

mean and variance 1/N . The measurements are obtained through (3.18). In the numerical

experiments, the components of the matrix are Gaussian distributed, but the asymptotic

analysis does not depend on the details of the components distribution, as long as they are

i.i.d.

The Bayes optimal estimation is intractable in the general case, but as discussed in sec. 5.1.1

the AMP estimation is Bayes optimal under the matching prior condition before its spinodal

transition, which blocks its convergence. We will use an asymptotic replica analysis of the

Bayes optimal reconstruction, which allows to compute the asymptotic MSE as a function of

the parameters of the signal distribution (ρ,ε) and of the measurement rate α. This allows to

obtain the phase diagram of the problem.
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6.2. Reconstruction of approximately sparse signals with the approximate
message-passing algorithm

6.1.1 Learning of the prior model parameters

If the prior parameters are unknown, they can be learned efficiently through expectation

maximization described in sec. 4.3.8. Here we could start from the Bethe free energy (4.194)

and derive fixed point equations but as the parameters have simple interpretations, we can

derive learnings more easily. Actually, the easiest way is exactly as we will do later on in

sec. 8.2.5 to which we refer: it just requires to compute the posterior probability estimates

{P (x t
i ∈N )}N

i at time t that the signal components have been generated by the Gaussian part

of the prior:

P (x t
i ∈N ) = (1−ρ)

∫
d xi N (xi |0,ε)N (xi |R t

i , (Σt
i )2)∫

d xi P0(xi )N (xi |R t
i , (Σt

i )2)
(6.3)

where P0(xi ) is given by (6.2) and (R t
i , (Σt

i )2) are the AMP fields at time t . Then from this,

the parameters are easily derived, see sec. 8.2.5. For example, the density of informative

components (that have been generated by φ is (6.2)) is just (8.30). The other parameters are

learned similarly.

6.2 Reconstruction of approximately sparse signals with the approx-

imate message-passing algorithm

The generic AMP algorithm in its scalar form Fig. 4.6 is now studied. Only the denoisers fai

and fci depend explicitely on the signal model P0(s) (6.2). Referring to the sec. 4.3.6 and using

the table Tab. 4.1 for the prior construction, we get directly the denoisers for bi-Gaussian

approximate sparsity:

fa(Σ2,R) =
∑2

a=1 wae
− R2

2(Σ2+σ2
a ) Rσ2

a

(Σ2+σ2
a )

3
2∑2

a=1 wa
1p

Σ2+σ2
a

e
− R2

2(Σ2+σ2
a )

(6.4)

fc (Σ2,R) =
∑2

a=1 wae
− R2

2(Σ2+σ2
a ) σ

2
aΣ

2(Σ2+σ2
a )+R2σ4

a

(Σ2+σ2
a )

5
2∑2

a=1 wa
1p

Σ2+σ2
a

e
− R2

2(Σ2+σ2
a )

− fa(Σ2,R)2 (6.5)

where we use the notation fa/ fc instead of fai / fci of Fig. 4.6 in the scalar components signal

case. For the approximately sparse signals that we consider here we have:

w1 = ρ (6.6)

σ2
1 =σ2 = 1 (6.7)

w2 = 1−ρ (6.8)

σ2
2 = ε (6.9)
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6.2.1 State evolution of the algorithm with homogeneous measurement matrices

In the limit of large system sizes, i.e. when the parameters (ρ,ε,α) are fixed whereas N →∞,

the evolution of the AMP algorithm is described exactly using the state evolution [104] given

by (5.105) (or any of the other two equivalent forms) under the prior matching condition, as it

is the case here. When B = 1,L = N it becomes in the noiseless case snr →∞:

E t+1 =
∫

d sP0(s)
∫

Dz fc

E t

α
, s + z

√
E t

α

 (6.10)

Now plugging the bi-Gaussian prior P0(s) = ∑2
a waN (s|0,σ2

a) in (6.10), using the fact that

the sum of two independent Gaussian random variables is a new Gaussian random variable

with mean and variance given by the sum of the means and variances of the original random

variables plus the fact that:∫
duN (u|m, v) f (u) =

∫
Dz f (

p
v z +m) (6.11)

we directly obtain the final simplified state evolution recursion:

E t+1 =
2∑

a=1
wa

∫
Dz fc

E t

α
, z

√
σ2

a +
E t

α

 (6.12)

where again Dz = e−z2/2/
p

2πd z is a unit centered Gaussian measure. The initialization

corresponding to the one for the algorithm is E t=0 = VarP0 (x) = (1−ρ)ε+ρσ2.

In Fig. 6.1 we plot the analytical prediction for the time evolution of the MSE computed

from the state evolution (6.12), and we compare it to the one measured in one run of the

AMP algorithm for a system size N = 3 ·104. The agreement for such system size is already

excellent. As we see, when the measurement rate is too low, the algorithm converges to an

high MSE . Furthermore, we observe that when reconstruction succeeds, the MSE falls to a

value comparable to the small components variance, here ε= 10−6.

6.2.2 Study of the optimal reconstruction limit by the replica method

As discussed in sec. 5.1.1, for measurement rates below the BP transition and above the static

transition αs(ρ) <α<αBP (ρ), the state evolution equation (6.12) has two different stable fixed

points. In particular, if the iterations are initialized with E → 0, one will reach a fixed point with

much lower MSE than initializing with large E = 1. In fact, if αs(ρ) ≤αopt (ρ) <α<αBP (ρ) the

low error fixed point determines the MSE that would be achieved by the exact Bayes optimal

inference. Let us now compute the phase diagram of compressed sensing for bi-Gaussian

approximately sparse signals from the Bethe free entropy using the replica method. We start

from the general potential valid under the prior matching condition (5.48), which becomes in
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Figure 6.1 – Time evolution of the MSE the AMP algorithm achieves (crosses) compared to the
asymptotic N →∞ evolution obtained from the state evolution (6.12) (full lines) for different
measurement rates. Data are obtained for a signal with density of large component ρ = 0.2 and
variance of the small components ε= 10−6. The algorithm was used for a signal of N = 3 ·104

components.

the scalar components B = 1 and noiseless snr →∞ case:

Φ(E) =ΦB=1(E |snr →∞)

=−α
2

(
log(E)+ < s2 >

E

)
+

∫
P0(s)Dz log

(∫
P0(x)e

sx
Σ(E)2 + zx

Σ(E)− x2

2Σ(E)2

)
(6.13)

up to irrelevant constants that do not depend on the MSE . Σ(E) =p
E/α is defined by (5.49).

We define I as the integral appearing in the previous expression. Now using the bi-Gaussian

prior P0(s) =∑2
i wi N (s|0,σ2

i ) we can compute I by Gaussian integral:

∫
d xe−ax2+bx =

√
π

a
e

b2

4a (6.14)
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Figure 6.2 – The Bethe free entropy Φ(E) for compressed sensing of approximately sparse
signals of density ρ = 0.2, with variance of the small components ε = 10−6. The three lines
depict the potential for three different measurement rates corresponding to the critical values:
αBP = 0.3559 below which AMP is not Bayes optimal anymore without spatial coupling,
αopt = 0.2817, αs = 0.2305. The two local maxima exists for α ∈ [αs ,αBP ], and at α>αopt the
low MSE maxima is the global one, i.e. the M MSE estimate. Below the static transitionα<αs ,
all information about the signal is lost and only remain the spurious solution at high MSE .

to get:

I =
2∑
i

wi

∫
d sDzN (s|0,σ2

i ) log

 2∑
j

w j√
2πσ2

j

∫
d xe−

x2

2 (1/Σ(E)2+1/σ2
j )+ x

Σ(E) (s/Σ(E)+z)


=

2∑
i

wi

∫
d sDzN (s|0,σ2

i ) log

 2∑
j

w j√
σ2

j /Σ(E)2 +1
e

(s/Σ(E)+z)2

2(1+Σ(E)2/σ2
j

)

 (6.15)

142



6.3. Phase diagrams for compressed sensing of approximately sparse signals

Now we use again the simple form of the moments of the sum of two independent Gaussian

random variables together with (6.11) and defining u := s/Σ(E)+ z we get:

I =
2∑
i

wi

∫
duN (u|0,σ2

i /Σ(E)2 +1)log

 2∑
j

w j√
σ2

j /Σ(E)2 +1
e

u2

2(1+Σ(E)2/σ2
j

)

 (6.16)

=
2∑
i

wi

∫
Dz log

 2∑
j

w j√
σ2

j /Σ(E)2 +1
e

z2(1+σ2
i /Σ(E)2)

2(1+Σ(E)2/σ2
j

)

 (6.17)

The final Bethe free entropy expression is thus:

Φ(E) =− α

2

(
log(E)+ w1σ

2
1 +w2σ

2
2

E

)

+
2∑
i

wi

∫
Dz log

 2∑
j

w j√
σ2

j /Σ(E)2 +1
e

z2(1+σ2
i /Σ(E)2)

2(1+Σ(E)2/σ2
j

)

 (6.18)

In Fig. 6.2 we plot the functionΦ(E) for a signal of density ρ = 0.2, variance of small compo-

nents ε = 10−6 and three different values of the measurement rate α corresponding to the

critical values at which happen the different phase transitions. We will show next that at a fixed

signal density ρ, for a variance of the small components lower than a critical value ε< εc (ρ),

the optimal Bayes reconstruction has a transition at a critical value α=αopt (ρ) separating a

regime with a small value (comparable to ε) of the MSE obtained at α>αopt (ρ) from a phase

with a large value of the MSE obtained at α<αopt (ρ). As discussed in sec. 5.1.1, this is a first

order phase transition (as the BP transition) in the sense that the Bayes optimal MSE jumps

discontinuously at α=αopt (ρ).

In this intermediate hard region αopt (ρ) <α<αBP (ρ) the AMP performance can be improved

with the use of spatially-coupled measurement matrices and with a proper choice of the

parameters defining these matrices, one can approach the performance of the optimal Bayes

inference in the large system size limit for any measurement rate.

Finally for higher variance of the small components ε> εc (ρ) there is no more phase transition

for any 0 <α< 1. In this regime, AMP always achieves optimal Bayes inference and the MSE

that it obtains varies continuously from 0 at α= 1 to O(1) values at low measurement rate α.

6.3 Phase diagrams for compressed sensing of approximately sparse

signals

In Fig. 6.3 we plot the MSE to which the state evolution converges if initialized at large value

of MSE - such initialization corresponds to the iterations of AMP when the actual signal

is not known. For ε = 0.01 we also compare explicitly to a run of AMP for a system size of
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Figure 6.3 – The MSE achieved by the AMP algorithm. The lines correspond to the evaluation
of the MSE from the state evolution (6.12), the data points to the MSE achieved by the AMP
algorithm on single instances with N = 3 ·104. The data are for signals with density ρ = 0.1 and
several values of variance of the small components ε as a function of the measurement rate α.
The MSE grows continuously as α decreases for ε> εc (ρ = 0.1) = 0.00075. For smaller values
of the small components variance, a first order phase transition is present and the MSE jumps
discontinuously at αBP (ρ = 0.1,ε).

N = 3 ·104. Depending on the value of the density ρ and variance ε, two situations are possible:

for relatively large ε, as the measurement rate α decreases the final MSE grows continuously

from E = 0 at α= 1 to E = E t=0 at α= 0. For lower values of ε the MSE achieved by AMP has a

discontinuity at αBP (ρ,ε) at which the second maxima ofΦ(E) appears. Note that the case of

ε= 0.01 was tested in [91], the case of ε= 0.0025 in [119]. This why the authors of [119] did

not observe any improvement by spatial coupling: for these parameters (ρ,ε), there is no first

order transition and thus spatial coupling is useless as AMP is anyway Bayes optimal at any

measurement rate α.

In Fig. 6.4 we plot in solid blue line the MSE to which the AMP asymptotically converges

and compare it to the MSE achieved by the optimal Bayes inference (in dashed red line),

i.e. the MSE corresponding to the global maximum of Φ(E). We see that, when the discon-

tinuous transition point αBP (ρ,ε) exists, then in the region αopt (ρ,ε) < α < αBP (ρ,ε) AMP

is suboptimal. We remind that in the limit ε→ 0, exact reconstruction is possible for any

α>αopt (ρ) = ρ. We see that for α<αopt (ρ,ε) and for α>αBP (ρ,ε) the performance of AMP

matches asymptotically the performance of the Bayes optimal inference. The two regions are,
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Figure 6.4 – MSE achieved asymptotically by the AMP (blue solid lines) compared to the
MSE achieved by the Bayes optimal inference (red dashed lines) as evaluated using the state
evolution, initializing it from E → 0 to get the Bayes optimal MSE or E = 1 for the AMP
asymptotic MSE . The data points correspond to the MSE achieved by the AMP algorithm for
N = 3 ·104. The optimal MSE jumps at αopt (ρ,ε). Hence for ε< εc (ρ = 0.1) = 0.00075 there is a
range of measurement rates [αopt (ρ = 0.1,ε),αBP (ρ = 0.1,ε)] for which the AMP algorithm is
asymptotically suboptimal. In this gap, spatial coupling can be used to restore the optimality
of AMP.

however, quite different as discussed in sec. 5.1.1. For α<αopt (ρ,ε) the final MSE is relatively

large, whereas for α>αBP the final MSE is of order ε and hence is this region the problem

shows a very good stability towards approximate sparsity.

In Fig. 6.5 we summarize the critical values of αBP (ε,α) and αopt (ε,α) for a signal of density

ρ = 0.1 as a function of the variance of the small components and the measurement rate.

Note that for ε > εc (ρ = 0.1) = 0.00075 there are no phase transitions anymore, hence for

this large value of ε, the AMP algorithm matches asymptotically the optimal Bayes inference

at any α. Note that in the limit of exactly sparse signal ε→ 0, the values αopt (ρ) → ρ and

αs(ρ) → ρ whereas αBP (ρ) → 0.2076, hence for α> 0.2076 the AMP algorithm is very robust

with respect to appearance of approximate sparsity since the transition αBP (ρ) has a very

weak ε-dependence, as seen in Fig. 6.5.

In Fig. 6.6 we plot the phase diagram at fixed variance ε in the density ρ, measurement rate

α plane. The only space for improvement is in the region αopt (ρ,α) <α<αBP (ρ,α), which

shrinks as ε increases. In this region, AMP is not optimal because the potentialΦ(E) has two
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Figure 6.5 – Phase diagram for compressed sensing of approximately sparse signals. The
density of the large signal components is ρ = 0.1, we are changing the measurement rateα and
the variance of the small components ε. The critical values of measurement rates αopt (ε,α),
αBP (ε,α) and αs(ε,α) are plotted. For homogeneous measurement matrices, AMP does not
achieve optimal reconstruction in the area between αopt (ε,α) (red curve) and αBP (ε,α) (blue
curve). For any measurement rate above the tri-critical point where the three transitions
curves meet, there is no more phase transitions and AMP is always Bayes optimal for any ε
and the MSE becomes a continuous function of α.

maxima, and the iterations are blocked in the "wrong" metastable local maximum of the

potential Φ(E) with the largest E .

6.4 Reconstruction of approximately sparse signals with optimality

achieving matrices

A first order phase transition that is causing a failure (sub-optimality) of the AMP algorithm

appears also in the case of truly sparse signals [34], see sec. 5.1.1. In that case [34] showed that

with the so-called seeding (i.e. spatially-coupled) measurement matrices, the AMP algorithm

is able to restore asymptotically optimal performance as discussed in sec. 5.5. This was proven

rigorously in [110]. Using arguments from the theory of crystal nucleation, it was argued

heuristically in [34] that spatial coupling provides improvement whenever, but only if, a
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Figure 6.6 – Phase diagrams for compressed sensing of approximately sparse signals in the
(α,ρ) plane with variance of small components ε = 0 (left), ε = 10−6 (center) and ε = 10−4

(right). As ε increases, the space for improvement of the AMP results by spatial coupling,
situated between the optimal and BP transitions, shrinks until it will totally disappear.

first order phase transition is present. Spatial coupling was first suggested for compressed

sensing in [119] where the authors tested cases without a first order phase transition (see

Fig. 6.3), hence no improvement was observed. Here we show that for measurement rates

αopt (ρ,ε) <α<αBP (ρ,ε), seeding matrices allow to restore optimality also for the inference of

approximately sparse signals.

6.4.1 Restoring optimality thanks to spatial coupling

In order to restore the asymptotic optimality of AMP with approximately sparse signals, we

use spatially-coupled measurement matrices of the form Fig. 5.4. The state evolution for such

block matrices have been derived in sec. 5.7. The general recursion is given by (5.178). As the

derivation in the present setting is exactly the same as in the full measurement matrix case

of sec. 6.2.1 up to the block index, we give here directly the spatially-coupled state evolution

recursion for approximate sparsity:

E t+1
c =

2∑
a=1

wa

∫
Dz fc

(
(Σt+1

c )2, z
√
σ2

a + (Σt+1
c )2

)
(6.19)

Σt+1
c

(
{E t

c ′}
Lc

c ′

)
=

[
Lr∑
r

αr Jr c∑Lc

c ′ Jr c ′E t
c ′

]−1/2

(6.20)

where we have used (5.175) in the noiseless case with B = 1 and αr is the measurement rate

of all the blocks at the r th block-row, Jr c the O(1) variance of the (r,c)-block elements see

Fig. 5.4. This kind of evolution belongs to the class for which threshold saturation (asymptotic

achievement of performance matching the optimal Bayes inference solver) was proven in [120]

(when Lc →∞, W →∞ and Lc /W À 1). This asymptotic guarantee is reassuring, but one must

check if finite N corrections are gentle enough to be able to perform compressed sensing close
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Figure 6.7 – Evolution of the MSE in reconstruction of an approximately sparse signal with
density ρ = 0.2, variance of small components ε= 10−6 at measurement rate α= 0.303. The
state evolution on the top is compared to the evolution of the algorithm for a signal size
N = 6 ·104 on the bottom. The measurement is performed using a seeding matrix with the
following parameters: (αseed = 0.4, αr est = 0.29, W = 3, J = 0.2, Lc = 30, Lr = 31). Each colored
curve correspond to a different signal block (see Fig. 5.4), and we clearly see the reconstruction
wave propagating.

to αopt (ρ,ε) even for practical system sizes, see sec. 3.1.7. We hence devote the next section to

numerical experiments showing that the AMP algorithm is indeed able to reconstruct close to

optimality with spatially-coupled matrices.

In Fig. 6.7 we show the spatially-coupled state evolution compared to the evolution of the AMP

algorithm for system size N = 6 ·104. The signal was of density ρ = 0.2 and ε= 10−6, the param-

eters of the measurement matrix are in the second line of Tab. 6.1, Lc = 30 giving measurement

rate α= 0.303 which is deep in the region where AMP for homogeneous measurement matri-

ces is not Bayes optimal and gives large MSE (for any α<αBP (ρ = 0.2,ε= 10−6) = 0.356). We

see finite size fluctuations, but the overall evolution corresponds well to the asymptotic curve,

and we see the reconstruction wave propagation happening.

In Fig. 6.8 we plot the asymptotic convergence time needed to achieve reconstruction with E ≈
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Figure 6.8 – The convergence time of AMP for large system sizes estimated by the state evo-
lution as a function of the measurement rate α. Data are for signals with density ρ = 0.2,
variance of small components ε= 10−6. The red line is obtained using an homogeneous mea-
surement matrix, the vertical dashed line corresponds to the limit this approach can achieve
αBP (ε = 10−6,ρ = 0.2) = 0.3554. All the other lines are obtained using a spatially-coupled
matrix with parameters specified in Table 6.1 and varying αr est by changing Lc which are
related by (5.114), the resulting measurement rate α is computed from (5.115). With these
seeding matrices and using large Lc , reconstruction is possible at least down to αr est = 0.282
which is very close to the measurement rate αopt = 0.2817. The blue point corresponds to the
evolution illustrated in Fig. 6.7. The divergence of the convergence time of AMP approaching
the phase transitions is the critical slowing down discussed in sec. 5.1.1, a typical behavior of
local algorithms near first order phase transitions, like the present BP and optimal ones.

ε for several sets of parameters of the seeding matrices, see Tab. 6.1. Each color corresponds

to a different Lc , which changes the αr est thanks to (5.114). With a proper choice of the

parameters, we see that we can reach an optimal reconstruction for values of α extremely

close to αopt (ε,ρ). Note, however, that the number of iterations needed to converge diverges

asα→αopt (ε,ρ). This critical slowing down typical of first order phase transitions is discussed

in sec. 5.1.1. This is very similar to what has been obtained in the case of purely sparse signals

in [34, 110].
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Chapter 6. Compressed sensing of approximately sparse signals

color αseed αr est J W Lr

purple 0.4 0.282 0.3 3 Lc +2
blue 0.4 0.290 0.2 3 Lc +1

green 0.4 0.302 0.001 2 Lc +1
black 0.4 0.310 0.4 3 Lc +1

Table 6.1 – Parameters of the seeding matrices used in Fig. 6.8. The αr est is modified by
changing Lc , the link between them being (5.114).

6.4.2 Finite size effects influence on spatial coupling performances

It is important to point out that these theoretical analyzes are valid for N →∞ only. Since

we eventually work with finite size signals, in practice, finite size effects slightly degrade this

asymptotic threshold saturation, see sec. 3.1.7. This is a well known effect in coding theory

where a major question is how to optimise finite-length codes (see for instance [23, 121]).

In Fig. 6.9 we plot the fraction of cases in which the algorithm reached successful reconstruc-

tion for different system sizes as a function of the number of blocks Lc . We see that for a given

size as the number of blocks is growing, i.e. as the size of one block decreases, the performance

deteriorates. As expected the situation improves when the size increases. Analysies of the data

presented in Fig. 6.9 suggest that the size of one block that is needed for good performance

grows roughly linearly with the number of blocks Lc . This suggests that the probability of

failure to transmit the information to every new block is roughly inversely proportional to the

block size. The algorithm nevertheless reconstructs signals at rates close to the optimal one for

system sizes of practical interest. This figure emphasizes the tradeoff between measurement

rate decrease and probability of success in the reconstruction because as Lc increases, we can

theoretically decode closer to the optimal threshold as seen from (5.115). But in the same time,

it increases the finite size effects influence and thus lowers the probability of success.

Fig. 6.10 is the phase diagram for a variance of the small components ε = 10−6 in the (α,ρ)

plane and shows how with spatial coupling, we can reconstruct instances generated in the

hard phase between the BP transition and the optimal one. We notice that the pink crosses

corresponding to these finite size instances reconstructed by spatial coupling for fixed size

N = 214 are approximately at a constant distance of the optimal transition, and thus as the

region allowing for improvement [αopt (ε = 10−6,ρ),αBP (ε = 10−6,ρ)] gets smaller when ρ

decreases, the gain with respect to the BP transition decreases as well. But even for this small

size, a non negligible gain is possible when ρ is not too small.

