
HAL Id: tel-01226489
https://theses.hal.science/tel-01226489v1

Submitted on 9 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Anatomy of the SIFT method
Ives Rey Otero

To cite this version:
Ives Rey Otero. Anatomy of the SIFT method. General Mathematics [math.GM]. École normale
supérieure de Cachan - ENS Cachan, 2015. English. �NNT : 2015DENS0044�. �tel-01226489�

https://theses.hal.science/tel-01226489v1
https://hal.archives-ouvertes.fr

École Normale Supérieure de Cachan, France

Anatomy of the SIFT method

A dissertation presented
by

Ives Rey-Otero

in fulfillment of the requirements

for the degree of Doctor of Philosophy

in the subject of Applied Mathematics

Committee in charge

Referees Coloma Ballester - Universitat Pompeu Fabra, ES

Pablo Musé - Universidad de la República, UY

Joachim Weickert - Universität des Saarlandes, DE

Advisors Jean-Michel Morel - ENS de Cachan, FR

Mauricio Delbracio - Duke University, USA

Examiners Patrick Pérez - Technicolor Research, FR

Frédéric Sur - Loria, FR

ENSC-2015 603

September 2015

Version of November 5, 2015 at 12:27.

Abstract of the Dissertation

Ives Rey-Otero

Anatomy of the SIFT method

Under the direction of:

Jean-Michel Morel and Mauricio Delbracio

This dissertation contributes to an in-depth analysis of the SIFT method.
SIFT is the most popular and the first efficient image comparison model.
SIFT is also the first method to propose a practical scale-space sampling and
to put in practice the theoretical scale invariance in scale space. It associates
with each image a list of scale invariant (also rotation and translation invari-
ant) features which can be used for comparison with other images. Because
after SIFT feature detectors have been used in countless image processing
applications, and because of an intimidating number of variants, studying an
algorithm that was published more than a decade ago may be surprising. It
seems however that not much has been done to really understand this cen-
tral algorithm and to find out exactly what improvements we can hope for
on the matter of reliable image matching methods. Our analysis of the SIFT
algorithm is organized as follows. We focus first on the exact computation
of the Gaussian scale-space which is at the heart of SIFT as well as most
of its competitors. We provide a meticulous dissection of the complex chain
of transformations that form the SIFT method and a presentation of every
design parameter from the extraction of invariant keypoints to the compu-
tation of feature vectors. Using this documented implementation permitting
to vary all of its own parameters, we define a rigorous simulation framework
to find out if the scale-space features are indeed correctly detected by SIFT,
and which sampling parameters influence the stability of extracted keypoints.
This analysis is extended to see the influence of other crucial perturbations,
such as errors on the amount of blur, aliasing and noise. This analysis demon-
strates that, despite the fact that numerous methods claim to outperform the
SIFT method, there is in fact limited room for improvement in methods that
extract keypoints from a scale-space. The comparison of many detectors pro-
posed in SIFT competitors is the subject of the last part of this thesis. The
performance analysis of local feature detectors has been mainly based on the
repeatability criterion. We show that this popular criterion is biased toward
methods producing redundant (overlapping) descriptors. We therefore pro-
pose an amended evaluation metric and use it to revisit a classic benchmark.
For the amended repeatability criterion, SIFT is shown to outperform most of
its more recent competitors. This last fact corroborates the unabating interest
in SIFT and the necessity of a thorough scrutiny of this method.

Contents

1 Introduction 7

2 Computing an exact Gaussian scale-space 19
2.1 Introduction . 19
2.2 Mathematical Preliminaries . 21
2.3 Analysis of three digital Gaussian convolution algorithms 23
2.4 Experiments . 30
2.5 Conclusion . 30

3 Anatomy of the SIFT Method 37
3.1 General description . 37
3.2 The Gaussian scale-space . 38
3.3 Keypoint definition . 45
3.4 Keypoint description . 53
3.5 Matching . 61
3.6 Summary of Parameters . 61

4 An analysis of scale-space sampling and keypoints detection in SIFT 65
4.1 Introduction . 65
4.2 The exact implementation of the SIFT method 66
4.3 The theoretical scale invariance . 68
4.4 Simulating the digital camera . 70
4.5 Empirical analysis of the digital scale-space sampling 71
4.6 Impact of deviations from the perfect camera model 77
4.7 Concluding remarks . 80

5 Is repeatability an unbiased criterion for ranking feature detectors? 83
5.1 Introduction . 83
5.2 The repeatability criterion and its bias . 85
5.3 Non-redundant repeatability . 87
5.4 Spatial coverage of state-of-the-art feature detectors 89
5.5 Experiments . 95
5.6 Discussion . 103

6 Conclusion 107

Bibliography 109

5

6

1 Introduction

Motivation

Local stable features are the cornerstone of many image processing and computer vision
applications such as image registration [Hartley and Zisserman 2003; Snavely et al. 2006],
camera calibration [Grompone von Gioi et al. 2010], image stitching [Haro et al. 2012], 3d
reconstruction [Agarwal et al. 2011], object recognition [Grimson and Huttenlocher 1990;
Fergus et al. 2003; Bay et al. 2006a; Zhang et al. 2007].

The seminal paper introducing SIFT [Lowe 1999] has sparked an explosion of local
keypoints detector/descriptors seeking discrimination and invariance to a specific group
of image transformations [Tuytelaars and Mikolajczyk 2008]. SURF [Bay et al. 2006b],
Harris and Hessian based detectors [Mikolajczyk et al. 2005], MOPS [Brown et al. 2005],
ASIFT [Yu and Morel 2011] and SFOP [Förstner et al. 2009] with methods using binary
descriptors such as BRISK [Leutenegger et al. 2011] and ORB [Rublee et al. 2011], are just
a few of the successful variants. These add to the numerous non multi-scale detectors such
as the Harris-Stephens detector [Harris and Stephens 1988], SUSAN [Smith and Brady
1997], the Förstner detector [Förstner 1994], the morphological corner detector [Alvarez
and Morales 1997] and the machine learning based FAST [Rosten and Drummond 2006]
and AGAST [Mair et al. 2010].

The importance of feature detectors in countless applications of image processing as
well as the intimidating number of variants led us to return where it all started, namely
the publication of the SIFT algorithm more than a decade ago. Despite the number of
publications, it seems that not much has been done to really understand this central al-
gorithm and to rigorously figure out what improvement we can hope for on the matter of
reliable image matching methods. This thesis proposes an in-depth analysis of the SIFT
algorithm. It is organized as follows. Chapter 2 focuses on the accurate computation of
the Gaussian scale-space which is at the heart of SIFT as well as most of its competi-
tors [Mikolajczyk et al. 2005; Brown et al. 2005]. Chapter 3 offers a meticulous dissection
of the complex chain of transformations that form the SIFT method and a presentation
of every design parameter from the extraction of invariant keypoint to the computation of
feature vectors. In Chapter 4, we use a rigorous image simulation framework to analyze
the influence of scale-space sampling on the stability of extracted keypoints on diverse
scenarios. This analysis will demonstrate that, despite numerous methods claiming to
outperform SIFT, there is in fact limited room for improvement for a more complete or
more accurate keypoint detection in scale-space. Nevertheless our study concludes with
several significant improvements on scale-space sampling to improve the detection effi-

7

ciency. The comparison of detectors is the subject of Chapter 5. The evaluation of local
feature detectors has been mainly based on the repeatability criterion [Mikolajczyk et al.
2005]. We argue here that this popular criterion is biased towards redundant methods. We
propose an amended evaluation metric and use it to revisit a classic benchmark. Again,
SIFT is shown to outperform most of its more recent competitors. We close this dis-
sertation with some conclusions and perspectives that are discussed in Chapter 6. This
work tries to apply the standards of reproducible research. All algorithms are described
in detail (providing a pseudocode) to guarantee a complete description. In particular the
IPOL article Anatomy of SIFT [Rey-Otero and Delbracio 2014] (detailed in Chapter 3)
permits to explore on line on any image pair all intermediate steps of the SIFT method,
to experiment its parameters, and to see their influence on the intermediate steps and on
the final result.

The next sections review in more detail the contributions of each chapter.

Figure 1.1: Examples of SIFT applications (excerpt of the IPOL demo archive).

8

Chapter 2: Computing an exact Gaussian scale-

space

SIFT attains scale invariance thanks to the Gaussian scale-space, a multi-scale image
representation simulating the family of all possible zoom-outs through increasingly blurred
versions of the input image. The continuous Gaussian scale-space of an image u(x) defined
for every x = (x, y) ∈ R

2 is the function

v : (σ,x) 7→ Gσu(x),

where Gσu(x) denotes the convolution of u(x) with a Gaussian kernel of standard deviation
σ > 0 (the scale), namely

Gσu(x) :=

∫
Gσ(x′)u(x− x′)dx′, with Gσ(x) =

1

2πσ2
e−

‖x‖2

2σ2 .

The Gaussian convolution is the cornerstone of several image processing algorithms
either as a fast pre-process to increase noise robustness before applying another algorithm,
or as the fundamental operator in scale-space theory [Iijima et al. 1974; Lindeberg 1993;
Sporring et al. 1997; Witkin 1984]. In SIFT, the Gaussian kernel acts as an approximation
of the optical blur introduced in the camera (represented by its point spread function).
The Gaussian approximation is convenient because, among other things, it satisfies the
semi-group property

GσGγu(x) = G√
σ2+γ2u(x).

In particular, this permits to simulate distant snapshots from closer ones. Thus, the
scale-space can be seen as a stack of images, each one corresponding to a different zoom
factor.

What is the discrete counterpart of this continuous operator? Could it be defined to
satisfy the properties of the continuous Gaussian convolution? Numerous algorithms have
been proposed for approximating the Gaussian convolution in digital images [Getreuer
2013]. In Chapter 2, we discuss and numerically analyze the precision of three differ-
ent alternatives for defining a discrete counterpart to the continuous Gaussian operator,
namely, the discrete convolution with Gaussian kernel samples, Lindeberg’s discrete scale-
space smoothing [Lindeberg 1993] (which consists in computing the solution of a spatial
discretization of the heat equation), and the Fourier based convolution. We focus on low
blur levels, that are crucial for the scale-space accuracy.

We use the semi-group property for measuring the accuracy of each of the analyzed
methods. In particular, we test if multiple iterations of the same Gaussian convolution
produce the same result as a single convolution with blur level foretold by the semi-group
property. An example of such experiment is displayed in Figure 1.2 where the direct
convolution and the multiple iterations are performed on the image of a sampled Gaussian
function and where a Gaussian function is fitted to the result, to measure the standard
deviation of the resulting image.

The conclusions are straightforward. The only method that allows to compute accu-
rately the Gaussian scale-space is the Fourier based convolution. This algorithm computes

9

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

σ

√

N
σ

Sampled Gaussian kernel

1 × G√

Nσ

N × Gσ

theoretical

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

σ

√

N
σ

Lindeberg smoothing method

1 × G√

Nσ

N × Gσ

theoretical

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

σ

√

N
σ

DCT

1 × G√

Nσ

N × Gσ

theoretical

(i) (ii) (iii)

Figure 1.2: Using the semi-group property for measuring the accuracy of three Gaussian convolution
methods. A Gaussian convolution of parameter

√
Nσ is compared to N = 10 iterations of a Gaussian

convolution of parameter σ for different values of σ. The estimated blur levels for the direct and iterated
filters are plotted as a function of σ for: (i) the discrete convolution with Gaussian kernel samples, (ii)
Lindeberg’s discrete scale-space smoothing and (iii) the Fourier based convolution. The theoretical
(expected) value

√
Nσ is plotted in black.

exactly the continuous Gaussian convolution at the cost of two DFTs and one operation
per pixel:

Gσ ∗ u(x, y) =

(−⌊M2 ⌋+M−1)∑

m=−⌊M
2
⌋

(−⌊N2 ⌋+N−1)∑

n=−⌊N
2
⌋

ũm,nĜσ

(
2πm

M
,

2πn

N

)
e

2iπmx
M e

2iπny
N ,

where Ĝσ(2πmM , 2πnN) = e
−σ2π2

2

(

(2m
M)

2
+(2n

N)
2
)

and ũm,n are the DFT coefficient of a M ×N
image. The discrete convolution with samples from a Gaussian kernel is accurate only if
the applied blur level is large enough to avoid aliasing artifacts (i.e., σ > 0.8). Although
Lindeberg’s discrete scale-space smoothing method satisfies the semi-group property, it
introduces a bias resulting in a lower amount of blur applied.

Evident though they are, these conclusions are vital in the goal of getting a full un-
derstanding of the performance and possible limitations of SIFT implementations. We
therefore use systematically the conclusions and tools of this study in Chapter 4, to build
a perfectly stable scale-space (independent of sampling issues) permitting an unbiased
analysis of the SIFT method.

Chapter 3: Anatomy of the SIFT method

The SIFT method is the cornerstone of numerous applications in image processing and
computer vision. Because of this ubiquity, SIFT can easily be mistaken with a simple
pre-process step that extracts from an image a set of descriptors that are invariant to
translations, rotations and zoom-outs. The SIFT algorithm is nevertheless a complex
chain of transformations (as illustrated by the summary in Table 1.1).

The Devil is in the details. For each step of the method, multiple implementations are
acceptable. Choosing one implementation instead of another impacts in turn the method’s
performance and invariance properties. Chapter 3 presents a detailed description and

10

Stage Description

1.

Compute the Gaussian scale-space
in: u image
out:v scale-space

2.

Compute the Difference of Gaussians (DoG)
in: v scale-space
out: w DoG

3.

Find candidate keypoints (3d discrete extrema of DoG)
in: w DoG
out: {(xd, yd, σd)} list of discrete extrema (position and scale)

4.

Refine candidate keypoints location with sub-pixel precision
in: w DoG and {(xd, yd, σd)} list of discrete extrema
out: {(x, y, σ)} list of interpolated extrema

5.

Filter unstable keypoints due to noise
in: w DoG and {(x, y, σ)}
out: {(x, y, σ)} list of filtered keypoints

6.

Filter unstable keypoints laying on edges
in: w DoG and {(x, y, σ)}
out: {(x, y, σ)} list of filtered keypoints

7.

Assign a reference orientation to each keypoint
in: (∂mv, ∂nv) scale-space gradient and {(x, y, σ)} list of keypoints
out: {(x, y, σ, θ)} list of oriented keypoints

8.

Build the keypoints descriptor
in: (∂mv, ∂nv) scale-space gradient and {(x, y, σ, θ)} list of keypoints
out: {(x, y, σ, θ, f)} list of described keypoints

Table 1.1: Summary of the SIFT algorithm.

11

implementation of the SIFT method. From the computation of the Gaussian scale-space of
an input image (see Figure 1.3) to the extraction and encoding of keypoint feature vectors
(see Figure 1.4), the SIFT algorithm is described in a unequivocal way with pseudocodes.
This contributes to a detailed dissection of the method and to a careful presentation of
each of its design parameters. As part of a submission to the journal of reproducible
research in Image Processing IPOL, this detailed description as well as the source code
have been peer-reviewed. A companion online demonstrator allows the reader to use SIFT
and individually vary each parameter to analyze its impact on the algorithm results. Since
its publication in December 2014, more than 800 online experiments have been recorded in
the IPOL archive. Additionally, the Anatomy of SIFT has been used as teaching material
at the graduate school of École Normale Supérieure de Cachan in 2013 and 2014.

v1
1

δ1 = 0.5
σ1
1 = 1.0

v2
2

δ2 = 1.0
σ2
2 = 2.5

v3
2

δ3 = 2.0
σ3
2 = 5.1

v4
2

δ4 = 4.0
σ4
2 = 10.2

v5
3

δ5 = 8.0
σ5
3 = 25.6

v5
5

δ5 = 8.0
σ5
5 = 40.6

Figure 1.3: The bottom image summarizes the succession of subsamplings and Gaussian convolutions
that results in the SIFT scale-space. All images in the scale-space are computed directly or indirectly
from the input image (in blue). Each image is characterized by its blur level and its inter-pixel dis-
tance.The scale-space is split into octaves: sets of images sharing a common sampling rate. Each
octave is composed of three scales (in red) and other three auxiliary scales (in gray).

Chapter 4: An analysis of scale-space sampling and

keypoints detection in SIFT

This chapter uses the fully consistent numerical implementation of the scale-space in Chap-
ter 2 and the detailed SIFT parameter analysis of Chapter 3. Its first goal is to assess if

12

Figure 1.4: The construction of the SIFT descriptor.

indeed the SIFT method successfully detects all the DOG scale-space extrema regardless
of sampling issues. This requires the expansion of the method to allow for variations in all
of its parameters, to transform it into an exact method. In that way it becomes possible to
compare the exact method (more precisely a strongly oversampled scale-space version) to
the original one, and to evaluate the completeness and stability of the detected keypoints.
The SIFT algorithm has proven to be sufficiently scale invariant to be used in numerous
applications. In practice, however, scale invariance may be weakened by various sources
of error inherent to the SIFT implementation affecting detections stability and accuracy.
The density of the sampling of the Gaussian scale-space and the level of blur in the input
image are two of these sources. Chapter 4 presents an empirical analysis of their impact
on the extracted keypoints stability.

This empirical analysis relies on a strict image simulation framework. Such framework
allows to simulate images that are rigorously consistent with the SIFT camera model. In
particular, in this model, the camera point spread function is assumed to be a Gaussian
function. Furthermore, it allows to control the camera blur level, aliasing and noise level
in the input image, and therefore to measure how invariant is SIFT in a variety of realistic
scenarios.

This systematic analysis has both methodological and practical implications, on how
to compare feature detectors and on how to improve the SIFT algorithm. We show that
increasing the scale-space sampling (both in scale and in space) improves the stability of
the detections and the precision of their localization (see Figure 1.5 which reports on the
precision of the detections in a series of zoom-outs). We show however, that even with
a significantly oversampled scale-space numerical errors prevent from achieving perfect
stability. The filtering of unstable keypoints is also explored. Usual strategies to discard
unstable detections are shown to be inefficient. Indeed, the ROC (receiver operating
characteristic) curve shown in Figure 1.6 illustrates that none of the simple features based
on the detector response manage to faithfully separate the stable detections from unstable
ones. While aliasing in the input image does not affect the number of detections, it affects
stability. For a sufficiently large camera blur c > 0.6, the impact of aliasing is shown to be
negligible. We also investigate, the effects of a wrong assumption by SIFT on the camera
blur as well as the influence of image noise.

13

0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

1200

1400

% of zoom−outs

k
e

y
p

o
in

ts

Keypoints appearing in at least
 x% of the zoom outs

nspo=3, discrete

nspo=3, Ninterp=2, maxoffset 0.6

nspo=15, discrete

nspo=15, Ninterp=2, maxoffset 0.6

(a)

4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

nspo

Precision of stable keypoints

discrete

Ninterp=2, maxoffset=0.6

dmin

(b)

Figure 1.5: Influence of scale-space sampling and extrema refinement on the invariance to zoom-outs.
A set of zoomed-out images was simulated and the keypoints extracted. (a) The number of keypoints
appearing in at least a certain percentage of the simulated images for different scale-space sampling
and refinements. The best performance is obtained by significantly upsampling the scale-space and
by refining the extrema with the local interpolation. In this case, most of the detected keypoints are
present in all the simulated images. On the other hand, the original SIFT sampling leads to low stability
even with the extrema refinement step. (b) Mean precision of stable keypoints location (appearing in
at least 50% of the zoom-outs) plotted as a function of the sampling rate. The local refinement of
the extrema position significantly increases the precision of the extrema detection. Also, sampling the
scale-space finer than what is proposed in SIFT allows to better localize the extrema.

% Unstable Det. Filtered (Specificity)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 S

ta
b
le

 D
e
t.
 A

c
c
e
p
te

d

(S

e
n
s
it
iv

it
y
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC

DoG
difference(DOG)
DOG 3d Laplacian
cond(DOG 3D Hessian)

Figure 1.6: Filtering keypoints that are unstable to changes in the scale-space sampling. We consider
features computed from the SIFT detector response, namely the difference of Gaussian (DoG). The
considered features are the extremum DoG value, the difference between the extremum DoG value
and the adjacent samples in the scale-space, the DoG 3d Laplacian at the extremum and finally the
condition number of the DoG 3d Hessian at the extremum. The ROC curves illustrate the performance
of each feature. A point in a ROC curve indicates the proportion of non-filtered stable keypoints (good
detections – sensitivity) as a function of the filtered unstable ones (good removals – specificity) for a
particular threshold value. A perfect feature should produce a ROC that is always one. None of the
tested features completely allows to separate the unstable from the stable detections. Also, the worst
feature for eliminating keypoints unstable to changes in the scale-space sampling is the DoG value.

14

Chapter 5: Is repeatability an unbiased criterion

for ranking feature detectors?

Because so many computer vision applications rely on finding local correspondences be-
tween different images, new keypoint detectors and descriptors are constantly being pro-
posed, each one claiming to perform better than the preceding ones. Figure 1.7 shows the
detection maps on the siemens pattern for some of those methods. Most of the detectors
appear to be visually highly redundant. With this symmetric picture as an input, a visual
inspection clearly shows that some of the methods are not rotation invariant. This raises
the question of how to do a fair comparison between very diverse methods.

Over the last decade, such an evaluation has been mainly based on the repeatability
criterion [Mikolajczyk et al. 2005]. The repeatability rate measures the detector’s ability
to identify the same features (i.e., repeated detections) despite variations in the viewing
conditions (blur, illumination, rotations, homotheties, homographies, etc). Defined as the
ratio between the number of keypoints simultaneously present in all the images of the series
(repeated keypoints) over the total number of detections, it can be seen as a measure of
the detector’s efficiency. Indeed, the repeatability rate incorporates two struggling quality
criterion: the number of repeated detections (i.e., potential correspondences) should be
maximized while the total number of detections should be minimized since the complexity
of the matching grows with the square of the number of detections.

However, because it ignores the keypoints spatial distribution, the repeatability crite-
rion favors redundancy. The following mental experiment illustrates why. Let DET be a
generic keypoint detector, and let DET2 be a variant in which each detection is simply
counted twice. The number of repeatable keypoints and the total number of detections
are both artificially doubled, leaving the repeatability rate unchanged. However, although
the number of costly descriptor computations has doubled, no extra benefit can be ex-
tracted from the enlarged set of repeated keypoints. The classic repeatability rate fails to
report that the benefit over cost ratio of DET2 is half the one of DET. This explains why
methods producing correlated detections may misleadingly get better repeatability ratios.
Additionally, the reference and widely used code provided by the authors of [Mikolajczyk
et al. 2005] does not implement the criterion defined in their article, casting a doubt on
the conclusions of all benchmarks that have used this popular code. In Chapter 5, we
explain the differences between the criterion published in [Mikolajczyk et al. 2005] and
what is actually implemented in the code provided by the authors.

The bias towards redundant detectors motivated the introduction of a variant of the re-
peatability rate that takes into account the descriptor overlap. To measure the descriptors
overlap, each detection (xk,Σk) is assigned an elliptical mask function fk(x)

fk(x) = Ke
− 1

2ζ2
(x−xk)

TΣ−1
k (x−xk),

if (x− xk)TΣ−1k (x− xk) ≤ ρ2 and 0 elsewhere, with parameters ρ and ζ derived from the
descriptor’s design.

Denoting K the set of all detections, the sum of all descriptor masks
∑

k∈K fk(x) yields
a final map showing how much each image pixel contributes to the set of all computed
descriptors. Similarly, the maximum taken over the set of all detections maxk∈K fk(x),
measures the contribution of pixel x to the best descriptor. The sum of this maximum

15

over the image domain

Knr :=

∫

Ω

(
max
k∈K

fk(x)

)
dx (1.1)

measures the number of non-redundant keypoints. This value can be interpreted as a count
of the independent detections. Replacing in the repeatability rate the number of repeated
detection by the number of non-redundant repeated keypoints yields the non-redundant
repeatability rate.

We apply this variant to revisit the popular benchmark by Mikolajczyk et al. [2005],
comparing twelve classic or recently introduced feature detectors. Figure 1.8 shows the
average repeatability and non redundant repeatability of each method on the Oxford
sequence plotted as a function of the average number of detections. Experimental evidence
shows that the hierarchy of these feature detectors is severely disrupted by the amended
comparator. Indeed, the methods that happen to be the most redundant (namely the
Hessian and Harris based methods [Mikolajczyk et al. 2005]) are also the methods that
perform best according to the classic repeatability (see Figure 1.8 (a) Once redundancy
is taken into account, the method that gives the highest score while providing numerous
keypoints is the SIFT method (see Figure 1.8 (b). We also combine a common descriptor
technique to all methods and evaluate their matching performances, which seem to be in
agreement with the proposed repeatability criterion.

SIFT EBR IBR Harris-Laplace

Hessian-Laplace Harris-Affine Hessian-Affine MSER

SURF SFOP BRISK SIFER

Figure 1.7: Detected keypoints on the siemens star test image. Since the publication of SIFT,
the image processing community has been buried in an avalanche of feature detectors, all claiming to
outperform the competition.

16

0 0.5 1

0

0.2

0.4

0.6

0.8

1

Normalized number of detections

N
o

rm
a

liz
e

d
 r

e
p

e
a

ta
b

ili
ty

0 0.5 1

0

0.2

0.4

0.6

0.8

1

Normalized number of detections

N
o

rm
a

liz
e

d
 n

o
n

−
re

d
u

n
d

a
n

t
re

p
e

a
ta

b
i

sift harlap heslap haraff hesaff surf

sifer brisk sfop ebr ibr mser

sift single

Figure 1.8: Average classic repeatability and non-redundant repeatability as a function of average
number of detections, normalized over various sequences. A method performs optimally if it is simul-
taneously extremal in ordinate and in abscissa, and performs well if it is extremal in at least one of
the coordinates. Methods that go up between the classic and the non-redundant repeatability, such as
SIFT, are the methods that are less redundant in average.

Summary of contributions

• A review of algorithms used for Gaussian convolution with a focus on Gaussian scale-
space computation and a proof that only an exact Fourier based method achieves
full consistency with the scale-space requirements.

• A dissection of the SIFT implementation with a peer-reviewed source code and an
online demonstrator permitting to vary all parameters and explore their impact on
each single intermediate step for the algorithm (scale-space, keypoints, orientation
histograms, descriptor, final matching).

• A thorough analysis of the empirical scale invariance using a strict simulation frame-
work.

• The identification of a bias in the most popular performance metric for keypoint
detectors. Proposition of an amended criterion and a revision of the benchmark of
many state of the art algorithms. In fact, this analysis shows that the SIFT method
has not been significantly improved by more recent methods and further justifies
the importance of analyzing thoroughly this classic tool.

List of publications

The work in this thesis has led to the publication of the following articles:

• I. Rey-Otero and M. Delbracio. Computing an exact Gaussian scale-space. Sub-
mitted to Image Processing On Line, April 2014. Under review. Conditionally
accepted. http://www.ipol.im/pub/pre/117/.

17

http://www.ipol.im/pub/pre/117/

• I. Rey-Otero, J.M. Morel and M. Delbracio. An Analysis of scale-space sampling in
SIFT. In Image Processing (ICIP), 2014 IEEE International Conference on. pages
4847-4851.

• I. Rey-Otero and M. Delbracio. Anatomy of the SIFT Method. Image Processing
On Line, 4:370396, 2014. http://www.ipol.im/pub/art/2014/82/.

• I. Rey-Otero, M. Delbracio and J.M. Morel. Comparing feature detectors: A bias
in the repeatability criteria. In Image Processing (ICIP), 2015 IEEE International
Conference.

• I. Rey-Otero and M. Delbracio. Is repeatability an unbiased criterion for ranking
feature detectors. Submitted to SIAM Journal on Imaging Sciences, January 2014,
Accepted.

• I. Rey-Otero, J.M. Morel and M. Delbracio. An analysis of scale-space sampling
and keypoints detection in SIFT. In preparation.

Source codes and demos

Being able to reproduce experiments is a major problem in computer science. This work
tries to apply the standards of reproducible research. To that end, all the codes used in
the course of this work are documented and distributed freely:

• Chapter 2: https://github.com/ivreo/gaussian_convolution

• Chapter 3: https://github.com/ivreo/sift_anatomy

• Chapter 4: https://github.com/ivreo/sift_anatomy_extra

• Chapter 5: http://dev.ipol.im/~reyotero/comparing_20140906.tar.gz

Additionnaly, two of the produced articles were published in the IPOL journal where they
can be tested online. This open access journal seeks to mitigate the reproducibility problem
by publishing for each article a precise algorithmic description, a reference source code
and a demo facility. The companion demo of Computing an exact Gaussian scale-space
IPOL publication is available at http://demo.ipol.im/demo/117/ while the companion
demo of the Anatomy of the SIFT Method IPOL publication can be found at http:

//demo.ipol.im/demo/82/.

18

http://www.ipol.im/pub/art/2014/82/
https://github.com/ivreo/gaussian_convolution
https://github.com/ivreo/sift_anatomy
https://github.com/ivreo/sift_anatomy_extra
http://dev.ipol.im/~reyotero/comparing_20140906.tar.gz
http://demo.ipol.im/demo/117/
http://demo.ipol.im/demo/82/
http://demo.ipol.im/demo/82/

2 Computing an exact Gaussian scale-space

Gaussian convolution is one of the most important algorithms in image pro-
cessing. This chapter focuses on the computation of the Gaussian scale-space,
a family of increasingly blurred images, responsible, among other things, for
the scale-invariance of the SIFT method. We discuss and numerically analyze
the precision of three different alternatives for defining a discrete counterpart
to the continuous Gaussian smoothing operator. This study is focused on low
blur levels, that are crucial for the scale-space accuracy.

2.1 Introduction

The Gaussian smoothing operator is one of the most popular tools used in digital image
processing. This classic operator has been extensively used, either as a fast pre-process
to increase noise robustness before applying another algorithm, or as the fundamental
operator in scale-space theory [Iijima et al. 1974; Lindeberg 1993; Sporring et al. 1997;
Witkin 1984].

Let u(x) be a continuous image defined for every x = (x, y) ∈ R
2. The continu-

ous Gaussian smoothing operator is defined as the convolution operator on R
2 with the

isotropic Gaussian function of integral equal to one:

Gσu(x) :=

∫

R2

Gσ(x′)u(x− x′)dx′, with Gσ(x) =
1

2πσ2
e−

|x|2

2σ2 ,

where the Gaussian kernel is parameterized by its standard deviation σ.

This operator is the cornerstone of several image processing algorithms particularly
used for building the scale-space, a multi-scale image representation. The rationale is that
the Gaussian function is the only kernel that satisfies the following properties [Alvarez
et al. 1993; Babaud et al. 1986; Koenderink 1984; Lindeberg 1993; Witkin 1984; Weickert
et al. 1999]:

1. Linearity. Gσ(λu(x) + µv(x)) = λGσu(x) + µGσv(x) for any real λ, µ;

2. Shift invariance. If Tτu(x) := u(x − τ) denotes the translation of parameter τ ,
then Gσ(Tτu)(x) = Tτ (Gσu)(x);

3. Scale invariance. If Hλu(x) := u(λx) denotes an expansion by a factor λ−1, then
Gσ(Hλu)(x) = Hλ(Gσ′u)(x) with σ′ = λσ;

19

4. Rotation invariance. If Rθu(x) := u(Rθx) denotes the rotation of angle −θ, then
Gσ(Rθ)u(x) = Rθ(Gσ)u(x);

5. Non negativity. Gσ(x) ≥ 0, ∀(x, σ) ∈ R
2 × R+;

6. Semi-group. Gσ2(Gσ1u)(x) = G√
σ2
1+σ2

2
u(x).

Additionally, it can be easily checked that if u is continuous and bounded, then (σ,x) 7→
Gσu(x) is the solution of the heat diffusion equation ∂v/∂σ = σ∆v with initial condition
v(0,x) = u(x) (see Guichard et al., Chapter 2).

