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Résumé

Dans le domaine automobile, les modules électroniques de puissance des produits
mécatroniques voient leur puissance sans cesse s’accrôıtre, tout en étant confinés
dans des volumes de plus en plus réduits. Au cours de leur fonctionnement, les com-
posants semi-conducteurs et leur assemblage subissent ainsi des contraintes électro-
thermo-mécaniques sévères, susceptibles d’entrâıner leur destruction et de provoquer
la défaillance du produit. L’étude de la fiabilité et le calcul de la durée de vie de
tels produits dépendent des températures de jonction calculées au niveau des puces
des composants de puissances. De surcrôıt, le contexte d’applications embarquées
requiert de mâıtriser, outre les paramètres électriques et mécaniques, les paramètres
thermiques tels que les températures de jonctions et les puissances dissipées au
niveau des composants, qu’il est nécessaire de réguler et contrôler en temps réel afin
d’assurer le bon fonctionnement du produit.

L’objectif de cette thèse est ainsi de proposer une méthode d’identification de
modèles réduits dans le but d’estimer le comportement thermique des modules
électroniques de puissance, en se fondant uniquement sur les données d’entrées et les
résultats issus d’une simulation numérique d’un modèle détaillé du système étudié.

Une première partie est consacrée (i) à une vue d’ensemble sur les technolo-
gies et pratiques industrielles adaptées à la modélisation, à la prévision de fiabilité
et au contrôle des modules électroniques de puissance ; (ii) à la description de la
méthode d’identification actuellement utilisée à Valeo pour générer un modèle ther-
mique compact et à la mise en évidence de ses limitations lors de traitement de
problèmes non-linéaires typiquement liés à la convection naturelle ; (iii) à une étude
théorique de la physique des problèmes couplés solide/fluide permettant de déduire
un modèle détaillé de référence considéré comme une bôıte noire dans le problème
d’identification.

Un état de l’art est ensuite consacré aux méthodes de réduction de modèles,
classées en catégories intrusives et non-intrusives. Les méthodes intrusives s’appuient
sur la projection du modèle détaillé de référence sur une base réduite d’un sous-
espace ou bien sur l’approximation a priori des équations locales du problème étudié.
Les méthodes non-intrusives, également dénommées méthodes d’identification, pro-
duisent un modèle réduit reliant les entrées aux sorties du modèle détaillé, tout en
considérant ce dernier comme une boite noire.

Dans une seconde partie, nous présentons la nouvelle méthode d’identification
développée dans cette thèse, nommée “Kernel Identification Method”. Cette méthode
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identifie des modèles réduits relatifs à des problèmes thermiques couplés solide/fluide
dont le comportement est linéaire ou approximativement linéaire. Le modèle est
representé en termes d’états, sous forme modale. Dans cette méthode, le noyau du
problème thermique est identifié indépendemment de l’excitation thermique grâce à
la projection orthogonale calculée par la décomposition LQ. Le noyau thermique est,
en effet, constitué par les valeurs propres dominantes qui correspondent à l’opposé
de l’inverse des constantes de temps thermiques dominantes, placées sur la diago-
nale de la matrice d’état. Les vecteurs propres associés se trouvent dans les vecteurs
colonnes de la matrice d’observation. Les matrices de commande et de gain statique
sont à leur tour identifiées par la résolution d’un problème aux moindres carrés. La
méthode est évaluée sur un premier cas-test numérique avant d’être validée sur une
application industrielle traitant d’un problème thermique couplé solide/fluide dont
le comportement est essentiellement régi par de la convection forcée.

Dans une dernière partie, nous proposons une étude exploratoire portant sur
l’identification de problèmes non linéaires où la convection naturelle joue le rôle
dominant. En premier lieu, nous proposons à cet effet une extension de la méthode
Kernel Identification Method. Cette extension est non paramétrique puisque les
opérateurs non-linéaires du modèle réduit sont identifiés sans présumer de la nature
des non linéarités,

Ces opérateurs sont estimés à partir de différents modèles réduits linéaires iden-
tifiés par la méthode Kernel Identification Method qui est alors appliquée par morceaux
pour différents niveaux d’excitation thermique. Ces excitations sont générées par
la variation des puissances dissipées par les composants et éventuellement par celle
des conditions aux limites. Cette méthode est évaluée sur un cas-test numérique
constituée par un problème comportant une seule entrée et une seule sortie. En
second lieu, nous proposons une deuxième méthode d’identification non-linéaire, de
nature non paramétrique, basée sur la variante dite Unscented du filtre de Kalman.
Cette méthode identifie des modèles réduits en représentation d’état en se fondant
également sur les données d’entrées et de sorties issues d’un modèle détaillé de
référence. Le défi sous-jacent à cette proposition est d’identifier simutanément,
en temps réel, les variables d’état et les paramètres présents dans les différents
opérateurs du modèle réduit. Cette méthode est d’abord appliquée au cas test
précédemment utilisé pour l’évaluation de l’approche étendue de Kernel Identifica-
tion Method, mais cette fois dans un cadre linéaire. Elle est ensuite testée sur un cas
linéaire représentatif d’une application industrielle. Les résultats obtenus soulignent
les difficultés rencontrées par cette méthode quant au choix des paramètres du filtre
de Kalman. L’étape d’initialisation des paramètres à identifier s’avère également
délicate lorsque leur nombre devient important. De ce fait, la méthode n’est pas
étendue au cas non-linéaire. En tant que perspective, nous proposons enfin de com-
biner l’extension de notre méthode Kernel Identification Method avec l’approche
fondée sur la variante Unscented du filtre de Kalman dans le but d’identifier, en
représentation d’état, des modèles réduits non-linéaires comportant plusieurs entrées
et sorties.
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Nomenclature
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R (t) Reliability function
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Introduction

Industrial context and objectives

Mechatronics products are complex hardware widely used today in many areas of
applications. As microprocessors gain speed and reliability, more electronic controls
and electrical content are being applied to traditional mechanical processes in the
new mechatronics products. An example of a mechatronics products is depicted
in Fig. 0.1. This example shows a Start/Stop system designed for micro hybrid
vehicles. Its function is to automatically shut and restart the internal combustion
engine. This innovative solution has the relevant potential to save fuel, and reduce
the CO2 emissions especially in traffic jam. The power electronics modules/systems
guaranty the conversion and control of electrical power for mechatronics systems.
Power electronics modules are mainly composed of power switches and a controller
as it can be seen in Fig. 1(b). They are being made smaller and smaller while keeping
the same power capability which leads to a rise in power density. The increasing
power density results in higher junction temperature, generally located in the chip
in silicon of power-handling components, which in turn causes further increase of the
device power consumption. The safe operation of electronic devices requires then
the prevention of an excessive chip temperature. As reliability is tightly related to
electronic devices operating temperature, particularly the junction temperatures of
power components, knowledge and control of these temperatures is required in order
to ensure system reliability and control of the lifetime. The reliability of a product
is strongly influenced by decisions made during the design process. An efficient
thermal management should be therefore addressed at the start of design phase to
avoid subsequent cost and schedule delays. The “cost of change” curve, that was first
introduced by Barry Boehm [1], illustrates that the cost of an engineering change
increases drastically with time (Fig. 0.2).

The thermal analysis of power electronics modules is usually performed by means
of multiphysics simulation tools including electrical, mechanical, thermal, and flu-
idic effects. These tools are based on the discretization of the governing equations
of the different field quantities taking into account the full coupling between these
fields. Discretization-based methods such as Finite Difference, Finite Element and
Finite Volume methods can easily lead to several hundred thousand degrees of free-
dom resulting in detailed models of high complexity. In addition, the reduction of
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(a) Exploded view of Start/Stop Valeo system.

(b) Zoom on a power module.

Figure 0.1. Mechatronic hardware example: a control and power module for an
automatic Start/Stop system in micro hybrid vehicles.

real prototyping requires producing reliable and accurate virtual models. This leads
in practice to retain many details of the design to simulate. By contrast, almost
paradoxically, these simulations aim at computing junction temperatures of elec-
tronic components, whose number is often limited compared to the detailed model
size. Furthermore, the processing of transient regimes generally involve complex
variations of the power dissipated by power components with time. This requires
the use of very short integration time steps hampering large model simulations over
long periods of time, in particular when several power profiles have to be processed.
These facts show the need for a simplified thermal model to speed up the transient
thermal simulation of mechatronics models.

The aim of this work is to develop an identification method of a thermal Reduced
Order Model (ROM) in order to estimate the transient junction temperatures of the
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Figure 0.2. Cost of design change [1].

power-handling components on which mission profiles are applied. The identification
method, as its name implies, must take into account the locked access to the source
code of commercial simulation tool, in order to derive reduced models independently
of the target tool. The method has to be implemented as an offline tool that post-
processes the inputs and outputs of a discrete detailed reference model considered
as a black box.
With regard to the thermal management of power electronics, the ROM use has a
twofold purpose (Fig. 0.3):

• Reliability analysis: The key factor in this analysis is the individual com-
ponent temperatures. The ROM intent is to produce an accurate estimate of
the junction temperatures under a given mission profile. Initially identified
into state-space form, the ROM can be then converted into an RC-network so
that it can be implemented into SPICE (Simulation Program with Integrated
Circuit Emphasis) simulator [2] or similar platforms to conclude on the system
reliability assessment.

• Control application : The demand for reduced models also arises from con-
trol application that become increasingly necessary for system performance
optimization. Generally, the order of a controller is approximately the same
as that of the system to be controlled. Hence, if the latter has high complex-
ity, so will the controller. Therefore, the implementation of the controller will
become much more complex, if not infeasible, to design because of storage, ac-
curacy, robustness and computational aspects problems [3]. A thermal reduced
thermal model is intended to be implemented in a command law in order to
provide an accurate temperature estimation, which constitutes a major infor-
mation to ensure a safe system operation. The targeted ROM, besides being
accurate enough, must be in a state-space representation, a form particularly
appropriate for a Simulink implementation in view of its further inclusion in
a command law.
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Figure 0.3. Schematic positioning of the reduced model in the targeted
applications: Reliability analysis (a) and control in a command law (b).

Thesis contributions and overview

In this thesis, the development framework has been deliberately restricted to “non-
intrusive” reduction methods, also known as the “identification” methods in ex-
perimental works. The identification method is aimed at producing reduced order
models (ROMs) of transient thermal simulation of large scale mechatronics products.
The ROM is identified into a multiple-input multiple-output (MIMO) state-space
form. Our main contributions to this class of methods are the followings:

• We develop a new identification method named the “Kernel Identification
Method” (KIM), in a non-intrusive framework. It is implemented as an offline
tool that post-processes the inputs and outputs of a detailed reference model
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considered as a black box. The state matrix, assumed to be diagonal, is formed
of the dominant eigenvalues of the thermal problem. The name of the method
reflects that the identification process is based on the kernel of the thermal
problem through eigenvectors and eigenvalues independent of the input. A
main feature of KIM comes from its use of robust linear algebra tools enabling
the identification of generic reduced models valid for any signal input given the
same initial and boundary conditions. We successfully validate KIM method
on two applications: (1) a small-scale linear conduction problem; and (2) an
industrial large-scale water-cooled CFD problem mainly governed by forced
convection.

• we develop an extended KIM for the identification of non-linear reduced ther-
mal models of convective heat transfer problems. This is handled with a
non-parametric model. In order to describe the dynamic behavior of the non-
linear system, we identify a linear multimodel consisting of KIM linear models
suited for different operating points covering the entire range of operation. We
validate the identification methodology on a single-input-single-output (SISO)
academic problem.

• We explore and develop an on-line identification method based on Kalman Fil-
ter techniques aimed at processing non-linear thermal problems. The Kalman
Filter-based method particularly accommodates adaptive control in the real-
time processing problems due to its recursive working principle. Two variants
are selected, The Extended Kalman Filter and the Unscented Kalman Filter.
First, we focus on the identification of linear problems. An original Kalman
model is proposed in order to identify a linear thermal reduced model in a
discrete-time state-space form. In their present state, the Kalman variants
methods give satisfactory results on an academic linear 10 degrees of freedom
model but show difficulties when applied to a 3D larger-scale model.

Thesis outline

This thesis is organized in the following order:

• Chapter 1 gives a basic background in the thermal management of power
electronics system, a key point to understand the targeted applications of this
study. It also review the currently used identification method in Valeo named
Thermal Impedance Method,

• Chapter 2 describes the derivation of the discrete model of a thermally coupled
fluid solid problem using Finite Element method. Three different discrete
models are then deduced; (1) a linear model for a heat conduction problem,
(2) a linear forced convection governed problem and (3) a non-linear model for
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a natural convection governed problem. These models play a key role in the
choice of the ROM structure in the identification process.

• Chapter 3 reviews existing intrusive and non-intrusive model order reduction
methods but provides more insight into the second category, i.e. identification
methods including the Prediction Error Methods (PEM), the Modal Identifi-
cation Method (MIM) and the Subspace method. This latter, in particular,
has fruitfully contributed to the development of our method.

• Chapter 4 presents one of the original contributions of this thesis. It describes
the Kernel Identification Method (KIM) method principle and compares it
to three Subspace approaches on a 3D linear thermal model. KIM method is
validated on two linear thermal problems (1) a small-scale conduction problem
and (2) a large-scale water-cooled CFD problem of an industrial product.

• Chapter 5 proposes the non-linear identification approaches for the processing
of non-linear thermal problems coupled with natural convection. An extended
KIM method is developed as a non-parametric identification method and is
validated on an academic problem. A parametric based-KIM methodology is
also suggested but not tested in this work. The last section in this chapter
presents the two variants of Kalman Filter technique, Extended Kalman Filter
and Unscented Kalman Filter for the on-line identification of thermal prob-
lems, validates the approach on a linear academic test case and illustrates the
current difficulties encountered when dealing with larger scale models.

• Finally the conclusion summarizes the main results of the work and discusses
the related future work.
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Chapter 1

Background

This chapter gives a basic background in thermal management of power electronics
systems. After introducing the power electronics systems, we will present the relia-
bility analysis as well as the derating process applied to power electronics in order to
control temperatures of the most important components, i.e. those with the great-
est power dissipation or those that are the most sensitive to high temperatures. We
will also provide a brief overview of the physical mechanisms involved in electronic
cooling. Finally, we shall review the thermal impedance method constituting the
currently used in Valeo to estimate the junction temperature of power electronic
components.
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Chapter 1. Background

1.1 Power electronics systems

Power electronics systems are gaining more and more importance in the automotive
applications due to the steady progress of partially or fully electric powered vehicles.
Considering the various power electronic systems necessary in these modern vehicles,
the most common solution today is to integrate power modules composed of multiple
power semiconductors into a compact structure for cost and space reduction pur-
poses. The result is an increasing heat flux density at both components and circuit
board levels in addition to the increased coupling effect of neighbouring components.
Fig. 1.1 depicts two examples of Valeo power modules with different substrate tech-

(a) DCB Power Module.
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(b) Schematic Cross section of DCB Power Module.

(c) IML Power Module.
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(d) Schematic Cross section of IML Power Module.

Figure 1.1. Two examples of Valeo power modules : DCB and IML technologies
and their corresponding schematic cross sections.

nologies: the DCB module (Direct Copper Bonding) and the IML IGBT (Insert
Molded Leadframe) module. This latter constitutes an innovative technology devel-
oped at Valeo [1], allowing for high power densities with high efficiency in comparison
with other technologies (DCB, SMI (Insulated Metal Substrate), FR4, etc.). The
cross sections with DCB and IML technologies are given in Figs. 1.1(b) and 1.1(d),
respectively. The junction temperature of a component, Tj, is defined as the aver-
age temperature of the silicon die. This is also a key parameter for components,
especially critical semiconductors such as IGBTs (Integrated Gate Bipolar Transis-
tors), diodes and MOSFETs (Metal Oxide Semiconductor Field Effect Transistor).
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1.1. Power electronics systems

Indeed, these components are particularly sensitive to temperature. Consequently,
they must operate below a maximum allowed junction temperature specified by the
semiconductor manufacturers under every operating conditions. Examples of tem-
perature limits are 150 − 175◦C for MOSFETs [2] and IGBTs, 150◦C for diodes,
120◦C for capacitors, and so forth).

1.1.1 Reliability analysis

The reliability of a power module depends on the technology of the components, their
semiconductor material properties and on interactions with internal and external
stresses. Improvements in semiconductors technology have resulted in higher power
densities and lower power-temperature tolerances. This can lead to difficult thermal
management problems in order to prevent junction temperatures attaining values
beyond which reliability would be seriously affected.

Failure mechanisms

Electronic components can fail because of several mechanisms (fatigue, corrosion,
wear, etc.). Fatigue is a common cause of failure of power components subjected to
repetitive stress, for example from repeated electrical, thermal, mechanical stresses.
There are strong interactions between these stresses. On the one hand, electrical and
thermal stresses take place since current flow generates heat, and therefore increase
temperature. On the other hand, if the system is subjected to vibration, thermal and
vibration cycling can strongly interact. The most contributing stress factor to failure
rates of the power semiconductor devices are related to temperature. Increased
junction temperature may accelerate many fatigue failure mechanisms. The most
typical ones are bond wires (Fig. 1.2(a)) and solder joints failure (Fig. 1.2(b)). The
latter failure type generally appears due to the difference in thermal expansion
coefficients of different materials at interfaces resulting in fatigue and eventually
failure. Moreover, the lifetime of a power module is reduced if it is used consistently
in extreme operating conditions. For instance, Fig. 1.3 illustrates that even a small
variation of the junction temperature of 10 K may result in a factor 2.5 times
reduction in device lifetime.
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Chapter 1. Background

(a) Wire bond cracking of an IGBT as result
of thermo-mechanical fatigue during power cy-
cling.

(b) Solder voids between Mosfet and substrate.

Figure 1.2. Defects due to wire bond (a) [3] and die solder (b) [2] degradation.

N
c
 

Figure 1.3. Number of cycles to failure depending on ∆Tj and different medium
temperatures Tm; power cycle tests performed on IGBT modules [4].

Reliability prediction

Reliability can be defined as the ability of an item to perform a required function
under given conditions for a given time interval. Another definition is that reliabil-
ity is the probability of an item to perform a required function without incidents
under given conditions for a given time interval too [5]. The second definition shows
that the reliability can be a quantitative performance that must be achieved. Many
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1.1. Power electronics systems

models and methods have been used for reliability prediction, an exhaustive list
can be found in [5]. Among them, we will focus on describing failure-rate based
prediction methods. The failure rate, denoted as λp, is the fundamental variable
that quantifies reliability, expressed in terms of failures per unit of time. It is driven
by the applied stress levels during operation (thermal, electrical, mechanical and
radiation stresses). Thermal stresses, and in particular the system operating tem-
perature, receive special focus due to its major influence on the overall reliability.
For instance, the failure rate of MOS (Metal Oxide Semiconductor) transistor de-
pends exponentially on the amplitude of its junction temperature based on NASA
failure rate model [6].
The failure rate of electronics parts and equipment has often been represented by an
idealized graph named the “bathtub curve” [5] directed by three regions as shown
in Fig. 1.4:

• an early “infant mortality” failure period : the higher initial failure rate is due
to manufacturing or material defects. Generally, a component or a system is
operated in the factory for a period of time so that any infant mortality failures
are eliminated before to be shipped to the customer. A common example of
this testing process is the burn-in technique [7].

• a useful life period: the failure rate within this period is assumed constant. A
constant rate represents failures that are generated by the application of over-
stress levels at a constant average rate. During this period, as the failure rate is
assumed constant, reliability can also be quantified by the Mean Time Between
Failures, denoted by MTBF and defined by MTBF = 1 / failure rate.

• a final wear-out failure period : the increasing failure rate signifies the end of
the useful life or lifetime of the device due to incremental physical damage or
fatigue during normal load operation.

There exist several reliability prediction standards for electronic components and
systems. The commonly used ones include the best known source US MIL-HDBK-
217 [9] for US defense systems, RDF 2000 (UTEC 80810) [10] for Telecom and
Automotive in France, FIDES (UTEC 80811) [11] for aeronautics and defense sys-
tems in France, and so on. These methods are based on empirical failure rate models
based on a set of collected failure data over years and assume constant failures rates
during the useful life period. These standards use two methods of reliability pre-
diction : “parts count” and “parts stress” methods [5]. The parts count method
considers stress levels as a means of providing a very early design estimate of the
failure rates. The estimation of the failure rate equation contains several π-factors
corresponding typically to product environment, application environment, temper-
ature factor and quality, as well as information related to components categories
(Eq. 1.1). The parts stress method, however, requires greater detailed informations,
i.e. the failure rate equation contains more π factors. In addition, it is applied in
the later phase of design (see [5] for more details). Herein, we focus on the parts
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Figure 1.4. Reliability “Bathtub” curve - failure rate as a function of time during
lifetime [8].

count method. The total equipment failure rate during the useful life period, can
be calculated as the sum of the failure rates of the different equipment components
as follows:

λEQUIP
p =

n
∑

i=1

Ni πQi
λpi (1.1)

where n is the number of parts categories (transistor, capacitor, etc.), Ni the quantity
of ith part, πQi

the quality factor for ith part and λpi the base failure rate of ith
part.
For instance, the predicted failure rate model, λp, for a transistor in low frequency,
takes a form of (MIL-HDBK-2017)

λp = λb πT πA πQ πE Failures/106 Hours (1.2)

where λb is the base failure rate usually expressed by a model relating the influence
of electrical and temperature stresses on the part, πT , πA, πQ, πE are temperature,
application, quality and environment factors respectively. The π factors vary for
components types and categories. πT is in turn a function of the junction tempera-
ture. This fully justifies the need for an accurate determination of the components
junction temperatures.
The reliability function of the equipment component, R(t), is related to λEQUP

p in
Eq. (1.1) by the following relationship:

Ri(t) = exp
(

−λEQUIP
p t

)

(1.3)
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1.1. Power electronics systems

System reliability can be improved by controlling its operating stresses, in particular
the junction temperature and environment conditions. These can be controlled by
reducing the electrical stresses, such as current and voltage to prevent temperature
extremes, or/and by managing the airflow and the ambient temperature. The former
is referred to as “derating technique”, the latter is generally performed by means of
external cooling such as conduction and convection heat transfer modes. This will
be the subject of the following paragraph.

1.1.2 Control strategies

The advancements in power electronics systems largely rely on the control effec-
tiveness, therefore it is essential to apply the appropriate control strategies to the
electronic devices and system to obtain the targeted performance. For electronic
components, ambient temperature and power dissipation represent the main source
of junction temperatures extremes that can damage components. Designers should
therefore apply control strategies over each of the component power dissipation, re-
ferred to as derating technique, and over the ambient temperature through external
cooling. Fig. 1.5 shows an application of control process to an electric drive system.
In this example, the power electronics module (controller, power inverter, etc.) con-
trols the stator current (and other parameters) by proper regulation to produce the
reference torque. Given the appropriate command signals, the inverter (three-leg
inverter for three-phase motor) turns on and off its power switches to provide a con-
trolled alternating current (AC) supply from the DC source. The controller receives
a temperature signal of power components. This information would be estimated by
the ROM given the applied power dissipation computed by means of a power losses
model. Then, in accordance with a derating curve scheme (Fig. 1.6), the controller
calculates a derated value for the current amplitude just before the current regula-
tion step in the feedback loop. The majority of heat is produced by power devices
of the controller and inverter. This power inverter is sensitive to the temperature,
especially the three IGBTs, temperature changes will affect the device turn-on and
turn-off process, affecting further the controller performance. Therefore, a proper
thermal design should also contain a cooling system design in order to absorb heat
from the power electronics and then dissipate it to the environment.

Derating process

Derating power electronics systems has been common practice for decades to im-
prove device reliability and extend lifetime [12], [5]. Heat-generating components
such as power transistors (MOS transistors, IGBTs, etc.), are key components in
power modules as they are very sensitive to their operating temperature. These
components need to be monitored through a thermal derating process. “Derating”
is the controlled limitation of the power dissipated of the components in applications
that have high operating temperature. This is achieved by limiting the current flow-
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Figure 1.5. The positioning of the ROM in the the control process : Application to
an Electric Drive System.

ing through these components, which in turn lower the components output electric
power. Device manufacturers usually provide a “derating curve” associated to each
type of component. Fig. 1.6 shows an example of a LED (Light-Emitting Diode)
derating curve, where current is the derated parameter adjusted according to the
ambient temperature. However, the accuracy of the derating curve is limited by
that of the ambient temperature measurement.

Thermistors are the most common devices used for temperature measurement in
an operating system. In the current state, NTC (Negative Temperature Coeffi-
cient) thermistors whose resistance goes up as the temperature goes down, are used.
Thanks to their compact size, NTC thermistors can be integrated directly in close
proximity to hot spots (the power components producing the most heat) on the PCB.
It has been proven that NTC thermistors are highly reliable sensors of temperature
measurement. This measurement, however, concerns the ambient temperature (sur-
rounding) of the power components. In order to calculate how close to a maximum
safe temperature the internal components may get, designers are conducted to con-
sider an additional temperature margin. This margin is usually approximated based
on thermal simulations or IR (Infrared) camera measurements. Hence, a high accu-

36



1.1. Power electronics systems

Figure 1.6. Temperature-current derating curve for LEDs [13].

racy can be achieved by measuring directly the junction temperature, which is not
possible with thermistors. The purpose of this study is to replace the thermistors by
a mathematical thermal model producing an estimation of the junction temperature
of power components. However, thermistors will be still kept for safety reasons. For
instance, thermistors can eliminate short circuits in the case of excessive continuous
currents inside equipment [14].

Cooling strategies

The cooling system design of power electronics devices directly affect the system
stability and reliability. Cooling technologies rely on three basic heat transfer mech-
anisms that often take place together : heat conduction, convection and radiation.
The first two mechanisms are generally the most significant in power electronics
devices in the automotive applications. In fact,the amount of power transferred is a
function of the difference between the object and its surrounding’s temperatures to
the 4th power (see Table 1.1). In automotive electronics systems, the “surroundings”
is usually the ambient air in proximity to the component or PCB. In that respect,
the role of radiation is further decreased when forced convection is used, since this
will reduce the difference between the ambient and the object surface temperature.
This situation contrasts for instance with lighting systems (Light-emitting diodes
(LED) systems) where the radiation contribution may reach 27/% of the total heat
transfer and may even be greater than that of the natural convection [15]. Other
applications where radiation plays a dominant role include tablets and smart phones
(over half of the heat transfer is due to radiation) [16], and the space applications,
where radiation is the only relevant heat transfer mechanism. As far as the power
electronics systems are concerned, we are going to briefly describe the conduction
as well as convection, air cooled and water cooled systems [17].
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Table 1.1
Comparison of the mathematical models for each transfer mode.

Conduction Convection Radiation

Q = k S ~grad(T ) · ~n Q = h S (TS − Tf ) Q = S ǫ σ (TS − TSur)
4

S : Surface area of
object [m2]

S : Surface area of
object being cooled [m2]

S : Effective surface
area of object [m2]

k : Material thermal
conductivity
[Wm−1K−1]

h : Convective heat
transfer coefficient

[Wm−2K−1]

σ : Stefan-Boltzmann
constant

~grad(T ) : Temperature
gradient [Km−1]

(TS − Tf ) : Temperature
difference between the

(TS − TSur) :
Temperature difference

object and the cooling
fluid [K]

between the object and
surroundings [K]

Conduction cooling The rate of conductive heat flow depends on the temper-
ature gradient and the thermal conductivity of the material as can be seen by the
Fourier’s law in Table 1.1. Conduction cooling is of major importance in electronics
systems design. Even if a system is designed for convection cooling, conduction is
still the dominant heat transfer mechanism within the components and circuit board.
This is especially true for power electronics where power losses are concentrated on
the power semiconductors such as silicon die. Heat sinks are the most common
means to achieve the thermal dissipation necessary to reduce the components in-
ternal temperature. In fact, the primary function of a heat sink is to allow for the
spreading of heat from components with high power dissipation generally mounted
to its surface, as can be shown in Fig. 1.7, so that that heat can be dissipated by
the convective cooling mechanisms to the surrounding environment.

Convection cooling Convection is defined as the heat transfer from the surface
of an object to a moving fluid. If the fluid flow is created by external source such as
fans, it is referred to as forced convection. If the fluid flow is created by gravitational
forces on the fluid as its density varies, then it is referred to as natural convection.
As can be seen in Table 1.1), the heat flow equation, the Newton’s law, is the same
for both natural and forced convection heat transfer. The difference lays in the
convective heat transfer coefficient, h, values range. For instance, the value of the
convection coefficient for air will typically be in the range of 5 to 25 for natural
convection and in the range of 10 to 500 for forced convection. A commonly used
method of cooling power semiconductors is air-cooling, which includes natural air
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1.1. Power electronics systems

cooling and forced air cooling, as shown in Fig. 1.7 with an application to a power
electronics device intended to control a ventilation motor. The forced air convection
is able to remove a greater amount of heat than by natural convection but requires
more control systems, such as for fan operation. Noise can also be a concern. A
more effective heat removal method is water-cooling at the expense of higher cost
and more difficult integration. Coolant loops can be combined with the thermal
control of the power modules. This type of cooling can be used for very high power
components (Kilowatts range). An illustration of water-cooling of a high power
inverter electronics for electric drive system is given in Fig. 1.8.

(a) MOS module attached to a forced air
cooled heat sink.

(b) Air streamlines.

Figure 1.7. An illustration of air cooled MOS power module system for the control
of a ventilation motor [18].

(a) Inverter model. (b) Zoom on a power module.

Figure 1.8. Water cooled Inverter (composed of three power modules) [19].
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1.2 Thermal Impedance Method

Traditionally, in order to estimate the junction temperature, designers use the ther-
mal impedance specified in the datasheet for electronic components under stan-
dardized environment conditions [20], such as that specified by the JEDEC JESD51
standard [21], in order to estimate junction temperatures of their devices used in
their systems. Unfortunately, standardized thermal impedance cannot accurately
predict the thermal performance of a component in a user application, since it is
not a characteristic of the component package by itself but also of many other charac-
teristics such as the design and layout of the PCB (Printed Circuit Board) on which
the components are mounted as well as other environmental factors. Consequently,
it is appropriate to measure the thermal impedance from experimental measurement
or a detailed 3D model simulation. The Thermal impedance method, also named
the Zth method [22], [23], [24], is the current used method in Valeo [25] in order to
predict the junction temperature based on the measured thermal impedance curves.
In fact, the dynamic behaviour of a thermal system can be described either in the
frequency domain by its transfer function or else by its impulse response, which is
the derivative of the thermal impedance. The former process is referred to as the
“compact model synthesis” [26] and enables the extraction of equivalent thermal
RC-network models. The latter process is called the “direct approach“ based on the
convolution product [27], [28]. This technique is a practical tool for estimating di-
rectly the transient temperature response to any arbitrary power dissipation profiles
by means of a convolution integral between input power and the time derivative of
the thermal impedance in time domain.
The practical use of the thermal impedance (Zth) method in Valeo is explained in
the publication [25]. More details are available in the internal Valeo report in [29].
The process consists of 3 steps:

• A measurement step to extract the thermal impedance Zth,

• An identification step to derive an equivalent RC network (compact thermal
model) intended to be included into 0D electronic simulators such as Pspice,

• A validation step when the power profile (introduced below) is applied. This
step can be performed by either (1) the convolution method acting directly on
the extracted Zth (2) or a 0D electronic simulation including the identified RC
network. The results, i.e. the temperatures evolution at observation points,
are then compared to the reference solution issued from either a numerical
simulation or IR camera measurements when the same power profile is applied.