6.5 Some results on real images

We now present some results on a potential application of the approximate sparsity prior:

image reconstructions. The appropriate sparsifying basis for natural images is the wavelet
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Figure 6.9 – Fraction of instances (over 20 attempts) that were solved by the algorithm in less
than twice the number of iterations predicted by the density evolution for different system
sizes, as a function of the number of blocks Lc . We used the parameters that lead to the blue
curve in Fig. 6.8 (i.e. second line of Table 6.1). As N →∞, reconstruction is reached in all
the instances, as predicted by the state evolution. For finite N , however, reconstruction is
not reached when Lc is too large. But in the same time, as Lc increases we can theoretically
decode closer to the optimal threshold as seen from (5.115). Thus there is a tradeoff between
measurement rate decrease and probability of success in the reconstruction.

basis, but the resulting signal is not truly sparse but compressible (3.22). This can be seen

from Fig. 6.11 where we show the sorted coefficients of the 4-step Haar transformed Lena and

peppers images, see Fig. 6.12 and Fig. 6.13. It appears that the energy is concentrated on few

coefficients but the smaller ones follow a "power law-like" distribution. Compressed sensing

is thus appropriate but perfect reconstruction is impossible in the compressed regime α< 1.

We perform an experiment where the Lena and peppers images are 4-step Haar transformed,

and the coefficients Fig. 6.11 are reconstructed for different measurement rates, with a purely

sparsifying prior P0(x) = ∏N
i [(1−ρ)δ(xi )+ρN (xi |m,σ2)] or with the approximate sparsity

prior (6.2). All the prior parameters (and the noise variance in the purely sparse case) are

learned through expectation maximisation, see sec. 4.3.8. The results Fig. 6.12 and Fig. 6.13,

both in terms of the MSE of the reconstructed wavelets coefficients and in terms of the "by-

eyes" quality of reconstruction are homogeneously better with the approximate sparsity prior

at any measurement rate. In the case of Lena, it is even stronger as the by-eyes quality of

reconstruction of Lena at α = 0.415 with the approximate sparsity prior is better than the

image reconstructed at α= 0.65 with the sparsity inducing prior and both the by-eyes quality
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Figure 6.10 – Phase diagram for a small variance ε = 10−6 on the (α,ρ) plane, where we
added crosses at parameters values where reconstruction have been successful thanks to
spatial coupling for signals of size N = 214. As the hard phase between the optimal and BP
transitions decreases with ρ and because the gap between the sucessful reconstruction line
(the virtual line linking the pink crosses) and αopt (ρ) is close to constant for fixed N , the gain
in measurement rate obtained with spatial coupling decreases with ρ. The spatially-coupled
random i.i.d Gaussian matrices were drawn from the ensemble (Lc = 32,Lr = 33, w = 2,

p
J =

0.4,α,βseed = 1.3).

and MSE performances of reconstruction of Lena at α= 0.65 with the approximate sparsity

prior are better than the ones at α = 0.8 with the sparsity inducing prior. The conclusions

are identical with the peppers image. So reconstructing with the approximate sparsity prior

images expressed in the wavelet basis appears to be a good strategy. Looking at the pictures,

we see that way more details are reconstructed with the approximate sparsity prior. This is

due to the fact that these are contained in the high frequency coefficients in the wavelet basis

which are hidden in the low energy tail of Fig. 6.11. Because the approximate sparsity model

considers this tail as being part of the signal rather than noise, it reconstructs part of these

small coefficients, which induce this important gain in detailed imformation.

However, to become competitive with state-of-the-art algorithms [122–126] that can recon-

struct wavelet coefficients for images, we also need to find better models for the signal co-

efficients, likely including the fact that the approximately sparse components are highly
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Figure 6.11 – Sorted wavelet spectrum of the 4-steps Haar transformed Lena and peppers
images in double logarithmic plot. There are few high amplitude coefficients and a power law
tail of smaller coefficients: this is typical of compressible signals.

structured for real images (wavelet coefficients are known to have a tree structure exploited

by [122, 123] for example).

6.6 Concluding remarks

At this point we want to state that whereas all our results do depend quantitatively on the

statistical properties of the signal, the qualitative features described here (for example the

presence and the nature of the phase transitions) are valid for other signal models, distinct

from the bi-Gaussian case that we have studied here. This is even the case when the signal

model does not match the statistical properties of the actual signal. This was illustrated for

example for the noisy compressed sensing of truly sparse signal in [35]. In the same line, we

noticed and tested that if AMP corresponding to ε= 0 is runned for the approximately sparse

signals, then the final MSE is always larger than the one achieved by AMP with the right value

of ε, as seen on the images.

We studied the case of noiseless measurements, but the measurement noise can be straightfor-

wardly included into the analysis as in [35]. Again, the results would change quantitatively, but

not qualitatively. The point was really to understand the influence of the small components

alone, as the influence of measurement noise was already extensively studied in compressed

sensing [35].

For small variance of the small components of the signal, the AMP algorithm for homoge-
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Chapter 6. Compressed sensing of approximately sparse signals

Figure 6.12 – Comparisons between reconstruction results of Lena (left picture). Lena was
first expressed in the 4-steps Haar wavelet basis, and the coefficients Fig. 6.11 were then
reconstructed with AMP using a strict sparsity inducing prior (center) or the approximate
sparsity prior (right) for different measurement rates. The measurement rates and final
MSE of the wavelet coefficient are: Up: α = 0.8, MSEspar se = 7.2× 10−4, MSEapp.spar se =
2×10−4, Middle: α= 0.65, MSEspar se = 10−3, MSEapp.spar se = 4.6×10−4 and Down: α= 0.415,
MSEspar se = 1.8×10−3, MSEapp.spar se = 1.3×10−3.

neous matrices does not reach optimal reconstruction for measurement rates close to the

theoretical limit αopt (ε,ρ). The spatial coupling approach, resulting in the design of seeding

matrices improves significantly the performances. For diverging system sizes, optimality can
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Figure 6.13 – The same experiment as in Fig. 6.12 but with the peppers image. The measure-
ment rates and final MSE of the wavelet coefficient are: Up: α= 0.8, MSEspar se = 6.6×10−4,
MSEapp.spar se = 2.4 × 10−4 and Down: α = 0.4, MSEspar se = 2.7 × 10−3, MSEapp.spar se =
2×10−3.

be restored. We have shown that significant improvement is also reached for sizes of practical

interest. There are, however, non negligible finite size effects that should be studied in more

details. The optimal design of the seeding matrix for finite system sizes (as studied for instance

in depth in the context of error correcting codes [121]) remains an important open question.
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7 Approximate message-passing with
spatially-coupled structured operators

We now study the behavior of the approximate message-passing algorithm when the i.i.d

matrices for which it has been specifically designed are replaced by structured operators, such

as Fourier and Hadamard ones. The aim is in one hand to be able to tackle very large single

instances of inference problems such as compressed sensing and in the other hand, to reach

close to Bayes optimal reconstruction performances.

To work with large signals and matrices, however, one needs fast and memory efficient solvers.

Indeed, the mere storage of the measurement matrix in memory can be problematic as soon

as the signal size N > O(104). A classical trick (see for instance [127]) is thus to replace the

random sensing matrix with a structured one, typically random modes of a fast transform

such as Fourier-like matrices. We will show empirically that after a proper randomization, the

structure of the operators does not significantly affect the performances of the solver.

The use of fast transforms makes matrix multiplications faster (O(N log N ) instead of O(N 2)

operations), and thus both speeds up the reconstruction algorithm and removes the need

to store the matrix in memory. This is also important for coding applications where O(N 2)

operations can be burdensome for the processor.

While using Fourier or Hadamard matrices has often been done with AMP (see for exam-

ple [128, 129]), we provide here a close examination of its performances with Fourier and

Hadamard operators for compressed sensing of complex and real sparse signals respectively.

As suggested by the heuristic replica analysis [130, 131], such matrices often lead to better

performances than random ones. This will be confirmed through numerical investigation.

Furthermore, inspired by the Gabor construction of [128] that allowed optimal sampling

of a random signal with sparse support in frequency domain, we extend the construction

of spatially-coupled matrices to a structured form using fast Fourier/Hadamard operators,

which allow to deal with large signal sizes and up to the information theoretical limit. Given

the lack of theoretical guaranties, we numerically study this strategy on synthetic problems,

and compare its performance and behavior with those obtained with random i.i.d Gaussian
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Figure 7.1 – Representation of the spatially-coupled Hadamard sensing matrix used in our
study, which structure is the same as Fig. 5.4. The operator is decomposed in Lr ×Lc blocks,
each being made of N /Lc columns and αseed N /Lc lines for the blocks of the first block-
row, αr est N /Lc lines for the following block-rows, with αseed > αBP ≥ αr est > αopt . The
figure shows how the lines of the original small Hadamard matrix (of size N /Lc ×N /Lc ) are
randomly selected, re-ordered and sign-flipped to form a given block of the final operator.
There is a number w (the coupling window) of lower diagonal blocks with elements ∈ {±1}
as the diagonal blocks, the upper diagonal blocks have elements ∈ {±pJ } where

p
J is the

coupling strength, all the other blocks contain only zeros. The colored dotted lines help to
visualize the block decomposition of the signal induced by the operator structure: each block
of the signal will be reconstructed at different times in the algorithm (see Fig. 7.4 main figure
and Fig. 5.4). The procedure is exactly the same for constructing spatially-coupled Fourier
operators, replacing the small Hadamard operator from which we construct the blocks by a
small Fourier operator. The parameters that define the spatially-coupled operator ensemble
are (Lc ,Lr , w,

p
J ,αseed ,αr est ).

matrices. The main result is that after some randomization procedure, structured operators

appear to be nearly as efficient as random i.i.d matrices. In fact, empirical performances are

as good as those reported in [34, 35] despite the drastic improvement in computational time

and memory.

7.1 Problem setting

In the following, complex variables will be underlined: x j = x j ,1 + i x j ,2 ∈ C. We will write

x ∼ C N (x|x̄,σ2) if the real and imaginary parts x1 and x2 of the random variable x are

independent and verify x1 ∼N (x1|ℜx̄,σ2) and x2 ∼N (x2|ℑx̄,σ2).

The generic problem we consider is noiseless complex compressed sensing. We consider that

the signal components are scalars (L = N , B = 1). We choose not to consider noise as the point
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here is really to study the influence of structure in the matrix. Noise or vectorial components

can be trivially included in the model, and do not change the qualitative features presented

here. This will be confirmed through the extensive use of the present structured Hadamard

operator in the context of the superposition codes chap. 9 where vectorial components signals

measured under high noise levels will be reconstructed. In the noiseless complex case (3.18)

becomes:

y = F s (7.1)

We will use the following Gauss-Bernoulli distribution to generate ρ-sparse complex random

vectors:

P (s) =
N∏

j=1

[
(1−ρ)δ(s j )+ρ C N (s j |s̄,σ2)

]
(7.2)

Here we shall assume that the correct values for ρ, s̄, σ2 as well as the empirical signal distri-

bution (7.2) are known and thus we place ourselves under the prior matching condition in the

theoretical analyzes. As discussed in sec. 4.3.8, these parameters can be learned efficiently

with an expectation maximization procedure if unknown.

7.1.1 Spatially-coupled structured measurement operators

As discussed in sec. 5.5, in order to asymptotically reach the optimal transition αopt , spatial

coupling is the strategy of choice. The spatially-coupled structured operator is constructed as

Fig. 5.4 with the novelty that the blocks are not made of random i.i.d matrices anymore, but are

replaced by sub-sampled fast operators, see Fig.7.1: each of these blocks is constructed from

the same original operator of size N /Lc ×N /Lc and the differences from one block to another

comes from the selected modes, their permutation and signs that are randomly changed. In

the case of an Hadamard construction, all the blocks are generated from the same original

small Hadamard operator with the constraint that N /Lc must be a power of two, intrinsic to

the Hadamard construction.

7.1.2 The approximate message-passing algorithm for complex signals

In order to avoid confusions with the literature where variations of AMP are already presented,

we will refer in the present chapter to the Bayes-optimal AMP by "BP" and "c-BP" for the real

and complex case respectively, and to the `1-minimizing version by "LASSO" and "c-LASSO"

respectively. As the thresholding functions are applied component-wise, the time-consuming

part of the algorithm are the matrix multiplications in the linear step. Here, we use Fourier

and Hadamard operators in order to reduce their complexity from O(N 2) to O(N log N ). The

authors of [128] have used a related, yet different way to create spatially-coupled matrices

using a set of Gabor transforms.
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The generalization of the scalar algorithm Fig. 5.5 to the complex case is not sraightforward as

in the derivation of sec. 4.3.3, the real and imaginary parts of the different complex quantities

appearing in the computations would couple through non diagonal covariance matrices. But

it appears that many simplifications arise due to the independence assumption of the matrix

elements, which make the final algorithm Fig. 7.2 look very similar to its scalar version. The

derivation and study of this complex version can be found in [132–135]. The four different

operators (5.116), (5.117), (5.118), (5.119) are respectively generalized to the complex case as:

Õµ(ec ) :=
N /Lc∑
i∈c

|Fµi |2ei (7.3)

Oµ(ec ) :=
N /Lc∑
i∈c

Fµi ei (7.4)

Õi (fr ) :=
αr N /Lc∑
µ∈r

|Fµi |2 fµ (7.5)

O∗
i (fr ) :=

αr N /Lc∑
µ∈r

F∗
µi fµ (7.6)

where F∗
µi is the complex conjugate of Fµi . Because the value of |Fµi |2 is either 0, 1 or J ∀ (µ, i )

depending on the block as we use Hadamard or Fourier operators (it can be read on Fig. 7.1),

all these operators do not require matrix multiplications as they are implemented as fast

transforms (Oµ and O∗
i ) or simple sums (Õµ and Õi ). It results in the updates for complex

AMP [133] with a generic operator, see Fig. 7.2.

Here, we give the functions fa and fc that are calculated by Gaussian integration from (7.2)

and are thus Bayes-optimal, which is not the case for LASSO and c-LASSO [132] as discussed in

sec. 5.1.1. For BP, they are trivially constructed from sec. 4.3.6. For c-BP, the signal is complex

and drawn from the distribution (7.2), and the thresholding functions (which give posterior

scalarwise estimates of the mean and variance) are given by:

fa(Σ2,R) = gρχ2M/Z (7.7)

fc (Σ2,R) =
(
gρχ2 (|M |2 +2χ2)/Z −| fa(Σ2,R)|2

)
/2 (7.8)

together with the following definitions:

M := (σ2R +Σ2x̄)/(Σ2 +σ2) (7.9)

χ2 :=Σ2σ2/(Σ2 +σ2) (7.10)

g := exp

(
−1

2

( |x̄|2
σ2 + |R|2

Σ2 − |M |2
χ2

))
(7.11)

Z :=σ2(1−ρ)exp

(
−|R|2

2Σ2

)
+ρχ2g (7.12)

where R and Σ2 are the AMP fields and we have x̄ = s̄. These functions are not identical to
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1: t ← 0
2: δ← ε+1
3: while t < tmax and δ> ε do
4: Θt+1

µ ←∑Lc
c Õµ(vt

c )

5: w t+1
µ ←∑Lc

c Oµ(at
c )−Θt+1

µ

y
µ
−w t

µ

∆+Θt
µ

6: Σt+1
i ←

[∑Lr
r Õi

(
[∆+Θt+1

r ]−1
)]−1/2

7: R t+1
i ← at

i + (Σt+1
i )2 ∑Lr

r O∗
i

(
y

r
−wt+1

r

∆+Θt+1
r

)
8: v t+1

i ← fc
(
(Σt+1

i )2,R t+1
i

)
9: at+1

i ← fa
(
(Σt+1

i )2,R t+1
i

)
10: t ← t +1
11: δ←< |at+1 −at |2 >
12: end while
13: return at

Figure 7.2 – The complex AMP algorithm written with operators. Depending on whether it
is used on a real or complex signal, with Bayes-optimal or sparsity-inducing thresholding
functions fa and fc , we call it BP, c-BP, LASSO or c-LASSO. ε is the accuracy for convergence
and tmax the maximum number of iterations. A suitable initialization for the quantities is
(at=0

i = EP0 (x) = 0, v t=0
i = VarP0 (x) = ρσ2, w t=0

µ = y
µ

) where we have used the prior (7.2). Once

the algorithm has converged, i.e. the quantities do not change anymore from iteration to
iteration, the estimate of the i th signal component is at

i . The nonlinear thresholding functions
fa and fc take into account the prior distribution. In the case of compressed sensing, applying

fa to a R t+1
i close to zero will give a result even closer to zero, while bigger inputs will be left

nearly unchanged, thus favoring sparse solutions. If needed, the damping scheme of Fig. 4.6
can be used.

the ones for the real case since in the prior distribution (7.2), the real and imaginary parts of

the signal are jointly sparse (i.e. have same support but independent values), which can be a

good assumption, for instance in MRI. As in c-LASSO [132], because the joint sparsity is more

constrained and thus bring more information, it allows to lower the phase transition compared

to when the real and imaginary parts of the signal are assumed to be fully independent.

7.1.3 Randomization of the structured operators

The implementation requires caution: the necessary "structure killing" randomization of

the fast structured operator used to construct the blocks of the matrix Fig. 7.1 is obtained by

applying a permutation of lines after the use of the fast operator. For each block (r,c), we

choose a random subset of modesΩr,c = {Ωr,c
1 , . . . ,Ωr,c

Nr
} ⊂ {1, . . . , Nc }. The definition of Oµ(ec )

using a standard fast transform FT will be:

Oµ(ec ) := (FT(ec ))
Ω

rµ ,c
µ−µrµ+1

(7.13)
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where rµ is the index of the block-row that includes the index µ, µrµ is the number of the first

line of the block row rµ and (u)µ is the µth component of u. For O∗
i (fr ) instead:

O∗
i (fr ) := (

FT−1(f̃r )
)

i−ici +1 (7.14)

where ci is the index of the block-column that includes the index i , ici is the number of the

first column of the block-column ci , FT−1 is the standard fast inverse operator of FT and f̃r is

defined in the following way:

∀γ ∈ {1, . . . , Nr },
(
f̃r

)
Ω

r,ci
γ

= (fr )γ and ∀k ∉Ωr,ci ,
(
f̃r

)
k = 0 (7.15)

The MSE achieved by the algorithm is:

E t := ||at −s||22 =< |at −s|2 > (7.16)

and measures how well the signal is reconstructed.

7.2 Results for noiseless compressed sensing

When the sensing matrix is i.i.d random, or spatially-coupled with i.i.d random blocks, the

evolution of E t in AMP is predicted in the large signal limit on a rigorous basis by the state

evolution [104,110,136], see sec. 5.3. For c-BP with i.i.d Gaussian matrices, the derivation goes

very much along the same lines and we shall report the results briefly. The generalization to

the complex case of the state evolution (5.105) for homogeneous matrices under the prior (7.2)

is given by the following recursion:

E t+1 =
∫

Dz
[
(1−ρ) fc

(
(Σt+1)2,R t+1

1 (z)
)+ρ fc

(
(Σt+1)2,R t+1

2 (z)
)]

(7.17)

together with:

z := z1 + i z2 (7.18)

(Σt+1)2 := (∆+E t )/α,

R t+1
u (z) := z

√
σ2δu,2 + (Σt+1)2 (7.19)

Dz := d z1d z2
e−

1
2 (z2

1+z2
2 )

2π
. (7.20)

with ∆= 0 in the noiseless case. (7.17) has been obtained exactly as in the previous chapter

when we derived (6.12). Note that this state evolution equation is the same as given in [132],

despite slightly different update rules in the algorithm.

For c-BP with spatially-coupled matrices with i.i.d Gaussian blocks, the expression involves

the MSE in each block c ′ ∈ {1, . . . ,Lc }, see sec. 5.7. The generalization of (5.175) ,(5.176) and
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Figure 7.3 – Phase diagram on the (α,ρ) plane for noiseless ∆= 0 compressed sensing. Lines
are phase transitions predicted by the state evolution analysis for i.i.d random Gaussian
matrices, while markers are points from experiments using structured operators with em-
pirically optimized parameters. Good sets of parameters usually lie in the following sets:
(Lc ∈ {8,16,32,64},Lr = Lc + {1,2}, w ∈ {2, . . . ,5},

p
J ∈ [0.2,0.7],βseed ∈ [1.2,2]), see (5.114). As

discussed in the previous chapter, with larger signals, higher values of Lc are better as it allows
to get closer to the optimal transition. Just as c-LASSO allows to improve the usual LASSO
phase transition when the complex signal is sampled according to (7.2) (thanks to the joint
sparsity of the real and imaginary parts), c-BP improves the usual BP transition. The line
α= ρ is both the maximum-a-posteriori M AP threshold for noiseless compressed sensing
and the (asymptotic) optimal phase transition that can be reached with spatially-coupled
matrices. Pink experimental points correspond to perfectly reconstructed instances using
homogeneous Hadamard and Fourier operators (on the BP and c-BP phase transition respec-
tively), the black and red crosses using spatially-coupled ones (close to the M AP threshold).
Properly randomized structured operators appear to have similar performances as random
measurement matrices.

(5.178) to the complex case under the prior (7.2) is given by:

E t+1
c =

∫
Dz

[
(1−ρ) fc

(
(Σt+1

c )2,R t+1
c,1 (z)

)
+ρ fc

(
(Σt+1

c )2,R t+1
c,2 (z)

)]
(7.21)
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Figure 7.4 – Comparison of the mean square error predicted by the state evolution (black
curves) and the actual behavior of the algorithm for spatially-coupled matrices (main figure)
and standard homogeneous ones (inset), both with structured operators (circles) and random
i.i.d Gaussian matrices (purple crosses) in a noiseless compressed sensing setting. In both
plots, the signal size is N = 214 with the random i.i.d Gaussian matrices, and N = 220 ≈ 106

with the operators and are generated with (ρ = 0.1, x̄ = 0, σ2 = 1). While experiments made
with random i.i.d matrices fit very well the asymptotic predictions, those with the structured
operators are not described well by the state evolution, although final performances are
comparable. Main: For an Hadamard spatially-coupled matrix as in Fig. 7.1 with (Lc = 8, Lr =
Lc +2, w = 1,

p
J = 0.1, α= 0.22, βseed = 1.36). Each curve corresponds to the MSE tracked in

a different block of the real reconstructed signal s (see Fig. 7.1). Inset: Reconstructions made
with structured homogeneous matrices at α= 0.35 and α= 0.25. The reconstruction with the
Fourier operator of a complex signal (instead of real with Hadamard) is faster thanks to the
joint sparsity assumption of (7.2). The arrows identify the groups of curves corresponding
to same measurement rate α. Both in the Fourier and Hadamard cases, we observe that
convergence is slightly faster than in the random i.i.d case as predicted by the state evolution.
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Figure 7.5 – Time required for convergence (i.e. MSE < 10−6) of the AMP algorithm in seconds
as a function of the signal size, in the homogeneous matrix case for a typical compressed
sensing problem. The signal has distribution given by (7.2) and is real (complex) for the
reconstruction with real (complex) matrices. The plot compares the speed of AMP with
matrices (blue and red lines) to those of AMP using the structured operators (black and green
lines). The points have been averaged over 10 random instances and the error bars represent
the standard deviation with respect to these. The simulations have been performed on a
personal laptop. As the signal size increases, the advantage of using operators becomes
quickly obvious.

where:

Σt+1
c

(
{E t

c ′}
Lc

c ′

)
=

[
Lr∑
r

αr Jr c

Lc∆+∑Lc

c ′ Jr c ′E t
c ′

]−1/2

(7.22)

R t+1
c,u (z) = z

√
σ2δu,2 + (Σt+1

c )2 (7.23)

andαr =αr est +(αseed −αr est )δr,1, Jr c is the variance of the elements belonging to the block at

the r th block-row and c th block-column (1, J or 0 in Fig. 7.1) and again ∆= 0 in the noiseless

case.