What is the discrete counterpart of this continuous operator? Could it be defined to
satisfy the properties of the continuous Gaussian convolution? Despite being central in
image processing, the Gaussian convolution is generally crudely approximated by discrete
convolutions or even box filters. Numerous algorithms have been proposed for approximat-
ing the Gaussian convolution in digital images. We concentrate here on three of the most
relevant ones for the accurate computation of the Gaussian scale-space, namely, the Fourier
based convolution, the discrete convolution with Gaussian kernel samples and Lindeberg’s
discrete scale-space smoothing [Lindeberg 1993]. These methods can be described either
as approximations of the continuous Gaussian convolution or as linear filters designed to
satisfy some of the previously introduced properties expressed in the discrete framework.
Other methods, not discussed here, include the use of recursive filters [Young and Van Vliet
1995; Deriche 1993] or the iteration of extended box filters [Gwosdek et al. 2012]. They
provide fast and accurate approximations of the Gaussian convolution for large σ values
but they crudely approximate the Gaussian kernel for low values of σ (typically σ ≤ 1),
making them unsuitable for an accurate computation of the Gaussian scale-space. For a
complete survey regarding speed and performance on the Gaussian convolution for large
values of σ we refer the reader to [Getreuer 2013].

In this chapter, we propose to use the semi-group property for measuring the accu-
racy of each of the analyzed methods. In particular, we test if multiple iterations of the
same Gaussian convolution produces the same result as a single convolution with blur
level foretold by the semi-group property. The conclusions are straightforward. The only
method that allows to compute accurately the Gaussian scale-space is the Fourier based
convolution. The discrete convolution with samples from a Gaussian kernel is accurate
only if the applied blur level is large enough to avoid aliasing artifacts (i.e., σ > 0.8).
Although Lindeberg’s smoothing method satisfies the semi-group property, it introduces
a bias in the applied amount of blur being significantly lower. Evident though they are,
these conclusions may have a strong impact on the conception and performance of algo-
rithms using the Gaussian scale-space.

The rest of the chapter is organized as follows. Section 2.2 introduces the mathe-
matical tools used to justify the Fourier based convolution. Each of the three discussed
methods is explained in Section 2.3 where a detailed implementation with a mathematical
interpretation is given. In Section 5.5 we present some numerical experiments and we
finally conclude in Section 4.7.

20

2.2 Mathematical Preliminaries

2.2.1 Notations

In the sequel, uk,l ∈ R for k = 0, . . . ,M − 1 and l = 0, . . . , N − 1 denote the samples of a
digital image of size M ×N . By a slight abuse of notation, we will denote this image by
(uk,l). We denote by ⌊·⌋ and ⌈·⌉ the floor and ceiling functions respectively.

The Fourier transform of f ∈ L1(R2) is the function f̂ , defined for all (ξ, η) ∈ R
2 by

f̂(ξ, η) =

∫

R2

f(x, y)e−i(xξ+yη)dxdy.

The Discrete Fourier Transform (DFT) of (uk,l) is defined as the sequence

ũm,n =
1

MN

M−1∑

k=0

N−1∑

l=0

uk,le
− 2iπmk

M e−
2iπnl
N

for m = −⌊M/2⌋, . . . ,−⌊M/2⌋+ M − 1 and n = −⌊N/2⌋, . . . ,−⌊N/2⌋+ N − 1.

The Inverse Discrete Fourier Transform (IDFT) of (ũm,n) with m = −⌊M/2⌋, . . . ,−⌊M/2⌋+
M − 1 and n = −⌊N/2⌋, . . . ,−⌊N/2⌋+ N − 1 is defined as the sequence

uk,l =

(−⌊M2 ⌋+M−1)∑

m=−⌊M
2
⌋

(−⌊N2 ⌋+N−1)∑

n=−⌊N
2
⌋

ũm,ne
2iπmk

M e
2iπnl
N

for k = 0, . . . ,M−1 and l = 0, . . . , N−1. The DFT and IDFT are inverse transformations:
IDFT ◦ DFT = Id.

2.2.2 DFT and DCT interpolations

A convenient continuous image model is to represent images as trigonometric polynomials,
or equivalently, periodic band-limited functions. The limited bandwidth of camera lenses
motivates this approach. The periodic extension of the signal is arbitrary, as any other
signal extension, but it is particularly convenient for Fourier interpolation.

We will say that P is a bi-dimensional trigonometric polynomial of degrees ⌊M2 ⌋ and
⌊N2 ⌋, and periodicities a and b, if and only if

P (x, y) =

(−⌊M2 ⌋+M−1)∑

m=−⌊M
2
⌋

(−⌊N2 ⌋+N−1)∑

n=−⌊N
2
⌋

am,ne
2iπmx

a e
2iπny

b ,

where am,n ∈ C for m = −⌊M2 ⌋, . . . ,−⌊M2 ⌋+ M − 1 and n = −⌊N2 ⌋, . . . ,−⌊N2 ⌋+ N − 1.
The following proposition, characterizes the polynomial coefficients that satisfy an inter-
polation criterion.

Proposition 1. (The DFT Interpolation) There exists a unique trigonometric polynomial
u of degrees ⌊M2 ⌋ and ⌊N2 ⌋, and of periodicities a and b, that satisfies the interpolation
condition

u

(
k
a

M
, l

b

N

)
= uk,l, for k = 0, . . . ,M − 1 and 0, . . . , N − 1,

21

namely

u(x, y) =

(−⌊M2 ⌋+M−1)∑

m=−⌊M
2
⌋

(−⌊N2 ⌋+N−1)∑

n=−⌊N
2
⌋

ũm,ne
2iπmx

a e
2iπny

b

where the polynomial coefficients ũm,n are computed by the DFT of (uk,l).

From now on, we will consider without loss of generality that a = M and b = N . This
can be fulfilled by an appropriate parameterization of R2.

DCT interpolation

When manipulating images through the DFT interpolation, the digital image is implicitly
extended to Z

2 via periodization. This eventually leads to strong discontinuities at image
borders. The discrete cosine transform (DCT) interpolation reduces the discontinuities
caused by the brutal periodization by first symmetrizing the image.

The DCT interpolation of the digital image (uk,l) of size M×N is equivalent to the DFT
interpolation of the symmetrized signal (̊uk,l) of size 2M×2N where ůk,l = usM (k),sN (l) with
sM (k) = min(k, 2M − 1− k) for 0 ≤ k ≤ 2M − 1 and sN (l) is defined similarly. The DFT
interpolation (Proposition 1) applied to this particular case defines the DCT interpolation
as the only trigonometric polynomial ů of degrees M and N and of periodicities 2M and
2N that interpolates exactly the symmetrized image

ů (k, l) = ůk,l, for k = 0, . . . , 2M − 1 and l = 0, . . . , 2N − 1

namely,

ů(x, y) =

M−1∑

m=−M

N−1∑

n=−N

˜̊um,ne
iπmx
M e

iπny
N .

Thus, the DCT interpolation can be expressed as

ů(x, y) =
M−1∑

m=0

N−1∑

n=0

αmαnDCT(u)m,n cos

(
π(x + 1/2)m

M

)
cos

(
π(y + 1/2)n

N

)
,

with αm = 1/2 when m = 0 and αm = 1 elsewhere, and with (DCT(u)m,n) denoting the
type-II DCT coefficients of image (uk,l) defined for m = 0, . . . ,M −1 and n = 0, . . . , N −1
by

DCT(u)m,n =
1

MN

M−1∑

l=0

N−1∑

k=0

uk,l cos

(
π(k + 1/2)m

M

)
cos

(
π(l + 1/2)n

N

)
.

Since ů(k, l) = uk,l for k = 0, . . . ,M − 1 and l = 0, . . . , N − 1, the inverse DCT
transform IDCT, is computed by

IDCT(u)k,l =

M−1∑

m=0

N−1∑

n=0

αmαnum,n cos

(
π(k + 1/2)m

M

)
cos

(
π(l + 1/2)n

N

)
,

with αm = 1/2 when m = 0 and αm = 1 elsewhere.

22

2.2.3 The convolution theorem

Let uk,l ∈ R for k = 0, . . . ,M − 1 and l = 0, . . . , N − 1 be a real-valued digital image of
size M ×N , and let u(x, y) be its DFT interpolation,

u(x, y) =

(−⌊M2 ⌋+M−1)∑

m=−⌊M
2
⌋

(−⌊N2 ⌋+N−1)∑

n=−⌊N
2
⌋

ũm,ne
2iπmx

M e
2iπny

N

where (ũm,n) = DFT ((uk,l)). The following theorem states that the convolution of the
DFT interpolation of a digital image with a linear filter can be computed exactly by
properly weighting its DFT coefficients. This result plays an important role in the present
framework as the link between the continuous image model and the discrete computations
that in practice we are able to compute.

Theorem 1. The convolution of the trigonometric polynomial

u(x, y) =

(−⌊M2 ⌋+M−1)∑

m=−⌊M
2
⌋

(−⌊N2 ⌋+N−1)∑

n=−⌊N
2
⌋

ũm,ne
2iπmx

M e
2iπny

N

with a function f ∈ L1(R2), is the trigonometric polynomial

f ∗ u(x, y) =

(−⌊M2 ⌋+M−1)∑

m=−⌊M
2
⌋

(−⌊N2 ⌋+N−1)∑

n=−⌊N
2
⌋

ũm,nf̂

(
2πm

M
,

2πn

N

)
e

2iπmx
M e

2iπny
N .

Proof. Let us consider the pure wave of frequency ξ ∈ R
2, gξ(x) = eiξ·x. Then,

f ∗ gξ(x) =

∫

R2

f(x′)gξ(x− x′)dx′ = eiξ·x
∫

R2

f(x′)e−iξ·x
′
dx′ = f̂(ξ)gξ(x),

which is a pure wave of the same frequency. The result follows from the linearity of
convolution.

This theorem can be extended to the DCT interpolation by considering the sym-
metrized 2M × 2N image.

2.3 Analysis of three digital Gaussian convolution

algorithms

Several algorithms have been proposed for the Gaussian convolution in digital images. This
chapter looks at three of them, the Fourier based convolution, the discrete convolution
with samples from the Gaussian kernel and Lindeberg’s discrete scale-space smoothing.
In what follows we describe each of these algorithms.

23

2.3.1 DFT convolution

Since only a finite set of the image values are known, it is not possible to directly compute
the continuous Gaussian convolution. However, if for example, we accept that the image
is band-limited and periodic, then we can fully recover the image values at the continuous
domain. This is done by the DFT interpolation presented in Proposition 1. Moreover, if
we accept these convenient hypotheses, the continuous Gaussian convolution can be com-
puted exactly in the Fourier domain at the cost of two DFTs and one operation per pixel,
as indicated by the convolution theorem (Theorem 1).

Remark. The Fourier transform of the isotropic Gaussian kernel Gσ(x, y) with standard

deviation σ is Ĝσ(ξ, η) = e−
σ2

2 (ξ2+η2).
Applying Theorem 1 to the Gaussian kernel, the continuous Gaussian convolution of the
DFT interpolation u(x, y) of digital image (uk,l) is

Gσ ∗ u(x, y) =

(−⌊M2 ⌋+M−1)∑

m=−⌊M
2
⌋

(−⌊N2 ⌋+N−1)∑

n=−⌊N
2
⌋

ũm,nĜσ

(
2πm

M
,

2πn

N

)
e

2iπmx
M e

2iπny
N ,

where Ĝσ(2πmM , 2πnN) = e
−σ2π2

2

(

(2m
M)

2
+(2n

N)
2
)

.

A description of the method is presented in Algorithm 1 while Figures 2.1 and 2.2
provide illustrations of the algorithm behavior in the image and Fourier domains.

Since this algorithm implements the continuous Gaussian convolution (assumed an
underlying continuous image model), all properties of the continuous Gaussian convolution
are verified. However, using the DFT interpolation amounts to implicitly assuming that
the digital image originates from sampling a band-limited periodic function below the
Nyquist rate. The assumption that the image is well sampled is often unrealistic. Although
for natural images, the low-pass filter behavior of digital cameras justifies the assumption
of an underlying band-limited function, the frequency band will not be necessarily the
same as the one covered by the sampling. The periodic assumption is unnatural. The
forced periodization can lead to strong discontinuities at image borders (see Figure 2.1),
which contradicts in some extent the band limited-assumption, causing ringing. These
artifacts can be reduced by using the DCT variant.

DCT convolution

Since the DCT interpolation of an M ×N image is equivalent to the DFT interpolation of
the 2M ×2N mirror symmetrized image, Theorem 1 can be reformulated in terms of DCT
sequences. The underlying continuous image model is then a trigonometric polynomial
of degrees M and N and periodicities 2M and 2N . The continuous convolution of the
DCT interpolation u(x, y) of the digital image (uk,l) with a Gaussian kernel of standard
deviation σ is

Gσ ∗ u(x, y) =
M−1∑

m=−M

N−1∑

n=−N
DCT(u)m,nĜσ

(πm
M

,
πn

N

)
e

iπmx
M e

iπny
N ,

24

Figure 2.1: Illustrating the continuous Gaussian convolution through DFT interpolation. The first
column illustrates the adopted continuous image model. The image is defined on the R

2 plane. It is
periodic u(x + kM, y + lN) = u(x, y) (top) and band-limited with supp(û) ∈ [−π, π]2 (bottom). The
borders of the digital image are represented by a red box. The green box indicates [−π, π]2, the domain
relative to the sampling. The domain is extended to illustrate that the continuous image is periodic
and band-limited. The second column illustrates the Fourier transform of the Gaussian kernel defined
on the R

2 plane for σ = 0.8. The convolution in the spatial domain is equivalent to a multiplication
in the Fourier domain. The last column illustrates the periodic trigonometric polynomial relative to
this Gaussian convolution (top) and a representation of the Dirac amplitudes in its Fourier transform
(bottom). It is a classic convention, also adopted here, that a continuous digital image is displayed by
showing a constant value on each pixel, equal to its sampled value at the pixel center. Thanks to the
optical blur of the screen and of our vision, the resulting visual is a decent representation of the smooth
ideal image.

where Ĝσ(πmM , πnN) = e
−σ2π2

2

(

(m
M)

2
+(n

N)
2
)

. The complexity of the process is reduced by
using the symmetry of the DCT coefficients. The continuous Gaussian convolution involves
weighting the M ×N type-II DCT coefficients. The algorithm is detailed in Algorithm 2.
Figure 2.3 shows a Gaussian DCT smoothing on a grayscale image. This figure illustrates
how the artifacts induced by the implicit DFT periodization are removed with the DCT
variant.

2.3.2 Sampled Gaussian kernel convolution.

The most common discrete approximation of the Gaussian convolution is obtained by
sampling the truncated continuous Gaussian kernel. Although being straightforward to
implement, as we will show it does not satisfy the semi-group property for small σ values.

The continuous 1D Gaussian kernel of standard deviation σ is truncated at width 2Kσ;
typical values of K are 3 or 4 to gather most of the signal’s energy. Then, it is sampled
to produce the discrete filter (gk)k of width 2⌈Kσ⌉+ 1 and normalized to sum to 1,

gk = Se−
k2

2σ2 , k = −⌈Kσ⌉, . . . , ⌈Kσ⌉ and
∑

gk = 1.

25

Input Image σ = 1.0 σ = 3.0

Fourier spectrum
modulus

σ = 1.0 σ = 3.0

Figure 2.2: Grayscale input image and the results of applying the DFT Gaussian convolution with
parameter σ = 1.0, 3.0. In the bottom row, the respective moduli of the Fourier spectra show the
attenuation of high frequencies. The high values in the Fourier spectra along the vertical and horizontal
axes are caused by the strong discontinuities when periodizing the image.

The convolution with the sampled Gaussian kernel algorithm [Getreuer 2013] (detailed in
Algorithm 3) consists in the computation of the separable 2D discrete convolution

vk,l =

⌈Kσ⌉∑

k′=−⌈Kσ⌉
gk′

⌈Kσ⌉∑

l′=−⌈Kσ⌉
gl′ u

′
k−k′,l−l′ ,

where u′ denotes the extension of u to the Z
2 plane either by (M,N)-periodization or

symmetrization followed by (2M, 2N)-periodization. Formally

u′(k, l) = u(sM (k), sN (l)) with sM (k) = k mod M

for periodic extension, or

sM (k) = min(k mod 2M, 2M − 1− (k mod 2M))

in case of prior symmetrization with respect to −1/2. The pseudocode in Algorithm 3 incor-
porates the symmetric extension of the signal, the modification for the periodic extension
is straightforward.

Gaussian kernel aliasing and semi-group property. The Fourier transform of

the Gaussian function Gσ, Ĝσ(ξ, µ) = e−σ
2 ξ2+µ2

2 has no compact support. Thus, the

26

Input Image σ = 1.0 σ = 3.0

Fourier spectrum
modulus

σ = 1.0 σ = 3.0

Figure 2.3: Grayscale input image and the results of applying the DCT Gaussian convolution with
parameter σ = 1.0, 3.0. In the bottom row, the respective moduli of the Fourier spectra show the
attenuation of high frequencies similar to the case of DFT convolution. The main difference is that in
the DCT Gaussian smoothing, the implicit symmetrization of the image avoids the strong discontinuities
when periodizing.

sampling of the Gaussian kernel never satisfies the band-limited assumption needed by
the Nyquist-Shannon sampling theorem (see e.g., Gasquet and Witomski [1999]). Since
the value of Ĝσ(ξ, µ) at the Nyquist frequency is e−π

2σ2/2, the aliasing is not significant for
σ > 1 [Morel and Yu 2011]. As we will show in the numerical experiments in Section 5.5,
the aliasing of the Gaussian kernel contributes to the lack of semi-group property.

Truncation error. The error due to kernel truncation is shown in Figure 2.4. The
error is very small for large enough values of K (for instance, the error is less than 10−4 for
K ≥ 4). The truncation at ⌈Kσ⌉ also induces oscillations on the spectrum. If (vk,l) and
(vtrunck,l) denote the respective outputs of the convolutions of u with the infinite and the
truncated versions of the sampled Gaussian kernel, then their DFT coefficients are related
by

v̂truncm,n =
M−1∑

m′=0

N−1∑

n′=0

v̂m′,n′D⌈Kσ⌉(2π(m−m
′)/M)D⌈Kσ⌉(2π(n−n

′)/N)

27

for m = −⌊M/2⌋, . . . ,−⌊M/2⌋+M − 1 and n = −⌊N/2⌋, . . . ,−⌊N/2⌋+N − 1 and where DL

denotes the Dirichlet function (also known as the periodic sinc function),

DL(x) =

σin(L+1/2)x)
σin(x/2)

if x 6= 2kπ, k ∈ Z

(−1)k(L−1) if x = 2kπ, k ∈ Z.

The oscillating spectrum due to the convolution with the Dirichlet kernel is noticeable for
small values of K, as can be seen in Figure 2.5.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10
−17

10
−15

10
−13

10
−11

10
−9

10
−7

10
−5

10
−3

10
−1

Truncation Error

σ

K=1

K=2

K=3

K=4

K=5

K=6

Figure 2.4: Impact of Gaussian kernel truncation. The sampled 1D Gaussian kernel gk is trun-
cated at ⌈Kσ⌉ samples. The truncation error is defined as the square root of the total energy loss,√∑

|k|>⌈Kσ⌉ g
2
k, divided by the square root of the total energy of the Gaussian kernel,

√∑
k g

2
k. We

have approximated the total energy of the Gaussian kernel by
∑

|k|≤⌈50σ⌉ g
2
k. The truncation error

decays rapidly with K and becomes smaller than 10−4 for K ≥ 4.

2.3.3 Lindeberg’s discrete scale-space smoothing

Let u be a continuous and bounded signal, then the Gaussian convolution v : σ 7→ Gσu
is the solution of the heat equation ∂v

∂σ = σ∆v with initial condition v(0,x) = u(x).
Equivalently, thanks to the re-parameterization t = σ2/2, v : t 7→ G√2tu is the solution

of the equation ∂v
∂t = ∆v. Lindeberg’s smoothing method [Lindeberg 1993] is based on

computing the solution of a spatial discretization of the equation ∂v
∂t = ∆v.

For a one-dimensional sequence (uk)k∈Z, Lindeberg’s smoothing method consists in
finding vk(t) solution of

∂tvk(t) = ∆discrvk(t), with vk(0) = uk,

where ∆discrvk(t) denotes the 1d Laplacian finite difference scheme ∆discrvk = vk−1−2vk+
vk+1. This solution can be computed via a discrete convolution with the discrete sequence

gLindebergn = e−tIn(t),

28

Sampled Gaussian
kernel truncated at

⌈3σ⌉

Sampled Gaussian
kernel truncated at

⌈4σ⌉

Figure 2.5: Impact of kernel truncation. In the first row, the convolutions of a test image with sampled
Gaussian kernel of standard deviation σ = 4 truncated at ⌈3σ⌉ (left) and ⌈4σ⌉ (right). Second row,
the respective image spectra. Notice the oscillations for a truncation at ⌈3σ⌉ of the sampled Gaussian
kernel.

where t = σ2/2 and In denotes the modified Bessel functions.

For a two-dimensional signal (uk,l)(k,l)∈Z2 , Lindeberg’s smoothing method consists in
solving

∂tvk,l(t) = ∆discr
γ vk,l(t), with vk,l(0) = uk,l,

where ∆discr
γ denotes the following 2D Laplacian finite difference scheme

∆discr
γ u = (1− γ)∆+u + γ∆×u,

with

∆+uk,l = uk+1,l + uk−1,l + uk,l+1 + uk,l−1 − 4uk,l,

∆×uk,l = 1/2(uk+1,l+1 + uk+1,l−1 + uk−1,l+1 + uk−1,l−1)− 2uk,l,

for 0 ≤ γ ≤ 1/2. The parameter γ controls the shape of the Laplacian discrete operator. 1

The smoothed image is computed by Euler’s method. This explicit time marching scheme
consists in applying the following iteration formula

v(pδt)k,l − v((p− 1)δt)k,l
δt

= ∆discr
γ v((p− 1)δt)k,l

1For a thorough analysis of the influence of parameter γ on isotropy, we refer the interested
reader to Lindeberg [1993] pp. 127-134.

29

for 1 ≤ p ≤ P with δt the step size and P the total number of iterations (i.e., Pδt = σ2/2).
The stability of Euler’s method is guaranteed if the step size satisfies δt < 1/8(1− γ/2σ).
The implementation of Lindeberg’s smoothing method is detailed in Algorithm 4.

2.4 Experiments

Let us assume that the Gaussian semi-group property is valid. Then, applying N times a
Gaussian filter of parameter σ should produce the same result as filtering only once with
a Gaussian function of parameters

√
Nσ. This allows us to evaluate the validity of the

semi-group property for all the described methods.

Indeed, if an image of a Gaussian kernel is filtered by a Gaussian function of a given
standard deviation, the filtered signal should be a Gaussian function of a standard devi-
ation given by the semi-group property. Thus, the following experiment was carried out.
A sampled Gaussian function of standard deviation σin was considered as the input sig-
nal. It was filtered N times by each of the different Gaussian filters implementations with
parameter σ. A Gaussian function was fitted to the filtered image by least squares. The es-

timated standard deviation was compared to the theoretical expected value
√

σ2
in + Nσ2.

The input Gaussian standard deviation was set to σin = 1.0 to avoid aliasing artifacts,
and the number of iterations N was set to 10.

The results are shown in Figures 2.6 to 2.9. Each figure shows the estimated blurs,
the differences between estimated and theoretical values, and the root-mean-square error
between the pixels of the two filtered images.

The experiment demonstrates that the DFT convolution (Figure 2.6) and its DCT
variant (Figure 2.7) fully satisfy the semi-group property with machine precision error 2.
Figure 2.8 shows the previous experiment for the sampled Gaussian kernel truncated at
⌈5σ⌉. For low values of σ, the estimated blur level deviates from the theoretical value

√
Nσ

and the method fails to satisfy the semi-group property. This is due to the aliasing in the
sampled Gaussian kernel. The difference with respect to the theoretical values is less than
10−3 for σ ≥ 0.8. Applying Lindeberg’s method consists in solving a discretized version of
the heat equation. The parameter γ which defines the Laplacian finite difference scheme
is set here to γ = 1/2. Lindeberg’s smoothing method satisfies the semi-group property
(Figure 2.9) but the estimated blur is lower than the theoretical value.

Additionally, direct and iterated convolutions were applied on a test image. For all
four methods, the RMSE between the direct and the iterated convolutions 3 is displayed in
Figure 2.10, while Figure 2.11 shows the image difference. The DCT and DFT convolution
produce the lowest errors. Nevertheless, the sampled Gaussian kernel and Lindeberg’s
method give similar errors for large values of σ (i.e., σ ≥ 0.9).

2.5 Conclusion

In this chapter we analyzed three of the most commonly used methods for the Gaussian
smoothing of digital images. We focused on methods most commonly used for the com-

2The algorithms are implemented using single-precision float data type
3Root-mean square error. For (xn) and (yn) with n = 1 . . . N , rmse((xn), (yn)) =

1
N

√∑N
n=1(xn − yn)2.

30

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

σ

√

N
σ

DFT

1 × G√

Nσ

N × Gσ

theoretical

0 0.2 0.4 0.6 0.8 1
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

blur difference

σ

|iterated − direct|

|iterated − theoretical|

0 0.2 0.4 0.6 0.8 1
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

RMSE

σ

Figure 2.6: DFT convolution. A Gaussian convolution of parameter
√
Nσ is compared to N = 10

iterations of a Gaussian convolution of parameter σ (denoted N × Gσ) for different values of σ. On
the left, the estimated blur levels for the direct and iterated filters are plotted as a function of σ. The
theoretical value

√
Nσ is plotted in black. On the center, the difference between the estimated blur

levels for direct and iterated filters as a function of σ is plotted in red. This difference is below 10−5

which indicates that the DFT method satisfies the semi-group property. The difference between the
estimated blur level in the iterated filtered image and the theoretical blur level as a function of σ is
plotted in black. The DFT convolution is accurate since this difference is below 10−3 for σ ≥ 0.1 and
is below 10−6 for σ ≥ 0.4. On the right, the root-mean-square error (RMSE) between the pixel values
of both filtered images confirms the DFT consistency regarding the semi-group property.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

σ

√

N
σ

DCT

1 × G√

Nσ

N × Gσ

theoretical

0 0.2 0.4 0.6 0.8 1
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

blur difference

σ

|iterated − direct|

|iterated − theoretical|

0 0.2 0.4 0.6 0.8 1
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

RMSE

σ

Figure 2.7: The DCT convolution of an image is the DFT convolution after symmetrization of the
image. Unsurprisingly, the semi-group property is satisfied by this variant.

putation of the Gaussian scale-space. We have detailed their implementation as well as
an analysis of how they differ from the continuous Gaussian convolution.

Computing the Gaussian scale-space with high precision requires an accurate imple-
mentation of the Gaussian convolution for low blur levels. With that aim, we focused on
the accuracy at low levels of Gaussian blur (i.e., σ ≤ 1).

The DFT and DCT Gaussian convolutions fully satisfy the semi-group property, thus
giving an accurate discrete implementation of the continuous Gaussian convolution. The
discrete convolution with samples from a Gaussian kernel also satisfies the semi-group
property for large applied blur (i.e., σ > 0.8). However, the aliasing of the sampled kernel
for low blur levels makes it unsuitable for accurate computations of the Gaussian scale-
pace. Finally, although Lindeberg’s smoothing method satisfies the semi-group property,
it introduces a bias in the applied amount of blur.

31

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

σ

√

N
σ

Sampled Gaussian kernel

1 × G√

Nσ

N × Gσ

theoretical

0 0.2 0.4 0.6 0.8 1
10

−8

10
−6

10
−4

10
−2

10
0

blur difference

σ

|iterated − direct|

|iterated − theoretical|

0 0.2 0.4 0.6 0.8 1
10

−8

10
−6

10
−4

10
−2

10
0

RMSE

σ

Figure 2.8: Sampled Gaussian kernels truncated at ⌈5σ⌉. A convolution of parameter
√
Nσ is compared

to N = 10 iterations of a filter of parameter σ for the range 0 ≤ σ ≤ 1. On the left, the estimated
blur levels for the direct and iterated filters are plotted for different values of σ. The theoretical value√
Nσ is plotted in black. The center and right plots show the blur level difference and the RMSE of

the filtered images respectively. For low values of σ, the estimated blur after N convolutions is lower
that the theoretical value. Indeed, in this case, the sampled kernels are aliased and the method does
not satisfy the semi-group property. This is confirmed by a blur difference above 10−2 for σ ≤ 0.6 (red
curve, center plot). The difference with respect to the theoretical values is less than 10−3 for σ ≥ 0.8.
For very low values of σ (e.g., σ ≈ 0.2), the measured blur is null. This is reasonable since in this
case, the sampled kernel is reduced to a sequence with only one nonzero coefficient.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

σ

√

N
σ

Lindeberg smoothing method

1 × G√

Nσ

N × Gσ

theoretical

0 0.2 0.4 0.6 0.8 1
10

−8

10
−6

10
−4

10
−2

10
0

blur difference

σ

|iterated − direct|

|iterated − theoretical|

0 0.2 0.4 0.6 0.8 1
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

RMSE

σ

Figure 2.9: Lindeberg’s smoothing method. A smoothing of parameter
√
Nσ is compared to N = 10

iterations of the method with parameter σ (denoted N × Gσ) for the range 0 ≤ σ ≤ 1. The method
consists in the resolution of a discretized version of the heat equation. The experiment demonstrates
that Lindeberg’s smoothing method satisfies the semi-group property. The two measured blurs are
almost identical (difference around 10−3, see center plot). However, the estimated blur is lower than
the theoretical value of

√
Nσ.

32

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

RMSE

σ

DFT

DCT

Sampled kernel

Lindeberg

Figure 2.10: Validity of the semi-group property on a natural image (portrait) for DFT and DCT
convolutions, convolution with sampled Gaussian kernels and Lindeberg’s smoothing method. The
RMSE between a convolution of parameter

√
Nσ and N = 10 iterations of a Gaussian filtering of

parameter σ is plotted as a function of 0 ≤ σ ≤ 1. DCT and DFT produce the lowest errors, followed
by Lindeberg’s method. For σ ≥ 0.9 the RMSE produced with the sampled Gaussian kernel is similar
to those produced by Lindeberg’s method.

33

0.2 0.3 0.4 0.5 0.6 0.7 0.8

DFT

−1.5 −1 −0.5 0 0.5 1 1.5

x 10
−7

DCT

−1.5 −1 −0.5 0 0.5 1 1.5

x 10
−7

Sampled kernel

−0.01 −0.005 0 0.005 0.01 0.015

Lindeberg

−1 −0.5 0 0.5 1 1.5

x 10
−4

Figure 2.11: Image difference between direct and iterated convolutions for the four studied algorithms
applied on the test image portrait. For the DFT and DCT convolutions, for sampled Gaussian kernel
and Lindeberg’s method, the smoothing parameter σ is set to 0.5 for each iterated filtering and to
0.5
√

10 for direct filtering. The methods based on Fourier and Lindeberg’s method are consistent with
the semi-group property. The measured RMSE between direct and iterated convolution are 7.81×10−3

(DFT and DCT), 6.29 (sampled kernel) and 5.90 × 10−2 (Lindeberg). The DFT and DCT methods
achieve machine precision.

34

Pseudocodes

Algorithm 1: DFT convolution.
Inputs: - u, input digital image of M ×N pixels.

- σ, standard deviation of the Gaussian kernel.
Output: v, output image of M ×N pixels.