Thereafter, after introducing the power profiles used in the 3D thermal simulations,
we review the Zth measurement method as well as the principle of the two Zth
method techniques, the compact model synthesis and the convolution-based direct
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1.2. Thermal Impedance Method

approaches. Then, we illustrate the Zth limitations on a fictitious test case repre-
sentative of an industrial application.

1.2.1 The power profiles

The thermal management of power electronics systems is generally performed for few
operating conditions. These latter are determined through the mission profile of the
vehicle specified in the very start of the system design. A mission profile consists of
a description of vehicle driving cycles. Fig. 1.9 depicts four typical ARTEMIS driv-
ing cycles (jam, urban, road and highway) developed by the European ARTEMIS
project for an electrical vehicle. A combined cycle representative of the vehicle life
is then computed (4 Jam + 3 Urban + 2 Road + 1 Highway). In Fig. 1.9, the
combined cycle of 2 hours 30 minutes made of about 95,000 points. Starting from
a mission profile, electronic designers can compute the power losses applied to the
module components by means of power losses model as it was showed in Fig. 1.5.
Like the vehicle mission, the computed power losses are long and complex transient
signals. Although these latter can be handled in SPICE-like electronic simulators,
it is impossible to process them in 3D thermal simulations which in turn involve
several hundred of degrees of freedom. Thus, thermal designers are provided in-
stead with averaged power losses generally taking the form of square signals. These
signals, named the power profiles, are those used in the validation step in the Zth
method. The idea is then to process in separate phases: (1) identify an equivalent
RC networks of the 3D thermal model valid for the power profiles (2) then integrate
that RC model into a 0D thermal-electrical model and (3) run the 0D model for
the complex power losses signals to convert those latter into temperature profiles
intended for reliability analysis.
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Figure 1.9. ARTEMIS electrical vehicle driving cycles.
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1.2.2 Zth measurement

Since a well-established analogy exists between electrical and thermal, equivalent
circuit models of thermal systems are a convenient method for thermal analy-
sis [30], [31]. In thermal analysis, temperature and heat flux are analogous to
voltage and current, respectively. Hence, equivalently to electrical resistance, de-
fined by R = ∆V/I, the thermal resistance, in steady-state, can be expressed with
Eq. (1.4):

Rth =
∆Tj−ref

P
(1.4)

where ∆Tj−ref is a temperature difference between the junction and a reference
point and P the dissipated power. Heat is generated in the central junction position
of the power device (the semiconductor die surface) and released to the surrounding
environment through several thermal resistance paths. Steady-state junction tem-
perature can be fully described through the thermal resistance parameter. However,
in transient state, as far as linear thermal systems are concerned, the dynamic ther-
mal behaviour is described based on the thermal impedance denoted by Zth(t). This
latter represents the thermal step response, i.e. temperature response when a step
signal is applied at different locations.

The thermal impedance response can be obtained, either from experimental mea-
surements, or from physical simulation using 3D solvers based on finite element,
finite differences or finite volumes. The thermal impedance based methods assumes
that the systems are sufficiently linear under the operation conditions, allowing for
the application of the superposition principle and the scaling of power dissipation.
In practice, the thermal impedance measurement consists in applying in turn step
power profiles to each dissipation source of the detailed model and in collecting the
temperature responses performed up to the steady regime at all observation points.
Those latter typically refer to junction temperatures and sensors at critical locations.
For instance, the entry Zth

ij in Eq. (1.5) correponds to the observed step response at
point i when a step signal is applied at point j.

Zth
ij (t) =

Ti (t)− Tref
Pj

(1.5)

In this relationship, Ti(t) is the junction temperature at point i, Tref the reference
temperature (usually the ambient) and Pj the amplitude of the power dissipation
step at point j. A schematic illustration of the Zth technique is given in Fig. 1.10.
In this illustration, the time-functions Z11(t), Z22(t) and Z33(t) are called the driv-
ing point thermal impedances, or also the self impedances, for heating and mea-
surement take place at the same location and constitutes the diagonal elements of
the impedance matrix. The off-diagonal elements, however, are called the trans-
fer thermal impedances and concern the case of different heating and measurement
locations.
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Figure 1.10. Schematic illustration of the Thermal impedance method on a Power
component.

1.2.3 Compact model synthesis approach: equivalent RC
networks

The thermal impedance in Laplace domain Zth(p) is represented by the so-called
time-constant representation [23] given in Eq. (1.6):

Zth (s) =

p
∑

i=1

Ri

1 + sτi
(1.6)

where s is the Laplace variable, τi the response time-constants and Ri the corre-
sponding magnitudes. In the time domain, the corresponding temperature rise step
response is given by a finite number of exponential terms (Eq. (1.7)):

Zth (t) =

p
∑

i=1

Ri

(

1− exp

(

− t

τi

))

(1.7)

The unit step response (thermal impedance) represents the Foster-network model
in Eq. (1.7). In this model, each time-constant τi equals the product of the thermal
resistance Ri and thermal capacitance Ci. Hence, Doing so for each entry Zth

ij

(Eq. (1.5)), a reliable equivalent circuit structured as a low-pass network with nRC
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RC cells is obtained as shown in Fig. 1.11(a). It is necessary to retain a low number
of RC cells to avoid unnecessary model complexity in electronic simulators. In-
house experience proves that up to nine RC elements per Zth

ij entry are sufficient
for an acceptable approximation of a real measured thermal transient curve. The
equivalent Foster-network is used for the thermal system characterization. However,
it has not a physical interpretation, a Foster-to-Cauer network transformation is then
used to calculate the physical heat capacitances of the heat flow structure [22]. The
Cauer equivalent of the Foster network is depicted in Fig. 1.11(b).

Zth

Cth1 Cth2

Rth1 Rth2 RthnRC

CthnRC

Foster equivalent

Tjunction

Tref

(a) Foster Rc-network.

Cth1 Cth2

Rth1 Rth2 RthnRC

CthnRC

Zth
Cauer equivalent

Tjunction

Tref

(b) Cauer Rc-network.

Figure 1.11. (a) Foster and (b) Cauer RC-networks representations of thermal
impedance with applied power source P (t).

To extract equivalent RC-networks model, various approaches have been devel-
oped. Szekely [22] first proposed the Network Identification by Deconvolution (NID)
method. This technique differentiates the thermal impedance response in the loga-
rithm of the time, applies a deconvolution method in order to obtain the signal con-
taining the time-constant spectrum information density and then computes a Foster-
to-Cauer transformation [32]. Since then, extended approaches of NID method
has been proposed, such as the Thermal Resistance Analysis by Induced Transient
(TRAIT) method in [33] and the Multi-Exponential Transient Spectroscopy (METS)
method in [24] and so on.
Another well-known method enabling the extraction of compact thermal model is
the “Thermal Impedance method”. This method enables the extraction of com-
pact thermal models as well, by directly fitting the step response, i.e. the thermal
impedance, with RC-elements in series according to the equation (1.7) [26], [28]
(Foster-network model). This technique has been introduced since 2010 by Dubus
et al. [25] and is named the “Zth method”. It is mainly used in order to cast a
compact thermal model as an equivalent RC-networks that electronic designers can
employ on their own in circuit simulators [25].

1.2.4 Direct approach : convolution product

As far as linear thermal systems are concerned (or sufficiently linear under operating
conditions), the thermal impedance response Zth(t) matrix serves to compute the
temperature T (t) (Eq. (1.8)) at observation points for any input profile P (t) by the
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convolution product of P (t) with the time derivative of Zth(t) denoted dZth
dt
, which

corresponds to the thermal impulse response of the system.

T (t) − Tref =
dZth

dt
⊗ P (t) (1.8)

or equivalently,

T (t) − Tref =

∫ t

0

dZth

dt
(t− s)P (s) ds (1.9)

The direct approach has been also implemented and is illustrated in a Valeo internal
report [34]. Using the convolution theorem, the convolution operation is carried out
by transforming the arbitrary input signal to the frequency domain and multiplying
it with the system transfer function (Fourier transform of the impulse response).
The inverse Fourier transform of this product is the output temperature response
of the arbitrary input signal. A cubic spline interpolation [35] as proposed in [36]
enables an accurate fitting of the Zth curves at the sample points of the arbitrary
input time vector (often much larger than those of the thermal impedance data),as
well as the derivative of the interpolated Zth(t) [34].

1.2.5 Thermal impedance method limitations

The Zth method in Valeo proved to be quite useful in the presence of non-linear
conduction and radiation when carefully used, at least in automotive applications
(approximately 10% of the global heat transfer modes). For instance, any non-
zero level of power dissipation could be theoretically be used during the reference
model simulations. Actually, these levels must be close to the ones involved by the
real product, allowing for the problem linearization around the targeted operating
condition. However, despite these precautions, Valeo experience revealed that this
method may lead to significant errors, in particular for systems cooled by natural
convection.
Given the Zth principle, this method necessitates as much simulations as the number
of the dissipating power sources. This leads to a large number of simulations that
may be prohibitively computationally expensive especially when dealing with a high-
number of power sources. For instance, the simulation of a non-linear multiphysics
hardware, involving non-linear conduction and natural convection, composed of 62
power sources with a Finite Volume model of size 10 million cells (about 50 millions
of unknowns) lasts 15 hours, which lead to 62 simulations (about 5.5 weeks).
Moreover, the Zth method is theoretically strictly limited to linear systems, even if it
can be extended to non-linear applications, typically when temperature dependence
of material properties and the radiation effects are involved, when carefully used
with regard to the operating conditions [24]. However, when natural convection is
involved, the method may produce significant error levels. This fact has been re-
vealed through the same aforementioned industrial example of 62 dissipating power
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sources involving internal and external natural convection. The simulations have
shown significant error in steady-state leading to an overestimation of junction tem-
perature by 30% [37]. This status has led to set up a fictitious test case (Fig. 1.12)
to investigate the reasons of the discrepancy in steady state regime. The model
consists of 25 power components mounted onto a Printed Circuit Board (PCB) all
encapsulated into an enclosure. Internal and external convection take place with
the ambient air at 25 ◦C.

(a) Top view. (b) Bottom view.

Figure 1.12. Test case for illustration of the Thermal impedance method
limitations.

In order to extract the Rth matrix, 25 simulations are performed where components
are powered. After that the temperatures values are collected at 25 observation
points placed in the upper center of the components. Then, for comparison pur-
poses, the components are powered simultaneously. The applied power is put into
a vector P whose multiplication by the Rth matrix produces the junction tempera-
tures. Three scenario are tested:

• Test 1 : internal and external natural convection separated by the enclosure
encapsulating the PCB and components as illustrated in Fig. 1.12. The power
per component is 1 W,

• Test 2 : The enclosure is removed, but the board is still cooled by natural
convection and the power per component is 1 W,

• Test 3 : The enclosure is removed and the board is cooled by forced convection.
The power per component is 1 W.

In Fig. 1.13, we compare the temperature responses at observation points identified
by the Rth model and those of the Finite Volume reference model. One can see that,
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for tests 1 and 2 that involve natural convection, the relative error is very significant,
with an overestimation in the range [34 %, 36 %] and [22 %, 24 %], respectively.
However, in forced convection in test 3, the error is comprised between 0 % and 0.4 %.
Thus, as opposed to the natural convection case, the role of non-linearities is less
significant in both conduction and forced convection. The particularly discrepancy
in the natural convection case can be also be explained by the differences between
the flow patterns as illustrated by Figs. 1.14 and 1.15. Based on the same scale, we
can notice the strong differences between the flow patterns of the reference and the
Rth identified models.
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(a) Test 1: Natural convection with enclosure.
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(b) Test 2 : Natural convection without enclosure.
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(c) Test 3 : Forced convection without enclosure.

Figure 1.13. Steady-state temperature responses of the model components.
Comparison between the reference and Rth models results involving natural

convection.
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(a) Reference model when all components are
powered with 1 W.

(b) Rth model when one component is pow-
ered with 1 W.

Figure 1.14. Flow patterns of Test 1 (Natural convection with enclosure).
Comparison between the reference (a) and Rth (b) models results.

(a) Reference model when all components are
powered with 1 W.

(b) Rth model when one component is pow-
ered with 1 W.

Figure 1.15. Zoom on flow patterns of Test 1 (Natural convection with enclosure)
inside the enclosure. Comparison between the reference (a) and the Rth (b)

models results.

1.3 Conclusion

In this section, we showed that the thermal design is one of the major keys to suc-
cessful power electronics systems. The primary factor in the thermal management
is the junction temperature of power components. These latter can be controlled
by adopting derating process in command laws and by reducing their heat rise by
means of cooling mechanisms. We also presented the Thermal Impedance method,
denoted the Zth method, constituting the current used method in Valeo to estimate
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the junction temperature based on either 3D model numerical simulations or In-
frared Camera measurements. The investigation of an industrial use case revealed
its practical difficulties and limitations typically in natural convection. Being based
on the superposition principle, it is also difficult to extend the Zth method for the
processing of non-linear models. All these limitations call for an alternative reduc-
tion method of non-linear problems with a broader scope regarding the processing of
non-linear phenomena related above all to the natural convection. Prior to that, we
will review the theoretical derivation of the discrete reference model of a thermally
coupled fluid solid problem.
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Chapter 2

Theory : thermally coupled
fluid-solid problem

Choice of the reduced model form plays a prominent role in the success of the identi-
fication process. For this purpose, it is essential to first understand the physics of the
investigated problem. In this chapter, we present the mathematical background of a
thermally coupled fluid-solid problem that will be used to derive a discrete reference
model. The derivation of the discrete model in the fluid and solid domains is per-
formed separately, starting each time from their corresponding governing equations.
Then, coupling mechanisms are considered based either on a “weak” or “strong”
coupling. Both types of coupling will be described.
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Chapter 2. Theory : thermally coupled fluid-solid problem

2.1 Reference problem and notations

Let us consider Ωf and Ωs the spatial bounded domains in R
d (d = 2 or 3) for fluid

and solid domains, respectively. The subscripts .f and .s stand for the fluid and the
solid quantities. Let Γi

s denotes the solid interface on which the heat flux qimp is
imposed and Γw the fluid-solid interface and ~n its normal unit vector. The vector
~n, chosen exterior to the solid domain Ωs. Let ~f be the body forces per unit mass
acting on the fluid (Fig. 2.1). The unknown variables in that problem are the solid
temperature Ts (~x, t). The unknown variables in the fluid problem are (p, ~u, Tf ) for
the pressure, velocity field and temperature, respectively.

Figure 2.1. Schematic representation of the reference problem: a thermally coupled
fluid-solid problem along the interface Γw.

Function spaces Let H0 (Ω) = L2 (Ω) the space of square integrable functions
defined on a bounded domain Ω of Rd (Sobolev space of order 0). The scalar product
of H0 on Ω is denoted by (., .) or also (., .)Ω and the norm by | |0 or also | |Ω,0:

(a, b) =

∫

Ω

a (x) .b (x) dΩ; | a |Ω,0 = | a |0 = (a, a)
1
2

Similarly, the scalar product of H0 on a boundary of Ω, ∂Ω = Γ, is denoted by
(., .)Γ.

(a, b) =

∫

Γ

a (x) .b (x) dΓ

Let H1 (Ω) the Sobolev space of order 1 on Ω. The scalar product is defined in the
same way as for H0 on Ω and Γ. The associated norm is denoted ‖ . ‖1.
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2.2. Finite element method

H1 (Ω) = =
{

v ∈ L2 (Ω) , ∂xi
v ∈ L2 (Ω) , 1 ≤ i ≤ d

}

Let H ⊂ H1 (Ωf ) the function space for the fluid flow velocity such as (no-slip
condition for viscous fluid in contact with immobile solid):

H =
{

~u ∈ H1 (Ωf ) , ~u = 0 on ∂Ωf

}

(2.1)

Let L ⊂ H0 (Ωf ) the function space for the fluid pressure, and R ⊂ H1 (Ω) the
function space for the temperature for both the solid and the fluid domains.

2.2 Finite element method

Although Finite volume methods are well established for fluid flow problems [1], [2],
we choose herein the Finite Element Method (FEM) to discretize both the fluid
and solid domains based on the Galerkin approach. The spatial discretization using
the finite element method (FEM) is realized by dividing the spatial domain into
non-overlapping elements. The distribution of these elements in domain is called a
mesh. We consider a tetrahedral mesh (triangular in 2D domain) of both the spatial
fluid and solid domains. Thereafter, an approximation field can be constructed
by means of interpolation between the discrete solutions at the mesh nodes using
shape functions. These latter should have a prescribed behaviour per element, i.e.
constant, linear or quadratic. In addition, the shape function associated with a
node of an element should have the value of 1 on that node and 0 on the other
nodes. The resolution of the governing equations of the fluid problem using FEM,
in particular, restricts the number of applicable elements, especially for the pressure-
velocity variables [3]. A general accepted rule is that the order of approximation of
the pressure must be lower than that of the velocity. For example, if the velocity
is approximated by a quadratic element, then the pressure is approximated by a
linear or a constant element. The list of admissible elements for incompressible and
weakly compressible fluid flows is given in [4].

Shape functions of the fluid domain

Consider for example the mesh Th of a 2D fluid domain depicted in Fig. 2.2, based
upon triangular elements with l points at the centroid of each element for the pres-
sure, N vertices for the temperature, and N vertices together with mt midpoints
of the edges for the velocity. Each triangular element contains seven nodal points,
one center node, three vertices and three edge midpoints. The pressure variable
is determined by its values on the l center nodes of the mesh. Let Lh denote a
subspace of dimension l of L and {ψ1 (~x) , · · · , ψl (~x)} its basis functions, where
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Chapter 2. Theory : thermally coupled fluid-solid problem

ψj (~x) , j = 1, . . . , l is the shape function in Lh (2.3). For temperature and veloc-
ity, we consider higher order shape functions. We choose linear shape functions
{χ1 (~x) , · · · , χN (~x)} for the temperature in the subspace Rh ⊂ R (2.5). The veloc-
ity variable is approximated by quadratic shape functions in the subspace Hh ⊂ H.
Let m = N + mt denotes the number of vertices and edges in the mesh. We de-
fine then the shape functions {ϕ11 (~x) , · · · , ϕm1 (~x)}, {ϕ12 (~x) , · · · , ϕm2 (~x)}, and
{ϕ13 (~x) , · · · , ϕm3 (~x)} for the velocity components u1, u2 and u3, respectively (2.4).
We may combine the velocity shape functions into a vector form by:

~ϕj1 (~x) =





ϕj (~x)
0
0



 , ~ϕj2 (~x) =





0
ϕj (~x)
0



 , ~ϕj3 (~x) =





0
0

ϕj (~x)



 (2.2)

The approximations of the pressure, velocity and temperature variables,
(

ph, ~uh,
T h
f

)

∈ (Lh,Hh,Rh), are defined as follows:

p (~x, t) ≈ ph (~x, t) =
l
∑

j=1

ψj (~x) pj (t) (2.3)

~u (~x, t) ≈ ~uh (~x, t) =
m
∑

j=1

~ϕj1 (~x) u1j (t) + ~ϕj2 (~x) u2j (t) + ~ϕj3 (~x) u3j (t)

=
M
∑

j=1

ϕj (~x) uj (t)
(2.4)

Tf (~x, t) ≈ T h
f (~x, t) =

N
∑

j=1

χj (~x)Tfj (t) (2.5)

In the equation (2.4), uj is defined by uj (t) = u1j (t) , uj+m (t) = u2j (t) , uj+2m (t) =
u3j (t) , (j = 1 . . .m) and ϕj (~x) in the same way. In what follows, we assume
M = 3m the number of degrees of freedom of the velocity field. The number M is
equal to 2m in the case of 2D problem for example. The subscript j stands for the
jth node in the fluid domain mesh. The variables uj (t), pj (t) and Tfj (t) are the
velocity, pressure and fluid temperature unknowns at the jth node.
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2.3. Fluid domain

Center node

Vertice node

Edge node 

(a) Triangular element. (b) All elements in domain Ωf , l = 24, N =
20, mt = 43.

Figure 2.2. Example of triangular mesh of a 2D fluid domain.

Shape functions in the solid domain

For simplicity, the shape functions for the solid temperature are taken the same as
in the fluid in the subspace Rh as follows:

Ts (~x, t) ≈ T h
s (~x, t) =

N
∑

j=1

χj (~x)Tsj (t) (2.6)

where Tsj (t) is the solid temperature variable at the jth node of the solid domain
mesh.
In what follows, for the ease of presentation, the time variable t is omitted in uj, pj,
Tfj , Tsj . We do so for the space variable ~x in ψj, ϕj and χj.

2.3 Fluid domain

2.3.1 Governing equations

The general system of Navier-Stokes for Newtonian compressible fluids is given by
the system (2.7). This system includes the continuity, the momentum and the energy
equations. The derivation of these equations can be found in [5]:































∂ρf
∂t

+∇. (ρf ~u) = 0

∂ (ρf ~u)

∂t
+ (ρf~u. ∇) ~u+∇p− µ ∆~u−

(

ζ +
µ

3

)

∇ (∇. (~u)) = ρf ~f

∂
(

ρfcpfTf
)

∂t
+ ~u.∇

(

ρf cpfTf
)

− div (k∇Tf ) = 0

(2.7a)

(2.7b)

(2.7c)

In the system (2.7), ρf stands for the fluid density,
∂
∂t
the partial derivative in time,

µ the fluid dynamic viscosity, ζ the bulk viscosity, ~f the vector of body forces per
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Chapter 2. Theory : thermally coupled fluid-solid problem

unit mass acting on the fluid (such as the gravitational acceleration vector ~g when
the fluid weight is the only body force), cpf the fluid specific heat and k the fluid
conductivity. The variables ~u = ~u (~x, t), p = p (~x, t), and Tf = Tf (~x, t) are the
velocity, the pressure and the temperature of the fluid flow at time t and position
~x ∈ Ωf , respectively. In the momentum equation (2.7b), the term µ∆~u is the viscous
dissipation. The non-linearity of the momentum equation is due to the convective
acceleration term, (ρf~u. ∇) ~u. The energy equation (2.7) is coupled to the fluid flow
equations (2.7a), (2.7b) through the convective part ~u.∇

(

ρf cpfTf
)

.

In forced convection, there are two basic assumptions. First, the viscous dissipation,
µ ∆~u, is neglected due to small changes of velocities in the flow. Second, the
changes of fluid properties (density, viscosity, specific heat and conductivity, etc.)
are neglected. These assumptions are valid when the changes of velocities are low
compared to heat transfer [6], and when temperature rises are still small. As a result
of these assumptions, the energy equation (2.7) reduces to convection-conduction
equation that can be solved separately from the fluid flow part (2.7a), (2.7b). In
addition, the term ~u.∇

(

ρf cpfTf
)

is no longer non-linear since there are no longer
velocity variable to solve but instead will be imported from the fluid solver.

In natural convection, however, fluid flow and heat transfer are coupled through the
Boussinesq approximation [7], [8]. This approximation assumes that the fluctuations
in density are related to gravity and result principally from thermal effects. This
means that the density variations are neglected in continuity and energy equations
except when they are related to the gravitational term (~f = ~g in (2.7b). The state
equation of Boussinesq approximation is given by:

ρf (T ) = ρ0 [1− β (T − T0)] (2.8)

where ρ0 denotes the density at a reference temperature T0, and β the thermal
expansion coefficient.

Combining equations (2.8) and (2.7b) yields the following system [7]:























∇. (~u) = 0

ρ0
∂ (~u)

∂t
+ ρ0 (~u.∇) ~u+∇p− µ∆~u = − ρ0β (Tf − T0)~g

ρ0cpf
∂ (Tf )

∂t
+ ρ0cpf ~u.∇Tf − λ∆Tf = 0

(2.9a)

(2.9b)

(2.9c)

The system (2.9) constitutes the Navier-Stokes equations for a “weakly” compress-
ible fluid in natural convection problem. Since the temperature is present in the
momentum equation (2.9b), and the non-linear convective term in the energy equa-
tion (2.9), the fluid flow and heat transfer equations are solved in a coupled manner,
by contrast to the forced convection problem.

Thereafter, the Navier-Stokes equations in (2.9) will be discretized in space using
the FEM based on Galerkin approach [4].
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2.3. Fluid domain

2.3.2 Variational formulation

In order to derive the variational formulation, we multiply the continuity equa-
tion (2.9a) by a pressure test function p∗, the momentum equation (2.9b) by a ve-
locity test function ~u∗, and the energy equation (2.9) by a temperature test function
T ∗f , and then we integrate over the domain Ωf :















∫

Ωf
p∗ ∇. (~u) dΩ = 0

∫

Ωf

(

ρ0
∂~u
∂t
+ ρ0 (~u.∇) ~u+∇p− µ∆~u

)

.~u∗ dΩ =
∫

Ωf
(− ρ0β (Tf − T0)~g) .~u

∗ dΩ
∫

Ωf

(

ρ0cpf
∂Tf

∂t
+ ρ0cpf ~u.∇Tf − kf∆Tf

)

T ∗f dΩ = 0

(2.10)
Since the pressure is intended to be approximated over space of order 0, and the
velocity and the temperature fields over space of order 1 (see § 2.1), then the terms
∇p, ∆~u and ∆Tf in the system (2.10) have to be transformed with the help of
integration by parts (Green’s and divergence formula) (Eqs. (2.11) and (2.12)).

∫

Ωf

(−µ∆~u+∇p) ~u∗ dΩ

= µ

∫

Ωf

∇~u.∇~u∗ dΩ− µ

∫

∂Ωf

~n. (∇~u.~u∗) dΓ +
∫

Ωf

(∇. (p ~u∗)− p ∇. (~u∗)) dΩ

= µ

∫

Ωf

∇~u.∇~u∗ dΩ− µ

∫

∂Ωf

~n. (∇~u.~u∗) dΓ +
∫

∂Ωf

~n. (p ~u∗) dΓ−
∫

Ωf

p ∇. (~u∗) dΩ

= µ

∫

Ωf

∇~u.∇~u∗ dΩ−
∫

Ωf

p ∇. (~u∗) dΩ−
∫

∂Ωf

~n. (µ∇~u− p I) .~u∗ dΓ

= µ

∫

Ωf

∇~u.∇~u∗ dΩ−
∫

Ωf

p ∇. (~u∗) dΩ−
∫

∂Ωf

~n.σ.~u∗ dΓ

∫

Ωf

(−µ∆~u+∇p) ~u∗ dΩ = µ

∫

Ωf

∇~u.∇~u∗ dΩ−
∫

Ωf

p ∇. (~u∗) dΩ−
∫

∂Ωf

~n.σ.~u∗ dΓ

(2.11)
where σ is the Cauchy stress tensor. By taking ~u∗ to be zero on the boundary ∂Ωf

(as assumed in (2.1), we deduce that:

∫

∂Ωf
~n.σ.~u∗ dΓ = 0 ∀~u∗ ∈ H
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Chapter 2. Theory : thermally coupled fluid-solid problem

We have also:

∫

Ωf

−k∆TfT ∗f dΩ = k

∫

Ωf

∇Tf .∇T ∗f dΩ−
∫

∂Ωf

k~n.
(

∇Tf .T ∗f
)

dΓ

= k

∫

Ωf

∇Tf .∇T ∗f dΩ +

∫

∂Ωf

(

−k∂Tf
∂n

)

T ∗f dΓ

= k

∫

Ωf

∇Tf .∇T ∗f dΩ +

∫

∂Ωf

qnT
∗
f dΓ (2.12)

where qn = −k ∂Tf

∂n
is the heat flux applied on the domain boundary ∂Ωf . We

consider herein only the heat flux exchanged along the fluid-solid interface Γw:

qn = −k ∂Tf

∂n
= qws on Γw (2.13)

The term qws is the heat flux to the wall from the solid at the fluid-solid interface
Γw. It depends on the fluid as well as the solid temperatures, Ts, a solution of
the energy equation in the solid domain (2.31). It is qws that ensures the thermal
coupling between the fluid and the solid problems. The coupling scheme types will
be presented in Section 2.5.
Using the expressions (2.11) and (2.12) in the system (2.10), we deduce the varia-
tional problem of the system (2.9) as follows:















































Find X = {p, ~u, Tf} ∈ L ×H×R such that:

∫

Ωf
p∗∇. (~u) dΩ = 0 ; p∗ ∈ L

ρ0
∫

Ωf

∂~u
∂t
.~u∗ dΩ + ρ0

∫

Ωf
(~u. ∇) ~u.~u∗ dΩ + µ

∫

Ωf
∇~u.∇~u∗ dΩ

−
∫

Ωf
p∇. (~u∗) dΩ = −ρ0

∫

Ωf
β (Tf − T0)~g.~u

∗ dΩ ; ~u∗ ∈ H
ρ0cpf

∫

Ωf

∂Tf

∂t
T ∗f dΩ + ρ0cpf

∫

Ωf
~u.∇Tf T ∗f dΩ + kf

∫

Ωf
∇Tf .∇T ∗f dΩ

=
∫

Γw q
w
s T

∗
f dΓ ;T ∗f ∈ R

(2.14)
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2.3. Fluid domain

We define the following bilinear and trilinear forms:

au (~u, ~u
∗) = µ

∫

Ωf

∇~u.∇~u∗ dΩ ; ~u, ~u∗ ∈ H (2.15)

aT
(

Tf , T
∗
f

)

= k

∫

Ωf

∇Tf .∇T ∗f dΩ ;Tf , T
∗
f ∈ R (2.16)

a0 (p
∗, ~u) =

∫

Ωf

p∗∇. (~u) dΩ ; ~u ∈ H, p∗ ∈ L (2.17)

b (Tf , ~u
∗) = −ρ0

∫

Ωf

β (Tf − T0)~g.~u
∗ dΩ ;Tf ∈ R, ~u∗ ∈ H (2.18)

nu (~u,~v, ~u
∗) = ρ0

∫

Ωf

(~u.∇)~v.~u∗ dΩ ; ~u,~v, ~u∗ ∈ H (2.19)

nT

(

~u, Tf , T
∗
f

)

= ρ0cpf

∫

Ωf

~u.∇Tf T ∗f dΩ ; ~u, Tf , T
∗
f ∈ H (2.20)

and

(

qws , T
∗
f

)

Γw =

∫

Γw

qws T
∗
f dΓ ;T ∗f ∈ R (2.21)

It follows from the system (2.14) and the equations (2.15) - (2.21) that the solution
of the Navier-Stokes problem in the system (2.9) satisfies the following variational
equations:























Find (p, u, Tf ) ∈ L ×H×R satisfying:

a0 (p
∗, ~u) = 0 ; p∗ ∈ L

(ρ0∂t~u, ~u
∗) + au (~u, ~u

∗) + nu (~u, ~u, ~u
∗)− a0 (p, ~u

∗) = b (Tf , ~u
∗) ; ~u∗ ∈ H

(

ρ0cpf∂tTf , T
∗
f

)

+ aT
(

Tf , T
∗
f

)

+ nT

(

~u, Tf , T
∗
f

)

=
(

qws , T
∗
f

)

Γw
; T ∗f ∈ R

(2.22)

where ∂t~u is the partial derivative with time.

