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Nowadays, systems biology are facing the challenges of analysing the huge amount of biological data and large-scale metabolic networks. Although several methods have been developed in recent years to solve this problem, it is existing hardness in studying these data and interpreting the obtained results comprehensively. This thesis focuses on analysis of structural properties, computation of elementary flux modes and determination of minimal cut sets of the heterotrophic plant cellmetabolic network. In our research, we have collaborated with biologists to reconstruct a mid-size metabolic network of this heterotrophic plant cell. This network contains about 90 nodes and 150 edges. First step, we have done the analysis of structural properties by using graph theory measures, with the aim of finding its owned organisation. The central points or hub reactions found in this step do not explain clearly the network structure. The small-world or scale-free attributes have been investigated, but they do not give more useful information. In the second step, one of the promising analysis methods, named elementary flux modes, gives a large number of solutions, around hundreds of thousands of feasible metabolic pathways that is difficult to handle them manually. In the third step, minimal cut sets computation, a dual approach of elementary flux modes, has been used to enumerate all minimal and unique sets of reactions stopping the feasible pathways found in the previous step. The number of minimal cut sets has a decreasing trend in large-scale networks in the case of growing the network size. We have also combined elementary flux modes analysis and minimal cut sets computation to find the relationship among the two sets of results. The findings reveal the importance of minimal cut sets in use of seeking the hierarchical structure of this network through elementary flux modes. We have set up the circumstance that what will be happened if glucose entry is absent. Bi analysis of small minimal cut sets we have been able to found set of reactions which has to be present to produce the different sugars or metabolites of interest in absence of glucose entry. Minimal cut sets of size 2 have been used to identify 8 reactions which play the role of the skeleton/core of our network. In addition to these first results, by using minimal cut sets of size 3, we have pointed out five reactions as the starting point of creating a new branch in creation of feasible pathways. These 13 reactions create a hierarchical classification of elementary flux modes set. It helps us understanding more clearly the production of metabolites of interest inside the plant cell metabolism.
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Introduction n réseu métolique est onstitué d9un ensemle de rétions @équtionsA qui dérivent une suite de trnsformtions iohimiquesF tusque très réemmentD l9éhelle des réseux étudiés se situit u niveu d9une voie métoliqueF fien que ertines voies puissent être reltivement omplexesD de l9ordre d9une dizine de rétions impliquéesD le risonnement onduit pour leur nlyseD se sit sur des lgorithmes supposnt un omportement linéaireD 9est à dire que les yles étient éliminés et que lorsque deux voiesD deux rnhesD étient possilesD hune étit nlysée séprémentF hès que les iologistes ont désiré réliser es nlyses à l9éhelle d9un orgnisme @ou d9un orgnelleA il est devenu indispensle de repenser les méthodes et plus enore les outils pour onduire es nlysesF in e'et e hngement d9éhelle provoque un hngement drstique du niveu de omplexité du réseu étudié et ps seulement un roissement quntittif du nomre de rétions à nlyserF n réseuD quel qu9en soit s nture E réseu soilD routierD grille de proesseurD proessus industrielsD etD peutEêtre modélisé pr un grpheD orienté ou nonF ves outils mthémtiques ou informtiques dédiés ux grphes sont don utilisles pour modéliser et nlyser les réseux iologiquesF hns ette thèseD nous dérirons dns un premier temps les spéi(ités des réseux métoliques et le type de grphe déqut à leur modélistionF uis nous étudierons les di'érentes formlisE tions des grphes d9intertions et nous montrerons que l méthode des modes élémentires de )ux est un outil puissnt pour nlyser es grphes à l9éhelle des systèmesF xous orderons églement les ensemles de oupes minimlesD outils omplémentires ux modes élémentires de )uxF v dernière prtie de ette thèse ser onsrée à une extension de ette méthode que nous proposonsF gette extension nous permet de dé(nir des modes élémentires de métolitesF outes les méthodes ont été utilisées sur plusieurs réseux métoliquesD 3 réseux qui modélisent le méE tolisme mitonhondril dns di'érents tissus X musleD foie et levureD et un réseu qui modélise le métolisme entrl roné des plntesF our et exempleD nous délinerons plusieurs situtions suivnt les di'érentes produtions de sure ou d9ides minées qui ont été étudiéesF Description du graphe d'interactions rditionnellementD l9nlyse d9un réseu métolique onsiste à réunir un ensemle de rétions de l forme X Reactioni : substrat1 + substrat2 = produit1 + produit2 gette rétion dérit l trnsformtion iohimique des deux métolites substrat1 et substrat2 en deux utres métolites produit1 et produit2F yn peut ssoier un nom à ette rétionD l desription du réseu ser don une liste de rétions similires à elle iEdessousF xom étion ustrts roduits qluokinse X qluose C e a qluoseET C eh ssomerse X qluoseET a prutoseET prutokinse X prutoseET C e a prutoseETihosphte C eh uisque l9ensemle des rétions à l9éhelle d9un orgnisme peut être très grndD on déompose et ensemle en unité fontionnelle ppelée voie métaboliqueF gette déompositionD prfois riE trireD fit ppel u onept de fontion iologiqueF our simpli(erD on peut dé(nir une fontion iologique omme un ensemle ordonné de rétions onournt à un même ojetifF r exemple l prodution de sure @gluoseA pour l glycolyseF Réseau et graphe : v9outil nturel en informtique pour représenter des intertions entre di'érents éléments est le grpheF n grphe est dé(ni pr un ensemle (ni de sommets ou noeuds V @ou vertiesA et un ensemle E d9rêtes @ou edgesA ve E ⊆ V xV F ves rêtes représentent les I reltions entre les sommets Y les rêtes et les sommets peuvent être étiquetésF ves rêtes peuvent églement être vluéesD on prler lors de poidsF n grphe peut être orienté ou non et supporter plusieurs types de sommetsF v question de représenter un réseu iologique pr un grphe pose l question du hoix des entités iologiques qui seront ssoiées ux sommets et ux rêtesF hns le dre du métolismeD il existe plusieurs possiilitésF ves sommets peuvent être les rétionsD on prler lors de grphes de rétionsD ou ien les métolitesD nommé dns e s grphes de métolites ID 9est l représenttion lssique que l9on peut trouver dns l littérture en iologieF yn peut ussi réer un grphe ppelé iEprtie ve deux types de sommetsD les métolites et les rétionsF vorsque les sommets représentent uniquement des métolitesD les rétions sont positionées sur les rêtesD 9est l représenttion hoisie dns l (gure IF gomme on peut le voir dns ette (gureD dès que l rétion plus d9un sustrt et un produitD une sitution très fréquenteD le grphe généré est ppelé hypergrapheF i ette struture est isément ompréhensile visuellementD son tritement pr des méthodes lgorithmiques de l théorie des grphes est plus omplexeD ussi on trduir le plus souvent un hypergraphe pr un grphe iEprtieD expliitnt l9ssoition de plusieurs sustrts dns une rétion ou l génértion de plusieurs produitsF g9est le hoix qui été fit pr les di'érents projets interntionux de représenttion de onnisE snes sur les réseux métoliques omme uiqq @uyoto inylopedi of qenes nd qenomesA ou wetgy @inylopedi of wetoli thwyAF v (gure I montre à nouveu l hîne de l glyolyse telle qu9elle pprît sur le site de uiqqD les rétions sont les noeuds retnguliresD les noms des rétions sont insérés dns es retnglesD les métolites sont symolisés pr les petits noeuds rondsD leur nom est insrit à oté de e rondF ves )êhes sur les rêtes permettent de spéE i(er l réversiilité des rétionsD informtion importnte pour omprendre le jeu de ontrintes qui s9exerent sur les intertionsF Graphes bi-partie : n réseu de etri P est un modèle ien onnu en informtique de grphe iEprtie qui permet l simultion du fontionnement d9un réseu sur un modèle de proE dutionGonsommtionF lusieurs uteurs QD R ont montré l9intérêt de et outil pour l modélisE tion des réseux métoliques r un élément importnt de l dé(nition de es réseux est qu9ils dérivent l onsommtion de moléules @les sustrtsA et l prodution de nouvelles moléules @les produitsA qui deviendront à leur tour les sustrts d9utres rétionsF ves réseux de etri sont don prtiulièrement dptés pour représenter es phénomènes surtout lorsqu9on désire simuler le fontionnement d9une ou plusieurs voies métoliques intergissnt et mises en onurrene pour l9utilistion de moléules ommunesF wlgré es vntgesD e n9est ps l9outil que nous vons reE tenu pour nos études r insi que nous l9vons ditD les réseux de etri sont utilisés en simultion et notre trvil sur l9nlyse des réseux métoliques onernent plutôt les spets sttiques X strutureD topologie pour lesquels les réseux de etri ne sont ps oligtoirement les plus dptésF outefoisD nous verrons qu9il existe des liens forts entre les outils que nous vons utilisésD les modes élémentires de )uxD et ertines propriétés des réseux de etriF Complexité n des éléments fondmentux de l omplexité d9un réseu iologique est l onurrene à lquelle se livrent di'érentes rétions pour onsommer le même métolite mis ussi le fit que le même métolite peut être produit pr di'érentes rétionsF ne première pprohe de l mesure de ette omplexité peut être otenue pr di'érents éléments de rdinlité des noeuds omme le nomre de sustrtsGproduits prtiipnt à une rétion donnée ou ienD le nomre de rétions di'érentes reliées u même métoliteF i l9on onsidère un réseu métolique omme une grphe iEprtieD FEàEdF ynt deux types de n÷udsD l9rité moyenne suivnt les types est un on inditeur de l di'érene de omplexité perue intuitivementD suivnt qu9on onsidère le réseu des rétions ou des métolitesF fien qu9il n9existe ps de règle sur le nomre de métolites impliquéesD sustrts ou produitsD pr rétionD l9expériene montre que le plus souvent l9ordre de grndeur du nomre de moléules impliquées se situe entre 2 et 5G6F v9rité moyenne des n÷uds rétions vrie don P Figure I ! ghîne de l glyolyse dns l se de donnée uiqq Q peu et dns nos exemples de réseuxD on peut onstter que l9rité moyenne des n÷uds rétions est indépendnte de l tille du réseuF sl en est tout utre pour l9rité des n÷uds métolites qui peut se révéler drstiquement di'érente de elle des n÷uds rétionsF ges métolites fortement utilisés dns le réseu sont générlement ppelés métolites hubs en ei qu9ils deviennent des inontournles u moment de luler le omportement du systèmeF Les modes élémentaires de ux ves premiers trvux de notre équipe sur l9utilistion des modes élémentires de )ux @efmsA dns le dre de l9étude du métolisme énergétique de l mitohondrie ont fit l9ojet de l thèse de ine érèsF etuellementD nous nous folisons sur l9étude du métolisme roné de l plnteF v méthode d9identi(tion des modes élémentires de )ux d9un réseu métolique onsiste à déterminer les voies métoliques dmissiles de e réseu à prtir de s mtrie de stohiométrieF ves seules informtions utilisées pr ette méthode sont l topologie du réseu @oe0ient de stohiométrieD réversiilitéGirréversiilité des rétionsA et ne néessite ps de onnissne des prmètres inétiques des rétionsF yn retiendr omme prinipe de se de ette méthode qu9elle détermine les chemins uniques et minimaux du grphe en respetnt l ontrinte que le réseu métolique doit être à l9étt sttionnireF gette nlyse topologique permet de rtériser des propriétés du réseu omme l roustesse du réseu @ou son niveu de redondneA SD les rétions qui opèrent toujours @ou jmisA ensemleF F Fv reherhe de voies métoliques ou suites de rétions orrespondnt à une fontion iologique longtemps été onsidéré omme trivile dns l mesure ou les voies onsidérées orrespondient ux ensemles de rétions @le plus souvent de l9ordre d9une dizine de rétionsA ien onnus dns l littértureF ve pssge à l9éhelle du système olige à onsidérer désormis des ensemles pouvnt ller jusqu9à plusieurs entines de rétionsF gei onduit inélutlement à l prodution de plusieurs milliers de solutionsF telling et lF S ou ilhelm et lF T ont étudié les onséquenes de tels résultts en terme de mesure de roustesse des réseux et pporté un nouvel élirge sur l fçon de onsidérer l roustesse des fontions iologiquesF ve tleu I iEdessous résume pour hun des 4 réseux que nous vons étudiés le nomre de rétions et de métolites qui les omposent et le nomre d9efms que nous vons trouvésF ves luls des efms ont été otenus grâe u logiiel regifmtool 1 F gette nouvelle version du logiiel ifmtool 2 U permet de luler très e0ement de très grnd réseuD éventuellement en utilisnt des règles logiques de ontrintesF i historiquement es luls étient rélisés ve l9ide du logiiel mettool puis de s nouvelle version gellxetenlyserD les limittions dûes à l9implémenttion wtv des lgorithmes rendent e logiiel très peu utilisle pour les réseux de grndes tillesF tungreuthmyer et l V ont montré l9intérêt de l9implémenttion de regifmtools dont les temps de lul sont de l9ordre de quelques dizines de minutes qund l9implémenttion wtv requière plusieurs heuresD qund les luls se terminentD e qui n9est ps toujours le sF wlgré tous les prolèmes usés pr l génértion de e grnd nomre d9efmsD nous tenons à souligner leur réel intérêt en rppelnt que dns l thèse de ine érès WD il été montré que dns l9ensemle des efms des 3 réséux modélisnt le métolisme mitohondrilD il existe plusieurs efms orrespondnt u mutnt dérit pr wimmer et lF IHF ge mutnt permet de produire de l9ATP grâe u yle de ures @rétion R12A en l9sene d9ATP synthase @rétion R3AF rouver des efms orrespondnt à des voies alternatives prouve formellement que es voies sont vlides dns le réseu et don peut onforter les résultts iologiques en éloignnt le spetre du résultt otenu pr hsrd ou erreur de mesureF Traitement des résultats obtenus ve lul des modes élémentires de )ux d9un réseu métolique donné fournit une nouvelle vision de e grphe en permettnt pr exemple d9expliiter les shunts ou les solutions lterntives existntsF he nomreux trvux tentent tuellement de rendre l9nlyse plus isée en déoupnt pr exemple le réseu en modules plus petits IIF i ette solution rend prfois les résultts plus intelligilesD elle l9inonvénient de ne ps être omplète puisque ien évidemment les solutions interEmodules @qui ne sont ps oligtoirement l somme des solutions de hque moduleA ne sont ps donnéesF sl pprît don que l mise en oeuvre d9outils d9nlyse utomtique des ensemles d9efms otenus est indispensle pour être réellement utilisle dns le s des réseux fisnt intervenir plusieurs voiesF Analyse statistique v9nlyse de grndes msses de données est très générlement rélisée u moyen de sttistiques desriptives qui permettent de mieux ppréhender les résultts otenusF hns ette optiqueD nous vons rélisé pour hque réseu métolique étudiéD un ensemle de tritement (n de rtériser les résultts otenus lors du lul des efmsF Calcul des longueurs moyennes ves efms étnt des hemins minimuxD leur longueur est un on inditeur de l somme des trnsformtions néessires et su0sntes pour ller d9un métolite entrant à un métolite sortant r il n9y ps à rindre de bruit usé pr des redondnes ou ylesF xous pouvons oserver non seulement une ertine vriété entre les 3 exemples mitohondriux mis surtout lorsqu9on nlyse les résultts otenus pour le réseu de l plnteD que l longueur évolue ve l tille du réseuF ge résultt n9est ps forément évident r ugmenter le réseu signi(e en générl jouter des voies métoliquesD enore une fois souvent étudiées séprémentD et non étendre hune de es voiesF yn peut expliquer ette ugmenttion de l tille des efms pr le fit que l9on doit équilirer les métolitesD y ompris eux souvent négligés omme le CO2 ou l9ATPD et qu9en joutnt des rétions on joute très souvent de nouvelles ontrintes sur es métolitesF S Calcul des occurences des réactions our mieux rtériser l struture d9un réseuD on peut exminer le tux de prtiiption d9une rétion à l9ensemle de solutions otenues pr le lul des efmsF yn peut lors s9intéresser ux rétions toujours @ou mssivementA présentes qui pourrient être ssimilées à des sortes de hubs dont l9tivité serit des points de ontrôle du réseuF ves rétions ne prtiipnt à uun efm sont églement intéressntes puisque el signi(e qu9uun hemin vlide dns le grphe ne peut les utiliserF gel pose lors l question de l vlidité de l desription du réseuF e ette osionD nous soulignons que l mise u point de ette desription X hoix des métolites internes ou externesD hoix de l réversiilité ou non des rétionsD est un point essentiel de l modélistion des réseux métoliques et que le lul des efms est un outil extrêmement utile pour véri(erGvlider ette modélistionF in e'etD en détetnt insi des rétions ne pouvnt jmis prtiiper à un hemin équiliréD e lul permet d9identi(er des onnexions dns le grphe qui ne sont ps vlidesF sl n9est ps possile d9envisger de déouvrir es prolèmes simplement en regardant le réseu r le grphe est d9une tille trop importnte pour elF Analyse des équations bilan. sl est possile d9otenir à prtir d9un efmD l9éqution iln qui lui orrespondF ve terme éqution iln doit ii être pris u sens iohimiqueD 9est l9ensemle des métolites externes en entréeD néessires à l rélistion de l9efm et l9ensemle de eux qui sont produitsF xous vons nlysé ette informtion r il est intéressnt de noter que ien que hque efm soit uniqueD el onduit à des doulons dns l9ensemle des équtions iln 3 pportnt insi une preuve irréfutle que des ensemles di'érents de rétions @formnt des voies vlides di'érentesA onduisent ien à des ensemles de métolites d9entréeGsortie identiquesF einsiD dns le s de mesure de )ux métoliquesD il est indispensle de prendre en ompte que l seule mesure des métolites externes se grntit ps l9identi(tion des protéines qui ont été tivéesF g9est ussi l preuve que lorsque ertines protéines sont non disponibles pour e'etuer une rétionD que e soit pour des prolèmes de onformtion ou pre que l9ensemle des sustrts néessires ne sont ps essilesD il est tout à fit possile qu9une variation de l voie métolique se mette en ple de fçon plus ou moins permnenteF our les réseux étudiésD en moyenne 4 à 5 efms exhient l même éqution ilnD ve ien sûr des efms qui restent uniques et un mximum du nomre d9efms ynt l même éqution iln pouvnt ller jusqu9à 10F g9est ette oservtion qui nous onduit à onsidérer les efms u trvers des métolites qu9ils utilisentF Ensembles de réactions communs à diérents efms ve lul des efms permet d9identi(er des groupes de rétions qui sont toujours ssoiés dns un hemin vlide @ppelés subsets dns le logiiel mettoolAF fien qu9en générl limité à un petit nomre de rétionsD el permet tout de même d9otenir quelques simpli(tions du réseuF hns nos réseuxD nous vons trouvé pour le musleD le foieD l levure et l plnteD respF 7D 8D 6D 12 subsets réduisnt le nomre de rétions à respF 26D 28D 26D 52F i des rétions ne sont ps toujours ssoiées dns un efmD elles peuvent l9être souventD onstruisnt insi des motifs de rétions ommuns à un groupe d9efmsF v9identi(tion de es motifs fit l9ojet de l setion suivnteF Recherche des motifs dans les efms sl existe un grnd nomre de méthodes de lssi(tion qui permettent de onstruire des ensemles en fontion de ritères de similitudeF hes méthodes tel que le lustering hiérrhique sont ourmE ment utilisées dns des domines vriés E on iter l génomique ou l phylogénie dns le domine de l iologieF wlheureusementD les rtéristiques même des modes élémentires de )ux X uniques et miE nimuxD en font des éléments di0iles à lsser pr les méthodes lssiquesF r exemple si l9on 3. On notera que le logiciel Metatool a choisi de ne pas citer les métabolites qui sont à la fois en entrée et en sortie comme cela est généralement la norme en biochimie. Cette remarque est importante car deux bilans peuvent sembler identiques alors que ces métabolites équilibrés en entrée/sortie ne sont pas les mêmes. Il faut donc être vigilant sur ce point.

T onsidère les méthodes de lustering lssiques qui s9ppuient générlement sur l onstrution d9ensemles disjointsD tenter de réliser e type de onstrution ve des efms se révèle qusiment impossile et le plus souvent fournit suivnt notre expérieneD un résultt de peu d9intérêtF in e'et si l9on onsidère dns le grphe d9intertionsD d9une prt leur propriété d9être uniques et miE nimux et d9utre prt le fit que le nomre de solutions soit très grnd reltivement u nomre d9élémentsD il est évident qu9un ertin sousEensemle de rétions est ommun à di'érents efmsF n rpide test sur d9utres outils lssiques omme l onstrution de treillis de glloisD se révèlent tout utnt déevntD r l9explosion omintoire du nomre de sousEensemles interdit de tel lul sur les ensemles d9efms de l tille de eux que nous mnipulonsF outefois désirnt otenir une lssi(tion des nos efmsD nous vons onservé l9idée de trouver une méthode de type lustering qui soit utilisleF tiliser de telles méthodes suppose l dé(nition d9une métrique omme ritère de ressemlne entre deux élémentsF ve odge de l présene ou de l9sene d9une rétion dns un efm est odée pr une vleur 0 ou 1 mis omme l rétion peut être utilisée de fçon réversile dns l9efmD l vleur -1 est utilisée pour oder ette situtionF xous désirons un ritère qui prenne en ompte e s et ussi le fit que deux efms de longueur 3 ynt 2 rétions en ommunD sont plus ressemlnt que deux efms de longueur 2 ynt 1 une rétion en ommunF Nouvelle approche basée sur les coupes de graphes hes trvux réents on ouvert une nouvelle voie dns l9nlyse des voies métoliques grâe à un lul dul des modes élémentires X le lul des oupes minimles du grphe d9intertionsF gette thèseD porte en prtie sur l9étude de et outilF ve lul de Minimal Cut Sets ou wgsD intègre l même hypothèse que les modes élémentires de )ux en e qui onerne l9étt stle du réseuxD mis u lieu de luler les hemins possilesD il s9git lors de luler les ensemles minimux de rétions qui déonnetent e grpheF sl est possile de demnder e lul pour une fontion ojetive ou sur l9ensemle du grpheFve pri est que et ensemle ser plus petit que elui des modes élémentiresD mis ussi que l tille des wgs ser en moyenne plus petite que elle de ipws et don permettr une nlyse plus iséeF xous vons rélisé le lul des wgs sur nos di'érents réseuxF v tle Q montre que pour des réseux dont le nomre de ipws n9est ps gigntesqueD de l9ordre de quelques milliersD nous n9oservons mlheureusement ps de diminution du nomre d9éléments à oserverF outefoisD dns le s du réseu de l plnte dont le nomre de ipws dépsse l entine de milliersD non seulement le nomre de wgs est inférieur mis surtout l tille des wgs ne semle ps roître ve l tille du réseuD e qui nous semle être le résultt le plus intéressnt de ette méthodeF wlheureusement l reherhe de motifs ommuns grâe à l9lgorithme egyw ne donne ps de résultt stisfisntD ei est très prolement dû à l petite tille des wgs ne permettnt ps U l même lierté sur les prmètres de et lgorithme et rendnt son réglge très délitF xous vons rélisé des sttistiques desriptives des wgs otenusF einsi il est toujours intéressnt de répertorier les rétions qui n9pprtiennent jmis à un wgF gel signi(e que le réseu ne peut jmis être déonneté u moyen de ette rétionF yn peut don en déduire que onstruire un mutnt qui inhiirit es rétions n9urit ps d9e'et sur le omportement générl du réseu métoliqueF ves rétions toujours présentes dns les wgs sont pr illeurs indispensles u fontionnement du réseuD mis ei peut ien sûr être églement oservé dns les efmsF ves ouples ou les triplets de rétions @on ne onsidèrer ps les wgs de tille 1 dont l9interpréttion est trivileA sont intéressnts à étudier r ils fournissent un résultt très file à exploiter pour les iologistesF n ouple ou un triplet de rétions qui onstituent un wgs peut ouper toutes les voies possiles dns un réseuD ette informtion permet de mieux omprendre l9tivité de e réseu surtout si es rétions ne sont ps diretement reliés ux mêmes métolitesF our mieux expliquer ei voii un exemple très simple du ge yle @ou yle de uresAF Étude de cas : production de sucres et acides aminées dans le fruit de tomate e prtir des résultts otenus à l fois dns le lul des ipws et des wgs sur le réseu donné en nnexeD nous vons séletionné les ipws permettnt l prodution de 6 di'érents sustrts ynt un intérêt dns l9étude du métolisme du fruit de tomte dns le s où il n9y ps d9entrée de Glucose @rétion qlupAF our e fireD nous vons séletionné pour hque sD les ipws ontennt l rétion responsle de ette produtionF ges sustrts sont qluoseD prutoseD uroseD qlutmineD trh et les rétions onernées sont respetivement X D sD mD ssD gloutF v tle Q montre pour hque s les e'etifs de ipws onernésF in e qui onerne les wgsD nous vons séletionné les wgs qui ontiennent qlup @puisque eluiEi est loquéA et l rétion iléeF e prtir du résultt des wgs de tille PD nous vons identi(é V rétions qui prtiipent toujours à l prodution des S metolites d9intérêt en sene d9entrée de gluoseF ges rétions peuvent être onsidérées omme le oeur du réseuF ges rétions sont X VpgiD VfbpD Vpgi_pD VrbcoD Tg6pD ValdD Vriso_p et Vepi_pF in nlysent les wgs de tille QD joutent une liste de 5 rétions qui sont ensuite une des lterntives possile pour les di'érent hemins possilesF v9utilistion onjointes des ipws et des wgs nous permet don d9identi(er des rétions hus dns e réseuF our terminer e hpitreD nous voudrions souligner l9importne de l qulité du ode des di'érents outils utilisésF ves versions les plus réentes des onepteurs de l méthode des modes élémentires ont fit le hoix de privilégier des versions utilisnts un environnement wtlD mlE heureusement peu déqute pour supporter les luls lourdsF xon seulement ette iliothèque n9est ps très rpide mis surtout mlgré une doumenttion 0rmnt que dns s version unixD l tille de l mémoire n¡étit limitée que pr l mémoire disponile sur l mhineD nous vons onstté qu9il n9en étit rienF ves luls sur le réseu de l plnte sont qusiment impossile à otenir ve les versions de gellxetenlyser sous wtlF port heureusementD il existe d9utres versions du lul des ipwsD entre utre elle érite en lngge jv pr wro erzer U mis elle est peu doumentéeF lus réemmentD ghristin tungermeyer V produit une iliothèque de fontions intégrnt ipwtools et une extension qui permet d9érire un ensemle de règles loE giques pour luler les ipws ve des ontrintes fontionnellesF hns le même environnementD mis ette fois érit en lngge gD on dispose ussi du lul des wgs et e de fçon très perforE mntesF v9ensemle des luls regipwtools et msglultorD font en générl psser les luls de plusieurs heures ve gellxetenlyzer @qund ils terminentA à moins d9une minuteF V 
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Introduction

Motivation

From the last ten years, research in biology has been characterised by the extraction of large amount of data concerning living processes. New machines more and more powerful allow whole genome sequencing, isotopic tagging of large pools of molecules and building the trace of applying transformations, measuring of the transcriptomic activities and so on. A consequence to this evolution is that now it is not at all possible to manage by hand this amount of data. Bioinformatics and more precisely System Biology offer methods to create automatic analysis of processes and new tools to visualise the obtained results, in large quantity too. In this context, our team focuses on the modelling of biological networks and more specifically metabolic networks, this problem is the main purpose of this PhD thesis manuscript.

In metabolic networks, the different interactions between molecules create networks which even if they are not so big, comparing with social networks or communication ones, can be qualified as complex. This is done because the high number of connections between the elements belonging to the network lead to many difficulties to measure consequences when one of these elements is disrupted (for example by a genetic mutation). Different methods exist to design metabolic networks and their behaviours. The most traditional one consists on building a set of algebraic or differential equations which describe the evolution of molecules concentration during the time course. These systems are suitable to model a small number of reactions but not to build a model at the level of the whole cellular organism (around one hundred of reactions). Tools like elementary flux modes proposed by Schuster, allow to identify sets of biochemical reactions (parts of the network) which satisfy specific biological constraints (network steady state in the case of metabolism). A metabolic function pathway could be model by one or several elementary flux modes. Properties of elementary modes: uniqueness and minimality, give to them the capacity to be performed tools to analyse the network structure. From elementary modes it is possible to show the robustness of some biological pathways or the major role of some reaction hubs. The main problem with this method is the time to compute the elementary modes, the method is based on linear algebra and the computation time can be exponential (depend on the number of reactions). Moreover, we also need a large amount of memory as the results is often several hundreds of thousands of solutions.

For this work, the first investigation that has been done in metabolic pathway analysis is to compute topological properties of experimental networks. We have been also interested to study elementary flux modes method proposed by Schuster and applied it in finding feasible pathways inside some metabolic networks: TCA cycle, mitochondria networks and heterotrophic plant cell metabolism. This method seems fitting in the analysing of feasible pathways in small networks, e.g. TCA cycle, mitochondria tissues networks, but the number of elementary flux modes is so huge that we cannot handle them manually in the case of metabolic network of heterotrophic plant cell. Hence, it requires another method to treat these elementary flux modes. We have chosen minimal cut sets approach proposed by Klamt. Fortunately, the number of minimal cut sets trends decreasing when the network size grows up. The bottom line of minimal cut sets is to give the set of reactions which size is smaller than those of elementary flux modes. Therefore, the collaboration of EFMs analysis and MCSs computation could be considered as the main protocol that we have used in this research.

Organisation of the thesis

This thesis is divided into four main chapters which are the PhD research results. A brief description follows of what is to be found in each chapter. The contents of individual chapters are summarised as follows.

Chapter 1 gives the principles of context of systems biology, metabolism, metabolic networks and basic concepts need to go through this research. This chapter also overviews of some traditional models of biological networks. It is ended by introducing commonly used approaches of metabolic network analysis.

Chapter 1

Metabolic Networks and Their Specifications

Living organisms are distinguished by their specified complexity.

Leslie Orgel -The Origins of Life Metabolism is one of the most important cellular processes. Informally speaking, metabolism is composed of many coupled and interconnecting biochemical reactions. A metabolic network is constituted by linked series of reactions that use up small molecules, the metabolites, and convert them into some another ones in a carefully defined fashion [START_REF] Berg | Biochemistry, volume New York[END_REF]. These reactions and metabolites belong to metabolic pathways which the large number of connections between reactions via substrate and product metabolites makes metabolic networks complex to study manually.

Context

Biology is a natural science concerning in the study of living things and their vital processes. It appears as a combination of observations and experiments. Its purpose is not only to inspect elements which compose living organisms but to investigate the relations between these elements. Nowadays, scientists have been facing extremely the explosion of information which is encountered in most applied sciences.