//Compute the DFT coefficients of u

(ũm,n)← DFT(uk,l)

//Weight the DFT coefficients

for −⌊M2 ⌋ ≤ m ≤ −⌊M2 ⌋+ M − 1 and −⌊N2 ⌋ ≤ n ≤ −⌊N2 ⌋+ N − 1 do

ṽm,n ← ũm,nĜσ

(
2πm

M
,

2πn

N

)
= ũm,ne

−σ2π2

2

(

(2m
M)

2
+(2n

N)
2
)

//Compute Inverse discrete Fourier transform of ṽ

(vk,l)← IDFT(ṽm,n)

return v

Algorithm 2: DCT convolution.
Inputs: - u, input digital image of M ×N pixels.

- σ, standard deviation of the Gaussian kernel.
Output: v, output image of M ×N pixels.
Temporary: -DCT(u), type-II DCT coefficients of the input image, M ×N real

coefficients.
-DCT(v), type-II DCT coefficients of the output image.

//Compute the DCT coefficients of u

(DCT(u)m,n)← DCT(uk,l)

//Weight the DCT coefficients

for 0 ≤ m ≤M − 1 and 0 ≤ n ≤ N − 1 do

DCT(v)m,n ← DCT(u)m,nĜσ

(πm
M

,
πn

N

)
= DCT(u)m,ne

−σ2π2

2

(

(m
M)

2
+(n

N)
2
)

//Compute Inverse discrete cosine transform of DCT(v)

(vk,l)← IDCT(DCT(v)m,n)

return v

35

Algorithm 3: Convolution with a sampled Gaussian kernel.
Inputs: u, input digital image of M ×N pixels.

σ, standard deviation of the Gaussian kernel
Output: v, output digital image of M ×N pixels.
Parameter: K, the Gaussian kernel is truncated at −⌈Kσ⌉ and ⌈Kσ⌉.
Temporary: w, M ×N image used to store intermediate computations.

//Sample the truncated Gaussian kernel.

for −⌈Kσ⌉ ≤ k ≤ ⌈Kσ⌉ do gk = e−
k2

2σ2

//Normalize the sequence to sum to 1.

for −⌈Kσ⌉ ≤ k ≤ ⌈Kσ⌉ do gk = gk/(
∑

k′ gk′)

//Convolution on columns

for 0 ≤ m ≤M − 1 and 0 ≤ n ≤ N − 1 do

wm,n ←
∑⌈Kσ⌉

k=−⌈Kσ⌉ gkusM (m−k),n

with sM (m) = min(m mod 2M, 2M − 1−m mod 2M))

//Convolution on lines

for 0 ≤ m ≤M − 1 and 0 ≤ n ≤ N − 1 do

vm,n ←
∑⌈Kσ⌉

k=−⌈Kσ⌉ gkwm,sN (n−k)

with sN (n) = min(n mod 2N, 2N − 1− n mod 2N))

return v

Algorithm 4: Lindeberg’s smoothing method.
Input: u input digital image of M ×N pixels.
Output: v output digital image of M ×N pixels.
Parameters: σ applied blur.

0 ≤ γ ≤ 1/2 parameter defining ∆discr
γ the Laplacian finite difference scheme.

Temporary: P , number of Euler iterations.
δt, Euler step size.
∆+v, ∆×v, ∆discr

γ v, auxiliary discrete Laplacians.
// Euler method setting

P ← ⌈8(1− γ/2)σ2⌉
δt← σ

P
// Initialization

v ← u
// Euler Method

for p = 1, .., P do
// Compute discrete Laplacian

for 0 ≤ k ≤M − 1 and 0 ≤ l ≤ N − 1 do
∆+vk,l ← uk+1,l + uk−1,l + uk,l+1 + uk,l−1 − 4uk,l

∆×uk,l ← 1
2 (uk+1,l+1 + uk+1,l−1 + uk−1,l+1 + uk−1,l−1)− 2uk,l

∆discr
γ vk,l ← (1− γ)∆+vk,l + γ∆×vk,l

note: The half-sample symmetric boundary condition is used.

// Euler iteration formula

for 0 ≤ k ≤M − 1 and 0 ≤ l ≤ N − 1 do
vk,l ← vk,l − δt∆discr

γ vk,l

note: ⌈·⌉ denotes the ceiling function.

36

3 Anatomy of the SIFT Method

This chapter presents a detailed description and implementation of the SIFT
method. This contributes to a detailed dissection of SIFT’s complex chain of
transformations and to a careful presentation of each of its design parame-
ters. A companion online demonstration allows the reader to use SIFT and
individually set each parameter to analyze its impact on the algorithm results.

3.1 General description

The scale invariant feature transform, SIFT [Lowe 2004], extracts a set of descriptors
from an image. The extracted descriptors is invariant to an image translation, rotation
and scaling (zoom-out). SIFT descriptors have also proved to be robust to a wide family of
image transformations, such as slight changes of viewpoint, noise, blur, contrast changes,
scene deformation, while remaining discriminative enough for matching purposes.

The seminal paper introducing SIFT in 1999 [Lowe 1999] has sparked an explosion of
competitors. The performance of some of them is examined in Chapter 5.

The SIFT algorithm consists of two successive and independent operations: the de-
tection of interesting points (i.e., keypoints) and the extraction of a descriptor associated
with each of them. Since these descriptors are robust, they are usually used for matching
pair of images. Object recognition and video stabilization are other popular applications
examples. Although the descriptor comparison is not strictly speaking a step of the SIFT
method, we have included it in our description for a sake of completeness.

The algorithm principle. SIFT detects a series of keypoints from a multi-scale im-
age representation. This multi-scale representation consists of the Gaussian scale-space
introduced in Chapter 2. Each keypoint is a blob-like structure whose center position
(x, y) and characteristic scale σ are accurately located. SIFT computes the dominant
orientation θ over a region surrounding each one of these keypoints. For each keypoint,
the quadruple (x, y, σ, θ) defines the center, size and orientation of a normalized patch
where the SIFT descriptor is computed. As a result of this normalization, SIFT keypoint
descriptors are in theory invariant to any translation, rotation and scale change. The de-
scriptor encodes the spatial gradient distribution around a keypoint by a 128-dimensional
vector. This feature vector is generally used to match keypoints extracted from different
images.

37

The algorithmic chain. In order to attain scale invariance, SIFT is built on the
Gaussian scale-space. Here, the Gaussian scale-space simulates the family of all possible
zoom-outs through increasingly blurred versions of the input image. The Gaussian convo-
lution acts as an approximation of the optical blur, and the Gaussian kernel approximates
the camera’s point spread function. Section 3.2 details how the Gaussian scale-space
representation is computed in SIFT.

To attain translation, rotation and scale invariance, the extracted keypoints must be
related to structures that are unambiguously located, both in scale and position. This
excludes image corners and edges since they cannot be precisely localized both in scale
and space. Image blobs or more complex local structures characterized by their position
and size, are therefore the most suitable structures for SIFT.

Detecting keypoints consists in computing the 3d extrema of a differential operator
applied to the scale-space. The differential operator used in the SIFT algorithm is the
difference of Gaussians (DoG), presented in Section 3.3.1. The extraction of 3d continuous
extrema consists of two steps: first, the DoG representation is scanned for 3d discrete
extrema. This gives a first coarse location of the extrema, which are then refined to
subpixel precision using a local quadratic model. The extraction of 3d extrema is detailed
in Section 3.3.2. As we will see in Chapter 4, there are many phenomena that can lead
to the detection of unstable keypoints. Therefore SIFT incorporates a cascade of tests
to discard the less reliable ones. Only those that are precisely located and sufficiently
contrasted are retained. Section 3.3.3 discuses two different discarding steps: the rejection
of 3d extrema with small DoG value and the rejection of keypoint candidates laying on
edges.

SIFT invariance to rotation is obtained by assigning to each keypoint a reference
orientation. This reference is computed from the gradient orientation over a keypoint
neighborhood. This step is detailed in Section 3.4.1. Finally the spatial distribution of
the gradient inside an oriented patch is encoded to produce the SIFT keypoint descriptor.
The design of the SIFT keypoint descriptor is described in Section 3.4.2. This ends the
algorithmic chain defining the SIFT algorithm. Additionally, Section 3.5 illustrates how
SIFT descriptors can be used to find local matches between pairs of images. The method
presented here is the matching procedure described in the original paper by D. Lowe [Lowe
1999].

This complex chain of transformations is governed by a large number of design pa-
rameters. Section 3.6 summarizes all of them and provides an analysis of their respective
influence. Chapter 4 will provide a thorough analysis of the parameters affecting the
scale-space and the detection of keypoints. Table 3.1 presents the details of the adopted
notation while the consecutive steps of the SIFT algorithm are summarized in Table 3.2.

3.2 The Gaussian scale-space

The Gaussian scale-space representation is a family of increasingly blurred images. This
blurring process simulates the loss of detail produced when a scene is photographed from
farther and farther (i.e., when the zoom-out factor increases). The scale-space, therefore,
provides SIFT with scale invariance as it can be interpreted as the simulation of a set
of snapshots of a given scene taken at different distances. In what follows we detail the
construction of the SIFT scale-space.

38

u Images, defined on the continuous domain (x, y) = x ∈ R2

u Digital images, defined in a rectangular grid (m,n) ∈ {0, . . . ,M−1}×{0, . . . , N−1}
v Gaussian scale-space, defined on continuous domain (σ,x) ∈ R+ × R2

v Digital Gaussian scale-space, list of octaves v = (vo), o = 1, . . . , noct

Each octave vo is defined on a discrete grid (s,m, n) ∈ {0, . . . , nspo+2}×{0, . . . ,Mo−1}×{0, . . . , No−1}
w Difference of Gaussians (DoG), defined on continuous domain (σ,x) ∈ R+ × R2

w Digital difference of Gaussians (DoG), list of octaves w = (wo), o = 1, . . . , noct

Each octave wo is defined on a discrete grid (s,m, n) ∈ {0, . . . , nspo+1}×{0, . . . ,Mo−1}×{0, . . . , No−1}
ω DoG value after 3d extremum subpixel refinement

∂xv Scale-space gradient along x (∂yv along y), defined on continuous domain (σ,x) ∈ R+ × R2

∂mv Digital scale-space gradient along x (∂nv along y), list of octaves (∂mv = (∂mvo), o = 1, . . . , noct)
Each octave ∂mvo is defined on a discrete grid (s,m, n) ∈ {2, . . . , nspo}×{1, . . . ,Mo−2}×{1, . . . , No−2}

Gρ Continuous Gaussian convolution of standard deviation ρ

Gρ Digital Gaussian convolution of standard deviation ρ (see (3.4))

S2 Subsampling operator by a factor 2, (S2u)(m,n) = u(2m, 2n)

Iδ Digital bilinear interpolator by a factor 1/δ (see Algorithm 6).

Table 3.1: Summary of the notation used in this chapter.

3.2.1 Gaussian blurring

Consider a continuous image u(x) defined for every x = (x, y) ∈ R
2. Let us remind that

the continuous Gaussian smoothing is defined as the convolution

Gσu(x) :=

∫

R2

Gσ(x′)u(x− x′)dx′

where Gσ(x) = 1
2πσ2 e

− |x|2

2σ2 is the Gaussian kernel parameterized by its standard deviation
σ ∈ R

+. The Gaussian smoothing operator satisfies a semi-group relation,

Gσ2(Gσ1u)(x) = G√
σ2
1+σ2

2
u(x). (3.1)

We call Gaussian scale-space of u the three-dimensional (3d) function

v : (σ,x) 7→ Gσu(x). (3.2)

We have seen in Chapter 2 that in the case of digital images there is some ambiguity
on how to define a discrete counterpart to the continuous Gaussian smoothing operator.
In Lowe’s original work, the digital Gaussian smoothing is implemented as a discrete
convolution with samples of a truncated Gaussian kernel.

Digital Gaussian smoothing. Let gσ be the one-dimensional digital kernel obtained
by sampling a truncated Gaussian function of standard deviation σ,

gσ(k) = Ke−
k2

2σ2 , −⌈4σ⌉ ≤ k ≤ ⌈4σ⌉, k ∈ Z (3.3)

where ⌈·⌉ denotes the ceil function and K is set so that
∑

gσ(k) = 1. Let Gσ denote the
digital Gaussian convolution of parameter σ and u be a digital image of size M ×N . Its

39

Stage Description

1.

Compute the Gaussian scale-space
in: u image
out:v scale-space

2.

Compute the Difference of Gaussians (DoG)
in: v scale-space
out: w DoG

3.

Find candidate keypoints (3d discrete extrema of DoG)
in: w DoG
out: {(xd, yd, σd)} list of discrete extrema (position and scale)

4.

Refine candidate keypoints location with sub-pixel precision
in: w DoG and {(xd, yd, σd)} list of discrete extrema
out: {(x, y, σ)} list of interpolated extrema

5.

Filter unstable keypoints due to noise
in: w DoG and {(x, y, σ)}
out: {(x, y, σ)} list of filtered keypoints

6.

Filter unstable keypoints laying on edges
in: w DoG and {(x, y, σ)}
out: {(x, y, σ)} list of filtered keypoints

7.

Assign a reference orientation to each keypoint
in: (∂mv, ∂nv) scale-space gradient and {(x, y, σ)} list of keypoints
out: {(x, y, σ, θ)} list of oriented keypoints

8.

Build the keypoints descriptor
in: (∂mv, ∂nv) scale-space gradient and {(x, y, σ, θ)} list of keypoints
out: {(x, y, σ, θ, f)} list of described keypoints

Table 3.2: Summary of the SIFT algorithm.

40

digital Gaussian smoothing, denoted by Gσu, is computed via a separable two-dimensional
(2d) discrete convolution:

Gσu(k, l) :=

⌈4σ⌉∑

k′=−⌈4σ⌉
gσ(k′)

⌈4σ⌉∑

l′=−⌈4σ⌉
gσ(l′) ū(k − k′, l − l′), (3.4)

where ū denotes the extension of u to Z
2 via symmetrization with respect to −1/2, namely,

ū(k, l) = u(sM (k), sN (l)) with sM (k) = min(k mod 2M, 2M − 1− k mod 2M).

For the range of values of σ considered in the described algorithm (i.e., σ ≥ 0.7), the
digital Gaussian smoothing operator approximately satisfies a semi-group relation with
an error below 10−4 for pixel intensity values ranging from 0 to 1 (as we have seen in
Section 5.5). Applying successively two digital Gaussian smoothings of parameters σ1
and σ2 is approximately equal to applying one digital Gaussian smoothing of parameter√

σ2
1 + σ2

2,
Gσ2(Gσ1u) = G√

σ2
1+σ2

2
u. (3.5)

3.2.2 Digital Gaussian scale-space

As previously introduced, the Gaussian scale-space v : (x, σ) 7→ Gσu(x) is a family of
increasingly blurred images, where the scale-space position (x, σ) refers to the pixel x in
the image generated with blur σ. In what follows, we detail how to compute the digital
scale-space, a discrete counterpart of the continuous Gaussian scale-space.

We will call digital scale-space a family of digital images relative to a discrete set of
blur levels and different sampling rates, all of them derived from an input image uin with
assumed blur level σin. This family is split into subfamilies of images sharing a com-
mon sampling rate. Since in the original SIFT algorithm the sampling rate is iteratively
decreased by a factor of two, these subfamilies are called octaves.

Let noct be the total number of octaves in the digital scale-space, o ∈ {1, . . . , noct} be
the index of each octave, and δo its inter-pixel distance. We will adopt as a convention
that the input image uin inter-pixel distance is δin = 1. Thus, an inter-pixel distance
δ = 0.5 corresponds to a 2× upsampling of this image while a 2× subsampling results in
an inter-pixel distance δ = 2. Let nspo be the number of scales per octave (the default
value is nspo = 3). Each octave o contains the images vo

s for s = 1, . . . , nspo, each of them
with a different blur level σo

s . The blur level in the digital scale-space is measured taking
as unit length the inter-sample distance in the sampling grid of the input image uin (i.e.,
δin = 1). The adopted configuration is illustrated in Figure 3.1.

The digital scale-space also includes three additional images per octave, vo
0,v

o
nspo+1,v

o
nspo+2.

The rationale for this will become clear later.

The construction of the digital scale-space begins with the computation of a seed image
denoted by v1

0. This image will have a blur level σ1
0 = σmin, which is the minimum blur

level considered, and inter pixel distance δ0 = δmin. It is computed from uin by

v1
0 = G 1

δmin

√
σ2
min−σ2

in
Iδmin

uin, (3.6)

where Iδmin
is the digital bilinear interpolator by a factor 1/δmin (see Algorithm 5) and Gσ

is the digital Gaussian convolution already defined. The entire digital scale-space is derived

41

Figure 3.1: Convention adopted for the sampling grid of the digital scale-space v. The blur level is
considered with respect to the sampling grid of the input image. The parameters are set to their default
value, namely σmin = 0.8, nspo = 5, noct = 8, σin = 0.5.

from this seed image. The default value δmin = 0.5 implies an initial 2× interpolation.
The blur level of the seed image, relative to the input image sampling grid, is set as default
to σmin = 0.8.

The second and posterior scale-space images s = 1, . . . , nspo + 2 at each octave o are
computed recursively according to

vo
s = Gρ[(s−1)→s]

vo
s−1, (3.7)

where

ρ[(s−1)→s] =
σmin

δmin

√
22s/nspo − 22(s−1)/nspo .

The first images (i.e., s = 0) of the octaves o = 2, . . . , no are computed as

vo
0 = S2v

o−1
nspo

, (3.8)

where S2 denotes the subsampling operator by a factor of 2, (S2u)(m,n) = u(2m, 2n).
This procedure produces a family of images (vo

s), o = 1, . . . , noct and s = 0, . . . , nspo + 2,
having inter-pixel distance

δo = δmin2o−1 (3.9)

and blur level

σo
s =

δo
δmin

σmin2
s/nspo . (3.10)

Consequently, the simulated blurs follow a geometric progression. The scale-space con-
struction process is summarized in Algorithm 5. The digital scale-space construction is
thus defined by five parameters:

42

- the number of octaves noct,

- the number of scales per octave nspo,

- the sampling distance δmin of the first image of the scale-space v1
0,

- the blur level σmin of the first image of the scale-space v1
0, and

- σin the assumed blur level in the input image uin.

The diagram in Figure 3.2 depicts the digital scale-space architecture in terms of the
sampling rates and blur levels. Each point symbolizes a scale-space image vo

s having
inter-pixel distance δo and blur level σo

s . The featured configuration is produced from the
default parameter values of the Lowe SIFT algorithm: σmin = 0.8, δmin = 0.5, nspo = 3,
and σin = 0.5. The number of octaves noct is upper limited by the number of possible
subsamplings. Figure 3.3 shows an example of the digital scale-space images generated
with the given configuration.

Algorithm 5: Computation of the digital Gaussian scale-space
Input: uin, input digital image of M ×N pixels.
Output: (vo

s), digital scale-space, o = 1, . . . , noct and s = 0, . . . , nspo + 2.
vo
s is a digital image of size Mo ×No, blur level σo

s (eq. (3.10)) and inter-pixel
distance δo = δmin2o−1, with Mo = ⌊ δmin

δo
M⌋ and No = ⌊ δmin

δo
N⌋. The samples of

vo
s are denoted by vo

s(m,n).
Parameters: - noct, number of octaves.

- nspo, number of scales per octave.
- σmin, blur level in the seed image.
- δmin, inter-sample distance in the seed image.
- σin, assumed blur level in the input image.

//Compute the first octave

//Compute the seed image v1
0

//1.Interpolate the original image (Bilinear interpolation, see Algo 6)
u′ ← bilinear interpolation(uin, δmin)
// 2. Blur the interpolated image (Gaussian blur, see eq (3.4))
v1
0 = G 1

δmin

√
σ2
min−σ2

in

u′

// Compute the other images in the first octave

for s = 1, . . . , nspo + 2 do
v1
s = Gρ[(s−1)→s]

v1
s−1

// Compute subsequent octaves

for o = 2, . . . , noct do
// Compute the first image in the octave by subsampling

for m = 0, . . . ,Mo − 1 and n = 0, . . . , No − 1 do
vo
0(m,n)← vo−1

nspo
(2m, 2n)

// Compute the other images in octave o
for s = 1, . . . , nspo + 2 do

vo
s = Gρ[(s−1)→s]

vo
s−1

43

(a) Scale-space construction

0.5 0.8 1.01 1.27 1.6 2.02 2.54 3.2 4.03 5.08 6.4 8.06 10.16 12.8 16.13 20.32 25.6 32.25 40.64

0.5

1

2

4

8

(b) Scale-space default configuration

Figure 3.2: (a) The succession of subsamplings and Gaussian convolutions that results in the SIFT
scale-space. The first image at each octave vo

0 is obtained via subsampling, with the exception of
the first octave first image v0

0 that is generated by a bilinear interpolation followed by a Gaussian
convolution. (b) An illustration of the digital scale-space in its default configuration. The digital scale-
space v is composed of images vo

s for o = 1, . . . , noct and s = 0, . . . , nspo +2. All images are computed
directly or indirectly from uin (in blue). Each image is characterized by its blur level and its inter-pixel
distance, respectively noted by σ and δ. The scale-space is split into octaves: sets of images sharing
a common sampling rate. Each octave is composed of nspo scales (in red) and other three auxiliary
scales (in gray). The depicted configuration features noct = 5 octaves and corresponds to the following
parameter settings: nspo = 3, σmin = 0.8. The assumed blur level of the input image is σin = 0.5.

Algorithm 6: Bilinear interpolation of an image
Input: u, digital image, M ×N pixels. The samples are denoted by u(m,n).
Output: u′, digital image, M ′ ×N ′ pixels with M ′ = ⌊Mδ′ ⌋ and N ′ = ⌊Nδ′ ⌋.
Parameter: δ′ < 1, inter-pixel distance of the output image.
for m′ = 0, . . . ,M ′ − 1 and n′ = 0, . . . , N ′ − 1 do

x← δ′m′ y ← δ′n′

u′(m′, n′)← (x− ⌊x⌋) (y − ⌊y⌋) ū(⌊x⌋+ 1, ⌊y⌋+ 1) + (1 + ⌊x⌋ − x) (y − ⌊y⌋) ū(⌊x⌋, ⌊y⌋+ 1)

+ (x− ⌊x⌋) (1 + ⌊y⌋ − y) ū(⌊x⌋+ 1, ⌊y⌋) + (1 + ⌊x⌋ − x) (1 + ⌊y⌋ − y) ū(⌊x⌋, ⌊y⌋)

ū denotes the extension of u to Z
2 via symmetrization with respect to −0.5:

ū(k, l) = u(sM (k), sN (l)) with sN (k) = min(k mod 2M, 2M − 1− k mod 2M).
note: ⌊·⌋ denotes the floor function.

44

v1
1

δ1 = 0.5
σ1
1 = 1.0

v2
2

δ2 = 1.0
σ2
2 = 2.5

v3
2

δ3 = 2.0
σ3
2 = 5.1

v4
2

δ4 = 4.0
σ4
2 = 10.2

v5
3

δ5 = 8.0
σ5
3 = 25.6

v5
5

δ5 = 8.0
σ5
5 = 40.6

Figure 3.3: Crops of a subset of images extracted from the Gaussian scale-space of an example image.
The scale-space parameters are set to nspo = 3, σmin = 0.8, and the assumed input image blur level
σin = 0.5. Image pixels are represented by a square of side δo for better visualization.

3.3 Keypoint definition

Precisely detecting interesting image features is a challenging problem. The keypoint
features are defined in SIFT as the extrema of the normalized Laplacian scale-space
σ2∆v [Lindeberg 1993]. A Laplacian extremum is unequivocally characterized by its scale-
space coordinates (σ,x) where x refers to its center spatial position and σ relates to its
size (scale). As will be presented in Section 3.4, the covariance of the extremum (σ,x)
induces the invariance to translation and scale of its associated descriptor.

Instead of computing the Laplacian of the image scale space, SIFT uses a difference
of Gaussians operator (DoG), first introduced by Burt and Adelson [Burt and Adelson
1983] and Crowley and Stern [Crowley and Stern 1984]. Let v be a Gaussian scale-space
and κ > 1. The difference of Gaussians (DoG) of ratio κ is defined by w : (σ,x) 7→
v(κσ,x) − v(σ,x). The DoG operator takes advantage of the link between the Gaussian
kernel and the heat equation to approximately compute the normalized Laplacian σ2∆v.
Indeed, from a set of simulated blurs following a geometric progression of ratio κ, the heat
equation is approximated by

σ∆v =
∂v

∂σ
≈ v(κσ,x)− v(σ,x)

κσ − σ
=

w(σ,x)

(κ− 1)σ
. (3.11)

Thus, we have w(σ,x) ≈ (κ− 1)σ2∆v(σ,x).
The SIFT keypoints of an image are defined as the 3d extrema of the difference of

Gaussians (DoG). Since we deal with digital images, the continuous 3d extrema of the
DoG cannot be directly computed. Thus, the discrete extrema of the digital DoG are first
detected and then their position is refined. The detected points are finally validated to

45

discard possible unstable and false detections due to noise. Hence, the detection of SIFT
keypoints involves the following steps:

1. compute the digital DoG;

2. scan the digital DoG for 3d discrete extrema;

3. refine position and scale of these candidates via a quadratic interpolation;

4. discard unstable candidates such as uncontrasted candidates or candidates laying
on edges.

We detail each one of these steps in what follows.

3.3.1 Scale-space analysis: Difference of Gaussians

The digital DoG w is built from the digital scale-space v. In each octave o = 1, . . . , noct

and for each image wo
s with s = 0, . . . , nspo + 1

wo
s(m,n) = vo

s+1(m,n)− vo
s(m,n)

with m = 0, . . . ,Mo− 1, n = 0, . . . , No− 1. The image wo
s will be attributed the blur level

σo
s . This computation is illustrated in Figure 3.4 and summarized in Algorithm 7. See

how, in the digital scale-space, the computation of the auxiliary image vo
nspo+2 is required

for computing the DoG approximation wo
nspo+1. Figure 3.5 illustrates the DoG scale-space

w relative to the previously introduced Gaussian scale-space v. Figure 3.6 shows images
of an example of DoG scale-space.

Figure 3.4: The difference of Gaussians operator is computed by subtracting pairs of contiguous scale-
space images. The procedure is not centered: the difference between the images at scales κσ and σ is
attributed a blur level σ.

3.3.2 Extraction of candidate keypoints

Continuous 3d extrema of the digital DoG are calculated in two successive steps. The
3d discrete extrema are first extracted from (wo

s) with pixel precision, then their location
are refined through interpolation of the digital DoG by using a quadratic model. In what
follows, samples vo

s(m,n) and wo
s(m,n) are noted respectively vo

s,m,n and wo
s,m,n for better

readability.

Detection of DoG 3D discrete extrema Each sample wo
s,m,n of the DoG scale-

space, with s = 1, . . . , nspo, o = 1, . . . , noct, m = 1, . . . ,Mo − 2, n = 1, . . . , No − 2 (which
excludes the image borders and the auxiliary images) is compared to its neighbors to

46

Figure 3.5: The DoG scale-space. The difference of Gaussians acts as an approximation of the nor-
malized Laplacian σ2∆. The difference wo

s = vo
s+1 − vo

s is relative to the blur level σo
s . Each octave

contains nspo images plus two auxiliary images (in black).

w1
1

δ1 = 0.5
σ1
1 = 1.0

w2
2

δ2 = 1.0
σ2
2 = 2.5

w3
2

δ3 = 2.0
σ3
2 = 5.1

w4
2

δ4 = 4.0
σ4
2 = 10.2

w5
1

δ5 = 8.0
σ5
1 = 16.1

w5
3

δ5 = 8.0
σ5
3 = 25.6

Figure 3.6: Crops of a subset of images extracted from the DoG scale-space of an example image. The
DoG operator is an approximation of the normalized Laplacian operator σ2∆v. The DoG scale-space
parameters used in this example are the default: nspo = 3, σmin = 0.8, σin = 0.5. Image pixels are
represented by a square of side δo for better visualization.

47

detect the 3d discrete maxima and minima (the number of neighbors is 26 = 3 × 3 ×
3 − 1). Algorithm 8 summarizes the extraction of 3d extrema from the digital DoG.
These comparisons are possible thanks to the auxiliary images wo

0, wo
nspo+1 calculated

for each octave o. This scanning process is nevertheless a rudimentary way to detect
candidate points. It is sensitive to noise, produces unstable detections, and the information
it provides regarding the location and scale may be flawed since it is constrained to the
sampling grid. To amend these shortcomings, this preliminary step is followed by an
interpolation that refines the localization of the extrema and by a cascade of filters that
discard unreliable detections.

Keypoint position refinement The location of the discrete extrema is constrained
to the sampling grid (defined by the octave o). This coarse localization hinders a rigorous
covariance property of the set of keypoints and subsequently is an obstacle to the full scale
and translation invariance of the corresponding descriptor. SIFT refines the position and
scale of each candidate keypoint using a local interpolation model.

We denote by ω
o
s,m,n(α) the quadratic function at sample point (s,m, n) in the octave

o, given by

ω
o
s,m,n(α) = wo

s,m,n + α
T ḡos,m,n +

1

2
α

T H̄o
s,m,nα, (3.12)

where α = (α1, α2, α3)
T ∈ [−1/2, 1/2]3; ḡos,m,n and H̄o

s,m,n denote respectively the 3d gradi-
ent and Hessian at (s,m, n) in the octave o, computed with a finite difference scheme as
follows:

ḡos,m,n =

(wo
s+1,m,n −wo

s−1,m,n)/2

(wo
s,m+1,n −wo

s,m−1,n)/2

(wo
s,m,n+1 −wo

s,m,n−1)/2

 , H̄o

s,m,n =

hss hsx hsy
hsx hxx hxy
hsy hxy hyy

 (3.13)

with

hss = wo
s+1,m,n +wo

s−1,m,n − 2wo
s,m,n, hsx = (wo

s+1,m+1,n −wo
s+1,m−1,n −wo

s−1,m+1,n +wo
s−1,m−1,n)/4,

hxx = wo
s,m+1,n +wo

s,m−1,n − 2wo
s,m,n, hsy = (wo

s+1,m,n+1 −wo
s+1,m,n−1 −wo

s−1,m,n+1 +wo
s−1,m,n−1)/4,

hyy = wo
s,m,n+1 +wo

s,m,n−1 − 2wo
s,m,n, hxy = (wo

s,m+1,n+1 −wo
s,m+1,n−1 −wo

s,m−1,n+1 +wo
s,m−1,n−1)/4.

This quadratic function is an approximation of the second order Taylor development
of the underlying continuous function (where its derivatives are approximated by finite
difference schemes).

In order to refine the position of a discrete extremum (se,me, ne) at octave oe SIFT
proceeds as follows.

1. Initialize (s,m, n) by the discrete coordinates of the extremum (se,me, ne).

2. Compute the continuous extrema of ω
o
s,m,n by solving ∇ωo

s,m,n(α) = 0 (see Algo-
rithm 11). This yields

α
∗ = −

(
H̄o

s,m,n

)−1
ḡos,m,n. (3.14)

3. If max(|α∗1|, |α∗2|, |α∗3|) ≤ 0.5 (i.e., the extremum of the quadratic function lies in
its domain of validity) the extremum is accepted. According to the scale-space

48

architecture (see (3.10) and (3.9)), the corresponding keypoint coordinates are

(σ, x, y) =

(
δoe
δmin

σmin2(α
∗
1+s)/nspo , δoe(α

∗
2+m) , δoe(α

∗
3+n)

)
. (3.15)

4. If α∗ falls outside the domain of validity, the interpolation is rejected and another
one is carried out. Update (s,m, n) to the closest discrete value to (s,m, n) + α

∗

and repeat from (2).

This process is repeated up to five times or until the interpolation is validated. If after five
iterations the result is still not validated, the candidate keypoint is discarded. In practice,
the validity domain is defined by max(|α∗1|, |α∗2|, |α∗3|) < 0.6 to avoid possible numerical
instabilities due to the fact that the piecewise interpolation model is not continuous. See
Algorithm 10 for details.