We now move to our main point. In the case of AMP with structured (Fourier or Hadamard)

operators instead of i.i.d matrices, the state evolution analysis cannot be made. Hence we

experimentally compare the performances between AMP with structured operators and i.i.d

matrices. The comparison is shown in Fig. 7.4 which presents theoretical results from the state

evolution and experimental ones obtained by running AMP on finite size signals. On Fig. 7.3,

we show the phase transition lines obtained by state evolution analysis in the (α,ρ) plane,

and we added markers showing the position of instances actually recovered by the algorithm
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Chapter 7. Approximate message-passing with spatially-coupled structured operators

with spatially-coupled structured operators in the noiseless case ∆= 0. It appears that with

structured operators, AMP is still able to decode really close to the optimal threshold as with

random i.i.d matrices.

7.2.1 Homogeneous structured operators

Let us first concentrate on AMP with homogeneous (or full) structured operators. The first

observation is that the state evolution does not correctly describe the evolution of the MSE for

AMP with full structured operators (inset Fig. 7.4). It is perhaps not surprising, given that AMP

has been derived for i.i.d matrices. The difference is small, but clear: E t decreases faster with

structured operators than with i.i.d matrices. However, despite this slight difference in the

dynamical behavior of the algorithm, the phase transitions and the final MSE performances

for both approaches appear to be extremely close. As seen in Fig. 7.3, for small ρ, we cannot

distinguish the actual phase transition with structured operators from the one predicted by

state evolution. Thus, the state evolution analysis remains a good predictive tool of the AMP

performances with structured operators.

7.2.2 Spatially-coupled structured operators

For spatially-coupled operators, the conclusions are similar (main plot on Fig. 7.4). Again, E t
c in

each of the blocks of the signal, induced by the spatially-coupled structure of the measurement

matrix, decreases faster with structured operators than with random i.i.d matrices. But our

empirical results are consistent (see Fig. 7.3) with the hypothesis that the proposed scheme,

using spatially-coupled Fourier/Hadamard operators, achieves correct reconstruction as

soon as α> ρ when N is large. Indeed, we observe that the gap to the M AP threshold (the

optimal threshold in the noiseless case)αopt (ρ) = ρ decreases as the signal size increases upon

optimization of the spatially-coupled operator structure. The results in Fig. 7.3 and Fig. 7.4 are

obtained with spatially-coupled matrices of the ensemble: (Lc = 8,Lr = Lc +1, w ∈ {1,2},
p

J ∈
[0.2,0.5] ,βseed = [1.2,1.6]). While these parameters do not quite saturate the bound α = ρ

(which is only possible for Lc →∞ [34, 108, 110], see sec. 5.115), they do achieve near optimal

performances. This, as well as the substantial cut in running time (Fig. 7.5) with respect to

AMP with i.i.d matrices and the possibility to work with very large systems without saturating

the memory strongly supports the advantages of the proposed implementation of AMP.

7.3 Conclusion

We have presented a large empirical study using structured Fourier and Hadamard operators

in sparse linear estimation. We have shown that combining these operators with a spatial

coupling strategy allows to get very close to the information-theoretical limits. We have tested

our algorithm for noiseless compressed sensing of real and complex signals. The resulting

algorithm is more efficient than Fig. 5.5 both in terms of memory and running time. This
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allows us to deal with signal sizes as high as 106 and a measurement rate α≈ ρ on a personal

laptop using MATLAB, and achieve perfect reconstruction in about a minute.
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8 Approximate message-passing for
compressive imaging

In the present chapter, we focus on two distincts applications of the approximate message-

passing algorithm to compressive imaging. The first one is the reconstruction of sub-sampled

natural images which have a sparse discrete gradient, while the second one focuses on the

reconstruction of point like objects, and thus directly sparse in the pixel domain, measured by

fluorescence microscopy technique.

8.1 Reconstruction of natural images in the compressive regime by

"total-variation-minimization"-like approximate message-passing

Total variation (TV) and the associated gradient-optimization-based algorithms have been

the long-standing state-of-the-art approach to the reconstruction of images from compressive

measurements. For signals well-modeled by i.i.d priors, many recent works have presented

optimal, or near optimal reconstruction algorithms built instead from a statistical framework.

Here, we present a method for incorporating a TV-like structured prior in the image domain to

allow for M MSE image recovery using the approximate message-passing algorithm.

In gradient-optimization-based methods for image reconstruction, instead of searching for a

sparse signal in the pixel domain as in (8.2), we seek for a signal with a sparse discrete gradient.

This kind of signals are supposed to represent well natural images which are piecewise constant

or smooth. Specific algorithms to tackle image reconstruction in the compressive regime

have been designed on the optimization side. For example the TV-AL3 [137] is very robust

to noise and reduction of the measurement rate but is also fast. On the probabilistic side,

the phase transitions for TV were investigated and a method, TV-AMP [138], was proposed.

Furthermore, [139] proposed a structured prior in conjunction with the co-sparse model

and developed the GrAMPA algorithm based on the approximate message-passing algorithm.

Finally, some recent work have proposed a joint prior defined over nearest-neighbors for 1-d

signals in SS-AMP [140]. Motivated by the very good performances of both [140] and [139], we

develop here an approximate message-passing algorithm for 2-d piecewise smooth signals

reconstruction in the compressive regime.
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The methodology presented here is closely related to the GrAMPA algorithm [139] as we will

work also with the co-sparse model, defined in the next section, and AMP. The differences

with [139] are essentially coming from the learning procedure of the noise that we use which

allows for better reconstruction results, and the fact that we use a Gauss-Bernoulli prior for the

dual variables (that represent the differences between neighboring pixels), whereas GrAMPA

uses the SNIPE prior, the limiting distribution of the Gauss-Bernoulli one when the variance

of the Gaussian part goes to infinity. As we will see, this prior does not improve on the Gauss-

Bernoulli one, they give similar results. The improvement with respect to GrAMPA really

comes from the noise learning which acts as a kind of annealing.

We will show through intensive numerical experiments that when we push the TV-AL3 algo-

rithm (considered as the state-of-the-art optimization algorithm) to its limits by optimizing all

of its parameters, it gives almost exactly the same reconstruction results than our implementa-

tion which requires way less tuning. We will observe the same when using the SNIPE prior

of GrAMPA in our implementation in conjunction with the noise learning. The results are so

close that it suggests that we are reaching the limits of classical reconstruction methods based

on first neighbors interactions.

8.1.1 Proposed model

We consider the model (3.18) where now s is the reshaped image of size N (the original image

being of size
p

N ×p
N ). In order to mimic the total-variation-minimization idea that enforces

neighbors pixels to have identical or closeby values, we naturally take a Gauss-Bernoulli prior

over the differences of the pixel values:

P0(s|σ2) ∝ ∏
(i j )∈E

[
(1−ρ)δ(si − s j )+ρN

(
si − s j |0,σ2)] (8.1)

where E := {(i j ) : i neighbor to j in the picture} is the set of pairs of pixels that are neighbors

in the original image. This natural extension to the bi-dimensionnal case of [140] suffers

from convergence issues due to the short loops in the associated factor graph (a grid) that are

created by these two-pixels dependent prior terms. A natural idea to face this problem is to use

new auxilliary variables. Defining {di j := xi −x j : (i j ) ∈ E } as the differences variables, refered

as dual variables, and x := [s,d] as the concatenation of the vectorized original image and the

vector of dual variables, we now get back a factorized prior where the si ’s are independent

with uniform prior and the Gauss-Bernoulli prior is over the dual variables:

P0(x|σ2,S ) ∝ ∏
(i j )∈E

[
(1−ρ)δ(di j )+ρN

(
di j |0,σ2)] N∏

i=1
U (si |S ) (8.2)

where U (si |S ) is a uniform distribution over the set S . From now on when the index i of

the x component is such that if i ≤ N it correponds to an image pixel variable, else it is a dual
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i fr(i)

fd(i)

Figure 8.1 – The pixel i with its four closest neighbors, but when considering i in the operator
F̃ construction (8.5), only the interaction with its right neighbor fr (i ) and down one fd (i )
are taken into account not to consider twice each interactions. This choice is arbitrary and
considering for example the left and up interactions would be the same, one just needs to
design properly the mapping functions f which encode the dependency structure between
the image pixels and allow to design the difference matrix D in (8.5).

variable. Thus the prior can be re-written as:

P0(x|σ2,S ) ∝
N+|E |∏

i=1
P i

0(xi |σ2,S ) (8.3)

∝
N+|E |∏

i=1

[
I(i ≤ N )U (xi |S )+ I(i > N )

[
(1−ρ)δ(xi )+ρN

(
xi |0,σ2)]] (8.4)

and the linear constraints {di j − (si − s j ) = 0}(i j )∈E are enforced through an extension of the

original linear system (3.18) that becomes:(
yM ,1

0|E |,1

)
=

(
FM ,N 0M ,|E |
D|E |,N −I |E |,|E |

)(
sN ,1

d|E |,1

)
+

(
ξM ,1

0|E |,1

)
⇔ ỹ = F̃x+ ξ̃ (8.5)

where the dimension of each vector or matrix has been indicated to avoid confusions and

where the tilde stands for these new extended objects. F is the original operator, 0a,b is a matrix

full of zeros of dimensions a×b and I a,a is the identity matrix if size a×a. D is the "difference"

matrix which is the concatenation of smaller matrices constructed as follows. In the present

case we consider for each pixel its four closest neighbors (its left/right and up/down ones

on the image). D := [Dr ,Dd ]ᵀ is the concatenation of Dr which is made of zeros everywhere

except on the diagonal where there are 1’s, and −1’s on the {(i , fr (i )) : i ∈ {1, . . . , N }, fr (i ) 6= 0}

elements where fr (i ) outputs the index (in the vectorized form of x) of the right neighbor of

the i th pixel if it actually has a neighbor, 0 else (it is the same for constructing Dd thanks to the

mapping fd (i )), see Fig. 8.1. This new system to be solved is refered as the co-sparse model.
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8.1.2 The Hadamard operator and the denoisers

Images are large signals so being able to deal with very large matrices with O(N 2) elements

is an issue in itself. We can thus use fast Hadamard-based operators of the form Fig. 5.4, see

chap. 7 for a full study of their reconstruction abalities. Because of the fact that each Hadamard

mode except the first one (which is a line of ones) have exactly zero mean, the system (8.5)

would be invariant by a constant shift in the signal components without this mode. To break

this symmetry we enforce the first mode to be present which fixes the mean of the signal, the

other ones being selected totally randomly. This issue was never present in the other problems

treated in this thesis because the prior was directly on the signal components whereas here,

its on the differences (the prior is uniform over the pixels): the prior is invariant by a constant

shift in the values of two neighbors and thus of the overall signal.

Once F is designed (as well as Fᵀ,F2, (F2)ᵀ required by AMP, see Fig. 5.5), it is trivial to imple-

ment F̃ (and F̃ᵀ, F̃2, (F̃2)ᵀ). F̃ is also fast and does not generate memory issues because all its

parts (except F which is already a fast Hadamard-based operator) are highly sparse.

Now the co-sparse model (8.5) to solve is well defined with a factorized prior (8.2), we can use

AMP, Fig. 5.5. Despite the extended measurement matrix F̃ is sparse and the derivation of AMP

in sec. 4.3.3 is based on the high density of the matrix, nothing prevents us to use it anyway

and as we will see, it gives very good results. From the definition of the denoising functions

(4.115), (4.116) and using the prior (8.4), we obtain:

fai (Σ2
i ,Ri ) :=

∫
d xi xi P0(xi |σ2,S )N

(
xi |Ri ,Σ2

i

)
(8.6)

= Ri I(i ≤ N )+ f̃ai (Σ2
i ,Ri ) I(i > N ) (8.7)

fci (Σ2
i ,Ri ) :=

∫
d xi x2

i P0(xi |σ2,S )N
(
xi |Ri ,Σ2

i

)− fai (Σ2
i ,Ri )2 (8.8)

=Σ2
i I(i ≤ N )+ f̃ci (Σ2

i ,Ri ) I(i > N ) (8.9)

where the explicit form of f̃ai and f̃ci in this Gauss-Bernoulli case are obtained through the

construction of sec. 4.3.6:

f̃ai (Σ2,R) = 1

zi (Σ2,R)

mΣ2 +Rσ2

Σ2 +σ2 (8.10)

f̃ci (Σ2,R) = 1

zi (Σ2,R)

m2Σ4 +Σ2(2mR +Σ2)σ2 + (R2 +Σ2)σ4

(Σ2 +σ2)2 − f̃ai (Σ2,R)2 (8.11)

zi (Σ2,R) = N
(
m|R,Σ2

)
N

(
m|R,Σ2 +σ2

) +1 (8.12)

where we have used that the set S =R and thus just replaced the uniform distribution in the

prior by 1. We could enforce positive values for the pixels, but it complicates the denoising

functions expressions and seems to gives exactly the same final results anyway.
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8.1.3 The learning equations

The hyperparameters∆ := [∆s ,∆d ] need to be learned, where the noise associated to the µth

measurement is ∆µ :=∆s I(µ≤ M)+∆d I(µ> M). ∆s is the true noise variance associated to the

measure, ∆d is the artificial noise variance associated to the dual variables which measure

the level of relaxation of the constraints that define them: at ∆d = 0, the dual variables must

exactly fulfill their definition, at finite value of ∆d , these linear constraints are relaxed. We

decide to keep ρ free being the control parameter of how smooth the final reconstructed

picture is. Furthermore σ2 can be learned but it appears empirically that fixing its value to

O(10−3) is sufficient and does not change the performances. For learning∆, we will use the

expectation maximization learning of sec. 4.3.8 optimizing the Bethe free energy. The learning

of the noise is obtained by optimizing (4.202). For the moment we consider that there is a

unique noise parameter ∆. The only part F∆ dependent on it in (4.202) can be rewritten as:

F∆ = 1

2

M+|E |∑
µ

[
(ỹµ−∑N+|E |

i F̃µi ai )2

∆
+ log

(
∆+

N+|E |∑
i

F̃ 2
µi vi

)]
(8.13)

where (ai , vi ) are the posterior mean and variance of xi . Then by optimizing it we obtain the

fixed point equation for ∆:

∂F∆
∂∆

= 0 (8.14)

⇔
M+|E |∑
µ

[
1

∆2

(
ỹµ−

N+|E |∑
i

F̃µi ai

)2

−
(
∆+

N+|E |∑
i

F̃ 2
µi vi

)−1]
= 0 (8.15)

A possible solution is to equate the two terms inside the sum for each component, which gives

different solutions ∆µ for each µ. We define the auxiliary functions:

χµ :=
(

ỹµ−
N+|E |∑

i
F̃µi ai

)
(8.16)

gµ := 1

2

(
χ2
µ+χµ

√
χ2
µ+4Θµ

)
(8.17)

reminding the definition ofΘµ =∑N+|E |
i F̃ 2

µi vi (4.190) at the fixed point. The solutions cancel-

ing each term inside (8.15) are given by the second order equations:

∆2
µ−χ2

µ∆µ−χ2
µΘµ = 0 (8.18)

which exact solution is simply:

∆µ = gµ (8.19)

Then we would average over these (the positive solutions are selected among the two possible

ones) to get a single parameter ∆. But now we remember that we need to consider two

different noise parameters {∆s ,∆d }: the noise learning is not the same for the pixels and the
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dual variables. To consider this, the average for the two different noise levels are performed

over the proper sets of variables. We get the fixed point equations to which we add the time:

∆t+1
s = 1

M

M∑
µ=1

g t
µ (8.20)

∆t+1
d = 1

|E |
M+|E |∑
µ=M+1

g t
µ (8.21)

where g t
µ is given by (8.17) with χt

µ =
(

ỹµ−∑N+|E |
i F̃µi at

i

)
,Θt

µ =
∑N+|E |

i F̃ 2
µi v t

i where (at
i , v t

i ) are

the AMP posterior estimates at time t . In the implementation, these learnings are weakly

damped.

It appears that this learning is essential for the perfomances of the algorithm. It is the main

difference with the GrAMPA implementation [139]. Their prior model, refered as the SNIPE

prior is different as well but as we will show in the experiments, it does not change the

perfomances of AMP: the improvement in our implementation really comes from this noise

learning.

8.1.4 Numerical experiments

We now present results of a serie of intensive numerical experiments. We have selected

classical test 512×512 images, see Fig. 8.2. For each of them, we have compared the results

obtained with the best TV-optimization-based algorithm, namely TV-AL3 [137] and our AMP

implementation refered as DC-AMP for dual-constraints AMP. For each measurement rate, we

have scanned different noise levels. For each point, 5 instances with different measurement

operators and noise realizations have been reconstructed by each algorithm and the result is

the averaged normalize mean square error NSNR (the MSE rescaled by the `2 norm of the

picture) in decibels. For TV-AL3 that depends on two slack parameters (see [137] for the details),

we have optimized them for each point (for every images and for all measurement rates). The

same has been done for the unique free parameter of DC-AMP, the smoothness parameter

ρ. So these results represent the optimal reconstruction performances of both algorithms.

Furthermore, the SNIPE prior have also been implemented in our code for comparison with

the Gauss-Bernoulli one and its free w parameter, which is the equivalent of ρ for the Gauss-

Bernoulli prior have also been optimized for each point, see [139] for details on this prior.

Looking at all the results and tables, it is striking how close are the performances. There are vir-

tually no differences. This suggests strongly that there exist some bound for the performances

of such methods based on gradient optimization. The two priors in AMP appear to give almost

the same results as it can be sees from the figures at α = 0.05. This similarity remains true

at higher measurement rates. When the GrAMPA implementation have been tested with the

optimized value of w as well, it appeared to always give worst results by at least one or two

decibels than what presented here. This must be due to our noise learning, not present in
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their implementation. Furthermore, when we do not use this learning, we get similar results

as GrAMPA with our implementation which is normal as the two algorithms are supposed to

solve the same problem (8.5). In terms of running time, all algorithms are equivalent despite a

small advantage for TV-AL3.

An important remark is that we have tried our implementation also with further interactions,

including the 8 first-neighbors in the prior model instead of 4. It appears that it worsen the

results by reconstructing too smooth solutions.

8.1.5 Concluding remarks

We have presented an AMP implementation for the reconstruction of natural images based on

the co-sparse model, with a Gauss-Bernoulli prior on dual variables representing the differ-

ences between pixels. It appears that its optimal performances after optimization of its single

free parameter are perfectly equivalent to the ones of the state-of-the-art TV-optimization

algorithms which require more parameters to be tuned to get similar results. Furthermore, it

seems that our results are weakly sensitive to the prior used with AMP and that Gauss-Bernoulli

or its infinite variance limit give similar results. The two main points observed here are that i )

the proposed algorithm get better performances that those of the similar GrAMPA algorithm

due to a noise learning that exactly minimizes the Bethe free energy at each step and which is

essential to reach the best performances and i i ) it seems that we are reaching some bound on

the perfomances of reconstruction algorithms for natural images in the compressive regime

that are based on gradient-based models.

It would be of great interest to study further the fundamental reasons behind this limit.