® Systems Biology is an engineering approach applied to biomedical and biological scientific research by using the computational and mathematical modelling of complex biological systems. The main studied objects of systems biology are living cells, which are viewed as integrated and interacting networks of genes, proteins, metabolites and biochemical reactions [120]. Integrating the investigations of these individual components or aspects of the system can enable to gain a deep insight on living organisms at multiple regulatory levels instead of studying individual aspects. In particular, people are interested in understanding how these complex interactions give rise to the function and behaviour of living cells. Genomics provides an overview of the 1.2. Metabolism complete set of genetic instructions provided by the DNA, while transcriptomics looks into gene expression patterns. Proteomics studies dynamic protein products and their interactions, while metabolomics is a step in understanding organism's entire functioning. Figure 1.1 shows the depending on the level of studying which biological object/function is addressed from DNA to metabolites production. Currently, researches on metabolic networks are interesting both for experimenters like biologists and for bioinformaticans. In bioinformatics, analysis of biological networks can be considered relevant to graph theory and a lot of methods have been used to model such networks. Before to present some of them, we begin to give some biological views of metabolic processes.

Metabolism

Metabolism is the set of life-sustaining chemical transformations within the cells of living organisms. It is often divided into two broad categories: catabolism and anabolism [START_REF] Berg | Biochemistry, volume New York[END_REF]. Catabolism is the degradation pathways to salvage components and energy from biomolecules such as nucleotides, proteins, lipids and polysaccharides, the process generates energy. Anabolism is the biosynthesis of biomolecules such as nucleotides, proteins, lipids and polysaccharides from simple precursor molecules, this process requires energy. Catabolism and anabolism are working together in cellular metabolism. A metabolic reaction is a chemical transformation occurring in living organisms, allowing them to feed, grow and regenerate. Metabolic reactions regulate nearly all metabolic activities and are responsible for the building of complex molecules, for the breakdown of large molecules into smaller ones and for the yield of energy as well [START_REF] Karp | Bioenergetics, Enzymes, and Metabolism[END_REF].

Molecules

Metabolites are small molecules which are implied in metabolic reactions. They are called substrates if they are used up by the reactions and products when they are the results of the transformation process. The stoichiometric coefficient of a metabolite in a reaction is the amount of that substance occurring in terms of molecule. The flux of a metabolic reaction is the rate of consumption of any substrate divided by the corresponding stoichiometric coefficient. This is equal to the rate of formation of any product divided by the corresponding stoichiometric coefficient. A reaction with a high flux operates at a faster speed than a reaction with a low flux. In addition, a flux is positive (resp. negative) if the forward (resp. backward) reaction is faster than the backward (resp. forward) reaction. While fluxes through reversible reactions may be negative, the convention is to consider that fluxes through irreversible ones are always non-negative [START_REF] Larhlimi | New Concepts and Tools in Constraint-based Analysis of Metabolic Networks[END_REF]. Enzymes are protein complexes that serve as biological catalysts, that is, they speed up chemical reactions without undergoing any net chemical change during the reaction [START_REF] Karp | Bioenergetics, Enzymes, and Metabolism[END_REF]. Without enzymes, most metabolic reactions would simply proceed too slowly at normal body temperature to support life.

Processes

® Enzymatic reactions Biological catalysts act by attaching the reaction molecules. Enzymes are often specific, meaning that each enzyme catalyses a single reaction or a very limited class of reactions. The specific three-dimensional shape of an enzyme is such that only the substrates it acts upon can fit into its active site -the particular portion of the enzyme that binds the substrates. After catalysing the reaction, the enzyme releases the products of the reaction. The enzyme remains intact in the process and can immediately bind fresh substrates. Thus, an enzyme molecule can be used over and over again. Enzymes increase the rate of chemical reactions by lowering the energy needed to activate the reaction. Enzyme activity is influenced by a large number of factors. Environmental conditions, such as pH, temperature, or salt concentration may change the three dimensional shape of an enzyme, altering its rate of activity and/or its ability to bind substrate.

® Carrier and Channel Most of reactions are within cells and often occurred inside a specific compartment, for instance cytosol or mitochondrion. Transporters serve to interconnect them and ensure availability of certain metabolites among compartments. The energy exchanged inside a cell between two cellular compartments separated by a membrane are not enzymes reactions. It exists embedded proteins which allow molecules to transverse the membrane.

Basic concepts in Metabolic Pathways Analysis

We distinguish two categories of these proteins to ensure this movement: carrier proteins and channel proteins.

A carrier protein is the protein that transports specific substance through intracellular compartments, into the extracellular fluid, or across the cell membrane. Carrier proteins are involved in facilitated diffusion and active transport of substances out of or into the cell (e.g. diffusion of sugars, amino acids and nucleosides, uptake of glucose, transportation of salts, glucose, amino acids, etc.).

A channel protein, also called transporter, is the protein responsible for mediating the passive transport of molecules from one side of the lipid bilayer to the other. In some cases, molecules pass through channel proteins that span the membrane.

Basic concepts in Metabolic Pathways Analysis

In order to follow easily computational models and analysing approaches of metabolic networks, it is necessary to preview some relevant concepts.

Metabolic Pathways and Networks

A metabolic pathway is a series of connected enzymatic reactions that produce one or several specific products. Metabolic pathways are often referred biological functions which are widely shared by all organisms even though variations in the list of reactions are observed depending on the species. For example, the well-known glycolysis pathway is a catabolic process, it is the transformation of glucose molecules into pyruvate. Figure 1.2 shows a version of the Arabidopsis Thaliana glycolysis pathway where the metabolites are mentioned with their names and the reactions with numbers (the EC number1 ). The conversion of glucose substrate to pyruvate requires in this model 10 main reactions but a lot of other reactions are needed to produce some co-factors metabolites required in different reactions. The connections with another pathways are mentioned as boxes with the pathway name inside.

At this time, the Kyoto Encyclopedia of Genes and Genomes (KEGG) database2 contains more than 9, 700 biochemical reactions, 2, 900 reaction classes and 6, 000 enzymes through several thousands of pathways. It shows the enormous amount of information that has to be taken into account. Moreover, even several databases like KEGG or MetaCyc have stored the pathway descriptions in electronic formats, most of available descriptions are represented in paper-based textual forms found in biochemistry textbooks [START_REF] Nielsen | Bioreaction engineering principles[END_REF]188] or in static images that make them difficult to use and handle.

Figure 1.2: A model of Arabidopsis Thaliana glycolysis from KEGG website

® A metabolic network is build of a set of metabolic pathways. Nowadays, it is possible to reconstruct the network of biochemical reactions in various organisms from bacteria to human beings by sequencing of complete genomes. A number of such networks are available in online biological databases such as KEGG [90], EcoCyc [98], BioCyc [95], metaTIGER [180], etc. Such metabolic networks are useful tools for studying and modelling metabolism. Their applications have been employed in finding drug targets in cancer using profiling metabolic networks [52, 75], in metabolic engineering [START_REF] Varma | Metabolic Flux Balancing: Basic Concepts[END_REF]. In this work, we have studied several cases of metabolic networks like the models of mitochondria metabolism depending on some tissues of human being and Chapter 1. Metabolic Networks and Their Specifications 1.3. Basic concepts in Metabolic Pathways Analysis yeast, or the central metabolism of heterotrophic plant cell. These different networks exhibit different sizes and levels of complexity. We have chosen them to test network analysis tools and evaluate their capability of use in large-scale networks. The next section presents a way to encode metabolic networks in the aim to apply mathematical or computerised methods to characterise them.

Metabolic network as graph

A metabolic network can be modelled as an undirected graph where metabolites (circles in Figure 1.2) are nodes and reactions are mentioned as edges (rectangles in Figure 1.2). This coding will be discussed more details in Chapter 2.

Metabolic networks features

From in vivo data collected, how to study and predict biological behaviours of living cells is often one of the primary challenges in systems biology. It requires mathematical models to translate these data to computational representations. The next paragraphs present some basic features used in this thesis.

® Stoichiometric matrix Metabolic networks composed of m metabolites and r reactions are usually represented by a stoichiometric matrix S of m rows and r columns. Definition 1.1 (Stoichiometric matrix). Given a metabolic network, let m be the number of internal metabolites and let r be the number of all reactions in the network. The corresponding stoichiometric matrix is a matrix S = (s i,j ) 1≤i≤m,1≤j≤r , such that for each internal metabolite i ∈ [1; m] and each reaction j ∈ [1; r]

s ij =        a
if the reaction j produces a molecules of the metabolite i and a ∈ Q + -a if the reaction j consumes a molecules of the metabolite i and a ∈ Q + 0 otherwise

S =         s 1,1 s 1,2 • • • s 1,n s 2,1 s 2,2 • • • s 2,n . . . . . . . . . . . . s m,1 s m,2 • • • s m,n        
Example 1.1. In [99], Klamt gives an example of how to write the list of reactions and its stoichiometric matrix from a given network. Inspired by this example, we consider a system of reaction equations declared in Table 1.1 and visualised in Figure 1.3. It consists of 8 reactions (R1, R2, . . . , R7, RSynth) and 5 internal metabolites A, B, C, D, E, while S1, S2, X, P represent external metabolites. The stoichiometric matrix of the system of these equations can be built as follows:

Chapter 1. Metabolic Networks and Their Specifications 

R1: S1 -→ A R2: S2-→ 2B R3: B -→ C R4: B ←→ D R5: D ←→ X R6: A + C-→ E R7: C + 3D -→ E RSynth: E -→ P S =          R1 R2 R3 R4 R5 R6 R7 P Synth A 1 0 0 0 0 -1 0 0 B 0 2 -1 1 0 0 0 0 C 0 0 1 0 0 -1 -1 0 D 0 0 0 0 1 0 -3 0 E 0 0 0 1 0 0 1 -1         
It should be noted that only internal metabolites are included in stoichiometric matrix.

® Incidence matrix versus Stoichiometric matrix Indeed, to represent metabolic networks some authors use incidence matrix [148] which coincides with the stoichiometric matrix [START_REF] Koch | Petri Nets[END_REF]. As there are two types of metabolites: internal and external, an incidence matrix is built from the coefficients of the internal and external metabolites. Since the symmetry via the principal diagonal, we only take into accounts the coefficients to be above the principal diagonal. In other words, external metabolites are trivial in flux analysis because they do not operate at steady state.

® Reaction Reversibility The reversibility of a reaction is defined by the thermodynamic constraint. A reaction i is irreversible if and only if its flux is always non-negative, i.e. r i ≥ 0

Chapter 1. Metabolic Networks and Their Specifications 1.4. Computational Models of Metabolism [START_REF] Larhlimi | New Concepts and Tools in Constraint-based Analysis of Metabolic Networks[END_REF]170].

® Dynamic mass balance Mathematically, the temporal behaviour of a metabolic network can be described as a system of ordinary differential equations (ODEs). A compact expression of the system of these equations is defined as:

dX(t) dt = Sv(X(t)) (1.3.1)
where X denotes the m-dimensional vector of biochemical reactants and v(X(t)) is a rdimensional vector of reaction rates which consists of nonlinear (often unknown) functions. These functions depend on substrate concentrations of metabolites.

® Quasi-steady state At the quasi-steady state (shortly called steady state) the mass balance in the network can be represented by the flux balance equation:

dX(t) dt = Sv(X(t)) = 0 (1.3.2)
where S is the stoichiometric matrix and v is the reaction fluxes.

Computational Models of Metabolism

The computational tools allow us gaining an in-depth insight into experimental results of molecular mechanisms of a particular organism. Actually, there have been lot of methods for modelling metabolic networks developed in the past decade (see more in [START_REF] Steuer | Computational Models of Metabolism: Stability and Regulation in Metabolic Networks[END_REF]). We brief here the most well-known models used to represent metabolic networks. Figure 1.4 shows a way to group the modelling methods based on their scale and complexity accuracy rate.

A classical model: Kinetic Modelling

Probably the most straightforward and well-known model to metabolic networks modelling is to represent metabolic processes in terms of ordinary differential equations (ODEs). As we have seen in the previous section, the considered systems biology can be declared by a list of reaction equations, a description of reversible and irreversible reactions and a list of internal and external metabolites. This model can be considered as a bridge between structural modelling, which is based on the stoichiometry alone, and explicit kinetic models of cellular metabolism [147, 163].

Constraint-Based Models

The idea of constraint-based modelling is to describe a biological system by a set of constraints, which characterise its possible behaviours, but in general do not allow to make a precise prediction [START_REF] Bordbar | Constraint-based models predict metabolic and associated cellular functions[END_REF]96,[START_REF] Orth | What is flux balance analysis?[END_REF]130]. Constraint-based modelling uses physiochemical constraints such as mass and energy balance, or flux limitations to describe the potential behaviours of an organism.

Chapter 1. Metabolic Networks and Their Specifications The classical starting point of constraint-based modelling is flux balance analysis of metabolic networks at steady state. Mathematically, this involves in computing a basis of the underlying polyhedral cone of the matrix. Existing methods focus on pointed cones, and often metabolic networks have to be reconfigured in order to obtain this property.

Indeed, constraint-based modelling has mainly focused on metabolism, and more integrative modelling approaches have been explored. Integrating this model with other approaches of modelling metabolism can be expanded the scope of quantitative prediction [1].

Conventional Functional Models

This modelling group is often included in probabilistic model, discrete models, etc. The most typical conventional functional approach is Boolean network modelling using to represent Gene Regulatory Networks (GRN) [START_REF] De | Modeling and simulation of genetic regulatory systems: a literature review[END_REF].

Graph-Based Models

To overcome the inherent limitations that happen in the construction of large-scale kinetic models, topological and graph-based approaches have remarkably interested recently [7,17,[START_REF] Fell | The small world of metabolism[END_REF][START_REF] Jeong | The large-scale organization of metabolic networks[END_REF][START_REF] Wagner | The small world inside large metabolic networks[END_REF]. Indeed, topological structure analysis of networks has a number of considerable advantages, as compared to the construction of explicit kinetic models. Topological network analysis does not presuppose any knowledge of kinetic parameters, thus it allows for an analysis of less well characterised organisms. It is applicable to extensively large systems, consisting of 1.5. Approaches of Metabolic Networks Analysis several thousands of nodes, far beyond the realm of current kinetic models3 .

Approaches of Metabolic Networks Analysis

Studying metabolic networks is one of the leading tool in metabolic engineering. It supports to gain a comprehensive understanding of the control mechanisms of complex cellular metabolisms. Some approaches of metabolic networks analysis are addressed in this section.

Stoichiometric Analysis

A considerable improvement over purely graph-based models is the analysis of metabolic networks in terms of their stoichiometric matrix. In stoichiometric analysis [START_REF] Clarke | Stability of Complex Reaction Networks[END_REF][START_REF] Clarke | Stoichiometric network analysis[END_REF], one concerns the effects of the network structure on the behaviours and capabilities of metabolism. Questions that can be tackled include discovery of pathways that carry a distinct biological function from the network, discovery of dead ends and futile cycles, dependent subsets of enzymes. This approach allows us making identification of optimal and suboptimal operating conditions for an organism. Otherwise, it helps to analyse the network flexibility and robustness, e.g. under gene knock outs. The two most well-known variants of stoichiometric analysis are Flux Balance Analysis (FBA) and Elementary Flux Modes (EFMs) analysis that shall be addressed in the sections afterwards.

Flux Balance Analysis

Flux Balance Analysis (FBA) is a technique for analysing the flow of metabolites through a metabolic network [START_REF] Orth | What is flux balance analysis?[END_REF]128]. This method, which has been employed in a number of applications [127,[START_REF] Papin | Metabolic pathways in the post-genome era[END_REF], is based on constraints model. FBA calculates the flux of metabolites through the metabolic network, thereby getting enable to predict the growth rate of a given modelled organism or the production rate of a certain target metabolite. We show here briefly the principal idea behind the method in Figure 1.5.

In Figure 1.5, first of all, a metabolic network reconstruction is built (the figure a), consisting of a list of stoichiometrically balanced biochemical reactions. Next, this reconstruction is converted into a mathematical model by forming a matrix labelled S (the figure b). At steady state, the flux through each reaction is given by the equation Sv = 0 (the figure c). Since there are more reactions than metabolites in large models, there is more than one possible solution to this equation. In the figure d, an objective function is defined as Z = c T v, where c is a vector of weights (indicating how much each reaction contributes to the objective function). In practice, when only one reaction is desired for maximisation or minimisation, c is a vector of zeros with a one at the position of the reaction of interest. When simulating growth, the objective function will have a 1 at the position of the biomass reaction. Finally, linear programming can be used to identify a particular flux distribution that maximises or minimises this objective function while observing the constraints imposed by the mass balance equations and reaction bounds (the figure e).

Petri net

Petri net theory is a graphical and mathematical formalism suitable for the representation and analysis of dynamic networks at different abstraction levels [START_REF] Koch | Petri Nets[END_REF]. It is used in various biologyrelated applications from analysing the dynamics of signalling pathways in cellular signalling networks [70,[START_REF] Sackmann | Application of Petri net based analysis techniques to signal transduction pathways[END_REF], genetic networks [30] to simulate metabolic pathways behaviours [START_REF] Koch | Petri Nets[END_REF]105].

Approaches of Metabolic Networks Analysis

The structure of Petri nets can be expressed linearly by a two dimensional matrix C (cf. Appendix C.2), of size m × n. From this one, it is possible to determine structural properties of Petri nets like invariants. In a biological context, minimal p-invariants (place invariants) are used to model a kind of substrate conservation, while t-invariants (transition invariants) the concept of elementary flux modes (introduced in the next section).

The t-invariants describe the system behaviour of the network, e.g. for metabolic networks in the steady state. A t-invariant is defined as a vector x ∈ N m which satisfies the equation C.x = 0. A t-invariant characterises a repetitive component of a model which is a set of transitions causing a return to a previous state of a model. Similarly, a p-invariant is defined as a vector y ∈ N n satisfying the equation y.C = 0. A p-invariant characterises a conservation component of the model. A conversation component is a set of places over which the weighted sum of the tokens is constant for every reachable marking. And p-invariants address conversation relations of metabolites in metabolic pathways models [START_REF] Sackmann | Application of Petri net based analysis techniques to signal transduction pathways[END_REF]185]. In signalling pathway models, p-invariants can represent a different kind of conservation relation [START_REF] Sackmann | Application of Petri net based analysis techniques to signal transduction pathways[END_REF]. Enzymes occur inside biochemical processes in signalling pathways that makes a state changing to transmit a signal. The total concentration of all forms of an enzyme is modelled as a constant quantity considered as a marking invariant of a Petri net model. Thus, the p-invariants and their associated conservation components identify all the places representing a specific form of an enzyme [70].

The drawback of using ordinary graphs for representing biological networks, in general, and metabolic networks, in particular, is that they cannot capture the complex relationships between several nodes, for example multiple metabolites in a reaction or more than two protein interacting to form a complex. In addition, simple graphs do not provide an intuitive approach to study evolution of metabolic networks. An alternate is to use hypergraphs or bipartite graphs to represent metabolic networks [START_REF] Klamt | Hypergraphs and Cellular Networks[END_REF].

Elementary Flux Modes Analysis

A related approach to FBA, Elementary Flux Modes (EFMs) analysis, was proposed by Schuster in 1994 [156] to analyse metabolic pathways. It is a constraint-based approach which can be used to calculate all biologically meaningful pathways through a network [155]. This method is useful to gain an insight into metabolism of living organisms and to identify all genetically independent pathways that are inherent in a metabolic network. By the definition, an EFM is a unique and non-decomposable set of reactions.

Let a metabolic network composed of r reactions and m metabolites and its stoichiometric matrx S. An unit ef m = (r 1 , r 2 , ..., r k ) is an elementary flux mode if it fulfils the following conditions [156]:

• Steady state: S × ef m = 0.

• Feasibility: For all i of an irreversible reactions, r i ≥ 0.

• Minimality: For all ef m of S, supp(ef m ) ⊆ supp(ef m) ⇒ ∃α ∈ R such that ef m = α × ef m.
From the stoichiometric matrix, EFMs are computed by selecting groups of reactions which interact together and respecting the well-known steady-state mass balancing equation (cf. Equation (1.3.1)). Grafahrend-Beleau et al. [START_REF] Grafahrend-Belau | Modularization of biochemical networks based on classification of Petri net t-invariants[END_REF] have shown that computing the set of EFMs of a given network is equivalent to compute the set of t-invariants of the network modelled through a Petri net.

In the small example network of TCA cycle given in Figure 1.6 (for details see [START_REF] Pérès | Pathway classification of TCA cycle[END_REF]), we can see 15 reactions and 25 metabolites (11 internal and 14 external ones). Applying EFMs computation, 16 EFMs have been found. To analyse this result, for example we can consider the case of production of external citrate obtained by firing the transporter reaction T 1. Figure 1.7 shows the 7 EFMs/available routes to fire T 1 and if any of them can not be operated (by the inhibition of one reaction belonging to the EFMs) there is no more way to activate T 1. A number of tools were specifically designed to compute all EFMs of a given metabolic network. They can be counted such as METATOOL [START_REF] Pfeiffer | METATOOL: for studying metabolic networks[END_REF], CellNetAnalyzer [START_REF] Klamt | Structural and functional analysis of cellular networks with CellNetAnalyzer[END_REF] (also known as a successor to METATOOL), and efmtool [START_REF] Terzer | Large-scale computation of elementary flux modes with bit pattern trees[END_REF]. These tools implement an algorithm based on linear algebra and its complexity is exponential, especially for metabolic networks including many connected pathways [START_REF] Klamt | Combinatorial complexity of pathway analysis in metabolic networks[END_REF]. As the number of obtained EFMs can be huge, enumerating all possible pathways that contain a given reaction is a difficult task [4]. The question of "how to suit biological reasoning to such large results" stays open. Classification of EFMs can be done by clustering methods. Due to their specificity: each EFMs is unique and minimal, classical hierarchical clustering does not offer satisfying results. Overlapping clustering seems to be more promising for this task. A classification method for EFMs, ACoM [START_REF] Pérès | ACoM: a classification method for elementary flux modes based on motif finding[END_REF], has been proposed, based on motif findings with overlapping clustering tools. In [START_REF] Grafahrend-Belau | Modularization of biochemical networks based on classification of Petri net t-invariants[END_REF] a classification of t-invariants is also studied using another agglomerative clustering algorithms. But most often the size of the results to classify still remains a major difficulty. Going back to classical graph theory methods, another way to extract knowledge from networks has been explored: computing graph diameter, average degree of nodes, average path length. . . and authors such as Barabási [17], Fell [START_REF] Fell | The small world of metabolism[END_REF] or Jeong [START_REF] Jeong | The large-scale organization of metabolic networks[END_REF] have confirmed that metabolic networks can exhibit behaviours similar to small-world networks and can be explored that way to find organisation, links or hubs through metabolic networks [START_REF] Beurton-Aimar | Identification of functional hubs through metabolic networks[END_REF]. More recent works have suggested using a dual view on the problem of finding feasible routes and of searching ways to cut access to a specific reaction and then to inhibit it. Chapter 3 details deeply this method that we have focused for this work. 

Description of our experimental data

To evaluate the methods employed in our works, we have tested them on some datasets (i.e. different metabolic networks). All the networks that we have used are given in METATOOL4 format in Appendix A.

® Tricarboxylic Acid Cycle TCA cycle -this is the same network that have been mentioned in Section 1.5.4. We have chosen TCA cycle (also called Krebs cycle [83, 107]) as a simple introductory example of metabolism based on the one designed by Wright et al. [START_REF] Wright | Systems analysis of the tricarboxylic acid cycle in Dictyostelium discoideum. I. The basis for model construction[END_REF] in dictyostelium discoideum. The version of TCA cycle that we are using for our illustrations was redrawn in [START_REF] Pérès | Analyse de la structure des réseaux métaboliques: application au métabolisme énergétique mitochondrial[END_REF] (Figure 1.8). This network contains 15 reactions and 11 internal metabolites.

® Mitochondria metabolism

What is mitochondrion? Mitochondria are known as the powerhouses of cells. They are very small organelles that act like a digestive system that takes in nutrients, breaks them down, and creates energy for the cell. The process of creating cell energy is known as cellular respiration. Most of the chemical reactions involved in cellular respiration happen in the mitochondria. A mitochondrion is shaped perfectly to maximise its efforts. We might find cells with several thousand mitochondria. The number depends on what the cell needs to do. If the purpose of the cell is to transmit nerve impulses, there will be fewer mitochondria than in a muscle cell that needs loads of energy. If the cell feels it is not getting enough energy to survive, more mitochondria can be created. Sometimes they can even grow, move and combine with other mitochondria, depending on the cell's needs. 

Role of Energetic Metabolism

Although some energy can be obtained quickly from glucose or glycogen through anaerobic glycolysis, most of the energy derives from oxidation of carbohydrates and fatty acids in the mitochondria. Energetic metabolism of mitochondria is often described as a set of five main pathways: TCA cycle, respiratory chain, ketone bodies, beta-oxidation, and a part of ornithine cycle. Depending on the tissues, some variations can be observed. The three retained models concern muscle and liver (Homo sapiens) and yeast (S. cerevisiae). Both mitochondria of muscle and yeast do not contain an urea cycle. Mitochondria of yeast does not include beta-oxidation as well as production/consumption inside ketone bodies.

To perform the analyses on the metabolic networks of mitochondria, we have chosen 2 of these 3 models: Muscle and Liver. The list of reactions come from the work done in the team for S. Pères thesis [START_REF] Pérès | Analysis of large set of elementary modes: application to energetic mitochondrial metabolism[END_REF].

® Metabolic networks of heterotrophic plant cells Since the metabolic network of heterotrophic plant cell (abbreviated MNHPC) is the main studied object, we have described it more details in Section 4.1 of Chapter 4.

A modified version of MNHPC (called Aracell) adds 12 reactions and 8 metabolites. It is a variation of the plant cell network modified by a biologist who wants to check the consequences of such an addition into the network behaviours.

Summary

This chapter reviews the context of this research, the basic concepts of metabolic networks. We have also represented the computational models of metabolic networks and the main approaches of studying and analysing them. The last section discussed the data used as experimental materials in our works.

Chapter 2

Network-Based Analysis of Biological Graph

We cannot solve problems by using the same kind of thinking we used when we created them.

Albert Einstein

Complex networks are powerful modelling tool, allowing to study of real world complex systems.

They have been used in various domains like computer science, sociology, biology, management, etc. Metabolic network is such a field where a lot of biological processes can be represented in graphical form that is considered as the simplest representation showing the interactions of between metabolites and reactions. The analysis of such networks aims to detect certain properties (e.g. the small-world or the scale-free property) and determine the role of hubs (i.e. highly connected nodes) using some topological measures such as degree distribution, diameter or centralities. Thus, this chapter focuses on the discussion about graphs, global structural properties on graphs, concepts of complex networks and centrality measures.

Generalities of graphs 2.1.1 Definitions

An undirected graph G = (V , E) consists of a set of vertices (also called nodes) and a set of edges (also called arcs), where each edge is an unordered pair u,v of the vertices. In biological graph, we say there is an edge between u and v if they are implied in the same reaction (Figure 2.1), without regarding to their directions (i.e. without considering substrate and product, see Chapter 1). Formally, we can define an undirected graph as follows:

Definition 2.1. A graph is an ordered pair G = (V , E) where,

• V is the vertex set in which elements are the vertices of the graph. This set is often denoted V (G) or just V .

• E is the edge set in which elements are the edges of the graph, or connections between the vertices of the graph. This set is often denoted E(G) or just E. A path from the node u to the node v is a sequence of arcs (u, u 1 ), (u 1 , u 2 ), ..., (u k , v). One can follow such a sequence of arcs to "walk" through the graph from u to v. Note that a path from u to v does not imply a path from v to u. The distance from u to v is the smallest k for which such a path exists. If no path exists, the distance from u to v is defined to be infinity. If (u,v) is an arc, the distance from u to v is 1.

Graphs are commonly used to represent interactions between proteins. Figure 2.1 shows such a graph where the vertices are proteins and the edges between two proteins are labelled with the interaction name.

Several structural properties can be computed to characterise graph into its applications. We present now the main ones. It is noticeable that the terms of "network" and "graph" will be roughly exchangeable in the context of metabolic networks/graphs.

Global structural properties

The most well-known structural characteristics which are computed point out quantitative evaluation of the size and/or the connectivity density in graph.

® Degree The most basic measure of a vertex i is probably its degree k i , which is defined as the number of edges adjacent to the vertex [40]. In a network without self-loops (i.e. edges that connect a vertex to itself) and multiple links (i.e. two vertices are connected by more than one edge), the degree equals to the number of neighbours of the vertex. In the case of directed graphs, we distinguish between the input degree k in i and the output degree k out i . In Chapter 2. Network-Based Analysis of Biological Graph terms of the adjacency matrix A, the degree of node i is just the some of the ith row of A,

k i = j a ij (2.1.1)
® Degree distribution One can ask for the probability P (k) that the degree of a randomly chosen vertex equals k. The degree distribution [26, 89, 115], P (k) expresses the fraction of the number of vertices in a network G which the degrees equal k. The degree distribution can be calculated by

P (k) = δ k n (2.1.2)
where δ k denotes the number of vertices of the degree k in the graph G and n denotes the size of G (the number of vertices of the graph G).

® Distance The distance between any two nodes i and j in the graph G, denoted d ij , is the length of the shortest path between the vertices, that is, the minimal number of edges that need to be traversed to travel from i to j. The shortest path between two vertices does not have to be unique, often there exist several alternative paths with identical path length. For directed graphs, the distance between two vertices i to j is usually not symmetric

d ij = d ji .
Likewise, for directed, as well as disconnected graphs, that is, graphs consisting of two or more isolated components, there might not always be a path that connects vertex i to j. In such a case, the distance between the respective vertices is infinite d ij = ∞.

® Average or Characteristic Path Length

The average path length or characteristic path length or average distance, denoted l, is the path length averaged over all pairs of vertices [165]. This parameter measures the typical separation between any two vertices in the graph [START_REF] Watts | Collective dynamics of 'small-world' networks[END_REF]. This property seems having a similarity to the aspect of diameter which calculates the number of edges in the shortest path among any pair of vertices of the graph G.

For a connected graph G (i.e. existing a path between every pair of vertices), the average distance is given by

l = i,j∈V d ij n(n -1) = i∈V j∈V \{i} d ij n 2 (2.1.3)
® Diameter The diameter d of a graph G is defined as the maximum distance of any pair of vertices in G, i.e. d = max(d ij ).

This fact was stylised in the famous play of John Guare titled "six degrees of separation" that was originally set out by Frigyes Karinthy in 1929. Stanley Milgram pioneered the study of path length through a clever experiment in which people had to send a letter to another person who was not directly known to them of the graph [START_REF] Milgram | The Small World Problem[END_REF].
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This property gives the name small-world (Section 2.2.1) to graph applications, because it is possible to connect any two vertices in the graph through just a few links, and the local connectivity would suggest the graph to be of finite dimensionality. Thus, the diameter of a graph tells us how "big" it is, in one sense (that is, how many steps are necessary to get from one side of it to the other).

Computing global structural properties of concrete networks

In order to see the influence of the structural properties on how to characterise networks, we have computed them on the different metabolic networks described in Section 1.6.