2.3.3 Discrete detailed model

The problem is to determine the fluid variables, p, ~u = (u1, u2, u3) and Tf of the
system (2.9). To do that, we suppose that (2.22) hold for each p∗ ∈ Lh for the
pressure, ~u∗ ∈ Hh for the velocity, and T

∗ ∈ Rh for the temperature. Using the fact
that these test functions are arbitrary, we choose them in the space spanned by the
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Chapter 2. Theory : thermally coupled fluid-solid problem

shape functions, ψ1 to ψm, ϕ1 to ϕN , and χ1 to χl, respectively.











p∗ = ψi; i = 1, · · · , l
~u∗ ≡ ϕi; i = 1, · · · ,M
T ∗f = χi; i = 1, · · · , N

(2.23a)

(2.23b)

(2.23c)

The substitution of (2.3) - (2.5) and (2.23a) - (2.23c) into the variational formula-
tion (2.22) yields the so-called Galerkin formulation:



































Find
(

ph, uh, T h
f

)

∈ Lh ×Hh ×Rh satisfying:

a0
(

ψi, u
h
)

= 0 ; i = 1, . . . , l
(

ρ0∂tu
h, ϕi

)

+ au
(

uh, ϕi

)

+ nu
(

uh, uh, ϕi

)

− a0
(

ph, ϕi

)

= b
(

T h
f , ϕi

)

; i = 1, . . . ,M
(

ρ0cpf∂tT
h
f , χi

)

+ aT

(

T h
f , χi

)

+ nT

(

uh, T h
f , χi

)

= (qws , χi)Γw ; i = 1, . . . , N

(2.24)

Using the equations (2.3) - 2.5 and given the linearity of the inner product, the
derivative and the integral operators, we now rewrite (2.24) as:































































M
∑

j=1
uja0 (ψi, ϕj) = 0 ; i = 1, . . . , l

M
∑

j=1

(

u̇j (ρ0ϕj , ϕi) + uj

(

au (ϕj , ϕi) + nu

(

ϕj ,
M
∑

k=1

ukϕk, ϕi

)))

−
l
∑

j=1
pja0 (ψj , ϕi) =

N
∑

j=1
Tfjb (χj , ϕi) ; i = 1, . . . ,M

N
∑

j=1
Ṫfj

(

ρ0 cpf χj , χi

)

+ Tfj

(

aT (χj , χi) + nT (
N
∑

k=1

ukϕk, χj , χi)

)

= (qws , χi)Γw ; i = 1, . . . , N
(2.25)

The formulation (2.25) can also be written as:



































































M
∑

j=1
uj (Lf )ij = 0 ; i = 1, . . . , l

M
∑

j=1
(Cfu)ij u̇j +

(

(Kfu)ij +Nfu

(

M
∑

k=1

ukϕk

)

ij

)

uj

−
l
∑

j=1
(Lf )ji pj =

N
∑

j=1
(Bf )ji Tfj ; i = 1, . . . ,M

N
∑

j=1
(CfT )ij Ṫfj +

(

(KfT )ij +

(

NfT

(

M
∑

k=1

ukϕk

))

ij

)

Tfj

= (Qs)i ; i = 1, . . . , N

(2.26)
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2.3. Fluid domain

with



















































(Lf )ij = a0 (ψi, ϕj) ; i = 1 . . . l, j = 1 . . .M

(Bf )ij = b (χi, ϕj) ; i = 1, . . . , N, j = 1, . . . ,M

(Cfu)ij = (ρ0 ϕj, ϕi) ; i = 1, . . . ,M, j = 1, . . . ,M

(Kfu)ij = au (ϕj, ϕi) , ; i = 1, . . . ,M, j = 1, . . . ,M

(Nfu (u))ij = nu(ϕj, u, ϕi) ; i = 1, . . . ,M, j = 1, . . . ,M

(CfT )ij =
(

ρ0 cpfχj, χi

)

; i = 1, . . . , N, j = 1, . . . , N

(KfT )ij = aT (χj, χi) ; i = 1, . . . , N, j = 1, . . . , N

(NfT (u))ij = nT (u, χj, χi) ; i = 1, . . . , N, j = 1, . . . , N

(2.27)

and
(Qs)i = (qws , χi)Γw ; i = 1, . . . , N (2.28)

The discrete formulation in (2.26) leads to a system of l+M+N non-linear equations
with l+M +N unknowns forming the unknown nodal variables vector [P U Tf ]

T .
We write the system (2.26) in matrix form as follows:





0 0 0
0 Cfu 0
0 0 CfT









0

U̇

Ṫf





+





0 Lf 0

−Lf
T Kfu +Nfu(U) −Bf

T

0 0 KfT +NfT (U)









P
U
Tf



 =





0
0
Qs





(2.29)

The problem (2.29) can be equivalently written as:











LfU = 0

CfuU̇+KfuU+Nfu(U)U− Lf
TP− Bf

TTf = 0

CfT Ṫf +KfTTf +NfT (U)Tf = Qs

(2.30a)

(2.30b)

(2.30c)

In the discrete system (2.30), (Lf , Bf , Cfu, Kfu, CfT , KfT ) are the constant oper-
ators, and (Nfu, NfT ) the non-linear operators depending on the the velocity vector
U . This problem is coupled to the solid problem through the rate of flux (power)
vector Qs (Section 2.5).

Solving scheme of the fluid discrete model

Several algorithms have been proposed to obtain a solution of the non-linear fluid
problem (2.30). The most used numerical methods are iterative. The fluid flow and
energy equations are commonly solved in a sequential manner. Indeed, the fluid flow
equations (2.30a) - 2.30b are first solved to obtain the unknowns U and P [1]. Then,
the discrete temperature equation can be solved according to the equation (2.30c) [1].
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Chapter 2. Theory : thermally coupled fluid-solid problem

Examples of sequential procedures include the velocity-pressure methods based on
the well-known SIMPLE algorithm proposed by Patankar and Spalding [9]. In SIM-
PLE algorithm, the coupled system formed of the discrete continuity and momentum
equations (2.30a), (2.30b) are first solved, in which the computed velocity field is
corrected using a pressure-correction equation derived from the continuity equation.
Then, the iteration step is completed by solving the discrete energy equation (2.30c)
for Tf . Other improved SIMPLE algorithms have been proposed, such as the SIM-
PLER method (revised SIMPLE) introduced by Patankar [1], or also the SIMPLEC
method proposed by Van Doormaal and Raithby [10], and many other pressure-
based algorithms as stated in [11]. Alternative techniques, referred to as “Direct”
methods, are to obtain a simultaneous solution of a linearized forms of the system
equations (2.30a) - (2.30c) using an iterative algorithm such as the Newton-Raphson
method. Such a simultaneous solution requires large computer time and storage and
becomes very difficult to handle in large problems. This can be even more difficult
for coupled fluid-solid problem as the vector Qs depends on the solid temperature,
an output of the thermal solid problem.

2.4 Solid domain

2.4.1 Governing equations and variational formulation

The thermal conduction inside the solid domain Ωs is described by the following
energy equation:

ρscps
∂Ts
∂t
−∇.(ks∇Ts) = 0 ∈ Ωs × ]0, t[ (2.31)

where Ts is the solid temperature, ks the solid thermal conductivity, cps the solid
specific heat, and ρs the solid density. We assume that the material properties
ρs, ks, cps are constants. The volumetric internal sources are neglected in (2.31).
We recall that the solid temperature is defined in the space function R ⊂ H1 (Ωs)
(Section 2.1) with:

H1 (Ωs) = =
{

v ∈ L2 (Ωs) , ∂xi
v ∈ L2 (Ωs) , 1 ≤ i ≤ d

}

We multiply the energy equation in (2.31) by an arbitrary temperature test function,
T ∗s , defined in R:

∫

Ωs

(ρscps
∂Ts
∂t
− ks∆Ts)T

∗
s dΩ = 0 (2.32)

where ∆Ts = ∇. (∇Ts).
Applying the integration by parts on the term

∫

Ωs
ks∆Ts T

∗
s dΩ in the same way as

in the fluid problem, the equation (2.32) can be equivalently stated as:
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2.4. Solid domain

∫

Ωs

ρscps
∂Ts
∂t

T ∗s dΩ +

∫

Ωs

ks∇Ts.∇T ∗s dΩ +

∫

∂Ωs

qnT
∗
s dΓ = 0 (2.33)

The term qn is given by:

qn = −ks
∂Ts
∂n

=

{

−qimp on Γi
s

qwf on Γw (2.34)

where qwf is the heat flux to the wall from fluid and qimp the imposed heat flux on
Γi
s. The variational problem of the energy equation (2.31) may be then written as

follows:































Find Ts ∈ R such that:

∫

Ωs

ρscps
∂Ts
∂t

T ∗s dΩ +

∫

Ωs

ks∇Ts.∇T ∗s dΩ =

∫

Γw

(

−qwf
)

T ∗s dΓ

+

∫

Γi
s

(

qimp
)

T ∗s dΓ ;T ∗s ∈ R

(2.35)
The formulation (2.35) can be defined based on the same notations used in the fluid
domain:







Find (p, u, Tf ) ∈ L ×H×R satisfying:

(ρscps∂tTs, T
∗
s ) + aT (Ts, T

∗
s ) =

(

−qwf , T ∗s
)

Γw
+ (qimp, T ∗s )Γi

s
; T ∗s ∈ R

(2.36)

The forms aT and ( , )Γw in the weak formulation (2.36) were defined in equa-
tions (2.16) and (2.21), respectively. The form ( , )Γi

s
is defined in the same way as

( , )Γw .

2.4.2 Discrete detailed model

In order to determine the discrete system of the energy equation (2.31), we proceed
in the same way as in the fluid problem. The substitution of the the test function T ∗s
by χi,i=1,··· ,N and the solid temperature Ts by (2.6), results in the discrete equations
written in matrix form as:

CsṪs +KsTs = Q (2.37)

with

Q = Qf +Qimp (2.38)
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Chapter 2. Theory : thermally coupled fluid-solid problem

In the discrete system (2.37), Cs, Ks are the heat capacity and the conductivity
matrices, Ts the nodal solid temperature vector, and Ṫs the time derivative of Ts.
The vector Qimp is the external rate of flux applied on the solid and Qf the rate of
heat flux that ensures the coupling to the fluid problem (2.30). These operators are
given by:







(Cs)ij = (ρs cpsχj, χi) ; i = 1, . . . , N, j = 1, . . . , N

(Ks)ij = aT (χj, χi) ; i = 1, . . . , N, j = 1, . . . , N

(Qimp)i = (qimp, χi)Γi
s

; i = 1, . . . , N
(2.39)

and
(Qf )i =

(

−qwf , χi

)

Γw
; i = 1, . . . , N (2.40)

We note that matrices Cs and Ks are symmetric as they results from symmetric and
bilinear forms, i.e. the scalar inner product and aT in (2.39).

2.5 Coupling between fluid and solid model

The fluid and solid problems are coupled by the presence of heat exchange between
both domains along the fluid-solid interface Γw. The heat exchange through the
fluid-to-solid interface given in (2.34), is modelled using the following Newton’s law:

qwf = h (Tw
s − Tf ) on Γw (2.41)

The parameter h is the convective heat transfer coefficient. For the solid-to-fluid
interface, the heat exchange given in (2.13) is written as:

qws = h
(

Tw
f − Ts

)

on Γw (2.42)

In (2.41) and (2.42), Tw
s and Tw

f are the wall (interface) surface temperatures in the
solid side and the fluid side, respectively. Besides the temperatures variables, the
heat transfer coefficient is also essential to compute the coupled problem. In what
follows, we will explain how the heat transfer coefficient is determined in both forced
and natural convection.

2.5.1 Convective heat transfer coefficient

Determining the value of the heat transfer coefficient is the major part in thermal
convection mechanism. The convective heat transfer coefficients are estimated using
empirical correlations of dimensionless numbers. The heat transfer coefficient, h, is
often calculated from the Nusselt number, Nu (a dimensionless number), according
to the following equation:

Nu =
hL

kf
(2.43)
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2.5. Coupling between fluid and solid model

In (2.43), L is a characteristic length parameter of the fluid flow and kf the thermal
conductivity of the fluid.

• In forced convection, the Nusselt number is expressed as a function of the
Reynolds number and the Prandtl number, Nu = f (Re, Pr). The correlations
of these dimensionless numbers is available in various cases including typical
geometries, different fluids, flow conditions (laminar/turbulent), etc. For ex-
ample, the Nusselt number for a laminar flow over a flat plate is given by the
following correlation [12]:

Nu = 0.332 R
1
2
e P

1
3
r Pr ≤ 0.6 (2.44)

• In natural convection, the Nusselt number is generally a function of the Prandtl
number and the Grashof number (or sometimes the Rayleigh number such that
Ra = Gr Pr), Nu = f (Gr, Pr). Similarly, in a laminar flow over a flat plate
the correlation expression of the Nusselt number is [12]:

Nu =
0.508 P

1
2
r G

1
4
r

(0.952 + Pr)
1
4

(2.45)

The dimensionless numbers expressions of Re, Pr and Gr are still the same and are
given in equations (2.46), (2.47), and (2.48), respectively.

Re =
|inertia term|
|viscous term| =

|ρf (~u.∇) ~u|
|µ∆~u| =

ρfV L

µ
(2.46)

Pr =
|momentum diffusivity|
|thermal diffusivity| =

ν

α
=

µ

ρf k
ρfcpf =

µcpf
k

(2.47)

Gr =
|buoyancy force|
|viscous force| =

g ∆ρfL
3

ρfν2
=
ρf

2 g β (Tw − Tf )L
3

µ2
(2.48)

where V is a characteristic velocity scale, g the acceleration due to gravity, β the
thermal expansion coefficient of the fluid, and Tw the temperature at the fluid-
interface temperature (the wall temperature) in the solid side.

• In forced convection (2.46) - (2.47), the heat transfer coefficient, h, depends
only on the geometry, and the flow parameters and nature (laminar/turbulent
regime, velocity profiles). As the changes of velocities are assumed low and
those of fluid properties are neglected, h is constant in forced convection prob-
lem.

• In natural convection (2.48) - (2.47), h depends on the solid temperature
that constitutes an output of the solid thermal problem. Therefore, h should
be determined at each time iteration in the coupled fluid-solid problem.
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Chapter 2. Theory : thermally coupled fluid-solid problem

2.5.2 Coupling scheme for coupled fluid-solid problem

The coupling between the solid and fluid domains can be either of “weak” or “strong”
nature. Under weak coupling method, we proceed to the sequential analysis of each
phenomena separately, coupled together by means of temperature and heat flux
continuity along the fluid-solid interface. In strong coupling, however, we deal with
the simultaneous solutions of all the system of equations in both fluid and solid
domains.

Weak coupling

In weak coupling scheme, separate models for fluid and solid domains are considered.
The coupling is achieved by applying the wall conditions on the fluid-solid interface
as given in (2.49) and (2.50). These conditions include the continuity of tempera-
ture (2.49), and the heat flux (2.50), exchanged along the fluid-solid interface (wall)
Γw.

Tw
f = Tw

s on Γw (2.49)

qwf = h (Tw
s − Tf ) = −qws on Γw (2.50)

Fig. 2.3 shows an illustration of the weak coupling scheme. In fact, prior to the
calculation of h, the wall temperature in the solid side, Tw

s , has to be estimated
by solving the heat conduction problem (2.31). Tw

s is then applied as boundary
condition to the so-called computational fluid dynamics (CFD) solver. Then, the
convection coefficient, h, can be calculated as explained in § 2.5.1. The fluid temper-
ature, Tf , is obtained by solving the Navier-Stokes equations (2.9). The convective
heat flux, qws , can be then applied as a boundary condition to the solid domain on
the fluid-solid interface Γw. Therefore, an updated solid temperature can be com-
puted, so that an updated Tw

s . Iterations continue until the interface temperature
and heat flux values from both solvers were close enough.

Solid Domain

Obtain T
s

solving 

system (2. 31)

Fluid Domain

Obtain T
f
solving 

system (2.9)

w

sT

w

fq

Figure 2.3. Schematic illustration of weak coupling process.

Strong coupling

The strong coupling scheme consists in calculating simultaneously the fluid and the
solid temperatures according to the discretized systems (2.30) and (2.37), respec-
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2.5. Coupling between fluid and solid model

tively. To do that, it is necessary to discretize the terms Qsi (2.40) and Qfi (2.28)
using the expressions (2.41) and (2.42), respectively [13]. Replacing the fluid and
solid temperatures by their approximations in the equations (2.5) and (2.6), results
in:

Qfi =
(

−qwf , χi

)

Γw
= −h

(

j=l
∑

j=1

χjT
w
sj
, χi

)

Γw

+ h

(
j=l∑

j=1

χjTfj , χi

)

Γw

; i = 1, . . . , N

(2.51)

Qsi = (qws , χi)Γw = h

(
j=l∑

j=1

χjT
w
fj
, χi

)

Γw

− h

(
j=l∑

j=1

χjTsj , χi

)

Γw

; i = 1, . . . , N

(2.52)
where Tw

sj
and Tw

fj
are the variables Ts and Tf at the jth fluid-solid interface node

Γw, respectively. If they can be reached by means of the projection functions Ps (~x)
and Pf (~x) [13], respectively:

TsjPs (~x) = Tw
sj (2.53)

TfjPf (~x) = Tw
fj (2.54)

Eqs. (2.56) and (2.56) take then the following forms:

Qfi = −
∫

Γw

h

j=N
∑

j=1

χiχj Ps (~x)

︸ ︷︷ ︸

(Kfs)
ij

Tsj dΓ +

∫

Γw

h

j=N
∑

j=1

χiχj

︸ ︷︷ ︸

(Kff)
ij

Tfj dΓ ; i = 1, . . . , N

(2.55)
and

Qsi =

∫

Γw

h

j=N
∑

j=1

χiχj Pf (~x)

︸ ︷︷ ︸

(Ksf)
ij

Tfj dΓ−
∫

Γw

h

j=N
∑

j=1

χiχj

︸ ︷︷ ︸

(Kss)ij

Tsj dΓ ; i = 1, . . . , N

(2.56)
Or equivalently, in the matrix form:

(
Qf

Qs

)

=

(
Kff Kfs

Ksf Kss

)(
Tf
Ts

)

(2.57)

A fully coupled scheme of the fluid (2.30) and solid (2.37) problems seems to be dif-
ficult to handle especially when dealing with large models. In this solving scheme,
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Chapter 2. Theory : thermally coupled fluid-solid problem

a solution of the fluid flow equations is generally obtained in a first place for the
reasons explained in § (2.3.3). Then, the heat transfer problems in both fluid and
solid domains, coupled together within the flux system (2.57), are solved simultane-
ously. The non-linear forms are linearized based on an iterative algorithm such as
the Newton-Raphson method.

2.5.3 The FE solid model of linear and non-linear problems

If we substitute the vector Qf into the discrete solid model (2.37), we obtain

CsṪs +KsTs −Kfs (h)Ts = Qimp +Kff (h)Tf (2.58)

The system (2.58) involves the operators Kff , Kfs, Ksf and Kss that are dependent
on the convective heat transfer coefficient h as shown through the equations (2.55) -
(2.56). The heat flux vector Qimp involves the heat flux densities qimp = qimp (t) and
is defined in (2.39).

• When natural convection is involved, the coefficient h is, in turn, a
function of Ts and Tf as it was stated in the Grashof expression (2.48), i.e.
h = h (Ts, Tf ). Hence, the solid discrete model takes the following non-linear
form:

CsṪs +KNL (Ts,Tf ) = Qimp (2.59)

where KNL (Ts,Tf ) = KsTs − Kfs (h)Ts − Kff (Ts,Tf )Tf is a non-linear
functions of Ts and Tf .

• In the case of forced convection, however, the coefficient h is constant as
aforementioned in the section 2.5.1, so that for the operators Kfs (h) = Kfs

and Kff (h) = Kff . The discrete solid model (2.58) can be then reduced to
the following linear system:

CsṪs +KLINTs = Qimp +KffTf (2.60)

with KLIN = Ks −Kfs is a constant conductivity matrix.

• In a pure heat conduction problem, the discrete model is written as:

CsṪs +KsTs = Qimp (2.61)
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In the above model, we should also introduce the boundary conditions of the solid
problem in addition to the heat flux vector, Qimp. For instance, if a convective
boundary condition is imposed on an interface Γconv

s of the solid domain, then both
the load vector (second member term in the FE model) and the conductivity matrix
are affected and the FE model can be written as:

CsṪs +Kcond
s Ts +Kconv

s Ts = Qimp +Qconv (2.62)

In the model (2.62), Ks = Kcond
s + Kconv

s , Kconv
s = (Kconv

s )i = (hχi, χj)Γconv
s

, and

Qconv = (Qconv)i = (hTamb, χi)Γconv
s

, with i, j = 1, · · · , N , Tamb the ambient tempera-
ture and h the imposed heat transfer coefficient. In the case of a Dirichlet boundary
condition, a constant imposed temperature, the columns and rows belonging to the
Dirichlet nodes (nodes on which the constant temperature is applied) are crossed out
from the conductivity and capacity matrices. The FE model can be then generalized
as follows:

CsṪs +KsTs = Qimp +Qconv + fDirichlet (2.63)

The dimension of all vectors and matrices in (2.63) is equal to N reduced by the
number of Dirichlet nodes, nBCs (nodes on which the constant temperature is ap-
plied), N = N − nBCs. We note that the aforementioned boundary conditions are
introduced in the same way in the first two configurations of coupled problems.
The load vector, i.e. the second member in the FE model, can written in a separate
form E U (t) with U (t) is the input signal and E a constant matrix that maps
physical locations of the heat flux densities and boundary conditions to the FE
nodes. The three configurations together within the corresponding FE model form
are summarized in Table 2.1, in which we restitute the time variable of the time-
dependent variables.

2.6 Conclusion

In this chapter, we derived a finite element model of a thermally coupled fluid-solid
problem starting from the partial differential equations of both fluid and solid do-
mains. We detailed different configurations including the forced and the natural
convection, as well as a pure heat conduction problem. We also deduced the cor-
responding discrete reference models for each configuration. The obtained discrete
models will play a key role in the choice of the reduced model form in the identifi-
cation process of both linear and non-linear systems. Prior to that, we will develop
the state of the art on the model order reduction methods. This is the focus of the
next chapter.
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Linear problem Non-linear problem

CsṪs (t) +KLINTs (t) = FU (t) CsṪs (t) +KNL (Ts (t) ,Tf (t))
= E U (t)

Conduction (2.61): Natural convection (2.59):
KLIN = Ks, F = E,

U (t) =
[
qimp (t) BCs

]T
KNL (Ts (t) ,Tf (t)) a quadratic
function of Ts (t) and Tf (t)

Forced convection (2.60): KNL (Ts (t) ,Tf (t)) = KsTs (t)
KLIN = Ks −Kfs, F =

(

E Kff

)

, −Kfs (Ts (t) ,Tf (t))Ts (t)

U (t) =
[

qimp (t) BCs Tf (t)
]T −Kff (Ts (t) ,Tf (t))Tf (t),

U (t) =
[

qimp (t) BCs
]T

with
U (t) the (Nex × 1) input vector

F the (N ×Nex) input matrix associated to
the heat flux densities and the Boundary Conditions (BCs)
and eventually Tf (t) in the forced convection configuration

Ts (t) the (N × 1) nodal solid temperature vector

Ṫs (t) the time derivative of Ts (t)
Tf (t) the (N × 1) nodal fluid temperature vector

Table 2.1
Summary table of the detailed FE model for linear and non-linear thermal
problems.
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Chapter 3

Model Order Reduction and
Identification methods

This chapter provides the state of the art regarding Model Order Reduction (MOR)
methods. By analogy with the vocabulary used in stochastic analysis community,
MOR methods can be divided into two main categories namely, intrusive and non-
intrusive MOR methods. The second category is known also as system identification
methods. In the first section, we review MOR methods of intrusive nature classified
into projection-based and variable separation-based methods. Then, in the second
section, we focus on system identification methods. For the needs of the identifica-
tion process, we consider two model structures, the polynomial and the state space
forms, to describe the relationship between the input data and output results of
the system of interest. The latter form is the adopted for the aimed applications in
this work. Three identification methods are introduced and divided into two classes
according to the model structure used to describe the system: On the one hand, the
Prediction Error method (PEM) for the identification of polynomial models; On the
other hand, the Modal Identification Method (MIM) and the Subspace method for
the identification of state space models.
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Chapter 3. Model Order Reduction and Identification methods

3.1 Intrusive Model Order Reduction methods

The need for Model Order Reduction (MOR) is not new, as testified by the article
published in 1965 by Guyan [1] dealing with a static condensation method enabling
to process large models with the limited computer resources available at that time.
Since then, the computational power has dramatically increased but the size of sim-
ulation models has grown correlatively to meet the requirements of the increasingly
complex applications. Today, numerous publications deal with the MOR methods
and interesting overviews can be found for instance in the book of Antoulas [2] or the
PhD thesis of Dumon [3]. The basic idea of MOR methods consists of replacing the
original high-order model with a much smaller one, named a Reduced Order Model
(ROM), while keeping the essential dynamics of the original behaviour. The purpose
behind MOR is to reduce the computational time and storage resources required by
simulation and control models. Depending on their properties or implementation
methodologies, several MOR methods have been developed during the last decade.
Hereafter, we briefly introduce some of them and and for that purpose we group
them in two classes:

• Projection-based methods requiring access to the detailed discretized model
to project operators onto the subspace spanned by the set of reduced-order
basis model,

• Variables-separation based methods allowing an a priori construction of a
separated representation of the solution.

3.1.1 Projection-based methods

We recall the FE model of the linear thermal model of order N stated in Chapter 2
(see Table 2.1).

CsṪs (t) +KLINTs (t) = FU (t) (3.1)

Projection-based methods perform an approximation of the (N × 1) nodal vector
Ts (t) by means of a reduced basis transformation V = {v1, v2, . . . , vn} ∈ R

N×n,
with n≪ N .

Ts (t) =
n∑

i=1

viTri (t) = V Tr (t) , V ∈ R
N×n. (3.2)

In (3.2), Tr (t) = (Tr1 (t) , Tr2 (t) , . . . , Trn (t))
T is the new reduced state vector of

dimension n ≪ N . This latter is composed of the generalized coordinates Tri (t)
in the reduced basis V . By substituting (3.2) into the linear FE model and left-
multiplying both side of (3.1) by a projection matrix W T , with W ∈ R

n×N , we
have
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3.1. Intrusive Model Order Reduction methods

CrṪr (t) +KrTr (t) = FrU (t) (3.3)

The model (3.3) constitutes the Reduced Order Model (ROM) of order n. The
operators Cr = W TCsV , Kr = W TKLINV and Fr = W TF are the reduced capac-
ity, conductivity and input matrices with appropriate dimensions. The performed
projection is referred to as the Petrov-Galerkin projection. This latter also con-
strains the residual resulting from the transformation (3.2) to be orthogonal to W ,
i.e. W T r (t) = 0. In particular, when W = V , the process is called a Galerkin
projection [4]. Hereafter, we will be interested in this particular case. The form and
computation of the projection basis V depend on the reduction method. Below, we
provide the most important features of some of these projection-based techniques.

Substructuring methods

The substructuring methods principle consists of decomposing the FE model into
smaller substructures called super-elements in finite elements and a reduced model
is derived for each substructure. Substructuring is useful when dealing with large
complex problems, in particular when the different substructures are characterized
by different physical behaviours. This is justified through the research works of
Nachtergaele et al. [5] for a thermo-mechanical problem, Kropp and Heiserer [6]
for a vibro-acoustic problem, etc. Substructures are also attractive for reusability
strategies in which the components models are stored in libraries. The first substruc-
turing approach was proposed by Guyan [1] named the Guyan method or also static
reduction. Although it was originally introduced for structural mechanics problems,
Guyan method is also valid for thermal problems. This method, however, shows dif-
ficulties in dynamic analysis in both mechanical [7] and thermal [8] [9] problems. To
overcome the limitation of the Guyan method, Craig and Bampton [10] proposed
a dynamic reduction now named the Craig-Bampton method. This method was
also originally developed in structural dynamics. Both Guyan and Craig-Bampton
methods are are now part of most commercial Finite Element packages and continue
to be used and enhanced in many recent research works as shown in [11], [12], [13]
for structural dynamics applications as well as [14] for a heat conduction-convection
thermal problem. Other substructuring techniques, analogous to the Craig-Bampton
method, referred to as Modal Synthesis, have been developed in thermal problems
of buildings; see the publication [15] and the references therein. These methods
derive a thermal reduced modal model of a system from those of its components.
The Modal analysis-based method are presented in the next paragraph. Prior to
that, we briefly review the Guyan and Craig-Bampton methods.

Guyan method The principle consists of partitioning the degrees of freedom
(DOF) of the FE model as master DOFs (also called interface DOFs) and slave
DOFs (or also internal DOFs) to eliminate further these latter. This reduces the
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Chapter 3. Model Order Reduction and Identification methods

FE model to the master DOFs only. The transformation matrix VGuyan, usually
called the static reduction basis, takes the form (details can be found in [1]):

VGuyan =

[
−K−1

LINss
KLINsm

INm

]

(3.4)

where the subscripts m and s correspond to the master and slave DOFs, respectively,
INm

is the identity matrix of dimension Nm, the number of master DOFs, KLINss

is the conductivity matrix defined by the slave DOFs. As it can be noticed, the
derivation of the matrix VGuyan requires the inversion of the matrix KLINss

. Conse-
quently, the larger the number of slave DOFs is, the more the computational cost
and complexity are. Another limitation is related to the fact that the larger the
number of master DOFs is, the larger the order of the ROM is, which contradict
the MOR interest.

Craig-Bampton methods Here, the reduced basis, denoted VCB, combines the
static modes, derived by Guyan, and the dynamic modes obtained by means of an
eigenvalue problem when the master (interface) DOFs are fixed. These dynamic
modes are composed of a selection of eigenmodes in a predefined frequency range
and are gathered in a matrix Φ. The basis VCB takes the form:

VCB =

[
Φ −K−1

LINss
KLINsm

0 INm

]

(3.5)

The limitations of the Craig-Bampton method are similar to those of the Guyan
method apart from what is related to the static aspect.