Furthermore, when trying to learn the ρ parameter, it seems to enter in conflict with the

noise learning. This issue must be fixed to get a parameter-free algorithm with the best

performances.
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Figure 8.2 – Images used for the comparisons between TV-AL3 and our AMP implementation
refered as DC-AMP for dual constraints AMP. Top, left to right: Lena, Baboon, Barbara. Bottom,
left to right: Cameraman and Peppers
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Lena Image

Figure 8.3 – Comparison of the final reconstruction results in NSNR as a function of the noise
level in dB between TV-AL3 and DC-AMP for different measurement rates α for the Lena
picture.
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α= 0.05 α= 0.10 α= 0.20 α= 0.30 α= 0.40 α= 0.50
ISNR = ∞ dB

TVAL3 Optimal -19.74 -22.51 -25.71 -27.80 -29.56 -31.13
DC-AMP Optimal -19.33 -22.65 -25.59 -27.87 -29.64 -31.32

ISNR = 40 dB
TVAL3 Optimal -19.88 -22.48 -25.68 -27.82 -29.51 -31.06
DC-AMP Optimal -19.33 -22.65 -25.57 -27.83 -29.58 -31.23

ISNR = 30 dB
TVAL3 Optimal -19.66 -22.40 -25.46 -27.46 -28.97 -30.34
DC-AMP Optimal -19.29 -22.58 -25.34 -27.41 -29.03 -30.46

ISNR = 25 dB
TVAL3 Optimal -19.75 -22.31 -25.11 -26.81 -28.13 -29.25
DC-AMP Optimal -19.22 -21.90 -24.93 -26.71 -28.07 -29.24

ISNR = 20 dB
TVAL3 Optimal -19.53 -21.78 -24.15 -25.56 -26.63 -27.46
DC-AMP Optimal -19.05 -21.36 -24.01 -25.50 -26.54 -27.46

ISNR = 15 dB
TVAL3 Optimal -18.91 -20.71 -22.63 -23.77 -24.60 -25.25
DC-AMP Optimal -18.43 -20.40 -22.48 -23.70 -24.53 -25.27

ISNR = 10 dB
TVAL3 Optimal -17.64 -19.08 -20.69 -21.64 -22.40 -22.91
DC-AMP Optimal -17.10 -19.09 -20.61 -21.62 -22.20 -22.75

ISNR = 5 dB
TVAL3 Optimal -15.98 -17.34 -18.54 -19.61 -20.05 -20.55
DC-AMP Optimal -15.53 -17.65 -19.02 -19.63 -20.13 -20.42

ISNR = 0 dB
TVAL3 Optimal -13.59 -15.14 -16.37 -17.13 -17.96 -18.26
DC-AMP Optimal -14.05 -15.90 -17.28 -18.03 -18.45 -18.72

Table 8.1 – Table of the final reconstruction results in NSNR as a function of the noise level in
dB between TV-AL3 and DC-AMP for different measurement rates α for the Lena picture.
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barbara Image

Figure 8.4 – Comparison of the final reconstruction results in NSNR as a function of the noise
level in dB between TV-AL3 and DC-AMP for different measurement rates α for the Barbara
picture.
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α= 0.05 α= 0.10 α= 0.20 α= 0.30 α= 0.40 α= 0.50
ISNR = ∞ dB

TVAL3 Optimal -15.31 -16.27 -17.80 -19.70 -22.00 -24.63
DC-AMP Optimal -15.25 -16.22 -17.94 -20.05 -22.54 -25.41

ISNR = 40 dB
TVAL3 Optimal -15.38 -16.26 -17.81 -19.69 -21.99 -24.59
DC-AMP Optimal -15.25 -16.22 -17.94 -20.03 -22.51 -25.37

ISNR = 30 dB
TVAL3 Optimal -15.28 -16.26 -17.77 -19.62 -21.83 -24.28
DC-AMP Optimal -15.23 -16.21 -17.91 -19.95 -22.33 -25.00

ISNR = 25 dB
TVAL3 Optimal -15.35 -16.24 -17.69 -19.45 -21.49 -23.58
DC-AMP Optimal -15.22 -16.19 -17.84 -19.78 -21.95 -24.32

ISNR = 20 dB
TVAL3 Optimal -15.23 -16.16 -17.44 -18.97 -20.67 -22.31
DC-AMP Optimal -15.14 -16.11 -17.63 -19.31 -21.07 -22.86

ISNR = 15 dB
TVAL3 Optimal -15.09 -15.91 -16.79 -17.93 -19.13 -20.29
DC-AMP Optimal -14.94 -15.88 -17.13 -18.33 -19.55 -20.75

ISNR = 10 dB
TVAL3 Optimal -14.36 -15.34 -16.20 -16.66 -17.27 -17.79
DC-AMP Optimal -14.46 -15.42 -16.32 -16.91 -17.53 -18.23

ISNR = 5 dB
TVAL3 Optimal -13.38 -14.45 -15.34 -15.81 -16.10 -16.40
DC-AMP Optimal -13.80 -14.80 -15.58 -15.98 -16.25 -16.52

ISNR = 0 dB
TVAL3 Optimal -11.98 -12.90 -13.28 -14.39 -14.98 -15.23
DC-AMP Optimal -12.45 -13.77 -14.69 -15.16 -15.37 -15.59

Table 8.2 – Table of the final reconstruction results in NSNR as a function of the noise level in
dB between TV-AL3 and DC-AMP for different measurement rates α for the Barbara picture.
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baboon Image

Figure 8.5 – Comparison of the final reconstruction results in NSNR as a function of the noise
level in dB between TV-AL3 and DC-AMP for different measurement rates α for the Baboon
picture.
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α= 0.05 α= 0.10 α= 0.20 α= 0.30 α= 0.40 α= 0.50
ISNR = ∞ dB

TVAL3 Optimal -15.94 -17.28 -19.65 -21.74 -23.75 -25.79
DC-AMP Optimal -16.18 -17.50 -19.76 -21.63 -23.74 -25.85

ISNR = 40 dB
TVAL3 Optimal -15.93 -17.26 -19.65 -21.75 -23.74 -25.78
DC-AMP Optimal -16.18 -17.50 -19.75 -21.63 -23.71 -25.84

ISNR = 30 dB
TVAL3 Optimal -15.92 -17.24 -19.64 -21.69 -23.67 -25.67
DC-AMP Optimal -16.18 -17.49 -19.74 -21.57 -23.64 -25.71

ISNR = 25 dB
TVAL3 Optimal -15.88 -17.24 -19.58 -21.60 -23.53 -25.38
DC-AMP Optimal -16.17 -17.48 -19.70 -21.49 -23.48 -25.39

ISNR = 20 dB
TVAL3 Optimal -15.88 -17.18 -19.45 -21.34 -23.08 -24.65
DC-AMP Optimal -16.15 -17.44 -19.60 -21.30 -23.32 -24.70

ISNR = 15 dB
TVAL3 Optimal -15.76 -16.99 -19.05 -20.63 -21.95 -23.15
DC-AMP Optimal -16.06 -17.30 -19.28 -20.89 -22.15 -23.27

ISNR = 10 dB
TVAL3 Optimal -15.44 -16.44 -18.00 -19.21 -20.15 -21.06
DC-AMP Optimal -15.82 -16.93 -18.46 -19.53 -20.24 -21.13

ISNR = 5 dB
TVAL3 Optimal -14.92 -15.66 -16.66 -17.49 -18.14 -18.70
DC-AMP Optimal -15.22 -15.93 -16.70 -17.42 -17.93 -18.40

ISNR = 0 dB
TVAL3 Optimal -14.29 -14.93 -15.61 -16.13 -16.39 -16.80
DC-AMP Optimal -14.48 -15.14 -15.69 -16.13 -16.53 -16.93

Table 8.3 – Comparison of the final reconstruction results in NSNR as a function of the noise
level in dB between TV-AL3 and DC-AMP for different measurement rates α for the Baboon
picture.
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cameraman Image

Figure 8.6 – Comparison of the final reconstruction results in NSNR as a function of the
noise level in dB between TV-AL3 and DC-AMP for different measurement rates α for the
Cameraman picture.
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α= 0.05 α= 0.10 α= 0.20 α= 0.30 α= 0.40 α= 0.50
ISNR = ∞ dB

TVAL3 Optimal -21.43 -25.02 -29.11 -32.42 -35.12 -37.67
DC-AMP Optimal -21.65 -25.10 -29.50 -33.35 -36.18 -38.50

ISNR = 40 dB
TVAL3 Optimal -21.52 -25.09 -29.09 -32.24 -34.91 -37.27
DC-AMP Optimal -21.64 -25.07 -29.44 -33.16 -35.81 -37.88

ISNR = 30 dB
TVAL3 Optimal -21.50 -24.83 -28.66 -31.28 -33.17 -34.67
DC-AMP Optimal -21.54 -24.85 -28.84 -31.65 -33.57 -35.03

ISNR = 25 dB
TVAL3 Optimal -21.51 -24.60 -27.77 -29.66 -31.15 -32.15
DC-AMP Optimal -21.37 -24.33 -27.73 -29.78 -31.25 -32.28

ISNR = 20 dB
TVAL3 Optimal -20.99 -23.75 -26.02 -27.72 -28.62 -29.52
DC-AMP Optimal -20.85 -23.21 -25.98 -27.47 -28.62 -29.41

ISNR = 15 dB
TVAL3 Optimal -19.97 -22.06 -24.05 -25.28 -26.14 -26.82
DC-AMP Optimal -19.71 -21.87 -24.00 -25.08 -26.01 -26.64

ISNR = 10 dB
TVAL3 Optimal -18.09 -19.69 -21.87 -22.75 -23.53 -24.04
DC-AMP Optimal -17.59 -20.17 -21.96 -22.69 -23.43 -23.84

ISNR = 5 dB
TVAL3 Optimal -16.40 -18.00 -19.47 -20.29 -21.01 -21.54
DC-AMP Optimal -16.48 -18.15 -19.99 -20.90 -21.38 -21.85

ISNR = 0 dB
TVAL3 Optimal -14.56 -15.62 -17.41 -17.98 -18.34 -19.08
DC-AMP Optimal -13.77 -16.03 -17.51 -18.40 -19.13 -19.61

Table 8.4 – Comparison of the final reconstruction results in NSNR as a function of the noise
level in dB between TV-AL3 and DC-AMP for different measurement rates α for the Camera-
man picture.
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peppers Image

Figure 8.7 – Comparison of the final reconstruction results in NSNR as a function of the noise
level in dB between TV-AL3 and DC-AMP for different measurement rates α for the Peppers
picture.
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α= 0.05 α= 0.10 α= 0.20 α= 0.30 α= 0.40 α= 0.50
ISNR = ∞ dB

TVAL3 Optimal -21.45 -24.22 -26.32 -27.59 -28.65 -29.68
DC-AMP Optimal -21.25 -23.74 -26.24 -27.55 -28.65 -29.84

ISNR = 40 dB
TVAL3 Optimal -21.48 -24.21 -26.34 -27.56 -28.61 -29.65
DC-AMP Optimal -21.23 -23.73 -26.22 -27.52 -28.61 -29.79

ISNR = 30 dB
TVAL3 Optimal -21.43 -24.08 -26.12 -27.38 -28.34 -29.26
DC-AMP Optimal -21.20 -23.76 -26.07 -27.30 -28.29 -29.34

ISNR = 25 dB
TVAL3 Optimal -21.35 -23.92 -25.74 -26.99 -27.82 -28.56
DC-AMP Optimal -21.07 -23.81 -25.76 -26.90 -27.79 -28.64

ISNR = 20 dB
TVAL3 Optimal -21.14 -23.37 -25.06 -26.10 -26.90 -27.42
DC-AMP Optimal -20.79 -22.94 -25.05 -26.05 -26.80 -27.44

ISNR = 15 dB
TVAL3 Optimal -20.42 -22.30 -23.81 -24.70 -25.36 -25.86
DC-AMP Optimal -20.09 -21.93 -23.79 -24.66 -25.30 -25.88

ISNR = 10 dB
TVAL3 Optimal -18.56 -20.59 -22.01 -22.89 -23.51 -23.96
DC-AMP Optimal -18.32 -20.48 -22.11 -22.92 -23.46 -23.95

ISNR = 5 dB
TVAL3 Optimal -16.61 -18.37 -19.80 -20.84 -21.33 -21.74
DC-AMP Optimal -17.02 -18.74 -20.43 -21.17 -21.65 -21.94

ISNR = 0 dB
TVAL3 Optimal -14.11 -15.86 -16.19 -18.32 -18.94 -19.61
DC-AMP Optimal -14.29 -16.55 -18.35 -19.18 -19.84 -20.35

Table 8.5 – Comparison of the final reconstruction results in NSNR as a function of the noise
level in dB between TV-AL3 and DC-AMP for different measurement rates α for the Peppers
picture.
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Figure 8.8 – Image taken from [141]. The experimental setup for compressive measurements of
the fluorescent beads. A random selection of 2-d binary {0,1} (illumination or not) Hadamard
patterns generated by a laser beam and a digital micromirror device DMD are successively pro-
jected onto the sample of interest. For each pattern, the beads that are illuminated are excited.
These then emit light by fluorescence. Each measure (one per Hadamard bi-dimensional
pattern) corresponds to perform the sum of all the resulting photons by converging all this
emitted light on a single point, which intensity is measured by the objective that outputs a
single scalar value yµ proportional to the number of photons received.

8.2 Image reconstruction in compressive fluorescence microscopy

We now present an application of approximate message-passing inference to image recon-

struction in fluoresence microscopy. The present work is part of an ongoing collaboration

with Vincent Studer, Makhlad Chahid and Maxime Dahan who performed the experimental

part of [141]. All the data analysed in sec. 8.2.7 has been generated by them.

8.2.1 Introduction

For the next, we call a measure (or measurement) the process of measuring the overall light

intensity emitted by the beads after the excitation by one single 2-d Hadamard pattern thanks

to the setup Fig. 8.8, and an acquisition the full process of getting M different measures: one

can try to reconstruct the image of the beads from one vector of M measurements y obtained

thanks to one acquisition.

In the present problem, the aim is to locate fluorescent point-like beads on a plane (thus the

signal is directly sparse in the pixel domain) thanks to compressive measurements i.e. from
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M < N measurements, where N is the number of pixels of the image to reconstruct.

Fluorescence microscopy has a great potential, especially in biological applications. Unfor-

tunatly measurements may be costly in time making a single acquisition very long and thus

compressed sensing is highly relevant here. As the image of the beads is sparse as seen from

Fig. 8.10, compressed sensing theoretically allows to reconstruct it from far fewer measure-

ments than usual methods and thus to drastically speed up the acquisition. If acquisitions

were fast enough thanks to compressed sensing, one could think of observing the dynamical

behavior of small objects such as proteins and cells. This would require that their typical evo-

lution time scale would be smaller than the acquisition time. Indeed, in order to reconstruct

an image from an acquisition, it is essential that the measured system does not evolve from

one measurement to the next or they would be incoherent and reconstruction impossible.

For example, even at very low temperatures (not even speaking of biologically relevant tem-

peratures), a protein tertiary structure may evolve due to the thermal noise, and if one aim at

oberving it in a particular configuration, fast acquisitions processes are essential or it will have

time enough to relax to a new configuration during the acquisition.

Compressed sensing could also allow to increase the spatial resolution of the images from a

computational point of view. As the number of pixels N fixes the maximum spatial resolu-

tion for the location of the beads and the classical sensing procedures require a number of

measures that scale with N , an increase in resolution cost many more measures whereas with

compressed sensing, only O(ρN ) measurements are required, and thus the resolution for very

sparse images with ρ¿ 1 can be improved at low cost.

8.2.2 Experimental setup and algorithmic setting

The signal processing problem treated in this chapter is the reconstruction of fluorescent

beads randomly placed on a plane. The experimental setup of Fig. 8.8 is used for obtaining

the compressive measurements of the beads: a random selection of M 2-d binary {0,1} (il-

luminated or not) Hadamard patterns successively generated by a laser beam and a digital

micromirror device are projected onto the plane where the beads are. For each pattern, the

beads that are illuminated absorbe this light and then emit it back by fluorescence. The sum

of all the resulting photons is performed by converging all this emitted light on a single point

measured by an accurate intensity detector that output a scalar yµ for each measurement,

µ ∈ {1, . . . , M }. We refer to [141] for a detailed description of the experimental setup. A random

2-d Hadamard pattern is represented at the center of Fig. 8.9 and its projection on a biological

sample is on the right part.

In the present setting, we assume that the linear model describing this experimental setup

is given by (3.18). Indeed the 2-d Hadamard transform H2d of a matrix x of size
p

N ×p
N is
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Figure 8.9 – Image taken from [141]. The left part is a biological sample, the center one
is a typical randomly selected 2-d Hadamard pattern (or mode) used for the compressive
measurements of the fluorescent beads and the right one is the same pattern projected onto
the biological sample: the lighter points are the ones that are excited.

defined in function of the Hadamard matrix H as:

H2d (x)i j := (
H(Hx)ᵀ

)
i j =

p
N ,

p
N∑

k,u
Hi k H j u xuk (8.22)

This operator can be easily written as a single matrix by rasterizing each 2-d mode made ofp
N lines of size

p
N (see Fig. 8.9) into one line of size N of F. Doing this for all the M modes

and considering the properly rasterized signal vector x which is now of size N , we get back the

system (3.18).

But for the algorithm implementation, we want to use the fast Hadamard transform and thus

the form (8.22) of the operator H2d instead of its matrix representation as we are working with

large data sets. Thus the operator H2d (x) which outputs the same vector as the direct matrix

product Fx (which thus can be directly used in Fig. 5.5 without having to change anything)

but that is constructed using the fast Hadamard transform is implemented by the following
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pseudo-code:

H2d

(
input : x of size N , sets of 1-d Hadamard modes indices (I1, I2)

)
1) "Derasterize" x to make it of size

p
N ×

p
N

2) Apply the 2-d fast Hadamard transform : p = F T (F T (x)ᵀ)

3) Rasterize p to make it of size N

4) Rescale the result to take into account the {0,1} nature of the measurement

operator while the F T operator is {−1,1} : z = 1

2

(
p+

N∑
i

xi

)

5) Select the proper M firsts modes : u =
[

z
(p

N (I1(i )−1)+ I2(i )
)]M

i

output : u of size M (8.23)

where F T is the usual fast Hadamard transform. The required backward operator construction

is related to what has been presented in sec. 7.1.3 and is implemented here as:

Hᵀ2d

(
input : y of size M , sets of 1-d Hadamard mode indices (I1, I2)

)
1) Create a vector with the M firsts 1-d mode indices : v =

[p
N (I1(i )−1)+ I2(i )

]M

i

2) Define f of size N such that : fvi = yi ∀i ∈ {1, . . . , M }, fk = 0 ∀k 6∈ v

3) Derasterize f to make it of size
p

N ×
p

N

4) Apply the 2-d fast Hadamard transform : p = F T (F T (f)ᵀ)

5) Rasterize p to make it of size N

6)Rescale the result to take into account the {0,1} nature of the measurement

operator while the F T operator is {−1,1} : u = 1

2

(
p+

M∑
µ

yµ

)
output : u of size N (8.24)

The modes-indices sets (I1, I2) are selected by the experimentalists and define the scrambled

sub-sampled 2-d Hadamard transform used for acquisition (they contain respectively the M

{i } and { j } indices selected when using (8.22), with i , j ∈ {1, . . . ,
p

N }). 8192 modes were selected

for the data used in sec. 8.2.7. Only a sub-set of them can be selected for the reconstruction

tests, changing M in the previous operators. The fast implementation of the homogeneous

approximate message-passing algorithm Fig. 5.5 (with L = N ,Lc = Lr = 1,B = 1) is thus defined

replacing the forward operator Oµ (5.117) by the fast operator H2d and the backward one Oi

(5.119) by Hᵀ2d . The two others operators (5.116), (5.118) are also defined repectively by H2d

and Hᵀ2d as 0 or 1 are invariant by the square operation. Let us now discuss a proposal for the

denoisers that appear to have very good performances in the present problem.
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8.2.3 A proposal of denoisers for the reconstruction of point-like objects mea-
sured by compressive fluorescence microscopy

In order to perform inference of the beads locations thanks to the approximate message-

passing algorithm Fig. 4.6, we propose here an exponential prior with approximate Gaussian

sparsity for designing the denoisers following the procedure given in sec. 4.3.6. The exponential

part approximates the discrete Poisson distribution associated with the number of informative

photons emitted by the actual beads. This law is typical of sources which light emission is due

to desexcitation processes, such as in fluorescence. The full prior that we assume factorizable

over the pixels is thus given by:

P0(x|θ) =
N∏
i

P0(xi |θ) =
N∏
i

[
ρλe−λxi I(xi > 0)+N

(
xi |m,σ2)] (8.25)

whereθ := [λ,ρ,m,σ2]. ρ is the density of pixels of the picture on which beads are standing and

I(xi > 0) enforces the pixels to have positive values. Of course this model is an approximation of

the true signal generating process, but it appears empirically to reach very good performances.

More complex prior models including correlations between pixels could be considered but

this cannot be done with AMP, at least in its canonical form Fig. 4.6 which requires that the

prior is factorizable over some subsets of signal components. Nevertheless, we will see in

sec. 8.2.6 how to include "a posteriori" some effective interaction between closeby pixels.

In the present context, we consider the measurement noise variance ∆→ 0 as the background

photon noise is already included into the Gaussian part of the prior. We could think also of

using a strictly sparse prior replacing the Gaussian by a Dirac distribution and letting the

noise variance have a finite value instead, but it appears empirically that it gives worst results

than this approximate sparsity prior. This may come from the fact that the learning rules of

the Gaussian parameters (m,σ2) are different that of the noise variance ∆ and there are two

instead of one. This remark is actually quite general, and we observed empirically in many

situations that approximate sparsity without measurement noise gets better results than a

sparse prior with noise.

8.2.4 Optimal Bayesian decision for the beads locations

A great advantage of the Bayesian framework with respect to convex optimization procedures

is that it allows to directly estimate the probability that a pixel supports a bead or not, i.e. if

this pixel is informative or belongs to the background noise. The posterior "noise" probability

P (xi ∈N ) for a pixel xi to be pure noise (denoted by N in reference to the Gaussian part for

the noise in the prior) is proportional to the prior probability of belonging to the background
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noise re-weighted by the AMP Gaussian field:

P (xi ∈N |θ,Σ2
i ,Ri ) = 1

z(Σ2
i ,Ri |θ)

∫
d xi N

(
xi |m,σ2)N (

xi |Ri ,Σ2
i

)
(8.26)

z(Σ2
i ,Ri |θ) =

∫
d xi N

(
xi |Ri ,Σ2)P0(xi |θ) (8.27)

where z(Σ2
i ,Ri |θ) is the posterior partition function of pixel i , P0 is given by (8.25) and (Σ2

i ,Ri )

are the usual moments controlling the Gaussian AMP field summarizing the likelihood con-

straints on xi . The (Σ2
i ,Ri ) values are iteratively computed by AMP Fig. 4.6. This expression is

analytical and using (8.25), (8.26) it becomes:

P (xi ∈N |θ,Σ2
i ,Ri ) =

1+ρλ
√
π(Σ2

i +σ2)

2
e
λ
2 (λΣ2

i −2Ri )+ (m−Ri )2

2(Σ2
i
+σ2) erfc

λΣ2
i −Ri√
2Σ2

i



−1

(8.28)

After convergence of the algorithm, in order to obtain the final estimate x̂i for each pixel,

we thus cancel all the final AMP posterior pixels estimates ai which final posterior noise

probability is more than 0.5. Doing this we keep only the supposed informative pixels from

the AMP point of view:

x̂i = at
i I

(
P (xi ∈N |θt , (Σt

i )2,R t
i ) < 0.5

)
(8.29)

where t is the final time step. This kind of decisions cannot be taken with `1-minimization

based solvers as they are not probabilistic algorithms, and arbitrary thresholding functions

must be applied at the end or the results are very poor in this kind of highly noisy problems.

In the experiments of sec. 8.2.7, the thresholding function applied to the `1-minimization

based solvers final estimates is such that we keep only the pixels that have an amplitude

approximately 4 times higher than the mean of the recovered overall picture, we cancel

the other ones. This value of 4 has been selected empirically to obtain the best possible

match between the reconstructed and original pictures in the high measurement rate regime

(M = 8192 measurements in the results of sec. 8.2.7). Despite being probably suboptimal for

other measurement rates, this thresholding function appears to output results close to the best

ones at any rate, i.e. that are obtained when the optimization of this thresholding function is

performed for every measurement rate and `1-minimization solver independently.

8.2.5 The learning equations

In order to find the optimal values of the free parameters of the prior (8.25), we use the expec-

tation maximization strategy discussed in sec. 4.3.8. In the present case, all the quantities can

be simply obtained directly from the posterior estimates and noise probability. Appropriate
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recursions that are very stable numerically and have simple interpretations are given by:

ρt+1 = 1

N

N∑
i
I
(
P (xi ∈N |θt , (Σt

i )2,R t
i ) < 0.5

)
(8.30)

λt+1 =
 1

|at
supp.|

|at
supp.|∑

i
at

i ,supp.

−1

= 1

< at
supp. >

(8.31)

mt+1 = 1

|at
noi se |

|at
noi se |∑

i
at

i ,noi se =< at
noi se > (8.32)

where at
supp. := [

at
i : P (xi ∈N |θt , (Σt

i )2,R t
i ) < 0.5

]
are the posterior estimates of the estimated

support pixels of the beads at time t , at
noi se := [

at
i : P (xi ∈N |θt , (Σt

i )2,R t
i ) > 0.5)

]
are the pos-

terior estimates of the noise pixels (that are not in the support) at time t . The variance of the

Gaussian could be learned as well in the same way but it appears empirically that fixing its

value is more efficient. All these equalities are just coming from the very definitions of the

different quantities. For example, the parameter λ in the exponential distribution must be

equal to the inverse of the mean of this distribution, and we naturally take only into account

the values of the pixels that are considered in the support as the exponential is here to model

the beads.