® Building reaction and metabolite networks From the first set of the 5 networks: TCA cycle, Mitochondria Muscle and Liver, and the two metabolic networks of heterotrophic plant cell, we have built several graph-based representations: complete network, reaction network and metabolite network. Complete networks have been built as directed graph, reaction and metabolites as undirected networks because most of reactions are reversible. In the complete network where both reactions and metabolites are vertices, it exists an edge between one metabolite and a reaction if this metabolite is implied in the reaction. The method used for building the reaction and metabolite networks was proposed by Wagner and Fell [START_REF] Wagner | The small world inside large metabolic networks[END_REF] and reused in [106]. The detail of the method is to extract reaction and metabolite networks from the complete one is as follows:

The reaction network is an ordered pair G R = (V R , E R ) where the vertex set V R consists of all chemical reactions in the network and E R the edge set. Two reactions R 1 , R 2 are adjacent if it exists an edge e = (R 1 , R 2 ) ∈ E R , i.e. they share at least one chemical compound (metabolite), either as substrate or as product.

The metabolite network is an ordered pair G M = (V M , E M ) where the vertex set V M consists of all chemical compounds (metabolites) belonging to the network and E M the edge set. Two metabolites M 1 , M 2 are adjacent if there exists an edge e = (M 1 , M 2 ) ∈ E M , i.e. they occur (either as substrates or products) in the same chemical reaction.

® Results: Before evaluating the results obtained for all networks, we want to remind that TCA cycle is a single pathway, the two mitochondria networks contain several pathways and the plant cell networks are scaled at the cell metabolism level even they do not include a full one (see Section 1.6 of Chapter 1). Table 2.1 shows the obtained results for all networks from the smaller to the bigger one. This result was presented at 71st Harden Conference Metabolic Pathway Analysis (UK, 2011) [START_REF] Beurton-Aimar | Metabolite Hubs to Structure Multi-Pathway Networks[END_REF].

The column 2 and 3 in the table depict the number of vertices and edges respectively. Obviously, the complete networks have more vertices than the other ones. Meanwhile, it is Chapter 2. Network-Based Analysis of Biological Graph worth to note that the reaction networks, the second group in the table, have more edges than the corresponding complete one (excluding TCA cycle react, probably because it is too simple to illustrate the case). Especially, the Aracell react has 3 times more edges than the Aracell complete, that suggests that Aracell react is more packed than the others. In the last group, the metabolite networks, the first three ones own too a greater number of edges than the complete networks while the MNHPC meta and Aracell meta do not. The column 4 in the table depicts the average degree of the vertices. The average degree in the case of the complete networks is pretty similar although the network scale is biologically different, from pathway to cell (as we have mentioned previously). In addition, we have the same observation on both the reaction and metabolite networks. That is probably because the network structure influences on the average degree rather than the network size. Even though the average degree increases roughly between 3 groups depending on the number of edges, it is clear that no direct correlation exists between the average degree and the number of edges.

To further investigate what happens, we have visualised the histogram of degree distribution of the 3 networks groups (Figure 2.2).

Generalities of graphs

In Figure 2.2, the degree distribution of the 5 complete networks reveals the well-known fact that most of the metabolic reactions are in the form of "2 substrates give 2 products" or "1 substrate gives 1 products" as shown in Figure 2.2a. The histogram exhibits two peaks around 2 and 4 degrees. Unlike those degrees, the higher ones (≥ 9) concern about 10% of the total number of vertices for all the complete networks. In the same way, both histograms of reaction and metabolite degree distributions show that more than 10% of reactions or metabolites can be considered as "hubs". This concept is wide-spread for metabolites but not really for reactions. It suggests that a group of reactions can control a lot of processes. Finally, interpretation of average degree is found to be tricky and not appropriated as it is, to study the structure of our networks.

The characteristic path length and diameter are depicted in the columns 5 and 6. The complete networks exhibit the highest values. This is directly linked to their higher number of vertices. Meanwhile, the reaction and metabolite networks have pretty the same range of values. Again no simple explanation can be given for that.

As pathways which compose metabolic networks are often considered as modules in such networks. We have tried to work with the clustering coefficient that is a technique to check modularity through networks.

Checking network modularity

Extracting characteristics of network structure could be achieved by computing modularity parameters as the clustering coefficient.

® The clustering coefficient C, based on Watts' proposal [START_REF] Watts | Collective dynamics of 'small-world' networks[END_REF], is a measure of the cliquishness of the local neighbourhoods. It represents the probability that two neighbours of a given node are themselves connected. In the case of undirected networks, given a vertex i with k i neighbours, there exist E max = k i (k i -1)/2 possible edges between these neighbours.

The clustering coefficient C i of the vertex i is given as the ratio of the actual number of edges E i between the neighbours to the maximal number E max , by the following equation: 

C i = 2E i k i (k i -1) (2.
C = i C i n (2.1.5)
Ravasz et al. analysed the metabolism of E. coli. They found that it has a modular topology, potentially comprising several densely interconnected functional modules of varying sizes that are connected by few intermodule links [START_REF] Ravasz | Hierarchical Organization of Modularity in Metabolic Networks[END_REF].

® Results: we have computed the average clustering coefficients of the 5 complete networks and the results are zero for all. This way to design the networks (with both reactions and metabolites as vertices) is probably not relevant to compute the clustering coefficient. The clustering coefficients of reaction and metabolite networks are lightly different and seem exploiting functional modules existing. Table 2.2 shows the obtained results for these cases with a value around 0.5, regarding the range of possible values, between 0 and 1 we can consider that some modularities exist in those networks. But not strong information is obtained. For example, once again, we can see in Table 2.2 that TCA cycle network which contains only one pathway has not at all a clustering coefficient really different from the other networks containing several pathways. In conclusion of this first section about global properties of metabolic networks and about clustering coefficient, roughly speaking, we can see that they cannot be considered as efficient indicators of the network structure in the case of the metabolic networks that we have tested from a very simple one to a cell level one. Thus, as many people have argued that metabolic networks can be seen as complex networks, we have pursued this work by using techniques to analyse complex networks. We will be described them in the next section. One can note that concept of modularity given by the clustering coefficient will be reused in this context.

Complex networks

As metabolic networks are composition of many biological processes (i.e. metabolic pathways), they are considered as complex networks [186]. Small-world networks (SWNs) and its branch, Chapter 2. Network-Based Analysis of Biological Graph scale-free networks (SFNs) are the most well-known classes of complex networks, which are used to model "real-life". This section goes into the aspects of these two classes, they use concepts coming from 2 basic classes of networks: simple networks and random networks. We have assume that most often they are known but if not we have given necessary information about them in Appendices C.2.1 and C.2.2.

Small-world networks

For many real world phenomena, the average path length l of a network is much smaller than that network size n, that is l n. Such networks are said to be characterising the small-world property [START_REF] Newman | The structure and function of complex networks[END_REF][START_REF] Watts | Collective dynamics of 'small-world' networks[END_REF]. In mathematics, physics and sociology a small-world network (SWN) is a category of networks in which most nodes are not neighbours of one another, but most nodes can be reached from every other by a small number of hops or steps. D. Watts and S. Strogatz introduced this terminology in 1998 [START_REF] Watts | Collective dynamics of 'small-world' networks[END_REF] (also called WS model) that was originated from the famous experiment made by Milgram in 1967 [START_REF] Milgram | The Small World Problem[END_REF]. Milgram found that two US citizens chosen randomly were connected by an average of six acquaintances. In Goyal's study [START_REF] Goyal | Economics: An Emerging Small World[END_REF], the principal conditions that a network G exhibits small-world properties are as the following:

1. The number of nodes is very large as compared to the average number of links (the average degree), i.e. n k 2. The network is integrated; a giant component exists and covers a large share of the population.

3. The average distance between nodes l (called characteristic path length) in the giant component is small, i.e. l is of order ln(n).

The global clustering coefficient is high, i.e. C k/n ® Small-world networks in real life

Small-world networks (SWNs) can be found in many real-world applications, including road maps, food chains, electric power grids, metabolite processing networks, networks of brain neurons, voter networks, telephone call graphs, and social influence networks. These systems comprise of many local links and fewer long range "shortcuts", often use with a high degree of local clustering but relatively small diameter (see more detail below). Networks found in many biological and man-made systems are "small-world networks", which are highly clustered, but the minimum distance between any two randomly chosen nodes in the graph is short. Thus, studies on SWNs have been interested by many researchers in a variety of fields such as mathematics, computer sciences, physics, social sciences, etc.

In a study of Indian physicians [159], they have analysed and showed the structure of the Indian railway network (IRN). Identifying the stations as nodes of the network and a train which stops at any two stations as the edges between the nodes, Sen and co-authors measured the average distance between an arbitrary pair of stations and find that it depends logarithmically on the total number of stations in the country. While from the network point of view this implies the small-world nature of the railway network, in practice a traveller has to change only a few trains to reach an arbitrary destination. This implies that over the years, the railway network has evolved with the sole aim of becoming fast and economical; eventually its structure has become a SWN.

In fact, rich-species food webs with a good taxonomic resolution display the properties of small-world behaviour [117]. Montoya and Solé analysed the four large food webs and compared between real webs and randomly generated webs. Consequently, they approved that the clustering coefficient of both types is the same average number of links per species. One important result is that in all cases, the clustering coefficient is clearly larger than the one of the random networks. For the characteristic path length, the difference between the random and real case is almost very small.

® Properties of small-world networks

Based on the definition of SWN proposed by [START_REF] Watts | Small worlds: The dynamics of networks between order and randomness[END_REF] and its extensions such as [8,18,[START_REF] Goyal | Economics: An Emerging Small World[END_REF], we have described some commonly used properties of small-work networks as follows:

• the network has strong connected components (SCCs).

• the local neighbourhood is preserved (as for regular lattices).

• the diameter of the network increases logarithmically with the number of vertices n (as for random networks).

• the clustering coefficients are much larger than those of the random networks.

• The average length between two points characterising global properties of the network was found to depend strongly on the amount of disorder in the network.

Scale-free networks

According to Barabási et al. [15], a scale-free network is a network whose degree distribution follows a power law. That is, the fraction P (k) of nodes in the network having k connections (also called degree k) follows a well-defined functional form P (k) ∼ k -γ where the degree exponent γ is a constant whose value is typically in the range 2 < γ < 3, although occasionally it may lie outside these bounds [START_REF] Albert | Statistical mechanics of complex networks[END_REF].

On the other hand, these scale-free networks own the power-law behaviour means that most vertices are connected sparsely, while a few vertices are connected intensively to many others and play an important role in functionality [START_REF] Goh | Classification of scale-free networks[END_REF]. Figure 2.3 illustrates the difference between random and scale-free network.

Chapter 2. Network-Based Analysis of Biological Graph Power-law distribution A power law is a special kind of mathematical relationship between two quantities. When the number or frequency of an object or event varies as a power of some attribute of that object (e.g., its size), the number or frequency is said to follow a power law. For instance, the number of cities having a certain population size is found to vary as a power of the size of the population, and hence follows a power law [START_REF] Clauset | Power-Law Distributions in Empirical Data[END_REF].

® Real phenomena modelled as scale-free networks Scale-free networks are noteworthy because many empirically observed networks appear to be scale-free, including World Wide Web, Internet, citation networks, biological and some social networks. These networks also behave in certain predictable ways; for example, they are remarkably resistant to accident failures but extremely vulnerable to coordinated attacks. Scale-free networks have been also applied in the power grids, the stock markets and cancerous cells, as well as the dispersal of sexually transmitted diseases (see examples in Table 2.3). 

® Properties of scale-free network

A variety of complex systems characterised by a power law distribution have similar important properties. Barabási and Bonabeau [START_REF] Barabási | Scale-free Networks[END_REF] listed some scale-free characteristics as follows:

• Some nodes, called hubs, have highest degree and are thought to serve specific purposes in their networks. The hubs can have hundreds, thousands or even millions of links.

• As scale-free networks are known as robust against accidental failures but vulnerable to coordinated attacks [START_REF] Barabási | Scale-free Networks[END_REF]. -In a targeted attack, in which failures are not random but are the directed results at hubs, the scale-free networks would be failed catastrophically. In the scale-free network, the larger hubs are highlighted.

Metabolism as a complex network

Complex networks discipline studies relationships between parts to the collective behaviours of a system and how the system interacts and forms connections with its environment. As mentioned in previous sections, metabolic networks are made up by complex biological processes and they can be considered as complex dynamic systems. Hence, we present several main concepts used to analyse complex networks.

® Metabolism reveals small-world properties

There exist many phenomena using small-world networks to represent their interrelated components. Watts and Strogatz showed that several biological, technological and social networks are of the small-world type [START_REF] Watts | Collective dynamics of 'small-world' networks[END_REF], whereas Wagner and Fell [START_REF] Fell | The small world of metabolism[END_REF][START_REF] Wagner | The small world inside large metabolic networks[END_REF] proposed theory and methods to analyse the structure of the E. coli metabolism modelled as small-world network. They evolved that there is no very faithful representation of metabolism would be performed by completely random networks. In addition, protein complexes can be represented as SWN, exhibiting a relatively small number of highly central amino-acid residues occurring frequently at protein-protein interfaces [START_REF] Del Sol | Small-world network approach to identify key residues in protein-protein interaction[END_REF]. The representation of protein structures as SWN has recently become an interesting approach to study a variety of problems associated to protein function and structure, such as the identification of key residues involved in the protein folding mechanism [174] and the identification of functional sites in protein structures [9] among other examples.

® Metabolism as a scale-free network

In the most fully connected biochemical networks, modular organisation is not apparent [START_REF] Ravasz | Hierarchical Organization of Modularity in Metabolic Networks[END_REF].

The clear boundaries between sub networks do not show out facilitating to study the relationships among them. The studies in literature also have suggested that metabolic networks in all organisms have potential capabilities to be highly modularised. Another aspect studied in [49] showed that it is possible to use the subgraph extraction to find pathways out from metabolism or biological components such as genes, proteins, compounds, etc. In the paper [35], the authors stated small-world behaviour and efficiency of a network. They also showed that neither random graphs nor small-world networks constructed according to the Watts and Strogatz model, have a power-law degree distribution P (k) like the one observed in real large networks.

Looking the above achievements, we have tried to uncover small-world and scale-free features in our metabolic networks. To be relevant, our example of plant cell network, MNHPC, has been chosen to verify small-world properties because it is complex enough.

® Verifying small-world and scale-free properties in plant cell metabolism

The values1 , given in Table 2.4, reveal that MNHPC has the average degree k very less than the number of vertices n = 148. This network is strongly connected because it has only one strong connected component. Besides, the characteristic path length of the network l is of order to ln(n). However, the clustering coefficient C = 0 is less than the fraction k/n. Consequently, we can state that, in a first attempt, MNHPC does not really satisfy small-world model. These properties are expected to satisfy the principal criteria suggested by Goyal [START_REF] Goyal | Economics: An Emerging Small World[END_REF].

Property Value Evaluation

The average degree k 2.932 n = 148 The network connectivity (the number of SCCs)

1
The network is integrated The average distance l 5.247 be of order ln(n) = 4.997 The clustering coefficient C 0 < k/n = 2.932/148 ∼ 0.0198

As it has been shown in Section 2.1.3, we have computed the degree distribution of the our 5 networks examples (explained in Section 1.6). The histograms of degree distribution confirm that any feature of power-law distribution (i.e. a core characteristic of scale-free network) can be found. But several another parameters can help to characterise complex networks. The next section presents them and the obtained results with these measures.

Complex networks analysis

Even our metabolic networks seem to not follow exactly the rules given for SWN and SFNs, we have explored the concepts of centrality to verify whether we can obtain some information about the network structure or not.

® Network centralities Closely related to distance measures, network centrality measures aim to characterise each vertex or edge with respect to their position within the network. We will briefly outline here some basic features of these metrics2 . Indeed, several studies on biological networks have revealed a significant relationship between vertex degree (as presented previously) and functional importance of vertices [7]. However, the degree is clearly not the only determinant of the functional importance of a vertex. The general question of complex networks analysis problem is to determine the most important (also called central) elements that have better access to information and better opportunities to spread information. The two of the oldest concepts in network analysis are centrality and centralisation, which has used to rank importance level of vertices.

Ranking of objects is usually based on numerical values. A function that assigns a numerical value to each vertex of a network is called a centrality. This concept is also called with different names such as centrality measure or centrality index.

Definition 2.2 (centrality). Let G = (V , E) be a directed or undirected graph. A function

C : V → R is called a centrality.
Centralities allow a pairwise comparison of the vertices, for example, a vertex v 1 is said to be more central or more important than a vertex

v 2 if C(v 1 ) > C(v 2 ).
In this section, the four concepts of centrality, which based on degree and shortest path, are addressed. The first centrality, degree, is almost trivial as we have seen. It counts the number of edges attached to a vertex. The other three centralities use information about shortest paths between vertices of the network. All these degree-based and shortest path-based centralities are defined for undirected and non weighted networks.

In fact, degree is a local centrality measure. Only the immediate neighbourhood of the vertex of interest is considered. For our networks, it has been shown that metabolites as well as reactions with a high degree value are more likely to be essential for the organism than ones with a lower degree value.

Eccentricity Centrality First of all, we consider the following example. A map of a city is given, roads are modelled as edges, and vertices represent potential places for a hospital to be constructed within this city. The position for the hospital should be chosen such that it is reachable from all other places with the least moves possible (measured by the shortest path distance). [START_REF] Junker | Analysis of Biological Networks[END_REF]). Let G = (V , E) be an undirected and connected graph. The eccentricity centrality is defined as:

Definition 2.3 (eccentricity centrality

C ecc (s) := 1 max{d st : t ∈ V } (2.2.1)
where d st denotes the distance between the vertices s and t, that is, the length of a shortest path between s and t.

Closeness Centrality

The closeness centrality can be explained in the same context as the eccentricity centrality. Instead of a hospital a shopping mall has to be placed onto the map. For a shopping mall the constraint is that most customers can reach it comfortably. Therefore it is placed at a point where the shortest path distances for all vertices to the position of the mall is minimised. [START_REF] Sabidussi | The centrality index of a graph[END_REF]). Let G = (V , E) be an undirected and connected graph. The closeness centrality is defined as:

Definition 2.4 (closeness centrality

C clo (s) := 1 t∈V d st (2.2.2)
Betweenness Centrality Every vertex that is part of a shortest path between two other vertices can monitor communication between them. Counting how many communications a vertex may monitor leads to an intuitive definition of a centrality: A vertex is central if it can monitor many communications between other vertices.

Let σ st denote the number of shortest paths between two vertices s and t and let σ st (v) denote the number of shortest paths between s and t that use v as an interior vertex. The rate of communication between s and t that can be monitored by an interior vertex v is denoted by δ st (v) := σ st (v)/σ st . If no shortest path between s and t exist (δ st = 0), then we set δ st (v) := 0. Definition 2.5 (shortest path betweenness centrality [10, [START_REF] Freeman | A Set of Measures of Centrality Based on Betweenness[END_REF]58]). Let G = (V , E) be an undirected network. The shortest path betweenness centrality is defined as:

C spb (v) := s∈V ∧s =v t∈V ∧t =v δ st (v) (2.2.3)

Experiments: Finding high-centrality hubs

While the degree k of a node explains the general topological features of the network and can only capture the local structure of network nodes (nearest neighbours), the betweenness centrality C spb of a given node i is related to how frequently a node occurs on the shortest paths between all the pairs of nodes in the network (see previous definition). Hence, betweenness centrality identifies nodes with great influence over how the information reaches distant network nodes. This metric has been used to measure the global relationships of drug-therapy interactions [118], and to detect essential proteins and their evolutionary age [START_REF] Joy | High-betweenness proteins in the yeast protein interaction network[END_REF], to model epidemics, for identifying key players in spreading an infection [126] . . .

®

We have run these algorithms on our own data. In Tables 2.5 and 2.6 we expose the top-20 nodes (i.e. reactions and metabolites) with highest betweenness in the MNHPC reaction and metabolite networks. This information is associated with the result of the closeness centrality C clo , which measures how close a given node i is to others [START_REF] Sabidussi | The centrality index of a graph[END_REF]. For each measure, the maximum is given in red colour.

• One can see in the reaction network that, even the two first values of betweenness, reactions Vhk1 and Vhk2, are closed for degree and closeness centrality, interpretation of eccentricity and degree ranks is not directly given. In addition, these two reactions are energy reactions, their centrality is not really surprising. In the case of the rest of the list, the obtained values are not correlated.

• In the metabolite network, obviously metabolites like ATP, DHAP_p, NADH, CO2, NADPH are placed in the top ranking of the result because they are commonly taken part in the metabolic processes. This fact is prominent. Again, the order of the rest of the metabolites appears not directly linked.

® As we have discussed, the closeness centrality can be understood as a measure of how long it will take for information to spread from a given node to distant nodes in the network. Thus, nodes with high closeness indicate that their influence can reach others more rapidly. We can see in Table 2.5, no valuable information can be extracted from the closeness values in the case of the reaction network. In the other hand, Table 2.6 shows the metabolites which are at the top-20, a well-known information. As we want to characterise, for example, dependencies between nodes through the different pathways, it seems that such information is hard to extract. 

Community detection and Subgraph extraction

Social networks are examples of graphs with communities. The word community itself refers to a social context. People naturally tend to form groups, within their work environment, family and friends [START_REF] Fortunato | Community detection in graphs[END_REF]. Relationships/interactions between elements of a biological graph can be formed groups which tend to share common behaviours or characteristics. Extraction of such communities is a big challenge in the graph theory. Scientists working in Bioinformatics field are interesting to solve this problem in the context of metabolic networks. Using seed nodes in the network to predict pathways, Helden and co-workers [49] have tried to extract subgraphs to any biological networks. They comparatively evaluated seven sub-network extraction approaches on 71 known metabolic pathways from Saccharomyces cerevisiae. The best performing approach is a novel hybrid strategy, which combines a random walked-based reduction of the graph with a shortest paths-based algorithm, and which recovers the reference pathways with an accuracy of ∼ 77% [START_REF] Ma | Decomposition of metabolic network into functional modules based on the global connectivity structure of reaction graph[END_REF]. This method is mainly based on the bow-tie connectivity structure using a distance definition derived from the path length between two reactions. This theory combines the properties of the global network structure and local reaction connectivity rather than, primarily, based on the connection degree of metabolites. He asserted that metabolic networks have typical characteristics of small-world networks, namely a power law connection degree distribution. Unfortunately, it looks our examples not to exhibit the same properties and moreover, we have not found any way to describe efficiently the constraints that we want to take into account by using these network models. We have no weight on the edges and it is difficult to translate the metabolic constraints like: "all the internal metabolites have to be balanced" in these kind of models. As it exists specific methods dedicated to metabolic networks after verifying that the most known ones in graph theory do not really provide best results than the specific ones, we have chosen to focus on these methods: EFMs which have been mentioned in chapter 1 and computing minimal cut sets which will be described in the next chapter.

Conclusion

In this chapter, we have provided a review of graph and network global structural properties which are used in graph theory. The computation of these properties have been performed on the several complete networks as well as the reaction and metabolite networks. Two another models Chapter 2. Network-Based Analysis of Biological Graph of complex networks have been described -small-world network and scale-free network models. The centrality measures were studied to determine the most central nodes. It is said that: degree distribution, diameter, average path length, eccentricity, closeness centrality and betweenness centrality, which are the inherent properties of complex networks, play the important role of identification organisational hubs trough the networks. Even authors as Fell et al. [START_REF] Fell | The small world of metabolism[END_REF] show that metabolic networks could be considered as small-world networks, the examples that we have concretely studied do not exhibit values useful to extract new information about their structures.

Summing up, the analysis of real-life complex systems as well as metabolic networks poses a number of new challenges, that make us having to combine the different theoretical approaches. Moreover, the remarkable lack of a few generalised small-world behaviours can, as in the MNHPC case, be explained that we have just a partial view of the complete system [109]. That is one of the reasons why we want to move to the other method (computing Minimal Cut Sets) that will be presented in Chapter 3.

Chapter 3

Computing Minimal Cut Sets

The best programs are written so that computing machines can perform them quickly and so that human beings can understand them clearly. A programmer is ideally an essayist who works with traditional aesthetic and literary forms as well as mathematical concepts, to communicate the way that an algorithm works and to convince a reader that the results will be correct.

Donald Ervin Knuth -Selected Papers on Computer Science

In Chapter 2, by calculating the global structural properties and centrality measures, we have known coherent and relational characteristics of metabolic networks. In other words, there are metabolites as well as reactions playing the tremendous roles and others are used as additive elements. In this chapter, the affects of these elements can be recognised more and more in case of discovering set of links or nodes which removals disconnect the network. This technique is called as computing minimal cut sets (MCSs) that used to be a key part in the research. In the beginning of this chapter, the basic concepts of minimum cuts in graph theory will be given. After that, the concepts of MCSs and their applications in biology context will be presented in the following sections. Whitney [181] is one of the precursors who used the concept of cut sets with planar graphs in the early 1930s. This field, however, had been fallen in oblivion for a long time until the emergence of the modern complex networks theory in the 1960s. Several researches into the theory of the reliability and survivability engineering in complex networks can be found in [START_REF] Billinton | Reliability Evaluation of Engineering Systems: Concepts and Techniques[END_REF][START_REF] Ramachandran | Failure Analysis of Engineering Structures: Methodology and Case Histories, chapter 5[END_REF][START_REF] Zio | An introduction to the basics of reliability and risk analysis, volume 13 of Quality[END_REF]. In this theory, the problem can be stated informally that if there are several edges of a network failed with an certain probability, disconnection of the network is at a minimum cut. Likewise, minimal cuts have also been arisen in communication networks [139], in information retrieval [27], in compilers for parallel languages [31], and in routing of ATM networks [184]. In systems biology, minimum cut sets method has been employed into studying the way to stop the production of some interest metabolites in metabolic networks [START_REF] Klamt | Minimal cut sets in biochemical reaction networks[END_REF]. Therefore, we shall now present the main principles of minimum cuts in graph theory in the next sections.

Minimum cuts in graph

® Minimum cuts in undirected graph Let G = (V , E) be an undirected graph. Formally, we define that a cut C of an undirected graph G is a partition of the vertices V (G) into two separate non-empty subsets, that is, C = {S, S} where S ∪S = V (G) and

S ∩S = ∅ [40]. The set δ(S) = {(u, v) ∈ E : u ∈ S, v ∈ S} is a cut set since their removal from G disconnects G into more than one subgraphs.
The size of the cut C is defined as the number of the edges (in the case of a unweighted graph) or the sum of the weights of the edges (in the case of a weighted graph) in δ(S). Thus, it can be said that a minimum cut is a cut of the certain minimal size. Accordingly, the edges set crossing that minimum cut is called a minimum cut set. For an illustrative example, consider the undirected and weighted graph in ® Minimum cuts in directed graph Similarly, we define minimum cuts in a directed graph [START_REF] Hao | A faster algorithm for finding the minimum cut in a directed graph[END_REF]. We denote G = (V , E) a directed graph (or a digraph for short) with a vertex set V and an edge set E. A minimum cut, like in an undirected graph, is a partition of the node set V into two disjoint subsets. A minimum cut set of G corresponding to that minimum cut is a set of all the edges crossed through these two subsets. However, one should pay attention to how to compute minimum cut value. Instead of summing the weights of all the edges, the only crossed edges between the two subsets coming out S are taken into account. For the directed and unweighted graphs, the minimum cut value is defined as the number of the edges inside that cut set. Chapter 3. Computing Minimal Cut Sets

Concepts of s-t cut

Practically, we have been working a lot of graph-based complex systems having more than one inputs and outputs. A natural question can be risen whether or not we can cut such graphs into two separate parts containing the inputs S (sources) and outputs T (targets) respectively. In this context, we often use the concept s -t cut with two special terminals: one source node called s and one target node called t [166]. General speaking, the s -t cut [13] is a cut with s and t in different partitions. Formally, a cut s -t of an undirected graph G is simply a cut C = {S, S} with s ∈ S and t ∈ S. So, a cut set of the s -t cut, denoted by δ(S s,t ), is the edge set which end points are in the separate subsets of the vertices. The removal (or "cut") of the edges out of δ(S s,t ) disconnects the graph into two separate subgraphs. Let us consider the example in Figure 3.2. Suppose that the s -t cut set of s = a and t = d. We can enumerate several a -d cut sets such as {bc, bd} with the weight of 11 (in Figure 3.2 it is case 1), {ce, bd} with the weight of 4 (i.e. case 2), or {bd, de, ef } with the weight of 25 (i.e. case 3). Because of the less number of cut sets, the enumeration can be done in manual. The minimum cut set is the one with the minimum weight (i.e. it is 4case 2).

Minimum cuts algorithms

It exists a lot of algorithms for finding as well as enumerating all minimum cut sets of an arbitrary graph. Theoretical algorithms for computing minimum cuts in graphs were proposed from 1961 which can be listed here like Gomory and Hu [62], Hao and Orlin [START_REF] Hao | A faster algorithm for finding the minimum cut in a graph[END_REF], Nagamochi and Ibaraki [START_REF] Nagamochi | A linear-time algorithm for finding a sparse k-connected spanning subgraph of a k-connected graph[END_REF], Stoer and Wagner [START_REF] Stoer | A Simple Min Cut Algorithm[END_REF]. In the 1970s, the algorithms for computing minimal cut sets, which employed in reliability engineering, were proposed and proved their correctness formally. For example, Ariyoshi proposed a new computing cut sets method by defining a cut set graph with respect to a given graph [START_REF] Ariyoshi | Cut-set graph and systematic generation of separating sets[END_REF] or Arunkumar and Lee devised an approach concerning with the enumeration of s -t minimal cut sets [START_REF] Arunkumar | Enumeration of All Minimal Cut-Sets for a Node Pair in a Graph[END_REF]. Then many authors suggested their new and improved algorithms on various types of graphs such as the efficient enumeration algorithm generating all minimal cut sets separating a special vertex pair in an undirected graph based on 3.2. Minimal Cut Sets in Metabolic Networks a blocking mechanism [3], the new algorithm based on a subset method and an iterative process to determine all minimal cut sets for all nodes [START_REF] Jasmon | A Method for Evaluating All the Minimal Cuts of a Graph[END_REF]. There were also innovative techniques based on the construction of a dual graph from the original one devised by Shen [161] or developed from the algorithm maximum adjacency search to find an arbitrary minimum s -t cut proposed by [START_REF] Stoer | A Simple Min Cut Algorithm[END_REF] or [137]. Recently, with the development of high performance computing, several methods for solving the cut set problem have been emerging in new domains such as finding the way to stop the production of a certain product in metabolic networks [START_REF] Klamt | Generalized concept of minimal cut sets in biochemical networks[END_REF] or cutting an image into several segments aims to facilitate in treatment [START_REF] Eriksson | Image Segmentation Using Minimal Graph Cuts[END_REF]. More details of these algorithms can be found in Appendix C.3.

® Testing minimal cut algorithms

We have applied the above discussed algorithms into several test cases using open source graph library packages such as boost1 , LEMON2 , jgrapht 3 , etc. The Stoer-Wagner algorithm is implemented in boost graph package (C++) and jgrapht (Java) graph framework. Gomory-Hu and Hao-Orlin algorithms are realized in LEMON library. The implementations of these algorithms do not provide any proper solution for finding all minimal cuts (or minimum cut sets) of a directed graph which the edges have no weights.