According to the local interpolation model (3.12), the value of the DoG interpolated
extremum is

ω := ω
o
s,m,n(α∗) = wo

s,m,n + (α∗)T ḡos,m,n +
1

2
(α∗)T H̄o

s,m,nα
∗

= wo
s,m,n +

1

2
(α∗)T ḡos,m,n. (3.16)

This value will be used to discard uncontrasted keypoints.

3.3.3 Filtering unstable keypoints

Discarding low contrasted extrema

Image noise will typically produce several spurious DoG extrema. Such extrema are un-
stable and are not linked to any particular structure in the image. SIFT attempts to
eliminate these false detections by discarding candidate keypoints with a DoG value ω

below a threshold CDoG (see Algorithm 12),

if |ω| < CDoG then discard the candidate keypoint.

Since the DoG function approximates (κ − 1)σ2∆v, where κ is a function of the number
of scales per octave nspo, the value of threshold CDoG should depend on nspo (default
value CDoG = 0.015 for nspo = 3). The threshold applied in the provided source-code is

C̃DoG = 2
1/nspo−1
21/3−1 CDoG, with CDoG relative to nspo = 3. This guarantees that the applied

threshold is independent of the sampling configuration. Before the refinement of the
extrema, and to avoid unnecessary computations, a less conservative threshold at 80% of
CDoG is applied to the discrete 3d extrema (see Algorithm 9),

if |wo
s,m,n| < 0.8× CDoG then discard the discrete 3d extremum.

This validation step is investigated in Chapter 4.

49

Discarding candidate keypoints on edges

Candidate keypoints lying on edges are difficult to precisely locate. This is a direct con-
sequence of the fact that an edge is invariant to translations along its principal axis. Such
detections do not help define covariant keypoints and should be discarded. The 2d Hessian
of the DoG provides a characterization of those undesirable keypoint candidates. Edges
present a large principal curvature orthogonal to the edge and a small one along the edge.
In terms of the eigenvalues of the Hessian matrix, the presence of an edge amounts to a
big ratio between the largest eigenvalue λmax and the smallest one λmin.

The Hessian matrix of the DoG is computed at the nearest grid sample using a finite
difference scheme:

Ho
s,m,n =

[
hxx hxy
hxy hyy

]
, (3.17)

where

hxx = wo
s,m+1,n + wo

s,m−1,n − 2wo
s,m,n, hyy = wo

s,m,n+1 + wo
s,m,n−1 − 2wo

s,m,n,

hxy = (wo
s,m+1,n+1 −wo

s,m+1,n−1 −wo
s,m−1,n+1 + wo

s,m−1,n−1)/4.

The SIFT algorithm discards keypoint candidates whose eigenvalue ratio r := λmax/λmin

is less than a certain threshold Cedge (the default value is Cedge = 10). Since only this
ratio is relevant, the eigenvalues computation can be avoided. The ratio of the Hessian
matrix determinant and its trace are related to r by

edgeness(Ho
s,m,n) =

tr(Ho
s,m,n)2

det(Ho
s,m,n)

=
(λmax + λmin)2

λmaxλmin
=

(r + 1)2

r
. (3.18)

Thus, the filtering of keypoint candidates on edges consists in the following test:

if edgeness(Ho
s,m,n) >

(Cedge + 1)2

Cedge
then discard candidate keypoint.

Note that Ho
s,m,n is the bottom-right 2×2 sub-matrix of H̄o

s,m,n (3.13) previously computed
for the keypoint interpolation. Algorithm 13 summarizes how keypoints on edges are
discarded.

3.3.4 Pseudocodes

Algorithm 7: Computation of the difference of Gaussians scale-space (DoG)

Input: (vo
s), digital Gaussian scale-space, o = 1, . . . , noct and s = 0, . . . , nspo + 2.

Output: (wo
s), digital DoG, o = 1, . . . , noct and s = 0, . . . , nspo + 1.

for o = 1, . . . , noct and s = 0, . . . , nspo + 1 do

for m = 0, . . . ,Mo − 1 and n = 0, . . . , No − 1 do

wo
s(m,n) = vo

s+1(m,n)− vo
s(m,n)

50

Algorithm 8: Scanning for 3d discrete extrema of the DoG scale-space
Input: (wo

s), digital DoG, o = 1, . . . , noct and s = 0, . . . , nspo + 1.
The samples of digital image wo

s are denoted by wo
s,m,n.

Output: LA = {(o, s,m, n)}, list of the DoG 3d discrete extrema.

for o = 1, . . . , noct do
for s = 1, . . . , nspo , m = 1, . . . ,Mo − 2 and n = 1, . . . , No − 2 do

if sample wo
s,m,n is larger or smaller than all of its 33 − 1 = 26 neighbors then

Add discrete extremum (o, s,m, n) to LA

Algorithm 9: Discarding low contrasted candidate keypoints (conservative
test)

Inputs: - (wo
s), digital DoG, o = 1, . . . , noct and s = 0, . . . , nspo + 1.

- LA = {(o, s,m, n)}, list of DoG 3d discrete extrema.

Output: LA’ = {(o, s,m, n)}, filtered list of DoG 3d discrete extrema.
Parameter: CDoG threshold.

for each DoG 3d discrete extremum (o, s,m, n) in LA do

if |wo
s,m,n| ≥ 0.8× CDoG then

Add discrete extremum (o, s,m, n) to LA’

Algorithm 10: Keypoints interpolation
Inputs: - LA’ = {(o, s,m, n)}, list of DoG 3d discrete extrema.

- (wo
s), digital DoG scale-space, o = 1, . . . , noct and s = 0, . . . , nspo + 1.

Output: LB = {(o, s,m, n, x, y, σ,ω)}, list of candidate keypoints.

for each DoG 3d discrete extremum (oe, se,me, ne) in LA do
(s,m, n)← (se,me, ne) // initialize interpolation location

repeat

// Compute the extrema location and value of the local quadratic

function (see Algo 11)
(α∗,ω)← quadratic interpolation(oe, s,m, n)

// Compute the corresponding absolute coordinates

(σ, x, y) =
(

δoe
δmin

σmin2(α
∗
1+s)/nspo , δoe(α∗

2+m) , δoe(α∗
3+n)

)
.

// Update the interpolating position

(s,m, n)← ([s + α∗
1], [m + α∗

2], [n + α∗
3])

until max(|α∗
1|, |α∗

2|, |α∗
3|) < 0.6 or after 5 unsuccessful tries.

if max(|α∗
1|, |α∗

2|, |α∗
3|) < 0.6 then

Add candidate keypoint (oe, s,m, n, σ, x, y,ω) to LB

note: [·] denotes the round function.

51

Algorithm 11: Quadratic interpolation on a discrete DoG sample
Inputs: - (wo

s), digital DoG scale-space, o = 1, . . . , noct and s = 0, . . . , nspo + 1.
- (o, s,m, n), coordinates of the DoG 3d discrete extremum.

Outputs: - α∗, offset from the center of the interpolated 3d extremum.
- ω, value of the interpolated 3d extremum.

Compute ḡos,m,n and H̄o
s,m,n //DoG 3d gradient and Hessian by eq.(3.13)

Compute α
∗ = −

(
H̄o

s,m,n

)−1
ḡos,m,n

Compute ω = wo
s,m,n − 1

2 (ḡos,m,n)T
(
H̄o

s,m,n

)−1
ḡos,m,n

Algorithm 12: Discarding low contrasted candidate keypoints
Input: LB = {(o, s,m, n, σ, x, y,ω)}, list of candidate keypoints.
Output: LB’ = {(o, s,m, n, σ, x, y,ω)}, reduced list of candidate keypoints.
Parameter: CDoG threshold.

for each candidate keypoint (σ, x, y,ω) in LB do

if |ω| ≥ CDoG then

Add candidate keypoint (σ, x, y,ω) to LB’.

Algorithm 13: Discarding candidate keypoints on edges
Inputs: - (wo

s), DoG scale-space.
- LB’ = {(o, s,m, n, σ, x, y,ω)}, list of candidate keypoints.

Output: LC = {(o, s,m, n, σ, x, y,ω)}, list of the SIFT keypoints.
Parameter: Cedge, threshold over the ratio between first and second Hessian eigenvalues.

for each candidate keypoint (o, s,m, n, σ, x, y,ω) in LB’ do
Compute Ho

s,m,n by (3.17) // 2d Hessian

Compute
tr(Ho

s,m,n)
2

det(Ho
s,m,n)

// edgeness

if
tr(Ho

s,m,n)
2

det(Ho
s,m,n)

<
(Cedge+1)2

Cedge
then

Add candidate keypoint (o, s,m, n, σ, x, y,ω) to LC.

52

3.4 Keypoint description

In the literature, rotation invariant descriptors fall into two categories. On the one side,
those based on properties of the image that are already rotation-invariant and on the
other side, descriptors based on a normalization with respect to a reference orientation.
The SIFT descriptor is based on a normalization. The local dominant gradient angle is
computed and used as a reference orientation. Then, the local gradient distribution is
normalized with respect to this reference direction (see Figure 3.7).

Figure 3.7: The description of a keypoint detected at scale σ (the radius of the blue circle) involves the
analysis of the image gradient distribution around the keypoint in two radial Gaussian neighborhoods
with different sizes. The first local analysis aims at attributing a reference orientation to the
keypoint (the blue arrow). It is performed over a Gaussian window of standard deviation λoriσ (the
radius of the green circle). The width of the contributing samples patch Pori (green square) is 6λoriσ.
The figure shows the default case λori = 1.5. The second analysis aims at building the descriptor. It
is performed over a Gaussian window of standard deviation λdescrσ (the radius of the red circle) within
a square patch Pdescr (the red square) of approximate width 2λdescrσ. The figure features the default
settings: λdescr = 6, with a Gaussian window of standard deviation 6σ and a patch Pdescr of width 12σ.

The SIFT descriptor is built from the normalized image gradient orientation in the
form of quantized histograms. In what follows, we describe how the reference orientation
specific to each keypoint is defined and computed.

3.4.1 Keypoint reference orientation

A dominant gradient orientation over a keypoint neighborhood is used as its reference
orientation. This allows for orientation normalization and hence rotation-invariance of
the resulting descriptor (see Figure 3.7). Computing this reference orientation involves
three steps:

A. accumulation of the local distribution of the gradient angle within a normalized
patch in an orientation histogram;

B. smoothing of the orientation histogram;

C. extraction of one or more reference orientations from the smoothed histogram.

A. Orientation histogram accumulation. Given a keypoint (x, y, σ), the patch
to be analyzed is extracted from the image of the scale-space vo

s, whose scale σo
s is nearest

to σ. This normalized patch, denoted by Pori, is the set of pixels (m,n) of vo
s satisfying

max(|δom− x|, |δon− y|) ≤ 3λoriσ. (3.19)

53

Keypoints whose distance to the image borders is less than 3λoriσ are discarded since the
patch Pori is not totally included in the image. The orientation histogram h from which
the dominant orientation is found covers the range [0, 2π]. It is composed of nbins bins
with centers θk = 2πk/nbins. Each pixel (m,n) in Pori will contribute to the histogram with
a total weight of corim,n, which is the product of the gradient norm and a Gaussian weight
of standard deviation λoriσ (default value λori = 1.5) reducing the contribution of distant
pixels.

corim,n = e
− ‖(mδo,nδo)−(x,y)‖2

2(λoriσ)2
∥∥(∂mvo

s,m,n, ∂nv
o
s,m,n

)∥∥ . (3.20)

This contribution is assigned to the nearest bin, namely the bin of index

borim,n =
[nbins

2π

(
arctan2

(
∂mvo

s,m,n, ∂nv
o
s,m,n

))]
. (3.21)

where [·] denotes the round function and arctan2 is the two-argument inverse tangent
function1 with range in [0, 2π]. The gradient components of the scale-space image vs

o are
computed through a finite difference scheme

∂mvo
s,m,n =

1

2

(
vo
s,m+1,n − vo

s,m−1,n
)
, ∂nv

o
s,m,n =

1

2

(
vo
s,m,n+1 − vo

s,m,n−1
)
, (3.22)

for m = 1, . . . ,Mo − 2 and n = 1, . . . , No − 2.

B. Smoothing the histogram. After being accumulated, the orientation histogram
is smoothed by applying six times a circular convolution with the three-tap box fil-
ter [1, 1, 1]/3.

C. Extraction of reference orientation(s). The keypoint reference orientations
are taken among the local maxima positions of the smoothed histogram. More precisely,
the reference orientations are the positions of local maxima larger than t times the global
maximum (default value t = 0.8). Let k ∈ {1, . . . , nbins} be the index of a bin such that
hk > hk− , hk > hk+ , where k− = (k − 1) mod nbins and k+ = (k + 1) mod nbins and
such that hk ≥ tmax(h). This bin is centered on orientation θk = 2π(k−1)/nbins. The
corresponding keypoint reference orientation θref is computed from the maximum position
of the quadratic function that interpolates the values hk− , hk, hk+ ,

θref = θk +
π

nbins

(
hk− − hk+

hk− − 2hk + hk+

)
. (3.23)

Each one of the extracted reference orientations leads to the computation of one local
descriptor of a keypoint neighborhood. The number of descriptors may consequently
exceed the number of keypoints. Figure 3.8 illustrates how a reference orientation is
attibuted to a keypoint.

1The two-argument inverse tangent, unlike the single argument one, determines the appropriate
quadrant of the computed angle thanks to the extra information about the signs of the inputs:
arctan2(x, y) = arctan(x/y) + π

2 sign(y)(1− sign(x)).

54

Figure 3.8: Reference orientation attribution. The normalized patch Pori (normalized to scale and
translation) width is 6λoriσkey. The gradient magnitude is weighted by a Gaussian window of standard
deviation λoriσkey. The gradient orientations are accumulated into an orientation histogram h which is
subsequently smoothed.

3.4.2 Keypoint normalized descriptor

The SIFT descriptor encodes the local spatial distribution of the gradient orientation on a
particular neighborhood. SIFT descriptors can be computed anywhere, even densely over
the entire image or its scale-space [Liu et al. 2008; Hassner et al. 2012]. In the original SIFT
method, however, descriptors are computed for all detected keypoints over its normalized
neighborhood, making them invariant to translations, rotations and zoom-outs. Given a
detected keypoint, the normalized neighborhood consists in a square patch centered on
the keypoint and aligned with the reference orientation.

The descriptor consists in a set of weighted histograms of the gradient orientation
computed on different regions of the normalized square patch.

The normalized patch. For each keypoint (xkey, ykey, σkey, θkey), a normalized patch
is isolated from the Gaussian scale-space image relative to the nearest discrete scale (o, s) to
scale σkey, namely vo

s. A sample (m,n) in vo
s, of coordinates (xm,n, ym,n) = (mδo, nδo) with

respect to the sampling grid of the input image, has normalized coordinates (x̂m,n, ŷm,n)
with respect to the keypoint (xkey, ykey, σkey, θkey),

x̂m,n = ((mδo − xkey) cos θkey + (nδo − ykey)σinθkey) /σkey,

ŷm,n = (−(mδo − xkey)σinθkey + (nδo − ykey) cos θkey) /σkey. (3.24)

The normalized patch denoted by Pdescr is the set of samples (m,n) of vo
s with normalized

coordinates (x̂m,n, ŷm,n) satisfying

max(|x̂m,n|, |ŷm,n|) ≤ λdescr. (3.25)

Keypoints whose distance to the image borders is less than
√

2λdescrσ are discarded to
guaranty that the patch Pdescr is included in the image. Note that no image re-sampling
is performed. Each sample (m,n) is characterized by the gradient orientation normalized
with respect to the keypoint orientation θkey,

θ̂m,n = arctan2
(
∂mvo

s,m,n, ∂nv
o
s,m,n

)
− θkey mod 2π, (3.26)

55

and its total contribution cdescrm,n . The total contribution is the product of the gradient norm
and a Gaussian weight (with standard deviation λdescrσkey) reducing the contribution of
distant pixels,

cdescrm,n = e
− ‖(mδo,nδo)−(x,y)‖2

2(λdescrσ)2
∥∥(∂mvo

s,m,n, ∂nv
o
s,m,n

)∥∥ . (3.27)

The array of orientation histograms. The gradient orientation of each pixel in
the normalized patch Pdescr is accumulated into an array of nhist × nhist orientation his-
tograms (default value nhist = 4). Each of these histograms, denoted by hi,j for (i, j) ∈
{1, . . . , nhist}2, has an associated position with respect to the keypoint (xkey, ykey, σkey, θkey),
given by

x̂i =

(
i− 1 + nhist

2

)
2λdescr

nhist
, ŷj =

(
j − 1 + nhist

2

)
2λdescr

nhist
.

Each histogram hi,j consists of nori bins hi,jk with k ∈ {1, . . . , nori}, centered at θ̂k =
2π(k − 1)/nori (default value nori = 8). Each sample (m,n) in the normalized patch Pdescr

contributes to the nearest histograms (up to four histograms). Its total contribution cdescrm,n

is split bilinearly over the nearest histograms depending on the distances to each of them
(see Figure 3.10). In the same way, the contribution within each histogram is subsequently
split linearly between the two nearest bins. This results, for the sample (m,n), in the
following updates.

For every (i, j, k) ∈ {1, . . . , nhist}2 × {1, . . . , nori} such that

|x̂i − x̂m,n| ≤
2λdescr

nhist
, |ŷj − ŷm,n| ≤

2λdescr

nhist
and |θ̂k − θ̂m,n mod 2π| ≤ 2π

nori
,

the histogram hi,jk is updated by

hi,j
k ← hi,j

k +

(
1− nhist

2λdescr

∣∣x̂i − x̂m,n

∣∣
)(

1− nhist
2λdescr

∣∣ŷj − ŷm,n

∣∣
)(

1− nori
2π

∣∣∣θk − θ̂m,n mod 2π
∣∣∣
)
cdescrm,n .

(3.28)

Figure 3.9: SIFT descriptor construction. No explicit re-sampling of the described normalized patch
is performed. The normalized patch Pdescr is partitioned into a set of nhist × nhist subpatches (default
value nhist = 4). Each sample (m,n) inside Pdescr, located at (mδo, nδo), contributes by an amount
that is a function of their normalized coordinates (x̂m,n, ŷm,n) (see (3.24)). Each sub-patch Pdescr

(i,j) is

centered at (x̂i, ŷj).

56

Figure 3.10: Illustration of the spatial contribution of a sample inside the patch Pdescr. The sample
(m,n) contributes to the weighted histograms (2, 2) (green), (2, 3) (orange), (3, 2) (blue) and (3, 3)
(pink); The contribution cdescrm,n is split over four pairs of bins according to (3.28).

Figure 3.11: The image on top shows the nhist × nhist array sub-patches relative to a keypoint; the
corresponding nori bins histograms are rearranged into a 1D-vector ~v (bottom). This vector is subse-
quently thresholded and normalized so that the Euclidean norm equals 512 for each descriptor. The
dimension of the feature vector in this example is 128, relative to parameter nhist = 4, nori = 8 (default
values).

The SIFT feature vector. The accumulated array of histograms are encoded into a
vector feature f of length nhist × nhist × nori, as follows:

f(i−1)nhistnori+(j−1)nori+k = hi,jk ,

where i = 1, . . . , nhist, j = 1, . . . , nhist and k = 1, . . . , nori. The components of the feature
vector f are saturated to a maximum value of 20% of its Euclidean norm, i.e., fk ←
min (fk, 0.2‖f‖). The saturation of the feature vector components seeks to reduce the
impact of non-linear illumination changes, such as saturated regions.

The vector is finally renormalized so as to have ‖f‖2 = 512 and quantized to 8 bit inte-
gers as follows: fk ← min (⌊fk⌋, 255). The quantization aims at accelerating the computa-
tion of distances between different feature vectors2. Figure 3.9 and Figure 3.11 illustrate
how a SIFT feature vector is attibuted to an oriented keypoint.

2 The executable provided by D.Lowe http://www.cs.ubc.ca/~lowe/keypoints/, retrieved
on September 11th, 2014) uses a different coordinate system (see source code’s README.txt for
details).

57

http://www.cs.ubc.ca/~lowe/keypoints/

3.4.3 Pseudocodes

Algorithm 14: Computation of the 2d gradient at each image of the scale-
space
Input: (vo

s), digital Gaussian scale-space, o = 1, . . . , noct and s = 0, . . . , nspo + 2.
Outputs: - (∂mvo

s,m,n), scale-space gradient along x, o = 1, . . . , noct and s = 1, . . . , nspo.
- (∂nv

o
s,m,n), scale-space gradient along y, o = 1, . . . , noct and s = 1, . . . , nspo.

for o = 1, . . . , noct and s = 1, . . . , nspo do
for m = 1, . . . ,Mo − 2 and n = 1, . . . , No − 2 do

∂mvo
s,m,n = (vo

s,m+1,n − vo
s,m−1,n)/2

∂nv
o
s,m,n = (vo

s,m,n+1 − vo
s,m,n−1)/2

58

Algorithm 15: Computing the keypoint reference orientation
Inputs: - LC = {(okey, skey, xkey, ykey, σkey,ω)}, list of keypoints.

- (∂mvo
s,m,n), scale-space gradient along x, o = 1, . . . , noct and s = 1, . . . , nspo.

- (∂nv
o
s,m,n), scale-space gradient along y, o = 1, . . . , noct and s = 1, . . . , nspo.

Parameters: - λori. The patch Pori is 6λoriσ wide.
The Gaussian window has a standard deviation of λoriσ.

- nbins, number of bins in the orientation histogram h.
- t, threshold for secondary reference orientations.

Output: LD = {(o, s′,m′, n′, x, y, σ,ω, θ)} list of oriented keypoints.

Temporary: hk, orientation histogram, k = 1, . . . , nbins and with hk covering

[2π(k−3/2)
nbins

; 2π(k−1/2)
nbins

].

for each keypoint (okey, skey, xkey, ykey, σkey,ω) in LC do

// Check if the keypoint is distant enough from the image borders

if 3λoriσ ≤ xkey ≤ h− 3λoriσ and 3λoriσ ≤ ykey ≤ w − 3λoriσ then

// Initialize the orientation histogram h
for 1 ≤ k ≤ nbins do hk ← 0

// Accumulate samples from the normalized patch Pori (eq.(3.19).
for m = [(xkey − 3λoriσkey

)
/δokey

]
, . . . , [(xkey + 3λoriσkey

)
/δokey

]
do

for n = [(ykey − 3λoriσkey

)
/δokey

]
, . . . , [(ykey + 3λoriσkey

)
/δokey

]
do

// Compute the sample contribution

corim,n = e
−

‖(mδokey
,nδokey

)−(xkey,ykey)‖2

2(λoriσkey)2
∥∥(∂mv

okey
skey,m,n, ∂nv

okey
skey,m,n

)∥∥

// Compute the corresponding bin index

borim,n =
[
nbins

2π

(
arctan2

(
∂mv

okey
skey,m,n, ∂nv

okey
skey,m,n

)
mod 2π

)]

// Update the histogram

hborim,n
← hborim,n

+ corim,n

// Smooth h
Apply six times a circular convolution with filter [1, 1, 1]/3 to h.

// Extract the reference orientations

for 1 ≤ k ≤ nbins do
if hk > hk− , hk > hk+ and hk ≥ tmax(h) then

// Compute the reference orientation θkey

θkey = θk + π
nbins

(
h
k−−h

k+

h
k−−2hk+h

k+

)

note: [·] denotes the round function and arctan2 denotes the two-argument inverse tangent.

59

Algorithm 16: Construction of the keypoint descriptor
Inputs: - LD = {(okey, skey, xkey, ykey, σkey, θkey)} list of keypoints.

- (∂mvo
s,m,n), scale-space gradient along x.

- (∂nv
o
s,m,n), scale-space gradient along y (see Algorithm 14).

Output: LE = {(okey, skey, xkey, ykey, σkey, θkey, f)} list of keypoints with feature vector f .
Parameters: - nhist. The descriptor is an array of nhist × nhist orientation histograms.

- nori, number of bins in the orientation histograms.
Feature vectors f have a length of nhist × nhist × nori

- λdescr.
The Gaussian window has a standard deviation of λdescrσkey.

The patch Pdescr is 2λdescr
nhist+1
nhist

σkey wide.

Temporary: hi,j
k , array of orientation weighted histograms, (i, j) ∈ {1, . . . , nhist} and k ∈ {1, . . . , nori}

for each keypoint (okey, skey, xkey, ykey, σkey, θkey) in LD do

// Check if the keypoint is distant enough from the image borders
if
√
2λdescrσ ≤ xkey ≤ h−

√
2λdescrσ and

√
2λdescrσ ≤ ykey ≤ w −

√
2λdescrσ then

// Initialize the array of weighted histograms
for 1 ≤ i ≤ nhist , 1 ≤ j ≤ nhist and 1 ≤ k ≤ nori do hi,j

k ← 0

// Accumulate samples of normalized patch Pdescr in the array
histograms (eq.(3.25))

for m =
[(

xkey −
√
2λdescrσkey

nhist+1
nhist

)

/δo
]

, . . . ,
[(

xkey +
√
2λdescrσkey

nhist+1
nhist

)

/δo
]

do

for n =
[(

ykey −
√
2λdescrσkey

nhist+1
nhist

)

/δo
]

, . . . ,
[(

ykey +
√
2λdescrσkey

nhist+1
nhist

)

/δo
]

do

// Compute normalized coordinates (eq.(3.24)).

x̂m,n =
(

(mδokey − xkey) cos θkey + (nδokey − ykey)σinθkey

)

/σkey

ŷm,n =
(

−(mδokey − xkey)σinθkey + (nδokey − ykey) cos θkey

)

/σkey

// Verify if the sample (m,n) is inside the normalized patch
Pdescr.
if max(|x̂m,n|, |ŷm,n|) < λdescr

nhist+1
nhist

then

// Compute normalized gradient orientation.

θ̂m,n = arctan2
(

∂mv
okey
skey,m,n, ∂nv

okey
skey,m,n

)

− θkey mod 2π

// Compute the total contribution of the sample (m,n)

cdescrm,n = e
−

‖(mδ
okey ,nδ

okey)−(xkey,ykey)‖2

2(λdescrσkey)2
∥

∥

∥

(

∂mv
okey
skey,m,n, ∂nv

okey
skey,m,n

)
∥

∥

∥

// Update the nearest histograms and the nearest bins
(eq.(3.28)).
for (i, j) ∈ {1, . . . , nhist}2 such that

∣

∣x̂i − x̂m,n

∣

∣ ≤ 2λdescr
nhist

and
∣

∣ŷj − ŷm,n

∣

∣ ≤ 2λdescr
nhist

do

for k ∈ {1, . . . , nori} such that

∣

∣

∣
θ̂k − θ̂m,n mod 2π

∣

∣

∣
< 2π

nori
do

hi,j
k ← hi,j

k +
(

1− nhist
2λdescr

|x̂m,n−x̂i|
)(

1− nhist
2λdescr

|ŷm,n − ŷj |
)(

1− nori
2π
|θ̂m,n−θ̂k mod 2π|

)

cdescrm,n

// Build the feature vector f from the array of weighted histograms.
for 1 ≤ i ≤ nhist , 1 ≤ j ≤ nhist and 1 ≤ k ≤ nori do

f(i−1)nhistnori+(j−1)nori+k = hi,j
k

for 1 ≤ l ≤ nhist × nhist × nori do

fl ← min (fl, 0.2‖f‖) /*normalize and threshold f*/
compute the l2 norm fl ← min (⌊512fl/‖f‖⌋, 255) /*quantize to 8 bit integers*/

Add (x, y, σ, θ, f) to LE

60

3.5 Matching

The classical purpose of detecting and describing keypoints is to find matches (pairs of
keypoints) between images. In the absence of extra knowledge on the problem, for instance
in the form of geometric constraints, a matching procedure generally consists of two steps:
the pairing of similar keypoints from respective images and the selection of those that are
reliable. In what follows, we present the matching method described in the original article
by D. Lowe [Lowe 2004]. This is also the matching method we will use in Chapter 5 for
the performance evaluation of various feature detectors. Let LA and LB be the set of
descriptors associated to the keypoints detected in images uA and uB. The matching is
done by considering every descriptor associated to the list LA and finding one possible
match in list LB. The first descriptor fa ∈ LA is paired to the descriptor f b ∈ LB that
minimizes the Euclidean distance between descriptors,

f b = arg min
f∈LB

‖f − fa‖2.

Pairing a keypoint with descriptor fa requires then to compute distances to all descriptors
in LB. A pair is considered reliable only if its absolute distance is below a certain threshold
Cmatch
absolute. Otherwise it is discarded.

To avoid dependence to an absolute distance, the SIFT method uses the second nearest
neighbor to define what constitutes a reliable match. SIFT applies an adaptive threshold-
ing ‖fa − f b

′‖Cmatch
relative, where fb′ is the second nearest neighbor,

f b
′

= arg min
f∈LB\{fb}

‖f − fa‖2.

This is detailed in Algorithm 17. The major drawback of using a relative threshold is that
it omits detections for keypoints associated to a repeated structure in the image. Indeed,
in that case, the distance to the nearest and the second nearest descriptor would be
comparable. More sophisticated techniques have been developed to allow robust matching
of images with repeated structures [Rabin et al. 2009].

This matching algorithm runs in time c ·NA ·NB, where NA and NB are the number
of keypoints in images uA and uB respectively, and c is a constant proportional to the
time that takes to compare two SIFT features. This is prohibitively slow for images of
moderate size, although keypoint matching is highly parallelizable. A better solution is to
use more compact descriptors [Tuytelaars and Mikolajczyk 2008] that reduce the cost of
distance computation (and thus reduce the value of c). Among the proposed solutions we
can find more compact SIFT-like descriptors [Bay et al. 2006b; Ke and Sukthankar 2004]
or binary descriptors [Calonder et al. 2010; Rublee et al. 2011; Raginsky and Lazebnik
2009] which take advantage of the fast computation of the Hamming distance between two
binary vectors.

3.6 Summary of Parameters

The online demo provided with this publication examines in detail the behavior of each
stage of the SIFT algorithm. In what follows, we summarize all the parameters that can
be adjusted in the demo.

61

Algorithm 17: Matching keypoints

Inputs: - LA = {(xa, ya, σa, θa, fa)} keypoints and descriptors relative to image uA.
- LB = {

(
xb, yb, σb, θb, f b

)
} keypoints and descriptors relative to image uB .

Output: M =
{

(xa, ya, σa, θa, fa) ,
(
xb, yb, σb, θb, f b

)}
list of matches with positions.

Parameter: Cmatch
relative relative threshold

for each descriptor fa in LA do

Find f b and f b
′

, nearest and second nearest neighbors of fa:
for each descriptor f in LB do

Compute distance d(fa, f)

Select pairs satisfying a relative threshold.
if d(fa, f b) < Cmatch

relative d(fa, f b
′

) then
Add pair (fa, f b) to M

Digital scale-space configuration and keypoints detection

Parameter Default value Description

σmin 0.8 blur level of v1
0 (seed image)

δmin 0.5 the sampling distance in image v1
0 (corresponds to a 2× interpolation)

σin 0.5 assumed blur level in uin (input image)
noct 8 number of octaves (limited by the image size)) ⌊log2(min(w, h)/δmin/12) + 1⌋
nspo 3 number of scales per octave

CDoG 0.015 threshold over the DoG response (value relative to nspo = 3)

Cedge 10 threshold over the ratio of principal curvatures (edgeness).

Table 3.3: Parameters of the scale-space discretization and detection of SIFT keypoints.

The structure of the digital scale-space is unequivocally characterized by four structural
parameters: noct, nspo, σmin, δmin and by the blur level in the input image σin. The
associated online demo allows the user to change these values. They can be tuned to
satisfy specific requirements3. For example, increasing the number of scales per octave
nspo and the initial interpolation factor δmin increases the number of detections. On the
other hand, reducing them results in a faster algorithm.