8.2.6 Improvement using small first neighbor mean field interactions between
pixels

It appears empirically that using a small first neighbor mean field interaction between pixels

improve the results and allows AMP to recover perfectly the beads locations at smaller mea-

surement rates. The trick is empirically done by adding to the moment R t+1
i controling the

AMP field felt by the pixel xi at time t +1 a perturbation εht+1
i where ε is a small ∈ O(10−1)

auxiliary parameter and ht+1
i is the mean field that takes into account the (up to) 4 xi ’s neigh-

bors states. It is defined as an extension of the so-called bilateral denoiser in statistical image

processing and is defined as:

ht+1
i =

∑
j∈∂i at

j w t
i j I

(
P (x j ∈N |θt , (Σt

j )2,R t
j ) < 0.5

)
∑

j∈∂i w t
i j I

(
P (x j ∈N |θt , (Σt

j )2,R t
j ) < 0.5

) (8.33)

where the weight given to the neighbor pixel x j of pixel xi is a Gaussian proportional to their

posterior estimates difference, i.e. it gives higher weight to similar pixels:

w t
i j =N

(
at

i

∣∣at
j ,σ2

w

)
(8.34)

This field thus weakly shifts the AMP field of the i th pixel to higher values when its neighbors

are considered being part of the support: R t+1
i = R t+1

i +εht+1
i . This mean field thus mimics in

some sense the behavior of the algorithm discussed in sec. 8.1 but without changing the prior
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that remains fully factorizable over the pixels. It appears empirically that the improvement

thanks to this strategy is only very weakly dependent on the σ2
w parameter and we take a

uniform weight σ2
w →∞ for the results presented in the next section.

8.2.7 Reconstruction results on experimental data

We now present some results which compare the reconstruction performances of AMP and

of two state-of-the-art `1-minimization based solvers (NESTA [52] and fast iterative hard

thresholding [80]) and where the Bayesian optimal and heuristic thresholding functions

discussed in sec. 8.2.4 are applied to the final reconstructions made with AMP and the `1-

minimization based solvers respectively. Furthermore, each reconstructed support pixel is

"highlighted" a posteriori by giving a positive value to its closest neighbors as well. The data

used here has been obtained by the authors of [141] using the experimental setup described

in Fig. 8.8.

A first remark is that independently of the algorithm used or the measurement rate α, there

are always artefacts appearing on the up-left corner (two beads are always missing in the

reconstruction) and for the positions of some beads as well. This must come from the ex-

perimental data set used here rather than the algorithms, as even at the higher rate α, there

remain these errors. So it is considered that these systematic errors are actually not errors for

the algorithmic reconstructions.

The results Fig. 8.10-Fig. 8.15 all show a clear advantage for AMP: its reconstruction and

location of the beads is perfect (up to these systematic data-dependent errors) until M = 512

whereas comparably good results (yet not perfect, whereas the AMP results are) are obtained

with NESTA only for M ≥ 4096 or with FastIHT at M ≥ 8192. So the gain with AMP is substantial,

and the location is way more accurate. Furthermore, the speed of convergence of AMP is

always 2 to 10 times faster than the convex optimization solvers used here. For M < 512

approximatively, the AMP performances start to worsen continuously, and actual beads

disappear while new "fake" ones start to appear as seen on the last figure Fig. 8.15.

An important remark is that when the previously discussed "TV-like" AMP algorithm of sec. 8.1

have been tried on the data, it appeared that the reconstruction performances were not

comparable with the AMP implementation presented here. This is due to the point-like nature

of the beads: the gradient-minimizing prior of sec. 8.1.1 tends to smoothen too much the

background and makes totally disappear the beads for low measurement rates, whereas the

present specifically designed prior (8.25) does consider the precense of such ponctual objects.

8.2.8 Concluding remarks and open questions

We have studied how the AMP algorithm can be used for reconstruction of sparse images in

the pixel domain measured by fluoresence microscopy in the compressive regime. This study

is a proof-of-concept, which naturally extended the work of [141] where convex optimization
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8.2. Image reconstruction in compressive fluorescence microscopy

is used for the reconstruction. A natural continuation is to try the algorithm on real biological

samples, where the beads are put inside membranes of cells for example as in [141]. Furthe-

more, in the data set used for the present results, the beads were strongly excited and thus

emitted a lot of photons. The question of wether the reconstruction by AMP is robust to a net

lowering of the beads emission intensity is of great interest as stronger excitations means a

longer exposition time of the sample to the light field, and thus an overall longer acquisition

time. Another natural idea would be to try spatial coupling combined with Hadamard patterns

as in chap. 7. But as the noise is high (typically a relative intensity of O(10−2/10−3) with respect

to the beads intensity in the present experiments), it is probable that there is no first order

transition and thus that this strategy does not improve the performances as discussed in

chap. 6. Nevertheless, the results are very encouraging and AMP seems to be a good option in

this context.
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Figure 8.10 – Comparison of the reconstruction results of the 3 algorithms used here: AMP,
NESTA and Fast Iterative Hard Thresholding with the original picture. The number of mea-
surements is here M = 8192, α= 0.125.
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Figure 8.11 – Same as Fig. 8.10 with M = 4096, α= 0.0625.
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Figure 8.12 – Same as Fig. 8.10 with M = 2048, α= 0.031.
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Figure 8.13 – Same as Fig. 8.10 with M = 1024, α= 0.016.
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Figure 8.14 – Same as Fig. 8.10 with M = 512, α= 0.0078. This α is the limit of "perfect" beads
location using the AMP algorithm.
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Figure 8.15 – Same as Fig. 8.10 with M = 400, α= 0.0061. We observe a continuous worsening
of the AMP results.
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9 Approximate message-passing de-
coder and capacity-achieving sparse
superposition codes
We study the approximate message-passing decoder for sparse superposition coding over

the additive white Gaussian noise channel. While this coding scheme asymptotically reaches

the Shannon capacity, we show that the AMP iterative decoder is limited by the BP phase

transition, similar to what happens in low density parity check LDPC codes. We present and

study two solutions to this problem, that both allow to reach the Shannon capacity: i ) a non

constant power allocation and i i ) the use of spatially-coupled codes. We also present extensive

simulations that suggest that spatial coupling is more robust and allows for better correction

at finite code lengths. Finally, we show empirically that the use of a fast Hadamard-based

operator allows for an efficient reconstruction, both in terms of computational time and

memory allocation, and the ability to deal with very large signals.

9.1 Introduction

The error correction scheme called sparse superposition codes has originally been introduced

and studied in [142–144] by Barron and Joseph who proved the scheme to be capacity achieving

over the additive white Gaussian noise AWGN channel under maximum-a-posteriori M AP

decoding. In [142–144], an iterative decoder called adaptive successive decoder was presented,

which was later improved in [145, 146] by soft thresholding methods. The idea is to decode a

sparse vector with a special block structure over the AWGN channel, represented in Fig. 9.1.

With these decoders together with the use of power allocation, the scheme was proved to be

capacity achieving in a proper limit. However, finite blocklength performances were far from

ideal. In fact, it seemed that the asymptotic results could be reproduced at any reasonable

finite lengths.

We propose instead an approximate message-passing decoder for sparse superposition codes.

We will show that this decoder have much better performances. In fact it allows better decoding

than the iterative successive decoder at any reasonable finite length, and this even without

power allocation. We present two modifications of sparse superposition codes that allow
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AMP to be asymptotically capacity achieving as well, while retaining good finite block length

properties. The first one is the addition of power allocation to sparse superposition codes as

done for the iterative successive decoder, and the second one, which is specific to the message-

passing decoder, is the use of spatial coupling which appears to be even more promising.

We also present extensive numerical simulations and a study of a practical scheme with

Hadamard operators. The overall scheme is computationally efficient and allows to practically

reach near-to-capacity transmission rates with low error floors.

9.1.1 Related works

The phenomenology of these codes under AMP decoding, in particular the sharp BP phase

transition happening before the optimal threshold, has many similarities with what appears

in LDPC codes [147]. It is not a priori trivial because LDPC are codes over finite fields, the

sparse superposition codes scheme works in the continuous framework and LDPC codes

are decoded by loopy belief propagation whereas sparse superposition codes are decoded

by AMP, a Gaussian approximation of loopy BP, see sec. 4.3.3. However, they arise due to a

deep connection to compressed sensing where these phenomena (phase transition, spatial

coupling, . . . ) are well known [34, 35, 110, 119] as discussed in sec. 5.1.1, and we shall make use

of this connection extensively.

As we will see, the AMP algorithm is naturally applied to sparse superposition codes as this

scheme can be interpreted as a compressed sensing problem with structured sparsity. This

scheme is actually the first example of error correction of a signal that is directly mapped to

a compressed sensing problem. In the chap. 10, the approach is different as it is the noise

that is reconstructed. The state evolution technique [104] is unfortunatly not rigorous for the

present AMP approach because of the structured sparsity of the signal, but in spite of that, we

conjecture that it is exact.

Note that reconstruction of structured signals is a new trend in compressed sensing theory

that aims at going beyond simple sparsity by introducing more complex structures in the

vector that is to be reconstructed. Other examples include group sparsity or tree structure in

the wavelet coefficients in image reconstruction [28].

A recent work of Rush, Greig and Venkataramanan [148] also studied AMP decoding in super-

position codes combined with power allocation. Using the same technics as in [104], they

proove rigorously that sparse superposition codes under AMP deconding is capacity-achieving

if a proper power allocation is used. This strengthen the claim that AMP is the tool of choice in

the present problem. We will see, however, that spatial coupling leads to even better decoding

results at finite size.
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9.1.2 Main contributions of the present study

The main original results of the present study are listed below.

• A detailed derivation of the AMP decoder for sparse superposition codes for a generic power

allocation. The derivation is self-contained and starts all the way from the canonical loopy BP

equations, see sec. 4.3.3.

• An analysis of the performance of the AMP decoder from the state evolution recursions. It

is done in full generality with and without power allocation, and with and without spatial

coupling. It is shown in particular that AMP, for simple sparse superposition codes, suffers

from a phenomenon similar to those of BP with LDPC codes: there exist a sharp BP transition

different from the optimum one of the code itself beyond which the decoder performance

suddenly drops.

• An analysis of the optimum performance of sparse superposition codes using the non-

rigorous replica method. This leads in particular to a single-letter formulation of the M MSE

estimate which we conjecture to be exact. The connection and consistency with the results

coming from the state evolution approach is also underlined, see sec. 5.4.

• The large section limit for the behavior of AMP is studied, and we compute its limit rate, the

asymptotic BP threshold R∞
BP <C where C is the Shannon capacity of the channel. Studying

as well the optimal threshold in this limit, we reconfirm using the replica method that these

codes are Shannon capacity achieving.

• We also show that, with a proper power allocation, the BP threshold that was blocking the

AMP decoder disappears so that AMP becomes asymptotically capacity achieving over the

AWGN in the large section limit.

• Building on the connection with compressed sensing [34, 35, 110] we also show that the use

of spatial coupling [109] for sparse superposition codes is an alternative way to obtain capacity

achieving performances with AMP.

• We present an extensive numerical study at finite blocklength, showing that despite improve-

ments of the scheme thanks to power allocation, a properly designed spatially-coupled coding

matrix seems to allow better performances and robustness to noise for decoding over finite

size signals.

• Furthermore we discuss a more practical scheme where the random coding operators are

replaced by fast ones based on an Hadamard construction, see chap. 7. We show that this

allows a close to linear time algorithm able to deal with very large signals, yet performing very

well at large rate for finite signals. We study the efficiency of these operators combined with

sparse superposition codes with or without spatial coupling.

Finally, we note that this work differs from the mainstream of existing literature. While a

large part of the existing coding theory literature provides theorems, part of this work, that
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coding noisy output decoding
y = ỹ + ⇠ x̂|F , yỹ = Fxỹ = Fx

y = ỹ + ⇠

x̂|F , y

Figure 9.1 – Sending information through the AWGN channel with superposition codes: the
message x, created such that it has only a single non zero element in each of its L sections,
is first coded by a linear transform, ỹ = Fx. The resulting codeword is then sent through the
AWGN channel that adds an i.i.d Gaussian noise ξ with zero mean and a given variance ∆ to
each components. The receptor gets the corrupted codeword y and must estimate x̂ as close
as possible from x from the knowledge of F and y. Perfect decoding happens if x̂ = x.

using the replica method, is based on statistical physics methods that are conjectured to give

exact results. While many results obtained with these methods on a variety of problems have

indeed been proven later on, a general proof that these methods are rigorous is not known

yet. Note, however, that the state evolution technique has been turned into a rigorous tool

under control in many similar cases [104, 149]. The present approach does not verify the

assumptions required for the proofs to be valid because of the structured sparsity of the signal,

but nevertheless we conjecture that the analysis remains exact. We thus expect that both the

replica and state evolution analyzes are exact and believe it is only a matter of time before they

are fully proven.

9.2 Sparse superposition codes

Suppose you want to send a generic message s made of L symbols through an AWGN channel,

where each symbol belongs to an alphabet composed of B letters : s := [sl : sl ∈ {1, . . . ,B}]L
l=1.

Starting from a standard binary representation of s, it is of course trivial to encode it in this

form.

An alternative and highly sparse representation is given by the sparse superposition codes

scheme: the representation x of this message s is made of L sections of size B , where only a

unique value is 6= 0 in each section at the location corresponding to the original symbol. We

will consider each non zero value to be positive as it can be interpreted as an input energy

in the channel. Thus if the i th component of the original message s is the k th symbol of the

alphabet, the i th section of x contains only zeros, except at the position k where there is a

positive value (which amplitude depends on the power allocation).

As an example, in the simplest setting where the power allocation is cl = 1 ∀ l ∈ {1, . . . ,L} (where

cl is the positive constant appearing in the l th section), if s = [a,c,b,c], where the alphabet has
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only three symbols {a,b,c}, then its sparse representation x is made of four sections which are

x = [[100], [001], [010], [001]]. The l th section of x will be denoted xl := [xi ]i∈l where l is both

the set of indices corresponding to the 1-d components of x in the l th section or the index of

the section depending on the context.

In sparse superposition codes, x is then encoded through a linear transform by application of

an operator F of dimension M ×N to obtain a codeword ỹ of dimension M , ỹ = Fx which is

then sent through the Gaussian noisy channel and the receiver gets a corrupted version of it.

This is summarized in Fig. 9.1.

The dimension of the coding operator F is linked to the section size B and the coding (or trans-

mission) rate in bits per-channel use R. Defining K := log2(B L) as the number of informative

bits carried by the signal x made of L sections of size B (i.e. its entropy (3.34) considering that

all the messages are equiprobable, see sec. 3.5), we have:

R := K /M (9.1)

= L log2(B)/(αN ) (9.2)

= log2(B)/(Bα) (9.3)

⇔α := M/N = log2(B)/(RB) (9.4)

In what follows, we will concentrate on i.i.d Gaussian F elements with 0 mean and variance vF

in order to be able to obtain analytical results. We always fix to 1 the total power sent through

the channel P := ||ỹ||22 =< ỹ2 >= 1 by a proper rescaling of the variance of the elements of F.

The only relevant parameter is thus the signal-to-noise ratio:

snr := P/∆= 1/∆ (9.5)

where ∆ is the variance of the Gaussian noise of the AGWN channel. It allows to define the

Shannon capacity C = log2(1+ snr)/2 of the channel (3.91), see sec. 3.7.1 for its derivation.

The transmitted codeword ỹ is corrupted through the model (3.18) by the AWGN channel.

Let us now turn our attention to the decoding task. It is essentially a sparse linear estimation

problem where we know y and need to estimate a sparse solution of y = Fx+ξ. However the

problem is different from the canonical compressed sensing problem [32] in that the elements

of x are strongly correlated by the constraint that only a single element in each section is

non-zero, see Fig. 9.2. We thus prefer to think about the problem as a multidimensional one:

each section l ∈ {1,2, . . . ,L} made of B 1-d variables in x is interpreted as a single B-d variable

for which we have a strong prior information: it is zero in all dimensions but one where there

is a fixed positive known value. Given its length, we thus know the vector must point in only

one direction of the hypercube of dimension B . In this new setting, instead of dealing with a

N -d vector x with elements {xi }N
i , we deal with a L-d vector x which elements {xl }L

l are B-d

sections.

In this framework, the decoding problem becomes exactly of the kind considered in the
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Figure 9.2 – Up : Representation of the estimation problem associated to the decoding of the
sparse signal over the AWGN channel. All 1-d variables in the same section xl = [xi ]i∈l are
strongly correlated due to the hard constraint that only one of them can be positive (or 1 in
this example). Down : Reinterpreting the same problem in terms of B-d variables. Now, the
matrix elements of the previous figure are concatenated to form B-d vectors {Fµl := [Fµi ]i∈l }
that are applied (using the usual scalar product for vectors) on the associated B-d vectors
representing the new components of the signal, the sections. In this new setting, all the
sections are uncorrelated.

Bayesian approach to compressed sensing, see sec. 3.6.1 and for example [2, 34, 35, 89, 117].

We can thus directly apply these techniques to the present problem. From now on, we always

consider that the true snr is accessible to the channel user, and thus can be used in the

algorithm.

We will be interested in two error estimators, the MSE E and the section error rate SER. They

are defined respectively as the MSE of the 1-d variables and the fraction of wrongly decoded
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Figure 9.3 – Factor graph associated to the sparse superposition codes. It is a bipartite graph
where the variable estimates {xl }L

l are represented by circles, the constraints (or factors) by
squares. The variables are constrained by the M likelihood factors that enforce the system
y = Fx to be fulfilled up to Gaussian fluctuations due to the Gaussian noise of the AWGN
channel. The prior constraints enforce each section to have only one non-zero component,
that must be the value fixed by the power allocation. In the homogeneous operator case, the
variables are connected to all the likelihood factors and vice versa and in the spatially-coupled
case, only to a finite fraction that depends on the spatial coupling ensemble, see Fig. 5.4. The
factor-to-node m̂µl (xl ) and node-to-factor mlµ(xl ) cavity messages are represented. They
should stand on the same edge as they depend on the same variable but we put them on
distinct edges for readibility purpose.

sections:

E := 1

N

N∑
i

(xi − x̂i )2 (9.6)

SER := 1

L

L∑
l
I(xl 6= x̂l ) (9.7)

where I (A) is the indicator function of the event A which is one if A happens to be true, zero

else and x̂ := [x̂l ]L
l = [x̂i ]N

i is the final estimate of the signal by the decoder.
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9.3 Approximate message-passing decoder for superposition codes

The only problem-dependent objects in the AMP Fig. 5.5 are the denoising functions { fai , fci }.

Let us derive them for any power allocation {cl > 0}L
l . Here, the prior that matches the signal

distribution by enforcing the constraint of having only one known value cl > 0 per section is:

P l
0(xl ) := 1

B

B∑
i∈l
δ(xi − cl )

B−1∏
j∈l : j 6=i

δ(x j ) (9.8)

The denoisers which generic expressions are given by (4.115) and (4.116) are easily derived.

We obtain the posterior average at
i and variance v t

i of xi at step t of the algorithm:

at
i := fai ((Σt

li
)2,Rt

li
) = cli

exp
(
− cli (cli −2R t

i )

2(Σt
i )2

)
∑B

j∈li
exp

(
− cli (cli −2R t

j )

2(Σt
j )2

) (9.9)

v t
i := fci ((Σt

li
)2,Rt

li
) = at

i (cli −at
i ) (9.10)

where Σli ,Rli are the AMP fields of the section li to which the i th 1-d component of the signal

belongs to. Combined with Fig. 5.5, we thus get the full AMP algorithm for sparse superposition

codes with associated graphical model given by Fig. 9.3.

9.3.1 The fast Hadamard-based coding operator

In the present study, we use spatially-coupled operators constructed as in Fig. 7.1. Fig. 9.4

shows that when the signal sparsity increases, i.e. when the section size B increases, using

Hadamard-based operators becomes quickly equivalent to using random i.i.d Gaussian ones

in terms of performances (as observed in chap. 7). For the figure, we have fixed the snr = 100

and then plotted the distance in dB to the BP threshold RBP (snr = 100,B) at which the decoder

starts to decode perfectly with Hadamard-based or random i.i.d Gaussian operators. We

remind that RBP is defined as the highest rate until which AMP decoding is optimal without

the need of non constant power allocation or spatial coupling. It appears that at low section

size, it is advantageous to use random operators but as B increases, structured operators

quickly match their performances. The BP threshold is predicted by the state evolution

analysis presented in Sec. 9.4.
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8
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Figure 9.4 – Comparison between the distance in dB to the asymptotic BP threshold RBP (snr =
100,B) at which the AMP decoder with homogeneous Hadamard-based coding operators
(blue) or random i.i.d Gaussian ones (red) starts to reach an SER < 10−5, which essentially
means perfect decoding for most of the instances. This is done for a fixed number of sections
L = 28 and snr = 100. Each point have been averaged over 100 random instances. The BP
threshold RBP (snr = 100,B) is obtained by state evolution analysis for each B . Decoding
with Hadamard-based operators works poorly when the signal density increases (i.e. when B
decreases), but matches quickly the random matrix performances as it decreases. Decoding
with random Gaussian i.i.d matrices has a performance that is close to constant as a function
of B at fixed L as it should (the relevant signal size is L).

9.4 State evolution analysis for random i.i.d homogeneous opera-

tors with constant power allocation

As usual, for the state evolution analysis we consider the case of an i.i.d Gausian matrix F,

such that the recursions obtained in sec. 5.3 are valid. Here we consider the matrix to be

homogeneous and a constant power allocation. We will use the state evolution to predict the

results with the Hadamard operator as well, as we have shown in chap. 7 that the analysis

derived in the random i.i.d case is a good predictive tool of the behavior of the AMP decoder

with structured operators, despite not perfect nor rigorous.
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Figure 9.5 – Up : The state evolution prediction (solid lines) of the SER t compared to the actual
one of the algorithm on single instances for snr = 15, different rates and a section size B = 4 (to
be compared to the BP threshold at RBP (snr = 15,B = 4) = 1.55). The matrix is i.i.d Gaussian
and we consider a constant power allocation {cl = 1}L

l . The state evolution is computed by
monte carlo with a sample size of 107 and the signal size for AMP is L = 213. Down : The same
as the upper plot with snr = 15, different rates R (one above and one below RBP ) but with a
larger section size B = 64. The BP threshold is here RBP (snr = 15,B = 64) = 1.47. We consider
different signal sizes L and homogeneous Hadamard-based or purely random i.i.d Gaussian
operators. The state evolution is computed by monte carlo with a sample size of 106 as B is
larger and thus the monte carlo computation requires more time. The finite size curves stop
without reaching a noise floor because the recovery is actually perfect and the final SER = 0
which is due to the finite size effects. The same happens for the theoretical curves that reach
0 due to finite numerical precision. We observe that when the signal size L is big (and thus
that we must use the Hadamard operator), the algorithm behavior follows the theoretical
predictions closely.
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Figure 9.6 – The state evolution prediction of the section error rate SER t (black curves),
compared to the actual one of the AMP decoder for snr = 7/100, a section size B = 64, different
rates R (one above and one below the BP threshold RBP (snr = 7,B = 64) = 1.275,RBP (snr =
100,B = 64) = 1.625), different signal sizes L in the homogeneous Hadamard-based or purely
random i.i.d Gaussian operator case with constant power allocation {cl = 1}L

l . The state
evolution is computed by monte carlo with a sample size of 106.