Minimal Cut Sets in Metabolic Networks

This section gives us a great insight about the concepts and the applications of Minimal Cut Set (MCS) in metabolic networks. Broadly speaking, MCS is the main concept that serves as a key approach in this research.

Introduction

The theory of MCS has been found in structural studies of biological networks for recent years, which originated from Klamt et. al [START_REF] Klamt | Minimal cut sets in biochemical reaction networks[END_REF]. This topic has been interested to many researchers in modelling flavonoid metabolism [START_REF] Sangaalofa | Minimal Cut Sets and Their Use in Modelling Flavonoid Metabolism[END_REF] or in studying strategies blocking growth of the central E. coli metabolism [START_REF] Von Kamp | Enumeration of smallest intervention strategies in genome-scale metabolic networks[END_REF].

In general, Metabolic Pathway Analysis (MPA) identifies the topology of cellular metabolism based on only the stoichiometric structure and thermodynamic constraints of reactions where kinetic parameters are not explicitly revealed and/or required for the calculations [START_REF] Clarke | Stability of Complex Reaction Networks[END_REF][START_REF] Clarke | Stoichiometric network analysis[END_REF]157,158]. MCS concept has been developed from EFMs computing, an MPA method using convex analysis to identify all possible and feasible metabolic routes for a given network at the steady state (cf. Section 1.5.4). Computing MCSs of a metabolic network consists of finding all reactions sets which removal makes disconnected the biological functions. For example, one can compute: (i) MCSs that block growth; (ii) MCSs that disable the production of a certain metabolite; (iii) MCSs that block all flux vectors where a undesired compound is produced with a low yield [START_REF] Von Kamp | Enumeration of smallest intervention strategies in genome-scale metabolic networks[END_REF].

Defining minimal cut sets of a metabolic network

S. Klamt and E.D. Gilles proposed MCSs concept in the first time in 2004 [START_REF] Klamt | Minimal cut sets in biochemical reaction networks[END_REF] as follows:

"We call a set of reactions a cut set (with respect to a defined objective reaction) if after the removal of these reactions from the network no feasible balanced flux distribution involves the objective reaction." . . .

"A cut set C (related to a defined objective reaction) is a minimal cut set (MCS) if no proper subset of C is a cut set."
It exists a distinction between the definition of cut sets in graph theory and these ones. As we have seen before in traditional graph theory, a cut set partitions a graph into two separate parts, whereas Klamt just tells that he wants to cut a route throughout the graph. Instead of cutting a graph into two even more parts, cut sets in metabolic network context mention about stopping the capability of reaching to feasible balanced condition of non-decomposable pathways. In that case, cut sets divides metabolic networks into several separate parts that makes the pathways not touching the objective function.

® The initial concept of MCSs

The algorithm for computing MCSs was proposed by S. Klamt and E. D. Gilles [START_REF] Klamt | Minimal cut sets in biochemical reaction networks[END_REF], which based on EFMs computing [59, [START_REF] Schuster | Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering[END_REF]168]. The idea behind the algorithm for calculating MCSs is the fact that an EFM is the minimal, unique and non-decomposable set of the reactions (enzymes) operated at the steady state; thus removing a reaction from the set in the network prevents to achieve a steady state with the remaining reactions of the EFM. In fact, EFMs and MCSs complement each other, as will be discussed later on.

In biology context, we currently identify the objective reaction for the network function of interest, and EFMs are used for calculating feasible routes for it. Meanwhile, MCSs would be the reactions that cause the dysfunction of these routes with respect to the objective reaction, and so the corresponding network function is stopped.

® Example Network to illustrate MCS algorithm

To illustrate the MCS concept, consider the example network (named NetEx used in [START_REF] Klamt | Generalized concept of minimal cut sets in biochemical networks[END_REF]) and shown in Figure 3.3.

The NetEx has some features as follows:

• The network consists of five internal metabolites and eight reactions, of which R4 and R5 are reversible; • Reactions crossing the system boundaries are coming from/leading to buffered metabolites;

• Assume that the synthesis of product P attracts our attention, hence, all flux vectors with a non-zero flux through reaction PSynth are of special relevance for us. Klamt and Gilles [START_REF] Klamt | Minimal cut sets in biochemical reaction networks[END_REF] called such a reaction of interest objective reaction. It is also called target reaction in a similar context [START_REF] Wilhelm | Analysis of structural robustness of metabolic networks[END_REF].

Determining MCSs

The MCS algorithm devised by Klamt and Gilles [START_REF] Klamt | Minimal cut sets in biochemical reaction networks[END_REF] relies on the fact that:

• any feasible steady state flux distribution in a given network, expressed by a vector of the net reaction rates, r, can be represented by a non-negative linear combination of EFMs as illustrated in Equation (3.2.1) (reused from [START_REF] Klamt | Generalized concept of minimal cut sets in biochemical networks[END_REF]):

r = N i=1 α i E i , (α i ≥ 0) (3.2.1)
• where N is the number of EFMs.

• the removal of reactions from the network results in a new set of EFMs constituted by those EFMs that do not involve the deleted reactions.

Before MCSs are computed, the set of EF M s is split into two disjoint sets:

• the set of target modes (EF M t ), i.e., all EFMs (e t,j ) involving the objective reactions t.

• the set of non-target modes (EF M nt ), i.e., EFMs not involving the objective reaction nt.

This MCS algorithm can be divided into two phases as follows:

Chapter elements) repressing a certain functionality specified by a deletion task". This new definition is the principal rule that the deletion task plays in the difference between the new generalized approach and the initial MCS concept.

EFM1 0 1 0 1 1 0 0 0 EFM2 1 1 1 0 0 1 0 1 EFM3 1 0 1 -1 -1 1 0 1 EFM4 0 1 1 0 -1 0 1 1 EFM5 0 0 1 -1 -2 0 1 1 EFM6 0 2 1 1 0 0 1 1 Minimal Cut Sets MCS0 x MCS1 x MCS2 x x MCS3 x x MCS4 x x MCS5 x x MCS6 x x x MCS7 x x x
The deletion task can be specified by several Boolean rules that clearly represent and describe, unambiguously, the flux patterns or the functionality to be repressed. This increases the practical applicability of MCSs because they can now be determined for a large variety of complex deletion 3.2. Minimal Cut Sets in Metabolic Networks problems and for inhibiting very special flux patterns instead of just for studying structural fragility and identifying knock-out strategies [START_REF] Klamt | Generalized concept of minimal cut sets in biochemical networks[END_REF].

® Constraint MCSs

To deal with the limitation of stopping desired functionalities along with the targeted reactions, Hädicke and Klamt [66] generalized MCSs to cMCSs that take into consideration of side constraints and allow for a set of desired modes, with a minimum number of modes preserved, to be defined.

As demonstrated in [66], this generalization shows the relationship of the extended approach to Minimal Metabolic Functionality (MMF) (a method based on EFMs computing and was developed by Srienc and coworkers [169, 172]) and OptKnock-related techniques (a group of methods based on the original bilevel optimisation framework with the name OptKnock, developed for suggesting gene knock out strategies for biochemical overproduction [START_REF] Burgard | Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization[END_REF]). The great flexibility of the new approach is reflected by the fact that popular existing methods such as MMF, OptKnock or RobustKnock4 can be reformulated as special cases of cMCSs problems.

The refinements and extensions to the initial MCS concept offer a broader range of possible ways in which MCSs can be used to assess, manipulate and design biochemical networks.

Methods to improve MCSs computing

Recent studies [4] have showed hardness of checking that a given set of reactions constitutes a cut. From that we can say finding MCSs for a given set of target reactions is becoming a challenge in large-scale networks. This stems from the fact that almost algorithms for finding MCSs are based on the computing of EFMs with an enormous combinatorial explosion of the number of EFMs [START_REF] Klamt | Combinatorial complexity of pathway analysis in metabolic networks[END_REF]. Following the works studied by [START_REF] Haus | Computing Knock-Out Strategies in Metabolic Networks[END_REF][START_REF] Jungreuthmayer | Comparison and improvement of algorithms for computing minimal cut sets[END_REF], we point out improvements of MCS algorithms.

We model a metabolic network as a number m of metabolites involved in a set REACT S of r reactions. For our purpose, these reactions can be encoded in a matrix S(m × r), whose columns encode the metabolites produced and consumed by a given reaction. The matrix S is known as the stoichiometric matrix. The reactions may be divided into two types: reversible reactions, which can either produce a given output from a given input or vice-versa; and irreversible reactions, which cannot operate in reverse.

® Notations Let REV be the index set of the reversible reactions and IRREV = REACT S\ REV be the index set of the irreversible reactions. We call our set of target reactions T ; for simplicity, we will usually assume that they are irreversible, that is, T ⊆ IRREV .

® Mapping EFMs to hypergraph For the purposes of finding cut sets for a given target T , we consider only the EFMs that include at least one target reaction. Note that cut sets are exactly the sets of reactions that intersect each of these EFMs. The collection of these EFMs constitutes a simple hypergraph (or "Sperner family"5 ) H = (REACT S, EF M s) on the set of reactions. The key observation is that cut sets are exactly the sets that intersect every edge of H. In the terminology of hypergraphs, such sets are known as hitting sets or vertex covers. The collection of all minimal hitting sets for H is itself a hypergraph H = (REACT S, EF M s ), which is dual to H in the sense that its minimal hitting sets are the edges of H . The hypergraph H is known as the transversal hypergraph of H and is denoted Tr(H) [START_REF] Haus | Computing Knock-Out Strategies in Metabolic Networks[END_REF].

® MCSs methods with basing on EFMs computation

Klamt and Gilles [START_REF] Klamt | Generalized concept of minimal cut sets in biochemical networks[END_REF][START_REF] Klamt | Minimal cut sets in biochemical reaction networks[END_REF] have proposed to first compute the EFMs hypergraph H via the double description method and then compute Tr(H). The computation of Tr(H) is done through an enumeration scheme. This method was implemented in the software FluxAnalyzer [START_REF] Klamt | Minimal cut sets in biochemical reaction networks[END_REF], the predecessor to CellNetAnalyzer [START_REF] Klamt | Structural and functional analysis of cellular networks with CellNetAnalyzer[END_REF] that will be presented in the next section. The improved method was suggested by Haus et al. [START_REF] Haus | Computing Knock-Out Strategies in Metabolic Networks[END_REF] involves modifying existing algorithms to develop more efficient methods for computing MCSs. This improvement was implemented in CellNetAnalyzer [START_REF] Klamt | Structural and functional analysis of cellular networks with CellNetAnalyzer[END_REF] preserved for MATLAB environment.

An approximation algorithm for computing the minimum reaction cut and an improvement for enumerating MCSs was recently proposed by Acuña et al. [4]. These emerged from their systematic analysis of the complexity of the MCS concept and EFMs, in which it was proved that finding a MCS, finding an EM containing a specified set of reactions, and counting EFMs are all NP-hard problems. Jungreuthmayer et al. [85,[START_REF] Jungreuthmayer | Comparison and improvement of algorithms for computing minimal cut sets[END_REF] have developed a new approach to improve the performance of MCSs computing. The idea behind their method is to employ binary patterns.

® MCSs method without basing on EFMs computation

As we have known, computing EFMs could be a bottleneck in MCSs calculation. Therefore, the methods presented here have tried to avoid computing MCSs via EFMs.

The method based on an algorithm of Fredman and Khachiyan [56] for generating the MCSs directly from the stoichiometric matrix was developed by Haus et al. [START_REF] Haus | Computing Knock-Out Strategies in Metabolic Networks[END_REF]. The technique is to define a Boolean function that takes a binary pattern of included reactions as input, and yields 1 if this set of reactions is a cut set, and 0 if it is not.

The method, contributed by Ballerstein et al. [START_REF] Ballerstein | Minimal cut sets in a metabolic network are elementary modes in a dual network[END_REF], also determines MCSs directly without computing EFMs. This computational model is based on a dual presentation for metabolic networks where the enumeration of MCSs in the original network is reduced to identifying the EFMs in a dual network so both EFMs and MCSs can be computed with the same algorithm. They also proposed a generalisation of MCSs by allowing the combination of inhomogeneous constraints on reaction rates.

Computing tools

The next sections discuss at the available tools for EFMs and MCSs computing that we have been used in our works.

® CellNetAnalyzer

CellNetAnalyzer (CNA) 6 comes from the previous software Metatool 7 written by the Jena Bioinformatics group. This version was developed in MATLAB containing several modules to visualise and analyse network structures. CNA enables users to compute both EFMs and MCSs. Thus we have used it for calculating EFMs and MCSs of 4 networks. That computation has often been time consuming, in some cases several hours or days are necessary. For example, to obtain MCSs of MNHPC with CNA more than 10 days have been needed with a Linux server, and in the case of Aracell network memory requirements are larger than the amount of memory that the method can manage.

® Efmtool and regEfmtool

A couple of years ago, a new implementation of EFMs computation was done by Terzer [START_REF] Terzer | Large-scale computation of elementary flux modes with bit pattern trees[END_REF] with improvements of the original algorithm. This is Efmtool 8 [START_REF] Terzer | Large-scale computation of elementary flux modes with bit pattern trees[END_REF] implemented in Java programming language. Efmtool supports multi-threading and seems to be robust to compute large-scale networks. But even this software is freely published under the open source software license Simplified BSD Style License 9 , this program is not easy for use and is lacking of a detailed documentation. Within recent years, a new software, named regEfmtool 10 , derived from the software Efmtool and written by C. Jungreuthmayer [START_REF] Jungreuthmayer | Utilizing gene regulatory information to speed up the calculation of elementary flux modes[END_REF], provides an more easily used tool for computing EFMs with a more complete documentation. They have also proposed a way to define some logical rules to compute EFMs that containing or not some reactions, thereby significantly reducing the size of the obtained solutions and computational costs as well.

The larger networks that we have computed with this tool contain more than 80 reactions. We have obtained several millions of EFMs in only a couple of hours.

6 http://www.mpi-magdeburg.mpg.de/projects/cna/cna.html 7 http://pinguin.biologie.uni-jena.de/bioinformatik/networks/ 8 http://www.csb.ethz.ch/tools/efmtool/ 9 http://opensource.org/licenses/BSD-2-Clause 10 http://www.biotec.boku.ac.at/regulatoryelementaryfluxmode.html

® mcsCalculator

Computing MCSs out of MATLAB and in C language will be soon available from the same team. In preliminary tests, we have been able to obtain MCSs that have not ever been obtained before with MATLAB programs due to overload memory. Via communicating personally, we have tested, verified and used mcsCalculator for computing MCSs in our data networks.

Experiments

In this section, we present the results obtained by computing MCSs in several real datasets. The chosen datasets have been described in Section 1.6: mitochondria tissues and heterotrophic plant cells. The purpose of the computation is to verify the hypothesis whether MCSs provides an easier approach to analyse metabolic pathways or not.

Contrast in EFMs and MCSs results

To follow the argument of the authors of MCSs methods, we have tested with different network sizes the hypothesis: the number of MCSs would have to be less than those of EFMs [START_REF] Klamt | Minimal cut sets in biochemical reaction networks[END_REF]. Table 3.2 shows the results obtained with the five networks which are different in size. The columns 2 and 3 remind the size characteristics of these networks. The first given values (in the column 2) are the total number of reactions extracted from the biological descriptions, and the second ones in the parentheses are the number of reactions obtained after computing enzyme subsets (see Chapter 1, Section 1.6). The column 3 discloses the number of the internal metabolites. 

® Results

The first line gives the result for the TCA cycle, which is a part of the mitochondrion metabolism. In fact, it is a single pathway rather than a complex network, but we have chosen it to mention as an introductory example with the aim of giving an easier explanation of MCSs analysis (see the next section). As we can see in Table 3.2, the number of MCSs is higher than those of EFMs, however, because of these small sets, EFMs and MCSs, we cannot contest anything more about the hypothesis.

The two next lines show the results for the two mitochondrial tissues (Muscle and Liver). These networks are more complete and they describe roughly the energetic metabolisms of a cell. Unfortunately, we can observe that the number of MCSs is over 10 times higher than those of EFMs.

The two last lines give the results of the plant cell networks, which are larger and more complex than the other ones. At this level of complexity, we reach the expected behaviour: less MCSs than EFMs. It is interesting to note that even MNHPC has less reactions than Aracell network, after computing the set of reactions which occurs together (enzyme subsets), Aracell network has finally less number of nodes. If we take a look in the EFMs and MCSs results, one can see that the huge results of EFMs for Aracell network (computing with 43 reactions) is not related to the ones of MCSs. This puts emphasis on the fact that EFMs and MCSs do not relay the same information and reveal a different point of view about the network connectivity.

In addition, we have computed the average (and min/max) EFMs length and MCSs size. One can observe that the size of MCSs does not grow up with the size of the networks. Regarding to our results, the number of MCSs seems to have started a going down trend when the network size is increasing, therefore, MCSs approach could be a good candidate to analyse large-scale networks.

Collaboration between EFMs and MCSs analysis

On the one hand, each EFM is unique and minimal. It implies that no EFM can be a straight composition of some another ones. On the other hand, a not so big network (i.e. containing several tens of reactions) can produce a huge number of EFMs (several hundreds of thousands). Consequently, we can think that almost of them share a lot of similar segments, also called motifs. These motifs can belong to many groups, as overlapped clustering). As the results, most classical clustering algorithms have been failed to apply into the classification of EFMs [START_REF] Pérès | ACoM: a classification method for elementary flux modes based on motif finding[END_REF] 11 .

Finding motifs through the set of EFMs is a way to analyse functional links between the reactions. In order to simply illustrate this purpose, we go back to the production of external citrate in the TCA cycle network (see Section 1.5.4). Table 3.3 shows the 7 EFMs concerning T1, the reaction that produces citrate. The yellow cells mark the presence of the reactions in the corresponding EFMs. Although it has a less of EFMs, the map shows the hardness of grouping them. Another more complex example is given in Table 3.4. By selecting 60 EFMs of MNHPC, we have drawn the related map of EFMs and the reactions. The columns and rows correspond to reactions and EFMs respectively. One can see that EFMs share widely same reactions and some do not. We can also remark the variability of EFMs size. Remark: The snapshot of this map (i.e. the figure) could be concerned the term of file system fragmentation [38], which refers to the condition of a disk in which files are divided into pieces scattered around the disk.

Table 3.4: Representation of the complexity in the classification of EFMs in MNHPC

EFM20 EFM21 EFM22 EFM23 EFM24 EFM25 EFM26 EFM27 EFM28 EFM29 EFM30 EFM31 EFM32 EFM33 EFM34 EFM35 EFM36 EFM37 EFM38 EFM39 EFM40 EFM41 EFM42 EFM43 EFM44 EFM45 EFM46 EFM47 EFM48 EFM49 EFM50 EFM51 EFM52 EFM53 EFM54 EFM55 EFM56 EFM57 EFM58 EFM59 EFM60 EFM61 EFM62 EFM63 EFM64 EFM65 EFM66 EFM67 EFM68 EFM69 EFM70 EFM71 EFM72 EFM73 EFM74 EFM75 EFM76 EFM77 EFM78 EFM79

Stating the principal idea

From this point, we have developed the idea to combine EFMs and MCSs results to extract information about relationship between reactions. Based on the initial definitions of EFMs and MCSs, we can deduce the following rules: ® We call |REACT S| be the set of reactions in a given metabolic networks with r = |REACT S| and the objective reaction obR ∈ REACT S.

® Let EF M = [Re 1 , Re 2 , ..., Re q ] be a non-decomposable set of the reactions concerning to the objective reaction obR with q ≤ r and Re q ∈ REACT S.

® Let M CS = [Rm 1 , Rm 2 , ..., Rm p ] be a set of the reactions with p ≤ r and Rm p ∈ REACT S. This MCS is one of the optimal solutions stopping reaching to the reaction obR, e.g. preventing the feasible pathway EF M as defined above.

® We denote A P B to say that "A blocks the production of P via the path B". Hence one can state formally MCS concept following its definition:

M CS obR EF M (3.4.1)
or we can rewrite the above formula:

[Rm 1 , Rm 2 , ..., Rm p ] obR [Re 1 , Re 2 , ..., Re q ] (3.4.2)
® Consequently, at least one of the reactions in the M CS must be in the EF M so that it makes the EF M being inactive (see the example in Section 3.4.2). Thus, this condition can be presented formally as follows:

∃m i , e j (1 ≤ m i ≤ p, 1 ≤ e i ≤ q) : Rm i = Re i (3.4.3)
The next section shows a concrete simple example of using these rules.

Stopping the production of external citrate in Krebs cycle

If we go back to the list of the 7 EFMs in the TCA cycle (Figure 3.5), it is possible to extract information from the MCSs list about which reactions could be mandatory.

Computing MCSs of the 7 EFMs provides the list of sets of reactions which are able to stop citrate production, i.e. each MCS can disable all EFMs concerning T1. In other words, 14 MCSs are considered as the solution that cutting all the pathways to produce citrate. EFM1: R9 R10i T1 T2 EFM2: R9 R10i R11i R12 R13 R14 T1 T5 EFM3: R6i R9 R10i R11i R12 R13 R14 R15 T1 T6 T7 EFM4: R6i R7i R8i R9 R10i R11i R12 R13 R14 T1 T6 T7 EFM5: R7i R8i R15 T1 T6 EFM6: R6i R7i R8i T1 T5 T6 T7 EFM7: R6i R7i R8i R11i R12 R13 R14 T1 T2 T6 T7 Remark: Again, it is worth to note that the number of MCSs ( 14) is not smaller than those of EFMs (7) but the analysis of MCSs can be considered more easily thanks to their shorter sizes.

Intuitively, [T1] is a trivial minimal cut set in TCA cycle network. To explain more deeply how to interpret MCSs in the context of EFMs, we consider two MCSs (named MCS2 and MCS11) in Figure 3.6. MCS2 (red colour) consists of two reactions R7i and R9. The reactions R9 appears in EFM{1,2,3,4}, whereas the reaction R7i takes part in EFM{4,5,6,7}. Only EFM4 contains both R7i and R9. This can be verified in the same way for the MCS11 (blue colour). Generally, at least one of the reactions from each MCS belongs to each EFM (see Equation (3.4.3)). In our example, each of 7 EFMs contains at least one reaction in red and one in blue. Thus, we can conclude that at least one of the reactions belong to MCS2 and MCS11 and indeed to all MCSs has to present in all EFMs. These reactions constitute motifs that we can observe in EFMs. This property will be used to analyse MNHPC network. The full analysis will be presented in the next chapter and we will see that we have been able to extract a set of core reactions which are groups of controller reactions to produce metabolite of interest.

Conclusion

It can be said that MCSs, together with EFMs, forms a dual representation of metabolic networks: the MCSs blocking a certain set of target flux vectors are minimal hitting sets of the set of EFMs [START_REF] Haus | Computing Knock-Out Strategies in Metabolic Networks[END_REF][START_REF] Klamt | Generalized concept of minimal cut sets in biochemical networks[END_REF]. This idea adds to the increasing importance of Metabolic Pathway Analysis (MPA) and provides a promising tool of finding suitable targets for repressing undesirable metabolic functions, which can be employed in the process of drug target identification [72,[START_REF] Klamt | Minimal cut sets in biochemical reaction networks[END_REF].

The aim of this chapter was to discuss about minimum cuts in graph theory as well as the concepts of MCSs applying in metabolic networks. As far as we know, no team has worked with traditional algorithms in graph theory for metabolic networks (see Appendix C.3). Then, we have presented the algorithm for computing all MCSs in a metabolic network and its improvements. The tools used in our work have been examined. We have also studied the 5 networks on different structural complexity levels. In one hand, the number of EFMs and MCSs on these networks are computed. The findings reveal that the number of MCSs is higher than the number of EFMs on TCA cycle and mitochondria networks, when the network is not so big and the number of EFMs is not huge, but the number of MCSs is lower than those of EFMs with the bigger networks like the metabolic network of heterotrophic plant cells. On the other hand, the length of MCSs does not increase with the number of reactions, e.g. it becomes stable when the network size grows up. Furthermore, we have also given an example helping to understand the dual relationship between the computation of EFMs and MCSs on TCA cycle network with the stopping the production of external citrate. Consequently, MCSs analysis could be an "easy way" to analyse the results of EFMs. And last but not least, the collaboration between EFMs results and MCSs analysis has been discussed. Because of the exponential explosion of the number of EFMs, the results in Section 3.3 arises a question whether or not we can mine MCSs and use them for analysing feasible metabolic pathways. We have shown that MCSs can be used to determine sets of reactions which are jointly mandatory helping to find motifs sharing by EFMs dedicated to a particular function. It has existed few of works taking into account smallest MCSs like us. To the best of our knowledge, The teams working on the MCSs concepts study mainly the improvement of algorithms to compute them and not on how to combine them with another computing. Furthermore, the examples that they provide do not compute all MCSs for a complete set of EFMs. Chapter 4 will present the results we computed on Metabolic Network of Heterotrophic Plant Cells (MNHPC) with the combination of EFMs and MCSs results.

The results obtained in this chapter was:

• published in the article [START_REF] Vu | Minimal Cut Sets and Its Application to Study Metabolic Pathway Structures[END_REF] Chapter 4

Application to Heterotrophic Plant Cell Networks

A bacterium is far more complex than any inanimate system known to man. There is not a laboratory in the world which can compete with the biochemical activity of the smallest living organism.

James Gray -The Science of Life

In this chapter, we shall describe the full analysis that have been carried out to find the core reactions of the heterotrophic plant cell network. In order to understand different features and behaviours of this network, we have investigated reactions leading to accumulated metabolites such as sugars, starch, amino acids, and organics acid. Indeed, these metabolites could be considered one of the main features of fruit metabolism.

Metabolic Network of Heterotrophic Plant Cells

® Go back to the first step of modelling: studying particular metabolic network requires getting a list of reactions that form a coherent network. Even the organism genome is published, this task is hard to do because no automatic procedure exists to extract a list of proteins/enzymes from a genome annotation. A lot of research teams are focus on the development of a framework to drive the reconstruction of a specific metabolic network from huge quantity of genomics data but at this time, we observe that a part of this task has to do manually and with the help of an expert of the organism.

We have driven our work taking into account this situation and we have proposed an analysis at the level of a kind of "middle size" metabolism. The bottom level of a metabolic analysis is to model one or several enzymatic reactions which belong to a pathway and drive one biological function such as the glycolysis or the TCA cycle. Mainly this level is covered by models like differential equations which are able to describe most often clearly the evolution of concentration of one flux but fail to model interactions between several pathways. As we have briefly presented in Chapter 1, Flux Balance Analysis (FBA) is a way to model interaction of several pathways through a network and to obtain quantitative measures of phenomena. Many researchers demonstrate renewed attention for this method because currently performing machines allow to measure a lot of metabolites in one experiment. However, the lacking of many information as kinetics parameters or exact behaviours of enzymes limit the interpretation of obtained results. In contrast, at the top level of metabolism analysis, whole reconstruction of a metabolic network could be achieved from genomics information, but on the one hand, organism genome are not all available, on the other hand as we have said, no automatic procedure is available at this time.

Our purpose has been to explore networks at the middle size levels/scales from analysing a network with several pathways but focus on a subset of the whole metabolism. For example, we have mainly analysed networks without taking into account genetic regulation or signalling. The first reason of this choice is that we have been able to obtain consistent description at this level of metabolic networks from our collaboration with biologists and the second, we think that it is useful to provide such an analysis to complement quantitative analysis [1] and to provide a deep insight about collaborations and/or competitions between enzymes through the network. Now we shall pay attention to our main application of MNHPC.

Description of the first version of the network

First, we look at the model of our metabolic network model, Metabolic Network of Heterotrophic Plant Cells (MNHPC) (Figure 4.1), given by our collaborators in LaBRI1 and INRA2 team. This network includes the main pathways of the central carbon metabolism in plants: glycolysis (black), the TCA cycle (blue), the pentose phosphate pathway (pink), the starch and sucrose pathways (green) and the storage reactions towards the vacuole (brown). Due to its autotrophic nature, the plant synthesises its own respiratory substrates (mainly carbohydrates) which then serve as substrates for the TCA cycle. The TCA cycle provides precursors for several biosynthetic processes, such as nitrogen fixation and biosynthesis of amino acids [START_REF] Krebs | The history of the tricarboxylic acid cycle[END_REF]. The pentose phosphate pathway includes the irreversible oxidative branch, whereas the non-oxidative branch is reversible (recycling of pentose-phosphates from fructose phosphate and triose-phosphate). In the starch and sucrose pathways, sucrose is metabolized in cytosol, whereas starch is metabolized in plastids from imported hexose phosphates (G1P or G6P). Several effluxes are illustrated: protein synthesis from several amino acids (glutamate and glutamine, aspartate and alanine), lipid synthesis (diacyl glycerol) from plastidial pyruvate and trioses, synthesis of cell wall polysaccharides from UDP-glucose, sugars (glucose, fructose and sucrose) and storage of organic acids (malate and citrate) in vacuoles. Subcellular compartments, such as mitochondria and plastids, can lead to potentially reversible transport of metabolites such as G6P, X5P, PEP and DHAP. This network has been published in a previous paper [START_REF] Beurton-Aimar | Comparison between elementary flux modes analysis and 13C-metabolic fluxes measured in bacterial and plant cells[END_REF]. The description of MNHPC contains 70 different metabolites and 78 reactions including 15 external metabolites and 33 reversible reactions. The external metabolites are carbon sources or carbon sinks (nutrients, waste products, stored and excreted products, and precursors for further transformation). These are exogenous glucose and amino acids (glutamine and alanine), CO2, sugars (sucrose, glucose and fructose) and organic acids (citrate and malate) stored in vacuoles, amino acids for protein synthesis (aspartate, alanine, glutamate and glutamine), cell wall polysaccharides, starch and lipids. The metabolites named cofactors (ATP, NADH, NADPH) are internal ones which means that they are balanceable at steady state. The full description file of MNHPC is given in Appendix A.4. This file is in METATOOL format [START_REF] Schuster | Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering[END_REF].

Description of the redefined network

In order to analyse MNHPC, described above, we have used the software CellNetAnalyzer (CNA) as the initialised tool to find feasible pathways. The first step of the computing procedure is to find sets of reactions which always operate together in feasible pathways within steady state of the system, called enzyme subsets [START_REF] Pfeiffer | METATOOL: for studying metabolic networks[END_REF] 3 .