The image structures that are potentially detected by SIFT have a scale ranging from
σmin to σmin2noct . Therefore, it may seem natural to choose the lowest possible value
of σmin (i.e., σmin = σin). However, depending on the input image sharpness, low scale
detections may be the result of aliasing artifacts and should be avoided. Thus, a sound
setting of parameter σmin should take into account the image blur level σin and the possible
presence of image aliasing.

The DoG thresholding, controlled by CDoG, was conceived to filter detections due to
noise. With that aim in view, CDoG should depend on the input image signal to noise
ratio. It is however beyond the scope of this publication to analyze the soundness of such
an approach. We will only point out that the reduction of CDoG increases the number of
detected keypoints. Recall that the DoG approximates (21/nspo−1)σ2∆v, its values depends
on the number of scales per octave nspo. The threshold applied in the provided source-code

3The number of computed octaves is upper limited to ensure that images in the last octave are
at least 12× 12 pixels.

62

is C̃DoG = 2
1/nspo−1
21/3−1 CDoG, with CDoG relative to nspo = 3. Section 4.5 in Chapter 4 will

investigate how efficient this step is at discarding unstable keypoints. Section 4.5 in the
next chapter will investigate how efficient this step is at discarding unstable keypoints.

The threshold Cedge, applied to discard keypoints laying on edges, has in practice a
negligible impact on the algorithm performance. Indeed, many candidate keypoints laying
on edges were previously discarded during the extrema refinement.

Computation of the SIFT descriptor

The provided demo shows the computation of the keypoint reference orientation, and also
the construction of the feature vector for any detected keypoint.

Parameter Default value Description

nbins 36 number of bins in the gradient orientation histogram

λori 1.5 sets how local the analysis of the gradient distribution is:

- Gaussian window of standard deviation λoriσ

- patch width 6λoriσ

t 0.80 threshold for considering local maxima in the gradient orientation histogram

nhist 4 number of histograms in the normalized patch is (nhist × nhist)

nori 8 number of bins in the descriptor histograms

the feature vectors dimension is nhist × nhist × nori

λdescr 6 sets how local the descriptor is:

- Gaussian window of standard deviation λdescrσ

- descriptor patch width 2λdescrσ

Table 3.4: Parameters of the computation of the SIFT feature vectors.

The parameter λori controls how local the computation of the reference orientation is.
Localizing the gradient analysis generally results in an increased number of orientation
references. Indeed, the orientation histogram generated from an isotropic structure is
almost flat and therefore has many local maxima. Another algorithm design parameter,
not included in Table 3.4 because of its insignificant impact, is the level of smoothing
applied to the histogram (Nconv = 6).

The size of the normalized patch used for computing the SIFT descriptor is governed
by λdescr. A larger patch will produce a more discriminative descriptor but will be less
robust to scene deformation. The number of histograms nhist×nhist and the number of bins
nori can be set to make the feature vector more compact. These architectural parameters
govern the trade off between robustness and discrimination.

Matching of SIFT feature vectors

The SIFT algorithm consists of the detection of image keypoints and their description.
The demo provides additionally two naive algorithms to match SIFT features. The first
one applies an absolute threshold on the distance to the nearest keypoint feature to define
if a match is reliable. The second one applies a relative threshold that depends on the
distance to the second nearest keypoint feature.

Increasing the absolute threshold Cmatch
absolute evidently reduces the number of matches.

In a relative threshold scenario, increasing the threshold Cmatch
relative results in an increased

63

number of matches. In particular, pairs corresponding to repeated structures in the image
will be less likely to be omitted. However, this may lead to an increased number of false
matches.

Parameter Default value Description

Cmatch
absolute 250 to 300 threshold on the distance to the nearest neighbor

Cmatch
relative 0.6 relative threshold between nearest and second nearest neighbors

Table 3.5: Parameters of the SIFT matching algorithm.

64

4 An analysis of scale-space sampling and

keypoints detection in SIFT

The SIFT algorithm has proven to be sufficiently scale invariant to be used in
numerous applications. In practice, however, scale invariance may be weak-
ened by various sources of error inherent to the SIFT implementation affecting
the stability and accuracy of keypoint detection. The density of the sampling
of the Gaussian scale-space and the level of blur in the input image are two of
these sources. This chapter presents an numerical analysis of their impact on
the extracted keypoints stability. Such analysis has both methodological and
practical implications, on how to compare feature detectors and on how to im-
prove SIFT. We show that even with a significantly oversampled scale-space
numerical errors prevent from achieving perfect stability. Usual strategies to
filter out unstable detections are shown to be inefficient. We also prove that
the effect of the error in the assumption on the initial blur is asymmetric
and that the method is strongly degraded in presence of aliasing or without
a correct assumption on the camera blur.

4.1 Introduction

For SIFT as well as for its numerous variants, the property of scale invariance is cru-
cial. SIFT was proved to be theoretically scale invariant Morel and Yu [2011]. Indeed,
SIFT keypoints are covariant, being the extrema of the image Gaussian scale-space We-
ickert et al. [1999]; Lindeberg [1993]. In practice, however, the computation of the SIFT
keypoints is affected in many ways, which in turn limits the scale invariance.

The literature on SIFT focuses on variants, alternatives and accelerations Brown and
Lowe [2007]; Tuytelaars and Mikolajczyk [2008]; Bay et al. [2006b]; Mikolajczyk et al.
[2005]; Förstner et al. [2009]; Mainali et al. [2013]; Ancuti and Bekaert [2007]; Pele and
Werman [2008]; Rabin et al. [2009]; Ke and Sukthankar [2004]; Calonder et al. [2010];
Rublee et al. [2011]; Tola et al. [2008, 2010]; Vedaldi and Fulkerson [2010]; Leutenegger
et al. [2011]; Agrawal et al. [2008]; Winder and Brown [2007]; Winder et al. [2009]; Chen
et al. [2010]; Grabner et al. [2006]; Liu et al. [2008]; Moreno et al. [2009]; Brown et al.
[2005]; Dickscheid et al. [2011]; Sadek et al. [2012]. The huge amount of citations of SIFT
indicates that it has become a standard and a reference in many applications. In contrast,
there are almost no articles discussing the SIFT settings and trying to compare SIFT
with itself. By this comparison we mean the question of comparing the SIFT invariance

65

claim with its empirical invariance, and the influence of the SIFT parameters on its own
performance. On this strict subject D. Lowe’s paper Lowe [2004] remains the principal
reference, and it seems that very few of its claims on the parameter choices of the method
have undergone a serious scrutiny. The work presented in this chapter intends to fill in the
gap for the main claim of the SIFT method, namely its scale invariance, and incidentally
on its translation invariance. This is investigated by means of a strict image simulation
framework allowing us to control the main image and scale-space sampling parameters:
initial blur, scale and space sampling rates and noise level. We show that even in a
particularly favorable scenario, many of the detected SIFT keypoints are unstable. We
prove that the scale-space sampling has an influence on the scale invariance and that
finely sampling the Gaussian scale-space improves the detection of scale-space extrema.
We quantify how the empirical invariance is affected by image aliasing and other errors
due to wrong assumptions on the input image blur level.

Also, we verify the importance of the quadratic interpolation proposed in SIFT for
refining the precision of the localized extrema. This is a fundamental step for the overall
algorithm stability by filtering out unstable discrete extrema. On the other hand, we
show that the contrast threshold proposed in SIFT is ineffective to remove the unstable
detections.

We provide here a thorough and rigorous analysis of the scale-space extrema and
their stability. We reach this by separating the mathematical definition of the scale-space
from the numerical implementation. We also add an analysis of the difference of Gaussians
(DoG) scale-space operator and a discussion on how fine the scale-space should be sampled
to fulfill the SIFT invariance claim.

The remainder of this chapter is organized as follows. Section 4.2 details how for the
requirements of the present analysis, the implementation of the SIFT method considered
here differs from the original. Section 4.3 exposes SIFT theoretical scale invariance. With
that aim in view, we explicit the camera model consistent with SIFT. Section 4.4 details
how input images are simulated to be rigorously consistent with SIFT camera model.
Section 4.5 explores the extraction of SIFT keypoints at each stage of the algorithms
focusing on the impact of the scale-space sampling on detections.

Section 4.5 provides an empirical analysis of the scale-space sampling. Section 4.6
looks at the impact of image aliasing and of errors in the estimation of camera blur. We
finally close in Section 4.7.

4.2 The exact implementation of the SIFT method

This chapter focuses on the computation of the Gaussian scale-space (Section 3.2), the
detection, interpolation and filtering of 3d extrema (Section 3.3).

In this section we fix the adjustments that are required to make it ideally precise.
This ideal SIFT will be used in the next sections (in place of the original implementation
detailed in Chapter 3) to explore the limits for the SIFT method to detect scale-space
extrema.

66

4.2.1 The Gaussian scale-space and its implementation

The architecture of the Gaussian scale-space requires for the Gaussian convolution to be
implemented so it satisfies the semi-group property.

GσGγu(x) = G√
σ2+γ2u(x). (4.1)

We have seen in Chapter 3 that the Gaussian convolution is implemented in SIFT as a
discrete convolution with a sampled truncated Gaussian kernel.

Such implementation satisfies the semi-group property for the SIFT default parameters
(nspo = 3), but it fails for larger values of nspo, as the level of blur to be added approaches
zero. Indeed, as we demonstrated in Chapter 2, the discrete convolution fails to satisfy
the semi-group property for low values of σ (i.e., σ < 0.7) because of image aliasing when
sampling a Gaussian kernel with low standard deviation.

To avoid this undesired phenomenon in our experiments that will consider strong scale
oversampling, we replaced the discrete convolution by a Fourier-domain based convolution
using the Discrete Cosine Transform (DCT). As we have established in Chapter 2 Sec-
tion 5.5, the Fourier-based convolution satisfies the semi-group property even for low values
of σ. This is why we opted to use the DCT Gaussian filtering. The implementation details
are given in Chapter 2, Algorithm 2.

4.2.2 Building an ideal SIFT for parameter exploration

Since our goal was to explore extrema detection, we implemented an ideal SIFT where
not only the convolution is exact, but also the extrema filters were turned off. The im-
plementation of SIFT used in the present work differs from the original one (as described
in Chapter 3) on two aspects (besides the replacement of the discrete convolution by the
Fourier-based one). First, SIFT proposes two filters to discard unreliable keypoints. The
first one eliminates poorly contrasted extrema (those with low DoG value) and the second
one discards extrema laying on edges (using a threshold on the local Hessian spectrum).
These filters were deactivated to gain a full control of all detected extrema and to isolate
the impact of each of them in terms of keypoints stability. This choice will be a posteriori
justified, as we demonstrate in Section 4.5.3 that the DoG contrast threshold is inefficient.

Secondly, we decided to implement the DoG operator in such a way that the same
mathematical definition is kept (κ value) regardless of the scale sampling rate (nspo value).
SIFT approximates the normalized Laplacian σ2∆ by the difference of Gaussian operator.

Different DoG definitions lead to different extrema. Consider for instance an image
with a Gaussian blob of standard deviation σblob as input. The normalized Laplacian
will have an extremum at the center of the Gaussian blob, and scale σdetect = σblob.
On the other hand, the DoG scale-space of parameter κ yields an extremum at scale
σdetect = σblob/

√
κ. Consequently, the range of scales simulated in the scale-space is affected

by the parameter κ.
For the requirements of the present analysis, and to investigate thoroughly how the

operator definition affects extrema extraction, the considered DoG scale-space implemen-
tation allows us to set κ and nspo independently.

Implementation details. The input image is oversampled by a factor 1/δmin to reach
the δmin sampling rate. This was done by using a cubic B-spline interpolation of order
3. From this interpolated image all images in the scale-space were computed using a

67

combination of DCT Gaussian convolution and subsampling. For each scale σ simulated
in an octave, the algorithm computes two images, the first one corresponding to scale σ
and the second one corresponding to scale κσ (both being directly computed from the
input image). Although we lost the benefit of a low computational cost, this gave us
flexibility and allowed us to investigate the influence of the operator definition regardless
of the scale-space sampling rate.

4.3 The theoretical scale invariance

In this section we give the correct proof that SIFT is scale invariant and stress the fact
that this proof also indicates that knowing exactly the initial camera blur is crucial for
the method’s consistency.

4.3.1 The camera model

In the SIFT framework, the camera point spread function is modeled by a Gaussian kernel
Gc and all digital images are frontal snapshots of an ideal planar object described by the
infinite resolution image u0. In the underlying SIFT invariance model, the camera is
allowed to rotate around its optical axis, to take some distance, or to translate while
keeping the same optical axis direction. All digital images can therefore be expressed as

u =: S1GcHT Ru0, (4.2)

where S1 denotes the sampling operator, H an arbitrary homothety, T an arbitrary trans-
lation and R an arbitrary rotation.

4.3.2 The SIFT method is theoretically invariant to zoom
outs

It is not difficult to prove that SIFT is consistent with the camera model. Nevertheless,
the proof in Morel and Yu [2011] is inexact, as pointed out in Sadek [2012]. Let uλ and
uµ denote two digital snapshots of the scene u0. More precisely,

uλ = S1GcHλu0 and uµ = S1GcHµu0. (4.3)

Assuming that the images are well sampled, namely that S1 is invertible by Shannon
interpolation, and taking advantage of the semi-group property (4.1), the respective scale-
spaces are

vλ(σ,x) = G√σ2−c2I1S1GcHλu0(x) = GσHλu0(x) (4.4)

vµ(σ,x) = GσHµu0(x), (4.5)

where I1 denotes the Shannon interpolation operator. These formulae imply that both
scale-spaces only differ by a reparameterization. Indeed, if v0 denotes the Gaussian scale-
space of the infinite resolution image u0 (i.e., v0(σ,x) = Gσu0(σ,x)) we have

vλ(σ,x) = Hλ(Gλσu0(x)) = v0(λσ, λx), (4.6)

vµ(σ,x) = v0(µσ, µx), (4.7)

68

thanks to a commutation relation between homothety and convolution.
By a similar argument, the two respective DoG functions are related to the DoG

function w0 derived from u0. For a ratio κ > 1 we have

wλ(σ,x) = vλ(κσ,x)− vλ(σ,x) (4.8)

= v0(κλσ, λx)− v0(λσ, λx) (4.9)

= w0(λσ, λx) (4.10)

and similarly wµ(σ,x) = w0(µσ, µx).
Consider an extremum point (σ0,x0) of the DoG scale-space w0. Then if σ0 ≥

max(λc, µc), this extremum corresponds to extrema (σ1,x1) and (σ2,x2) in wλ and wµ

respectively, satisfying σ0 = λσ1 = µσ2. This equivalence of extrema between the two
scale-space guarantees that the SIFT descriptors are identical.

Note that this same relation links the two normalized Laplacian applied on vλ and vµ,
denoted respectively nLλ and nLµ, both related to the normalized Laplacian of v0 denoted
nL0. We have

nLλ(σ,x) = σ2∆vλ(σ,x) (4.11)

= (λσ)2∆v0(λσ, λx) (4.12)

= nL0(λσ, λx) (4.13)

nLµ(σ,x) = nL0(µσ, µx) (4.14)

Therefore, considering extrema of the normalized Laplacian as keypoints will also lead to
SIFT descriptors that are identical.

4.3.3 Knowing the camera blur is crucial for scale invariance

The knowledge of the camera blur is crucial to ensure the theoretical invariance to zoom-
outs Sadek [2012]. Indeed, DoG scale-spaces computed with a wrong camera blur have in
general unrelated extrema. Starting again from the two digital snapshots uλ and uµ, but
assuming a wrong blur c′ instead of the correct blur c, the respective Gaussian scale-spaces
are:

vλ(σ,x) = G√σ2−c′2I1S1GcHλu0(x) (4.15)

= G√σ2−c′2+c2Hλu0(x) (4.16)

= v0(λ
√
σ2 − c′2 + c2, λx) (4.17)

and

vµ(σ,x) = v0(µ
√
σ2 − c′2 + c2, µx). (4.18)

We see that, because of the wrong blur assumption, the scale-space function v0 is shrunken
or dilated along scale. The corresponding DoG scale-spaces are:

wλ(σ,x) = v0(λ
√
κ2σ2 − c′2 + c2, λx)

− v0(λ
√

σ2 − c′2 + c2, λx),
(4.19)

wµ(σ,x) = v0(µ
√
κ2σ2 − c′2 + c2, µx)

− v0(µ
√
σ2 − c′2 + c2, µx).

(4.20)

69

Figure 4.1: Examples of simulated images consistent with SIFT’s image camera model. The respective
blur levels are c = 0.5, c = 1.0 and c = 0.6.

None of these are linear reparameterizations of the DoG function w0 anymore. They yield
therefore unrelated extrema. Such bias is maximal with detections at finer scales and with
large zoom factors.

4.4 Simulating the digital camera

Controlling the image formation process permits us to measure how invariant SIFT is in
different scenarios. Such a control will be achieved by simulating images that are consistent
with the SIFT camera model. Images at different zoom levels were simulated from a
large reference real digital image uref through Gaussian convolution and subsampling. To
simulate a camera having a Gaussian blur level c, a Gaussian convolution of standard
deviation cS, with S > 10 is first applied to the reference image. The convolved image
is then subsampled by a factor S. Assuming that the reference image has an intrinsic
Gaussian blur level of cref ≪ cS, the resulting Gaussian blur level is

√
c2 + (cref/S)2 ≈ c.

We estimated the blur level introduced by a digital reflex camera by fitting a Gaussian
function to the estimated camera point-spread-function (following Delbracio et al. [2012]).
The obtained Gaussian blur levels varied from c = 0.35–0.95, depending on the aperture
of the lens (blur level increases with aperture size). Different zoomed-out and translated
versions were simulated by adjusting the scale parameter S and by translating the sampling
grid. Thanks to the large subsampling factor, the generated images are noiseless. In
addition, the images were stored with 32 bit precision to mitigate quantization effects.
Figure 4.1 shows some examples of simulated images used in the experiments.

It might be objected that our simulations are highly unrealistic as the images to be
compared by SIFT in a real scenario are not perfectly sampled or noiseless. Nevertheless,
with an ever growing image resolution, more and more images will be compared by SIFT in
large octaves, and therefore after a large subsampling, so that these properties can become
realistic in practice. Furthermore, even if applying SIFT to the originals and regardless of
initial noise and blur, the images at large scales also become anyway perfect so that the
accuracy and repeatability issues under such favorable conditions are relevant.

70

4.5 Empirical analysis of the digital scale-space

sampling

The SIFT method is built on precisely locating the extrema of the DoG scale-space.
Ideally, one would like to detect and locate all extrema from the underlying continuous
DoG scale-space. However, in practice, we do not have access to the continuous scale-
space but to its discrete counterpart. In theory, as δmin → 0 and nspo → ∞ the discrete
scale-space better approximates the continuous scale-space therefore allowing to extract
reliably all continuous extrema. This section investigates what happens when the sampling
rates increase and how sampling affects the successive steps of the rudimentary procedure
for detecting 3d scale-space discrete extrema, namely the extraction of discrete extrema,
their quadratic interpolation and their filtering based on their DoG response.

To focus on the influence of the scale-space sampling, the study was carried out in the
most favorable conditions: noiseless and aliasing-free input images (c = 1.1 and S = 10).
In all experiments we set κ = 21/3 to separate the mathematical definition of the DoG
analysis operator from the scale-space discretization.

4.5.1 Number of detections

To evaluate how the scale-space sampling rates affects the number of detections we gen-
erated different scale-space discretization by varying the parameters (δmin, nspo), and ex-
tracted the 3d discrete extrema for each one of them.

Figure 4.2 (a) shows the number of detected extrema for the different scale-space
samplings. At first sight, it seems that some digital scale-space samplings produce many
more keypoints than the SIFT default sampling (δmin = 1/2, nspo = 3). However, this
increase in detections happens for discretizations that are significantly unbalanced in space
and in scale. By unbalance we mean that the scale and the space dimensions are sampled
with very different sampling rates.

Boundary effect. To do a fair comparison of the different discrete detected extrema
when changing the scale-space sampling rates, we have to consider that depending on the
scale-space sampling, some extrema close to the lower scale boundary are not detected.
Indeed, due to the scale discretization there are no detected keypoints with scale below
σmin21/2nspo . To compensate for this dead range, which is a function of nspo, we restricted
the analysis to a common scale range independent of nspo. This was achieved by discarding
all extrema with scale below σmin21/3. To avoid issues due to the coarse scale discretization,
we used the keypoint scale obtained after refinement (3.12). Figure 4.2 (b) shows, for all
scale-space tested configurations, the number of detections in the common scale region.
The number of detected extrema lying in the common region is much more similar for all
the scale-space samplings.

Duplicate detections. We will say that detections (σ0,x0) and (σ1,x1) are the same, if:

||x0 − x1||∞ ≤ ǫ and R−1 ≤ σ1/σ0 ≤ R, (4.21)

where ǫ and R are the spatial tolerance and scale relative tolerance values respective.
Clearly, there is a compromise between saying that two detections are not the same

and allowing some displacement due to numerical errors. Currently, we are not tackling
the problem of precision (how accurate a keypoint can be localized) but the problem of

71

All detections

nspo
3 5 7 9 11 13 15 17 19

d
m

in

0.52

0.32

0.23

0.18

0.15

0.12

0.11

0.09

0.08

(a)

Detections
 (Common Region)

nspo
3 5 7 9 11 13 15 17 19

d
m

in

0.52

0.32

0.23

0.18

0.15

0.12

0.11

0.09

0.08

(b)

Unique Detections
 (Common Region)

nspo
3 5 7 9 11 13 15 17 19

d
m

in

0.52

0.32

0.23

0.18

0.15

0.12

0.11

0.09

0.08

(c)

2000

2500

3000

3500

4000

4500

5000

Median condition number

nspo
3 5 7 9 11 13 15 17 19

d
m

in

0.52

0.32

0.23

0.18

0.15

0.12

0.11

0.09

0.08

10

20

30

40

50

60

(d)

nspo
3 5 7 9 11 13 15 17 19

M
e

d
ia

n
 c

o
n

d
it
io

n
 n

u
m

b
e

r
1

3

5

7

9

Balanced sampling

d
m

in
(n

s
p
o
)

0

0.1

0.2

0.3

0.4

0.5

0.6

(e)

Figure 4.2: Influence of the scale-space sampling rate (nspo, δmin) on the number of detected DoG
extrema. (a) Number of 3d DoG discrete extrema. Unbalanced discretizations can produce twice as
many detections as the default scale-space sampling used in SIFT (nspo = 3, δmin = 1/2). This gap
is reduced after compensating for a boundary effect by discarding 3d discrete extrema with detected
scale below σmin21/3 (b), and after removing duplicate detections (c). Unbalanced discretizations
may lead to inaccurate local models for the extrema refinement proposed in SIFT. (d) Median of the
condition numbers of DoG 3d Hessians used for extrema interpolations. Unbalanced sampling grids
(shown in the top-right or bottom-left parts of this graph) produce extrema with significantly poor
Hessian condition number. This leads to unstable extrema interpolations. (e) Balanced sampling rates
(those satisfying (4.22), shown in the dotted blue line) lead to extrema having well conditioned Hessian
matrices (red line).

not mixing two different detections. With that aim, it seems reasonable that the tolerance
values are set in order to avoid that one detection be mistaken for another. We opted to
set tolerance values to ǫ = 1.0 and R = 21/2 independently of the scale-space sampling.

Let D be the set of detected DoG extrema. We call duplicates of (x0, σ0) ∈ D the
subset of detected extrema D(x0, σ0) ⊂ D that satisfy (4.21). Given the set of all detected
keypoints D, we say that U is a representative set of unique detections if

U = arg min |U | s.t. U ⊂ D and ∪(x,σ)∈U D(x, σ) = D,

where the number of keypoints in the set U is denoted by |U |. Figure 4.2 (c) shows
the number of unique detections in the common scale region. The number of unique
detections is similar to the number of detections (Figure 4.2 (b)). This indicates that in
general duplicate detections are negligible.

Balance the scale and space DoG sampling.
The SIFT algorithm proposes to refine the position of a discrete extremum using

72

a quadratic interpolation. Having an unbalance sampling in scale and space may lead
to an unreliable interpolation due to the very different discretization. As we presented in
Section 2, the refinement of a keypoint is done by solving a linear system (from (3.12)). The
sensitiveness to numerical errors can be measured by the linear system’s condition number
(i.e., the condition number of the Hessian at the extrema to be refined). Figure 4.2 (d)
shows the median of the condition number for the sets of detected extrema associated with
different scale-space samplings. It shows that using a balanced sampling rate improves
the overall stability of the extrema interpolation.

By balanced sampling we mean that the distance separating adjacent samples in the
scale dimension is similar to the distance separating adjacent samples in space. For a DoG
scale-space with parameter κ, the distance between the first two simulated scales is

∆σ = κσmin(21/nspo − 1).

Thus, to equally sample the Gaussian kernel

G(x, σ) =
1

2πσ2
e−||x||

2/2σ2

in scale and space, the spatial inter pixel distance should be

δmin =
√

2∆σ =
√

2κσmin(21/nspo − 1). (4.22)

This relation between both sampling rates is plotted in Figure 4.2 (e) along with the
median condition numbers on this set of balanced sampling rates. The condition number
is mostly constant for balanced samplings.

4.5.2 Stability of DoG extrema to scale-space sampling

To evaluate if all 3d discrete extrema are equally stable to an increase of the DoG sampling
rate, we simulated a set of increasingly dense balanced scale-spaces. We set the minimal
scale-space blur level to σmin = 1.1. We simulated increasingly dense scale-space samplings
(nspo, δmin)i, for i = 1, . . . , n with nspo = 3, . . . , 19 and the balanced spatial sampling rate
δmin := δmin(nspo) given by (4.22) (i = 1 being the coarsest one and i = n the finest one).
Figure 4.3 (a) shows that the number of detections is approximately constant for different
balanced sampling rates.

Let Di for i = 1 . . . , n be the sets of detected 3D extrema for the discretizations
described above. Given a detected extremum (x0, σ0) ∈ Di, we say the extremum is
detected in Dj if there exists (x, σ) ∈ Dj such that they are the same detection according
to the precision conditions (4.21). We say that a detected extremum (x0, σ0) ∈ Di is new
if it was not detected in Di−1. Given the sampling i, the rate of new extrema is computed
as the fraction of new detected keypoints and the total number of detections. In the same
way, we define the rate of lost extrema as those present in the (coarser) sampling i and
not present in the (finer) sampling i + 1. Figure 4.3 (b) shows the rate of new and lost
detections as a function of the sampling rate. The new detection rate decreases with the
sampling rate and stabilizes to a minimal rate of 10% of the total number of detections
for nspo ≥ 14. The same observations applied to the rate of lost extrema.

This surprising result means that despite sampling the scale-space very finely, 3d

discrete extrema keep appearing and disappearing when changing the sampling.

73

nspo
3 5 7 9 11 13 15 17 19

0

500

1000

1500

2000

Number of Detections

(a)

nspo
3 5 7 9 11 13 15 17 19

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Rate of lost and new detections

lost
new

(b)
Occurrence Matrix

Keypoint
2000 4000 6000 8000 10000 12000 14000 16000 18000

n
s
p

o

3
5
7
9

11
13
15
17
19

(c)
Occurrence Matrix (reorganized and colorized)

Keypoint
2000 4000 6000 8000 10000 12000 14000 16000 18000

n
s
p

o

3
5
7
9

11
13
15
17
19

(d)

Figure 4.3: Influence of sampling density on stability. A set of increasingly dense and balanced scale-
spaces is computed. The scale-space samplings are indexed by the nspo value, and the δmin is given by
(4.22). (a) The number of detections is roughly constant for different sampling rates. (b) The rates of
lost extrema (detected in the current sampling but not in the immediately finer sampling) and of new
extrema (detected in the current sampling but not in the immediately coarser sampling) decrease with
the sampling rate nspo and stabilize around 10% of the total number of detections. (c) The occurrence
matrix. Each row in this matrix corresponds to one of the simulated samplings (nspo), while each
column indicates if a keypoint was detected in that particular sampling. (b) For better visualization,
the columns are colored and reorganized in increasing order of stability (yellow: always detected, blue:
detected only once). Almost 20% of the detections appear no matter the scale-space sampling rate.

To illustrate how discrete extrema appear and disappear as scale-space sampling rates
changes, we decided to investigate the stability of each single detected extremum. The
set of all unique detected extrema is formed by gathering the extrema detected on all the
simulated scale-spaces Dall = ∪i=1,...,nDi and then by extracting a unique set of detections
Uall. For each detected extremum (x, σ) ∈ Uall, we checked for its presence in each of
the Di detection sets. This was done by using the same definition as in (4.21). The
results are summarized in the occurrence matrix shown in Figure 4.3 (c). Each simulated
discretization is indexed by the nspo value. Each entry in this matrix indicates if a keypoint
in Uall (column) was found in the scale-space with a given discretization i = 1, . . . , n (where
i is the row index in the matrix).

We define the stability of a unique keypoint as the ratio between the number of dis-
cretizations it is detected in divided by the total number of discretizations. Figure 4.3 (d)
shows the normalized occurence matrix, where each entry in the occurence matrix is mul-
tiplied by the stability value (therefore each column has the same color). Also, keypoints

74

(columns) were reorganized from less to more stable (left to right).

The normalized occurrence matrix confirms that a majority of the keypoints are stable
as they appear on at least 80% of the discretizations, and that some keypoints tend
to appear and disappear repeatedly as sampling rates increase. It also shows that the
proportion of unstable keypoints (e.g., those appearing less than 20%) is low overall but
is significantly larger for coarse discretizations than in denser ones.

4.5.3 Can unstable (intermittent) detections be detected?

To increase its overall detection stability, SIFT discards non-contrasted extrema based on
their absolute DoG value. However, many other features, computed from the values of the
extremum and its neighbors, could be used as well. The DoG value, the Laplacian of the
DoG, the DoG Hessian condition number and the minimal absolute value of the difference
between the extremum and its adjacent samples are some of them.

To find out if any of these simple features is good at predicting if a discrete extremum
is stable (to different sampling rates), we proceeded as follows. Given the set of unique
detections Uall computed by gathering all detections from the different scale-spaces with
different sampling rates, we considered two subsets of unique keypoints: one subset of
stable unique extrema (with occurrence rate above 80%) and one subset of unstable unique
extrema (occurrence rate below 20%). Figure 4.4 (a–d) shows the proportion of extrema in
both stable/unstable sets respectively, that have a feature value below a certain threshold.
The considered features are: (a) the DoG value, (b) the Laplacian of the DoG, (c) the DoG
Hessian condition number and (d) the minimal absolute value of the difference between
the extremum and its adjacent samples.

This figure demonstrates that none of these features manages to faithfully separate
the stable from the unstable ones. This is confirmed by the ROC curve shown in Fig-
ure 4.4 (e) (see figure caption for details). Noticeably, the keypoint feature giving the
lowest discrimination performance is the DoG value used by SIFT.

4.5.4 The influence of extrema interpolation on stability,
precision and invariance

The refinement of the discrete extrema position proposed in SIFT has two main purposes.
First, it allows to locate the extrema to subpixel accuracy thanks to a local continuous
model of the DoG scale-space. But this refinement procedure also detects and discards
unstable discrete extrema.

In this section, we analyze the impact of the refinement procedure. To that aim, we
considered an input image and a series of transformations simulating small displacements
of the camera. Although the analysis was restricted for a sake of simplicity to the case
of translations and scale changes, it could be easily generalized to more complex image
transformations such as perspective projections.

We examined the influence of the two main parameters in the refinement procedure (see
Section 3.3.2): the maximal number of allowed interpolations Ninterp, and the maximum
offset Moffset authorized for the extremum at each refinement iteration.