Modal methods

The first step in a Modal approach is to compute the eigenvalue problem of the FE
model (Table 2.1). To do this, let consider the model (3.1) without the right-hand
term:

Ṫs (t) = ATTs (t) + BTU (t) (3.6)

with AT = −C−1s KLIN . The reduced basis V = W = VModal is obtained by means
of an eigenvalue problem defined as follows:

(AT − sk In)VModalk = 0 k = 1, 2, · · · , n (3.7)

where sk is the kth eigenvalue of matrix AT and VModalk ∈ R
(N×1), k = {1, 2, · · · , n}

the associated eigenvector (mode), such that V T
ModalVModal = In and V

T
ModalATVModal =

diag(s1, s2, · · · , sn). Eq. (3.7) is the homogeneous equation associated to (3.1) since
the right-hand term is a null vector. Hence, the solution of (3.7) made of the modes
sk and eigenvectors VModalk is determined independently of the excitation. The eigen-
values are related to the time constants of the thermal problem by τk = − 1

sk
, k =
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3.1. Intrusive Model Order Reduction methods

{1, 2, · · · , n}. The thermal problem is supposed to be stable with real and negative
eigenvalues, if the matrices Cs and KLIN are symmetric. The reduced modal basis
VModal ∈ R

(N×n) is obtained by selection or truncation of the total modes of the
problem according to a given criterion. Different criteria exist in the literature such
as the truncation methods [16], [17]. The simplest and used truncation method used
in commercial software is the Marshall method [16]. This method uses a temporal
criterion for which the n greatest time constants of the thermal problem are retained.
This means that only the slow thermal dynamics is well described in the reduced
model. This may lead to significant errors in the estimation of transient regime in
a specific case where the rapid modes, considered negligible, are strongly excited.
This is typically the case when the temperature observations are co-localised with
the heat source input. It is then essential to keep a large number of modes, which
does not allow a significant reduction of the FE model. Da Silva in his thesis [18]
showed that even with a large number of modes, the Marshall method fails to cap-
ture the rapid dynamics and that its combination with an energy criterion slightly
improves the result. Other evaluation methods have been investigated such as the
aggregation [19] and the energy criterion-based methods [20]. An exhaustive list of
these methods is available in Lefèbvre book [21]. All these methods, though, are
not optimal regarding the order of the reduced model [21].

Residual-based correction methods

In order to overcome the projection errors in modal approaches, it is common to
enrich the modal basis by residual vectors computed in an iterative way. This
procedure is referred to as “correction methods”. For instance, Da Silva [18] in his
thesis performs a Singular Value Decomposition (SVD) to select the residual vectors
intended to enrich the modal basis in a linear thermal problem. The correction
methods have been applied to substructuring reduction methods as well. The reader
should refer to thesis of Bobillot [22] and Renaud [23] for a detailed description of
these methods.

Limitations of the enriched reduced basis in a non-linear problem The
construction of the enriched reduced basis may be quite time-consuming in a highly
non-linear problem as the projection reduced basis and operators have to be updated
at every time step in order to generate a ROM.
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POD method

The POD method, also known as Karhunen-Loève Decomposition [24], [25], Princi-
pal Component Analysis (PCA) [26] or Singular Value Decomposition (SVD), has
been widely and successfully applied for the simulation [27], reduction [28], [29] and
control [30] of large-scale and non-linear CFD applications. It has also gained status
in thermal problems such as the recent publication on the thermal management in
data centers [31], linear structural dynamics [32], etc. However, it is less robust in
non-linear structural dynamics and should be used carefully [33], [32]. The POD
has been also combined with other MOR technique to enhance the reduced model
precision. For instance, Kumar et al. in [34] enrich the POD basis with Ritz static
modes in a structural dynamics problem with local non-linearities [34].

The approach is an a posteriori reduction method for finding a projection reduced
basis V = W = VPOD based on offline simulations of the detailed model for a specific
time domain or parameters variation. The results of these simulations are gathered
into a matrix named the “snapshots” matrix. If T (xi, tj) denotes the recorded
temperature at the ith DOF in the FE model and time tj, with i = 1, . . . , N and
j = 1, . . . , Nsnap, Nsnap being the number of time snapshots, the snapshots matrix
of size N ×Nsnap is:

Θ =








T (x1, t1) T (x1, t2) . . . T
(

x1, tNsnap

)

T (x2, t1) T (x2, t2) . . . T
(

x2, tNsnap

)

...
...

...
T (xN , t1) T (xN , t2) . . . T

(

xN , tNsnap

)











(3.8)

The POD basis can be constructed based on an eigenvalue decomposition of a co-
variance matrix Σ = 1

N
ΘΘT ∈ R

N×N . This, however, may be computationally
expensive when dealing with a high-order FE detailed model. In this context and
if Nsnap ≪ N , the POD basis can be computed using the method of snapshots
proposed by Sirovich [35] that involves an Nsnap-dimensional eigenvalue problem
instead. In the same context, the SVD method is another appropriate method,
for which the reduced basis VPOD is composed of n column vectors corresponding
to some greatest singular eigenvalues. We refer the reader to the publication of
Podvin [36] for a full description of these approaches. It should be noted that the
accuracy of the reduced model is significantly dependent on the choice of snapshots.
This shortcoming is even more relevant in a parametric study. In fact, in order to
derive a reduced model adapted to the representation of some parameters effects
(load positions, material properties, boundary conditions), it is essential to compute
a set of snapshots associated to the selected parameters. This may lead to a pro-
hibitive computational time, especially in the case of complex and high-dimensional
problems.
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3.1. Intrusive Model Order Reduction methods

3.1.2 A priori variable separation-based methods

The reduction methods in this class do not require known projection matrices nei-
ther preliminary computations of detailed model to construct the reduced basis
of the ROM, but instead use an iterative procedure to build the basis under the
form of a separate representation. Two well-known approaches of this type are
the A Priori Hyper-Reduction (APHR) method introduced by Ryckelynck [37], [38]
to handle thermo-mechanical problems and the Proper Generalized Decomposition
(PGD) method developed by the LMT Cachan and Centrale Nantes research teams.
Below we will briefly review the PGD method.

PGD method

The PGDmethod [39], [40] is a recent MORmethod introduced first by Ladevèze [41]
in the context of the LATIN method (LArge Time INcrement method) in order to
reduce computational cost, both in terms of simulation time and memory require-
ment, in a non-linear mechanical problem. Then, it was extended and used in several
fields of applications such as fluids, rheology, thermo-viscoelastic coupled problems,
multi-scale mechanical problems, multidimensional problems, etc. (see Dumon the-
sis [3] for a full overview of the method up to 2011). Recent applications have
been addressed to computational surgery simulations [42], [43] and high-dimensional
stochastic problems [44], etc. The PGD appeared as a generalization of the POD
method. Like the POD, its principle is to find an approximation of the unknown field
in the form of a separated representation, for which each variable function involves
one of the problem coordinates (space, time and eventually parameters in order to
derive a parametric model). In the POD, the decomposition is made in an already
known basis extracted a posteriori from several computed snapshots of the detailed
models. On the contrary, the PGD computes the reduced basis a priori, i.e. without
the need to generate costly snapshots, and based instead on only the operator of the
differential equation and the right hand side term. The reduced basis determination
consists of a non-linear problem addressed by different iterative algorithms such a
the fixed point and Newton methods. We should mention that this is performed in
an offline phase.
If we consider a temperature field T (x, t), the solution in the separate representation
is expressed as a finite sum of functional products (here of time and space):

T (x, t) ≈ Tn (x, t) =
n∑

k=1

Φk (x)λk (t) (3.9)

where x and t are the space and time variables, n the order of the representation
(number of modes). Φk (x) and λk (t) are the a priori unknown space functions
(space modes) and time functions (temporal modes), respectively.

The PGD method is also able to treat multidimensional problems in order to deliver
a parametric model addressed for many engineering problems such as optimization,
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inverse-method, real-time simulation-based control [45]. For example, parameters
like material properties, boundary conditions, geometrical parameters can be in-
cluded as additional coordinates in the separate representation (3.9). Let consider
a set of Np parameters p =

{
p1, p2, . . . , pNp

}
, then

T (x, t,p) ≈ Tn (x, t,p) =
n∑

k=1

Φk (x)λk (t) Γk (p) with Γk (p) =
Np∏

i=1

γk,i (pi)

(3.10)

where γk,i (pi) are the parameters functions.

Although very competitive in highly dimensional non-linear problems, PGD still
have open topics such as the convection-dominated coupled problems [46] and the
optimality of the reduced model order [44]. Moreover, the PGD is an intrusive
approach as it is based on the local differential equations of the problem, which is a
shortcoming in closed commercial software.

3.2 Non-intrusive Model Order Reduction meth-

ods: System identification methods

System identification has been used in many practical problems of control, diagno-
sis and supervision, prediction, detection and optimization. During several past
decades, it has been extensively applied in the fields of automatic control sys-
tems [47], linear and non-linear structural dynamics [48], [49], thermal modelling
of buildings [50], inverse modelling problems [51], etc. The identification problem
consists in finding a mathematical model that best describes the relationship be-
tween the input and output data generated from either experimental measurements
or numerical results of the system considered as a “black-box”. In the identifica-
tion procedure, the system input in a thermal problem is essentially composed of
the external heat fluxes (or heat fluxes densities). It is also common for boundary
conditions (BCs) to be modelled as external inputs. For instance, an imposed tem-
perature, involved in the solid problem, may be considered in the system input. In
addition, if a convection BC is involved then the ambient temperature may be also
considered. In the case of a coupled fluid-solid problem, some additional fluid tem-
perature measurements may be included in the input to the thermal solid system
identification. These aspects will be more detailed in Chapters 4 and 5. The thermal
output in power electronics are often limited to some critical phenomena such as the
“hot spots” that are generally located at junction of power-handling components. In
the identification process, a system can be characterized by (1) transfer functions,
(2) a polynomial model, usually labelled as ARMA (Auto-Regressive with Moving
Average) models in the literature, or (3) a state-space model. The correspondence
between those three forms for a linear system is well-known in the discrete-time
setting [52]. Polynomial and state space models, however, are not equivalent for
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3.2. Non-intrusive Model Order Reduction methods

non-linear systems [53]. While transfer functions are restricted to linear systems,
the others forms can be used to describe both linear and non-linear systems and they
are the only forms adopted in control strategies [54]. As far as we are concerned
with control applications, we will focus on the polynomial and state space models
in the system identification process. After that, we will review the Prediction Er-
ror Method (PEM) of a Linear-Time-Invariant (LTI) SISO polynomial model, the
ARMAX model in particular, as well as the Modal Identification Method and the
Subspace method, both based on the state space form.

3.2.1 Model representations for the identification process

Polynomial structure : ARMA models

Let us consider for the identification problem of a Single-Input-Single-Output (SISO)
Linear-Time-Invariant (LTI) system, the input-output relationship (3.11) coming
from the observation of a Nsnap sampled input-output data.

Let {U (tk) , Y (tk)}k=0,...,Nsnap−1
be a discrete sequence of the system input-

output data driven by a white noise. The system is then described by the difference
equation:

Y [k] +
na∑

i=1

ai Y [k − i] =

nb∑

j=1

bj U [k − j] +
nc∑

l=1

cl e [k − l] + e [k] (3.11)

where the notation [k] stands for the k + 1th term of a sequence and tk = k∆t
with ∆t denoting the sampling time. The sequence {e (tk)}k=0,...,Nsnap−1

denotes the
white noise combining the unknown uncertainties and the measurement errors. The
coefficients ai (i = 1, . . . , na), bj (j = 1, . . . , nb) and cl, (l = 1, . . . , nc) are the model
parameters to identify.
Let us introduce a time delay d such that Y [k − i] = diY [k], and similarly for the
sequences of U and e. The d-operator is equivalent to the inverse of the z-operator
in the Z-transform [55], i.e. d = z−1. The equation (3.11) can be rewritten in a
compact form as follows:

A (d)Y [k] = B (d)U [k] + C (d) e [k] (3.12)

or equivalently

Y [k] =
B (d)

A (d)
U [k] +

C (d)

A (d)
e [k] (3.13)

with

A (d) = 1 + a1d+ . . .+ ana
dna (3.14)
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B (d) = b0 + b1d+ . . .+ bnb
dnb (3.15)

C (d) = 1 + c1d+ . . .+ cnc
dnc (3.16)

The model structure in (3.13) is referred to as the Auto-Regressive (AR) with Moving
Average (MA) and eXogenous (X) (or external) input (ARMAX) [48] [52]. The
order of the ARMAX model is (na, nb, nc), where na, nb and nc are the orders of
the polynomials A (d), B (d) and C (d). The ARMAX model is composed of a

deterministic dynamics model from U to Y , i.e. B(d)
A(d)

, and a stochastic disturbance

model from e to Y , i.e.
C (d)

A (d)
. Thanks to the disturbance model, the ARMAX model

provides some flexibility in the modelling of stochastic processes. The dynamic and
disturbance models share the same set of poles of number na determined in the
polynomial denominator A (d). This coupling may represent a disadvantage but
can be handled by having a good ratio between the input and the noise signal. The
orders nb, nc determine the number of zeros of the dynamic and disturbance models,
respectively. The ARMAX structure can lead to other model variants depending
on what polynomials are used in (3.13). The common special cases of (3.13) are
summarized in Table 3.1 [48]. The AR, standing for the simple Auto-Regressive
model, is the case where the output Y depends only on its previous values, i.e.
B (d) = 0 and C (d) = 1, i.e. cl = 0 for l = 1, . . . , nc. The ARX model is a special
case of the ARMAX model structure when C (d) = 1. The ARX model is considered
as the simplest polynomial structure for closed-loop controlled system. The ARMA
model is a special case of ARMAX when only the system output data is available,
i.e. {U (tk)}k=0,...,Nsnap−1

= 0. This model is helpful in the case of unknown or

unmeasured input [56] [57].

Table 3.1
Common special cases of polynomial model in (3.13) [48].

Polynomials Name of model Abbreviation
used in (3.13)

A, B = 0, C = 1 Auto-Regressive AR
A, B, C = 1 Auto-Regressive with eXogenous ARX
A, C,B = 0 Auto-Regressive Moving Average ARMA
A, B, C Auto-Regressive Moving Average ARMAX

with eXogenous
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State space models

The interest in the state space models comes from the following reasons; They:

• require less parameters than the input-output polynomial based descriptions,

• are more adapted than the polynomial forms for model estimation as discussed
in [58],

• and are particularly convenient for system theory (system transformation, sim-
plification, analysis) and modern control applications.

The state space model form is deduced from the thermal discrete FE model of the
solid domain of order N . The derivation of the FE model is detailed in Chapter 2
and the corresponding equations of both linear and non-linear problems are sum-
marized in Table 2.1. The linear case is concerned with a heat conduction problem
and a fluid-solid problem mainly governed by the forced convection. The non-linear
model corresponds to the case of coupling with natural convection. Actually, The
FE model is considered as a “black-box” with a given set of input and output data,
U and Y of dimensions (Nex × 1) and (Nobs × 1), respectively. For the purpose of
identification, that model is transformed into a continuous-time state space model
linking Y to U and is referred to as FE reference model.

Linear state space models For the linear thermal problem (Table 2.1), the FE
model given in (3.1) takes the following state space form:

{

Ṫs(t) = ATTs(t) + BTU(t)

Y (t) = CTTs(t)

(3.17a)

(3.17b)

where AT = −C−1s KLIN is the (N ×N) state matrix, BT = C−1s F the (N ×Nex)
input matrix that maps physical locations of the thermal inputs to the FE model
nodes. The matrix CT , of dimension (Nobs ×N), is a pseudo-identity observation
matrix used to select a part or the whole nodal temperature fieldT (t), i.e. Nobs ≤ N .
If Nex, Nobs ≥ 1, the system is called a MIMO state-space model.

As it was stated in Section 3.1 in the intrusive MOR approach, the FE reference
model (3.17) is replaced by a ROM of order n (3.19) with n ≪ N , by means of a
reduced-basis change V ∈ R

(N×n).

Ts (t) = V Tr (t) (3.18)

{

Ṫr (t) = ArTr (t) + BrU (t)

Y (t) = CrTr (t)

(3.19a)

(3.19b)
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In (3.18) - (3.19b), Tr (t) is the reduced state vector of dimension n, Ar = V TATV ,
Br = V TBT and Cr = CTV are the associated reduced matrices of dimensions
(n× n), (n×Nex) and (Nobs × n), respectively.

In the identification process, it is aimed to identify a ROM in the form of sys-
tem (3.19) but based only on input and output data, U (t) and Y (t). Therefore,
matrices Ar, Br, Cr are not directly computed, as well as V and Tr (t). The LTI
state space ROM to be identified takes the form:

{

Ẋ (t) = AX (t) + BU (t)

Ŷ (t) = CX (t) +DU (t)

(3.20a)

(3.20b)

Note that Ŷ (t) in (3.20) stands for an approximation of the system output (3.19b).
For the sake of simplicity, we will consider the notation Ŷ (t) = Y (t). In the obser-
vation equation (3.20b), a matrix D of dimension (Nobs ×Nex), usually called the
static gain matrix, can be considered in some identification methods to account for
a static approximation of the ROM.

Observability and controllability In control theory, the linear state space model
(3.20) should respect the observability and the controllability criteria:

• a system of order n is observable if the observability matrix

Γobs = [C,CA,CA2, . . . , CAn−1]T ∈ R
mn×n (3.21)

is of rank n. This means that the state of a system can be determined from a
sufficient number of observations of the output. If the system is observable, one
can always transform the state space model into a polynomial input-output
model,

• a system of order n is controllable if the controllability matrix

Γcont = [B AB,A2B, . . . , An−1B] ∈ R
n×np (3.22)

has rank n. Controllability is also called reachability in the literature. The
idea behind this criterion is that the system can be guided by any desired state
if it is controllable.

Non-linear state space models For a non-linear problem, the general form of
a ROM state space model is given by:

{

Ẋ (t) = fNL (X (t) , U (t))

Y (t) = gNL (X (t) , U (t))

(3.23a)

(3.23b)

88



3.2. Non-intrusive Model Order Reduction methods

where fNL and gNL are non-linear functions. In this work, some assumptions are
made about the form of these functions. The function gNL will be assumed to be
linear. The non-linear state space model will take the following particular form:

{

Ẋ (t) = fNL (X (t) , U (t))

Y (t) = CX (t) +DU (t)

(3.24a)

(3.24b)

The dependence of the function fNL to the state vector X (t) and the input vector
U (t) relies on the nature of the problem. This will be addressed in Chapter 5.

3.2.2 Prediction Error Method

Classical system identification methods based on input-output polynomial descrip-
tion have been well developed until the mid 1980s. They are generally comprised
under the label of Prediction Error Methods (PEMs) [48], [59]. PEMs are well
suited for the identification of Linear-Time-Invariant (LTI) polynomial forms such
as the ARMA models introduced in the previous section. The PEM is based on the
minimization of a parameter-dependent criterion and may be applied in both time
and frequency domains. The PEM can be interpreted as the Maximum Likelihood
method [60] when the disturbance white noise e (t) in (3.13) is Gaussian [61]. PEM
reduces to the classical least-squares (LSQ) method for the identification of the
Auto-Regressive (AR) model. Another approach to estimate the AR model uses the
Yule-Walker [62] equations-based methods. Examples of these methods are those
proposed by Burg [63] and Levinson [48]. These methods are, however, limited to
linear system identification. The estimation of the Auto-Regressive with eXogenous
input (ARX) model also corresponds to a linear problem which is generally solved
by analytical method such as the classical LSQ method [64] or also the Instrumental
Variables Method (IVM) [65] which is a variation of LSQ method but allowing for
more general classes of noise signals. Other methods have been proposed to estimate
the parameters of non-linear polynomial models. Fung et al. in [66] combined the
Recursive Extended Least-Squares (RELS) method and the Neural Network (NN)
method to estimate the parameters of a non-linear ARMAX model, denoted NAR-
MAX originally proposed by Leontaritis and Billing [67]. Another approach aimed
at the identification of time-varying parameters of a non-linear ARX (NARX) model
has been proposed by Zhou and Franck in [68] using the Modified Strong Tracking
Filter (MSTF) algorithm.

For illustrative purposes, we will only develop the principle of PEM for the parame-
ters estimation of a linear SISO ARMAX model. In polynomial model identification,
two crucial steps have to be addressed:

• the selection of the model order, for example, the order (na, nb, nc) of the
ARMAX model,
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• the estimation of the model parameters.

Model order selection

The model order selection step plays an important role in the identification of poly-
nomial models like the ARMAX model and its variants (Table 3.1). For instance,
the order (na, nb, nc) of ARMAX model is not known a priori and has to be fixed
before proceeding to the parameter estimation problem. For this purpose, many
techniques have been studied in the literature. The most used approaches are those
of statistical nature based on the model residuals information. Examples of these
methods are the well-known Akaike Information Criterion (AIC) [52] [69], the cor-
rected Akaike Information Criterion (AICC) [70], the Bayesian Information Criterion
(BIC) [52] [71], the average error (AE) of the model residuals-based technique [72]
and so on. These methods are referred to as “Information Criterion method” cat-
egory and they proceed as follows: once the measured data set is available, a set
of models of different orders are postulated and then the most accurate model is
selected by minimizing a given criterion. These methods, however, may lead to an
under-fitting or an over-fitting models depending on which criterion is used. More-
over, by their very nature, these methods necessitate a large amount of measured
data, which increases the computation and memory requirements. Another category
of order selection techniques include the linear algebraic methods. These methods
are based on determinant and rank testing algorithms like the SVD-based method.
In [73], for example, the AR and MA orders of the ARMA model are determined sep-
arately using an Information Criterion method (the minimum eigenvalue criterion;
MDL) for the former and the SVD of a correlation matrix for the latter. Multi-stage
estimation method also exists. This latter is based on the examination of the es-
timated poles and zeros of the dynamics model (ARX model), for instance, on the
z-plane of the stability diagram. This is, however, restricted for system identifica-
tion with low power spectrum density [56]. Thereafter, we will briefly introduce the
PEM for the off-line identification of a linear SISO ARMAX model provided that
the model order is determined.

Estimation of the model parameters

We assume that the order (na, nb, nc) of the SISO linear ARMAX model in (3.13) is
known. Then, we can introduce the parameter vector θ composed of the polynomial
coefficients of the scalar polynomials A (d), B (d) and C (d) as follows:

θ = [a1, . . . , ana
, b0, b1, . . . , bnb

, c1, . . . , cnc
]T (3.25)

We also introduce a linear regression vector ξ defined as follows:

ξ [k, θ] = [−Y [k − 1] , . . . ,−Y [k − na] , U [k] , U [k − 1] , . . . , U [k − nb]
ǫ [k − 1, θ] , . . . , ǫ [k − nc, θ]]

(3.26)
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Note that Therefore, the model structure in (3.13) can be equivalently rewritten in
the following linear regression form:

Y [k] = ξ [k, θ] θ + e [k] (3.27)

with

ǫ [k, θ] = Y [k]− ξT [k, θ] θ (3.28)

Eq. (3.28) is referred to as the “prediction error equation” in which ǫ replaces the
unknown white noise terms e [k] based on the estimated residuals. An optimal
estimate of the parameter vector θ̂ = θ is obtained by minimizing the following
quadratic norm criterion function:

VNsnap
(θ) =

1

Nsnap

Nsnap−1∑

k=0

|Y [k]− ξ [k, θ] θ|2 (3.29)

θ̂ = argmin
θ

{
VNsnap

}

(3.30)

In the equation (3.29), VNsnap
(θ) is a non-linear function of the parameter vector

θ, called also the objective function. As stated before for the ARX model, i.e.
cl = 0, l = {1, . . . , nc}, the PEM reduces to a classical LSQ method as the regression
vector ξ (3.26) includes only the input and output sampled data [64]. In this case,
the parameter estimate is obtained in an analytic form and the solution is unique.
For the identification of ARMA/ARMAX models, however, an iterative algorithm
has to be applied in order to solve the non-linear minimization problem (3.30).
Examples of iterative numerical methods are the Newton-based methods, gradient-
based methods [74], etc. These techniques are known to be very sensitive to the
initialization and may lead to local minima far from the true solution of the non-
linear criterion function VNsnap

. Many researchers have worked on the local minima
optimization problem. Hu et al. [75] proposed a Homotopy PEM-based approach
or also Wang et al. who replaced the gradient-based algorithm by the Particle
Swarm Optimization algorithm [76] to cite few. In addition, non-linear optimization
techniques may require large computational cost especially when dealing with a high
order objective function [77]. This issue is typically encountered when identifying
MIMO systems. In fact, if the system has Nobs outputs and Nex inputs, the scalar
polynomials A (d), B (d) and C (d) in the SISO linear ARMAX model (3.13) become
full matrices. For example, the matrix A (d) is defined as follows [56]:

A (d) =






a11 (d) . . . a1Nobs
(d)

... aij (d)
...

aNobs1 (d) . . . aNobsNobs
(d)




 ,

aij (d) = 1 + a
(1)
ij d+ . . .+ a

(naij)
ij dnaij

(3.31)
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and similarly for the matrices B (d) and C (d) with their corresponding orders nbij

and ncij . Therefore, naij , nbij and ncij orders have to be selected and then the corre-
sponding matrices coefficients to be estimated. For a real application, the number of
the parameters might be very large leading to a complex and very time-consuming
optimization problem. State-space models, however, require usually less parame-
ters than the input-output based descriptions [59] and they are more preferred for
MIMO system description. In fact, it has been shown that input-output polynomial
models can be represented in a state space form by using some realization tech-
niques. For instance, a MIMO ARMAX model can be written in a canonical state
space form, also called the innovation representation [78] [79]. In order to perform
the optimization problem, a canonical form has to be imposed a priori. However,
it may be difficult to choose an appropriate canonical form since there exist many
possible canonical forms for a MIMO polynomial model. This generally lead to an
over-parametrized model structure [79] in addition to the aforementioned inherent
inconveniences of the optimization methods. The industrial practice, though, con-
sists in formulating the MIMO polynomial model in a modal form (a decoupled
problem). Hence, the MIMO polynomial model can be separated into Nobs MISO
(multiple-input single-output) models that are identified separately following the
same procedure as for the identification of SISO models [56] [57]. This solution is
still an approximation neglecting the cross-coupling between the data sets.

3.2.3 Modal Identification Method (MIM)

The Modal Identification Method (MIM) is a suited method for the identification
of MIMO state space models. It was proposed by the ENSMA research team ([80];
1997) to handle thermal problems. Their method identifies a multiple-input multiple-
output reduced model in state-space description under modal form. Similarly to
Prediction error method, MIM is based on the resolution of a non-linear parametric
optimization problem. This latter is solved using a stochastic global optimization
method, the Particle Swarm Optimization (PSO) in its latest version [81], [82]. This
latter produces better parameter estimation in comparison with the Gradient-based
optimization method. Historically, work until the early 2000s were mainly intended
for linear heat transfer problems based on the superposition principle [80], [83].
The method has been then extended to non-linear case [84] and has been succes-
sively applied to several thermal applications such as non-linear diffusive thermal
systems [85], [84], coupled heat convection and diffusion problems [86], [87], and
inverse problems in order to estimate time-varying thermal inputs [88]. Latest con-
tributions were concerned with the implementation of off-line identified ROM in
closed-loop thermal control problems for diffusion-convection applications [81], [82].
For illustration purposes, we will review the MIM principle for a linear conduction
problem.
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Linear ROM structure The method identifies a Reduced Order Model (ROM)
of a thermal problem (solid domain) into a state space model in a modal form (3.32).
The ROM structure is deduced from that of the FE reference problem. The ROM
is of order n ≪ N , with N denoting the order of the reference model, i.e. the
number of Degrees Of Freedom (temperature field) of the FE model. The state
matrix A is a diagonal matrix, i.e. A = (a)i , i = 1, . . . , n whose coefficients are
the dominant eigenvalues of the ROM. The columns of the observation matrix, i.e.
C = (c)ji , j = 1, . . . , Nobs; i = 1, . . . , n, and the row vectors of the command matrix,
i.e. B = (b)ik , i = 1, . . . , n; k = 1, . . . , Nex, are the corresponding eigenvectors and
input vectors, respectively.

{

Ẋ (t) = AX (t) + BU (t)

Y (t) = CX (t)

(3.32a)

(3.32b)

Non-linear ROM structure A non-linear problem involving a linear time-dependent
temperature conductivity in a heat conduction application [85] for instance, is iden-
tified in a parametric manner in the following state space model in a modal form:

{

Ẋ (t) = AX (t) + BU (t) + ΩZ (X (t))

Y (t) = CX (t)

(3.33a)

(3.33b)

The same features as in (3.32) are assumed for the matrices A, B and C. In addi-
tion, if a quadratic non-linearity is considered in the conduction problem, Z (X (t))

in (3.33) is a non-linear term constituted of
n (n+ 1)

2
symmetric cross products of

the state variables Xi (t)Xj (t) with n the order of the reduced model. The operator
Ω is the weighting matrix of the components in the vector Z (X (t)).

Input signals type For the identification of a linear model as described in (3.32),
time-delayed step signals applied successively on the power components are used for
the simulation of the detailed model. An example of these signals will be shown in
Fig. 4.6. It is also assumed that the steady-regime is reached when moving from one
step to another. The identified linear ROM will be then valid for any input power
signals. For the identification of non-linear models such as (3.33), successive step
levels are used on each power component before switching another one to account
for different excitation levels. Moreover, a random noise is added in each steady
step in order to exhibit large ranges of frequencies [85].

Besides the heat sources, MIM considers time-dependent boundary conditions
(BCs) as time-delayed step signals. In fact, the BC is assumed constant until all the
components are switched on before bringing a variation of a relatively low amplitude.
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Although being very efficient, this type of identification input may require very
time-consuming simulations (FE reference model) especially when dealing with high
number of heated components, which may limit MIM applicability in practice.

Identification principle We propose to illustrate the MIM method on a linear
thermal problem. The KIM method aims at identifying a ROM in the form of (3.32)
based on Nsnap discrete sequence of input-output data produced by the reference
detailed model, {U (tk) , Y (tk)}k=0,...,Nsnap−1

. The order of the ROM, n, is assumed
unknown a priori and is iteratively increased in an optimization problem. This latter
is based on a minimization problem of a mean squared residual function, called the
cost function (3.35), between the response of the reference model and that of the
ROM for the Nsnap sampled data:

θ̂ = argmin
θ

{
J

(

θ (n) , (C)Nobs×n

)}

(3.34)

with

J
(

θ (n) , (C)m×n
)

=

Nsnap−1
∑

k=0

m
∑

j=1

(

Yj (tk)− Ŷj
(

θ (n) , (C)m×n , tk
)

)2

(3.35)

In those equations, Yj (tk) is the j
th reference output at time tk and Ŷj

(

θ (n) , (C)Nobs×n
,

tk) the output estimated by the ROM of order n when the same input signal is
applied. The parameter vector θ (n) = [ai, bik] , i = 1, . . . , n; k = 1, . . . , Nex is con-
stituted of the coefficients of the matrices A and B. The identification procedure is
performed in two main phases:

• The matrices A and B are identified based on the state equation (3.32a). The
coefficients in those matrices are collected into a parameter vector θ defined
as θ (n) = [ai, bik] , i = 1, . . . , n; k = 1, . . . , Nex. The optimal parameter vector
θ̂ is estimated through the optimization problem (3.34) using a gradient-type
method [85] or more recently the PSO method [87]. In order to enhance the
stability of the ROM, a constraint is used to enforce the coefficients in the
diagonal state matrix A to be real and negative in the optimization algo-
rithm (3.34).