® List of subset composition

We have found 12 subsets of reactions which concern in the 38 reactions. Table 4.1 shows the list of these subsets. The column New equation resumes for each subset the new substrates, products conversion. To be more readable, we have given a name for each subset using a composition of their own reaction names. The majority of these subsets are not surprising because they are series of linear reactions. For example, the subset [Vgapdh, Vpgk, Vpgm, Veno] includes the reactions occurring continuously in pathways (see Figure 4.1). The case of the subset [Vg6pdh, Vepi, Tx5p] has a little bit different because it exists a branch with the reaction Vriso. At the reaction Vg6pdh, we have two branches to pass the processing: (1) to continue with Vepi and Tx5p (2) to go through Vriso. After the first step of analysis of the stoichiometric matrix, no feasible pathway could be built using Vriso. Thus, the reaction Vriso can be removed out of the list of the candidate reactions without changing the network behaviours. It is worth to note that by the way we are enable to allow biologists to verify pathway schemes of reconstructed metabolisms. Prior to computing EFMs and MCSs, the data file of MNHPC is rewritten by replacing the old reactions with the new ones as shown in Table 4.1. The final network version has 43 metabolites and 49 reactions including 15 external metabolites and 14 reversible reactions. Table 4.2 resumes the differences in size between the original and new description after computing enzyme subsets. Remark: From this point, all the analyses have been done on the redefined version of MNHPC unless otherwise is specified.

The following paragraph shows the result of computing global structural properties that is considered the basic analysis of MNHPC.

Computation of global structural properties

As mentioned in Chapter 2, our metabolic network MNHPC can be modelled by a directed graph. The network modelling of MNHPC consists of 92 vertices (nodes) and 149 edges (arcs). The set of nodes consists of two types: metabolite nodes and reaction nodes.

Using the graph extraction method presented in Section 2.1.3, we have built reaction and metabolite networks based on MNHPC. The reaction network composes of 49 vertices and 261 edges, whereas the metabolite network has 43 vertices and 131 edges (as summarised in Table 4.3). To analyse MNHPC in more details, we shall work with these two networks and compare them to the complete one in the following sections. As we have addressed in Chapter 2, degree distribution can be computed for all networks, no big differences have been found between the values obtained for the first version of MNHPC and the reduced one.

Moreover, we have also noticed that MNHPC has only one connected component. That means it always exists at least a pathway connected from a node to all nodes in MNHPC. This strong connection approves the close coordination between the elements inside the network.

To compute and manage all the data we have presented in this PhD thesis, we have sometimes used existing tools, and it is worth to note that MNHPC has been used in collaboration with regEfmtool [START_REF] Jungreuthmayer | regEfmtool: Speeding up elementary flux mode calculation using transcriptional regulatory rules in the form of three-state logic[END_REF]. We have often written a lot of pieces of code to build pipeline between tools, to use existing algorithms for graph cuts or to implement our own algorithms. For example, all these programs have not been assembled into a framework at this time. One of the reasons is the fact that they are heterogeneous (C++, Python, MATLAB languages) but the expertise that we have gained during this work lead us to plan to finalise such platform as soon it will be possible.

Computation of Elementary Flux Modes

As it was mentioned in Chapter 1, CellNetAnalyzer (CNA) [START_REF] Klamt | Structural and functional analysis of cellular networks with CellNetAnalyzer[END_REF] and regEfmtool [START_REF] Jungreuthmayer | regEfmtool: Speeding up elementary flux mode calculation using transcriptional regulatory rules in the form of three-state logic[END_REF] are not only two available tools for computing EFMs. At the beginning of this work, we have used the software CNA which provides a friendly graphics interface. Unfortunately, the running and computing time are extremely expensive with large-scale networks. Fortunately, regEfmtool runs more times faster than CNA. To benchmark the computing performances, the algorithms have been tested in the same configuration of the computer. For this purpose, we have used a Linux server 64 bits Intel(R) Xeon(R) CPU X5675 3.07GHz consisting of 24 cores 1.6GHz, cache size 12MB and 94GB RAM. For MNHPC, CNA run the batch to compute EFMs in more than 15 continuous days without any interruption while regEfmtool is able to extract the 114, 614 EFMs in 12s.

In our opinion, the only drawback of CNA is the implementation of algorithms in MATLAB environment, while regEfmtool is extended from the open source version of Efmtool java program which is more efficient because of the new data structure, bit tree, to store the matrix and more speed programming language. Consequently, we have preferred to use regEfmtool mainly for our study.

® Occurrences of reactions

Several researches discussed about hubs [START_REF] Albert | Statistical mechanics of complex networks[END_REF]17] inside networks to find essential metabolites or reactions. To take a look if such hubs reactions can be found from the EFMs set, we have computed the occurrences of each reaction in the set.

The histogram in Figure 4.3 shows the occurrence of reactions participated in EFMs.

The first group contains 9 reactions which are present less than 20% of EFMs. The second, third and fourth groups contain reactions which are present between 25% and 85% of EFMs. These three groups are equivalent in size. Finally, 3 reactions belonging to the last group could be considered as essential because they participate in more than 95% of EFMs. These are 3 reactions Glc_up, Vhk2 and NRJ1. The first two ones concern the main entry of glucose and the last one is an energy reaction. Thus, no surprising information can be found. We can only notice NRJ2 which is the other energy reaction does not belong to this group, very probably because now it is included in a subset and linked to 3 another ones (i.e. its using is constraint). At the opposite, the group of the less used reactions are mainly the output reactions. The histogram suggests that a core of more than 30 reactions is mainly used in all solutions with different combinations.

® Length of EFMs

As we do not take into account the kinetics of reactions, it is impossible to argue that a short EFM is faster than a long one. But the length can give us an information about the complexity to obtain some metabolites. It is clear that the number of EFMs rises dramatically from the length 2 to the length 24 and then goes down at the length 25 until the end at 28. However, the number of EFMs with length 2 to 17 are inconsiderable. For instance, there are 2 EFMs the length 2 (e.g. [ala_up,Vala_out]; [Glc_up,Vac_g]) that are pathways playing the role of exchangeable input/output metabolites. There exists exactly one EFM with length 5 (e.g. Vgapdh_p, Vtpi, Ttp, Tpep, Vgapdh_Vpgk_Vpgm_Veno) and the following table gives the very small effective of EFMs for "smallest length". In contrast, the length 28 nearly reaches at 2, 500 EFMs (approx. 2%). Almost all of EFMs have the length from 18 to 27. In other words, there are more than 10, 900 EFMs (approx. 95%) which length belongs to the range from 18 to 27. In fact, MNHPC has 49 reactions and nearly 50% of them participates in feasible metabolic pathways. As the result, it shows the plasticity of the given network.

® Classification of EFMs

Classification is one of the methods for exploring data complexity. We have tried to distribute EFMs into smaller clusters by using ACOM algorithm [START_REF] Pérès | ACoM: a classification method for elementary flux modes based on motif finding[END_REF]. One can note that ACOM was Chapter 4. Application to Heterotrophic Plant Cell Networks With 114, 614 EFMs and the analyses above, seeking feasible pathways and interpreting biological issues meaningfully is remarkably difficult. In the following paragraphs, we shall reach the next step: computing the dual solutions of EFMs, that is minimal cut sets.

Computation of Minimal Cut Sets

As mentioned in Section 3.2, MCSs computation can be performed with CNA or mcsCalculator [85]. The server served for this computing is the one as described and used in EFMs computation (see Section 4.1.4). For MNHPC in the same task of computing the whole of MCSs, CNA runs more than 15 continuous days while mcsCalculator needs more than 15 minutes to finish the same batch, therefore, the results that we present here are obtained from mcsCalculator 4 .

Seeing the result of MNHPC as discussed in Section 3.3, we have found 93, 009 MCSs. It is clear to note that the number of MCSs is smaller than those of EFMs but already not possible to analyse manually.

® Occurrences of reactions

Normally, the first step of studying a large set of MCSs is to compute the occurrence/frequency of reactions participated in MCSs with the purpose of finding which part of the network we have to focus on. We can see that most of the reactions occur sparsely in MCSs. Indeed, the three first groups (e.g. the length 1, 2, and 3 as depicted Figure 4.5) contain almost all of the reactions (e.g. 42 reactions) with the proportional occurrence less than 30% generally.

It is clear that the occurring frequencies of reactions in MCSs are not denser than the case of EFMs as sketched in Figure 4.3. The percentage of the most occurrences of reactions in EFMs spread wide from 1% until roughly 84% whereas the similar measured values of MCSs are between 1% and under 30%. Henceforth, we can imagine that the size of interrelated reactions will be smaller and easier to analyse than those of EFMs.

® Size of MCSs

The histogram in Figure 4.6 shows the size of MCSs varying between 4 and 18. That confirms some analyses that we have shown in Chapter 3.

There are 28 MCSs with the smallest length 4 and 30 MCSs have the longest length 18. The greatest value 17, 347 MCSs belongs to the length 11. It is noticeable that the length of MCSs is more stable than EFMs. In other words, MCSs length is independent on network size.

® Classification of MCSs

We have also tried classifying the set of MCSs with ACOM algorithm. The results obtained are not really feasible because the input parameters supplied to ACOM are unstable. Thus, we have decided to analyse MCSs in another way. 

Analysis of specific metabolic productions

At this step of the analysis of MNHPC, we have two large sets of results and the next goal is to use them to point out behaviours of the network. Biologists can easily point out a list of metabolites that they want to outline. A list of 5 metabolites have been constituted: starch, fructose, glucose, sucrose and glutamate because the measurement of the production of these metabolites are considered as the main parameters to assess the plant growth and development. The question formulated by biologists is: "how we can produce these metabolites if the entry of glucose, the reaction Glc_up, is stopped?".

The reason of choosing five cases

In order to understand plant growth and to know how to improve the production and the quality of their products. Experiments using glucose are generally performed because they have much relevant biological information and are easy to implement.

We have studied the production of fructose and glucose in the Vacuole compartment corresponding to the two reactions Vac_f and Vac_g in MNHPC, respectively. Both of the reactions Vac_f, Vac_g charge of the production of common monosaccharides sugars (named as glucose, galactose and fructose). Meanwhile, the other reaction Vac_s located in the same compartment takes into producing sucrose (one of three common disaccharides sugars). Vgl_out, which belongs to the Cytosol compartment, is the reaction occurring at the end point of the replacement of Glc (Glucose) with Gln (Glutamine). The other metabolite in our study located in the Plastid compartment is starch which can be found in large amounts in fruits, seeds, rhizomes, and tubers, as well as photosynthetic tissues [65]. Starch molecules are polymers of 4.2. Analysis of specific metabolic productions glucose. Vss is the last reaction in the chain of reactions that produces starch metabolite.

After the identification of the reactions to focus on, the next step is to present how they are structured.

Presentation of the five sub networks

From the complete network, the question is risen that how are the five sub networks corresponding to the five given metabolites built?

Actually, from the global matrix of EFMs containing all feasible pathways of MNHPC, we have extracted all EFMs containing each of the reactions Vac_f, Vac_g, Vac_s, Vgl_out and Vss and formed the groups of EFMs regarding to the appropriate target reactions. The five EFMs matrices have been built and each of them represents one of these reactions. As it has been explained, an EFM is a list of reactions. So from each matrix, it is possible to extract the list of reactions which are implied to the production of each metabolite of interest and to know which one is absent. This operation of re-modelling of the network guarantees to work correcting thanking to the definition of EFMs.

To be more convenient, the reaction names will be used to identify each sub network in explanations, figures and tables as well. For example, using the sub network Vac_g is dedicated to run the reaction Vac_g.

In order to apply classical algorithms of graph theory, it could be interested to design the graph corresponding to each EFMs matrix. From the list of reactions in the original description of MNHPC, it is possible to extract a list of nodes and a list of edges involving each matrix. All the reactions nodes with the number of occurrences equals to zero is eliminated and the corresponding edges too. Now, we present five subgraphs of the original one, containing all the reactions and metabolites implied on each production.

We can see in Table 4.4 that the networks Vss and Vac_s do not use the reaction Vac_g and have the same number of reactions although they are located inside two different compartments. The network Vac_g has 6 reactions not use while the other sub networks basically maintain in stable (e.g. the number of missing reactions is not remarkable as given in Table 4.4). The network Vac_g has different behaviours from the others with the missing 6 reactions. It is worth to note that the reaction Vac_g appears in the sub networks Vac_f, Vgl_out (i.e. they are able to produce glucose in Vacuole) but missing in the cases Vss, Vac_s.

® Sub networks without the uptake of Glc_up

In MNHPC, the main entrance of glucose is modelled by the reaction Glc_up. The missing Glc_up will affect other functions because it is one of the reactions occurring most in EFMs with Chapter 4. Application to Heterotrophic Plant Cell Networks Table 4.5 shows the number of reactions remaining and the names of the reactions not used in the 5 sub networks. All the 5 networks reduces the number of reactions participating in metabolic pathways where the most amount is over 25% (the network Vss has 13 reactions to be unused) and the least amount equals 12% (the network Vgl_out has 6 reactions to be unused).

Moreover, we can observe in Table 4.5 that Vac_s and Vss, both of them have the same 10 unused reactions. These sub networks are pretty the same. In other words, these two metabolic processes in our plant cell model could have many similarities. Vac_f and Vac_g have the same the number of reactions but they have one difference at existing the reaction Vhk1 and Vhk2 respectively.

In conclusion, the modifications via the removal of the unused reactions make some parts of the networks inactive. To see all 5 models of the sub networks after removing the unused reactions, we attached the drawings corresponding to the 5 sub networks in Appendix D.2. Now, we shall move in the following paragraphs to address the effects on the sub networks due to the missing of Glc_up.

Effects of stopping the entrance of glucose

As mentioned above, the missing of glucose affects the production of the objective metabolites of the five sub networks. Thus, we shall present some measures about this influence in order to find similarities and differences among these sub networks.

Connectivity of the sub networks

To check the networks which have just remodelled, we have verified parameters as diameter, characteristic path length or coefficient clustering. All the obtained values for the five sub networks are quite similar to the global MNHPC network, even for the complete, reaction or metabolite networks (built following the rules explained in Chapter 2). Since our purpose does not focus on these measures, we have not presented them in details. But we have concluded that no more useful information could be retained with these parameters in our case.

To order to figure out which elements belong to the networks are essential, we have continued to find reactions and metabolite hubs.

Reaction hubs and metabolite hubs

The next properties of the sub networks that we have studied are centers and peripheries. The center is the set of nodes with eccentricity equal to the radius whereas the periphery is the set of nodes with eccentricity equal to the diameter. It is worth to note that metabolic networks rely heavily on a few crucial metabolic hubs, such as ATP, NADH, and CO2, that are well-known to be used widely in many cellular biochemical reactions. In contrast to hubs, most other metabolites each participate in only a few reactions as they were often stated [110,175] . ® Centrality and eccentricity of the five sub networks can be seen in Table 4.6. Obviously, the metabolites ATP and the others such as CO2, PEP, NADH, NADPH etc. produced much and take part in most of biological processes are main substances playing the role of centers. The reactions NRJ2, Vaco, Vidh, Vfum, Vsdh, Vkgdh, Vme, Vpdh used frequently in many metabolic pathways are centers.

The occurrences of reactions and the length of EFMs

Definitely, 114, 614 EFMs of MNHPC consist of ones containing and not containing the reaction Glc_up. In the case of missing the entrance of glucose, i.e. the reaction Glc_up is inactive, obviously EFMs containing Glc_up will not work. Thus, to analyse the effect of stopping the entrance of glucose, obviously we have chosen working with the set of EFMs not containing the reaction Glc_up. Table 4.7 shows the statistics summary about the two sets of EFMs containing or not containing Glc_up for the five studied networks.

® Comparison of the occurrences of reactions

As we have known, Glc_up is the main reaction assuring the entrance of glucose. So the number of EFMs with or without Glc_up in the columns 2 and 4 in Table 4.7 reveals the differences between two sets in size. It seems that the datasets in the case of without Glc_up reach a size which can be considered as manageable. So we begin with a list of easy observations.

Vac_g has unique EFMs with the size 2 containing Glc_up that is the entrance of metabolism. So this feasible pathway mainly starts from Glc_up and ends at Vac_g that they are primary reactions in forming the pathway. It is a trivial EFM.

The number of EFMs containing Glc_up in Vac_s and Vgl_out is close.

The columns 3 and 5 in Table 4.7 show the length of EFMs in both cases. The lengths vary from 12 to 28 for both cases except for the network Vac_g. The histogram of the EFM lengths of all the networks reveals that the average length does not change noticeably in Figure 4.7. The values at the peaks equal to the average lengths of all the networks and it is true if comparing to the average length of EFMs of the complete network MNHPC as shown in Figure 4.4. It confirms that the length of EFMs in most of the cases is not affected by changing the network behaviours.

® Comparison of the histogram of the EFMs lengths

Combining MCSs result and EFMs analysis

In our study, we have inspected the data and calculated EFMs as well as MCSs for seeking some interesting views. We shall present the results of the combination of MCSs computation with EFMs analysis and connect to the relevant explanations.

® Comparison of the number of EFMs and MCSs

From the relevant matrices, we have computed MCSs which are able to stop the production of five interest metabolites. Table 4.8 reminds the total number of EFMs for each sub network in the column 2. The column 3 contains their number of MCSs. From that result, we can extract all MCSs containing Glc_up as shown in the column 4. In the network Vac_f, the number of EFMs is round 2.5 times greater than the one of MCSs while the number of MCSs in the network Vgl_out is about 3 times smaller than the one of EFMs. The number of EFMs in the network Vac_g is roughly twice bigger than the one of MCSs.

Numerically speaking, however, the networks Vss, Vac_f and Vac_s exhibit the same number of MCSs, and comparing their contents could be easy. At the opposite, almost all MCSs of Vac_g include Glc_up reaction. The network Vgl_out has a middle result, even there are more numerous than the smaller group, the result seems to be handleable.

® Comparison of the histogram of MCS sizes

It is worth to compare the histogram of MCSs size of the networks containing Glc_up to the one of MNHPC (Figure 4.6). Generally, the total number of MCSs has decreased a lot, and so 4.3. Effects of stopping the entrance of glucose the histogram of the size has not the same shape. The histograms reveal that a part of the amount of MCSs are small. This result seems to confirm that these MCSs could be analysed easily. 

® Taking into account smallest MCSs

For all the sub networks, the number of MCSs as well as their average lengths are always smaller than the corresponding aspects of EFMs. This observation can be enable to confirm that using MCSs seems to be easier for studying the set of results. One way is to analyse the smallest MCSs such as the ones of size 2, 3, 4, etc. with the aim of understanding which sets of reactions have functional links. Using smallest MCSs to analyse the network has been pointed out for a few months by Kamp and Klamt [START_REF] Von Kamp | Enumeration of smallest intervention strategies in genome-scale metabolic networks[END_REF] who have proposed a method for the effective analysis of these MCSs. Our results achieved in this study have supported to find back common motifs in EFMs that shall be presented in the next sections.

® Finding "core" reactions using MCSs of size 2 First, we can extract a list of MCSs of size 2 containing Glc_up for each matrix. Second, it is essential to remind that if Glc_up is stopped, the other reaction belonging to a MCS of size 2 is mandatorily preserved by definition of MCSs (see Equation (3.4.3)). Finally, collecting all these reactions from any MCSs of size 2 builds a list of reactions which are mandatory to produce the five metabolites of interest. As a result, we have found 8 reactions Vpgi, Vfbp, Vpgi_p, Vrbco, Tg6p, Vald, Vriso_p and Vepi_p which occur mandatorily in EFMs (red colour in Figure 4.9). The group of these eight reactions can be considered as the "core" of our MNHPC for the production of the metabolites of interest that we have selected. 

® Branching in EFMs

Identification of reactions which belong to all EFMs corresponding to a specific function as the production of sugar or amino acids is not really difficult and can be obtained by several ways. But for the next step, finding set of reactions which are relevant to group EFMs together in an efficient classification, is less easy. We have already mentioned that both generic clustering methods and specific one (i.e. we have developed previously) are failed to solve this problem when the number of EFMs is huge.

Motif branches into MNHPC ® List of possible branches

Based on the method has just been discussed, we have collected all MCSs of size 3 containing Glc_up as shown in Table 4.9. Five reactions Vgapdh_p, Vtpi, Vgapdh_Vpgk_Vpgm_Veno, Ttp and Tpep playing the role of the "branching points", have been found. The number of EFMs containing these branching points has determined in Table 4.10. Of course, these results could include EFMs containing several of the five reactions. Next, we have chosen the case of the branch Tpep/Ttp (values in red in Tables 4.9 and 4.10) to explain these results.

In Table 4.10, the results could be considered as strange because we obtained most the same value for each branch. For example in the network Vss, 311 EFMs contain Tpep and 311 Ttp. The question is "how many of these EFMs contain both reactions and how many only one of them?". The result is 207 EFMs containing both and 104 only Tpep and 104 Ttp. The same computing has been done for all branches and provided some range of results.

® Studying association of branches

From Table 4.9, we can see that Ttp can be also branched with Vtpi. Thus, it exists a kind of combinations of branches through EFMs. To be clear, we give an example as follows.

Example of branches in EFMs

In order to understand the branching in EFMs, we show here an introductory illustration: alignment two EFMs belonging to Vac_f to see the similarities and differences between them as given follows. To facilitate the lecture we have suppressed some common reactions and kept the relevant part of the EFMs for this explanation. In these two EFMs, we can see several differences in colour. The first one follows an association of Tpep, Vgapdh_Vpgk_Vpgm_Veno and Vgapdh_p branches, the second one includes only the Ttp branch. All the other reactions are the same. This is the main observation that we can do: if we consider EFMs through the filter of branches, we can exhibit large part of EFMs which are in common. 

® Final comparison of EFMs branches

The last step of our analysis has constituted on identification of group of associated branches. Table 4.11 resumes the results for Vss, Vac_f, Vac_g and Vac_s taking into account 10 cases of combinations of branches. Vgl_out is not compared in this step because it does not share the same combinations than the other ones (probably because it concerns another part of the network).

The procedure that we have applied is the following:

• First, get in each matrix the set of EFMs containing one branch reaction, for example, Ttp and Veno subset. The number of these combinations are very small if we compare to the initial set of EFMs that we have taken into account. From Table 4.11, we can conclude that for four metabolites of interest, it exists, for example for Ttp/Veno branch, 26 different motifs of reaction combinations that characterise the pathways. These motifs build from the MCSs of size 3 allow us to gather EFMs which exhibit the same behaviour: same list of reactions plus one part of the possible combinations. It signifies that for example if the reaction Ttp is stopped for any kind of reasons, the motif Tpep + Veno subset can replace it with exactly the same other list of reactions, the same input metabolites and the same output.

Conclusion and Future works

In this chapter, we have analysed our middle size Metabolic Network of Heterotrophic Plant Cells (MNHPC) in order to find the hub reactions and the behaviours of the network when some reactions do not work. To do that, we have built five matrices of feasible pathways, EFMs, dedicated to the production of the five metabolites of interest: starch, fructose, glucose, sucrose and glutamate. The question is "what will happen when the main entrance of glucose is stopped?". By using small size MCSs, we have set of list of 8 reactions which are mandatory. These reactions are the core of the network. In the second step, the MCSs of size 3 have provided a list of 5 reactions which are branches through the network: branching points. Figure 4.11 resumes these results and shows that even the 13 reactions stay in the center of the network, their identification was not so obvious. For example, any one from mitochondria compartment belongs to this set.

To end this conclusion, we want to tell that this research was a prospective work about using EFMs and MCSs conjunction. We have had to manage a huge amount of data and spend much time to study them. From our experience and the amount of piece of code that we have written, we are ready to define a useful framework to automate the large part of this work.

® Future works

To pursue our work, first we can enlarge and complete the protocol of using MCSs to study EFMs. Currently, we have succeeded in analysing MCSs of size 2 and 3 in the context of MNHPC. The MCSs of size 4, 5 and 6 in MNHPC are sparse, but the preliminary results (see Figure 4.12) shown that the new list of reactions to take into account is not at all huge. This research has shown network organisation of heterotrophic plant cell metabolism via studies on specific metabolites/functions. Another task that could be conducted is to expand the list of these functions by adding other metabolites.

To the best of our knowledge, no available tools can visualise well the desired subsets of EFMs as well as MCSs. Using information like branch reactions could be helpful to manage new drawing algorithms.

Conclusion

In the last decade, a lot of biological networks have being built from the large scale experimental data produced by the rapidly developing high-throughput techniques as well as literature and other sources. This not only opens many chances for bioinformaticians but also is one of challenges that experimenters have to face with. Computer scientists have employed computerised tools, especially graph theory, to model such biochemical reaction graphs and to analyse their desired behaviours. This PhD research was set out to explore topological analysis of metabolic networks, the concepts of EFMs and MCSs and to propose the combination of these methods. Large set of connected metabolic pathways are well-known to be difficult to analyse. Computing the global structural measures belonging to graph theory aims to evaluate the complexity level of our networks and to determine the network structure (like random, small-world or scale-free. . . ). This computation could be used to determine whether topological/structural analysis might help us studying network organisation. But from our concrete experiences, with different network sizes: mitochondria muscle and liver and two different versions of plant cell network, these parameters revealed being not really efficient to study network organisation. Consequently, we have turned to compute feasible pathways, the EFMs, and their dual representation, i.e. set of reactions, which are able to stop these feasible pathways, i.e. the MCSs. We have done several measures on the set of EFMs: finding reaction hubs via computing frequency of occurrences of the reactions and comparing the results among different networks; comparing the length of the EFMs and the size of the MCSs. From this first step of analysis, we have stated that even the result size of MCSs remains smaller than EFMs, several thousands of solutions have to be analysed.

In the second step, we have proposed a new way to analyse EFMs with the help of MCSs. The main idea behind the combination of two methods is "at least one of the reactions belonging to a certain minimal cut set has to be included in all EFMs". Thus, if one of these reactions is stopped, the other ones has to be maintained to ensure feasible pathways happening. Apart from the comparable global results for the mitochondria and plant cell networks, the main application has been performed on the metabolic network of heterotrophic plant cell. At the next step, biologists have selected 5 metabolites of interest: starch, fructose, glucose, sucrose and glutamate and their production without the help of glucose entrance has been studied. We have computed both the set of corresponding matrices of EFMs and the set of MCSs. Using the MCSs of size 2, we have established a list of 8 reactions which are mandatory to produce the 5 metabolites in absence of glucose. Using the MCSs of size 3, we have defined a list of 5 reactions which are alternative branches that pathways have to follow. By applying these results to the set of feasible pathways to produce the 5 metabolites of interest, we have identified sets of alternative motifs in pathways which are equal otherwise. Only some tens of motifs of branching points have been identified in our sets of EFMs that reduces a lot the number of cases to analyse.

Structural network analysis attempts to elucidate functional features from the network topology. This type of analysis investigates the general constraints on network behaviour. The scheme proposed by combination of identification of feasible routes and ways to cut these routes, provides a filter that can be used to know alternative solutions to produce metabolites of interest. One of the main problems at this time is that community of biologists wants to reach the level of the cell/organism network to analyse and to experiment functioning of metabolic network. But a list of several tens or hundred reactions produces a level of complexity which is totally different than the one they are accustomed. The resulting graph of reactions is never possible to understand just by looking it. The generic tools coming from graph theory are difficult to reuse in this context. The specific tools as EFMs and MCSs are not really popular in the community of biologists and one of the main reasons is that it misses concrete procedures and interest applications to use them. We have found a way to characterise a metabolic network from a list of mandatory reactions, the core of the network, and a list of branching points, to control a set of objective reactions. As the future work, we can propose a framework to automate this procedure and as the further perspective to reuse this information to support automatic drawing algorithms for metabolic networks which are mainly still missing. 

Index

B.5 Computing tools

In order to do all experiments in this research, we have used some computing tools as well as programming resources as follows: Berge's algorithm generates (minimal) transversal hypergraphs using Proposition C.1 as follows.

• Metatool • CellNetAnalyzer v 1 v 2 v 3 v 4 v 5 v 6 v 7
For a hypergraph H = {e 1 , e 2 , ..., e m } let H = {e 1 , e 2 , ..., e i }, i = 1, 2, ..., m. We then have Tr(H i ) = min(Tr(H i-1 ) ∨ Tr(e i )) = min(Tr(H i-1 ) ∨{{v} : v ∈ e i }); and Tr(H) = Tr(H m ). This implies a straightforward iterative computation process -the Berge-multiplication algorithm. A pseudocode listing is given in Algorithm C.1.1.

Note that the complement of an independent set in a hypergraph is a transversal. The complements of the maximal independent sets are the minimal transversals.

Applications of hypergraph have been deeply studied for two decades by Gallo et al. [START_REF] Gallo | Directed hypergraphs and applications[END_REF][START_REF] Hagen | Algorithmic and Computational Complexity Issues of MONET[END_REF]. Hypergraphs are also used to present biological, ecological and technological systems where the use of complex networks gives very limited information about the structure of the system [START_REF] Estrada | Complex Networks as Hypergraphs[END_REF]. Especially, applications of hypergraph into biological networks can draw on its own capability of modelling multiple relations of biological objects [START_REF] Klamt | Hypergraphs and Cellular Networks[END_REF][START_REF] Ramadan | A hypergraph model for the yeast protein complex network[END_REF]. Therefore, we see that the directed hypergraph is truly a useful and evident representation of metabolic networks.

C.2 Petri Net

A Petri net (PN) is graphically represented by a directed bipartite graph with two different types of nodes, called places P = {p 1 , ..., p n } and transitions T = {t 1 , ..., t m } [30, 64]. General speaking, places play the role of resources of the system, while transitions correspond to events that can change the state of the resources. Places (drawn as circles) classically model passive system elements such as conditions, states, or biological species (e.g. chemical compounds, for example, metabolites, proteins, complexes). Transitions (drawn as squares and rectangles) typically stand for active system elements such as events or chemical reactions (e.g. stoichiometric chemical reactions, complex formation, de-/phosphorylation). Weighted arcs (directed edges) connect places with transitions, depicting the relations between resources and events. The arcs of the graph are classified (with respect to transitions) as:

• input arcs: arrow-headed arcs from places (input places) to transitions.

• output arcs: arrow-headed arcs from transitions to places (output places).

• inhibitor arcs: circle-headed arcs from places to transitions.

A PN model can be formally defined in the following way [START_REF] Heiner | Petri net based model validation in systems biology[END_REF]:

Definition C.6. A PN model is an 5-tuple N = {P , T , F , W , M 0 }
where • P is the finite set of places;

• T is the finite set of transitions (the places P and transitions T are disjoint, T ∩ P = ∅);

• F ⊂ (P × T ) ∪ (T × P ) is the flow relation;

• W : F → (N\{0}) is the arc weight mapping;

• M 0 : P → N is the initial marking representing the initial distribution of tokens. This is a function that associates with each place a natural number. • In each such split operation it chooses a set S i with |S i | ≥ 2 and splits this set into two non-empty parts S and Y .

• S i is then removed from T and replaced by X and Y .

• X and Y are connected by an edge, the edges that before the split incident to S i are attached to either X or Y .

In the end this process gives a tree on the vertex set V . Details of the split operation can be described as below:

• Select a set S i in the partition such that it contains at least two nodes. Let u and v be two distinct vertices of S i .

• Compute the connected components of the forest obtained from the current tree T after deleting S i . Each of these components corresponds to a set of vertices from V .

• Consider the graph H obtained from G by contracting these connected components into single nodes.

• Compute a minimum u -v cut in H. Let A and B denote the two sides of this cut.

• Split S i in T into two sets/nodes S u i := S i ∩ A and S v i := S i ∩ B and add edge {S u i , S v i } with capacity f H (u, v). 