Our performance measure will be the stability, measured by considering the number of
keypoints that appear in at least a certain percentage of the simulated image transforma-
tions. A perfectly stable keypoint would be one that appears in all the simulated images,

75

DoG
0 0.02 0.04 0.06 0.08

%
 o

f
k
e

y
p

o
in

ts

0

0.2

0.4

0.6

0.8

1

stable
unstable

(a)

difference(DoG)
×10

-3
0 1 2 3

%
 o

f
k
e

y
p

o
in

ts

0

0.2

0.4

0.6

0.8

1

stable
unstable

(b)

DoG 3D Laplacian
0 0.01 0.02 0.03

%
 o

f
k
e

y
p

o
in

ts

0

0.2

0.4

0.6

0.8

1

stable
unstable

(c)

cond(DoG 3D Hessian)
0 50 100

%
 o

f
k
e

y
p

o
in

ts

0

0.2

0.4

0.6

0.8

1

stable
unstable

(d)

% Unstable Det. Filtered (Specificity)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 S

ta
b

le
 D

e
t.

 A
c
c
e

p
te

d

(S
e

n
s
it
iv

it
y
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC

DoG
difference(DOG)
DOG 3d Laplacian
cond(DOG 3D Hessian)

(e)

Figure 4.4: Filtering keypoints that are unstable to changes in the scale-space sampling. Increasing
thresholds are applied respectively to the set of stable and unstable detections. The considered features
are: (a) the extremum DoG value, (b) the difference of extremum DoG value and the adjacent samples
in the scale-space, (c) the DoG 3d Laplacian value at the extremum, (d) the condition number of
the DoG 3d Hessian at the extremum. None of the tested features separates convincingly the unstable
from the stable detections. This is confirmed by the ROC curves, illustrating the performance of each
feature, shown in (e). A point in a ROC curve indicates the proportion of non-filtered stable keypoints
(good detections – sensitivity) as a function of the filtered unstable ones (good removals – specificity)
for a particular threshold value. A perfect feature should produce a ROC that is always one. According
to this, the worst feature for eliminating keypoints unstable to changes in the scale-space sampling is
the DoG value.

while a perfectly unstable keypoint would be one that only appears in one of the images.
We also measured the precision by computing the average standard deviation of the loca-
tion of the stable keypoints, where keypoints were considered stable if they appeared in
at least 50% of the simulated transformations.

Figure 4.5 (a,b) shows the number of unique keypoints that appear in at least a given
percentage of the translations for different values of Moffset. Each figure corresponds to
a given sampling rate (nspo = 3 and 15) and a given maximal number of interpolations
(Ninterp = 1, 2,∞). Ideally, one would like to have a large number of stable detections,
which would correspond to a flat curve. Although the number of detections for the SIFT
sampling rate (nspo = 3) is large, it decreases quickly when considering only the more stable
ones, present in a large percentage of the simulated transformations. On the other hand,
nspo = 15 leads to flatter curves, which implies more stable detections, and demonstrates
that increasing the scale-space sampling improves stability. The refinement of the extrema
helps to discard the unstable ones.

The fact that the results with Ninterp = 2 and Ninterp = ∞ are identical (second and
third row of Figure 4.5), implies that there is no extra benefit in allowing more than two
iterations. The present analysis indicates that allowing a maximum of two interpolations
(Ninterp = 2) in combination with a maximum displacement of Moffset = 0.6 produce the
largest number of stable keypoints. This conclusion is independent of the considered nspo.
Therefore, for the remainder of the chapter, we consider the refinement step with these
two values.

Increasing the scale-space sampling rate in conjunction with extrema interpolation has

76

a tremendous impact on the detection precision. Figure 4.5 shows for both, discrete and
interpolated detections, the mean of the precision of stable keypoints (appearing in at
least 50% of translations) as a function of the scale-space sampling rate.

We repeated the same experiment but different camera zoom-outs were simulated. The
results are very similar to the pure camera translation case (see Figure 4.6). In general,
sampling the scale-space finer than what is proposed in SIFT (e.g., nspo > 3) allows to
better localize the DoG extrema. In addition, the local refinement of the extrema position
increases the extrema precision.

4.5.5 Influence of κ

The DoG scale-space is formed by computing the difference of Gaussians operator at scales
κσ and σ. To analyze the influence of the DoG parameter κ, we computed the extrema
of different DoG scale-spaces produced with κ = 21/30, 21/29, . . . , 21/2. In order to minimize
sampling related instability, the scale-spaces were sampled at nspo = 15 and the respective
δmin.

The number of detected extrema is more or less constant for different values of κ
(Figure 4.7 (a)) Depending on the κ value, the same structure is detected at a different
scale. As pointed out in Section 4.2.2, a Gaussian blob of standard deviation σ produces
an extrema of the DoG at scale σ/

√
κ. Thus, we have normalized the detections scale by

σnormalized = σ
√
κ. To compare the keypoints detected with different κ values, we also

restricted the analysis to those lying on the common scale range, that is, σmin

√
21/2 ≤ σ ≤

2σmin

√
21/30.

We proceeded similarly as before by gathering all the detections from the different
DoG scale-spaces and computed a set of unique detections. Then, we proceeded to create
the occurrence matrix. The occurrence matrix in Figure 4.7 (b) shows that the different
κ’s lead for the most part to identical detections. Almost half the keypoints are detected
in every DoG scale-space and a large percentage of the keypoints is detected in most
simulated scale-spaces.

4.6 Impact of deviations from the perfect camera

model

In order to achieve perfect invariance, SIFT formally requires that the image is acquired
in perfect conditions. This means that the input image should be noiseless, well-sampled
(according to the Nyquist-Shannon sampling theorem) and with an a priori known level
of Gaussian blur c. These ideal conditions justify the construction of the image scale-
space. In this section, we evaluate what happens when there are deviations from these
ideal requirements.

4.6.1 Image aliasing

Let us assume that the input image was generated with a camera having a Gaussian point-
spread-function of standard deviation c. If c is low (i.e., c ≤ 0.7) the acquired image will
be subject to aliasing artifacts. We shall assume first that this camera blur c is known
beforehand, so that the SIFT method can be applied consistently.

77

0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

% of translations

k
e

y
p

o
in

ts

Keypoints appearing in at least
 x% of the translations, nspo=3, Ninterp=1

discrete

maxoffset 0.5

maxoffset 0.6

maxoffset 1.0

maxoffset inf

0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

% of translations

k
e

y
p

o
in

ts

Keypoints appearing in at least
 x% of the translations, nspo=3, Ninterp=2

discrete

maxoffset 0.5

maxoffset 0.6

maxoffset 1.0

maxoffset inf

0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

% of translations

k
e

y
p

o
in

ts

Keypoints appearing in at least
 x% of the translations, nspo=3, Ninterp=inf

discrete

maxoffset 0.5

maxoffset 0.6

maxoffset 1.0

maxoffset inf

(a) nspo = 3

0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

% of translations

k
e

y
p

o
in

ts

Keypoints appearing in at least
 x% of the translations, nspo=15, Ninterp=1

0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

% of translations

k
e

y
p

o
in

ts

Keypoints appearing in at least
 x% of the translations, nspo=15, Ninterp=2

0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

% of translations

k
e

y
p

o
in

ts

Keypoints appearing in at least
 x% of the translations, nspo=15, Ninterp=inf

(b) nspo = 15

4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

nspo

Precision of stable keypoints

discrete

Ninterp=2, maxoffset=0.6

dmin

(c)

Figure 4.5: Influence of extrema refinement parameters Moffset and Ninterp on the detection stability/-
precision. A set of translated images was simulated and the keypoints extracted. Each curve shows
the number of keypoints appearing in a least a certain percentage of the simulated image translations
for different values of Moffset = 0.5, 0.6, 1.0,∞. The plots in the first, second and third row were
generated considering a maximum number of interpolations Ninterp = 1, 2 and ∞ respectively. The left
block of plots (a) was generated by sampling the scale-space with nspo = 3 (and the corresponding
δmin), while the right block (b) was generated using nspo = 15. Allowing two iterations (Ninterp = 2)
and a maximal offset of Moffset = 0.6 gives the best performance in terms of stability of detected
keypoints. Allowing for more interpolations attempts did not increase the performance, as can be seen
by comparing the third row to the second row. (c) shows the influence of the extrema refinement on
the precision of the stable set of keypoints (appearing in at least 50% of the simulated images). In this
pure translation scenario, it appears that the precision of the detected extrema significantly increases
when using extrema interpolation and when sampling finely the scale-space (e.g., nspo > 3).

78

0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

1200

1400

% of zoom−outs

k
e

y
p

o
in

ts

Keypoints appearing in at least
 x% of the zoom outs

nspo=3, discrete

nspo=3, Ninterp=2, maxoffset 0.6

nspo=15, discrete

nspo=15, Ninterp=2, maxoffset 0.6

(a)

4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

nspo

Precision of stable keypoints

discrete

Ninterp=2, maxoffset=0.6

dmin

(b)

Figure 4.6: Influence of scale-space sampling and extrema refinement on the invariance to zoom-outs.
A set of zoomed-out images was simulated and the keypoints extracted. (a) The number of keypoints
appearing in at least a certain percentage of the simulated images for different scale-space sampling
and refinements. The best performance is obtained by significantly oversampling the scale-space, with
nspo = 15, and by refining the extrema with the local interpolation. In this case, most of the detected
keypoints are present in all the simulated images. On the other hand, the original SIFT sampling
nspo = 3 leads to low stability even with the extrema refinement step. (b) Mean precision of stable
keypoints location (appearing in at least 50% of the zoom-outs) plotted as a function of the sampling
rate nspo. The local refinement of the extrema position significantly increases the precision of the
extrema detection. Also, using a finer grid than the one proposed in SIFT (e.g., nspo > 3) allows to
better localize the extrema.

To evaluate the SIFT performance in this aliasing situation, we simulated random
translations of the digital camera. Then, we computed the extrema of the DoG scale-spaces
generated with each translated image and compared the extrema. All scale-space consisted
of one octave computed with nspo = 15, σmin = 1.1 and the interpolation parameters were
set to Ninterp = 2 and Moffset = 0.6.

Figure 4.8 (a) shows the average number of keypoints detected as a function of the
camera blur c. The number of detections is independent of the camera blur. Indeed, a
sharper shot does not increase the number of keypoints.

In Figure 4.8 (b) we show the number of unique keypoints that appear in at least a
certain percentage of the translated images. Keypoints detected from well sampled images
(e.g., c > 0.6) are stable to translation (the curves are almost flat) while those from severely
undersampled images (c ≈ 0.3) are very sensitive to the position of the sampling grid, as
expected.

4.6.2 Unknown input image blur level

A more realistic scenario is the case where the level of blur of the input image c is unknown.
SIFT requires this value to create the scale-space starting at a known level of image blur
σmin. A wrong assumption of the input camera blur affects the range of simulated scales
simulated in the Gaussian scale-space.

To demonstrate to what extent the wrong knowledge of the input camera blur produce
unrelated keypoints, we compared the keypoints extracted assuming an image blur of
c = 0.7 from a set of images having actual random blur creal uniformly picked from
[c−∆c, c + ∆c].

79

log
2
(kappa)

1/30 1/26 1/22 1/18 1/14 1/10 1/6 1/2

K
e

y
p

o
in

ts

400

450

500

550

600

650

700

750
Number of Detections

(a)
Occurrence Matrix (reorganized and colorized)

Keypoint
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

lo
g

2
(k

a
p
p
a
)

1/2

1/6

1/10

1/14

1/18

1/22

1/26

1/30
0

0.2

0.4

0.6

0.8

1

(b)

Figure 4.7: Influence of the DoG parameter κ. The number of detected keypoints is roughly constant
for different values of κ (a) . The occurrence matrix for the set of unique normalized keypoints detected
in the different DoG scale-spaces (b). A large majority of the keypoints are detected in most simulated
scale-spaces when changing the value of κ.

Figure 4.9 shows the number of unique keypoints that appear in at least a certain
percentage of the simulated images. This was evaluated for different ranges of uncertainty
(i.e., ∆c = 0.05 − 0.4). The larger the range of uncertainty ∆c, the more unrelated
the extrema are (the curve decreases very fast, indicating the presence of many unique
keypoints appearing in only a few of the simulated images).

4.6.3 Image noise

The digital image acquisition is always affected by noise that undermines the performance
of SIFT. To evaluate the impact of image noise we simulated different image acquisition, by
adding random white Gaussian noise to the input image. Then, we proceeded to compute
the keypoints that are detected in a certain percentage of the simulated images. Figure 4.10
is self-explanatory and demonstrates the strong impact of noise level on keypoint stability.
Noise has a strong impact on the stability of the detected keypoints.

4.7 Concluding remarks

We presented a systematic analysis of the main steps involved in the detection of keypoints
in the SIFT algorithm. One of the main conclusions is that the original parameter choice
in SIFT is not sufficient to ensure a theoretical and practical scale (and even translation)
invariance, which was the main claim of the SIFT method. In addition, we show that the
SIFT invariance claim is strongly affected if the assumption on the level of blur in the
input image is wrong.

Specifically, we showed that increasing the scale-space sampling from nspo = 3 to
nspo = 15 (and respectively the space sampling rate δmin) improves the stability of the

80

0.2 0.4 0.6 0.8 1 1.2
400

500

600

700

800

900

1000

1100

1200

1300

K
e

y
p

o
in

ts

c

Number of Detections

(a)

0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

1200

1400

% of translations

k
e

y
p

o
in

ts

Keypoints appearing in at least
 x% of the translations

c=0.25

c=0.44

c=0.63

c=0.82

c=1.01

c=1.10

(b)

Figure 4.8: Impact of image aliasing. For various camera blurs, 0.25 ≤ c ≤ 1.1, a set of translated
images were simulated and the DoG keypoints extracted (nspo = 15, σmin = 1.1). Aliasing does not
affect the number of detections (a). In (b) we show the number of unique keypoints appearing in at
least a certain percentage of the simulated translations. Detections are less stable for severely aliased
images (c = 0.25), while for c > 0.6, the impact of aliasing is negligible.

0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

% of blurs

k
e

y
p

o
in

ts

Keypoints appearing in at least
 x% of the blurs

dC=0.05

dC=0.10

dC=0.20

dC=0.30

dC=0.40

Figure 4.9: The impact of a wrong assumption on the camera blur. Comparison of the keypoints
extracted assuming c = 0.7 when the real camera blur was picked randomly in [c −∆c, c + ∆c]. The
number of keypoints that appear in at least a certain percentage of the simulated images is plotted for
different levels of uncertainty on camera blur (∆c = 0.05− 0.4).

81

0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

3000

3500

% of images

k
e

y
p

o
in

ts

Keypoints appearing in at least
 x% of the noisy images

no noise

std=0.01

std=0.03

std=0.07

std=0.15

(a) (b)

Figure 4.10: Impact of image noise. (a) The number of unique keypoints that appear in at least a
certain proportion of the simulated images is plotted for different levels of image noise. Noise has a
significant impact on the DoG extrema detection. (b) Crops of the input images simulated with c = 0.8
and added Gaussian white noise of standard deviation σnoise = 0.01, 0.03, 0.07 and 0.15.

detected keypoints. This implies that if a series of image transformations (e.g., transla-
tions, zoom-outs) are applied to an image, the keypoints detected in one of them will be
detected with high probability in all the others. This stability property is fundamental for
fulfilling the scale invariance claim. The extrema refinement was shown to improve both
the precision and the stability of the detected keypoints. We showed that the largest num-
ber of stable keypoints is achieved with parameters Moffset = 0.6 and Ninterp = 2 (while
SIFT recommends Ninterp = 5). We also demonstrated that the DoG threshold fails to
filter out unstable keypoints, and that the different definitions of the DoG scale-space
(parameter κ) lead for the most part to identical detections up to a normalization of the
scale. Finally, we showed how the presence of aliasing and noise in the acquired image
deteriorate detections stability.

82

5 Is repeatability an unbiased criterion for

ranking feature detectors?

Most computer vision applications rely on algorithms finding local correspon-
dences between different images. Because of the importance of the problem,
new keypoint detectors and descriptors are constantly being proposed, each
one claiming to perform better than the preceding ones. This raises the ques-
tion of a fair comparison between very diverse methods. This evaluation has
been mainly based on a repeatability criterion of the keypoints under a series
of image perturbations (blur, illumination, rotations, homotheties, homogra-
phies, etc). In this chapter, we argue that the classic repeatability criterion
is biased favoring algorithms producing redundant overlapped detections. To
overcome this bias, we propose a variant of the repeatability rate taking into
account the descriptors overlap. We apply this variant to revisit the popular
benchmark by Mikolajczyk et al. [Mikolajczyk et al. 2005], comparing sev-
eral classic and recently introduced feature detectors. Experimental evidence
shows that the hierarchy of these feature detectors is severely disrupted by
the amended comparator.

5.1 Introduction

Local stable features are the cornerstone of many image processing and computer vision
applications such as image registration [Hartley and Zisserman 2003; Snavely et al. 2006],
camera calibration [Grompone von Gioi et al. 2010], image stitching [Haro et al. 2012], 3d
reconstruction [Agarwal et al. 2011], object recognition [Grimson and Huttenlocher 1990;
Fergus et al. 2003; Bay et al. 2006a; Zhang et al. 2007] or visual tracking [Reid 1979; Zhou
et al. 2009]. The introduction of the SIFT method by David Lowe in 1999 [Lowe 1999,
2004] sparked an explosion of local keypoints detector/descriptors seeking discrimination
and invariance to a specific group of image transformations [Tuytelaars and Mikolajczyk
2008].

Ideally, one would like to detect keypoints that are stable to image noise, illumina-
tion changes, and geometric transforms such as scale changes, affinities, homographies,
perspective changes, or non-rigid deformations. Complementarily, the detected features
should provide information as diverse as possible. Detections should, for example, be well
distributed throughout the entire image extracting information from all image regions and
from boundary features of all kinds (e.g., textures, corners, blobs). Hence, there is a vari-

83

ety of detectors/descriptors built on different principles and having different requirements.
While the SIFT method and its similar competitors [Bay et al. 2006b; Mikolajczyk et al.
2005; Mainali et al. 2013] detect blob like structure in a multi-scale image decomposition,
other approaches [Brown et al. 2005; Mikolajczyk et al. 2005; Rosten and Drummond
2006; Förstner et al. 2009; Rosten et al. 2010; Leutenegger et al. 2011] explicitly detect
corners or junctions at different scales. As opposed to interest point detectors, interest
region detectors [Tuytelaars and Van Gool 1999, 2000; Kadir et al. 2004; Cao et al. 2005]
extract the invariant salient regions of an image based on its topographic map. To fairly
compare the very different feature detectors it is fundamental to have a rigorous evaluation
protocol.

The repeatability rate measures the detector’s ability to identify the same features (i.e.,
repeated detections) despite variations in the viewing conditions. Defined as the ratio
between the number of keypoints simultaneously present in all the images of the series
(repeated keypoints) over the total number of detections, it can be seen as a measure of
the detector’s efficiency. Indeed, the repeatability rate incorporates two struggling quality
criteria: the number of repeated detections (i.e., potential correspondences) should be
maximized while the total number of detections should be minimized since the complexity
of the matching grows with the square of the number of detections.

Interest point detectors can also be indirectly evaluated through a particular appli-
cation. In [Mikolajczyk and Schmid 2005], the authors propose to evaluate detector-
descriptor combinations in an image matching/recognition scenario. Although this ap-
proach can lead to very practical observations, the conclusions about the keypoints sta-
bility is intertwined with the descriptor’s discrimination ability.

In this chapter, we show that the repeatability criterion suffers from a systematic bias:
it favors redundant and overlapped detections. This has serious consequences, as evenly
distributed and independent detections are crucial in image matching applications. The
concentration of many keypoints in a few image regions is generally not helpful, no matter
how robust and repeatable they may be. To better measure the detectors redundancy, we
introduce a modified repeatability criterion. We consider the area actually covered by the
descriptor and we evaluate the descriptor overlap as a measure of redundancy.

The remainder of this chapter is organized as follows. Section 5.2 describes the repeata-
bility criterion, discusses its variants, and illustrates how algorithms producing redundant
detections may have a good performance according to this traditional quality measure.
In Section 5.3 we introduce a correction to the repeatability criterion that overcomes this
bias, by accounting for the descriptor overlap. Section 5.4 reviews twelve state-of-the-art
feature detectors, and details the region involved in the feature extraction for each of
the analyzed methods. This extracted region will be the key ingredient for the proposed
overlap measure. Comparative performance tables and maps gathered in Section 5.5 show
that the hierarchy of detectors is drastically altered by the new repeatability criterion.
This result is further confirmed by analyzing the detection/matching performance using
the same normalized descriptor for all the detectors. Conclusions are finally summarized
in Section 5.6.

84

5.2 The repeatability criterion and its bias

5.2.1 Definition of the repeatability criterion

Consider a pair of images ua(x), ub(x) defined for x ∈ Ω ⊂ R
2 and related by a planar

homography H, that is, ub = ua ◦H. The detector repeatability rate for the pair (ua, ub)
is defined as the ratio between the number of detections simultaneously present in both
images, i.e., repeated detections, and the total number of detections in the region covered
by both images.

In the repeatability framework, a detection generally consists of an elliptical region,
denoted R(x,Σ), parametrized by its center x and a 2× 2 positive-definite matrix Σ,

R(x,Σ) =
{
x′ ∈ Ω | (x′ − x)TΣ−1(x′ − x) ≤ 1

}
.

A pair of detections (elliptical regions R(xa,Σa) and R(xb,Σb)) from images ua(x) and
ub(x) will be considered repeated if

eoverlap = 1− |R(xa,Σa) ∩R(xba,Σba)|
|R(xa,Σa) ∪R(xba,Σba)| ≤ ǫoverlap, (5.1)

where eoverlap is the overlap error, xba = Hxb, Σba = AΣbA
T represents the reprojec-

tion of the ellipse R(xb,Σb) from image ub into the image ua and A is the local affine
approximation of the homography H.

The union and intersection of the detected regions are examined on the reference image
ua(x) by projecting the detection on the image ub into the image ua. The union covers
an area denoted by |R(xa,Σa) ∪R(xba,Σba)| while |R(xa,Σa) ∩R(xba,Σba)| denotes the
area of their intersection. The parameter ǫoverlap is the maximum overlap error tolerated.
In most published benchmarks it is set to ǫoverlap = 0.40 [Mikolajczyk and Schmid 2004;
Mikolajczyk et al. 2005; Mainali et al. 2013].

Figure 5.1: Illustration of the repeatability criterion. Detection R(xb,Σb) on image ub is reprojected
on the reference image ua. If the overlap error is lower than ǫoverlap (see (5.1)), the detections are
considered repeated.

Let Ω be the region covered by both images ua and ub. Since the number of re-
peated detections is upper bounded by the minimal number of detections in Ω (under the
assumption that there are no multiple matches), the repeatability rate is defined as

rep =
number of repeated detections

min (|Ka|Ω, |Kb|Ω)
(5.2)

where |Ka|Ω and |Kb|Ω denote the respective numbers of detections inside Ω.

85

5.2.2 Illustration and alternative definitions

To discuss and illustrate the repeatability criterion, let us consider the particular case of a
pair of detections R(xa,Σa) and R(xb,Σb) whose re-projections on the reference image are
two disks, both of radius r and with centers separated by a distance d (Figure 5.1). Such
a pair will be considered repeated if d/r ≤ f(ǫoverlap), where f is a monotone function
easily derived from (5.1). Figure 5.2 (a) shows the maximum distance d under which both
detections will be considered repeated as a function of the radius r.

As pointed out in [Mikolajczyk et al. 2005], detectors providing larger regions have a
better chance of yielding good overlap scores, boosting as a result their repeatability scores.
This also means that one can artificially increase the repeatability score of any detector by
increasing the scale associated with its detections. The authors of [Mikolajczyk et al. 2005]
proposed to avoid this objection by normalizing the detected region size before computing
the overlapped error. The two detected elliptical regions R(xa,Σa) and R(xb,Σb) in (5.1)
are replaced respectively by the elliptical regions R(xa, κ

2/raRaΣa) and R(xb, κ
2/rbRbΣb),

where ra and Ra (respectively rb and Rb) are the radii of the elliptical region R(xa,Σa)
(respectively R(xb,Σb)) and κ = 30 is its radii geometric mean after normalization.

The idea of such normalization was to prevent boosting a detector’s performance by
enlarging its associated ellipse. Yet, such a criterion is not scale-invariant, meaning that
it may be over or under permissive depending on the detection size. For example, the
maximal distance separating repeated detections of equal size does not take into account
the scale (e.g., the radius of the circle in our special case illustration, see Figure 5.2 (b)). In
consequence, with ǫoverlap set to its standard value (ǫoverlap = 40%), two circular detections
of radius 1px and centers separated by 12px can still be regarded as repeated, although
their respective descriptors may not even overlap!

Surprisingly, the code provided by the authors of [Mikolajczyk et al. 2005]1 does not
implement any of the criteria defined in their article. The code introduces a third definition
by incorporating an additional criterion on the maximum distance separating two repeated
keypoints that depends on the scale by

|xa −Hxb| ≤ 4
√
raRa.

This criterion is illustrated in Figure 5.2 (c) for the same study case of two circular
detections of equal size. This third criterion is not scale invariant either. Thus in this pa-
per we shall stick to the first definition, which is scale invariant. With the non-redundant
repeatability criterion to be introduced in the next section, it will become pointless to try
“boosting” a detector’s scale. Indeed such attempts will result in decreased matching per-
formance. The detection’s characterizing scale will be the spatial extent of the descriptor
ultimately computed, which is the real practical scale associated with each detector.

5.2.3 Repeatability favors redundant detectors

The following mental experiment sheds light on how the repeatability favors redundancy.
Let DET be a generic keypoint detector, and let DET2 be a variant in which each detection
is simply counted twice. The number of repeatable keypoints and the total number of
detections are both artificially doubled, leaving the repeatability rate unchanged. However,
although the number of costly descriptor computations has doubled, no extra benefit can

1http://www.robots.ox.ac.uk/~vgg/research/affine/ retrieved on August 5th, 2014

86

http://www.robots.ox.ac.uk/~vgg/research/affine/

0 2 4 6 8
0

1

2

3

4

5

6

radius (r)

m
a
x
im

u
m

 d
is

ta
n
c
e
 (

d
)

5

20

40

60

(a)

0 2 4 6 8
0

5

10

15

radius (r)

m
a
x
im

u
m

 d
is

ta
n
c
e
 (

d
)

5

20

40

60

(b)

0 2 4 6 8
0

5

10

15

radius (r)

m
a
x
im

u
m

 d
is

ta
n
c
e
 (

d
)

5

20

40

60

(c)

Figure 5.2: Illustrating three different definitions of the repeatability criteria. Consider a pair of detec-
tions whose re-projections on the reference image are two disks of radius r with their centers separated
a distance d. The maximal tolerated separation distance dmax between repeated detections is plotted
as a function of the radius r for four values of the parameter ǫoverlap (5%, 20%, 40% and 60%). (a)
original definition given by (5.1), (b) with ellipses normalization κ = 30, (c) definition implemented in
the code provided by the authors of [Mikolajczyk et al. 2005]. Only the first definition is scale invariant.

be extracted from the enlarged set of repeated keypoints. The classic repeatability rate
fails to report that the benefit over cost ratio of DET2 is half the one of DET. This explains
why methods producing correlated detections may misleadingly get better repeatability
ratios.

A popular attempt for mitigating this drawback is to compare detectors at a fixed
number of detections [Li et al. 2011; Mainali et al. 2013]. This would not, however, solve
the problem for two reasons. Firstly, by a similar reasoning as before, one can imagine a
detector that repeats its best detection N times (N being the “fixed” number of detections)
while discarding the rest. Such a detector would achieve optimal repeatability, despite
being useless. But most importantly, given a detector, selecting the N best detections
via a parameter (e.g., a threshold) is not generally an easy task. For example, in SIFT,
the most popular way of adjusting the number of detected keypoints is by thresholding
the analysis operator (Difference of Gaussians) to retain only the most salient features.
However, it is well known that this does not necessarily lead to a good selection in terms
of stability [Rey-Otero et al. 2014]. To improve the selection, Li et al. [Li et al. 2011]
proposed a supervised regression process to learn how to rank SIFT keypoints. Although,
this scheme produces good results it requires supervised learning.

For these reasons, we believe that a fair comparison should prefer the genuinely inde-
pendent detections. The metric introduced in the following section is a first attempt in
this direction.

5.3 Non-redundant repeatability

Besides the repeatability measure, which ignores the keypoints spatial distribution, other
specific metrics have been proposed. Some examine the spatial distribution of the de-
scriptors and others evaluate how well they describe the image. The ratio between the
convex hull of the detected features and the total image surface is used in [Dickscheid and
Förstner 2009] as a coverage measure. The harmonic mean of the detections positions
is used in [Ehsan et al. 2011, 2013] as a measure of concentration. In [Dickscheid et al.

87

2011], the authors propose to measure the completeness of the detected features, namely
the ability to preserve the information contained in an image by the detected features. The
information content metric proposed in [Schmid et al. 2000] quantifies the distinctiveness
of a detected feature with respect to the whole set of detections. Non disctinctive features
are indeed harmful, as they can match to other many and therefore confuse the match-
ing. Being complementary to it, these metrics are generally used in combination with the
repeatability rate. Nevertheless, since the purpose of the repeatability is to report on the
benefit/cost ratio of a given detector, it should also, by itself, report on the description
redundancy. We shall see that the descriptors redundancy can be naturally incorporated
in the repeatability criterion.

5.3.1 Non-redundant detections

To evaluate the redundancy of a set of detections k ∈ K, each detection (xk,Σk) can be
assigned, in accordance with the descriptor associated canonically with the keypoint for
each method, a mask function fk(x) consisting of a truncated elliptical Gaussian

fk(x) = Ke
− 1

2ζ2
(x−xk)

TΣ−1
k (x−xk),

if (x−xk)TΣ−1k (x−xk) ≤ ρ2 and 0 elsewhere. Each mask is normalized so that its integral
over the image domain is equal to 1. The values ρ and ζ control the extent of the detected
feature, as it can be derived from the descriptor’s design. They will be fixed here for each
detector by referring to the original paper where it was introduced (section 5.4). Indeed
most detectors proposals come up with a descriptor or at least with a characterization of
the region where this descriptor should be computed.

(a) (b) (c) (d)

Figure 5.3: The mask functions formalizing the keypoint description on a toy example consisting of
several Gaussian blobs (a). The sum over all detections

∑
k∈K fk(x) maps the contribution of each

image pixel to different descriptors (b). The max over all detections masks maxk∈K fk(x) maps the
pixel contributions to the best available descriptor (c). Their difference maps the detection redundancy
(d).

The sum of all descriptor masks
∑

k∈K fk(x) yields a final map showing how much
each image pixel contributes to the set of all computed descriptors. Note that one pixel
may contribute to several descriptors (as in the example shown in Figure 5.3). Similarly,
the maximum taken over all detections maxk∈K fk(x) measures the contribution of pixel
x to the best descriptor. Thanks to the mask normalization, the number of keypoints

88

K := card (K) is given by

K =

∫

Ω

(
∑

k∈K
fk(x)

)
dx, (5.3)

where Ω denotes the image domain. On the other hand,

Knr :=

∫

Ω

(
max
k∈K

fk(x)

)
dx (5.4)

measures the number of non-redundant keypoints. This value can be interpreted as a count
of the independent detections.

To gain some intuition and see why this measurement is quite natural, let us examine
four illustrative cases. Assume that there are only two detected keypoints so that K = 2.
If the two detections

1. completely overlap, then Knr = 1.

2. If they share the same center but have different sizes, then 1 < Knr < K = 2. But if
their sizes are significantly different, then Knr ≈ 2, which makes sense. Indeed, one
of them describes a fine detail and the other one a detail at a larger scale. Their
information contents are roughly independent.