We define Σ̃t+1(E t ) :=Σt+1(E t )
√

log(B) as this expression will be more convenient. Σt+1(E t )

is given by (5.74) where we use (9.4) to express α in function of the rate. Starting from (5.73),

using (5.75) and the prior (9.8) for sparse superposition codes, we get:

E t+1 = 1

B

∫
Dz

(
[ fa1|1 (Σ̃t+1)2,z)−1]2 + (B −1) fa2|1 ((Σ̃t+1)2,z)2) (9.11)
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where we define:

fai |i (Σ̃2,z) :=
[

1+e−
log(B)

Σ̃2

B−1∑
1≤ j≤B : j 6=i

e

p
log(B)(z j −zi )

Σ̃

]−1

(9.12)

fa j |i (Σ̃2,z) :=
[

1+e
log(B)

Σ̃2 +
p

log(B)(z j −zi )

Σ̃ +
B−2∑

1≤k≤B :k 6=i , j
e

p
log(B)(zk−zi )

Σ̃

]−1

(9.13)

Under the constant power allocation assumption, the quantity fai |i ( fa j |i ) can be interpreted

as the asymptotic AMP posterior probability estimate of the i th component ( j th component)

to be the 1 given that it is indeed the 1 in the signal (given that it is actually the i th component

that is the 1 in the signal). In this approach, there is a one to one correspondance from the

value of the MSE to the SER thanks to the mapping:

SER t+1 =
∫

Dz I
(∃ j ∈ {2, . . . ,B} : fa j |1 ((Σ̃t+1)2,z) > fa1|1 ((Σ̃t+1)2,z)

)
(9.14)

From this equation, we can exactly predict the asymptotic L →∞ evolution in time of the

algorithm, such as in Fig. 9.5 and Fig. 9.6. The state evolution on these plots represent the

iteration of (9.14), (combined with (9.11), (5.74)) for different experimental settings (snr,R,B)

using homogeneous Hadamard-based or random i.i.d Gaussian matrices. (9.14) and (9.11)

are computed at each time step by monte carlo technique. We observe that for the snr =
15/100,B = 64 cases, the experimental and theoretical curves stop at some iteration without

reaching a noise floor. For the experimental curves, this is due to the fact that in order to

observe an SER ∈O(ε), there must be at least L ≈ 1/ε sections which is not the case for signals

of reasonnable sizes, when the asymptotic SER is very small. This finite size effect is actually

in favor of the reconstruction performances. In fact, when the rate is below the BP threshold,

the decoding is usually perfect and is found to reach with high probability SER = 0. The black

asymptotic curves should anyway reach a finite error floor but they do not because it is so

low that the sample size used in the monte carlo computation sould be way too large to deal

with by the same argument. But on Fig. 9.5, for smaller B = 4 the error floor is higher than for

B = 64 and thus we can see it numerically.

Another observation, natural from the definition of the state evolution as an asymptotic

analysis, is that the theoretical and experimental results match better for larger signals. At

rate R > RBP (green or black experimental curves and associated theoretical ones), we see that

the AMP decoder does not reconstruct the signal and converges to an high SER solution well

predicted by the state evolution. On the contrary, below the threshold, the reconstruction

works fine up to an error floor dependent on the parameters (B , snr,R). We also observe as in

chap. 7 that the state evolution predicts well the final performances of AMP with Hadamard-

based operators.
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9.5 State evolution analysis for spatially-coupled i.i.d operators or

with power allocation

Thanks to the spatial-coupling we can asymptotically reach the optimal rate. The total rate is

a function of the rate of the blocks. From (5.114) combined with (9.4) we deduce it:

R = Lc Rr est Rseed

(Lr −1)Rseed +Rr est
−→

Lc ,Lr →∞
Rr est < Ropt (snr,B) (9.15)

where Rr est can be asymptotically as large as the Bayes optimal rate Ropt (snr,B) defined as

the highest rate until which the superposition codes scheme allows to decode, see sec. 5.1.1.

Let us now derive the state evolution recursions in the spatially-coupled operator case. As in

the homogeneous case, defining the rescaled Σ̃t+1
c :=Σt+1

c

√
log(B), from (5.174), (5.175) and

(5.176), we obtain the following state evolution for the MSE Ec inside the block c in the L →∞
limit:

E t+1
c = 1

B

∫
Dz

(
[ fa1|1 ((Σ̃t+1

c )2,z)−1]2 + (B −1) fa2|1 ((Σ̃t+1
c )2,z)2) (9.16)

Σ̃t+1
c

(
{E t

c ′}
Lc

c ′

)
=

√
log(B)

[
B

Lr∑
r

αr Jr c

Lc /snr+B
∑Lc

c ′ Jr c ′E t
c ′

]−1/2

(9.17)

where the fa functions (9.12), (9.13) are defined in the previous section and where the mapping

to the SER t+1
c per block is given by:

SER t+1
c =

∫
Dz I

(∃ j ∈ {2, . . . ,B} : fa j |1 ((Σ̃t+1
c )2,z) > fa1|1 ((Σ̃t+1

c )2,z)
) ∀ c ∈ {1, . . . ,Lc } (9.18)

Thanks to this analysis, we can now predict the asymptotic SER per block in the signal estimate

by the AMP decoder. Fig. 9.7 shows a comparison of the SER per block {SER t
c }Lc

c predicted by

state evolution (black curves) with the actual SER per block of the superposition codes with

the AMP decoder combined with an Hadamard-based spatially-coupled operator on a single

instance. The discrepancies between the theoretical and experimental curves come from

the fact that state evolution is derived for random i.i.d Gaussian matrices, but the final error

using these Hadamard operators is the same as predicted by state evolution as observed in the

snr = 7 case. In the high snr regime, the curves stop for the same reasons as the Fig. 9.6 of the

previous section and it means that the decoding was perfect. As noted in chap. 7, structured

operators converge faster to the predicted final error than purely i.i.d matrices as predicted by

the state evolution.

9.5.1 State evolution for power allocated signals

We now observe that we can trivially obtain the state evolution for any power allocation of the

signal encoded with a random i.i.d Gaussian matrix from the previous analysis, thanks to the

transformation of Fig. 9.8: starting from an homogeneous matrix and a given power allocated
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Figure 9.7 – The state evolution prediction of the section error rate {SER t
c }Lc=4

c for each of the
four induced block of the signal (see Fig. 7.1) as a function of time (black curves), compared
to the actual error of the algorithm for snr = 7/100, different rates R, a section size B =
32, different signal size L values with a spatially-coupled Hadamard-based operator. The
operator is drawn from the ensemble (Lc = 4,Lr = 5, w = 2,

p
J = 0.6,R,βseed = 1.5). The power

allocation is constant. The state evolution is computed by monte carlo with a sample size of
106. The finite size curves at high snr stop without reaching a noise floor because the recovery
is actually perfect due to the finite size effects, the same happens for the theoretical curves due
to finite numerical precision. In the low snr = 7 case, the error floor (different in each block) is
well predicted by state evolution.
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Figure 9.8 – The figure shows how to convert a system with any power allocated signal encoded
through an homogeneous operator with elements of variance 1/L into an equivalent system
with constant power allocation encoded by a structured operator. The values on the matrix
represent the variance of the elements of the matrix (we drop here the rescaling by 1/L), the
values on the signal represent the non zero values of the sections that belong to a given group:
here the signal is decomposed into G = 3 groups, and all the sections inside the first group
have a non zero value equal to a, and so on. The transformation is done by structuring the
operator into block-columns, with as many blocks as different values in the power allocation,
or groups: if a column of the original matrix acts on a component of a section where the non
zero value is u, then this column variance is multiplied by u2 in the new structured operator
(such that the elements of this column are multiplied by u). The different sizes of the matrix
blocks and signal groups are represented.

signal, we convert the system into a structured matrix with a constant power allocated signal.

Suppose the signal is decomposed into G groups, where inside the group g , the power alloca-

tion is the same for all the sections belonging to this group and equals cg . Now one must create

a structured operator starting from the original homogeneous one, decomposing it into blocks

with LB/G columns and multiply all the elements of the block-column g by cg , as shown in

Fig. 9.8. The system with this new operator acting on a constant power allocated signal is

totally equivalent to the original system and we have the state evolution of this new system

from the previous analysis. Using (9.17) in the present setting, one has to be careful with the

value of αr defined as the number of lines over the number of columns of the block-line r

(which is unique). Here there is a unique value that equals M/(N /G) =Gα where α is defined

as the original measurement rate (9.4). Given that, Lc =G we finally obtain:

E t+1
g = 1

B

∫
Dz

(
[ fa1|1 ((Σ̃t+1

g )2,z)−1]2 + (B −1) fa2|1 ((Σ̃t+1
g )2,z)2

)
(9.19)

Σ̃t+1
g

(
{E t

g ′}G
g ′

)
=

√
log(B)

[
B

αc2
g

1/snr+B/G
∑G

g ′ c2
g ′E t

g ′

]−1/2

(9.20)

The square c2
g appears because multiplying the matrix elements by cg multiply their variance

by its square.
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at the optimal threshold snr=30, R=1.775

at the optimal threshold snr=65, R=2.355

at the optimal threshold snr=100, R=2.68

at the BP threshold snr=100, R=1.955

below the BP threshold snr=100, R=1.8

Figure 9.9 – The Bethe free entropy (or potential) Φ(SER) for B = 2, different rates and snr.
The maxima of the curves correspond to the typical SER which are fixed points of the state
evolution equations (9.14) for a given set of parameters (R,B , snr). The global maximum is
the (exponentially) most probable SER solution, i.e. the equilibrium state refered also as
the optimal SER. The curves are obtained by numerical integration of (9.21). The optimal
threshold Ropt (B , snr) is defined as the rate where the high and low error maxima have same
height (i.e. same probability), see pink, blue and red curves. The BP threshold RBP (B , snr) is
the rate at which the metastable state a high error that blocks the convergence of AMP appears,
see green curve. The plot illustrates how the gap at the optimal threshold between the two
maxima increases with the snr. snr = 100 : Here for rates larger than R > 2.68, the optimal SER
jumps from a low value to a large O(1) one (pink curve). This defines the maximum possible
rate (to compare here to C = 3.3291) below which acceptable performance can be obtained
with AMP combined with spatial coupling or non constant power allocation. For R < 2.68, the
SER is much lower (and decay with R). The AMP decoder Fig. 5.5 allows to perform an ascent
of this function. As long as the maximum is unique (i.e. for R < 1.955, see green curve), it will
be able to achieve the predicted optimal performance with no need of spatial coupling or non
constant power allocation in the large size limit, as in the case of the brown curve.

9.6 Replica analysis and phase diagram

Let us now compute the asymptotic L →∞ free entropy by the replica method. This potential

of the SER is derived in the constant power allocation case. We are more interested in this case

as we will show later with Fig. 9.16 that anyway, the most efficient reconstruction scheme is

with constant power allocation combined with spatial coupling. Pluging the prior (9.8) in the
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general free entropy expression under the matching prior condition (5.48), we directly obtain:

ΦB (E) =− log2(B)

2R

(
log(1/snr+BE)+ 1−BE

1/snr+BE

)
+

∫
Dz log

(
e

log(B)

2Σ̃(E)2 +
p

log(B)z1
Σ̃(E) +

B∑
i=2

e
− log(B)

2Σ̃(E)2 +
p

log(B)zi
Σ̃(E)

)
(9.21)

where E is the MSE and Σ̃(E )2 := log(B)Σ(E )2 together with (5.49). Going from this expression

toΦB (SER) is possible thanks to (9.14) at the fixed point.

As discussed in sec. 5.1.1, the SER values associated with the maxima of this potential corre-

spond to fixed points of the state evolution equations (9.14). The information brought by this

analysis that is not explicitly included in the state evolution analysis is the identification of the

phase in which the system is (easy/hard/impossible inference) for a given set of parameters

(R,B , snr). In particular, the hard phase can only be identified knowing where is situated the

global maxima. This infomation cannot be extracted from the state evolution: in the hard

phase, (9.14) will converge to a local maxima that depends on its initialization, but without

telling which of the two is the global one. The state evolution can thus identify the appearance

of the hard phase at the BP transition, when the second fixed point appear but it cannot

identify the optimal transition as it requires to know the relative height of the maxima.

An example of this potential (9.21) in the (B = 2,snr = 100) case for various R is shown on

Fig. 9.9. As discussed in sec. 5.1.1, the AMP algorithm follows a dynamic that can be interpreted

as a gradient ascent of this free entropy, which starts the ascent from an high error state, i.e. a

random guess for the signal estimate. The brown curve thus corresponds to an easy case as the

global maximum is unique and corresponds to a low error state. The green curve corresponds

to the BP threshold, which marks the appearance of the hard inference phase. For higher

rate, the problem is to reach the global maximum despite the high error metastable state: it

is achieved using spatial coupling. The pink curve is the optimal transition which marks the

entrance in the impossible inference phase. Below this rate, the AMP algorithm combined

with spatial coupling or well designed power allocation is theoretically able to decode.

The blue and red curves also correspond to optimal transitions at higher noise levels and

we notice that as the snr decreases the relative height between the maxima decreases and

the basin of attraction of the maxima tends to be more flat. This explains why it is easier

to decode finite size signals closer to the optimal threshold with spatial coupling for larger

snr: as the basin of attraction of the equilibrium has a more pronounced gradient and the

global maximum is higher, the dynamic climbs more easily to the maximum. The solutions

associated to the maxima of this potential are exponentially more probable than the other

ones (the probability of any state is proportional to the exponential of its free entropy times

the system size) but at finite size, the factors gained thanks to an higher maximum can help a

lot the algorithm convergence. For example let us assume that we transmit information at a

rate RBP < R < Ropt which is such that the difference in the free entropy of the equilibrium

and metastable states is∆Φ> 0. Furthemore the system size is L. It implies that the ratio of the
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probability Peq. of the equilibrium state over the metastable state’s one Pmet a. is Peq./Pmet a. ∝
exp(L∆Φ). If the difference ∆Φ→∆Φ/τ is divided by τ> 0 because we increase the rate to get

closer to Ropt or because the snr decreases, the system size must be multiplied by τ as well to

keep this ratio constant, thus this ∆Φ does matter at small finite size.

Furthermore, the SER gap separating the high and low error states decreases as well with the

snr which implies that the error floor of the decoding increases. At some value of snr, there

are no more two maxima for any rate and the transition becomes continuous as we observed

in chap. 6.

9.6.1 Large section limit of the superposition codes by analogy with the random
energy model

In order to get the asymptotic behavior in the section size of this potential, we need to compute

the asymptotic value I := limB→∞ IB of the integral IB that appears in (9.21). We shall drop the

dependency of Σ̃ in E to avoid confusions and compute:

IB :=
∫

Dz log

(
e

log(B)

2Σ̃2 +
p

log(B)z1
Σ̃ +

B∑
i=2

e−
log(B)

2Σ̃2 +
p

log(B)zi
Σ̃

)
︸ ︷︷ ︸

:=KB (z)

(9.22)

= Ez{log(KB (z))} (9.23)

We shall adopt here the vocabulary of statistical mechanics [24]: this is formally a problem

of computing the average of the logarithm of a partition function KB (z) of a system with B

(disordered) states. Indeed, one can re-write (9.23) as:

IB =− log(B)

2Σ̃2
+

∫
Dz log

(
e

log(B)

Σ̃2 +
p

log(B)z1
Σ̃ +

B∑
i=2

e

p
log(B)zi
Σ̃

)
(9.24)

=− log(B)

2Σ̃2
+

∫
Dz log

(
Z1(z1)+Z2

(
{zi }B

i=2

))
(9.25)

where:

Z1(z1) := exp

(
log(B)

Σ̃2
+

√
log(B)z1

Σ̃

)
(9.26)

Z2
(
{zi }B

i=2

)
:=

B∑
i=2

exp

(√
log(B)zi

Σ̃

)
(9.27)

In fact Z2 is formally known as a random energy model in the statistical physics literature

[24, 150], a statistical physics model where i.i.d energy levels are drawn from some given

distribution. This analogy can be further refined by writing the energy as ui =−√
log(B)zi

and by denoting Σ̃ as the temperature. In this case, a standard result [24, 150, 151] is:

• The asymptotic limit for large B of J := logB (Z2) exists, and is concentrated (i.e. it does not
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depend on the disorder z realization).

• It is equal to J =p
2/Σ̃ I

(
Σ̃< 1/

p
2
)+ (

1/(2Σ̃2)+1
)
I
(
Σ̃> 1/

p
2
)
.

We can thus now obtain the value of the integral by comparing Z1 and Z2 and keeping only

the dominant term. First let us consider the case where Σ̃< 1/
p

2 and B is large:

logB (Z1 +Z2) = logB (Z1)+ logB

(
1+ Z2

Z1

)
(9.28)

≈ logB (Z1)+ 1

log(B)
exp

(
− log(B)

Σ̃2
−

√
log(B)z1

Σ̃
+ log(B)

p
2

Σ̃

)
(9.29)

≈ logB (Z1) (9.30)

⇒ lim
B→∞

IB

log(B)
=− 1

2Σ̃2
+ 1

log(B)

∫
Dz

(
log(B)

Σ̃2
+

√
log(B)z1

Σ̃

)
(9.31)

= 1

2Σ̃2
(9.32)

using (9.25) and where logB is the base B logarithm. If, however, Σ̃> 1/
p

2 and B is large, then:

logB (Z1 +Z2) = logB (Z2)+ logB

(
1+ Z1

Z2

)
(9.33)

≈ logB (Z2)+ 1

log(B)
exp

(
log(B)

Σ̃2
+

√
log(B)z1

Σ̃
− log(B)

2Σ̃2
− log(B)

)
(9.34)

≈ logB (Z2) (9.35)

⇒ lim
B→∞

IB

log(B)
=− 1

2Σ̃2
+ 1

2Σ̃2
+1 = 1 (9.36)

This leads to:

lim
B→∞

IB

log(B)
= 1

2Σ̃2
I
(
Σ̃< 1/

p
2
)
+ I

(
Σ̃> 1/

p
2
)

(9.37)

From these results combined with (9.21), we now can give the asymptotic value of the potential:

φ(E) := lim
B→∞

(
ΦB (E)

log(B)

)
(9.38)

=− 1

2R log(2)

(
log(1/snr+BE)+ 1−BE

1/snr+BE

)
+max

(
1,

1

2Σ̃2(E)

)
(9.39)

where (5.49) with (9.4) implies:

Σ̃2(E) = R log(2)(1/snr+BE) (9.40)

We define Ẽ := BE . Let us now look at the extrema of this potential. We see that we have to

distinghish between the high error case (Σ̃> 1/
p

2 so that Ẽ > 1/(2R log(2))−1/snr) and the

low error one (Σ̃< 1/
p

2, so that Ẽ < 1/(2R log(2))−1/snr).
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In the high error case, the derivative ∂Ẽφ(Ẽ) of the potential is zero when:

1

2R log(2)

(
1

1/snr+ Ẽ
− 1/snr+1

(1/snr+ Ẽ)2

)
= 0 (9.41)

which happens when Ẽ = 1. Therefore, if both the condition Ẽ = 1 and Ẽ > 1/(2R log(2))−1/snr

are met, there is a stable extremum of the replica potential at Ẽ = 1. The existence of this

high-error extremum thus requires 1/(2R log(2))−1/snr < 1, and we thus define the critical

rate beyond which the state at Ẽ = 1 is stable:

R∞
BP (snr) := [(1/snr+1)2log(2)]−1 (9.42)

Since we initilize the recursion at Ẽ = 1 when we attempt to reconstruct the signal with AMP,

we see that R∞
BP (snr) is a crucial limit for the reconstruction ability by message-passing.