C.3.1.4 Determining a minimum cut in directed weighted graphs

A natural question to arise from GH algorithm is whether some of the information computed in one maximum flow computation can be reused in the next one. Hao and Orlin [START_REF] Hao | A faster algorithm for finding the minimum cut in a graph[END_REF] (HO) answered this question in the affirmative. The key new idea is to use a push-relabel maximum flow algorithm to implement GH, and use the preflow and distance labelling from the last max-flow computation as a starting point for the current one. They consider the problem of finding the minimum capacity cut in a directed network G with n nodes. One can use a maximum flow problem to find a minimum cut separating a designated source node s from a designated sink node t, and by varying the sink node one can find a minimum cut in G as a sequence of at most 2n -2 maximum flow problems. They then show how to reduce the running time of these 2n -2 maximum flow algorithms to the running time for solving a single maximum flow problem. The resulting running time is O(mnlog(n 2 /m)) for finding the minimum cut in either a directed or an undirected network. the graph obtained by contracting s and t. Then, a minimum cut of G can be obtained by taking the smaller of minimum s -t cut and minimum cut of G/s, t. By this theorem, Stoer and Wagner comes up an algorithm. In each iteration of the algorithm, get two vertices which have a minimum cut to separate them, then contract these two vertices. This algorithm follows the theorem stated above. If the minimum cut is not current s -t cut, then it should be in the graph G/s, t. The following is the pseudocode of the min-cut step in SW algorithm.

Ariyoshi [START_REF] Ariyoshi | Cut-set graph and systematic generation of separating sets[END_REF] defined a cut set graph with respect to a given graph G such that each edge of the graph corresponds to a pair of basic branch cut sets in the relation that the ring sum of these cut sets coincides with an incident branch cut set of G. A basic cut set can be generated by taking a ring sum of a number of incident cut sets. Deo [40] presented a method to be similar to the simple technique of finding a set of fundamental circuits. In the case of circuits, the other circuits in a graph can be created due to combinations of two or more fundamental circuits. Therefore, the term fundamental cut set is introduced in the correlation between the generating circuits and finding all minimal cut sets. A cut set S containing exactly one branch of a spanning tree T is called fundamental cut set with respect to T . Sometimes a fundamental cut set is also called a basic cut set. Every branch of a spanning tree defines a unique fundamental cut set. Using theorem 4.4 in [40], we have a method of generating additional cut sets from a number of given cut sets. Staring with two cut sets in a given graph, make a ring sum on them to have another one by this method. And the method is to use a vector spaces of a graph.

A Gaussian elimination method was presented by the author in [START_REF] Martelli | A Gaussian Elimination Algorithm for the Enumeration of Cut Sets in a Graph[END_REF]. By giving a suitable algebra for cut sets, it is possible to reduce the problem of enumerating all cut sets to the problem of solving a system of linear equations in this algebra. This method seems quite similar to the way Deo [40] applied to generate all cut sets. The author proposed the method for both directed and undirected graph, but he made an experiment with undirected graph. We can use this point to apply for our problem.

The algorithm of [3,[START_REF] Arunkumar | Enumeration of All Minimal Cut-Sets for a Node Pair in a Graph[END_REF][START_REF] Jasmon | A Method for Evaluating All the Minimal Cuts of a Graph[END_REF][START_REF] Tsukiyama | An algorithm to enumerate all cutsets of a graph in linear time per cutset[END_REF] based on a blocking mechanism to determine all minimal cut sets of an undirected graphs, handle non-planar graphs with multiple source and sink nodes based on basic minimal paths.

C.3.3.3 Using Gomory-Hu algorithm

Gomory-Hu algorithm, which will be discussed later in Appendix C.3.1.2, can allow us to find all minimum cut sets in undirected unweighted graph. These approaches can be enhanced for finding all cut sets in a directed graph with or without weights. The former is to extend Hao-Orlin algorithm assigning the weights of all edges to be 1. Then at each step of choose a next vertex in processing, we have several options (e.g., we have more than one vertex can be choose). The latter is to apply Deo's theory and the authors as shown in the previous sections that construct an algebra C = (S, +, -) consists of a set S with two binary operations, sum and multiplication. formula Equation (C.4.1) is minimised

k-1 i=1 k j=i+1 v 1 ∈ C i v 2 ∈ C j w({v 1 , v 2 }) (C.4.1)
The k-cut problem is an NP-complete problem which consists of finding a partition of a graph into k balanced parts such that the number of cut edges is minimised.

C.4.4 Image Segmentation of Computer Vision

Image Segmentation is the process of dividing an image into parts that have a strong correlation with objects or areas of the real world. Figure C.4.11 gets depicts how to get round line of cow 3 . By cutting an image into several segments4 , we treat every part simply and dependently in computer vision [START_REF] Boykov | Interactive organ segmentation using graph cuts[END_REF][START_REF] Eriksson | Image Segmentation Using Minimal Graph Cuts[END_REF][START_REF] Felzenszwalb | Efficient Graph-Based Image Segmentation[END_REF][START_REF] Shi | Normalized Cuts and Image Segmentation[END_REF]. Take into account the MCSs values computed using The method used [2] in the computational models, they are the same (equals 550). Only 4/50 reactions (means lines) have the same value with the exception of 16/50 zero lines. It should recall that these MCSs do not completely contain any Glc_up because they are directly computed from the EFMs matrices without Glc_up at the initial. Summary up, the group of three reactions has the same set of the feasible routes to generate them.

E.3.0.2 Vac_m, Vala_out and Vasp_out

Contrast to the first case study, the frequency distributions of the reactions in the MCSs set are likely similar (95, 99 and 99 of Vac_m, Vala_out and Vasp_out respectively) while the ones of the EFMs are distinct from each others. Some values of Vac_m differ from Vala_out and Vasp_out. Only ala_up is in Vala_out not in the two others. The values of Vala_out and Vasp_out are almost identical except ala_up. Thus we verify the probability of two sets consistent if ala_up removes out the MCSs. Using the method [START_REF] Ahuja | Network flows: theory, algorithms, and applications[END_REF] in the computational model, the results indicated in the following are small differences between Vala_out and Vasp_out

< Glc_up Vmdh Vriso_p_Vtkx_p_Vtald_p < Glc_up Vmdh Vpgi_p --- > Glc_up Vme Vriso_p_Vtkx_p_Vtald_p > Glc_up Vme Vpgi_p --- < Glc_up Vepi_p Vmdh > Glc_up Vepi_p Vme --- < Glc_up Tg6p Vmdh > Glc_up Tg6p Vme
Similarly, we tried to compare Vala_out with Vac_m and Vasp_out with Vac_m. The differences are not so much.

Vac_m and Vala_out

> Glc_up Vme Vriso_p_Vtkx_p_Vtald_p > Glc_up Vme Vpgi_p --- > Glc_up Vepi_p Vme --- > Glc_up Tg6p Vme

Vac_m and Vasp_out

> Glc_up Vmdh Vriso_p_Vtkx_p_Vtald_p > Glc_up Vmdh Vpgi_p ---n réseu métolique est onstitué d9un ensemle de rétions @équtionsA qui dérivent une suite de trnsformtions iohimiquesF tusque très réemmentD l9éhelle des réseux étudiés se situit u niveu d9une voie métoliqueF fien que ertines voies puissent être reltivement omplexesD de l9ordre d9une dizine de rétions impliquéesD le risonnement onduit pour leur nlyseD se sit sur des lgorithmes supposnt un omportement linéaireD 9est à dire que les yles étient éliminés et que lorsque deux voiesD deux rnhesD étient possilesD hune étit nlysée séprémentF hès que les iologistes ont désiré réliser es nlyses à l9éhelle d9un orgnisme @ou d9un orgnelleA il est devenu indispensle de repenser les méthodes et plus enore les outils pour onduire es nlysesF in e'et e hngement d9éhelle provoque un hngement drstique du niveu de omplexité du réseu étudié et ps seulement un roissement quntittif du nomre de rétions à nlyserF n réseuD quel qu9en soit s nture E réseu soilD routierD grille de proesseurD proessus industrielsD etD peutEêtre modélisé pr un grpheD orienté ou nonF ves outils mthémtiques ou informtiques dédiés ux grphes sont don utilisles pour modéliser et nlyser les réseux iologiquesF hns ette thèseD nous dérirons dns un premier temps les spéi(ités des réseux métoliques et le type de grphe déqut à leur modélistionF uis nous étudierons les di'érentes formlisE tions des grphes d9intertions et nous montrerons que l méthode des modes élémentires de )ux est un outil puissnt pour nlyser es grphes à l9éhelle des systèmesF xous orderons églement les ensemles de oupes minimlesD outils omplémentires ux modes élémentires de )uxF v dernière prtie de ette thèse ser onsrée à une extension de ette méthode que nous proposonsF gette extension nous permet de dé(nir des modes élémentires de métolitesF outes les méthodes ont été utilisées sur plusieurs réseux métoliquesD 3 réseux qui modélisent le méE tolisme mitonhondril dns di'érents tissus X musleD foie et levureD et un réseu qui modélise le métolisme entrl roné des plntesF our et exempleD nous délinerons plusieurs situtions suivnt les di'érentes produtions de sure ou d9ides minées qui ont été étudiéesF Description du graphe d'interactions rditionnellementD l9nlyse d9un réseu métolique onsiste à réunir un ensemle de rétions de l forme X Reactioni : substrat1 + substrat2 = produit1 + produit2 gette rétion dérit l trnsformtion iohimique des deux métolites substrat1 et substrat2 en deux utres métolites produit1 et produit2F yn peut ssoier un nom à ette rétionD l desription du réseu ser don une liste de rétions similires à elle iEdessousF xom étion ustrts roduits qluokinse X qluose C e a qluoseET C eh ssomerse X qluoseET a prutoseET prutokinse X prutoseET C e a prutoseETihosphte C eh uisque l9ensemle des rétions à l9éhelle d9un orgnisme peut être très grndD on déompose et ensemle en unité fontionnelle ppelée voie métaboliqueF gette déompositionD prfois riE trireD fit ppel u onept de fontion iologiqueF our simpli(erD on peut dé(nir une fontion iologique omme un ensemle ordonné de rétions onournt à un même ojetifF r exemple l prodution de sure @gluoseA pour l glycolyseF Réseau et graphe : v9outil nturel en informtique pour représenter des intertions entre di'érents éléments est le grpheF n grphe est dé(ni pr un ensemle (ni de sommets ou noeuds V @ou vertiesA et un ensemle E d9rêtes @ou edgesA ve E ⊆ V xV F ves rêtes représentent les I reltions entre les sommets Y les rêtes et les sommets peuvent être étiquetésF ves rêtes peuvent églement être vluéesD on prler lors de poidsF n grphe peut être orienté ou non et supporter plusieurs types de sommetsF v question de représenter un réseu iologique pr un grphe pose l question du hoix des entités iologiques qui seront ssoiées ux sommets et ux rêtesF hns le dre du métolismeD il existe plusieurs possiilitésF ves sommets peuvent être les rétionsD on prler lors de grphes de rétionsD ou ien les métolitesD nommé dns e s grphes de métolites ID 9est l représenttion lssique que l9on peut trouver dns l littérture en iologieF yn peut ussi réer un grphe ppelé iEprtie ve deux types de sommetsD les métolites et les rétionsF vorsque les sommets représentent uniquement des métolitesD les rétions sont positionées sur les rêtesD 9est l représenttion hoisie dns l (gure IF gomme on peut le voir dns ette (gureD dès que l rétion plus d9un sustrt et un produitD une sitution très fréquenteD le grphe généré est ppelé hypergrapheF i ette struture est isément ompréhensile visuellementD son tritement pr des méthodes lgorithmiques de l théorie des grphes est plus omplexeD ussi on trduir le plus souvent un hypergraphe pr un grphe iEprtieD expliitnt l9ssoition de plusieurs sustrts dns une rétion ou l génértion de plusieurs produitsF g9est le hoix qui été fit pr les di'érents projets interntionux de représenttion de onnisE snes sur les réseux métoliques omme uiqq @uyoto inylopedi of qenes nd qenomesA ou wetgy @inylopedi of wetoli thwyAF v (gure I montre à nouveu l hîne de l glyolyse telle qu9elle pprît sur le site de uiqqD les rétions sont les noeuds retnguliresD les noms des rétions sont insérés dns es retnglesD les métolites sont symolisés pr les petits noeuds rondsD leur nom est insrit à oté de e rondF ves )êhes sur les rêtes permettent de spéE i(er l réversiilité des rétionsD informtion importnte pour omprendre le jeu de ontrintes qui s9exerent sur les intertionsF Graphes bi-partie : n réseu de etri P est un modèle ien onnu en informtique de grphe iEprtie qui permet l simultion du fontionnement d9un réseu sur un modèle de proE dutionGonsommtionF lusieurs uteurs QD R ont montré l9intérêt de et outil pour l modélisE tion des réseux métoliques r un élément importnt de l dé(nition de es réseux est qu9ils dérivent l onsommtion de moléules @les sustrtsA et l prodution de nouvelles moléules @les produitsA qui deviendront à leur tour les sustrts d9utres rétionsF ves réseux de etri sont don prtiulièrement dptés pour représenter es phénomènes surtout lorsqu9on désire simuler le fontionnement d9une ou plusieurs voies métoliques intergissnt et mises en onurrene pour l9utilistion de moléules ommunesF wlgré es vntgesD e n9est ps l9outil que nous vons reE tenu pour nos études r insi que nous l9vons ditD les réseux de etri sont utilisés en simultion et notre trvil sur l9nlyse des réseux métoliques onernent plutôt les spets sttiques X strutureD topologie pour lesquels les réseux de etri ne sont ps oligtoirement les plus dptésF outefoisD nous verrons qu9il existe des liens forts entre les outils que nous vons utilisésD les modes élémentires de )uxD et ertines propriétés des réseux de etriF Complexité n des éléments fondmentux de l omplexité d9un réseu iologique est l onurrene à lquelle se livrent di'érentes rétions pour onsommer le même métolite mis ussi le fit que le même métolite peut être produit pr di'érentes rétionsF ne première pprohe de l mesure de ette omplexité peut être otenue pr di'érents éléments de rdinlité des noeuds omme le nomre de sustrtsGproduits prtiipnt à une rétion donnée ou ienD le nomre de rétions di'érentes reliées u même métoliteF i l9on onsidère un réseu métolique omme une grphe iEprtieD FEàEdF ynt deux types de n÷udsD l9rité moyenne suivnt les types est un on inditeur de l di'érene de omplexité perue intuitivementD suivnt qu9on onsidère le réseu des rétions ou des métolitesF fien qu9il n9existe ps de règle sur le nomre de métolites impliquéesD sustrts ou produitsD pr rétionD l9expériene montre que le plus souvent l9ordre de grndeur du nomre de moléules impliquées se situe entre 2 et 5G6F v9rité moyenne des n÷uds rétions vrie don P Figure I ! ghîne de l glyolyse dns l se de donnée uiqq Q peu et dns nos exemples de réseuxD on peut onstter que l9rité moyenne des n÷uds rétions est indépendnte de l tille du réseuF sl en est tout utre pour l9rité des n÷uds métolites qui peut se révéler drstiquement di'érente de elle des n÷uds rétionsF ges métolites fortement utilisés dns le réseu sont générlement ppelés métolites hubs en ei qu9ils deviennent des inontournles u moment de luler le omportement du systèmeF Les modes élémentaires de ux ves premiers trvux de notre équipe sur l9utilistion des modes élémentires de )ux @efmsA dns le dre de l9étude du métolisme énergétique de l mitohondrie ont fit l9ojet de l thèse de ine érèsF etuellementD nous nous folisons sur l9étude du métolisme roné de l plnteF v méthode d9identi(tion des modes élémentires de )ux d9un réseu métolique onsiste à déterminer les voies métoliques dmissiles de e réseu à prtir de s mtrie de stohiométrieF ves seules informtions utilisées pr ette méthode sont l topologie du réseu @oe0ient de stohiométrieD réversiilitéGirréversiilité des rétionsA et ne néessite ps de onnissne des prmètres inétiques des rétionsF yn retiendr omme prinipe de se de ette méthode qu9elle détermine les chemins uniques et minimaux du grphe en respetnt l ontrinte que le réseu métolique doit être à l9étt sttionnireF gette nlyse topologique permet de rtériser des propriétés du réseu omme l roustesse du réseu @ou son niveu de redondneA SD les rétions qui opèrent toujours @ou jmisA ensemleF F Fv reherhe de voies métoliques ou suites de rétions orrespondnt à une fontion iologique longtemps été onsidéré omme trivile dns l mesure ou les voies onsidérées orrespondient ux ensemles de rétions @le plus souvent de l9ordre d9une dizine de rétionsA ien onnus dns l littértureF ve pssge à l9éhelle du système olige à onsidérer désormis des ensemles pouvnt ller jusqu9à plusieurs entines de rétionsF gei onduit inélutlement à l prodution de plusieurs milliers de solutionsF telling et lF S ou ilhelm et lF T ont étudié les onséquenes de tels résultts en terme de mesure de roustesse des réseux et pporté un nouvel élirge sur l fçon de onsidérer l roustesse des fontions iologiquesF ve tleu I iEdessous résume pour hun des 4 réseux que nous vons étudiés le nomre de rétions et de métolites qui les omposent et le nomre d9efms que nous vons trouvésF ves luls des efms ont été otenus grâe u logiiel regifmtool 1 F gette nouvelle version du logiiel ifmtool 2 U permet de luler très e0ement de très grnd réseuD éventuellement en utilisnt des règles logiques de ontrintesF i historiquement es luls étient rélisés ve l9ide du logiiel mettool puis de s nouvelle version gellxetenlyserD les limittions dûes à l9implémenttion wtv des lgorithmes rendent e logiiel très peu utilisle pour les réseux de grndes tillesF tungreuthmyer et l V ont montré l9intérêt de l9implémenttion de regifmtools dont les temps de lul sont de l9ordre de quelques dizines de minutes qund l9implémenttion wtv requière plusieurs heuresD qund les luls se terminentD e qui n9est ps toujours le sF wlgré tous les prolèmes usés pr l génértion de e grnd nomre d9efmsD nous tenons à souligner leur réel intérêt en rppelnt que dns l thèse de ine érès WD il été montré que dns l9ensemle des efms des 3 réséux modélisnt le métolisme mitohondrilD il existe plusieurs efms orrespondnt u mutnt dérit pr wimmer et lF IHF ge mutnt permet de produire de l9ATP grâe u yle de ures @rétion R12A en l9sene d9ATP synthase @rétion R3AF rouver des efms orrespondnt à des voies alternatives prouve formellement que es voies sont vlides dns le réseu et don peut onforter les résultts iologiques en éloignnt le spetre du résultt otenu pr hsrd ou erreur de mesureF Traitement des résultats obtenus ve lul des modes élémentires de )ux d9un réseu métolique donné fournit une nouvelle vision de e grphe en permettnt pr exemple d9expliiter les shunts ou les solutions lterntives existntsF he nomreux trvux tentent tuellement de rendre l9nlyse plus isée en déoupnt pr exemple le réseu en modules plus petits IIF i ette solution rend prfois les résultts plus intelligilesD elle l9inonvénient de ne ps être omplète puisque ien évidemment les solutions interEmodules @qui ne sont ps oligtoirement l somme des solutions de hque moduleA ne sont ps donnéesF sl pprît don que l mise en oeuvre d9outils d9nlyse utomtique des ensemles d9efms otenus est indispensle pour être réellement utilisle dns le s des réseux fisnt intervenir plusieurs voiesF Analyse statistique v9nlyse de grndes msses de données est très générlement rélisée u moyen de sttistiques desriptives qui permettent de mieux ppréhender les résultts otenusF hns ette optiqueD nous vons rélisé pour hque réseu métolique étudiéD un ensemle de tritement (n de rtériser les résultts otenus lors du lul des efmsF Calcul des longueurs moyennes ves efms étnt des hemins minimuxD leur longueur est un on inditeur de l somme des trnsformtions néessires et su0sntes pour ller d9un métolite entrant à un métolite sortant r il n9y ps à rindre de bruit usé pr des redondnes ou ylesF xous pouvons oserver non seulement une ertine vriété entre les 3 exemples mitohondriux mis surtout lorsqu9on nlyse les résultts otenus pour le réseu de l plnteD que l longueur évolue ve l tille du réseuF ge résultt n9est ps forément évident r ugmenter le réseu signi(e en générl jouter des voies métoliquesD enore une fois souvent étudiées séprémentD et non étendre hune de es voiesF yn peut expliquer ette ugmenttion de l tille des efms pr le fit que l9on doit équilirer les métolitesD y ompris eux souvent négligés omme le CO2 ou l9ATPD et qu9en joutnt des rétions on joute très souvent de nouvelles ontrintes sur es métolitesF S Calcul des occurences des réactions our mieux rtériser l struture d9un réseuD on peut exminer le tux de prtiiption d9une rétion à l9ensemle de solutions otenues pr le lul des efmsF yn peut lors s9intéresser ux rétions toujours @ou mssivementA présentes qui pourrient être ssimilées à des sortes de hubs dont l9tivité serit des points de ontrôle du réseuF ves rétions ne prtiipnt à uun efm sont églement intéressntes puisque el signi(e qu9uun hemin vlide dns le grphe ne peut les utiliserF gel pose lors l question de l vlidité de l desription du réseuF e ette osionD nous soulignons que l mise u point de ette desription X hoix des métolites internes ou externesD hoix de l réversiilité ou non des rétionsD est un point essentiel de l modélistion des réseux métoliques et que le lul des efms est un outil extrêmement utile pour véri(erGvlider ette modélistionF in e'etD en détetnt insi des rétions ne pouvnt jmis prtiiper à un hemin équiliréD e lul permet d9identi(er des onnexions dns le grphe qui ne sont ps vlidesF sl n9est ps possile d9envisger de déouvrir es prolèmes simplement en regardant le réseu r le grphe est d9une tille trop importnte pour elF Analyse des équations bilan. sl est possile d9otenir à prtir d9un efmD l9éqution iln qui lui orrespondF ve terme éqution iln doit ii être pris u sens iohimiqueD 9est l9ensemle des métolites externes en entréeD néessires à l rélistion de l9efm et l9ensemle de eux qui sont produitsF xous vons nlysé ette informtion r il est intéressnt de noter que ien que hque efm soit uniqueD el onduit à des doulons dns l9ensemle des équtions iln 3 pportnt insi une preuve irréfutle que des ensemles di'érents de rétions @formnt des voies vlides di'érentesA onduisent ien à des ensemles de métolites d9entréeGsortie identiquesF einsiD dns le s de mesure de )ux métoliquesD il est indispensle de prendre en ompte que l seule mesure des métolites externes se grntit ps l9identi(tion des protéines qui ont été tivéesF g9est ussi l preuve que lorsque ertines protéines sont non disponibles pour e'etuer une rétionD que e soit pour des prolèmes de onformtion ou pre que l9ensemle des sustrts néessires ne sont ps essilesD il est tout à fit possile qu9une variation de l voie métolique se mette en ple de fçon plus ou moins permnenteF our les réseux étudiésD en moyenne 4 à 5 efms exhient l même éqution ilnD ve ien sûr des efms qui restent uniques et un mximum du nomre d9efms ynt l même éqution iln pouvnt ller jusqu9à 10F g9est ette oservtion qui nous onduit à onsidérer les efms u trvers des métolites qu9ils utilisentF Ensembles de réactions communs à diérents efms ve lul des efms permet d9identi(er des groupes de rétions qui sont toujours ssoiés dns un hemin vlide @ppelés subsets dns le logiiel mettoolAF fien qu9en générl limité à un petit nomre de rétionsD el permet tout de même d9otenir quelques simpli(tions du réseuF hns nos réseuxD nous vons trouvé pour le musleD le foieD l levure et l plnteD respF 7D 8D 6D 12 subsets réduisnt le nomre de rétions à respF 26D 28D 26D 52F i des rétions ne sont ps toujours ssoiées dns un efmD elles peuvent l9être souventD onstruisnt insi des motifs de rétions ommuns à un groupe d9efmsF v9identi(tion de es motifs fit l9ojet de l setion suivnteF Recherche des motifs dans les efms sl existe un grnd nomre de méthodes de lssi(tion qui permettent de onstruire des ensemles en fontion de ritères de similitudeF hes méthodes tel que le lustering hiérrhique sont ourmE ment utilisées dns des domines vriés E on iter l génomique ou l phylogénie dns le domine de l iologieF wlheureusementD les rtéristiques même des modes élémentires de )ux X uniques et miE nimuxD en font des éléments di0iles à lsser pr les méthodes lssiquesF r exemple si l9on 3. On notera que le logiciel Metatool a choisi de ne pas citer les métabolites qui sont à la fois en entrée et en sortie comme cela est généralement la norme en biochimie. Cette remarque est importante car deux bilans peuvent sembler identiques alors que ces métabolites équilibrés en entrée/sortie ne sont pas les mêmes. Il faut donc être vigilant sur ce point.

T onsidère les méthodes de lustering lssiques qui s9ppuient générlement sur l onstrution d9ensemles disjointsD tenter de réliser e type de onstrution ve des efms se révèle qusiment impossile et le plus souvent fournit suivnt notre expérieneD un résultt de peu d9intérêtF in e'et si l9on onsidère dns le grphe d9intertionsD d9une prt leur propriété d9être uniques et miE nimux et d9utre prt le fit que le nomre de solutions soit très grnd reltivement u nomre d9élémentsD il est évident qu9un ertin sousEensemle de rétions est ommun à di'érents efmsF n rpide test sur d9utres outils lssiques omme l onstrution de treillis de glloisD se révèlent tout utnt déevntD r l9explosion omintoire du nomre de sousEensemles interdit de tel lul sur les ensemles d9efms de l tille de eux que nous mnipulonsF outefois désirnt otenir une lssi(tion des nos efmsD nous vons onservé l9idée de trouver une méthode de type lustering qui soit utilisleF tiliser de telles méthodes suppose l dé(nition d9une métrique omme ritère de ressemlne entre deux élémentsF ve odge de l présene ou de l9sene d9une rétion dns un efm est odée pr une vleur 0 ou 1 mis omme l rétion peut être utilisée de fçon réversile dns l9efmD l vleur -1 est utilisée pour oder ette situtionF xous désirons un ritère qui prenne en ompte e s et ussi le fit que deux efms de longueur 3 ynt 2 rétions en ommunD sont plus ressemlnt que deux efms de longueur 2 ynt 1 une rétion en ommunF Nouvelle approche basée sur les coupes de graphes hes trvux réents on ouvert une nouvelle voie dns l9nlyse des voies métoliques grâe à un lul dul des modes élémentires X le lul des oupes minimles du grphe d9intertionsF gette thèseD porte en prtie sur l9étude de et outilF ve lul de Minimal Cut Sets ou wgsD intègre l même hypothèse que les modes élémentires de )ux en e qui onerne l9étt stle du réseuxD mis u lieu de luler les hemins possilesD il s9git lors de luler les ensemles minimux de rétions qui déonnetent e grpheF sl est possile de demnder e lul pour une fontion ojetive ou sur l9ensemle du grpheFve pri est que et ensemle ser plus petit que elui des modes élémentiresD mis ussi que l tille des wgs ser en moyenne plus petite que elle de ipws et don permettr une nlyse plus iséeF xous vons rélisé le lul des wgs sur nos di'érents réseuxF v tle Q montre que pour des réseux dont le nomre de ipws n9est ps gigntesqueD de l9ordre de quelques milliersD nous n9oservons mlheureusement ps de diminution du nomre d9éléments à oserverF outefoisD dns le s du réseu de l plnte dont le nomre de ipws dépsse l entine de milliersD non seulement le nomre de wgs est inférieur mis surtout l tille des wgs ne semle ps roître ve l tille du réseuD e qui nous semle être le résultt le plus intéressnt de ette méthodeF wlheureusement l reherhe de motifs ommuns grâe à l9lgorithme egyw ne donne ps de résultt stisfisntD ei est très prolement dû à l petite tille des wgs ne permettnt ps U l même lierté sur les prmètres de et lgorithme et rendnt son réglge très délitF xous vons rélisé des sttistiques desriptives des wgs otenusF einsi il est toujours intéressnt de répertorier les rétions qui n9pprtiennent jmis à un wgF gel signi(e que le réseu ne peut jmis être déonneté u moyen de ette rétionF yn peut don en déduire que onstruire un mutnt qui inhiirit es rétions n9urit ps d9e'et sur le omportement générl du réseu métoliqueF ves rétions toujours présentes dns les wgs sont pr illeurs indispensles u fontionnement du réseuD mis ei peut ien sûr être églement oservé dns les efmsF ves ouples ou les triplets de rétions @on ne onsidèrer ps les wgs de tille 1 dont l9interpréttion est trivileA sont intéressnts à étudier r ils fournissent un résultt très file à exploiter pour les iologistesF n ouple ou un triplet de rétions qui onstituent un wgs peut ouper toutes les voies possiles dns un réseuD ette informtion permet de mieux omprendre l9tivité de e réseu surtout si es rétions ne sont ps diretement reliés ux mêmes métolitesF our mieux expliquer ei voii un exemple très simple du ge yle @ou yle de uresAF Étude de cas : production de sucres et acides aminées dans le fruit de tomate e prtir des résultts otenus à l fois dns le lul des ipws et des wgs sur le réseu donné en nnexeD nous vons séletionné les ipws permettnt l prodution de 6 di'érents sustrts ynt un intérêt dns l9étude du métolisme du fruit de tomte dns le s où il n9y ps d9entrée de Glucose @rétion qlupAF our e fireD nous vons séletionné pour hque sD les ipws ontennt l rétion responsle de ette produtionF ges sustrts sont qluoseD prutoseD uroseD qlutmineD trh et les rétions onernées sont respetivement X D sD mD ssD gloutF v tle Q montre pour hque s les e'etifs de ipws onernésF in e qui onerne les wgsD nous vons séletionné les wgs qui ontiennent qlup @puisque eluiEi est loquéA et l rétion iléeF e prtir du résultt des wgs de tille PD nous vons identi(é V rétions qui prtiipent toujours à l prodution des S metolites d9intérêt en sene d9entrée de gluoseF ges rétions peuvent être onsidérées omme le oeur du réseuF ges rétions sont X VpgiD VfbpD Vpgi_pD VrbcoD Tg6pD ValdD Vriso_p et Vepi_pF in nlysent les wgs de tille QD joutent une liste de 5 rétions qui sont ensuite une des lterntives possile pour les di'érent hemins possilesF v9utilistion onjointes des ipws et des wgs nous permet don d9identi(er des rétions hus dns e réseuF our terminer e hpitreD nous voudrions souligner l9importne de l qulité du ode des di'érents outils utilisésF ves versions les plus réentes des onepteurs de l méthode des modes élémentires ont fit le hoix de privilégier des versions utilisnts un environnement wtlD mlE heureusement peu déqute pour supporter les luls lourdsF xon seulement ette iliothèque n9est ps très rpide mis surtout mlgré une doumenttion 0rmnt que dns s version unixD l tille de l mémoire n¡étit limitée que pr l mémoire disponile sur l mhineD nous vons onstté qu9il n9en étit rienF ves luls sur le réseu de l plnte sont qusiment impossile à otenir ve les versions de gellxetenlyser sous wtlF port heureusementD il existe d9utres versions du lul des ipwsD entre utre elle érite en lngge jv pr wro erzer U mis elle est peu doumentéeF lus réemmentD ghristin tungermeyer V produit une iliothèque de fontions intégrnt ipwtools et une extension qui permet d9érire un ensemle de règles loE giques pour luler les ipws ve des ontrintes fontionnellesF hns le même environnementD mis ette fois érit en lngge gD on dispose ussi du lul des wgs et e de fçon très perforE mntesF v9ensemle des luls regipwtools et msglultorD font en générl psser les luls de plusieurs heures ve gellxetenlyzer @qund ils terminentA à moins d9une minuteF 