• The matrix (C)Nobs×n
is estimated by a linear least-squares (LSQ) problem

based on the observation equation (3.32b).

A summary of the MIM algorithm is given below.
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Algorithm 3.1 Modal Identification Method algorithm

1: Collect output data Ydata = (Yj (tk))j=1,...,Nobs
from numerical or experimental

results for k = 0, . . . , Nsnap − 1
2: Set order n=1 such as n = dim (X)
3: l = 0, initialize θ = [a0n, b

0
nk] , k = 1, . . . , Nex (a and b are postulated using the

PSO method or arbitrarily chosen for l = 0 in a gradient-type method)

(a) Given the input signal U → Compute the state variable X through (3.32a)

(b) Given Ydata → Compute (C)lNobs×n
by the LSQ method of (3.32b)

(c) Compute the cost function J
(
θ (n) , (C)Nobs×n

)
through (3.35)

(d) Compute the new parameters θ =
[
aln, b

l
nk

]
, k = 1, . . . , Nex solution

of (3.34) using the PSO method or a gradient-type method; constraint
on the coefficient aln (real negative)

(e) If satisfactory result OK, else l ← l + 1 and return to step 3.a

4: If satisfactory result OK, else n← n+ 1 and return to step 3

Remarks:

- In the first iteration of the optimization problem of each ROM order, the state
variable in (3.32a) is not computed by means of an integration method. In-
stead, it can be can be computed in two manners depending on the nature of
the detailed model response. If the system response reaches the steady state,
then X is given by X = A−1BŪ such that Ū refers to the static level of the
input signal. However, in the case of a stationary response, X becomes an
additional unknown variable to be identified simultaneously with the vector
θ. This may be handled by a Variational Data Assimilation method for in-
stance [89].

- Note that the identification algorithm of the non-linear ROM in 3.33 is similar
to that used in the linear case but with additional parameters in the vector θ
corresponding to the Ω terms. More details can be found in [85], [81].

3.2.4 Subspace identification method

Another method convenient for the identification of MIMO state space models is the
Subspace identification method. It has emerged in the late 1980s (De Moor [90] and
Moonen et al [91], [92]) as a good alternative to the non-linear optimization-based
prediction-error methods for the identification of discrete-time linear MIMO sys-
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tems. An exhaustive comparison between ARMAX and Subspace method is given
in [93]. The Subspace method is indeed attractive, when compared with the MIM
technique, since a state-space system can be directly identified from input-output
data without optimization algorithms, which prevents convergence problems. Fur-
thermore, it requires no iterative procedures and uses instead linear algebraic tools
such as the QR decomposition (or equivalently the LQ decomposition), the Singu-
lar Value Decomposition and the Least-Squares method. This makes the subspace
method numerically fast and robust. Moreover, it is useful for real-world data,
usually containing noise disturbances. Several Subspace approaches have been de-
veloped, such as N4SID (Numerical algorithms for Subspace State Space System
IDentification) [94], MOESP (Multi Output-Error State Subspace) [95], [96] and
CVA (Canonical Variate Analysis) [97] as well as ORT (ORThogonal decomposition-
based method) approach proposed by Picci and Katayama [98], [79]. The Subspace
approaches have been also extended to the frequency domain [99] [100], as well as
the continuous-time domain [101]. The extension of linear subspace methods to non-
linear problems remains a distinct challenge. Significant contributions were proposed
in this context, both in the discrete-time [102] and frequency [103], [104] domains
for mechanical applications. The Subspace approaches have been also utilized for
the identification of linear thermal models in building applications [93]. However,
they still remain underused in thermal problems, especially for non-linear cases.

Subspace identification method principle By contrast to the Modal Identifi-
cation Method, the Subspace method is concerned with the identification of discrete-
time state-space models. These latter can be then mapped to the continuous-time
domain using a bilinear transformation as proposed by McKelvey et al. in [99]. That
transformation is valid only if the input signals are piecewise constant between the
sampling instants, which refers to the zero-order-hold (ZOH) inter-sample assump-
tion. Moreover the sampled input signal should respect the Shannon’s principle.

The Subspace identification problem of a deterministic linear system is stated briefly
as follows:

Given Nsnap measurements of the input-output data, U = (U [0] , U [1] , . . . , U [Nsnap

−1]) and Y = (Y [0] , Y [1] , . . . , Y [Nsnap − 1]), find an appropriate order n and
matrices of the ROM in discrete-time domain:

{

X [i+ 1] = ÃdX [i] + B̃dU [i]

Ỹ [i] = C̃dX [i] + D̃dU [i]

(3.36a)

(3.36b)

where subscript d stands for discrete-time, i the sampling instant i ∈ {0, 1, . . . , Nsnap

−1}, U [i] the Nex× 1 input vector at time ti = i∆t with ∆t denoting the sampling
time, Y [i] the Nobs × 1 output vector at time ti, X [i] the n × 1 state vector at
time ti and Ãd, B̃d, C̃d and D̃ are matrices of appropriate dimensions. The model

Σd =
(

Ãd, B̃d, C̃d, D̃d

)

is the discrete-time model to be identified of order n,
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assumed unknown a priori.
First, for i > n and Nsnap sufficiently large, we construct the input and output block
Hankel matrices U [0|2i− 1] and Y [0|2i− 1] (3.37) in which the data is partitioned
in past (subscript p) and future data (subscript f). The number of block rows i is
a user-defined index and can be set to i = 2n/Nobs [105], where n is the maximum
order of the ROM we aim to identify. The number of columns is set to Nsnap−2i+1,
such that all Nsnap available data samples are used. The output block Hankel matrix
Y [0|2i− 1] is defined in a similar way as for the input data with Yp = Y [0|i− 1] and

Yf = Y [i|2i− 1]. We define further the past input-output data as Wp = (Up Yp)
T .
















U [0] . . . U [j − 1]
...

. . .
...

U [i− 1] . . . U [i+ j − 2]

U [i] . . . U [i+ j − 1]
...

...
. . .

...
U [2i− 1] . . . U [2i+ j − 2]
















=







U [0|i− 1]

U [i|2i− 1]






=







Up

Uf







(3.37)

Then, the discrete-time state-space model is transformed into a Subspace model (3.38),
denoted the “data equation” as it relates the input to the output data as follows:

Yf = Γi Xf + Ti Uf (3.38)

where Γi and Ti are the extended observability and triangular Toeplitz matrices,
expressed in terms of {Ãd, C̃d} and {Ãd, B̃d, C̃d, D̃d}, respectively. The operator
Xf = (X [i] , X [i+ 1] , . . . , X [i+ j − 1]) denotes the future state sequence; see [105]
and [79] for more details. In the continuous-time domain, the data equation (3.38)
construction can be interpreted as we introduced up to i − 1 derivatives of the
continuous-time ROM state space model given in (3.20).

Input signals requirements In the subspace method, the external input signals
should respect the persistently exciting (PE) condition [79], [106]. That condi-
tion means that the signals should be linearly independent along the time samples.
Thus, it is important to select uncorrelated inputs with each other in time. Unlike
the MIM method, the step signals are not very convenient for Subspace approaches
as it was already mentioned in [106]. However, they are known to be very efficient
when performed with uncorrelated random signals type since they give the same
weight for all the frequencies in the input spectrum band. This will be confirmed
through the results on the numerical use case in Chapter 4, Section 4.2.3.

Comparison between three Subspace approaches In this paragraph, we give
a brief overview of three Subspace approaches, proposed by Overschee and De Moor
(1996) in [105], for the identification the linear MIMO state-space model (3.36):
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• (1) MOESP (Multi Output-Error State Space) approach corresponding to
function Project in [105].

• (2) SubSV based on algorithm 3 in [105]. This latter is a robust subspace algo-
rithm that was developed in [105] to identify combined deterministic-stochastic
models. This algorithm works as well for deterministic models.

• (3) SubCVA based also on algorithm 3 in [105] and corresponding to CVA
(Canonical Variate Analysis) subspace approach.

The Matlab program of these three approaches is available online in [107].

The SubSV and SubCVA both combine orthogonal and oblique projection tech-
niques performed by the LQ decomposition (Appendix B). The MOESP approach,
however, uses only the orthogonal projection technique. A comparative diagram of
the aforementioned Subspace approaches is presented in Fig. 3.1, in which similari-
ties and differences are outlined.
The Subspace approaches algorithms are basically performed in the following steps
(Fig. 3.1):

1. project the ‘data equation” (3.38) onto U⊥f in the MOESP approach (orthog-
onal projection) or onto Wp along Uf in both SubSV and SubCVA (oblique
projection). The result is denoted Oi. Note that an additional orthogonal pro-
jection of Oi onto U

⊥
f is performed in both SubSV and SubCVA approaches,

2. determine the order n by inspection of the singular values of W1OiW2, where
W1 and W2 are two weighting matrices. Specific choices of the weighting
matrices together within the projection type lead to different identification
algorithms and determine the state-space basis in which the ROM is obtained.

3. determine the ROM order by inspection of the singular values of W1OiW2, so
that the extended observability Γi can be identified.

4. the unknown ROM discrete-time matrices are identified by means of a linear
least-squares problem.

We mention that the conditioning of data matrices (block Hankel matrices) is im-
proved through the extra orthogonal projection in SubSV and SubCVA as depicted
in Fig. 3.1. The corresponding algorithms of these two Subspace approaches were
judged to be robust in [105]. This result will be confirmed through the results of
the comparative work between the three subspace approaches with respect to our
developed method in Chapter 4.
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Figure 3.1. A comparative diagram of Subspace approaches (MOESP, SubSV and
SubCVA)
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3.3 Conclusion

In this chapter, we reviewed some existing model order reduction methods of intru-
sive and non-intrusive natures. In the first section, we introduced the principle and
discussed the advantages and limitations of each of the intrusive methods. These
latter are named so as they require access to the code solver to:

• project the original model operators onto an appropriate subspace like the
projection-based reduction methods,

• or to act directly on the local differential equations of the problem like the a
priori reduction methods.

With regard to the industrial needs, where the original model is considered as a
“black-box” and the target software is inaccessible, the non-intrusive methods, i.e.
system identification methods, are more suitable in this thesis. In this category, as
stated in the literature, state space models are more convenient to deal with multiple-
input multiple-output system with respect to the input-output ARMA models. Both
prediction error-based methods and the modal identification method investigate non-
linear optimization techniques, the former being based on the ARMA models and
the latter applied to state space models. The subspace methods, however, are based
on linear algebraic tools, such as the SVD and LQ decomposition method. This
latter constitutes one of the key tool in the developed identification method in
this work. The proposed method is developed in two stages. In the first stage, a
new identification method referred to as “Kernel Identification Method” (KIM) is
developed to derive linear compact thermal model in a state space form. Then, in
the second stage, this method is extended to perform the identification of a non-
linear state space model in the presence of natural convection. The next chapter
focuses on the first stage dealing with the linear KIM method.
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conception et la commande d’une chaine de traction électrique. PhD thesis,
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Chapter 4

Kernel Identification Method for
Linear system identification

In this chapter, we propose a new non-intrusive MOR method named “Kernel Iden-
tification Method“ for the identification of Linear-Time-Invariant state space models
of a thermal multiple-input multiple-output system. A first small-scale use case of
a heat conduction problem is proposed in order to illustrate the KIM in compar-
ison with three Subspace approaches. Then, KIM is validated onto a large-scale
industrial Valeo application dealing with a water cooled device simulated by a CFD
software. KIM results are compared to those produced by the thermal impedance
method used so far in Valeo.
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Chapter 4. Kernel Identification Method

4.1 Kernel Identification Method (KIM)

4.1.1 The Reduced Order Model (ROM) structure

Let us recall the FE reference model (3.17):

{

Ṫs (t) = ATTs (t) + BTU (t)

Y (t) = CTTs (t)

(4.1a)

(4.1b)

The proposed method operates in continuous time-space, by processing discrete-
time input data and output results produced by a 3D detailed finite element model.
The ROM structure in KIM is deduced from that of the FE detailed model. The
transition from the reference model to the ROM is explained in Section 3.2.1. In
addition, KIM aims at identifying a ROM into a modal form defined as follows:

{

Ẋ (t) = ÃX (t) + B̃U (t)

Ỹ (t) = C̃X (t) + D̃U (t)

(4.2a)

(4.2b)

with 





X = Tr
Ã = V T

Modal AT VModal

C̃ = CT VModal

{
Ẋ = Ṫr
B̃ = V T

Modal BT
(4.3)

The modal basis VModal ∈ R
(N×n) in (4.3) is a solution of an eigenvalue problem

of Ṫs (t) = ATTs (t). The eigenvalue problem is defined in (3.7) (see the Modal
methods review on Page 80). We should note that VModal is not computed in order
to deduce the new reduced state vector X (t) in (4.2) as processed in an intrusive
framework. In fact, the formulation within VModal only serves to expose the form of
the reduced state matrix Ã. The matrix Ã in (4.2) is identified into a diagonal form,
i.e. Ã = diag(a1, a2, · · · , an) and its diagonal terms are the dominant eigenvalues
(modes) of the FE reference problem, such that ai = − 1

τi
, i = 1, · · · , n with τi

denoting the ith time-constant. The corresponding eigenvectors are included into
the columns of the (Nobs × n) observation matrix C̃. The main features of the ROM
model are the followings:

• the ROM order n is at most equal to Nobs, with Nobs standing for the number
of the observed points,

• the couple {Ã, C̃} is independent of the excitation; it constitutes the kernel of
the FE reference model (4.1),

• the (Nobs × n) reduced command matrix B̃, however, depends on the particular
solution driven by the input U ,

• the matrix D̃ is the static gain matrix contributing to a static correction of
the ROM approximation.
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4.1. Kernel Identification Method (KIM)

We note Σ =
(

Ã, B̃, C̃, D̃
)

the ROM linking the FE reference model observed

results collected into Y to the input data U . In what follows, the time variable will
be omitted for the sake of simplicity, so that X (t) = X, Y (t) = Y , Ỹ (t) = Ỹ and
U (t) = U .

4.1.2 KIM methodology

The method is referred to as the “Kernel Identification Method“ since it identifies the
kernel of the thermal problem through its eigenvectors and eigenvalues independent
of the input and removes its stationary response thanks to a projection onto a space
orthogonal to the space of input data. Hence, the implementation of the proposed
method requires no iterative procedure and uses classical numerical algebraic tools
instead. These tools include the orthogonal projection, computed by means of the
LQ decomposition or more generally by the Householder decomposition [1], and the
Least-Squares method. They are both described in Appendices A and B.

The initial step of KIM is to construct a model involving only input-output data
as well as the reduced matrices to be identified, i.e. U , Y , Ã, B̃, C̃ and D̃. The
equations from (4.4) to (4.7) detail how the KIM model is obtained. The reduced
state equation (4.2b) enables to write

X =
(

C̃
)† (

Ỹ − D̃ U
)

(4.4)

where
(

C̃
)†

denotes the pseudo-inverse of matrix C̃.

The derivative of (4.2b) yields

˙̃Y = C̃Ẋ + D̃U̇ (4.5)

Replacing Ẋ in (4.5) with the expression of the state equation (4.2a) gives

˙̃Y = C̃ÃX + C̃B̃U + D̃U̇ (4.6)

Finally, the combination of Eqs. (4.4) and (4.6) leads to

˙̃Y = ZỸ +WU + D̃U̇ (4.7)

with






Z = C̃ Ã
(

C̃
)†

(4.8a)

W = C̃

(

B̃ − Ã
(

C̃
)†

D̃

)

(4.8b)

Eq. (4.7) is the reduced linear system of order Nobs to be solved, in which the
only unknown operators are the full matrices Z,W (Eqs. (4.8a) and (4.8b)) and D̃ of
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Chapter 4. Kernel Identification Method

dimensions (Nobs ×Nobs), (Nobs ×Nex) and (Nobs ×Nex), respectively. It is known
that the solution Y consists of two parts. The first represents the homogeneous
solution driven by the proper system, together within the initial values, the second
the particular solution driven by the input U . The former, independent of the input
data, relates to the kernel system {Ã, C̃} as well as the operator Z. The latter
pertains to the command matrix B̃. The static gain matrix D̃, however, contributes
to a static correction of the approximation Ỹ in the ROM.

1- The first key idea of KIM, is to project (4.7) on U⊥, the orthogonal
space to the row space of input data U , such that the projection of U onto U⊥

is zero. The orthogonal projection aims to virtually suppress the particular
solution driven by input U when identifying the system kernel. Thus, a generic
reduced model is identified, valid afterwards for any signal input application.
The projected KIM model on U⊥ is written

˙̃Y/U⊥ = ZỸ /U⊥ + D̃U̇/U⊥ (4.9)

The terms ˙̃Y/U⊥ ( = Ẏ /U⊥) and U̇/U⊥ are computed using the LQ decom-
position if the matrix U is of full rank, or the Householder decomposition if U
is rank-deficient (see Appendix B).

2- The second key point comes from the a priori specification of the Z
operator that is assumed to be a real symmetric matrix. Thus, Z is diag-
onalizable, that is, P−1 Z P is a diagonal matrix with Nobs distinct eigenvalues
of Z on the diagonal. Since Z is symmetric, P is an orthogonal matrix, i.e.
P−1 = PT , whose columns vectors are the corresponding eigenvectors. Note
that in the context of linear operators, the eigenvalues of a system are invari-
ant under basis transformations. Hence, C̃ = P and Ã = diag (ã1, · · · , ãn)
with n ≤ Nobs (see the remark below). Therefore, C̃ is a square matrix, and

in what follows we can write
(

C̃
)†

= C̃−1. The opposite reciprocals of the

eigenvalues (modes) ãi, {i = 1, · · · , n} are the ROM time-constants denoted
τi, {i = 1, · · · , n} such that ãi = − 1

τi
. Consequently, the problem results in

Nobs decoupled first-order systems.

Remark: In the case of positive values in the diagonal of matrix Ã, these
should be eliminated as well as the corresponding row and column vectors in
matrices B̃ and C̃, in order to obtain a stable ROM. Moreover, such values
would have significant physical meanings in the thermal problem.

Considering the previous key ideas, the next steps are the followings:

1. compute a least squares problem on (4.9) (Appendix A) to identify the matrix
Z, assumed to be symmetric, and the static matrix D̃ (Appendix A),
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4.1. Kernel Identification Method (KIM)

2. compute the eigenvalue problem of Z to obtain the state matrix Ã and the
observation matrix C̃ ,

3. substitute the identified matrices Ã and C̃ in (4.7) according to (4.8a) and (4.8b)

such that
(

C̃
)†

= C̃−1, and project the resulting system onto U̇⊥, the orthog-

onal space to the row space of derivative of input data U̇ ,

4. compute a least squares problem on (4.10) to identify the command matrix B̃.

The projection of (4.7) onto U̇⊥ is given by:

C̃−1
(
˙̃Y/U̇⊥ − C̃ÃC̃−1 Ỹ /U̇⊥ + C̃ÃC̃−1D̃U/U̇⊥

)

= B̃U/U̇⊥ (4.10)

where the operator U̇⊥ is the orthogonal projection on U̇ . The projection on U̇⊥

allows to minimize the number of parameters in the least-squares problem.
In order to validate the identified ROM, heat sources signals different from those

used in the identification step are applied. The ROM output is then computed
through a numerical integration method. The initial state vector X̃(t0) = X̃(0) is
determined using the ROM observation equation (4.2b) at time step t0 = 0 :

X̃ (0) = C̃−1
(

YV AL − D̃UV AL

)

(0) (4.11)

where YV AL is the observed temperatures results of the FE reference model simulated
with the validation input data UV AL.

ROM truncation criterion
A further reduction of the identified ROM Σ =

(

Ã, B̃, C̃, D̃
)

can be obtained by

retaining the most dominant eigenvalues in matrix Ã. To this end, the contribution
of the eigenvalues is evaluated by inspection of the entries in the vector in (4.12):

diag
(

XnX
T
n

)

= {σ1, σ2, · · · , σn}T (4.12)

where Xn denotes a (n×Nsnap) matrix containing the identified state variables at
different time steps. The eigenvalues are then sorted according to the decreasing
order of the σi terms with i ∈ [1, n] and n ≤ Nobs (see Remark on Page 114). The
order of ROM is then decreased from n to k after the k greatest first values σi.
The first k rows of the matrix B̃ and the first k columns of the matrix C̃ are only
retained.
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Chapter 4. Kernel Identification Method

Precision criterion
The accuracy of identification results is computed through the norm L2 of the dis-
crepancy, expressed as a percentage, between the response of the reference system
described by (4.1) on the one hand, and the outputs of the ROM described by (4.2)
on the other hand, when a specific input signal is applied.

ǫL2 =
1

Nobs

Nobs∑

i=1

√
√
√
√
√

∑Nsnap−1
j=0

(

Yi (tj)− Ỹi (tj)
)2

∑Nsnap−1
j=0 Yi (tj)

2
(4.13)

In this equation, Ỹi (tj) is the estimated observed temperature produced by the

ROM, Σ =
(

Ã, B̃, C̃, D̃
)

, at point (node) i at time tj, and Nsnap the number of

time steps of the FE model simulation.
We can also evaluate the relative residual expressed as follows:

Resi(tj) = |Yi(tj)−Ỹi(tj)

Yi(tj)−Yi(t0)
| i = 1, · · · , Nobs j = 0, . . . , Nsnap − 1 (4.14)

where Resi(tj) is the relative residual at point i at time tj and Yi (0) the i
th reference

observed temperature at time t = 0. This evaluation is common in thermal design
since the temperature variation constitutes an important information in reliability
and lifetime prediction as illustrated in Fig. 1.3. Usually, a relative residual lower
than 10 % could be considered acceptable, depending on the targeted application.
The KIM algorithm is summarized below.

Algorithm 4.1 Kernel Identification Method algorithm

1: Generate the input UNex×Nsnap
and output YNobs×Nsnap

data from a numerical
simulation (FE reference model).

2: Compute the orthogonal projections
Ẏ / U⊥ Y/ U⊥ U̇/ U⊥ U/ U⊥ ≡ 0.

3: Solve (4.9) by means of a Least-Squares method and diagonalization =⇒
ROM operators Ãn×n, C̃Nobs×n and
D̃Nobs×Nex

, with n = Nobs.
4: Eliminate the positive diagonal terms in matrix Ã as well as the corresponding
row and column vectors in matrices B̃ and C̃, respectively. =⇒ A ROM of order
n ≤ Nobs.

5: Arrange the diagonal coefficients in Matrix Ã based on the diag
(

X(t) X(t)T
)

criterion in (4.12).
6: Truncate the ROM such that ǫL2 ≤ ǫmax (4.13).
=⇒ Xk = X|(1:k),k≤Nobs

and the corresponding ROM operators Ãk, B̃k, C̃k and

D̃k(= Dk).
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4.1. Kernel Identification Method (KIM)

Observability and controllability
If the identified ROM is intended for closed loop control applications, it is necessary
to verify its observability and controllability [2] particularly when the power input
signals are different from those used in the identification step.

- On the one hand, the observability of the obtained ROM depends only on
the coefficient matrices Ã and C̃. This property is verified if and only if the
observability matrix Γ = [C̃, C̃Ã, C̃Ã2; · · · , C̃Ãn−1]T ∈ R

(Nobs×n)×n has a full
column rank of n, with n the order of the ROM and (Nobs × n) the dimension
of matrix C̃.

- On the other hand, the ROM is controllable if and only if the controllability
matrix ζ = [B̃ ÃB̃, Ã2B̃, · · · , Ãn−1B̃] ∈ R

n×(n×Nex) has a full row rank of n,
with (n×Nex) the dimension of matrix B̃.

4.1.3 Choice of KIM input

The input matrix U in the KIM model is composed of the heat sources applied to
the power components and the boundary conditions (BCs). Below we detail the
different requirements for both heat sources and the BCs.

Heat sources signals In the identification process, we should clearly distinguish
between the identification input used to derive the ROM and the validation input
that is composed of the power profiles (§ 1.2.1).
The choice of the heat sources signals in the identification input, i.e. the stimuli and
their frequency content, has a crucial influence on the quality of system identifica-
tion. Hence, they should be carefully selected, and the following requirements have
to be considered:

• the input data (as well as the observed output) issued from the detailed model
simulation should be resampled at a constant sample time dt (if this not was
already the case) in order to ensure a fairly good estimation of the modes in
the matrix Ã using the least-squares method. If not, more importance would
be given to over sampled laps time in the least squares problem,

• the frequency content [0 fIDmax
] should be included in that of the power pro-

files. This means that the maximum frequency is fixed such that fIDmax
≤

fV ALmax
with fV ALmax

denoting the maximum frequency the power profile for
which electronics designers request a ROM. In addition, the sampling fre-

quency Fs =
1
dt
must respect the Shannon theorem, i.e. fIDmax

≤ FsID

2
, where

FsID

2
is the Nyquist frequency of discrete input signals,
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• in order to identify a ROM valid afterwards for any input (in the linear case
at least) given the same boundary conditions and respecting the aforesaid fre-
quency condition, it is essential to separate the identification step from the
validation one. However, if a ROM is required for specific power profiles, it is
also possible, for KIM method, to identify the ROM directly on those power
profiles. The power profiles in thermal simulations are often linearly depen-
dent in time (an example is given in Section 4.3, Fig. 4.16). This means that
unlike the Subspace method (Section 3.2.4), the KIM method should not nec-
essarily respect the Persisting Exciting (PE) condition, i.e. the independence
of the sources signals along the time samples. This will be proved through the
industrial application in Section 4.3.

Boundary conditions The boundary conditions are also considered as inputs
in the state space model (4.2) in accordance with the FE model form in the solid
domain deduced in Section (2.5.3). Depending on the nature of the thermal problem,
the BCs may include:

• in the case of a Dirichlet BC, the imposed temperature is assumed constant,

• if a convective BC is involved then the ambient temperature is considered and
is assumed constant,

• if a coupled fluid-solid problem is investigated, some additional fluid temper-
ature measurements may be included in the model input, in particular when
the natural convection is involved. In the case of water cooled problem mainly
governed by forced convection, however, the fluid temperature may be as-
sumed constant. This case will be investigated in the industrial application in
Section 4.3.

Remarks

- It is important to mention that the first two above-mentioned BCs may be
varied in time during the detailed model simulation in order to ensure the
independence between inputs. In doing so, a better numerical conditioning
would be achieved in the identification process. This is particularly important
when several boundary conditions are involved in the KIM model. This idea
has been adopted in the Modal Identification Method (MIM) reviewed in Sec-
tion 3.2.
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4.2. Application to a small-scale conduction problem

- We should mention that the matrix U may not be of full-rank, like the case
of U̇ when a constant BC is considered, or even when linearly-dependent heat
sources signals are involved. Consequently, in order to generate the matrices
U⊥ and U̇⊥ in (4.9) and (4.10), we use the Householder QR decomposition [3]
(Appendix B). The rank deficiency in the least-squares problem leads also
to an ill-conditioned problem. This latter is then performed by means of a
generalized Least-Squares method [1] (Appendix A).

4.2 Application to a small-scale conduction prob-

lem and comparison with the Subspace method

4.2.1 The FE reference model

A 3D thermal FE model (Fig. 4.1) is used in order to evaluate the performance of
KIM in comparison with the Subspace approaches (MOESP, SubSV and SubCVA)
introduced in Section 3.2.4.
The model consists of nine cuboid sources partially embedded in a parallelepiped,
each component being powered by a transient heat flux density input Ui (t) , {i =
1, . . . , 9} (W/m2) spread over its upper face. Convective BCs are applied to the
upper (hHi) and lower (hLo) faces of the model with time-independent ambient tem-
perature Ta to simulate a cooler. In the initial state the temperature of nodes is
Ti = Ta = 25 ◦C. The input matrix involved in the state space model is then
U = (U1 (t) , U2 (t) , . . . , U9 (t) , Ta)

T . Materials characteristics are given in Table 4.1.

Despite its simplicity, this use case is representative of the thermal behaviour of
a Printed Circuit Board substrate on which dissipating components are mounted.
The simulation is carried out with a finite element model of size N = 20236, the
mesh having 20236 nodes. The FE reference solution corresponds to the computed
temperatures recorded at observation points 1 to 10 all placed at the center of the
cubes (Yi, (i=1,··· ,Nobs)) and at a point placed at the left bottom upper face of the
model (Y10) (Fig. 4.1). The reference solution is recorded at Nsnap time steps.

Table 4.1
Material characteristics of FE reference model.

Density Conductivity Specific Heat
Kg m−3 W m−1 ◦C−1 J Kg−1 ◦C−1

Upper part 1200 150 880
Lower part 1200 0.3 880
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Chapter 4. Kernel Identification Method

Figure 4.1. Reference model.

4.2.2 Tests description

The test cases are summarized in Table 4.2. Two heat sources signal types are
carried out, complying with the input requirement described in § 4.1.3, in order to
identify a ROM of the FE reference model:

(i) signals of type 1 (Fig. 4.2(a)): time-delayed step signals applied suc-
cessively on the upper faces of model components. This type is used in order
to identify ROM1. We should mention that, this signals type together within a
time-independent convective BC, do not follow the MIM hypothesis addressed to
identification inputs, i.e. the temperature steady-regime is not reached for one com-
ponent before switching on another one as it was mentioned in § 3.2.3 (Fig. 4.6).

(ii) signals of type 2 (Fig. 4.3(a)): uncorrelated zero-mean random signals with
offset applied simultaneously on the nine upper faces of components. This type is
used in order to identify ROM2, as well as to validate both ROM1 and ROM2 (Ta-
ble 4.2).

Identification input signals of type 1 and 2 are both sampled at time step dt = 0.5 s,
then FsID = FsID1

= FsID2
= 1/dt = 2 Hz. For the first type, the frequency

spectrum becomes generally negligible after 5 df , with df = 1/T and T = 50 s the
time for which the step is non null. The second type, on the other hand, is filtered
at fIDmax

= 1 Hz. Hence, the Shannon’s principle is fulfilled for both signals types

fIDmax
≤ FsID

2
. Their respective power spectra are shown in Figs. 4.2(b) and 4.3(b).

The influence of these signals types on both KIM and Subspace methods will be
investigated in Section 4.2.3.

In Table 4.2, test case 1 is concerned with the identification of ROM1 using the
signals type 1 and test case 2 with the identification of ROM2 using the signals
type 2. ROM1 and ROM2 are afterwards validated using the same input signals
of type 2 different from those used in identification step, denoted validation (VAL)
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4.2. Application to a small-scale conduction problem

inputs (Figs. 4.4(a), 4.4(b)). The validation inputs are sampled at FsV AL
= 1/3 Hz

and filtered up to fV ALmax
= 0.15 Hz < fIDmax

), which implies that the validation
frequency range is included into that of the identification step.
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(a) Input signals.
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(b) Input spectrums.