In the low error case, the derivative of the potential is zero when:

1

2R log(2)

(
1

1/snr+ Ẽ
− 1/snr+1

(1/snr+ Ẽ)2

)
=− 1

2R log(2)

1

(1/snr+ Ẽ)2
(9.43)

which happens when Ẽ = 0. Hence, there is another extremum with zero error. Let us deter-

mine which of these two is dominant. We have:

φ(Ẽ = 0) =− 1

2R log(2)

(
log(1/snr)+ snr

)+ snr

2R log(2)
(9.44)

= log2(snr)

2R
(9.45)

φ(Ẽ = 1) =− log2(1/snr+1)

2R
+1 (9.46)

The perfect reconstruction extremum is dominant as long as:

log2(snr) > 2R − log2(1+1/snr) (9.47)

or equivalently when:

R < 1

2
log2 (1+ snr) =C (9.48)

where we recognize the expression of the Shannon capacity (3.91). As discussed in sec. 5.1.1,

the optimal transition of the code is defined as the rate where the two maxima have same

height, i.e. at R = C : these results are thus confirming that, at large value of B , the correct

Bayes optimal value of the section error rate tends to zero and to a perfect reconstruction, at

least as long as the rate remains below the Shannon capacity after which, of course, this could

not be true anymore. This confirms, using the replica method, the results by [142, 143] that

these codes are capacity achieving.
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9.6.2 Alternative derivation of the large section limit via the replica method

We now re-derive the results of the previous section, that the superposition codes are capacity

achieving, using the replica method to compute I := limB→∞ IB that appears in (9.21). The

computation is performed at fixed Σ̃which plays again the role of a temperature. The replica

method is appropriate because we have to average the logarithm of the partition function

(9.23) over the disorder Ez{log(KB (z))}, here the Gaussian i.i.d vector z. Starting from (9.23),

we can re-write KB as:

KB (z) := exp

(
log(B)

2Σ̃2
+

√
log(B)z1

Σ̃

)
+

B∑
i=2

exp

(
− log(B)

2Σ̃2
+

√
log(B)zi

Σ̃

)
(9.49)

=
B∑
i

exp

(
− 1

Σ̃

(
log(B)

2Σ̃
(1−2δi ,1)−

√
log(B)zi

))
(9.50)

=:
B∑
i

exp

(
−hi (zi )

Σ̃

)
(9.51)

Meanwhile Z given by (5.2) is the full (random) partition function of the overall signal, KB can

be interpreted as the partition function of one single section of size B . An important difference

with the random energy model (9.27) of the previous section is that here there is a favored

section state distinct from the other ones (noted state 1), corresponding to the actual state of

the section in the original signal. It has been treated apart in the previous section but we kept

it here in the "energy states" {hi }B
i . From the statistics of zi we get the one of hi :

zi ∼N (zi |0,1) (9.52)

⇒ hi ∼N

(
hi

∣∣∣∣ (1−2δi ,1) log(B)

2Σ̃
, log(B)

)
(9.53)

The average of KB with respect to z can thus be replaced by the average over h, the vector

of independent energy states (independent because the {zi }B
i are). We use again the replica

trick for computing IB = Eh{log(KB (h))} as B diverges. We thus need the average replicated

partition function as in the section sec. 5.2:

I := lim
B→∞

Eh{logKB (h)} (9.54)

= lim
B→∞

lim
n→0

Eh{K n
B }−1

n
(9.55)

Eh{K n
B } = Eh

{ B ,..,B∑
i1,..,in

exp

(
− 1

Σ̃
(hi1 + . . .+hin )

)}
(9.56)

= Eh

{ B ,..,B∑
i1,..,in

B∏
j

exp

(
−h j

Σ̃

n∑
a
δ j ,ia

)}
(9.57)
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=
B ,..,B∑
i1,..,in

B∏
j
Eh j

{
exp

(
−h j

Σ̃

n∑
a
δ j ,ia

)}
(9.58)

=
B ,..,B∑
i1,..,in

exp

(
log(B)

2Σ̃2

B∑
j

(
n,n∑
a,b
δ j ,iaδ j ,ib − (1−2δ j ,1)

n∑
a
δ j ,ia

))
(9.59)

=
B ,..,B∑
i1,..,in

exp

(
log(B)

2Σ̃2

(
n,n∑
a,b
δia ,ib −

B∑
j

n∑
a
δ j ,ia (1−2δ j ,1)

))
(9.60)

=
B ,..,B∑
i1,..,in

exp

(
log(B)

2Σ̃2

(
n,n∑
a,b
δia ,ib −n +2

n∑
a
δ1,ia

))
(9.61)

We now define new macroscopic order parameters:

qab := δia ,ib ∀ (a,b) (9.62)

ma := δia ,1 ∀ a (9.63)

The first one indicates if two replicas are in the same state or not, the second one if a given

replica is in the favored state 1. As in sec. 5.2, we replace the microscopic sums over the single

replica states by sums over the macroscopic replica order parameters (9.62), (9.63) which

become the new variables. The definitions of these must be fulfilled so the sums are restricted

over the subspace matching the order parameters definitions (9.62), (9.63). In the sec. 5.2, this

condition was enforced by the introduction of Dirac delta functions in the integral through

(5.30), here it is simpler because we are in a discrete case. We deduce from (9.61):

Eh{K n
B } = ∑

q,m
exp

(
log(B)

2Σ̃2

(
n,n∑
a,b

qab +2
n∑
a

ma −n +2Σ̃2sq,m

))
(9.64)

where we have introduced the entropy associated to these new order parameters: sq,m :=
Sq,m/log(B) where Sq,m is the logarithm of the number of microscopic configurations (or

states) of the replicas compatible with q and m definitions at the same time, where q :=[
qab

]n,n
a,b and m := [ma]n

a . We use as before the replica symmetric ansatz where each replica is

considered equivalent:

qab = q + (1−q)δa,b ∀ (a,b) (9.65)

ma = m ∀ a (9.66)

It allows to simplify the average replicated partition function:

Eh{K n
B } = ∑

q,m
exp

(
n log(B)

[
(n −1)q +2m + 2Σ̃2

n sq,m

2Σ̃2

]
︸ ︷︷ ︸

:=Ĩ (q,m)

)
(9.67)

=:
∑
q,m

exp
(
n log(B)Ĩ (q,m)

)
(9.68)
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Looking at (9.62), (9.63), there are a priori four different possible ansatz, corresponding to

four different macroscopic states of the section: (q = m = 0),(q = m = 1),(q = 0,m = 1) and

(q = 1,m = 0) but actually, only three possibilities remain as the state (q = 0,m = 1) has no

meaning: the replicas cannot be all in different states (q = 0) and all in the favored one (m = 1)

at the same time. Thus it remains:

• (q = m = 0) : all the replicas are in different states but none of them are in the favored one 1.

• (q = m = 1) : all the replicas are in the favored state 1.

• (q = 1,m = 0) : all the replicas are in the same state, which is not the favored one.

The last ansatz can be forgotten as the computation shows that it always leads to lower free

entropy than the two other ansatz. This is understandable as there should be a symmetry

among all the "wrong" states (different from 1) as none of them is special with respect to the

other ones, so the replicated system should not choose a particular one spontaneously. It

leaves two ansatz. The previous sum
∑

q,m is performed by the saddle point method as B →∞,

assuming as previously (see sec. 5.2) the commutativity of the limits in (9.55). From (9.55),

the "section free entropy density" I /log(B) associated to each state is thus Ĩ (q∗,m∗) where

(q∗,m∗) is choosen among the two possible ansatz. The integral I is thus:

I = log(B) max
(q∗,m∗)

[
Ĩ (q∗,m∗)

]
(9.69)

Let’s compute the value of Ĩ for the two remaining ansatz as n → 0 in order to find the

maximum:

(q∗ = m∗ = 0) ⇒ s0,0 = log((B −1)n)/ log(B) ≈ n (9.70)

⇒ Ĩ (E |q∗ = m∗ = 0) ≈ 1 (9.71)

(q∗ = m∗ = 1) ⇒ s1,1 = log(1)/log(B) = 0 (9.72)

⇒ Ĩ (E |q∗ = m∗ = 1) = (2Σ̃(E)2)−1 (9.73)

where Σ̃(E)2 is given by (9.40). From these results combined with (9.21), defining Ẽ = BE , the

rescaled potential φ(Ẽ) and the function g (Ẽ) as:

g (Ẽ) :=− 1

2R log(2)

(
log(1/snr+ Ẽ)+ 1− Ẽ

1/snr+ Ẽ

)
(9.74)

φ(Ẽ |q∗,m∗) := lim
B→∞

ΦB (Ẽ |q∗,m∗)

log(B)
(9.75)

= g (Ẽ)+ Ĩ (Ẽ |q∗,m∗) (9.76)
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we get the final potential of the sparse superposition codes in the large section size limit:

φ0(Ẽ) :=φ(Ẽ |q∗ = m∗ = 0) = g (Ẽ)+1 (9.77)

φ1(Ẽ) :=φ(Ẽ |q∗ = m∗ = 1) = g (Ẽ)+ (
2log(2)R(1/snr+ Ẽ)

)−1 (9.78)

φ(Ẽ) = max
(
φ0(Ẽ),φ1(Ẽ)

)
(9.79)

where the actual potential φ(Ẽ) for a given error Ẽ , rate R and snr is the maximum of the two

ansatz-dependent potentials. These two potentials give the statistical weight of two different

regimes (or pure states) [24, 81] that have respectively a probability ∝ exp(L log(B)φ0(Ẽ)) and

∝ exp(L log(B)φ1(Ẽ)).

The belief propagation transition

The BP transition RBP is defined as the rate until which AMP without spatial-coupling or

power allocation is Bayes optimal, see the green curve on Fig. 9.9. It corresponds to the lowest

rate for which there exist two maxima of the Bethe free entropy. So to find it we equate the free

entropies of the two pure states (9.77), (9.78):

φ0(Ẽ) =φ1(Ẽ) (9.80)

⇒ Rc (Ẽ) = [(1/snr+ Ẽ)2log(2)]−1 (9.81)

Rc (Ẽ) is the critical line until which it exists only one maximum and thus one state, or equiva-

lently where appears the second maximum. Above it R > Rc (but before the static transition)

there are two distincts maxima. As in the previous section, a particular role is played by

the value Ẽ = 1 in which AMP is initialized on real reconstructions. So Rc (Ẽ = 1) gives the

asymptotic B →∞ BP transition:

R∞
BP (snr) := Rc (1) = [(1/snr+1)2log(2)]−1 (9.82)

we find back (9.42). Above R > R∞
BP (snr), we are in the hard or impossible phase, below it is

the easy regime. The formula (9.81) can be interpreted the other way around: we consider a

practical situation where the rate is fixed above the critical one R > R∞
BP (at fixed snr) and we

are in the hard phase such that there are two maxima. From (9.81) we can define the critical

Ẽc (R) = max
(
[2R log(2)]−1 −1/snr,0

)
, where the free entropy expression changes for a given

rate:

Ẽ < Ẽc ⇒φ1(Ẽ) >φ0(Ẽ) (9.83)

Ẽ > Ẽc ⇒φ1(Ẽ) <φ0(Ẽ) (9.84)

Thus we can write the potential at fixed rate as:

φ(Ẽ) =φ0(Ẽ)I
(
Ẽ > Ẽc

)+φ1(Ẽ)I
(
Ẽ < Ẽc

)
(9.85)
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From the fixed point equations of the potential:

Ẽ < Ẽc ⇒ ∂φ1(Ẽ)

∂Ẽ
= 0 ⇒ Ẽ = 0 (9.86)

Ẽ > Ẽc ⇒ ∂φ0(Ẽ)

∂Ẽ
= 0 ⇒ Ẽ = 1 (9.87)

we see that in the hard phase, it coexists asymptotically two maxima such that the first

corresponds to a perfect reconstruction, the other to the metastable failure state: we can

identify φ1(Ẽ) as the free entropy corresponding to the perfect reconstruction state, φ0(Ẽ) to

the failure one. But when does the hard phase stop and the impossible one starts, i.e. where is

the optimal transition?

The optimal transition

The Bayes optimal rate is defined as the rate where the two distinct maxima have same height,

which means they have the same statistical weight:

φ(Ẽ = 0) =φ(Ẽ = 1) (9.88)

⇒φ1(Ẽ = 0) =φ0(Ẽ = 1) (9.89)

⇒ log(1/snr) = log(1/snr+1)−2Ropt log(2) (9.90)

⇒ Ropt = 1

2
log2(1+ snr) =C (9.91)

where we recognize the Shannon capacity (3.91). The optimal transition of the superposition

codes scheme is thus asymptotically given by the capacity and between R∞
BP and C is the hard

phase.

9.6.3 Results from the replica analysis

From this analysis, we can extract the phase diagram of the superposition codes scheme.

Fig. 9.10 presents phase diagrams for different snr values. The blue curve is the BP transition

extracted from the potential (9.21) which marks the end of optimality of the AMP decoder

without spatial coupling or proper power allocation, while the red curve is the optimal transi-

tion: the highest rate until decoding is theoretically possible. The black dashed curve is the

asymptotic BP transition (9.42).

A first observation is that the BP transition is converging quite slowly to its asymptotic value

compared to the optimal one that converges faster to the capacity, which is good. We also

note that the section size where start the transitions (and thus marks the appearance of the

hard regime where the AMP decoder without spatial coupling is not Bayes optimal anymore)

gets larger as the snr decreases. When the snr is not too large, we see that the optimal and

BP transitions almost coincide at small B values, such as for B = 16 at snr = 7 and B = 4 for
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Figure 9.10 – All the points are computed from the Bethe free entropy (9.21) where the integral
is computed by monte carlo. These are the phase diagrams of the superposition codes for
different snr, where the x axis is the section size B , the y axis is the distance to the capacity
C in dB. The blue and red curves are respectively the BP and optimal transitions. The black
dashed line is the asymptotic value B →∞ of the BP threshold R∞

BP (snr) (9.42).
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Figure 9.11 – All the blue points are computed by replica method from the potential (9.21)
where the integral is computed by monte carlo. Upper plots : These plots show how fast the
optimal transition Ropt (B |snr) is approaching the capacity. We plot the difference C (snr)−
Ropt (B |snr) as a function of B in double logarithmic scale. The lines are guides for the eyes,
and should not be taken as serious fits. They strongly suggest, however, a power law behavior.
Lower plots : We did the same for RBP (B |snr). We plot the difference RBP (B |snr)−R∞

BP (snr)
as a function of B in double logarithmic scale, where R∞

BP (snr) is the asymptotic BP transition
computed by replica method, see (9.42). In every cases, we observe a behavior quite well
predicted by a power law as well. The lines are again guides for the eyes, and the very low
values of the exponents suggest a very slow logarithmic behavior.

snr = 15. Below this section size value, there are no more sharp phase transitions as only one

maximum exists in the potential (9.21) and the dedoder, even without spatial coupling, is

optimal at any rate: the SER increases continuously with the rate. As the snr increases, the

curves split sooner until they remain different ∀ B such as in the snr = 100 case. See Fig. 9.12

and Fig. 9.13 for more details on the achievable values of the SER.

Fig. 9.11 gives details on the scalings of the convergence of the first order transitions to their

asymptotic values. It seems that the rate of convergence of both transitions can be well

approximated by power laws. On Fig. 9.11 we present the differences between the points of

Fig. 9.10 and their asymptotic B →∞ values which are the capacity C for the optimal transition

(as shown in the two previous sections) and B∞
BP (9.42) for the BP transition. It appears that

the scaling exponents amplitude tend to increase with the snr.

Fig. 9.12 represents how the optimal SER evolves at fixed rate R = 1.3 and snr = 15 as a

function of the section size B (upper plot) and at fixed rate R = 1.3 and B = 2 as a function of

the snr (lower plot). The observations are similar: in both cases, the curves seems to be well
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Figure 9.12 – On these plots we show how the optimal SER changes when B or the snr increase
according to the replica theory (9.21). Both curves are plots at fixed rate R = 1.3 and are in
double logarithmic scale. The red curve is function of B at fixed snr = 15, the blue one at fixed
B = 2 as a function of the snr. The best linear fit is on top of the curves (Cste is a constant).

approximated by power laws with exponents given on the plots. The points are extracted from

the replica potential (9.21).

Fig. 9.13 quantifies the optimal performances asymptotically attainable by the decoder, ob-

tained from the state evolution analysis by initializing the recursion (9.11) at E t=0 = 0 and

using (9.14). We plot the base 10 logarithm of the SER corresponding to the lower SER maxi-

mum of the potential (9.21) as a function of the rate and the section size B (again the state

evolution and replica analyzes are equivalent to determine the fixed points as shown in 5.4). In

high noise regimes, the depicted SER is always reachable by AMP without the need of spatial
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Figure 9.13 – On this plot, we show the logarithm in base 10 of the section error rate cor-
responding to the lowest SER maximum of the replica potential (9.21) in the (R,B) plane
for different snr values. The values are obtained from the state evolution recursion (9.14)
starting from the solution (i.e. with an initial error equal to 0). The recursions (9.11), (9.14)
are computed by monte carlo with a sample size of 5B ×105. The black squares correspond
to points where the computed value is SER = 0 which actually means a value that is lower to
(5×105)−1 with high probability. The solid pink curve on the two lower plots correspond to
the optimal rates Ropt (B , snr) as in Fig. 9.10. In the two upper plots that correspond to high
noise regimes, there is no transition at all (the AMP decoder is thus always Bayes optimal,
at least for these manageable section sizes B) and the optimal SER is a smooth increasing
function of the rate R at fixed B and decreasing function of B at fixed R. The SER values in
the two lower plots corresponding to low noise regimes matche the optimal SER as long as
it is for a rate R < Ropt (B , snr) lower than the optimal one. For higher rates, the maximum of
the potential corresponding to the plotted SER values is not the global maximum and thus
cannot be reached, even with spatial coupling that works asymptotically until the optimal rate.
For B smaller than 4 (resp. 2) on the snr = 7 (resp. snr = 15) plot, there is no sharp transition
and the represented SER value is the optimal one and can be reached by AMP without spatial
coupling, as in the high noise regime.

coupling as there are no sharp transitions. For lower noise regimes, the plotted SER matches

the optimal one as long as R < Ropt (B , snr) where the optimal transitions correspond to the
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solid pink curves. When there is no optimal transition (for a B before that the pink line starts),

the SER is the optimal one and AMP can always reach it. The upper plot of Fig. 9.12 is a cut in

the snr = 15 plot.

9.7 Optimality of the approximate message-passing decoder with a

proper power allocation

In this section, we shall discuss a particular power allocation that allows AMP to be capacity

achieving in the large size L À 1 limit, without the need for spatial coupling. We shall work

again in the large section size B À 1 limit as well.

We first divide the system into G groups, see Fig. 9.8. For our analysis, each of these groups

has to be large enough and must contain many sections, each of these sections being itself

large so that 1 ¿ B ¿ LG , 1 ¿ G ¿ L where LG := L/G is the number of sections per group.

Now, in each of these groups, we use a different power allocation: the non zero values of the

sections inside the group g are all equal to cg . This is precisly the case which we have studied

in Sec. 9.5.1, so we can apply the corresponding state evolution in a straightforward manner.

Our claim is that we can use the following power allocation:

cg = 2−C g
G

Z
∀ g ∈ {1, . . . ,G} (9.92)

where C = 1
2 log2 (1+ snr) is the Shannon capacity. We choose Z such that the power of the

signal equals one:

1

G

G∑
g

c2
g = 1 (9.93)

With this definition, we have:

Z 2 = 2− 2C
G

(
1−2−2C

)
G(1−2− 2C

G )
(9.94)

It will be useful to know the following identity:

1

G

g̃∑
g

c2
g = 1−2− 2C g̃

G

1−2−2C
(9.95)

Now, we want to show that, if we have decoded all the sections before the section g̃ at time t ,

then we will be able to decode section g̃ as well. If we can show this, then starting from g̃ = 1

we will have a succession of decoding until all is decoded, and we would have shown that this

power allocation works. In this situation, using (9.20) and the expression of the rate R (9.3), we
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have for the section g̃ :

(Σ̃t+1
g̃ )2 = R log(2)

[
1/snr+E g̃−1

c2
g̃

]
(9.96)

with:

E g̃ := 1− 1

G

g̃∑
g

c2
g (9.97)

where we have used (9.93) with our assumption of having already decoded until g̃ −1 included

at time t : Ẽ t
g = BE t

g = I(g ≥ g̃ ). (9.97) is the average (rescaled by B) MSE if all has been decoded

until g̃ included: it is given by the initial total rescaled MSE Ẽ t=0 = 1 from which we have to

remove what has been already decoded. We now ask if the group g̃ can be decoded as well.

The evolution of the error in this group is given by (9.19) and we have seen in sec. 9.6.1, that the

condition for a perfect decoding in the large B limit is simply that Σ̃2
g̃ < 1/2 which remains true

per group as the only coupling with the other groups in the state evolution (9.19) is through

the "temperature" Σ̃2
g̃ . We thus need the following to be satisfied (as long as R <C ):

R log(2)

[
1/snr+E g̃−1

c2
g̃

]
< 1

2
(9.98)

If this condition is satisfied, there is no local BP transition to block the AMP reconstruction in

the group g̃ , then the decoder will move to the next group, etc. We thus need this condition

to be correct ∀ g̃ ∈ {1, . . . ,G}. Let us perform the large G limit (remembering that g /G stays

however finite). Using (9.94) we have:

c2
g = 2− 2C g

G

Z 2 (9.99)

= G(1−2− 2C
G )

2− 2C
G

(
1−2−2C

)2− 2C g
G (9.100)

= G(1−2− 2C
G )(

1−2−2C
) 2− 2C (g−1)

G (9.101)

≈G
2− 2C (g−1)

G(
1−2−2C

) (
log(2)2C /G +O(1/G2)

)
(9.102)

≈ 2C log(2) 2−
2C (g−1)

G

1−2−2C
+O(1/G) (9.103)

Now, we note from (3.91) that the snr can be written as snr = 22C−1 = 1−2−2C

2−2C so plugging (9.95)
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inside (9.97) we have:

1/snr+E g̃−1 = 2−2C

1−2−2C
+1− 1−2− 2C (g̃−1)

G

1−2−2C
(9.104)

= 2− 2C (g̃−1)
G

1−2−2C
(9.105)

Therefore to leading order, we have using (9.103) that:

1/snr+E g̃−1

c2
g̃

≈ 1

2C log(2)
(9.106)

so that the condition (9.98) becomes for large G :

R log(2)

2C log(2)
= R

2C
< 1

2
(9.107)

or equivalently, R <C . This shows that, with proper power allocation and as long as R <C ,

a local minimum asymptotically cannot exist in the potential, or equivalently, that the AMP

decoder cannot be stuck in such a spurious minimum: it will reach the solution with perfect

reconstruction SER = 0.

9.8 Numerical experiments for finite size signals

We now present a number of numerical experiments testing the performance and behavior of

the AMP decoder in different practical scenarios with finite size signals. The first experiment

Fig. 9.14 quantifies the influence of the finite size effects over the superposition codes scheme

with spatially-coupled Hadamard-based operators, decoded by AMP. For each plot, we fix

the snr and the alphabet size B and repeat 104 decoding experiments per point with each

time a different signal with constant power allocation and operator drawn from the ensemble

(Lc = 16,Lr = 17, w = 2,
p

J = 0.4,R,βseed = 1.8). The curves present the empirical block error

rate (blue and yellow curves) which is the fraction of instances that have not been perfectly

decoded, i.e. such that the final SER > 0, and the average SER (red and purple curves). This

is done for two different sizes L = 28 and L = 211. When the curves stop, it means that the

empirical block error rate (and thus the section error rate as well) is actually 0. In reality it

should reach a noise floor < 10−4 but does not because of the same reasons explained in

sec. 9.4. The dashed lines are the BP transition RBP (snr,B) and optimal transition Ropt (snr,B)

extracted respectively from the state evolution analysis and potential (9.21) and the solid black

line is the capacity C (snr). Thanks to the fact that at large enough section size B , the gap

between the BP transition and capacity is consequent, it leaves room for the spatially-coupled

AMP decoder to beat the transition, allowing to decode at R > RBP as in LDPC codes. For small

section size B , the gap is too small to get real improvement over the full operators. We also

note the previsible fact that as the signal size L increases, the results are improving: one can

decode closer to the asymptotic transitions and reach a lower error floor. For B = 256, the
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Figure 9.14 – On this plot, we show the empirical block error rate and average section error
rate of the superposition codes using the AMP decoder combined with spatially-coupled
Hadamard-based operators for two different snr, signal sizes L and section sizes B . The block
error rate is the fraction of the 104 random instances we ran for each point that have not
been perfectly reconstructed, i.e. in these instances at least one section has not been well
recontructed and the final SER > 0. The SER has been averaged over the 104 random instances.
The convergence criterion is that the mean change in the variables estimates between two
consecutive iterations δ< 10−8 and the maximum number of iterations is tmax = 3000. The
upper plots are for snr = 100, the lower for snr = 15 (notice the different x axes). The first
dashed black line is the BP transition obtained by state evolution analysis, the second one
is the optimal transition obtained by the replica method from the Bethe free entropy (9.21)
and the solid black line is the capacity. In the (snr = 100,B = 256) case, the optimal transition
is so close to the capacity that we plot a single line. For such sizes, the block error rate is 0
for rates lower than the lowest represented one. The spatially-coupled operators used for the
experiments are drawn from the ensemble (Lc = 16,Lr = 17, w = 2,

p
J = 0.4,R,βseed = 1.8).

sharp phase transition between the phases where decoding is possible and impossible by AMP

with spatial coupling is clear and gets sharper as L increases.

The next experiment Fig. 9.15 is the phase diagram for superposition codes at fixed snr = 15
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like on Fig. 9.10 but where we added on top finite size results. The asymptotic rates that

can be reached are shown as a function of B (blue line for the BP transition, red one for the

optimal rate). The solid black line is the capacity. Comparing the black and yellow curves, it is

clear that even without spatial coupling or power allocation, AMP outperforms the iterative

successive decoder of [142] for practical B values. With the Hadamard-based spatially-coupled

AMP algorithm, this is true for any B and is even more pronounced (brown curve). The green

(pink) curve shows that the homogeneous (spatially-coupled) Hadamard-based operator has

very good performances for reasonably large signals, corresponding here to a blocklength

M < 64000 (the blocklength is the size of the transmitted codeword ỹ).