3. If both keypoints are very close to each other then again 1 < Knr < K = 2 and the
above remark on scales still applies.

4. If the descriptors do not overlap at all then Knr = K = 2.

The propensity of a given algorithm to extract overlapped and redundant detections can
therefore be measured by computing the non-redundant detection ratio:

nr-ratio := Knr/K. (5.5)

5.3.2 Non-redundant Repeatability

The above definitions entail a straightforward modification of the repeatability criterion
(5.2). Let Kr be the set of repeatable keypoints (satisfying (5.1)) between two snapshots,
and Ω the area simultaneously covered by both images. We define the non-redundant
repeatability rate by

nr-rep :=

∫
Ω maxk∈Kr fk(x)dx

min (|Ka|Ω, |Kb|Ω)
(5.6)

where |Ka|Ω and |Kb|Ω denote the respective numbers of detections inside Ω. The num-
ber of repeated detections in (5.2) is replaced in (5.6) by the number of non-redundant
detections.

5.4 Spatial coverage of state-of-the-art feature de-

tectors

In this section we review the twelve state-of-the-art feature detectors that will be compared
using the non-redundant repeatability criteria. Our goal is to specify the region of the

89

descriptor associated with each detector. It is classically objected that the descriptors
associated with a detector may influence its matching performance. Hence the detector
performance should be evaluated independently of its associated descriptor, and conversely.
Fortunately, most papers introducing a detector also specify the area of interest around
each detector as a circular or elliptical region. This is the region on which the final
descriptor will be computed, regardless of its description technique. This information
about the descriptor’s region can be taken from the original papers. It is independent of
the ultimate choice of a description technique, which may indeed vary strongly. In our
discussion of each detector, we shall nevertheless also associate a fixed type of descriptor
to each method, so as to be able to compare matching performance on an equal footing.
This comparison is performed at the end of Section 5.5.

Some of the detectors considered here were also compared in the original benchmark
by Mikolajczyk et al. [Mikolajczyk et al. 2005], namely, the Harris-Laplace and Hessian-
Laplace [Mikolajczyk et al. 2005], Harris-Affine and Hessian-Affine [Mikolajczyk et al.
2005], EBR [Tuytelaars and Van Gool 1999], IBR [Tuytelaars and Van Gool 2000] and
MSER [Matas et al. 2004]. We also included here for completeness methods published
since: SIFT [Lowe 1999, 2004], SURF [Bay et al. 2006b], SFOP [Förstner et al. 2009],
BRISK [Leutenegger et al. 2011] and SIFER [Mainali et al. 2013]. Table 5.1 summarizes the
algorithms invariance properties. For details, we refer the reader to the original methods
publications and to the survey by Tuytelaars and Mikolajczyk [Tuytelaars and Mikolajczyk
2008].

Furthermore, we shall show detection maps on pattern images as well as on several
natural photographs to illustrate the behavior of each algorithm.

Most keypoint detection methods share the use of the Gaussian scale-space u(x, σ)
defined by

u(x, σ) := (Gσ ∗ u)(x), with Gσ(x) =
1

2πσ
e−

‖x‖2

2σ2 ,

where σ and x are respectively called the scale and space variables.

detects feature rotation zoom homothety affine

SIFT (x, σ) blob yes yes no no
EBR parallelograms corners yes no yes limited
IBR (x,Σ) blob yes no yes yes
Hessian-Laplace (x, σ) blob yes yes no no
Hessian-Affine (x,Σ) blob yes yes no limited
Harris-Laplace (x, σ) corner yes yes no no
Harris-Affine (x,Σ) corner yes yes no limited
MSER regions contrasted level lines yes no no yes
SURF (x, σ) blob limited yes no no
SFOP (x, σ) junction, circles yes no yes no
BRISK (x, σ) corners yes yes no no
SIFER (x, σ) blob no no yes limited

Table 5.1: Summary of algorithms’ invariance properties. A zoom is the combination of a homothety
and a Gaussian smoothing modeling the camera’s point spread function. The considered detectors
detect elliptical regions (x,Σ), circular regions (x, σ), regions or parallelograms.

90

SIFT (scale invariant feature transform) [Lowe 1999, 2004] is probably the most
popular local image comparison method. As we have seen in Chapter 3, the SIFT keypoints
are the stable interpolated 3D extrema of difference of Gaussian scale-space. We also
remind that the description of a keypoint consists of a feature vector assembled from
the gradient distribution over an oriented patch surrounding the detected keypoint. For
a detection at scale σ, the described patch covers a circular area of radius ρσ = 6

√
2σ

weighted by a Gaussian mask of standard deviation ζσ = 6σ 2. The described patch is
oriented along a dominant orientation of the gradient distribution. SIFT considers multiple
dominant orientations. This means that one keypoint may be described by various feature
vectors, each corresponding to one of the dominant orientations. We shall also consider a
variant of SIFT that only takes one feature vector per detection, the one corresponding
to the dominant orientation. We shall call it SIFT-single (SIFT-S).

EBR (edge based regions) [Tuytelaars and Van Gool 1999] is an affine-invariant
region detector. This method is not based on a scale-space image representation but on
explicitly searching the image for structures of various sizes. Starting from a Harris corner
point, EBR localizes the two nearby edges and analyzes their curvature to assign to each
segment a characteristic direction and length. EBR returns the parallelogram bounded by
the two edge segments. The parallelogram regions can be mapped into elliptical shapes
having the same first and second moments. The EBR descriptor consists of a set of
invariant moments computed over the elliptical region. For the sake of comparison, we will
rely on the matching experiments on an affine normalized SIFT feature vector computed
over the same elliptical region. In contrast with the SIFT method, the normalized patch
is not weighted by a Gaussian mask.

IBR (intensity based regions) [Tuytelaars and Van Gool 2000] is an affine-
invariant method which detects elliptical shapes of various sizes centered on specific gray
level extrema. This method is not based on the Gaussian scale-space. By detecting abrupt
changes in the intensity profiles along a set of rays originating from a gray value extremum,
IBR extracts contrasted regions of various sizes and associates to them elliptical shapes.
Similarly to EBR, invariant moments are computed over the detected region to build the
feature vector. For a sake of homogeneity in our matching comparisons we shall instead use
a SIFT descriptor computed on the affine normalized patch, without applying a Gaussian
weighting mask.

Harris-Laplace and Hessian-Laplace detectors [Mikolajczyk et al. 2005]. Unlike
SIFT, these methods use two multi-scale representations instead of one. The first one is
used to determine the keypoint location and the second one is used to select its characteris-
tic scale. In the case of the Hessian-Laplace method, the first multi-scale representation is
the 2D Hessian determinant while the second one is the normalized Laplacian, both com-
puted on the Gaussian pyramid [Lindeberg 1993]. The 2D Hessian determinant extremum
gives the keypoint location x. Then, the extremum of the scale-space Laplacian ∆u(x, σ)
with respect to σ gives the keypoint scale. The detector goes back and forth between
both multi-scale representations to iteratively refine x and σ. The Harris-Laplace method
proceeds almost identically. Only the Harris operator [Harris and Stephens 1988] is used

2In the original SIFT algorithm the area covered by the descriptor is a square patch of size
12σ × 12σ. However, to uniformize all the algorithms since some of them do not give a reference
keypoint orientation, we opted to replace the patch by the smallest disk containing it, which
therefore covers a slightly larger area.

91

in place of the 2D Hessian to extract the keypoint location x. The Harris-Laplace features
are predominantly corners while the Hessian-Laplace mostly detects blobs. Unlike in the
SIFT method, the extrema are not interpolated to subpixel precision. Once extracted,
each keypoint is locally described, using the SIFT or the GLOH descriptor [Mikolajczyk
et al. 2005; Mikolajczyk and Schmid 2005]. Consequently, for a detection at scale σ, the
described patch covers a circular area of radius ρσ = 6

√
2σ weighted by a Gaussian mask

of standard deviation ζσ = 6σ.

Harris-Affine and Hessian-Affine detectors [Mikolajczyk et al. 2005] are affine
extensions of the Harris-Laplace and Hessian-Laplace detectors. Instead of detecting key-
points, both methods detect elliptical regions. Compared to the Harris-Laplace and
Hessian-Laplace methods, the affine variants contain an additional step in which the
second-moment matrix is used to estimate an elliptical shape around each keypoint3.
These elliptical shapes are used to normalize the local neighborhood by an affine trans-
formation before its description (using the SIFT or the GLOH descriptor). The SIFT
descriptor is adopted in the present study. If σ denotes the geometric mean of the ellipse
radii, then the described patch covers a circular area in the affine-normalized neighbor-
hood of radius ρσ = 6

√
2σ weighted by a Gaussian mask of standard deviation ζσ = 6σ.

MSER (maximally stable extremal regions) [Matas et al. 2004] is an affine-
invariant method which extracts regions that are connected components of image upper
level sets. By examining how the area of the image upper-level sets evolves with respect
to an image intensity threshold, MSER measures the region stability. The MSERs are the
regions that achieve a local maximum of the (non-positive) derivative of the region area
with respect to its level. MSER proposes to compute feature descriptors at different scales
of the detected region size (1.5, 2 and 3 times the convex hull of the detected region).
In addition, MSER regions can be easily mapped into elliptical shapes and then used to
compute an affine descriptor of the detected region. In the present framework, for each of
the detected regions a SIFT feature vector on an affine normalized patch of twice the size
of the detected region was computed.

SURF (speeded-up robust features) [Bay et al. 2006b] can be regarded as a fast
alternative to SIFT. SURF keypoints are the 3D extrema of a multi-scale image rep-
resentation that approximates the 2D Hessian determinant computed on each scale of
the Gaussian scale-space. The Gaussian convolution is approximated using box filters
computed via integral images. SURF descriptors are computed over a Gaussian window
centered at the keypoint, and encode the gradient distribution around the keypoint using
2D Haar wavelets. The described patch for a detection at scale σ covers a circular area
of radius ρσ = 10

√
2σ weighted by a Gaussian mask of standard deviation ζσ = 3.3σ.

Note that the described areas used in SIFT and SURF are slightly different. A SURF
descriptor patch is larger but uses a more concentrated Gaussian mask.

SFOP (scale-invariant feature operator) [Förstner et al. 2009] is a versatile multi-
scale keypoint detector that explicitly models and detects corners, junctions and circular
features. SFOP is built on the Förstner feature operator [Förstner 1994] for detecting
junctions and on the spiral model [Bigün 1990] for unifying different feature types into a

3 The elliptical shape is estimated via an iterative procedure. Unreliable detections with de-
generated second-moment matrices are also discarded in the process.

92

common mathematical formulation. For detecting keypoints at different scales, the input
image is decomposed into a series of images using a Gaussian pyramid. Each image is
then scanned for various feature types, namely, circular structures of various sizes and
junctions of different orientations. At each pixel, the algorithm takes a surrounding patch
and evaluates its consistency to the feature model. Although SFOP only concerns keypoint
detection, the authors recommend combining the SFOP detector with SIFT’s descriptor.
Consequently, the described patch for a detection at scale σ also covers a circular area of
radius ρσ = 6

√
2σ weighted by a Gaussian mask of standard deviation ζσ = 6σ.

BRISK (binary robust invariant scalable keypoints) [Leutenegger et al. 2011]
focuses on speed and efficiency. The BRISK detector is a multi-scale adaptation of FAST
and its optimized version AGAST [Rosten and Drummond 2006; Mair et al. 2010] corner
detectors. The AGAST corner detector is first applied separately to each scale of a Gaus-
sian pyramid decomposition to rapidly identify potential regions of interests. For each
pixel in such regions, a corner score quantifying the detection confidence is computed (see
[Mair et al. 2010] for details). Based on the AGAST corner score, BRISK performs a 3D
non-maxima suppression and a series of quadratic interpolations to extract the BRISK
keypoints (x, s), being (x) the 2D position and s the feature size. The BRISK descriptor
is a binary string resulting from brightness differences computed around the keypoint.

In the current analysis, we calibrated the size of the detections s provided by the
BRISK binary to make it comparable to the other methods. We empirically found that
the image of a 2D Gaussian function of standard deviation σ produces a SIFT detection
of scale σ while it produces a BRISK feature of size s = 4σ. In consequence, for a BRISK
detection of size s, the described patch in the present study covers a circular area of radius
ρs = 3

2

√
2s weighted by a Gaussian mask of standard deviation ζs = 3

2s.

SIFER (scale-invariant feature detector with error resilience) [Mainali et al.
2013]. The recently introduced SIFER algorithm tightly follows SIFT, but computes a
different multi-scale image representation. Instead of smoothing the image with a set of
Gaussian filters and computing its Laplacian, SIFER convolves the image with a bank of
cosine modulated Gaussian kernels (see Figure 5.4).

cmgσ(x, y) =
(

2πσ2
(

cos
(cx
σ

)
+ cos

(cy
σ

))
Gσ

)
. (5.7)

The 3D extrema of the resulting multi-scale representation are the SIFER keypoints. The
method is homothety invariant. Unlike SIFT, however, SIFER is not zoom-out invariant.
Indeed, its kernel does not commute with a Gaussian camera blur. The authors claim
that, despite loosing rotation invariance, the approach increases the detection precision
in both scale and space thanks to the better localization of the modulated cosine filters.
The descriptor computed at each extracted keypoint is identical to the SIFT descriptor.
Therefore, the described patch considered in the present study covers a circular area of
radius ρσ = 6

√
2σ weighted by a Gaussian mask of standard deviation ζσ = 6σ.

Table 5.2 summarizes the values of ρ and ζ for each method.

5.4.1 Detection maps

Different detectors extract different kinds of features, in different amounts and with dif-
ferent spatial distributions. To visually inspect the algorithms general behavior, figures

93

cmgσ(x, y) σ2∆Gσ(x, y)

Figure 5.4: SIFER (left) and SIFT (right) filter kernels. The SIFER kernel, a Gaussian modulated along
the two axes by cosine functions is not rotation invariant, while the difference of Gaussians used in
SIFT is.

ρ ζ

SIFT 6
√

2 6

Hessian-Laplace 6
√

2 6

Hessian-Affine 6
√

2 6

Harris-Laplace 6
√

2 6

Harris-Affine 6
√

2 6
MSER 2 -

ρ ζ

EBR 1 -
IBR 1 -

SURF 10
√

2 3.3

SFOP 6
√

2 6

BRISK 3/2
√

2 3/2

SIFER 6
√

2 6

Table 5.2: Summary of the parameters controlling the spatial coverage of a detection for each evaluated
method. The parameter ρ controls the size of the patch encoded in the descriptor. For methods that
apply a Gaussian weighting window to the described patch, the parameter ζ controls the standard
deviation of the Gaussian function.

94

5.5 and 5.6 show the detection maps for the twelve compared methods on the siemens

pattern and on the bike image from the Oxford dataset [Mikolajczyk et al. 2005].

The detection number varies from one method to the other, and also from one sequence
to the next. MSER generally detects fewer features than the rest while SIFT and the Harris
and Hessian based methods detect many more.

The rotation invariance of the methods is easily tested by examining the detections on
the siemens star test image shown in Figure 5.5. Unsurprisingly, SIFT and SFOP are
rotation invariant while SIFER is not. More surprisingly, the Hessian and Harris based
methods are not rotation invariant. Although the Hessian determinant and the Laplacian
of the Gaussian smoothing are isotropic, the methods fail to maintain the theoretical
invariance properties due to the discretization of the differential operators.

Several feature detectors generate multiple detections from a single local feature. This
is clearly the case for Harris-Affine, Hessian-Affine and, to a lesser extent, for BRISK. In
general, with the exception of SIFT, SFOP and MSER, all the detectors appear to be
visually highly redundant.

In some cases, while detections are numerous, they cluster on a reduced part of the
scene. This is observed for instance with SIFER, (see e.g., Figure 5.6). This seems to
imply that the information contained in the descriptors computed from SIFER keypoints
is both redundant and incomplete.

5.5 Experiments

Using the proposed non-redundant repeatability criterion, we examined the performance
of the described feature detectors on the Oxford dataset [Mikolajczyk et al. 2005]4. The
Oxford dataset contains eight sequences of six images each designed to help assess the
stability of the detections with respect to habitual image perturbations, namely, rotation
and scale changes, viewpoint changes, camera blur, illuminations changes and JPEG com-
pression artefacts. The eight sequences are shown in Figure 5.7. The original and publicly
available binaries of all but one methods were used5. No reference implementation of
SIFER was available, we therefore relied on our own implementation rigorously following
the published description [Mainali et al. 2013]. The parameters of each method were set
to their default values. All scripts and codes are available for download 6.

The performance evaluation of a detector is two-dimensional. On the one hand, a
detector should produce as many detections as possible, while on the other, it should keep
to a minimum the number of non-repeatable detections. In other words, the best detector
is the one that has simultaneously the largest repeatability ratio and the largest number
of detections.

As we showed in the previous section, a quick visual examination of the detection maps
already reveals that some methods are more redundant than others. For example, it is

4Dataset available at http://www.robots.ox.ac.uk/~vgg/research/affine/
5Methods binaries http://www.robots.ox.ac.uk/~vgg/research/affine/, http://docs.

opencv.org/doc/tutorials/features2d/feature_detection/feature_detection.html,
http://www.vision.ee.ethz.ch/~surf/ and http://www.cs.ubc.ca/~lowe/keypoints/

http://www.ipb.uni-bonn.de/sfop/
6In particular a documented and optimized version of the repeatability criteria [Mikolajczyk

et al. 2005] along with the two variants discussed in Section 5.2 are available for download at
http://dev.ipol.im/~reyotero/comparing_20140906.tar.gz.

95

http://www.robots.ox.ac.uk/~vgg/research/affine/
http://www.robots.ox.ac.uk/~vgg/research/affine/
http://docs.opencv.org/doc/tutorials/features2d/feature_detection/feature_detection.html
http://docs.opencv.org/doc/tutorials/features2d/feature_detection/feature_detection.html
http://www.vision.ee.ethz.ch/~surf/
http://www.cs.ubc.ca/~lowe/keypoints/
http://www.ipb.uni-bonn.de/sfop/
http://dev.ipol.im/~reyotero/comparing_20140906.tar.gz

SIFT (17) EBR (249) IBR (13) Harris-Laplace (242)

Hessian-Laplace (1927) Harris-Affine (227) Hessian-Affine (244) MSER (18)

SURF (652) SFOP (59) BRISK (97) SIFER (203)

Figure 5.5: Keypoints map on siemens star test image. For a better readability of the figure,
the descriptor ellipses are reduced to one sixth of their real size. Thus, when two ellipses overlap,
their associated descriptors are in strong overlap. This is particularly conspicuous for the Hessian and
Harris detectors. The total number of detected keypoints by each method is shown in brackets. SIFT
and SFOP seem to be the only (experimentally) rotationally invariant methods. The elliptical shapes
deduced from the MSER regions have different sizes in each rotated triangle. By design, SIFT detects
blob like structures and SFOP additional features, such as corners and edges.

96

SIFT (2038) EBR (644) IBR (652) Harris-Laplace
(740)

Hessian-Laplace
(3502)

Harris-Affine (727)

Hessian-Affine
(2857)

MSER (352) SURF (781) SFOP (1379) BRISK (339) SIFER (664)

Figure 5.6: Keypoints map on an image from the bikes sequence. For a better readability of the figure,
we reduced six times the descriptors ellipses with respect to their real size. This also means that when
two ellipses overlap, their associated descriptors are in strong overlap. The total number of detected
keypoints by each method is shown in brackets. The number of detections significantly varies with the
algorithm. Hessian based methods and SIFT produce many more detections than the rest. All methods,
with the exception of IBR and EBR, detect features at very different scales. In particular, SIFT and
SFOP detect very small structures. Most algorithms detect the same structure several times, producing
significantly overlapped detections. The SIFER detections are disturbingly concentrated on clusters
not necessarily overlapped. Yet the proposed non-redundant repeatability metric will not penalize such
behavior. For the Harris and Hessian based methods, note how corners generate trails of detections of
increasing size.

97

Figure 5.7: The Oxford dataset. Different series of images simulating different image transformations.
From top to bottom: bark and boat (scale changes and rotations), bikes (camera blur), graf

(viewpoint changes), leuven (illumination changes), trees camera blur, ubc (JPEG compression),
wall (viewpoint changes) image series.

98

clear from Figure 5.5 (siemens star) that SIFER, SURF and the Hessian based methods
produce highly redundant detections. The non-redundancy ratio shown in Table 5.3 (a)
for the eight Oxford sequences helps rank the methods in terms of redundancy. With non-
redundant ratios lower than 7% on all eight sequences, the Hessian based detectors are the
most redundant methods. On the other end of the spectrum, the least redundant method is
MSER having an average non-redundant ratio of 51%. SIFT and its SIFT-single variant
come second, with non-redundant ratios ranging from 20% to 36%. Since the number
of detections of SIFT and Hessian-Laplace are comparable (Table 5.3 (b)), the cost of
extracting and matching descriptors is similar for both methods. Notwithstanding this
fact, SIFT produces well-spread detections while the Hessian-Laplace are redundant and
overlapped. Under such circumstances, we expect that taking into account the descriptors
overlap will change significantly the hierarchy given by the repeatability rates.

The classic repeatability and the non-redundant repeatability rates as well as the
number of detections for the eight Oxford sequences are provided in Table 5.3. Also, in
Figure 5.8 the average repeatability rates for all the compared detectors are plotted as
a function of the number of detections. Note that in general, the number of repeated
points oscillates around 40% of the total number of detections. This is a much lower rate
than usually achieved with the more permissive definition of the repeatability criterion,
see Section 5.2.

As previously said, the repeatability score must be compared alongside the number
of detections to have a complete performance evaluation of detectors. The methods that
provide in general the largest number of detections are SIFT, SIFER and the Hessian
based methods. MSER, EBR and IBR produce significantly less detections. The methods
that are the most redundant happen to be also the methods that perform well according
to the classic repeatability criteria (see Table 5.3 (d)). Indeed, the Hessian based methods
are among the methods with largest repeatability while providing numerous detections.
Note that SFOP is outperformed by the Harris based methods in all eight sequences, while
providing a similar number of detections.

These conclusions are drastically altered when the redundancy of detections is taken
into account. According to the non-redundant repeatability shown in Table 5.3 (d), the
hardly redundant SIFT method achieves one of the top three best scores while providing in
general one of the largest number of detections. The Hessian based methods and SIFER,
while achieving detection numbers comparable to those of SIFT, perform poorly according
to the non-redundant repeatability. Despite having fewer detections, the non-redundant
repeatability of SURF is lower than the one of SIFT in five sequences out of eight. Unlike
what was concluded with the classic criterion, SFOP outperforms the Harris based methods
in seven out of eight sequences. In fact, SFOP performs generally well. In all sequences,
SFOP is one of the three best algorithms according to the non-redundant repeatability
while it performed poorly for the traditional repeatability. On average, MSER and IBR
produce the best non-redundant repeatability scores. Nevertheless, with up to ten times
more detections, SIFT should be preferred to MSER except for severe changes of viewpoint
(see Figure 5.8). In principle, MSER is not blur invariant. Yet, it performs surprisingly
well on the sequence bikes, containing well contrasted large geometric features. MSER
may benefit here from its low number of detections.

To summarize the relative performance of each method on the entire Oxford data
set we proceeded as follows. First, the number of detections, the repeatability and non-
redundant repeatability rates on each sequence were rescaled to cover the interval [0, 1].

99

Then, we computed the mean of the rescaled detectors performance over the eight se-
quences. Figure 5.9 shows the relative repeatability and non-redundant repeatability
scores as a function of the number of the normalized number detections. In this map
a method performs optimally if it is simultaneously extremal in ordinate and in abscissa,
and performs well if it is extremal in at least one of the coordinates. Thus, the normalized
benchmark reveals that the ranking of detectors is severely disrupted when considering the
detectors redundancy. While for example Harris and Hessian based methods, SURF and
EBR significantly reduce their performance (going down in the plot), MSER and BRISK
improve their relative position to the others. When the redundancy is not taken into
account the method producing the most detections and with the highest repeatability is
Hessian Laplace, while when considering the non-redundant variant it is SIFT.

bark bikes boat graf leuven trees ubc wall mean

scale blur scale viewp illum blur jpeg viewp

SIFT 0.26 0.27 0.26 0.29 0.35 0.20 0.24 0.23 0.24

SIFT-S 0.31 0.32 0.31 0.34 0.41 0.24 0.29 0.27 0.29

EBR 0.23 0.18 0.10 0.11 0.15 0.23 0.1 0.08 0.12

IBR 0.20 0.24 0.21 0.21 0.30 0.20 0.21 0.28 0.22

HARLAP 0.11 0.10 0.06 0.06 0.12 0.04 0.08 0.07 0.07

HESLAP 0.04 0.04 0.03 0.03 0.05 0.03 0.04 0.03 0.03

HARAFF 0.12 0.10 0.07 0.07 0.13 0.05 0.08 0.08 0.07

HESAFF 0.04 0.05 0.05 0.04 0.07 0.03 0.04 0.04 0.04

MSER 0.61 0.55 0.51 0.55 0.58 0.48 0.55 0.48 0.51

SURF 0.16 0.16 0.11 0.11 0.16 0.10 0.13 0.13 0.12

SFOP 0.17 0.24 0.21 0.26 0.25 0.17 0.19 0.18 0.20

BRISK 0.26 0.28 0.14 0.27 0.26 0.10 0.17 0.13 0.15

SIFER 0.31 0.23 0.18 0.21 0.22 0.16 0.18 0.19 0.19

bark bikes boat graf leuven trees ubc wall mean

scale blur scale viewp illum blur jpeg viewp

SIFT 1022 1035 3803 1907 1737 9143 5296 8678 4077

SIFT-S 848 871 3226 1642 1474 7507 4273 7255 3387

EBR 75 366 665 577 458 535 756 2012 681

IBR 132 573 281 294 238 1141 563 453 459

HARLAP 118 541 1439 1121 568 4420 1540 1963 1465

HESLAP 815 2936 2795 3165 2233 8202 3594 4914 3582

HARAFF 120 533 1392 1103 556 4397 1501 1932 1442

HESAFF 807 2470 2217 2180 1539 7876 3146 4798 3129

MSER 85 195 592 280 276 1839 716 1373 670

SURF 183 547 948 913 608 3000 1194 1564 1120

SFOP 476 1041 826 530 1014 3293 1859 2243 1410

BRISK 119 194 1150 374 521 3012 1409 2413 1150

SIFER 159 730 4321 1571 2591 8818 6610 8535 4167

(a) Average non-redundant ratio nr := Knr/K. (b) Average number of detections in the
common area.

bark bikes boat graf leuven trees ubc wall mean

scale blur scale viewp illum blur jpeg viewp

SIFT 23.4 44.3 17.6 11.8 42.5 6.7 29.1 8.0 22.9

SIFT-S 23.3 44.6 18.1 11.9 43.5 7.1 30.0 8.3 23.4

EBR 7.5 66.6 53.5 38.6 55.1 16.0 51.4 38.8 40.9

IBR 37.2 51.9 46.4 50.6 58.1 33.4 45.6 36.1 44.9

HARLAP 52.5 52.4 40.2 21.3 50.2 23.2 73.6 29.9 42.9

HESLAP 57.9 69.5 50.0 22.4 70.1 33.1 73.8 36.4 51.7

HARAFF 48.6 50.0 36.7 26.9 47.5 20.2 71.8 27.9 41.2

HESAFF 54.7 66.8 46.8 30.7 65.9 28.4 72.7 35.8 50.2

MSER 32.9 52.2 42.4 55.6 72.8 18.0 44.8 40.4 44.9

SURF 63.6 72.6 48.2 19.4 64.6 29.5 70.9 36.7 50.7

SFOP 29.7 31.8 25.9 13.7 42.6 8.4 36.2 18.8 25.9

BRISK 2.4 9.9 4.0 4.3 18.2 5.4 16.6 5.8 8.3

SIFER 1.4 49.9 7.4 1.5 37.5 9.1 50.9 10.0 20.9

bark bikes boat graf leuven trees ubc wall mean

scale blur scale viewp illum blur jpeg viewp

SIFT 7.3 15.2 6.6 4.5 19.2 3.2 10.6 3.7 8.8

SIFT-S 8.8 18.1 7.8 5.3 22.6 3.9 13.1 4.4 10.5

EBR 5.3 15.4 6.6 9.2 10.3 6.8 7.4 5.4 8.3

IBR 19.8 15.2 15.4 17.5 26.2 11.9 13.7 17.7 17.2

HARLAP 11.1 9.1 4.1 2.6 10.1 3.1 6.8 4.9 6.5

HESLAP 3.8 3.7 2.4 1.2 4.6 2.1 3.5 2.6 3.0

HARAFF 11.1 9.4 4.0 4.2 10.4 3.0 7.2 5.3 6.8

HESAFF 4.1 4.6 2.8 2.8 6.4 2.2 4.1 3.0 3.7

MSER 27.2 35.9 24.0 32.8 49.8 13.1 29.9 25.4 29.8

SURF 14.7 13.3 7.1 3.7 14.1 5.6 10.2 8.0 9.6

SFOP 10.0 11.5 10.3 6.2 16.7 4.2 10.7 6.1 9.5

BRISK 2.3 7.2 2.7 3.4 11.8 3.5 7.7 3.9 5.3

SIFER 1.2 14.7 3.4 1.2 12.3 3.7 11.2 3.8 6.4

(c) Average repeatability. (d) Average non-redundant repeatability.

Table 5.3: Detectors comparison regarding repeatability and non-redundant repeatability rates on the
eight sequences of the Oxford dataset. The algorithm with best number is colored in red and the next
three in bordeaux. Each table focuses on a single metric: the (non-redundant) repeatability or the
number of detections. A fair comparison should consider both metrics simultaneously (see Figure 5.8).

Matching scenario. We also explored the algorithms performance on a matching sce-
nario. For that purpose, we adopted the same protocol as in [Mikolajczyk et al. 2005].
Each detector is combined with a SIFT descriptor. Around each detection, a patch is
extracted to compute the dominant orientation and a SIFT feature vector. The width of
the extracted patch is computed as the mean of the detected ellipse radii multiplied by
the method’s parameter ρ, as described for each method in Section 5.4. For all the SIFT
feature vectors in one image we found the most similar feature vector on the other image
(in terms of the Euclidean distance). If the distance to the most similar one is less than

100

0 500 1000
0

10

20

30

40

50

60

70

Number of detections

R
e
p
e
a
ta

b
ili

ty

0 500 1000
0

5

10

15

20

25

30

Number of detections

N
o
n
−

re
d
u
n
d
a
n
t
re

p
e
a
ta

b
ili

ty

0 1000 2000 3000 4000
0

10

20

30

40

50

60

Number of detections

R
e
p
e
a
ta

b
ili

ty

0 1000 2000 3000 4000
0

5

10

15

20

25

Number of detections

N
o
n
−

re
d
u
n
d
a
n
t
re

p
e
a
ta

b
ili

ty

(a) bark (scale) (b) boat (scale)

0 1000 2000 3000
0

20

40

60

80

Number of detections

R
e
p
e
a
ta

b
ili

ty

0 1000 2000 3000
0

10

20

30

40

Number of detections

N
o
n
−

re
d
u
n
d
a
n
t
re

p
e
a
ta

b
ili

ty

0 1000 2000 3000
0

10

20

30

40

50

60

Number of detections

R
e
p
e
a
ta

b
ili

ty

0 1000 2000 3000
0

5

10

15

20

25

30

35

Number of detections

N
o
n
−

re
d
u
n
d
a
n
t
re

p
e
a
ta

b
ili

ty

(c) bikes (blur) (d) graf (viewpoint)

0 1000 2000 3000
10

20

30

40

50

60

70

80

Number of detections

R
e
p
e
a
ta

b
ili

ty

0 1000 2000 3000
0

10

20

30

40

50

Number of detections

N
o
n

−
re

d
u
n
d
a
n
t
re

p
e
a
ta

b
ili

ty

0 5000 10000
5

10

15

20

25

30

35

Number of detections

R
e
p
e
a
ta

b
ili

ty

0 5000 10000
2

4

6

8

10

12

14

Number of detections

N
o
n

−
re

d
u
n
d
a
n
t
re

p
e
a
ta

b
ili

ty

(e) leuven (illumination) (f) trees (blur)

0 2000 4000 6000
10

20

30

40

50

60

70

80

Number of detections

R
e
p
e
a
ta

b
ili

ty

0 2000 4000 6000
0

5

10

15

20

25

30

Number of detections

N
o
n
−

re
d
u
n
d
a
n
t
re

p
e
a
ta

b
ili

ty

0 2000 4000 6000 8000
5

10

15

20

25

30

35

40

45

Number of detections

R
e
p
e
a
ta

b
ili

ty

0 2000 4000 6000 8000
0

5

10

15

20

25

30

Number of detections

N
o
n
−

re
d
u
n
d
a
n
t
re

p
e
a
ta

b
ili

ty

(g) ubc (jpeg) (h) wall (viewpoint)

sift harlap heslap haraff hesaff surf

sifer brisk sfop ebr ibr mser

sift single

Figure 5.8: The average of the repeatability and non-redundant repeatability on each Oxford
sequence is plotted as a function of the average number of keypoints detected. The per-
formance evaluation of a detector is two-dimensional. On the one hand, a detector should
detect as many keypoints as possible (abscissa). On the other, the detections should be as
repeatable as possible (ordinate). Good detectors are on the top-right region of this plot. To
compare a single detector performance the reader might follow the relative ordinate position
of a particular detector in a particular scene in the traditional repeatability (left) and the non-
redundant repeatability plots (right). For instance, MSER and SIFT algorithms always go up
from the traditional to the non-redundant repeatability plots. This means that MSER and
SIFT detections are less redundant than the average.