Conclusion

v9nlyse de l struture sttique des réseux permet de mieux identi(er le niveu de omplexité uquel se situe les réseux métoliquesF in e'etD le pssge de l9étude d9une rétion à elle de l voie métolique puis d9un ensemle de voies onstitunt un métolisme ne génère ps une omplexité qui roit linéirement mis ien exponentiellement ien que l9jout de noeuds modi(e peu les prmètres lssiquement étudiés en théorie des grphes omme l9rité moyenne des noeuds ou le dimètre du grpheF ves outils omme l reherhe de hemins minimux dns le grpheD les ipwsD permettent d9identi(er ette omplexité mis les résultts otenus restent enore di0ile à nlyser entre utres à use de leur tilleF v ominison de l9nlyse des ipws et des wgs permet d9identi(er les rétions les plus essentiels pour produire un metolite d9intérêtF xotre nlyse du réseu du fruit de tomte montré que mlgré l tille des données à mnipuler il étit possile d9en extrire des informtions utiles qui peuvent ensuite être prise en ompte dns l9interpréttion des expérienes iologiques qui sont onduitesF 
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 P Figure P ! Enlarged metabolic network of a heterotrophic plant cells with 8 mandatory reactions highlighted.
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 11 Figure 1.1: Levels of studying in systems biology. As genomic, transcriptomic, proteomic, and metabolic methods become more widely used, a critical need arises to integrate and analyse diverse data from multiple experimental sources using interdisciplinary tools.
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 13 Figure 1.3: Network layout for a simple example of metabolic network (NetEx) designed by Klamt [99].
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 14 Figure 1.4: These approaches are grouped based on the accuracy and scale. [From a Lecture Notes of Tomer Shlomi, School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel, 2008.]
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 15 Figure 1.5: Formulation of an FBA problem. The image courtesy of Orth et al.[START_REF] Orth | What is flux balance analysis?[END_REF] 
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 16 Figure 1.6: TCA cycle network. The metabolites are the circles: the red labels represent the internal metabolites, the other ones (black colours) represent the external metabolites. The rectangles are the reactions: the shapes filled by cyan are the transporters. The arrows denote the direction of reactions, a double arrow means that the reaction is reversible.
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 177 Figure 1.7: 7 EFMs containing T1 to produce external citrate.
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 18 Figure 1.8: Metabolism of TCA cycle, designed by[START_REF] Wright | Systems analysis of the tricarboxylic acid cycle in Dictyostelium discoideum. I. The basis for model construction[END_REF] and redrawn in[START_REF] Pérès | Analyse de la structure des réseaux métaboliques: application au métabolisme énergétique mitochondrial[END_REF] 
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 619 Figure 1.9: General scheme of mitochondrial networks.
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 21 Figure 2.1: Example of interaction graph from Protein-Protein Interactions Browser. Picture courtesy of Elvevier at http://www.elsevier.com/ about/content-innovation/ protein-interaction-viewer

( a )

 a Degree distribution of the 5 complete networks. (b) Degree distribution of the 5 reaction networks. (c) Degree distribution of the 5 metabolite networks.
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 22 Figure 2.2: Degree distribution of the networks
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 23 Figure 2.3: Random and power law distribution

Figure 2 . 4 :

 24 Figure 2.4: Random network (a) and scale-free network (b). In the scale-free network, the larger hubs are highlighted.
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 31 In this example, ({a, b, d, e}, {e, g, f }) is a minimum cut (the bold line) and the minimum cut set corresponding with the minimum cut set is {(b, c); (e, f )} whose weight is 9.
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 31 Figure 3.1: A minimum cut of an undirected graph G
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 32 Figure 3.2: Examples of a s-t cuts in undirected graphs.
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 33 Figure 3.3: Network layout for an example network (NetEx) discussed in [99]
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 34 Figure 3.4: One of the MCSs for objective reaction PSynth. The simultaneous blocking of reactions R1, R4 and R5 will eliminate PSynth and block the production of X.

Figure 3 .

 3 [START_REF] Albert | Statistical mechanics of complex networks[END_REF] gives the list of these MCSs.
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 3536 Figure 3.5: List of 7 EFMs concerning the production of external citrate
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 41 Figure 4.1: Metabolic network of a heterotrophic plant cells. Each colour indicates one pathway: blue for the TCA cycle, black for glycolysis and also for the fluxes towards output metabolites, pink for the PPP, green for the sucrose and starch synthesis, red for respiration and brown for storage in vacuole. External metabolites are in bold. Irreversible reactions are indicated by unidirectional arrows.
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 42 Figure 4.2: Enlarged redefined metabolic network of a heterotrophic plant cells. Each colour indicates one pathway: blue for the TCA cycle, black for glycolysis and also for the fluxes towards output metabolites, pink for the PPP, green for the sucrose and starch synthesis, red for respiration and brown for storage in vacuole. External metabolites are in bold. Irreversible reactions are indicated by unidirectional arrows. The new reactions replace the their enzymes subsets to be depicted in shadow, bold and red colours.
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 43 Figure 4.3: Histogram of the occurrences of the reactions in the set of EFMs of MNHPC.
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 4 4 shows the histogram of EFMs length which fluctuates between 19 and 28.
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 44 Figure 4.4: Histogram of the pathway lengths of the EFMs in the global network MNHPC

Figure 4 .

 4 Figure 4.5 shows the histogram about the occurrence of reactions in MCSs. The data are divided into 6 groups based on the percentage of the occurrences of the reactions. It is noticeable that the number of the occurrences varies considerably.
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 45 Figure 4.5: Histogram of the occurrence of reactions in the set of MCSs in MNHPC
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 46 Figure 4.6: Histogram of the size of MCSs in MNHPC

  In addition, we have tried comparing the histogram of the complete network MNHPC in Figure 4.4 and the histograms of the networks missing of Glc_up in Figure 4.7. The aim is to see whether the missing of Glc_up influences on the reactions taking part in EFMs or not.
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 47 Figure 4.7: Histogram of EFM length of MNHPC and the five sub networks.

Figure 4 .

 4 Figure 4.8 contains the histograms of the size of the five networks. The histograms of the three networks Vss, Vac_f, Vac_s) are similar in the shape: they contain only MCSs of size 2 and 3. The three other ones have more MCSs, therefore, the histograms of size are different.The histograms reveal that a part of the amount of MCSs are small. This result seems to confirm that these MCSs could be analysed easily.
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 48 Figure 4.8: Histogram of the MCS size of MNHPC and the five sub networks. We are addressing the networks which MCSs contain Glc_up.

Figure 4 . 9 :

 49 Figure 4.9: Enlarged metabolic network of a heterotrophic plant cells with 8 mandatory reactions highlighted. The interpretation of the other colours is similar to the explanations in Figure 4.2.

  For instance, EFMs of the network Vac_f creates the branches beginning at the node Tpep and Ttp visualised as Figure 4.10. At the node Tg6p (i.e. one of eight core reactions) of the EFMs graph, we can follow one of the two branches: one goes with Tpep and the other follows Ttp. Combinations of Tpep and Ttp can be happened in order to create another branches where have the presence of these reactions.

Figure 4 .

 4 Figure 4.10: Explanation of the branching in EFMs via visualising all EFMs in a tree.
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 411 Figure 4.11: Metabolic network of a heterotrophic plant cells and 5 interest reactions. These reactions are in green under the rectangle filled with a gradient.

Figure 4 . 12 :

 412 Figure 4.12: MCSs-based model of seeking motifs and branches in huge sets of EFMs. Our model has worked with MCSs of size 2, 3, 4 and 5.
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 442 Figure B.4.2: Strategies of computing EFMs and MCSs
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 11 Figure C.1.1: An introductory hypergraph example

( a )

 a Regular two-dimensional lattice. (b) Linear, regular chain.

Figure C. 2 . 2 :

 22 Figure C.2.2:Examples of simple networks[START_REF] Emmert-Streib | A Brief Introduction to Complex Networks and Their Analysis[END_REF] 

( a )

 a An example of a random graph. (b) An average degree distribution.

Figure C. 2 . 3 :

 23 Figure C.2.3: The random graph of Erdős and Rényi (ER) model. (a) an example of a random graph and (b) average degree distribution over 10 random networks formed by 2, 000 vertices using a probability p = 0.2.

•

  Replace and edge {S i , S x } by {S u i , S x } if S x ⊂ A and by {S v i , S x } if S x ⊂ B Now we are seeing the way to construct an GH tree via the example explained in [62]. For testing, one can have a look GH algorithm to be implemented in LEMON 2 library. First, we start the algorithm with the original vertex set V to be denoted the initial partition. Figures C.3.4 to C.3.10 show the iterations performed during of building GH tree.
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 343536 Figure C.3.4: Gomory-Hu Algorithm: Initial Step

( a )Figure C. 3 . 7 :Figure C. 3 . 8 :Figure C. 3 . 10 :

 a3738310 Figure C.3.7: Gomory-Hu Algorithm: Iteration 3
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 4111122 Figure C.4.11: Dynamic image segmentation using Graph Cuts. The images in the first column are two consecutive frames of a video sequence and their respective segmentation, with the first image showing the user segmentation seeds (which are used as soft constraints on the segmentation). In column 2, we observe the n-edge flows obtained corresponding to the MAP solution of the MRFs representing the two problems. It can be clearly seen that the flows corresponding to the segmentation are similar. The flows from the first segmentation were used for finding the segmentation for the second frame.The time taken for this procedure was much less compared to that taken for finding the flows from scratch.
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 24 Figure D.2.4: Model of Vgl_out after the removal of the unused reactions

Figure P !

 P Figure P ! Enlarged metabolic network of a heterotrophic plant cells with 8 mandatory reactions highlighted.
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Table I !

 I xomre de rétionsD métolites @totl et internesA pour les réseux de l mitohondrie X musleD foieD levureD et pour le réseu du métolisme entrl de l plnteF

	xoms	xF étions xF ot wétoF xF wéto sntF xF ipw
	witoF wusle	37	52	31	3 253
	witoF poie	44	61	36	2 307
	witoF vevure	40	59	34	4 637
	lnte	78	70	55	114 614

Table P !

 P xomre de rétionsD métolites @totl et internesA pour les réseux de l mitohondrie X musleD foieD levureD et pour le réseu du métolisme entrl de l plnteF

	xoms	xF ipws vongF woyenne vongF win vong wx
	witoF wusle	3 253	17	2	23
	witoF poie	2 307	16	2	24
	witoF vevure	4 637		4	22
	lnte	114 614	37	2	53

Table Q !

 Q Comparison of the number and the length of EFMs and MCSsF

	Network Nb. EFMs	Nb. MCSs	Nb. MCSs with Glc_up
	ss	22, 469 13, 901	15
	f	34, 752 14, 446	15
	g	1, 246	562	561
	s	19, 392 14, 473	15
	glout	19, 608	5, 500	87

3 Basic concepts in Metabolic Pathways Analysis
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Table 1 .1: An introductory metabolic network Reactions

 1 

Table 2 .1: Computing the global structural properties of some example networks.

 2 The number of vertices, the number of edges, the average degree, the average path length and the diameter are computed in 3 groups of networks (e.g. complete, reaction and metabolite network).

	Species	Nb. V. Nb. E. Avg. Deg. Avg. P. L. D.
	Complete networks					
	TCA cycle	40	63	3.150	3.537	8
	Muscle	89	161	3.618	4.135 10
	Liver	105	191	3.638	4.303 12
	MNHPC	148	217	2.932	5.247 12
	Aracell	170	282	3.337	4.843 12
	Reaction networks					
	TCA cycle react	15	44	5.867	1.657	3
	Muscle react	37	225	12.162	1.809	4
	Liver react	44	288	13.091	1.911	5
	MNHPC react	78	441	11.308	2.414	5
	Aracell react	91	793	17.429	2.231	5
	Metabolite networks					
	TCA cycle meta	25	94	7.520	1.900	4
	Muscle meta	52	223	8.577	2.282	5
	Liver meta	61	262	8.590	2.368	6
	MNHPC meta	70	181	5.171	2.865	6
	Aracell meta	78	264	6.769	2.644	6

Table 2 .2: Computing average clustering coefficient distribution of some concrete metabolic networks.

 2 The results are computed by using the application VisANT [79].

	Species	Reaction	Metabolite
		network	network
	TCA cycle	0.486	0.601
	Muscle	0.639	0.534
	Liver	0.645	0.506
	MNHPC	0.571	0.336
	Aracell	0.611	0.419

Table 2 .3: The real world phenomena modelled as scale-free networks [16]

 2 

	Network	Node	Links
	Cellular metabolism	Molecules involved in burning	Participation to the same bio-
		food for energy	chemical reaction
	Protein-Protein	Proteins to regulate a cell's ac-	Interaction among proteins
	Interactions (PPI)	tivities	
	Hollywood	Actors	Appearance in the same film
	Internet [48]	Routers	Optical or other physical con-
			nections
	Research collaborations	Scientists	Co-authorship of papers
	Sexual relationships	People	Sexual contact
	World Wide Web [15]	Web pages	URLs

Table 2 .4: Computing the small-world properties of MNHPC complete network.

 2 

Table 2 .5: Top-20 reactions with the highest betweenness in MNHPC reaction network.

 2 The computing results of degree centrality, closeness centrality, betweenness centrality, eccentricity and node degree are too displayed.

	Vertex	Closeness	Betweenness	Eccentricity	Degree
		Centrality	Centrality		
	Vhk1	0.535	0.109	4	23
	Vhk2	0.542	0.096	4	24
	Vgapdh_p	0.592	0.084	3	33
	Vg6pdh	0.517	0.078	3	18
	Vglyc3P	0.588	0.074	5	32
	Vcl	0.542	0.067	3	24
	Vrbco	0.513	0.059	3	24
	Vpk	0.542	0.057	4	23
	Vala	0.430	0.054	3	11
	Vgs	0.478	0.051	3	17
	Vpfk	0.527	0.043	3	21
	Vg6pdh_p	0.484	0.041	4	17
	Vme	0.494	0.038	4	18
	Vat	0.510	0.037	4	19
	NRJ1	0.570	0.034	5	28
	Vasp	0.433	0.032	4	11
	Vinv	0.381	0.03	3	8
	Vsps	0.381	0.026	4	8
	Vpgk	0.513	0.026	4	19
	Vidh	0.503	0.024	4	18

Table 2 .6: Top-20 metabolites with the highest betweenness in MNHPC metabo- lite network.

 2 The computing results of degree centrality, closeness centrality, betweenness centrality, eccentricity and node degree are too displayed.

	Vertex	Closeness	Betweenness	Eccentricity	Degree
		Centrality	Centrality		
	ATP	0.580	0.494	3	29
	DHAP_p	0.451	0.119	4	14
	NADH	0.489	0.101	4	17
	CO2	0.469	0.097	4	17
	NADPH	0.466	0.092	4	13
	Glc	0.413	0.086	4	6
	pyr	0.454	0.067	4	9
	Fru	0.404	0.064	4	6
	G6P	0.445	0.063	4	8
	OAA	0.457	0.059	4	10
	ala	0.337	0.058	5	5
	glu	0.394	0.051	5	9
	Ru5P	0.379	0.049	4	5
	F6P	0.413	0.048	4	6
	aKG	0.404	0.044	5	11
	mal	0.375	0.037	5	6
	UDPG	0.315	0.034	5	7
	cit	0.399	0.033	4	5
	Suc	0.311	0.032	5	5
	ADPG	0.377	0.029	4	3

  The pseudocode of the MCS algorithm devised by Klamt S. and Gilles S. D.[START_REF] Klamt | Minimal cut sets in biochemical reaction networks[END_REF] 

	r;
	; // Preparatory phase
	for j ← 1 to r do
	i ← 1;
	while i < n and efms_obR[i][j] <> 0 do
	i = i + 1;
	if i > n then
	append(mcss,j);
	else
	append(precutsets,j);
	else
	if not isCover(efm, efms) then
	mcss.append(efm);
	else
	new_precutsets.add(efm)
	if isEmpty(new_precutsets) then
	break;
	else
	precutsets ← new_precutsets;
	return mcss;

3. Computing Minimal Cut Sets Algorithm 3.2.1: 1 ef ms ← compute_all_efms(); n ← |ef ms|; r ← |reactions|; obR ← define_obR(); mcss ← ∅; efms_obR[i,j] ← 1 otherwise efms_obR[i,j] ← 0 with i = 1..n and j = 1..; // Main phase for i ← 2 to MAX_CUTSETSIZE do new_precutsets ← ∅; for j ← 1 to r do foreach efm in precutsets do if j in efm then precutsets.remove(efm); else if not isCovered(efm,efms_obR,j) then efm.add(j); temp_precutsets.add(efm); foreach ef m in temp_precutsets do if isSuperSet(efm,mcss) then temp_precutsets.remove(efm); Chapter 3. Computing Minimal Cut Sets

Table 3 .1: EFMs and MCSs for the objective reaction PSynth.

 3 The table shows the EFMs and MCSs of NetEx, for the objective reaction PSynth

	R1 R2 R3 R4 R5 R6 R7 Psynth
	Elementary Flux Modes

Table 3 .2: The size characteristics and the computation of EFMs and MCSs in the five studied networks.

 3 The column 2 consists of two quantities: the number of reactions before and after computing enzyme subsets respectively. The column 3 contains the number of internal metabolites. The last columns contain the computing results for EFMs and MCSs.

	Networks	Nb.	Nb.	Nb.	Nb.	Avg.	Avg.
		React.	Int.	EFMs	MCSs	(min/max)	(min/max)
			Meta.			length of	size of MCSs
						EFMs	
	TCA cycle	15(9)	13	16	54	8.3 (4/12)	3.8 (3/4)
	Muscle	37(26)	31	3, 253	42, 534	17.7 (2/23)	10.2 (6/12)
	Liver	44 (28)	36	2, 307	47, 203	16.7 (2/24)	11.4 (6/14)
	MNHPC	78 (50)	28	114, 614	93, 009	37.7 (2/53)	11.1 (4/18)
	Aracell	92 (43)	49 1, 720, 563	43, 534	31.8 (1/46)	10.3 (6/12)

Table 3 .3: The yellow colour boxes show the common reactions among 7 EFMs that run T1 in the TCA cycle.

 3 

	R6i	R7i	R8i	R9	R10i R11i R12	R13	R14	R15	T1	T2	T5	T6	T7	T12
	EFM1													
	EFM2													
	EFM3													
	EFM4													
	EFM5													
	EFM6													
	EFM7													

  and presented at the conference of advanced in Systems and Synthetic Biology (aSSB) in 2013.

	• presented at Metabolic Pathway Analysis at ISGSB 2012 [113] and Metabolic Pathway
	Analysis 2013 Conference [122].
	Chapter 3. Computing Minimal Cut Sets

Chapter 3. Computing Minimal Cut Sets

Table 4 .1: List of the sets of reactions/enzymes (also called enzyme subsets) replacing in MNHPC.

 4 The new reaction names are the associations of the old ones because of its simpleness and usability

	No.	Set of enzymes	New equation
	1	Vgapdh, Vpgk, Vpgm, Veno	GAP ⇐⇒ PEP + ATP + NADH
	2	Vaco, Vidh	cit ⇐⇒ aKG + NADH + CO2
	3	Vriso_p, Vtkx_p, Vtald_p	Ru5P_p + 2 X5P_p ⇐⇒ 2 F6P_p + DHAP_p
	4	gln_up, Vgs	aKG + NADPH + gln_in =⇒ 2 glu
	5	Vg6pdh, Vepi, Tx5p	G6P =⇒ X5P_p + NADPH + CO2
	6	Vpfk_p, Vald_p, Vtpi_p	F6P_p + ATP =⇒ 2 DHAP_p
	7	Vpk_p, Vpdh_p, VFA, VFA16,	4 AccoA + 3 DHAP_p + 48 PEP_p + 4 ATP
		VFA18, Vdag, Vglyc3P	+ 88 NADPH =⇒ 45 NADH + 3 DAG + 48
			CO2
	8	Vat, Vss, Vpglm_p	G6P_p + ATP =⇒ starch
	9	Vut, NRJ3, Vpglm	G6P + ATP =⇒ UDPG
	10	Vsps, Vspace	F6P + UDPG =⇒ Suc
	11	NRJ2, Vkgdh, Vsdh, Vfum	aKG =⇒ mal + 2 ATP + NADH + CO2
	12	Vasp, Vasp_out	OAA + glu =⇒ aKG + asp_out

Table 4 .2: Differences in size between the original and redefined version of MNHPC Nb. Reactions Nb. Metabolites Reversible Irreversible Internal External

 4 

	The original network	33	45	55	15
	The redefined network	14	35	28	15

Table 4 .3: Topological properties of three networks: MNHPC, reaction network and metabolite network. MNHPC Reaction network Metabolite network

 4 

	Number of vertices	92	49	43
	Number of edges	149	261	131

Table 4 .4: List of the reactions to be missed after extracting specific metabolites of interest.

 4 The sub networks mentioned are built from the complete network MNHPC without any mention of missing Glc_up or not. The leftmost column signifies the reactions that are missing in the network.the highest frequency as computed and interpreted in Section 4.1.4. To response the question of what happens if Glc_up is missing, we have extracted from each matrix the corresponding one with EFMs not containing Glc_up.

	Missing reactions	Network Vss Vac_s Vac_f Vac_g Vgl_out
	Vpfk_p_Vald_p_Vtpi_p				x	
	Vhk2				x	
	Vat_Vss_Vpglm_p				x	
	Vcw				x	
	Vac_s				x	
	Vpfk				x	
	Vac_g	x	x			
	Nb. Reactions	48	48	49	43	49
	Nb. Nodes	79	85	81	85	86
	Nb. EFMs	22, 469 19, 392 34, 752	1, 246	19, 608

Table 4 .5: List of the unused reactions of 5 sub networks if Glc_up is stopped.

 4 

	Missing reactions	Vss	Network Vac_s Vac_f Vac_g Vgl_out
	Vpfk_p_Vald_p_Vtpi_p	x	x	x	x	
	Vpfk	x	x	x	x	
	Vhk1	x	x	x		
	Vhk2	x	x		x	
	Glc_up	x	x	x	x	x
	Vcw	x	x	x	x	
	Vsusy	x	x			
	Vac_c					x
	Vac_f	x	x			
	Vac_g	x	x			
	Vac_m					x
	Vac_s	x		x	x	
	Vinv	x	x			
	Vsps_Vspace	x				
	Vut_NRJ3_Vpglm	x				
	Vat_Vss_Vpglm_p		x	x	x	
	Vpk_p_Vpdh_p_VFAx_Vdag_Vglyc3P					x
	NRJ1b					x
	NRJ2_Vkgdh_Vsdh_Vfum					x
	Nb. Reactions	37	39	43	43	44
	Nb. Nodes	70	74	81	81	82
	Nb. Nodes with Glc_up	79	81	85	85	86
	Nb. EFMs without Glc_up	415	415	833 1, 245	754
	Nb. EFMs with Glc_up	22, 469 19, 392 34, 752 1, 246	19, 608

Table 4 .6: Centers and peripheries of 5 sub networks .

 4 

			center		periphery
	Vss	ATP,	CO2,	NADH,	ala_in, ala_out, Vfbp
		NADPH,		PEP,	
		NRJ2_Vkgdh_Vsdh_Vfum,	
		Vaco_Vidh, Vme, Vpdh	
	Vac_f	ATP			ala_in, ala_out, Fru_v,
					gl_out
	Vac_g	ATP			ala_in, ala_out, Glc_v,
					gl_out
	Vac_s	ATP			ala_in, ala_out, gl_out,
					Suc_v
	Vgl_out ATP			ala_in, ala_out, gl_out,
					Suc_v

Table 4 .7: Comparison of the number of EFMs and their lengths of the sub networks with MNHPC.

 4 

	Network	EFMs with Glc_up Nb. Avg. Min/Max	EFMs without Glc_up Nb. Avg. Min/Max
		EFMs	size		EFMs	size	
	MNHPC 109, 224	22.97	2/28	5, 390	22.97	2/28
	Vss	22, 054	22.73	12/28	415	21.04	13/24
	Vac_f	33, 919	24.07	14/28	833	25.00	13/28
	Vac_g	1	2.00	2/2	1, 245	24.71	16/28
	Vac_s	18, 977	23.66	14/28	415	23.04	15/26
	Vgl_out	18, 854	22.36	14/28	754	22.59	13/27

Table 4 .8: Comparison of the number and the length of EFMs and MCSs.

 4 

	Network	Nb.	Nb.	Nb.
		EFMs	MCSs	MCSs
				with
				Glc_up
	Vss	22, 469 13, 901	15
	Vac_f	34, 752 14, 446	15
	Vac_g	1, 246	562	561
	Vac_s	19, 392 14, 473	15
	Vgl_out	19, 608	5, 500	87

NRJ2_Vkgdh_Vsdh_Vfum Vhk2 Vfbp Vpdh Vcs Vgapdh_p Vrbco Vinv NRJ1 ~~~~~Vac_f Vac_c Vpgi Vald Vtpi Vmdh Vpgi_p Vepi_p Tg6p Tpep Vala Vgdh Vgapdh_Vpgk_Vpgm_Veno Vriso_p_Vtkx_p_Vtald_p NRJ2_Vkgdh_Vsdh_Vfum ~~~~Vfbp Vpdh Vcs ~~~~~~~~Vrbco Vinv NRJ1 Vac_g Vac_f Vac_c Vpgi Vald Vtpi Vmdh Vpgi_p Vepi_p Tg6p Ttp Vala Vgdh ~~~~~~~~~~~~~~~~~~~~~Vriso_p_Vtkx_p_Vtald_p

  

Table 4 .10: Number of EFMs in which not containing Glc_up but having one of 5 given reactions.

 4 EFMs of course have the participation of 8 mandatory reactions. Vgapdh*Veno is short for Vgapdh_Vpgk_Vpgm_Veno.

	Network

Total number Tpep Ttp Vtpi Vgaphd_p Vgapdh*Veno

  Branching of EFMs can be observed more clearly by visualising all EFMs in graph -a kind of motif graph, called EFMs graph. The EFMs graph is built from a root node which vertices are reactions. Two nodes are connected together if they belong to the same EFM. All EFMs can be stored in an EFMs graph where you could have a look its branches.

	Vss	415	311 311	311	311	311
	Vac_f	833	624 624	624	624	624
	Vac_g	1, 245	933 933	933	933	933
	Vac_s	415	311 311	311	311	311
	Vgl_out	754	559 559	574	559	559

Table I !

 I xomre de rétionsD métolites @totl et internesA pour les réseux de l mitohondrie X musleD foieD levureD et pour le réseu du métolisme entrl de l plnteF

	xoms	xF étions xF ot wétoF xF wéto sntF xF ipw
	witoF wusle	37	52	31	3 253
	witoF poie	44	61	36	2 307
	witoF vevure	40	59	34	4 637
	lnte	78	70	55	114 614

  1. téléchargeable à partir de la page http://www.biotec.boku.ac.at/regulatoryelementaryfluxmode.html 2. téléchargeable à partir de la page http://www.csb.ethz.ch/tools/efmtool/ R Table P ! xomre de rétionsD métolites @totl et internesA pour les réseux de l mitohondrie X musleD foieD levureD et pour le réseu du métolisme entrl de l plnteF

	xoms	xF ipws vongF woyenne vongF win vong wx
	witoF wusle	3 253	17	2	23
	witoF poie	2 307	16	2	24
	witoF vevure	4 637		4	22
	lnte	114 614	37	2	53

Table Q !

 Q Comparison of the number and the length of EFMs and MCSsF

	Network Nb. EFMs	Nb. MCSs	Nb. MCSs with Glc_up
	ss	22, 469 13, 901	15
	f	34, 752 14, 446	15
	g	1, 246	562	561
	s	19, 392 14, 473	15
	glout	19, 608	5, 500	87

The Enzyme Commission assigned each enzyme a recommended name and a 4-part number depending on their activity. 6 main groups classify the main enzyme functions, the sub-numbering refers the location, then category... see (http://www.chem.qmul.ac.uk/iubmb/enzyme/) for a full explanation.

http://www.kegg.jp

Schilling et al. [153] have developed a concept of Extreme Pathways actually closed to EFMs. The main difference between them is that Extreme Pathways has to double reversible reactions. That is why we have focus on only EFMs

1.5. Approaches of Metabolic Networks Analysis

http://pinguin.biologie.uni-jena.de/bioinformatik/networks/ Chapter 1. Metabolic Networks and Their Specifications

These values are computed using the igraph package for R programming language[138] Chapter

Network-Based Analysis of Biological Graph

The examples in[START_REF] Junker | Analysis of Biological Networks[END_REF] Ch.4,p.65] clearly explains different centralities.Chapter 2. Network-Based Analysis of Biological Graph

2.3. ConclusionChapter 2. Network-Based Analysis of Biological Graph

http://www.boost.org/

http://lemon.cs.elte.hu/trac/lemon

http://www.jgrapht.org/

an implementation of OptKnock Chapter 3. Computing Minimal Cut Sets

A hypergraph is Sperner if it has no nested edges. Chapter 3. Computing Minimal Cut Sets

Some works have been done to experiment overlapped clustering to find common motif on EFMs[134]. Unfortunately, from certain size of EFMs sets, the results are so huge that the analysis of them is difficult to handle.

3.5. Conclusion Chapter 3. Computing Minimal Cut Sets

http://www.labri.fr

http://www.bordeaux-aquitaine.inra.fr/

An enzyme subset consists of several reactions expressed simultaneously in a given metabolic pathway.Chapter

Application to Heterotrophic Plant Cell Networks

mcsCalculator is available only from the middle of 2013 and we have benefited of it from this time. Chapter 4. Application to Heterotrophic Plant Cell Networks

4.4. Conclusion and Future works Chapter 4. Application to Heterotrophic Plant Cell Networks

https://en.wikipedia.org/wiki/Hypergraph

http://lemon.cs.elte.hu/trac/lemon

http://masters.donntu.edu.ua/2007/kita/pankova/library/angl.htm

http://www.cis.upenn.edu/~jshi/GraphTutorial/

C.4. Applications of MCSsAppendix C. Methods and models from Graph Theory

D.3. List of all different motifs Appendix D. Other results

Acknowledgements Acknowledgements

I would like to thank Vietnamese Ministry of Education and Training (MOET), along with French Ministry of Higher Education and Research, for funding four years of my studies. Vgapdh_p NRJ1 Vgl_out Tpep Vaco_Vidh Vgl_out Vtpi || Vgapdh_p Vac_c Tpep Vaco_Vidh Vgl_out Vgapdh_p Vac_c Vmdh Tpep Vgapdh_Vpgk_Vpgm_Veno Vgl_out Vtpi Vaco_Vidh || Vgapdh_p Vala_out

Contents

Dedication i

Preparatory phase (1) Calculate the EFMs in the given networks.