Finally, the last experiment Fig. 9.16 is a comparison of the efficiency of the AMP decoder com-

bined with spatial coupling or an optimized power allocation coming from [148]. We repeated

their experiments and also compared the results to a spatial coupling strategy. Comparing

the results with Hadamard-based operators, given by the red and yellow curves for power

allocation and spatial coupling respectively, it is clear that spatial coupling (despite being not

optimized at each rate as it is done for the power allocation) greatly outperforms an optimized

power allocation scheme.

In addition, we see that our red curve corresponding to the optimized power allocation

homogeneously outperforms the results of [148] with exactly the same parameters, given by

the blue curve. As we have numerically shown that Hadamard-based operators gets same

final performances as random ones as used in [148] (see chap. 7 and Fig. 9.4), the difference in

performances must come from the AMP implementation: in our decoder that we denote by

on-line decoder, there is no need of pre-processing computations but in the decoder of [148]

denoted by off-line, quantities need to be computed in advance.

The advantage of spatial coupling over power allocation is independent of the decoder and

the fact that we use Hadamard-based operators, as it outperforms the red curve as well which

is also obtained with our on-line decoder and Hadamard-based operators. This is true at any

rate except at very high values where spatial coupling does not decode at all, meanwhile the

very first components of the signal are found by power allocation strategy as their power is

very large. But it is not a really useful regime as only a small part of the signal is decoded

anyway. The green points show that a mixed strategy of spatial coupling with optimized power

allocation does not perform well compared to individual strategies. This is easily understood

from the Fig. 9.8: a power allocation modifies the spatial coupling and worsen its original

design. In addition we notice that at low rates, a power allocation strategy performs worst

than constant power allocation as the very last components with very low power are rarely

decoded.

9.9 Concluding remarks

We have fully derived and studied the approximate message-passing decoder, combined with

spatial coupling or power allocation, for the sparse superposition error correction scheme
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Figure 9.15 – Phase diagram and experimental results for superposition codes at finite size
L for snr = 15 compared to the asymptotic results. The solid black line is the capacity which
bounds the performance of any reconstruction algorithm for this snr, the blue line is the
BP transition RBP (snr = 15,B) obtained by state evolution analysis and the red line is the
Bayesian optimal transition Ropt (snr = 15,B) obtained by from the potential (9.21). The yellow,
black and brown curves are results of the following experiment (exp 1): decode 104 random
instances and identify the empirical transition curve between a phase where the empirical
probability P

(
SER > 10−1

)< 10−3 (below the line) from a phase where P
(
SER > 10−1

)≥ 10−3

(more than 9 instances have failed over the 104 ones). The green and pink curves are the
result of the second protocol (exp 2) which is a relaxed version of exp 1 with 102 random
instances and P

(
SER > 10−1

)< 10−1 below the line, P
(
SER > 10−1

)≥ 10−1 above. Note that
in our experiments SER < 10−1 essentially means SER = 0 at these sizes. The yellow curve
compares our results with the iterative successive decoder (black curve) of [142,143] where the
number of sections L = 100. Note that these data, taken from [142, 143], have been generated
with an exponential power allocation rather than the constant one we used. Compared with
the yellow curve (AMP with the same value of L) the better quality of AMP reconstruction
is clear. The green and pink curves are here to show the efficiency of the Hadamard-based
operators with AMP with (pink curve) or without (green curve) spatial coupling. For the
experimental results, the maximum number of iterations of the algorithm is arbitrarily fixed to
tmax = 500. The parameters used for the spatially-coupled operators are (Lr = 16,Lc = 17, w =
2,
p

J = 0.3,R,βseed = 1.2).
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over the additive white Gaussian noise channel. Links have been established between the

present problem and compressed sensing with structured sparsity.

On the theoretical side, we have computed the potential of the scheme thanks to the heuristic

replica method and have shown that the scheme is capacity achieving in a proper limit. The

analysis shows that there exist a sharp phase transition blocking the decoding by message-

passing before the capacity but that the optimal Bayesian decoder obtained by combining

message-passing to spatial coupling or power allocation can reach the capacity as the section

size of the signal increases. We have also derived the state evolution recursions associated

to the message-passing decoder, with or without spatial coupling and power allocation. The

optimal performances have been studied and it appeared that the error decrease and the rates

of convergence of the various transitions to their asymptotic values follow power laws.

On the more practical and experimental side, we have presented an efficient and capacity

achieving solver based on spatially-coupled fast Hadamard-based operators. It allows to

deal with very large instances and performs as well as random coding operators. Intensive

numerical experiments have shown that a well designed spatial coupling performs way better

than an optimized power allocation of the signal, both in terms of reconstruction error and

robustness to noise. Finite size performances of the decoder under spatial coupling have been

studied and it appeared that even for small signals, spatial coupling allows to obtain very good

perfomances. In addition, we have shown that the message-passing decoder without spatial

coupling beats the iterative successive decoder of Barron and Joseph for any manageable size

and that its performances with spatial coupling are way better for any section size.

The scheme should be now compared in a more systematic way to other state-of-the-art

error correction schemes over the additive white Gaussian noise channel. On the application

side, from the structure of the reconstructed signal itself in superpostion codes, we can also

interpret the problem as a structured group testing problem where one is looking for the only

individual that has some property (for example infected) in each group, the sections of the

signal.
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Figure 9.16 – The average section error rate SER in logarithmic scale as a function of the
rate R for different settings, all at fixed (snr = 15,B = 512,L = 1024). The black dashed curve
identifies the BP transition, the highest rate until which AMP can asymptotically perform
well without spatial coupling or non constant power allocation, the black solid line is the
Shannon capacity. Blue curve : It corresponds to the results of Fig. 3 of [148]: the points are
averaged over 103 instances of random experiments using i.i.d Gaussian matrices and an
optimized power allocation scheme where the parameters defining the power allocation are
optimized for each rates. The values of the parameters and the associated power allocation
scheme can be found in [148]. The denomination off-line AMP refers to the AMP decoder
update rules of [148] that are different than ours and require an off-line pre-processing part as
opposed to our procedure where all the quantities are computed on-line without any need of
pre-processing. Red curve : We reproduced exactly the same experiment (with same power
allocation scheme and parameters) as for the blue curve with two important differences:
i ) we used our on-line AMP decoder instead of their off-line implementation and i i ) we
used an Hadamard-based homogeneous operator instead of a random i.i.d Gaussian one.
In addition, we runned 104 instances instead of 103 as we obtained an average SER equals
to 0 for the two first points. Purple curve : This experiment with 104 instances per point is
with an Hadamard-based homogeneous operator with on-line AMP decoding of constant
power allocated signals. As it should, the decoder does not work anymore for R > RBP . Yellow
curve : The points of this experiment have been averaged over 104 instances. In this setting,
we used our on-line AMP decoder and generated the signals with constant power allocation.
We replaced the homogeneous operator by a spatially-coupled Hadamard-based operator,
described in Fig. 7.1. The parameters defining the ensemble from which the operator is
randomly generated are fixed once for all for the all experimental curve, as oposed to the
power allocation curves where parameters have been optimized for each point. The ensemble
is here given by (Lc = 16,Lr = 17, w = 2,

p
J = 0.4,R,βseed = 1.4). Green crosses : These points

have been averaged over 104 instances. We used the same spatially-coupled Hadamard-based
operator ensemble as for the yellow curve for decoding power allocated signals with same
power allocation scheme as the blue and red curves. When the purple and yellow curves fall, it
means that the points values are 0. The codeword size for all these curves is between 5×103 to
9×103. 237





10 Robust error correction for real-
valued signals via message-passing
decoding and spatial coupling

In the previous chapter we studied error correction over the additive white Gaussian noise

channel. Some sparse discrete signal was encoded using a linear transform to get a real

codeword sent through the channel. But let us imagine now that the noisy channel is even

less reliable than the AWGN one as it adds gross Gaussian distributed errors in addition of the

background AWGN. Is it possible anyway to send information reliably through such channel?

The real transmitted signal in this new model can be interpreted as the codeword of another

coding scheme for the AWGN. So if we manage to correct these gross errors, we come back to

the original AWGN channel error correction problem and sparse superposition codes (or any

other scheme for the AWGN) can be used afterwards.

As for the sparse superposition codes scheme, we will use the approximate message-passing

algorithm as an efficient decoder. We will show that the error correction and its robustness

towards noise can be enhanced considerably thanks to spatially-coupled coding matrices. We

discuss the performances in the large signal limit using previous results on state evolution, as

well as for finite size signals through numerical simulations. Even for relatively small sizes, the

approach proposed here outperforms convex-relaxation-based decoders.

10.1 Introduction

Although information is discrete in the classical coding theory, there are situations of interest

where one should consider real-valued signals, such as scrambling of discrete time analog

signals for privacy [152], network [153, 154] or jointed source and channel coding [155], or in

the impulse noise cancellation in orthogonal frequency division multiplexing systems [156].

We consider here a real channel model which adds gross errors on a fraction of elements and

a small noise on all of them. The real signal could also be interpreted as the codeword of a

previous error correction scheme, and the full error correction becomes the concatenation of

two distinct schemes: the first for the background noise, on top of which we use the present
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scheme to correct the gross errors.

To perform error correction for such real signals, a compressed sensing based scheme has

been proposed by Donoho and Huo [157] and Candes and Tao [158]. Here we reconsider

this problem taking full advantage of the approximate message-passing decoder and spatial

coupling coding design.

The problem is easily stated. One is given a real-valued signal s, and a channel that adds gross

errors to a fraction of elements. Is there a way to encode the signal such that these errors can

be corrected? Can this approach still be used when the channel is in addition adding a small

AWGN to all elements (a situation arguably much closer to some real channels [157, 159, 160])?

The method proposed in [157–159] is to first multiply the signal s by a random matrix in order

to create a codeword of larger dimension, and then to use the classical compressed sensing

approach, based on convex-relaxation decoding, in order to correct the errors of transmission.

In the present chapter, we replace the convex-relaxation decoding by the AMP decoder that

uses the available prior information about the error statistical properties [34, 90] as opposed

to convex optimization based solvers, see sec. 3.4.3. This provides a significant improvement

in performances. Then we consider an approximately sparse channel where, in addition to

the gross errors on a fraction of elements, there is a small AWGN over all components. We

will show that the performances of the AMP decoder are stable under this additional noise, as

already discussed in chap. 6. Finally we will use spatially-coupled measurement matrices in

the decoding, which allow to further enhance the possibility for error correction (and up to its

information theoretical limit in the case of strictly sparse noise).

10.2 Compressed sensing based error correction

Consider a real-valued vector of information s ∈RN , encode this vector by a full-rank real M×N

matrix A, with γ := M/N > 1 being the encoding rate (the redundancy or "over-sampling"

introduced in the code), so that the codeword is y = As ∈RM . The aim is to recover s lowering

as much as possible the encoding rate. Since A is full rank, one can recover the original signal

s from y multiplying it by the pseudo-inverse of A. The codeword is then sent through a noisy

channel and gives rise to the corrupted codeword ỹ = y+e where e is i.i.d with a distribution:

P (e) =
M∏
i

[
ρN (ei |0,1+ε)+ (1−ρ)N (ei |0,ε)

]
(10.1)

where 0 < ρ < 1. So the noise distribution is of the approximate sparsity form studied in chap. 6.

We thus have a fraction ρ of elements with gross (variance 1+ε) errors, the rest having small

(variance ε) amplitudes. One then considers a full rank "parity-check"-like matrix F such

that FA = 0. We construct such a pair of matrices by first choosing a R ×M matrix F with i.i.d

Gaussian distributed elements of zero mean and variance 1/M (or variance specified by the

seeding matrix, see Fig. 5.4), the kernel of F is then the range of the encoding matrix A. Note
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that [158, 159] take A as the random matrix, but here we choose the opposite in order to be

able to implement the spatially-coupled decoding. One must have R ≤ M −N for the couple

(F,A) to exist, and in order to minimize the encoding rate γ, we take from now on R := M −N .

The application of F to the corrupted codeword ỹ results in the real-valued vector h given by:

h = F(y+e) (10.2)

= F(As+e) (10.3)

= Fe (10.4)

where h has dimension R and e is an approximately sparse vector of dimension M . This is a

compressed sensing problem (3.18) similar to what have been studied in chap. 6: reconstruct

the approximately sparse M-d error vector e given R of its linear projections (measurements)

h. In the context of compressed sensing F is the measurement matrix.

Let us first review the possibility of this error-correction scheme when the error e is exactly

sparse, i.e. ε = 0. Using an intractable `0 minimization, the gross error e in (10.4) can be

found exactly as long as R = M −N > Mρ. So error correction in real-valued signals corrupted

by strictly sparse gross noise is possible (but hard, see sec. 5.1.1) for encoding rates γ >
γopt = 1/(1−ρ). Popular tractable `1-minimization, as used in [158, 159], recovers the error

e exactly when M −N ≥αDT M , where αDT is the Donoho-Tanner measurement rate [161],

see sec. 5.1.1, or equivalently when the encoding rate is larger than γ ≥ γDT = 1/(1−αDT ).

These two transitions are depicted in Fig. 10.1 and one can see that γDT is considerably larger

than γopt . A first step to improvement is to decode with an approximate message-passing

approach.

10.2.1 Performance of the approximate message-passing decoder

As we fall exactly under the setting studied in the chap. 6, the posterior estimates of the noise

components are directly given by the AMP decoder Fig. 5.5 with the operators definitions

(5.116), (5.117), (5.118), (5.119) together with the denoisers (6.4), (6.5) where their parameters

are given in the present case by:

w1 = ρ (10.5)

σ2
1 = 1+ε (10.6)

w2 = 1−ρ (10.7)

σ2
2 = ε (10.8)

When parameters ρ,ε,γ are fixed whereas M →∞ and F is an homogeneous random i.i.d

matrix, the evolution of the AMP algorithm can be described exactly using the state evolution

given by (6.12) with initialization E t=0 = VarP0 (ei ) = ρ+ε.
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Figure 10.1 – Phase diagram showing the encoding rate γ= M/N necessary to perform error
correction over a channel with noise described by (10.1), plotted as a function of the noise
sparsity ρ, zoom in the inset. The black (top) curve γDT depicts the limit of performance of
the `1-minimization approach for ε= 0, i.e. when the noise is strictly sparse. The blue (2nd
from top) curve shows the limit of performance of the Bayesian approximate message-passing
approach for ε = 0. Note that up to about ε. 10−5 this curve does not change visibly, see
Fig. 6.5. The green (bottom) curve, given by γopt = 1/(1−ρ), depicts the lowest possible
encoding rate for which exact decoding is possible for ε = 0. Above the red (3rd from top)
line, error correction with MSE comparable to ε = 10−6 is possible with the Bayes optimal
estimation of the error vector. These two rates γopt can be reached in the limit of large signal
size using the spatially-coupled Bayesian AMP approach.
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10.3. Numerical tests and finite size study

State evolution for homogeneous matrices

The state evolution analysis of the Bayesian AMP for Gauss-Bernoulli noise e (that is, with

ε= 0) has been considered in great details in [34, 35]. In that case AMP reconstructs perfectly

the solution in a region larger than the `1-minimization and up to the spinodal transition

αBP , see sec. 5.1.1. In the notation of the present problem, this leads exact decoding for

considerably lower encoding rates: the resulting γBP = 1/(1−αBP ) is shown in blue in Fig. 10.1

(where it is denoted γAMP ). The advantage with respect to the `1-minimization decoding is

clear. For a fraction of ρ = 0.1 of gross elements, for instance, the improvement goes from a

necessary coding rate γDT ≈ 1.490 for `1-minimization based decoders to γBP ≈ 1.262 with

AMP decoding with homogeneous matrices.

As already discussed in sec. 3.4.3, nevertheless, the `1 performance is independent of the

distribution of the gross error, whereas the Bayesian AMP uses it. The properties of the channel

are, however, often well known, in which case the improvement depicted if Fig. 10.1 is indeed

achievable.

To assess how robust are these results towards approximately sparse noisy channels (nonzero

value of ε in (10.1)) we use the state evolution analysis that was performed in chap. 6. It was

shown that for about ε. 10−5 and α>αBP the AMP algorithm leads to reconstruction with

MSE comparable to ε, see Fig. 6.4. This shows that the AMP approach is actually very robust

to such noise.

State evolution for spatially-coupled matrices

Despite the advantage of the AMP-based decoding over the `1-minimization, it is still not

asymptotically optimal since γBP > γopt , and one ideally aims to perform error correction with

smallest possible encoding rates. In order to do so, we use a spatially-coupled measurement

matrix F. In the present framework of error correction of real-valued signals, the spatial

coupling can be implemented by first constructing the matrix F of the form Fig. 5.4, then

determining the encoding matrix A as the null space of the matrix F.

The state evolution for these spatially-coupled matrices is given by (6.19), (6.20). The results

are shown again in Fig. 10.1 in green (lower-most) curve for ε= 0 and in red (3rd from top)

curve for ε= 10−6. The conclusion is that with a properly spatially-coupled matrix F, one can

perform error correction using AMP down to these very low encoding rates.

10.3 Numerical tests and finite size study

The asymptotic guarantees given in the last sections are encouraging, but evaluating analyti-

cally finite M corrections is intrinsically more difficult and hence we withdraw to numerical

verifications of the achievable encoding rates for sizes relevant for practical applications.
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Figure 10.2 – Robustness to noise of the error correction of real signals of size N = 256. We
compare the performances of the AMP-based and `1 decoders, using ε= 10−6 and homoge-
neous Gaussian i.i.d matrices F. The figure shows the probability density (estimated over 500
instances) of the robustness ratio (10.9), called ρ̂i deal in [159] at different values of the encod-
ing rate γ and gross noise sparsity ρ. For coding rate γ= 2 and gross noise sparsity ρ = 0.1,
both methods (AMP in red and `1 in black) are giving values close to one. However AMP is
better: on average it gives 1.12 versus 1.36 for `1, which empirical distribution has larger tails
than the one of AMP. Furthermore, AMP still performs very well when the fraction of gross
errors is doubled (blue curve, with ρ = 0.2) or when the coding rate γ is lower (green curve,
with γ= 1.5). In both cases, the `1-based reconstruction gives poor results, an average value
ρ̂i deal = 37.1 for (ρ = 0.2,γ = 2), versus 1.30 for AMP, and ρ̂i deal = 18.3 for (ρ = 0.1,γ = 1.5)
versus 1.20 for AMP.

For numerical verifications, we use a randomly generated N -d Gaussian signal s with zero

mean and unit variance (the algorithm is not using this information) and a channel noise

distributed according to (10.1), information that we know and use in the algorithm. We use

the Bayesian AMP algorithm to estimate the error ê. As already discussed, for exactly sparse

channel ε= 0, the exact reconstruction of e is possible and hence s can be recovered exactly.

For an approximately sparse channel with ε > 0, we use the AMP estimate of the error ê to

compute the estimate of Ax̂ and finally use the pseudoinverse of A to estimate the signal x̂. We

compare to the `1 decoding approach (including the performances-improving reprojection

step) as developed in [158, 159].

The data for N = 256 are shown in Fig. 10.2 where the performance of the AMP decoding is

compared to the `1-based decoding of [159]. Following [159] we introduce an estimator of the
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10.4. Discussion

robustness to noise called ρ̂i deal as the ratio of the MSE of the reconstructed signal x̂ with the

MSE of the "ideal" reconstruction x̂i deal , where the pseudoinverse of A is applied to y that

was corrupted only by the small AWGN without gross errors at all:

ρ̂i deal := ||x̂−s||2
||x̂i deal −s||2

(10.9)

Fig. 10.2 depicts the histogram of ρ̂i deal over 500 random instances of the problem. We find

that in all the cases we have tried with AMP (which were all in the favorable region of the

asymptotic phase diagram, the easy phase above the BP transition), the robustness estimator

ρ̂i deal is very close to unity, even at these relatively small sizes. Moreover the robustness

estimator of AMP was always on average closer to unity than the one based on `1 estimation

and the distribution more peaked, thus demonstrating the advantage of the Bayesian AMP

reconstruction in terms of performance, and noise robustness. Another important point is

that the probability of an unsuccessful reconstruction is decaying exponentially fast when the

system size increases. It is also decaying faster as γ increases (see Fig. 10.3, inset).

We also applied spatial coupling by choosing the matrix F as described in Fig. 5.4 drawn from

the ensemble (Lc = Lr = 10, w = 3,
p

J = p
0.2, αseed = 0.22) and varying αr est . While such

parameters are far from the limit L →∞, w →∞, w/L → 0 in which the optimal performance

is guaranteed, we still obtain a considerable improvement in the achievable encoding rate,

as shown in Fig. 10.3. In Fig. 10.4 we give a more visual illustration of the performance of the

spatially-coupled AMP decoder for N = 4096. For gross error sparsity ρ = 0.1 and small error

variance ε= 10−6 we were able to perform reliable transmission at coding rate γ= 1.256. This

has to be compared with the original approach of [159] which only allows, even for an infinite

size system and in absence of small noise, an asymptotic γDT (ρ = 0.1) ≈ 1.5.

10.4 Discussion

We have studied an error-correction scheme based on AMP for real channels that corrupt

a fraction of the codeword by gross errors. It appeared that this scheme is highly robust to

an additional AWGN. Spatial coupling allows to reach close to optimal results. Nevertheless,

an important question remains: how to properly optimize the spatial coupling on finite size

systems? Furthermore, the present scheme can be combined with the structured operators

developed in chap. 7 in order to work with very large signals. It would be also interesting

to study the combined use of the present strategy with sparse superposition codes for joint

source-channel coding problems.
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Figure 10.3 – Success rates of the decoding over 500 instances for different signal sizes N
with noise parameters ρ = 0.1, ε = 10−6, both with spatially-coupled matrices F (SC) and
homogeneous random Gaussian i.i.d ones, as a function of the coding rate γ. The vertical lines
represent the limiting asymptotic coding rate for AMP with homogeneous (γAMP ) and seeding
matrices (γopt ) respectively. The maximum number of iterations in these simulations is set to
1000. An instance is considered successful if the final mean square error of the reconstructed
signal is less than 10−5. The inner plot shows the empirical probability of failure over these
instances for three different values of encoding rate γ. It decays exponentially with the signal
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ŷ = ỹ � ê
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Figure 10.4 – Illustration of the error correction scheme with the spatially-coupled AMP
approach and the `1-based method of [159], applied to the benchmark Lena picture. The
original 256×256 image is decomposed in patches of size N = 642. The noisy channel is given
by (10.1) using ρ = 0.1, ε= 10−6 and the coding rate is γ= 1.256 (to be compared with γopt (ρ =
0.1,ε = 10−6) = 1.184) is used together with a spatially-coupled matrix F with parameters
(Lc = Lr = 10, w = 3,

p
J =p

0.2, αseed = 0.22, αr est = 0.1830). While error correction is close
to perfect with AMP, the results are as poor as no error correction at all with an `1 convex
optimization solver.
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