Figure 4.2. (a) Identification input signals of type 1 (time-delayed step
signals) and (b) the corresponding spectrum (FsID = 2 Hz); for greater clarity,
only the input spectrum applied on component 1 (Ufft1) is illustrated in (b).
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(b) Input spectrums.

Figure 4.3. (a) Identification input signals of type 2 (uncorrelated zero-mean
random signals with offset) and (b) the corresponding spectrum (FsID = 2 Hz);
for greater clarity, only the input signal and spectrum applied on component 1 (U1

and Ufft1) are illustrated in (a) and (b), respectively.
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(b) Input spectrums.

Figure 4.4. (a) Validation input signals of type 2 (uncorrelated zero-mean
random signals with offset) and (b) the corresponding spectrum

(FsV AL
= 1/3 Hz); for greater clarity, only the input signal and spectrum applied

on component 1 (U1 and Ufft1) are illustrated in (a) and (b), respectively.
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4.2. Application to a small-scale conduction problem

Table 4.2
Description of the tests ; two types of identification input signals and the resulting
ROM, and one validation input to validate the ROMs.

Test 1 Test 2

Identification
input

Signals of type 1 Signals of type 2

(heat sources
signals)

time-delayed step signals
(Fig. 4.2(a))

uncorrelated zero-mean
random signals with offset

(Fig. 4.3(a))
signals spectrum (Fig. 4.2(b)) signals spectrum (Fig. 4.3(b))

Nsnap = 1901 Nsnap = 1225
FsID1

= 2 Hz FsID2
= 2 Hz

ROM
identification

ROM1 of order n1 ROM2 of order n2

Figs. 4.5, 4.6 and 4.7(a),
4.7(b), and Tables 4.3 and 4.5

Figs. 4.8, 4.9 and 4.10(a),
4.10(b), 4.10(c), and
Tables 4.4 and 4.5

Validation input signals of type 2 (Fig. 4.4(a))
(heat sources
signals)

spectrum (Fig. 4.4(b))

fVALmax
= 0.15 Hz < FsVAL

= 1/3 Hz ; fVAL ⊂ fID

ROM validation
Figs. 4.11(a) and4.11(b), and

Table 4.6
Figs. 4.12(a) and 4.12(b), and

Table 4.6

4.2.3 Results and Discussion: comparison to the Subspace
method

Identification (ID) step

The accuracy of identified ROM is assessed by:

• computing the relative L2 norm error, as defined in (4.13), based on the dis-
crepancies between the observed temperatures computed by the reference FE
model at the 10 observation nodes, and the outputs of the ROM,
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• verifying the numerical stability of relative error convergence depending on
ROM order,

• examining the stability of its modes. On the one hand, KIM identifies a
continuous-time ROM with modes placed on the diagonal of the state matrix
Ã. The ROM is assumed stable if these diagonal terms are all negative. On the
other hand, the subspace approaches identify iteratively a discrete-time ROM
with a full state matrix. An eigenvalue decomposition is then performed on
that matrix in order to compute the modes and compare them to those of
KIM. In addition of being negative values, the modes have to be invariant
regardless the ROM order. We should note that KIM is not concerned with
the stability assessment since it identifies a ROM of order n and then truncates
it by means of the criterion defined in (4.12).

Identification of ROM1 The identification relative error (4.13) on the estimated
temperatures (at observation nodes 1, 2, . . . , Nobs = 10) is depicted in Fig. 4.5. Each
of KIM, SubSV and SubCVA produce very good results. Even for order 1, the error
(⋍ 3.4% for SubSV and lower than 10% for KIM and SubCVA) could be considered
as acceptable, depending on the targeted application. Order 1 corresponds to the
case where the lowest mode frequency (in absolute value), i.e. the largest time
constant, only is retained. Unlike the other methods, MOESP approach produces
significant error, the error being nearly constant at ⋍ 20% for all ROM orders (up to
10). The relative error of ROM of order 10 for all methods is given in Table 4.3. As
an example, the ROM response (fixed order as detailed in Table 4.3), is compared
to the reference FE response in Fig. 4.6.

Figs. 4.7(a) and 4.7(b) show the stability diagram (identified modes versus ROM
order) of the identified modes obtained by SubSV and SubCVA, respectively. Recall
that KIM identifies a ROM of order equal to the number of observation points
first, and then the model is truncated based on criterion in (4.12), so that it is
not concerned with stability diagram and only modes of reduced model of order
10 are present (circle markers) in the other methods stability diagram. SubSV,
SubCVA and KIM cover perfectly almost the same frequency band for ROM of
order 10, except for the lowest frequency that is slightly different between Subspace
approaches and KIM method. Moreover, the identified modes are all included into

the bandwidth [0 ,
FsID

2
Hz].
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Figure 4.5. Identification relative error (4.13): L2-norm of the discrepancy between
responses of the reference FE model and outputs of ROM1.

Table 4.3
ROM1 identification error (order 10)) based on all observation points (Eq. 4.13).

KIM SubSV SubCVA MOESP

Error ǫL2 (%) 1.6 0.5 0.7 21.0
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Figure 4.7. Stability diagram of ROM1 modes identified by (a) SubSV and (b)
SubCVA in comparison with KIM modes (circle markers).

Identification of ROM2 The identification process is now carried out using the
second type of heat sources signals. The most notable results in this test case are:
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4.2. Application to a small-scale conduction problem

firstly, the significant enhancement of the ROM estimation obtained by MOESP
approach (error 4 times lower than that obtained in test case 1; see Figs. 4.8, 4.9
and Table 4.4). Secondly, the identified modes obtained by SubSV and SubCVA
(Figs. 4.10(a), 4.10(b)) become very stable in comparison with results of those of
ROM1 (Figs. 4.7(a), 4.7(b)). The MOESP is very stable as well. One should also
notice that KIM, SubSV and SubCVA yield very close low errors (⋍ 1.5% for ROM2
of order 1 and between 0.5% and 0.9% for order 10). Even though SubCVA and
MOESP produces very stable modes (Fig. 4.10(c)), they still have no stable relative
error convergence, on the contrary to the SubSV method (Fig. 4.8). Recall that KIM
identifies a ROM of order equal to the number of observation points first, and then
the model is truncated based on criterion in (4.12), so that it is not concerned with
stability of relative error convergence. The limits of the identified frequency range,
for both ROM1 and ROM2, are listed into Table 4.5. One observes that Subspace
approaches produce almost the same frequency bandwidth (identical for SubSV and
MOESP). Moreover, they identify almost the same lowest frequency value as KIM
approach. The maximum range frequency is however different between KIM and
Subspace approaches. Even so, the levels of errors are not necessarily very different
except for the MOESP approach, as can be shown in Fig. 4.8 and Table 4.4. The
MOESP approach appears to be less efficient than the SubSV and SubCVA methods.
This may be explained by the additional use of an orthogonal projection in the
SubSV and SubCVA as this can be noticed through the comparative diagram of
these approaches (Fig. 3.1).

The lowest frequency, corresponding to the highest time-constant, has a much
larger impact on the quality of reduced model. This can be further confirmed
through the slight improvement of errors levels for Subspace and KIM methods
when increasing the ROM2 order from 1 to 10 (see Fig. 4.8).

It is shown through Figs. 4.10(a), 4.10(b), 4.10(c) and Table 4.5 that Sub-
space approaches identify ROM2 frequencies exceeding the identification Nyquist

frequency (
FsID

2
= 1 Hz; see Table 4.2). In fact, the random signals used in the

identification step was filtered to the maximum frequency of fIDmax
= 1 Hz ≤ FsID

2
.

In practice, one cannot avoid filters imperfections from a theoretical point of view.
To account for that gap between ideal theory and real practice, one should use a
sampling frequency FsID that is a higher multiple of the highest frequency fIDmax

in the signal than just the double of Nyquist frequency (
FsID

2
). Under such pre-

caution, the bilinear transformation, that maps the discrete-time identified model
to the continuous-time domain, would not results in system modes exceeding the
Nyquist frequency.

It is also shown from Figs. 4.10(a), 4.10(b), 4.10(c) and Table 4.5 that Subspace
approaches favour the identification of higher frequencies in comparison with the
KIM method (the identified frequency fmax(KIM) ⋍ 0.3 Hz < fmax(Subspace) ⋍
1.3, 1.5 Hz). This is not surprising since the Subspace identification principle is
derived through multiple derivations of input-output data in continuous-time domain
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Chapter 4. Kernel Identification Method

as it was mentioned in Section 3.2.4, which is equivalent to successive multiplication
by jw in frequency domain, with j the complex variable and w the circular frequency
variable. This aspect, however, is not detected in the identification using the time-
delayed signals (Type 1), since they give greater weight for low frequencies values
unlike random signals that give the same weight for all the input frequency band
(see signals spectrum in Figs. 4.2(b) and 4.3(b)).
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Figure 4.8. Identification relative error (4.13): L2-norm of the discrepancy between
responses of the reference FE model and outputs of ROM2.

Table 4.4
ROM2 identification error (order 10) based on all observation points (Eq. 4.13).

KIM SubSV SubCVA MOESP

Error ǫL2 (%) 0.90 0.52 0.64 4.94
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estimated temperatures at point No. 7.

Table 4.5
Summary table of identified frequencies (all negative values) of ROM1 and ROM2
of order 10; comparison between KIM and Subspace approaches.

ROM1 ROM2
−fmin −fmax −fmax −fmax

KIM 0.0043 0.5382 0.0037 0.3122

SubSV 0.0025 0.5212 0.0033 1.2724
MOESP 0.0026 0.5277 0.0033 1.2723
SubCVA 0.0031 0.6112 0.0034 1.4488
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Figure 4.10. Stability diagram of ROM2 modes identified by (a) SubSV, (b)
SubCVA and (c) MOESP in comparison with KIM modes (circle markers).

Validation step

The validation step of ROM1 and ROM2 is performed using heat sources signals
of type 2 (see Table 4.2 and Figs. 4.4(a), 4.4(b)). The ROM1 and ROM2 orders
are selected at 10 for KIM and Subspace approaches. Fig. 4.11(a) show the ROM1
temperature estimation, obtained by each identification method at node 7, com-
pared to those of the FE reference model at the same node. Their corresponding
discrepancies are presented in Fig. 4.11(b). The ROM2 results are illustrated in a
similar way in Figs. 4.12(a), 4.11(b). The Table 4.6 lists the validation step relative
errors on the Nobs = 10 estimated temperatures for both ROM1 and ROM2.

When using ROM1, it is clear that KIM yields good results (maximum deviation
of 2.6 ◦C for node 7 (Fig. 4.11(b))). Furthermore, the relative error, involving the
Nobs temperatures , for KIM is ⋍ 2.4%, followed by SubCVA (⋍ 2.4%) and SubSV
(⋍ 8.7%). The reason is that signals of type 1, time-delayed step signals used
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4.2. Application to a small-scale conduction problem

for the identification of ROM1, are not very convenient for Subspace approaches
(Section 3.2.4) since those signals give greater weight to low frequency range (see
spectrum in Fig. 4.2(b)).

Now for the validation results of ROM2 of order 10 for KIM and Subspace
approaches, we examine similarly the temperature estimation at node 7 and the
corresponding discrepancies with FE reference observations (Figs. 4.12(a), 4.12(b)).
Unlike ROM1, the SubSV and SubCVA approaches yield an excellent fit with the
reference solution when using ROM2, followed by MOESP results (deviation of
7.5 ◦C for node 7). The relative error for ROM2 obtained by KIM method is of
2.8% and is almost equal to that obtained in ROM1 validation step (Table 4.6).
Thus, KIM method works well for both identification signals types. The Subspace
approaches, however, are more sensitive to the identification heat sources signals
type and are, as aforementioned, more convenient with random signals, especially
the MOESP approach.
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Figure 4.11. Validation of ROM1: (a) temperature estimation and (b)
temperature residual at point No. 7.

Table 4.6
Comparison between the estimation error 4.13 for ROM1 and ROM2 (both of
order 10), based on all observation points, when submitted to validation inputs
different from those used in identification step.

KIM SubSV SubCVA MOESP

Error ǫL2

(%)
ROM1 2.4 8.7 4.1 −
ROM2 2.8 2.9 2.4 7.8
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Figure 4.12. Validation of ROM2: (a) temperature estimation and (b)
temperature residual at point No. 7.

4.3 Application to a large-scale water cooled CFD

problem and comparison with the Zth method

4.3.1 The industrial model

In this section, we will apply KIM method on a large-scale industrial product in
order to estimate the junction temperature of some electronic parts given a mission
profile. The investigated application is a water cooled CFD problem involving
conduction with constant material properties, internal and external natural convec-
tion, radiation, and a water cooling forced convection with Tcoolant = 105 ◦C. The
problem, however, is mainly governed by forced convection and its thermal
behaviour is approximately linear. A 3D Finite Volume (FV) model of almost 1
million cells allocated to both fluid and solid domains is carried out on the FloEFD
software. The power module part consists of 51 power sources including 6 MOS, 6
Diodes, 3 capacitors and several PCB layout tracks (Fig. 4.13). The localisation of
these power sources is depicted in Fig. 4.14. The thermal dissipated power (in watt)
on the MOS and Diode components is located at the top of their respective Silicon
dies.

The transient simulation is initialized by steady state results in which all the power
sources are turned off allowing for a stabilized coolant flow at t = 0 s. The temper-
ature cartography of the power module given in Fig. 4.15 shows an almost uniform
temperature around the power components with values around 105 ◦C ≃ Tcoolant.
The transient simulation results showed that the thermal dissipated power applied
on capacitors and layout have a negligible effect on the system thermal behaviour,
with respect to those applied on MOS and Diode components. Therefore, in the
identification process, we will consider only the MOS and Diode components as
power sources even if the other sources are still active in the transient simulation.
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4.3. Application to a large-scale water cooled CFD problem

Capacitor

MOS

Diode

Layout

Figure 4.13. Top view of the power module composed of MOS, Diode, capacitors
and layout placed on a substrate.

Figure 4.14. The localisation of the power sources; Pcapacitor={P1, P2, P3},
PMOS={P4, P5, P6, P13, P14, P15}, PDiode={P7, P8, P9, P10, P11, P12} and

layout (from P26 to P51).
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Figure 4.15. The temperature cartography of the steady state results.

In order to ensure convergence, FloEFD transient simulations are carried out with a
variable sample time. Usually, small time steps are required for the initial transients
(about microseconds) and during the power profiles changes like the switch on/off of
a square signal. Consequently, the resulting input output data of the detailed model
are not equidistantly sampled signals. The steady and transient simulations last
around 12 hours and 6 hours, respectively. Before proceeding to the identification
step, the input-output data are resampled at constant time step dt = 0.05 s
resulting in Nsnap = 761 sampling time steps in order to comply with the input
sampling requirement described in § 4.1.3. The resampled power profiles applied
on MOS and Diodes and their corresponding spectrum are given in Figs. 4.16(a)
and 4.16(b), respectively. The recorded junction temperatures located at the top
centre of the MOS and Diode components are presented in Fig. 4.17(b). This figure
shows four different thermal behaviours; a similar behaviour for the MOS placed
inside the substrate and another one for those placed at the boarder of substrate
and similarly for Diode components. We can also detect from the figure 4.17(b) the
hot spot which is located at point 11 of the MOS component.
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Figure 4.16. (a) Power profiles signals and (b) the corresponding spectrum
(FsID = 1/dt = 20 Hz) applied to the MOS and Diode components in transient
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Figure 4.17. The observed junction temperatures recorded at points located at the
top center of the MOS and Diode components; Points 1, 2, 3, 10, 11, 12 for the

MOS components and points from 4 to 9 for Diode components.
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4.3.2 KIM results

By contrast to the first application in Section 4.2.1, the KIM identification
process in this example is based on the power profiles for which elec-
tronics designers request a ROM. The input vector in the ROM is given by U =
(PMOS PDiode Tcoolant)

T with PMOS and PDiode the power profiles shown in Fig. 4.16
and Tcoolant the water coolant temperature assumed constant over time of value
105 ◦C. As it was stated in § 4.1.3, this is possible since no other constant BCs are
involved. Otherwise, the BCs should be varied in time into the transient simulation
in order to distinguish between their different effects in the ROM. This is, however,
outside the scope of this work.

The ROM output identified using only 12 observations, located at the junction of
MOS and Diode components, shows significant errors with respect to the reference
solution. The relative residual reaches up to 20 % at the hot spot for instance
(results not shown here). Actually, the problem being strongly decoupled due the
water forced convection, those 12 observation points seem insufficient to well cover
the identified frequency range. This fact is illustrated by the modes (pink square
markers) in Fig. 4.19 when compared to those identified when Nobs = 71 observation
points are used in the identification procedure. The solution is therefore to consider
additional observations points chosen arbitrarily in the proximity to the MOS and
Diode components on the substrate, resulting in a total of 71 observation points for
instance. Their localisation appears in Fig. 4.18.

Figure 4.18. The 71 observation points used in KIM identification.

From Fig. 4.19, it should be also noticed that only some modes are retained
(up to 8 modes (pink square markers) when 12 observations points are used and 35
modes (blue circle markers) for the 71 observation points) prior to the truncation
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4.3. Application to a large-scale water cooled CFD problem

step according to the equation (4.12)) in KIM algorithm. The remaining modes
are rejected because they exhibit positive eigenvalues, i.e. negative time constants,
which lead to unstable model. The row and columns vectors of matrices B̃ and C̃
corresponding to the rejected modes in the diagonal matrix Ã are also eliminated.
It is worth mentioning that the increased number of observation points does not
affect the computational time of the transient simulation.
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Figure 4.19. Comparison between the modes identified based on 12 observations
points on MOS and Diode components (square markers) and those based on 71
observations points (circle markers). The selected ROM corresponds to the

truncated modes (cross markers).

In order to check the behaviour of the identified reduced model, we apply the
same power profiles depicted in Fig. 4.16. Fig. 4.20 shows the evolution of the
relative error (4.13) computed on the estimated temperatures (points from 1 to
12 when Nobs = 71) when the model order is decreased based on the truncation
criterion (4.12). The ROM of order 14 is selected as the error becomes stable
from this order (of about 0.46 %). The corresponding modes are presented in red
cross markers in Fig. 4.19. A lower order could be acceptable at cost of the error
degradation. Fig. 4.21(a) shows the ROM temperature estimation for instance at
points 11 (the hot spot on MOS component) and 6 (on Diode component) compared
to the transient simulation output at these same points. The corresponding relative
residuals starting from the 16th time step defined in (4.14), are also presented in
Fig. 4.21(b). The ROM yields good results, in particular at the temperature peaks
(Fig. 4.21(a)), which constitute an important information in reliability management.
In addition, the relative residuals do not exceed 6.5 % at both points 11 and 6;
Fig. 4.21(b)). The targeted application in this study requires a relative residual
lower than 10 % which is fully respected by the outputs of the ROM of order 14. A
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Figure 4.20. Identification relative error (4.13): L2-norm of the discrepancy
between the temperatures output of the transient simulation and outputs of ROM

located at points 1 to 12 (Fig. 4.17(a)) when Nobs = 71.

summary of KIM results is given in Table 4.7.

Table 4.7
Summary table of KIM results.

ID input U = (PMOS PDiode Tcoolant)
T

PMOS and PDiode: Power profiles (Fs = 10 Hz,
T = 0.7 s) (Fig. 4.16)

Tcoolant = 105 ◦C: constant BC

Processed frequency band between 0 and (about 5∆f = 5
T
= 7.14 Hz

or 7∆f = 7
T
= 10 Hz)

3D simulations time (Hours) ≃ 18

Number of observation Nobs = 71
points for identification

ROM order 14
fmin (Hz) 0.10
fmax (Hz) 8.59
τmin (s) 0.12
τmax (s) 9.80

L2 relative error ǫL2 (%) 0.46
Max (relative residual) (%) 6.5
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the ROM output.

Figure 4.21. Comparison between the detailed model output (reference) and the
ROM (of order 14) output at points 11 (hot spot on MOS component) and 6.

It should be noted that, being interested in only observed temperatures at the
junction of MOS and Diode components (output of ROM; Fig. 4.17(a)), the obtained
matrices C̃ and D̃ in the ROM of order 14 can be further reduced by selecting only
the row vectors corresponding to these points.

4.3.3 Comparison between KIM and Zth methods

The thermal impedance (Zth) method was well described in Chapter 1. In this
application, the identification process is as follows:

• the reference temperature is set to the water coolant temperature, i.e. Tref =
Tcoolant = 105 ◦C,
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• the thermal model is reduced to the following points:

- 1 junction temperature located at point 11 (the hot spot on MOS compo-
nent).

- 12 power injection points placed on the MOS and Diode components (power
sources from P4 to P15 as shown in Fig. 4.14). Unlike KIM, the other
power sources are assumed inactive.

• the reduced model is identified based on step signals applied in turn on the
12 power sources. The step amplitude is chosen around the average level of
the actual power profile over time. Here, an amplitude of 12 W is applied on
the MOS components and 6.8 W on the Diode components,

• 12 transient simulations are carried out, each one taking around 3.3 Hours.
Like KIM, all the above transient simulations are initialized from the same
steady state results where all the power sources are turned off.

In Fig. 4.22(a), we compare the junction temperature at point 11 produced by the
detailed model on the one hand, and the reduced model output produced by KIM
(ROM of order 14) and Zth methods at the same point on the other hand. It is
clear that KIM produces better results with respect to the Zth method. In addition,
Fig. 4.22(b) shows that the Zth relative residual oscillates globally between 8 % and
12.3 % with a 10 % average at the temperature peaks. For KIM, the maximum
is 6.5 %. Least but not least, the Zth method in this example underestimate the
junction temperature as shown in Fig. 4.22(a), which may be critical in the thermal
management of power modules. Nonetheless, we cannot conclude that KIM system-
atically overestimates the reference solution as this has not been verified on other
examples.

Another important point concerns the time cost of the identification process. As
it was already stated, the Zth method requires as many detailed model simulations
as the number of active power sources considered in the identification step. The
comparison of computational time cost for both methods is given in Fig. 4.23 us-
ing only one solver. Here, the identification process of KIM is more than 3 times
faster than that of the Zth method (18.1 Hours for KIM against 57.4 Hours for Zth
method). In fact, KIM takes benefits from the following two features:

• by contrast to the Zth method, KIM is based on a single simulation of the de-
tailed model (3D transient simulation). Hence, KIM is even more favourable
as the number of power sources gets higher,

• the power profiles to process in the targeted application are used directly as the
identification input together with the BC (here the water coolant temperature
Tcoolant). Consequently, the identification (ID) and the validation (VAL) steps
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4.3. Application to a large-scale water cooled CFD problem

are combined into one same step as it can be noticed in Fig. 4.23. We should
mention that the time corresponding to the model identification step with the
KIM method does not appear in this figure as it is very small compared to the
simulation with the power profiles.
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Figure 4.22. Comparison between KIM and Zth methods at point 11 (hot spot on
MOS component).

Figure 4.23. Comparison between KIM and Zth methods in computational time
cost.
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4.3.4 Use of the reduced model produced by KIM

The identified ROM produced by KIM is intended for two application types for the
purpose of the power electronics thermal management.

On the one hand, KIM would allow for the use of the reduced model in reliabil-
ity and lifetime prevision applications that are usually carried out in 0D thermal-
electrical like-SPICE simulators. By contrast to the Zth method that provides a
transfer function (the thermal impedance), KIM identifies a reduced model in a
state space form. Therefore, as a perspective, the state space model should be
converted into a transfer function [4] in order to be exploited in the aforesaid ap-
plications. The equivalent transfer function can be then transformed into an RC
network as we already explained for the Zth method in Section 1.2.3.

On the other hand, the thermal reduced model in the state space form is aimed
to be implemented in a system command law for real-time temperature control (the
Derating; § 1.1.2). An example of the positioning of the thermal reduced model in a
command law of a control process was shown in Fig. 1.5. In the present paragraph,
we will focus on the second application, i.e. the real-time control application. In
this context, the ROM block in the command part permits to link the junction
temperatures located at the most dissipating power sources (MOS and Diode com-
ponents here) to the thermal inputs including the thermal dissipated on the power
components and the water coolant temperature. The final objective through the
application is to control in real-time the junction temperatures by adjusting the
water coolant temperature. A Simulink demonstrator of the ROM block is given in
Fig. 4.24. The procedure consists of two main steps:

• first, an identification process delivers a ROM (here of order 14) based on
the thermal input vector given by U = (PMOS PDiode Tcoolant) with Tcoolant =
105 ◦C a constant BC (Section 4.3.2),

• then, the identified ROM is implemented in the command law to provide an
accurate estimation of the temperature variables when the same input vector
U is applied except the water coolant temperature that is different from that
used to identify the ROM. For instance, the results present in Fig. 4.25 are
computed in Simulink demonstrator with the identified ROM of order 14 (Ta-
ble 4.7) when Tcoolant is decreased to 90

◦C.

In order to validate the ROM output computed with Tcoolant = 90 ◦C in Simulink,
the same detailed simulation as in Section 4.3.1 is performed except that the water
cooling forced convection temperature Tcoolant is set to 90

◦C for both the steady and
transient simulations. The comparison between the reference and Simulink results
is depicted in Fig. 4.25. In comparison with the ROM behaviour in Fig. 4.21, the
ROM computed in Simulink with Tcoolant = 90 ◦C produces greater error level when
compared with the associated reference solution at point 11. This is due to the
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4.3. Application to a large-scale water cooled CFD problem

use of a coolant temperature different from that used to identify the ROM. Even
though, the error is still acceptable as the relative residual error does not exceeds
10 %, which complies with the targeted accuracy in this example.

Figure 4.24. A Simulink demonstrator of the use of the ROM identified by KIM in
a Derating application.
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(b) The relative residual in temperature be-
tween the reference and the estimation results
at point 11.

Figure 4.25. Comparison between reference (detailed model simulation) and
Simulink results at point 11 (hot spot on MOS component) when Tcoolant = 90 ◦C.
The input used in Simulink is U = (PMOS PDiode Tcoolant) with Tcoolant = 90 ◦C a

constant BC in the ROM of order 14.
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Chapter 4. Kernel Identification Method

As a perspective, we could also consider the dissipated power as an adjustable
variable for the real-time temperature control. In this case, it is essential for KIM to
identify the thermal reduced model based on generic power sources signals, i.e. the
stimuli and the frequency range. The idea consists in collecting some power profiles
intended for some functioning configurations and to analyse the associated spectrum
from which an averaged spectrum is deduced. The resulting signals may be linearly
time-dependent which can be efficiently handled by KIM as it was demonstrated
through the present application. Another possible solution consists in identifying the
reduced model based on time delayed power sources signals as it was investigated in
the first example in this chapter at the cost of higher computational time, especially
for large-scale 3D models.

4.4 Conclusion

In this chapter, we proposed a new method named “Kernel Identification Method”
(KIM) enabling the identification of reduced order models of linear thermal systems.
The reduced model is identified in a continuous Linear Time Invariant state space
form. Designed in a non-intrusive framework, this method is implemented as an
offline tool that post-processes the inputs and outputs of a detailed reference model
considered as a black-box. The non-intrusive framework is aimed at allowing its
implementation independently of the software involved for the simulation of the
detailed model. The main features of KIM can be described as follows:

i. the identification of the ROM in a modal formulation , leading to
a diagonal state space matrix formed of the dominants eigenvalues (opposite
reciprocals of time-constants) of the thermal problem. The ROM then results
into decoupled first-order systems, which plays a key role regarding the ex-
tension of the proposed method to the identification of non-linear systems, as
proven in the next chapter,

ii. the identification of the system kernel independently of the excita-

tion, i.e. the input data . This feature is performed using an orthogonal
projection onto the orthogonal space to the row space of the input data matrix
built from the dissipated power signals and boundary conditions. Performed
by means of a LQ decomposition, the underlying principle of the related or-
thogonal projection is to virtually suppress the particular solution driven by
the input during the identification of the system proper dynamics,

iii. the simplicity of its implementation because of its combination of well-
known algebraic tools, such as the LQ decomposition and the Least-Squares
method.
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KIM is successfully applied to two application examples: (1) a small-scale lin-
ear conduction problem of a Finite Element test case composed of nine dissipating
sources and (2) a large-scale water cooled CFD problem mainly governed by forced
convection of a Valeo product.

In the first example, KIM is compared to three Subspace approaches (SubSV, Sub-
CVA and MOESP) on two types of dissipated power signals used in the identification
step, the time-delayed step signals applied successively on the power components
and the uncorrelated random signals applied simultaneously on those components.
Both KIM and SubSV show very satisfactory results for both types of signals. The
SubCVA and MOESP approaches, however, are more sensitive to the identification
signals types, in particular MOESP that shows significant errors when using the
time-delayed step signals. In addition, the Subspace method imposes the Persis-
tently Exciting (PE) condition to the identification inputs, which means that they
should be linearly independent in time. This condition is also respected by KIM in
this first example, but not in the second.

In this second example, the identification and validation steps are combined into
one. The power profiles provided by the electronics designers, for which a reduced
model has to be produced, are used as input in the identification process. The
thermal input also involves the time-independent water coolant temperature as a
boundary condition. The main results drawn from this example are first the very
satisfactory agreement between the reference and reduced model output. Compared
to the Zth method, KIM shows better results in accuracy and time cost in the
identification process. By contrast to the Zth method, the computational time of
the detailed model in KIM identification process is unaffected by the number of
the power sources. This advantage becomes even more efficient when dealing with
a high number of heat sources. KIM is robust with regard to the existence of
the time-independent water coolant temperature into the thermal input vector. A
Simulink demonstrator is implemented in order to insert the reduced model block in
the command system part for real-time temperature control. Keeping the reduced
model identified by KIM, the water coolant temperature can be modified to keep
the junction temperatures with the allowable maximum temperature in the power
system part.