101

0 0.5 1

0

0.2

0.4

0.6

0.8

1

Normalized number of detections

N
o

rm
a

liz
e

d
 r

e
p

e
a

ta
b

ili
ty

0 0.5 1

0

0.2

0.4

0.6

0.8

1

Normalized number of detections

N
o

rm
a

liz
e

d
 n

o
n

−
re

d
u

n
d

a
n

t
re

p
e

a
ta

b
i

sift harlap heslap haraff hesaff surf

sifer brisk sfop ebr ibr mser

sift single

Figure 5.9: Qualitative visualization of the methods repeatability performance. Average over eight
sequences. For each sequence, the number of detections, the matching rates and the non-redundant
matching rates are scaled to the full range [0, 1] and averaged into a single map. Once normalized,
the mean values of each method over the eight sequences are computed. On the left, the normalized
repeatability is plotted as a function of the normalized number of detections. On the right, the
normalized non-redundant repeatability is plotted as a function of the normalized number of detections.
The same conclusions observed in each of the eight Oxford sequences apply in this qualitative contest.

60% of the distance to the second nearest feature, then the pair of detections is considered
as a match (as proposed in [Lowe 2004]) Table 5.4 (a) gives the number of detections
in the common area. Table 5.4 (b) shows the average total number of matches while
Table 5.4 (c) presents the number of correct matches, namely those that are consistent
with the ground truth. Like in the repeatability criterion, one match is considered correct
if the overlap error between the two matched keypoints (elliptical regions) is inferior to
40%. Table 5.4 (d) gives the number of non-redundant correct matches.

Due in part to their large number of detections, the Hessian based methods achieve
in general the largest number of correct matches. In particular, in the ubc sequence,
the Hessian-Laplace and Hessian-Affine provide almost twice more correct matches than
SIFT on average. However, this apparent advantage of the Hessian based methods fades
away once the detection redundancy is taken into account, as revealed by the number of
non-redundant correct matches.

SIFT and its single orientation variant achieve the largest number of non-redundant
correct matches in most sequences. Although SIFER produces on average the maximum
number of non-redundant correct matches on the whole data set, it performs poorly on
two sequences (graf and bark). In Figure 5.10, the average ratios of correct matches
for the 13 compared detectors are plotted as a function of the number of detections.
Figure 5.11 summarizes the methods matching performance relatively to each other. For
that purpose, the number of detections, the ratio of correct matches and the ratio of non-
redundant correct matches were rescaled, and the mean values over the eight sequences
of the rescaled ratios are plotted as a function of the normalized number of detected
keypoints.

Similarly to what we have observed on the repeatability ratio, the normalized matching
benchmark reveals that the ranking of detectors is significantly disrupted when consider-
ing the detectors redundancy. Indeed, when the redundancy is not taken into account,
the Hessian Laplace detector is the one producing more detections and more number of

102

bark bikes boat graf leuven trees ubc wall mean

scale blur scale viewp illum blur jpeg viewp

SIFT 1022 1035 3803 1907 1737 9143 5296 8678 4077

SIFT S 848 871 3226 1642 1474 7507 4273 7255 3387

EBR 75 366 665 577 458 535 756 2012 681

IBR 132 573 281 294 238 1141 563 453 459

HARLAP 118 541 1439 1121 568 4420 1549 1963 1465

HESLAP 815 2936 2795 3165 2233 8202 3594 4914 3582

HARAFF 120 533 1392 1103 556 4397 1501 1932 1442

HESAFF 807 2470 2217 2180 1539 7876 3146 4798 3129

MSER 85 195 592 280 276 1839 716 1373 670

SURF 183 547 948 913 608 3000 1194 1564 1120

SFOP 476 1041 826 530 1014 3293 1859 2243 1410

BRISK 119 194 1150 374 521 3017 1409 2413 1150

SIFER 159 730 4321 1571 2591 8818 6610 8535 4167

bark bikes boat graf leuven trees ubc wall mean

scale blur scale viewp illum blur jpeg viewp

SIFT 328 272 567 171 518 335 890 1190 534

SIFT-S 388 322 638 199 585 370 1040 732 534

EBR 5 60 20 14 52 15 186 0 44

IBR 9 70 13 13 30 49 112 20 40

HARLAP 21 203 244 53 154 339 943 210 271

HESLAP 168 1125 378 125 654 705 2023 573 719

HARAFF 9 156 125 49 123 226 840 202 216

HESAFF 50 857 148 68 400 508 1636 567 529

MSER 7 67 38 12 109 61 194 155 80

SURF 47 311 178 54 233 410 741 261 280

SFOP 133 310 218 64 357 186 588 384 280

BRISK 5 29 68 20 115 126 345 160 108

SIFER 9 313 384 55 873 553 2330 1694 776

(a) Average number of detections in the
common area.

(b) Total number of matches.

bark bikes boat graf leuven trees ubc wall mean

scale blur scale viewp illum blur jpeg viewp

SIFT 107 241 365 105 420 162 759 303 308

SIFT-S 133 286 413 124 475 180 894 128 329

EBR 0 57 13 7 44 7 174 0 38

IBR 2 65 8 6 27 30 102 14 32

HARLAP 19 189 220 48 141 258 928 174 247

HESLAP 138 1048 327 102 610 537 1942 456 645

HARAFF 8 143 103 42 109 172 820 159 194

HESAFF 41 782 123 50 366 372 1585 443 470

MSER 5 66 32 8 106 51 190 134 74

SURF 41 294 157 45 211 312 695 228 248

SFOP 76 249 190 48 296 116 532 242 217

BRISK 2 14 28 8 57 48 177 51 48

SIFER 0 286 136 10 704 263 2196 504 512

bark bikes boat graf leuven trees ubc wall mean

scale blur scale viewp illum blur jpeg viewp

SIFT 47 107 173 53 234 91.0 344 181 154

SIFT-S 52 119 190 60 265 101.2 387 70 156

EBR 0 7 2 1 5 2 8 0 3

IBR 0 10 2 1 7 7 9 12 6

HARLAP 7 38 37 11 39 59 89 48 41

HESLAP 19 80 39 14 75 78 93 64 58

HARAFF 3 36 29 12 37 51 90 51 39

HESAFF 12 84 29 14 70 70 99 72 56

MSER 2 43 26 6 81 39 129 106 54

SURF 11 48 29 11 49 64 72 69 44

SFOP 31 97 70 22 130 63 161 96 84

BRISK 1 8 20 6 39 32 81 39 28

SIFER 0 91 74 7 253 110 537 211 160

(c) Number of correct matches. (d) Number of non-redundant correct matches.

Table 5.4: The matching performance of the compared detectors on the eight sequences of the Oxford
dataset. Average values are rounded to the nearest integer. In red the algorithm with the largest
number in the column. The other top three are in bordeaux. The best algorithm is the one that
produces the largest number of correct (non redundant) matches, provided it does not make too many
detections. This is a bi-dimensional criterion that is not fully represented in a single table. Another
comparison will consider both components simultaneously (Figure 5.10).

correct matches per detection. If instead we consider the redundancy, SIFT is the method
producing more detections and more non-redundant correct matches per detection.

Interestingly, computing a single orientation for each keypoint improves the perfor-
mance of the SIFT method. Indeed, this lowers the computational cost of descriptor
computations, increases the non-redundant repeatability and maintains the number of
non-redundant correct matches.

5.6 Discussion

In this paper, we have shown that the classic repeatability criterion is biased towards fa-
voring algorithms producing redundant overlapped detections. This bias motivated the in-
troduction of a variant of the repeatability rate taking into account the descriptor overlap.
To illustrate the new repeatability criterion, the performance of several state-of-the-art
methods was examined. Experimental evidence showed that, once the descriptors overlap
is taken into account, the traditional hierarchy of several popular methods is severely dis-
rupted. Thus, the detections and associated descriptions generated by some methods are
highly correlated. Such redundant parasite detections are arguably caused by scale-space

103

0 500 1000
0

1

2

3

4

5

6

Number of detections

R
a
ti
o
 o

f
c
o
rr

e
c
t
m

a
tc

h
e
s

0 500 1000
0

0.5

1

1.5

2

2.5

Number of detections

R
a
ti
o
 o

f
n
o
n
−

re
d
u
n
d
a
n
t
c
o
rr

e
c
t
m

a
tc

h
e

0 1000 2000 3000 4000
0

5

10

15

Number of detections

R
a
ti
o
 o

f
c
o
rr

e
c
t
m

a
tc

h
e
s

0 1000 2000 3000 4000
0

1

2

3

4

5

6

Number of detections

R
a
ti
o
 o

f
n
o
n
−

re
d
u
n
d
a
n
t
c
o
rr

e
c
t
m

a
tc

h
e

(a) bark (scale) (b) boat (scale)

0 1000 2000 3000
0

5

10

15

20

25

30

Number of detections

R
a
ti
o
 o

f
c
o
rr

e
c
t
m

a
tc

h
e
s

0 1000 2000 3000
0

1

2

3

4

5

6

7

Number of detections

R
a
ti
o
 o

f
n
o
n
−

re
d
u
n
d
a
n
t
c
o
rr

e
c
t
m

a
tc

h
e

0 1000 2000 3000
0

1

2

3

4

Number of detections
R

a
ti
o

 o
f

c
o

rr
e

c
t

m
a

tc
h

e
s

0 1000 2000 3000
0

0.5

1

1.5

Number of detections

R
a
ti
o
 o

f
n
o
n
−

re
d
u
n
d
a
n
t
c
o
rr

e
c
t
m

a
tc

h

(c) bikes (blur) (d) graf (viewpoint)

0 1000 2000 3000

5

10

15

20

Number of detections

R
a
ti
o
 o

f
c
o
rr

e
c
t
m

a
tc

h
e
s

0 1000 2000 3000
0

2

4

6

8

10

12

14

Number of detections

R
a
ti
o
 o

f
n
o
n
−

re
d
u
n
d
a
n
t
c
o
rr

e
c
t
m

a
tc

h
e

0 5000 10000
0

5

10

15

20

25

30

Number of detections

R
a
ti
o
 o

f
c
o
rr

e
c
t
m

a
tc

h
e
s

0 5000 10000
0

1

2

3

4

5

6

Number of detections

R
a
ti
o
 o

f
n
o
n
−

re
d
u
n
d
a
n
t
c
o
rr

e
c
t
m

a
tc

h
e

(e) leuven (illumination) (f) trees (blur)

0 2000 4000 6000

20

30

40

50

60

Number of detections

R
a
ti
o
 o

f
c
o
rr

e
c
t
m

a
tc

h
e
s

0 2000 4000 6000
0

5

10

15

20

Number of detections

R
a
ti
o
 o

f
n
o
n
−

re
d
u
n
d
a
n
t
c
o
rr

e
c
t
m

a
tc

h
e

0 2000 4000 6000 8000
0

5

10

15

20

25

Number of detections

R
a
ti
o
 o

f
c
o
rr

e
c
t
m

a
tc

h
e
s

0 2000 4000 6000 8000
0

5

10

15

Number of detections

R
a
ti
o
 o

f
n
o
n
−

re
d
u
n
d
a
n
t
c
o
rr

e
c
t
m

a
tc

h
e

(g) ubc (jpeg) (h) wall (viewpoint)

sift harlap heslap haraff hesaff surf

sifer brisk sfop ebr ibr mser

sift single

Figure 5.10: Ratio of correct matches (left) and non-redundant correct matches (right) i.e., the number
of matches over number of detections in the area covered by both images. Again, to compare a single
detector matching performance the reader might follow the relative ordinate position of a particular
detector in a particular scene. Generally, MSER, SIFT and SFOP algorithms go up once the redundancy
of matches is taken into account. On the other side, Hessian based methods and EBR/IBR always go
down once the matches redundancy is taken into account.

104

0 0.5 1

0

0.2

0.4

0.6

0.8

1

Normalized number of detections

N
o
rm

a
li
z
e
d
 r

a
ti
o
 o

f
c
o
rr

e
c
t
m

a
tc

h
e
s

0 0.5 1

0

0.2

0.4

0.6

0.8

1

Normalized number of detections

N
o

rm
a

li
z
e

d
 r

a
ti
o

 o
f

n
o

n
−

re
d

u
n

d
a

n
t

c
o

rr
e

c
t

m
a

tc
h

e
s

sift harlap heslap haraff hesaff surf

sifer brisk sfop ebr ibr mser

sift single

Figure 5.11: Qualitative visualization of the methods relative matching performances. Average over
eight sequences. For each sequence, the number of detections, the matching rates and the non-
redundant matching rates are scaled to the full range [0, 1] and averaged into a single map. In a
matching scenario taking into account the redundancy of matches, SIFT outperforms Hessian based
methods.

sampling issues (as in the case of Hessian and Harris based methods) or the method’s
design. For example, the SIFER’s kernel generates clusters of scale space extrema for
each blob. The proposed repeatability criterion seems in agreement with the redundancies
observed on patterns and on natural images. It also agrees with the detectors matching
performance when combined with a common descriptor technique. Experimental evidence
reveals that the SIFT and SFOP methods perform best overall as they offer the best
balance between a large number of detections and a strong non-redundant repeatabil-
ity, while MSER performs best for strong affine distortions with fewer detections. The
amended metric aims at giving a general yet realistic assessment of keypoint detectors.
The revisited benchmark along with detection maps on simple patterns seems to invalidate
the performance gains reported over the last decade.

105

106

6 Conclusion

This dissertation contributes to an in-depth analysis of the SIFT method. We started this
analysis by reviewing three algorithms implementing the Gaussian convolution with a focus
on the accurate computation of the Gaussian scale-space, which gives the SIFT method
its invariance properties. We proved that only an exact Fourier based method achieves full
consistency with the scale-space requirements. The conclusion of this meticulous analysis,
as evident as they may be, have a strong impact on the conception and performance not
only of the SIFT method but also of any other algorithms using the Gaussian scale-space.

Feature detectors are complex chains of transformations. One can regret that the
level of detail in most of the work published since D. Lowe’s seminal paper is rarely
sufficient to permit their complete unambiguous implementation. We provided here a
meticulous description of the SIFT method. Following the standards of reproducible
research, this description was published along with a peer-reviewed source code and a
online demonstrator permitting to vary all parameters and explore their impact on each
single intermediate step for the algorithm. This essential research tool also turned out to
be a very useful teaching resource. With this in mind, we are currently preparing a MOOC
(massive open online course) on feature detectors that will be based on this dissection.

Although the SIFT method has proven to be sufficiently scale invariant to be used
in numerous applications, the invariance claims as well as the parameter choices of the
method have not undergone a serious scrutiny. In this dissertation, we performed a numer-
ical analysis of the SIFT method that aimed at assessing the invariance claims of SIFT
and checking that the SIFT method successfully detects all of the DoG extrema. The
research methodology developed to that end consists of defining a strict image simulation
framework and expanding the SIFT algorithm to make it an exact and fully customizable
method. We examined the influence of the level of blur in the image and that of the scale-
space sampling. Among the practical conclusions of this analysis are that oversampling
the scale-space improves the stability and the precision of the detection but this is not
enough to achieve perfect stability. We also conclude that using the detector response to
discard unstable detections is not an efficient strategy. But most importantly, this analysis
has demonstrated that this research methodology is essential for the understanding of a
feature detector as well as for the design of new ones. Indeed, this methodology can be
extended to design purpose built feature detectors (and descriptors), whether they are
intended for fast computation, affine invariance, noise robustness, or any kind of image
distortion. This will not only lead to better feature detectors (for a given problem) but it
will also undoubtedly provide an explanation for why they perform better.

The number of proposed feature detectors keeps increasing. Sadly, instead of producing
purpose-built methods that perform well on a specific problem, this very active field of

107

research focuses on an illusory quest for the best all-around method. This quest explains
the popularity of the repeatability criterion, a general performance metric for keypoint
detectors. We identified that this criterion leads to a bias towards redundant methods
and proposed an amended criterion that takes into account the overlap of detections.
The amended criterion was used to revise a popular benchmark of feature detectors. We
demonstrated that the SIFT method has not been significantly improved by more recent
methods. The numerous methods claiming to outperform the SIFT method yield in fact
similar or poorer performance.

108

Bibliography

S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, B. Curless, S.M Seitz, and R. Szeliski.
Building Rome in a day. Commun. ACM, 54(10):105–112, 2011.

M. Agrawal, K. Konolige, and M.R. Blas. CenSurE: Center Surround Extremas for
Realtime Feature Detection and Matching. In ECCV. 2008.

Luis Alvarez and Freya Morales. Affine morphological multiscale analysis of corners and
multiple junctions. International Journal of Computer Vision, 25(2):95–107, 1997. .

Luis Alvarez, Frédéric Guichard, Pierre-Louis Lions, and Jean Michel Morel. Axioms
and fundamental equations of image processing. Archive for Rational Mechanics and
Analysis, 123:199–257, 1993. .

C. Ancuti and P. Bekaert. SIFT-CCH: Increasing the SIFT distinctness by color co-
occurrence histograms. In ISPA, 2007.

J Babaud, A P Witkin, M Baudin, and R O Duda. Uniqueness of the Gaussian kernel for
scale-space filtering. IEEE Trans. Pattern Anal. Mach. Intell., 8:26–33, January 1986. .
URL http://dl.acm.org/citation.cfm?id=11295.11298.

H. Bay, B. Fasel, and L. Van Gool. Interactive museum guide: Fast and robust recognition
of museum objects. In IWMV, 2006a.

H. Bay, T. Tuytelaars, and L. van Gool. SURF: Speeded Up Robust Features. In
European Conference on Computer Vision, 2006b. .

Josef Bigün. A structure feature for some image processing applications based on spiral
functions. Computer Vision, Graphics, and Image Processing, 51(2):166–194, 1990.

M. Brown and D. Lowe. Automatic panoramic image stitching using invariant features.
IJCV, 74(1):59–73, 2007.

M. Brown, R. Szeliski, and S. Winder. Multi-image matching using multi-scale oriented
patches. In IEEE Conference on Computer Vision and Pattern Recognition, 2005. .

P J Burt and E H Adelson. The Laplacian pyramid as a compact image code. Commu-
nications, IEEE Transactions on, 31(4):532–540, 1983. .

M. Calonder, V. Lepetit, C. Strecha, and P. Fua. BRIEF: Binary Robust Independent
Elementary Features. In European Conference on Computer Vision (ECCV), pages 778–
792. Springer, 2010. .

109

http://dl.acm.org/citation.cfm?id=11295.11298

F. Cao, P. Musé, and F. Sur. Extracting meaningful curves from images. J. Math.
Imaging Vision, 22(2-3):159–181, 2005.

J. Chen, S. Shan, C. He, G. Zhao, M. Pietikainen, X. Chen, and W. Gao. WLD: A robust
local image descriptor. PAMI, 32(9):1705–1720, 2010.

J.L. Crowley and R.M. Stern. Fast computation of the difference of low-pass transform.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, (2):212–222, 1984. .

M. Delbracio, P. Musé, and A. Almansa. Non-parametric sub-pixel local point spread
function estimation. IPOL, 2012. .

Rachid Deriche. Recursively implementating the Gaussian and its derivatives. Research
report, INRIA, 1993.

T. Dickscheid and W. Förstner. Evaluating the suitability of feature detectors for auto-
matic image orientation systems. In Computer Vision Systems, pages 305–314. Springer,
2009.

T. Dickscheid, F. Schindler, and W. Förstner. Coding images with local features. IJCV,
94(2):154–174, 2011.

S. Ehsan, N. Kanwal, A.F. Clark, and K.D. McDonald-Maier. Measuring the coverage
of interest point detectors. In Image Analysis and Recognition, pages 253–261. 2011.

S. Ehsan, A.F. Clark, and K.D. McDonald-Maier. Rapid online analysis of local feature
detectors and their complementarity. Sensors, 13(8):10876–10907, 2013.

R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsupervised scale-
invariant learning. In CVPR, 2003.

W. Förstner. A framework for low level feature extraction. In Computer VisionECCV’94,
pages 383–394. Springer, 1994. .

W. Förstner, T. Dickscheid, and F. Schindler. Detecting interpretable and accurate
scale-invariant keypoints. In IEEE International Conference on Computer Vision, 2009.
.

C. Gasquet and P. Witomski. Fourier Analysis and Applications: Filtering, Numer-
ical Computation, Wavelets. Texts in Applied Mathematics. Springer, 1999. ISBN
9780387984858.

P Getreuer. A survey of Gaussian convolution algorithms. Image Processing On Line,
2013:286–310, 2013. .

M. Grabner, H. Grabner, and H. Bischof. Fast approximated SIFT. In ACCV. 2006.

W. Grimson and D. Huttenlocher. Object recognition by computer: the role of geometric
constraints. MIT Press, 1990.

R Grompone von Gioi, P. Monasse, J-M. Morel, and Z. Tang. Towards high-precision
lens distortion correction. In ICIP, 2010.

110

F. Guichard, J.-M. Morel, and R Ryan. Contrast invariant image analysis and PDE’s.

Pascal Gwosdek, Sven Grewenig, Andrés Bruhn, and Joachim Weickert. Theoretical foun-
dations of gaussian convolution by extended box filtering. In Scale Space and Variational
Methods in Computer Vision, pages 447–458. Springer, 2012. .

G. Haro, A. Buades, and J-M. Morel. Photographing paintings by image fusion. SIAM
J. Imaging Sci., 5(3):1055–1087, 2012.

C. Harris and M. Stephens. A combined corner and edge detector. In Alvey vision
conference, volume 15, page 50, 1988. .

R. Hartley and A. Zisserman. Multiple view geometry in computer vision. Cambridge
University Press, 2003.

T. Hassner, V. Mayzels, and L. Zelnik-Manor. On SIFTs and their scales. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 1522–1528,
2012. .

T. Iijima, H. Genchi, and K. Mori. A theory of character recognition by pattern matching
method. In Learning systems and intelligent robots, pages 437–450. Springer, 1974. .

T. Kadir, A. Zisserman, and M. Brady. An affine invariant salient region detector. In
ECCV. 2004.

Y. Ke and R. Sukthankar. PCA-SIFT: A more distinctive representation for local image
descriptors. In IEEE Computer Vision and Pattern Recognition, volume 2. IEEE, 2004.

J. Koenderink. The structure of images. Biological Cybernetics, 50:363–370, 1984. ISSN
0340-1200. URL http://dx.doi.org/10.1007/BF00336961.

S. Leutenegger, M. Chli, and R.Y. Siegwart. BRISK: Binary Robust Invariant Scalable
Keypoints. In ICCV, 2011.

B. Li, R. Xiao, Z. Li, R. Cai, B.-L. Lu, and L. Zhang. Rank-SIFT: Learning to rank
repeatable local interest points. In CVPR, 2011.

T. Lindeberg. Scale-space theory in computer vision. Springer, 1993. .

C. Liu, J. Yuen, A. Torralba, J. Sivic, and W.T. Freeman. SIFT Flow: Dense corre-
spondence across different scenes. In European Conference on Computer Vision. 2008.
.

D. Lowe. Object recognition from local scale-invariant features. In IEEE International
Conference on Computer Vision, test, 1999. .

D. Lowe. Distinctive image features from scale-invariant keypoints. International journal
of computer vision, 60:91–110, 2004. ISSN 0920-5691. .

P. Mainali, G. Lafruit, Q. Yang, B. Geelen, L. Van Gool, and R. Lauwereins. SIFER:
Scale-Invariant Feature Detector with Error Resilience. IJCV, 104(2):172–197, 2013.

111

http://dx.doi.org/10.1007/BF00336961

Elmar Mair, Gregory D Hager, Darius Burschka, Michael Suppa, and Gerhard Hirzinger.
Adaptive and generic corner detection based on the accelerated segment test. In Com-
puter Vision–ECCV 2010, pages 183–196. Springer, 2010. .

J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide-baseline stereo from maxi-
mally stable extremal regions. Image Vision Comp., 22(10):761–767, 2004.

K. Mikolajczyk and C. Schmid. Scale & affine invariant interest point detectors. IJCV,
60(1):63–86, 2004. ISSN 0920-5691. .

K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors. PAMI,
27(10):1615–1630, 2005.

K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky,
T. Kadir, and L. Van Gool. A comparison of affine region detectors. International
Journal of Computer Vision, 65(1-2):43–72, 2005. ISSN 0920-5691. .

J.-M. Morel and G. Yu. Is SIFT scale invariant? Inverse Problems and Imaging, 5(1):
115–136, 2011.

P. Moreno, A. Bernardino, and J. Santos-Victor. Improving the SIFT descriptor with
smooth derivative filters. Pattern Recognition Lett., 30(1):18–26, 2009.

O. Pele and M. Werman. A linear time histogram metric for improved sift matching. In
European Conference on Computer Vision. 2008.

J. Rabin, J. Delon, and Y. Gousseau. A statistical approach to the matching of local
features. SIAM journal on imaging science, 2(3):931–958, 2009. .

Maxim Raginsky and Svetlana Lazebnik. Locality-sensitive binary codes from shift-
invariant kernels. In NIPS, volume 22, pages 1509–1517, 2009.

D.B. Reid. An algorithm for tracking multiple targets. Trans. Autom. Control, 24(6):
843–854, 1979. .

I. Rey-Otero, J-M. Morel, and M. Delbracio. An Analysis of scale-space sampling in
SIFT. In ICIP, 2014.

Ives Rey-Otero and Mauricio Delbracio. Anatomy of the SIFT Method. Image Processing
On Line, 4:370–396, 2014. .

E. Rosten and T. Drummond. Machine learning for high-speed corner detection. In
European Conference on Computer Vision, 2006. .

Edward Rosten, Reid Porter, and Tom Drummond. Faster and better: A machine
learning approach to corner detection. Trans. Pattern Anal. Mach. Intell., 32(1):105–
119, 2010.

E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB: An efficient alternative to
SIFT or SURF. In ICCV, pages 2564–2571. IEEE, 2011. .

R. Sadek. Some problems on temporally consistent video editing and object recognition.
PhD thesis, Universitat Pompeu Fabra, 2012.

112

R. Sadek, C. Constantinopoulos, E. Meinhardt, C. Ballester, and V. Caselles. On affine
invariant descriptors related to SIFT. SIAM, 5(2):652–687, 2012.

C. Schmid, R. Mohr, and C. Bauckhage. Evaluation of interest point detectors. IJCV,
37(2):151–172, 2000.

S.M. Smith and J.M. Brady. SUSAN. A new approach to low level image processing.
International Journal of Computer Vision, 23(1):45–78, 1997. .

N. Snavely, S.M. Seitz, and R. Szeliski. Photo tourism: exploring photo collections in
3D. ACM T. Graphics, 25(3):835–846, 2006.

J Sporring, M Nielsen, LMJ Florack, and P Johansen. Gaussian Scale-Space Theory,
volume 8 of Computational Imaging and Vision Series. Kluwer Academic Publishers,
Dordrecht, 1997.

E. Tola, V. Lepetit, and P. Fua. A fast local descriptor for dense matching. In CVPR,
2008.

E. Tola, V. Lepetit, and P. Fua. DAISY: An efficient dense descriptor applied to wide-
baseline stereo. PAMI, 32(5):815–830, 2010.

T. Tuytelaars and K. Mikolajczyk. Local invariant feature detectors: A survey. Founda-
tions and Trends R© in Computer Graphics and Vision, 3(3):177–280, 2008. .

T. Tuytelaars and L. Van Gool. Content-based image retrieval based on local affinely
invariant regions. In VISUAL, 1999.

T. Tuytelaars and L. Van Gool. Wide baseline stereo matching based on local, affinely
invariant regions. In BMVC, 2000.

A. Vedaldi and B. Fulkerson. VLFeat: An open and portable library of computer vision
algorithms. In Proc. ACM Int. Conf. Multimed., 2010.

J. Weickert, S. Ishikawa, and A. Imiya. Linear scale-space has first been proposed in
Japan. Journal of Mathematical Imaging and Vision, 10(3):237–252, 1999. .

S. Winder and M. Brown. Learning local image descriptors. In CVPR, 2007.

S. Winder, G. Hua, and M. Brown. Picking the best DAISY. In IEEE Conference on
Computer Vision and Pattern Recognition, 2009.

A Witkin. Scale-space filtering: A new approach to multi-scale description, volume 9,
pages 150–153. Institute of Electrical and Electronics Engineers, 1984. . URL http:

//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1172729.

I T Young and Lucas J Van Vliet. Recursive implementation of the Gaussian filter. Signal
processing, 44(2):139–151, 1995. .

G. Yu and J.-M. Morel. ASIFT: An Algorithm for Fully Affine Invariant Comparison.
IPOL, 2011, 2011. .

113

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1172729
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1172729

J. Zhang, M. Marsza lek, S. Lazebnik, and C. Schmid. Local features and kernels for
classification of texture and object categories: A comprehensive study. Int. J. of Comput.
Vision, 73(2):213–238, 2007.

H. Zhou, Y. Yuan, and C. Shi. Object tracking using SIFT features and mean shift.
Comp. Vis. Image Und., 113(3):345–352, 2009.

114

	Introduction
	Computing an exact Gaussian scale-space
	Introduction
	Mathematical Preliminaries
	Analysis of three digital Gaussian convolution algorithms
	Experiments
	Conclusion

	Anatomy of the SIFT Method
	General description
	The Gaussian scale-space
	Keypoint definition
	Keypoint description
	Matching
	Summary of Parameters

	An analysis of scale-space sampling and keypoints detection in SIFT
	Introduction
	The exact implementation of the SIFT method
	The theoretical scale invariance
	Simulating the digital camera
	Empirical analysis of the digital scale-space sampling
	Impact of deviations from the perfect camera model
	Concluding remarks

	Is repeatability an unbiased criterion for ranking feature detectors?
	Introduction
	The repeatability criterion and its bias
	Non-redundant repeatability
	Spatial coverage of state-of-the-art feature detectors
	Experiments
	Discussion

	Conclusion
	Bibliography