(2) Define the objective reaction obR.

(3) Choose all EFMs where the reaction obR is non-zero and store it in the binary array efms_obR.

(4) Initialise the arrays mcss and precutsets as follows: Append {j} to mcss if the reaction j is essential, otherwise to precutsets.

Main phase

(5) FOR i = 2 TO MAX_CUTSETSIZE (5.1) FOR j = 1 TO q (5.2.1) Remove all sets from precutsets where the reaction j participates;

(5.2.2) Find all sets of reactions in precutsets that do not cover any EFM in efms_obR where reaction j participates. Combine each of these sets with reaction j and store the new preliminary cut sets in temp_precutsets;

(5.2.3) Drop all elements in temp_precutsets which is a superset of any of the already determined minimal cut sets stored in mcss;

(5.2.4) Find all elements retained temp_precutsets which do now cover all EFMs and append them to mcss. Append all others to new_precutsets;

(5.2) IF isEmpty(new_precutsets) BREAK; ELSE precutsets = new_precutsets;

(6) return mcss;

We have rewritten the pseudocode of this algorithm as in Algorithm 3.2.1.

For the NetEx network, the algorithm calculates seven MCSs in addition to the trivial MCS (PSynth itself). To illustrate, one of the MCSs (MCS6) is shown in Figure 3.4. The eight MCSs and the corresponding EFMs are shown in Table 3.1.

Improvements of MCS concepts

From the original work done by Klamt and Gilles [START_REF] Klamt | Minimal cut sets in biochemical reaction networks[END_REF], the concepts of MCSs have been generalized and constraint MCSs has been defined some years later.

® Generalized concept of MCSs S. [START_REF] Klamt | Generalized concept of minimal cut sets in biochemical networks[END_REF] [START_REF] Klamt | Generalized concept of minimal cut sets in biochemical networks[END_REF], redefined MCS from that of the original concept expressed under Section 3.2.2, to "a minimal (irreducible) set of structural interventions (removal of network

Effects of stopping the entrance of glucose

The method that we proposed is to continue to use smallest MCSs. In this step, we are taking into account the MCSs of size 3 to identify a new set of reactions which are almost mandatory.

® Finding branches using MCSs of size 3

The same procedure employed with MCSs of size 2 has been applied to MCSs of size 3: collecting the two other reactions belonging to these MCSs in association with Glc_up. In the case of MCSs of size 3, we obtain now a list of couple of reactions, and the rule is "at least one of the two reactions has to be included in the EFMs". In other words, we can find two branches, one for each reactions. In summary, MCSs of size 3 provide a list of "branching points" (i.e. reactions) in the metabolic network. • Second, sets are compared two by two. For each line belonging to each set, we compare the lines and suppress the similarities.

• Finally, we collect the remain reactions in each lines and create a two parts of motifs. The first part is the set of reactions belonging to the first set of EFMs and the second for the other one.

For example, the comparison between EFMs containing Ttp and those containing the enzyme subset Vgapdh_Vpgk_Vpgm_Veno gives us 26 different combinations (given in the first column of Table 4.11). Appendix D.3 gives the list of these 26 combinations.

We can observe that for the four networks, the result is the same. We can state that the branch combinations obtained are the same for the production of these four metabolites of interest.

Another useful result that we have achieved is the list of combinations of the ten case studies as in Table 4.11. The table shows that the main difference of two branches focuses on some lists of reactions. The lists are supplied in Appendix D.3. 
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Appendix A

Data Descriptions

The data presented here are formed in METATOOL format. 

A.1 TCA cycle

A.2. Muscle

A.2 Muscle

-ENZREV R3r R4 R5 R9 R12 R14 R15 R16 R17 R24 R27 R30 R32 T1r T2r T3 T4 T5 T7 T9 T10 T11 T12 T13 T19 

A.3 Liver

-ENZREV R3r R4 R5 R9 R12 R14 R15 R16 R17 R24 R27 R30 R32 T1r T2r T3 T4 T5 T7 T8 T9 T10 T11 T12 T13 T19 T21 T22 

A.4 MNHPC

A.5 Aracell

Appendix B Implementation

Petri net concepts provide additional tools for the modelling of metabolic networks. Here the similarities between the counterparts in traditional biochemical modelling and Petri net theory are discussed. For example the stoichiometric matrix of a metabolic network corresponds to the incidence matrix of the Petri net. The flux modes and conservation relations have the T-invariants, respectively, Pinvariants as counterparts. We reveal the biological meaning of some notions specific to the Petri net framework (traps, siphons, deadlocks, liveness). We focus on the topological analysis rather than on the analysis of the dynamic behaviour. The treatment of external metabolites is discussed. Some simple theoretical examples are presented for illustration. Also the Petri nets corresponding to some biochemical networks are built to support our results. For example, the role of triose phosphate isomerase (TPI) in Trypanosoma brucei metabolism is evaluated by detecting siphons and traps. All Petri net properties treated in this contribution are exemplified on a system extracted from nucleotide metabolism.

B.1 Organism studied: Brassica napus

To focus on the structural functions of specific reactions and the interactions between the components of the metabolic network and how these interactions give rise to the function and behaviour, an appropriate coherent self-contained sub network must be extracted from the genome scale metabolic network of an appropriate organism. The standard plant system, Brassica napus (also shortly called B. napus) embryos, is used in this research because of the reasons set out below.

B. napus is an annual or biennial herbaceous plant in the Brassicaceae that belonging to the cabbage or mustard family.

Information for the research is obtained from the AraCyc database, available online and containing the full metabolic network of the B. napus embryos.

B.2 Our general protocol

Systematically, we represent our approach in the step-by-step instructions as shown in 

B.3 Explanation of the model

Our model divided into 5 steps can be explained as follows:

Reconstruction starts rebuilding the metabolic network of a studied organism from one of online biological databases.

Extraction aims to get a part of the whole network. Sub networks which extracted from the complete one enable to see deeply the studied organism beside the global view.

Computation of topological properties is the step of computing coherent structural measures.

The aim of this step is to study the networks' size.

In Chapter 4, we shall show the results obtained in the specific application on a plant cell metabolism.

B.5. Computing tools

Methods and models from Graph Theory C.1 Hypergraphs hypergraphs. Indeed, Bollobás introduced hypergraphs in 1986 [START_REF] Bollobás | Combinatorics: set systems, hypergraphs, families of vectors and combinatorial probability[END_REF]. For more theoretical issues of hypergraph, we can refer to Berge's works [START_REF] Berge | Hypergraphs: combinatorics of finite sets[END_REF], who was also known as the person of the first people giving the attempt to solve the minimal transversal problem of hypergraphs. Though there are some contributions of researching community on this problem such as [START_REF] Eiter | Identifying the Minimal Transversals of a Hypergraph and Related Problems[END_REF][START_REF] Kavvadias | Evaluation of an algorithm for the transversal hypergraph problem[END_REF] with the purpose of finding the best methods in computation of minimal transversal sets. hyperedge Definition C.1 (Hypergraph [START_REF] Berge | Hypergraphs: combinatorics of finite sets[END_REF]). A hypergraph H can be defined as a pair (V , E), where V is a set of vertices, and E is a set of hyperedges between the vertices. Each hyperedge is a set of vertices: Let us finish this section on hypergraphs by defining some further notations. A very important notion is that of transversals -also often called hitting sets.

Definition C.2 ((Minimal) Transversal). A transversal of a hypergraph H is a vertex set t ⊆ V that has a non-empty intersection with each edge of H. A transversal t is minimal if and only if no proper subset of t is a transversal.

Thus, just as hypergraphs are a generalisation of graphs, transversals generalise the notion of vertex covers. Note that the set of all minimal transversals also is a hypergraph.

Definition C.3 (Transversal Hypergraph). The set of all minimal transversals of H forms the transversal hypergraph Tr(H).

Example C.3. ([67]) The hypergraph

Finally, we name the complements of transversal. Definition C.5 ((Maximal) Independent Set). Let H be a hypergraph. A subset of vertices of H is independent if it does not contain an edge. An independent set is maximal if no proper superset is independent.

C.2. Petri Net

Places hold zero or a positive number of tokens. The allocation of tokens over the places is called a marking (i.e. this process changes the state of the system). Formally, a marking is a function M 0 : P → N, and we refer to M (p) for p ∈ P , as the number of tokens in place p in marking M . When modelling a system based on PN, we often describe the specification of an initial marking in its definition, which allocates a number of tokens to each place.

C.2.0.1 System Dynamics

So far we have dealt with the static component of a PN model. We now turn our attention to the dynamic evolution of the PN marking that is governed by transition firings which destroy and create tokens.

C.2.0.2 Enabling and firing rules

A transition is enabled if its input places contain at least the required numbers of tokens defined by the weight assigned to the arcs. Informally, we can say that the enabling rule defines the conditions that allow a transition t to fire, and the firing rule specifies the change of state produced by the transition.

Definition C.7 (Enabling). Transition t is enabled in marking M if and only if

Definition C.8 (Firing). The firing of transition t, enabled in marking M if and only if

The incidence matrix C of a PN with n places and m transitions is an (n × m) matrix, where every entry c ij gives the token change on the place p i by the firing of the transition t j . Thus, read arcs are not reflected in the incidence matrix. The matrix C corresponds to the stoichiometric matrix in a metabolic network.

A trap is a set of places, whose all output transitions are also output of that set. That means, if a trap is marked with tokens, it will not be token-empty. A trap is maximal if it is not a proper subnet of any other trap [START_REF] Sackmann | Application of Petri net based analysis techniques to signal transduction pathways[END_REF].

C.2.1 Simple Networks

A simple network consists of regular connections among the vertices [START_REF] Emmert-Streib | A Brief Introduction to Complex Networks and Their Analysis[END_REF]. One of the most well-known examples therefore is the two-dimensional lattice (also called grid graph) as shown in Figure C.2.2.

Here each vertex has the same number of neighbours. In particular, every pair of distinct nodes is connected by a unique edge, referred to complete graph. Despite its simplicity, such networks have been used extensively, e.g. in physics to study phenomena like controlling magnetism on surfaces [START_REF] Li | Magnetic order in a frustrated two-dimensional atom lattice at a semiconductor surface[END_REF]. Other examples of this class are linear chains or non rectangular lattices as used, e.g. in the context of protein structure prediction to model protein folding [2,78].

C.3. Minimum cut algorithms in Graph Theory

Since 1959 to the 90 years of the 18 th century, almost all complex networks have been modelled and simulated randomly. The random network theory has widespread influenced on the growth many general sciences as well as rapidly developed of computer science. At the principle of the random network, each node in the given system has a few of links for connecting to its neighbours. Indeed, in a random network the degree vertex follows a Poisson distribution (also called bell shaped distributionsee the left chart in Figure 2.3). It means that it is extremely rare to find nodes that have significantly more or fewer links than the average. In other words, the probability that a node is connected to k other sites decreases exponentially for large k.

C.3 Minimum cut algorithms in Graph Theory

C.3.1 Flow-based approaches

The first approach for finding all minimum cuts of a graph is based on the maximum flow problem. The well-known max-flow [START_REF] Elias | A note on the maximum flow through a network[END_REF][START_REF] Ford | Maximal Flow through a Network[END_REF] theorem implies that a minimum s -t cut can be found by computing the maximum flow between s and t.

C.3.1.1 Network flows

For a pair of vertices u, v, we define the distance d G (u, v) from u to v in G to be the minimal number of edges on the path from u to v in G. In the case that there is no such path, we define 

The first condition says that the flow on a directed edge is never more than the capacity of that edge. The second says that flow on an edge is anti-symmetric: a units of flow on (u, v) implies -a units of flow on (v, u). The final condition says that flow is conserved everywhere but the source and sink: the flow into each vertex is the same as the flow out of it. The value of a flow is the net flow into the sink, i.e.,

The maximum flow problem is to determine a flow f for which |f | is maximum. The well-known maxflow-mincut theorem [START_REF] Elias | A note on the maximum flow through a network[END_REF][START_REF] Ford | Maximal Flow through a Network[END_REF] states that in any network, the value of the maximum s -t flow equals to the capacity of the s -t minimum cut. An s -t maximum flow algorithm can thus be used to find a s -t minimum cut, and minimizes over all 2 n possible choices of s and t to yield a minimum cut.

C.3.1.2 Finding all minimum cuts in undirected weighted graphs

In 1961, Gomory and Hu [62] introduced a typical tree structure that can be able to find all minimum s -t cuts for all 2 n pairs of s and t in an undirected and weighted graph. They showed that the number of distinct cuts in the graph is at most n -1 (rather than the naïve 2 n ). Furthermore, there is an efficient tree structure that can be maintained to compute this set of distinct cuts using only n -1 maximum flow computations. Given an undirected weighted graph G = (V , E) with a capacity function c, a cut tree T = (V , F ) can be built from G is the tree having the same set of vertices V and the edge set F with a capacity function c satisfying the following properties:

1. Equivalent flow tree: the smallest capacity of the edges on the path between s and t in T .

Cut property

The algorithm maintains a partition of V , (S 1 , S 2 , ..., S t ) and a spanning tree T on the vertex set {S 1 , S 2 , ..., S t }. Let w be the function assigning weights to the edges of T . Initially, there exists only set S 1 = V . On each iteration, T satisfies the following invariant, that is, for any edge (S i , S j ) in T , there are vertices a and b in S i and S j respectively such that w (S i , S j ) = f (a, b) and the cut defined by edge (S i , S j ) is a minimal a -b cut in G. At the start, the algorithm chooses two nodes and calculates the minimal cut between them and the min cut groups. These groups are being separating into two graphs and the algorithm saves the minimal cut. Now at each of iteration the algorithm chooses two nodes from the same group and calculates the minimal cut between them, taking in account the other groups as a single point, which the maximal flow to and from it is the maximal flow that was found in one of the previous iterations. At the end of the algorithm Gomory -Hu (GH) tree is built. That tree represents the maximal flow between any two vertices in the graph, which is the minimal edge capacity of the path between those to edges. Following the demonstration in Appendix C.3.1.3 to understand steps for building a GH tree.

The complexity of building a GH tree depends on the technique used for the implementation of the algorithm. All the algorithms currently known for constructing a GH tree use n -1 minimal s -t cut computations. In other words, any max-flow based approach for constructing a GH tree would have a running time of (n -1)× (time for computing a max-flow). In 1998, Karger and Levine [START_REF] Karger | Finding maximum flows in undirected graphs seems easier than bipartite matching[END_REF] devised the algorithm to compute max-flow with the running time O(n 2. 16 ), so the best running time for building GH tree is O(n 2.16 n). To the best of our knowledge, the current fastest O(mn) running time for GH tree construction on simple unweighted graphs with m edges and n vertices [START_REF] Hariharan | An Õ(mn) Gomory-Hu tree construction algorithm for unweighted graphs[END_REF].

We have used LEMON open package, which realized GH algorithm, for testing on our own graphs built on real data.

C.3.1.3 Gomory-Hu demonstration

Initially, the algorithm starts with a trivial partition V and proceeds in n -1 iterations. The initial partition is the set V = {a, b, c, d, e, f }. Then the algorithm performs n -1 split operations as following:

Algorithm C. It is not hard to check that the distance labels remain valid throughout the computation, which implies the correctness of the algorithm. Likewise, as in the maximum flow context, the distance labels are O(n) and only increase. It follows that using highest label selection, the time bound for HO is O(n 2 √ m). The proof for FIFO selection with dynamic trees also carries over, giving a time bound of O(mnlog(n 2 /m)).

This algorithm is realised in LEMON library for finding a minimum cut in a directed graph G = (A, N ). It is a modified preflow push-relabel algorithm. The algorithm takes a fixed node source ∈ N and consists of two phases: in the first phase it determines a minimum cut with source on the sourceside (i.e. a set X V with source ∈ X and minimum outgoing capacity) and in the second phase it determines a minimum cut with source on the sink-side (i.e., a set X V with source / ∈ X and minimum outgoing capacity).

Other algorithms

Recently, several authors have studied efficient algorithms to enumerate all cut sets of a graph. By using the dual maximum flow problem, Curet [36] constructs a binary relation associated with an optimal maximum flow such that all minimum cost s-t are identified through the set of closures for this relation. The key improvement in Curet's approach is the use of graph theoretic techniques to rapidly enumerate the closures set.

C.3.2 Contraction Based Approaches

The new approach of the minimum cut problem is to repeatedly identify and contract edges that are not in the minimum cut until the minimum cut are obtained. It uses no flow-based techniques at all. This way can be only applied to undirected graphs, but they may be weighted.

C.3.2.1 Contract operation

Informally speaking, this operation takes an edge e with endpoints x and y and then contracts it into a new single node v e which becomes adjacent to all former neighbours of x and y. The contraction of an edge makes the two nodes joined by e overlap, reducing the total number of nodes of the graph by one. Given a graph G and edge (v, w) ∈ E, we define G/v, w, the contraction of edge (v, w), by deleting w and replacing each edge of the form (w, x) by an edge (v, x). If this process creates parallel edges, we merge them and add the capacities. We also delete any self-loops. The steps are summarised in Algorithm C.3.2.

Algorithm C.3.2: GenericContractCut(G)

1 λ ← ∞; 2 while G has more than one node do 3 Either:; 4 1. identify an edge {v, w} that is not in some minimum cut; 

This algorithm is realised in the LEMON library for undirected graphs.

C.3.2.3 The simple deterministic minimum cut algorithm

Stoer and Wagner [START_REF] Stoer | A Simple Min Cut Algorithm[END_REF] (SW) gave a simplified version of the Nagamochi and Ibaraki algorithm with the same running time. This simplification was subsequently discovered independently by Frank [55]. They proposed the following method for finding a minimum cut set of a graph G. A cut (S, T ) of G is said to be a global min-cut if and only if the weight w(S, T ) of the cut is the smallest possible, i.e., for every other cut (S , T ) of G we have w(S, T ) <= w(S , T ). An s -t min-cut is defined similarly. The algorithm is based on a theorem. Let s and t be two vertices of graph G = (V , E). Let G/s, t be 

C.3.2.4 The fastest known minimum cut randomized algorithm

This is a very nice randomized algorithm due to Karger and Stein (KS) that can compute the global minimum cut in near linear time with high probability. The idea of the algorithm [START_REF] Karger | A new approach to the minimum cut problem[END_REF] is based on the concept of contraction of an edge e in a graph G = (V , E). The algorithm based on a sequences of contractions of a randomly chosen edge in a graph. The edges are selected proportional to its weight. The algorithm is recursive. One level of recursion consists of two independent trials of contraction of G to n/ √ 2 + 1 vertices followed by a recursion call.

Other algorithms

Sharafat and Márouzi [START_REF] Sharafat | A novel and efficient algorithm for scanning all minimal cutsets of a graph[END_REF] enhanced the recursive contraction algorithm. They modified the method proposed by Tsukiyama [START_REF] Tsukiyama | An algorithm to enumerate all cutsets of a graph in linear time per cutset[END_REF] by using the concept of iterative contraction Karger [START_REF] Karger | Minimum cuts in near-linear time[END_REF] and BFS ordering of vertices to develop a novel recursive contraction algorithm for scanning (enumerating and listing) all minimal cut sets of a given graph. Also, the authors introduced the concepts of pivot vertex, absorbable and unabsorbable clusters, and used them to develop an enhanced recursive contraction algorithm.

C.3.3 How to find all minimum cuts

The problem of finding all minimum cuts plays a critical importance in the design of real world complex systems. If a few of the links are cut or otherwise fail, the network may still be able to transmit messages between any pair of its nodes. If enough links fail, however, there will be at least one pair of nodes that cannot communicate with each other. Thus an important measure of the reliability of a network is the minimum number of links that must fail in order for this to happen. This number is referred to as the edge connectivity of the network and can be found by assigning a weight of 1 to each link and finding a minimum weight cut. In other applications, such as the open pit mining problem, we seek a minimum weight cut such that a specific pair of nodes, say node s and node t, are not in the same set. Solving this type of problem, known as a minimum s -t cut problem, is a fundamental part of the calculations used to find the baseball elimination and clinch numbers.

From the algorithms presented in literature, we can basically suggest some solutions to determine all minimum cuts in a certain graph as follows.

C.3.3.1 Basing on the definition of minimum cuts

Any graph has a finite number of cuts, so one could find the minimal cuts by enumerating and comparing the size of all the cuts basing on its definition. This is not a practical approach for large graphs which arise in real world applications since the number of cuts in such phenomena grows exponentially with the number of nodes.

C.3.3.2 Using ring sum of basic cut sets

A basic cut set is a cut set that contains only one edge and be independent. It can be considered as one of the approaches to reach the minimal cut set problem.

Ring sum Given two graph

, then the ring sum of two graphs 

C.4 Applications of MCSs

The problem of finding a minimum cut set of a graph appears in many application s, for example, in network reliability, circuit design, clustering and information retrieval. More detailed, in order to evaluate the reliability of a network, we have to analyse potential faults that every of a such case is a set of edges in a cut set. Another usual application is to treat image segmentation as a graph partitioning problem, that is, to break graph into segments, etc. More about algorithms and applications of cut problem as well as network flows are found in [START_REF] Ahuja | Network flows: theory, algorithms, and applications[END_REF][START_REF] Hochbaum | Graph Algorithms and Network Flows[END_REF].

C.4.1 Evaluation of system reliability

A physical system would be quite unusual (or perhaps poorly designed) if replacing a failed component by a functioning one caused the system to change from the success to the failed state. Thus, we restrict consideration to structure functions that are monotonically increasing in each input variable [START_REF] Zio | An introduction to the basics of reliability and risk analysis, volume 13 of Quality[END_REF]. These structures are called coherent and can be expressed as cut sets. Physically, a cut set is a set of components whose functioning (failure) ensures the functioning (failure) of the system.

The cut set method is a powerful one for evaluating the reliability of a system based on two reasons: (a) Easily to program in computer to find our solutions fast and efficient for any general network, (b) cut sets relate to the modes of system failure and therefore identity the distinct and discrete ways in which a system may fail. Following this fashion, we can define a cut set is a set of system components which, when failed, caused failure of the system [START_REF] Billinton | Reliability Evaluation of Engineering Systems: Concepts and Techniques[END_REF]. So, we have also defined a minimal cut set is a set of system components which, when failed, causes failure of the system but when any one component of the set has not failed, does not cause system failure. From the definition of minimal cut sets it is evident that all components of each cut must be identified.

In advanced techniques of failure analysis, to evaluate the fault tree and determine the failure path, it is necessary to find the various minimal cut sets of the tree [START_REF] Ramachandran | Failure Analysis of Engineering Structures: Methodology and Case Histories, chapter 5[END_REF]. For this field, a cut set is defined a set of basic events that have to take place for the top event to occur. A cut set is said to be minimal when each of the basic events in the set is necessary and whose combination is sufficient to cause the top event. Each minimal cut set is an independent path for the failure to occur.

C.4.2 Fault Trees

Fault Trees are non-recursive Boolean networks studied in reliability and risk assessment of industrial systems

C.4.3 The k-cut problem

Let G = (V , E), a weight function w : E → N , and an integer k ∈

Other results

D.1 Genes rules defined in regEfmtool

Here only shows basic gene rules. Let us suppose without loss of generality that Ri and Rj are two certain reactions used in logical expressions. Following C. Jungreuthmayer et al. [START_REF] Jungreuthmayer | Utilizing gene regulatory information to speed up the calculation of elementary flux modes[END_REF][START_REF] Jungreuthmayer | regEfmtool: Speeding up elementary flux mode calculation using transcriptional regulatory rules in the form of three-state logic[END_REF], three basic rules are stated as following: Ri = (!fRj) means that (1) the reaction Ri carries a EFM while the reaction Rj must not carry any EFM, and (2) contrast to the first condition, the reaction Ri must not carry any EFM, if the reaction Rj carries that EFM. This rule can be said formally:

Using logical operations, equation D.1.1 can be rewritten by:

Ri = (!0Rj) can be stated formally:

rewritten by:

Ri=(!1Rj) can be written formally:

rewritten by Trying to add three base boolean rules as described above, this will generate a subset of EFMs including EFMs:

Simple_1 attached in regEfmtool

Simple_2 attached in regEfmtool Similarly, we do not limit the result by any gene rules. The list of EFMS can be obtained from computing with regEfmtool as follow: Appendix E

Extending works

The results have just presented in the last section explained a part of the MNHPC organisation.

However, there has remained functions can be studied and compared to these 5 functions. Thus we have tried doing the analysis on 6 case studies more in MNHPC.

In this thesis, we have chosen 6 metabolism functions (aka. at all 11 are Vac_c, Vac_f, Vac_g, Vac_m, Vac_s, Vala_out, Vasp_out, Vcw, Vdag, Vgl_out and Vss) that are main products of metabolic processes. These functions play the important role of input substances and output products in metabolisms. It is interesting to figure out the relevance of them and to find differences from in vivo designs to vitro studies. One of the first steps would be to construct an overall statistics as displayed in Table E.0.1. For all sub-matrix, the number of EFMs is always bigger than the number of MCSs, moreover the average length of EFMs is also bigger than the average size of MCSs. That confirms the E.1. Finding the isolated reactions hypothesis that MCSs could be easier to analyse than EFMs.

E.1 Finding the isolated reactions

It's interesting to find the list of the reactions which are always absent in all metabolic pathways. Without loss of generality, we can eliminate those reactions out the network. In other words, the removal of them can reduce the complexity of our network. From the occurrence distribution, the zero values will be removed.

E.2 Finding the longest chain of reactions

Opposite to the list of isolated reactions, we have tried to find the longest series of reactions participating in all metabolic pathways. This point can be explained how the network till works even if Glc_up is removed out of all the processes.

E.3 Clustering the reactions into groups

Based on the discrete data computed in the previous steps, we divided 11 functions into 5 groups as follows: presents the differences among groups based on the distributions of reaction occurrences in the EFMs and MCSs set.

E.3.0.1 Vac_s, Vcw and Vss

This group has the identical numbers of EFMs (e.g. 415) but their contents are incompletely analogous. So how to analyse the results? Fortunately, we found 5 reactions which the values are different.

In the three cases, we have deliberately withdraw reactions which the occur values are different. There are 5 reactions have to remove out the EFM lists. They are Vac_s, Vat_Vss_Vpglm_p, Vcw, Vsps_Vspace and Vut_NRJ3_Vpglm. The way to do this step is as follows:

• In the EFMs list of Vac_s, removing Vac_s certainly, Vsps_Vspace and Vut_NRJ3_Vpglm.

• In the EFMs list of Vcw, removing Vcw certainly and Vsps_Vspace.

• In the EFMs list of Vss, removing Vat_Vss_Vpglm_p only. and the final lists of the three functions are completely identical. In theory, it has an existence of the interrelationship among the MCSs sets. But reality, the frequency distributions of reactions of MCSs do not have any similar features.

The occurred values of MCSs (computed by the method [START_REF] Ahuja | Network flows: theory, algorithms, and applications[END_REF] in the computational models with the values 1, 621, 1, 871 and 1, 621 corresponding to Vac_s, Vcw and Vss respectively) are a little bit different. The occurrence distributions of the reactions of the EFMs set in these case studies are completely similar. However, the ones of the MCS sets do not have the same trend. The similarities seem to suggest a question of the existence of a relationship among the candidate EFMs in three case studies. Consequently, we chose MCSs with the smallest sizes such as 2, 3, 4, even if the long sizes. Moreover, the smaller frequencies can give us helpful information.

E.3. Clustering the reactions into groups

> Glc_up Vepi_p Vmdh ---> Glc_up Tg6p Vmdh

E.3.0.3 Vala_out, Vasp_out and Vgl_out

The results of MCS computation from grepping MCSs containing Glc_up (e.g. the approach [START_REF] Ahuja | Network flows: theory, algorithms, and applications[END_REF] in computational model) depict the almost similar between Vala_out (99) and Vasp_out (99) product. Looking at the list of MCSs, we found that removing ala_up out the MCSs might decrease differences because it only appears in Vala_out. The distinction at the moment reduces significantly. Vala_out and Vasp_out

Vala_out and Vgl_out Vasp_out and Vgl_out

E.3.0.4 Vac_c and Vac_m

In this case, MCSs distributions seem to be similar whereas the ones of EFMs are different.

E.3.0.5 Vac_f and Vac_g

Following the method [2] in the computational models, the number of MCSs (552) are the same.

E.3.0.6 Vac_f and Vdag

Using the method [START_REF] Ahuja | Network flows: theory, algorithms, and applications[END_REF] in the computational models In this case, MCSs distributions seem to be similar whereas the ones of EFMs are different. The belows show the differences of the two functions.

E.3.1 Finding motifs

Based on the above analyses, we found the assembled reactions that participating in most pathways. They are reactions appearing into the functions owns similar characteristics. First of all, two computational models (numbering [2] and [START_REF] Ahuja | Network flows: theory, algorithms, and applications[END_REF]) were chosen to find common minimal cut sets. 

E.3.2 Analysis of Minimal Cut Sets

From Appendix B.4, we computed the different cases and associated with 5 case studies E.3 to verify our hypothesis. To keep two computational models, the results show some interesting points in EFMs set. The steps of the verificaton can be described as follows:

• Each of groups, Vac_c and Vac_m for instance, select the reactions which costs equal to the maximum values. That means they always appear in all EFMs. In our first attempt with the group (Vac_c, Vac_m), the reactions Vpgi, Vald, Vfbp are selected as a motif. To facilitate in the next steps, named three reactions like S.

• Finding candidates to add to the motif S. To find it, basing on the MCSs with size 2, 3, 4 etc. For example, we discover Tg6p and Ttp often appear in MCSs.

• Determining the number of MCSs and finding out the smallest cases. For instance, here S + Ttp has 5 cases with small values.

• Computing frequency distribution of the reactions.

• There are 2 groups as mentioned in the previous sections are approved in this example.

E.3. Clustering the reactions into groups

Verification of trivial MCSs in the computational results A question raising in our mind that whether the trivial MCSs appear in the final result? For example, MCSs with only one reaction that is also the objective function. Using TCA cycle graph, we choose all EFMs containing T6. There is 13 EFMs containing T6. Clearly, T6 is the reaction appearing all 13 EFMs. It is one of the trivial MCSs has to be in the final set of MCSs. However, we did not find the ones like that in the previous experiments. So using CNA and mcsCalculator to compute MCSs and the results obtained have some strange notes.

McsCalculator has a line to enable compressed mode. Compiling mcsCalculator twice with turn on/off this line to get two its versions: compressed and uncompressed. If using mcsCalculator for fpcwithoutSubEnzymes, the program gives the same results in compressed and uncompressed mode.

Appendix F 
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