In the next chapter, we deal with the extension of KIM for the identification of
non-linear reduced order models applicable to configurations dominantly governed
by natural convective. Other identification methods are also investigated.
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Chapter 5

Nonlinear System Identification

This chapter suggests two perspective methods for the identification of reduced mod-
els of non-linear thermal systems involving natural convection. The first proposed
method deals with an extension of the Kernel Identification Method. This method is
of non-parametric nature as it identifies a non-linear reduced model represented in a
tabular form without knowing the non-linearity nature. Its behaviour is illustrated
on a linear FE test case and is validated for the identification of single input single
output reduced models. The second method is based on the Unscented Kalman
Filter method. Its behaviour is investigated on both small and large scale test cases.
Potential perspectives based on each of these proposed methods will be provided.
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Chapter 5. Nonlinear System Identification

5.1 Introduction

Non-linear system identification methods can be divided into two categories; para-
metric and non-parametric methods. On the one hand, if the structure of the sys-
tem model is assumed a priori, more specifically if the non-linearity expression is
guessed, the identification is parametric. In this category, the identification results
in a parameter estimation problem that calls generally for a non-linear optimization
problem such as the the Prediction-Error based Methods (PEM) based on ARMA
models class. In the non-linear case for example, the polynomial NARMAX model
is considered for power electronics systems as shown in [1]. Unfortunately, PEM
encounters inherent difficulties for MIMO systems as it was already pointed out
in Section 3.2.2. Another optimization-based identification method is the Modal
Identification Method (MIM) reviewed in Section 3.2.3. This method deals satis-
factorily with non-linear conduction problems based on MIMO reduced state space
models. The model (3.33) is an example of a ROM form with a quadratic guessed
non-linearity. In non-linear problems involving natural convection, however, the
non-linearity nature related to the heat transfer coefficient evolution is difficult to
predict a priori, as we shall see later. In this case, non-parametric methods, in which
any or little a priori information is available on the model structure, appear to be
more convenient than the first category. An example of a non-parametric method
includes step or impulse transient-response analysis such as the thermal impedance
method reviewed in Section 1.2. We should mention that the thermal impedance
method, also called the Zth method, has proved to be very useful when carefully
utilized in some non-linear cases involving temperature-dependent material proper-
ties and radiation, but not in the case of natural convection (see Section 1.2.5 for an
illustration in natural convection). Another classical non-parametric method is the
Volterra series based-method [2] which is a generalization of the linear convolution
integral in time domain of non-linear systems. The Volterra-based representation
can be also transformed into the frequency domain, which is analogous to linear
frequency response analysis in the linear case. For more details on Volterra series,
see [3], [4] and the references therein. In practical problems, only a finite Volterra
series can be used, referred to as “Truncated Volterra series”. In this case, the
analysis may become complex when a very high number of Volterra series must be
retained to obtain the required accuracy [3].

In this work, we propose two methods for the identification of non-linear sys-
tems involving natural convection. Prior to that, we explain the derivation of the
non-linear reduced model to be identified from the reference detailed model. After
that, we propose a new non-parametric identification method as an extension of
the KIM approach, in which the model is represented in a tabular form as a result
of several linear reduced models identified for different power levels. In its present
state, the method successfully identifies a SISO non-linear state space model. The
methodology is illustrated on a non-linear 10-Degrees Of Freedom (DOF) FE model.
The next stage for this method, which is out of the scope of this work, should be
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5.2. The non-linear reference problem and the ROM form

addressed to the extension of the above method to the processing of MIMO models.
In this context, we also propose another KIM-based method but of semi-parametric
nature. The idea consists in: (1) applying the KIM method on the non-linear ref-
erence solution produced by the detailed model to identify a linearized behaviour
of the non-linear system; (2) selecting some non-linear terms to be considered in
the approximation of the non-linear part of the model; (3) performing a classical
identification method, such as the least-squares method, to identify the parameters
associated to the selected non-linear terms in a polynomial structure. In the last
section, we propose a Kalman Filter-based identification method. The 10-DOF FE
model is first used in a linear case, i.e. without natural convection, to validate the
method in the linear case. We show the difficulties encountered regarding the ini-
tialization and the setting of the Kalman parameters in large-scale linear problems.
This will enable us to outline some interesting research paths for the method en-
hancement in the linear case as well as the method extension to the non-linear case
by combining it with KIM method.

5.2 The non-linear reference problem and the ROM

form

Let us recall the FE model form of a non-linear system cooled by natural convection
deduced in (2.58):

CsṪs +KsTs −Kfs (h)Ts = Qimp +Kff (h)Tf (5.1)

where Cs and Ks are the heat capacity and the conductivity matrices of dimension
(N ×N) with N the number of DOF in the FE model. Thermal properties (thermal
conductivity ks, specific heat cps and solid density ρs) are assumed temperature-

and time-independent. The notation Ts = [Ts1 (t) Ts2 (t) . . . TsN (t)]
T stands for

the nodal temperature vector in the solid domain, Ṫs is the time derivative of the
this vector. Similarly, Tf stands for the temperature vector in the fluid domain at
the mesh nodes if a finite elements method is used (or eventually at the mesh cells
if a finite volume method is adopted). The (N × 1) operator Qimp designates the
source vector of dimension N . The coupling operators Kfs (h) and Kff (h) are linear
functions of the heat transfer coefficient h as this can be noticed through (2.56).
Recall that for the resolution of the solid problem, the heat transfer coefficient
depends, in turn on the solid temperature Ts, i.e. h = h (Ts) (see § 2.5.1. If the
meshes that approximate the solid and the fluid domains are coincident through the
solid-fluid interface, we can write Kff (h) = −Kfs (h) = h (Ts)L with L denoting a
(N ×N) constant matrix. Substituting this latter into (5.1) yields

Ṫs = −C−1s KsTs − C−1s Lh (Ts) (Ts −Tf ) + C−1s Qimp (5.2)
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Chapter 5. Nonlinear System Identification

This model can be transformed in a non-linear state space model linking Y to U as
follows:

{

Ṫs = ANL (Ts) + BNL (Ts, U)

Ỹ = CTs

(5.3a)

(5.3b)

with

ANL (Ts) = −C−1s KsTs − C−1s Lh (Ts)Ts

and

BNL (Ts) = C−1s Lh (Ts)Tf + C−1s Qimp

.

In (5.3), U is the (Nex × 1) vector grouping the thermal inputs, the dissipated
power (or eventually power densities) and the boundary conditions. In a natural
convection problem, the boundary conditions may concern some temperature of
fluid stream in the proximity to the solid interface. The matrix C of dimension
(Nobs ×N) with Nobs ≤ N , permits to select a part or the whole solid temperature
Ts, and this selection is gathered into the (Nobs × 1) output vector Y .

One can notice that rather than assuming a single non-linear operator in Ts

and U , two non-linear operators are instead considered, ANL and BNL non-linear
functions of Ts, and Ts and U , respectively. The reason behind this choice is that
the proposed non-linear identification methods in this work are based on the KIM
approach. This latter, in fact, allows to identify the kernel of the thermal problem
(the homogeneous solution) independently of the input excitation. We shall see later
more details on the non-linear identification KIM-based methods.

The non-linearity of ANL and BNL in Ts is related to the variation of the heat
transfer coefficient throughout the transient simulation in natural convection prob-
lem. The operator BNL include the coupling between the input and the solid tem-
perature. Besides, if an electrical non-linear behaviour is involved, BNL also includes
a non-linearity in U . In fact, the law of the power dissipated by Joule effect in power
components (semiconductors) may vary over time in transient simulations due to
semiconductor saturation for example.

System (5.3) is the reference detailed model of order N . Based on the form of the
reference model, we assume the following form for the reduced order model (ROM)
of order n≪ N (the ROM derivation based on reduced basis change is described in
Section 3.2.1):

{

Ẋ = ÃNL (X) + B̃NL (X,U)

Ỹ = C̃NL (X) + D̃U

(5.4a)

(5.4b)

with
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5.3. Non-parametric Extended Kernel Identification Method







ÃNL (X) = V T (X) ANL (V (X)X)

B̃NL (X,U) = V T (X) BNL (V (X)X,U)

C̃NL (X) = CV (X)

D̃ a static correction

(5.5)

In (5.5), X is the (n× 1) reduced state variable and V (X) ∈ R
(N×n) the reduced

basis change composed of a set of non-linear modes from an intrusive point of view.
It should be noted that this reduced basis may also consist of linear modes, i.e.
V (X) = V , in which the non-linear modes are represented by a combination of the
linear modes. This results then in an invariant observation matrix, C̃NL = C̃. Note
the (Nobs ×Nex) constant added matrix D̃ in the observation equation (5.4b), the
static gain matrix, contributing to a static correction to the ROM approximation as
in the linear case.

In order to identify the ROM in (5.4), a parametric method would guess a priori
the nature of the non-linearity in ÃNL, B̃NL (and eventually C̃NL) in the reference
model (5.3). In natural convection, this is more complicated. Actually, as it was
already stated in Chapter 2, Section 2.5.1, the heat transfer coefficient h in natural
convection depends on the Grashof number Gr, which is in turn a linear function
of the temperature difference between the solid and the fluid along the interface.
The relationship between h and Gr generally depends on the geometry and flow
conditions of the model (see § 2.5.1. For instance, the example given in (2.45) applied
to a laminar flow over a flat plate shows that h is function of G

1/4
r . Therefore, we

propose a non-parametric method as an extension of KIM.

5.3 Non-parametric Extended Kernel Identifica-

tion Method

In this section, we propose a non-parametric KIM-based identification method of
non-linear models involving natural convection. We attempt to identify a reduced
model represented in a tabular for.

5.3.1 The method principle

The non-linear identification method proposed in this section aims at identifying a
non-parametric reduced model in the form:

{

Ẋ = ÃNL (X) + B̃NL (X)U

Ỹ = C̃X + D̃U

(5.6a)

(5.6b)

The model (5.6) constitutes a particular case of that presented in (5.4). In the
identification process, the model (5.6) is represented in a tabular form. Actually,
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Chapter 5. Nonlinear System Identification

based on the observed temperature issued from the reference non-linear model, the
KIM approach is used to identify as much linear reduced models as the number of
power levels carefully chosen to cover different operating points of the system. The
linear ROM identified for a power level φi, i = 1, · · · , Np is noted (A

i, Bi, Ci, Di).

Below are the assumptions imposed on the proposed ROM form (5.6):

• the operators C̃ and D̃ in the observation equation (5.6b) are assumed full
invariant matrices. This means that the non-linearity here does not influence
the spatial dependence of the thermal flux,

• the operators ÃNL and B̃NL in the state equation (5.6a) are non-linear func-
tions of the state vector X identified in a tabular form. We shall see
later the methodology illustrated on a 10-DOF FE model,

• the non-linear operator ÃNL is assumed a diagonal matrix in which the ith di-
agonal element, i.e. the opposite inverse of the ith time-constant, is expressed
as a function of the associated ith variable in the state vector Xi. The matrix
form is defined as follows:

ÃNL =









− 1

τ1 (X1)
. . .

− 1

τn (Xn)









(5.7)

• the non-linear function B̃NL is a full matrix. The elements of the ith row
vector are expressed as functions of the associated ith variable in the state
vector Xi. The coupling terms between the model state and the input are not
considered, at least in the present state of the method.

As a result of the assumed ROM structure (5.6) together within the modal form
adopted in KIM, the non-linear model is made up of a reduced number of decoupled
first-order systems. We should also mention that this is possible thanks to the modal
form adopted in the KIM approach.

In a first stage, we should mention that in comparison with the KIM algorithm on
page (116) in a linear problem, the positive terms in the state matrix as well the
corresponding row and column vectors in the observation and command matrices of
each linear ROM are not eliminated. In addition, the modes are arranged based on
the criterion in (4.12) but are not truncated. Once the linear reduced models are
identified while considering the aforementioned points, hereafter are the next steps
in the identification process:
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5.3. Non-parametric Extended Kernel Identification Method

1. Modes Tracking based on the Modal Assurance Criterion (MAC).
This technique, commonly used in mechanical dynamics [5], consists in asso-
ciating modes, i.e. column vectors in observation matrix in each linear ROM,
between them for different power levels. In fact, for a given power level φ1 the
identified modes would be λiφ1 (φ1) and for another power level φ2 the identi-
fied modes would be λiφ2 (φ2) and iφ1 need not be equal to iφ2 . The MAC [6]
here provides a measure, varying between 0 and 1, of the correlation between
mode shapes from different power levels. The modes with the highest MAC
value (near 1) are considered as corresponding mode shapes in the different
linear ROMs. The MAC expression is given by:

MAC
(

Cφ1

iφ1
,Cφ2

iφ2

)

=

(
tCφ1

iφ1
Cφ2

iφ2

)2

(
tCφ1

iφ1
Cφ1

iφ1

) (
tCφ2

iφ2
Cφ2

iφ2

) (5.8)

where:

{
Cφ1

iφ1
the iφ1th column vector in matrix C̃ for a power level φ1

Cφ2

iφ2
the iφ2th column vector in matrix C̃ for a power level φ2

2. Analysis of the evolution of the state variables and the operators
parameters with the power levels.

3. Determine the dependence of the time-constants and the terms in
the command matrix with the state variables according to the val-
ues (min (X) + max (X)) /2 computed in each block, i.e. for each power
level. In order to establish those dependences, the evolution of the state vari-
ables along with the total time should be strictly monotonous.

4. Truncation of the linear ROMs all at the same order such that the
error in the sense of least squares verifies ǫL2 ≤ ǫmax (Eq. 4.13). Note that
we can further truncate those linear ROMs so that the associated observation
matrices are composed of only orthogonal modes. This can be verified through
the MAC values.

5. Resolution of the non-linear reduced model (5.6) by means of a nu-
merical integration method in which the function ÃNL (X) and B̃NL (X)
are provided in a tabular form.
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Chapter 5. Nonlinear System Identification

5.3.2 Illustration on a non-linear 10-DOF FE model

The FE model

A thermal transient problem is investigated and described by a FE model of dimen-
sion N . A transient dissipated power signal φu(t) composed of Np successive steps is
applied on the DOF 1 with φk the kth power level and uk (t) the associated unitary
signal at the time interval [tk tk+1] , k = 1, ·, Np (Fig. 5.1(a)). The power vector of
dimension N is written as Qimp = [φu (t) 0 · · · 0]T . The model is non-linear due
to the presence of natural convection assumed localized at DOF number 10. Thus,
the operators Kfs (h) and Kff (h) present in (5.1) can be simplified to:

Kff (h) = −Kfs (h) = hL = h








0 · · · 0
...

...
0 · · · 0
0 · · · 1








10×10

(5.10)

Thereafter, we omit the subscript s for sake of simplicity. If we assume the fluid to
be at ambient temperature at DOF 10, i.e. Tf = Ta, and substitute (5.10) in 5.1,
we obtain:

CṪ+KT+ Lh (T− Ta) = Qimp (5.11)

Here, we assume a linear function of the heat transfer coefficient h in the solid
temperature localized at the 10th DOF given by:

h = h0 + aT10 (5.12)

where h0 and a are constant coefficients and T10 the temperature at the DOF number
10. Replacing (5.12) in the model (5.11) gives the following reference FE model:

CṪ+KLINT+KNL (T) = F (5.13)

with:






C = ρ cp






1
. . .

1




 , KLIN = k










2 −1 0
−1 2

. . .
. . . . . . −1

0 −1 1 +
h0
k










: (N× N)matrices

KNL (T) = L (aT10 − aTa)T , F =
(

Qimp +Qconv
)

: (N× 1) vectors

Qimp = [φu (t) 0 · · · 0]T , Qconv = [0 · · · 0 h0Ta]T : (N× 1) vectors

In the non-linear operator KNL (T), we note the quadratic non-linearity in T,
and the coupling term TaT between the input, through the boundary condition,
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5.3. Non-parametric Extended Kernel Identification Method

and the reference problem states. In the non-linear reduced model (5.6), the former
would be approximated by ANL (X) and the latter through BNL (X)U with U the
(Nex × 1) vector of the thermal inputs, U = [φu (t) Ta]

T .

Results and discussion

A special case is assumed by imposing a = 0.1 Wm−2, h0 = 0 Wm−2 ◦C−1 and
Ta = 0 ◦C. This means that only the quadratic non-linearity related to natural
convection is considered, i.e. the linear part L (aTa)T is a null matrix inKNL (5.13).
In addition, in its present state, the method has been investigated for single input
single output (SISO) model, i.e. Nex = Nobs = 1. The thermal input vector consists
of the power signal U (t) = φu (t). This latter is composed of Np = 6 power
levels with φ = [1 5 10 15 20 25] (W) over a total time t = 165 s discretized in
Nsnap = 12376 time steps (Fig. 5.1(a)). The observed temperature is localized at
one DOF of the detailed model (5.13). Hence, Nobs = 1, which means that we can
identify a ROM, (Ai = ai, B

i = bi, Ci = ci, Di = di), of order up to n = 1 since we
have n = 1 <= Nobs in KIM method (see Section 4.1). In addition, we are concerned
with a SISO model as only one thermal input is applied on the FE model (at DOF
1), i.e. Nex = 1,. For each power level φi, i = 1, · · · , Np, with Np denoting the
number of power levels, we obtain a linear ROM (Ai = ai, B

i = bi, Ci = ci, Di = di)
in which matrix Ci is the unity. Let consider the observed temperature at DOF 8
as a reference solution given in Fig. 5.1(b).
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Figure 5.1. Input-output data for the identification of the non-linear 10-DOF FE
model (5.13) (a = 0.1 Wm−2, Ta = 0 ◦C and h0 = 0 Wm−2 ◦C−1).

Fig. 5.2 depicts the evolution of ai, τ i = −1/ai, bi and di with the power level φ.
From Fig. 5.2(d), we can see the very low values of di, of order ≃ 10−4. In addition,
the contribution of D̃U is then negligible with respect to both terms C̃X and B̃U .
Hence, the matrix D̃ is assumed invariant and fixed at value ≃ 3.77 10−4. This is
consistent with the choice of the non-linear ROM form in (5.6). In what follows,
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the last identified value of matrix D̃ = d, obtained in the ROM identified
with power level Φ = 25 s, will be used in the non-linear model (5.6).
By contrast to the matrix D̃, the terms ai and bi, given in Figs. 5.2(a) and 5.2(c),
show greater variation with the input power levels. The evolution of τ i, depicted
in Fig. 5.2(b), is deduced from that of the ai such that τ i = −1/ai. We also
present the state variables identified in each time interval, which results in the
global state variable evolution with time given in Fig. 5.3. In order to deduce the
non-linear operators ÃNL (X) = −1/ (τ (X)) as well as B̃NL (X), it is essential that
the identified state variable be strictly monotonous which is the case as this can
be noticed from Fig. 5.3. The dependence of the time-constants and matrix B̃NL

are given in Figs. 5.4(a) and 5.4(b), respectively. In order to check the behaviour
of the identified non-linear reduced model, we apply the same signal used in the
identification step given in Fig. 5.1(a). The matrix D̃ = d in this non-linear reduced
model is assumed constant and takes an almost null value identified for the last
power level (d = −3.77 10−4). In Fig. 5.5(a), we compare the evolution with time
of the temperature at DOF 8 produced by the 10-DOF model and the linear
ROM identified by KIM over the whole time interval on the one hand, and
the non-linear ROM (5.6) identified on the 6 time intervals. The associated
absolute residuals are given in Fig. 5.5(b). We can see that the linear ROM provides a
linearized behaviour of the problem while the non-linear ROM gives very satisfactory
results (an absolute residual has a maximum of 0.2428 ◦C−1).
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Figure 5.2. Evolution of the matrices terms in the linear identified ROMs with the
power level of input φ = {φi} , i = 1, · · · , 6.
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Figure 5.3. Identified state variable X resulting from those obtained over the 6
time intervals with 6 different power levels.
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(a) Dependence of the time-constant on the
state variable, i.e. τ (X); matrix ÃNL is
defined as ÃNL (X) = −1/ (τ (X)).
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Figure 5.4. Identified non-linear ROM (5.6); ÃNL and B̃NL state variable X, C̃
unity matrix and D̃ invariant matrix of value ≃ 3.77 10−4.

In Figs. 5.5(a) and 5.5(b), we also present the output of the non-linear ROM
having a particular form. In this latter, only ÃNL (X) is considered while the com-
mand matrix is assumed constant and takes the values identified for either the first
or the last power level, B = B1 and B = B6, respectively. The results show the con-
tribution of the non-linear operator B̃NL (X) in the non-linear ROM. For instance,
the non-linear ROM output when B̃NL is set to the first identified value B1 shows
a significant error (green dashed-dotted curve in Figs. 5.5(a) and 5.5(b)).

We should note that the extended KIM method has been also performed on the
DOF 1, a collocated point with the power source. The non-linear ROM (5.6) shows
good results (not shown here) as well and confirms the conclusion regarding the
command matrix stating that its dependence to the state variable clearly contributes
to the non-linear ROM.
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Figure 5.5. Comparison between the reference model (solid black line) and the
linear ROM identified by KIM, on the one hand, and the non-linear ROM

identified by the non-parametric extended KIM.
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5.3.3 Synthesis and perspectives

An extended KIM approach for the identification of non-linear problems governed
by natural convection is proposed. The method is of non-parametric nature as it
identifies a non-linear reduced model represented in a tabular form without knowing
the non-linearity nature. This method calls as much KIM approach as the number
of power levels investigated to cover different operating points of the system. The
result method is evaluated on a 10-DOF FE model and successfully identifies a
non-linear single input single output reduced model. In this case, only the state
and command matrices are assumed dependent on the state variable whereas the
observation and static matrices are assumed invariant. We should note that the
reduced model behaviour is checked by applying the same input signal as the one
used for the identification. Thus, prior to the use of the reduced model, it is essential
to verify its validity for an excitation other than the one used for the identification.
We should note that in order to obtain a fine estimation of the non-linear operators
dependencies in the non-linear reduced model, it is essential to perform KIM on
small time intervals. Nevertheless, as the KIM method is based on the least-squares
method, these time intervals should respect a minimum length that depends on the
number of the parameters to identify. In fact, the minimum length becomes larger
as the number of observation points as well as the number of inputs involved in the
identification step increases.

Future work should address the extension of the method to the processing of
multiple-input multiple-output models. For this purpose, the non-linear reduced
model form should be re-established to consider other dependency on the state
and/or input variables of the model operators. We propose below another interest-
ing research path regarding the identification of MIMO models based on the KIM
approach as well.

Non-linear semi-parametric KIM-based method In a parametric identifica-
tion method, the nature of a non-linear model is assumed a priori and the whole asso-
ciated non-linear terms are considered in the identification process. The model (3.33)
is an example of a ROM form with a quadratic guessed non-linearity. In non-linear
problems involving radiative heat transfer, however, higher non-linear order terms,
i.e. fourth order, should be considered. Consequently, the identification process re-
sults in an excessively computational time and may encounter convergence problems
because of the high number of parameters to identify. Moreover, as we have already
stated above, in non-linear problems involving natural convection, the non-linearity
nature is difficult to predict a priori because of the dependence of the heat transfer
coefficient on the model geometry and flow conditions. The original idea in the
proposed method first consists in detecting the non-linear terms that have to be
considered in the non-linear part of the reduced model, along with the characterisa-
tion of the involved non-linearity. Then, the identification process follows. Based on
this idea, we refer this approach as a semi-parametric identification method. Below,
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5.3. Non-parametric Extended Kernel Identification Method

we develop the principle of this perspective method.
Let us consider a non-linear system with three inputs and two outputs described

by a non-linear state-space reduced model of order n = 3 as follows:
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(5.15a)

(5.15b)

where X = [X1, X2, X3]
T is the state variable of the reduced model, Ẋ the drivative of

X with time, U = [U1, U2, U3]
T the input vector and Ỹ =

[

Ỹ1, Ỹ2

]T
an approximation

of the reference solution produced by a non-linear detailed model of the system
under study. The matrices Ã, B̃, C̃, D̃, of appropriate dimensions, define the
linear part of the reduced model. We should note that in the identification process,
the non-linear terms present in the state equation (5.15a), together with the linear
part, are unknown. The model (5.15) is only given to expose the proposed method
principle. To begin with, as proceeded in KIM approach (Section 4.1), we substitute
Ẋ by (5.15a) into the derivative of the observation equation (5.15b). Hence, we
obtain:
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(5.16)
In a first step, the linear KIM approach is applied on the non-linear reference solu-
tion to obtain a linearized behaviour of the system. This approximation corresponds
to the linear part in (5.16):
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(5.17)

The residual dR defined as the difference between the derivative of the reference
observation and the derivative of the linearized reduced model output is given by:

[dR (t)]2×Nsnap
=

{
dR1 (t)
dR2 (t)

}

2×Nsnap

= C̃2×3
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(5.18)
or, equivalently:
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[(
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)†

dR (t)
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where
(

C̃
)†

denotes the pseudo-inverse of the constant observation matrix identified

by the linear KIM method. Let us denote

dRc =
(

C̃
)†

dR (5.20)

the (3×Nsnap) left-hand term in (5.19).

The second step consists in determining which of the state and input variables
have to be considered in the identification of the residual dRc. For this purpose,
we first normalize the operator dRc and the state and input variables, V = X or
V = U :

drcj =
dRc

j
√

tdRc
j dR

c
j

j = 1, 2, 3

vi =
Vi√
tVi Vi

i = 1, 2, 3

A logarithm-based indicator W is then computed as follows:

Wji = W
(

dRc
j, Vi

)

= t log
(

rcj
)

log (vi) i, j = 1, 2, 3 (5.21)

Based on this indicator, we can conclude that the moreWji tends towards an integer
value m, the more Vi contributes to the operator dRc

j within the power m. For
instance in the model (5.19), assume we have W (dRc

1, X1) = 2, W (dRc
1, U1) = 1

and W (dRc
1, U3) = 1. In this case, the identification of the term dRc

1 should be
focused on the following non-linear terms: X2

1 , X
2
1U1, X

2
1U3, X

2
1U1U3 and U1U3. Let

us denote these non-linear terms by TNL,i.

Remarks:

- We should note that the logarithm-based indicator (5.21) has not been tested
yet. In fact, further development regarding the choice of the norm used to
normalize dRc, X and U should be investigated to ensure (1) the domain of
definition of the logarithm function in (5.21) (2) values greater than 1 for the
normalized variables drc and v, which means positive values for the indicator
Wji.

- In the above example, if instead we have W (dRc
1, X1) = 2.5, then both vari-

ablesX2
1 andX

3
1 should be taken into account in the non-linear terms selection.

Thus, X3
1 X

3
1U1, X

3
1U3 and X

3
1U1U3 are the additional non-linear terms to be

considered in TNL,i. The selection should be then refined in the following step.
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The third step, aims at further reducing the number of the selected non-linear
terms above by retaining only the most contributing ones to the residual among the
whole terms in TNL,i. To this end, the operator dR

c is compared to each non-linear
term TNL,i by means of a normal scalar product-based indicator as follows:

Iji =
tdRc

j TNL,i
√

(

tdRc
jdR

c
j

)

(tTNL,iTNL,i)
(5.22)

The more Iji is closest to 1, the more TNL,i should be retained among the selected
non-linear terms in the second step.
If the residual corresponding to the difference between the obtained reduced model
output and the reference solution is still significant, then we should start again the
steps 2 and 3 to select other non-linear terms. This procedure is performed in an
iterative manner until a given error level is reached.

Once the non-linear terms are selected according to steps 2 and 3, the constant
parameters α1, α2, β and γ in (5.19) can be identified in a least-squares problem for
example. Note that the linear operators Ã, B̃, C̃ and D̃ C̃ identified by KIM in the
first step are also updated together within the non-linear terms in the least-squares
problem. For the same purpose, a Kalman Filter-based identification method may
be also used. This will be the focus of the next chapter, but rather intended to
identify state-space models.

5.4 Identification based on Kalman Filter method

In this section, we suggest a Kalman Filter (KF) based method for real-time identifi-
cation. The challenging task through this study is to develop an on-line method for
a simultaneous estimation of state and parameters based on the “real-world” input-
output data issued from the system under study. This latter is identified into a state
space form with the model operators entries as unknown parameters. The estimation
problem leads to non-linear state space models, even for linear problems. Several
approaches based on Kalman Filters were developed to deal with non-linear models.
In our work, we have focused on two techniques, namely the Extended Kalman Filter
(EKF) and Unscented Kalman Filter (UKF) proposed by Sorenson [7], and Julier
and Uhlman [8], [9], respectively. These two Kalman variants have been extensively
used in several areas of application such as signal processing [10], active control [11],
target tracking [12], inverse problems [13], etc. In our publication [14], we have
studied the EKF and UKF method for the identification of a linear multiple-input
multiple-output state space model both evaluated on a 10-DOF FE linear model.
Even if they show equivalent performance in this linear case, the UKF presents a
crucial advantage with respect to the EKF regarding the method implementation as
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well as its extension to the processing of non-linear problems. In addition, the UKF
can provide a better estimation than EKF for a wide class of non-linear systems as
stated in [9] and [15]. In fact, the EKF applies the standard Kalman Filter to non-
linear models by a first-order linearization of the non-linear operators. However, in
practice, the use of EKF has two well-known drawbacks [16], [9]. First, linearization
can produce highly unstable filters if the assumptions of local linearity are violated.
Second, the derivation of the Jacobian matrices is non-trivial in most applications
and often lead to significant implementation difficulties, especially when the model
construction step starts from a continuous state-space form. The UKF addresses
the aforementioned EKF issues by using a deterministic sampling approach namely,
the Unscented Transform that we shall describe later in more details. The UKF, in
fact, improves the approximation order of the EKF and also avoids the computation
of Jacobian operators. A comparative study between EKF and UKF for state and
parameter estimation of a thermal transient problem was published in [14]. The
produced simulation results show that the EKF is more sensitive to the process and
measurement noise levels than the UKF. The simple implementation of UKF with
regard to the extension to non-linear systems processing is also highlighted. In what
follows, we will focus only on the UKF approach. But before that, we describe the
derivation of the reduced UKF model.

5.4.1 Setting of the UKF model

As assumed in the KIM approach, we aim to identify a reduced order model (ROM)
in a continuous-time state space form. We first develop the identification of linear
models in a continuous-time state space form as introduced in Section 4.1. We recall
that model form below:

{

Ẋ (t) = ÃX (t) + B̃U (t)

Ỹ (t) = C̃X (t) + D̃U (t)

(5.23a)

(5.23b)

where X is the (n× 1) reduced state vector, U the (Nex × 1) thermal input vector
consisting of the power (or power density) sources and BCs, and Y the (Nobs × 1)
output vector gathering the observed temperatures. In its present state, the pro-
posed method considers a full state matrix Ã as opposed to the KIM approach in
which matrix Ã is identified in a modal form. The operators B̃ and C̃ are assumed
full matrices as well. Furthermore, the operator D̃ is assumed a null matrix,
which reduced the number of parameters to identify by Nobs×Nex. The parameters
to identify in the matrices Ã, B̃ and C̃ are gathered in a (p× 1) vector θ as follows:

θ = [a11, · · · , a1n, · · · , an1, · · · , ann, b11, · · · , b1Nex
, · · · ,

bn1, · · · , bnNex
, c11, · · · , c1n, · · · , cNobs1, · · · , cNobsn]

T (5.24)

For the state and parameter estimation problem, we consider an augmented (or
also extended) state vector Xa = [X θ]T of dimension n + p, whose distribution is
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assumed to be Gaussian random variable. The resulting extended dynamical model
reads:

{

Ẋa = f̃ (Xa, U)

Y = h̃ (Xa)

(5.25a)

(5.25b)

where f̃ and h̃ are the non-linear evolution and observation functions, respectively.
In order to apply the UKF approach, the functions f̃ and h̃ are converted into
the discrete functions F̃ and H̃, respectively, by means of an implicit numerical
integration method; the Dormand-Prince method [17], [18]. The model (5.25) is
then transformed into the following non-linear recursive (discrete-time) state space
model:

{

Xa
k+1 = F̃k (X

a
k , Uk, ) + wk

Yk = H̃k (X
a
k ) + vk

(5.26a)

(5.26b)

with the initial condition Xa
0 = [X0 θ0]

T . The indices k and k+1 in (5.26) represent
the quantities at time instants tk = (k)∆t and tk+1 = (k + 1)∆t with ∆t denoting
the time sampling, w and v the process and the observation noises assumed to
be uncorrelated zero-mean Gaussian white noises with time-invariant covariance
matrices Q and R, i.e. w ∼ N (0, Q) and v ∼ N (0, R).

We should note that the extension to the processing of non-linear problems would
be handled by assuming the same reduced model form (5.23) but with time-varying
parameters in the ROM operators. This constitutes a key advantage enabling to
circumvent the difficulty related to the choice of the non-linear reduced model form
in the non-linear case.

5.4.2 The UKF algorithm

The UKF algorithm is based on a deterministic sampling technique known as the
Unscented Transform (UT), proposed by Julier and Uhlmann [8],[9]. The idea of
UT is to form 2n+ 1 samples that capture exactly the mean and covariance of the
original distribution of Xa. This sample set is given by the so-called sigma-points.
If the random state variable Xa defined by its mean

X̂a = E [Xa]

and covariance

PX = E

[(

Xa − X̂a
)(

Xa − X̂a
)T
]

with E [.] representing the expectation operator. The sigma-points denoted {Xi}2n0 =

UT
(

X̂a, PX

)

with their respective weights are given by:
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X0 = X̂a ; ω0 =
κ

(n+ κ)

Xi = X̂a +
[√

(n+ κ)PX
]

i
; ωi =

1

2 (n+ κ)

Xi+n = X̂a −
[√

(n+ κ)PX
]

i
; ωi =

1

2 (n+ κ)

(5.27)

with i = 1, · · · , n and
(√

.
)

i
the ith column vector of the matrix square root and is

derived via the Cholesky factorisation. The parameter κ is a scaling parameter used
to control estimation properties. In our study, κ is set to zero. The data set {Xi}2n0
is then propagated by the non-linear operators F̃ and H̃. The mean and covariance
of the transformed variable are estimated from those of the sigma-points.

Assume now that the sigma-points are given, as well as X̂a
0 and PX

0 , denoting
the initial mean and covariance of the state Xa. The UKF algorithm is performed
in three recursive steps:

• a sampling step for the sigma-points generation,

• a prediction step consisting in a resolution of one time step (step k) of the
model (5.26) for each sigma-point and computation of the mean value and
covariance predictions denoted X̂a−

k and PX
k for the state variable Xa, and

Ŷ a−

k and P Y
k for the observation variable Yk,

• a correction step to update the prediction for the state mean and covariance
taking into account a new observation Yk. The Kalman gain Kk acts as a
weight of the innovation zk = Yk − Ŷk.

The UKF algorithm is summarized below.
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Algorithm 5.1 Unscented Kalman Filter algorithm

1: Sampling step
Generation of 2n+ 1 sigma-points :

{Xi,k−1, ωi}{i=0 ··· 2n} = UT
(

X̂a
k−1, Pk−1

)

2: Prediction step

(a) State mean prediction:

X−i,k = Fk (Xi,k−1, Uk−1) and X̂
a−

k =
2n∑

i=0

ωiX−i,k

(b) State covariance prediction:

P−k =
2n∑

i=0

ωi

(

X−i,k − X̂a−

k

)(

X−i,k − X̂a−

k

)T

+Q

3: Correction step

(a) Measurement update: Yi,k = Hk

(

X−i,k
)

(b) Measurement prediction: Ŷk =
2n
∑

i=0

ωiYi,k

(c) Innovation covariance: P Y
k =

2n
∑

i=0

ωi

(

Yi,k − Ŷk

)(

Yi,k − Ŷk

)T

+R

(d) Cross covariance: PXY
k =

2n
∑

i=0

ωi

(

X−i,k − X̂a−

k

)(

Yi,k − Ŷk

)T

+R

(e) Updated state mean and Covariance:

- Kalman Gain matrix: Kk = PXY
k P Y

k
−1

- Innovation (Residual term): zk = Yk − Ŷk; Yk denoting the new
observation at step k.

- State update: X̂a
k = X̂a−

k +Kkzk

- Covariance update: PX
k = PX

k
− −KkP

Y
k K

T
k
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5.4.3 Illustration on a linear 10-DOF FE model

The UKF method performance is investigated on the same FE model of 10 DOF
as described in § 5.3.2, but this time in a linear case where L is a null matrix
in (5.11). Initial conditions consist of a uniform temperature T0 = Ta = 25 ◦C, with
Ta denoting the ambient temperature. The forcing term φu (t) is a square signal
applied at DOF 1 (Fig. 5.6(a)). The simulation results regarding the observed
temperature are depicted in Fig. 5.6(b).
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(a) Square power signal applied at DOF 1.
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(b) Evolution of the temperature at all DOFs
of the FE model.

Figure 5.6. Simulation results of the 10-DOF FE model.

As a first step, the Singular Value Decomposition (SVD) (Section 3.1.1) is applied
on the whole observations at the FE model at all time steps in order to determine
the minimum number of modes required to capture the essential dynamics of the
reference model in the ROM. Fig. 5.7(a) shows that the first two singular values are
much greater than the rest (the numerical values are 2061, 463.3, 130.2, . . . ). The
Proper Orthogonal Modes (POM) contribution is also dominated by the first two
modes as shown in Fig. 5.7(b). Hence, the reference model can be represented by a
ROM of order 2 to be identified by the UKF method.
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Figure 5.7. Singular Value Decomposition (SVD) computed on the 10-DOF FE
model.
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UKF application

Now we apply the UKF in order to identify a ROM of order 2 using:

• two thermal inputs composed of the power source applied at DOF 1 depicted
in Fig. 5.6(a) and the ambient temperature Ta assumed as a time-invariant
boundary condition, i.e. Nex = 2,

• two observed temperature collected at DOF 1 and 8 of the FE reference model
(Fig. 5.6(b)), i.e. Nobs = 2.

The resulting augmented state vector is then of dimension na = n (1 + n+Nex

+Nobs) = 14 and takes the form:

Xa = [X1, X2, θ] (5.28)

with

θ = [a11, a12, a21, a22, b11, b12, b21, b22, c11, c12, c21, c22] (5.29)

The state and observation noise covariance matrices are assumed time-independent
diagonal matrices set as Q = σ2wIna and R = σ2vINobs

, with σ2w and σ2v denoting
the state and observation noise variances, respectively. The initial state estimate
covariance is also assumed diagonal set as P0 = p0Ina , where p0 =

[
pX0 , p

A
0 , p

B
0 , p

C
0

]

is a vector of dimension na standing for the initial error variances of X, Ã, B̃ and
C̃, respectively.

In what follows, we shall compare the UKF results for the following two cases:

• case 1: the estimation is based on the temperature delta evolution T (t)−
Ta, such that Ta = T0 = T (0), as a reference observed data,

• case 2: the estimation is based on the temperature evolution T (t) as a
reference observed data.

The discrete reference data, i.e. input-output results of the FE model, is sampled
in Nsnap = 1112 time steps with constant sampling time ∆t = 0.009 s. The UKF
entries, Q, R and P0, as well as the initial estimate of X

a, used in the both cases are
summarized in Table 5.1. Note that the initial estimate of the ROM state variable
is computed as X (0) = C̃†0Y (0) with C̃†0 denoting the pseudo-inverse of the initial
estimate of matrix C̃.
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Table 5.1
The UKF parameters used in both case 1 and case 2.

Case 1 Case 2

UKF entries
σw 10−10 10−12

σv 10−5 10−5

pX0 10−5 [1, 1] 10−8 [1, 1]
pA0 10−5 [1, 1, 1, 1] 10−5 [1, 1, 1, 1]
pB0 10−5 [1, 1, 1, 1] 10−6 [1, 1, 1, 1]
pC0 10−5 [1, 1, 1, 1] 10−9 [1, 1, 1, 1]

Initialization
θ0 [−0.3, 2, 0.1, −6, 37, −16, 5, 2, 3, −1, 0.7, 2]

X(0) C̃†0Y (0) 1

Results and discussion The performance of the UKF in both case 1 and case
2 is measured by: (1) evolution of the identified parameters; and (2) comparison of
the reference observed and estimated temperature at the same observation points
corresponding to the DOFs 1 and 8 of the FE model.

Fig. 5.8 shows good parameter identification results with low variance distribution
of order 10−5 or 10−6 at the last time instants for both cases (variances not not
shown in Fig. 5.8). However, we can notice that these parameters, constituting the
ROM matrices, are not identically identified. Actually, there may exist an infinity of
reduced models since any norm is imposed on the observation matrix C̃. This latter
corresponds, in fact, to a restriction of a reduced projection basis to the observation
points. Therefore, in order to ensure unicity of the ROM, a norm constraint should
be imposed on matrix C̃ in the UKF algorithm. By contrast to the ROM operators,
the eigenvalues of the state matrix Ã, i.e. the opposite reciprocal of time-constants,
are invariant parameters of the thermal problem. In Fig. 5.9, we present the domi-
nant time-constants identified in the cases 1 and 2. The lowest time-constant, equals
≃ 0.24 s, is identically identified in both cases. This time-constant corresponds to
the collocated observation points with the applied power sources. The other domi-
nant time-constant, however, is differently identified in the two cases, equals 4 s in
case 1 and 2.55 s in case 2. This high value of time-constant should concern the low
dynamics associated to observation points far from those collocated with the power
sources, for example DOF 8.

1† stands for the pseudo-inverse of matrix C̃0. Here, C̃0 being a square matrix, C̃†
0
= C̃−1

0
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Figure 5.8. Identified parameters of the ROM; case 1 (gray color) and case 2
(orange color).
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In Figs. 5.10 and 5.11, we compare the reference and the ROM output at the
DOFs 1 and 8 for both cases. In the view of real-time implementation, we evaluate
the results of the ROM identified at different time instants, t = 2, 4, 6, 8, 10 s.
In case 1, we obtain good identification at both DOFs 1 and 8 except those using
the ROM identified at time instants 2 s and 4 s. This is consistent with the results
shown in Fig. 5.9, where the large time-constant value, corresponding to the slow
dynamics, is still not converged until the time instant 4 s.
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(b) Temperature evolution at DOF 8.
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Figure 5.10. Case 1: Comparison between the reference temperature and the
ROM output identified at different time instants (t=2, 4, 6, 8 and 10s), all

observed at the DOFs 1 (left) and 8 (right).
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Figure 5.11. Case 2: Comparison between the reference temperature and the
ROM output identified at different time instants (t = 2 , 4 , 6 , 8 , 10 s), all observed

at the DOFs 1 (left) and 8 (right).
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5.4. Identification based on Kalman Filter method

The identification results obtained in case 2 are less satisfactory than in case 1,
especially at the DOF 8 (Fig. 5.11(b)). The reason behind this is that the large time-
constant is not well identified as this was already stated in Fig. 5.9(b), or eventually
a ROM of order 2 is not sufficient in this case.

To sum up, the UKF estimation appears less efficient for the identification at the
first time steps. This is a major drawback for thermal applications in electronics. In
order to circumvent this issue in real-time implementation, the UKF method may be
combined with a second identification method such as the KIM method for example,
both intended to run in parallel. An error criterion on the UKF results would enable
the switching between the two methods. In parallel with the UKF method, KIM
is used to identify a ROM using first time instants data. Then, based on an error
criterion of the UKF results, the identification process is switched to be performed
by this latter enabling then the identification of the slower dynamics.

Sensitivity study A sensitivity study of the UKF estimation performed on the
investigated 10-DOF model has been analysed with respect to (1) the state model
covariance Q = σ2wIna representing the confidence in the UKF model, (2) the obser-
vation noise covariance R = σ2vIna representing the confidence in the measurements
and (3) the initial state estimate covariance P0 representing the confidence in the
initial state estimate of Xa. This analysis shows that the choice of the UKF entries,
Q, R and P0, significantly impacts the UKF results ( [14] for detailed results). The
main conclusions are:

- The quotient σw/σv should be small enough, of order ≃ 10−5 or 10−6 , in
order to attribute sufficient confidence in the UKF model (5.26), that is to
successfully identify the ROM parameters.

- The initial state covariance should be sufficiently large, of order ≃ 10−5, 10−6,
to account for the unknown parameters values a priori. This means that a low
confidence is accorded in the initial state.

5.4.4 UKF limitations illustrated on a large-scale 3D model

The initialization of the UKF state vector xa becomes particularly difficult for higher
ROM orders and eventually with a larger number of inputs and observations. For
illustration purpose, the same UKF estimation procedure is performed on a simpli-
fied industrial large-scale 3D model (116505 DOFs). The model consists of 4 power
components, 2 Igbts and 2 Diodes, mounted on a PCB. The boundary condition
consists of the imposed temperature Timp = 90 ◦C at the bottom face of the model.
The initial temperature for all DOFs is set to T0 = Timp = 90 ◦C. More details on
this model are available in DaSilva thesis [19].
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(a) Large-scale model of 116505 DOFs [19].
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Figure 5.12. Large-scale model composed of 2 Diodes and 2 Igbts mounted on the
PCB.

For the UKF estimation, 4 observation points placed on the top center of the
power components, and 1 observation point placed on the top of the PCB, are
considered, i.e. Nobs = 5. Note that Diode1 and Diode2 on the one hand, Igbt1
and Igbt2 on the other hand, have similar thermal behaviour (see Fig. 5.12(a) for
observation points locations). The thermal input vector is composed of the ap-
plied power sources on the components Igbts and Diodes (Fig. 5.12(b)) and the
boundary condition Timp assumed constant along time (Nex = 3). The order of
the ROM, n = 5, is determined by means of the SVD as proceeded above in the
case of the 10-DOF FE model. Hence, the UKF state vector Xa is composed of
n (1 + n+Nex+Nobs) = 70 variables to be identified. A Matlab Identification
Toolbox is used to initialize the ROM matrices constituting the parameter vector θ.
The range of values of the UKF entries, including the state model, the observation
and the initial state estimate covariances, is set by means of a sensitivity analysis.
In this example, the UKF estimation is based on the reference temperature delta
evolution at the observation points, i.e. Y (t) = Yref (t) − T0 with Yref (t) denot-
ing the reference temperature. The discrete data used in the identification process
consists of Nsnap = 501 time steps with a constant sampling time ∆t = 10−4. The
state, observation covariances Q and R are diagonal matrices with variance values
σw = 10−12 and σv = 10−3, respectively. The initial state estimate covariance is
diagonal as well defined as P0 = 10−8Ina . In order to check the behaviour of the
ROM, we apply the same power signals presented in Fig. 5.12(b). In Fig. 5.13, we
compare the evolution with time of the temperature produced by the 3D detailed
model and reduced model at observation points Diode1, Igbt1 and the one placed on
the PCB. We can see from this figure that the identification results are not optimal.
This typically the case of the collocated observation points with the sources, where
the absolute residual reaches up to ∼ 11.5 ◦C for a temperature raise of about 35 ◦C
at Igbt1 and Igbt2.

The eigenvalue value decomposition of the identified state matrix Ã allows to
obtain the eigenvalues corresponding to the opposite reciprocal of the time-constants
of the thermal problem. Two conjugate complex eigenvalues with negative real part
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are obtained among the 5 values. The reason behind this is that the UKF estimation
lacks a constraint on matrix Ã. For instance, in order to ensure real eigenvalues,
i.e real time-constants, we can impose a symmetry constraint on the state matrix
Ã in the UKF algorithm. Another solution consists in identifying a diagonal state
matrix Ã in the ROM. Nonetheless, the difficulty of the initialization step cannot
be avoided.
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Figure 5.13. Large-scale model: identified ROM based on the reference
temperature delta evolution (T (t)− Ta); Comparison between the reference

temperature and the ROM output identified at the last time instants (t = 0.5 s).

5.4.5 Synthesis

The proposed “Unscented Kalman Filter” (UKF) method aims at identifying linear
reduced state space models. The objective behind this proposal is to perform a
real-time identification of linear models before the extension to the processing of
non-linear models. In this section, the UKF method is evaluated on two linear test
cases: (1) a 10-DOF FE model and (2) a simplified industrial large-scale model.
In both cases, the order of the reduced model is fixed by means of the Singular
Value Decomposition method. A sensitivity analysis enables to fix the range values
of the UKF parameters including the state model, observation model and initial
state estimate covariance matrices. The initialization of the UKF state vector,
however, becomes more difficult to set as the number of parameters to identify
increases. In the large scale model for example, a Matlab Identification Toolbox is
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used to overcome the initialization difficulty. The main conclusions drawn from the
identification results in both cases are:

• The UKF estimation based on the temperature delta provides better results
than the direct use of the temperature evolution as a reference observation.
However, this is only possible when dealing with linear problems. In the non-
linear problem, the identification should be performed directly on the temper-
ature evolution as a reference output data.

• The UKF method identifies better the small time-constants corresponding to
the collocated observation with the power excitation.

• The UKF estimation at the first time steps fails to capture the slow dynamics of
the reference solution. Consequently, the UKF method cannot be implemented
for real-time identification at the first time steps.

5.5 Conclusion

This chapter constitutes an exploratory study of two identification methods for
the processing of non-linear problems mainly governed by natural convection. In
such problems, it is difficult to predict the non-linearity form as the convective
heat transfer coefficient depends on several model parameters (model geometry, flow
conditions, etc.). Therefore, our choice has deliberately focused on non-parametric
identification methods. In this context, two methods are suggested:

• an extended Kernel Identification Method for the identification of non-linear
reduced state space models, in which the non-linear operators dependences
are obtained by applying KIM method on several discrete time intervals with
constant power level on each one. The method applied on a non-linear FE
test case shows good results for the identification of single input single output
reduced models. The next step should be its extension to the processing of
multiple-input multiple-output models. In this same context, we propose an-
other KIM-based identification method but of semi-parametric. This method
consists in using the the KIM method to first identify a linear reduced model
corresponding to a linearized behaviour of the system. The residual result-
ing from this approximation is identified iteratively by selecting only some
non-linear terms based on a two specific indicator.

• a Kalman-based identification method using the variant Unscented Kalman
Filter for an instantaneous identification of state variables and parameters
of the reduced state space model. Before testing to the non-linear case, the
method is studied for the linear case. An advantage of this method with
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regard to the extension to the non-linear case is that the same model form
is considered but with time-varying parameters. The UKF estimation shows
good results evaluated on the same FE test case investigated in the extended
KIM method but in a linear case. A second large-scale model representative
of an industrial application reveals the following conclusions: (1) the Kalman
parameters including the state, the observation and the intial state estimate
covariance matrices should be judiciously chosen to ensure convergence of the
UKF algorithm, (2) the initialization step may become very difficult to handle
as the number of the number of the reduced model parameters to identify
increases, and finally (3) the UKF method is more efficient once the initial
time steps are passed over.

A potential perspective path in addition to the extended KIM method consists in
combining the UKF approach with the linear KIM method for the identification of
non-linear state space models. The idea is to first apply the KIM approach at the
first time steps corresponding to a first power level, and then continue the identifica-
tion process by means of the UKF method on continuously increasing power levels
to fournish a finer estimation of the non-linear reduced model with time-varying
parameters. In comparison with the extended KIM approach, the UKF method
would allow finer estimation of the model parameters instead of an estimation on
some discrete intervals.
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General conclusion and
perspectives

The objective of this research thesis is to develop a method producing reduced or-
der models for estimating the thermal behaviour of power electronics systems in
mechatronics products. Moreover, this method must speed up the transient thermal
simulations of such products. In the first chapter, we presented a technical overview
of power electronics systems summarizing the common practices in thermal man-
agement including both reliability and control assessments. In this chapter, we also
reviewed the thermal impedance method constituting the currently used method in
Valeo in order to estimate the junction temperature of power components. This
method, being based on the superposition principle, cannot be extended to the pro-
cessing of non-linear systems, in particular those cooled by natural convection. The
investigated industrial example in this chapter shows the difficulties encountered in
such problems, which fully justified the motivations of the search of an alternative
model order reduction method. In the second chapter, we presented a mathematical
background of thermally coupled fluid-solid problems and derive a discrete detailed
model of such problems by means of a Finite Element Method. Actually, the derived
detailed model constituted a reference model for the developed reduction method to
deal with thermal problems mainly governed by conduction and forced or natural
convection.

In chapter 3, we provided the state of art regarding Model Order Reduction
(MOR) techniques classified into intrusive and non-intrusive methods. Intrusive
methods require access to the source code of solvers to project the reference de-
tailed model onto an appropriate subspace or to act directly on the local differential
equations of the problem. Examples of projection-based methods are substructur-
ing methods, Modal methods and Proper Orthogonal Decomposition. Examples of
methods acting on the problem equations are the a priori variable separation-based
methods including the Proper Generalized Decomposition. Non-intrusive methods,
also known as identification methods, consists in finding a mathematical model that
best describes the relationship between the input and output data of the system of
interest. Examples of these are the Prediction Error Methods based on the polyno-
mial ARMA models, the Modal Identification Method and the Subspaces methods
identifying state space reduced models.



General conclusion and perspectives

In the industrial context, the implementation of the reduction method must
account for a double requirement: on the one hand, it should be based only on the
processing of the input data and output results produced by a reference detailed
model considered as a black-box ; on the other hand, the reduced models should
be represented in a behavioural form suitable for their insertion in command laws
for real-time temperature control. In addition, the final purpose is to address the
identification of non-linear problems in presence of natural convection. In such
problems, the convective heat transfer coefficient depends on the geometry and
flow conditions in the system. Hence, it is very difficult to postulate a priori the
form of the non-linearity related to this coefficient, especially within a non-intrusive
framework. For all the above reasons, our work has focused on non-parametric
identification methods in order to produce reduced models in state-space
form, a form particularly convenient form for a Simulink implementation and the
further inclusion in command laws. To take up this challenge, we have first focused
on Kalman Filter based-methods, the Unscented Kalman Filter (UKF) variant in
particular, to perform a real-time identification of linear problems before the
extension to the non-linear case. Even if the UKF method was validated on a
linear test case, the setting up of UKF entries and the initialization of reduced
model parameters remain difficult, especially when dealing with large-scale models.
Consequently, our research work has focused on offline identification methods
for producing compact reduced models represented into a multiple-input
multiple-output state space form. In this context, a new identification method
named “Kernel Identification Method” (KIM) has been introduced. The method
development was performed in two separate stages. A first stage for the identification
of linear problems followed by its extension to non-linear applications involving the
natural convection.

In Chapter 4, we introduced the KIM method for the identification of linear re-
duced models in linear applications. In view of its extension to the non-linear case,
the reduced model is identified in a modal form where the state matrix is assumed
to be diagonal. The method is based on the Least-Squares method and uses the
LQ decomposition to identify the kernel of the thermal problem independently of
the thermal inputs. The kernel is in fact composed of the dominant eigenvalues, i.e.
the opposite reciprocal of dominant time-constants, placed on the diagonal terms of
the state matrix. The corresponding eigenvectors constitute the observation matrix.
The linear KIM was successfully validated on two applications: (1) a small-scale lin-
ear conduction problem; and (2) an industrial large-scale water-cooled CFD problem
mainly governed by forced convection. In these two applications, the thermal in-
puts considered in the reduced model are composed of the power sources signals
and boundary conditions that are intended to be monitored in control applications.
In the first application, KIM was compared to three Subspace approaches (SubSV,
SubCVA and MOESP) that are well-documented in Overschee and De Moore (1996).
The KIM method showed equivalent results with respect to the first two approaches
that have already proved their practical performance in the literature. In the second
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example, KIM was compared to the Thermal Impedance Method and showed bet-
ter results in accuracy and especially in time cost. In fact, the Thermal Impedance
method requires as much simulations of the detailed model as the number of the con-
sidered power sources in the identification process. By contrast, KIM can be directly
performed on the validation inputs signals, which presents a significant advantage
as the number of power components increases in mechatronic systems.

In Chapter 5, we proposed an exploratory study for the identification of non-
linear reduced state space models. Besides the UKF method that showed some diffi-
culties in the identification large-scale linear applications, we suggested an extension
of the KIM method of non-parametric nature aimed at identifying a non-linear re-
duced model represented in a tabular form. This method must be applied on discrete
time intervals with a constant power level on each one to provide satisfactory results.
The derived multi-linear reduced models enables to determine the form of the non-
linear operators in the reduced model, without knowing the non-linearity nature.
The proposed method has been validated on a particular single-input single-output
small-scale model. The next step should address its extension to the processing of
multiple-input multiple-output problems. In this context, some questions that need
to be further studied are: how many levels of the inputs should be involved in the
identification step? How to choose the amplitude of these levels corresponding to
each input?

An interesting future research area is the combination of the Kernel Identification
Method and the Unscented Kalman Filter method for the identification of non-linear
thermal problems involving essentially the natural convection. In a first stage, the
KIM method could be applied on the first time steps with constant inputs levels.
Then, the KIM results could be used for the initialization of the UKF estimation in
order to identify a reduced model for the remaining time steps. The purpose of the
KIM-UKF combination is to identify a non-linear reduced state space model with
time-varying parameters. This should significantly improve the UKF estimation for
which the initialization step is very difficult to set, especially when dealing with
a high number of parameters to identify. Moreover, the UKF estimation should
provide finer estimation of the reduced model with respect to the non-parametric
extended version of KIM method. Finally, the previous questions related to the
choice of the number and amplitudes of the inputs levels should be avoided as the
UKF estimation provides an instantaneous estimation of the parameters at each time
step. Consequently, this should allow for the application of other inputs signals in
the identification step such as continuously increasing inputs levels to cover different
operating points of the system.

Another promising method also based on the KIM approach needs further in-
vestigation. This method would be of semi-parametric nature, combining the KIM
method for the identification of the linear part and a parametric approximation of
some originally selected non-linear terms.
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Appendix A

Least-Squares method

This appendix describes how the Least-Squares method (LSQ) have been imple-
mented in order to identify the operator Z, a symmetric matrix, and D̃ and B, full
matrices (See Section 4.1).

Let x = (x1, . . . , xl)
T and y = (y1, . . . , ym)

T be l× 1 and m× 1 real vectors, such
that m ≥ l, and F a m× l matrix.
Suppose that l = 2 and m = 3, then we can write:







y1
y2
y3






=





F11 F12
F21 F22
F31 F32





{
x1
x2

}

(A.1)

The goal herein is to identify the values of the coefficients in matrix F .
Let

Θ = (F11, F21, F31, F12, F22, F32)
T (A.2)

denote the vector of unknown parameters in system (A.1).
Suppose that a data set is given

{
xi, yi

}
, where i ∈

{
1 : Nsnap

}
stands for time

instant and Nsnap the total number of samples, then the system (A.1) is transformed
into:

Y = X Θ (A.3)

where

Y =














y11
y12
y13
...
yNt
1

yNt
2

yNt
3














, X =














x11 0 0 x12 0 0
0 x11 0 0 x12 0
0 0 x11 0 0 x12
...

...
...

...
...

...
xNt
1 0 0 xNt

2 0 0
0 xNt

1 0 0 xNt
2 0

0 0 xNt
1 0 0 xNt

2














(A.4)
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Appendix A. Least-Squares method

The solution of the least-squares problem is defined as:

min
Θ∈R(m×l)

∥
∥X Θ − Y

∥
∥ , X ∈ R

(m×Nt)×(l×m), Y ∈ R
(m×Nt)×1 (A.5)

and the least-squares estimate of Θ̂ is :

Θ̂ = X † Y (A.6)

where ()† denotes the pseudo-inverse and X † = (X TX )−1 X T is called the Moore-
Penrose inverse, or the pseudo-inverse, of matrix X .

It is known that the unicity of the solution produced by a least-square estimation
requires the matrix X to be of full rank, i.e. its column vectors are linearly indepen-
dent. When X is rank-deficient, we obtain an ill-conditioned least-squares problem,
i.e. there exist many vectors Θ̂ that minimize

∥
∥X Θ − Y

∥
∥. In that case, a gener-

alized Least-Squares method of solving an ill-conditioned problem, named also the
Moore-Penrose generalized inverse, is generally used [132], producing a minimum
norm solution. The corresponding command in Matlab is pinv .

In the Kernel Identification Method, the Least-Squares method (LSQ) is applied
in order to identify the operator Z, a symmetric matrix, and D̃ and B, full non
symmetric matrices (Chapter 4 Section ...).
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The LQ decomposition

This appendix recalls the LQ decomposition technique, used for the computation of
the projection onto a space orthogonal to the space of input data, U , a matrix of
full rank in the investigated example in Chapter 4.
We state in the following the LQ decomposition definition: let A ∈ Rp×j and
B ∈ Rq×j two given matrices of full rank p and q, respectively, i.e. their row vectors
are linearly independent. We also assume that j ≥ max (p, q), which will always be
the case in the identification methods described in this paper. A/B is the orthogonal
projection of the row space of A onto the row space of B. A/B⊥ is the projection of
the row space of A onto B⊥, the orthogonal complement of the row space of B, and

A = A/B +A/B⊥ (B.1)

or, equivalently

A = AΠB +AΠB⊥ (B.2)

where ΠB and ΠB⊥ denote the projections of A onto B and B⊥, respectively.
The matrix representations of these projections can be easily computed via the

LQ decomposition of

(
B
A

)

, which is the numerical version of the Gram-Schmidt or-

thogonalization procedure. The actual computation of the LQ decomposition is per-
formed by taking the transpose of the QR decomposition of the matrix

(

BT AT
)

∈
Rj×q+p.

The LQ decomposition of

(

B
A

)

is given by

(

B
A

)

= L QT =

(

L11 0
L21 L22

)(

QT
1

QT
2

)

(B.3)

where L11 ∈ Rq×q, L21 ∈ Rp×q, L22 ∈ Rp×p with L11, L22 lower triangular, and

Q1 ∈ Rj×q, Q2 ∈ Rj×p are orthogonal, i.e. QT Q =

(

QT
1

QT
2

)

(

Q1 Q2

)

=

(

Iq 0
0 Ip

)

.

Hence, we have
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Appendix B. The LQ decomposition

{ B = L11 Q
T
1 (B.4a)

A = L21 Q
T
1 + L22 Q

T
2 (B.4b)

It is shown in [144], [145] that if the matrices A and B are of full rank, the same
holds for the matrix L and thus L11 is non-singular, implying Q

T
1 = L−111 B. Thus,

it follows that

A = L21 L
−1
11 B + L22 Q

T
2 (B.5)

Since Q1 and Q2 are orthogonal, it follows [132]:

{ A/B = L21 Q
T
1 (B.6a)

A/B⊥ = L22 Q
T
2 (B.6b)

Note that if the matrix

(
B
A

)

is rank-deficient, which is typically the case when

projecting onto an orthogonal space to the derivative of input data space (see Chap-
ter 4), the LQ decomposition is computed using elementary orthogonal Householder
matrices [162]. This consideration is taken into account in the Matlab command
qr .
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[117] T. Söderström, B. Carlsson and S. Bigi. Least Squares Parameter Estima-
tion of Continuous-Time ARX Models from Discrete-Time Data. In IEEE
transactions on Automatic Control, volume 42, pages 659–673, 1997.
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